
sc
or
e

initial
demand mobsim scoring analyses

replanning

The Multi-Agent Transport Simulation
MATSim

edited by

Andreas Horni, Kai Nagel, Kay W. Axhausen

The Multi-Agent Transport
Simulation MATSim

Edited by

Andreas Horni, Kai Nagel, Kay W. Axhausen

initial

demand
analyses mobsim scoring

replanning

] [u

ubiquity press
London

Published by
Ubiquity Press Ltd.
6 Windmill Street
London W1T 2JB

www.ubiquitypress.com

Text c© The Authors 2016

First published 2016

Cover Illustration by Dr. Marcel Rieser, Senozon AG

Print and digital versions typeset by diacriTech.

ISBN (Hardback): 978-1-909188-75-4
ISBN (PDF): 978-1-909188-76-1

ISBN (EPUB): 978-1-909188-77-8
ISBN (Mobi/Kindle): 978-1-909188-78-5

DOI: http://dx.doi.org/10.5334/baw

This work is licensed under the Creative Commons Attribution 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. This

license allows for copying any part of the work for personal and commercial use, providing
author attribution is clearly stated.

The full text of this book has been peer-reviewed to ensure high academic standards. For full
review policies, see http://www.ubiquitypress.com/

Suggested citation:
Horni, A, Nagel, K and Axhausen, K W (eds.) 2016 The Multi-Agent Transport Simulation

MATSim. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.
License: CC-BY 4.0

To read the free, open access version of this
book online, visit http://dx.doi.org/10.5334/baw
or scan this QR code with your mobile device:

his
g/10.5334/xx

ice:

Contents

Cover Photos xvii

Preface xix

Acknowledgments xxi

Contributors xxv

Introduction xxxi

Part I: Using MATSim 1

Chapter 1: IntroducingMATSim (AndreasHorni, Kai Nagel andKayW.Axhausen) 3

1.1 The Beginnings 3

1.2 In Brief 4

1.3 MATSim’s Tra�c Flow Model 6

1.4 MATSim’s Co-Evolutionary Algorithm 7

Chapter 2: Let’s Get Started (Marcel Rieser, Andreas Horni and Kai Nagel) 9

2.1 Running MATSim 9

2.2 Building and Running a Basic Scenario 12

2.3 MATSim Survival Guide 21

Chapter 3: A Closer Look at Scoring (Kai Nagel, Benjamin Kickhöfer,
Andreas Horni and David Charypar) 23

3.1 Good Plans and Bad Plans, Score and Utility 23

3.2 The Current Charypar-Nagel Utility Function 24

3.3 Implementation Details 29

3.4 Typical Scoring Function Parameters and their Calibration 32

3.5 Applications and Extensions 33

Chapter 4: More About Con�guring MATSim (Andreas Horni and Kai Nagel) 35

4.1 MATSim Data Containers 35

4.2 Global Modules and Global Aspects 36

4.3 Mobility Simulations 37

4.4 Scoring 38

4.5 Replanning Strategies 38

iv Contents

4.6 Other Modes than Car 41

4.7 Observational Modules 44

Part II: Extending MATSim 45

Chapter 5: Available Functionality and How to Use It (Andreas Horni and
Kai Nagel) 47

5.1 MATSim Modularity 47

5.2 An Overview of Existing MATSim Functionality 50

Subpart One: Input Data Preparation 53

Chapter 6:MATSimDataContainers (Marcel Rieser, KaiNagel andAndreasHorni) 55

6.1 Time-Dependent Network 55

6.2 Person Attributes and Subpopulations 56

6.3 Counts 56

6.4 Facilities 57

6.5 Households 58

6.6 Vehicles 58

6.7 Scenario 59

Chapter 7: Generation of the Initial MATSim Input (Marcel Rieser, Kai Nagel
and Andreas Horni) 61

7.1 Coordinate Transformations in Java 62

7.2 Network Generation 62

7.3 Initial Demand Generation 63

Chapter 8: MATSim JOSM Network Editor (Andreas Neumann and
Michael Zilske) 65

8.1 Basic Information 65

8.2 Introduction 65

Chapter 9: Map-to-Map Matching Editors in Singapore (Sergio Arturo Ordóñez) 67

9.1 Basic Information 67

Chapter 10: The “Network Editor” Contribution (Kai Nagel) 73

10.1 Basic Information 73

10.2 Short Description 73

Subpart Two: Mobsim 75

Chapter 11: QSim (Marcel Rieser, Kai Nagel and Andreas Horni) 77

11.1 Vehicle Types and Vehicles 77

11.2 Other 79

Contents v

Subpart Three: Individual Car Tra�c 81

Chapter 12: Tra�c Signals and Lanes (Dominik Grether and Theresa Thunig) 83

12.1 Basic Information 83

12.2 Motivation 83

12.3 Tra�c Signal Control 85

12.4 Network Representation & Tra�c Flow 86

12.5 Iterations & Learning 88

12.6 Conclusion 88

Chapter 13: Parking (Rashid A. Waraich) 89

13.1 Basic Information 89

13.2 Introduction 89

13.3 Models 89

13.4 Applications 91

13.5 Usage 92

Chapter 14: Electric Vehicles (Rashid A. Waraich and Joschka Bischo�) 93

14.1 Introduction 93

14.2 Models 93

14.3 Application: Electric Taxis 95

14.4 Usage 95

Chapter 15: Road Pricing (Kai Nagel) 97

15.1 Basic Information 97

15.2 Introduction 97

15.3 Some Results 98

15.4 Invocation 100

Subpart Four: Other Modes Besides Individual Car 103

Chapter 16: Modeling Public Transport with MATSim (Marcel Rieser) 105

16.1 Basic Information 105

16.2 Introduction 105

16.3 Data Model and Simulation Features 106

16.4 File formats 107

16.5 Possible Improvements 109

16.6 Applications 110

Chapter 17: The “Minibus” Contribution (Andreas Neumann and
JohanW. Joubert) 111

17.1 Basic Information 111

17.2 Paratransit 111

17.3 Network Planning or Solving the Transit Network Design Problem with MATSim 112

vi Contents

Chapter 18: Semi-Automatic Tool for Bus Route Map Matching
(Sergio Arturo Ordóñez) 115

18.1 Basic Information 115

18.2 Problem De�nition 116

18.3 Solution Approach 117

18.4 Map-Matching Automatic Algorithm 118

18.5 Automatic Veri�cation 119

18.6 Manual Editing Functionalities and Implemented So�ware 119

18.7 Conclusion and Outlook 120

Chapter 19: New Dynamic Events-Based Public Transport Router
(Sergio Arturo Ordóñez) 123

19.1 Basic Information 123

19.2 Events-Based Public Transport Router 124

19.3 Functional Results 128

19.4 Conclusion and Future Work 131

Chapter 20: Matrix-Based pt router (Kai Nagel) 133

20.1 Basic Information 133

20.2 Summary 133

Chapter 21: The “Multi-Modal” Contribution (Christoph Dobler
and Gregor Lämmel) 135

21.1 Basic Information 135

21.2 Introduction 135

21.3 Modeling Approach and Implementation 136

21.4 Conclusions and Future Work 140

Chapter 22: Car Sharing (Francesco Ciari and Milos Balac) 141

22.1 Basic Information 141

22.2 Background 141

22.3 Modeling of Carsharing Demand in MATSim 142

22.4 Carsharing Membership 143

22.5 Validation 144

22.6 Applications 144

Chapter 23: Dynamic Transport Services (Michal Maciejewski) 145

23.1 Introduction 145

23.2 DVRP Contribution 146

23.3 DVRP Model 146

23.4 DynAgent 148

23.5 Agents in DVRP 150

23.6 Optimizer 151

23.7 Con�guring and Running a DVRP Simulation 151

Contents vii

23.8 OneTaxi Example 152

23.9 Research with DVRP 152

Subpart Five: Commercial Tra�c 153

Chapter 24: Freight Tra�c (Michael Zilske and JohanW. Joubert) 155

24.1 Basic Information 155

24.2 Carriers 156

Chapter 25: WagonSim (Michael Balmer) 157

25.1 Basic Information 157

25.2 Summary 157

Chapter 26: freightChainsFromTravelDiaries (Kai Nagel) 161

Subpart Six: Additional Choice Dimensions 163

Chapter 27: Destination Innovation (Andreas Horni,
Kai Nagel and Kay W. Axhausen) 165

27.1 Basic Information 165

27.2 Introduction 165

27.3 Key Issues in Developing the Module 166

27.4 Application of the Module 171

27.5 The Module in the MATSim Context 171

27.6 Lessons Learned 172

27.7 Further Reading 173

Chapter 28: Joint Decisions (Thibaut Dubernet) 175

28.1 Basic Information 175

28.2 Joint Decisions and Transport Systems 175

28.3 A Solution Algorithm for the Joint Planning Problem: A Generalization of the
MATSim Process 178

28.4 Selected Results 180

28.5 Further Reading 181

Chapter 29: Socnetgen (Kai Nagel) 183

29.1 Basic Information 183

29.2 Summary 183

Subpart Seven: Within-Day Replanning 185

Chapter 30: Within-Day Replanning (Christoph Dobler and Kai Nagel) 187

30.1 Basic Information 187

30.2 Introduction 188

viii Contents

30.3 Simulation Approaches 188

30.4 Implementation 191

Chapter 31: Making MATSim Agents Smarter with the Belief-Desire-Intention
Framework (Lin Padgham and Dhirendra Singh) 201

31.1 Basic Information 201

31.2 Introduction 201

31.3 So�ware Structure 202

31.4 Building an Application Using BDI Agents 205

31.5 Examples 208

Subpart Eight: Automatic Calibration 211

Chapter 32: CaDyTS: Calibration of Dynamic Tra�c Simulations (Kai Nagel,
Michael Zilske and Gunnar Flötteröd) 213

32.1 Basic Information 213

32.2 Introduction 213

32.3 Adjusting Plans Utility 214

32.4 Hooking Cadyts into MATSim 214

32.5 Applications 215

Subpart Nine: Visualizers 217

Chapter 33: Senozon Via (Marcel Rieser) 219

33.1 Basic Information 219

33.2 Introduction 219

33.3 Simple Usage 220

33.4 Use Cases and Examples 221

Chapter 34: OTFVis: MATSim’s Open-Source Visualizer (David Strippgen) 225

34.1 Basic Information 225

34.2 Introduction 225

34.3 Using OTFVis 226

34.4 Extending OTFVis 231

Subpart Ten: Analysis 235

Chapter 35: Accessibility (Dominik Ziemke) 237

35.1 Basic Information 237

35.2 Introduction 238

35.3 The Measure of Potential Accessibility 239

35.4 Accessibility Computation Integrated with Transport Simulation 240

35.5 Econometric Interpretation 241

35.6 Spatial Resolution, Data, and Computational Aspects 242

35.7 Conclusion 244

Contents ix

Chapter 36: Emission Modeling (Benjamin Kickhöfer) 247

36.1 Basic Information 247

36.2 Introduction 247

36.3 Integrated Approaches for Modeling Transport and Emissions 248

36.4 Emission Calculation 249

36.5 So�ware Structure 250

Chapter 37: Interactive Analysis and Decision Support with MATSim
(Alexander Erath and Pieter Fourie) 253

37.1 Basic Information 253

37.2 Introduction 253

37.3 Requirements of a Decision Support Interface to MATSim 254

37.4 General Framework for Decision Support 255

37.5 Diaries from Events 257

Chapter 38: The “Analysis” Contribution (Kai Nagel) 259

38.1 Basic Information 259

38.2 Summary 259

Subpart Eleven: Computational Performance Improvements 261

Chapter 39: Multi-Modeling in MATSim: PSim (Pieter Fourie) 263

39.1 Basic Information 263

39.2 Introduction 263

39.3 Basic Idea 264

39.4 Performance 264

Chapter 40: Other Experiences with Computational Performance
Improvements (Kai Nagel) 267

Subpart Twelve: Other Modules 269

Chapter 41: Evacuation Planning: An Integrated Approach
(Gregor Lämmel, Christoph Dobler and Hubert Klüpfel) 271

41.1 Basic Information 271

41.2 Related Work 271

41.3 Download MATSim and Evacuation 272

41.4 The Fi�een-Minute Tour 273

41.5 Input Data (any Place and any Size) 273

41.6 Scenario Manager 273

41.7 Conclusion 280

x Contents

Chapter 42: MATSim4UrbanSim (Kai Nagel) 283

42.1 Basic Information 283

42.2 Summary 283

Chapter 43: Discontinued Modules (Kai Nagel and Andreas Horni) 285

43.1 DEQSim 285

43.2 Planomat 285

43.3 PlanomatX 286

Subpart Thirteen: Development Process & OwnModules 287

Chapter 44: Organization: Development Process, Code Structure and
Contributing to MATSim (Marcel Rieser, Andreas Horni and Kai Nagel) 289

44.1 MATSim’s Team, Core Developers Group, and Community 289

44.2 Roles in the MATSim Community 290

44.3 Code Base 290

44.4 Drivers, Organization and Tools of Development 294

44.5 Documentation, Dissemination and Support 295

44.6 Your Contribution to MATSim 295

Chapter 45: How to Write Your Own Extensions and Possibly Contribute
Them to MATSim (Michael Zilske) 297

45.1 Introduction 297

45.2 Extension Points 298

Part III: Understanding MATSim 305

Chapter 46: Some History of MATSim (Kai Nagel and Kay W. Axhausen) 307

46.1 Scienti�c Sources of MATSim 307

46.2 Stages of Development 308

Chapter 47: Agent-Based Tra�c Assignment (Kai Nagel and Gunnar Flötteröd) 315

47.1 Introduction 315

47.2 From Route Swapping to Agent Plan Choice 316

47.3 Agent-Based Simulation 321

47.4 Conclusion 326

Chapter 48: MATSim as a Monte-Carlo Engine (Gunnar Flötteröd) 327

48.1 Introduction 327

48.2 Relaxation as a Stochastic Process 329

48.3 Existence and Uniqueness of MATSim Solutions 330

48.4 Analyzing Simulation Outputs 332

48.5 Summary 335

Contents xi

Chapter 49: Choice Models in MATSim (Gunnar Flötteröd and
Benjamin Kickhöfer) 337

49.1 Evaluating Choice Models in a Simulated Environment 338

49.2 Evolution of Choice Sets in a Simulated Environment 341

49.3 Summary 344

Chapter 50: Queueing Representation of Kinematic Waves (Gunnar Flötteröd) 347

50.1 Introduction 347

50.2 Link Model 348

50.3 Node Model 350

50.4 Summary 351

Chapter 51: Microeconomic Interpretation of MATSim for Bene�t-Cost
Analysis (Benjamin Kickhöfer and Kai Nagel) 353

51.1 Revisiting MATSim’s Behavioral Simulation 353

51.2 Valuing Human Behavior at the Individual Level 354

51.3 Aggregating Individual Values 360

Part IV: Scenarios 365

Chapter 52: Scenarios Overview (Marcel Rieser, Andreas Horni and Kai Nagel) 367

Chapter 53: Berlin I: BVG Scenario (Andreas Neumann) 369

Chapter 54: Berlin II: CEMDAP-MATSim-Cadyts Scenario (Dominik Ziemke) 371

Chapter 55: Switzerland (Andreas Horni and Michael Balmer) 373

Chapter 56: Zürich (Nadine Rieser-Schüssler, Patrick M. Bösch, Andreas Horni
and Michael Balmer) 375

56.1 Studies Based on the Zürich Scenario 376

Chapter 57: Singapore (Alexander Erath and Artem Chakirov) 379

57.1 Demand 379

57.2 Supply 380

57.3 Behavioral Parameters 381

57.4 Policy 381

57.5 Calibration and Validation 381

Chapter 58: Munich (Benjamin Kickhöfer) 383

Chapter 59: Sioux Falls (Artem Chakirov) 385

59.1 Demand 385

59.2 Supply 386

xii Contents

59.3 Behavioral Parameters 386

59.4 Results, Drawbacks and Outlook 387

Chapter 60: Aliaga (Pelin Onelcin, Mehmet Metin Mutlu and Yalcin Alver) 389

Chapter 61: Baoding: A Case Study for Testing a New Household Utility
Function in MATSim (Chengxiang Zhuge and Chunfu Shao) 393

61.1 Introduction 393

61.2 Population and Demand Generation 393

61.3 Activity Locations, Network and Transport Modes 394

61.4 Historical Validation 394

61.5 Achieved Results 395

Chapter 62: Barcelona (Miguel Picornell and Maxime Lenormand) 397

62.1 Transport Supply: Network and Public Transport 397

62.2 Transport Demand: Population 397

62.3 Calibration and Validation 398

62.4 Results and More Information 398

Chapter 63: Belgium: The Use of MATSim within an Estimation Framework
for Assessing Economic Impacts of River Floods (Ismaı̈l Saadi, Jacques
Teller and Mario Cools) 399

63.1 Problem Statement 399

63.2 Data Collection 400

63.3 Input Preparation 401

63.4 General Modeling Framework 402

63.5 Modeling Network Disruption 402

63.6 Next Development Steps 403

Chapter 64: Brussels (Daniel Röder) 405

Chapter 65: Caracas (Walter J. Hernández B. and Héctor E. Navarro U.) 407

Chapter 66: Cottbus: Tra�c Signal Simulation (Joschka Bischo� and
Dominik Grether) 411

Chapter 67: Dublin (Gavin McArdle, Eoghan Furey, Aonghus Lawlor and
Alexei Pozdnoukhov) 413

67.1 Introduction 413

67.2 Study Area 413

67.3 Network 413

67.4 Population Generation 414

67.5 Demand Generation 414

67.6 Activity Locations 414

67.7 Validation and Results 416

Contents xiii

67.8 Achieved Results 416

67.9 Associated Projects and Where to Find More 416

Chapter 68: European Air- and Rail-Transport (Dominik Grether) 419

68.1 Air Transport Scenario 420

68.2 Simulation Results 423

68.3 Interpretation & Discussion 426

68.4 Conclusion 427

Chapter 69: Gauteng (JohanW. Joubert) 429

Chapter 70: Germany (Johannes Illenberger) 431

70.1 Demand and Supply Data 432

70.2 Imputation and Calibration 432

70.3 Simulation Results and Travel Statistics 435

Chapter 71: Hamburg Wilhelmsburg (Hubert Klüpfel and Gregor Lämmel) 437

71.1 Brief Description 437

71.2 Road Network 438

71.3 Evacuation Scenario 439

71.4 Simulation Results 441

Chapter 72: Joinville (Davi Guggisberg Bicudo and Gian Ricardo Berkenbrock) 445

Chapter 73: London (Joan Serras, Melanie Bosredon, Vassilis Zachariadis,
Camilo Vargas-Ruiz, Thibaut Dubernet and Mike Batty) 447

73.1 Supply 447

73.2 Demand 448

73.3 Calibration and Validation 449

73.4 More Information 449

Chapter 74: Nelson Mandela Bay (JohanW. Joubert) 451

Chapter 75: New York City (Christoph Dobler) 453

Chapter 76: Padang (Gregor Lämmel) 457

Chapter 77: Patna (Amit Agarwal) 459

Chapter 78: The Philippines: Agent-Based Transport Simulation Model for
Disaster Response Vehicles (Elvira B. Yaneza) 461

78.1 Literature Review 461

78.2 Design Details and Speci�cations 462

78.3 Model Scenarios 465

xiv Contents

78.4 Validation 466

78.5 Achieved Results 467

78.6 Conclusions 467

Chapter 79: Poznan (Michal Maciejewski andWaldemar Walerjanczyk) 469

Chapter 80: Quito Metropolitan District (Rolando Armas and Hernán Aguirre) 473

Chapter 81: Rotterdam: Revenue Management in Public Transportation with
Smart-Card Data Enabled Agent-Based Simulations (Paul Bouman and
Milan Lovric) 477

Chapter 82: Samara (Oleg Saprykin, Olga Saprykina and Tatyana Mikheeva) 481

82.1 Study Area 481

82.2 Transport Demand 482

82.3 Transport Supply 482

82.4 Calibration and Validation 483

82.5 Intelligent Tra�c Analysis 483

Chapter 83: San Francisco Bay Area: The SmartBay Project - Connected
Mobility (Alexei Pozdnoukhov, Andrew Campbell, Sidney Feygin,
Mogeng Yin and Sudatta Mohanty) 485

83.1 Introduction 485

83.2 The Study Area and Networks 485

83.3 Population and Demand Generation 486

83.4 Work Commute Model Evaluation 487

83.5 Extensions and Work in Progress 487

83.6 Conclusions and Acknowledgments 488

Chapter 84: Santiago de Chile (Benjamin Kickhöfer and Alejandro Tirachini) 491

84.1 Introduction 491

84.2 Data 492

84.3 Setting up the Open Scenario 493

84.4 Conclusion and Outlook 494

Chapter 85: Seattle Region (Kai Nagel) 495

Chapter 86: Seoul (Seungjae Lee and Atizaz Ali) 497

Chapter 87: Shanghai (Lun Zhang) 501

Chapter 88: Sochi (Marcel Rieser) 503

88.1 System Overview 503

88.2 Extensions to MATSim 504

88.3 Simulation of Sochi 505

88.4 Outlook 506

Contents xv

Chapter 89: Stockholm (Joschka Bischo�) 507

Chapter 90: Tampa, Florida: High-Resolution Simulation of Urban Travel and
Network Performance for Estimating Mobile Source Emissions (Sashikanth
Gurram, Abdul R. Pinjari and Amy L. Stuart) 509

90.1 Introduction 509

90.2 Study Area 509

90.3 Modeling Framework 510

90.4 Results 511

90.5 Future Work 513

90.6 Conclusion 513

Chapter 91: Tel Aviv (Christoph Dobler) 515

Chapter 92: Tokyo: Simulating Hyperpath-Based Vehicle Navigations and its
Impact on Travel Time Reliability (Daisuke Fukuda, Jiangshan Ma,
Kaoru Yamada and Norihito Shinkai) 517

92.1 Introduction 517

92.2 A Small-Sized Network Case 518

92.3 Simulation in Tokyo’s Arterial Road Network 519

92.4 Validation of Hyperpath-Based Navigation 522

Chapter 93: Toronto (AdamWeiss, Peter Kucireck and Khandker Nurul Habib) 523

93.1 Study Area 523

93.2 Population, Demand Generation and Activity Locations 523

93.3 Network Development and Simulated Modes 523

93.4 Calibration, Validation, Results 524

Chapter 94: Trondheim (Stefan Flügel, Julia Kern and Frederik Bockemühl) 525

Chapter 95: Yarrawonga and Mulwala: Demand-Responsive Transportation in
Regional Victoria, Australia (Nicole Ronald) 527

Chapter 96: Yokohama: MATSim Application for Resilient Urban Design
(Yoshiki Yamagata, Hajime Seya and Daisuke Murakami) 529

96.1 Introduction 529

96.2 Results 530

Chapter 97: Research Avenues (Kai Nagel, Kay W. Axhausen, Benjamin
Kickhöfer and Andreas Horni) 533

97.1 MATSim and Agents 533

97.2 Within-Day Replanning and the User Equilibrium 534

97.3 Choice Set Generation 535

97.4 Scoring/Utility Function and Choice 538

xvi Contents

97.5 Double-Queue Mobsim 542

97.6 Choice Dimensions, in particular, Expenditure Division 542

97.7 Considering Social Contacts 542

Acronyms 543

Glossary 549

Symbols & Typographic Conventions 553

Bibliography 555

Cover and Title Photos

The following cover and title photos have been provided by Dr. Marcel Rieser,
Senozon AG.

initial
demand

mobsim scoring analyses

replanning

The Multi-Agent Transport Simulation

MATSim

edited by

Andreas Horni, Kai Nagel, Kay W. Axhausen

c©Dr. Marcel Rieser, Senozon AG

Portland, Oregon. View from the south to the city center, from
the Portland Aerial Tram. June 2008. c©Dr. Marcel Rieser,
Senozon AG

Zürich, Switzerland. Tracks at Zürich Main Station. May 2011.
c©Dr. Marcel Rieser, Senozon AG

Berne, Switzerland. Car and bike park at Berne Main Station.
June 2011. c©Dr. Marcel Rieser, Senozon AG

Gotthard railway model at the Swiss Museum of Transport,
Lucerne, Switzerland. February 2004. c©Dr. Marcel Rieser,
Senozon AG

Preface

Developing complex so�ware for over a decade with a heterogeneous group of engineers and sci-
entists, each with widely di�erent skill levels and expertise across multiple locations around the
world, requires dedication and mechanisms unusual for a university environment.

This book is one of these mechanisms. It allows us, collectively, to take stock and present a coher-
ent state-of-the-system: for us and anyone interested in this approach. It highlights basics for the
student who wants to undertake a small �rst research project as part of his or her degree, provides
a description of the main functionalities, in detail, for the engineer setting up MATSim (Multi-
Agent Transport Simulation) to conduct a policy analysis and, �nally, �ts the approach into the
theoretical background of complex systems in computer science and physics.

The choice of the additional e-book format is an advantage, as it allows us to keep the book up-
to-date with future chapters, revisions and, if necessary, errata. Equally importantly it allows you,
the readers, to select those sections relevant to your needs.

The book comes at an important time for the system; for most of the �rst decade, its use was lim-
ited to the original developers and users in Berlin and Zürich. It is now much more widely consulted
around the world, as we document in the chapter summarizing contributions on scenarios so far.

Scenario: This term will occur again and again. In MATSim context, it is de�ned as the combina-
tion of speci�c agent populations, their initial plans and activity locations (home, work, education),
the network and facilities where, and on which, they compete in time-space for their slots and mod-
ules, i.e., behavioral dimensions, which they can adjust during their search for equilibrium. Within
these scenarios, the user can experiment and explore with behavioral utility function parame-
ters, with the sampling rate of the population between 1 % and 100 %, with algorithm parameters,
e.g., the share of the sample engaged in replanning in any iteration, or behavioral dimensions
or exact settings necessary to avoid gridlock due to the tra�c �ow dynamics. The creation of a
scenario is a substantial e�ort, and the framework makes a number of tools available to accel-
erate it: population synthesizers, network editors, network converters between popular formats
and the MATSim representation, e.g., OSM (OpenStreetMap) or GTFS (General Transit Feed
Speci�cation), semi-automatic network matching to join information, among others.

A large group of colleagues has been involved and many of them are contributors to this book;
this is a list of those involved, other than ourselves, in Berlin, Singapore and Zürich.

xx Preface

Amit Agarwal
Milos Balac
Dr. Michael Balmer
Henrik Becker
Joschka Bischo�
Patrick Bösch
Dr. David Charypar
Dr. Nurhan Cetin
Dr. Artem Chakirov
Dr. Yu Chen
Dr. Francesco Ciari
Dr. Christoph Dobler
Thibaut Dubernet
Dr. Alexander Erath
Dr. Matthias Feil
Prof. Dr. Gunnar Flötteröd
Pieter J. Fourie

Dr. Christian Gloor
Dr. Dominik Grether
Dr. Jeremy K. Hackney
Dr. Johannes Illenberger
Prof. Dr. Johan W. Joubert
Ihab Kaddoura
Dr. Benjamin Kickhöfer
Dr. Gregor Lämmel
Nicolas Lefebvre
Dr. Michal Maciejewski
Dr. Fabrice Marchal
Alejandro Marmolejo
Dr. Konrad Meister
Dr. Manuel Moyo Oliveros
Kirill Müller
Dr. Andreas Neumann
Dr. Thomas Nicolai

Sergio A. Ordóñez Medina
Dr. Bryan Raney
Dr. Marcel Rieser
Dr. Nadine Rieser-Schüssler
Daniel Röder
Mohit Shah
Dr. Lijun Sun
Alexander Stahel
Prof. Dr. David Strippgen
Theresa Thunig
Dr. Basil Vitins
Michael Van Eggermond
Dr. Rashid Waraich
Dominik Ziemke
Michael Zilske

Additional contributors are mentioned as authors of their respective chapters in this book. We
hope to acknowledge the contributions of more colleagues from other groups in future versions of
this book and in the so�ware.

Special thanks go to a number of people who greatly helped improving this book beyond their
own chapters. Benjamin Kickhöfer’s deep knowledge of MATSim’s mathematical base, particu-
larly its interpretation within the discrete choice framework, made the discussions accompanying
the writing of this book very fruitful. Thibaut Dubernet’s, Marcel Rieser’s and Michael Zilske’s
outstanding expertise on so�ware core development helped us very much and also improved the
so�ware structure during the writing of this book. Marcel Rieser’s layout and illustrations greatly
improved the book’s appearance. Joschka Bischo� ’s e�ort to document basic information about
every module will greatly help readers make a quick step into respective functionality.

The e�cient and productive copy editing by Karen Ettlin is gratefully acknowledged.
The reported e�ort was funded and supported over the years by numerous agencies. Several

particularly important sources are: ETH (Eidgenössische Technische Hochschule) Zürich and TU
(Technische Universität) Berlin, the DFG (Deutsche Forschungsgemeinscha�), the SNF (Schweiz-
erischer Nationalfonds), the Swiss ASTRA (BundesAmt für STRAssen), and the NRF (Singaporean
National Research Foundation), through their repeated grants and projects supporting di�erent
dissertations over the years. A more complete list is provided on pages xxi �. This support is
gratefully acknowledged by all researchers.

The publication of this book was funded by the following institutions. The publisher services
are funded by the EU (European Union) FP7 post-grant Open Access Pilot (OpenAIRE) and by
DFG. The book’s copy-editing is funded by the SNF under B-0010 166808. The support is highly
appreciated.

We hope this book captures the interest of more researchers and engineers and encourages them
to get involved in this joint e�ort. This would enable us to provide this framework, which has to
be continuously adapted to our policy needs, together and ensure that it stays at the forefront of
travel behavior modeling.

The editors
Andreas Horni, Kai Nagel, Kay W. Axhausen

Zürich and Berlin, February 2016

Acknowledgments

A project this dispersed and as long as the MATSim (Multi-Agent Transport Simulation) project
draws on many sources for its support. We hope that we have not forgotten any institution here.
We are grateful to all of them that they have made this open-source e�ort possible and we hope
that they will continue to do so in the spirit of intellectual discovery and sharing.

In every case, we have to thank our home institutions for providing the basic intellectual and
computing infrastructure for our work. ETH (Eidgenössische Technische Hochschule) Zürich was
home to Prof. Nagel and his group when he started the project and continues to be the basis for
Prof. Axhausen and his team. TU (Technische Universität) Berlin became Prof. Nagel’s new plat-
form a�er his move. Both institutions provided support through base funding for sta�, servers and
data access, which allow us to provide ongoing support to the overall project.

The following projects and sponsors funded particular persons and implementations:
TU Berlin (Kai Nagel, Amit Agarwal, Ulrike Beuck, Joschka Bischo�, Yu Chen, Gunnar

Flötteröd, Dominik Grether, Johannes Illenberger, Ihab Kaddoura, Benjamin Kickhöfer, Gregor
Lämmel, Michal Maciejewski, Manuel Moyo Oliveros, Andreas Neumann, Thomas Nicolai,
Marcel Rieser, David Strippgen, Theresa Thunig, Jakub Wilk, Dominik Ziemke, Michael Zilske)
undertook this work in the framework of the following projects: “COOPERS (Co-Operative Net-
works for Intelligent Road Safety) (EU (European Union) 026814); “Modelling and simulation
approaches for livable cities” (Volvo Research and Education Foundation SP-2004-49); “Travel
impacts of social networks and networking tools” (Volkswagen Sti�ung I/82 714); “Numerical
Last-mile Tsunami Early Warning and Evacuation Information System” (BMBF (Bundesminis-
terium für Bildung und Forschung/Federal Ministry of Education and Research) 03FG0666E);
“Adaptive Tra�c Control” (BMBF 03NAPAI4); “State Estimation for tra�c simulations as coarse
grained systems” (DFG (Deutsche Forschungsgemeinscha�) NA 682/1-1); “Detailed assess-
ment of transport measures using micro-simulation” (DFG NA 682/3-1); “Simulation of Mul-
tidestination Pedestrian Crowds” (DFG NA 682/5-1); “SustainCity: Micro-simulation for the
prospective of sustainable cities in Europe (EU 7th Framework 244557); “Contributions of trans-
port towards the realization of a 2000 W city” (DFG NA 682/6-1); “GRIPS (GIS-based Risk
analysis, Information, and Planning System for the evacuation of areas)” (BMBF 13N11382);
“MINTE (MItigating Negative Transport Externalities in industrialized and newly industrializing

xxii Acknowledgments

countries)” (DAAD (Deutscher Akademischer Austauschdienst – German Academic Exchange
Service) scholarship for doctoral students), “eCab: Simulation-based system for the sustainable
management of electrically powered taxi �eets” (Einstein Sti�ung Berlin A-2012-132); “Optimiza-
tion and network wide analysis of tra�c signal control” (DFG NA 682/7-1); “MAXess: Measur-
ing accessibilities for policy evaluation” (ERA (European Research Action – Country consortia),
ERAfrica, BMBF 01DG14008); “An agent-based evolutionary approach for the user-oriented
optimization of complex public transit systems” (DFG NA682/11-1).

ETH Zürich (Kay Axhausen, Milos Balac, David Charypar, Francesco Ciari, Christoph
Dobler, Thibout Dubernet, Andreas Horni, Nadine Rieser, Rashid Waraich) could also draw on
the following grants: “A generalized approach to population synthesis” (SNF (Schweizerischer
Nationalfonds) 205121 138270 25); “Agent-based modelling of retailers and their reactions to road
pricing” (ETH TH-19042); “Agent-based simulation for location-based services” (KTI (Kommis-
sion für Technologie und Innovation) 8443.1 ESPP-ES); “An investigation of strategies leading to
a 2000 W City using a bottom-up model of urban energy �ows” (SNF 105218-122632 1); “Assess-
ment of the impacts of the Westumfahrung Zürich (Kanton Zürich)”; “Autonomous Cars—The
next revolution in mobility” (SNF 200021 159234 43); “Choice models for transport modelling:
Accounting for similarities between alternatives in large scale choice sets” (SNF 205120-121889
14); “Deriving and assessing strategies for limiting the spread of airborne diseases using a social
contact model: The case of in�uenza” (SNF); “Destination Choice Modeling for Discretionary
Activities: Fundamentals of Choice Set Formation and Impacts of Spatial Competition” (SNF
205121 132086 20); “Dynamic Tra�c Self-organization in China: Network Spatial-temporal
Methodology and MATSim Simulation” (SNF IZ69Z0 13113917); “Integrated modelling and
analysis of energy and transport systems” (ETH TH-22 07-03); “Large-scale multi-agent simu-
lation of travel behaviour and tra�c �ow” (ETH TH-7959); “Large-scale stochastic optimization
for agent-based tra�c simulations” (ETH TH-18951); “MAXess: Measuring accessibility in
policy evaluation” (ERA, ERAfrica IZEAZ0 154310 37); “Models without (personal) data?”
(SNF 200021 144134 29); “Optimising public transport: Making smart cards more useful” (SNF
IZKSZ2 162185 44); “Post Car World” (SNF CRSII1 147687 21); “SCCER (Swiss Competence
Center for Energy Research) Energy and Mobility” (KTI 33290); “Sharing is Saving: how col-
laborative mobility can reduce the impact of energy consumption for transportation” (NFP
(Nationales Forschungsprogramm) 407140 153807 41); “Simulation evacuation scenarios and
Schwingerfest: Evacuation study” (BABS (Bundesamt für Bevölkerungsschutz, Switzerland));
“SURPRICE (Sustainable mobility through Road User Charging)” (ERA, ERA.net); “SustainCity:
Micro-simulation for the prospective of sustainable cities in Europe” (EU 7th Framework 244557);
“THELMA (Technology-centered ELectric Mobility Assessment)” (CCEM (Competence Center
Energy and Mobility)); “ToPDAd (Tool supported Policy Development for regional Adaptation)”
(EU 7th Framework 308620); “Travel behaviour in a dynamic spatial and social context: Modelling
the Interdependence of Social Network Interactions and spatial choices” (SNF 105212-112482 10)
and “Travel impacts of social networks and networking tools” (Volkswagen Sti�ung I/82 714).

The NRF (Singaporean National Research Foundation) together with ETH Zürich supported the
work of Alexander Erath, Pieter Fourie, Sergio Ordonez Medina, Artem Chakirov and Michael Van
Eggermond as part of FCL (Future Cities Laboratory).

The co-operation which funded Lun Zhang’s work (Tongji University) was based on two grants
(EG01-032010, NIP02-092010) of the Sino-Swiss Cooperation Project Program funded by ETH
Zürich.

The work reported by Senozon AG (Michael Balmer, Marcel Rieser, Daniel Röder, Christoph
Dobler and Andreas Neumann) is based on projects undertaken since it was set up in 2010,
especially noteworthy are the following clients: BVG (Berliner Verkehrsbetriebe), BfS (Bundesamt
für Statistik – Federal Statistical O�ce), Peter Vovsha, Parsons Brinckerho�, NY, Prof. Ulrich
Weidmann, Transport Systems Group (VS) of the IVT (Institut für Verkehrsplanung und
Transportsysteme – Institute for Transport Planning and Systems).

Acknowledgments xxiii

University of Pretoria (Johan Joubert) was supported by grants of the South African National
Treasury and the National Research Foundation grant FA2007051100019.

At RMIT (Royal Melbourne Institute of Technology) Lin Padgham and Dhirendra Singh
were supported by the ARC (Australian Research Council) Discovery DP1093290, ARC Linkage
LP130100008 and Telematics Trust grants. They would like to thank Agent Oriented So�ware for
the use of the JACK BDI (Belief Desire Intention) platform.

The work of Seungjae Lee and Atizaz Ali at the University of Seoul was supported by a grant
(11 High-Tech Urban G06) from High-tech Urban Development Program funded by Ministry of
Land, Infrastructure and Transport of Korean government.

At the National Institute for Environmental Studies, the research of Daisuke Murakami was sup-
ported by the Environment Research and Technology Development Fund (S-10) of Japan’s Ministry
of the Environment.

The work on the Trondheim scenario by Stefan Flügel, Julia Kern and Frederik Bockemühl was
supported by the Research Council of Norway with “Future Sustainable Transport for Industry and
Trade in Norway” (208420/F40).

The work on the Santiago de Chile scenario by Benjamin Kickhöfer and Alejandro
Tirachini has been supported by Chile’s CONICYT (Comisión Nacional de Investigación
Cient́ı�ca y Tecnológica – National Commission for Scienti�c and Technological Research)
through the FONDECYT (Fondo Nacional de Desarrollo Cient́ı�co y Tecnológico) Grant
11130227.

The research presented by the University of Poznan (Michal Maciejewski, Waldemar Waler-
janczyk) was partially supported by the grants PBS1/A6/11/2012 and ERA-NET-TRANSPORT-
III/2/2014 from the National Centre for Research and Development (Poland).

At the Universite de Liege (Mario Cools, Jacques Teller, Ismail Saadi) the work was supported by
the ARC grant for Concerted Research Actions, �nanced by the Wallonia-Brussels Federation on
“Landuse change and future �ood risk: in�uence of micro-scale spatial patterns (FLOODLAND)”.

Oleg Saprykin, Olga Saprykina and Tatyana Mikheeva were supported by the Ministry of
Education and Science of the Russian Federation at Samara State Aerospace University.

Chengxiang (Tony) Zhuge (Zhejiang University, Beijing Jiaotong University) and Chunfu Shao’s
project “Evolution Mechanism, Regulation and Control Methods of Urban Transportation Sup-
ply and Demand Structure” was funded by the National Natural Science Foundation of China
(51338008).

Sashikanth Gurram, Abdul R. Pinjari and Amy L. Stuart work at the University of South Florida
and bene�ted from a grant by the National Science Foundation (0846342) on “Tampa, Florida:
High Resolution Simulation of Urban Travel and Network Performance for Estimating Mobile
Source Emissions”.

The work of Maxime Lenormand at UIB (Universitat Autónoma de Barcelona) and Miguel Picor-
nell at Nommon was in the context of a EU 7th Framework grant (EUNOIA (Evolutive User-centric
Networks fOr Intraurban Accessibility), 318367).

The work for Toronto (Adam Weis, Khandker Nurul Habib, Peter Kucirek, Eric Miller, CF Shao)
was funded in part by an Natural Sciences and Engineering Research Council (Canada) Discovery
Grant and by the sponsors of the University of Toronto Travel Modelling Group: Metrolinx, the
Ontario Ministry of Transportation, the Cities of Toronto, Hamilton, Mississauga and Brampton,
and the Regional Municipalities of Durham, Halton, Peel and York.

The work at Shinshu University (Rolando Armas) is supported by the Ecudoran National
Secretariat of Higher Education, Science, Technology and Innovation.

National University of Ireland Maynooth and Dublin (Gavin McArdle, Aonghus Lawlor, Eoghan
Furey) were supported by the Science Foundation Ireland by a Strategic Research Cluster grant
(07/SRC/I1168) under the National Development Plan.

The work at the University of Melbourne (Nicole Roland) was based on an Australian Research
Council grant on “Integrating Mobility on Demand” (Linkage Project LP120200130).

xxiv Acknowledgments

Daisuke Fukuda’s work at Tokyo Tech was supported by a Grant-in-Aid for Scienti�c Research
from the Japan Society for the Promotion of Science (B) number 25289160 and by the CART (Com-
mittee on Advanced Road Technology), Ministry of Land, Infrastructure, Transport, and Tourism,
Japan.

The results from Erasmus University Rotterdam (Paul Bouman, Milan Lovric) were made pos-
sible by a grant of the NYBPM (Nederlandse Organisatie voor Wetenschappelijk Onderzoek –
Netherlands Organization for Scienti�c Research) funding the ComPuTr (Complexity in Public
Transport) project.

The research leading to the results reported by UCL (University College London) (Camilo
Ruiz, Joan Serras, Mike Batty, Melanie Bosredon, Vassilis Zachariadis) has received funding from
Engineering and Physical Sciences Research Council of UK (United Kingdom) under grant agree-
ment number EP/G057737/1 (SCALE project; 2009–2013), the European Union 7th Framework
Programme FP7/2007–2013 under grant agreement number 318367 (EUNOIA project) and the
European Research Council under grant agreement number 249393 (MECHANICITY project;
2010–2015).

The past and ongoing work at KTH (Kungliga Tekniska Högskolan – Royal Institute of Technol-
ogy) Stockholm (Gunnar Flötteröd) was based on the following grants: “IHOP2: Flexible coupling
of disaggregate travel demand models and network simulation packages” (TRV (Tra�kverket –
Swedish Transport Administration) 2015/2950); “SMART-PT: Smart public Transport” (ERA, Er-
anet Transport III—Future traveling, VINNOVA 2014-03976) and “PETRA (PErsonal TRansport
Advisor): an integrated platform of mobility patterns for Smart Cities to enable demand-adaptive
transportation system” (EU 7th Framework Program 609042). He is supported by the KTH
strategic research program in transport TRENoP (Transport REsearch with Novel Perspectives).

The data sources and support which the authors obtained are too numerous to list here. Please
see the original papers, theses and reports as cited in the various chapters. Special thanks go to
OSM (OpenStreetMap) and their contributors, who have made the procurement of high-quality
highly detailed network data much easier than it was before.

Selected Sponsors

BABS Bundesamt für Bevölkerungsschutz – Federal O�ce for
Civil Protection

Switzerland

BMBF Bundesministerium für Bildung und Forschung/Federal
Ministry of Education and Research

Germany

DFG Deutsche Forschungsgemeinscha� – German Research
Foundation

Germany

ERA European Research Action Country
consortia

EU European Union European
countries

KTI Kommission für Technologie und Innovation/
Commission for Technology and Innovation

Switzerland

NFP Nationales Forschungsprogramm – National Research
Program

Switzerland

NRF National Research Foundation Singapore

NSF National Science Foundation USA

SNF Schweizerischer Nationalfonds – Swiss National Research
Foundation

Switzerland

Contributors

Editors

Andreas Horni

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
horni@senozon.com

Kai Nagel

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
nagel@vsp.tu-berlin.de

KayW. Axhausen

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
axhausen@ivt.baug.ethz.ch

Authors (alphabetically)

Amit Agarwal

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
amit.agarwal.iitd@gmail.com

Hernan Aguirre

Faculty of Engineering
Shinshu University, Japan
ahernan@shinshu-u.ac.jp

Atizaz Ali

Departement of Transportation Engineering
University of Seoul
atizaz.ali@uos.ac.kr

Yalcin Alver

Department of Civil Engineering
Ege University, 35100 Bornova, Izmir, Turkey
yalcin.alver@ege.edu.tr

Rolando Armas

Faculty of Engineering
Shinshu University, Japan
rolando.armas@iplab.shinshu-u.ac.jp

xxvi Contributors

Milos Balac

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
milos.balac@ivt.baug.ethz.ch

Michael Balmer

Senozon AG
balmer@senozon.com

Mike Batty

Centre for Advanced Spatial Analysis
(CASA)

University College London
m.batty@ucl.ac.uk

Gian Ricardo Berkenbrock

So�ware/Hardware Integration Lab (LISHA)
Universidade Federal de Santa Catarina

(UFSC) Joinville
gian.rb@ufsc.br

Davi Guggisberg Bicudo

Universidade Federal de Santa Catarina
(UFSC) Joinville

davi.bicudo@me.com

Joschka Bischo�

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
bischo�@vsp.tu-berlin.de

Frederik Bockemühl

Master’s student at Hasselt University
frederik.bockemuhl@student.uhasselt.be

Patrick M. Bösch

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
boesch@ivt.baug.ethz.ch

Melanie Bosredon

Centre for Advanced Spatial Analysis
(CASA)

University College London
m.bosredon.11@ucl.ac.uk

Paul Bouman

Department of Technology and Operations
Management

Rotterdam School of Management (RSM)
Erasmus University Rotterdam

research@pcbouman.nl

Andrew Campbell

CEE Systems and Transportation
University of California, Berkeley
andrew.campbell@berkeley.edu

Artem Chakirov

Future Cities Laboratory
Singapore-ETH Centre
chakirov@ivt.baug.ethz.ch

David Charypar

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
dcharypar@gmail.com

Francesco Ciari

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
ciari@ivt.baug.ethz.ch

Mario Cools

Local Environment Management & Analysis
(LEMA)

University of Liège
mario.cools@ulg.ac.be

Dhirendra Singh

School of Computer Science and I.T.
RMIT University, Melbourne, Australia
dhirendra.singh@rmit.edu.au

Christoph Dobler

Senozon AG
dobler@senozon.com

Thibaut Dubernet

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
thibaut.dubernet@ivt.baug.ethz.ch

Contributors xxvii

Alexander Erath

Future Cities Laboratory
Singapore-ETH Centre
erath@ivt.baug.ethz.ch

Sidney Feygin

CEE Systems and Transportation
University of California, Berkeley
sid.feygin@berkeley.edu

Gunnar Flötteröd

Department of Transport Science
KTH Royal Institute of Technology
gunnar.�oetteroed@abe.kth.se

Stefan Flügel

Institute of Transport Economics
Norwegian Centre for Transport Research
stefan.�ugel@toi.no

Pieter Fourie

Future Cities Laboratory
Singapore-ETH Centre
fourie@ivt.baug.ethz.ch

Daisuke Fukuda

Department of Civil Engineering
Tokyo Institute of Technology
fukuda@plan.cv.titech.ac.jp

Eoghan Furey

National Centre for Geocomputation
NUI Maynooth
eoghan.furey@nuim.ie

Dominik Grether

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
dominik.grether@alumni.tu-berlin.de

Sashikanth Gurram

Department of Civil & Environmental
Engineering

University of South Florida
sgurram@mail.usf.edu

Khandker M. Nurul Habib

Department of Civil Engineering
University of Toronto
khandker.nurulhabib@utoronto.ca

Walter J. Hernández B.

Centro de Computación Grá�ca
Universidad Central de Venezuela, Caracas
walter.hernandez@ciens.ucv.ve

Johannes Illenberger

Transport Network Development and
Transport Models (GSV)

DB Mobility Logistics AG
johannes.illenberger@deutschebahn.com

JohanW. Joubert

Department of Industrial and Systems
Engineering

University of Pretoria
johan.joubert@up.ac.za

Julia Kern

Mathematical Optimization and Scienti�c
Information

Zuse Institute Berlin
kern@zib.de

Benjamin Kickhöfer

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
kickhoefer@vsp.tu-berlin.de

Hubert Klüpfel

Maleto
hubert@maleto.de

Peter Kucirek

TMG Travel Modelling Group, Toronto
peter.kucirek@alum.utoronto.ca

Gregor Lämmel

Institute for Advanced Simulation (IAS)
Forschungszentrum Jülich GmbH
g.laemmel@fz-juelich.de

xxviii Contributors

Aonghus Lawlor

Insight Centre for Data Analytics
University College Dublin
aonghus.lawlor@insight-centre.org

Seungjae Lee

Departement of Transportation Engineering
University of Seoul
sjlee@uos.ac.kr

Maxime Lenormand

Instituto de Fisica Interdisciplinar y Sistemas
Complejos (IFISC)

Campus Universitat de les Illes Balears
maxime@i�sc.uib-csic.es

Milan Lovric

Department of Technology and Operations
Management

Rotterdam School of Management (RSM)
Erasmus University Rotterdam

lovric.milan@gmail.com

Jiangshan Ma

Shanghai Maritime University
tonny.achilles@gmail.com

Michal Maciejewski

Division of Transport Systems
Poznan University of Technology
michal.maciejewski@put.poznan.pl

Gavin McArdle

National Centre for Geocomputation
Maynooth University
Gavin.McArdle@nuim.ie

Tatyana Mikheeva

Department of Transportation Organization
and Management

Samara State Aerospace University, Samara,
Russia

mikheevati@its-spc.ru

Sudatta Mohanty

CEE Systems and Transportation
University of California, Berkeley
sudatta.mohanty@berkeley.edu

Daisuke Murakami

Center for Global Environmental Research
National Institute for Environmental Studies,

16-2, Onogawa, Tsukuba, Ibaraki,
305-8506, Japan

murakami.daisuke@nies.go.jp

Mehmet Metin Mutlu

Department of Civil Engineering
Ege University, 35100 Bornova, Izmir, Turkey
mmetinm@gmail.com

Héctor E. Navarro U.

Centro de Computación Grá�ca
Universidad Central de Venezuela, Caracas
hector.navarro@ciens.ucv.ve

Andreas Neumann

Senozon Deutschland GmbH
earlier: Transport Systems Planning and

Transport Telematics (VSP)
TU Berlin
neumann@senozon.de

Pelin Onelcin

Department of Civil Engineering
Ege University, 35100 Bornova, Izmir, Turkey
pelin.onelcin@ege.edu.tr

Sergio Arturo Ordóñez Medina

Future Cities Laboratory
Singapore-ETH Centre
ordonez@ivt.baug.ethz.ch

Lin Padgham

School of Computer Science and I.T.
RMIT University, Melbourne, Australia
lin.padgham@rmit.edu.au

Miguel Picornell

Nommon Solutions and Technologies
miguel.picornell@nommon.es

Abdul R. Pinjari

Department of Civil & Environmental
Engineering

University of South Florida
apinjari@usf.edu

Contributors xxix

Alexei Pozdnoukhov

CEE Systems and Transportation
University of California, Berkeley
alexeip@berkeley.edu

Marcel Rieser

Senozon AG
rieser@senozon.com

Nadine Rieser-Schüssler

Ernst Basler + Partner AG
earlier: Institute for Transport Planning and

Systems (IVT), ETH Zürich
nadine.rieser@ebp.ch

Daniel Röder

Senozon Deutschland GmbH
roeder@senozon.de

Nicole Ronald

Department of Infrastructure Engineering
University of Melbourne
nicole.ronald@unimelb.edu.au

Ismaı̈l Saadi

Local Environment Management & Analysis
(LEMA)

University of Liège
ismail.saadi@ulg.ac.be

Oleg Saprykin

Department of Transportation Organization
and Management

Samara State Aerospace University, Samara,
Russia

saprykinon@gmail.com

Olga Saprykina

Department of Transportation Organization
and Management

Samara State Aerospace University, Samara,
Russia

olga grineva @mail.ru

Joan Serras

Centre for Advanced Spatial Analysis
(CASA)

University College London
j.serras@ucl.ac.uk

Hajime Seya

Graduate School for International
Development and Cooperation

Hiroshima University
hseya@hiroshima-u.ac.jp

Chunfu Shao

School of Tra�c and Transportation
Beijing Jiaotong University, Beijing, China
cfshao@bjtu.edu.cn

Norihito Shinkai

Regional Futures Research Center Co. Ltd.
shinkai@refrec.jp

David Strippgen

Interactive Systems & Game Technologies
Hochschule für Technik und Wirtscha�

(HTW)
david.strippgen@htw-berlin.de

Amy L. Stuart

Department of Civil & Environmental
Engineering and Department of
Environmental & Occupational Health

University of South Florida
astuart@health.usf.edu

Jacques Teller

Local Environment Management & Analysis
(LEMA)

University of Liège
Jacques.Teller@ulg.ac.be

Theresa Thunig

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
thunig@vsp.tu-berlin.de

Alejandro Tirachini

Transport Engineering Division, Civil
Engineering Department

Universidad de Chile
alejandro.tirachini@ing.uchile.cl

xxx Contributors

Camilo Vargas-Ruiz

Centre for Advanced Spatial Analysis
(CASA)

University College London
camilo.ruiz@ucl.ac.uk

WaldemarWalerjanczyk

Division of Transport Systems
Poznan University of Technology
waldemar.walerjanczyk@put.poznan.pl

Rashid A. Waraich

Institute for Transport Planning and Systems
(IVT)

ETH Zürich
waraich@ivt.baug.ethz.ch

AdamWeiss

Department of Civil Engineering
University of Toronto
adam.weiss@utoronto.ca

Kaoru Yamada

Oriental Consultants Global Co. Ltd.
yamada-kr@oriconsul.com

Yoshiki Yamagata

Center for Global Environmental Research
National Institute for Environmental Studies,

16-2, Onogawa, Tsukuba, Ibaraki,
305-8506, Japan

yamagata@nies.go.jp

Elvira B. Yaneza

College of Computer Studies
Xavier University-Ateneo de Cagayan de Oro

City, Philippines
eyaneza@xu.edu.ph

Mogeng Yin

CEE Systems and Transportation
University of California, Berkeley
mogengyin@berkeley.edu

Vassilis Zachariadis

Centre for Advanced Spatial Analysis
(CASA)

University College London
v.zachariadis@ucl.ac.uk

Lun Zhang

Transport Information Engineering
Tongji University Shanghai, China
lun zhang@tongji.edu.cn

Chengxiang Zhuge

Department of Geography
University of Cambridge
earlier: School of Tra�c and Transportation,

Beijing Jiaotong University, Beijing, China
cz293@cam.ac.uk

Dominik Ziemke

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
ziemke@vsp.tu-berlin.de

Michael Zilske

Transport Systems Planning and Transport
Telematics (VSP)

TU Berlin
zilske@vsp.tu-berlin.de

Copy-Editing

Karen Ettlin

karen.ettlin@datazug.ch

Introduction

The book is intended to give new MATSim users a quick start in running MATSim. It also provides
more experienced MATSim users and MATSim developers with information on how to extend
MATSim by plugging in available modules (e.g., the contributions), or by programming against the
MATSim API (Application Programming Interface) to implement their own MATSim extensions.
Another of this book’s goals is to contextualize the methods used in MATSim within a broader
theoretical background. By compiling our conceptual insights on MATSim gained over the years,
the book also contributes to methodological discussions on joint microsimulation of travel de-
mand and tra�c �ow, a relatively new �eld, or, more generally, spatial demand and its congestion
generation.
The book is divided into four parts, focused on using (Part I), extending (Part II), and understand-
ing (Part III) MATSim, while simultaneously providing practical, technical, and methodological
information. The last part of the book (Part IV) then presents an array of MATSim scenarios that
have been created around the world.

Part I: Using MATSim

This part enables users to run MATSim with only the con�g �le, a population
and a network. They are given general information to assess whether MATSim
is a suitable tool and method for their speci�c research question.
Chapter 1 introduces the MATSim basics, including its underlying
co-evolutionary principle and its tra�c �ow model. Chapter 2 shows the
MATSim novice how to set up and run a basic MATSim scenario. Scoring is
central to MATSim; a full chapter, Chapter 3, scrutinizes scoring. Chapter 4
lists the con�g �le options available for basic scenarios containing con�g �le,
a population and a network.

xxxii Introduction

Part II: Extending MATSim

This part presents technical information on how to extend the base function-
ality of MATSim by additional input data beyond con�g �le, population and
network, as well as by programming against the API.
Chapter 5 introduces MATSim’s modular architecture. It also explains how to
use the available modules introduced in Chapters 6 through 42. Chapter 43
describes modules that were important in the past but whose development was
discontinued. Chapter 44 brie�y describes MATSim organization, i.e., its devel-
opment process, code structure, the team and the community, and summarizes
their development tools. Chapter 45 goes one step further and explains to read-
ers how to write their own MATSim extensions, and how to then contribute
them to MATSim, including details about points where MATSim can be ex-
tended; it also digs a bit deeper and provides details about the very central
MATSim concept of events. Explanations about how to inject alternative or ad-
ditional modules and how in general to write MATSim scripts in Java is also
found here.

Part III: Understanding MATSim

This part presents theoretical aspects underlying the previous two parts. For
example, the MATSim score is no longer simply denoted by S without in-
terpretation, but is here contextualized within the discrete choice framework
(Chapter 49) and becomes related to utility, commonly denoted by U. The �rst
chapter, Chapter 46 starts with a summary of MATSim’s history, written by Kai
Nagel and Kay W. Axhausen. Chapter 47 then elaborates on agent-based tra�c
assignment and qualitatively contextualizes MATSim within classical concepts.
Here, the focus is on development from static to dynamic tra�c assignment
and, �nally, agent-based tra�c assignment. Chapter 48 quantitatively contex-
tualizes MATSim within classical concepts by presenting it as a fundamentally
stochastic tool, based on random distributions and understandable as a Monte
Carlo engine. Chapter 50 analyzes MATSim’s tra�c �ow model in relation to
kinematic waves, while Chapter 51 provides an economic view on MATSim.

Part IV: Scenarios

At this point, when readers have a complete picture of MATSim and are ready
to set up their own real-world MATSim scenario, Chapters 52 through 96 show
them the numerous and highly varied scenarios that have been implemented
around the world.
The book concludes with a discussion of promising research avenues
(Chapter 97).

Related Material

The book concentrates on the more stable aspects of MATSim application and development.
In the future, revisions of Chapters 1 to 5 will be presented once a year. Additional mate-
rial is referenced from http://matsim.org, for example under http://matsim.org/docs, http://
matsim.org/javadoc, http://matsim.org/extensions, http://matsim.org/faq, or http://matsim.
org/issuetracker.

PART I

Using MATSim

CHAPTER 1

Introducing MATSim

Andreas Horni, Kai Nagel and Kay W. Axhausen

1.1 The Beginnings

The MATSim project (MATSim, 2016) started with Kai Nagel, then at ETH Zürich, and his interest
in improving his work with, and for, the TRANSIMS (TRansportation ANalysis and SIMulation
System) project (Smith et al., 1995; FHWA, 2013); he also wanted to make the resulting code open-
source.1 A�er Kai Nagel’s departure to Berlin in 2004, Kay W. Axhausen joined the team, bringing
a di�erent approach and experience. A collaboration, successful and productive for more than
10 years, was thus established, combining a physicist’s and a civil engineer’s perspective, as well
as bringing together expertise in tra�c �ow, large-scale computation, choice modeling and CAS
(Complex Adaptive Systems):

•Microscopic modeling of tra�c: MATSim performs integral microscopic simulation of result-
ing tra�c �ows and the congestion they produce (see Section 1.3).

•Microscopic behavioral modeling of demand/agent-based modeling: MATSim uses a
microscopic description of demand by tracing the daily schedule and the synthetic travelers’
decisions. In retrospect, this can be called “agent-based”.

•Computational physics: MATSim performs fast microscopic simulations with 107 or more
“particles”.

•Complex adaptive systems/co-evolutionary algorithms: MATSim optimizes the experienced
utilities of the whole schedule through the co-evolutionary search for the resulting equilibrium
or steady state (see Section 1.4).

1 TRANSIMS has, since then, also become open-source (TRANSIMS Open Source, 2013); but in 2000, it was difficult to

procure in Europe.

How to cite this book chapter:

Horni, A, Nagel, K and Axhausen, K W. 2016. Introducing MATSim. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 3–8. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.1. License: CC-BY 4.0

4 The Multi-Agent Transport Simulation MATSim

At the end of the 1990s, the scene was set for these research streams’ mergence into a computa-
tionally e�cient, modular, open-source so�ware enabling further development on travel behavior,
network response and e�cient computation: MATSim.

1.2 In Brief

MATSim is an activity-based, extendable, multi-agent simulation framework implemented in
Java. It is open-source and can be downloaded from the Internet (MATSim, 2016; GitHub, 2015).
The framework is designed for large-scale scenarios, meaning that all models’ features are stripped
down to e�ciently handle the targeted functionality; parallelization has also been very important
(e.g., Dobler and Axhausen, 2011; Charypar, 2008). For the network loading simulation, for exam-
ple, a queue-based model is implemented, omitting very complex and computationally expensive
car-following behavior (see Section 1.3).

At this time, MATSim is designed to model a single day, the common unit of analysis for activity-
based models (see, for example, the review by Bowman, 2009a). Nevertheless, in principle, a multi-
day model could be implemented (Horni and Axhausen, 2012b).

As shown in Section 1.4, MATSim is based on the co-evolutionary principle. Every agent repeat-
edly optimizes its daily activity schedule while in competition for space-time slots with all other
agents on the transportation infrastructure. This is somewhat similar to the route assignment iter-
ative cycle, but goes beyond route assignment by incorporating other choice dimensions like time
choice (Balmer et al., 2005b), mode choice (Grether et al., 2009), or destination choice (Horni et al.,
2012b) into the iterative loop.

A MATSim run contains a con�gurable number of iterations, represented by the loop of
Figure 1.1 and detailed below. It starts with an initial demand arising from the study area pop-
ulation’s daily activity chains. The modeled persons are called agents in MATSim. Activity chains
are usually derived from empirical data through sampling or discrete choice modeling. A variety of
approaches is suitable, as evidenced in the scenarios’ chapters (cf. Chapter 52). During iterations,
this initial demand is optimized individually by each agent. Every agent possesses a memory con-
taining a �xed number of day plans, where each plan is composed of a daily activity chain and an
associated score. The score can be interpreted as an econometric utility (cf. Chapter 51).

In every iteration, prior to the simulation of the network loading with the MATSim mobsim
(mobility simulation) (e.g., Cetin, 2005), each agent selects a plan from its memory. This selection
is dependent on the plan scores, which are computed a�er each mobsim run, based on the executed
plans’ performances. A certain share of the agents (o�en 10 %) are allowed to clone the selected plan
and modify this clone (replanning). For the network loading step, multiple mobsims are available
and con�gurable (see Horni et al., 2011b, and Section 4.3 of this book).

Plan modi�cation is performed by the replanning modules. Four dimensions are usually con-
sidered for MATSim at this time: departure time (and, implicitly, activity duration) (Balmer et al.,

initial

demand
analyses mobsim scoring

replanning

Figure 1.1: MATSim loop, sometimes called the MATSim cycle.

Introducing MATSim 5

2005b), route (Lefebvre and Balmer, 2007), mode (Grether et al., 2009) and destination (Horni
et al., 2009, 2012b). Further dimensions, such as activity adding or dropping, or parking and group
choices are currently under development and only available experimentally. MATSim replanning
o�ers di�erent strategies to adapt plans, ranging from random mutation to approximate sugges-
tions, to best-response answers where, in every iteration, the currently optimal choice is searched.
For example, routing o�en is a best-response modi�cation, while time and mode replanning are
random mutations.

Initial day chains do not have to be very carefully de�ned for the replanning dimensions included
in the optimization process. Plausible values just speed up the optimization process.

If an agent ends up with too many plans (con�gurable), the plan with the lowest score (con�g-
urable) is removed from the agent’s memory. Agents that have not undergone replanning select
between existing plans. The selection model is con�gurable; in many MATSim investigations, a
model generating a logit distribution for plan selection is used.

An iteration is completed by evaluating the agents’ experiences with the selected day plans
(scoring). The applied scoring function is described in detail in Chapter 3.

The iterative process is repeated until the average population score stabilizes. The typical score
development curve (Figure 1.2, taken from Horni et al., 2009) takes the form of an evolutionary
optimization progress (Eiben and Smith, 2003, Figure 2.5). Since the simulations are stochastic,
one cannot use convergence criteria appropriate for deterministic algorithms; for a discussion of
possible approaches for the MATSim situation, see Sections 47.3.2.2 and 48.2 as well as Meister
(2011).

MATSim o�ers considerable customizability through its modular design. Although implement-
ing alternative core modules, such as an alternative network loading simulation, may entail sub-
stantial e�ort, in principle, every module of the framework can be exchanged. MATSim modules
are described in Chapter 5 and following.

MATSim is strongly based on events stemming from the mobsim. Every action in the simulation
generates an event, which is recorded for analysis. These event records can be aggregated to evaluate
any measure at the desired resolution. The event architecture is detailed in Section 45.2.5.

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

A
v
g
.
s
c
o
re

Iteration

Figure 1.2: Typical score progress.

6 The Multi-Agent Transport Simulation MATSim

1.3 MATSim’s Tra�c Flow Model

MATSim provides two internal mobsims: QSim and JDEQSim (Java Discrete Event Queue Simu-
lation); in addition, external mobility simulations can be plugged in. Some years ago, the DEQSim
written in C++ and described by Charypar (2008); Charypar et al. (2007b,a, 2009) was plugged

into MATSim and frequently used. The multi-threaded QSim is currently the default mobsim.
Charypar et al. (2009) distinguishes between

• physical simulations, featuring detailed car following models,
• cellular automata, in which roads are discretized into cells,
• queue-based simulations, where tra�c dynamics are modeled with waiting queues,
• mesoscopic models, using aggregates to determine travel speeds, and
• macroscopic models, based on �ows rather than single traveler units (e.g., cars).

As MATSim is designed for large-scale scenarios, it adopts the computationally e�cient queue-
based approach (see Figure 1.3). A car entering a network link (i.e., a road segment) from an
intersection is added to the tail of the waiting queue. It remains there until the time for travel-
ing the link with free �ow has passed and until he or she is at the head of the waiting queue and
until the next link allows entering. The approach is very e�cient, but clearly it comes at the price
of reduced resolution, i.e., car following e�ects are not captured. In JDEQSim, for computational
reasons, the waiting-queue approach is combined with an event-based update step (Charypar et al.,
2009). In other words, there is no time-step-based updating process of any agent in the scenario.
Instead agents are only touched if they actually require an action. For example, links do not have to
be processed while agents traverse them. Update events triggering is managed by a global sched-
uler. QSim, however, is time-step based. The MATSim tra�c �ow model is strongly based on the
two link attributes: storage capacity and �ow capacity. Storage capacity de�nes the number of cars
�tting onto a network link.

Flow capacity speci�es the out�ow capacity of a link, i.e., how many travelers can leave the re-
spective link per time step. It is an individual attribute of the link. The current implementation of
QSim has no maximum in�ow capacity speci�ed. In contrast, in the earlier DEQSim and current
JDEQSim, an in�ow capacity can also be speci�ed, which may move jams at merges from the end
of the �rst common link, where the QSim generates them, upstream to where the links merge and
where they plausibly should be (Charypar, 2008, p. 99). However, additional data is needed for this,
which is o�en not available.

This basic tra�c �ow model has been extended with various modules: Signals and multiple
lane modeling have been added (Chapter 12), backward-moving gaps, as investigated by Chary-
par (2008), are included in JDEQSim, but only available on an experimental basis for QSim
(Section 97.5). Interactions between di�erent modes are described in Section 4.6 and Chapter 21.

inflow

cap

ou�low

cap

link

node

wai�ng

queue

Figure 1.3: Tra�c �ow model.

Introducing MATSim 7

1.4 MATSim’s Co-Evolutionary Algorithm

As illustrated in Figure 1.4, the MATSim equilibrium is searched for by a co-evolutionary algorithm
(see, e.g., Popovici et al., 2012). These algorithms co-evolve di�erent species subject to interaction
(e.g., competition). In MATSim, individuals are represented by their plans, where a person repre-
sents a species. With the co-evolutionary algorithm, optimization is performed in terms of agents’
plans, i.e., across the whole daily plan of activities and travel. It achieves more than the standard
tra�c �ow equilibria, which ignores activities. Eventually, an equilibrium is reached, subject to
constraints, where the agents cannot further improve their plans unilaterally.

Note that there is a di�erence between the application of an evolutionary algorithm and a
co-evolutionary algorithm. An evolutionary algorithm would lead to a system optimum, as op-
timization is applied with a global (or population) �tness function. Instead, the co-evolutionary
algorithm leads to a (stochastic) user equilibrium, as optimization is performed in terms of
individual scoring functions and within an agent’s set of plans.

Species1..n

op�mized

popula�on

Ini�al

popula�on

recombina�on

muta�on

survivor

selec�on

parent

selec�on

parents

offsprings

Fitness

evalua�on

Species0

op�mized

plans

Ini�al plans

Scoring

replanning

Execu�on

Agent1..n

Op�mized

plans

Ini�al plans

Op�mized

popula�on

Ini�al

popula�on

Scoring

Recombina�on

Muta�on

Survivor selec�on

Parent selec�on

Parents

Offspring

Fitness

evalua�on
Replanning

Execu�on

MATSim Co-Evolu�onary Algorithm

Agent0

Interac�on

Interac�on

Figure 1.4: The co-evolutionary algorithm in MATSim.

CHAPTER 2

Let’s Get Started

Marcel Rieser, Andreas Horni and Kai Nagel

This chapter explains how to set up and run MATSim and describes the requirements for build-
ing a basic scenario. Updated information may be available from http://matsim.org, in particular
from http://matsim.org/docs.

Getting the source code into di�erent computing environments and extending MATSim through
the API is described in Part II, Chapter 45.

2.1 Running MATSim

2.1.1 Setting Up MATSim

To run MATSim, you must install the Java SE (Java Standard Edition) that complies with the
appropriate MATSim version. At this time, this is Java SE 7.

Download of the release You also need the o�cial MATSim release, a zip �le (usually designated
with the version number matsim-yy.yy.yy.zip), that includes everything required to run it. It can
be downloaded following the “release” link under http://matsim.org/downloads. Unzip results in
the MATSimdirectory tree. Continue with Section 2.1.2.

TheMATSimdirectory tree on the web If you want to look at the development version, or look
at things without downloading and installing a zip �le: On GitHub, the root of the MATSimdirec-

tory tree (i.e., excluding so-called contribs and playgrounds) is at https://github.com/matsim-
org/matsim/tree/master/matsim.

How to cite this book chapter:

Rieser, M, Horni, A and Nagel, K. 2016. Let’s Get Started. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 9–22. London: Ubiquity Press.

DOI: http://dx.doi.org/10.5334/baw.2. License: CC-BY 4.0

10 The Multi-Agent Transport Simulation MATSim

Download of nightly builds If you prefer to use the more up-to-date, but less stable, nightly
builds, you should download, via the same URL (Uniform Resource Locator) http://matsim.org/
downloads,

• the MATSim JAR (Java ARchive) �le (usually tagged with the revision number MATSim_ryyyy.
jar), and

• the required external libraries (MATSim_libs.zip). Unzipping this collection of 3rd-party li-
braries, you should then get a directory libs, with several JAR �les inside. If the directory libs

is in the same directory as the MATSim JAR �le, the libraries are found automatically and do
not have to be added manually to the classpath.

Maven A relatively new feature is that one can use MATSim as an Apache Maven plugin; both
release versions and snapshots are available. See again http://matsim.org/downloads for more in-
formation. For someone who has used Apache Maven before, this is probably the best option. In
this case, one may use the simple Java programming approach of Section 5.1.1.4 to get started.

2.1.2 Running MATSim

When this book was written, only the nightly built MATSim JAR �le could be started by double-
clicking. A minimal GUI (Graphical User Interface), as shown in Figure 2.1, opens and the
MATSim run can be con�gured and started. This feature will appear in the releases, starting with
version 0.8.

For the release 0.7, MATSim does not provide a GUI; thus, you must be able to handle and
access a command line tool. In Linux or Mac OS X, this is typically a Terminal application; in
Microso� Windows, the Power Shell or Command Prompt. At the command prompt type the
following command in one line, but substitute the correct paths:

On Linux or Mac OS X, something like:

java -Xmx512m -cp /path/to/matsim.jar org.matsim.run.Controler /path/

to/config.xml

Figure 2.1: Minimal MATSim GUI.

Let’s Get Started 11

On Windows, an example command could be:

java -Xmx512m -cp C:\ MATSim\matsim.jar org.matsim.run.Controler

C:\ MATSim\input\config.xml

Such a command consists of multiple parts:

• java tells the system that you want to run Java.
• -Xmx512m tells Java that it should use up to 512 MB (Megabyte) of memory. This is typically

enough to run the small examples. For larger scenarios, you might need more memory, e.g., -
Xmx3g would allow Java to use up to 3 GB (Gigabyte) of RAM (Random Access Memory).

• -cp /path/to/matsim.jar tells Java where to �nd the MATSim code.
• org.matsim.run.Controler speci�es which class (think of an “entry point”) should be run. In

most cases, the default MATSim Controler is the class you will need to run simulations.
• /path/to/config.xml tells MATSim which con�g �le is to be used.

2.1.3 Con�guring MATSim

MATSim is con�gured in the con�g �le, building the connection between the user and MATSim
and containing a settings list that in�uences how the simulation behaves.

All con�guration parameters are simple pairs of a parameter name and a parameter value. The
parameters are grouped into logical groups; one group has settings related to the Controler, like the
number of iterations, or another group has settings for the mobsim, e.g., end time of the mobsim.
As shown in Chapter 5, numerous MATSim modules can be added to MATSim and con�gured by
specifying the respective con�guration �le section.

The list of available parameters and valid parameter values may vary from release to release.
Although we try to keep this stable, so�ware changes, mainly new features, may cause settings to
change. For a list of all available settings available with the version you are working with, run the
following command:

java -cp /path/to/matsim.jar org.matsim.run.CreateFullConfig fullConfig.xml

This command will create a new con�g �le fullConfig.xml, containing all available parame-
ters, along with their default values and o�en an explanatory comment, making it easy to see
what settings are available. To use and modify speci�c settings, lines with their corresponding
parameters can be copied to the con�g �le, speci�c to the scenario to be simulated, and the pa-
rameter values can be modi�ed in that �le. See http://matsim.org/javadoc → main distribution
→ CreateFullConfig for more information.

A fairly minimal con�g �le contains the following information:

<module name="network">

<param name="inputNetworkFile" value="<path -to-network -file >" />

</module >

<module name="plans">

<param name="inputPlansFile" value="<path -to-plans -file" />

</module >

<module name="controler">

<param name="firstIteration" value="0" />

<param name="lastIteration" value="0" />

</module >

<module name="planCalcScore" >

<parameterset type="activityParams" >

12 The Multi-Agent Transport Simulation MATSim

<param name="activityType" value="h" />

<param name="typicalDuration" value="12:00:00" />

</parameterset >

<parameterset type="activityParams" >

<param name="activityType" value="w" />

<param name="typicalDuration" value="08:00:00" />

</parameterset >

</module >

For a working example, see the MATSim directory tree (cf. 2.1.1) under examples/tutorial/config
/example1-config.xml.

In the example, supply is provided by the network and demand by the plans �le. Typical input
data is described in Section 2.2.2. The speci�cation that the �rst and last iteration are the same,
means that no replanning of the demand is performed. What is executed is the mobsim (Figure 1.1),
followed by each executed plan’s performance scoring. To function, the scoring needs to know, from
the con�g �le, all activity types used in the plans and the typical duration for each activity type.

Further con�guration possibilities are described in Chapter 4.

2.2 Building and Running a Basic Scenario

This section provides information on typical input data �les used for a MATSim experiment, as
well as the standard output �les generated. It presents a minimal example scenario and brie�y
explains units, conventions and coordinate systems used in MATSim. Then, hints on practical data
requirements are provided.

2.2.1 Units, Conventions, and Coordinate Systems

2.2.1.1 Units

MATSim tries to make few assumptions about actual units, but it is sometimes necessary for
certain estimates. In general, MATSim expects similar types of variables (e.g., all distances) to
be in the same unit wherever they are used. In the following short overview, the most important
(expected) units are listed.

Distance Distance units are for example used in links’ length. They should be speci�ed in the
same unit the coordinate system uses, allowing MATSimto calculate beeline distances. As the much
used UTM (Universal Transverse Mercator) projected coordinate systems (see Section 2.2.1.3) use
meters as the unit of distance, this is the most commonly used distance unit in MATSim.

Time MATSim supports an hour:minute:second notation in several places, but internally, it uses
seconds as the default time unit. This implies, for example, that link speeds must be speci�ed in
distance per second, typically meters per second. One notable exception to this rule are scoring
parameters, where MATSim expects values per hour.

Money Money is unit-free. Units are implicitly given by the marginal utility of money (cf. Equa-
tion (3.4) below). Thus, when one moves from Germany to Switzerland, the parameter βc must be
changed from “utility per Euro” to “utility per Swiss Franc”.

2.2.1.2 Conventions

MATSim uses IDs intensely. These identi�ers can be arbitrary strings, with the following excep-
tions: IDs should not contain any whitespace characters (incl. tabs, new lines, etc.) or commas,
semicolons, etc., because those characters are typically used for separating di�erent IDs from each
other on IDs lists.

Let’s Get Started 13

2.2.1.3 Coordinate Systems

Preparing Your Data in the Appropriate Coordinate System In several input �les, you need
to specify coordinates, e.g., for network nodes. We strongly advise not to use WGS84 coor-
dinates (i.e., GPS (Global Positioning System) coordinates), or any other spherical coordinates
(coordinates ranging from −180 to +180 in west-east direction and from −90 to +90 in south-
north direction). MATSim has to calculate distances between two points in several sections of
the code. Calculation of distances between spherical coordinates is very complex and poten-
tially slow. Instead, MATSim uses the simple Pythagoras theorem, but this requires Cartesian
coordinate system coordinates. Thus, we emphatically recommend using a Cartesian coordi-
nate system along with MATSim, preferably one where the distance unit corresponds to one
meter.

Many countries and regions have custom coordinate systems de�ned, optimized for local usage.
It might be best to ask GIS (Geographic Information System) specialists in your region of interest
for the most commonly used coordinate system there and use that for your data.

If you have no information about what coordinate system is used in your region, it might be best
to use the UTM coordinate system. This system divides the world into multiple bands, each six
degrees wide, and separated into a northern and southern part, which it calls UTM zones. For each
zone, an optimized coordinate system is de�ned. Choose the UTM zone for your region (Wikipedia
has a good map showing the zones) and use its coordinate system.

Telling MATSim About Your Coordinate System For some operations, MATSim must know
the coordinate system where your data is located. For example, some analyses may create output
to be visualized in Google Earth or by QGIS (Quantum GIS). The coordinate system used by your
data can be speci�ed in the con�g �le:

<module name="global">

<param name="coordinateSystem" value="EPSG :32608" />

</module >

This allows MATSim to work with your coordinates and convert them whenever needed.
You have multiple ways to specify the coordinate system you use. The easiest one is to use the

so-called “EPSG (European Petroleum Survey Group) codes”. Most of the commonly used coordi-
nate systems have been standardized and numbered. The EPSG code identi�es a coordinate system
and can be directly used by MATSim. To �nd the correct EPSG code for your coordinate system
(e.g., for one of the UTM zones), the website http://www.spatialreference.org is extremely use-
ful. Search on this website for your coordinate system, e.g., for “WGS 84 / UTM Zone 8N” (for the
northern-hemisphere UTM Zone 8), to �nd a list of matching coordinate systems along with their
EPSG codes (in this case EPSG:32608).

As an alternative, MATSim can also parse the description of a coordinate system in the WKT
(Well-Known Text) format.

2.2.2 Typical Input Data

Minimally, MATSim needs the �les

• config.xml, containing the con�guration options for MATSim and presented above in Sec-
tion 2.1.3,

• network.xml, with the description of the (road) network, and
• population.xml, providing information about travel demand, i.e., list of agents and their day

plans.

14 The Multi-Agent Transport Simulation MATSim

Thus, population.xml and network.xml might get quite large. To save space, MATSim supports
reading and writing data in a compressed format. MATSim uses GZIP-compression for this. Thus,
many �le names have the additional su�x .gz, as in population.xml.gz. MATSim acknowledges
whether �les are compressed, or should be written compressed, based on �le name.

2.2.2.1 An Outlook on Extending MATSim in Part II of this Book

Chapter 7 provides some information about MATSim’s technical tools for initial input generation.
With the basic setting, MATSim agents perform their activities on a speci�c link. If further infor-
mation about activity locations needs to be speci�ed, this can be carried out with facilities described
in Section 6.4. Further, for the simulation of public transport, the base scenario must be extended
by additional �les as shown in Section 16.4.1 and Chapter 16. Count data are a common evalua-
tion measure in transport planning. In MATSim, count data can be provided for the simulation, as
shown in Section 6.3.

In more detail, the network and population �les resemble the following; for the con�g �le, see
Section 2.1.3 above.

2.2.2.2 network.xml

Network is the infrastructure on which agents (or vehicles) can move around. The network consists
of nodes and links (in graph theory, typically called vertices and edges). A simple network descrip-
tion in MATSim’s XML (Extensible Markup Language) data format could contain approximately
the following information:

<network name="example network">

<nodes >

<node id="1" x="0.0" y="0.0"/>

<node id="2" x="1000.0" y="0.0"/>

<node id="3" x="1000.0" y="1000.0"/>

</nodes >

<links >

<link id="1" from="1" to="2" length="3000.00" capacity="3600"

freespeed="27.78" permlanes="2" modes="car" />

<link id="2" from="2" to="3" length="4000.00" capacity="1800"

freespeed="27.78" permlanes="1" modes="car" />

<link id="3" from="3" to="2" length="4000.00" capacity="1800"

freespeed="27.78" permlanes="1" modes="car" />

<link id="4" from="3" to="1" length="6000.00" capacity="3600"

freespeed="27.78" permlanes="2" modes="car" />

</links >

</network >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

Each element has an identi�er id. Nodes are described by an x and a y coordinate value (also see
Sections 2.2.1.3 and 7.1). Links have more features; the from and to attributes reference nodes and
describe network geometry. Additional attributes describe tra�c-related link aspects:

• The length of the link, typically in meters (see Section 2.2.1).
• The �ow capacity of the link, i.e., number of vehicles that traverse the link, typically in vehicles

per hour.
• The freespeed is the maximum speed that vehicles are allowed to travel along the link, typically

in meters per second.
• The number of lanes (permlanes) available in the direction speci�ed by the ’from’ and ’to’ nodes.
• The list of modes allowed on the link. This is a comma-separated list, e.g., modes="car, bike,

taxi".

Let’s Get Started 15

All links are uni-directional. If a road can be traveled in both directions, two links must be de�ned
with alternating to and from attributes (see links with id 2 and 3 in the listing above).

2.2.2.3 population.xml

File Format MATSim travel demand is described by the agents’ day plans. The full set of agents
is also called the population, hence the �le name population.xml. Alternatively, plans.xml is also
commonly used in MATSim, as the population �le essentially contains a list of day plans.

The population contains the data in a hierarchical structure, as shown in the following example.
This example illustrates the data structure; minimal input �les need less information, as illustrated
later.

<population >

<person id="1">

<plan selected="yes" score="93.2987721">

<act type="home" link="1" end_time="07:16:23" />

<leg mode="car">

<route type="links">1 2 3</route >

</leg>

<act type="work" link="3" end_time="17:38:34" />

<leg mode="car">

<route type="links">3 1</route >

</leg>

<act type="home" link="1" />

</plan>

</person >

<person id="2">

<plan selected="yes" score="144.39002">

...

</plan>

</person >

</population >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

The population contains a list of persons, each person contains a list of plans, and each plan
contains a list of activities and legs.

Exactly one plan per person is marked as selected. Each agent’s selected plan is executed by the
mobility simulation. During the replanning stage, a di�erent plan might become selected. A plan
can contain a score as attribute. The score is calculated and stored in the plan a�er its execution

by the mobility simulation during the scoring stage.
The list of activities and legs in each plan describe each agent’s planned actions. Activities are

assigned a type and typically have—except for the last activity in a day plan—a de�ned end time.
There are some exceptions where activities have a duration instead of an end time. Such activities
are o�en automatically generated by routing algorithms and are not described in this book. To
describe the location where an activity takes place, the activity is either assigned a coordinate by
giving it an x and y attribute value, or it has a link assigned, describing from which link the activity
can be reached. Because the simulation requires a link attribute, Controler calculates the nearest
link for a given coordinate when the link attribute is missing.

A leg describes how an agent plans to travel from one location to the next; each leg must have
a transport mode assigned. Optionally, legs may have an attribute, trav_time, describing the ex-
pected travel time for the leg. For a leg to be simulated, it must contain a route. The format of a
route depends on the mode of a leg. For car legs, the route lists the links the agent has to traverse
in the given order, while for transit legs, information about stop locations and expected transit ser-
vices are stored. MATSim automatically computes initial routes for initial plans that do not contain
them.

16 The Multi-Agent Transport Simulation MATSim

An agent starts a leg directly a�er the previous activity (or leg) has ended. The handling of the
agent in the mobsim depends on the mode. By default, car and transit legs are well-supported by
the mobsim. If the mobsim encounters a mode it does not know, it defaults to teleportation. In this
case, an agent is removed from the simulated reality and re-inserted at its target location a�er the
leg’s expected travel time has passed.

AMinimal PopulationFile The population data format is one of the most central data structures
in MATSim and might appear a bit overwhelming at �rst. Luckily, to get started, it is only necessary
to know a small subset. A population �le needs, approximately, only the following information:

<population >

<person id="1">

<plan>

<act type="home" x="5.0" y="8.0" end_time="08:00:00" />

<leg mode="car" />

<act type="work" x="1500.0" y="890.0" end_time="17:30:00" />

<leg mode="car" />

<act type="home" x="5.0" y="8.0" />

</plan>

</person >

<person id="2">

...

</person >

</population >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

The following items can be used for simpli�cation:

• Each person needs exactly one plan.
• The plan does not have to be selected or have a score.
• Activities can be located just by their coordinates.
• Activities should have a somewhat reasonable end-time.
• Legs need only a mode, no routes.

When a simulation is started, MATSim’s Controler will load such a �le and then automatically
assign the link nearest to each activity and calculate a suitable route for each leg. This makes it easy
to get started quickly.

2.2.3 Typical Output Data

MATSim creates output data that can be used to analyze results as well as to monitor the current
simulation setup progress. Some of the �les summarize a complete MATSim run, while others are
created for a speci�c iteration only. The �rst type of �les goes directly to the output folder’s top
level, which can be speci�ed in the controler section of the con�g �le. The other �les are stored
in iteration-speci�c folders ITERS/it.{iteration number}, which are continuously created in the
output folder. For some �les (typically for large ones, such as population), the output frequency
can be speci�ed in the con�g �le. They then go only to the respective iteration folders. The �les
summarizing the complete MATSim run are built ’on the �y’, i.e., a�er every iteration, currently
computed iteration values are stored, allowing continuous monitoring of the run. Some �les are
created by default (such as the score statistics �les); others need to be triggered by a respective
con�guration �le section (such as count data �les).

The following output �les are continuously built up to summarize the complete run.

Log File: During a MATSim run, a log �le is printed containing information you might need later
for your analyses, or in case a run has crashed.

Let’s Get Started 17

Warnings and Errors Log File: Sometimes, MATSim identi�es problems in the simulation or its
con�guration; it will then write warning and error messages to the log �le. Because the log �le
contains so much information, these warnings can be overlooked. For this reason, a separate
log �le is generated in the run output directory, containing only warnings and error messages.
It is important to check this �le during/a�er a run for possible problems.

Score Statistics: Score statistics are available as a picture (scorestats.png), as well as a text �le
(scorestats.txt). They show the average best, worst, executed and overall average of all
agents’ plans for every iteration. An example score plot is shown in Figure 1.2.

Leg Travel Distance Statistics: Leg travel distance statistics (�les traveldistancestats.png and
traveldistancestats.txt) are comparable to score statistics, but instead, they plot travel
distance.

Stopwatch: The stopwatch �le (stopwatch.txt) contains the computer time (so-called wall clock
time) of actions like replanning or the execution of the mobsim for every iteration. This
data is helpful for computational performance analyses, e.g., how long does replanning take
compared to the mobility simulation?

The following output �les are created for speci�c iterations:

Events: Every action in the simulation is recorded as a MATSim event, be it an activity start or
change of network link; see Fig. 2.2. Each event possesses one or multiple attributes. By default,
the time when the event occurred is included. Additionally, information like the ID of the agent
triggering the event, or the link ID where the event occurred, could be included. The events
�le is an important base for post-analyses, like the visualizers. Events are discussed in detail
in Section 45.2.5.

Plans: At con�gurable iterations, the current state of the population, with the agents’ plans, is
printed. The �nal iteration’s plans are also generated on the top level of the output folder.

Leg Histogram: In every iteration, a leg histogram is plotted. A leg histogram depicts the num-
ber of agents arriving, departing or en route, per time unit. Histograms are created for each
transport mode and for the sum of all transport modes. Each �le starts with the iteration num-
ber and ends with the transport mode (e.g., 1.legHistogram_car.png or 1.legHistogram_all.
png). A text �le is also created (e.g., 1.legHistogram.txt), containing the data for all transport
modes.

Trip Durations: For each iteration, a trip durations text �le (e.g., 1.tripdurations.txt), listing
number of trips and their durations, on a time bin level for each activity pair (e.g., from work
to home or from home to shopping), is produced.

Figure 2.2: Mobsim events.

18 The Multi-Agent Transport Simulation MATSim

Link Stats: In each iteration, a link stats �le containing hourly count values and travel times on
every network link is printed. Link stats are particularly important for comparison with real-
world count data, as introduced in Section 6.3.

2.2.4 An Example Scenario

The MATSim release is shipped with an example scenario named equil in the folder
examples/equil, containing these �les: config.xml, network.xml, plans100.xml, and plans2000.

xml.gz, containing, respectively, 100 and 2000 persons with their day plans, using car mode only. A
tiny population containing only 2 persons (plans2.xml), one using public transport, the other using
car mode, is also provided. An example for count data is also found in the folder (counts100.xml).

In addition, there is also a �le with 100 trips (plans100trips.xml), i.e., demand going only from
one location to another, using a dummy activity type at each end. This is provided to show that
MATSim can also be run as a fully trip-based approach, without considering any activities. Clearly,
it loses some of its expressiveness, but the basic concepts, including route and even departure time
adaptation, still work in exactly the same way.

The scenario network is shown in Figure 2.3.
The following lines explain the scenario by discussing the most important sections from the

con�g �le config.xml.

"strategy" section of the con�g �le As shown in the con�g �le excerpt below, this scenario uses
replanning. 10 % of the agents reroute their current route (module ReRoute). The remaining 90 %
select their highest score plan for re-execution in the current iteration (module BestScore). Plans
are deleted from the agent’s memory if it is full, de�ned by maxAgentPlanMemorySize. By default,
the plan with the lowest score is removed; this is con�gurable and currently being researched (see
Section 97.3).

<module name="strategy">

<param name="maxAgentPlanMemorySize" value="5" />

<!-- 0 means unlimited -->

<parameterset type="strategysettings" >

<param name="strategyName" value="ReRoute" />

<param name="weight" value="0.1" />

</parameterset >

Figure 2.3: Equil scenario network.

Let’s Get Started 19

<parameterset type="strategysettings" >

<param name="strategyName" value="BestScore" />

<param name="weight" value="0.9" />

</parameterset >

</module >

"planCalcScore" section of the con�g �le The section planCalcScore de�nes parameters used
for scoring, explained in Chapter 3. As seen in the example, two activity types, h (home) and w

(work), are speci�ed. All activity types contained in the population �le (cf. Section 2.2.2.3) must
be de�ned in the planCalcScore section of the con�g �le.

<module name="planCalcScore" >

<parameterset type="activityParams" >

<param name="activityType" value="h" />

<param name="typicalDuration" value="12:00:00" />

</parameterset >

<parameterset type="activityParams" >

<param name="activityType" value="w" />

<param name="typicalDuration" value="08:00:00" />

</parameterset >

</module >

"controler" section of the con�g �le The scenario is run for 10 iterations, writes the output �les
to ./output/equil (Section 2.2.3) and uses QSim as the mobsim (more on mobsims in Section 1.3,
4.3 and 11).

<module name="controler">

<param name="outputDirectory" value="./ output/equil" />

<param name="lastIteration" value="10" />

<param name="mobsim" value="qsim" />

</module >

Visualization Simulation results can be visualized with Via (Chapter 33) or OTFVis (On The Fly
Visualizer) (Chapter 34).

2.2.5 Data Requirements

2.2.5.1 Population and Activity Schedules

Demand estimation is an important component of MATSim. That means that, in theory, only de-
mand components that do not change from one simulated average working day to the next need
to be provided to MATSim. Examples are: population and its residential and working locations.
In practice, however, MATSim is not yet prepared to endogenously model complete travel de-
mand. Sequence and preferred durations of activities, for example, must be provided as input.
As a result, all travel demand choices not covered by the MATSim loop have to be exogenously
estimated.

For population generation, two possibilities exist: the comfortable way is to translate a full
population census and the slightly more demanding way is to generate a synthetic population (e.g.,
Guo and Bhat, 2007), based on sample or structure surveys. For MATSim, both methods have been
used based on e.g., Swiss Federal Statistical O�ce (BFS) (2000) and Müller (2011a).

Travel demand is usually derived from surveys: for Switzerland, from the microcensus (Swiss
Federal Statistical O�ce (BFS), 2006). Newer data sources, such as GPS or smartphone travel
diaries, are currently being investigated (e.g., Zilske and Nagel, 2015).

20 The Multi-Agent Transport Simulation MATSim

A critical topic in demand and population generation is workplace assignment, as commuting
tra�c is still a major issue, particularly during peak hours. Switzerland’s full census work location
was surveyed at municipality level. Such comfortable data bases are rare, however.

Having generated the residential population of the study area, additional demand components
might be necessary, for example, cross-border and freight tra�c. As these components o�en cannot
be endogenously modeled, MATSim o�ers the feature to handle di�erent subpopulations di�er-
ently (Section 4.5). One can specify that border-crossing agents, for example, are not allowed to
make destination choices within the study area, or that freight agents are not allowed to change
their delivery activity to a leisure activity.

2.2.5.2 Network

In simulation practice, two di�erent network types are used: planning networks and navigation
networks (compare Swiss examples in Figure 2.4(a) and Figure 2.4(b) for the Zürich region). The
former are leaner and o�en serve as initial explorative simulation runs, while the latter are o�en
used for policy runs, usually o�ering far more details, such as bike and even pedestrian links. Data
are available from o�cial sources like federal o�ces, free sources, such as OSM (OpenStreetMap),
and commercial sources, including navigation network providers.

(a) Planning network.

(b) Navigation network..

Figure 2.4: Zürich networks

Let’s Get Started 21

2.2.6 Example Scenario Input Data

Some example scenarios are included in the MATSim main distribution, in the directory
“examples”.

More pre-packaged scenarios can be found under http://www.matsim.org/datasets.

2.3 MATSim Survival Guide

There are many options and possibilities available with MATSim, and �nding them can be a daunt-
ing exercise. Here are a couple of recommendations, derived from our own frequent use of the
system.

1. Always start with and test a small example.

2. Always test large scenarios with one percent runs �rst (e.g., a randomly drawn subsample of your
initial demand). The MATSim GUI (Figure 2.1) allows creating sample populations with the
command Tools...Create Sample Population.
As described in Section 4.3, this requires adaptation of parameters, in particular, the
mobsim’s flowCapacityFactor and storageCapacityFactor factors. As shown in Part II,
Section 6.3, sample scenarios also require parameter adaption for count data comparisons.

3. If your set-up does not work any more, immediately go back to a working version and proceed
from there in small steps.

4. Check logfileWarningErrors.log.

5. Check the comments that are attached to the con�g �le options.
One �nds them in the �le output_config.xml.gz, or near the beginning of logfile.log.

6. Try setting as few con�g �le options as possible.
This has two advantages: (i) Except for the deliberately set options, your simulation will move
along with changed MATSim defaults, and thus with what the community currently considers
the best con�guration. (ii) You will not be a�ected by changes in the con�g �le syntax as long
as they are di�erent from your own settings.

7. Search for documentation via http://matsim.org/javadoc.

8. Search for the latest tutorial via http://matsim.org/docs.

CHAPTER 3

A Closer Look at Scoring

Kai Nagel, Benjamin Kickhöfer, Andreas Horni and David Charypar

3.1 Good Plans and Bad Plans, Score and Utility

As outlined in Section 1.4 and by Figures 1.1 and 1.4, MATSim is based on a co-evolutionary algo-
rithm: Each individual agent learns by maintaining multiple plans, which are scored by executing
them in the mobsim, selected according to the score and sometimes modi�ed. In somewhat more
detail, the iterative process contains the following elements:

mobsim The mobility simulation takes one “selected” plan per agent and executes it in a synthetic
reality. This may also be called network loading.

scoring The actual performance of the plan in the synthetic reality is taken to compute each
executed plan’s score.

replanning consists of several steps:

1. If an agent has more plans than the maximum number of plans (a con�guration
parameter), then plans are removed according to a (con�gurable) plan selector (choice
set reduction, plans removal).

2. For some agents, a plan is copied, modi�ed and then selected for the next iteration
(choice set extension, innovation).

3. All other agents choose between their plans (choice).

An agent’s plans in a given iteration may be considered the agent’s choice set in that iteration. As a
result, steps 1 and 2 of replanning modify the choice set, while step 3 implements the actual choice
between options. Choice is typically based on the score; higher score plans are more likely to be se-
lected. This is discussed in more detail in Chapters 47 and 49. For the time being, note that the three
steps of replanning must cooperate for the approach to work: the plans removal step should remove
“bad” plans, the innovation step should generate “good” plans, and the choice should, ingeneral,

How to cite this book chapter:

Nagel, K, Kickhöfer, B, Horni, A and Charypar, D. 2016. A Closer Look at Scoring. In: Horni, A, Nagel, K

and Axhausen, K W. (eds.) TheMulti-Agent Transport SimulationMATSim, Pp. 23–34. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.3. License: CC-BY 4.0

24 The Multi-Agent Transport Simulation MATSim

select good plans. Here, “good” means “able to obtain a high score in the mobsim/scoring”. Fortu-
nately, due to its evolutionary concept, the approach is fairly robust: the innovation step does not
always have to generate good solutions; it is su�cient if some of the solutions are good and lead to
a high score.

With this, it is clear that scoring is a central element of MATSim. Only solutions obtaining a high
score will be selected by the agent and survive the plans removal step. Thus, the scoring function
needs to be “correct” for a given scenario, meaning, more or less, that plans “performing well”
obtain a higher score than plans that “do not perform well”. Whether a performance is good or
not, is decided, in the end, by travelers living in a region: some may prefer a congested car trip,
others may prefer a crowded, but a�ordable, trip by public transit, while others may prefer using
the bicycle, even in bad weather.

The typical way to bridge this gap is to use econometric utility functions, for example, from
random utility models (e.g., Ben-Akiva and Lerman, 1985; Train, 2003) for the score. However, in
AI (Arti�cial Intelligence), utility functions may also be used in a more general way: for example,
the score that each individual agent (or the system as a whole) wants to, or should, optimize (Russel
and Norvig, 2010). For these reasons, the terms “score” and “utility” are normally interchangeable
in the MATSim context. Since we will need the concept of a marginal utility, this chapter will mostly
speak of ’utility’, since it is a bit unusual to talk about ’marginal score’.

The user can con�gure numerous parameters to specify the scoring function. When users are
ready to extend MATSim in the next part of the book, they will also learn how to plug in their own
customized scoring function.

However, because MATSim is based on complete day plans, the application of choice models
for parts of day plans only (for example, mode choice) is not straightforward, as detailed in Sec-
tion 97.4.4. Because of the absence of complete-day utility functions in the literature, MATSim has
started with the so-called Charypar-Nagel scoring or utility function (Section 3.2). This scoring
function was, at times, modi�ed, extended, or replaced for speci�c investigations (Section 3.5).
Readily applicable estimates for a full-day utility function are not yet available, as discussed in
Section 97.4.4.

3.2 The Current Charypar-Nagel Utility Function

3.2.1 Mathematical Form

The �rst, and still basic, MATSim scoring function was formulated by Charypar and Nagel (2005),
loosely based on the Vickrey model for road congestion, as described by Vickrey (1969) and Arnott
et al. (1993). Originally, this formulation was established for departure time choice. However, all
studies performed so far indicate that the MATSim function is also appropriate for modeling fur-
ther choice dimensions. It is, however, almost certainly not appropriate for activity dropping and
activity addition (see Section 3.3).

Basic Function For the basic function, utility of a plan Splan is computed as the sum of all activity
utilities Sact,q plus the sum of all travel (dis)utilities Strav,mode(q):

Splan =

N−1
∑

q=0

Sact,q +

N−1
∑

q=0

Strav,mode(q) (3.1)

with N as the number of activities. Trip q is the trip that follows activity q. For scoring, the last
activity is merged with the �rst activity to produce an equal number of trips and activities.

A Closer Look at Scoring 25

Activities The utility of an activity q is calculated as follows (see also Charypar and Nagel, 2005,
p.377�):

Sact,q = Sdur,q + Swait,q + Slate.ar,q + Searly.dp,q + Sshort.dur,q . (3.2)

The individual contributions are de�ned as follows:

• The expression
Sdur,q = βdur · ttyp,q · ln(tdur,q/t0,q) (3.3)

is the utility of performing activity q, where opening times of activity locations are taken into
account. tdur,q is the performed activity duration, βdur is related to the marginal utility of activity
duration (or marginal utility of time as a resource, the same for all activities; see Section 3.2.4),
and t0,q is the duration when utility starts to be positive.

• The expression
Swait,q = βwait · twait,q

denotes waiting time spent, for example, in front of a still-closed store; βwait is the so-called
direct (see Section 3.2.4) marginal utility of time spent waiting; and twait,q is the waiting time.
We recommend leaving βwait at zero; also see Section 3.2.5.

• The expression

late.ar,q =

{

βlate.ar · (tstart,q − tlatest.ar,q) if tstart,q > tlatest.ar,q
0 else

speci�es the late arrival penalty, where tstart,q is the activity starting time q and tlatest.ar is the
latest possible penalty-free activity starting time (for example, the starting time of the o�ce
core hours, or the starting time of an opera or theater performance).

• The expression

Searly.dp =

{

βearly.dp · (tend,q − tearliest.dp,q) if tend,q > tearliest.dp,q
0 else

de�nes the penalty for not staying long enough, where tend,q is the activity ending time and
tearliest.dp,q is the earliest possible activity end time q. We normally recommend leaving βearly.dp

at zero, except if really good data about this e�ect is available.
• The expression

Sshort.dur,q =

{

βshort.dur · (tshort.dur,q − tdur,q) if tdur,q < tshort.dur,q
0 else

is the penalty for a ’too short’ activity, where tshort.dur is the shortest possible activity duration.
We normally recommend leaving βshort.dur at zero, except if really good data about this e�ect is
available.

The con�g syntax (con�g version v2) is approximately

<module name="planCalcScore" >

<param name="performing" value="6.0" />

<param name="waiting" value=" -0.0" />

<param name="lateArrival" value=" -18.0" />

<param name="earlyDeparture" value=" -0.0" />

<parameterset type="activityParams" >

<param name="activityType" value="work" />

<param name="typicalDuration" value="08:00:00" />

26 The Multi-Agent Transport Simulation MATSim

<param name="openingTime" value="07:00:00" />

<param name="latestStartTime" value="09:00:00" />

<param name="closingTime" value="19:00:00" />

...

</parameterset >

...

</module >

Travel Travel disutility for a leg q is given as

Strav,q = Cmode(q) + βtrav,mode(q) · ttrav,q + βm · 1mq

+(βd,mode(q) + βm · γd,mode(q)) · dtrav,q + βtransfer · xtransfer,q
(3.4)

where:

•Cmode(q) is a mode-speci�c constant.
• βtrav,mode(q) is the direct (see Section 3.2.4) marginal utility of time spent traveling by mode.

Since MATSim uses and scores 24-hour episodes, this is in addition to the marginal utility of
time as a resource (again, see Section 3.2.4).

• ttrav,q is the travel time between activity locations q and q+ 1.
• βm is the marginal utility of money (normally positive).
• 1mq is the change in monetary budget caused by fares, or tolls for the complete leg (normally

negative or zero).
• βd,mode(q) is the marginal utility of distance (normally negative or zero).
• γd,mode(q) is the mode-speci�c monetary distance rate (normally negative or zero).
•dtrav,q is the distance traveled between activity locations q and q+ 1.
• βtransfer are public transport transfer penalties (normally negative).
• xtransfer,q is a 0/1 variable signaling whether a transfer occurred between the previous and

current leg.

The con�g syntax (con�g version v2) is approximately

<module name="planCalcScore" >

<param name="marginalUtilityOfMoney" value="1.0" />

<param name="utilityOfLineSwitch" value=" -1.0" />

<parameterset type="modeParams" >

<param name="mode" value="car" />

<param name="constant" value="0.0" />

<param name="marginalUtilityOfDistance_util_m" value="0.0" />

<param name="marginalUtilityOfTraveling_util_hr" value=" -6.0" />

<param name="monetaryDistanceRate" value=" -0.0002" />

</parameterset >

...

</module >

Equation (3.4) is the direct utility contribution of travel; see Section 3.2.4 for the the full indirect
utility as well as the relation to the VTTS (Value of Travel Time Savings), and Chapter 51 for a more
general discussion.

Note that distance contributes to disutility in two ways. First, it is included in a direct manner
via βd,mode(q), which is normal for modes involving physical e�ort, like walking or cycling. Second,
distance is also included monetarily via βm · γd,mode(q), which is normal for car or pt mode, where
monetary costs increase depending on distance.

A Closer Look at Scoring 27

3.2.2 Illustration

Figure 3.1 illustrates the scoring function. Time runs from le� to right. The example shows part of
an executed schedule, with home, work, and lunch activities, connected by a car and walk leg.

Activities are scored with concave functions, modeling decreasing returns to spending more time
at the same activity. Travel, in contrast, is modeled with downward sloping straight lines, where
the slope may di�er for di�erent modes of transport and there may be an initial o�set (alternative-
speci�c constant). Note the delay between arrival at the workplace and workplace opening time,
re�ected in no score accumulation during that period. Agents accumulate those scores over a day,
re�ected in the bottom graph.

When one assumes all other things (particularly travel times) are equal, then agents maximize
their score when activity durations are such that all activities have the same slope (= the same
marginal utility; red lines). This follows from basic economic theory (cf. Section 51.2), but can also
be seen intuitively; if red lines did not all have the same slope, the agent could gain by extending
those activities with steeper slope at the expense of others. Clearly, this holds only when all other
things remain constant, particularly travel times.

3.2.3 The “Wrapping Around” of the Utility Function

The MATSim mobsim typically starts at midnight and runs until all plans have reached their �nal
activity. By itself, the mobsim, is not limited to a day. However, as already stated in Section 3.2.1,
the standard scoring function assumes that plans “wrap around” to 24-hour days. Thus, the last
activity is merged with the �rst into one activity. For example, if the �rst activity ends at 7 am and
the last activity starts at 11 pm, then it is assumed that this is the same activity, with a duration of
eight hours.

a
c
c
u
m

.
s
c
o
re

@home @workplace @lunch

time

workplace opening time

wlkcar

s
c
o
re

Figure 3.1: Illustration of the scoring function. TOP: Individual contributions of activities and
legs. BOTTOM: Score accumulation over a day.

28 The Multi-Agent Transport Simulation MATSim

Note that scoring the two activities separately would lead to a di�erent result, because of the
nonlinear (logarithmic) form of the utility of performing. For example, ln(1) + ln(7) = ln(7) 6=

ln(1 + 7) = ln(8).

3.2.4 MATSim Scoring, Opportunity Cost of Time, and the VTTS

As a result of the wrap-around concept, travel receives, beyond the typically negative direct
marginal utility βtrav,mode, an additional implicit penalty from the marginal utility of time as a

resource: If travel time could be reduced by 1ttrav, the person would not only gain from avoiding
βtrav · 1ttrav, but also from additional time for activities (e�ect of the opportunity cost of time).
The (total) marginal utility of travel time savings is thus:

mUTTS = −
∂

∂ttrav
Strav +

∂

∂tdur
Sdur.

which is

mUTTS = −βtrav + βdur ·
ttyp,q

tdur,q
(3.5)

and at the typical duration of an activity

mUTTS
∣

∣

∣

tdur,q=ttyp,q
= −βtrav + βdur,

where it can be imagined q is the activity immediately following the trip (cf. Section 51.2). The
marginal utility of travel time savings, mUTTS, can thus be de�ned as the indirect e�ect on the
overall time budget, corrected by an o�set βtrav that denotes how much better, or worse, it is to
spend that time traveling, rather than “doing nothing”.1 To di�erentiate βtrav from the indirect
e�ect, it is sometimes called direct marginal utility of time spent traveling.

The marginal utility of travel time savings can be transformed to the more common VTTS

(Value of Travel Time Savings) by dividing it by the marginal utility of money, βm:

VTTS =
mUTTS

βm
=

−βtrav + βdur ·
ttyp,q
tdur,q

βm
,

and at the typical duration of an activity

VTTS
∣

∣

∣

tdur,q=ttyp,q
=

mUTTS

βm

∣

∣

∣

tdur,q=ttyp,q
=

−βtrav + βdur

βm

This is important for calibration of the utility function.

3.2.5 The Resulting Modeling of Schedule Delay Costs

Arriving Early In the same way as the marginal utility of travel time savings is not only given

by −βtrav, but instead by −βtrav + βdur ·
ttyp,q
tdur,q

, the marginal utility of waiting time savings is given

1 This is an approximate statement; in the full theory, the reference marginal utility is not given by “doing nothing”,

but by a Lagrange multiplier related to the constraint that a day has 24 hours; again, cf. Section 51.2.

A Closer Look at Scoring 29

by mUWTS = −βwait + βdur ·
ttyp,q
tdur,q

: Even when the direct marginal utility of waiting, βwait , equals

zero, then “doing nothing” still eats into the overall time budget and thus incurs the same oppor-
tunity cost of time as traveling does. Intuitively, one can imagine that one must leave the previous
activity earlier to have a longer waiting time, thus reducing the score of the previous activity.

Thus, as long as one cannot estimate βwait separately from βdur , we recommend leaving βwait at
zero.

Arriving Late Arriving late incurs a marginal utility of βlate, typically negative. Here, no addi-
tional opportunity cost of time is involved. Intuitively, arriving later implies having le� the previous
activity later. That is: the current activity is shortened by the same amount that the previous activity
was extended, leaving the overall score una�ected (cf. Section 51.2).

Vickrey Parameters As a result, the Vickrey parameters of α (marginal penalty for arriving
early), β (marginal penalty for traveling) and γ (marginal penalty for arriving late) (as de�ned
by Arnott et al., 1990) are consistent with the following equations:

−βwait + βdur ·
ttyp,q
tdur,q

= α

−βtrav + βdur ·
ttyp,q
tdur,q

= β

−βlate = γ.

(3.6)

3.3 Implementation Details

This section summarizes the current implementation of the default MATSim scoring function. The
section can be skipped if the reader understands that what has been summarized up to this point
is not the full story.

3.3.1 Zero Utility Duration

The duration when an activity’s utility is exactly zero is computed by the somewhat cryptic
expression

t0,q := ttyp,q · exp

(

−
10h

ttyp,q · prio

)

, (3.7)

where prio is a con�gurable parameter. This is designed so that all activities with the same value of
prio obtain, at their typical duration, i.e., when tdur,q = ttyp,q, the same utility value of 10 · βdur , with
the idea that this makes them equally likely to be dropped in a time shortage situation (Charypar
and Nagel, 2005).2 However, this does not work as intended, since activities receiving this utility
value from a short duration have a larger utility accumulation per time unit than others and are thus
dropped later. In consequence, without additional constraints, the “home” activity gets dropped

2 Starting from Equation (3.3) and inserting Equation (3.7), one obtains

Sdur,q

∣

∣

∣

tdur,q=ttyp,q
= βdur · ttyp,q · ln

(

ttyp,q

ttyp,q · exp
(

−10h/(ttyp,q · prio)
)

)

= βdur · ttyp,q · ln
(

exp
(

10h/(ttyp,q · prio)
))

= 10h · βdur/prio ,

which is indeed the same for all activities with the same value of prio.

30 The Multi-Agent Transport Simulation MATSim

�rst, which is clearly not plausible. See Section 97.4 for a discussion of alternatives. In the meantime,
the recommendations are:

• Do not set the priority value in the con�g away from its default value.
• Recognize that the current MATSim default scoring/utility function is not suitable for activity

dropping.

3.3.2 Negative Durations

In MATSim, somewhat oddly, it is possible to have activities with negative durations. This can hap-
pen because of the “wrap-around” mechanism, where the last activity of a plan is stitched together
with the �rst activity of the plan, and only that merged activity is scored (cf. Section 3.2.3). In this
situation, it can happen that an agent arrives at the last activity of the plan at a later 24-hour-time
than when the �rst activity ended. For example, an agent could stay at home until 3 am (end of
�rst activity), then go through her daily plan including a very late party, and return home at 6 am
the next morning (Figure 3.2). In this case, the duration of the wrap-around home activity would
be minus three hours. Originally, a score of zero was assigned to these negative duration activities.
However, the adaptive agents quickly found out that they could use this to their advantage, expand-
ing this negative duration without a penalty would lead to more time elsewhere, which the agent
could use to accumulate score. For an adaptive algorithm, a penalty like this needs to be de�ned
so that it guides the adaptation back into the feasible region. The penalty must increase with in-
creasing negative duration. It also needs to be more strongly negative than any score value for a
positive activity duration. The latter is, however, impossible to achieve with a logarithmic form,
which tends to −∞ as tdur,q approaches zero from above. The current approach is to take the slope
of the expression βdur · ttyp,q · ln(tdur,q/t0,q) when it crosses zero, and extend this towards minus
in�nity (Figure 3.3).

−3h @ home
!! negative duration !!

start @ 06:00 + 1d

... ... a ... very ... long ... schedule

00:00 24:00

@home

start @ 21:00end @ 09:00

... a normal schedule ...@home

12h @ home

@home

end @ 03:00

@home

Figure 3.2: Illustration of wrap-around scoring. TOP: Normal situation. BOTTOM: Situation
where �nal activity starts at a later time of day then when the �rst activity ended, resulting in
negative duration.

A Closer Look at Scoring 31

s
c
o
re

activity duration

Figure 3.3: Extending the slope when the utility function crosses the zero line to negative
durations.

First and Last Activity not the Same Clearly, the wrap-around approach fails if the �rst and last
activity are not the same. The present code does not look at locations, but gives a warning and
problematic results if they are of di�erent types.

3.3.3 Score Averaging

The score S that is computed according to the rules given in this chapter is not assigned directly to
the plan, rather, it is exponentially smoothed according to

Sk = α S+ (1 − α)Sk−1 , (3.8)

where Sk is the newly memorized score, Sk−1 is the previously memorized score, S is the score
obtained from the plan’s execution in the mobsim, and α is a “learning” or “blending” parameter.
The default value of α is one; it can be con�gured by the line

<param name="learningRate" value="..." />

in the con�g �le.
Non-executed plans just keep their score.

3.3.4 Forcing Scores to Converge

For many situations, both practical and theoretical (see Section 47.3.2.2), it is desirable that each
plan’s score converges to its expectation value. Equation (3.8) will not achieve that; it just dampens
the �uctuations. A well-known approach to force convergence to the expectation value is MSA
(Method of Successive Averages):

Sm =
1

m
S+

m− 1

m
Sm−1. (3.9)

This resembles Equation (3.8), with two important di�erences: (1) The �xed blending parameter
α is now replaced by a variable 1/m, and (2) m is not the iteration number but counts how o�en a
plan was executed and thus scored. This is necessary in MATSim since a plan is not executed and
scored in every iteration.

32 The Multi-Agent Transport Simulation MATSim

This behavior can be switched on by the following con�g option:

<param name="fractionOfIterationsToStartScoreMSA" value="..." />

This is plausibly used together with innovation switch o� (Section 4.5.3), meaning that MSA
operates on a �xed set of plans.

3.4 Typical Scoring Function Parameters and their Calibration

The current MATSim default values are

βm = 1 utils/monetaryunit
βdur = 6 utils/h
βtrav,mode(q) = −6 utils/h
βwait = 0 utils/h
βshort.dur = 0 utils/h
βlate.ar = −18 utils/h
βearly.dp = 0 utils/h.

(3.10)

They are very loosely based on the Vickrey bottleneck model (e.g., Arnott et al., 1990).
An additional insight is that, in many of the systems that we model, traveling does not seem to be

less convenient than “doing nothing”. Thus, the direct marginal utility of traveling, βtrav, is close to
zero and sometimes even positive (see, e.g., Redmond and Mokhtarian, 2001; Pawlak et al., 2011).
Based on this, a possible approach to calibration is as follows:3

1. Set βm ≡ marginalUtilityOfMoney to whatever is the prefactor of your monetary term in your
mode choice logit model.

If you do not have a mode choice logit model, set to 1.0. (This is the default.)

This is normally a positive value (since having more money normally increases utility).

2. Set βdur ≡ performing to whatever the prefactor of car travel time is in your mode choice
mode, while changing that parameter’s sign from its typical − to a +.

If you do not have a mode choice logit model, set to +6.0. (This is the default.)

This is normally a positive value (since performing an activity for more time normally
increases utility).

3. Set βtt,car ≡ marginalUtilityOfTraveling... to 0.0.

It is important to understand this:Even if this value is set to zero, traveling by car will be implic-
itly punished by the opportunity cost of time: If you are traveling by car, you cannot perform
an activity; thus, you are (marginally and approximately) losing βdur . See Section 3.2.4.

4. Set all other marginal utilities of travel time by mode relative to the car value.

For example, if your logit model says something like

... − 6/h · ttcar − 7/h · ttpt...,

then
βdur = 6 , βtt,car = 0 , and βtt,pt = −1 .

If you do not have a mode choice logit model, set all βtt,mode ≡ marginalUtilityOf

Traveling... values to zero (i.e., same as car).

3 Different groups have different systems; this one is typical for VSP, although it uses ideas from Michael Balmer.

A Closer Look at Scoring 33

5. Set distance cost rates monetaryDistanceRate... to plausible values, if you have them.

Note that this needs to be negative: distance consumes money at a certain rate.

6. Use the alternative-speci�c constants Cmode ≡ constant to calibrate your modal split.

(This is, however, not completely simple; one must run iterations and look at the result;
especially for modes with small shares, one needs to have innovation switched o� early
enough near the end of the iterations.)

If you end up having your modal split right, but its distance distribution wrong, you probably
need to look at di�erent mode speeds. In our experience, this works better for this than using the
βtt,mode.

Calibrating schedule-based public transport (see Chapter 16) goes beyond what can be provided
here.

3.5 Applications and Extensions

The default scoring function has been applied and extended for various purposes. Thus, the his-
torical development is accompanied by various conceptual and technical modi�cations leading to
the current utility function described above. This also means that the reported parameter settings
in the literature are an indication, not a direct recommendation.

Important applications for large scenarios are described in Chapter 52.
Special utility functions have been developed for car sharing (see Chapter 22), social contacts and

joint trips (see Chapter 28), parking (see Chapter 13), road pricing (see Chapter 15) and destination
innovation (see Chapter 27), also describing facility loading scoring and inclusion of random error
terms.

Future topics, available on an experimental basis, are: a full-blown utility function estima-
tion (Section 97.4.4), inclusion of agent-speci�c preferences (Section 97.4.5) and application of
alternative utility function forms (Section 97.4).

CHAPTER 4

More About Con�guring MATSim

Andreas Horni and Kai Nagel

This chapter describes con�guration options that can be used together with the three basic ele-
ments: con�g �le, population and network. Part II discusses various options to extend MATSim
beyond these three elements, sometimes using only additional �les, or using additional JAR
�les beyond the MATSim core JAR �le, by writing “scripts in Java” or by adding or replacing
functionality.

MATSim writes con�guration �les in several locations; for example, in the log�le, in the itera-
tion output directory, or with the CreateFullConfig functionality described in Section 2.1.3. As
explained in Section 2.3, these �les come with comments explaining con�guration options. This is
o�en the best source for con�guration options.

4.1 MATSim Data Containers

4.1.1 Network

The con�g �le section network speci�es which network �le will be used in the simulation
(Section 2.1.3 and 2.2.2.2). Further con�guration options, e.g., speci�cation of time-variant net-
works, are presented in Section 6.1.

4.1.2 Population

The con�g �le section plans speci�es which population �le with its day plans will be used
(Section 2.1.3 and 2.2.2.3). Further con�guration options, e.g., speci�cation of arbitrary agent
attributes or subpopulations, are presented in Section 6.2.

Further MATSim containers are described in Chapter 6.

How to cite this book chapter:

Horni, A and Nagel, K. 2016. More About Con�guring MATSim. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 35–44. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.4. License: CC-BY 4.0

36 The Multi-Agent Transport Simulation MATSim

4.2 Global Modules and Global Aspects

4.2.1 Controler

The controler is an indispensable module for running MATSim; its parameters are set in the
controler con�g �le section. The MATSim run’s output directory, its number of iterations and
the plans and events output interval can be speci�ed here. The expected mobsim can be de�ned
(Section 4.3). The routing algorithm is de�ned here by using

<module name="controler" >

<param name="routingAlgorithmType" value="{Dijkstra

| FastDijkstra | AStarLandmarks | FastAStarLandmarks}" />

...

</module >

Possibilities for extending the Controler functionality are given in Chapter 45.

4.2.2 Events

Events are continuously generated, reporting on all activities in the mobsim, as discussed in more
detail in Section 45.2.5.

Please note that, besides these mobsim events, there is a less prominent type of events,
namely ControlerEvents, which are created by the Controler to report on its current state.
ControlerEvents are also further explained in Section 45.2.5.

4.2.3 Parallel Computing

MATSim uses multi-threading to accelerate computing speeds. Related con�guration parameters
can be found in several con�g modules; they are combined into one section here.

Global Setting The global section contains

<module name="global" >

<param name="numberOfThreads" value="2" />

...

</module >

This number is used in several places; most importantly, innovative strategies, where multiple
routing requests are distributed to multiple threads.
A good starting point is using the number of available cores.

Parallel Event Handling The con�g �le section parallelEventHandling is used to de�ne the
number of threads used for event handling. As described in Waraich et al. (2009), the simulation
can be substantially accelerated when using multiple threads for the events handling, which can be
a bottleneck in MATSim simulation runs.

Parallel QSim The number of threads for the parallel QSim (cf. Dobler (2013)) can be con�g-
ured by

<module name="qsim" >

<param name="numberOfThreads" value="10" />

...

</module >

More About Configuring MATSim 37

General Recommendations Generally, computations using threads are not necessarily faster
with more threads, which is also true for MATSim. Some experimentation is necessary for each
combination of scenario and hardware. Here are some recommendations:

• For the “global” number of threads, a good starting point is the number of available cores.
• It is no longer possible to switch o� parallel event handling completely; setting it to ‘0’ or ‘null’

or ‘1’ eventually achieves the same result. Setting it to values larger than one sometimes leads
to performance gains, but they are rarely signi�cant.

• The most sensitive parameter is that for the QSim. For somewhat older hardware (e.g., Apple
Macbook Pro from 2010), using all three remaining cores—in addition to the parallel event
handling—led to negligible performance gains but le� the machine useless for interactive tasks
such as normal o�ce work. For new hardware (e.g., Apple Macbook Pro from 2014), using six
of the available eight cores for the QSim can make the mobsim more than a factor of two faster
and the machine can still be used for o�ce tasks. Experiences with older servers show that
one must carefully investigate the number of threads for the mobsim, since using more threads
o�en slows it down (Dobler, 2013). No experiences with new servers are currently available.

• HPCC (High-Performance Computing Clusters) are o�en available to researchers, allowing
access to high-quality machines with reduced management overhead. Typically, one pays for
computation time, either directly, or by a loss of priority, with an amount proportional to the
reserved resources, that is, the time the job took to �nish, multiplied by the number of reserved
cores. In this kind of situation, the number of cores used throughout the whole process should
be stable to avoid paying for unused resources. A recommendation in this case is thus to set the
number of threads for the QSim to the best value (see above), say n, parallel events handling
to 1, the “global” number of threads to n+ 1, and submit the job requesting n+ 1 cores. Also
note that fewer threads are almost always better in terms of throughput. In addition, for both
calibration and “what-if ” scenario exploration, one typically needs to run a large number of
simulations with di�erent parameters or input data. As total RAM memory is usually not an
issue on a cluster, it is o�en more e�cient to run a large number of simulations simultaneously
with a low number of threads, rather than a low number of simulations with lots of threads.

4.2.4 Global

In the con�g �le section global, the simulation’s random seed, the “global” number of Java threads
(see Section 4.2.3) and the coordinate system (cf. Section 2.2.1) can be de�ned. Note that no matter
if you explicitly de�ne the random seed or not, MATSim always starts from a �xed random seed,
which is either the one you de�ne, or an internal constant. That is, if you start the same version
of MATSim twice from the same con�g �le, you will get the same sequence of random numbers,
and thus exactly the same simulation. If you want to change this behavior, you need to change the
random seed explicitly.

4.3 Mobility Simulations

An overview of MATSim mobility simulations is given by Dobler and Axhausen (2011).

4.3.1 QSim

The queue-based and time-step based QSim (Gawron, 1998; Simon et al., 1999; Cetin et al., 2003;
Dobler and Axhausen, 2011; Dobler, 2010) is MATSim’s default mobsim. Its parameters are set in
the qsim con�g �le section. Important parameters are: By specifying

38 The Multi-Agent Transport Simulation MATSim

<param name="numberOfThreads" value="..."/>

QSim can be run in parallel, see Section 4.2.3. Importantly, the qsim parameters

<param name="flowCapacityFactor" value="..." />

<param name="storageCapacityFactor" value="..." />

need to be set accordingly when running sample scenarios. For example, for a 10 % sample, these
factors need to be 0.1.

Currently, QSim is implemented as a single-queue model (see Chapter 50). Back-propagating
gaps as discussed in Section 1.3 are available experimentally (see Section 97.5) and con�gurable
with the parameter

<param name="trafficDynamics" value="..." />

As shown in Section 4.6.1, QSim can handle multimodal scenarios.
A somewhat ancient con�guration parameter is the stuck time. It determines a�er how many

seconds of non-movement a vehicle is moved across an intersection despite violating the storage
constraint of the destination link. This parameter was introduced to resolve grid-locks, i.e., geomet-
rical arrangements where no vehicle can move any more. With the QSim model, it is possible to add
vehicles beyond the storage constraint to an overcrowded link. This corresponds to maintaining a
minimal �ow even under very congested conditions. The default value of this parameter is set to
10, i.e., non-moving vehicles are moved forward a�er 10 simulation time steps of non-movement.
This may seem a rather short time, but systematic investigations (unfortunately never published)
have shown that the simulations become, in comparison to tra�c counts data, less realistic when
this parameter is increased.

4.3.2 JDEQSim

JDEQSim (Waraich et al., 2009) was used for project KTI Frequencies (Balmer et al., 2010). It is is a
Java reimplementation of DEQSim (Waraich et al., 2009; Charypar et al., 2007b, 2009) and provides
parallel event handling, but no parallel simulation (Balmer et al., 2010, p.11). Back-propagating
gaps (Section 1.3) are supported, but tra�c lights, public transport and within-day replanning are
not.

To run JDEQSim, the parameter mobsim of controler con�g �le section must be set to JDEQSim

and a jdeqsim con�g �le section must be provided.

4.4 Scoring

The con�g �le section planCalcScore speci�es the parameters used for scoring agents’ plans
(Section 2.1.3); parameters are explained in Chapter 3.

4.5 Replanning Strategies

Replanning strategies are the basic innovation modules available in MATSim. We do not call them
choice modules, although they are involved in people’s choice making. The choice process is per-
formed over the iterations with an implicit choice set and is not based on explicit probability
function drawing. One can di�erentiate between modules that a�ect the set of plans that each
agent holds, and others that only select between these plans. For a detailed discussion of MATSim
in choice modeling context, see Chapter 49.

More About Configuring MATSim 39

All strategy modules are called by con�guring the strategy module in the con�guration �le as
shown in the following example.

<module name="strategy" >

<parameterset type="strategysettings" >

<param name="strategyName" value="ChangeLegMode" />

<param name="weight" value="0.1" />

</parameterset >

<parameterset type="strategysettings" >

<param name="strategyName" value="TimeAllocationMutator"/>

<param name="weight" value="0.2" />

</parameterset >

<parameterset type="strategysettings" >

<param name="strategyName" value="SelectExpBeta" />

<param name="weight" value="0.7" />

</parameterset >

</module >

Each module is given a weight determining the probability, by which the course of action repre-
sented by the module is taken. The strategy modules’ weights are normalized, in case they do not
sum to one. In this example, each agent changes her leg mode with probability 0.1 and her plan
timing with probability 0.2. Otherwise, the agent chooses a plan from her set of plans according to
a logit model.

By specifying the parameter subpopulation, replanning strategies can be applied to distinct sub-
populations: e.g.,

<parameterset type="strategysettings" >

<param name="strategyName" value="ChangeLegMode" />

<param name="weight" value="0.1" />

<param name="subpopulation" value="urbanTravelers"/>

</parameterset >

In older versions of the con�g �le, you will �nd a deprecated con�guration syntax using
numbered strategy modules.

Please note that combining strategy modules that are extensions (see Section 5.1.1), like destina-
tion innovation together with public transport, may not always work as expected. Combine them
with care and contact the mailing list if you are unsure.

4.5.1 Plans Generation and Removal (Choice Set Generation)

4.5.1.1 Time Innovation

Time innovation is applied by de�ning its parameters in the con�g �le section
TimeAllocationMutator and by adding

<param name="strategyName" value="TimeAllocationMutator" />

plus its weight to the strategy modules.
The module shi�s activity end times randomly within a con�gurable range as described by

Balmer et al. (2005b); Raney (2005).

4.5.1.2 Route Innovation

Route innovation is applied by adding

<param name="strategyName" value="ReRoute" />

plus its weight to the strategy modules, and by specifying the routing algorithm in the controler

con�g �le section (Section 4.2.1). MATSim routing is described by Lefebvre and Balmer (2007).

40 The Multi-Agent Transport Simulation MATSim

4.5.1.3 Mode Innovation

Mode innovation is applied by adding1

<param name="strategyName"

value="{ChangeLegMode | ChangeSingleLegMode |

SubtourModeChoice}" />

plus its weight to the strategy modules. In the con�g �le, a section with one of the mode innovation
strategies needs to be added, i.e.,

<module name="{changeLegMode | changeSingleLegMode |

subtourModeChoice}" >

...

</module >

ChangeLegMode randomly picks one of a person’s plans and changes the mode of transport.
By default, the supported modes are: driving a car and using public transport. Only one
mode of transport per plan is supported. When using di�erent modes for sub-tours on a sin-
gle day, the SubtourModeChoice module is required. Optionally, car availability is respected.
ChangeSingleLegMode randomly picks one of a person’s plans and changes one single leg’s (picked
randomly) mode of transport. In contrast to ChangeLegMode, it allows for multiple modes in one
plan. By default, supported modes are: driving a car and using public transport. Also, this module
can (optionally) respect car availability.

Mode innovation is described by Rieser et al. (2009); Meister et al. (2010); Ciari et al. (2008,
2007).

4.5.1.4 Plans Removal

The maximum number of plans per agent is con�gured by the setting

<module name="strategy" >

<param name="maxAgentPlanMemorySize" value="5" />

...

</module >

If an agent ends up having more plans, MATSim will start removing plans, one by one, until the
maximum number of plans is reached. Plans to be removed are selected by the setting con�gured by

<module name="strategy" >

<param name="planSelectorForRemoval" value="..." />

...

</module >

Starting with release 0.8.x, the con�g �le comments give possible options.
This option is not yet well investigated, cf. Section 97.3. Per default, the plan with the lowest score

is removed if the agent’s memory is full.

4.5.2 Plan Selection (Choice)

Selectors and their weight are also added to the strategy modules

<param name="strategyName" value="KeepLastSelected | BestScore |

SelectExpBeta ChangeExpBeta | SelectRandom | SelectPathSizeLogit" />

1 The names may be changed into ChangeTripMode and ChangeSingleTripMode, please keep your eyes open.

More About Configuring MATSim 41

Selectors work as follows:

• KeepLastSelected keeps the plan selected in the previous iteration.
• BestScore selects the plan with the highest score from the previous iteration.
• SelectExpBeta performs MNL (Multinomial Logit Model) selection between plans. It can be

con�gured by the BrainExpBeta parameter from the scoring con�g group2 being the scale
parameter in discrete choice models, as shown in Equation 49.2. We recommend keeping this
parameter at its default value of 1.0.

• ChangeExpBeta changes to a di�erent plan, with probability dependent on e1score , where 1score

is the score di�erence between the two plans. This will also sample from an MNL (see
Sec. 47.3.2.1).

• SelectRandom performs random selection between the plans.
• SelectPathSizeLogit selects an existing plan according to the path size logit described by Fre-

jinger and Bierlaire (2007). It can be con�gured by the PathSizeLogitBeta parameter from the
scoring con�g group.3 This selector has never been investigated systematically.

Note that the BestScore should be used with care; it tends to get stuck with sub-optimal plans.
Plans badly rated due to a random �uctuation in one single iteration, e.g., a rare tra�c jam, will
never be tested again. Thus, we recommend using this only in conjunction with SelectRandom.

4.5.3 Innovation Switch-O�

For theoretical (Section 47.3.2.3) reasons, it makes sense to eventually switch o� the innovative
modules, thus keeping the set of plans for each agent �xed from then on. This behavior can be
con�gured by

<param name="fractionOfIterationsToDisableInnovation" value="..."/>

It makes sense to use this together with MSA averaging of the scores (Section 3.3.4).

4.6 Other Modes than Car

The MATSim so�ware began with the car mode of transport, since it was then the main mode in
many regions. The idea of integrating other modes has always been a theme.

The following sections describe current MATSim multi-modal capabilities. The material covers
not only options that can be enabled with just con�g options, but also gives an overview of multi-
modal extensions, described in Part II of the book.

4.6.1 QSim Side

4.6.1.1 Multiple Vehicular Modes on the Same Network

The approach described so far fails as soon as more than one vehicle type is involved. Therefore,
recently the ability to allow multiple modes on the same network was introduced. It is de�ned by
the qsim con�g option of type

<module name="qsim">

<param name="mainMode" value="car ,truck ,bicycle" />

...

</module >

2 This is in the scoring config group for historical reasons.
3 Also in the scoring config group for historical reasons.

42 The Multi-Agent Transport Simulation MATSim

This examines the plan leg mode; if that leg mode corresponds to one of the listed main modes, it
will generate a vehicle for that leg and make it enter the network.

It is currently not possible to generate di�erent vehicle types from the con�g alone; one ei-
ther needs to provide a vehicles �le (see Section 6.6 and Section 11.1), or write a script-in-Java
to generate the vehicle �eet (again see Section 11.1).

4.6.1.2 So-Called Teleportation

All modes not registered with the QSim as “main modes” will be teleported. That is, the QSim will,
without problems, process legs such as

<leg mode="pedelec" >

<route type="generic" trav_time="00:14:44" distance="2374" />

</leg>

The QSim will generate a departure event (for events, see Section 2.2.3) a�er the end of the previ-
ous activity and an arrival event 14 minutes and 44 seconds later. The leg will be recorded with a
distance of 2 374 meters. If distance is not used for scoring (cf. Chapter 3), it can also be le� out of
the route (the situation in most set-ups).

4.6.1.3 Explicitly Simulated Passenger Modes

With “driver” modes, such as car, bicycle, or also walk, travelers are also drivers, i.e., the entities
making decisions about turns at intersections, as well as arrivals (or not) on links. With “passenger”
modes, such as public transit or taxi, this changes; for example, the traveler boards a bus, the bus
moves around in the network; the only decision the traveler has to make if she or he wants to get
o� or not at the current stop. The bus, in turn, is a normal participant in the corresponding tra�c
system, i.e., buses and taxis operate on the normal road network and can be caught in the same
congestion as cars and trucks. This is exactly how it works in the MATSim QSim; taxis typically
operate on the same network as cars; pt vehicles may operate on the same network if their routes
are de�ned so that they use the same links as regular cars. In these cases, their interactions are
captured by the simulation.

4.6.1.4 Departure Handlers

It is possible to register a separate departure handler for each mode; see Section 45.2.8 for the
syntax. There are also pre-con�gured extensions using this approach:

• The “multimodal” contribution moves all registered modes on separate, congestion-free net-
works. This is better than teleportation, since the vehicles (or pedestrians) have de�ned
positions at each point in time, meaning that they can also re-plan, e.g., re-route (see Chap-
ter 21).

• The public transport extension moves all registered modes with speci�c public transit vehicles
(see Chapter 16).

• The dynamic transport systems contribution will eventually be able to move a taxicab mode
with taxis (see Chapter 23).

4.6.2 Routing Side

The previous Section 4.6.1 has described how the QSim handles various modes when they are
requested by the plans. Correspondingly, it now needs to be considered how non-car plans, or
more speci�cally non-car routes inside non-car legs, are generated.

More About Configuring MATSim 43

4.6.2.1 Network Modes

The following syntax de�nes modes for which the router should generate network routes,
i.e., routes that contain a sequence of links to follow:

<module name="planscalcroute" >

<param name="networkModes" value="car , truck" />

...

</module >

The above con�guration speci�es that plans containing

<leg mode="car"...>

as well as

<leg mode="truck"...>

will be treated by the network router.
As of the writing of this text, the router will route all these modes on the “car” links of the network.

This means that, say, denominating some links as “car only” or “truck only” will not be picked up
by the current router.4

Note that, per the network �le DTD (Document Type Description), “car” is the default mode of
each link as long as long as the link’s mode �eld is not explicitly �lled.

4.6.2.2 Teleportation ...

... with Teleported Mode Free Speed Factor A con�g entry such as

<module name="planscalcroute" >

<parameterset type="teleportedModeParameters" >

<param name="mode" value="pt" />

<param name="teleportedModeFreespeedFactor" value="2.0" />

<param name="teleportedModeSpeed" value="null" />

<param name="beelineDistanceFactor" value="null" />

</parameterset >

...

</module >

means that if the router encounters a leg with mode pt, it generates a “teleportation” route whose
travel distance is the same as, and travel time is twice that of, a freespeed car route.

This models public transit, assuming it travels along roughly the same routes as a car trip, but
takes twice as long (cf. Reinhold, 2006).

... with Teleported Mode Speed Setting, in the above, something like

<param name="teleportedModeFreespeedFactor" value="null" />

<param name="teleportedModeSpeed" value="4.167" />

<param name="beelineDistanceFactor" value="1.3" />

will, instead, generate a teleportation route whose travel distance is 1.3 times the beeline distance,
and whose travel time is that distance divided by 4.167 meters per second.

This is useful when teleported mode travel times should not change in tandem with car freespeed
travel times, perhaps as a policy change result, or when teleported mode travel times are unrelated

4 Check https://matsim.atlassian.net/browse/MATSIM-330 for developments.

44 The Multi-Agent Transport Simulation MATSim

to car travel times. One disadvantage: this approach does not take obstacles like water or mountain
areas, into account for the teleported modes.

4.6.2.3 Other Routing Options

It is possible to register separate routers for speci�c modes. This syntax is discussed in
Section 45.2.7. The pre-con�gured extensions and contributions discussed in Section 4.6.1.4,
“multimodal”, public transport, taxis, come with corresponding routers.

In addition, the so-called “matrix based pt router” (Chapter 20) uses a list of transit stops and a
matrix of stop-to-stop travel times and travel distances; based on this information, it computes a
teleported walk leg to the next stop, another to the destination stop, and a last teleported walk leg
to the �nal destination.

The matrix-based pt router also illustrates that, given the QSim teleportation capability, it is pos-
sible to come up with arbitrary algorithms for arbitrary modes, as long as they generate (expected)
travel times and (expected) travel distances. As said earlier, the teleportation facility of the QSim
will just use these two attributes at face value. Although with such an approach neither congestion
nor en-route replanning are or can be included, it is �exible and allows a fully modular addition of
arbitrary modes without having to interact with the QSim.

4.6.3 Scoring Side

For all modes mentioned in the plans, a corresponding scoring section must exist. See Section 3.2.1
for an example.

4.7 Observational Modules

4.7.1 Travel Time Calculator

The routing module, for example, needs travel time estimations for all network links. To
keep computational e�ort feasible, travel time estimations need to be aggregated to time bins.
Parameters of this aggregation, such as bin size, can be speci�ed in the con�guration �le section
travelTimeCalculator.

4.7.2 Link Stats

The linkStats con�g �le section can specify the output interval of individual links’ simulation
statistics. It is con�gurable if the simulated volumes are written per iteration or averaged over
multiple iterations. As one of their many functions, link stats are used for comparison with count
values, as introduced in Section 6.3.

PART II

Extending MATSim

CHAPTER 5

Available Functionality and How to Use It

Andreas Horni and Kai Nagel

In this chapter you will learn about possibilities to extend and customize MATSim (Multi-Agent
Transport Simulation) through provided functionality. In Chapter 45, you will see how you can
hook your own extensions into MATSim.

5.1 MATSimModularity

MATSim follows a modular concept, but a “module” is not a very speci�c term;1 thus, modules can
exist at many levels in a so�ware framework. Also in MATSim, a range of di�erent functionality
types, such as con�g functions, replanning components, contributions, or even external tools,2 are
sometimes described as modules. Metaphorically speaking, a module can thus be seen as the great-
est common divisor (gcd) of di�erent functionality provided in MATSim. Much more important
is understanding the di�erent levels of access stemming from the generally modular architecture.

5.1.1 Levels of Access

MATSim currently provides �ve levels of access:

1. using the MATSim core only,

2. using the MATSim main distribution,

1 According to the Merriam-Webster (http://www.merriam-webster.com), a module is “one of a set of parts that can be

connected or combined to build or complete something” or more specifically “a part of a computer or computer

program that does a particular job”.
2 Standalone tools referencing MATSim as a library, such as the network editor, or the visualizer Via.

How to cite this book chapter:

Horni, A and Nagel, K. 2016. Available Functionality and How to Use It. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 47–52. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.5. License: CC-BY 4.0

48 The Multi-Agent Transport Simulation MATSim

3. using MATSim main distribution, contributions and possibly extensions,

4. writing “scripts in Java” and �nally

5. writing your own extensions.

5.1.1.1 Using the Core Only

To use only the core, one needs to do the following (see Section 2.1):

• Download a MATSim release or a nightly build, by following the respective links at http://
matsim.org/downloads.

• Obtain a network �le and an initial plans �le. Small versions can be typed by hand; larger
versions should be generated automatically by some computational method.

• Write or edit a con�g �le.
• Click on the MATSim jar �le3 and follow the instructions.

We think that the MATSim core is already quite powerful; for example, synthetic persons already
follow full daily plans with a full daily scoring function; thus, opening times for activity types,
departure time choice and schedule delay can be investigated.

5.1.1.2 Using MATSim Main Distribution

The extensions in the MATSim main distribution are, by design, very close to the MATSim core,
thus requiring even less con�guration than for contributions, as shown below. O�en, providing
additional �les together with a respective con�g �le entry is su�cient to use them; required steps
are described below, case by case. Extensions contained in the main distribution are listed in a
separate section at http://matsim.org/extensions.

5.1.1.3 Using One or More Contribs or Other Extensions

Contributions are in a separate part of the repository, separate from the MATSim main distribu-
tion. The documentation is not yet fully organized; information about contributions and other
extensions can be found at http://matsim.org/extensions. For the contributions, there are also
release versions and nightly builds, which can be found by following the links at http://matsim.
org/downloads.

In general, contributions should provide main methods for use. We may eventually provide
clickable jar �les here as well, but for the time being, contributions need to be bundled with
core MATSim (and potentially other contributions). As shown at http://www.matsim.org/docs/
extensions, the syntax is roughly

java -Xmx2000m -cp MATSim.jar:contrib/contrib.jar org.matsim.contrib.run.RunXxx

config.xml

where

• -Xmx2000m increases the Java heap space, so that most MATSim runs �t in,
• MATSim.jar needs to be replaced by a relative or absolute path to the MATSim jar to be used,
• contrib/contrib.jar needs to be replaced by a relative or absolute path to the contribution jar

to be used,

3 This has worked since winter 2014/15 and should be in the 0.8.x release.

Available Functionality and How to Use It 49

• org.matsim.contrib.run.RunXxx needs to be replaced by the full Java class name containing the
desired main method (given by the contribution documentation), and

• config.xml needs to be replaced by a relative or absolute path to a con�g �le, which may contain
additional sections speci�c to the contribution.

It is possible to combine several contributions in this way, provided someone has made a corre-
sponding main method available. This can, in principle, be done relatively quickly, so those wishing
to run studies with combinations of existing contributions, but without programming skills, can
ask someone with those skills and with access to the repository for help.

5.1.1.4 Writing “Scripts in Java”

The contributions are written so that they can be plugged into MATSim via extension points (see
Chapter 45). If a speci�c combination or con�guration of modules is not (yet) available, one can
write it. The syntax is roughly:

... main(...) {

// construct the config object:

Config config = ConfigUtils.xxx (...) ;

config.xxx().setYyy (...) ;

...

// load and adapt the scenario object:

Scenario scenario = ScenarioUtils.loadScenario(config) ;

scenario.getXxx ().doYyy (...) ; // (*)

...

// load and adapt the controler object:

Controler controler = new Controler(scenario) ;

controler.doZzz (...) ; // (**)

...

// run the iterations:

controler.run() ;

}

Extension points, especially at (*) and (**), are described in more detail in Chapter 45.

5.1.1.5 Writing Your Own Extensions

If the existing extensions are not su�cient to plug your own study together, the next option is to
write your own extension. Again, when writing an extension, one should use the extension points
described in Chapter 45, since this is the only way an extension can later become a contribution.

5.1.2 The Ideas Behind this Setup

The setup, as described above, arose from the observation that an-ever growing monolithic
MATSim would eventually overwhelm the MATSim team and its core developers group. There-
fore, a set-up was sought allowing them to concentrate on central infrastructure, while speci�c
functionality like road pricing, multimodal simulations, signals, additional choice dimensions, or
analysis modules could be written and contributed by the community. Clearly, a plug-in architec-
ture had to be the solution, but it took (and still takes) time and e�ort to make the extension points
su�ciently capable and robust.

At the same time, MATSim is a research platform; research investigates innovative questions,
which o�en means that the questions were not foreseen when the code was designed. Quite

50 The Multi-Agent Transport Simulation MATSim

o�en, scripting languages are the solution to such problems; for example, python is allowed
in QGIS,4 VISUM (Verkehr In Städten – UMlegung),5 EMME (Equilibre Multimodal Multimodal
Equilibrium), or SUMO (Simulation of Urban Mobility) (via the TraCI interface)6 for plug-ins.
Scala (SCAlable LAnguage) was discussed for MATSim, but ultimately, it was decided to just
use Java itself as the scripting language, with the advantage that users between development and
MATSim application do not need to learn two languages. In addition, the TU (Technische Univer-
sität) Berlin team can continue to teach Java both as an entry point to MATSim and as a general
professional skill.

5.2 An Overview of Existing MATSim Functionality

Figure 5.1 shows where common MATSim modules are coupled with the MATSim loop. Some
modules have a single connection point (shown around the loop, connected to the respective loop

initial

demand analysesexecution scoring

replanning

network editors

freightChainsFromTD

scoring

scenario

population

households

controler

events

parallel computing

global

travel time calculator

psim

matsim4urbansim

destination

innovation

freight

car sharing

joint trips

parking

electric vehicles

road pricing

cadyts

wagonSim

withinday

public transport

DVRP

evacuation

counts

Via

OTFVis

emissions

accessibility

decision

support

link stats

analysis

time innovation

route innovation

mode innovation

selectors

matrix based pt router

network

facilities

vehicles

mobsims

multimodal

signals

lanes

Figure 5.1: MATSim functionality.

4
http://docs.qgis.org/testing/en/docs/pyqgis developer cookbook/

5 PTV (2011)
6
http://sumo.dlr.de/wiki/TraCI

Available Functionality and How to Use It 51

element), while others have multiple connection points (shown in the middle of the circle) and yet
others work on a global range (shown on the le� upper and lower corners).

The technical details for module usage, in particular, the parameter sets, are described at http:
//matsim.org, especially http://matsim.org/javadoc and http://matsim.org/extensions.

As a result of the distributed and project- and dissertation-driven MATSim contribution pro-
cess (see Chapter 44), modules are o�en implemented for a speci�c practical purpose, leading to
limitations of the respective module. For example, modules might only work for a speci�c mode,
or for a de�ned calling order. Normally, additional e�ort is needed to generalize the module; in
consequence, the combination of a speci�c module with other functionality is o�en not a straight-
forward task. This means that a user will have to systematically test any speci�c combination of
modules before productively applying it.

The description of the modules in Chapter 4, and the following chapters, is based on the
categorization shown in Table 5.1.

Global Modules and Global Aspects Section 4.2

Controler Section 4.2.1
Events Section 4.2.2
Parallel Computing Section 4.2.3
Global Section 4.2.4

MATSim Data Containers Section 4.1 and Chapter 6

Network Section 4.1.1 and 6.1
Population Section 4.1.2 and 6.2
Counts Section 6.3
Facilities Section 6.4
Households Section 6.5
Vehicles Section 6.6
Scenario Section 6.7

Network Editors

MATSim JOSM Network Editor Chapter 8
Map-to-Map Matching Editors in Singapore Chapter 9
The “Network Editor” Contribution Chapter 10

Observational Modules Section 4.7

Travel Time Calculator Section 4.7.1
Link Stats Section 4.7.2

Scoring Section 4.4

Basic Strategy Modules Section 4.5

Time Innovation Section 4.5.1.1
Route Innovation Section 4.5.1.2
Mode Innovation Section 4.5.1.3
Selectors Section 4.5.2

Mobsims

QSim Section 4.3.1 and Chapter 11
JDEQSim Section 4.3.2

Individual Car Tra�c

Signals and Lanes Chapter 12
Parking Chapter 13

Continued on next page

52 The Multi-Agent Transport Simulation MATSim

Electric Vehicles Chapter 14
Roadpricing Chapter 15

Other Modes Besides Individual Car

Public Transport Chapter 16
The “Minibus” Contribution Chapter 17
Semi-Automatic Tool for Bus Route Map Matching Chapter 18
Events-Based Public Transport Router Chapter 19
matrix-based pt router Chapter 20
Multi-Modal Contribution Chapter 21
Car Sharing Chapter 22
Dynamic Transport Systems Chapter 23

Commercial Tra�c

Freight Tra�c Chapter 24
wagonSim Chapter 25
freightChainsFromTravelDiaries Chapter 26

Additional Choice Dimensions

Destination Innovation Chapter 27
Joint Trips and Social Networks Chapter 28
Socnetgen Chapter 29

Within-Day Replanning

Within-day Replanning Chapter 30
Belief Desire Intention (BDI) Framework Chapter 31

Automatic Calibration

Cadyts Chapter 32

Visualizers

Via Visualizer Chapter 33
OTFVis Visualizer Chapter 34

Analysis

Accessibility Chapter 35
Emissions Chapter 36
Interactive Analysis and Decision Support Chapter 37
The “analysis” contrib Chapter 38

Computational Performance Improvements

PSim Chapter 39

Other Modules

Evacuation Chapter 41
MATSim4UrbanSim Chapter 42

Table 5.1: MATSim functionality overview.

SUBPART ONE

Input Data Preparation

CHAPTER 6

MATSim Data Containers

Marcel Rieser, Kai Nagel and Andreas Horni

6.1 Time-Dependent Network

The network container was already described in Section 4.1.1. An important additional feature of
the network module is using time-dependent network attributes. Network state changes can thus
be considered, as e.g., implied by accidents, or adaptive tra�c control, with varying speed limits or
driving directions of lanes on multi-lane roads with heavily unbalanced loads over the course of a
day. Attributes that can be adapted are “free speed”, “number of lanes” and “�ow capacity”.

The adaptation can be speci�ed by adding the following two lines to the network con�g �le
section:

<param name="timeVariantNetwork" value="true" />

<param name="inputChangeEventsFile"

value="path_to_change_events_file" />

An example snippet setting the free speed of three network links to zero looks something like this:

<networkChangeEvent startTime="03:06:00">

<link refId="12487"/>

<link refId="12489"/>

<link refId="12491"/>

<freespeed type="absolute" value="0.0"/>

</networkChangeEvent >

For a working example, see the �le networkChangeEvents.xml in the examples/equil-extended

directory in the MATSim directory tree.
Alternatively, network change events can be added directly to the code. An example can be

found in the RunTimeDependentNetworkExample class under http://matsim.org/javadoc → main
distribution.

How to cite this book chapter:

Rieser, M, Nagel, K and Horni, A. 2016. MATSim Data Containers. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 55–60. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.6. License: CC-BY 4.0

56 The Multi-Agent Transport Simulation MATSim

Note that change values of type absolute need to be given in SI units, which means speeds in
meters per second and �ow capacities in vehicles per second.

6.2 Person Attributes and Subpopulations

The population container was also already discussed earlier, in Section 4.1.2. A powerful ex-
tension of a standard population can be achieved by specifying further agent attributes in an
ObjectAttributes �le input to MATSim by the parameter inputPersonAttributesFile.

See http://matsim.org/javadoc → main distribution → RunSubpopulationsExample class for
an example. That example looks as if coding in Java is necessary, but this is really not the case; Java
is just used to generate the subpopulations, which could also be done by other means.

6.3 Counts

By providing a counts input �le and con�guring the counts con�g �le section, MATSim plots link
volume comparisons between hourly simulated and counted values for motorized individual tra�c
(Horni and Grether, 2007).

Simulating sample populations requires scaling simulated volumes by the countsScaleFactor

parameter, e.g., for a 10 % population this parameter needs to be set to 10.

Input The following listing shows an example of a counts.xml input �le required for tra�c count
comparisons.

<?xml version="1.0" encoding="UTF -8"?>

<counts name="example" desc="example counting stations" year="2015">

<count loc_id="2" cs_id="005">

<volume h="1" val="10.0"></volume >

<volume h="2" val="1.0"></volume >

<volume h="3" val="2.0"></volume >

<volume h="4" val="3.0"></volume >

<volume h="5" val="4.0"></volume >

<volume h="6" val="5.0"></volume >

<volume h="7" val="6.0"></volume >

<volume h="8" val="7.0"></volume >

<volume h="9" val="8.0"></volume >

<volume h="10" val="9.0"></volume >

<volume h="11" val="10.0"></volume >

<volume h="12" val="11.0"></volume >

<volume h="13" val="12.0"></volume >

<volume h="14" val="13.0"></volume >

<volume h="15" val="14.0"></volume >

<volume h="16" val="15.0"></volume >

<volume h="17" val="16.0"></volume >

<volume h="18" val="17.0"></volume >

<volume h="19" val="18.0"></volume >

<volume h="20" val="19.0"></volume >

<volume h="21" val="20.0"></volume >

<volume h="22" val="21.0"></volume >

<volume h="23" val="22.0"></volume >

<volume h="24" val="23.0"></volume >

</count >

</counts >

For a working example, check the examples/equil directory in the MATSim directory tree
(cf. Section 2.1.1).

It starts with a header containing general descriptive information about the counts, including a
year to describe how current the data is. Next, for each link having real world counts data, hourly

MATSim Data Containers 57

volumes can be speci�ed. The network-link is referenced by the loc_id attribute; in the example, it
is link 2. The attribute cs_id (counting station identi�er) can be used to store an arbitrary descrip-
tion of the counting station. Most o�en, it is used to note the original real world counting station
to simplify future data comparison. The hourly volumes, speci�ed by the hour of the day and its
value, are optional: That is, a value does not have to be given for every hour. If, for a counting sta-
tion, data is only available for certain hours of the day (e.g., only during peak hours), it is possible
to omit the other hours from the XML listing. Note that the �rst hour of the day, from 0:00 am to
1:00 am, is numbered as “1”, and not by “0” as is o�en the case in computer science.

Output The counts module prints overview summaries for the whole network, but also analyzes
for individual links. Also, a google maps-based visualization is available, showing each station with
a its load curve (see the example in Figure 6.1) in a pop-up window.

Balmer et al. (2009a) have performed link volume comparisons for the Zürich scenario, with
data based on city level, cantonal level and national level (ASTRA, 2006). Usually, it is helpful
to exclude a substantial part of the outer range of the modeled study region in order to remove
boundary e�ects.

6.4 Facilities

Facilities are an optional element of MATSim; some modules, such as the destination innovation
module (Chapter 27), depend on it. If MATSim facilities are used, agents perform their activities
in a speci�c facility attached to a network link.

Figure 6.1: Example for a link volumes comparison between simulation and road count values.

58 The Multi-Agent Transport Simulation MATSim

Facilities are included in the scenario by de�ning the facilities con�g �le section and providing
a facilities �le, approximately as follows.

...

<facilities name="test facilities for triangle network">

<facility id="1" x="60.0" y="110.0">

<activity type="home" />

</facility >

<facility id="10" x="110.0" y="270.0">

<activity type="education" />

</facility >

</facilities >

An example is given in http://matsim.org/javadoc → main distribution →

RunWithFacilitiesExample class.
In addition to activities that can be done in the facility, further location attributes, such as open-

ing times, can be speci�ed. A working facilities example �le can be found in the MATSim directory
tree in the examples/siouxfalls-2014 directory.

Facilities are mostly used by the MATSim Zürich group, in particular in the Zürich scenario,
where they are derived from the Federal Enterprise Census 2001 (Swiss Federal Statistical O�ce
(BFS), 2001) providing hectare level information. Detailed technical description of facilities gen-
eration is given by Meister (2008). Comparable data is available in most countries from o�cial
sources, such as censuses, and commercial sources, such as navigation network providers, yellow
pages publishers or business directories, and last but not least google and OSM (OpenStreetMap,
2015).

Note that loading a facilities �le into MATSim by itself does not mean they will be used; the
functionality needs to be switched on by other means. Currently, this is only possible by using
some class with a main method.

6.5 Households

Households are another optional element of MATSim. To load households into a scenario, the con-
�g �le must contain a section households. This section should specify the paths to a �le containing
households (parameter inputFile) and a �le containing further household attributes (parameter
inputHouseholdAttributesFile).1

Again, loading the households �le does not mean that it is used anywhere in the code; such
functionality needs to be switched on separately. Currently, no such functionality can be switched
on from the con�g �le alone.

6.6 Vehicles

Vehicles are an optional element of MATSim. To load vehicles into a scenario, a con�g section

<module name="vehicles" >

<param name="vehiclesFile" value="/path/to/vehicles.xml.gz" />

</module >

needs to be added.2

1 There used to be an additional “useHouseholds” config switch. In release 0.8.x, that switch will be gone.
2 There used to be an additional “useVehicles” config switch. In release 0.8.x, that switch will be gone.

MATSim Data Containers 59

Once more, just loading the vehicles does not use them; that needs to be con�gured separately.
See Section 11.1 for details.

6.7 Scenario

Scenario is a super-container containing all the other data containers, accessible, for example,
as scenario.getNetwork(). It used to have con�guration options, but these are all gone now, so
Scenario is only visible once you are programming in Java.

CHAPTER 7

Generation of the Initial MATSim Input

Marcel Rieser, Kai Nagel and Andreas Horni

As explained in Section 2.2, the minimal MATSim input, besides the con�guration, consists of
the network and population with initial plans. For illustrative scenarios, all three can be generated
with a text editor. For more complicated and/or realistic scenarios, they need to be generated by
other methods. People with knowledge in a scripting language may use that scripting language to
generate the necessary XML �les, possibly honoring the MATSim DTDs. We ourselves use Java as
our scripting language for these purposes. Java is not necessarily the best choice here; this may be
discussed elsewhere. We do use it, for the following reasons:

• Most of us also program MATSim extensions and these currently have to be in Java. Thus, using
Java as a scripting language for initial input generation saves us the e�ort of becoming pro�cient
in another programming language.

• The MATSim so�ware, by necessity, already contains all �le readers and writers for MATSim
input, saving the e�ort of re-implementing them and one automatically moves forward with

�le version updates. Additionally, one can directly use the MATSim data containers.
• Once one starts writing MATSim scripts-in-Java (Section 5.1.1.4), in many situations, it makes

sense to modify the input data a�er reading the �les. The programming techniques for this are
the same as for other initial input generation.

Part IV will show how initial input was generated on a practical level—discussing, e.g., the di�er-
ent types of original input data—for di�erent scenarios. This section presents MATSim’s technical
tools for initial input generation.

How to cite this book chapter:

Rieser, M, Nagel, K and Horni, A. 2016. Generation of the Initial MATSim Input. In: Horni, A, Nagel, K

and Axhausen, K W. (eds.) TheMulti-Agent Transport SimulationMATSim, Pp. 61–64. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.7. License: CC-BY 4.0

62 The Multi-Agent Transport Simulation MATSim

7.1 Coordinate Transformations in Java

Section 2.2.1.3 has given information about coordinate systems. When programming in Java and
MATSim for input data generation, coordinate transformations derived from geotools (Geotools,
accessed 2015) can be used. For example,

CoordinateTransformation ct =

TransformationFactory.getCoordinateTransformation("WGS84", "WGS84_UTM33N");

would transform data given in WGS84 coordinates to data in UTM coordinates.

7.2 Network Generation

7.2.1 From OpenStreetMap

A fairly standardized way to generate a MATSim network is from OSM data. The process (roughly)
goes as follows:

1. Download the necessary xxx.osm.pbf �le from http://download.geofabrik.de/osm.

2. Download a recent Osmosis build from http://wiki.openstreetmap.org/wiki/Osmosis.

3. The necessary command to extract the road network (approximately) is:

java -cp osmosis.jar --rb file=xxx.osm.pbf \

--bounding -box top =47.701 left =8.346 bottom =47.146 right =9.019 \

completeWays=true --used -node --wb allroads.osm.pbf

The bounding box can, e.g., be obtained from http://www.osm.org; it is in WGS84 coordi-
nates.

4. It makes good sense to add the large roads of a much larger region. The necessary command
(approximately) is

java -cp osmosis.jar --rb file=xxx.osm.pbf --tf accept -ways \

highway=motorway ,motorway_link ,trunk ,trunk_link ,primary ,primary_link \

--used -node --wb bigroads.osm.pbf

5. The two �les are merged with (approximately) the following command:

java -cp osmosis.jar --rb file=bigroads.osm.pbf --rb allroads.osm.pbf \

--merge --wx merged -network.osm

An example script of how to convert the resulting merged-network.osm �le into a MATSim
network �le can be found under http://matsim.org/javadoc → main distribution →

RunPNetworkGenerator class.

7.2.2 From Other Sources

Networks can also be obtained from other sources. An example script of how to convert an EMME
network to MATSim can be found under http://matsim.org/javadoc → main distribution →

RunNetworkEmme2MatsimExample class. A problem with EMME network �les is that they use user-
de�ned variables in non-standardized ways, meaning that each converter has to be adapted to the
speci�c situation.

Generation of the Initial MATSim Input 63

Material to read VISUM �les can be found by searching for the string “visum” in the code base,
but is currently not systematically maintained.

7.3 Initial Demand Generation

7.3.1 Simple Initial Demand

A simple script to generate a population with a single synthetic person with one ini-
tial plan can be found under http://matsim.org/javadoc → main distribution →

RunPOnePersonPopulationGenerator. A somewhat larger synthetic population is generated
by RunPPopulationGenerator.

Note that coordinates in the population need to be consistent with coordinates in the network.
Roughly speaking, coordinates mentioned in the population �le need to be in the same range as
coordinates mentioned in the network. Note that, in the examples presented here, coordinates of
the network generated in Section 7.2.1 are not consistent with the demand generated by the RunP*

-scripts; these need to be adapted accordingly.

7.3.2 Realistic Initial Demand

A script to illustrate the generation of a more realistic population and initial demand can be found
under http://matsim.org/javadoc→ main distribution → RunZPopulationGenerator, generating
a sample population from a census �le and writing it to a �le.

Here, network coordinates generated in Section 7.2.1 are consistent with demand generated by
the RunZ*-script.

CHAPTER 8

MATSim JOSM Network Editor

Andreas Neumann and Michael Zilske

8.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → josm-plugin

Invoking the module:

Can be loaded as a plug-in from the JOSM editor.

Selected publications:

Kühnel (2014) (in German)

8.2 Introduction

A plugin for the JOSM (Java Open Street Map Editor) (JOSM, 2014), is available, simplifying
the process of creating and editing MATSim networks. This plugin fully integrates with JOSM,
bene�ting from its built-in functionality.

8.2.1 Features

The MATSim JOSM network editor lets a reader preview, edit and save a MATSim network directly
from the map. Basic support for converting and editing public transport networks is implemented.
The plug-in allows automatic post-processing of a network by removing unnecessary intermediate
nodes and links.

Convert MATSim networks from OSM. Load map data for a selected area directly from the In-
ternet or load it from a local OSM �le. Specify conversion parameters and save a MATSim
network.

How to cite this book chapter:

Neumann, A and Zilske, M. 2016. MATSim JOSM Network Editor. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 65–66. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.8. License: CC-BY 4.0

66 The Multi-Agent Transport Simulation MATSim

Figure 8.1: JOSM with converted MATSim network and OSM background imagery. Map data
taken from OpenStreetMap (2014).

Visualize an existing or newly converted MATSim network along with other data like satellite
imagery or other JOSM-supported layers.

Edit an existing or newly converted MATSim network with the available JOSM tools you know.
Use the build-in undo and search functions of JOSM. Changes to the underlying OSM data
are immediately re�ected by the converted MATSim network. Use MATSim-speci�c presets
to minimize errors.

Validate an existing or newly converted MATSim network to comply with requirements of the
MATSim network �le description. Visualize errors and �x them (automatically).

The next version will support public transport networks.

8.2.2 Installing the Plug-In

You do not need to download the source; it is in the JOSM plug-in repository. Just start JOSM and
look for the MATSim plug-in under Edit...Preferences...Plugins. Download the list of available
plug-ins and search for “matsim”. Tick the box, press ok and restart JOSM.

8.2.3 Getting the Code

The source code is hosted on github (https://github.com/matsim-org/josm-matsim-plugin).
Unlike MATSim, the build is not based on Apache Maven, but on Gradle. Editing the Manifest,
downloading JOSM for compilation and building a �at JAR are easier in Gradle. Use your favorite
IDE (Integrated Development Environment) to import the Gradle project and/or see the comments
in build.gradle for details. You can run JOSM and the plug-in in the debugger.

CHAPTER 9

Map-to-Map Matching Editors in Singapore

Sergio Arturo Ordóñez

9.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → networkEditorSingapore

Invoking the module:

See http://matsim.org/extensions → networkEditorSingapore for more information

Selected publications:

Ordóñez Medina (2011a)

For the Singapore scenario and supply data, a high resolution network was obtained from the
NAVTEQ company. This network consists of a graph representing every road in the island: very
convenient for a high resolution model like MATSim. However, the information on travel capaci-
ties and network link free speeds is not accurate. To o�set, local authorities provided the network
model used for planning, which includes only major roads and simpli�ed intersections, but ca-
pacities and free speed are accurately estimated. Figure 9.1 shows lower travel capacities of many
primary roads in the navigation model (right), than in the planning model (le�).

This section describes a semi-automatic tool developed to match these two network models
(Ordóñez Medina, 2011a), allowing updating of navigation network (high-res network) main
links/capacities and free speeds with those of the planning network (low-res network).

How to cite this book chapter:

Ordóñez, S A. 2016. Map-to-Map Matching Editors in Singapore. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 67–72. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.9. License: CC-BY 4.0

68 The Multi-Agent Transport Simulation MATSim

Figure 9.1: Di�erence in the travel capacities between the Singapore planning network model (le�)
and a navigation network model (right).

9.1.1 General Procedure

Although many authors try to solve matching problems for two networks in a formal way, this
work follows a semi-automatic approach. This means that automatic algorithms will be used to try
and solve the problem, but the user knows the solution will not be perfect; some manual work must
be done. Hence, interactive tools are also provided to manually improve solutions.

The map-to-map procedure is based on the algorithm developed by Balmer et al. (2005a). It
consists of the following steps:

1. Classify nodes according to their topology (e.g., source, sink, one way start, crossing) in both
networks.

2. Reduce networks according to previous classi�cation, and save relations to the original nodes.

3. Find crossings (set of close nodes) in both networks and relate them.

4. Assuming not all crossingswere found in the previous step, use the interactive tool shown

in the Figure 9.2 to �nd all crossings in both networks and relate them.

5. Recognize links or sequences of links joining crossings found in (3) and (4).

6. Assuming not all links or paths found in the previous step are correct, use the link-link

matching interactive tool shown in the Figure 9.3, to �nd ormodify links or sequences of

links joining the crossings

7. Update capacities and free speeds of matched links found in (5) and (6).

Map-to-Map Matching Editors in Singapore 69

Figure 9.2: Crossing-crossing matching application. A second node, matching the pink node on
the (le�) low-res network, is selected from the high-res network on the right.

Figure 9.3: Link-link matching application. A shortest path algorithm to select a sequence of right-
hand network links will be executed when clicking the destination node.

70 The Multi-Agent Transport Simulation MATSim

9.1.2 Interactive Tools Characteristics

As shown in Figure 9.2, the application allows interactive modifying of crossing-crossing re-
lationships. A very similar interactive tool was also developed to modify link-link relation-
ships between the high and low resolution networks. They can be found at the package
playground.sergioo.networksMatcher2012, in the playgrounds project of MATSim. To run the
crossings-crossing application graphic interface, use the class gui.DoubleNetworkMatchingWindow,
and use the class gui.DoubleNetworkCapacitiesWindow for the link-link application. These appli-
cations write simple text �les of the relationships located. The program found at the class
ApplyCapacities overwrites capacities and/or free speeds, according to simple text �les and writes
the new resulting network XML �le. This multiple-steps design enables running interactive appli-
cations several times, or in parallel. The interactive tools’ developed functional requirements and
quality attributes are:

• Visualization: Two navigation networks are displayed in two modes. The �rst mode splits the
window in two, showing each network on one side and maintaining them at the same geo-
graphical position and zoom when navigating. The second superimposes both networks in the
same window, with only one active. Selected elements are drawn in di�erent colors. Everything
is displayed in a bi-dimensional interactive way, showing the cursor location in the working
coordinates and including panning, zoom and view-all options. The crossing-crossing appli-
cation displays matched sets of nodes (crossings), with the same color in both networks. The
link-link application tool also allows visualization of the capacity (or free speed) property value
of both networks’ links, using a color scale, as shown in Figure 9.3.

• Selection: The applications enable selection of links and nodes from both networks. The
crossing-crossing option allows only selection of node sets. The link-link application allows
selection of links’ sequence. This can be done directly, or by selecting an origin node, a desti-
nation node and running a “select shortest path algorithm tool”. It is also possible to select the
other link instead of the �rst one chosen.

• Matching and Deletion: The applications allow creation of a similarity relationship between
elements selected in both networks, sets of nodes, or sequences of links.

• Saving: The applications allow located relationships to be saved.
• Loading: The applications allow the loading of previously located relationships.
• Others: The crossing-crossing application executes and automatically veri�es currently found

matching, to avoid repeated nodes. It also enables clearing of the current selection. The link-
link application allows automatic navigation to a link, or node, speci�ed by the user, using its
ID. It also enables the undoing of previous matching.

9.1.3 Results

All low-res network links were matched to high-res links, updating the corresponding link prop-
erties. Figure 9.4 shows the di�erences in travel capacities between original navigation network
values and the �nal version. Eight hours of manual work were required to match crossings and ten
hours of manual work to match links. Obviously, improvements in accuracy and completeness of
the automatic matching algorithms reduce the manual work time.

Map-to-Map Matching Editors in Singapore 71

Figure 9.4: Resulting changes in navigation network travel capacity property.

CHAPTER 10

The “Network Editor” Contribution

Kai Nagel

10.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → networkEditor

Invoking the module:

http://matsim.org/javadoc → networkEditor → RunNetworkEditor class

Selected publications:

none

10.2 Short Description

This is, beyond the two network editors described in Chapters 8 and 9, a third network editor.
It is older than the other two and has not been systematically maintained, but it still seems to be
working and so it is still there.

How to cite this book chapter:

Nagel, K. 2016. The “Network Editor” Contribution. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The

Multi-Agent Transport Simulation MATSim, Pp. 73–74. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.10. License: CC-BY 4.0

SUBPART TWO

Mobsim

CHAPTER 11

QSim

Marcel Rieser, Kai Nagel and Andreas Horni

11.1 Vehicle Types and Vehicles

For a variety of reasons—e.g., vehicle-speci�c emissions calculations (Chapter 36), or vehicle-
speci�c maximum speeds (see below)—it may become necessary to assign di�erent vehicle types
to di�erent persons, modes, or trips. The (arguably) most “honest” approach to vehicles, in terms
of micro-simulation, is to generate a synthetic vehicle �eet. Each leg would then have to know
which vehicle it wants to use. This is indeed possible with the planned vehicle ID that MATSim
route objects can store. This functionality is switched on by �rst loading an additional vehicles �le
(see Section 6.6) and then con�guring the QSim as

<module name="qsim">

<param name="usePersonIdForMissingVehicleId" value="false" />

<param name="vehiclesSource" value="fromVehiclesData" />

...

</module >

(available with release 0.8.x). This states that every time the QSim needs a vehicle with a speci�c
ID, it will search for it in the vehicles data container, throwing an exception if it is not found there.

A Fallback for Routes that do not Contain Vehicle IDs In the above approach, vehicular routes
need to provide vehicle IDs, otherwise the QSim will throw an exception. Since algorithms to com-
pute and maintain vehicle IDs during replanning are currently not well developed within MATSim,
an alternative is to assume that persons use a vehicle with the same ID as the person. This is
switched on by

How to cite this book chapter:

Rieser, M, Nagel, K and Horni, A. 2016. QSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-

Agent Transport SimulationMATSim, Pp. 77–80. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.11. License: CC-BY 4.0

78 The Multi-Agent Transport Simulation MATSim

<module name="qsim">

<param name="usePersonIdForMissingVehicleId" value="true" />

...

</module >

which is also the current default. With this con�guration, it will still search for the vehicle ID in the
route, but if this is unavailable, it will instead use the person ID as vehicle ID. Without additional
con�guration, it will then still search for the vehicle under that ID in the vehicles �le.

Alternative Vehicles Sources A default vehicles source is de�ned by

<module name="qsim">

<param name="vehiclesSource" value="defaultVehicle" />

...

</module >

This generates a default vehicle (typically a medium-sized 4-seater) every time a vehicle is needed
and is currently the default con�guration.

At the moment, alternative approaches to vehicle generation need to be programmed as script-
in-Java. See, e.g., RunMobsimWithMultipleModeVehiclesExample under http://matsim.org/javadoc
→ main distribution for a reference to a script that generates mode-speci�c typical vehicles for
each mode. Simulation experiments using this feature have been performed for the Patna scenario
as reported in Chapter 77.

Vehicle Behavior Vehicles need to be available where they are needed. It is, for example, impos-
sible to perform a trip by car, then another (non-circular) trip by public transit and then make
another trip with the same car as before, since the car will not be available at that location. The
QSim is able to enforce such behavior, with the setting

<module name="qsim">

<param name="vehicleBehavior" value="exception" />

...

</module >

This means that if a necessary vehicle is not available at the location where it is needed by the
traveler, the QSim throws an exception and aborts. The idea here is that such synthetic travelers
should have within-day replanning strategies (see Chapter 30) to cope with unexpectedly unavail-
able vehicles; any attempt to use an unavailable vehicle points to an error in the driver’s behavioral
logic.

In many standard situations, the above behavior will be too strict. For example, a vehicle may
be shared between family members, but one member will be late in returning a vehicle. For such
situations,

<module name="qsim">

<param name="vehicleBehavior" value="wait" />

...

</module >

may be an option. Here, a driver will wait if a vehicle is not available. Errors in the coordination
logic, i.e., very long waits, will be punished via the MATSim scoring logic, thus leading to more
robust coordinations.

A �nal alternative is

<module name="qsim">

<param name="vehicleBehavior" value="teleport" />

...

</module >

With this setting, vehicles will be teleported to locations where they are needed.

QSim 79

Initial Vehicle Placement For vehicle behavior of type exception and type wait, vehicles need
to be at the correct location when the QSim starts. Here, the default simulation currently places
all vehicles at the home location—for other variants, some additional code needs to be written or
used, such as the car sharing extension (Chapter 22).

PassingQ Once various vehicles have di�erent maximum speeds, the standard QSim, even
with multiple main modes, is no longer su�cient, since it uses FIFO (First In, First Out) as the
queuing discipline, meaning that fast vehicles cannot pass slower vehicles. Here, the so-called
Passing(Vehicle)Q can be used instead. It replaces the FIFO sorting criterion—where vehicles are
sorted by the sequence in which they arrive on the link—by a sorting employing the so-called
earliest link exit time, computed from link enter time and freespeed travel time. Now, using the
minimum of vehicle and link maximum speeds, the freespeed travel time can be di�erentiated be-
tween vehicles, allowing fast vehicles to obtain an earlier link exit time, even if they enter later than
slow vehicles. Details and resulting fundamental diagrams are given by Agarwal et al. (2015b).

This option can be enabled by using

<module name="qsim">

<param name="linkDynamics" value="passingQ" />

...

</module >

in the qsim section of the con�g �le.

11.2 Other

The simulation is able to handle time-variant networks (Lämmel et al., 2010), within-day replan-
ning (Dobler, 2009, see Chapter 30) and tra�c lights (Neumann, 2008; Grether et al., 2011b,
2012, see Chapter 12). An earlier multimodal approach, targeted at overcoming the teleporta-
tion estimates of non-motorized modes, and particularly focused on pedestrians, is presented in
Chapter 21.

SUBPART THREE

Individual Car Tra�c

CHAPTER 12

Tra�c Signals and Lanes

Dominik Grether and Theresa Thunig

12.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → signals

Invoking the module:

http://matsim.org/javadoc → signals → RunSignalSystemsExample class

Selected publications:

Grether et al. (2011a); Grether (2014)

12.2 Motivation

Tra�c signals ensure security of travelers at junctions and regulate right of way. Furthermore,
by assigning green times to the di�erent approaches of a junction, they determine and evaluate
junctions’ performance. There are di�erent strategies for tra�c signal control: �xed-time traf-
�c signal control, for example, periodically repeats the same schedule for signalization, while
tra�c-responsive signal control reacts dynamically to the prevailing tra�c patterns to improve the
junction or system performance. Tra�c signal control can improve the tra�c conditions at a single
junction, but the whole system can be worse if a single junction is improved. Hu and Mahmassani
(1997) argue that second order or network e�ects should be taken into account when e�ects of sig-
nal control strategies are tested. Network e�ects include drivers’ reactions: not only route choice,
but also scheduling. Thus, tra�c control, especially tra�c-responsive signals, need certain con-
straints. Otherwise, tra�c may become unstable: rapidly at two nearby junctions, or at the network
level (Lämmer and Helbing, 2010). MATSim can capture most of these e�ects. This chapter reviews

How to cite this book chapter:

Grether, D and Thunig, T. 2016. Tra�c Signals and Lanes. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 83–88. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.12. License: CC-BY 4.0

84 The Multi-Agent Transport Simulation MATSim

concepts, usage and restrictions of the tra�c signal control extension for MATSim. The chapter is
particularly interesting for MATSim users, who plan to simulate tra�c signals microscopically. If
one wishes to capture signalization e�ects on a rather coarse level, consider the approach presented
in Charypar (2008, pp. 139), that can be realized with the time variant network feature of MATSim
(Lämmel et al., 2010). Before we go into detail on motivating tra�c signals with MATSim, a case
study is reviewed.

12.2.1 Case Study

The Cottbus scenario presented in Chapter 66 is applied to illustrate the in�uence of tra�c sig-
nal control. This section summarizes results published in Grether et al. (2011a); Grether (2014).
Readers interested in details are referred to these publications.

The runs sequence is performed with three di�erent signal control strategies: In a �rst simulation
sequence, all tra�c signals are switched o�. This can be used as a lower bound for results of signal
control, since it assumes that vehicles are able to traverse a crossing without an accident, i.e., they
are able to drive “through each other”. The next sequence uses the �xed-time setup. In the third
and �nal, sequence, all tra�c signals are controlled by a tra�c-actuated stage length control. The
control is based on pre-timed, �xed-time schedules. The green times of the �xed-time schedules
are reduced to a minimal green time of 5/10 seconds. If vehicles are still approaching at the end of
this reduced green time, it is extended up to a prede�ned maximum.

Simulation results for iteration 1 000 of the Cottbus commuter scenario are depicted in
Figure 12.1(a). The number of vehicles simultaneously on the road is plotted over the time-of-
day. The results are quite similar for all signal control strategies; di�erences are small because of
the lack of heavy congestion in the Cottbus scenario.

A change of signal control has more e�ect if unexpected tra�c occurs in the network. It is as-
sumed that the local soccer club, “FC Energie Cottbus”, has a tournament taking place on a normal
weekday, interfering with regular commuter tra�c. In iteration 1 000 of the commuter scenario,
in addition to the commuters 0 to 2 000 vehicles drive to the Cottbus soccer stadium during the
evening peak. It is assumed that 25 % of these fans come from Cottbus, while the other 75 %

 0

 1000

 2000

 3000

 4000

 5000

06:00 08:00 10:00 12:00 14:00 16:00 18:00

n
u
m

b
e
r

o
f
v
e
h
ic

le
s

time of day [hh:mm]

no signals

fixed-time control

traffic-actuated control

(a) No vs. �xed-time vs. tra�c-actuated signal con-

trol, commuter tra�c, iteration 1 000.

00:46

00:48

00:50

00:52

00:54

00:56

00:58

01:00

01:02

01:04

01:06

01:08

01:10

 0 500 1000 1500 2000

a
v
e
ra

g
e
 t
ra

v
e
l
ti
m

e
 [
h
h
:m

m
]

number of soccer fans

no signals

fixed-time control

traffic-actuated control

(b) Average travel time for unexpected event tra�c,

iteration 1 000.

Figure 12.1: Simulation results for the Cottbus tra�c signal scenario: The simulated change of
tra�c signal control results in small travel pattern changes in the relatively quiet commuter sce-
nario (le�). If unexpected tra�c occurs on the network, the tra�c-actuated signal control enables
travel time savings (right).
Source: Grether (2014)

Tra�c Signals and Lanes 85

come from the “Spree-Neiße” area around Cottbus, and that all fans start their trips between 5 pm
and 6 pm.

Figure 12.1(b) plots the number of soccer fans on the x-axis, and the average travel time of all
travelers on the y-axis. Without any additional vehicles, the tra�c-actuated signal control leads to
a gain of approximately 1 minute per traveler. The more additional tra�c approaches the stadium,
the more the tra�c-actuated control saves travel time. When 2 000 additional vehicles are on the
road, travel time savings reach approximately 15 minutes per traveler.

Summarizing: Slightly jammed commuter scenarios, where a change in tra�c signal control
leads to noticeably decreased overall travel time, have not yet been simulated with MATSim.
Looking at di�erent objectives with more �ne-grained analysis tools can reveal network wide
e�ects (e.g., see the analysis using macroscopic fundamental diagrams Grether, 2014, pp.114),
but this is work in progress. More heavily jammed scenarios can increase the overall tra�c im-
pact of a change in tra�c signal control. Nevertheless, the case study shows signi�cant e�ects of
tra�c-responsive signal control when something unexpected happens and travelers do not react.

12.2.2 Overview MATSim & Tra�c Signals

This case study highlights some previously researched MATSim tra�c signals simulations aspects.
MATSim is not always the tra�c signal control “tool of choice” for all questions. The code base,
however, can help simulate other use cases, e.g., evacuation or air transport scenarios; MATSim’s
open source nature provides hooks and interfaces for extension. But one must consider the amount
of work required, the current state of development and speci�c project planning. The rest of
the chapter goes into more detail. Section 12.3 provides some tra�c signal control background,
vocabulary, and options for modeling tra�c signals with MATSim. Technical details can be found
in the tra�c signals user guide. Section 12.4 goes into details on network and tra�c �ow model-
ing. Iterations and learning are discussed in Section 12.5. When it comes to agent based learning,
MATSim is very fast—the presented case study requires, on average, 17 seconds computation time
per iteration—for scoring, replanning, and output. One complete run sequence: (1 000 iterations,
single core mobility simulation, multi-core replanning) was simulated in 9 hours and 12 minutes.
The simulation speed allows exploration of network-wide behavioral reactions to tra�c signal con-
trol changes and the resource e�cient simulation enables the joint simulation of several policies.
Before publishing results, one should consider several speci�c aspects of evaluation and simulation
results interpretation. Hints are provided in the conclusion, Section 12.6.

12.3 Tra�c Signal Control

On a coarse level, control strategies for tra�c signals can be classi�ed in �xed-time and tra�c-
responsive strategies.

Fixed-time tra�c signal control periodically assigns green times for each junction approach.
Cycle time and green split are not modi�ed within short time periods. To establish green waves
between adjacent junctions, the green light start for approaches within the cycle can be ad-
justed by a global timer; these shi�s are referred to as (coordination) o�sets. For optimization
of �xed-time signals, di�erent equilibrium tra�c �ow regimes are determined for several periods
of time, e.g., weekday morning, midday, evening and night plus a separate estimate for weekends.
Optimization may target all signalized junction parameters—green split, cycle, o�sets, and phase
composition, but it is not possible to react to current changes in equilibrium tra�c �ows.

Tra�c-responsive control reacts to current tra�c patterns, adjusting tra�c signal control param-
eters on the �y. In principle, all available information on prevailing tra�c patterns can be used. The
diversity of tra�c-responsive control algorithms is wide; for a review, see Grether (2014).

86 The Multi-Agent Transport Simulation MATSim

MATSim’s tra�c signal module is designed to simulate every tra�c signal control strategy. The
module provides a default implementation for �xed-time control. Tra�c-responsive strategies
require custom implementation of the control algorithm, but can use existing data formats and
�xed-time control infrastructure. Data is divided into �ve di�erent types of input:

Signals & Systems: The location of the tra�c signal hardware on the network is usually indepen-
dent from the control strategy. Signals can be located at the end of a link or a lane (see the next
section for further discussion of lanes). Signals are attached to a system that re�ects, e.g., all
signals of a junction or even larger units. Each signal system is controlled by exactly one control
algorithm at a time.

Signal Groups: Tra�c signals must be attached to a group. A group of signals shows the same
color at the same time. Each time a signal group changes its state, a MATSim event is triggered.
There is no explicit phase representation; if required, this can be realized over signal groups.

Signal Control: Speci�es the control algorithm for each signal system. Data comprises infor-
mation for �xed-time control and can be extended to capture custom control algorithms’
parameters.

Amber: Speci�es the amber phase at the beginning and end of green time. Currently, driving is
not permitted if a tra�c signal group shows amber light and this information is used only for
visualization purposes.

Intergreens: The inter-green time speci�es minimal time period between the ending of one
and beginning of another signal group’s green time. This information is important because
MATSim’s tra�c �ow model does not contain any collision detection. A validation module
reads the event stream and triggers a warning, or an error, if security constraints are violated.
Further, customized control strategies can access this information to ensure security aspects’
control validity.

For detailed information on �le structures and how to link them in the MATSim con�g �le, we
refer to the user guide in the contribution “signals”.

The next section explains network representation and tra�c signal location in more detail.

12.4 Network Representation & Tra�c Flow

This section explains transport network representation with microscopically modeled tra�c sig-
nals. In MATSim, transport network representation is a static, directed graph, consisting of nodes
and links. Links depict road segments, while nodes can be interpreted as decision points in space
with a coordinate as attribute, but no spatial dimension.

Figure 12.2(a) illustrates a typical layout of a real-world road segment, with several turn pockets
at its end. If the whole road segment is modeled as a single link with MATSim’s queue model,
the �rst vehicle stopping at a red tra�c signal at the end of this link will block all other vehicles
approaching upstream, see Figure 12.2(b). In respect to the road layout shown in Figure 12.2(a),
this is unrealistic. Figure 12.3(a) sketches the network layout for a more realistic modeling. Vehicles
with distinct turn intentions do not block each other until the available space for queuing on the
turn pocket is used completely, see Figure 12.3(b).

In principle, one can model each turn pocket as a link and put tra�c signals at its end; but
considering overall project constraints, this has implications for network modeling and routing.

In MATSim, all domain-relevant attributes di�ering from geospatial location, e.g., tra�c
count data, transit stops, transit lines, or speed limits, are attached to links. If one of this
attributes changes, one must model several links. Frequently, geospatial location of such attributes
is insu�cient for a fully automatic matching of attributes to links; some data requires manual

Tra�c Signals and Lanes 87

(a) Typical real road layout. (b) Single queue, spill-back is not captured correctly.

Figure 12.2: Transition from a real road segment to a graph layout with a single queue: the missing
turn pockets representation prevents vehicles passing each other and cannot capture the tra�c
signal control for di�erent turning moves.
Source: Grether et al. (2012)

(a) Part of the graph required to model the road layout. (b) Multiple queues, spill-back is captured correctly.

Figure 12.3: Transition from a real road segment to a graph layout with multiple queues: each
turn pocket is represented by its own queue. Tra�c signal control for di�erent turning moves is
captured; vehicles can pass each other, unless the queue spills over.
Source: Grether et al. (2012)

post-processing. To simulate tra�c signals and turn pockets with an already existing scenario,
carefully consider the matching process before changing the network.

Travelers’ routes are speci�ed by link sequences within MATSim and routes are generated by a
shortest path algorithm requiring a cost function for links. In standard MATSim, link travel time
is part of a link’s cost. When modeling turn pockets as links, the shortest path algorithm is respon-
sible for selecting the appropriate turn pocket on a route. If modeling includes turn restrictions,
ensure that they are captured by the shortest path algorithm and note that the required number
of iterations increases if many turn pockets lead to the same downstream link. It is important to
understand route generation and network modeling interaction when modeling turn pockets as
links.

If network modeling or routing issues clash with other project goals, there is an alternative.
MATSim allows the modeling of a subgraph on top of each link to re�ect the structure shown
in Figure 12.3(a). The links of the subgraph are then called lanes. At the beginning of a link, only
one lane can be modeled; at the end of a link, di�erent lanes can exist to model turn pockets. A
vehicle must be in the correct turning lane for the next downstream link of its route. If there is
only one lane towards the downstream link, the vehicle uses this lane. If there is more than one
lane leading to the next downstream link, the vehicle is placed on the lane currently containing the
fewest other vehicles. Using lanes, speci�c turning moves can be forbidden because the shortest
path algorithm underlying network graph is modi�ed; thus, turn restrictions are considered when
the network graph is created. The shortest path calculation captures the e�ects of lanes without
further modi�cation (see Grether, 2014, pp. 21).

As well the di�erences mentioned above, lanes exhibit behavior similar or equal to links. Vehicles
entering or leaving lanes trigger events with the same structure and information as link enter and
leave events. Tra�c signals can be placed at the end of links and lanes. Tra�c on each lane is

88 The Multi-Agent Transport Simulation MATSim

simulated the same way as for links. Tra�c �ow increase is linear in a signal’s green time for both
links and lanes.

The decision to use or not use lanes is arbitrary. Most MATSim scenarios with signals are set up
using lanes; the code base is well debugged. Without lanes, the code for tra�c signals is also tested;
one should check carefully for artifacts and understand in�uences on route generation.

12.5 Iterations & Learning

This section discusses interaction between tra�c signals and travelers within the MATSim itera-
tion cycle.

Meneguzzer (1997) de�nes the combined tra�c assignment and control problem as �nding a
tuple (f ∗,g∗) of tra�c �ows f and signal settings g under policy P that ful�lls

f ∗ = f e[gP(f ∗)] or equivalently g∗ = gP[f e(g∗)]

where f e is a function mapping signal settings to equilibrium tra�c �ows and gP a function map-
ping tra�c �ows to signal settings under policy P. The formulation neatly shows the mutual
interaction of tra�c patterns and signal settings. The formulations do not capture the time horizon
where these interactions take place.

Tra�c signal interpretation within the MATSim iteration cycle depends strongly on signal
control type and learning mechanism interpretation. For �xed-time control, the �xed-point in-
terpretation can be valid, at least if one does not anticipate unexpected events on the demand side.
For tra�c-actuated signal control strategies, no standard interpretation can be provided. Readers
seeking more detail are referred to Grether (2014, pp. 75). We conclude with this advice; clearly
document what and how was simulated and provide an interpretation that makes sense for each
individual project.

12.6 Conclusion

MATSim can simulate tra�c signal control microscopically. However, certain tra�c signal e�ects
are not represented by MATSim without further customization and implementation, e.g., micro-
scopic deceleration and acceleration as a reaction to tra�c control. Evaluations must be checked
and interpreted against the simulation setup to ensure that everything derived from simulation
results is also appropriately simulated. This chapter provides an overview of tra�c signals in
MATSim, detailing what to consider before taking �rst steps in larger scenarios. Details for imple-
mentation can be found in the javadoc documentation referenced above. For the detailed scienti�c
discussion of modeling aspects the reader is referred to Grether (2014).

We think that MATSim is a superior tool for microscopic simulated tra�c-responsive signal
control that should be analyzed network-wide, assuming heterogeneous user reactions.

CHAPTER 13

Parking

Rashid A. Waraich

13.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → parking

Invoking the module:

http://matsim.org/javadoc → parking → RunParkingExample class

Selected publications:

Waraich and Axhausen (2012); Waraich et al. (2013a); Waraich (2014); Waraich et al. (2014b)

13.2 Introduction

The MATSim simulation, by default, does not consider parking infrastructure or supply con-
straints. However, this can lead to arti�cially high car tra�c to city centers in the model, o�en
not the case in the real world, due to limited parking. The modeling of parking is also important
because tra�c-related policies can be designed around parking; e.g., raising prices for parking at
certain times of the day, or reducing parking supply in an area, can impact travel demand.

This chapter describes work done to bridge this gap via parking models for MATSim .

13.3 Models

For technical reasons, parking modeling e�orts in MATSim were divided in two parts: parking
choice and parking search, described in the following two subsections.

How to cite this book chapter:

Waraich, R A. 2016. Parking. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport

SimulationMATSim, Pp. 89–92. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.13. License:

CC-BY 4.0

90 The Multi-Agent Transport Simulation MATSim

13.3.1 Parking Choice Model

The �rst approach for modeling did not change the MATSim tra�c simulation; it extended it to
capture parking supply through controler listeners and event handling. This means that no
rerouting due to parking took place during the simulation. However, changed routes could be
incorporated in a post-processing step, as described in Waraich and Axhausen (2012).

In the most general case, a parking choice model performed the following simulation steps; when
a vehicle arrived at a destination in MATSim, the parking choice model assigned a parking spot in
the agent’s area, according to a customizable algorithm (e.g., utility maximization). The assigned
parking place was marked as occupied on arrival and became unoccupied again when the agent
departed, allowing the model to simulate supply side constraints with the same temporal resolution
as the basic MATSim model.

A simple parking choice model version was able to consider only walk distance minimization,
ignoring other user preferences and park at the closest available public parking. A simple model
like this was able to partially solve one of the main problems of the un-constrained parking model
in MATSim; it made an area with little parking less attractive as a car destination due to longer
walk distances. Parking model integration with MATSim was achieved by adding a term for the
parking operation to the agent’s overall plan scoring function, as follows:

Sparking = Swalking + Sparking costs + Sparking search time (13.1)

Beyond walking distance disutility, this scoring function could also include additional features
like cost, or even estimated parking search times, using models like Horni et al. (2013a).

A Zürich city study, which implemented a parking choice model and included trade-o� between
walk distance and parking cost, was presented in Waraich and Axhausen (2012). This study also
distinguished between public, private and reserved parking, where only certain people (e.g., dis-
abled) or certain vehicles could park (e.g., electric vehicles). Figure 13.1 shows parking choice
models employed in this study, where a distinction between public, private and reserved parking
was made. In Waraich et al. (2013c), another study for modeling parking in MATSim was reviewed,
exploring individual gender and age parking preferences. Utility function parameters used in this
study were based on a stated preference survey in Switzerland.

13.3.2 Parking Search

The parking choice model presented in the previous section could capture many relevant aspects of
parking. However, it did not model parking search behavior; studies conducted around the world
suggest that, on average, around 30 % of city centers tra�c could be due to parking search traf-
�c Shoup (2004). Thus, it seems extremely important to capture parking search related tra�c in
transportation models.

A �rst idea about model parking search tra�c in MATSim was presented in Waraich et al. (2012).
The basic idea came from surveys suggesting that people select certain strategies they think will be
bene�cial for them when starting the parking search process (Axhausen and Polak, 1989). Proof
of this concept for development was attempted, using within-day replanning (see Chapter 30 and
Dobler et al. (2012)). However, this path was aborted a�er development of several initial strategies,
where performance and integration issues led to dead ends (Waraich et al., 2013c); performance
a�er optimization was around 24 times slower than the original runs without parking operations.

An alternative path closer to the idea presented in Waraich et al. (2012) was successfully at-
tempted, using a JDEQSim based model (see Section 4.3.2) with within-day support and travel
time approximation, as seen in PSim (see Chapter 39, Fourie et al. (2013)). This removed overhead,

Parking 91

Figure 13.1: Parking choice algorithm.

Source: Waraich and Axhausen (2012)

present in the previous approach, enabling �exibility to implement many of the parking strategies
presented in Axhausen and Polak (1989) and beyond. Publication of this approach’s �rst results are
expected in 2015.

Unfortunately, the approach is not available in packaged form to other users of MATSim.

13.4 Applications

Clearly, the parking model applications presented were important, diverse and especially well-
suited for policy design; one example of tra�c policy design by means of targeted reduction of
parking supply was presented in Waraich and Axhausen (2012). Waraich et al. (2013c) explained an
application of performance-based pricing for parking in MATSim, where iteratively parking prices
were adapted to match demand. An integration of parking choice and electric vehicle charging was
presented in Waraich et al. (2014a) for a Zürich case study and Bemetz and Hohenfellner (2014)

92 The Multi-Agent Transport Simulation MATSim

described an even more sophisticated test model for parking and EV (Electric Vehicle) charging,
with various types of charging speed and prices.

13.5 Usage

A general parking choice model was included in the parking contribution of MATSim, which pro-
vided various extension interfaces; examples were included in the parking contribution to provide
help with extension.

CHAPTER 14

Electric Vehicles

Rashid A. Waraich and Joschka Bischo�

Entry point to documentation:

http://matsim.org/extensions → transEnergySim

Invoking the module:

No prede�ned invocation. Starting point(s) under http://matsim.org/javadoc→ transEnergySim
→ RunTransEnergySimExample class.

Selected publications:

Waraich et al. (2013d); Galus et al. (2009, 2012b); Waraich (2013); Galus et al. (2012a); Waraich
(2012a,b); Waraich et al. (2014a); Waraich and Axhausen (2013)

14.1 Introduction

Research related to EV modeling in MATSim started in 2008/2009, with an electricity grids project
(Waraich et al., 2013d); it’s goal was to uncover potential bottlenecks and/or constraint violations
in Zürich city’s lower voltage grid due to future EV charging. A framework emerged from the
research for EV modeling, called TESF (Transportation Energy Simulation Framework) (Waraich
et al., 2014a). This resulted in various framework extensions and enabled simulation of various
scenarios (Waraich et al., 2014a; Waraich, 2013; Abedin and Waraich, 2014; Schie�er, 2011; Galus
and Andersson, 2011; Galus et al., 2012a; Bischo�, 2013; Bischo� and Maciejewski, 2014). This
chapter provides advice on these research directions and serves as a starting point for modeling
EVs in MATSim.

14.2 Models

The main reason for modeling EVs in TESF was simple: it was essential to keep track of the
battery charging state in the EVs. This meant that, as the EV was driving, depletion of the

How to cite this book chapter:

Waraich, R A and Bischo�, J. 2016. Electric Vehicles. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The

Multi-Agent Transport Simulation MATSim, Pp. 93–96. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.14. License: CC-BY 4.0

94 The Multi-Agent Transport Simulation MATSim

batteries was simulated. It was also important to consider the charging process of EVs at charging
infrastructures.

While the basic EV modeling mechanisms were simple, there were many details to ponder when
modeling scenarios. The TESF framework provided both interfaces and implementations to cope
with more complex cases, e.g., de�ning a vehicle that can charge without contact while driving,
for example, by using dynamic inductive charging. Furthermore, charging mechanisms them-
selves could also be quite complex. The following sections provided some details on this, as well as
di�erent models involved.

14.2.1 Energy Consumption Model

When a vehicle was de�ned in TESF, it could be assigned an energy consumption model, de�ning
how much energy the vehicle used while driving. For conventional vehicles, just energy consump-
tion could be logged using such a model; however, for electric vehicles, the energy consumption
model was used to update the on-board battery system state of charge. PHEVs (Plugin Hybrid
Electric Vehicles) can use both electricity and gasoline for driving and therefore had two di�er-
ent energy consumption models assigned to them for modeling these two modes. When this was
written, a series hybrid model were implemented in TESF (Chan, 2007), which used electricity
as long as the battery charge state was above a certain threshold value, then switched to gasoline.
This type of vehicle could also be charged using a plug, like a battery electric vehicle. For PHEVs,
car manufacturers o�en de�ned rules governing when a vehicle should switch between battery
and gasoline use. The TESF framework provided interfaces and examples of how more advanced
control strategies for PHEVs could be implemented.

14.2.2 Charging Infrastructure

In addition to plug-based charging, inductive charging infrastructure was also modeled in TESF,
with two types: dynamic and stationary. The dynamic inductive charging infrastructure was o�en
embedded in roads; vehicles able to use such infrastructure could charge while they drove. Station-
ary inductive charging was, more or less, modeled like plug charging; however, charging interfaces
between vehicle and the charging infrastructure had to match for the charging process to function.

Another fast route to a full battery was to replace/swap the used battery for a new one at a special-
ized infrastructure, sometimes referred to as a swapping station (Li et al., 2011). A basic modeling
of this approach was provided in TESF, which could be extended and detailed further according
to speci�c scenario needs.

14.2.3 Charging Schemes

When an EV connected to any infrastructure for charging, a scheme was needed to de�ne how the
vehicle charging would operate; should the vehicle start charging immediately, or would charging
depend on an agent’s pricing preferences, which could vary with time and location? Negotiations
between the vehicle computer and grid operator were also possible, which perhaps allowed for
some electricity grid temporal �exibility, while fully charging a vehicle’s battery before departure
(sometimes referred to as “smart charging”). Various charging schemes were part of the TESF and
were be used to model other more complex charging schemes; TESF-simulated examples of various
charging schemes can be found in Waraich et al. (2013d).

14.2.4 Vehicle-to-Grid

When studying electric vehicles, charging is not the only topic of interest; V2G (Vehicle-to-Grid)
applications where electric vehicle batteries supply power and energy back to the grid (Kempton

Electric Vehicles 95

and Tomic, 2005) were analyzed. While the integration of V2G models for MATSim was limited
at any given time, an application related to V2G and intermittent energy generation at wind parks
using MATSim can be found in Galus and Andersson (2011) and a preliminary attempt to integrate
V2G in TESF was described in Waraich et al. (2014a); Schie�er (2011).

14.2.5 Vehicle Choice

When conducting electric vehicle studies, each vehicle owner usually has to be assigned a speci�c
type: e.g., electric vehicle, conventional vehicle, plug-in hybrid, etc. Sometimes, these assignments
were random, while ensuring vehicle type share constraints for the scenario (e.g., Waraich et al.,
2014a). O�en, however, possible �nancial or infrastructural incentive implications, e.g., di�erent
toll prices, parking fees or fuel prices for di�erent vehicle types, had to be evaluated. A replan-
ning module for vehicle choice, also covering EVs, was recently implemented; �rst results should
published soon and can also be integrated in TESF.

This section provided an overview of the various TESFframework parts and the following section
an application of a TESF contribution, that modeled electric taxis.

14.3 Application: Electric Taxis

Combination and extension of both the TESF and VRP (Vehicle Routing Problem) contribution
(see Chapter 23) allows simulation of BEVs (Battery Electric Vehicles) taxi �eets. For electric ve-
hicles, vehicle charging process was adapted; for taxis, the concept of taxi ranks and a modi�ed
optimizer sending idling taxis to the rank and only dispatching vehicles with su�cient battery
charge were introduced.

14.3.1 Taxi Ranks

A�er dropping o� passengers, taxis proceeded to the nearest rank location, unless there was an im-
mediate follow-up request. Queuing took place at the rank location; the taxi that arrived �rst would
leave the rank �rst. Other types of queuing were also tested, e.g., a dispatch by battery SOC (State
of Charge). Ranks were not mandatory; however, driving there between trips would be typical
German taxi driver behavior.

14.3.2 Charging Process

Chargers could be located at taxi ranks or any other link. Following any given BEV
AgentArrivalEvent at a charger location link, charging would begin if

• there was a free charging spot,
• the vehicle’s SOC was under a certain threshold,
• at least two minutes of time passed required for parking the car and plugging it in.

Electric taxi simulation has been used in Mielec, Poland (Bischo�, 2013; Bischo� and
Maciejewski, 2014). When this was written, an application for Berlin was in progress.

14.4 Usage

The TESF contribution contained many features described above and interfaces were provided for
framework extension. Examples were also given for the setup of di�erent scenarios: e.g., energy
consumption model, vehicle types, charging schemes, etc.

CHAPTER 15

Road Pricing

Kai Nagel

15.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → roadpricing

Invoking the module:

http://matsim.org/javadoc → roadpricing → RunRoadPricingExample class

Selected publications:

Rieser et al. (2007a, 2008); Grether et al. (2008)

15.2 Introduction

Roadpricing is a controversial policy measure (e.g., Button and Verhoef, 1998). Its implementa-
tion in MATSim is conceptually straightforward (Rieser et al., 2007a, 2008; Grether et al., 2008):
Essentially, for each vehicle entering a link at a given time, the appropriate toll is computed
and charged to the vehicle’s driver. The scoring function will pick this up by the term (see
Equation (3.4))

Strav,car,q = ... + βm · τ + ... ,

where τ is change in the monetary budget invoked by all toll payments (usually negative) and βm is
the marginal utility of money (also see Chapter 3 and Chapter 51). The driver then takes this into
account making decisions, e.g., for route choice, departure time choice, mode choice, destination
choice, etc., and then trades o� toll payments with other elements of his or her scoring function.

How to cite this book chapter:

Nagel. K. 2016. Road Pricing. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Trans-

port Simulation MATSim, Pp. 97–102. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.15.

License: CC-BY 4.0

98 The Multi-Agent Transport Simulation MATSim

It should be clear that this automatically picks up all kinds of heterogeneities, for example:

• Traveling at a di�erent time may lead to a di�erent toll, but possibly also to di�erent schedule
delay costs (Section 3.2.5).

• Di�erent vehicle types may be charged di�erent tolls (Kickhöfer and Nagel, 2013).
• Di�erent travelers may have di�erent time values (Nagel et al., 2014), which may even vary

according to the time of day.

However, one challenge is that the innovative modules (Section 4.5) must be consistent with the
scoring now modi�ed by road pricing. The approach just described will not work if, for exam-
ple, the router consistently generates toll-avoiding routes for a synthetic person with a high time
value, who would normally wish to pay for a faster option. In a case like this, if a suitable route is
never generated, the scoring cannot identify it, giving the choice process no chance to select it in
subsequent iterations.

However, processing every detail for each individual, i.e., not only the marginal utility of money,
but also speci�c time pressure at the route search time, is quite complex.

An alternative approach is to make the router randomizing, i.e., to run it with a randomly gen-
erated time value every time necessary for a given person. Computational experiments with this
approach produce solutions for synthetic travelers approximately as good, or even better, than an
“engineered” router (Nagel et al., 2014). At the same time, the so�ware consistency burden is sig-
ni�cantly reduced, noticeable in the smaller amount of information to be extracted from the agent
during each router call.

15.3 Some Results

15.3.1 E�ect of an A�ernoon Toll on Morning Tra�c

In a �rst demonstration of capabilities, an a�ernoon toll for the Zürich area was simulated. While
this is an unlikely policy scheme, it still clearly demonstrated the advantage of the integrated ap-
proach over other approaches. Not only did the synthetic travelers switch to public transit, but they
also did so for the morning rush hour, where no toll was charged (Figure 15.1). Thus, the MATSim
approach proved its ability to a�ect the whole daily plan, not just the trip. For more information,
see Rieser et al. (2008).

15.3.2 Income-Dependent Values of Time

Similar to Rieser et al. (2008), Kickhöfer et al. (2010); Kickhöfer (2014) introduced a distance-based
morning peak toll on the same links between 6:30 am and 9 am. Toll levels were incrementally
increased from 0.28CHF/km up to an almost prohibitive price of 44.80CHF/km. The studies as-
sume income-dependent utility functions with a decreasing marginal utility of money. The goal
was to (i) identify the welfare-maximizing (see e.g., Tirachini et al., 2014, Section 2.5) toll level,
which is potentially dependent on the aggregation rule of user bene�ts (see Chapter 51), and (ii) to
investigate distributional aspects of such pricing schemes. The studies showed that changes in travel
patterns resulting from the morning peak toll impacted the whole day, a�ecting tra�c patterns in
the a�ernoon. Furthermore, the study showed that such a parametric approach is capable of iden-
tifying the welfare-maximizing toll level. However, results also indicated that the overall welfare
e�ect level depends strongly on the aggregation rule for user bene�ts, i.e., if one �rst monetizes

Road Pricing 99

0

1000

2000

3000

4000

5000

6000

0
:0

0
:0

0

1
:0

0
:0

0

2
:0

0
:0

0

3
:0

0
:0

0

4
:0

0
:0

0

5
:0

0
:0

0

6
:0

0
:0

0

7
:0

0
:0

0

8
:0

0
:0

0

9
:0

0
:0

0

1
0

:0
0

:0
0

1
1

:0
0

:0
0

1
2

:0
0

:0
0

1
3

:0
0

:0
0

1
4

:0
0

:0
0

1
5

:0
0

:0
0

1
6

:0
0

:0
0

1
7

:0
0

:0
0

1
8

:0
0

:0
0

1
9

:0
0

:0
0

2
0

:0
0

:0
0

2
1

:0
0

:0
0

2
2

:0
0

:0
0

2
3

:0
0

:0
0

2
4

:0
0

:0
0

Time

N
u

m
b

e
r

o
f

a
g

e
n

ts

Base case car mode City toll car mode Base case non-car mode City toll non-car mode

Figure 15.1: An a�ernoon city toll (between 3 pm and 7 pm) a�ects mode choice not just during
the toll time, but also in the morning.

Source: Rieser et al. (2008)

individual utilities and then adds up, or �rst adds up utilities and then monetizes. Even the sign of
that e�ect might not be stable depending on that choice. For more information, please refer to the
two studies above.

15.3.3 Integrated Passenger and Freight Toll Simulation for the

Gauteng Province in South Africa

A large scale application was undertaken for the Gauteng province in South Africa (Chapter 69).
It is based on the so-called e-toll, which was switched on in December 2013. The e-toll should, log-
ically, charge di�erent rates for di�erent vehicle types, with higher rates for heavy trucks. Again,
logically, this should go along with higher time values of the driver-vehicle-units. Somewhat sur-
prisingly, this turned out to be di�cult to do with the MATSim so�ware structure in place when
the project was started in 2008. While it was easy to charge the freight vehicles a higher toll, it was
di�cult to give di�erent replanning methods and di�erent scoring function to the freight pop-
ulation; it was essentially impossible to feed the router with di�erent time values for the freight
population. This was an important driver for much development in recent years, including mak-
ing the scoring function more accessible (Section 45.2.10), allowing di�erent replanning strategies
for di�erent sub-populations (Section 4.5), and reducing consistency requirements between the
router, the vehicle-based toll and the driver-based scoring function (Nagel et al., 2014).

The simulation, as expected, predicts reduced tra�c volumes on the tolled roads and increased
volumes elsewhere (Figure 15.2).

100 The Multi-Agent Transport Simulation MATSim

Figure 15.2: Predicted di�erences in link volumes a�er introduction of the toll (red: higher
volumes, green: lower volumes).

15.4 Invocation

15.4.1 Minimal

A minimum amount of infrastructure is necessary when running roadpricing from the command
line. For this, the MATSim JAR, its libraries, and the roadpricing JAR need to be downloaded,
either from a release or from the nightly builds (Section 44.3.6). A�er unzipping all zip �les, the
necessary command is (may need slight refactoring with new formats):

java -Xmx2000m -cp MATSim.jar:roadpricing -.../ roadpricing -

...jar org.matsim.roadpricing.run.RunRoadPricingExample config.xml

where config.xml needs to contain a section

<module name="roadpricing" >

...<param name="tollLinksFile" value="<path >/<tollfilename >" />

</module >

The toll �le looks like this:

<roadpricing type="link" name="abc">

<links >

<link id="11">

<cost start_time="05:00" end_time="10:00" amount="1." />

Road Pricing 101

<cost start_time="17:00" end_time="20:00" amount="1." />

</link>

<link id="12" />

</links >

<!--this is for all links with no cost entry above:-->

<cost start_time="05:00" end_time="10:00" amount="2.00"/>

</roadpricing >

As one can see, there is a section where each link can be entered separately. A separate cost structure
for each link is also possible. All links that are listed without a cost structure employ the general
cost structure listed at the end. Links not listed are without toll.

15.4.2 Toll Schemes

Link toll The example refers to the “link” toll scheme, indicated by type="link". It charges the
amount speci�ed on the link.

Distance toll Another useful scheme is “distance”, indicated by type="distance". Here, the
amount is interpreted as amount per length unit (see Section 2.2.1). This is most useful, with only
a list of tolled links and a uniform distance cost for all these links noted at the end of the �le.

Area toll The simulation of an area toll—i.e., a toll where one has to pay a �at fee for a given
time period, o�en a day, once one drives anywhere inside the area—su�ers from a combinatorial
challenge: driving through the tolled area early in the day may only pay o� if one can re-use the
permit later in the day. The code, in principle, addresses that by routing the agent twice: once
under the assumption of a zero toll and once under the assumption of a very large toll. A�erward,
the toll is added to the generalized cost of the �rst option, then both options are compared. In the
end, the approach su�ered from the same consistency burden as the general approach (see end of
Section 15.2): the router made the decision about the better variant, rather than leaving the decision
to the agent. It should be re-implemented using the same principles as Nagel et al. (2014).

Cordon toll The cordon toll scheme was derived from the area scheme; one could use the same
�le, listing all area links, for the cordon toll as well. The code ensured that toll was only charged
when a vehicle moved from an untolled link to a tolled link—thereby e�ectively crossing the cor-
don. One di�culty with this approach: confusion ensues if there is no connected area and several
links in sequence are tolled instead. Then, if these links are connected, the toll is only charged on
the �rst of them; if there is a small section missing, perhaps overlooked, the toll is charged again.

SUBPART FOUR

Other Modes Besides Individual Car

CHAPTER 16

Modeling Public Transport with MATSim

Marcel Rieser

16.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → pt

Invoking the module:

The module is invoked by enabling it in the con�guration.

Selected publications:

Rieser (2010)

16.2 Introduction

Public transport—or transit as it is sometimes called—plays an important role in many trans-
port planning measures, even those initially targeting only non-transit modes. By making other
modes more or less attractive (e.g., by providing higher capacity with additional lanes, allowing
higher speeds, or charging money by setting up area road pricing), travelers might reconsider their
mode choice and switch to public transport (pt) from other modes, or vice versa. Such changes
can also occur when transit infrastructure is changed; additional bus lines, changed tram routes
with di�erent stops served, or altered headways—all are important for travelers on speci�c lines, or
public transport in general. Around 2007, interest grew in extending MATSim to support detailed
simulation of modes other than private car tra�c, particularly public transport.

In a �rst step, MATSim was extended so that modes other than car would be teleported; agents
would be removed from one location and placed at a later point of time—corresponding to esti-
mated travel time—at their destination location, where they could commence their next activity.
Together with a simple mode-choice module, randomly replacing all transport modes in all plan

How to cite this book chapter:

Rieser, M. 2016. Modeling Public Transport with MATSim. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 105–110. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.16. License: CC-BY 4.0

106 The Multi-Agent Transport Simulation MATSim

legs and a simple travel time estimation for modes di�erent than car, �rst case studies resulting in
modal share changes were performed using MATSim (Rieser et al., 2009; Grether et al., 2009). This
teleportation mode is now available, by default, in MATSim and still a very good fallback option
to get a multimodal scenario up and running with as little data as possible.

In a second step, QSim was extended to support detailed simulation of public transport vehicles
serving stops along �xed routes with a given schedule (Rieser, 2010). The next section describes,
in more detail, data required and resulting features for this detailed public transport simulation.

16.3 Data Model and Simulation Features

MATSim supports very detailed modeling public transport; transit vehicles run along the de�ned
transit line routes, picking up and dropping o� passengers at stop locations, while monitoring tran-
sit vehicles’ capacities and maximum speeds. Data used to simulate public transport in MATSim
can be split in three parts:

• stop locations,
• schedule, de�ning lines, routes and departures, and
• vehicles.

This data is stored in two �les; vehicles are de�ned in one �le, stop locations and schedule in
another. Examples of such �les can be seen in Section 16.4.1 and Section 16.4.2, respectively.

The data model is comparable to other public transport planning so�ware, but simpli�ed in
several respects. A line typically has two or more routes; one for each direction and additional
routes when vehicles start (or end) their service at some point on the full route (coming from, or
going to, a depot). Each transit route contains a network route, specifying on which network links
the transit vehicle drives, as well as a list of departures, providing information about what time a
vehicle starts at the �rst route stop. A route also includes an ordered list of stops served, along with
timing information specifying when a vehicle arrives or leaves a stop. This timing information is
given as o�sets only, to be added to departure time at the �rst stop. Each departure contains the
time when a vehicle starts the route and a reference to the vehicle running this service. Because
timing information is part of the route, routes with the same stops sequence may exist, di�ering
only in time o�sets. This is o�en the case with bus lines, that take tra�c congestion and longer
rush hour waiting times at stops into account in the schedule.

Stop locations are described by their coordinates and an optional name; they must be assigned
to exactly one line of the network for the simulation. Thus, they can be best compared to “stop
points” in VISUM. There is, currently, no logical grouping of stop locations to build a “stop area”;
this is a cluster of stops o�en sharing the same name, but located on di�erent intersection arms,
served by di�erent lines, many with transfer corridors for passengers.

Each vehicle belongs to one vehicle ’type’, which describes various characteristics, like seating
and standing capacity (number of passengers), its maximum speed and how many passengers can
board or depart a vehicle per second.

This data model already supports several advanced public transport modeling aspects: vary-
ing travel speeds along routes during di�erent times of day (important for improved simulation
realism), using diverse vehicle types on routes at di�erent times of day (interesting for schedule
economic analysis) and re-using transit vehicles for multiple headways along one or di�erent routes
(allows vehicle deployment planning optimization, or research on delay-propagation e�ects).

With these data sets, the QSim will simulate all transit vehicle movements. The vehicles will start
with their �rst route stop at the given departure time, allow passengers to enter and then drive along
their route, serving stops. At each stop, passengers can enter or leave the vehicle. The simulation
generates additional, transit-related events whenever a transit vehicle arrives or departs at a stop,
when passengers enter or leave a vehicle, but also when a passenger cannot board a vehicle because

Modeling Public Transport with MATSim 107

its capacity limit is already reached. This allows for detailed analyses of MATSim’s public transport
simulations.

For passengers to use public transport in MATSim, they must be able to calculate a route using
transit services. For this, MATSim includes a public transport router that calculates the best route
to the desired destination with minimal cost, given a departure time. Costs are typically de�ned
only as travel time and a small penalty for changing lines, but other, more complex cost functions
could be used.

The routing algorithm is based on Dijkstra’s shortest path algorithm (Dijkstra, 1959), but mod-
i�ed to take multiple possible transit stops, around the start and end coordinates, into account
to �nd a route. Multiple start and end stops must be considered to generate more realistic transit
routes; otherwise, agents could be forced to travel �rst in the wrong direction, or wait at an infre-
quently served bus stop, instead of going a bit further to a busy subway stop location. By modifying
the shortest path algorithm to work with multiple start and end locations, a considerable perfor-
mance gain was achieved when compared to the basic (and somewhat naive) implementation that
calculated a route for each combination of start/end location and then chose the best outcome.

16.4 File formats

16.4.1 transitVehicles.xml

To simulate public transport in MATSim, two additional input �les are necessary. One is
transitVehicles.xml, which describes vehicles serving the lines: big buses, small buses, trains or
light rail vehicles and description of each vehicle’s passenger transport capacity.

Public transport vehicle description can be split into two parts; �rst, vehicle types must be de-
scribed, specifying how many passengers a vehicle can transport (Note that the term “vehicle” can
refer to multiple vehicles in reality, e.g., a train with several wagons should be speci�ed as one long
vehicle with many seats). Second, actual vehicles must be listed. Each vehicle has an identi�er and
is a previously speci�ed vehicle type. The following shows an example of a such a �le, describing
one vehicle and two vehicles of the same type.

<?xml version="1.0" encoding="UTF -8"?>

<vehicleDefinitions xmlns="http ://www.matsim.org/files/dtd"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation="http ://www.matsim.org/files/dtd

http ://www.matsim.org/files/dtd/

vehicleDefinitions_v1 .0. xsd">

<vehicleType id="1">

<description >Small Train</description >

<capacity >

<seats persons="50"/>

<standingRoom persons="30"/>

</capacity >

<length meter="50.0"/>

</vehicleType >

<vehicle id="tr_1" type="1"/>

<vehicle id="tr_2" type="1"/>

</vehicleDefinitions >

16.4.2 transitSchedule.xml

The second, rather complex, �le necessary to simulate public transport is transitSchedule.xml,
containing information about stop facilities (bus stops, train stations, or other stop locations) and
transit services.

108 The Multi-Agent Transport Simulation MATSim

In the �rst part, stop facilities must be de�ned; each one is given a coordinate, an identi�er and a
reference to a network link. The stop can only be served by vehicles driving on that speci�ed link.
It is also possible to specify both a name for the stop and whether other vehicles are blocked when
a transit vehicle halts at a stop. This last attribute is useful when modeling e.g., di�erent bus stops,
where one has a bay, while at another, the bus must stop on the road.

A�er stop facilities, transit lines, their routes and schedules are described. This is a hierarchical
data structure; each line can have one or more routes, each with a route pro�le, network route and
list of departures. The following listing is an example of a basic, but complete transit schedule.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE transitSchedule SYSTEM "http ://www.matsim.org/files/dtd/

transitSchedule_v1.dtd">

<transitSchedule >

<transitStops >

<stopFacility id="1" x="990.0" y="0.0" name="Adorf"

linkRefId="1" isBlocking="false"/>

<stopFacility id="2" x="1100.0" y="980.0" name="Beweiler"

linkRefId="2" isBlocking="true"/>

<stopFacility id="3" x="0.0" y="10.0" name="Cestadt"

linkRefId="3" isBlocking="false"/>

</transitStops >

<transitLine id="Blue Line">

<transitRoute id="1">

<description >Just a comment.</description >

<transportMode >bus</transportMode >

<routeProfile >

<stop refId="1" departureOffset="00:00:00"/>

<stop refId="2" arrivalOffset="00:02:30"

departureOffset="00:03:00"

awaitDeparture="true"/>

<stop refId="3" arrivalOffset="00:05:00"

awaitDeparture="true"/>

</routeProfile >

<route >

<link refId="1"/>

<link refId="2"/>

<link refId="3"/>

</route >

<departures >

<departure id="1" departureTime="07:00:00"

vehicleRefId="12"/>

<departure id="2" departureTime="07:05:00"

vehicleRefId="23"/>

<departure id="3" departureTime="07:10:00"

vehicleRefId="34"/>

</departures >

</transitRoute >

</transitLine >

</transitSchedule >

Each transit line must have a unique ID and each transit route has an ID, which must be unique
within that one line, allowing the same route ID to be used with di�erent lines. The transportMode

describes network links where the line runs. (Actually, this is not yet in force, although it might be
in the future. It would be possible to let a bus run on train links in the simulation.)

The routeProfile describes the stops this route serves; the route itself describes the series of
network links the transit vehicle’s driver must navigate, o�en referred to as network route. Note
that the complete route, i.e., all links the vehicle traverses, must be listed in the route, not only
those with stops. All speci�ed stops should occur along this route in correct order. Time o�sets
given for each stop in the routeProfile describe relative time o�sets to an actual departure time.
If a bus departs at 7 am, and stop 2 has a departureOffset of 3 minutes, this must be read that the

Modeling Public Transport with MATSim 109

bus is expected to depart at 7:03 am from the speci�c stop. All stops in the route pro�le must have
a departure o�set de�ned, except the last one. All stops, except the �rst one, can, optionally, have
an arrival o�set de�ned. This is useful for large trains that stop for several minutes at a station;
helping the routing algorithm �nd connecting services at the correct time, namely the expected
train arrival time.

As the last part of a transit route description, a departures list should be given. Each departure
has an ID, which must be unique within the route, giving the departure time at the �rst stop of
the speci�ed route pro�le. The departure also speci�es the vehicle (which must be de�ned in the
previous transit vehicle list) with which the service should be run.

Because of its complexity, transit schedules o�en contain small mistakes that will return in an
error when the simulation runs. Typical examples include: missing links in the network route, or
incorrect de�ned stop order on the network route. To ensure a schedule avoids such issues before
the simulation starts, a special validation routine is available:

java -Xmx512m -cp /path/to/matsim.jar

org.matsim.pt.utils.TransitScheduleValidator

/path/to/transitSchedule.xml /path/to/network.xml

If run, this validator will print out a list of errors or warnings, if any are found, or show a message
that the schedule appears to be valid.

16.5 Possible Improvements

While the ability to simulate public transport was a big advance for MATSim, several shortcomings
still require attention:

• The data model (and thus, the simulation) does not yet fully support some real world transit
lines: for example, circular lines with no de�ned start and end cannot yet be easily modeled.
Some bus or train lines also have stops where only boarding or alighting the vehicle is allowed,
but not both (e.g., overnight trains with sleeper cabins). At the moment, MATSim always allows
boarding and alighting at stops, leading to agents e.g., using a train with sleeper cabins for a
short trip; in reality, they would be denied boarding without a reservation for a longer trip.

• A stop location, as seen by passengers in the real world, is typically modeled as a number of
stop facilities in MATSim, detailing di�erent locations where transit vehicles stop (depending
on their route and direction). For analysis, one is o�en interested in aggregated values for such
logical stop locations, not for individual stop facilities. Such a logical grouping is still missing
in MATSim data format.

• Running simulations with a reduced population sample leads to artifacts when public trans-
port is used. In a simulation with a sampled demand, network capacity is reduced accordingly,
to accommodate the fact that fewer private cars are on the road. But because 100 % of pub-
lic transport vehicles must run (albeit with reduced passenger capacity), calibration becomes
di�cult. This should be solved, in the future, not by reducing network capacity, but by giving
each vehicle and agent a weighting, specifying how much each should count.

• The public transport router available and used by MATSim by default is strictly schedule-based.
It assumes vehicles can keep up with the schedule and that enough passenger capacity is pro-
vided. In some regions, where transit is chronically delayed and overcrowded, MATSim’s router
will consistently advise agents to use routes that will perform badly in the simulation. Addi-
tional feedback from the simulation back to the router, as already done in the MATSim private
car router, will be needed.

110 The Multi-Agent Transport Simulation MATSim

• Last, but not least, the current router, based on a modi�ed shortest path algorithm of
Dijkstra, can become rather slow and memory-intensive for larger areas with extensive transit
o�erings. Improved algorithms to generate the routing graph, or di�erent routing algorithms
altogether (like the non-graph based Connection Scan Algorithm (Dibbelt et al., 2013)) must
be explored in the future.

16.6 Applications

Public transport simulation has been used in myriad applications of MATSim world-wide. The
following list highlights some of these applications, pinpointing their special public transport
simulation features.

• Berlin: the Berlin scenario (see Chapter 53) was one of the �rst real applications using public
transport simulation in MATSim. The road and rail network, as well as the full transit schedule,
was converted from a VISUM model. It is still one of the few known models where bus and tram
lines share a common network with private car tra�c, enabling full interaction between private
and public vehicles (like transit vehicles) getting stuck and delayed in tra�c jams.

• Switzerland: Senozon AG maintains a model of Switzerland containing the full timetable of all
buses, trams, trains, ships, and even cable cars, in the Swiss alps. The schedule data is retrieved
from the o�cial timetable, available in a machine-readable format called “HAFAS (HaCon
Fahrplan-Auskun�s-System) raw data format”.

• Singapore: The model of Singapore (see Chapter 57) makes heavy use of public transport, and
continually pushes the boundaries of what is currently possible to simulate. Due to the very
large number of buses on Singapore’s roads and strong demand for public transport, many
extensions had to be implemented to realistically model pt in this context.

• Minibus: The minibus contribution (see Chapter 17) added an optimization layer to public
transport functionality in MATSim, allowing automatic generation of an optimized transit
schedule for a speci�c region.

• WagonSim: In the WagonSim contribution (see Chapter 25) public transport simulation was
used to simulate rail-bound freight tra�c. While the simulation was still moving around transit
vehicles and letting passengers enter and leave these vehicles, the scenario had been customized
so that vehicles corresponded to freight trains and passengers corresponded to actual goods
being transported. Custom implementations of transit driver logic replaced vehicle capacity
de�nition by an alternative de�nition, ensuring that the trains vehicles represent did not get too
long or heavy. The network was constructed so that changing vehicles at stops took minimum
time, corresponding to the time needed for switching wagons at freight terminals.

In addition to applications mentioned in the list above, many additional scenarios now use public
transport simulation in MATSim. Importantly, the list also shows, that with some custom exten-
sions and imagination, public transport functionality can be used for far more than “just simulating
public transport”; it can be employed to solve complex problems previously handled by operations
research groups.

CHAPTER 17

The “Minibus” Contribution

Andreas Neumann and Johan W. Joubert

17.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → minibus

Invoking the module:

http://matsim.org/javadoc → minibus → RunMinibus class

Selected publications:

Neumann (2014)

17.2 Paratransit

Paratransit is an informal, market-oriented, self-organizing public transport system. Despite the
signi�cance of this transport mode, it is mainly unsubsidized, relying on collected fares. Paratransit
systems can be categorized by route pattern and function, by driver organization, type of stops
and fare type. Most case studies covered by the Neumann (2014) thesis indicate that paratransit
services are mainly organized as route associations operating 8-15 seater vans on �xed routes. Most
of the services run in direct competition to a public transport system belonging to a public transit
authority. Such a service—minibuses with �xed routes, but without �xed schedule—is o�en called
a jitney service. The minibus module of MATSim is based on the most common characteristics,
with the understanding that the jitney/minibus service is only one of many possible paratransit
services.

How to cite this book chapter:

Neumann, A and Joubert, J W. 2016. The “Minibus” Contribution. In: Horni, A, Nagel, K and Axhausen, K W.

(eds.)TheMulti-Agent Transport SimulationMATSim, Pp. 111–114. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.17. License: CC-BY 4.0

112 The Multi-Agent Transport Simulation MATSim

The minibus model is integrated in the multimodal multi-agent simulation of MATSim.
In the model, competing minibus operators begin to explore the public transport market, o�ering
their services. With more successful operators expanding and less successful operators going
bankrupt, a sustainable network of minibus services evolves. In Neumann (2014), the model is ver-
i�ed through multiple illustrative scenarios, analyzing the model’s sensitivity to di�erent demand
patterns, transfers, and interactions of minibuses and a formal operator’s �xed train line.

The minibus model can be applied to two di�erent transport planning �elds. First: in the
simulation of real paratransit targeting the inner workings of di�erent paratransit stakeholders’
relationships, the model can create “close-to-reality” minibus networks in a South African context.
Neumann et al. (2015) gives an in-depth presentation of the module application and South African
paratransit in general. Given the informal and emergent nature of minibus paratransit in develop-
ing countries, routes, schedules and fares are usually not published; they can only be captured in the
tacit knowledge of operators and frequent users. Applying the minibus model has proven valuable
in gaining a better understanding of how routes evolve. Instead of imposing routes and schedules
on the MATSim model, as is usually the case for formal transit, the modeler observes and gets the
paratransit routes as an output from the model. As each operator aims to maximize their pro�t, the
resulting network o�en favors the operators’ business objectives, instead of the connectivity and
mobility of the mode’s users. This model feature accurately captures route-forming behavior in the
South African case, where commuters are o�en required to take multiple, longer trips instead of
direct trips.

Second, the same model provides a demand-driven approach to solving a formal transit author-
ity’s network design problem; it can be used as a planning tool for the optimization of single transit
lines or networks. For more details on the second form of application, see Section 17.3.

For further reading: Neumann (2014) provides an understanding of the underlying principles of
paratransit services, namely minibus services, its stakeholders, fares, route functions, and patterns.
Furthermore, it contains an in-depth description of the minibus model, its theoretical background,
and its application to illustrative scenarios, as well as real world examples. The website of MATSim
also hosts latest implementation documentation at http://matsim.org/doxygen.

17.3 Network Planning or Solving the Transit Network Design
Problem with MATSim

A public transport system’s success depends primarily on its network design. When transport
companies try to optimize a line using running costs as the main criteria, they quickly �nd that
demand must be taken into consideration. The best cost structure is unsustainable if potential cus-
tomers leave the system and opt for alternatives, like private cars. The basic problem to solve: �nd
sustainable transit lines o�ering the best possible service for the customer.

More speci�cally,

• the customer’s demand side asks for direct, uncomplicated connections, and
• the operator’s supply side asks for pro�table lines to operate.

Informal public transit systems around the world, o�en referred to as paratransit, are examples
of market-oriented, self-organizing public transport systems. For an in-depth coverage of para-
transit, see Section 17.2, with references. Despite the signi�cant and increasing importance of this
transport mode, it is mainly unsubsidized and relies only on collected fares. Thus, the knowl-
edge of paratransit—and its ability to identify and �ll market niches with self-supporting transit
services—provides an interesting approach to solving a formal public transit company’s network
design problem.

The “Minibus” Contribution 113

The minibus module of MATSim provides a demand-driven approach to solving a formal tran-
sit authority’s network design problem; it can be used as a planning tool for the optimization of
single transit lines or networks. In the Neumann (2014) thesis, the model was applied to two dif-
ferent planning problems of the Berlin public transit authority BVG (Berliner Verkehrsbetriebe).
In the �rst scenario, the model constructed a transit system, from scratch, for the district of Steglitz-
Zehlendorf. The second scenario analyzed the Tegel airport closure impact on BVG’s bus network.
Apart from Tegel itself, the rest of the bus network was una�ected by the airport closure. The
resulting minibus model transit system resembled the changes BVG had scheduled for Tegel’s
closure.

In conclusion, the minibus model developed in the thesis automatically adapted supply to de-
mand. The model not only grew networks from scratch, but also tested an existing transit line’s
sustainability and further optimized the line’s frequency, time of operation, length, and route.
Again, the optimization process was fully integrated into the behavior-rich, multi-agent simula-
tion of MATSim, re�ecting passenger reactions, as well as those from competing transit services
and other road users. Thus, the minibus model can be used, along with more complex scenarios,
like city-wide tolls or pollution analyses.

CHAPTER 18

Semi-Automatic Tool for Bus Route Map Matching

Sergio Arturo Ordóñez

18.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → gtfs2matsimtransitschedule

Invoking the module:

http://matsim.org/javadoc → GTFS2TransitSchedule → GTFS2MATSimTransitSchedule class

Selected publications:

Ordóñez Medina and Erath (2011)

Current public transport assignment models adapt network assignment models to work with public
transport tra�c. Many commercial so�ware products like EMME/2 (Version 2 of EMME), VISUM
and OmniTRANS o�er sophisticated procedures that include timetable-based route search. How-
ever, these models do not include interaction between public transport services and private
transport. As mentioned above, the MATSim implementation handles private car tra�c and pub-
lic transport tra�c in an integrated way, but it needs accurate public transport line routing on the
transport network. While this is usually straightforward for rail-based public transport modes, the
routing problem for buses requires more attention; experience shows that assumption of a shortest-
path between two consecutive stops leads to unsatisfactory results. To overcome this shortcoming,
one can either draw the routes manually or employ map-matching algorithms dependent on track-
ing data. Due to the burden of manual procedures, and the increasing availability of GPS tracking
data, map-matching is becoming increasingly relevant. However, common map matching algo-
rithms are usually not designed to account for the peculiarities of public transport routing; the
procedure is very sensitive to errors in network coding, inaccurate bus stop locations and the
simpli�ed link shapes in the model.

How to cite this book chapter:

Ordóñez, S A. 2016. Semi-Automatic Tool for Bus Route Map Matching. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 115–122. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.18. License: CC-BY 4.0

116 The Multi-Agent Transport Simulation MATSim

This section presents a semi-automatic procedure combining public bus routes information
(sequences of consecutive stop locations and sequences of geo-referenced points) with a highres-
olution network (Ordóñez Medina and Erath, 2011). The objective is to obtain a sequence of links
for every route of every line and to associate each bus stop with one single link in the network.
The procedure was designed to prepare the Singapore scenario public transport extension, but the
tools developed can be used to set up any other scenario with similar initial data (timetable and
high resolution network).

18.2 Problem De�nition

Generally, the problem can be de�ned as follows. Given:

• a set of stop locations (two-dimensional point coordinates),
• a set of route pro�les (sequence of consecutive stops),
• a set of GPS points sequences (sequence of two-dimensional point coordinates), and
• a high resolution navigation network (two-dimensional directed graph with attributes),

the task is to associate each stop with a network link, and translate each route to a network path
(connected sequence of links). Figure 18.1 illustrates the problem by providing an example of the
available input information and correct output.

Input Information The GTFS (General Transit Feed Speci�cation) is a recent, but already
widely-used format for specifying public transport systems, created by Google for feeding its geo-
graphic information applications. As of April 2011, the Singapore public transport system featured

Figure 18.1: Input data and expected solution of the map-matching problem.

Source: Reprinted from Ordóñez Medina and Erath (2011, p.753), Copyright (2011), with permis-
sion from Hong Kong Society for Transportation Studies

Semi-Automatic Tool for Bus Route Map Matching 117

4 584 bus stops serviced by 355 bus lines, all recorded on GTFS. Each line had several routes,
i.e., di�erent outward and return routes (due to one-way streets), as well as di�erent coverage of
serviced bus stops on weekdays and weekends. GTFS records the name and location of each bus
stop; for bus lines, it records constituent bus routes as a sequence of stops, along with their shape
(a sequence of GPS points) as additional information.

The GTFS data must be mapped to a high resolution network; for Singapore, this is a nav-
igation network developed by NAVTEQ. The network is a directed graph where streets and
intersections are represented as links and nodes. The links between nodes record attributes like
street name, number of lanes, length, �ow, free speed and capacity. Nodes are simply recorded as
two-dimensional point coordinates. This network has a total of 79 835 links and 43 118 nodes.

Special Restrictions There are some intrinsic characteristics of the public transport system that
should be considered serious restrictions. First, when a certain stop is assigned to a network link,
this link should be a part of all paths belonging to this stop’s routes. In other words: once established,
stop-link relationships are �xed for resolving the missing routes. If the GPS points from a route
including a speci�c stop suggest it should be associated with a di�erent nearby link, then all other
routes including that stop must be resolved again. Hence, the order in which the routes are resolved
is important; it is preferable to resolve those routes �rst, when we completely trust supporting
information quality (e.g., GPS trails).

Second, while many lines run in two directions, with most bus stops having a corresponding
stop in the opposite direction (stop located on the other side of the street), this cannot be used to
our advantage, because links de�ned by each return route are di�erent, locations of stops are not
necessarily exactly opposite to those in the opposite direction and return routes do not always use
the same street.

However, some routes on the same line have an inclusion relationship; in peak hours, segments
of bus routes with high demand are served by additional buses running on partial routes to meet
demand. In these cases, if a full route is resolved, its partial routes solutions are included.

18.3 Solution Approach

It is not possible to automatically map-match the given GPS position with the network, as standard
methods usually require at least 10 points for each link (Schüssler and Axhausen, 2009). In the
Singapore GTFS, distance between consecutive points averages about 65 meters, and average link
length is about 91 meters; thus, we have fewer than two points per link, on average. Furthermore,
not all the routes have GPS points, which inhibits using a full automatic solution; in the Singapore
GTFS, there are 38 bus routes without GPS points.

Consequently, the strategy for resolving each route consists of a semi-automatic procedure.
Figure 18.2 illustrates the process. First, a simple map-matching algorithm is applied if the route is
not part of a bigger route already solved (inclusion relationship described above). In this case, only
a previous solution’s partition is needed to obtain a �rst solution. Then, an automatic veri�cation
(described below) is performed. If the veri�cation ends with a positive outcome, one can decide to
�nish the route and save the solution, or to continue editing. If one decides, or is forced, to mod-
ify the solution, there are two ways to proceed: changing parameters and running the automatic
algorithm again, or editing the solution interactively with a graphical interface editing tool. In both
cases, automatic veri�cation must be executed again. If previously saved stop-link relationships are
modi�ed, prior routing solutions containing one of the involved stops are erased.

As long as more solutions are obtained, it becomes easier and faster to solve further routes, sim-
ilar to a machine learning process. This happens for two reasons; �rst, because of the inclusion
relationships that omit the algorithm and second because the increasing number of �xed stop-link
relationships relaxes the algorithm (functioning explained in the following section).

118 The Multi-Agent Transport Simulation MATSim

Figure 18.2: Semi-automatic process for one route.

Source: Reprinted from Ordóñez Medina and Erath (2011, p.754), Copyright (2011), with permis-
sion from Hong Kong Society for Transportation Studies

18.4 Map-Matching Automatic Algorithm

This algorithm’s objective is to generate a solution (path or sequence of connected network links
and a set of stop-link relationships) for one route, knowledge of its pro�le, a sequence of GPS points
and a set of stop-link relationships. The algorithm is designed to deal with:

• low GPS point resolution,
• sporadic low network spatial resolution,
• long distances between two express routes stops, and
• understanding that the nearest link to a stop point is not always the correct one.

The route map-matching process is illustrated in Figure 18.3. Except for the �rst stop, the algo-
rithm solves for each stop in the route pro�le, a portion of the links sequence (from previous to
current) and, if this stop has no �xed link, a set of link candidates pooled from the one link selected.

Link candidates are de�ned as follows: the NL closest links to the stop point, within a distance
Dmax, de�ne a set of candidates. Each set’s element could be subjected to more restrictions; the
closest point, between the stop point and the in�nite line de�ned by the link, must be inside its line
segment and the angle between the link direction and the nearest GPS points sequence direction
must be lower than αmax.

The link’s selection is performed as follows; from the previous stop link to each de�ned candidate,
an A star search algorithm is applied for �nding the shortest path. For running this algorithm, each
link’s cost depends on the link’s travel time and distance to the GPS points. A product with �exible
exponents was proposed as a �rst model:

Clink = exp
Llink

Slink
w1 expDGPSw2 (18.1)

where Llink is its length, Slink is its free speed, DGPS is its distance to the GPS points sequence and
w1 and w2 are positive weights with a standard value of 1, but modi�able by the user, according to
existence or quality of the GPS points sequence. The de�nition of DGPS can also be modi�ed; in the
simplest approach, it is the minimum distance between the link and all GPS points (point-segment
distance). From all calculated paths, the shortest is selected and added to the general route solution.
The corresponding link candidate is also related to the stop.

If the current stop has a stop-link relationship, only the shortest path to this stop de�nes the
solution. Thus, the process continues with the next stop in the route pro�le. If the �rst stop of the

Semi-Automatic Tool for Bus Route Map Matching 119

Figure 18.3: Map-matching algorithm.

Source: Reprinted from Ordóñez Medina and Erath (2011, p.755), Copyright (2011), with permis-
sion from Hong Kong Society for Transportation Studies

pro�le has no �xed link, a similar algorithm between the �rst and the second stop is performed.
The de�nition of candidates’ procedure is applied to the �rst and the second stops. Then, the can-
didates’ selection procedure consists of obtaining the shortest path of all combinations between the
two sets of candidates, then selecting the shortest one. This path de�nes links for both stops.

18.5 Automatic Veri�cation

In this step, accuracy of the routing solution is automatically checked by performing the following
ordered veri�cation:

1. Is the path joined?

2. Is the path without U turns?

3. Is the path without repeated links?

4. Does every stop of the route have a stop-link relationship?

5. Is every link related to a stop inside the path?

6. Is the related links’ order in the path the same as the corresponding stops’ order in the route
pro�le?

7. Is the nearest point between the stop point and the in�nite line de�ned by the link inside its
line segment in every stop-link relationship?

8. Are the �rst and last links of the path related to the �rst and last stops of the route pro�le?

Veri�cations (2), (3) and (7) are not mandatory and can be deactivated through the user interface.
User interaction is necessary to (i) cover possible errors, and (ii) include actual route characteris-
tics: some bus routes do include U turns, some repeat exactly the same street, in the same direction,
during their travel and the geometric restriction presented in (7) is not always valid in big stop
facilities, like bus interchanges.

18.6 Manual Editing Functionalities and Implemented So�ware

The edit functions’ objective is to allow the user to modify the automatically generated rout-
ing solution. Even if the automatic algorithm generates a correct solution based on input data,

120 The Multi-Agent Transport Simulation MATSim

problems like recent changes in routes, di�erences in release dates between GPS points and net-
work data, erroneous GPS points, or lack of network element all require manual changes. Although
one also could modify and correct the input data, or the generated solution, with direct data
modi�cations, two-dimensional visualization and keyboard-mouse user interaction are two qual-
ity attributes that help reduce time and e�ort. Developed functional requirements and quality
attributes are:

1. Visualization: A navigation network is displayed, including all relevant information for work-
ing with a single route. This includes the route’s pro�le, given sequence of GPS points, and its
current solution (path and stop-link relationships). Selected elements are drawn in a di�erent
color. Everything is displayed in a two-dimensional and interactive way, including the cursor
location in working coordinates, panning, zoom and view-all options.

2. Selection: Di�erent options for selecting solution elements, or elements from the network, are
provided. It is possible to select the nearest link from the solution or from the network, the
nearest node from the network, or the nearest stop from the solution, to a point indicated by
the user. When a stop that already has a stop-link relationship is displayed, its corresponding
link is highlighted as well. If a solution path link is selected and does not have a subsequent
link connected, a new one from the network is selected with one click; the selected link is that
with the angle most similar to the line de�ned by the end node of the initial link and a point
indicated by the user.

3. Path modi�cation: The �rst link of the sequence can be added by selecting any network link.
If a solution path link does not have a subsequent link connected, it is possible to add one,
according to the selection function described in (2). If there are two unconnected sequential
links in the solution (a gap), a sub-sequence connecting these links is added, using the short-
est path algorithm, with the current parameters. Further, selecting one solution path link, it
is possible to delete it, or to delete all links before or a�er it. Finally, stop-link relationships
can be modi�ed by selecting either elements. If the modi�ed relationship was �xed, the user
is prevented from modifying the relationship, because the tool will erase the solutions of the
routes to which the selected stop belongs.

4. Network modi�cation: New nodes to the road network can be added. In addition, with any
node selected, it is possible to add a new link selecting the end node.

These functions were implemented in a so�ware package developed from scratch in Java and
using the Java2D library for graphics. The package reproduces the described solution approach,
looking for non-solved routes, and running the map-matching algorithm and the automatic ver-
i�cation for each one. Figure 18.4 shows the user interface and a demo video can be accessed at
http://www.vimeo.com/27137889.

18.7 Conclusion and Outlook

The semi-automatic procedure designed for map-matching bus lines with a high resolution navi-
gation in Singapore was successful, allowing the solving of all bus routes and stops in only ten days,
even taking into account the quality of the input information o�ered, highlighting the low spatial
and temporal resolution of the GPS points given for each route. Analysis indicates that reducing
manual modi�cation time is the best way to improve the procedure, which can be done by modi-
fying the automatic algorithm to obtain more accurate results for the initial routes to be solved, or
in other words, for routes not a�ected by the learning process.

As GTFS is becoming so popular for de�ning public transport systems and the code in
which this process is implemented is open source, it can be used for matching routes with high

Semi-Automatic Tool for Bus Route Map Matching 121

Figure 18.4: User interface of the application to edit automatic solutions.

Source: Reprinted from Ordóñez Medina and Erath (2011, p.757), Copyright (2011), with permis-
sion from Hong Kong Society for Transportation Studies

resolution networks of any GTFS-speci�ed place. The tools are available as a MATSim contribu-
tion (GTFS2TransitSchedule). For generating MATSim simulation scenarios, the procedures have
been used by research teams in the province of Gauteng, South Africa, on the Toronto scenario
and on a di�erent public transport simulation model developed by SMART-MIT in Singapore.

CHAPTER 19

New Dynamic Events-Based Public
Transport Router

Sergio Arturo Ordóñez

19.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → eventsBasedPTRouter

Invoking the module:

http://matsim.org/javadoc → eventsBasedPTRouter → RunControlerWS, RunControlerWSV,
RunControlerWW classes

Selected publications:

Ordóñez Medina and Erath (2013b)

In public transport route choice, decisions and actions of a particular user depend not only
on his/her own preferences, like value of time, crowd avoidance or willingness to pay. They
also depend on the decisions and actions of many other public transport users, operators and
authorities. Even private transport users’ decisions are also involved, as everybody shares the same
infrastructure.

This implementation of MATSim used a SBPTR, as mentioned above, meaning that when an
agent needed a route for a given start time, origin and destination, the SBPTR found the short-
est path in a schedule-based network (assuming public transport vehicles are always on time and
always have space). Within the mobility simulation, a vehicle could arrive early or late and/or it
could be full, thus not allowing additional passengers to board. With a negative result, the agent
obtained a bad score and this plan would have probably been replaced with a more favorable one
during the iterative learning process. This scenario’s problem occurred when the agent tried to

How to cite this book chapter:

Ordóñez, S A. 2016. New Dynamic Events-Based Public Transport Router. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 123–132. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.19. License: CC-BY 4.0

124 The Multi-Agent Transport Simulation MATSim

�nd a new route for the same start time, origin and destination, the public transport scheduled
network shortest path remained the same; agents could not improve their experiences by changing
the route.

To address this shortcoming, a new EBPTR (Events-Based Public Transport Router) was
proposed (Ordóñez Medina and Erath, 2013b), modeled, implemented and tested. It took the given
schedule as a base for the �rst iteration, but updated information on travel times, occupancy of
the public transport vehicles, and waiting times was propagated between subsequent iterations.
Thus, when same day executions were performed, new routes could be generated for the same
start time, origin and destination, because the system is remembered delayed bus services (longer
travel times), or train services where the vehicle arrived full (longer waiting times). However, the
network used to route agents required a new topology to account for such variables. This approach
allowed then to account for emergent phenomena; in situations where overcrowded vehicles pro-
hibited boarding, it made sense for some agents to travel a few stops in the outbound direction.
They could then transfer to an inbound vehicle with su�cient capacity and board. Although more
memory was needed, similar or even better computation times were achieved when shortest path
calculations awe performed, due to the simpler network topology. Furthermore, to achieve user
equilibrium required a signi�cantly smaller number of iterations.

19.2 Events-Based Public Transport Router

A new EBPTR was developed for MATSim to more realistically model public transport route
choice, where agents learn, over time, that transit vehicles are not always on time, do not always
have su�cient space to allow boarding and trips with more comfort are o�en preferable.

NetworkTopology Figure 19.1(b) shows the structure of the proposed public transport network,
compared with the original structure (Figure 19.1(a)). Inspired by the network designed by Spiess
and Florian (1989) this implementation had two types of nodes. The �rst type represented a stop
facility (green-black squares) as point in space, while the second type (yellow-red dots) represented
a stop-route relation which could be seen as a physical or virtual platform for each line passing a
particular stop facility. For example, di�erent platforms in a metro system needed to be modeled
as di�erent stop facilities, because di�erent services arrived at each platform and walking paths
were needed to change from one platform to another. For bus stop facilities, they represented vir-
tual platforms; in reality, buses from di�erent lines serving the same bus stop would normally use
the same physical infrastructure e.g., a bus bay. To connect those nodes, there were four types of
links. The in-vehicle links joined two consecutive stop-route nodes in the direction of the corre-
spondent route. The boarding links connected a stop node with each corresponding stop-route
node. The alighting links were opposite, connecting stop-route nodes with their corresponding
stop node. Finally, walking links connected a stop node with all other stop nodes located within
walking distance.

Link Costs Each link in this network had a related time-dependent disutility function. Di�er-
ent costs were saved for di�erent times in the day for a given time bin (at this time, 15 minutes).
In-vehicle link disutilities depend on vehicle travel time, travel distance, level of occupancy and a
fare rate, if this system is distance-based. Boarding link disutilities depended on waiting times, a
transfer cost, and a �xed fare if this system was entry-based; thus it was possible to relate speci�c
stop-route waiting times to these links. As the �rst waiting link was not a transfer, this cost had to
be subtracted from the whole path cost, but this detail did not a�ect the shortest path calculation.

New Dynamic Events-Based Public Transport Router 125

Figure 19.1: Comparison of the network topologies of the schedule-based transit router (a) and
the new events-based transit router (b).

126 The Multi-Agent Transport Simulation MATSim

Alighting links had no associated cost, but a fare could be related to them. Finally, walking links
depended on the walking travel time and distance. Equation (19.1) shows linear versions of these
functions used in this model assuming a distance-based fare system.

Civ(t) = (βiv ∗ tiv(t))(1 + g(poc(t))) + βvd ∗ liv + fiv ∗ liv
Cbo(t) = βwt ∗ twt(t)) + ctr
Cal(t) = 0
Cwk(t) = βwk ∗ twk + βwd ∗ lwk
Cpath(t) =

∑

Civ(t
′) +

∑

Cbo(t
′) +

∑

Cal(t
′) +

∑

Ctr(t
′) − ctr

(19.1)

Cpath: Total cost of the path.
Civ: Cost of one in-vehicle link.
Cbo: Cost of one boarding link.
Cal: Cost of one alighting link.
Cwk: Cost of one walking link.
βiv: Personalized cost per unit of time traveling in a vehicle.
βvd: Personalized cost per unit of distance traveling in a vehicle.
βwt : Personalized cost per unit of time waiting in a stop.
βwk: Personalized cost per unit of time walking.
βwd: Personalized cost per unit of distance walking.
ctr : Personalized cost for making a transfer.
fiv: Vehicle dependent fare rate by distance traveled.
tiv(t): In-vehicle travel time (from Stop-stop travel times structure).
twt(t): Waiting time (from Stop-route waiting times structure).
twk: Walking time.
liv: In-vehicle distance.
lwk: Walking distance.
poc(t): Occupancy level in the in-vehicle link (from Route-stop occupancy structure).
g(p): Simpli�ed function of how occupancy level increases the cost (Equation (19.2)).

g(p) =

0 if p ≤ psit
rsta ∗ p+ bsta if psit < p < 1
bfull if p = 1

(19.2)

psit : Occupancy level when no more seats are available.
rsta,bsta: Parameters of percentage increase in discomfort from standing in the vehicle.
bfull: Maximum percentage increase when the vehicle is full.

Shortest Path Algorithm To �nd a public transport route between an origin and a destination,
for a given time of day, the applied method was the same as currently implemented in MATSim;
�rst, the algorithm looked for the stop-nodes within walking distance from both origin and desti-
nation. An initial cost was associated with each of these stop-nodes, according to access and egress
walking times. Then, starting from all the origin-stop-nodes with a given access cost, a multi-node
time dependent Dijkstra algorithm found the shortest path, to the destination-stop-nodes with
related egress costs. Thus, the path determined the best O-D (Origin-Destination) combination
as well. The algorithm was time-dependent because it recognized that while it proceeded through
the path, time advanced; thus, di�erent costs are obtained from the links while time advanced. The
total disutility of this path was compared with the cost of a full walking trip. If the cost is less, the
path is converted to a sequence of stages: in-vehicle stages for each in-vehicle link in the path and
walking stages for each walking link. Boarding and alighting links were ignored for this conversion.

New Dynamic Events-Based Public Transport Router 127

Structures to Save Travel Times, Waiting Times and Vehicle Occupancy As mentioned ear-
lier, the mobsim of MATSim generated atomic units of information called events, which described
changes for each person, e.g., boarding or alighting: each vehicle, e.g., entering and leaving a link
during the simulation. The goal was to save information on public transport experience in one
simulation and �nd better public transport routes for agents in the next iteration. This feedback
mechanism was already implemented in MATSim for private transport; the car router used each
saved link’s time-dependent travel times from a previous iteration to calculate better routes in the
road network, by changing the costs of the links. To allow the EBPTR to learn from the previ-
ous iteration, information about (a) stop-stop travel times, (b) stop-route waiting times and (c)
route-stop-stop vehicle occupancy, was required.

• Stop-stop travel times: To account for public transport vehicle delays, travel time between con-
secutive stops had be saved. Two stops are consecutive if they were consecutive for at least one
public transport route. A �rst option was using the previously discussed travel times structure
that saved time-dependent travel times for each road network link. Because a vehicle had to fol-
low known road links between two consecutive stops, these travel times could be summed. One
problem: this structure accounted for all the vehicles in the network, but travel times of cars
and buses were very di�erent, particularly in links with public transport stops. Thus, a special
structure was implemented to save these stop-stop travel times. The structure averaged all the
public transport vehicle times from one stop to the next during a certain time bin. More specif-
ically, each value comprised the time from when the vehicle arrived at a certain stop until it
arrived at the next stop, denoted in the simulation by consecutive VehicleArrivesAtFacility

events. This meant that the �rst stop waiting time and all queue times (if the vehicle had to
queue before the bay or platform was available) were included. In other words, when an agent
routed the �rst in-vehicle link of each trip, the full dwell time would be included. Hence, this
agent assumed it was the �rst passenger entering the vehicle. For all the other in-vehicle links
the in-vehicle waiting was included. These stop-stop times were the main component of the
in-vehicle link disutilities.

• Stop-route waiting times: Waiting times are a fundamental aspect of public transport route
choice and can be long due to vehicle delays (i.e., due to the stop location), or full public trans-
port vehicles of one or several consecutive services (i.e., due to the route demand and stop
position within the route). For that reason, waiting times were saved for each stop-route re-
lation. Similarly, the structure averaged all agent waiting times in a certain stop, for a certain
route, during a certain time bin in the day. More speci�cally, each value comprised the time
from when the agent arrived at the public transport stop until it entered the vehicle, denoted in
the simulation by consecutive AgentArrivesToFacility and PersonEnterVehicle events. These
waiting times were the principal component of boarding link disutilities. If no observations
were found for a certain stop-route-time, the model returned half the corresponding headway,
speci�ed by the transit schedule.

• Route-stop occupancy: By accounting for occupancy level, one can model routing deci-
sions where people take longer/slower routes to feel more comfortable in emptier vehicles,
i.e., valuing a higher chance to travel while seated. Occupancy depends on speci�c route de-
mand and the stop position within the route. Here, occupancy was assumed to be constant
between two consecutive stops. When a vehicle departed from a certain stop (denoted in the
simulation as VehicleDepartsFromFacility event) this structure averaged the occupancy level
with the other vehicles on the same route departing from the same stop during the same time
bin. As there were only a few vehicles recorded for each time bin, it was unlikely to �nd ob-
servations for a speci�c bin. In this case, the structure returned the value of the next time bin,
where at least one observation was found for the corresponding stop and route.

128 The Multi-Agent Transport Simulation MATSim

19.3 Functional Results

Relaxation Process The number of iterations needed by MATSim’s co-evolutionary algorithm
to reach a stable state was a critical variable; e�orts were made to reduce it (Meister et al., 2006;
Fourie et al., 2013).

The EBPTR e�ectively reduced the iterations public transport users needed to reach equi-
librium. Using a 25 % sample of the Singapore scenario, Figure 19.2 shows average score plan
evolution for 355 207 agents over 100 iterations. These 100 iterations were executed four times to
use both routers for two di�erent replanning strategies. Agents saved �ve plans in memory. At
iteration 0, both EBPTR and SBPTR started with routes described in the schedule; however, the
EBPTR returned routes that performed better in this �rst simulation. This occurred because, for
each pair of consecutive stops, the EBPTR used the average of all scheduled route times that con-
tained this pair as the �rst estimate. On the other hand, the SBPTR used the speci�c scheduled
time of the corresponding route. Results indicated the average stop-stop time seemed to be a more
reliable estimate for this �rst iteration.

For the rest of the iterations, the Figure 19.2 shows how the scores evolved. The �rst replanning
strategy stipulated that 30 % of the agents were re-routed at each iteration. This evolution is shown
in the �rst graph of the �gure. Using SBPTR, agents received the same route over and over again as
the start time, origin and destination did not change between iterations. Small variations in scores
occurred because of the stochastic simulation nature explained above. Although scores started in
the same range, using EBPTR allowed better-performing routes to be found within a very small
number of iterations.

For a more realistic comparison, a second replanning strategy was tested, where just 20 % of
the agents were re-routed and the activity start times were modi�ed randomly within a half an
hour for 10 % of the agents. The second graph of the �gure shows how both routers managed
to improve agents’ plan scores. But with the EBPTR, number of iterations needed to achieve the
average executed score, achieved a�er 100 iterations for the SBPTR (120), was only 5. The target
marginal score, as a measure of change in score over iterations, was taken arbitrarily as 0.1 utilities
per iteration, or the rate produced a�er 200 iterations with the SBPTR. In contrast, this target rate
was achieved a�er 77 iterations with the EBPTR, a 2.6 improvement factor .

Modeling Advantages Because of the links disutility function in the proposed network account
for aspects like waiting times or occupancy levels and because MATSim allows for modeling het-
erogeneity among agents, the router could be a very powerful tool to model observed emergent
behavior in public transport route choice. In Singapore, like many other crowded cities in the
world, some commuters decide to travel backwards for a few stops and then transfer to a train
in the opposite direction to �nd a seat or space in a public transport vehicle Chakirov and Erath
(2011). With the SBPTR this kind of least cost path could not be found, but with the newer pro-
posal, this was possible. Although proportions did not match actual observations as the Singapore
scenario lacked appropriate and calibrated utility parameters for traveling and waiting time under
crowded conditions, Figure 19.3 shows totals of people traveling backwards from di�erent stops in
the island a�er 100 iterations (see Figure 19.2 (a)).

19.3.1 Comparing Quality Attributes With the Current Implementation

Computation Time The tests described next were executed using 12 computational nodes, ac-
cessing 70 GB of shared memory, using the Singapore scenario described in Chapter 57. Before
the �rst iteration, if plans were not routed, MATSim prepared every agent with an initial route.
As mentioned before, the stop-stop travel times and stop-route waiting times were initially taken
from the schedule. Because of its simpler network structure the EBPTR took 01:17:35 to initially

New Dynamic Events-Based Public Transport Router 129

Figure 19.2: Comparison of score evolution: a) 30 % re-route, b) 20 % re-route and 10 % time
allocation.

130 The Multi-Agent Transport Simulation MATSim

Figure 19.3: Number of agents traveling backwards at each MRT (Mass Rapid Transit,
Singapore) station of the Singaporean rail system.

route the 355 207 users, compared with 01:28:55 needed by the SBPTR, producing a performance
gain of about 12.7 % for this scenario. When running MATSim iterations with the EBPTR, compu-
tation times principally changed in two processes: mobility simulation (mobsim) and replanning.
Figure 19.4 shows computation times measured for the �rst 20 iterations of the process. Although
the EBPTR needed more time in mobsim, it continued to require considerably less time for re-
routing during the replanning, due to a simpler network topology. The longer mobsim time was
due to information saving in the new structures during the simulation. However, on average, the
EBPTR outperformed SBPTR, per iteration, by about 3 minutes or 11 %. As mentioned above,
2.6 times more iterations were needed for the SBPTR to achieve a speci�c point in the relaxation
process. For 77 iterations with the EBPTR, computation amounts 35:25:43, and for 200 iterations
with the SBPTR, computation amounts 99:10:51; a 2.8 improvement factor in our experimental
setting.

Memory Consumption The EBPTR needed more memory than the SBPTR, because the EBPTR
managed more information. The necessary extra memory was allocated to the three structures
described before. Given the Singapore scenario conditions described, the extra memory was cal-
culated as follows. One numeric value needed eight Bytes, and with a time bin of 15 minutes,
120 bins were needed for 30 hours. The Stop-stop travel times structure saved two values (average
and number of observations) for each time bin and each pair of consecutive stops. The number
of pairs for the Singaporean public transport system was 6 602. Thus, this structure needed ap-
proximately 12.7 MB. Similarly, the stop-route waiting time structure saved two values (average
and number of observations) for each time bin and each pair of stop/route combinations. The
number of stop/route relations for the Singaporean public transport system was 27 156. Thus, this
structure needed approximately 52.1 MB. Finally, the vehicle occupancy structure saved the aver-
age and number of vehicle occupancy observations for 26 353 route-stop relations for each of the
120 time bins, requiring approximately 50.7 MB. In total, less than 120 MB were needed for the
three structures.

New Dynamic Events-Based Public Transport Router 131

iter
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

10

15

20

25

30

35

m
in

u
te

s
Computation times

Events-based router, replanning Events-based router, mobsim Schedule-based router, replanning Schedule-based router, mobsim

Figure 19.4: Comparison of computation times for 20 iterations.

On the other hand, the size of the network where public transport routes were calculated was
smaller for the EBPTR. Although, in the case of Singapore, it created 31 939 nodes compared with
27 156 of the SBPTR (4 783 new stop-nodes), the number of links is dramatically smaller. The
SBPTR created 424 070 walking links and 26 353 travel links (450 423 in total). The EBPTR cre-
ated the same 26 353 travel links, plus 27 156 boarding links, plus 27 156 alighting links and just
4 390 walking links (85 055 links in total); less than a ��h in total. As a node needed 48 bytes and a
link 128 bytes, the SBPTR needed roughly 46.8 MB more memory for links and just 229.6 KB less
for nodes. The EBPTR saved 46.5 MB for the network, concluding that in total the SBPTR needed
70 MB less memory. This quantity was negligible compared with the total memory needed for the
whole simulation (more than 40 GB).

19.4 Conclusion and Future Work

In this work, a new public transport router for MATSim was designed, implemented and tested.
It produced more diverse routes in large scale scenarios, taking into account many complexities
of urban public transport systems. On the supply side, the system simulated congestion, pub-
lic transport vehicles occupancy levels, queues in public transport stops, bay sizes, and bus or
train bunching. On the demand side, in addition to commonly used factors like in-vehicle time,
number of transfers and walking time, the new router took disutility of additional waiting time
due to congestion or overcrowded vehicles, comfort level inside public transport vehicles and
preference heterogeneity among agents for all mentioned factors into account.

The utility of the new approach was tested in a large scale Singapore scenario. Using a simpli�ed
public transport only simulation, 100 iterations of a 25 % scenario (355 207 agents) with 30 % of
the agents re-routing each iteration took just 45 hours approximately, or about 27 minutes per

132 The Multi-Agent Transport Simulation MATSim

iteration, using 12 cores and 70 GB of memory. The computation decreased by 11 %, compared to
the standard MATSim. If just 20 % of the plans were re-routed, using 35 cores accessing 85 GB of
memory, the time per iteration would be reduced to less than 13 minutes, achieving 100 iterations
in less than one day. But, most importantly, for computation time gains, we showed that the
proposed events-based router was able to reach a steady state in a much smaller number of
iterations.

If the proposed router works better than the original one, should it be changed? The current
scheduled-based router of MATSim would still be relevant if the topology of its network were
changed for the proposed one. It should also be applied to scenarios where the public transport
system operates very reliably and punctually, with few cases of overcrowding. In that case, routing
calculations would be as fast as the events-based router (with the new network structure), and the
mobility simulation would be faster, as no information (in-vehicle time, wait time and occupancy)
would be needed. In other words, it could be applied to city models where public transport users
can reliably plan their trips using only a timetable.

Scrutinizing the resulting network loading, the biggest potential advantage of the proposed
events-based router was its capacity to generate emergent behavior in congested public transport
systems, in line with actual observations. Future research should aim at estimating the various
route choice behavior parameters corresponding to the functionalities of the proposed system and
calibrating the simulation. Although the values used came from a stated preference survey com-
missioned by the Land Transport Authority for the case of Singapore, advanced studies could,
for example, be tailored to quantify preference heterogeneity. Furthermore, results from work in
progress about the value of a seat in Singapore and discomfort disutility can improve prediction
con�dence. Finally, information from the Singapore smart card data could be used for revealed
preference estimation of further behavioral parameters, like quality of a transfer described, e.g., by
the number of escalators, to further re�ne the system.

