
CHAPTER 20

Matrix-Based pt router

Kai Nagel

20.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → matrixbasedptrouter

Invoking the module:

http://matsim.org/javadoc → matrixbasedptrouter → RunMatrixBasedPTRouterExample class

Selected publications:

Section 3.1 of Nicolai and Nagel (2015); Röder et al. (2013)

20.2 Summary

The matrix based PT (Public Transport) router reads a list of PT stops, and constructs “tele-
ported” PT routes using the stops nearest to origin and destination. That is, each resulting trip
will approximately look as follows:

<act type="previous" ... />

<!-- begin trip -->

<leg mode="walk" ... />

<act type="ptInteraction" ... />

<leg mode="pt" ... />

<act type="ptInteraction" ... />

<leg mode="walk" ... />

<!-- end trip -->

<act type="next" ... />

How to cite this book chapter:

Nagel, K. 2016. Matrix-Based pt router. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-

Agent Transport Simulation MATSim, Pp. 133–134. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.20. License: CC-BY 4.0

134 The Multi-Agent Transport Simulation MATSim

The attributes of the walk and the PT legs will be computed from the coordinates of the locations
in the same way as teleportation routing (see Section 4.6.2.2), and then taken at face value in the
mobsim (see Section 4.6.1.2).

Travel times and travel distances between PT stops can alternatively be given by corresponding
matrices. This is particularly useful if a PT assignment exists and such information can be extracted
from that. This was used by Röder et al. (2013) and by Zöllig Renner (2014).

CHAPTER 21

The “Multi-Modal” Contribution

Christoph Dobler and Gregor Lämmel

21.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → multimodal

Invoking the module:

http://matsim.org/javadoc → multimodal → RunMultimodalExample class

Selected publications:

Dobler and Lämmel (2014)

21.2 Introduction

MATSim’s standard mobsim, QSim, has recently been enabled to model multimodal scenarios as
shown in Section 4.6.

In this chapter,1 an earlier approach to handle multimodal scenarios, the multimodal link
contribution, is presented. As shown below, it is a very e�cient approach, that considers persons’
biking and walking speeds to improve the teleportation estimates for these modes, whereas mode
interactions are not taken into account.

1 Parts of this chapter are based on work published at the 6th International Conference on Pedestrian and Evacuation

Dynamics in Zürich Dobler and Lämmel (2014).

How to cite this book chapter:

Dobler, C and Lämmel, G. 2016. The “Multi-Modal” Contribution. In: Horni, A, Nagel, K and Axhausen, K W.

(eds.)TheMulti-Agent Transport SimulationMATSim, Pp. 135–140. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.21. License: CC-BY 4.0

136 The Multi-Agent Transport Simulation MATSim

21.3 Modeling Approach and Implementation

21.3.1 Multi-modal Link Contribution

Figure 21.1 shows the implementation’s basic concept—a multimodal contribution is added to each
link object in the mobsim.

While tra�c �ow dynamics are simulated by MATSim’s mobsim using a queue model, these
�ows are not taken into account in the multimodal contribution. Examining typical pedestrian
and cyclist tra�c �ows shows that congestion is very rare compared to vehicular tra�c, justifying
application of this simplistic approach over a scenario. For regions with higher tra�c �ows, this
simple model loses accuracy, but still outperforms the teleportation approach, which MATSim uses
by default.

Each multimodal link contribution uses a priority queue to manage all agents traveling on that
link using a non-motorized mode. The queue orders the agents based on their scheduled link leave
time (see Figure 21.2). This time is calculated when an agent enters a link and is based on param-
eters like the agent’s age and gender, as well as the links’ steepness. In each time step, it is checked
whether the queue contains agents who have reached their link leave time and thus must be moved
to their route’s next link. An agent’s position on a link is not determined by the model. However,
under the assumption that agents move with constant speed, their position can be interpolated.
This approach is computationally very e�cient, because computation e�ort is created only when
an agent enters or leaves a link but not when it is traveling along a link. Additionally, agents can
travel at di�erent speeds, so can overtake each other.

21.3.2 Travel Times

Walk travel time calculation is based on results of a comprehensive literature review by
Weidmann (1992). Starting point is a normally distributed reference speed of 1.34 meters per
second with a standard deviation of 0.26 meters per second, which leads to an individual reference
speed for each person. FGSV (2009) and Transportation Research Board (2010) report comparable,

N1 N2

L2

L1

link representation

multi-modal link extension

a
d
d
e
d

e
x
is

ti
n
g

n
e
w

Figure 21.1: Multi-modal link contribution.

The “Multi-Modal” Contribution 137

agent Id, link leave time

p
ri

o
ri

ty
 q

u
e

u
e
,

s
o

rt
e

d
 b

y
 l
in

k
 l
e

a
ve

 t
im

e

agent Id, link leave time agent Id, link leave time

Id: 123, t: 15742 Id: 123, t: 15742

add

remove

11416 12084 12312

simulation time

Id: 780, t: 12312

Id: 946, t: 13885

Id: 398, t: 13921

Id: 780, t: 12312 Id: 780, t: 12312

Id: 946, t: 13885

Id: 398, t: 13921

Id: 491, t: 14574

Id: 946, t: 13885

Id: 398, t: 13921

Id: 491, t: 14574

Id: 491, t: 14574 Id: 512, t: 14618 Id: 512, t: 14618

Id: 261, t: 14698 Id: 261, t: 14698

Id: 123, t: 15742

Id: 261, t: 14698

Figure 21.2: Link representation in the simple model.
At time 12 084 seconds from midnight, agent 512 enters the link and is—based on its calculated
link leave time 14 618 seconds from midnight—inserted into the queue. At time 12 312 seconds
from midnight, agent 780 has reached its leave time and is then removed from the queue.

but less detailed data. If a trip’s purpose is known, a person’s reference value can be adjusted (com-
muting 1.49 meters per second, shopping 1.16 meters per second, leisure 1.10 meters per second;
see FGSV, 2009). Using the reference speed and referencing a person’s age, gender and statistical
spreading, a personalized speed is calculated (see Figure 21.3(a)). Finally, to calculate the person’s
travel time on a speci�c link, in�uence of the link’s steepness on the person’s speed is taken into
account (see Figure 21.3(b)). The combination of person-speci�c attributes and link steepness is
shown in Figure 21.3(c).

As a result, a person’s speed on plain terrain is calculated as:

f person = f statistical spreading · f gender · f age (21.1)

vperson, walk = vreference, walk · f person (21.2)

A link’s steepness is incorporated as:

vperson walks on link = vperson, walk · f steepness (21.3)

The speed of cyclists is determined using results from Parkin and Rotheram (2010). Starting
point is, again, an individual’s speed based on a normal distributed (N (6.01,1.17)) reference speed.
Once more, a person’s speed is calculated by accounting for age and gender (see Figure 21.4(a)).

When calculating the steepness factor, one must de�ne whether a link goes uphill or downhill.
When going uphill, the person’s speed is reduced by a factor based on the grade and a reference
factor of 0.4002 meters per second, which is scaled by the same factor as the person’s reference
speed. i.e., the speed drop of slow people is lower than the drop of fast people. When bike speed
drops below walk speed, which happens at a grade of approximately 12 %, it is assumed that
the person switches to walking (see Equation (21.5)). For downhill links, a reference factor of

138 The Multi-Agent Transport Simulation MATSim

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

Age [years]

S
p

e
e
d

 [
m

/s
]

Men

Reference curve
Women

(a) Age dependent speed.

−40 −20 0 20 40 60 80
0.0

0.5

1.0

1.5

2.0

Steepness [%]

S
p

e
e
d

 [
m

/s
]

Men

Reference curve
Women

(b) Steepness dependent speed.

0

50

100 −40
−20

0
20

40
60

80
0.0

1.0

2.0

Steepness [%
]

Age [years]

S
p

e
e

d
 [

m
/s

]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(c) Age and steepness dependent speed.

Figure 21.3: Age and steepness dependent speed of pedestrians.

The “Multi-Modal” Contribution 139

0 20 40 60 80 100
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Age [years]

S
p

e
e

d
 [

m
/s

]

Men

Reference curve
Women

(a) Age dependent speed.

−40 −20 0 20 40 60 80
0.0

2.0

4.0

6.0

8.0

10.0

12.0

Steepness [%]

S
p

e
e
d

 [
m

/s
]

Men

Reference curve
Women

(b) Steepness dependent speed.

0

50

100 −40
−20

0
20

40
60

80
0.0

10.0

20.0

Steepness [%
]

Age [years]

S
p

e
e

d
 [

m
/s

]

0.0 2.0 4.0 6.0 8.0 10.0

(c) Age and steepness dependent speed.

Figure 21.4: Age and steepness dependent speed of cyclists.

140 The Multi-Agent Transport Simulation MATSim

0.2379 m/s is used. Additionally, it is assumed that cyclists limit their speed to 35 kilometers per
hour (9.7222 meters per second; see Equation (21.6)).

vperson, bike = vreference, bike · f person (21.4)

vperson, uphill = max

{

vperson, bike, �at − 0.4002 · |grade| · f person

vperson, walk, uphill
(21.5)

v
person, downhill

= min

{

vperson, bike, �at + 0.2379 · |grade| · f person

9.7222
(21.6)

Another parameter a�ecting pedestrian and cyclist speed is the crowd density of the link where
they are physically present. Data to take this e�ect into account is, again, presented by Weidmann
(1992). However, to calculate crowd density of a link, its geometry has to be taken into account, as
discussed by Lämmel (2011).

21.4 Conclusions and Future Work

The multimodal contribution allows the tracking an agent’s movement in detail, essential for stud-
ies related to topics like evacuations, e-bikes, car sharing or public transport. Experiments testing
the implementation and demonstrating its capabilities are described by Dobler (2013).

An application’s required level of detail strongly in�uences the modeling approach selection. A
simple model including agents’ age and gender, but not incorporating agent-agent interactions,
might be detailed enough for some studies (e.g., e-bikes or public transport). However, for other
studies, a more detailed model, also simulating agent interactions, might be necessary.

A �rst implementation of a pedestrian simulation module for MATSim, which also supports
agent-agent interactions, was presented by Lämmel and Plaue (2014) introducing a force-base
model. The agents’ high-level planning (i.e., route and destination choice) was performed on a
graph representing the transport system (e.g., a MATSim network), while the low level behavior
(i.e., physical interaction between the participants) was simulated with a force-based model. Due to
the intense computational e�ort of the underlying physical model, the scenario size was limited to
a few thousand agents. An attempt to bypass this limitation was presented by Dobler and Lämmel
(2012). They combined the force-based pedestrian simulation module with the multimodal link
contribution, creating the opportunity to simulate large-scale scenarios, by staying highly resolved
where needed and being more aggregated where possible.

CHAPTER 22

Car Sharing

Francesco Ciari and Milos Balac

22.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → carsharing

Invoking the module:

http://matsim.org/javadoc → carsharing → RunCarsharing class

Selected publications:

Ciari (2012)

22.2 Background

The basic carsharing idea is simple; a �eet of cars can be shared by several users, who can rent a
car when needed, without having to own one. The possibility of renting short-term is the main
di�erence from traditional car rentals. This basic concept can be implemented in various ways; in
the last few years, several new business models have emerged on the market. From an operational
perspective, there are three main variations:

• Round-trip based: Cars are parked at dedicated stations. They can be picked up from a station
and le� at the same station a�er use.

• One-way: Cars are parked at dedicated stations. They need to be picked up from a station and
le� at any station a�er use.

• Free-�oating: Cars are parked in any parking slot within a de�ned service area. They can be
picked up and le� a�er use anywhere within this area.

How to cite this book chapter:

Ciari, F and Balac, M. 2016. Car Sharing. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-

Agent Transport Simulation MATSim, Pp. 141–144. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.22. License: CC-BY 4.0

142 The Multi-Agent Transport Simulation MATSim

From a transport planning perspective, the essential element of carsharing—the importance of
its availability at precise points in time and space—does not �t with traditional models, which
consider vehicle-per-hour �ows. It is crucial to represent availability of vehicles at the local level,
thus representing individual travel with high spatial and temporal resolution. At the same time, for
the choice of using carsharing it is of fundamental importance how a trip/activity is embedded in
the whole activity chain. This combination of features can be found in MATSim, which is therefore
a suitable framework for carsharing modeling.

22.3 Modeling of Carsharing Demand in MATSim

Carsharing as a modal option in MATSim has been introduced in a simpli�ed manner and only
in its round trip-based version, as part of a dissertation work (Ciari, 2012). Several improvements
have been introduced since then and all three main types of carsharing can now be simulated.

22.3.1 Round-Trip Based Carsharing

The use of round-trip carsharing by an agent in the simulation is modeled in the following steps:

1. The agent �nishes his/her activity, �nds the closest available car and reserves it (making it
unavailable for other agents),

2. walks to the station where he/she has reserved a vehicle,

3. drives the car (interaction with other vehicles is modeled),

4. parks the car at the next activity.

5. A�er �nishing his activity the agent takes the car and drives to the next activity.

6. Before reaching the last activity in the subtour, agent ends the rental and leaves the vehicle at
the starting station, making it available to other agents,

7. walks to the activity, and

8. carries out the rest of the daily plan.

22.3.2 One-Way Carsharing

In the case of one-way carsharing, the steps are similar, but with few signi�cant di�erences:

1. The agent �nishes his activity, �nds the closest station with an available car and reserves the
vehicle (making it unavailable for other agents),

2. walks to the station where it has reserved the car (takes the car and frees a parking spot at the
station),

3. �nds the closest station to his destination, with a free parking spot and reserves it (making it
unavailable for others),

4. drives the car to the reserved parking spot (interacting with other vehicles in the network),

5. parks the car on the reserved parking spot and ends the rental,

6. walks to the next activity, and

7. carries out the rest of the daily plan.

Car Sharing 143

22.3.3 Free-Floating Carsharing

The use of free-�oating carsharing by an agent is simulated using similar steps, but the rental ends
with the end of one trip:

1. rent the nearest car,

2. walk from start activity to the rented car,

3. drive to the next activity (interaction with other vehicles are modeled),

4. park the car close to the next activity, and

5. end the rental (and make the car available for other rentals).

22.3.4 Generalized Cost of Carsharing Travel

The function representing generalized cost of travel for car sharing traveling from activity q− 1 to
activity q is:

Strav,q,cs = αcs + βc,cs · ct · tr + βc,cs · cd · d+ βt,walk · (ta + te) + βt,cs · t (22.1)

The same equation is used for all modeled forms of carsharing but the values of the parameters will
be di�erent. The �rst term αcs is a constant which can be used as calibration parameter and will also
be, generally, di�erent for di�erent types of carsharing (and for di�erent context). The second and
third terms refer to the time dependent and the distance dependent parts of the fee, respectively.
tr is the total reservation time and ct represents the monetary cost for one hour reservation time.
d is the total reservation distance and cd is the marginal monetary cost for one kilometer travel. The
parameter βc,cs represents the marginal utility of an additional unit of money spent on traveling
with carsharing. The fourth term is the walk path to and from the station (access time ta and egress
time te) and is evaluated as a normal walk leg. The parameter βt,cs represents the marginal utility
of an additional unit of time spent on traveling with carsharing, where t is the actual (in vehicle)
travel time.

22.4 Carsharing Membership

Carsharing is a membership program. In order to access a speci�c carsharing service, individuals
must become members of that carsharing program. A logit model has been estimated for Switzer-
land (Ciari and Weis, forthcoming) and implemented in MATSim as part of the carsharing module.
The model variables are mainly individual socio-demographic characteristics. An important fea-
ture of the model, however, is that carsharing accessibility is explicitly considered, both from home
and from work. Accessibility A of person p is calculated with the following formula:

A(n) = ln

(

m
∑

s=1

Xs · e−β·dsh

)

+ ln

(

m
∑

s=1

Xs · e−β·dsw

)

(22.2)

The weight parameter for distances is set to 0.2 as in Weis (2012), and more details on it are given
below. Assuming m as the number of stations in the system, dsh and dsw, are calculated for each sta-
tion as the distance between the station s and the home and work location of person n respectively;
and Xs is the number of cars at station s. The model is not directly transferable to other regions but
a di�erent model can be easily implemented in the Java code created.

144 The Multi-Agent Transport Simulation MATSim

22.5 Validation

The simulation model has been calibrated to reproduce actual modal share for carsharing in the
Zürich, Switzerland region. It was made using booking data from the Swiss operator Mobility. With
the same data, the results were validated along several dimensions. Since Mobility o�ered only
round-trip based carsharing until now, only this model could be validated. Dimensions included
in the validation process were: distance from the last activity to the pick-up station, departure times,
purpose of the rental (main purpose of the subtour) and temporal length of the rental.

22.6 Applications

A�er a long phase of creating and improving the module to simulate carsharing in all its forms,
work has been recently carried out on concrete carsharing operations issues. Examples include
evaluating the impact of introduction of a free-�oating carsharing program in Berlin (Ciari et al.,
2014) and Zürich (Ciari et al., forthcoming) on travel demand and investigating the relationship
between demand and supply in both round-trip and one-way systems (Balac et al., 2015).

CHAPTER 23

Dynamic Transport Services

Michal Maciejewski

Entry point to documentation:

http://matsim.org/extensions → dvrp

Invoking the module:

No prede�ned invocation. Starting point(s) under http://matsim.org/javadoc → dvrp →

RunOneTaxiExample class.

Selected publications:

Maciejewski and Nagel (2013b,c,a); Maciejewski (2014)

23.1 Introduction

The recent technological advancements in ICT (Information and Communications Technology)
provide novel, on-line �eet management tools, opening up a broad range of possibilities for more
intelligent transport services: �exible, demand-responsive, safe and energy/cost e�cient. Signi�-
cant enhancements can aid in both traditional transport operations, like regular public transport
or taxis and introduction of novel solutions, such as demand-responsive transport or personal rapid
transport. However, the growing complexity of modern transport systems, despite all bene�ts,
increases the risk of poor performance, or even failure, due to lack of precise design, implementa-
tion and testing.

One solution is to use simulation tools o�ering a wide spectrum of possibilities for validating
transport service models. Such tools have to model, in detail, not only the dynamically chang-
ing demand and supply of the relevant service, but also tra�c �ow and other existing transport
services, including mutual interactions/relations between all these components. Although several
approaches have been proposed (e.g., Regan et al., 1998; Barcelo et al., 2007; Liao et al., 2008;

How to cite this book chapter:

Maciejewski, M. 2016. Dynamic Transport Services. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 145–152. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.23. License: CC-BY 4.0

146 The Multi-Agent Transport Simulation MATSim

Certicky et al., 2014), as far the author knows, no existing solutions provide large-scale microscopic
simulation that include all the components above.

23.2 DVRP Contribution

To address the problem above, MATSim’s DVRP (Dynamic Vehicle Routing Problem) contribution
has been developed. The contribution is designed to be highly general and customizable to model
and simulate a wide range of dynamic vehicle routing and scheduling processes. Currently, the
domain model is capable of representing a wide range of one-to-many and many-to-many VRPs;
one can easily extend the model even further to cover other speci�c cases (see Section 23.3). Since
online optimization is the central focus, the DVRP contribution architecture allows plugging in
of various algorithms. At present, there are several di�erent algorithms available, among them an
algorithm for the Dynamic Multi-Depot Vehicle Routing Problem with Time Windows and Time-
Dependent Travel Times and Costs, analyzed in (Maciejewski and Nagel, 2012), and a family of
algorithms for online taxi dispatching, studied in (Maciejewski and Nagel, 2013b,c,a; Maciejewski,
2014).

The DVRP contribution models both supply and demand, as well as optimizing �eet operations,
whereas MATSim’s core is used for simulating supply and demand, both embedded into a large-
scale microscopic transport simulation. In particular, the contribution is responsible for:

• modeling the DVRP domain,
• listening to simulation events,
• monitoring the simulation state (e.g., movement of vehicles),
• �nding least-cost paths,
• computing schedules for drivers/vehicles,
• binding drivers’ behavior to their schedules, and
• coordinating interaction/cooperation between drivers, passengers and dispatchers.

Dynamic transport services are simulated in MATSim as one component of the overall trans-
port system. The optimizer plugged into the DVRP contribution reacts to selected events generated
during simulation, which could be: request submissions, vehicle departures or arrivals, etc. Addi-
tionally, it can monitor the movement of individual vehicles, as well as query other sources of online
information, e.g., current tra�c conditions. In response to changes in the system, the optimizer
may update drivers’ schedules, either by applying smaller modi�cations or re-optimizing them
from scratch. Drivers are noti�ed about changes in their schedules and adjust to them as soon as
possible, including immediate diversion from their current destinations. For passenger transport,
such as taxi or demand-responsive transport services, interactions between drivers, passengers
and the dispatcher are simulated in detail, including calling a ride or picking up and dropping o�
passengers.

23.3 DVRPModel

The DVRP contribution can be used for simulatingRichVRPs. Compared to the classicCapacitated
VRP, the major model enhancements are:

• one-to-many (many-to-one) and many-to-many topologies,
• multiple depots,
• dynamic requests,
• request and vehicle types,
• time windows for requests and vehicles,

Dynamic Transport Services 147

• time-dependent stochastic travel times and costs, and
• network-based routing (including route planning, vehicle monitoring and diversion).

Except for the travel times and costs (discussed in Section 23.3.2), which are calculated on de-
mand, all the VRP-related data are accessible via VrpData.1 In the most basic setup, there are only
two types of entities, namely Vehicles and Requests. This model, however, can be easily extended as
required. For instance, for an electric vehicle �eet, specialized ElectricVrpData also stores informa-
tion about Chargers. This, and other examples of extending the base VRP model, such as a model
of the VRP with Pickup and Delivery, are available in the org.matsim.contrib.dvrp.extensions

package.

23.3.1 Schedule

Each Vehicle has a Schedule, a sequence of di�erent Tasks, such as driving from one location to
another (DriveTask), or staying at a given location (e.g., serving a customer or waiting; StayTask).2

A Schedule is where supply and demand are coupled. All schedules are calculated by an online
optimization algorithm (see Section 23.6) representing the �eet’s dispatcher. Each task is in one of
the following states (de�ned in the Task.TaskStatus enum): PLANNED, STARTED or PERFORMED; each
schedule’s status is one of the following:

• UNPLANNED—no tasks assigned
• PLANNED—all tasks are PLANNED (none of them started)
• STARTED—one of the tasks is STARTED (this is the schedule’s currentTask; the preceding tasks are
PERFORMED and the succeeding ones are PLANNED)

• COMPLETED—all tasks are PERFORMED

In general, when modifying a Schedule, one can freely change and rearrange the planned tasks;
those performed are considered to be read-only. For the current task, one can, for instance, change
its end time, although the start time must remain unchanged. Proceeding from the current task to
the next one is carried out by invoking the Schedule.nextTask()) method.

The execution of the current task may be monitored with a TaskTracker.3 In the most basic ver-
sion, trackers predict only the end time of the current task. More complex trackers also provide
detailed information on the current state of task execution. OnlineDriveTaskTracker, for exam-
ple, o�ers functionality similar to GPS navigation, such as monitoring the movement of a vehicle,
predicting its arrival time and even diverting its path.
ScheduleImpl, along with DriveTaskImpl and StayTaskImpl, is the default implementation of

Schedule and o�ers several additional features, such as data validation or automated task han-
dling. It also serves as the starting point when implementing domain-speci�c schedules or tasks
(e.g., ChargeTask in the electric VRP model mentioned above).

23.3.2 Least-Cost Paths

MATSim’s network model consists of nodes connected by one-way links. Because of the queue-
based tra�c �ow simulation (Section 1.3), a link is the smallest traversable element (i.e., a vehicle
cannot stop in the middle of a link). Besides links, the DVRP contribution also operates on a higher
level of abstraction: paths. Each path is a sequence of links to be traversed to get from one location

1 Package org.matsim.contrib.dvrp.data.
2 Package org.matsim.contrib.dvrp.schedule.
3 Package org.matsim.contrib.dvrp.tracker.

148 The Multi-Agent Transport Simulation MATSim

to another in the network, or more precisely, from the end of one link end to the end of another
link.

The functionality of �nding least-cost paths is available in the org.matsim.contrib.dvrp.router
package. VrpPathCalculator calculates VrpPaths by means of the least-cost path search algorithms
available in MATSim’s core (Jacob et al., 1999; Lefebvre and Balmer, 2007).4 Because of changing
tra�c conditions, paths are calculated for a given departure time. Since MATSim calculates average
link travel time statistics for every 15 minutes time period by default, the 15 minutes time bin is
also used for computing shortest paths.
VrpPaths are used by DriveTasks to specify the link sequence to be traversed by a vehicle be-

tween two locations. It is possible to divert a vehicle from its destination by replacing the currently
followed VrpPath with a DivertedVrpPath.

To reduce computational burden, the already calculated paths can be cached for future reuse
(see VrpPathCalculatorWithCache). However, when calculating least-cost paths from one location
to many potential destinations, a signi�cant speed-up can be achieved by means of least-cost tree
search (see org.matsim.utils.LeastCostPathTree).

23.4 DynAgent

Contrary to the standard day-to-day learning in MATSim (but see also Section 97.3.5), in the
DVRP contribution, each driver behaves dynamically and follows orders coming continuously
from the dispatcher. The DynAgent class, along with the org.matsim.contrib.dynagent package,
provides the foundation for simulating dynamically behaving agents. Although created for DVRP
contribution needs, DynAgent is not limited to this context and can be used in a wide range of
di�erent simulation scenarios where agent dynamism is required.
DynAgent’s main concept assumes an agent can actively decide what to do at each simulation

step instead of using a pre-computed (and occasionally re-computed; see 30.4.2) plan. It is up
to the agent whether decisions are made spontaneously or (re-)planned in advance. In some
applications, a DynAgent may represent a fully autonomous agent acting according to his/her de-
sires, beliefs and intentions, whereas in other cases, it may be a non-autonomous agent following
orders systematically issued from the outside (e.g., a driver receiving tasks from a centralized
vehicle dispatching system).

23.4.1 Main Interfaces and Classes

The DynAgent class is a dynamic implementation of MobsimDriverPassengerAgent. Instead of ex-
ecuting pre-planned Activitys and Legs, a DynAgent performs DynActivitys and DynLegs. The
following assumptions underlie the agent’s behavior:

• The DynAgent is the physical representation of the agent, responsible for the interaction with
the real world (i.e., tra�c simulation).

• The agent’s high-level behavior is controlled by a DynAgentLogic that can be seen as the agent’s
brain; the DynAgentLogic is responsible for deciding on the agent’s next action (leg or activity),
once the current one has ended.

• Dynamic legs and activities fully de�ne the agent’s low-level behavior, down to the level of a
single simulation step.

At the higher level, the DynAgent dynamism results from the fact that dynamic activities and legs
are usually created on the �y by the agent’s DynAgentLogic; thus, the agent does not have to plan

4 Package org.matsim.core.router.

Dynamic Transport Services 149

future actions in advance. When the agent has a roughly detailed legs and activities plan, he/she
does not have to adhere to it and may modify his/her plan at any time (e.g., change the mode or
destination of a future leg, or include or omit a future activity).

Low-level dynamism is provided by the execution of dynamic activities and legs. As for the cur-
rently executed activity, the agent can shorten or lengthen its duration at any time. Additionally, at
each time step, the agent may decide what to do right now (e.g., communicate with other agents, re-
plan the next activity or leg, and so on). When driving a car (DriverDynLeg), the agent can change
the route, destination or even decide about picking up or dropping o� somebody on the way. When
using public transport (PTPassengerDynLeg), the agent chooses which bus to get on and at which
stop to exit.

Incidentally, the behavior of MATSim’s default plan-based agent, PersonDriverAgentImpl, can be
simulated by DynAgent, combined with the PlanToDynAgentLogicAdapter logic. This adapter class
creates a series of dynamic activities and legs that mimics a given Plan of static Activity and Leg

instances.

23.4.2 Con�guring and Running a Dynamic Simulation

DynAgent has been written for and validated against QSim. Dynamic leg simulation requires no addi-
tional code. However, to take advantage of dynamic activities, DynActivityEngine should be used,
instead of ActivityEngine. The doSimStep(double time) method of DynActivityEngine ensures
that dynamic activities are actively executed by agents and that their end times can be changed.

The easiest way to run a single iteration of QSim is as follows:

1. Create and initialize a Scenario,

2. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a
QSim; this includes creating a series of objects, such as an EventsManager, DynActivityEngine,
or TeleportationEngine,

3. add AgentSources of DynAgents and other agents to the QSim,

4. run the QSim simulation, and

5. �nalize processing events by the EventsManager.

Depending on needs, the procedure above can be extended with additional steps, such as adding
non-default engines or departure handlers to the QSim.

23.4.3 RandomDynAgent Example

The org.matsim.contrib.dynagent.examples.random package contains a basic illustration of how
to create and run a scenario with DynAgents. To highlight di�erences with plan-based agents, in
this example 100 dynamic agents travel randomly (RandomDynLeg) and perform random duration
activities (RandomDynActivity).

High-level random behavior is controlled by RandomDynAgentLogic, that operates according to
the following rules:

1. Each agent starts with a RandomDynActivity; see the computeInitialActivity(DynAgent

agent) method.

2. Whenever the currently performed activity or leg ends, a random choice on what to do next
is made between the following options: (a) stop being simulated by starting a determinis-
tic StaticDynActivity with in�nite end time, (b) start a RandomDynActivity, or (c) start a
RandomDynLeg; see the computeNextAction(DynAction oldAction, double now) method.

150 The Multi-Agent Transport Simulation MATSim

The lower level stochasticity results from random decisions being made at each consecutive de-
cision point. In the case of RandomDynLeg, each time an agent enters a new link, he or she decides
whether to stop at this link or to continue driving; in the latter case, the subsequent link is cho-
sen randomly; see the RandomDynLeg(Id<Link> fromLinkId, Network network) constructor and
the movedOverNode(Id<Link> newLinkId) method. As for RandomDynActivity, at each time step the
doSimStep(double now) method is called and a random decision is made on the activity end time.

Following the rules speci�ed in Section 23.4.2, setting up and running this example sce-
nario is straightforward. RandomDynAgentLauncher reads a network, initializes a QSim, then adds
a RandomDynAgnetSource to the QSim, and �nally, launches visualization and starts simulation. The
RandomDynAgentSource is responsible for instantiating 100 DynAgents that are randomly distributed
over the network. The simulation ends when the last active agent becomes inactive.

23.5 Agents in DVRP

Realistic simulation of dynamic transport services requires a proper model of interactions and
possible collaborations between the main actors: drivers, customers (o�en passengers) and the
dispatcher. By default, drivers and passengers are simulated as agents, while the dispatcher’s deci-
sions are calculated by the optimization algorithm (see Section 23.6). This, however, is not the only
possible con�guration. One may simulate, for example, a decentralized system with a middleman
as dispatcher rather than the �eet’s manager.

23.5.1 Drivers

A driver is modeled as a DynAgent, whose behavior is controlled by a VrpAgentLogic that makes
the agent follow the dynamically changing Schedule.5 As a result, all changes made to the schedule
are visible to and obeyed by the driver. Whenever a new task is started, the driver logic (using a
DynActionCreator) translates it into the corresponding dynamic action. Speci�cally, a DriveTask

is executed as a VrpLeg, whereas a StayTask is simulated as a VrpActivity. Both VrpLeg and
VrpActivity are implemented so that any change to the referenced task is automatically visible
to them. At the same time, any progress made while carrying them out is instantly reported to the
task tracker.

23.5.2 Passengers

To simulate passenger trips microscopically, passengers are modeled as MobsimPassengerAgent in-
stances. As part of the simulation, they can board, ride and, �nally, exit vehicles. In contrast to
the drivers, they may be modeled as the standard MATSim agents, each having a �xed daily plan
consisting of legs and activities.

Interactions between drivers, passengers and the dispatcher, such as submitting Passenger

Requests or picking up and dropping o� passengers, are coordinated by a PassengerEngine6 . Re-
quests may be immediate (as soon as possible) or made in advance (at the appointed time). In the
former case, a passenger starts waiting just a�er placing the order;in the latter case, the dispatched
vehicle my arrive at the pickup location before or a�er the designated time, which means that either
the driver or the customer, respectively, will wait for the other to come. To ensure proper coordi-
nation between these two agents, the pickup activity performed by the driver must implement the
PassengerPickupActivity interface.

5 Package org.matsim.contrib.dvrp.vrpagent.
6 Package org.matsim.contrib.dvrp.passenger.

Dynamic Transport Services 151

23.6 Optimizer

Since demand and supply are inherently stochastic, the general approach to dealing with dy-
namic transport services consists of updating vehicles’ schedules in response to observed changes
(i.e., events). This can be done by means of re-optimization procedures that consider all requests
(within a given time horizon) or fast heuristics focused on small updates of the existing solution,
rather than constructing a new one from scratch. Usually, re-optimization procedures give higher
quality solutions compared to ocal update heuristics; however, when it comes to real-world ap-
plications, where high (o�en real-time) responsiveness is crucial, broad re-optimization may be
prohibitively time-consuming.

In the most basic case, an optimizer implements the VrpOptimizer interface7 , that is, implements
the following two methods:

• requestSubmitted(Request request)—called on submitting request; in response, the opti-
mizer either adapts vehicles’ schedules so that request can be served, or rejects it.

• nextTask(Schedule<? extends Task> schedule)—called whenever schedule’s current task has
been completed and the driver switches to the next planned task; this is the last moment to make
or revise the decision on what to do next.

This basic functionality can be freely extended. Besides request submission, one may, for exam-
ple, consider modifying or even canceling already submitted requests. Another option is monitor-
ing vehicles as they travel along designated routes and reacting when they are ahead of/behind their
schedules. Such functionality is available by implementing VrpOptimizerWithOnlineTracking’s

nextLinkEntered(DriveTask driveTask) method, which is called whenever a vehicle moves from
the current link to the next one on its path.

Last but not least, there are two ways of responding to the incoming events. They can be han-
dled either immediately (synchronously) or between time steps (asynchronously). In the former case,
schedules are re-calculated (updated or re-optimized) directly, in response to the calling of the
optimizer’s methods. This simpli�es accepting/rejecting new requests, since the answer is imme-
diately passed back to the caller. In the latter case, all events observed within a simulation step are
recorded and then processed in batch mode just before the next simulation step begins.8 By doing
that, one can not only speed up computations signi�cantly, but also avoid situations when, due to
vehicles’ inertia (e.g., an idle driver can stop waiting and depart only at the beginning of the simu-
lation step), two or more mutually con�icting decisions could be made by the optimizer at distinct
moments during a single simulation step, causing the latter to overwrite the former (not always
intentional).

23.7 Con�guring and Running a DVRP Simulation

Like in within-day replanning (see Chapter 30), dynamic transport services are typically run with
the DVRP contribution as a single-iteration simulation. Setting up and running such a simulation
requires carrying out the following steps:

1. Create a Scenario (MATSim’s domain data) and VrpData (VRP’s domain data),

2. create a VrpOptimizer; this includes instantiation of a least-cost path/tree calculator,
e.g., VrpPathCalculator, and

7 Package org.matsim.contrib.dvrp.optimizer.
8 This can be achieved by using an optimizer implementing the interface org.matsim.core.mobsim.framework

.listeners.MobsimBeforeSimStepListener.

152 The Multi-Agent Transport Simulation MATSim

3. call DynAgentLauncherUtils’ initQSim(Scenario scenario) method to create and initialize a
QSim; this includes creating a series of objects, such as an EventsManager, DynActivityEngine,
or TeleportationEngine.

4. When simulating passenger services, add a PassengerEngine to the QSim; this includes in-
stantiation of a PassengerRequestCreator that converts calls/orders into PassengerRequests;
otherwise (i.e., non-passenger services), add an appropriate source of requests to the QSim,
either as a MobsimEngine or MobsimListener.

5. Then, add AgentSources to the QSim; for the DynAgent-based drivers, one may use a specialized
VrpAgentSource and provide a DynActionCreator.9

6. run the QSim simulation, and

7. �nalize processing events by the EventsManager.

The org.matsim.contrib.dvrp.run package contains VrpLauncherUtils and other utility classes
that simplify certain steps of the above scheme. To facilitate access to the data representing the
current state of the simulated dynamic transport service, MatsimVrpContext provides the Scenario

and VrpData objects and the current time (based on the timer of QSim).
The VrpOptimizer’s performance may be assessed either by analyzing the resulting schedules, or

by processing events collected during the simulation.

23.8 OneTaxi Example

The org.matsim.contrib.dvrp.examples.onetaxi package contains a simple example of how to
simulate on-line taxi dispatching with the DVRP contribution. In this scenario, there are ten taxi
customers and one taxi driver, who serves all requests in the FIFO order. Each customer dials a taxi
at a given time to get from work to home. The example is made up of six classes:

• OneTaxiRequest—represents a taxi request.
• OneTaxiRequestCreator—converts taxi calls into requests prior to submitting them to the

optimizer.
• OneTaxiOptimizer—creates and updates the driver’s schedule.
• OneTaxiServeTask—represents StayTasks related to picking up and dropping o� customers.
• OneTaxiActionCreator—translates tasks into dynamic activities and legs.
• OneTaxiLauncher—sets up and runs the scenario.

All data necessary to run the OneTaxi example is located in the /contrib/dvrp/src/main/

resources/one_taxi directory.

23.9 Research with DVRP

Currently, the DVRP contribution is used in several research projects. Two of them focus on on-line
dispatching of electric taxis in Berlin and Poznan (Maciejewski and Nagel, 2013b,c,a; Maciejewski,
2014). Another project deals with design of demand-responsive transport, where DVRP has been
applied to the case of twin towns, Yarrawonga and Mulwala, described in Chapter 95 (Ronald et al.,
2015, 2014). In a recently launched project, the DVRP contribution will be used for simulation of
DRT services in three cities: Stockholm, Tel Aviv and Leuven.

The current code development focuses on increasing performance and �exibility of the imple-
mented shortest paths search (see Section 23.3.2). An interesting future research topic, related
speci�cally to DRT planning, is multi-modal path search, where on-demand vehicles may be com-
bined with �xed-route buses within a single trip. Another potential research direction is adding
a benchmarking functionality and standardized interfaces so that the DVRP contribution could
serve as a testbed for the Rich VRP optimization algorithms.

9 Package org.matsim.contrib.dvrp.vrpagent,

SUBPART FIVE

Commercial Tra�c

CHAPTER 24

Freight Tra�c

Michael Zilske and Johan W. Joubert

24.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → freight

Invoking the module:

http://matsim.org/javadoc → freight → RunChessboard class

Selected publications:

Schröder et al. (2012); Zilske et al. (2012)

Various MATSim freight tra�c modeling approaches have been implemented in recent years.
For Zürich, available origin-destination matrices for small delivery trucks and heavy trucks have

been disaggregated Shah (2010). Data was taken from the KVMZH (Kantonales Verkehrsmod-
ell Zürich) provided by Amt für Verkehr, Volkswirtscha�sdirektion Kanton Zürich (2011) and
documented in Gottardi and Bürgler (1999). This special freight sub-population is restricted to
route choice.

In South Africa, freight vehicles’ plans were derived from GPS records of more than 30 000 com-
mercial vehicles tracked over a 6-month period. Activity chains’ extraction from raw GPS data
was documented in Joubert and Axhausen (2011); the �rst joint private car and freight implemen-
tation appeared in Joubert et al. (2010). In Nagel et al. (2014), we used MATSim to evaluate the
impact of a complex vehicle-type speci�c toll structure where sub-populations, including freight,
have di�erent time values.

The most sophisticated solution, however, was the introduction of carrier agents, described in
the following section.

How to cite this book chapter:

Zilske, M and Joubert, J W. 2016. Freight Tra�c. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-

Agent Transport Simulation MATSim, Pp. 155–156. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.24. License: CC-BY 4.0

156 The Multi-Agent Transport Simulation MATSim

24.2 Carriers

Until now, real-world scenarios set up with MATSim modeled freight tra�c demand share by
using plan sets with activities at the depot and pick-up and delivery locations, without variabil-
ity in any dimension except route choice. We improved this situation by modeling freight vehicles
as non-autonomous agents employed by, and serving the interests of, freight operators. Freight
vehicle drivers’ missing choice dimensions are then realized as logistics decisions made by the
freight operators who employ them. In the freight transport sector, decisions are distributed among
actors with di�erent roles. Freight transport decisions include: lot-size choice, path-searches in
logistical networks, vehicle choice and tour planning. A freight operator’s planning problem is quite
di�erent from its passenger counterpart.

First, success of freight transport plans is not determined by the utility of time spent at activity
locations, but rather by commercial success. Plans must ful�ll customers’ requirements, i.e., time
windows and providing su�cient capacity at reasonable cost.

Second, freight operators o�en operate several vehicles and their options include rescheduling
deliveries from one vehicle to another or even changing the number of vehicles used.

Thus, a new so�ware layer populated by carrier agents was introduced into the simulation. Each
carrier agent represents a �rm with a vehicle �eet, depots and contracts. Contracts determine type
and quantity of goods to be carried and contains the respective origin and destination as well as
pick-up and delivery time windows.

The carrier agent’s plan contains a tour schedule for each �eet vehicle, containing planned pick-
up, delivery or arrival times at customer locations and a route through the physical network. In our
basic model, all vehicle schedules of a carrier begin and end at one of its depots. When a simulation
scenario is initialized, the carrier agents build a schedule for each of their vehicles, including a
route through the transport network, with pick-up and delivery activities corresponding to their
contracts. At the interface between the freight operator plans and the mobility simulation, the set
of routed vehicles from each carrier plan is injected into the tra�c demand as individual driver
agents, where they move through the tra�c system along with passenger vehicles. While executing
their plans, the freight driver agents report their shipment-related activities back to the carrier.

When all plans have been executed, agents evaluate the success of their plan. The carrier agents
use a custom utility function capturing their economic success. Their cost is calculated as a sum
of vehicle-dependent distance and time costs incurred by scheduled vehicles, as well as some
individual �xed costs, plus penalties incurred by missed time windows.

Finally, carrier agents create new plans to improve their performance in the next iteration. For
instance, a time-dependent vehicle routing heuristic can be plugged in to replan vehicle schedules.
Shipments can be switched between vehicles, or an entire vehicle added or removed. During
repeated executions of their plans, passengers as well as carriers gain experience from the transport
system. The carriers experience congestion and other disturbances in the tra�c system when they
incur a higher cost through longer vehicle usage, or by penalizing missed pick-up and delivery
times.

The planning algorithms themselves are implemented in the project jsprit, a library separate
from MATSim. In the replanning phase of each iteration, jsprit is called and replans the carrier
plans.

The model is described in a paper by Schröder et al. (2012). For more details about the
implementation, as well as more references, see the technical report by Zilske et al. (2012).

CHAPTER 25

WagonSim

Michael Balmer

25.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → wagonSim

Invoking the module:

http://matsim.org/javadoc → wagonSim → RunWagonSim class

Selected publications:

-

25.2 Summary

The wagonSim contribution allows use of MATSim’s route-optimization process to �nd optimal
paths for rail-based freight wagons in a given rail-based freight infrastructure.

The network links, here, de�ne the rails, nodes de�ne train stations and schedule transit stops
de�ne train station stopping points. Freight locomotives are driven by a strictly �xed schedule,
where each locomotive is given as a single transit line with a single transit route and a single
departure. Freight wagons correspond to agents with a given origin and destination (single trip
agents). Routing takes various constraints into account, i.e., a minimum shunting time while
switching locomotives and maximum freight train weight and length; it also di�erentiates between
locomotive stops for shunting and stops only for waiting (without shunting possibility).

WagonSim contribution is based on specialized input data. The �rst step converts input data
into MATSim formats (scenario data). In a second step, it allows one to manually adapt the sce-
nario for di�erent parametrization of train stops, shunting stations, minimum shunting times and

How to cite this book chapter:

Balmer, M. 2016. WagonSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport

Simulation MATSim, Pp. 157–160. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.25.

License: CC-BY 4.0

158 The Multi-Agent Transport Simulation MATSim

Figure 25.1: WagonSim process chain.

WagonSim 159

dwell times of trains at stops. The third step sets up route optimization con�guration and runs the
MATSim optimization cycle.

As shown at http://www.matsim.org/docs/extensions/wagonSim and in Figure 25.1, data con-
version and WagonSim execution is composed of �ve stages, described in more detail at above
referenced url:

A) schedule data conversion,

B) shunting data de�nition,

C) shunting data enrichment,

D) demand data conversion, and

E) route optimization.

WagonSim contribution has been applied to ETH (Eidgenössische Technische Hochschule), IVT
(Institut für Verkehrsplanung und Transportsysteme – Institute for Transport Planning and
Systems) Transport Systems group projects.

CHAPTER 26

freightChainsFromTravelDiaries

Kai Nagel

Entry point to documentation:

http://matsim.org/extensions → freightChainsFromTravelDiaries

Invoking the module:

Currently not possible.

Selected publications:

Schneider (2011)

Sebastian Schneider has done a Ph.D. dissertation about generating freight vehicle chains by essen-
tially re-sampling the information contained in the German survey KiD (Kra�fahrzeugverkehr in
Deutschland) (Steinmeyer and Wagner, 2005). Since the KiD is essentially an activity-based travel
diary, the method should also be applicable to other situations. Since Sebastian has le� science for
the time being, he allowed us to take his code and integrate it into the repository, under the GPL
(GNU General Public License). For the time being, it will just “sit” here until someone attempts to
make it work.

How to cite this book chapter:

Nagel, K. 2016. freightChainsFromTravelDiaries. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) TheMulti-

Agent Transport Simulation MATSim, Pp. 161–162. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.26. License: CC-BY 4.0

SUBPART SIX

Additional Choice Dimensions

CHAPTER 27

Destination Innovation

Andreas Horni, Kai Nagel and Kay W. Axhausen

27.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → locationchoice

Invoking the module:

http://matsim.org/javadoc → locationchoice → RunLocationChoiceBestResponse,
RunLocationChoiceFrozenEpsilons classes

Selected publications:

Horni et al. (2012b); Horni (2013)

27.2 Introduction

Generally speaking, destination choice represents an optimization problem, where every agent
searches for his or her optimal destination according to an objective function, subject to various
constraints such as the agent’s travel time budget–as well as interactions with other agents–while
competing for space-time slots in the infrastructure. The MATSim destination innovation module
provides a problem-tailored heuristic algorithm to solve this problem.

MATSim’s iterative base requires a mechanism (the main component of the destination innova-
tion module), ensuring consistent probabilistic choices over the course of iterations.

Unobserved heterogeneity, usually dominant in destination choice, is captured in the adaptable
objective function by random error terms (Horni et al., 2012b; Horni, 2013).

As well as considering competition for road infrastructure, the destination choice module can
also be con�gured for activities infrastructure (for example, at shopping malls’ parking lots) as
shown in Section 27.3.5 and by Horni et al. (2009).

How to cite this book chapter:

Horni, A, Nagel, K and Axhausen, K W. 2016. Destination Innovation. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 165–174. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.27. License: CC-BY 4.0

166 The Multi-Agent Transport Simulation MATSim

27.3 Key Issues in Developing the Module

Key issues of integrating destination innovation into MATSim include behavioral and algorith-
mic problems. On the behavioral side, speci�cation of choice sets for model estimation has not
yet been solved. On the algorithmic side, as mentioned above, destination innovation is, in prin-
ciple, an ordinary optimization problem. However, as agents interact, and choices are embedded
in a highly dynamic context, the problem becomes complex, particularly because targeted sce-
narios are usually large-scale. Thus, as in real-world optimization problems, solutions must be
based on problem-tailored heuristics (Michalewicz and Fogel, 2004). Construction of a search
space and subsequent evaluation of the search space’s elements are important MATSim destination
innovation components.

The main component however, is a mechanism to generate consistent random draws over
iterations necessary to include the objective function’s error terms (see next Section 27.3.1). This
mechanism is also applicable to other choice dimensions.

27.3.1 Error Terms

As described in Chapter 49, MATSim—as a utility-maximizing model—is related to the dis-
crete choice framework, meaning that this framework can productively guide the MATSim utility
function speci�cation. Utility in discrete choice models is composed of a deterministic part and
a random error term representing the unobserved heterogeneity, i.e., it subsumes, both truly,
i.e., inherently random, decisions and the modeler’s missing knowledge about the choice and its
context.

In MATSim, the utility function for route, mode and time innovation does not contain an explicit
random error term (yet). This is at least partially compensated through replanning stochasticity, in
Chapter 49 denoted by the scale parameter µ and η. An example for this might be: route and time
choices are usually subject to signi�cant competition. The co-evolutionary algorithm of MATSim,
detailed below, essentially assigns the resources in a random manner to the persons. For exam-
ple, two identical persons may end up with di�erent routes, according to the order in which they
undergo the replanning. Essentially, this means that an (implicit) random term is present in the
choice making.

The above, however, does not add enough unobserved heterogeneity to destination choice. Fur-
ther problems might, or might not, appear when trying to interpret this randomness, since it is
added implicitly and somewhat unsystematically. Thus, an explicit random error term εnℓq for
every person n, alternative ℓ and activity q, held stable over the iterations, is added to the scor-
ing function during the running of the destination innovation module (Horni, 2013). Research
about the necessity of error terms for the remaining choice dimensions is required, as discussed in
Section 97.4.6.

27.3.2 Quenched Randomness

Due to random error terms, discrete choices are quanti�ed by probabilities; for example, for the
logit model, as pnℓq = exp(Vnℓq)/

∑

j∈L exp(Vnjq), where Vnℓq is person n’s systematic utility of
alternative ℓ for activity q. When drawing from the distribution speci�ed by pnℓq for a popula-
tion, the aggregate choices are reproduced. This is basically also true when applied in iterative
frameworks. However, iterative frameworks are usually associated with some kind of learning or
relaxation mechanism, which is heavily distorted by repeatedly and randomly drawing from pnℓq
in every iteration. In this case, the εnℓq e�ectively �uctuate from iteration to iteration, which is
disastrous for the algorithm’s convergence and behaviorally implausible.

Destination Innovation 167

Instead, random error terms ε must remain �xed from iteration to iteration. The optimization is
then performed as a deterministic search, based on the resulting utilities Unℓq, i.e., an alternative
ℓ for person n; activity q is selected as

argmax
ℓ∈choice set

Unℓq = Vnℓq + εnℓq .

This includes, via the systematic partVnℓq, the disutility of traveling to destination ℓ for activity q.
As stated above, random error terms must remain the same over the iterations (also discussed in

Chapter 49). In physics, this approach would be called “quenched” (sometimes also “frozen”) ran-
domness; all randomness is computed initially and then attached to particles or destinations, rather
than instantaneously generating it, which would be called “annealed” randomness. Two natural
approaches for implementing quenched randomness are as follows:

(a) Freezing the applied global sequence of random numbers, meaning that a Monte Carlo method
with the same random seed is used before and a�er introduction of a policy measure and over
the course of iterations. Thus, error terms should come out the same way before and a�er the
introduction of the policy measure. Di�erences in the outcome can thus be directly attributed
to the policy measure.

(b) Computing and storing a separate εnℓq for every combination of person n, alternative ℓ and
activity q.

Both strategies have �aws. Approach (a) is only an option if one is certain about every single
aspect of the computational code. Literally, one additional random number, drawn in one run,
but not in the other, completely destroys the “quench” for all decisions computed later in the
program. Consistency is thus hard to achieve, especially in parallel or even distributed comput-
ing environments; substantial machinery is necessary to ensure consistent choices. In a modular
environment, as in MATSim, designed for external plugging-in of users’ own modules—possibly
drawing their own random numbers—the danger of destroying the quench is prohibitively high
and thus approach (a) is impractical.

Approach (b) is certainly more robust. However, for large numbers of decision makers and/or
alternatives, storing error terms is di�cult. For destination innovation, one quickly has 106

decision makers and 106 alternatives, resulting in 4 · 1012Byte = 4TB of storage space.
One may argue that this should not be a problem, since a normal person will rarely consider more

than the order of a hundred alternatives in their choice set, reducing the computational problem.
Aside from the necessity of storing every decision maker’s choice set, this converts the compu-
tational problem into a conceptual one, since a good method to generate choice sets then needs
to be found. With more conceptual progress, this may eventually be an option; at this point, a
conceptually simpler approach is preferred.

The solution developed below is generally applicable in econometric microsimulators. The same
stable error term can be re-calculated on the �y by using stable random seeds snℓq = g(kn,kℓ,kq),
containing uniformly distributed random numbers associated with k, ℓ, and q. That is, for each
person n, a random number kn is generated and stored; the same is done with each destination ℓ.
Value for the activity q can be derived from its index in the plan, possibly combined with the
person’s value kn. This reduces the storage space dramatically, from Nq ·Nn ·Nℓ to Nq(Nn +Nℓ),
where Nn is the number of persons or agents and Nℓ is the number of destinations and Nq is
the average number of discretionary activities in an agent’s plan. This means that storage space
is reduced to approximately 2 · 4 · 106Byte = 8MB, which can be easily stored on any modern
machine.

Distribution of these seeds is essentially irrelevant; any error term distribution can be generated
from any basic seed distribution. In the current version, g(kn,kℓ,kq) = (kn + kℓ + kq) × vmax is
used. vmax is the maximum (long) number that can be handled by the speci�c machine.

168 The Multi-Agent Transport Simulation MATSim

To evaluate utility for a person n visiting the destination ℓ for activity q, a sequence of Gumbel-
distributed random numbers seqnℓq is generated on the �y for every person-alternative-activity
combination using the seed snℓq. Some random number generators have problems in the ini-
tial phase of drawing, e.g., the �rst couple of random numbers are correlated or never cover
the complete probability space. As in our procedure, the random number generator is constantly
re-initialized; for these technical reasons, the error term εnℓq is not derived from the �rst element,

but from the mth element of the sequence seqnℓq[m]. Here, m is set to 10. This procedure is valid, as

the set of all mth elements of all di�erent sequences is also a pseudo-random sequence, following
the same distribution as the sequences seqnℓq; clearly, true random number generators relying on
physical phenomena, such as hardware temperature, are not applicable.

27.3.3 Search Space Construction and Evaluation

MATSim destination innovation is based on best-response, rather than random mutation; in every
iteration, the best current alternative, including the εnℓq, is chosen. This works as long as inter-
iteration changes are small, which usually happens, given by the relatively small share of agents who
re-plan. The best-response approach is adopted due to the usually huge number of alternatives in
combination with the search space characteristics. The discrete search landscape is characterized
by random noise, because error terms are not spatially correlated (see Figure 27.1(a)). For such
problems—as opposed to continuous landscapes (see Figure 27.1(b))—e�cient search methods,
such as local search methods, generally do not work.

When searching for the best choice, the large number of alternatives—prohibiting exhaustive
search—is restrained as follows (for the detailed derivation see Horni, 2013, p.51 �.). It is as-
sumed that travel costs are always negative and that a person drops activities with negative net
utility. Then, the maximum potential travel e�ort a person is willing to invest is constrained by the
maximum error term per person and activity. This approach is promising, as very large values for
Gumbel-distributed variables are rare, meaning that a huge space must be searched for only a few
persons.

This search space reduction saves a great deal of computation time; however, it is still unfeasi-
ble and further speed-ups are necessary. Most computation time is due to travel time calculation,
i.e., due to routing, for evaluation of the alternatives in the search space. To reduce these huge rout-
ing costs, the Dijkstra (Dijkstra, 1959) routing algorithm is not only applied forward—providing
one-to-all travel times–but also backwards, using an average estimated arrival time as initial time.
This is an approximation; thus, a probabilistic best response is applied, justi�ed by the assumption
that, during the course of the iterations, the probabilistic choice will reduce the errors incurred by
approximating travel times.

With this procedure, the required computational e�ort is dramatically reduced, allowing appli-
cation of destination innovation to large-scale scenarios.

27.3.4 Destination Choice Set Speci�cation

Choice set speci�cation is natural for choices with few alternatives; but in contrast, for problems
with a large universal choice set, specifying individual choice sets becomes a challenging compu-
tational and behavioral issue. This is particularly true for spatial choices like destination or route
choice (e.g., Pagliara and Timmermans, 2009; Thill, 1992; Schüssler, 2010; Frejinger et al., 2009b).
Estimates are sensitive to choice sets; at the same time, no established choice set de�nition proce-
dure exists for spatial problems. This means that choice sets and, hence, estimates are dependent
on the modeler.

An important extension of the standard discrete choice modeling approach to treat this prob-
lem is formed by stochastic choice set models, founded by Manski (1977); Burnett and Hanson

Destination Innovation 169

travel costs (= disutility)

utility

trip origin
distance

ε

global optimum

(a) Uncorrelated error terms.

travel costs (= disutility)

utility

trip origin
distance

e

global optimum

local optimum

(b) Spatially correlated error terms.

Figure 27.1: Search space: The search algorithm must be able to handle correlated, as well as
uncorrelated, error terms as given by the MNL model. Local search methods, such as hill-
climbing algorithms are only able to handle continuous search spaces; thus, for situation (a),
a best-response global search algorithm is required.

(1979); Burnett (1980); these integrate the choice set formation step into the estimation procedure
by jointly estimating choice set selection and selection of a particular alternative of this choice set
(Manski, 1977; Ben-Akiva and Boccara, 1995). Probabilistic choice set formation is conceptually
appealing; choice sets are, in principle, not restrained a priori by exogenous criteria, as in stan-
dard choice set speci�cation. However, the procedure is generally associated with combinatorial
complexity, making it computationally intractable. As a consequence, practical approaches also
require mechanisms to reduce complexity of the choice set speci�cation problem (e.g., Ben-Akiva
and Boccara, 1995, p.11). Zheng and Guo (2008), for example, make the moderate assumption of
continuous store choice sets (i.e., sets without “holes”) around the trip origin, while Ben-Akiva
and Boccara (1995)’s random-constraints model exploits additional information on alternatives’
availability for individuals.

170 The Multi-Agent Transport Simulation MATSim

In conclusion, the destination innovation set speci�cation problem is still unsolved, meaning
that estimated models can only be fully consistently applied for the region where the model was
estimated. For MATSim, destination choice model estimation e�orts are reported in Horni (2013,
Chapter 5).

27.3.5 Facility Load

The in�uence of interaction in transport infrastructure for people’s route and departure time choice
was recognized almost a century ago (e.g., Pigou, 1920; Knight, 1924; Wardrop, 1952). It can
also be reasonably assumed that agent interaction in activities infrastructure a�ects travel choices
(Axhausen, 2006). Marketing science provides ample evidence that agent interactions in�uence
utility (positively or negatively) of performing an activity (Baker et al., 1994, p.331), (Eroglu and
Harrell, 1986; Eroglu and Machleit, 1990; Eroglu et al., 2005; Harrell et al., 1980; Hui and Bateson,
1991; Pons et al., 2006).

In Horni et al. (2009), based on the Zürich scenario, a model is presented introducing compe-
tition for activity infrastructure space-time slots. The actual load is coupled with time-dependent
capacity restraints.

Activity location load, computed for 15 minute time bins, is derived from events delivered
by the mobsim. The load of one particular iteration, combined with time-dependent activity
location capacity restraints, is considered in the agents’ choice process of the succeeding itera-
tion. In detail, this means that the utility function term Sdur,q, described above, is multiplied by
max(0; 1 − fload penalty), penalizing agents dependent on the load of the location they frequented.
fload penalty is a power function; this has proved to be a good choice for modeling capacity restraints
(remember that the well-known cost-�ow function by U.S. Bureau of Public Roads (1964) is a
power function). To introduce additional activity location heterogeneity, an attractiveness factor
fattractiveness is introduced, de�ned to be logarithmically dependent on the store size given by the
o�cial workplaces census.

Also for demonstration purposes, capacity restraints are exclusively applied to shopping loca-
tions; in principle, leisure activity locations could be handled similarly. However, deriving capacity
restraints for leisure activity locations is expected to be much more di�cult than for shopping loca-
tions, because far less data is available for leisure locations and capacity restraints vary much more
between di�erent leisure locations than between di�erent shopping activities (hiking versus going
to the movies might be a good example).

The model allows assignment of individual time-dependent capacities to the activity locations.
For the sake of demonstration, the capacities of all shopping facilities can be set equal, where their
values can be derived from the shopping trip information given in the Swiss microcensus (Swiss
Federal Statistical O�ce (BFS), 2006). The total daily capacity is set so that the activity locations
located in the Zürich region satisfy the total daily demand with a reserve of 50 %. In detail, the
capacity restraint function for a location l is as follows:

fload penalty,ℓ = αl ·

(

loadℓ

capacityℓ

)βℓ

with αℓ = 1/1.5βℓ , βℓ = 5. fload penalty,ℓ is the penalty factor for location ℓ as described above.
Simultaneous computation of all agents’ score reduction avoids the last-record problem dis-

cussed in Vovsha et al. (2002). There, a sequential choice process is proposed; alternatives are
removed from later travelers’ choice sets if locations are already occupied by earlier travelers.
Thus, travelers’ order is speci�ed arbitrarily; the last-record problem (last travelers must go a long
distance to �nd an available location) is signi�cant when modeling heterogeneous travelers.

As expected, the constrained model improves result quality by reducing the number of implau-
sibly overcrowded activity locations.

Destination Innovation 171

27.4 Application of the Module

The destination innovation module has been successfully applied for the Zürich scenario
(Chapter 56), as reported in Horni (2013, p.99), for the Tel Aviv model (see Chapter 91) and for the
MATSim 2030 project. Figure 27.2 and Figure 27.3 show that, through error term scaling, distance
distributions can be nicely �tted, decreasing count data error.

27.5 The Module in the MATSim Context

The destination innovation module explicitly incorporates unobserved heterogeneity through
random error terms; the standard MATSim utility function, however, does not contain error terms.
Randomness measured in empirical data is included implicitly through the simulation process
stochasticity, including possible randomness in the choice itself. For destination innovation, this
has led to a dramatic underestimation of total travel demand, making inclusion of unobserved
heterogeneity inevitable. Clearly, the problem is the impossibility of making all choices at the same
level; destination choice is conditional on mode choice which, in turn, is conditional on route
choice. Hierarchical choice modeling has clearly showed that randomness, expressed by the logit
model scale parameter, needs to be larger in higher level decisions. This chapter addresses replacing
the need for more randomness in the choice model by directly including randomness into the utility
function; that randomness must be quenched, otherwise the iterative procedure will just average

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Distance [km] (discrete)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

�

�

�

�

�
�

�
�

�

�
�

� �
�

� �

�

�

�

�

�

�

�

�
� �

�
� � � � �

�

�

�

�

�

�

�

� � � �
� �

� � �

Microcensus

ZH with ε
ZH without ε

P
ro

b
a
b

il
it

y

(a) Shopping trips.

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 12 13 14 15

Distance [km] (discrete)

P
ro

b
a

b
il

it
y

0.0

0.1

0.2

0.3

�

�

�

�
� �

�
� �

� �
� � � � �

� � � �
� � � � �

�
� � � �

� �

�

�

�

�
�

� �
�

�
� �

� � � �
� � � � � � � � � � � � �

�

�

�

�

�

�

�
�

� � � �
� � � � � � � � � � � � � � � � � �

Microcensus

ZH with ε

ZH without ε

(b) Leisure trips.

Figure 27.2: Error term runs for the Zürich scenario.

172 The Multi-Agent Transport Simulation MATSim

•

•

•
•

•

R
e

la
ti
ve

 e
rr

o
rs

 p
e

r
lin

k
 [

%
]

−100

−80

−60

−40

−20

0

20

40

60

80

100

no

Figure 27.3: Daily tra�c volumes for 123 links compared to tra�c counts. Per link k the relative
error is used, i.e., (volsimulated,k − volcounted,k)/volcounted,k.

it out. Whether the standard utility function might also pro�t from the innovations made for this
module should be a topic for future research .

MATSim replanning o�ers di�erent strategies to adapt plans, ranging from random mutation
via approximate suggestions to best response answers. Destination innovation is based on best
response to handle the sheer size of the alternatives set.

Although the destination innovation utility function is based on discrete choice framework,
some conceptual di�erences about the common discrete choice models application persist. As
shown above, there is no drawing from discrete choice models, but instead, maximization of an
iteration-stable utility function. The set of alternatives is not necessarily limited a priori; thus, we
use the notion of a search space and not of a choice set here.

27.6 Lessons Learned

Two interesting lessons were learned while developing the destination innovation module: �rst, a
lesson on preferences and space interdependence and the necessity to evaluate them in combina-
tion. When looking at distance distributions (e.g., Figure 27.2) one might think that the functional
form directly represents the preferences, but this is not necessarily the case. In our simulations, it
is the result of a linear travel disutility, but applied in geographic space, where number of oppor-
tunities increases with the square of the radius, in other words, with the square of travel distance.
A similar emergent e�ect appears when scaling random error terms. Although both negative and

Destination Innovation 173

positive error terms are enlarged and the average remains stable, distribution gets more skewed
toward the tail; for agents’ choices, maximum values—not average values—are relevant.

The second lesson concerns simulation results’ variability. Although random elements are
not present only in destination choice, it was the largest contributor of endogenous variability
when it was developed, necessitating the experiments presented by Horni et al. (2011a) (see also
Section 48.4).

27.7 Further Reading

The main information source is Horni et al. (2012b); Horni (2013); technical details and documen-
tation are available at Horni (2016) and in javadoc. Further reading related to destination choice is:
Horni et al. (2013b),for parking, or Horni et al. (2012a), about coupling customers’ and retailers’
choices or, in other words, supply and demand.

CHAPTER 28

Joint Decisions

Thibaut Dubernet

28.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → socnetsim

Invoking the module:

http://matsim.org/javadoc → socnetsim → RunExampleSocialSimulation class

Selected publications:

Dubernet and Axhausen (2013), Dubernet and Axhausen (2014)

This chapter describes the extension of MATSim to consider what we call joint decisions.
Section 28.2 explains what we call a joint decision, and gives an overview of why such processes are
important in transportation. Section 28.3 then presents concepts to model this behavior, a gener-
alization of the MATSim algorithm to search for solutions to the joint planning problem, and gives
technical insights on how this implementation could be achieved, given the MATSim so�ware
architecture.

28.2 Joint Decisions and Transport Systems

28.2.1 Motivation

In recent years, there has been a growing interest in the social dimension of travel and how travel
decisions are in�uenced, not only by the global state of the transportation system, but also by joint
decisions and interactions with social contacts.

How to cite this book chapter:

Dubernet, T. 2016. Joint Decisions. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent

Transport Simulation MATSim, Pp. 175–182. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.28. License: CC-BY 4.0

176 The Multi-Agent Transport Simulation MATSim

A very active �eld of research is the study and modeling of intra-household interactions and
joint decision-making, o�en using the classical random utility framework extended to group
decision-making. Examples of household scheduling models include: Zhang et al. (2005, 2007);
Kato and Matsumoto (2009); Bradley and Vovsha (2005); Gliebe and Koppelman (2005, 2002); Ho
and Mulley (2013); Vovsha and Gupta (2013). Most of those models are speci�c to given household
structures; in particular, separate models need to be estimated for di�erent household sizes.

Another class of approaches, more oriented toward multi-agent simulation than analysis, is the
use of optimization algorithms to generate households plans. These algorithms handle the house-
hold scheduling problem by transforming it into a deterministic utility maximization problem.
Contrary to the previously presented approaches, those alternatives do not lead to the estimation
of a model against data. Examples of approaches rooted in operations research include: Recker
(1995), for which Chow and Recker (2012) designed a calibration method, or Gan and Recker
(2008). Another attempt to generate plans for households uses a genetic algorithm, building on
a previous genetic algorithm for individual plan generation (Charypar and Nagel, 2005; Meister
et al., 2005), using a joint utility. Finally, Liao et al. (2013) formulate the problem of creating sched-
ules for two persons traveling together as �nding the shortest path in a “supernetwork”, but note
that their model is speci�c to the two person problem and that extension to larger numbers of
agents may prove to be computationally expensive. All those approaches remained experimental,
and were not integrated into multi-agent simulation tools.

Another class of methods aiming at multi-agent simulations is constituted rule based systems,
which use heuristic rules to construct household plans, such as Miller et al. (2005); Arentze and
Timmermans (2009).

Other authors have investigated the role of more general social networks on travel. One of the
main incentives to conduct such studies comes from the continuous increase of the share of leisure
purpose trips (Schlich et al., 2004; Axhausen, 2005). This trend represents a challenge for travel
behavior modeling, as those trips are much more di�cult to forecast than commuting trips; they
are performed more sporadically and data from such trips is much more di�cult to collect—
particularly concerning location and event attributes, necessary to make models that are more
than just random noise. A better understanding of how leisure trip destination choices are made
is essential to improve the accuracy of those forecasts.

Various studies have been conducted to con�rm that making social contacts is an important
factor in leisure trip destination choice, or activity duration choice. Examples of empirical work
include: Carrasco and Habib (2009); Habib and Carrasco (2011) or Moore et al. (2013). All these
studies show strong in�uence of social contacts on the spatial and temporal distribution of activi-
ties. In a simulation experiment, Frei (2012) demonstrated that considering social interactions in
leisure location choice helps increase the accuracy of predicted leisure trip distance distribution.

Another �eld of empirical research studies the spatial characteristics of social networks. For
instance, Carrasco et al. (2008) studied the relationship between individual’s socioeconomic char-
acteristics and the spatial distribution of their social contacts. This kind of empirical work allows
speci�cation and estimation of models able to generate synthetic social networks, given sociode-
mographic attributes and home location. An example of such a model, based on the results of a
survey in Switzerland, can be found in Arentze et al. (2012). This kind of model is essential if one
wants to include social network interactions in microsimulation model.

This integration of social networks in multi-agent simulation frameworks has already been
attempted by other authors. Due to their disaggregated description of the world, such models are
particularly well-suited to complex social topologies representation. Han et al. (2011) present ex-
periments using social networks to guide activity location choice set formation in the FEATHERS
(Forecasting Evolutionary Activity-Travel of Households and their Environmental Repercussions)
multi-agent simulation framework. Using a simple scenario with 6 agents forming a clique, they
consider the in�uence of various processes like information exchange and adaptation to the behav-
ior of social contacts to increase the probability of an encounter. They do not, however, represent

Joint Decisions 177

joint decisions, such as the scheduling of a joint activity. The same kind of processes have been
investigated by Hackney (2009), using more complex network topologies (within the MATSim
framework) used in this paper. Ronald et al. (2012); Ma et al. (2011, 2012) present agent based
systems, which integrate joint decision-making mechanisms, based on rule based simulations
of a bargaining processes. They are not yet integrated into any operational mobility simulation
platform.

Those remarks point the need to include explicit coordination in multi-agent simulation
platforms.

28.2.2 The Joint Planning Problem

Here, we present a simulation framework able to represent joint decisions: that is, behavior
requiring explicit coordination between individuals—such as shared rides, social activities or intra-
household task allocation. The basic idea is that social contacts will make such a joint decision if
it results in an improvement in the satisfaction of all participants. Modeling the interaction of
individuals with possibly con�icting objectives has been the subject of game theory for decades,
making this theoretical framework particularly well suited for the problem at hand.

Interestingly, game theoretic view of transportation systems has been popular since the seminal
work of Wardrop (1952). The essential underlying concept is a view of the transportation system
as a set of shared resources (road space, public transport vehicle seats. . .), for which individuals
compete; individuals in the population try to maximize their own satisfaction, given the resources
le� available by others. Game theory studies solution concepts for such strategic interactions. A
game theoretic solution concept is a de�nition of which states are equilibria: that is, stable under
assumption of rationality—a state is considered stable if no agent/player has an incentive to change
its behavior. The static, trip-based approach of Wardrop (1952) has been re�ned and extended with
time. In particular, the equilibrium idea can be quite readily transferred to the activity based frame-
work: individuals try not only to optimize their trips, but their whole day. This is, in particular, the
approach of MATSim (Axhausen, 2006; Nagel and Flötteröd, 2012).

Most solution concepts in transportation are akin to the Nash equilibrium: a state where no
individual can improve its satisfaction by unilaterally changing its behavior. This kind of solution
concept does not allow to represent joint decisions. This can be illustrated by a classical game, called
the House Allocation Problem (Schummer and Vohra, 2007). This game consists of n players and n
houses. Moreover, each player has its individual ordering of the houses, from the most preferred
to the least preferred, and players prefer being allocated alone to any house rather than to a house
occupied by someone else. The strategy of a player centers around the house where the player
chooses to live.

An interesting feature of this game is that any one-to-one allocation of players to houses is a
Nash Equilibrium; no player can improve its payo� by unilaterally changing its strategy, as it would
require choosing an occupied house. This result, however, contradicts basic intuition about the
stability of such an allocation. In this particular case, a more realistic solution concept is theAbsence
of Blocking Coalition; given a one-to-one allocation of houses to players, a blocking coalition is a
set of players which could all be better o� by reallocating their houses among themselves. It should
be noted that both solution concepts correspond to rational agents, i.e., agents having a preference
ordering over outcomes. The only di�erence lies in the degree of communication allowed.

In the activity-based framework, this solution concept naturally becomes what we de�ne as the
Absence of Improving Coalition solution concept. An improving coalition for a given allocation of
daily plans is a set of social contacts who can all feel themselves to be better o� by simultaneously
changing their daily plan—for instance, by switching from separate dinners at home to a joint
dinner at a restaurant. The simulation of joint decision consists of searching an allocation of daily
plans without such coalitions.

178 The Multi-Agent Transport Simulation MATSim

28.3 A Solution Algorithm for the Joint Planning Problem: A Generalization of the
MATSim Process

28.3.1 Algorithm

Given this theoretical framework, one needs to design and implement an algorithm to search for
allocations of daily plans to individuals that satisfy this solution concept. This implementation
consists of two groups of components:

1. A Controler that implements the extension of the MATSim co-evolutionary algorithm, out-
lined herea�er. It is implemented in a modular fashion, to be easily adapted to the speci�c
need of di�erent simulation scenarios and

2. speci�c implementations of the modular components, namely replanning strategies and scor-
ing functions, to allow explore the set of possible joint plans and representations of possible
preferences speci�c to joint decisions.

Controler The MATSimframework provides a Controler to build and con�gure co-evolutionary
algorithms, where agents each optimize their plan given the (evolving) state of the transport system.

Unfortunately, this approach makes choices of agents independent—which, of course, goes
against the simulation of joint decisions. To implement an algorithm searching for states without
blocking coalitions, one needs a way to represent the in�uence of explicit coordination on daily
plan utility. This is solved by including joint plans constraints. A joint plan is a set of individual
plans executed simultaneously. Di�erent copies of the same individual plan can be part of di�er-
ent joint plans—for instance, an agent might go to a given restaurant alone, with members of its
household or with a group of friends. The score of the di�erent copies will take into account the
in�uence of the joint plan to which it pertains. Those joint plan constraints are included using
heuristic rules, applied a�er mutation operators are applied, and are classi�ed as strong or weak
constraints—weak constraints are considered when selecting plans for execution, but are allowed
to be broken when merely selecting plans for mutation. They are then part of the evolution process.
In the current application, the heuristic rules consist of joining newly created plans with joint trips
(strong), or with leisure activities at the same location at the same time (weak).

To allow handling joint plans, replanning needs to be performed for groups of agents. This is
straightforward for households; all agents of the same household are always handled as a single
group. For more general social networks, agents are handled with all agents with whom they have
a joint plan, plus some social contacts with whom new joint plans can be created.

For each group, two actions are then possible. For most groups, an allocation of existing plans—
ful�lling the joint plans constraints—is selected for execution. Based on plan scores, randomized
by adding an extreme value distributed error term, an algorithm inspired by the “Top Trading
Cycle” algorithm used for the “House Allocation Problem” (Schummer and Vohra, 2007) searches
for an allocation without improving coalitions.

For the other groups, a plan allocation is selected and copied. The copied plans then undertake
mutation, to make the agents explore new alternative joint plans. Which mutation is performed
determines which alternative plans will be tried out by the agent.

Agents have a limited memory size, keeping by default at most three plans per joint plan com-
position, and ten plans in total. If this limit is exceeded, one should keep the plans which have
the highest probability of creating improving coalition: that is, preferable to the other plans in the
agent’s memory. To this end, a lexicographic ordering is used; the process removes the joint plan
maximizing the number of individual plans which are the worst of the agents’ memories. If several
joint plans have the same number of worst plans, the process chooses among them to �nd the joint
plan which maximizes the number of second worst plans, and so on, until the “worst” joint plan
is unique. When the overall maximum number of plans in the memory of an agent is reached, the
worst individual plan for this agent is removed along with plans of other agents of the same joint

Joint Decisions 179

plan. Each agent keeps at least one plan that is not part of a joint plan, as there might otherwise be
no state without blocking coalitions. Agents are parsed in random order, to avoid the emergence of
“dictators” over iterations, whose worst plan would always be removed, even if it is the only “bad”
plan of a joint plan.

Though those selection operators seem to be in accordance with the chosen solution concept,
it is di�cult, if not impossible, to prove that the process will actually converge towards the state
searched. As noted by Ficici et al. (2005), when they perform a theoretical analysis of di�erent se-
lection methods in a co-evolutionary context, “co-evolutionary dynamics are notoriously complex.
To focus on our attention on selection dynamics, we will use a simple evolutionary game-theoretic
framework to eliminate confounding factors such as those related to genetic variation, noisy val-
uation, and �nite population size”. Those “confounding factors” can, however, not be eliminated
from an actual implementation of a co-evolutionary algorithm; rigorously proving that a given
algorithm actually implements a speci�c solution concept is very tedious, if not impossible.

With iterations, agents build a choice set of daily plans that becomes better and better, given the
actions of the other agents. However, the presence of a large group of agents with plans resulting
from random mutation creates noise, not only for the analyst looking at the output of the simula-
tion, but for the agents themselves when they compute their score plans. To solve this issue, when
the system reaches a stable state, agents stop performing mutation, and select plans only from their
memory for a given number of iterations, using the absence of improving coalition with random-
ized scores. This ensures that the selected plans are the result of a behavioral model, rather than
the result of random mutation operators.

28.3.2 Technical Considerations on the Implementation

As highlighted in Chapter 45, the preferred way to add new behaviors to the MATSim so�ware is
by designing pluggable elements, that can be added to a Controler from a con�guring “script”.

This modular approach works well in most of the cases used and makes it possible to combine
di�erent elements and design highly speci�c runs. There is, however, an element that one cannot
modify this way: the general form of the evolutionary process. This process is exactly what has
to be modi�ed to include joint decisions—this section focuses on the challenges and solutions to
undertaking such a major modi�cation, as a reference from developers facing this exact problem.

The one important modi�cation of the process: in the standard MATSim process, replanning is
performed independently for each agent, whereas for joint decisions, agents must be replanned
as groups: selection of plans needs to ful�ll joint plan constraints and is performed using the
group-level “absence of improving coalition” criterion, and mutation operators are allowed to work
on several plans at the same time, for instance to insert joint trips, or select the location of a joint
activity.

Doing so requires the replacement of the ReplanningListener, that is, the element responsible for
managing the whole replanning step. This can only be done by implementing a separate Controler.

Modularity was kept as high as possible, in particular by providing standard ways to use the
default individual-based replanning modules from this new element.

28.4 Selected Results

This section presents a few simulation results demonstrating how the approach can help improve
simulation results. It uses a scenario using 2010 data, with a leisure contacts network generated
using the approach of Arentze et al. (2013).

Speci�c replanning modules include: inclusion and removal of joint trips (by joining existing
trips), and joint location choice for leisure activities. A speci�c scoring term is added to consider
the preference for joint activities; individuals want to perform leisure activities with at least one
social contact. Leisure time passed without any contact is penalized.

180 The Multi-Agent Transport Simulation MATSim

Figure 28.1 presents the repartition of “car passenger” trips by purpose, in the simulation as well
as the Swiss National Travel Survey. The simulation is able to re�ect the fact that most trips are

Destination Type

O
ri

g
in

 T
y
p

e

education home leisure shop work all

e
d

u
c
a

ti
o

n
h

o
m

e
le

is
u

re
s
h

o
p

w
o

rk
a

ll

 0.02 % 1.02 % 1.59 % 0.04 % 0.00 % 2.68 %

 1.37 % 1.33 % 26.56 % 3.10 % 4.27 % 36.63 %

 0.61 % 33.38 % 1.57 % 4.71 % 3.25 % 43.52 %

 0.02 % 2.68 % 4.12 % 0.13 % 0.20 % 7.15 %

 0.04 % 2.29 % 6.89 % 0.48 % 0.31 % 10.01 %

 2.07 % 40.71 % 40.73 % 8.46 % 8.02 % 100.00 %

(a) Simulation.

Destination Type

O
ri

g
in

 T
y
p
e

education home leisure shop work all

e
d
u
c
a
ti
o
n

h
o
m

e
le

is
u
re

s
h
o
p

w
o
rk

a
ll

 0.09 % 2.80 % 0.92 % 0.12 % 0.09 % 4.03 %

 3.64 % 0.00 % 21.45 % 6.60 % 8.21 % 39.90 %

 0.26 % 26.23 % 4.26 % 1.18 % 1.91 % 33.84 %

 0.00 % 7.12 % 1.45 % 0.39 % 0.41 % 9.38 %

 0.06 % 7.59 % 2.91 % 0.83 % 1.47 % 12.86 %

 4.04 % 43.74 % 30.99 % 9.13 % 12.09 % 100.00 %

 0.09 % 2.80 % 0.92 % 0.12 % 0.09 % 4.03 %

 3.64 % 0.00 % 21.45 % 6.60 % 8.21 % 39.90 %

 0.26 % 26.23 % 4.26 % 1.18 % 1.91 % 33.84 %

 0.00 % 7.12 % 1.45 % 0.39 % 0.41 % 9.38 %

 0.06 % 7.59 % 2.91 % 0.83 % 1.47 % 12.86 %

 4.04 % 43.74 % 30.99 % 9.13 % 12.09 % 100.00 %

(b) National Travel Survey.

Figure 28.1: Share of passenger trips by purpose.

Joint Decisions 181

leisure other

0

5000

10000

0

5000

10000

le
is

u
re

o
th

e
r

group nogroup NTS group nogroup NTS

run id

tr
ip

 l
e

n
g

th
 (

m
)

Figure 28.2: Car passenger travel distance to leisure activities.

performed for leisure purposes. Figure 28.2 shows the distance distribution of car passenger trips by
purpose, with preference for group activities enabled or not, as well as in the “Swiss National Travel
Survey”. The preference for joint activities certainly encourages individuals to travel together for
leisure, without waiting for each other, resulting in distance distributions much closer to the “Swiss
National Travel Survey” data with this parameter than without.

28.5 Further Reading

The work presented in this chapter has been described in more detail in various other papers.
Dubernet and Axhausen (2013) presents an early stage of the algorithm, applied to a toy scenario.
Dubernet and Axhausen (2014) provides more theoretical ground, making more explicit refer-
ence to game theory and compares two solution concepts for solving joint planning problems in the
household case: �rst,the absence of improving coalition presented here and second, a “joint util-
ity” formulation, well-represented in literature. Dubernet and Axhausen (forthcoming) presents a
validation of the model for the household case, using a Zürich scenario. An independent approach
to model household choices developed for the Baoding scenario is presented in Chapter 61.

CHAPTER 29

Socnetgen

Kai Nagel

29.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → socnetgen

Invoking the module:

http://matsim.org/javadoc → socnetgen → RunErgmSimulator class

Selected publications:

Illenberger (2012)

29.2 Summary

This package contains algorithms to generate social networks that may be used on top of the
MATSim population. It pre-dates the work by Dubernet presented in Chapter 28. The approach in
socnetgen is much more lightweight than that of Chapter 28, but it also does nothing beyond just
generating the social network according to given statistical criteria.

How to cite this book chapter:

Nagel, K. 2016. Socnetgen. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport

Simulation MATSim, Pp. 183–184. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.29.

License: CC-BY 4.0

SUBPART SEVEN

Within-Day Replanning

CHAPTER 30

Within-Day Replanning

Christoph Dobler and Kai Nagel

30.1 Basic Information

30.1.1 Implementation Alternative 1

Entry point to documentation:

http://matsim.org/extensions → withinday

Invoking the module:

http://matsim.org/javadoc → tutorial → RunWithinDayExample class

Selected publications:

See Section 30.4.2.

30.1.2 Implementation Alternative 2

Entry point to documentation:

http://matsim.org/extensions → withinday

Invoking the module:

http://matsim.org/javadoc → tutorial → RunOwnMobsimAgentUsingRouter class

Selected publications:

See Section 30.4.3.

How to cite this book chapter:

Dobler, C and Nagel, K. 2016. Within-Day Replanning. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 187–200. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.30. License: CC-BY 4.0

188 The Multi-Agent Transport Simulation MATSim

30.2 Introduction

In recent years, transport planning and tra�c management interest in unforeseeable, or only par-
tially foreseeable events within scenarios has increased. Partially foreseeable events o�en occur
with taxis and car sharing. For example, agents with a planned taxi trip cannot know in advance
which taxi will be available when they need one. When using car sharing, an agent might walk
to the car sharing station and check whether a car is available or not. If it is not, the agent could
either decide to wait, or change its plan and switch to another transportation mode. Road acci-
dents, terrorist attacks or disasters such as earthquakes are examples of completely unpredictable
events.

As discussed earlier, traditional simulation approaches (used in default-MATSim) calculate
demand-supply equilibria using an iterative process. There, it is assumed that a typical situation
is simulated where agents can rely on their experience from comparable situations, like previous
iterations. Applying an iterative approach to a scenario with unexpected events results in prob-
lems like illogical agent behavior, producing false results. In the next section, these problems, as
well as an alternative simulation approach, are presented. On one hand, this approach—called
within-day replanning—simulates only a single iteration, avoiding problems resulting from an
iterative simulation process. On the other hand, this approach does require a more detailed be-
havioral model for the agents. Subsequently, using MATSim as a base, the iterative approach is
discussed, followed by two di�erent implementations of the within-day replanning approach into
the framework, including discussions of the technical implementations.

30.3 Simulation Approaches

30.3.1 Iterative Simulation Approaches

An iterative day-to-day replanning approach is appropriate as long as the scenario describes a typi-
cal situation or day. For such scenarios, it is feasible to assume that agents are familiar with typically
occurring events like tra�c jams during peak hours. Therefore, they try to avoid driving during
those times, or use alternative routes with less tra�c. However, if the scenario contains unexpected
events that the agents cannot foresee, e.g., accidents or heavy weather conditions, using an iterative
approach is not an appropriate choice. First, a user equilibrium will not be reached in such a sce-
nario because agents do not have enough information to choose optimal routes and daily activity
plans. Another problem is the optimization process itself. Even if an agent chooses its routes ran-
domly due to a lack of information, it will eventually �nd a good route if it tries enough di�erent
routes.

Figure 30.1 shows a simple example scenario where an iterative approach would produce illogical
and faulty results. In Figure 30.1(a), an agent’s planned route in a sample network is shown, includ-
ing the times when the driver passes each node of the route. Clearly, those times are only valid if
no exceptional event occurs. Figure 30.1(b) shows a link where an event, like an accident, blocks
that link for two hours. As a result, the agent reaches its destination two hours later than expected
(Figure 30.1(c)). When this scenario is iterated, the agent recognizes that its route has a much
higher travel time than expected and therefore it will choose another route. The tra�c jam caused
by the accident will probably also increase travel times on links next to the blocked link. Therefore,
the agent might �nd a route which is quite di�erent than the original one (Figure 30.1(d)). A closer
look at the node where the new route deviates for the �rst time from the original one shows that
this occurs even before the accident happened, which is unfeasible and illogical.

An obvious solution to avoiding such problems is using an alternative simulation approach
without an iterative optimization process. The next section discusses such an approach and the
requirements that must be ful�lled.

Within-Day Replanning 189

(a) Network with planned route.

(b) Network with exceptional event.

30.3.2 Within-Day Replanning Approach

A within-day replanning approach uses a signi�cantly di�erent strategy from that of an iterative
approach. Instead of multiple iterations, only a single one is simulated. Thus, it is now essential
that agents can adapt their plans during this iteration without having information from previous

(c) Network with exceptional event and

planned route.

(d) Network with exceptional event and

adapted route.

Figure 30.1: Exceptional event in a network.

190 The Multi-Agent Transport Simulation MATSim

iterations available. To do so, they have to continuously collect information and take into account
their desires, beliefs and intentions when they decide how to (re)act.

While iterative approaches can use best-response modules, a within-day approach has to use
something that might be called a best-guess module. Travel times are an obvious example. In an it-
erative approach, travel times can be collected from the previous iteration or even be averaged over
several past iterations. The nearer a stable system is to a relaxed state, the smaller the di�erences in
travel times between two iterations. This is not possible in a within-day approach. Even if an agent
has perfect knowledge, it can only assume how the tra�c �ows will evolve in the future. To do so,
it can take di�erent information into account to estimate travel times. It could, for example, take
travel times from a typical day without exceptional events and combine them with information it
gathers during the simulated day. Depending on the amount and the quality of this information,
the agent might rely more or less on its experience.

Therefore, the decision-making process of an agent becomes an important topic. In an itera-
tive approach, each agent has total information and can thus select the best route. Due to limited
available information, this is not possible in a within-day approach. One agent could, for example,
choose a route where expected travel time is very short, but also very uncertain. Another agent
might not be willing to take that risk and therefore select a longer route where the assumed travel
time is more reliable. Perception of information might also vary between agents; one could rely on
media tra�c information, another might ignore it.

Each within-day replanning action is categorized by two parameters—the replanned element of
the plan (an activity or a trip) and the point in time when the replanned plan element is executed
(right now or at a future point in time). If an activity is replanned, several changes are possible.
Its start and end time can be adapted, its location can be changed, it can be dropped, or created
new from scratch. For a trip, origin and destination, route, mode of transport and departure time
can be replanned. O�en replanning one single plan element results in a chain reaction that forces
replanning of other plan elements. If, for example, an activity is dropped, the trips from and to this
activity have to be merged.

The second parameter categorizing a replanning action depends on when the replanned plan
element is executed. This could be either the currently performed plan element or one being per-
formed in the future. Clearly, in a currently performed plan element, not all previously mentioned
replanning actions could be conducted, e.g., start time of an activity or transport mode of a trip
currently being performed can no longer be adapted.

Due to the limited available information, a within-day replanning approach will, in contrast to
an iterative approach, not converge to a user equilibrium. Decisions made during the simulated
time period may seem to be optimal when they are made. However, evaluated retrospectively, an
agent might realize that they were not.

Figure 30.2 shows how within-day replanning can be integrated into MATSim’s iterative
optimization loop. An additional block builds another (inner) loop with the mobility simulation.
Depending on the type of simulated scenario, the outer loop can be skipped.

30.3.3 Combined Approaches

An alternative to iterative, or within-day replanning only approaches, is to combine them. An ob-
vious application is solving situations that cannot be planned exactly in advance, like parking or
car sharing. An agent is, for example, able to plan a parking activity, but it cannot anticipate which
parking spots will be available when the agent arrives. Thus, within-day replanning can be used
when the agent starts its parking choice.

Other agents might want to share their cars, so an actual meeting must be con�rmed. This can
be ensured using within-day replanning. If the driver arrives too early, a waiting activity is added
to its plan; otherwise the agent being picked up will perform a waiting activity until the car arrives.

Within-Day Replanning 191

scoring
initial

demand

execution

(simulation)
analyses

replanning

within-day

replanning

Figure 30.2: (Iterative) within-day replanning MATSim loop.

30.4 Implementation

30.4.1 General Thoughts

Within-day or en-route replanning means that travelers replan during the day or while they are
on their route. This means that the simulation needs to �nd some way to in�uence the agent while
the mobsim (network loading) is running. For the MATSim main network loading module, the
so-called QSim, this could be achieved by inserting an agent-loop, as follows:

void doSimStep () {

for (each agent) { // <-- agent loop

agent.doSimStep () ;

}

for (each link) {

link.doSimStep () ;

}

for (each node) {

node.doSimStep () ;

}

}

In this loop, each agent has the chance to deliberate in every time step. Clearly, the agent can decide
that he/she has nothing to deliberate and return immediately.

Such an approach does, however, lead to computational challenges. Going through all links and
nodes in every time step is already an expensive operation and a number of e�ciency improve-
ments (such as “switching o� non-active links”) are contained in the code. Also, the number of
links or nodes is typically an order of magnitude smaller than the number of synthetic persons in
a scenario. Thus, some massive optimization would have to be undertaken in order to make the
above approach computationally e�cient.

An alternative approach to the above is to ask each agent only when a decision needs to be made.
The most important decision for a driver is to chose the next link, i.e.,

class MyDriverAgent implements DriverAgent {

...

@Override

public Id<Link > chooseNextLink () {

<algorithm to determine ID of next link >

return nextLinkId ;

}

}

192 The Multi-Agent Transport Simulation MATSim

Similar implementations are needed for all other queries that could be asked of the agent, for
example:

• Should the trip end on the current link?
• Should the agent get o� at the current stop?
• What is the ID of the vehicle to be used for a trip?

From the agent’s perspective, such an approach might be called event driven, since the agent
performs only mental activity at such events.

There is, indeed, a mechanism to program such agents and to insert them into the QSim. This is
discussed in more detail in Section 30.4.3.

A challenge inherent in that approach is that the complete agent needs to be re-programmed.
This agent needs to have enough capabilities to be oriented about itself; for example, it needs to be
able to compute plausible routes.

On the other hand, there are situations where the capability to decide the turn at each intersection
while en-route is, in fact, not needed. For example, for typical evacuation applications, it makes
sense to start all agents on their normal daily plans. When an emergency warning is distributed, the
simulation can go once through all agents and decide how they react. This will be done by replacing
some, or all, future elements of the current plan. In some applications, this may happen more than
once; for example, if recommended evacuation directions change because of a shi� in the wind. In
other applications, evacuating agents could become stuck in unexpected congestion which might
trigger en-route re-routing. This may, however, be restricted to relatively small regions, and it may
be su�cient to go through such a replanning loop, perhaps every 300 simulated seconds.

For such applications, the plan-based approach (Section 30.4.2) is more suitable. Rather than
having each agent answering certain queries in every time step or at every intersection, the plan-
based approach �rst waits for a trigger (such as an emergency warning, or unexpected congestion),
then decides on the a�ected agents, then goes through those agents and changes the future part of
their plans. This is not only conceptually easier than having every agent answer for him-/herself,
but it is also computationally more e�cient, since it is only called when it is triggered and impacts
only the a�ected agents.

Overall, implementers and users will have to balance their needs. If there are relatively few times
when agents should re-plan, and these times can be easily identi�ed by, i.e., corresponding to an
emergency signal, then this is an indicator for the plan-based approach. If, on the other hand, an
agent goes into the simulation mostly or entirely without a plan, like an entirely reactive taxi driver,
then this speaks for replacing the agent.

MATSim provides infrastructure for both approaches. The plan-based approach currently pro-
vides more support infrastructure, i.e., many important use cases can be implemented by re-using
existing methods. The approach that replaces the agent, in contrast, provides more �exibility. In
particular, it allows agents to make decisions at the latest possible time without additional computa-
tional overhead. While this is not entirely realistic behaviorally, such an approach is o�en desirable
from a simulation perspective, where one does not want reproducibility of simulations depend on,
e.g., random elements such as how far an agent plans ahead.

30.4.2 Implementation Alternative 1: Plan-Based Implementation

When adding within-day replanning to MATSim, its iterative loop (see Figure 1.1) has to be
adapted as shown in Figure 30.2. On one hand, the additional within-day replanning module is
added, which interacts with the mobsim. On the other hand, multiple iterations are only necessary
if a combined simulation approach is used.

Within-Day Replanning 193

The implementation is realized as so-called MobsimEngine which can be plugged into the QSim.
In every simulated time step, the QSim iterates over all registered MobsimEngines and allows them
to simulate the current time step. Besides simulation of the tra�c �ows, those engines are also able
to let agents start or end activities. The engine containing the within-day replanning logic (called
WithinDayEngine) does not simulate tra�c �ows, but tracks agents and adapts their plans. Doing
so is separated into two steps. First, agents whose plans have to be adapted in the current time step
are identi�ed. In a second step, the adaption of their plans is performed.

Figure 30.3 shows the structure of the WithinDayEngine. Multiple Replanners can be registered to
the engine. Each Replanner represents a unique replanning strategy like re-routing or time muta-
tion and uses a set of AgentSelectors that communicate with agents and select those who are given
the opportunity to adapt their plans. An AgentSelector can be seen as an information-distributing
unit, like a radio station or a policeman. Therefore, not every AgentSelector communicates with all
agents. For example, agents at home will probably listen to the radio, but agents walking in the park
will not. Each AgentSelector returns a list of agents to its superior Replanner, which then adapts
those agents’ plans.

Responsibilities are divided between Replanners and AgentSelectors. The �rst ones are
responsible for adapting the agents’ plans, but they should not check whether an agent should
be replanned or not. If, for example, a Replanner updates an agent’s route, it has to be ensured by
the AgentSelectors that only agents who are currently performing a leg are replanned. In turn,
AgentSelectors should select agents who have to be replanned but should not change their plans.
As a result of this division, the o�en time-consuming replanning of the agents’ plans can be per-
formed using parallel threads, which leads to an almost linear speed-up. In general, simulation
results do not depend on the order in which agents are replanned. Replanners which use random

Within-day

Engine

Replanner Replanner

Identifier Identifier Identifier

Identified for replanning: yes no

Figure 30.3: WithinDayEngine.

194 The Multi-Agent Transport Simulation MATSim

numbers are a special case. In the present implementation, their random number generator is re-
initialized for every replanned agent, using a deterministic value (e.g., a combination of the agent’s
ID and the current time step). On one hand, this ensures that an agent’s decisions can be reproduced
even when the global sequence of random numbers changes. On the other hand, the simulation
outcomes do not change if the number of threads used for the replanning is changed.

Running the AgentSelector(s) to select those agents who have to adapt their plans is performed
sequentially. On one hand, an AgentSelector’s runtime is typically very short and therefore no sig-
ni�cant performance losses are expected. On the other hand, this makes the design robust so it
cannot produce race conditions which could occur if multiple instances of an AgentSelector run
concurrently. An example would be an AgentSelector, which selects agents on household level,
i.e., if a member of a household is identi�ed, also all other members are added to the list of agents
who have to be replanned. In an approach with parallel running instances of an AgentSelector, an
instance could identify member “A” of a household while concurrently another instance could iden-
tify member “B” of the same household. As a result, the household’s members would be duplicated
in the list of agents to be replanned—once added by each AgentSelector instance.
Replanner implementations are available for any basic change of an agent’s scheduled daily plan.

All trips and activities can be adapted, although some replanning operations are not available when
trip or activity has already been started. Possible adaptations are:

• current trip (route, destination),
• future trip (add, remove, mode, route, origin, destination),
• current activity (end time), or
• future activity (add, remove, location, type, start and end time).

For complex plan adaptations, those basic Replanners can be combined. If, for example, an agent
currently performing a trip changes the destination of its next activity, routes of the current and
next trip must be adapted.

Additionally, four basic AgentSelectors have been implemented so far. They identify agents,
which are...

• performing an activity,
• performing an activity which will end in the current time step,
• performing a trip, or
• performing a trip and are going to move to another link.

O�en, only a subset of the population, e.g., only male agents, or agents currently traveling in
a car, needs to be identi�ed. To prevent that the same functionality having to be implemented
multiple times, so-called AgentFilters are introduced. Their task is to remove agents not meeting
the �lter criteria from an agent set. Using AgentFilters not only avoids duplicated code, but can
also reduce computation e�ort: for example, two AgentSelectorswhich should identify only agents
currently traveling in a certain part of the network. Without AgentFilters, each of them would
have to track all traveling agents and their current positions. When this functionality is moved to
an AgentFilter, the two AgentSelectors can share a single instance of that �lter.

Basically, simple and re-usable functionality should be implemented as AgentFilters, while
more complex and/or decision-making functionality should be part of an AgentSelector. Again,
an example: e.g., a scenario modeling the search for a parking space: a �lter can be utilized to take
only agents currently traveling by car into account. The AgentSelector solves the more complex
tasks, such as deciding when the agent starts its search, or selecting the searching strategy to be
applied.

Within-Day Replanning 195

Three basic AgentFilters have been implemented so far. They �lter agents which are not...

• part of a prede�ned agent set,
• currently using a transport mode included in a given set, or
• currently located on a link included in a prede�ned set.

In addition to the logic identifying agents and adapting their plans, another important within-
day replanning framework component is code that continuously collects information and provides
it to the AgentSelectors. These decide,based on that data, whether agents are replanned or not. In
a time step-based approach—as realized by the QSim—collecting, analyzing and aggregating data,
as well as providing it, can be easily realized. Figure 30.4 shows the structure of a QSim’s time step.
Each time step is separated into three phases:
Phase 1:

before time step

Phase 2:

do sim step

Phase 3:

after time step

During phase 2 all registered MobsimEngines simulate the current time step. Phases 1 and 3 allow
code execution before or a�er simulation of the current time step. A class can collect data such as
link travel times during phase 2. phase. Then, the collected data can be analyzed and aggregated
in phase 3. In the next time step, the WithinDayEngine’s AgentSelectors can use that data for their
decisions. The WithinDayEngine is always the �rst MobsimEngine executing its doSimStep method,
ensuring that no agent has changed its status since phase 3 of the previous time step. As a result,
the AgentSelectors make their decisions on current data.

ti
m

e
 s

te
p

QSim - doSimStep

Travel Time

Collector

Within-day

Engine

d
o

S
im

S
te

p

All other

Mobsim Engines

before

time step

after

time step

New Module

Existing Module

Figure 30.4: QSim time step.

196 The Multi-Agent Transport Simulation MATSim

ti
m

e
 s

te
p

after

time step

Travel Time Collectorbefore

time step

do

sim step
collect link travel times

remove too old travel times

calculate average travel times

Figure 30.5: TravelTimeCollector.

An example of this type of class is the so-called TravelTimeCollector. It provides actual link
travel times to the Replanners by collecting and averaging travel times of agents that have recently
passed a link during a given time. A typical time span is 15 minutes; older link travel times are
ignored. Speci�c time span duration has an important impact on travel times reported to the
Replanners. On one hand, signi�cant changes in link travel times will be communicated very
slowly, if the time span is too long. On the other hand, a too short duration will overrate outliers.

The TravelTimeCollector is a simple, but e�cient, implementation of a within-day travel time
calculator. It does not incorporate features like tra�c �ow predictions or dynamic recent travel
times weighting based on historic data. Because it does not factor in such features, it is very robust,
even in scenarios where tra�c �ow conditions change dramatically.

The current MATSim code di�erentiates between Person and MobsimAgent. Person can be seen
as a very simple Q-learning entity, possessing multiple Plans (“actions”), each with an expected
score updated with every plan run. Thus, a Person is consistent over the iterations; in fact, the
internal state of each Person is written to �le at the end of the iterations. MobsimAgent, in contrast,
is instantiated every time the QSim is called, and does not exist beyond the QSim running time. A
MobsimAgent is essentially reactive, queried by the framework about decisions when approaching
intersections, arrival points, or public transit stops. In the standard implementation, these queries
are answered by the plan, but other implementations can be used and/or additional MobsimAgents
can be added which do not correspond to Persons.

This leads to a question; should within-day adaptations to the Plan be passed through to the
Person? Let us call the actual trajectory through the system the “executed plan”. This can be di�erent
from the original plan, i.e., a di�erent route, di�erent departure times, di�erent modes, etc. The
original plan cannot just be replaced by the executed plan, since it is not clear that the executed
plan, when used as input, will have itself as expected output. In consequence, it is not possible to
treat the executed plan together with the just-obtained score as an action-value pair in the sense of
Q-learning, since the score was obtained from the original plan, not from the executed plan.

As a result, the code uses a copy of the original plan and modi�es the copy. The score, however,
is given to the original plan. The implementation is able to also memorize the executed plan and
add it to the set of plans. This functionality, however, is experimental.

In certain situations, setting the original to the executed plan clearly does not make sense; a
parking search is one (Waraich et al., 2013c, 2012).

A person’s plan contains, as destination, the location where a free parking space is expected.
However, if the agent realizes in the mobility simulation that there is no free space le�, it starts
looking for a free parking spot. As a result, the agent’s route is extended. This extension has to

Within-Day Replanning 197

be local in the agent’s route, since it is only necessary in the current iteration and probably not in
another one, where the initially selected parking spot is available.

Capabilities of this within-day replanning implementation are shown and discussed by Dobler
(2013), based on two sets of experiments. The �rst set is based on a model of Zürich city, where
it is assumed that capacities of several city-center arterial roads are drastically reduced during the
morning peak. Traveling agents are given the opportunity to bypass the resulting tra�c jams by
adapting their routes, using within-day replanning. As a result, average travel time of an agent
a�ected by the incident is reduced from 42 to 23 minutes. Also interesting is that even if only 50 %
of the population adapts its routes, average travel times are reduced to 25 minutes.

The second set of experiments uses within-day replanning to create agents’ initial routes. The
results are compared to runs where routes are created before the simulation starts, without tra�c
�ow information. Results indicate that agents’ average travel times are already very close to the
values in a relaxed state. When using MATSim’s traditional approach, 10 to 15 iterations must be
performed before average travel times reach this level.

30.4.3 Implementation Alternative 2: Replacing the Agent

According to Russel and Norvig (2010), an agent is “anything that can be viewed as perceiving
its environment through sensors and acting upon that environment through e�ectors.” As stated
above, MATSim has agents on two levels:

• Person is a Q-learning agent that is persistent over the iterations.
• MobsimAgent is a reactive agent that only exists during the mobsim.

For the Q-learning agent, perception works through the events; i.e., events are used to com-
pute the score, build mental models to generate alternatives, etc. Acting on the environment works
through plan selection.

For the reactive agent, perception works more directly through callback methods, such as the
simulation notifying the agent it has just moved through an intersection. Acting on the envi-
ronment works through making decisions at decision points, e.g., about turning directions at
intersections, or whether to board a certain bus.

As discussed, the approach described in Section 30.4.2 assumes that the reactive agent still
has followed (and generally follows) a plan. There may, however, be situations where this is in-
appropriate: for example, when the agent makes up the route as it goes, or when one wants to
investigate models where each agent has its own perception and deliberation, rather than some
external algorithm modifying its plan. As also mentioned earlier, there is no clear rule governing
when and where an approach is better; it depends both on both project requirements and on the
developer’s personal preferences. Here, with this in mind, we will look at MobsimAgents that no
longer have a pre-computed plan, but make decisions as they go. There is also a class DynAgent,
which wraps around MobsimAgent, making it easier to use and providing additional infrastructure
(Section 23.4).

30.4.3.1 Agent Interface

The DriverAgent interface structurally looks as follows:

• Id chooseNextLinkId()—agent is asked at intersections and needs to return how to proceed.
• boolean isWantingToArriveOnCurrentLink()—agent is asked if it wants to arrive on the current

link.
• void notifyMoveOverNode(Id newLinkId)—agent is noti�ed that it has traversed the intersec-

tion and entered a new link.

198 The Multi-Agent Transport Simulation MATSim

The rest comprises relatively simple bookkeeping methods like getId()—the agent needs to know
its own identi�er.

If it is assumed that the agent does not only replan en-route, but also while at activities, then the
MobsimAgent interface also must be implemented. This is a bit more involved; important methods
are:

• endLegAndComputeNextState(...)—agent is noti�ed that the current transport leg has ended,
and the agent internally needs to decide how to continue.

• endActivityAndComputeNextState(...)—agent is noti�ed that current activity has ended; the
agent internally needs to decide how to continue.

• setStateToAbort(...)—if a leg or an activity was not ended cleanly: this could happen if
chooseNextLinkId() returns a link that is not outgoing from the current node.1

• getState()—agent needs to return its current state, which essentially either returns ACTIVITY

or LEG; most important here is that the framework obtains information about whether the agent
wants to start a new activity or leg.

Again, everything else concerns bookkeeping methods.

30.4.3.2 Agent Insertion

The code accepts several ways to insert such a self-programmed MobsimAgent into the code, but the
preferred method is using the AgentSource interface, as follows:2

class MyAgentSource implements AgentSource {

// constructor

MyAgentSource (Guidance guidance) {

...

}

public void insertAgentsIntoMobsim () {

// insert agent:

MobsimAgent ag = new MyMobsimAgent(guidance) ;

qsim.insertAgentIntoMobsim(ag) ;

// insert vehicle:

// ...

qsim.createAndParkVehicleOnLink(veh , linkId);

}

}

Guidance helps the agent with making decisions, see below.

30.4.3.3 Perception, Decision, Integration

The agents somehow need to perceive their environment. The simulation tells the agent where it
is, via notifyMoveOverNode(Id<Link> nextLinkId). In general, however, this will not be su�cient.
For example, the agent may want to be informed about congestion, or evacuation directions.

A general way to achieve this is to use the Events channel.
We would probably suggest separating observer, guidance, and the agent itself.

1 Despite the name of the method, the agent can recover.
2 See http://matsim.org/javadoc → main distribution → the AgentSource class for a pointer to a working code

example.

Within-Day Replanning 199

Observer The observer would probably listen to events:

class MyObserver implements BasicEventHandler {

@Override

public void handleEvent(Event event) {

... // memorize information

}

...

}

For working code, see http://matsim.org/javadoc → main distribution →

RunOwnMobsimAgentWithPerception class and related.

Guidance A guidance object might give advice to agents. It could, for example, be designed as
follows:

class MyGuidance {

MyGuidance(MyObserver observer) {

...

}

Id<Link > chooseNextLinkId(Id<Link > currentLinkId) {

... // compute and return decision

}

}

For working code, see http://matsim.org/javadoc → main distribution →

RunOwnMobsimAgentWithPerception class and related.

Agent The agent needs access to the guidance object:

class MyAgent implements MobsimDriverAgent {

MyGuidance guidance ;

MyAgent(MyGuidance guidance) {

this.guidance = guidance ;

}

...

@Override

Id<Link > chooseNextLinkId () {

return this.guidance.chooseNextLinkId(this.currentLinkId) ;

}

...

}

For working code, see http://matsim.org/javadoc → main distribution →

RunOwnMobsimAgentWithPerception class and related.

Control script This would be plugged together by a variant of the following script:

Controler ctrl = ... ;

...

// create observer object:

MyObserver observer = new MyObserver () ;

// add into events channel:

ctrl.addEventsHandler(observer) ;

// create guidance object:

MyGuidance guidance = new MyGuidance(observer) ;

// create mobsim factory and set into controler:

ctrl.setMobsimFactory(new MobsimFactory (){

public Mobsim createMobsim(Scenario sc, EventsManager ev) {

MobsimFactory factory = new QSimFactory () ;

200 The Multi-Agent Transport Simulation MATSim

QSim qsim = (QSim) factory.createMobsim(sc, ev) ;

// add agent source into mobsim:

qsim.addAgentSource(new MyAgentSource(guidance)) ;

return qsim ;

}

}) ;

...

ctrl.run() ;

The above “script” uses an anonymous class for the MobsimFactory. This method of writing code is
quite convenient for adapting MATSim to individual needs, also see Chapter 45.

For working code, see http://matsim.org/javadoc → main distribution →

RunOwnMobsimAgentUsingRouter class and related.

30.4.3.4 DynAgent

As stated earlier, there is also a class DynAgent. It wraps around MobsimAgent, making it easier to
use and providing additional infrastructure (Section 23.4).

CHAPTER 31

Making MATSim Agents Smarter with the
Belief-Desire-Intention Framework

Lin Padgham and Dhirendra Singh

31.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → bdiintegration

Invoking the module:

See http://matsim.org/extensions → bdiintegration

Selected publications:

Padgham et al. (2014)

31.2 Introduction

In this chapter, we introduce a MATSim extension allowing a developer to program (some of)
an agent’s decision-making in a BDI (Belief Desire Intention) system, while actual actions and
environment percepts occur within MATSim.1 This allows sophisticated modeling of agents within
a BDI framework, using the concepts of goals, hierarchical abstract plans (containing sub-goals)

1 This work was supported by the ARC Discovery DP1093290, ARC Linkage LP130100008 and Telematics Trust grants.

We would like to thank Agent Oriented Software for use of the JACK BDI platform and Kai Nagel, Todd Mason,

Sewwandi Perera, Edmund Kemsley, Oscar Francis, Daniel Kidney, Andreas Suekto, Qingyu Chen, and Arie Wilsher

for their contribution to the BDI platform integration framework and to these applications.

How to cite this book chapter:

Padgham, L and Singh, D. 2016. Making MATSim Agents Smarter with the Belief-Desire-Intention Frame-

work. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim,

Pp. 201–210. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.31. License: CC-BY 4.0

202 The Multi-Agent Transport Simulation MATSim

and percepts (information from the environment), as well as information about the current
situation. For example, we used it to model residents in a bush�re2 evacuation, as well as an inci-
dent controller in an evacuation scenario. The residents may receive information about the bush�re
from the �re simulation, as well as warnings and messages from the incident controller agent.
They may well have to pick up children, check on neighbors and communicate with other family
members, etc. Their plans enable decision-making, which will result in actions executed within
MATSim.

In standard MATSim usage, intelligence within individual agents’ behavior arises from
co-evolutionary algorithms in the replanning phase. This is based on agents evaluating—via a scor-
ing function—the plan they have executed during a given day and modifying this to obtain a new
plan, until all agents have acceptable plans; the system then reaches a stable state. This approach,
however, only works for applications where one can assume that the agents adjust and re�ne their
behavior over many iterations, to eventually obtain their standard modus operandi. For applica-
tions such as emergency management, agents must react immediately to the situation as it evolves,
doing so in an “intelligent” manner.

The chapter on Within-Day Replanning introduces two approaches to the mobsim component
which address the need to be more reactive to an evolving situation. The �rst allows a central-
ized MATSim process to identify sets of agents that should have their plans modi�ed, then runs
one or more processes to adjust agents’ plans. The second rewrites the agent, so that instead of
following a speci�ed plan, the agent invokes a decision-making process at all possible decision
points. By integrating a BDI agent platform with MATSim (Padgham et al., 2014), we allow au-
tonomous individual decision making to be programmed in specialized and powerful systems
developed speci�cally for this purpose, balancing reactive behavior and goal-based commitment.
Di�erent BDI platforms have di�erent strengths, but are, in general, based on a simpli�ed psycho-
logical/philosophical view of how people behave, facilitating a high level speci�cation of complex
human behavior. These systems have been demonstrated to be very e�cient for building complex
applications (Ben�eld et al., 2006). Provided the appropriate system interface support is developed,
any BDI system can be coupled to MATSim, as described here. Until now, we have used three dif-
ferent BDI systems, for which the system level interface is available. The decisions made in the BDI
system are then inserted into the relevant agents’ MATSim plans, allowing the MATSim agents to
operate in the same e�cient manner as in standard MATSim.

31.3 So�ware Structure

Our framework supports independent execution of MATSim and the BDI platform, with synchro-
nization via the infrastructure provided. They can either run within a single process (in separate
synchronized threads, or sequentially in a single thread), or in two separate processes (synchro-
nizing using inter-process communication, such as sockets). The former is, of course, considerably
more e�cient. Conceptually, for every MATSim agent whose decision making is to be carried out
in the BDI system, a BDI agent must be created. The BDI counterpart can be regarded as “the brain”
associated with the MATSim agent. It is possible to have BDI agents with no MATSim counterpart
and vice versa. For example, in our bush�re application, the incident controller has no MATSim
agent, as he does not move on the road network. He receives information about the �re and has
some static location information; his role in the simulation is to issue warnings and evacuation
advisories, which, in turn, a�ect the resident agents. There may also be MATSim agents that do
not have a BDI counterpart. For example, in a taxi modeling application, there may be MATSim

2 Bushfire is the Australian term for what is otherwise known as a wildfire or forest fire.

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 203

BDI System ABM System

actions

percepts

status

A1

A2

A3

A1

A2

A3

Figure 31.1: Conceptual BDI-ABMS integration architecture.

Source: Figure adapted from Padgham et al. (2014, Figure 1) distributed under the Creative
Commons Attribution Non-Commercial License

agents using the road network, but with no need for complex decision-making modeling; these
may exist only within MATSim.

Figure 31.1 shows the two parallel systems’ basic architecture and the information passed
between them at each time step.

The structure of the data components passed between the MATSim agent and its BDI counter-
part is shown in Table 31.1 and consists of BDI Actions3 , Percepts and Queries. As indicated in
Figure 31.1, BDI-actions are always initiated by the BDI system. Their status �eld, however, can be
modi�ed by both systems. When a BDI action such as DriveTo(loc) is decided by the BDI agent,
the BDI system sets the status of this action as “INITIATED”. MATSim will then set its status to
“RUNNING”, which will probably remain in this state for several steps. When the loc destination
is reached, the MATSim routine will set the status to “PASSED” and the BDI system will continue
reasoning about the next stage of agent behavior. If desired, the MATSim routine can also detect sit-
uations which should be conveyed as “FAILED” and pass this to the BDI counterpart. For example,
if there is a BDI action to meet at a location and time and the MATSim agent is delayed in traf-
�c, the BDI action implementation in MATSim can be programmed to detect the missed deadline
and set the status to “FAILED”, at which point the BDI agent will attempt failure recovery (as part
of the BDI infrastructure). The BDI system can also set the status to “ABORTED”—for example,
if information arrives requiring a di�erent action—in which case, it is canceled within MATSim.
The BDI system can also set status to “SUSPENDED”, though this is not currently implemented.

To manage BDI actions, we provide a MatsimAgentManager class responsible for updating
BDI actions status for all agents. At each step, the MatsimAgentManager.updateActions(...)

function identi�es (from the information package supplied by the BDI system) all agents initi-
ating, aborting, or suspending actions. These are the agents which may require their MATSim
plans to be modi�ed. For each agent that has some action with s status “INITIATED”,
the action is passed to the agent’s action handler class MatsimActionHandler via a call to
MatsimActionHandler.processAction(agentID, actionID, params). This function, based on the
action, calls an appropriate helper function that performs required modi�cations to the MATSim
plan and other relevant bookkeeping, to ensure that success and failure are observed (via

3 We call these actions BDI Actions to distinguish them from actions in the ABMS (Agent-Based Modeling and

Simulation) which may include lower level or additional actions.

204 The Multi-Agent Transport Simulation MATSim

Components of The Data Package Provided to Speci�c Agents Via The Interface:

Component
Type

Component �elds

BDI action < instance id,action type,parameters, status >

Percept < percept type,parameters,value > (parameters and value may be complex
objects)

Query < query, response >

BDI Action Status:

State Description

INITIATED Initiated by BDI agent and to be executed
RUNNING Being executed, set by the simulation agent
PASSED Completion detected and set by the simulation agent
FAILED Failure condition detected and set by the simulation agent
DROPPED Aborted by the BDI agent
SUSPENDED Temporarily suspended by the BDI agent

Table 31.1: Data Passed Between The BDI and ABMS Systems

appropriate MATSim callbacks) and that status is reported back to the BDI system. For
example, for a DriveTo action, a processDriveTo(agentID, loc) function is executed to deter-
mine the leg associated with loc, obtain a route using the MATSim router and insert this into the
MATSim agent’s plan. The standard MATSim execution then follows this plan at each subsequent
step. If the processAction function returns a success status indicating that the action was handled
successfully, then updateActions changes the status for this action to “RUNNING”; otherwise, it
sets it to “FAILED.”

Sometimes, a running action can also fail in the ABMS for some reason. For instance, a DriveTo

(loc) action could fail due to a road-closure in a bush�re evacuation simulation. While this
functionality is supported by our infrastructure, it has not yet been used in the applications we
have built with MATSim. Failing actions will soon be added for some applications. Aborting and
suspending are also not currently implemented for MATSim. This would be accomplished by hav-
ing appropriate functions declared which reset the plan contents of the agent to a ’holding state’
(activity with in�nite end time), maintaining the removed contents of a suspended plan in some
data structure for eventual resumption.

Percepts capture information identi�ed as necessary for the BDI agent’s reasoning. Typically,
this is any information leading to triggering of a BDI-goal, or causing an executing goal/plan to
be re-evaluated. Approaching a destination is one example. MATSim callbacks are used to cap-
ture the relevant information within MATSim; this is then provided to the BDI counterpart via
our infrastructure. The appropriate MATSim event is caught with AgentActivityEventHandler.

handleEvent(event-type). The handleEvent(event-type) function then �rst checks whether the
agent receiving the event is one registered for a percept that triggers with this event type, and if so,
calls the appropriate function to calculate the percept’s value and add it to the percept container
for that agent, to be sent to the BDI system. Termination conditions (PASSED and FAILED) of BDI
actions are also similarly detected.

Instead of passing back the percept in these cases, the relevant action and its status is edited
and passed back. For example, a BDI action DriveTo(loc) should succeed when the agent reaches
the link closest to this location. To achieve this, we implement handleEvent(PersonArrivalEvent),
which will then trigger for every agent arriving anywhere. If the agent has a current (DriveTo)
BDI action being monitored, then arrivedAtDest(agentID,loc) is called to ascertain whether the

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 205

PersonArrivalEvent caught does match the link closest to the coordinates of the desired destina-
tion. If it does, the action status of that DriveTo action for that agent is changed to PASSED and the
action is removed from the monitoring list.

This approach conveniently uses MATSim callback infrastructure. However, we note that it will
generate an event that must be processed any time any agent arrives anywhere, although most will
not be an arrival at a desired destination. This is a substantial overhead; we may eventually consider
collecting (some) percepts and state information for determining action status, in a separate, more
e�cient global processing at the end of the step.

Queries are de�ned for any information that the BDI system may want to request from MATSim
during its reasoning process. Typically, queries are based on plans’ context conditions, which must
be evaluated to determine if a plan is applicable. Each query structure must be de�ned and the
code must be supplied on the MATSim side to call the relevant functions to provide the response.
Similar to the MatsimActionHandler class, we have a MATSimPerceptQueryHandler class containing a
queryPercept(agent,query,response) function. This function then uses the query string received
to extract the percept type and make a speci�c function call to obtain and provide the results. For
example, if an agent agentID sends a queryPercept(agentID, ‘‘RequestLocation agentX’’, loc)

query to request the location loc of some agent agentX (possibly itself), then the queryPercept

function will execute the clause:

if percept_type = "RequestLocation"

loc = getLocation("agentX")

The agentID of the requesting agent, obtained from the data package, is always provided to the
query response function, in case it is required, although in this case it is not. Queries can be made
at any point during the BDI execution and are answered immediately. They have no e�ect on the
MATSim simulation.

A number of commonly used BDI actions and percepts are de�ned as part of our integration
infrastructure. New ones can be added as part of developing a speci�c application, as described in
Section 31.4. This structure allows all high-level decision making to be carried out by individual
agents, within the BDI-system, which is designed and optimized for this purpose with regard to
both representation and execution. On the MATSim side, speci�ed functions simply modify the
agents’ MATSim plans (in parallel, if desired), retaining the standard MATSim simulation execu-
tion where each agent just follows its MATSim plan. This approach allows for both simplicity and
e�ciency at the lower level.

31.4 Building an Application Using BDI Agents

We focus here only on what must be done to integrate BDI agent reasoning into MATSim. To learn
about BDI design and development, we refer the reader to Padgham and Winiko� (2004), as well
as the excellent “practicals” (tutorials) available as part of the JACK platform4 . In Figure 31.2, we
show part of a taxi agent design, in an application involving taxis operating within MATSim. Here,
the percept ClosetoDest (potentially) triggers a plan GrabJob. Plans have context conditions which
indicate whether or not they are viable in the current situation, as a response to a percept, or a way
of achieving a goal. Let us assume, in this example, that the plan GrabJob has the context condition
(Location(self,loc)) ∧ board.job.loc ∧ (distance(board.job.loc,loc) < 4km). Thus, the
�gure at the le� of the diagram can be understood as the rule:

ClosetoDest∧ Location(self,loc)∧ board.job.loc∧ (distance(board.job.loc,loc) < 4km) →

GrabJob

4
http://aosgrp.com/products/jack/

206 The Multi-Agent Transport Simulation MATSim

Figure 31.2: Excerpt of taxi design.

There are two pieces of information in this rule that must come from MATSim: �rst, the agent
is close to its destination (ClosetoDest) and second, the agent’s current location (Location(self,
loc)). We could have MATSim send the agent location at every step. However, this is unnecessary
overhead; instead, we send ClosetoDest as a percept. This requires the BDI agent to query its
location to evaluate whether there are pending jobs whose location necessitates triggering some
instance of GrabJob. This gives us an example of a percept and a query required in MATSim. On the
right hand component in Figure 31.2, we see four di�erent actions which will have a correspond-
ing BDI-action on the MATSim side. We will focus here on the DriveTo action, but the PickUp and
DropOff would be realized in a similar way, using MATSim activities rather than legs.

The following must usually be done:

• Every plan trigger which is information from MATSim must be de�ned as a percept.
• All information required from MATSim, that is not a trigger, must be de�ned either as a percept

(and then stored locally), or as a query.
• All actions which should be executed in MATSim must be de�ned.

In the rest of this section, we describe exactly what must be provided in the MATSim application
�les for each of these to work as expected. Instructions and examples for the BDI application can
be found in the integration repository (noted at start of chapter).

31.4.1 The ClosetoDest Percept

All functions for collecting percepts for the BDI system are de�ned in the
AgentActivityEventHandler class. Perusal of existing functions can ascertain whether the
desired percept is already calculated. For example, arriveAtDest is already de�ned for use as a
BDI percept. If the percept collection function already exists, the developer must ensure that the
appropriate agent type is registered for this percept within the relevant function. For example, in
arriveAtDest() we have:

if agent.type = taxi

AND agent.loc = dest(agent) * obtained from infrastructure data *\

// collect and package this percept

If we now want this percept provided to agents of type commuter, we must make the �rst line:

if ((agent.type = taxi) OR (agent.type = commuter))

AND agent.loc = dest(agent) * obtained from infrastructure data *\

// collect and package this percept

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 207

The arriveAtDest function is triggered by the MATSim LinkEnterEvent event using MATSim
provided callbacks. Thus, we have de�ned handleEvent(LinkEnterEvent) to call all percept
collection functions triggered by this event – in this case arriveAtDest.

The ClosetoDest percept will be triggered by the same MATSim event LinkEnterEvent, so to add
this, we must add the call to ClosetoDest in the handleEvent(LinkEnterEvent) and then de�ne
our ClosetoDest function within the AgentActivityEventHandler class. We only want to send the
ClosetoDest percept when we �rst come within the de�ned distance of our destination, not at every
step. Therefore, the ClosetoDest function must �rst check whether this percept has already been
sent to this agent, for the current destination. If so, nothing more is done. If not, it is ascertained
whether the link entered is within the desired “close-to” distance and, if so, the percept is registered.
For e�ciency, the �rst link “close-to” the dest can be calculated and recorded when the DriveTo

action is initiated; in which case, one must only check whether the entered link-ID is the same as
the recorded “close-to” link-ID.

In principle, percepts could also be calculated in a function executed a�er all agents had been
stepped. The important thing is that when a percept occurs, it is recorded in the percept data pack-
age for that agent. Further work is required to ascertain which percept collection methods will be
most e�cient with very large numbers of agents.

31.4.2 The RequestLocation Query

Queries are de�ned in, and managed through, the MATSimPerceptQueryHandler class. A function
queryPercept(agent,query,response) responds to a query by extracting the speci�c query and
calling the relevant de�ned function. So, for example, to respond to the queryPercept(ownID,

‘‘RequestLocation agentID’’,loc) query from an agent, queryPercept will contain the code:

if percept_type = "RequestLocation"

loc = getLocation("agentID")

The getLocation function will then ascertain the location of agentID, storing the value in loc. If
the query is already de�ned in MATSim, nothing further is required to use it in an application.

31.4.3 The DriveTo BDI-Action

The DriveTo(loc) BDI action is, of course, the most basic and commonly used BDI action in
MATSim and is already implemented in our infrastructure. As long as the appropriate BDI
action and parameters are passed in the information package from the BDI system, nothing further
is required within MATSim. However, for the purpose of illustration, we will assume it has not yet
been implemented and we will go through the steps of de�ning a new BDI action with this as an
example.

The MATSimActionList class de�nes mappings for all BDI actions in the system and the MATSim
function calls that realize those BDI actions. Any new BDI action must �rst be added to this list.

The MATSimActionHandler de�nes all functions that realize BDI actions, as well as a
processAction function which handles all BDI action strings from the BDI system, calling the
appropriate helper functions. Thus any new BDI action must have its implementation de�ned
within this class and must have the appropriate call to the function added within processAction.
Let us call the relevant function that we will add processDriveTo. This function will always need
the agentID as a parameter, as well as whatever parameters are provided in the action package.

208 The Multi-Agent Transport Simulation MATSim

So, in our example, we will have the function processDriveTo(agentID, loc) which needs to be
de�ned. The function for the new action must perform two key tasks:

1. Obtain the MATSim plan of the relevant agent and modify it so that regular MATSim
execution of the plan will have the desired e�ect.
Generally, when the plan is accessed, it will have a single dummy activity with end-time
in�nity. The end time of this activity must be set to now and a leg must be instantiated with
the link corresponding to the destination loc as the end point and the links to be followed,
as calculated by the router. This leg must then be inserted into the plan, followed by a new
dummy activity instance with end time in�nity.

2. Place the action instance into the list of actions being monitored.

It is also necessary to set up recognition of when the action has �nished, so that this information
can be sent back to the BDI system and the agent can continue to reason about its next actions. This
is done via the MATSim callbacks provided, in the same way as detecting percepts. However, the
corresponding function, instead of placing information in the percept package for the agent, will
modify the status of the relevant BDI action instance in the information package to PASSED and
remove the instance from the list of actions being monitored. It is also possible to de�ne a condition
where the action should be considered FAILED and to detect this in a similar way. Alternatively,
failure can be managed by sending a percept, and having the BDI agent abort the action as a result5 .

The current structure assumes that multiple actions of a single agent cannot be executed in par-
allel (a reasonable assumption for MATSim). It is the responsibility of the BDI system to allow only
one active BDI action per agent.

Further instructions, as well as examples, can be found in our BDI-MATSim integration
repository.

31.4.4 Discussion

An important aspect of a simulation design using BDI agents within MATSim is deciding on which
abstraction level BDI actions should be described. So far, we have tended to have BDI actions map
to a single leg or activity within a MATSim plan. However, it is certainly easy to think of BDI
actions that combine several such components. Straightforward examples would be grocery shop-
ping or taking kids to school - both involving a leg to a destination, an activity at that destination
and a return leg. There are no immediately obvious advantages associated with BDI actions at
higher abstraction levels (requiring coding of these actions in MATSim) vs using lower level BDI
actions with the higher level coded as BDI plans/goals. Future experience and experimentation
may provide insights to guide decisions.

31.5 Examples

Here, we describe two di�erent examples of BDI agents within MATSim: a bush�re evacuation
simulation, where MATSim is being used because tra�c �ow is a crucial component in this type
of evacuation and a taxi application developed as a demonstrator for integration of a BDI system
with MATSim (Padgham et al., 2014). We compare this approach to incorporating taxis with that
described in Chapter 23 for incorporating dynamically scheduled vehicles and with the approaches
to “within-day replanning” described in Chapter 30.

5 The simplest way in JACK is to use a maintenance condition relying on a belief that is modified as the result of a

percept.

Making MATSim Agents Smarter with the Belief-Desire-Intention Framework 209

Both our example applications use only the Mobsim engine (QSim) of MATSim and do no repeated
daily cycles with plan scoring and modi�cation. There are undoubtedly applications which could
bene�t from a combination of BDI agents and agents which evolve using MATSim’s scoring and
replanning, but we have not yet investigated them.

31.5.1 Bush�re Example

The bush�re example (currently) involves modeling of residents and their decision-making
behavior about what to do regarding a nearby bush�re. Potential driving activities include picking
up children from a school or other facility, checking on neighbors or friends and driving to a local
or more distant destination, possibly via a speci�ed route. Decision making may involve various
factors, such as time of day, ideas about what other family members are doing, warnings and noti-
�cations from emergency services, observations of neighbors, etc. In one approach, we focused on
incorporating well-developed and validated actual human decision making models in a bush�re
situation, developed by a collaborator. Our contribution has been to integrate this with MATSim,
using our integration framework, to provide data about any tra�c-related issues, thus providing a
more valuable simulation to planners. In our other approach, we model both residents and an in-
cident controller. Here, our focus has been on technical issues that involve providing an interactive
simulation suitable for use by emergency services personnel and/or communities for exploration
of potential strategies.

In the interactive version, the incident controller assigns speci�ed evacuation centers and routes
to residents in certain sections of the town being evacuated. Evacuation of di�erent areas may be
started at di�erent times. Residents follow the incident controller’s instructions with some prob-
ability based on their individual situations (currently modeled very super�cially). Following the
suggested route is achieved by driving via suggested way points (using the DriveTo BDI action),
with the BDI agent (potentially) re-assessing as each waypoint is reached. An alternative would
be to de�ne a new BDI action DriveToViaWaypoints. One issue that arose during the development
of this simulation involved road congestion; MATSim routing algorithms began developing very
circuitous routes, sometimes going back towards the �re threat. There were two issues illustrated
here about developing a realistic simulation: one was that, realistically, people would not choose
their routes based on global knowledge of current congestion; the other was that, regardless of
congestion, people would not head back into the �re zone. The current solution is to use a routing
algorithm not accounting for current road speeds, using only static speed limits. Going forward,
one may want to assume some knowledge of congestion (based on radio broadcasts or other social
media). An interesting future research question is how to best achieve responsibility sharing for
realistic behavior between MATSim and the BDI decision-making program, on route selection.

31.5.2 Taxi Example

The taxi prototype application was developed purely as a ’proof of concept’, allowing decisions
to be made dynamically by the BDI brain on an ongoing basis, then carried out by the MATSim
execution engine. There is a simple taxi administrator in the BDI system, which generates jobs,
posts them to a notice board and con�rms requests from taxis to take speci�c jobs. Taxis have
plans allowing them to take jobs from the board, go to a taxi rank, or take a break. A�er taking
a job from the board, the taxi drives to the pick-up address, picks up the passenger, then drives
to the destination and drops them o�. When the taxi approaches the destination, it looks on the
job board for nearby jobs; if something suitable is found, it requests it from the administrator. The
only BDI action implemented in this application is a simple DriveTo. The ClosetoDest percept was
used as described in Section 31.4. This application was tested with the Berlin road network and the
15 963 agents in the MATSim sample �les, with all agents operating as BDI taxi agents. Pro�ling

210 The Multi-Agent Transport Simulation MATSim

showed that, by far, the majority of the execution time was spent in route planning, with very little
in the BDI reasoning, or communication with the BDI system.

31.5.3 Discussion

Both evacuation and taxis are discussed in Chapters 30 and 23, as applications requiring a reactive
approach to planning, rather than iteration over many days to �nd the preferred plan. Chapter 23
discusses two implementation options: one which replaces the MATSim agent with an agent that
considers what to do at each relevant decision point (particularly intersections); the other leaves
the agent code as is, but modi�es the agent’s plans when certain events occur. The BDI approach
has the computational advantages of the latter, in that only a small subset of agents require changes
to their plans at any simulation step and many existing MATSim routines can be used to mod-
ify the plans. However, it also has many of the advantages of the former approach; agents are still
fully autonomous, with all decision making occurring within the BDI system. By registering for
any percepts which could potentially cause the agent to change its mind, the agent remains fully
in control at all times. However, it only needs to decide its next action when it completes the
current high level action—which will almost certainly be orders of magnitude less o�en than at
each intersection—or when a percept arrives indicating a need to reconsider. The provision of the
ability to drop current BDI actions (legs or activities) provides the same level of reactive auton-
omy as the fully reactive within day replanning agent, but probably at a lower computational cost.
Perhaps more important than the computational cost savings: agent decision making can be pro-
grammed in a framework that is at a high level of abstraction, using goals, plans and beliefs, within
existing highly e�cient platforms such as JACK (Winiko�, 2005), Jadex (Braubach et al., 2005) or
Jason (Bordini et al., 2007). Design tools for developing such agents also already exist (Padgham
and Winiko�, 2004). One study has shown that using a BDI language makes program develop-
ment hugely more e�cient than programming in Java (Ben�eld et al., 2006). The close mapping
between intuitively understandable design diagrams and the program code implementing this in
a BDI system is also highly advantageous for validating design of realistic agents with domain
experts. We have discussed design of resident agents in a sandbagging �ood scenario, with emer-
gency services personnel extremely experienced in that domain and found the representation to
be e�ective. We consider that this representational aspect can be a signi�cant advantage when
compared to programming the agent using the DynAgentLogic facility described in Chapter 23.

SUBPART EIGHT

Automatic Calibration

CHAPTER 32

CaDyTS: Calibration of Dynamic Tra�c
Simulations

Kai Nagel, Michael Zilske and Gunnar Flötteröd

32.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → cadytsIntegration

Invoking the module:

http://matsim.org/javadoc → cadytsIntegration → RunCadyts4CarExample class

Selected publications:

Flötteröd (2010); Flötteröd et al. (2011); Flötteröd et al. (2011a); Flötteröd (2008); Moyo Oliveros
(2013)

32.2 Introduction

Cadyts (Calibration of Dynamic Tra�c Simulations)1 —licensed under GPLv3 (GNU General
Public License version 3.0)—calibrates disaggregate travel demand models of DTA (Dynamic
Tra�c Assignment) simulators from tra�c counts and vehicle re-identi�cation data. Cadyts is
broadly compatible with DTA microsimulators, into which it can be hooked through parsimonious
interfaces.

As explained formally in Chapter 47 and 48, DTA aims at consistency between a dynamic travel
demand model, de�ning the choice of activity-travel plans, and a dynamic network supply model,
capturing spatiotemporal network �ows and congestion evolution.

1
http://people.kth.se/∼gunnarfl/cadyts.html

How to cite this book chapter:

Nagel, K, Zilske, M and Flötteröd, G. 2016. CaDyTS: Calibration of Dynamic Tra�c Simulations. In: Horni,

A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 213–216.

London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.32. License: CC-BY 4.0

214 The Multi-Agent Transport Simulation MATSim

Cadyts adjusts the plan choice probabilities of all agents, resulting in simulated network condi-
tions that are consistent with measured real-world data while maintaining the behavioral plausibil-
ity of the underlying travel demand model. Within MATSim, plan choice probabilities adjustment
is realized by adjusting plan scores, as explained in the next section.

32.3 Adjusting Plans Utility

When tra�c counts are the empirical source, plan-speci�c score corrections are composed of link-
and time-additive terms 1Sa(k) for each link a and each calibration time step k (o�en one hour).
When congestion is light and tra�c counts are independently and normally distributed, these
correction terms become

1Sa(k) =
ya(k) − qa(k)

σ 2
a (k)

(32.1)

where ya(k) is the real-world measurement on link a in time step k, qa(k) is its simulated coun-
terpart and σ 2

a (k) is (an estimate of) the real measurement variance (assuming its expected value
coincides with the prediction qa(k) of a perfectly calibrated simulator).

The score correction of an agent’s given activity-travel plan is calculated as the sum of all 1Sa(k),
given that following that plan implies entering link a within time step k. With this, the a posteriori
choice probability of agent n’s plan i given the count data y = {ya(k)} becomes

Pn(i | y) ∼ exp

Sn(i) +
∑

ak∈i

1Sa(k)

 = exp

Sn(i) +
∑

ak∈i

ya(k) − qa(k)

σ 2
a (k)

 (32.2)

where Sn(i) is the a priori score of plan i of agent n, as calculated for example with Equation (3.1)
and ak ∈ i reads: “following plan i implies entering link a in time step k”.

Intuitively, if the simulated value qa(k) is smaller than the real measurement ya(k), then a score
increase, and thus a choice probability increase, results. The variance σ 2

a (k) denotes the level of
trust in that speci�c measurement—a large σ 2

a (k) implies a low trust level, taking e�ect through a
large denominator in the corresponding score correction addend.

Flötteröd et al. (2011) is the key methodological reference on Cadyts. It derives the calibration
approach from a Bayesian argument and provides more technical information, such as a more
general correction of the utility function than in Equation (32.1) that also applies when congestion
is present. A lighter presentation is Flötteröd et al. (2011a), where the formulas above are discussed
in somewhat greater detail.

32.4 Hooking Cadyts into MATSim

Hooking Cadyts into MATSim is based on the following operations:

1. Initialization: When the calibration is started, it requires all available tra�c counts and some
further parameters. For this, the Cadyts function void addMeasurement(...) is called once
for every measurement before the simulation starts. It registers a certain measurement type,
which has been observed on a speci�c link.

2. Iterations: The calibration is run jointly with the simulation until (calibrated) stationary
conditions are reached.

a. Demand simulation: The calibration needs an access point in the simulation to a�ect the
plan choice. There are various ways to realize this, depending on the simulator. Before a
MATSim agent chooses a plan, it asks the calibration through the Cadyts function

CaDyTS: Calibration of Dynamic Tra�c Simulations 215

double calcLinearPlanEffect(cadyts.demand.Plan <L> plan)

for all of this plans’ score o�sets. The agent then chooses a plan based on accordingly
modi�ed scores.
All selected plans of an iteration are registered to Cadyts by

void addToDemand(cadyts.demand.Plan <L> plan) .

Since Cadyts has its own plans format, MATSim plans need to be converted to that format
beforehand.

b. Supply simulation: The calibration must observe simulated network conditions to evalu-
ate their deviation from real tra�c counts. For this, the Cadyts function

void afterNetworkLoading(SimResults <L> simResults)

is called once a�er each network loading. It passes a container object to the calibration
that provides information about the most recent network loading results, particularly on
simulated �ows at measurement locations.

32.5 Applications

Cadyts has been successfully applied in studies like Ziemke et al. (2015); Zilske and Nagel (2015);
Flötteröd et al. (2011a). Zürich scenario results illustrate its e�ciency, as shown in Flötteröd et al.
(2011b, Slide 8), reproduced in Figure 32.1.

40

30

20

10

0
7 8 9 10 11 12

Mean relative error before calibration [%]

Mean relative error after calibration [%]

13

Time [h]

14 15 16 17 18 19 20

M
e
a
n

 r
e
la

ti
v
e
 e

rr
o

r
[%

]

Figure 32.1: Zürich case study results: mean relative error in link volumes.

Source: Flötteröd et al. (2011b, Slide 8)

SUBPART NINE

Visualizers

CHAPTER 33

Senozon Via

Marcel Rieser

33.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → Via

Invoking the module:

Standalone GUI, double-clickable jar �le

Selected publications:

http://via.senozon.com → Download → manual

33.2 Introduction

Via is an application to visualize and analyze MATSim simulation results. Unlike MATSim,
Via is not open source; it is developed as a proprietary commercial so�ware by Senozon AG, an
ETH Spin-o� company founded by two former PhD students involved in MATSim development.
Shortly a�er the company was founded, �rst (potential) client presentations began; the lack of vi-
sual material was an obvious handicap. Explaining to customers that all answers to their questions
were contained in a huge events �le was not satisfactory; pictures or even animations made it much
easier for them to understand. Thus, work on a visualization tool started as soon as the company
was set up. Initially planed as a purely internal tool, it quickly became clear that a graphical visu-
alization and analysis tool would also bene�t other users of MATSim. A�er a beta test phase with
selected MATSim users in Spring 2011, the �rst version ofViawas released in July 2011. Since then,
the list of features provided by the application has grown continuously.
Via is written in Java and thus works on any platform able to run MATSim. For easier deploy-

ment, the application comes as double-clickable, native executable on Windows and Mac OS X,

How to cite this book chapter:

Rieser, M. 2016. Senozon Via. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent

Transport Simulation MATSim, Pp. 219–224. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.33. License: CC-BY 4.0

220 The Multi-Agent Transport Simulation MATSim

partially hiding its Java nature. A limited version is available for free and can be downloaded from
the product website (senozon AG, 2015). Di�erent licenses are available for commercial usage or
for research or educational purposes to serve di�erent user group needs.
Via includes some general functionality that most people will use in the core application, like

visualizing networks, facilities, vehicles and activities. Optionally available plugins provide addi-
tional features o�en relevant only to specialized user groups. This includes functionality related
to public transport, comparison with car counts, using web maps like Google Maps or OSM as
background, aggregation analyses, or movie recording.
Via allows customization of its window. The following descriptions refer to elements as

they are placed in the default layout. The default con�guration can be re-created by choosing
Reset Window State from the Window menu in Via.

33.3 Simple Usage

Via di�erentiates between data sets, and how the data is visualized. It does so by managing data
sources (typically MATSim �les like network.xml or events.xml), and layers (e.g., displaying the
network, vehicles, activity locations). A layer can use more than one data source for its visualization
purposes (e.g., a network and some data from the events), and a data source can be used by multiple
layers (e.g., events can be used by many di�erent layers to visualize di�erent things like vehicles,
activities, link volumes, etc).

By default, Via’s window looks similar to the one shown in Figure 33.1. To add a �le as a data
source, the �le can either be drag-and-dropped onto the layers list le� of the black visualization
area, or by choosing Add Data... from the File menu. To add a layer, the little plus icon in the
lower le� of the window can be pressed, or by choosing Add Layer... from the File menu. To get
started, it’s usually best to add a network and (small) events �le from MATSim to Via, and create a
Network layer and a Vehicles layer.

Elements shown in the visualization area like the network or vehicles can be queried. Queries are
usually provided by layers, made available with buttons with question-mark icons. Clicking

Figure 33.1: Via’s window with default layout and a network query being shown.

Senozon Via 221

such an icon activates the corresponding query mode, and any subsequent click on the visual-
ization area will run the query. Query results are shown on the right side of the visualization area.
Figure 33.1 shows a network query for links. One query is special, globally available, and not linked
to a layer: querying an agent plan. This query is available from the toolbar, next to the icon, to shi�
the visualization view around.

Once a query has been made, Via o�en allows another query based on the current query results.
By right-clicking in the visualization area, a pop up menu appears with more options regarding
the last query, as well as additional possible queries. Examples are: Select Link Analysis given
a link, Select Facility Analysis given a facility, List Transit Lines that use a given link, or
List Passengers if a transit vehicles was queried in the �rst place.

33.4 Use Cases and Examples

33.4.1 Agent Visualization

The animated visualization of agents moving around in the modeled area was one of the main
features in Via’s original development. To do this, Via needs only the network.xml and events.xml

�les from a MATSim run as data sources. For the visualization, a Network layer, Vehicles layer and
activities layer must be created. With this setup, vehicles will move around in the visualization area
as time progresses, and agents performing activities will be represented as colored dots.

The visualization can be further customized; with the addition of a population.xml �le, more
detailed activity coordinates can be loaded to obtain a better distribution of activity locations
(MATSim’s events �le does not contain coordinates for activities, only the assigned link ID. So by
default, all activities taking place on a link are �rst shown at the location of the link’s to-node).
Vehicles and groups of vehicles can also be styled di�erently; it is possible to visualize transit
vehicles with a square shape with colors representing the occupancy of the vehicles, pedestrians
or cyclists in a multi-modal simulation can be shown as circles and private cars can be displayed
with a triangular shape with colors representing their absolute speed or their speed relative to the
allowed maximum speed on their current link (see Figure 33.2). As mentioned above, arbitrary
groups of vehicles can be styled di�erently, which is useful to highlight special agents, e.g., when
simulating a �eet of electric vehicles, a car sharing �eet, or agents simulated with special routing
guidance.

It is also possible to load arbitrary attributes for agents and then use those attributes for visu-
alization purposes, e.g., having di�erent colors for vehicles driven by agents who are employees,
have a high income or are within a certain age range.

33.4.2 Facility Analysis

Activity facilities allow for very detailed modeling in MATSim, especially considering the
functionality provided by the destination innovation module (Chapter 27). Via provides several
unique ways to analyze the mobility e�ects to and from facilities.

For each facility, a detailed analysis can be performed showing the number of agents arriving at,
departing from, or staying at a facility over the simulated time. The numbers can be di�erentiated
by the type of activity the agents perform at the facility, by the transport mode they arrive or depart
with, or by other arbitrary agent attributes loaded by users.

An alternative analysis is similar to the—for transport planners—well known Select Link

Analysis, but designed for facilities: the Select Facility Analysis. This analysis shows the
combined link loads produced by agents arriving or departing at a facility, showing the starting
location for agents visiting a speci�c facility and what routes they use. Figure 33.3 shows such an
example.

222 The Multi-Agent Transport Simulation MATSim

Figure 33.2: Vehicles in Via: Green triangular symbols represent private cars, pink rectangular
symbols public transport vehicles.

Figure 33.3: Select facility analysis: Links used to travel to and from a facility are highlighted.

33.4.3 Public Transport Analysis

The public transport plugin provides many di�erent functions for analyzing public transport sim-
ulations. It starts with providing the speci�ed vehicle types as agent attributes, so the vehicles can
be di�erently visualized, based on the vehicle type they represent. Also, the absolute or relative
occupancy of a transit vehicle is provided as attribute, allowing transit vehicles to be visualized
accordingly. For stop locations, the number of passengers waiting for a bus or train can be plotted
over the time of day, and the occupancy along a bus or train route can be visualized.

Senozon Via 223

Figure 33.4: Passenger �ows on a transit line.

A special, but very useful visualization is the Route Flow analysis. This shows, in a visually
appealing way, the number of passengers traveling between two stops along a route—for all possible
stop combinations. Figure 33.4 shows an example of such a route �ow with the route of the transit
line shown in the background. It is clear that the demand on the bus route is more or less split in two;
a �rst travel demand up to about the �rst third of the route, and then it again collects passengers all
wishing to go to one of the last stops along the route. This could indicate that it might make sense
to split the line in two.

33.4.4 Scenario Comparisons

A typical use of MATSim is simulating a base case and then one or more case studies. Compar-
ing scenarios then becomes an important step in the analysis of the di�erent case studies. Via
allows comparison of the link volumes of two scenarios visually by coloring the network with the
absolute or relative di�erence of the link volumes between two models. In the future, other di�er-
ences like average speeds will supported too. The di�erences are time-dependent, aggregated over
time intervals as small as 15 minutes.

33.4.5 Aggregating Data

While MATSim requires and produces a lot of disaggregated data, it is still o�en necessary to
aggregate data to make statements or predictions about a simulated scenario. Via provides a pow-
erful mechanism to easily build arbitrary aggregations of available data. Such data can be either
point data (like activity locations, trip start locations, GPS points or any other spatial point data)
or origin-destination data (like trips with a start and end location, or the relation of an activity
location to the home location of the agent performing the activity). While Via provides: activity
locations, trip start and trip end locations, facility locations (automatically) as point data sources

224 The Multi-Agent Transport Simulation MATSim

Figure 33.5: Aggregation analysis: Number of performed activities during the whole day.

for aggregation, and the trips performed by agents as O-D data sources, any tabular custom data
with coordinate attributes can also be used for this.

Data can be aggregated into a rectangular or hexagonal grid, where the cell-size can be speci�ed
by the user, or into arbitrary zones provided as ESRI (Environmental Systems Research Institute)
shape �le by the user. The data points can be �ltered by any of the available attributes, and the
aggregation can either just count the data points in each region, or build the sum, the minimum
or maximum or average of a data points attribute.

With the activity locations provided by an Activities Layer, the following (and more) aggrega-
tions are possible:

• show number of performed activities per region,
• show number of performed work activities per region,
• show number of work activities starting a�er 10 am per region, and
• show average duration of work activities starting a�er 10 am per region.

Similarly, with trip data provided by a Vehicles layer, the following exemplary aggregations are
possible:

• show number of trip starts per region,
• show number of trip starts with mode “car” per region,
• show percentage share of trips starting with mode “car” in a region, compared to all trips

starting in that region, and
• show average duration of trips starting with mode “pt” in a region a�er 11 am.

By using custom data tables, e.g., containing more information about trips, i.e., the ’from and to’
activity types they connect, the number of line switches if it is a public transport trip (this requires
the aggregation of MATSim’s legs to trips for analysis purposes), many more complex analyses are
just a few clicks away in Via, like showing the average duration of car-trips starting between 6 am
and 8 am, going from “home” to “work”.

CHAPTER 34

OTFVis: MATSim’s Open-Source Visualizer

David Strippgen

34.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → otfvis

Invoking the module:

http://matsim.org/javadoc → otfvis → OTFVis class, RunOTFVis class

Selected publications:

Strippgen (2009)

34.2 Introduction

For most MATSim users, Via’s (Chapter 33) free branch will be a good solution for their visualiza-
tion needs. However, if project demand reaches beyond the given (and �xed) abilities of the Via
free version, there is another—though not as stylish—option for MATSim output visualization, the
OTFVis.

The short term for “On the Fly Visualizer”, OTFVis was designed to support actual visualization
of live simulation runs with MATSim. Therefore, one purpose of the OTFVis is the debugging
of MATSim (input) data. Nonetheless, playing prerecorded movie (MVI (An OTFVis Movie File,
not to be confused with the “Musical Video Interactive” �le usually abbreviated mvi)) �les created
from MATSim events is another way to use OTFVis. Generally speaking, OTFVis serves as an open-
source counterpart to the possibilities Via gives the MATSim community. The OTFVis is written in
Java and available as source code to extend for di�erent MATSim projects’ special needs. Hence, it
is possible and desirable to actually extend the OTFVis functionality, incorporating the user’s own
data sets and visualizations.

How to cite this book chapter:

Strippgen, D. 2016. OTFVis: MATSim’s Open-Source Visualizer. In: Horni, A, Nagel, K and Axhausen, K W.

(eds.)TheMulti-Agent Transport SimulationMATSim, Pp. 225–234. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.34. License: CC-BY 4.0

226 The Multi-Agent Transport Simulation MATSim

34.3 Using OTFVis

In this chapter, we show how to achieve simple things, like creating MVI-�les from MATSim run
events, how to play these MVI-�les and how to use a MATSim con�g �le to view/play an actual
simulation with all data (e.g., agents’ plans) attached. With the latter, it is also possible to examine
the data “on the �y” by sending queries into the mobsim and visualizing the results.

34.3.1 MVI Files

MVI �les can be generated through the OTFVis. Under the hood, these �les consist of a few binary
dumps of OTFVis data packed into a zip-�le. This binary data is created by Java’s own serialization
capabilities. Unfortunately, this setup is not very change-resistant, making it advisable to regard
MVI �les as temporary cached versions of your event �les. These MVI �les can be re-created at
any time from the event �les. Still, as converting one into the other is a time-prone process, the
MVI �les are a handy tool for temporary storage and fast loading of your visualizations.

34.3.2 Starting OTFVis

OTFVis is a MATSim contribution. There is no actual stable release of the OTFVis package; so, to
acquire a working version, a “nightly build” needs to be downloaded as shown in Section 44.3.6.
There, one �nds the latest otfvis-version-SNAPSHOT-build.zip �le available for download. Unzip
it to the place where the matsim.jar already resides; do not forget to extract the libs-directories
found in the respective zip �les.

OTFVis demands substantial RAM (depending on your simulation size/MVI �le); to successfully
launch the visualizer, a command line like

java -Xmx500m -cp MATSim -XXX.jar:otfvis/otfvis -XXX.jar

org.MATSim.contrib.otfvis.OTFVis

(exchange “;” with “:” depending on the used OS (Operating System)) is a good starting point. This
will open the dialog window shown in Figure 34.1, asking for one choice from four possible usages
of OTFVis; these will be explained in the next section.

34.3.3 Use Cases of OTFVis

With the open dialog appearing a�er starting the vanilla OTVFis class, the following options appear,
as shown in Figure 34.1:

1. opening a prerecorded MVI �le,

2. opening a network �le (for inspection),

3. opening a live run of a MATSim con�g �le (rather memory intensive) or

4. converting an event �le (plus a given network �le) to a movie (MVI) �le.

Each tab stands for an individual usage. To start a visualization, one chooses the appropriate tab,
�lls in the necessary data and �nally proceeds by pressing the Load... button located in the bottom
le� corner of the window.

The next sections provide an overview of di�erent ways to use OTFVis.

OTFVis: MATSim’s Open-Source Visualizer 227

Figure 34.1: OTFVis Start Dialog.

34.3.3.1 Converting Event Files

Though the �rst option tab is the most used choice for OTFVis, the fourth, and last, option tab is
a good starting point for exploring the visualizer; a�er having successfully run a MATSim simu-
lation, there will typically be some event �les at one’s disposal. With any of these event �les and a
given (matching) network �le, a MVI �le can be created. Four items: event, network and movie �le
names, as well as a time period, must be speci�ed for this tab to execute. The last parameter is a
time period, a�er which a new sample of the mobsim’s state is taken. This MVI-generation process
might be time consuming. For smaller projects, it might be an option to display the outcome in the
visualizer right away (by checking the box Open mvi afterwards). If the choice is to just convert
the events to a MVI �le, this can be opened with the �rst option tab of the visualizer’s start dialog
at any time.

From the shell, this process can be started by giving the event �le, network �le and, optionally,
the conversion period as input parameters.

34.3.3.2 Network File Loading

The second option tab o�ers the opportunity to examine a network �le (e.g., for errors). It will show
a rendering of the given network and also, if so chosen in the preferences, the associated network
link IDs for each link. This option might be helpful for debugging a freshly converted network, or
inspecting speci�c regions and connections. Loading and interacting with a network �le should be
very fast.

The network �le can also be given as the sole parameter to OTFVis with the shell command.

34.3.3.3 Running a MATSim Con�guration

The third, and most advanced, option for running OTFVis is an actual, live running mobsim,
visualized in real time (actually much faster than real time; who has all day to watch tiny cars
drive around?). This option includes the possibility of exploring the data set and issuing queries
into the executing mobsim. These queries can display an agent’s day plan, show all links driven by
agent’s crossing a particular link of interest, search for a particular link or node by ID, or answer any
user-de�ned queries. We will see later in this chapter how to program a user’s own queries, but for
the rest of this section we will detail OTFVis “o	ine” behavior.

It is also feasible to input the con�g �le as a single parameter to OTFVis by starting it from the
shell. OTFVis will make an educated guess whether the input is a con�g or a network �le.

228 The Multi-Agent Transport Simulation MATSim

34.3.3.4 Loading & Displaying an MVI File

If the �rst and default option tab is chosen, a MVI �le is selected and shown as detailed in next
section 34.3.4. This is the most common use case for OTFVis; the same results can be achieved by
starting OTFVis from the shell with an MVI �le as an argument.

34.3.4 Viewing an MVI File

An example is illustrated in Figure 34.2. On the top le� of the application, one �nds buttons for
controlling the �le playback. A short summary of the functionality is given in Table 34.1.

This buttonbar is followed by a text �eld where the desired time can be written for an instant
jump. In an MVI �le, one can jump forward and backward in time, whereas in the live simulation
case, going back in time is omitted.

Another way of iterating through the animation is to grab the time slider at the bottom of the
application and drag it. Opening and closing bracket symbols are located on the le� side of the
slider; by clicking them, one can set the start, or end, time of a time loop to the actual time step
given, making it possible to restrict playback to a certain space of time.

34.3.5 General Interaction with the Main Screen

Regardless which option for loading data was chosen, interaction with the main display area is the
same.

Figure 34.2: Displaying an MVI �le.

OTFVis: MATSim’s Open-Source Visualizer 229

Icon Function

Reset - set time to the start time

Large step back

Small step back

Play

Pause

Small step forward

Large step forward

Table 34.1: OTFVis Buttonbar.

Right button drag: Extend a rectangle for zooming into the view. Releasing the button will
execute a zoom, so the chosen rectangle will best �t the screen.

Middle-Mouse-drag: Pan (translate) the screen.
Right-Mouse-Click: Show a context menu (for now only with the option to save the view settings).

34.3.6 User Interaction in the Live Mobsim

When started as a live simulation, OTFVis will look di�erent than Figure 34.3. First, the controls
of the simulation’s view �ow are a restricted subset of those used in MVI playback. There is no way
to reset or rewind the simulation. One can still take small or large steps forward. A new option

Figure 34.3: Live mode.

230 The Multi-Agent Transport Simulation MATSim

is given by the synch checkbox, which determines whether the mobsim will stop for each frame
the OTFVis renders, or run independently. Usually the un-synched version will proceed faster, as
the OTFVis output is restricted to a default of about 30 frames/updates per second and a small
mobsim’s simulation speed will be a magnitude higher. The time-consuming generation of visu-
alization data will also only be necessary for a small fraction of the simulation. Length of OTFVis
pauses between frames can be con�gured in the preferences dialog.

Apart from the reduced control set, there is another UI element new to this OTFVis option. At
the bottom of the screen, the scrubbar/time line element is replaced by a “query” bar. It is possible
to code “queries” into the mobsim, answering questions about its inner state. As the simulation is
actually happening, all information necessary to run it is available for output. This is a clear superset
of information available in the event �les and in the MVI �les. This rich information infrastructure
can be queried and visualized in many ways. In the next session, a query example is given.

34.3.7 Running a Query in OTFVis Real Time Data

From the dropdown box, one can choose the di�erent query types. O�en, additional input is neces-
sary, either in the text �eld next to it or, more o�en, by clicking into the network. To give an example
with agent query selected, a click onto any agent’s symbol will give a visualization of this particular
agent’s day plan. This is shown in Figure 34.4. There are other pre-de�ned queries. These queries
are rather project-oriented, so de�ning own queries will probably be necessary to make best use of
this option. In the second part of this chapter, we will look into de�ning own queries.

Figure 34.4: Queries.

OTFVis: MATSim’s Open-Source Visualizer 231

34.4 Extending OTFVis

Because it is open source, the OTFVis is a good starting point for customizing mobsim run visu-
alizations. OTFVis has been written in Java, but depends heavily on the JOGL (Java OpenGL) Java
library. JOGL is a very thin layer within the OS hardware driver, meaning it will have OS-speci�c,
native dependencies. These should be attended to by the maven-dependency management, but
should still be kept in mind when developing for OTFVis. The displaying parts of OTFVis are
based on OpenGL (Open Graphics Library). Therefore, it will be necessary to understand OpenGL
to create new ways of displaying data. In the following sections, we examine how data is computed
inside the OTFVis and how this can be extended.

34.4.1 Design Principles of OTFVis

The overall goal of OTFVis design was to have an easy-to-extend, fast visualizer capable of handling
huge amounts of data. The speci�c design goals for the visualizer were:

• abstract data source (data collection) from data display (visualization),
• easy extension with own data types,
• capability for local simulation run on desktop computer,
• reduction of sent data to a minimum,
• visualization that connects to running simulation (on-the-�y),
• minimally-invasive format for existing MATSim code,
• enough speed for large scenarios,
• visualization that reads from post-mortem dump (MVI �le), and
• use of hardware support for drawing.

MATSim runs can easily engage millions of agents traveling a network. To make a visualization of
these large data sets feasible, two measures have been taken. A quad tree structure was implemented
to ensure that only the smallest set of data necessary to display the visible sector of the network
is transferred. The quad tree is a simple data structure to aggregate spatial data and retrieve parts
of it e�ciently for real time visualization. Apart from data structures, hardware is also used to
speed up displaying the simulation. OpenGL is a platform-independent API for interfacing graph-
ics hardware, speci�cally the 3D acceleration chips implemented in every contemporary computer.
With the aid of 3D graphics hardware, millions of agents can be displayed in real time. Other mea-
sures were taken to segregate data extraction from data visualization, like the reader/writer pairs
presented in the next section.

34.4.2 Readers and Writers

OTFVis was designed to be minimally dependent on the mobsim used. Data formats applied within
the mobsim should be abstracted from data used in OTFVis, meaning that any data passed to the
visualizer will have to run through some stages of abstraction.

The �rst stage is a writer-reader pair, responsible for transferring a certain set of data to the
OTFVis. The writer will understand the data format of the hosting mobsim and convert it to simple
data types, like �oat or string values. A set of these writers, all using a joint byte bu�er to aggregate
the data, will be called a�er each mobsim step to accumulate data. This array of bytes is then sent
to the visualizer, which, in the original design, could be run anywhere in your network.

For each writer, there has to be a sibling-reader class, responsible for reading back extracted
data from the byte bu�er. It is crucial to ensure that these pairs work synchronously. Most

232 The Multi-Agent Transport Simulation MATSim

Writer/Reader-pairs are implemented in the same class, since having the source-code at the same
place reduces errors in the synchronization.

Apparently, it can be necessary, or at least useful, to have di�erent ways of visualizing data on the
OTFVis front-end. Thus, actual readers are not responsible for the drawing of a certain data set. A
third kind of class is responsible for that, the drawer classes.

34.4.3 Visualization of the Data

The reader objects in the quad tree will generate separate drawer objects for displaying “their”
information and add these to another data structure, called SceneGraph, which is responsible for
the actual drawing onto an OpenGL canvas. Displaying data in an interactive application will make
re-draws of the display necessary for a variety of reasons: displaying menus, animations, zooming,
panning and other user interactions. Not all of these changes introduce new data from the mobsim.
Zooming into the network will not imply reading data from the mobsim; panning the view most
certainly will. When no new data is needed, the scene graph is capable to handle all operations,
no reader/writer class will be accessed and displaying is solely done with existing drawers. On the
other hand, if new data is demanded, the scene graph will be “invalidated” (a term lent from the
OpenGL community); thus, the graph will be dismissed and all relevant readers will be asked for
new drawer objects representing the actual view. The scene graph is mainly a list of drawer objects;
as an extra structuring unit, these drawers can be sent into di�erent layers, to render them more
e�ective.

34.4.4 Layers

To make sure that only data actually necessary for drawing the particular area visible in the view-
port is sent, writers should minimize the data packets, so the quad tree can make a spatial data
reduction. This seems somewhat in opposition to OpenGL or any graphics API). The API wants
maximal data to be accumulated, to optimize output through the underlying hardware graphics
pipeline. Think of an assembly line vs. a handcra�ed item; whenever the �ow of data is interrupted,
the assembly line stalls and graphics performance derogates. To ease this issue, “layers” have been
introduced to OTFVis. Any drawer (responsible for a bit of information) can be assigned to a layer
and these layers will ultimately be summoned to draw the screen’s content. It is up to the layer to
optimize the execution of the drawers when necessary. For example, a network layer might store
all network info from the drawer in one array, or display a list to optimize drawing of the net-
work; (o�en in OpenGL, it is advisable to rather let the hardware decide what to draw. It might
be faster to have all complete data residing in graphics hardware memory, rather than to trans-
fer the reduced information set every frame). There are three layers prede�ned in OTFVis. The
networkLayer contains the static street net, the agentLayer the actual dynamic agents and a third
layer, the miscellaneousLayer, contains additional data.

34.4.5 Patching the Connections

In total, there are four basic elements involved in the visualization: writers, readers, drawers and
layers. An additional class con�gures how the �rst two work together: OTFConnectionManager.

This class maps several routes for the information coming from the mobsim, building a
chain of responsibility. Each data item starts at a link in our network. An OTFDataWriter

object is responsible for extracting the desired data from the link and writing it into a
ByteBuffer. Complementing this, an associated OTFDataReader is needed to retrieve data
from the bu�er. This item will also be responsible for adding a drawable item derived from the

OTFVis: MATSim’s Open-Source Visualizer 233

class OTFGLAbstractDrawable to the scene graph representing the actual screen content. The con-
nection between these items is made by adding entries into the OTFConnectionManager, with calls
to OTFConnectionManager.connectLinkToWriter(OTFDataWriter) and OTFConnectionManager.

connectLinkToWriter(OTFDataWriter, OTFDataReader), respectively.
Example (from the OTFClientLive.java):

conMan.connectLinkToWriter(OTFLinkAgentsHandler.Writer.class);

conMan.connectWriterToReader(OTFLinkAgentsHandler.Writer.class,

OTFLinkAgentsHandler.class);

34.4.6 Sending the Data

The class OTFLinkAgentsHandler should give a good example of extracting, sending, receiving and
displaying data in the OTFVis context. The method invalidate is called whenever the actual scene
graph has been dismissed and needs to be rebuilt. In this case, a valid representation of the object’s
state should be added to the new scene graph. This also means that for drawing the actual scene,
no additional reading will take place, unless there is a change in the visible data: then, this update
is triggered.

34.4.7 Performance Considerations

When implementing new ways to visualize data, the following guidelines should be kept in mind.
If the data is spatially distributed over the whole network and is updated frequently, an

OTFDataWriter/Reader pair should be considered. It will reduce data updating to times when the
data is actually visible, not creating, transporting or drawing the data otherwise. If a fraction of
the data needs to be transferred only once—because it is static over the time of the simulation—
it can be sent with the writeConstData() method; otherwise using writeDynData() is advised.
If the data is sparse and little information is transmitted or it has no discernible spatial cohe-
sion, it might be simpler to just add it to the server quad tree as additional data with a call to
OTFServerQuadTree.addAdditionalElement().

34.4.8 Sending Live Data

Flow of data within OTFVis is almost always a one way a�air, except for one important issue: send-
ing queries into the simulation. In case of a live simulation run, visualized with help from the
OTFVisLiveClient class, queries can be sent into the simulation. Again, the methods involved in
this process are threefold; queries will be realized through an object derived from the abstract
class AbstractQuery. Such an object initiates several methods that will be used as callback over the
lifetime of the query.

First, a new query is sent to the server and the method installQuery() is called. In this method,
all relevant parts (network, population, events) of the simulation run can be accessed and data can
be collected. The visualizer framework will later repeatedly call the result() method, to retrieve an
OTFQueryResult object. This has to implement a draw() method, to visualize the results in the given
screen context. If the result indicates isAlive(), the query() method of the AbstractQuery-derived
object will be called with each frame; otherwise, only once.

SUBPART TEN

Analysis

CHAPTER 35

Accessibility

Dominik Ziemke

35.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → accessibility

Invoking the module:

http://matsim.org/javadoc → accessibility → RunAccessibilityExample class

Selected publications:

Nicolai and Nagel (2014); Joubert et al. (2015)

In transport science and planning, the term accessibility can refer to at least three di�erent
concepts. First, accessibility may be used to describe how well a certain transport infrastructure
component can be utilized by travelers, particularly those with handicaps (Faura, 2012). In this
sense, accessibility guidelines tell engineers and planners how to design transport infrastructure
elements, such as public transport facilities, to make them accessible, i.e., useable for all travelers.
Second, accessibility may be used to describe how easy/convenient the approach to a given land-use
facility is. There are, for instance, studies (Fujiyama, 2004) to improve the accessibility of shopping
centers by redesigning access roads and their connection to major roads. Finally, the term accessi-
bility can be used in a more global way, to describe availability and spatial distribution of activity
facilities within a given area, e.g., a metropolitan region and the ease with which these facilities can
be reached from other locations in the area. MATSim’s accessibility extension focuses on all these
aspects; the discussion in this chapter draws on Nicolai and Nagel (2014).

How to cite this book chapter:

Ziemke, D. 2016. Accessibility. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent

Transport Simulation MATSim, Pp. 237–246. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.35. License: CC-BY 4.0

238 The Multi-Agent Transport Simulation MATSim

35.2 Introduction

Improvement in accessibility is o�en de�ned as a central goal of proposed transport or infras-
tructure schemes (Geurs et al., 2012b) and accessibility is usually a precisely-de�ned, quantitative
measure. While Batty (2009) traces the origins of the accessibility concept back to location theory
and regional economic planning in the 1920s (when transport planning began in North Amer-
ica; Geurs et al., 2012b), Hansen, with his widely-cited paper (Hansen, 1959), is generally credited
with the �rst real de�nition of accessibility, de�ning it as the potential of opportunities for interac-
tion. In more detail, Morris et al. (1979) de�ne accessibility as “the ease with which activities may
be reached from a given location using a particular transportation system”. The concept of accessi-
bility is a potential methodology for the assessment of transport systems, as it is a comprehensive
and inclusive way to evaluate how, where and why people move, taking well-known dependencies
between transport and land use into account. Hansen (1959) was probably the �rst to develop a
procedure for quantitative consideration of accessibility, discussed in more detail in Section 35.3.

In their widely-cited review, Geurs and van Wee (2004) identify four accessibility components
from existing de�nitions and applied measures:

1. The land-use component re�ects the number and spatial distribution of opportunities.

2. The transport component describes the e�ort to travel from a given origin to a given
destination.

3. The temporal component considers the availability of activities at di�erent times of day,
e.g., during morning peak hours.

4. The individual component addresses various socio-economic groups’ di�erent needs and
opportunities, e.g., di�erent income groups.

In this review, Geurs and van Wee (2004) list and summarize typical approaches applying the
accessibility concept, focusing on the accessibility components discussed above:

1. Infrastructure-basedmeasures focus on the (observed or simulated) performance or service
level of transport infrastructure, e.g., represented as average travel speed. These measures are
typically used in transport planning.

2. Location-basedmeasures describe level of accessibility to spatially distributed activities, such
as number of jobs within 30 minutes travel time from origin locations. These measures are
typically used in urban planning and geographical studies.

3. Person-based measures analyze accessibility at the individual level, such as the activities
in which an individual can participate at a given time. These measures are grounded in
Hägerstrand (1970)’s space-time geography.

4. Utility-based measures analyze the economic bene�ts that people derive from access to
spatially distributed activities. These measures have their origin in economic studies.

Geurs and van Wee (2004) intersects these approaches with the four accessibility components
identi�ed above, creating a matrix. This matrix illustrates how each of the four accessibility com-
ponents is represented in the four di�erent accessibility measures. There, each measure focuses
on certain weaknesses in those accessibility components outside the focus of a speci�c measure.
Accordingly, Geurs and van Wee (2004) recommend that an accessibility measure include all
four discussed accessibility components. The accessibility extension of MATSim, described in the
following, could be one way to achieve this goal.

In other recent research, as identi�ed by Geurs et al. (2012b), the accessibility concept is also
applied to social exclusion analysis (e.g., by examining the bene�t of employment accessibility for

Accessibility 239

disadvantaged populations before and a�er the implementation of a transport scheme), economic
valuation of accessibility e�ects (e.g., in cost-bene�t analyses and studies assessing the impact of
changes in public transport accessibility on house prices) and behavior analysis vis-a-vis accessibil-
ity measures (e.g., walking behavior dependence on di�erent residential neighborhood accessibility
qualities). It has also been used to explore questions of oil dependence, climate change and other
concerns (Curtis et al., 2013).

35.3 The Measure of Potential Accessibility

Today, methods to assess accessibility quality are o�en used in superordinate planning procedures,
like regional transport planning, where a central goal is to provide citizens with a certain level
of access to various services. For instance, the approach used by Germany’s agency responsible
for regional planning calculates travel times to major service facilities, like airports or hospitals
(Bundesinstitut für Bau-, Stadt- und Raumforschung, accessed March 2015). The results, typically
visualized by multi-colored maps, give useful insights into population access to certain services,
thus aiding transport infrastructure planning. In this approach, travel times are calculated to a
next airport, next hospital and next autobahn access; thus, the implicit assumption is that citizens’
needs are ful�lled by one (i.e., the next, or closest in terms of travel times) type of facility.

An accessibility measure becomes signi�cant, however, if not just the ability to reach the nearest
facility serving a particular need is taken into account, but also a set of multiple reachable facilities
serving the same need; di�erent facilities of the same type may o�er varying qualities of a given
service. Services may also expand and improve when combined with complementary services pro-
vided by another facilities of the same type. For instance, a person planning to take a holiday trip
by plane will probably consider several airports in his/her vicinity, instead of just looking at �ights
o�ered from the nearest airport. Thus, accessibility to airports should be made dependent on the
ability to reach all local airports instead of just the nearest one. Facilities o�ering medical services
may serve as another example. Considering the nearest hospital may be su�cient when looking
at simple services like �rst aid, presumably available at almost any hospital. In other cases, how-
ever, medical services accessibility should consider several hospitals in the vicinity because they are
likely to o�er di�erent specialized medical treatment. Consideration of a set of multiple facilities,
potentially useful from the perspective of a person at a given location, corresponds to taking into
account the land-use component of accessibility de�ned above.

Hansen (1959) considers the whole scope of potential activity facilities, where an accessibility
measure potential accessibility is de�ned. Such measures of potential accessibility are speci�ed as the
(weighted) sum over the accessibilities of several speci�c activity facilities (e.g., shopping, leisure
etc.) and take the mathematical form

Aℓ = g
(
∑

j

aj f (cℓj)
)

, (35.1)

where j are all possible destinations (opportunities), aj describes opportunity attractiveness, cℓj
denotes the generalized traveling cost between origin ℓ and destination j, f (c) is an impedance
function which (typically) decreases with increasing distance and g(.) denotes an arbitrary, but
usually monotonically increasing function. The weight of each opportunity j is thus the product
of the destination’s attractiveness, aj, and the ease of getting there, f (cℓj). As seen in its functional
form, this type of accessibility measure is related to gravity models used in trip generation models,
explaining why this measure is sometimes also referred to as a “gravity type” accessibility indicator
(Morris et al., 1979). The (quantitative) accessibility measure used in the MATSim accessibility

240 The Multi-Agent Transport Simulation MATSim

extension is expressed in this mathematical form and may thus be seen as a potential accessibility
measure.

It is important to note that the above-de�ned measure quanti�es how accessible a given location
ℓ is to certain services j. This kind of accessibility is outgoing accessibility, while a measure of ingoing
accessibility quanti�es how accessible a given destination location j is from other locations. Nicolai
and Nagel (2014) discuss circumstances under which these measures are interchangeable.

35.4 Accessibility Computation Integrated with Transport Simulation

As mentioned above, accessibility computations are o�en based on travel times (Bundesinstitut
für Bau-, Stadt- und Raumforschung, accessed March 2015; Büttner et al., 2010), which serve as
an impedance measure. Ways of calculating these travel times can, however, vary signi�cantly. The
simplest way to calculate a travel time between two locations is to measure the Euclidean distance
(beeline distance) between these two locations and multiply with some average speed. According
to Geurs and van Wee (2004), this is the usual approach in location-, person-, and utility-based
accessibility approaches, where the focus is not speci�cally on the transport system.

To strengthen the transport component of accessibility (as introduced above) and make acces-
sibility measure sensitive to transport infrastructure changes, a better representation of the travel
impedance between origins and destinations is required. The most common approach is travel time
calculation using shortest-path algorithms on a real-world transport infrastructure network repre-
sentation. Many accessibility computations are embedded into GIS so�ware, o�ering procedures
for network-based computations (Bundesinstitut für Bau-, Stadt- und Raumforschung, accessed
March 2015; Curtis et al., 2013; Büttner et al., 2010).

The accessibility extension in MATSim also o�ers this type of accessibility computation. To run
it, an accessibility controler listener, e.g., the GridBasedAccessibilityControlerListenerV3 must
be added to the MATSim controler. An example is given in RunAccessibilityExample (see http:

//matsim.org/javadoc → accessibility → RunAccessibilityExample for details). As input, a net-
work �le and a facilities �le are required (for more information on networks and facilities, refer to
Section 4.1.1 and Section 6.4 of this book). This procedure is more disaggregate than many com-
mon approaches to accessibility computations, where single facilities are seldom considered; there,
structural data like zone sizes, number of jobs, or total sales area are used to represent the potential
of a given zone (Büttner et al., 2010; Gulhan et al., 2014) (also see Section 35.6).

Either way, performing an accessibility computation this way can be regarded as a supply-based
approach, since both supply with transport infrastructure (required to reach a given location) and
supply with activity opportunities at these locations are taken into account. The utilization of these
two supply dimension by users, i.e., the dimension of demand is, however, not considered in this
approach. Therefore, no e�ects of competition (Geurs and van Wee, 2004), either for transport
infrastructure resources (de�ned by network capacities), or activity facilities capacities, are taken
into account. It is obvious, however, that supply and demand interaction e�ects are relevant,
because opportunities may disappear if they can no longer be reached within reasonable travel
times, or when activity facility capacities are exceeded.

By considering demand-supply interaction e�ects in addition to just the supply side, the scope
of the accessibility calculation can be signi�cantly increased. Gauging these e�ects on facility
capacities can be addressed by specifying facility capacities in the according value in the facilities
input �le. Observation of network capacities and their e�ects on agents’ behavior is one of the core
features of the MATSim transport simulation. This is also one major argument for the integration
of an accessibility computation with the dynamic transport simulation system MATSim. While
other accessibility tools—the majority based on GIS systems (Bundesinstitut für Bau-, Stadt- und
Raumforschung, accessed March 2015; Curtis et al., 2013; Büttner et al., 2010; Liu and Zhu, 2004;

Accessibility 241

Gulhan et al., 2014)—can calculate travel times on a routed network, they do not calculate accessi-
bilities dependent on transport infrastructure usage level. This property, is, however, essential when
making accessibility measures sensitive to transport demand management policies, i.e., transport
system changes that do not alter the transport infrastructure and are thus not captured by models
considering only the supply side.

To take these e�ects into account, the MATSim accessibility extension must be run with a
MATSim transport simulation. To do so, an initial plans �le (as described in Chapter 2 of this
book) needs to be speci�ed in the MATSim con�g �le. Furthermore, the value timeOfDay in the
accessibility module of the MATSim con�g �le needs to be speci�ed. If then, as described, an
accessibility controler listener is added to the MATSim controler, the best-path travel times, on
which the accessibility computation will be performed, are taken from travel times observed in the
MATSim transport simulation at the time speci�ed by the value timeOfDay. This is useful when
transport demand level varies signi�cantly during the day; for instance, with morning and a�er-
noon peaks; it also allows transport policy accessibility changes (and decision makers’ reactions)
to be better analyzed.

35.5 Econometric Interpretation

As pointed out by Morris et al. (1979), accessibility indicators provide a very useful way to summa-
rize a large volume of information on household locations and how they relate to urban activities’
distribution and connecting transport systems. They also take land use, the transport system and
their inter-dependencies into account holistically. Curtis et al. (2013) explain that accessibility
assessment tools overcome policy innovation restrictions associated with traditional transport
planning practice, pointing out that use of such tools enables examination of a broader range of
policy issues.

For e�ective policy decisions, accessibility assessment tools must be economically interpretable.
To make an accessibility measure clearest in an econometric evaluation (e.g., cost-bene�t analyses),
it seems sensible to adapt equation 35.1 as follows: g(.) = ln(.), aj = 1, f (cℓj) = e−cℓj , and −cℓj =
Vℓj. Thus, equation 35.1 becomes

Aℓ := ln
∑

k

eVℓk , (35.2)

where k denotes all possible destinations andVℓk equals the disutility of traveling from location ℓ to
destination k. Equation (35.2) is the so-called logsum term of exponentials and can be interpreted
as the expected maximum utility (e.g., Ben-Akiva and Lerman, 1985; de Jong et al., 2007). Equation
35.2 can be derived by assuming that the full utility of destination location k as perceived at origin
location ℓ, is Uℓk = Vbase +Vℓk + ǫℓk, where Vbase is a base utility for performing a given activity
without considering its location, Vℓk is the systematic or observed disutility of traveling to from
origin ℓ to destination k, and ǫℓk is a random term which absorbs the randomness of the disutility
of traveling, as well as �uctuations in utility around Vbase. Under the usual assumption that the ǫℓk

are independent and identically (iid) Gumbel-distributed random variables, the expectation value
of Uℓk becomes

E(Uℓ) = E(max
k

Uℓk) = ln
∑

k

eVℓk +Const ≡ Aℓ +Const . (35.3)

Const does not need to be considered, as it is invariant for all locations. As a consequence of
dropping the positive Const, Aℓ may take negative values.

Geurs et al. (2012a), for instance, use the logsum measure of user bene�ts as an alternative to
the travel time savings method (i.e., rule-of-half measure) in a case study examining the e�ects of
spatial planning on accessibility bene�ts and economic e�ciency of public transport projects.

242 The Multi-Agent Transport Simulation MATSim

35.6 Spatial Resolution, Data, and Computational Aspects

In contrast to many other transport simulations, MATSim is based on coordinates (see
Chapter 2 of this book), not zone-based. Therefore, accessibility computation in MATSim
can also be conducted independent from any zoning system and, instead, be based on
a raster with arbitrary granularity, i.e., adjustable grid size. Depending on the calcula-
tion planned (zone-based or grid-based), a ZoneBasedAccessibilityControlerListenerV3, or a
GridBasedAccessibilityControlerListenerV3, respectively, need to be added to the MATSim con-
troler. Unlike the MATSim accessibility extension, most other accessibility assessment tools rely on
the zone-based approach (Curtis et al., 2013; Liu and Zhu, 2004; Büttner et al., 2010). More detail
about the interpretation of cell- and zone-based accessibility measures is given by Nicolai and Nagel
(2014).

Running a grid-based calculation, especially if a high spatial resolution is selected, avoids several
issues that could arise (like“self-potential”) if accessibility computations are based on zones (see,
e.g., Nicolai and Nagel, 2014). A zone-based approach also makes the measure dependent on size
and shape of the geographical units (cf. MAUP (Modi�able Areal Unit Problem)). Due to its typi-
cally lower resolution level, a zone-based approach may also not adequately represent local details
(Kwan, 1998). This is especially relevant when lower-speed mode accessibilies (like walking) must
be considered.

The MATSim accessibility calculation does not require typical zone-based statistical data. In-
stead, the calculation can be conducted on the basis of so-called VGI (Voluntary Geographic
Information) like OSM, which contains activity facilities data on a coordinate-based level. Hence,
no reference to any zoning system is necessary when using these data. Furthermore, data from
OSM is publicly and freely available; the amount of these data are steadily increasing and quality is
improving. In particular, OSM seems to have established itself as a uniform and globally-accessible
standard for crowd-sourced and other geo-data, which makes the MATSim accessibility assessment
highly portable.

If the coordinate-based (= grid-based = raster-based = cell-based) version of the MATSim
accessibility computation is selected, its results can be interpreted as an accessibility �eld, i.e., as a
measure that varies continuously in space. This accessibility �eld, can be visualized by calculating
the values on regular grid points. Figure 35.1 gives an example of such a visualization and depicts
the accessibility of work places in Nelson Mandela Bay Municipality in South Africa, as calculated
by the grid-based MATSim accessibility computation with a grid size of 1 000 meters.

To calculate the accessibility Aℓ of a given origin location ℓ to opportunity locations k, both the
origin location ℓ, and opportunity locations k, are assigned to a road network. If the option to in-
tegrate the accessibility computation with the transport simulation, as described in Section 35.4,
is chosen, a congested network with time-dependent travel times (as they have been simulated in
MATSim) is used. For every ℓ, a so-called least cost path tree computation (Lefebvre and Balmer,
2007) is carried out. Accessibility of the same location at a di�erent time of day will usually be
di�erent, since congestion patterns vary. The least cost path tree computation determines the best
route and the least negative travel utility Vℓk from the origin location ℓ to each opportunity loca-
tion k, based on Dijkstra’s shortest path algorithm (Dijkstra, 1959). Once the least cost path tree
has explored all nodes, the resulting disutilities Vℓk for all opportunities k are queried and the
accessibility is calculated, as stated in Equation (35.2) (Nicolai and Nagel, 2014). A crucial question
is how to choose the point, i.e., the coordinate, where the accessibility computation is anchored.
Most quantitative accessibility tools use geographical centroids of given zones. This is also true
when the zone-based MATSim accessibility computation is selected. Alternative ways to select a
centroid (e.g., land-use-based centroids; Büttner et al., 2010) are discussed as well. If the grid-based
MATSim accessibility computation is selected, the question of choosing a representative point for
a spatial zone becomes less relevant, as cells are usually not selected to be as large.

Accessibility 243

Figure 35.1: Accessibility of work places in Nelson Mandela Bay Municipality calculated by the
grid-based MATSim accessibility computation

If the granularity of the grid-based MATSim accessibility computation is increased, origin
locations ℓ and opportunity locations k, possibly located o� the network, become increasingly im-
portant. To keep the approach consistent, the Vℓk calculation has to include disutility of travel to
overcome the gap between locations and the road network. Therefore, the disutility of travel cal-
culated by running the least cost path tree computation on the network has to be supplemented by
the disutility to access the network from the origin ℓ (network access) and the disutility to access
the destination k from the network (network egress). For origin locations ℓ, shortest distance to the
network is given either by the Euclidean distance to the nearest node, or the orthogonal distance to
the nearest link on the network. For destination locations k, the Euclidean distance to the nearest
node is used to determine the shortest distance to the network.

This assumption (i.e., that opportunity locations are attached to the nearest network node rather
than the nearest network element) is, in fact, the only approximation that the MATSim accessibil-
ity extension makes for the spatial resolution of opportunities (Nicolai and Nagel, 2014). While
this assumption is unlikely to signi�cantly alter accessibility results, it o�ers great potential for
the optimization of computational performance, which has o�en been a major obstacle to higher-
resolved accessibility computations (Kwan, 1998; Büttner et al., 2010). In the concrete case of the
MATSim accessibility computation, exploration of the entire network by the least cost path tree is
a computationally expensive task.

Thanks to the assumption, it is enough to sum over all opportunities k attached to a node j only
once. The travel disutility Vℓk can be deconstructed as

Vℓk = Vℓj +Vjk ∀k ∈ j , (35.4)

244 The Multi-Agent Transport Simulation MATSim

where k ∈ j denotes all opportunities k attached to node j,

∑

k∈j

eVℓk =
∑

k∈j

e(Vℓj+Vjk) =
∑

k∈j

eVℓjeVjk = eVℓj
∑

k∈j

eVjk =: eVℓj ·Oppj . (35.5)

It is thus su�cient to compute Oppj once for every network node j, and compute accessibilities as

Aℓ = ln
∑

k

eVℓk = ln

∑

j

eVij ·Oppj

 . (35.6)

Therefore, the loop performing the calculation does not have to run over all opportunities k, just
over all network nodes j.

Similarly, for each origin location ℓ, the nearest road network node is identi�ed. Locations ℓ

that share the same nearest node have di�erent travel disutilities to reach that node, but from then
on have the same travel disutility to any other network node j. Exactly like the destinations, the
least cost path tree is executed only once and calculated disutilities on the network are reused for
all origins ℓ that are mapped on the same nearest network node. Therefore, only the calculation
of the network access disutility needs to be performed individually for each origin ℓ. Nicolai and
Nagel (2014) show that, due to this run time optimization, computation time increases sub-linearly
with resolution. At the same time, they �nd that no signi�cant further insights can be gained by
increasing the resolution beyond a grid resolution of 100 meters.

The application example RunAccessibilityExample (see http://matsim.org/javadoc →

accessibility) performs multiple accessibility computations for di�erent types of activity facilities
(e.g., accessibility of workplaces or accessibility of leisure facilities) by adding multiple instances of
GridBasedAccessibilityControlerListenerV3 to the MATSim controler. Other ways of perform-
ing distinct accessibility assessments for parts of the land-use system are just as feasible. Figure 35.1
is an example of work place accessibilities.

35.7 Conclusion

There are many di�erent approaches to calculating accessibilities; most focus on a particular com-
ponent of accessibility, while other components in�uencing accessibility are represented only in a
limited way. Accessibility computations used in transport planning, for instance, represent trans-
port networks, and thus the transport component of accessibility very well, while they usually
do not represent facility properties or temporal e�ects. As pointed out by Geurs and van Wee
(2004), it would be optimal if an accessibility computation considered all accessibility components
(i.e., transport, land-use, temporal, and the individual component) well. The accessibility extension
of MATSim could be an approach to achieve this.

First, transport system dynamics are represented by the accessibility computation integration
with the MATSim dynamic tra�c simulation. Second, land use is represented in a very disaggregate
way; single facilities’ locations and attributes are taken into account. Third, the temporal dimension
can be observed by representing facilities’ opening times and time-dependent travel times on the
network; these are given as a MATSim dynamic tra�c simulation output. Finally, individual char-
acteristics can be taken into account; in the MATSim simulation, each individual is represented by
its own so�ware object, i.e., an agent, whose properties could be considered in the accessibilities
calculation.

Actual accessibility values calculated by the MATSim accessibility extension take the form of
potential accessibility measure, as originally de�ned by Hansen (1959). The speci�c selection of
the measure’s mathematical form allows results to be interpreted as logsum values, making them

Accessibility 245

suitable for utilization in economic evaluations like bene�t-cost analyses. Because the MATSim
accessibility extension can rely solely on publicly and freely available data, e.g., data from OSM,
it is highly portable. By distinguishing activity facilities along various potential dimensions, many
di�erent analyses can be conducted. In the code example given (see http://matsim.org/javadoc

→ accessibility → RunAccessibilityExample), for instance, accessibilities for di�erent land uses,
i.e., di�erent types of activity opportunities, are calculated. Being grid- instead of zone-based
(which most other accessibility tools are), avoids certain problems associated with zones. At the
same time, computations are still within reasonable ranges, partly due to a runtime optimization
that reuses computational steps for locations sharing the nearest network node.

CHAPTER 36

Emission Modeling

Benjamin Kickhöfer

36.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → emissions

Invoking the module:

http://matsim.org/javadoc → emissions → RunEmissionToolOnlineExample class,
RunEmissionToolOfflineExample class

Selected publications:

Hülsmann et al. (2011); Kickhöfer et al. (2013); Kickhöfer and Nagel (2011, 2013); Hülsmann et al.
(2013); Kickhöfer (2014); Kickhöfer and Kern (2015)

36.2 Introduction

This chapter presents the emission modeling tool developed and tested by Hülsmann et al. (2011)
and further improved by Kickhöfer et al. (2013). The text in this chapter is a slightly updated version
of the emission modeling tool description in Kickhöfer (2014). The tool calculates warm and cold-
start exhaust emissions for private cars and freight vehicles by linking MATSim simulation output
to the detailed “HBEFA (Handbook on Emission Factors for Road Transport)” database, available
for many European countries.

The chapter is structured as follows: Section 36.3 reviews literature for other attempts to model
transport-related emissions. Section 36.4 presents an overview of the “EMT (Emission Modeling
Tool, see Chapter 36)” and Section 36.5 shows how the tool is embedded in MATSim’s so�ware
structure.

How to cite this book chapter:

Kickhöfer, B. 2016. Emission Modeling. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent

Transport Simulation MATSim, Pp. 247–252. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.36. License: CC-BY 4.0

248 The Multi-Agent Transport Simulation MATSim

36.3 Integrated Approaches for Modeling Transport and Emissions

Over the last two decades, the modeling of transport-related environmental externalities has
received increasing attention in transportation science. The following paragraphs brie�y present
some recent work in the exhaust emission modeling area; additionally, they highlight di�erences
to the EMT, which will then be described in subsequent sections.

Creutzig and He (2009) and Michiels et al. (2012) use very aggregated �gures to estimate
air pollution in Beijing and Belgium, respectively. Neither approach mentions any particular
underlying transport model. It seems that transport related emissions are based on aggregated
origin-destination matrices or aggregated demand functions. These two studies are on a very
di�erent level of aggregation than the EMT, and a comparison does not seem constructive.

Beckx et al. (2009) use a sophisticated activity-based model to simulate activity schedules
for roughly 30% of all households in the Netherlands. Tra�c assignment for passenger cars
is performed by using an aggregated “all-or-nothing” assignment approach, resulting in hourly
aggregated tra�c �ows on the network. Based on the average speed for a trip, the MIMOSA
(Modélisation Isentrope du transport Méso-échelle de l’Ozone Stratosphérique par Advection)
model then calculates emission and fuel consumption rates, possibly dependent on vehicle cat-

egory. The idea of using an activity-based model to simulate time-dependent emissions is similar
to the EMT. In contrast to the latter, the underlying transport in Beckx et al. (2009) does not
account for congestion e�ects and di�erent tra�c states. Additionally, similar macroscopic emis-
sion models are typically unable to capture certain microscopic behavior accurately (see, e.g., Ahn
and Rakha, 2008).

Hirschmann et al. (2010) link the microscopic tra�c �ow simulator VISSIM (Verkehr In
Städten – SImulationsModell) with the instantaneous emission model PHEM (Passenger Car and
Heavy-duty Emission Model).1 At �rst glance, this approach seems very promising, as it also builds
the basis for the HBEFA database. In contrast to the EMT, it is not suitable for large-scale scenarios
due to the computational complexity of VISSIM (Verkehr In Städten – SImulationsModell). In
Kraschl-Hirschmann et al. (2011), the same authors attempt to develop a parametrization of fuel
consumption based on average speeds of vehicles. Such parametrization could be helpful—in the
future—to replace time-consuming lookups in large databases (e.g., HBEFA). However, the model
would need to allow for more input variables (e.g., vehicle category, tra�c state, etc.) and provide
more di�erentiated outputs, e.g., di�erent emission types.

In a similar study, Song et al. (2012) couple VISSIM (Verkehr In Städten – SImulationsModell)
with the emission modeling tool MOVES. They �nd that the VISSIM (Verkehr In Städten –
SImulationsModell)-simulated, vehicle-speci�c power distribution for passenger cars deviates sig-
ni�cantly from the observed distribution, meaning that the estimated emissions also contain
signi�cant errors. Here again, the proposed model cannot be used for large-scale scenarios.
Additionally, it seems questionable whether such detailed modeling will prove to be superior to
less detailed models as the EMT.

Wismans et al. (2013) compare passenger car emission estimates of static and dynamic tra�c
assignment models. They claim that little research has been done in connecting macroscopic or
meso-scopic dynamic tra�c assignment models with emission models. According to the authors,
static assignment models predict congestion on the wrong locations and ignore spillback e�ects.
They argue that emission hotspots are, in consequence, also predicted at the wrong locations and/or
with the wrong amplitude. To counter these disadvantages, they couple a static and a dynamic tra�c
assignment model with the exhaust emission model ARTEMIS. Large di�erences in air pollutant
emissions are found and hotspot locations di�er.

1 The PHEM (Passenger Car and Heavy-duty Emission Model) model uses speed trajectories as input and was tested

against the output of the EMT by Hülsmann et al. (2011).

Emission Modeling 249

Hatzopoulou and Miller (2010) develop a methodology for calculating exhaust emissions, using
MATSim as transport model. The approach is therefore similar to the EMT. In contrast to that
study, the EMT does not assume �xed exhaust emissions per time unit. It uses a more detailed
calculation of emissions based on the two di�erent tra�c states: “free �ow” and “stop&go”. It is,
thus, able to capture congestion e�ects that emerge, as well as the time spent in tra�c jam. Fur-
thermore, the EMT calculates exhaust emissions for passenger cars and for trucks. Finally, since
the methodology is based on HBEFA, it can be transferred to any scenario in Europe.

36.4 Emission Calculation

Air pollution is caused by di�erent contributions of road tra�c: Warm emissions are emitted
while driving and are independent of the engine’s temperature. Cold-start emissions also occur
during the warm-up phase and depend on the engine’s temperature when the vehicle is started.
Warm emissions di�er with respect to: driving speed, acceleration/deceleration, stop duration,
road gradient, and vehicle characteristics consisting of vehicle type, fuel type, cubic capacity, and
European Emission Standard Class (André and Rapone, 2009). Cold emissions di�er with respect
to: driving speed, distance traveled, parking time, ambient temperature, and vehicle characteristics
(Weilenmann et al., 2009).

Currently, the emissions contribution to MATSim considers all di�erentiations above marked
in italic. Road gradient and ambient temperature are not considered; gradient is always assumed
to be 0 %, and ambient temperatures are assumed to be HBEFA average. In addition to warm and
cold-start emissions, evaporation and air conditioning emissions also result from road tra�c. At
the moment, these are not considered in the emission modeling tool, because they contribute little
to the overall emission level.

The calculation of warm emissions is composed of two steps:

1. deriving kinematic characteristics from the simulation, and

2. combining this information with vehicle characteristics to extract emission factors from the
HBEFA database.

In the �rst step, driving speed, as well as stop duration (and possibly an approximation of
acceleration/deceleration patterns), is captured by a mapping of MATSim’s dynamic tra�c �ows
to HBEFA tra�c states. These tra�c states, namely “free �ow”, “heavy”, “saturated”, and “stop&go”,
have been derived from typical driving cycles, i.e., time-velocity pro�les. A parametrization of these
pro�les led to the de�nition of these tra�c states, which depend on speed limit, average speed, and
road type. Thus, typical emission factors for a speci�c tra�c state on a speci�c road segment can
be looked up in the HBEFA database. In MATSim, neither the location on a road segment, nor
the exact driving behavior of an agent is known (see Section 1.3). It is quite straightforward to ex-
tract agents’ travel times on the road segment which, thanks to the queuing model, also includes
interactions with other agents and spillback e�ects. The average speed of an agent on a certain road
segment is thus used to identify corresponding HBEFA tra�c states, and to assign emission factors
to the vehicle. As of now, the emission modeling tool considers only two tra�c states: free �ow and
stop&go.2 Each road segment is divided into two parts representing these two tra�c states. The
distance ls that a car is driving in stop&go tra�c state is determined by the following equation:

ls =
l vs(vf − v)

v(vf − vs)
, (36.1)

2 Simplified because the difference between traffic states—free flow, heavy, and saturated—emission factors are only

marginal. In contrast, emission factors for stop&go are roughly twice as high.

250 The Multi-Agent Transport Simulation MATSim

where l is the link length in kilometers from the network, vs is the stop&go speed in km/h for
the HBEFA road type, vf is the free �ow speed in km/h from the network, and v = l

t is the average
speed on the link for the vehicle, t being the link travel time of the vehicle in the simulation. For the
derivation of Equation (36.1), please refer to Kickhöfer (2014). The distance that the car is driving
in free �ow tra�c state is then simply the remaining link length lf = l− ls. The interpretation of this
approach: Cars drive in free �ow until they have to wait in a queue. Stop&go tra�c state applies only
in the queue. According to the MATSim queue model presented in Section 1.3 , a queue emerges if
demand exceeds capacity of a road segment, which can also result in spill-back e�ects on upstream
road segments. The length of the queue is, thus, approximated by Equation 36.1, where the average
speed v on a link is the only exogenous variable.

For the second step, agent-speci�c vehicle attributes are needed. They are usually obtained from
survey data during the initial population synthesis. The vehicle attributes typically comprise: vehi-
cle type, age, cubic capacity and fuel type. Because MATSim keeps socio-demographic information
throughout the simulation process, it can be used at any time for reference in the detailed HBEFA
database. Additionally, the emission modeling tool is designed in such way that �eet averages are
used, whenever no detailed vehicle information is available.

The calculation of cold-start emissions is, again, composed of two steps:

1. deriving parking duration and accumulated distance from the simulation, and

2. combining this information with vehicle characteristics in order to extract emission factors
from the HBEFA database.3

Parking duration refers to the time a vehicle is not moved before cold-start emissions are pro-
duced. It is calculated by subtracting an activity’s start time from the same activity’s end time and
by checking if the trip to and from the activity is performed by car. Emission factors in HBEFA are
di�erentiated by parking duration in one hour time steps from 1 hour to 12 hours. A�er 12 hours,
the vehicle is assumed to have fully cooled down. The accumulated distance refers to the distance
a vehicle travels a�er a cold start. According to HBEFA, there are di�erent cold-start emissions for
short trips less than 1 kilometer and and for longer trips equal to or greater than 1 kilometer. In
reality, cold-start emissions are emitted along the route a�er a cold start; at this time, the emission
modeling tool maps the short trip emissions to the road segment where the engine is started, and, if
applicable, additional emissions to the road segment where the accumulated distance exceeds the
�rst kilometer. Overall, cold-start emission factors increase with parking duration and accumu-
lated distance; they also depend on vehicle attributes. The lookup for this information is identical
to the one described for warm emissions.

In order to further process warm and cold-start emissions, so-called emission events are gener-
ated during the simulation in a separate events stream. The de�nition of emission events follows
the MATSim framework that uses events for storing disaggregated information in XML format.
The following section provides more information on the EMT’s so�ware structure.

36.5 So�ware Structure

The information in this section refers to code that can be found in the MATSim repository. In the
following, the so�ware structure of the EMT at revision 30 058 is described. For information on
how to use the tool, please use the entry points listed at the beginning of this Chapter 36.

3 Please note that HBEFA provides cold-start emission factors only for passenger cars. Freight traffic therefore only

produces cold-start emissions of passenger cars.

Emission Modeling 251

Figure 36.1: So�ware structure of the emission modeling tool.

Figure 36.1 shows the simpli�ed so�ware structure of the EMT. The core of the tool is the
EmissionModule which needs to be created before the simulation starts. There are also two public
methods that must be called: createLookupTables() and createEmissionHandler().

The former creates lookup tables from input data that has to be exported from the HBEFA
database. The path to these input �les can be con�gured in the EmissionsConfigGroup. Manda-
tory input are �les for the creation of roadTypeMapping, emissionVehicles, avgHbefaWarmTable,
and avgHbefaColdTable. The �rst lookup table maps road types from the MATSim network to
HBEFA road types. For this mapping, it is necessary to classify the network road types into HBEFA
categories; this requires some transport engineering knowledge. The second lookup table de�nes
the vehicle attributes of every owner in the population. It should therefore be generated dur-
ing the population synthesis process. If no detailed information is available, the vehicle lookup
table still needs to specify whether the vehicle is a car or a truck. The current implementation uses
the MATSim vehicle interface Vehicles as container for storing the relevant data in VehicleType.4

The last two mandatory lookup tables (avgHbefaWarmTable and avgHbefaColdTable) provide warm
and cold emission factors in g/km, respectively. The data is stored using a unique key. For the con-
struction of this key, information from roadTypeMapping and emissionVehicles is needed, as well as
information derived from the simulation as described in Section 36.4. The latter information is de-
picted in Figure 36.1 as variables of the two classes WarmEmissionHandler and ColdEmissionHandler.
These two handlers implement several MATSim EventHandler interfaces to extract necessary in-
formation from the simulation. A�er gathering this information, the WarmEmissionHandler asks
its WarmEmissionAnalysisModule to reconstruct the key and look up the emission factors in the

4 Please note that vehicle information provided to the EmissionModule is only used for storing data on individual

vehicle characteristics and other information will be omitted by the simulation.

252 The Multi-Agent Transport Simulation MATSim

respective table. Similarly, the ColdEmissionHandler asks the ColdEmissionAnalysisModule. These
analysis modules then create Warm/ColdEmissionEvents, which follow the MATSim Event interface
de�nition. Finally, the resulting events stream is written in a joint emission events �le by a separate
EventsManager.

For the calculation of emissions dependent on agent-speci�c vehicle characteristics,
emissionVehicles must contain that speci�c information, the corresponding �ag in the
EmissionsConfigGroup needs to be switched on, and detailed emission factor tables also need to
be exported from HBEFA and provided to the EmissionModule with two additional input �les:
detailedHbefaWarmTable and detailedHbefaColdTable.

CHAPTER 37

Interactive Analysis and Decision Support with
MATSim

Alexander Erath and Pieter Fourie

37.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → travelsummary

Invoking the module:

http://matsim.org/javadoc → travelsummary → RunEventsToTravelDiaries

Selected publications:

This chapter is largely based on work in Erath et al. (2013), where the interested reader will �nd
references for further reading.

37.2 Introduction

Agent-Based Simulation Means Lots of Data Agent-based transport demand models require
managing and integrating data sources several orders of magnitude larger than traditional aggre-
gate models. In a truly disaggregate demand description, as seen in our MATSim implementation
for Singapore, spatial data represents individual buildings and land parcels, not zones; travel
demand takes the form of a full activity diary with connecting trips for every individual, based on
their personal demographic attributes, instead of an aggregate number of trips from zone to zone
for a speci�c time period. For this reason, input data for an aggregate four-step (or related) demand
model can generally be edited on a laptop, using standard spreadsheet so�ware, whereas agent-
based modeling requires the manipulation and synthesis of large stores of structured, hierarchical
data, frequently exceeding most personal computer capacity.

How to cite this book chapter:

Erath, A and Fourie, P. 2016. Interactive Analysis and Decision Support with MATSim. In: Horni, A, Nagel,

K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 253–258. London:

Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.37. License: CC-BY 4.0

254 The Multi-Agent Transport Simulation MATSim

How MATSim Stores Data MATSim stores and retrieves data from XML, because XML
re�ects objects’ hierarchical structure in the simulation and is readable. However, performing gen-
eral exploratory analysis of large XML data stores is usually poorly supported by most data analysis
so�ware packages, especially GIS-based systems. To perform analyses, expert knowledge of XML
querying technologies like XPath and XQuery is required (or Java, if one performs more special-
ized analysis on the objects themselves). In our experience, this specialized knowledge is lacking
in transport and urban spatial planning practice. Therefore, in most MATSim applications so far,
authorities, and other interested parties, must formulate their desired analysis in advance and have
expert consultants perform the analysis. Any queries resulting from the analysis require another
consultation cycle and the client’s perceived value declines, due to both lack of interactivity and
model ownership feeling. We believe this lack of a broadly supported exploratory data analysis
interface, and the customer experience the interface can create, presents a considerable barrier to
entry for many authorities and operators interested in using MATSim.

How Customers Interact With Data: Relational Databases, GUI-Driven Interaction Most
transport and urban spatial planning customers rely on mature, GUI-driven so�ware, such as
ArchGIS (ESRI, 2011), EMME/3 (INRO, 2015), the PTV (PTV, 2009) transport planning suite, or
even Microso� Excel; all of these connect to relational databases and perform queries on large data
sets. Many analysts can explicitly query databases using the SQL (Structured Query Language);
the ODBC (Open Database Connectivity) standard allows so�ware to connect to any relational
database regardless of the actual technology driving it. Importantly, many interactive exploratory
data analysis so�ware suites, like Tableau, Tibco Spot�re, SAS and the open source R project,
support relational databases and ODBC.

37.3 Requirements of a Decision Support Interface to MATSim

The event stream produced by the MATSim mobility simulation represents the transport simu-
lation process at the atomic level. It could be fed into a relational database; an analyst �uent in
procedural languages could process it in arbitrary ways. But we expect more general use case sce-
narios, where most analysts will perform general tasks that can be standardized. To this end, we
set about compiling requirements speci�cations for potential audiences and their use case scenar-
ios, to come up with a general interactive analysis framework and decision support to satisfy most
requirements. We developed a set of Java classes to process MATSim input and output, produc-
ing tables in a relational database, and an entity relationship diagram that should be intuitive and
useful to a large user audience.

37.3.1 Users

This chapter presents a decision support tool geared to decision makers and researchers in the
�elds of transport planning and operations, spatial planning and spatial economics and geogra-
phy. Generally speaking, it should serve professionals interested in mobility and spatial analysis,
who understand transport modeling principles, but do not have the expertise to operate an agent-
based transport simulation directly. Currently, we envision the following stakeholders and some
hypothetical questions for a decision-support system—a non-exhaustive list that, we expect, will
grow with time:

Transport planners: How many trips occur where, when and what is the activity purpose? What
are the socio-demographic characteristics of people performing these trips and activities?

Urban Planners: What are the temporal usage patterns of buildings and the surrounding neigh-
borhood? What is the �ow from public transport stops to surrounding buildings?

Interactive Analysis and Decision Support with MATSim 255

Policy-Makers: What are the costs and bene�ts of a new public transport service? Who are the
winners and losers when constructing a new road?

Public Transport Operators: What is the breakdown of speci�c bus lines’ ridership?
Service Industry: Which customers are in catchment areas, separated by mode?

37.3.2 Functional Requirements

The decision support framework should facilitate classic transport appraisal methods, such as
cost/bene�t analysis and evaluation of transport infrastructure spatial impact and policy mea-
sures. The framework should allow any sort of spatial analysis, on the �nest granularity level
provided by the transport model; usually, individual buildings or parcels, as well as public transport
stops and selected links, like count stations or tolled road segments. However, these geographic
features should be indexed against transport zones, or other geographic areas of interes,t to
allow customized results aggregation. Furthermore, it should capture all temporal aspects of the
simulation; full temporal dynamics are a crucial part of the agent-based approach.

37.4 General Framework for Decision Support

Figure 37.1 shows the general framework as we envision it: data from various sources feeds into a
spatially-enabled database, with all geodata transformed to use the same spatial reference system
(ideally, using the same projection used for MATSim coordinates, allowing for simple distance
calculations). Simple Java programs using the MATSim API and JDBC (Java Database Connec-
tivity) produce XML input data for MATSim scenarios; events from these scenarios are fed back
into the database. Analysts query the database to produce “data cubes”, which are aggregations and
queries across many database tables. These are designed for speci�c purposes, such as calibration
and validation, location analysis, winner/loser analysis or other application-speci�c purposes.

Figure 37.1: General framework of the decision support system.

256 The Multi-Agent Transport Simulation MATSim

37.4.1 Entity Relationship Diagram (ERD) for General Purpose Analysis

For entity relationships, we decided that a travel diary format is most suitable for the usual types of
analysis, but works especially well for comparison with other data sources when validating simula-
tion output. Most travel surveys take the form of a diary, recording travel time, purpose and mode,
as well as aspects of the journey like number of stages, transfer walking and waiting time and
in-vehicle time. Routines can be developed to transform survey data and public transport smart
card records into the same format with consistent coding. Figure 37.2 shows the ERD (Entity Re-
lationship Diagram) we propose, along with the primary/foreign key relationships between tables
that facilitate aggregation and joining of e.g., personal/household attributes, such as income, with
travel time experienced in the simulation.

37.4.2 Interactive Analysis Using Business Analytics So�ware

Modern business analytics so�ware, like Tableau (Tableau So�ware, 2013), provide interactive data
aggregation and visualization from relational databases. While basic analysis of individual tables

C
o
n
s
is

te
n
t
c
o
d
in

g
 o

f
a
tt
ri
b
u
te

s

C
o
n
s
is

te
n
t
c
o
d
in

g
 o

f
a
tt
ri
b
u
te

s

C
o
n
s
is

te
n
t
c
o
d
in

g
 o

f
a
tt
ri
b
u
te

s

Re-coded into

households,

persons. trips,

stages

Re-coded and

cleaned, imputed
Converted into

SQl records

Summarized as

journeys, trips and

transfers

Stages

journey_id

stage_id

transit_stop_id (board &

alight)

Mode, distance, duration, etc.

Network links
zone_id

link_id

Land-use, area, etc.

Raw travel survey records
Stage-by-stage report of each

household member's daily travel

Households
household_id

facility_id

Income, car avail. etc.

Persons
household_id

person_id

Income, licensure, etc.

Journeys
person_id

journey_id

Distance, duration, etc.

Stages
journey_id

stage_id

Mode, distance, dur., etc.

Transfers
journey_id

from_stage, to_stage

Waiting & walk time, etc.

Activities
person_id

facility_id

activity_id

Type, duration, timing, etc.

Spatial data sources
Including cadastre, web sources,

land-use maps, MPO zoning.

Zones/aggregations
zone_id

Area name, other attributes.

Parcels
zone_id

parcel_id

Land-use, area, etc.

Buildings/facilities
parcel_id

facility_id

link_id

Activity capacities, dwelling

types, number of units, etc.

MATSim input data

Synthetic population,

agent plans, events files,

transit schedule

Households
household_id

facility_id

Income, car availability, etc.

Persons
household_id

person_id

Income, licensure, etc.

Journeys
person_id

journey_id

Mode, distance, duration, etc.

Transfers
journey_id

transfer_id

Waiting & walk time, etc.

Activities
person_id

facility_id

activity_id

Type, duration, timing, etc.

Transit smart-card data

Tap-in and tap-out, geo-

coded transit travel records

identified by card ID.

Persons
card_id

Approx. age, imputed home

and work location.

Journeys
card_id

journey_id

Mode, distance, duration, etc.

Stages

journey_id

stage_id

transit_stop_id (board &

alight)

Mode, distance, duration, etc.

Transfers
journey_id

transfer_id

Total transfer time

Survey database Spatial database MATSim database
Transit smart-card

 database

SQL cross-joins and aggregations

Tableau visualization

Transit stops
link_id

transit_stop_id

Bus and rail stops

Figure 37.2: Simpli�ed entity relationship diagram showing shared keys across tables.

Interactive Analysis and Decision Support with MATSim 257

in our proposed ERD could already provide valuable insight to MATSim simulations, much richer
analysis is possible when tapping relationships between di�erent tables in the database. With the
help of graphical query building so�ware, little or no knowledge is required to construct SQL
scripts that create customized data cubes. These cubes are fed into the business analytics so�ware,
which is designed with a relatively programming-agnostic audience in mind. Relying on the famil-
iar paradigm of drag-and-drop interaction in a simple, well-documented GUI, the user constructs
“dashboards” summarizing information and allowing interactive aggregation, or drilling-down
across multiple dimensions.

Figure 37.3 shows a Tableau visualization comparing public transport ridership from a MATSim
simulation to actual smart card data records (transformed into the travel diary format speci�ed in
the ERD). Figure 37.4 shows the SQL query used to produce the data frame driving the Tableau
analysis. The query exploits the primary/foreign key relationships in the database to perform rapid
joins between the di�erent tables.

37.5 Diaries from Events

In the package contrib.analysis.travelsummary (Chapter 38), the reader can �nd a set of classes
that will transform their MATSim simulation results into a set of travel diary tables, like those
discussed in the preceding section. The package contains a simple GUI class that can be run to
specify input data XML �les, the location to save output CSV (Comma-Separated Values) �les
and other information such as a subscript appended to the end of �le names to identify di�erent
scenarios. These CSV �les can be read into a relational database of choice, or directly queried in
Tableau, or other interactive analysis so�ware.

Figure 37.3: Tableau visualization of public transport ridership from a MATSim simulation
compared against actual smart card data records in Singapore.

258 The Multi-Agent Transport Simulation MATSim

Figure 37.4: A diagram showing how the tables from Figure 37.2 are joined together for visualiza-
tion in business analytics so�ware, e.g., Tableau, as shown in Figure 37.3.

Source: (Erath et al., 2013)

CHAPTER 38

The “Analysis” Contribution

Kai Nagel

38.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → analysis

Invoking the module:

No standard invocation. See http://matsim.org/javadoc → analysis → RunKNEventsAnalyzer

class for intuition.

Selected publications:

–

38.2 Summary

This contribution collects various analysis tools for MATSim output.
One important reason for having this in a contribution rather than in a playground is the Apache

Maven layout of the repository: Contributions can use material from other contributions, but not
from the playgrounds. In consequence, analysis tools that are needed in a contribution need to be
in a contribution themselves. The analysis contribution is a possible place where to put them.

How to cite this book chapter:

Nagel, K. 2016. The “Analysis” Contribution. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-

Agent Transport Simulation MATSim, Pp. 259–260. London: Ubiquity Press. DOI: http://dx.doi.org/

10.5334/baw.38. License: CC-BY 4.0

SUBPART ELEVEN

Computational Performance
Improvements

CHAPTER 39

Multi-Modeling in MATSim: PSim

Pieter Fourie

39.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → pseudosimulation

Invoking the module:

http://matsim.org/javadoc → pseudosimulation → RunPSim class

Selected publications:

Fourie et al. (2013)

39.2 Introduction

MATSim’s major current performance limitation is the network loading simulation, i.e., the
mobsim, for example QSim or JDEQSim; this chapter focuses on QSim. As shown earlier, QSim
is repeatedly executed in the MATSim loop for the entire agent population (Section 1.2).

With the multi-modeling approach (Fourie et al., 2013), shown in Figure 39.1, a MATSim run
periodically replaces QSim for a number of iterations with a simpli�ed meta-model or PSim
(Pseudo-Simulation), running approximately one hundred times faster. In risk analysis, these
models are called “surrogate models” (Sudret, 2012). PSim uses travel time information from the
preceding QSim iteration to estimate how well an agent day plan might perform, allowing multiple
iterations of mutation and evaluation between QSim iterations to more rapidly explore the agents’
solution space, producing better performing plans in a shorter time.

How to cite this book chapter:

Fourie, P. 2016. Multi-Modeling in MATSim: PSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 263–266. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.39. License: CC-BY 4.0

264 The Multi-Agent Transport Simulation MATSim

initial demand relaxed demandQSim score

replan

PSim score

Inner loop: execute p times for every QSim iteration in outer loop

Outer loop: execute q+1 times, switch to inner loop after each execution for iterations 1..q

Figure 39.1: Operation of a MATSim run implementing pseudo-simulation.

Source: Fourie et al. (2013), Figure 1, p. 69

39.3 Basic Idea

PSim exploits classes that record various network performance aspects during queue simulations
and uses them as an approximate meta-model of QSim. It �res the same sequence of events for car
and public transport passengers that is produced during a QSim mobility simulation, except that
event timings are approximate values expected at the time of day they occur.

For private vehicle tra�c, it calls the

getLinkTravelTime(Link link , double time , Person person , Vehicle vehicle)

method of classes implementing the TravelTime interface to �re LinkEnterEvents and
LinkLeaveEvents at appropriate times for all car route links. For public transportation, the events
sequence generated for a passenger traveling on a particular service relies on a meta-model
of stop-to-stop travel times (interface StopStopTime) and waiting times at stops (interface
WaitTime); both concepts were developed by Sergio Ordòñez at the Future Cities Laboratory
(package playground.singapore.transitRouterEventsBased).

PSim plans are scored using the same function as QSim iterations and are compatible with most
replanning modules in MATSim. Following a series of PSim iterations, a plan is selected for each
agent, in the usual fashion, and a QSim iteration is run to start a new cycle. The various classes used
in PSim are updated with the latest network performance information and the process repeats.

39.4 Performance

Initial tests on the Zürich scenario (described in Chapter 56) have shown a dramatic decrease in
computation times, compared to the default QSim-only approach; performance improves linearly
with an increasing number of computational cores. Figure 39.2 compares the PSim-approach, in
two con�gurations, against the existing approach, for a 10 % sample of private vehicle tra�c in
Zürich. All simulations were run until they reached a target score, i.e., the score reached a�er run-
ning the standard approach for 100 iterations. The �rst PSim-implementing con�guration uses
the same rate of plan mutation as the QSim-only approach, where 30 % of agents are selected for
plan mutation (replanning) a�er each iteration, whether it is a QSim or PSim iteration. The new
approach requires fewer QSim iterations to reach a target score, but requires more time for replan-
ning. Replanning is fully multi-threaded, with no synchronization between cores required, so its
performance increases linearly, with increasing number of cores; times improve more dramatically
with the new approach than the standard approach. In the second con�guration, the mutation rate

Multi-Modeling in MATSim: PSim 265

Figure 39.2: Computation time contributions vs. number of computational cores for QSim-only
(0.3 replanning rate), 9 PSim iterations per QSim iteration at 0.3 replanning rate, and 24 PSim
iterations per QSim iteration at 0.1 replanning rate.

Source: Fourie et al. (2013), Figure 4, p. 73

is reduced and the number of PSim iterations between QSim iterations increased to 24 for each
QSim iteration. The system now tests many more combinations of di�erent mutation operations
(four in this case: activity timing, mode choice, secondary activity location choice, and re-routing),
to reach the target state much faster, even though it produces a smaller expected number of mutated
plans per agent between QSim iterations (three for con�guration 1, 2.5 plans for con�guration 2).

This last point raises an interesting issue; namely, that the distribution of mutation operation
numbers can be dramatically spread out with the PSim approach, because increasing the number
of iterations is relatively cheap. This should make the approach preferable, especially with ran-
dom mutation-producing replanning strategies, where a large number of mutations are needed to
produce a relaxed simulation state.

For a detailed discussion of the meta-modeling approach and the results of applying this method
to the Zürich scenario, refer to Fourie et al. (2013).

39.4.1 Distributed Computing

Because PSim executes plans independently from each other, requiring no coordination of com-
putational processes, it is possible to distribute it across multiple nodes, with no need of shared
memory, as illustrated in Figure 39.3. To this end, we (Fourie and Ordòñez, FCL (Future Cities
Laboratory)) are implementing a simple messaging protocol to transmit network performance
objects to PSim slave nodes from a master node running QSim only. Slave nodes perform replan-
ning operations and evaluate plans in a pre-determined number of PSim iterations per cycle. At
the start of each QSim iteration, a single plan for each agent is transmitted back to the master from

266 The Multi-Agent Transport Simulation MATSim

MASTER

(QSim)

SLAVES

(PSim +

replanning)

....................................

TravelTimes

StopStopTimes

WaitTimes

to slaves

Agent plans

to master

Figure 39.3: Master-slave con�guration for running PSim in distributed mode, across many slave
computer nodes in a local area network or in a cloud computational framework. The master
runs selected plans in a full queue simulation and transmits updated travel time information
to slave nodes a�er every iteration. In turn, slaves produce and evaluate new plans in repeated
PSim/replanning cycles, sending the master a single plan for each agent at the start of a QSim
iteration.

all the slaves, and updated TravelTimes, StopStopTimes and WaitTimes are rendered during the full
mobility simulation, to be transmitted back to the slaves in the next cycle.

The approach yielded promising results, with a reduction in the number of QSim iterations, as
in the previous work, as well as the potential for running large-scale simulations on much cheaper
hardware than the current approach, that demands expensive shared memory servers. Most impor-
tantly, all replanning takes place in parallel with the QSim running on the master, so the time spent
waiting for replanning operations can be reduced to nil. This performance increase is especially
useful for large scenarios implementing public transportation, where the time spent replanning
can be up to twice that of the queue simulation.

CHAPTER 40

Other Experiences with Computational
Performance Improvements

Kai Nagel

MATSim has always had the simulation of large regions as its goal, and as such was always
interested in high computational performance. The team had, when it started with the Java-based
MATSim (cf. 46.2.1.4), considerable experience in parallel computing (Nagel and Schleicher, 1994;
Rickert and Nagel, 2001; Nagel and Rickert, 2001; Cetin et al., 2003) as well as with more general
message-based approaches (Gloor and Nagel, 2005) that resemble today’s Protocol Bu�ers (Google
Developers, 2015). However, the move to Java (see Section 46.2.1.4), a decision for faster concep-
tual progress and reduced maintenance e�ort, also had the consequence that the MPI (Message
Passing Interface) approach to parallel computing could no longer be used and was thus given up.
See Section 46.2.1.4 for details.

The behavioral modules of MATSim, such as route (Section 4.5.1.2) or destination (Chapter 27)
innovation, are conceptually straightforward to parallelize by multi-threading, and that was
implemented in MATSim from early on (Balmer et al., 2009b, see Section 4.2.3 how to use this).
The remaining challenge then is to parallelize the mobsim, in which the parallel threads need to
interact closely. For example, assume that we compute 24 hours of tra�c in 120 seconds of com-
puting time (cf. Table 40.1). With the 1 second time steps used in the QSim this means 720 update
rounds per second, and thus 720 inter-thread interactions per second.

An attempt to use the CUDA (Compute Uni�ed Device Architecture, a parallel computing plat-
form and API by NVIDIA) for the C language (Strippgen and Nagel, 2009b,a; Strippgen, 2009)
ran into the same problems as the earlier parallel DEQSim also written in C/C++ (Charypar et al.,
2007a): The time necessary to transmit the necessary information back and forth between the Java-
based MATSim and the C/C++-based external package used up all the performance gains. In con-
sequence, the DEQSim was re-implemented as the so-called JDEQSim in Java (Waraich et al., 2015,
also see Section 4.3.2). Before parallelizing the JDEQSim, however, it was decided to �rst accelerate
the processing of the events since that was identi�ed as the main bottleneck. Section 4.2.3 describes

How to cite this book chapter:

Nagel, K. 2016. Other Experiences with Computational Performance Improvements. In: Horni, A, Nagel,

K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 267–268. London:

Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.40. License: CC-BY 4.0

268 The Multi-Agent Transport Simulation MATSim

how to use parallel events handling. The parallel version of the JDEQSim (Waraich et al., 2015)
never made it into the MATSim main repository.

At the same time, the standard QSim was improved by other people, for example by keeping
track of active links and not doing any computation on links without activity. Ch. Dobler made
the QSim multi-threaded. He reported (Dobler, 2013, Chapter 5) close-to-linear speed-ups with
large scenarios, but only small—if any—performance gains with small scenarios. That is, multi-
threading helped greatly with overall computing times for large scenarios on large shared-memory
computers, but little with with quick turn-around during experimentation. More recent hardware
seems to have improved the situation also for small scenarios (Table 40.1) so that it was eventually
decided to remove the single-threaded variant of the QSim and concentrate development on the
multi-threaded variant only.

Lämmel et al. (2016) experiments with using Protocol Bu�ers (Protocol Bu�ers web page,
accessed 2015) in order to couple two di�erent mobsims.

The PSim (Chapter 39) addresses the problem from a di�erent angle: Rather than accelerating
the QSim itself, it attempts to make use of the fact that (1) adding or removing a small number of
synthetic travelers does not change congestion patterns very much and thus alternative plans can
be evaluated in parallel, and (2) the congestion patterns generated by the mobsim do not vary that
much from one iteration to the next so that the mobsim does not have to be re-run every time a�er
some synthetic travelers have moved to di�erent alternatives.

Märki et al. (2014) and Dobler (2013) point out that the number of iterations to reach equilibrium
can be reduced when the synthetic travelers perform within-day re-routing – this points into the
same direction as Lu et al. (2015) who claim that equilibrium iterations will not be necessary at all
with well-calibrated behavioral models and a realistic starting point.

MATSim needs, at least for large scenarios, a large amount of RAM. One could say that within
the usual space-time tradeo� in computation,1 in most situations MATSim rather consumes more
memory in order to reduce the computation time. Memory-saving compressed routes are available
as an option in the <plans> section of the con�g �le. MATSim can be seen as an object-oriented
database in RAM; attempts to provide a backing by a relational database were not successful when
they were tried (Raney and Nagel, 2004, 2006, ; also see Section 46.2.1.3).

To summarize: (1) The behavioral parts of MATSim parallize easily; the main challenge is the
mobsim. (2) The main challenge with parallelizing the mobsim is not so much the pure perfor-
mance improvement, but to achieve this in a way that it remains integrated with the MATSim
main development, and at little or no additional maintenance e�ort.

Computer population size 1 thread 4 threads 6 threads 8 threads

laptop 2010 1% = 23 500 432 sec (X) (X) (X)
laptop 2014 1% = 23 500 110 sec 57 sec 55 sec
laptop 2014 10% = 235 000 200 sec

“(X)” means that the laptop was no longer useful for secondary tasks.

Table 40.1: Computing times of the mobsim for the Gauteng scenario (see Chapter 69) with
523 000 links for di�erent computers, di�erent population sizes, and di�erent numbers of
threads. “laptop 2010” refers to a high end Mac Pro laptop from 2010, “laptop 2014” refers to
a high end Mac Pro laptop from 2014. We can see a speed increase close to a factor of four from
2010 to 2014, and then in 2014 an additional factor of two with multi-threading. These results
were shown at several seminars, but never published elsewhere.

1 See https://en.wikipedia.org/wiki/Space-time tradeoff.

SUBPART TWELVE

Other Modules

CHAPTER 41

Evacuation Planning: An Integrated Approach

Gregor Lämmel, Christoph Dobler and Hubert Klüpfel

41.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → evacuation

Invoking the module:

http://matsim.org/javadoc → evacuation → RunEvacuationExample class

Selected publications:

Lämmel (2011); Lämmel et al. (2009)
This chapter presents an integrated approach for performing evacuation simulations with

MATSim using the evacuation contribution. The approach comprises all work�ow steps for per-
forming an evacuation analysis: i.e., selecting the evacuation area and de�ning the population,
specifying behavioral parameters (i.e., pre-movement time distribution and mode of evacuation—
car or pedestrian) and analyzing the simulation output. These steps can all be performed within one
graphical user interface. Additionally, two extensions of MATSim for simulating public transport
and changing the network during simulation (i.e., network change events) are accessible from the
GUI. In this chapter, the steps for performing such an integrated analysis are described and illus-
trated based on the Hamburg-Wilhelmsburg example. A detailed case study based on this scenario
is given in Chapter 71, as well as in Durst et al. (2014); Hugenbusch (2012).

41.2 Related Work

Simulation of evacuation processes has attracted much attention in recent decades; reasons
include increases in frequency and severity of natural hazards jeopardizing various populations

How to cite this book chapter:

Lämmel, G, Dobler, C and Klüpfel, H. 2016. Evacuation Planning: An Integrated Approach. In: Horni,

A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 271–282.

London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.41. License: CC-BY 4.0

272 The Multi-Agent Transport Simulation MATSim

and regions, as well as (social) disasters (Rodŕıguez et al., 2006). Another factor is the availability
of large-scale, fast simulation models and tools. Lämmel (2011) discusses such a model employed as
a contribution to MATSim. Basically, this model implements the same iterative learning approach
as that applied to “regular” transport scenarios. In the �rst instance, the cost function comprises
only travel times, albeit a combination of travel time and travel distance; as a cost function has been
investigated as well (Lämmel et al., 2009). Arti�cial agents represent evacuees trying to improve
their evacuation plans from iteration to iteration, by creating new evacuation plans more respon-
sive to the evolving situation. A typical simulation run comprises 500-1 000 iterations. The model
is applied to a tsunami-related evacuation of the City of Padang in Indonesia (e.g., Taubenböck
et al., 2013; Goseberg et al., 2013); some scenario details are discussed in Chapter 76.

Additional evacuation simulation related work in MATSim is presented by Dobler (2013). The
main di�erence to this chapter’s approach is that agents are allowed to adapt their plans spon-
taneously, using MATSim’s within-day replanning framework (Dobler et al., 2012) (Chapter 30).
Based on a behavioral model, agents coordinate their actions on a household level. If a household
is, e.g., not complete when the evacuation starts, each member estimates time needed to return
home, as well as the time required to leave the actual evacuation area. Then, the household decides
whether meeting at home and leaving together is preferable to each member leaving on its own.
Since the behavioral model is implemented on an agent, respectively household level, individual
attributes such as children present in the household, or availability of a car, can be taken into ac-
count. In contrast to regular MATSim simulations, only a single iteration is performed. Since the
agents can optimize their plans continuously using real time information, no further replanning is
necessary. As a result, agents do not foresee future events like tra�c jams caused by people leaving
the threatened area.

An independent evacuation scenario, not using the evacuation, is presented in Chapter 60.
The remainder of this chapter is organized as follows: Section 41.3 gives a brief description on

how to set up and run evacuation. A short start guide for evacuation is presented in Section 41.4.
Obtaining the required input data is discussed in Section 41.5. Detailed instructions on how to
use evacuation’s ScenarioManager, running simulations and analysis is given in Section 41.6. This
chapter concludes with a brief outlook in Section 41.7.

41.3 Download MATSim and Evacuation

Although the MATSim version 0.6.0-SNAPSHOT is referred to here, the package should also work
with later versions of MATSim.

1. Download the current nightly build of MATSim and evacuation from http://matsim.org/

files/builds/.

2. Unzip the Matsim_rxxxxx.zip, Matsim_libs.zip and
evacuation-0.6.0-SNAPSHOT-rxxxxx.zip.

3. Move the evacuation-0.6.0-SNAPSHOT-rxxxxx.jar and libs folder from the evacuation

-0.6.0-SNAPSHOT-rxxxxx directory one level up, i.e., to the directory, where MATSim_rxxxxx

.jar is located.

Test con�guration by invoking

java -cp evacuation -0.6.0 - SNAPSHOT.jar;MATSim_rxxxxx.jar

org.matsim.contrib.evacuation.scenariomanager.ScenarioManager

(It is advisable to copy that command to a �le evacuation.bat—or evacuation.sh, if using a Unix-
like operation system. One can then run that �le instead of typing the command.)

Evacuation Planning: An Integrated Approach 273

41.4 The Fi�een-Minute Tour

For just a quick impression, the following steps can be performed within a few minutes:

OSM Go to http://www.openstreetmap.org, search for the desired place and download a (small)
OSM �le. Please choose a small area, e.g., 500 meters by 500 meters; this is su�cient to begin
and size of the exported area is limited. For larger areas, a direct download from sites like
http://www.geofabrik.de is preferable (see next section).

Run the ScenarioManager as described in the previous section.

Create a scenario by clicking the le�most button �rst and then New. Go to the directory where the
designated project should be saved and name the project �le (e.g., london.xml or scenario.

xml).

Specify the path of the OSM �le (by clicking Set next to network) and the output directory. Leave
area and population �le as it is, evacuation will handle this.This stepmust be performed only

once. A�er the scenario-�le has been saved, one can open it in the ScenarioManager.

Sample size Set the sample size to 0.1, using the mouse or the cursor buttons on your keyboard.

Departure Specify the departure time distribution. Plausible values are: normal distribution, µ

and σ 600 seconds (10 minutes), earliest 300 seconds, latest 1200 seconds (20 minutes).

Save the scenario �le.

Area Switch to the area tab. One can de�ne the circular evacuation area by keeping the le� mouse
button pressed and de�ning the center and radius. Do not forget to save changes.

Population Switch to the population tab and de�ne the population (handling is similar to area).
Do not forget to save changes.

Convert Switch to the next tab and convert the scenario to MATSim input �les by clicking the run
button. The MATSim �les will be stored in the output directory speci�ed in the beginning.

Run the MATSim simulation by skipping the next two tabs/buttons (road closures and buses) and
switching to the simulation tab (with the “M” for MATSim on the computer screen). Click
run. This will take a while. If an output directory (e.g., from a previous run) already exists,

it will be renamed.

Analyze your simulation results by switching to the �nal tab a�er the simulation is �nished.

41.5 Input Data (any Place and any Size)

The only external input necessary for performing an evacuation analysis with org.matsim.

contrib.evacuation is an OSM �le. In this tutorial, we will use the �le for Hamburg, Germany.
Please go to http://download.geofabrik.de/europe/germany/hamburg.html and download the
hamburg-latest.osm.bz2 �le. This is the only initial preparation needed. Everything else can be
done with the ScenarioManager of the GUI.

41.6 Scenario Manager

The scenario setup, evacuation simulation, and analysis are handled by the ScenarioManager from
the MATSim contribution package org.matsim.contrib.evacuation.

41.6.1 Scenario Con�guration

At startup, the ScenarioManager o�ers the option to either: de�ne a new scenario con�guration or
open an existing one from a XML �le, which then can be modi�ed. Figure 41.1 shows a screenshot
of a scenario con�guration in the ScenarioManager and the corresponding XML �le, respectively.

274 The Multi-Agent Transport Simulation MATSim

(a) ScenarioManager.

(b) XML �le.

Figure 41.1: Illustration of a con�guration opened in the ScenarioManager and as XML �le.

The evacuation scenario is speci�ed by the following parameters:

• The path to the network �le covering the evacuation area: Currently, OSM XML �les are
supported (*.osm).

• The main tra�c type for the simulation: This can either be: VEHICULAR or PEDESTRIAN.
Depending on the choice, a vehicular speci�c (the MATSim default) or a pedestrian-speci�c

Evacuation Planning: An Integrated Approach 275

(as discussed in Lämmel et al. (2009); Lämmel (2011)) simulation network will be generated
by setting free speed, number of lanes and �ow capacity for all links in the network.

• The path to a ESRI shape �le describing the extent of the evacuation area, depicted by a simple
polygon. This �le does not have to be in place right from the beginning; it can be produced
manually by the ScenarioManager itself, as discussed later.

• The path to an ESRI shape �le detailing the size and distribution of the a�ected population.
This �le comprises a set of simple polygons; each polygon has an additional attribute for the
number of persons residing at a location inside that polygon. The evacuation area �le can be
produced with help of the ScenarioManager.

• The path to the output directory where the simulation output and MATSim scenario �les will
be stored.

• The sample size for the MATSim simulation. A smaller sample size increases the simulation
performance, while a larger size might increase accuracy of the results. Typical values are 1.0,
0.1, or 0.01, depending on the scenario and available computing resources.

• Departure time distribution de�nes the distribution from which departure times for the
simulation will be drawn, based on the premise that, in real evacuation situations, all partici-
pants probably do not start evacuation simultaneously. People tend to perform pre-evacuation
activities before they start, including: picking up relatives, packing food, clothes, valuable
belongings, etc. Since number and duration of these activities di�ers by individual, popula-
tion departure times are unknown quantities. The ScenarioManager supports three di�erent
distributions: (Dirac-delta, normal, and log-normal). If the user chooses the Dirac-delta dis-
tribution, then all evacuees will start simultaneously, which might be the worst case (Lämmel
and Klüpfel, 2012). By choosing the normal distribution, departure times for individuals are
drawn from a normal distribution with mean µ and standard deviation σ , where the param-
eters µ and σ are given in seconds. As an example, setting µ = 1800 and σ = 900 will result
in a departure time distribution where, on average, a�er 30 minutes 50 % of the population has
departed and 68.3 % of the population departs in time intervals of 30 minutes ± 15 minutes. If
the user chooses log-normal as the distribution, departure times are drawn from a log-normal
distribution, where µ and σ are the parameters of the associated normal distribution (a dis-
cussion on this matter is given below). The parameters earliest and latest determine the earliest
and latest possible departure time. The normal and log-normal departure time distribution are
truncated accordingly.

The departure time distribution is perhaps the most tenuous parameter to set; the authors found
no holistic research into this matter. In general, it seems reasonable to assume that many people
start evacuating at the same time, or soon a�er the evacuation order has been issued and as time
proceeds, fewer and fewer people are le� to depart. This requires a departure time distribution
that has a probability density function beginning with a steep positive gradient, leveling out slowly
a�er a peak. The probability density function of a log-normal distribution produces this kind of
curve; log-normal and normal distributions are closely related. If the random variable Y is normal
distributed, then X = exp(Y) is log-normal distributed. The expected value E[X] and the variance
Var[X] are

E[X] = exp(µ +
σ 2

2
) (41.1)

and

Var[X] = exp(2(µ + σ 2)) − exp(2µ + σ 2). (41.2)

276 The Multi-Agent Transport Simulation MATSim

Conversely, if the expected value and variance is given, µ and σ of the associated normal
distribution can be obtained as follows:

σ =

√

log(1 +
Var[X]

(E[X])2
) (41.3)

and

µ = log(E[X] −
1

2
σ 2). (41.4)

If users wish to generate a population with departure times following a log-normal distribution, it
is hard to see how σ and µ will determine the outcome. It is much more convenient to consider
expected value and variance. Given Equation (41.3) and Equation (41.4), a conversion from
expected value and variance to σ and µ is straightforward.

41.6.2 Evacuation Area

The ScenarioManager integrates modules for the evacuation area de�nition and distribution
of the a�ected population. The so-called evacuation area selection module allows the user to
de�ne the evacuation area by drawing either a simple polygon or circle on a map. The applica-
tion can make use of either a WMS-provider or a tile map provider (e.g., OSM) as background
map renderer. Zooming and panning is restricted to the bounding box of the OSM network �le
provided in the scenario con�guration. An illustration of the evacuation area selector is given in
Figure 41.2. In addition to de�ning a new evacuation area, a pre-existing one can also be loaded
into the ScenarioManager. The requirements for a pre-existing evacuation area �le are:

• It has to be provided as a ESRI shape �le.
• The evacuation area must be de�ned as a simple polygon or a multi-polygon containing one,

and only one, simple polygon.
• The coordinate reference system for polygon in the ESRI shape �le must be set correctly.

Due to the high likelihood of error, this approach is recommended for experienced users only.
Later in the process, the ScenarioManager takes the evacuation area to cut out an evacuation

network. However, a�er cutting out the evacuation net, there is no particular node as a target for
the route calculation, as evacuees have more than one safe place as a destination. Instead, in the
underlying domain, every node outside the evacuation area is a possible destination for an evacuee
seeking an escape route. Thus, the evacuation problem is, in general, a multi-destination problem.
To resolve this, the standard approach (e.g., Ford and Fulkerson (1962); Lu et al. (2005)) is to ex-
tend the network in the following way: All exit links (i.e., links that originate inside the evacuation
area and terminate outside the evacuation area) are connected, using virtual links with very high
(essentially in�nite) �ow capacity and equal length, to a super-node; all evacuation routes are
routed to the super-node. This way, the problem is reduced to a multi-source single-destination
problem. And thus, �nding the shortest path from any node inside the evacuation area to this
super-node and, in consequence, to safety, can e�ciently be solved. For technical reasons, a super-
link is added to the super-node and the evacuees are routed to that link (see the image at the
beginning of this chapter).

41.6.3 Evacuation Demand

The process of de�ning the population distribution is similar to that of the evacuation area,
di�ering because population is distributed over circles drawn on the map. The user can draw

Evacuation Planning: An Integrated Approach 277

(a) Evacuation area.

(b) Population distribution.

Figure 41.2: The evacuation area and the population distribution can be de�ned with an integrated
GIS application.

an arbitrary number of those circles and de�ne population �gures individually for each circle.
Figure 41.2 illustrates the population editor. The population editor o�ers only basic functionality
to de�ne a population distribution. For every circular area, the ScenarioManager produces as many
agents as required and assigns each agent a random coordinate inside the circular area. However,

278 The Multi-Agent Transport Simulation MATSim

in MATSim agents depart on links, so the ScenarioManager calls the getNearestLink() method
de�ned in NetworkImpl. Thus, agents will depart on links inside and possibly near the circular
areas.

In the current version, it is impossible to use a prede�ned demand for the simulation. Extending
the simulation package in this way would be straightforward, but is out of this work’s scope.

41.6.4 Road Closures

In real situations, some evacuation roads might not be available for the evacuation, because:

• They might be impassable due to the event (o�en the case in �ooding-related evacuations).
• The authorities might want to keep roads open only for action/help tra�c.
• In some situations, like hurricane evacuations, lane direction on motorways might be reversed

to increase �ow capacity in one direction.
• The authorities have detailed evacuation plans in place, with pre-planned evacuation routes;

road closures might be necessary to force evacuees onto certain routes.

The actual planning of road closures can be a complex undertaking; not all attributes can be inte-
grated into a simple tool for rapid evacuation planning. Nevertheless, the ScenarioManager o�ers
a tool to create time-dependent road closures. An illustration of the road closures editor is given
in Figure 41.3(a).

Road closures are stored as NetworkChangeEvents and handled as time-dependent network
attributes in MATSim (Lämmel et al., 2010).

41.6.5 Bus Stop Editor

Usually, not everyone has access to a private car. In the event of an evacuation, those people
o�en rely on public transport. In regions prone to natural disasters, local authorities normally
have detailed evacuation plans in place, probably including evacuation by public transport. Con-
sequently, it is important to have a tool available to help integrate public transport into to the
simulation scenario. The ScenarioManger o�ers this possibility by de�ning bus stops and bus
schedules in the interactive GUI. Figure 41.3(b) gives an example of the bus stop editor. In
addition to location, the user can de�ne when the �rst bus will serve a bus stop, how many
buses overall will serve this particular bus stop and these buses’ capacity. The ScenarioManager

transforms the inputs made into the GUI into a MATSim compatible transport schedule, enrich-
ing the scenario while using the same simulation model. Details about public transport simulations
with MATSim are given in Chapter 16. A tutorial can be found on the MATSim webpage http:

//matsim.org/docs/tutorials/transit.
Limitations of the public transport evacuation approach in this project are:

• Each bus serves one and only one bus stop, perhaps a realistic assumption.
• Buses always take the shortest path from their designated bus stops to the safe area. As the

shortest path is not necessarily the fastest, this approach might lead to avoidable delays. Some
newer research investigates optimization of bus lines with respect to tra�c demand and tra�c
conditions (Neumann, 2014). Implementing such optimization techniques in the evacuation
context is a topic of future research.

Evacuation Planning: An Integrated Approach 279

(a) Road closures.

(b) Bus stop locations and schedules.

Figure 41.3: Top: Road closures can be edited by an integrated GIS application. For every link the
direction and the time of closure can be de�ned. Bottom: Tool that let the user de�ne bus stop
locations and schedules.

280 The Multi-Agent Transport Simulation MATSim

41.6.6 Running the Scenario

The ScenarioManager runs the evacuation simulation in a way similar to other transport simula-
tion studies with MATSim. At the beginning, an evacuation plan is assigned to each evacuee. An
evacuation plan describes how the evacuee intends to reach the safe area. If the evacuee leaves by
car or on foot, the plan is essentially comprised of a route (typically the shortest) from home to the
safe area. For evacuees who are depart by public transportation, the plan can be much more com-
plex. All these evacuation plans will be executed in the mobility simulation; a�er this terminates, all
plans are scored by travel time. The shorter a plan’s travel time is, the higher is the score it receives.
A�er this step, evacuees’ plans are revised; some will receive new plans, while others continue with
the current ones. This step is called re-planning. Mobility simulation, scoring, and re-planning
are repeated in a loop for a prede�ned number of iterations; evacuees’ individual performance
improves over the iterations. In general transport studies, this approach emulates real-world trav-
elers’ behavior when they perform their daily commutes and try to �nd better travel alternatives.
Evacuations, however, are singular events where such day-to-day re-planning would not occur. We
argue here that the chosen iterative learning approach could be seen as the evacuees’ anticipation
of the conditions expected during an evacuation. People familiar with their surroundings would
probably avoid roads that obviously constitute bottlenecks during an evacuation. Nevertheless, far
more research is needed to de�nitively answer how people choose evacuation routes, or how many
learning iterations are required to realistically re�ect assumed anticipation skills adequately. As a
rule of thumb, running 100 learning iterations are usually su�cient to achieve results constituting
a lower evacuation times boundary.

41.6.7 Analysis

A�er the last iteration has �nished, the ScenrioManager enables the analysis module. The analysis
model evaluates the performed simulation run, using a number of di�erent methods.

• The cumulative arrival curve tells the user the number of persons evacuated over time. From
this curve, the user can, for example, learn at what time 50 % of the population has reached a
safe destination.

• The GIS-based evacuation time analysis draws a grid over the evacuation area and computes,
for every grid cell, average evacuation time. The evacuation times are indicated by di�erent
colors; the analysis modules run a quantiles-based clustering analysis for each cell. The size of
cells can be varied by the user.

• The GIS-based clearance time analysis is performed in the same way as the evacuation time
analysis. The clearance time of a cell is the time when the last evacuee leaves that cell. This
evacuee is not necessarily the one who also started his/her evacuation inside the corresponding
cell, but might also be one who crosses that cell somewhen during the evacuation.

• A similar quantiles-based clustering approach is used for the link utilization analysis. The link
utilization analysis results help the user to identify the major evacuation routes.

The analyses can be run for every single iteration for which the MATSim Controler has dumped
an events �le (every 10th iteration by default). An overview of the analysis module is given in
Figure 41.4

41.7 Conclusion

This chapter demonstrates how rapid evacuation planning can be performed with help of the evac-
uation contribution. The evacuation contribution provides an interactive GUI to perform this task.
The only required external input is a network �le extracted from OSM, thus a simple scenario

Evacuation Planning: An Integrated Approach 281

Figure 41.4: Screenshot of the analysis module showing GIS-based evacuation time analysis and
the evacuation curve.

can be setup, simulated, and analyzed in less than an hour. Obviously, for an in-depth evacuation
analysis of a certain area, a sort of expert knowledge is needed that a simple GUI can not sup-
ply. Still, for a rapid appraisal and for demonstration purposes, evacuation o�ers a powerful and
easy-to-use tool. In the future, we plan to integrate a more advanced public transport planning
tool based on Neumann (2014). Work is also ongoing to develop a more sophisticated pedestrian
simulation model based on the theoretical framework given in Flötteröd and Lämmel (2015).

CHAPTER 42

MATSim4UrbanSim

Kai Nagel

42.1 Basic Information

Entry point to documentation:

http://matsim.org/extensions → matsim4urbansim

Invoking the module:

The module is invoked from a live UrbanSim implementation.

Selected publications:

Nicolai et al. (2011); Nicolai and Nagel (2014); Nicolai and Nagel (2015)

42.2 Summary

“MATSim4UrbanSim” is an adapter package for using MATSim as a travel model plug-in to
UrbanSim, a well-known land use simulation (e.g., Waddell et al., 2003, see http://www.urbansim.

org). UrbanSim has, for example, submodels for residential location choice, commercial loca-
tion choice, or development and building construction, thus creating synthetic potential urban or
regional development scenarios under various conditions and constraints. Tra�c infrastructure
plays a signi�cant role in such developments; for example, very accessible areas are more attrac-
tive as residences and for commercial activities. Since accessibility is reduced by congestion, and
congestion can only be realistically modeled through a sophisticated model of demand and sup-
ply interaction, UrbanSim does not have its own travel model, but delegates that task to external
models, such as MATSim.

To use MATSim4UrbanSim, one �rst needs to have a running UrbanSim installation. From
there, one can add MATSim to that installation; see the documentation mentioned above for more

How to cite this book chapter:

Nagel, K. 2016. MATSim4UrbanSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent

Transport Simulation MATSim, Pp. 283–284. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.42. License: CC-BY 4.0

284 The Multi-Agent Transport Simulation MATSim

information. Basic MATSim parameters are con�gured from the UrbanSim con�guration �le by
adding an appropriate section; again, see the documentation mentioned above for more informa-
tion. It is possible to add a standard MATSim con�g �le allowing use of the extended MATSim
features, including those added a�er the adapter package was designed.

The module was applied by Cabrita et al. (2015) and by Zöllig Renner (2014).

CHAPTER 43

Discontinued Modules

Kai Nagel and Andreas Horni

This chapter lists modules that were important for several projects in the past, but which are no
longer being developed.

43.1 DEQSim

DEQSim was used for project Westumfahrung (Balmer et al., 2009a). It was a queue-based, event-
based parallel simulation written in C++ (Charypar et al., 2007b; Charypar, 2008). This simulation
included handling of reduced capacities due to tra�c lights in an aggregate manner (Charypar,
2008, p.139 �). It also supported modeling of gap back propagation at junctions (Charypar, 2008,
p.98 �).

Events were written do �le by DEQSim and subsequently read by MATSim. This represented a
major framework performance bottleneck. DEQSim was therefore replaced by a Java version, the
JDEQSim (see Section 4.3.2).

43.2 Planomat

Chapter 45 explains how MATSim can be extended. One long-standing extension point is the
PlanStrategy extension point (Section 45.2.9). It allows the addition of “innovative” strategy
modules (see Section 4.5), above and beyond those available by default.

One such replanning model was Planomat (Meister et al., 2006; Meister, 2011). It replaced the
randomizing modules for (departure) time innovation (Section 4.5.1.1) and for mode innova-
tion (Section 4.5.1.3), with a module that computed a joint best reply for both choice dimensions
internally, using a Genetic Algorithm. Thus, it evaluated not just one random alternative per it-
eration, as standard MATSim would do, but multiple alternatives within one single iteration, to
obtain an (at least locally) optimal solution. Planomat was successfully applied in the project

How to cite this book chapter:

Nagel, K and Horni, A. 2016. Discontinued Modules. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 285–286. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.43. License: CC-BY 4.0

286 The Multi-Agent Transport Simulation MATSim

“KTI Frequencies” for time and mode innovation for sub-tours (Balmer et al., 2010, p.10).
Unfortunately, there were three interacting problem complexes with Planomat:

• Any strategy module generating best reply plans must be able to compare plans and select
a better one, at least along the considered choice dimensions. This is typically achieved by
giving such a module an objective function which needs to be optimized. For example, a fastest
path router minimizes the travel time; a generalized cost router minimizes the generalized travel
cost.

All best reply modules here face the challenge that they cannot run the full mobsim
(= network loading = synthetic reality) every time they need such information. As a result,
all best reply modules are forced to build some internal synthetic reality model.

Planomat did this by running its plans through a simpli�ed mobsim of its own. This mobsim
was a re-implementation of the most important aspects for the core mobsim. Unfortunately,
however, this meant that Planomat would not automatically pick up any change or addition to
the core mobsim. Consequently, Planomat’s idea of a good plan o�en diverged from MATSim’s,
especially when MATSim extensions were used. In other words, any addition to the MATSim
system: e.g., tolls, or opening/closing time restrictions, or di�erentiating link travel times by
turning directions, would have to be mirrored inside Planomat.

• Planomat always tended to return the same solution: understandable from a best-reply module,
but it becomes a problem when what the module thinks is a best reply starts to di�er from what
the MATSim core thinks.

While an innovative strategy that deliberately generates diversity can be useful even when
not fully consistent with the MATSim core (Nagel et al., 2014), this cannot function with a
non-diverse innovative strategy, since it then insists on returning only suboptimal plans.

• In addition, Planomat used the MATSim core router in a way that hindered further so�ware
development of the core router. Essentially, Planomat used MATSim classes and methods that
were not designed for re-use, but just happened to be public.

It was thus an obstacle for a major MATSim core router re-design, undertaken by T. Dubernet
(see Section 45.2.7).

The combination of these three issues meant that Planomat was eventually discarded: Moving it
to the new router infrastructure would have entailed a major piece of one-time work. A�er that,
maintaining Planomat’s best-reply capability would have been a permanent work-intensive obli-
gation. It was thus decided instead to invest our scarce resources in the design of a better core,
allowing extensions to survive without much manual intervention. Although this will always be
work in progress, Chapter 45 explains our substantial progress toward pluggable extensibility.

However, it must be noted that the improved so�ware architecture does not resolve the gen-
eral conceptual problem; best reply modules somehow need to follow core system development.
Chapter 39 discusses a newer alternative that re-uses mobsim output for plan evaluation without
having to run the full mobsim every time. An alternative approach, based on plan diversity, is
investigated by Nagel et al. (2014). Additionally, Chapter 49 discusses aspects of diversity in plan
set generation.

43.3 PlanomatX

PlanomatX was based on Planomat. It extended it by performing activity choice and adopting a
Tabu Search approach (Feil, 2010). To cope with the curse of dimensionality (due to the added
choice dimension), PlanomatX introduced schedule recycling, basically a warmstart concept.
Because of problems when using the standard MATSim logarithmic utility function for activity
choice, PlanomatX also derived an alternative utility function from Joh (2004). Rough estimates for
its parameters based on an MNL exist, but turned out to be problematic, as shown in Section 97.4.3.

PlanomatX, derived from Planomat, su�ered from the same maintenance problems and was
eventually abandoned for the same reasons.

SUBPART THIRTEEN

Development Process & OwnModules

CHAPTER 44

Organization: Development Process, Code Structure
and Contributing to MATSim

Marcel Rieser, Andreas Horni and Kai Nagel

This chapter describes how new functionality enters MATSim. It describes the MATSim team
and community, the di�erent roles existing in the MATSim project, the development drivers and
processes, and the tools used for integration. The goal is to provide an overview of the develop-
ment process so that one quickly �nds access to the MATSim community and is able to e�ciently
contribute to MATSim, based on one role or another.

44.1 MATSim’s Team, Core Developers Group, and Community

The MATSim team currently consists of three research groups and a spin-o� company:

• the VSP (VerkehrsSystemPlanung und Verkehrstelematik – The Transport Systems Planning
and Transport Telematics group at TU Berlin) group at the ILS (Institut für Land- und Seev-
erkehr – Institute for Land and Sea Transport Systems), TU Berlin, led by Prof. Dr. Kai
Nagel,

• the VPL (VerkehrsPLanung) group at the IVT, ETH Zürich, led by Prof. Dr. Kay W. Axhausen,
• the recently founded Mobility and Transportation Planning group at the FCL, based in

Singapore and led by Prof. Dr. Kay W. Axhausen, and
• Senozon AG, based at Zürich with a subsidiary in Germany, founded by former PhD

(Philosophiae Doctor – Doctor of Philosophy) and research students.

As is common in research, the university groups’ composition changes frequently. Over the last
decade more than 50 people, as listed earlier, contributed to MATSim.

How to cite this book chapter:

Rieser, M, Horni, A and Nagel, K. 2016. Organization: Development Process, Code Structure and Con-

tributing to MATSim. In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport

Simulation MATSim, Pp. 289–296. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.44.

License: CC-BY 4.0

290 The Multi-Agent Transport Simulation MATSim

A small group of the MATSim team de�nes the MATSim core developers group, maintaining
MATSim’s core as de�ned below in Section 44.3.2.

In addition, there is a MATSim community composed of closely connected research groups
in other cities, e.g., Stockholm, Pretoria, Poznan, and Jülich, as well as more loosely connected
external users coming together, e.g., at the annual MATSim User Meeting (see Figure 44.1).

MATSim is open-source so�ware under the GPLv2 (GNU General Public License version 2.0).
You are also very welcome to contribute to the code base as described in Section 44.6. New
contributors are mentored in the beginning to become familiar with the project and the coding
conventions.

44.2 Roles in the MATSim Community

The MATSim community includes the following roles:

• The MATSim user uses the o�cial releases or nightly builds and runs the MATSim core with
the con�g �le (Section 5.1.1). He or she does not write computer code. Part I of the book is ded-
icated to the MATSim user. On the web page, he or she �nds relevant information in the user’s
guide section and in the user’s mailing list users@matsim.org.1 There is also a list of questions
and answers under http://matsim.org/faq.

Users should also remember to consult the �les logfileWarningsErrors.log and
output_config.xml.gz, as also explained in Section 2.3. The former �le is an extract
from logfile.log, but only contains the warnings and errors. The latter is a complete dump
of the currently available con�guration options, including comments to most options.

• The MATSim power user is a MATSim user with knowledge on how to use the additional
modules presented in the book’s Part II. He or she does not program but knows how to use
MATSim scripts-in-Java prepared by others or her/himself, as shown in Section 5.1.1. Parts I
and II of the book are helpful to the MATSim power user. Information about extensions can be
found under http://matsim.org/extensions. Most extensions come with an example script-
in-Java. Again, questions and answers are under http://matsim.org/faq.

• The MATSim developer extends MATSim by programming against the MATSim API
(Section 5.1.1). He or she also �nds his or her information in Part II of the book, in
particular, in Chapter 45, on the web page in the Developer’s Guide, and in the mailing list
developers@matsim.org.

• There are relatively few MATSim core developers in the MATSim team. These persons make
necessary modi�cations of the core (as de�ned in Section 44.3.2), usually a�er having discussed
them in the issue tracker (http://matsim.org/issuetracker), in the MATSim committee, or at
a developer meeting (see below).

44.3 Code Base

The various pieces of MATSim are delineated by Apache Maven projects and sub-projects. The
Apache Maven layout corresponds to the layout of the Git repository.2 Note that the Java package
structure does not directly correspond to the Apache Maven/Git layout.

1 During the writing of this book, the information that had so far been contained in the User’s Guide was moved to

this book. Therefore, the User’s Guide section on the web page is currently essentially empty, and may be removed.
2 MATSim is currently at GitHub under https://github.com/matsim-org/matsim. The exact path name may change in

the future, e.g., because of changes at GitHub.

Organization: Development Process, Code Structure and Contributing to MATSim 291

Figure 44.1: MATSim events and community.

Source: c©Dr. Marcel Rieser, Senozon AG

292 The Multi-Agent Transport Simulation MATSim

44.3.1 Main Distribution

The “MATSim main distribution” corresponds to the “matsim” part of the Git repository. It is the
part of the code that the MATSim team feels primarily responsible for. At the time of writing, the
MATSim main distribution contains following packages:

• org.matsim.analysis.*, containing certain analysis packages that are added by default to every
MATSim run.

• org.matsim.api.*, see Section 44.3.2.
• org.matsim.core.*, see Section 44.3.2.
• org.matsim.counts.*, see Section 6.3.
• org.matsim.facilities.*, see Section 6.4.
• org.matsim.households.*, see Section 6.5.
• org.matsim.jaxb.*, containing automatically or semi-automatically generated adapter classes

to read XML �les using JAXB (Java Architecture for XML Binding).
• org.matsim.lanes.*, see Chapter 12.
• org.matsim.matrices.*, containing (somewhat ancient) helper classes to deal with matrices,

in particular, origin-destination-matrices.
• org.matsim.population.*, mostly containing a collection of algorithms that go through the

population and modify persons or plans.
• org.matsim.pt.*, see Chapter 16.
• org.matsim.run, see Section 44.3.2.
• org.matsim.utils.* containing various utilities such as the much-used ObjectAttributes (see

Section 45.2.2).
• org.matsim.vehicles.*, see Section 6.6.
• org.matsim.vis.*, containing helper classes to write MATSim information, in particular from

the mobsim, to �le. This has to a large extent been superseded by the Via visualization package
(see Chapter 33).

• org.matsim.visum.*, containing code to input data from VISUM.
• org.matsim.withinday.*, see Chapter 30.
• tutorial.*, containing example code of how to use MATSim, referenced throughout this book.

44.3.2 Core

The core is part of the main distribution (see the previous Section 44.3.1) and contains material
that is considered basic and indispensable, and resides in the packages

• org.matsim.api.*
• org.matsim.core.*
• org.matsim.run.*

The MATSim core is maintained by the MATSim Core Developers Group.

44.3.3 Contributions

The idea of the contributions part of the repository is to host community contributions. His-
torically, most contributors are from the MATSim team, but this is not a requirement.3 The

3 It is currently at GitHub under https://github.com/matsim-org/matsim/tree/master/contribs.

Organization: Development Process, Code Structure and Contributing to MATSim 293

code is maintained by the corresponding contributor. Code in this section of the repository
is considered more stable than code in playgrounds. The Java packages o�en have the root
org.matsim.contrib.*, but this is not mandatory.

At the time of writing, there are the following contributions (= extensions which are in the
“contrib” part of the repository), listed in alphabetical order:

• accessibility, presented in Chapter 35.
• analysis, presented in Chapter 38.
• cadytsIntegration, presented in Chapter 32.
• common is not a true contrib, i.e., it does not provide additional functionality by itself. Instead, it

is a place where code used by several contribs, which has not yet made it into the main distri-
bution is located. It also contains some long-running integration tests that are run at each build
(i.e., more o�en than those contained in the integration contrib described below).

• dvrp, presented in Chapter 23.
• emissions, presented in Chapter 36.
• freight, presented in Chapter 24.
• freightChainsFromTravelDiaries, presented in Chapter 26.
• grips, presented in Chapter 41.
• gtfs2matsimtransitschedule, presented in Chapter 18.
• integration is not a true contrib, i.e., it does not provide additional functionality. Instead, it is

a place where integration tests that should run daily or weekly (instead of as o�en as possible)
can be committed.

• locationchoice, presented in Chapter 27.
• matrixbasedptrouter, presented in Chapter 20.
• matsim4urbansim, presented in Chapter 42.
• minibus, presented in Chapter 17.
• multimodal, presented in Chapter 21.
• networkEditor, presented in Chapter 10.
• otfvis, presented in Chapter 34.
• parking, presented in Chapter 13.
• roadpricing, presented in Chapter 15.
• socnetgen, presented in Chapter 29.
• socnetsim, presented in Chapter 28.
• transEnergySim, presented in Chapter 14.
• wagonSim, presented in Chapter 25.

44.3.4 Playgrounds

Another element of the MATSim repository is the “playgrounds”. These are meant as a service
to programmers. They have grown historically from the fact that MATSim’s object classes and in
consequence the interfaces between them have evolved and grown over time, and thus a stable API
was not available. Regular code-wide refactorings, along the lines discussed, e.g., by Fowler (2004),
were thus the norm for many years.

At this point, the extension points described in Chapter 45 should be somewhat stable and devel-
opment against them should be possible without major changes from release to release. Anybody
who needs tighter integration with the project should still apply for a playground.

294 The Multi-Agent Transport Simulation MATSim

44.3.5 Contributions and Extensions

Congruent with the structure of this book, the MATSim code structure contains a core which
allows to run basic MATSim using the con�g �le, a population and a network. Packages going
beyond this basic functionality are extensions, where three di�erent kind of extensions exist:

• extensions in the main distribution,4

• extensions contributed by the MATSim community known as contributions, and
• any code written anywhere published or unpublished extending the MATSim core.

Extensions are listed at http://matsim.org/extensions.

44.3.6 Releases, Nightly Builds and Code HEAD

Releases, nightly builds and the code head can be obtained from http://matsim.org/downloads.
MATSim releases are published approximately annually. Usually, MATSim users and MATSim

power users as de�ned above in Section 44.2 work with releases.
MATSim uses continuous integration and, thus, nightly builds are available without stability

guarantee under http://matsim.org/downloads/nightly. MATSim API developers that depend on
a very recent feature might use Nightly builds.

Both Apache Maven releases and Apache Maven snapshots are available, see http://matsim.org/
downloads for details.

MATSim API developers or core developers o�en work on the code’s HEAD version that can be
checked out from GitHub.

Nightly builds and maven snapshots are only generated when the code compiles and passes the
regression tests. They are, in consequence, somewhat “safer” than the direct download from the
HEAD.

44.4 Drivers, Organization and Tools of Development

Important drivers of the MATSim development are the projects and dissertations of the MATSim
team. New features are developed as an answer to requirements of these dissertations and projects,
where projects range from purely scienti�c ones—o�en sponsored by SNF (Schweizerischer
Nationalfonds) or DFG (Deutsche Forschungsgemeinscha�)—via projects for governmental
entities and projects where science and industry contribute equally—e.g., CTI (Commission for
Technology and Innovation) projects—to purely commercial projects, which are managed by
Senozon AG in the majority of cases. A signi�cant number of innovations are also introduced
by the collaboration with external researchers.

Systematic code integration is mainly performed by the Berlin group and by Senozon AG.
This includes continuous code review and integration upon request of the community, but also
comprehensive code refactorings to clean up code and to improve modularity. Refactorings are
discussed and documented in the MATSim issue tracker (http://matsim.org/issuetracker).

The development process is supported by a MATSim standing committee discussing so�ware
and sometimes conceptual issues on a regular basis (http://matsim.org/committee). Another
element that brings in innovation as well as organization are the annual meetings. Right from
the beginning, there have been a MATSim developer meetings focused on coding issues. Later,
a user meeting o�ering insights into current work by the community has been added, sometimes

4 At the time of writing it is unclear if these extensions might one day become contributions, shrinking the MATSim

main distribution to its core.

Organization: Development Process, Code Structure and Contributing to MATSim 295

combined with a tutorial. Finally, a conceptual meeting is now held every year, concentrating on is-
sues that go beyond pure so�ware engineering. The developer meeting and the conceptual meeting
together establish the road map that guides development for the remainder of the year.

MATSim development makes use of a large number of tools, hopefully leading to better so�ware
quality. Historically, many of those tools ran from automated scripts and were made available at
http://matsim.org/developer. Nowadays, most of them are automatically available from the build
server (see http://matsim.org/buildserver) and/or from the repository (https://github.com/
matsim-org/matsim), so that many of them are scheduled for removal from http://matsim.org/

developer. Some of these tools are: a change log; an issue tracker; the javadoc documentation; static
code analyses performed by FindBugs and PMD; test code coverage analysis; copy paste analysis;
code metrics; Apache Maven dependencies; and information about the nightly test results. These
nightly test results are generated by the MATSim build server based on the Jenkins so�ware.

Furthermore, there is a MATSim benchmark at http://matsim.org/files/benchmark/

benchmark.zip. For results see http://matsim.org/benchmark.
Most MATSim developers use Eclipse as an IDE. The MATSim documentation is tailored to

this IDE. Team development is currently based on Git as revision control system. External library
dependencies are managed by Apache Maven.

44.5 Documentation, Dissemination and Support

The main documentation is now this book. Additional information, including tutorials, can be
found under http://matsim.org/docs. Code documentation in form of javadoc can be found unter
http://matsim.org/javadoc.

For fast application of MATSim, some small-scale example scenarios are provided in the code
base (folder: examples), where recently an extended version of the well-known benchmark sce-
nario for the City of Sioux Falls has been added (Chakirov and Fourie, 2014) (Chapter 59).
Additional example datasets, including Berlin datasets, can be obtained via http://matsim.org/

datasets.
Further information is disseminated at the afore-described annual user meetings and MATSim

mailing lists, see http://matsim.org/mailinglists. Support is provided by the MATSim team via
these mailing lists and via http://matsim.org/faq, both on a best e�ort basis. Many components
of MATSim are documented by the numerous papers published in international journals and pre-
sented at worldwide conferences. Information about such publications can, e.g., be obtained from
http://matsim.org/publications and from this book.

44.6 Your Contribution to MATSim

The technical details, i.e., the MATSim extension points, on where to hook with MATSim are
detailed in Chapter 45. Here, the di�erent ways of contributing to MATSim according to the roles
presented in Section 44.2 are introduced.

As a MATSim user, power user, or API developer, you are warmly welcome to make an important
impact by reporting your achievements, needs and problems with, or bugs of, the so�ware via the
users mailing list, the issue tracker, the FAQ, or at the annual MATSim user meeting.

If you would like to directly contribute to the code base of MATSim, you are welcome to become
part of the contributions repository.

If you are the type of person that likes to change the core system, you can, although it is a long
way, become a member of the MATSim core developers group. Core developers are usually picked
from the MATSim team. Prerequisites are a strong computer scientist background, several years of
experience with MATSim and a deep understanding of large so�ware projects.

CHAPTER 45

How toWrite Your Own Extensions and Possibly
Contribute Them to MATSim

Michael Zilske

Notes

Documentation for the concepts described in this chapter can be found under http://matsim.org/
javadoc → main distribution, by going to the corresponding class and interface documentation
entries. These should also point to examples.

For programming against the MATSim API, we recommend https://github.com/matsim-org/

matsim-example-project as a starting point; in particular, this should clarify how MATSim can be
used as an Apache Maven plug-in.

45.1 Introduction

The three main elements of the MATSim cycle, execution, scoring, and replanning (Section 1.4),
operate on what is essentially an in-memory, object-oriented data base of Person objects (Raney
and Nagel, 2006). These three elements are the main elements to con�gure MATSim:

Execution The mobsim can be replaced, either by an internally available alternative, or by a fully
external mobsim.

Scoring The scoring can be replaced, by possibly giving each individual agent a di�erent recipe to
compute its score.

Replanning Arbitrary implementations of type PlanStrategy can be added to the replanning;
these either generate new plans from scratch or mutate existing ones, or they select between
plans.

The simulation’s behavior can be further con�gured by using ControlerListeners.

How to cite this book chapter:

Zilske, M. 2016. How to Write Your Own Extensions and Possibly Contribute Them to MATSim. In: Horni,

A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 297–304.

London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.45. License: CC-BY 4.0

298 The Multi-Agent Transport Simulation MATSim

The mobsim generates a stream of events. These are primarily used in two places:

• The scoring uses events to track each agent’s success at executing its plan, and computes the
scoring value based on this.

• PlanStrategy modules use events to build approximate models of the world in which they
operate. For example, the router obtains time-dependent expected link travel times from a
TravelTime object, which in turn listens to link enter and link exit events.

Additionally, one can write any sort of event handlers for analysis during the iterations or a�er
a run by evaluating the events �le.

Some modules are so large that fully replacing them in order to adapt the simulation system to
one’s needs is too much work. These are, in particular,

• the QSim, which is the default implementation of the Mobsim interface, and
• the router.

As a result, it is possible to add additional executable code into the execution �ow of the QSim
by MobsimListeners in a similar way as this is possible with the ControlerListeners mentioned
above. The router, in contrast, is most importantly con�gured by replacing the de�nition of the
generalized travel cost.

45.2 Extension Points

This section describes what could be called the SPI (Service Provider Interface) of MATSim.
Historically, the main entry-point for writing a MATSim extension has been to literally extend
(in the Java sense, i.e. to inherit from) the Controler class. Essentially, one would override the
methods calling the mobsim, the scoring, and/or the replanning, as explained in Section 45.1. This
is now discouraged. While this pattern worked when a each member of the team was working
on extending the MATSim core by a di�erent aspect, it fails when it comes to integrating those
aspects to a single product: There is nothing one can do with a PublicTransportControler, an
EmissionsControler, a RoadPricingControler and an OTFVisControler, if one wants to combine
them to visualize the emissions of buses on toll roads. Also see Section 46.2.1.5.

45.2.1 Con�g Group

The con�guration of a MATSim run is a grouped list of key-value pairs, stored in XML format in
the con�g �le (see Section 45.2.1).

At runtime, the entire con�guration is stored in an instance of Config, from which instances of
ConfigGroup can be accessed by their name. Con�g groups that are not in the main distribution
need to be explicitly loaded; an approximate example is the following:

MyExternalConfigGroup myConfig

= ConfigUtils.addOrGetModule(controler.getConfig (),

MyExternalConfigGroup.GROUP_NAME ,

MyExternalConfigGroup.class);

The author of an extension can subclass the ConfigGroup class to provide named accessors for the
parameters. A possibly better way is to subclass from ReflectiveConfigGroup, which you can use
if you want to de�ne the mapping of named parameters to accessors using Java annotations.

See http://matsim.org/javadoc → main distribution → RunReflectiveConfigGroup for an
example.

How to Write Your Own Extensions and Possibly Contribute Them to MATSim 299

45.2.2 ObjectAttributes and Customizable

MATSim operates on data types such as links, nodes, persons, or vehicles. Many of these data types
have attributes, such as free speed (for links) or coordinates (for nodes). Rather o�en, one would
like additional information for certain data types, such as “slope” for links, or “age” for persons.
In order to not modify the data types every time this becomes necessary, but still allow experi-
mentation, a helper container called ObjectAttributes is available. It essentially attaches arbitrary
additional information to objects that have an ID, by a syntax of type

attribs.putAttribute(id, attribName , attribValue) ;

where id is the object’s ID, attribName is the name (type) of the attribute to be stored (e.g., “age”),
and attribValue is the value of the attribute (e.g., “24”).

Importantly, the package provides readers and writers for such attributes. It is thus possible
for additional code to, say, generate additional attributes by preprocessing, write them to �le,
and read them back for every run. That approach is used, for example, by the Gauteng scenario
(Chapter 69) to pre-allocate e-tag ownership to persons.

Note that there is currently no simple way to similarly attach information to data types that do
not have an ID. This is, for example, the case with plans, activities, or legs, which are contained in-
side a data type with an ID (the person data type), but which do not possess an ID of their own and
are therefore not addressable by ObjectAttributes. Some of these non-identi�able data types im-
plement the Java interface Customizable, to which additional material can be attached by a syntax
of type

plan.getCustomAttributes.put("myAttribName",myAttribValue) ;

For additional information, see the Customizable interface under http://matsim.org/javadoc →

main distribution. Note that information contained in Customizable is not considered standard
information by MATSim. It is not written to �le when writing the corresponding container, it is
in consequence not read from �le, and it is unde�ned if it is copied when copying the data object
(e.g., when cloning plans for the evolutionary algorithm). This is the status quo; the MATSim team
is thinking about better solutions.

Please check the documentation of ObjectAttributes (see http://matsim.org/javadoc→ main
distribution) for more details and pointers to examples.

45.2.3 Scenario Element

The object-oriented, in-memory database which holds the Person objects with their plan mem-
ories is accessible via the Population interface. The Network interface gives access to the tra�c
network graph, consisting of links and nodes. There is a TransitSchedule interface which repre-
sents the public transit schedule. Your own modeling tasks may need an additional data container
like these. We call them scenario elements. The freight carrier population of the freight extension
described in Section 24.2 is a typical example.
Scenario is the interface which ties all scenario elements together. You can add your own

named scenario element to the Scenario at startup, for example in a StartupListener. All stan-
dard scenario elements are populated from XML �les at startup, but your own scenario elements
could just as well be interfaces to an external relational database.

See http://matsim.org/javadoc → main distribution → RunScenarioElementExample for an
example. Note, however, that in the meantime, the injection framework may have become a better
alternative.

300 The Multi-Agent Transport Simulation MATSim

45.2.4 ControlerListener: Handling Controler Events

Controler remains the main user-facing class of MATSim, but please do not subclass it. Rather, use
its setter methods to plug in your own code.1

ControlerListeners are called at the transitions of the MATSim loop (Figure 45.1), where so-
called ControlerEvents are fed to the listeners.

The following ControlerListeners are currently available: StartupListener,
IterationStartsListener, BeforeMobsimListener, AfterMobsimListener, ScoringListener,
IterationEndsListener, ReplanningListener, and ShutdownListener. An up-to-date list can be
obtained from http://matsim.org/javadoc → main distribution → ControlerListener interface.

A sample listener might look as follows.

public class MyControlerListener implements StartupListener {

@Override

public void notifyStartup(StartupEvent event) {

...

}

}

ControlerListeners are called in unde�ned order, meaning that AControlerListener may only
rely on the computation of BControlerListener if BControlerListener makes that computation
in an earlier transition. For instance, if BControlerListener is a StartupListener and loads data
into a Map on start-up, AControlerListener can be an IterationStartsListener and use that Map.
But do not write two IterationStartsListeners where the �rst puts some data into a Map and the
second expects to �nd it there, they may be called in any order.

Please check the documentation of ControlerListener (see http://matsim.org/javadoc →

main distribution) for more details and pointers to examples.

analyses

replanning

Controler Events:

initial

demand
execution

(mobsim)
scoring

1 Simulation Starts (“Startup”)

2 Iteration Starts

3 Before Mobsim

4 After Mobsim

1 2 3 4 6

2

7

8

5

5 Scoring

6 Iteration Ends

7 Replanning

8 Simulation Ends (“Shutdown”)

Figure 45.1: Controler events.

1 Again, in the meantime, the injection framework may have become a better alternative altogether. The general

structure, however, remains the same.

How to Write Your Own Extensions and Possibly Contribute Them to MATSim 301

45.2.5 Events

The mobsim moves the agents around in the virtual world according to their plans and within the
bounds of the simulated reality. It documents their moves by producing a stream of events. Events
are small pieces of information describing the action of an object at a speci�c time. Examples of
such events are (also see Figure 2.2):

• An agent �nishes an activity.
• An agent starts a trip.
• A vehicle enters a road segment.
• A vehicle leaves a road segment.
• An agent boards a public transport vehicle.
• An agent arrives at a location.
• An agent starts an activity.

Each event has a timestamp, a type, and additional attributes required to describe the action like
a vehicle id, a link id, an activity type or other data. In theory, it should be possible to replay the
mobsim just by the information stored in the events. While a plan describes an agent’s intention,
the stream of events describes how the simulated day actually was.

As the events are so basic, the number of events generated by a mobsim can easily reach a mil-
lion or more, with large simulations even generating more than a billion events. But as the events
describe all the details from the execution of the plans, it is possible to extract essentially any kind
of aggregated data one is interested in. Practically all analyses of MATSim simulations make use
of events to calculate some data. Examples of such analyses are the average duration of an activity,
average trip duration or distance, mode shares per time window, number of passengers in speci�c
transit lines and many more.

The scoring of the executed plans makes use of events to �nd out how much time agents spend at
activities or for traveling. Some replanning modules might make use of events as well: The router
for example can use the information contained in events to �gure out which links are jammed at
certain times and route agents around that jam when creating new plans.

Handling Events MATSim extensions can watch the mobsim by interpreting the stream of
events. This is done by implementing the EventHandler interface and registering the implemen-
tation with the framework. The lifecycle of an EventHandler can be chosen by the developer.
Normally, an EventHandler lives as long as the simulation run. It is noti�ed before the beginning
of each new iteration so that its state can be reset to listen to a new iteration. This pattern can be
used to collect information over all iterations. But if the purpose of an EventHandler is to make
a calculation based on one single iteration, it may be more natural to create a new EventHandler

instance for each iteration, query it for its result and discard it a�er the iteration �nishes. This can
be done in a ControlerListener.

See http://matsim.org/javadoc → main distribution → EventHandler for pointers to coding
examples.

Producing Your Own Events One can extend the MATSim event model by extending the Event

class to de�ne own event types. Events can be produced from all places in the code which
are executed during the running mobsim, and in particular from other EventHandler instances.
Assume for example you want to analyze le�-turns. A good starting point would be to specify a
LeftTurnEvent class, and produce an instance of this class whenever a vehicle does a le�-turn. You
may do this from a class which is a LinkLeaveEventHandler as well as a LinkEnterEventHandler.
A LinkLeaveEvent is produced every time a vehicle leaves a road segment, and a LinkEnterEvent

is produced when it enters the next road segment. Pairing each LinkLeaveEvent with the next

302 The Multi-Agent Transport Simulation MATSim

LinkEnterEvent for the same vehicle gives a model for a vehicle crossing a node. At this point, your
code would look at the road network model to determine if this was a le�-turn, and if so, produce
a LeftTurnEvent.

See http://matsim.org/javadoc → tutorial → RunCustomScoringExample for an example.

45.2.6 Mobsim Listener

A MobsimListener is called in each simulation timestep. This can, for example, be used to produce
a custom event which is not triggered by another event. For example, if you wanted to include a
model of weather conditions into the simulation, you could use this extension point to decide in
every time step if it should start or stop raining on a certain road segment, and produce custom
events for this. You would then calculate rain exposure per agent by adding an EventHandler which
handles LinkEnterEvent, LinkLeaveEvent and your custom rain events.

Note that EventHandler and MobsimListener instances may be run in parallel by the framework.
It is generally not safe to share state between them. The framework guarantees that the methods of
an EventHandler instance are called sequentially, but two di�erent instances may run on di�erent
threads of execution. Access to shared data must be synchronized externally. Whenever possible,
di�erent EventHandler instances should only communicate through events.

Example See http://matsim.org/javadoc → main distribution → MobsimListener for more
details and pointers to examples.

45.2.7 TripRouter

A TripRouter is a service object providing methods to generate trips between locations, given a
(main) mode, a departure time and a Person. A trip is a sequence of plan elements represent-
ing a movement. It typically consists of a single leg (Leg object), or of a sequence of legs with
“stage activities” in between. For instance, public transport trips contain pt interaction activities,
representing changes of vehicles in public transport trips.

Using the Router A TripRouter instance provides a few methods to work with trips, namely

• compute a route for a given mode and O-D pair, for a Person with a speci�c departure time,
• identify themainmode of a trip. For instance, a trip composed of severalwalk and pt legs should

be identi�ed as a public transport trip.
• Identify which activities are stage activities, and, by extension, identify the trips in the plan: A

trip is the longest sequence of consecutive Legs and stage activities

Please check the documentation of the TripRouter class (see http://matsim.org/javadoc →

main distribution) for more details and pointers to examples.

Con�guring the Router The TripRouter computes routes by means of RoutingModule instances,
one of which is associated with each mode. A RoutingModule de�nes the way a trip is computed,
and is able to identify the stage activities it generates.

The association between modes and RoutingModule instances is con�gurable. You can even pro-
vide you own RoutingModule implementations. Do this if your use-case requires custom routing
logic, for instance, if you want to implement your own complex travel mode.

Example Please check the documentation of TripRouter (see http://matsim.org/javadoc →

main distribution) for more details and pointers to examples.

How to Write Your Own Extensions and Possibly Contribute Them to MATSim 303

45.2.8 Mobsim

Alternativemobsimin Java Besides adding MobsimListener implementations to enrich the stan-
dard mobsim, it is also possible to replace the entire mobsim by a custom implementation. A
mobsim is basically a Runnable which is supposed to take a scenario and produce a stream of events.
This allows you to use the co-evolutionary framework of MATSim while replacing the tra�c model
itself.

Example for alternative mobsim in Java Please check the documentation of Mobsim (see http:

//matsim.org/javadoc → main distribution) for more details and pointers to examples.

Alternative mobsim in another programming language Your implementation need not be
written in Java. The framework includes a helper class to call an arbitrary executable which is then
expected to write its event stream into a �le. This pattern has been used successfully many times,
see, e.g., Section 43.1, or the CUDA implementation of the mobsim by Strippgen (2009). Note that
we have found consistently that an external mobsim does not help with computing speed: What-
ever is gained in the mobsim itself is more than lost again by the necessary data transfer between
MATSim and the external mobsim. As of now, we cannot yet say if newer data exchange techniques,
such as Google Protocol Bu�ers, may change the situation. Until then, the external interface should
rather be seen as the option to inject a di�erent, possibly more realistic, mobsim into MATSim.

45.2.9 PlanStrategy

Replanning in MATSim is speci�ed by de�ning a set of weighted strategies. In each iteration, each
agent makes a draw from this set and executes the selected strategy. The strategy speci�es how the
agent changes its behavior. Most generally, it is an operation on the plan memory of an agent: It
adds and/or removes plans, and it marks one of these plans as selected.

Strategies are implementations of the PlanStrategy interface. The two most common cases are:

• Pick one plan from memory according to a speci�ed choice algorithm.
• Pick one plan from memory at random, copy it, mutate it in some speci�c aspect, add the

mutated plan to the plan memory, and mark this new plan as selected.

The framework provides a helper class which can be used to implement both of these strategy
templates. The helper class delegates to an implementation of PlanSelector, which selects a plan
from memory, and to zero, one or more implementations of PlanStrategyModule, which mutate a
copy of the selected plan.

The maximum size of the plan memory per agent is a con�gurable parameter of MATSim. Inde-
pendent of what the selected PlanStrategy does, the framework will remove plans in excess of the
maximum from the plan memory. The algorithm by which this is done is another implementation
of PlanSelector and can be con�gured.

The four most commonly used strategies shipped with MATSim are:

• Select from the existing plans at random, which are weighted by their current score.
• Mutate a random existing plan by re-routing all trips.
• Mutate a random existing plan by randomly shi�ing all activity end times backwards or

forwards.
• Mutate a random existing plan by changing the mode of transport and re-routing one or more

trips or tours.

Routes are computed based on the tra�c conditions of the previous iteration, which are mea-
sured by means of an EventHandler. Using the same pattern, your own PlanStrategy can use

304 The Multi-Agent Transport Simulation MATSim

any data which can be computed from the mobility simulation. The source code of the standard
PlanStrategy implementations can be used as a starting point for implementing custom behavior.

Re-routing as a building block of many replanning strategies is a complex operation by itself. It
can even be recursive: For example, �nding a public transport route may consist of selecting access
and egress stations as sub-destination, �nding a scheduled connection between them, and �nding
pedestrian routes between the activity locations and the stations. With the TripRouter interface, the
framework includes high-level support for assembling complex modes of transport from building
blocks provided by other modules or the core.

Please check the documentation of PlanStrategy (see http://matsim.org/javadoc → main
distribution) for more details and pointers to examples.

45.2.10 Scoring

The parameters of the default MATSim scoring function (Chapter 3) are con�gurable. The code,
which maps a stream of mobsim events to a score for each agent is placed behind a factory interface
and replaceable. However, replacing it means replacing the entire utility formulation. There is cur-
rently no mechanism for composing a utility formulation from contributions by di�erent modules.
For instance, a module which simulates weather conditions would probably calculate penalties for
pedestrians walking in heavy rain, and the Cadyts (Chapter 32) calibration scheme already uses
utility o�sets in its formulation. A modeler who wishes to compose a scoring function from the
Charypar-Nagel utility, the rain penalty and the calibration o�set needs to do this manually, in
code, accessing the code of all three modules contributing to the score and (for instance) summing
up their contributions. As of the writing of this chapter, this makes scoring in a way the least mod-
ular part of MATSim: It has to be re-de�ned, in code, for every combination of modules which
contribute to the utility.

Keep in mind that score and replanning are not inherently coupled or automatically consistent
with each other. Consider a scoring function which penalizes le�-turns. This is straight-forward to
program: You would iterate over every route an agent has taken. Looking at the Network, you would
calculate for each change of links if you consider it a le�-turn, and if so, add a (negative) penalty to
the score. However, this would not by itself lead to a solution where routes are distributed according
to this scoring function. The reason is that the default replanning only proposes fastest routes, in
other words, least-cost paths with respect to travel time. By default, the plan memory of an agent
will only ever contain routes which have in one iteration been a fastest route. The behavior of the
router is, in this case, inconsistent with the utility formulation.

Please check the documentation of ScoringFunction (see http://matsim.org/javadoc → main
distribution) for more details and pointers to examples.

PART III

Understanding MATSim

CHAPTER 46

Some History of MATSim

Kai Nagel and Kay W. Axhausen

46.1 Scienti�c Sources of MATSim

As sketched earlier (Section 1.1), MATSim derives from the following research streams:

Microscopic Modeling of Tra�c Microscopic modeling was a basis for tra�c �ow theory from
the start (e.g., Herman et al., 1959; Seddon, 1972; Wiedemann, 1974), but the work was limited to
individual links, or small sequences of links and could thus not address equilibrium, as aggregate
assignment models could from the 1970’s onward (see She�, 1985; Ortúzar and Willumsen, 2011).
The expansion to whole and large networks came with the increasingly powerful computers in the
1980’s, as well as fast and su�ciently accurate �ow models (e.g., Schwerdtfeger, 1984; Nagel and
Schreckenberg, 1992; Daganzo, 1994; Gawron, 1998).

Computational Physics For MATSim, this development was aided by insights from compu-
tational physics, which o�en adopts simple and very fast models of physical processes and has
performed simulations with 108, and more, particles since the 1980’s (for a contemporary review
see Beazley et al., 1995). It was thus clear from the beginning that urban or regional systems with
107 or 108 persons or vehicles could be simulated microscopically; the research then focused on
where necessary compromises would have to be made.

Microscopic Behavioral Modeling of Demand/Agent-Based Modeling According to Russel
and Norvig (2010, p. 53), an agent is “anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators”. In that sense, both the mod-
els of Seddon (1972) and of Wiedemann (1974) can be classi�ed as agent-based; this holds even for
the simple cellular automata models of Nagel and Schreckenberg (1992), since here driver-vehicle
units perceive the distance to the vehicle ahead and act by adjusting their velocity.

Agent-based behavior can also be found at the demand modeling level, where aggregate mod-
els, such as the gravity model (Wilson, 1971), can be replaced by person-centric formulations.

How to cite this book chapter:

Nagel, K and Axhausen, K W. 2016. Some History of MATSim. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 307–314. London: Ubiquity Press.

DOI: http://dx.doi.org/10.5334/baw.46. License: CC-BY 4.0

308 The Multi-Agent Transport Simulation MATSim

In that sense, agent-based modeling of travel demand had been developed in Germany since the
1970’s (see the references in Axhausen and Herz, 1989), as well as in English-speaking countries, as
described in Jones et al. (1983)’s seminal book. While anglophone authors focused on sample enu-
meration methods to estimate total demand with their activity-based demand models (see Bradley
and Bowman (2006) for North American, mostly discrete choice, model-based, developments
and Arentze and Timmermans (2000) for an alternative Dutch approach), the simpler German
approach was linked to an integral mesoscopic tra�c �ow simulation in Axhausen (1989), but not
used for equilibrium search. It already had, however, a simple description of daily schedule total
utility.

Complex Adaptive Systems/Co-Evolutionary Algorithms Nash-equilibrium-like approaches
had been developed in transport assignment since the formative Wardrop (1952) paper. These
aggregate, �ow-based approaches were expanded to account for user perception errors and the
social optimum (see Daganzo and She�, 1977). In the late 1990’s, transport science addressed
the process of learning within the context and new possibilities of “intelligent transport systems”,
using various smoothing techniques to integrate data from iteration to iteration, re�ecting the
�eld tradition. Examples include Chang and Mahmassani (1989); Kaufman et al. (1991); Hatcher
and Mahmassani (1992); Smith et al. (1995); Axhausen et al. (1995); Nagel (1995, 1996); Gawron
(1998); Mahmassani and Liu (1999); Polak and Oladeine (2002); Arentze and Timmermans (2004).
These approaches translated Nash equilibrium logic into co-evolutionary search schemes, which
e�ciently identi�ed the optima of each agent’s daily schedule.

46.2 Stages of Development

46.2.1 Kai Nagel’s Perspective

46.2.1.1 Fast Microscopic Modeling of Tra�c Flow (University of Cologne/Los Alamos
National Laboratory)

Kai Nagel originally wanted to do his PhD (Philosophiae Doctor – Doctor of Philosophy) in me-
teorology. When funding did not come through, he began exploring alternatives and applied for a
position in insurance modeling with Prof. A. Bachem at the University of Cologne. Instead, he was
o�ered a position in operations research, solving problems like dynamic vehicle routing with time
windows.

Having some background in computational statistical physics, he soon became skeptical whether
it made sense optimizing up to the last second of a time window, while simultaneously facing a
highly stochastic transport system. Using his training, he embarked on building a microscopic
model of the transport system, in particular single-lane (Nagel and Schreckenberg, 1992; Nagel,
1999) road tra�c on long links, as well as combining such links to large-scale network-based
simulations, where each vehicle follows its own individual route (Nagel, 1996), including adap-
tive dynamics, being in�uenced most heavily by Arthur (1994). That paper already (Nagel, 1996)
describes what is still the main MATSim architecture, where agents have many di�erent plans, keep
trying them out and eventually settle on the best option. In contrast to the current approach, in
that paper, all plans were pre-computed; i.e., there was no innovation during iterations. This was
possible because the network was much coarser than what we use today, making pre-computing
route plans with enough diversity easy.

46.2.1.2 TRANSIMS (Los Alamos National Laboratory/Santa Fe Institute)

Some of the above PhD work was done during Kai’s tenure as a Graduate Research Assistant at
LANL (Los Alamos National Laboratory). A�er his PhD, he moved to LANL, where he worked

Some History of MATSim 309

with the TRANSIMS (see, e.g., Smith et al., 1995) team, under the leadership of Chris Barrett. The
TRANSIMS project used some of the design described above, most notably the cellular automata
approach to road tra�c modeling, which was thus extended to multi-lane tra�c (Nagel et al., 1998),
to intersections (Nagel et al., 1997) and to massive parallel computing (Nagel and Rickert, 2001).

In terms of so�ware design, TRANSIMS was a collection of stand-alone modules, coupled by
a script. For example, the population synthesizer would generate a population �le, the activity
generator would take the population �le as input and generate an activities �le as output, etc.
Iterations were done by running the tra�c microsimulation (called mobsim in MATSim) based
on plans and outputting average link travel times and then running the router based on link travel
times and outputting plans.

46.2.1.3 MATSim in C++ (ETH Zürich Computer Science)

Kai Nagel moved to ETH Zürich Computer Science in 1999. It was di�cult there to continue with
TRANSIMS, partly because TRANSIMS was not under an open-source license at that time and
also because TRANSIMS fell under U.S. technology export restrictions for some time. As a result,
MATSim was started.

MATSim was di�erent from TRANSIMS from the beginning in two important ways: (1) it tried
to be more lightweight, i.e., running much faster, speci�cally by using the queue model (Gawron,
1998), rather than the cellular automata model for network loading and (2) other than TRANSIMS,
agent properties such as demographic data, activity patterns or routes were no longer distributed
across multiple �les, but contained in one hierarchical XML �le.

Another di�erence later appeared, which went back to the Nagel (1996) approach, but this time
really followed Arthur (1994) by giving each individual agent its own memory (Raney and Nagel,
2006). A�er experimentation with relational databases such as MySQL (MySQL, accessed 2014)
or Oracle (ORACLE www page, accessed 2005), it was eventually decided to implement MATSim
as an object-oriented database in memory, i.e., by �rst reading in all XML �les, modifying the
data in computer memory RAM during a run lifetime and writing the data back from memory to
XML �les at the end of the run. The decision was based on the observation that the MATSim data
model was described much better by XML �les and that conversion to the relational format was
impractical, prone to errors, and too slow if not kept in memory during iterations.

46.2.1.4 MATSim in Java (TU Berlin Transport Engineering)

Michael Balmer wrote his dissertation at ETH (see below) about demand modeling for MATSim,
i.e., about the upstream process that leads to initial plans (Balmer, 2007). That project, di�erent
from the main MATSim code at that time, was written in Java. Along with the assessment that Java
would be the better language than C++ to continue development, it was decided to use Michael
Balmer’s code as starting point for a Java version. Arguments for Java included:

• Java is more restrictive. For example, in Java, objects are always passed by reference, 1 while in
C++, one has the choice between passing a pointer, a reference, or a deep copy of the object.
Since standards are di�cult to enforce in academic environments, a more restrictive language
seemed (and still seems) the better choice.

• Java runs well on many platforms. This allowed (and still allows) us to let people work on their
favorite platforms, be it Linux, Microso� Windows, or Mac.

• There is good non-commercial support for Java; for example, the Eclipse IDE and numerous
powerful libraries.

1 We abstract from the notion that Java “passes object references by value”.

310 The Multi-Agent Transport Simulation MATSim

• The Java compiler is easier to handle. For example, there is no extraction of header �les and the
Java compiler sorts out, by itself, the sequence in which modules need to be compiled.

• For our applications, Java was consistently not slower than C++. This assessment was based
on several years of teaching a MATSim class at ETH Zürich, where computer science students
implemented simple versions of MATSim in a programming language of their choice. Typically,
while the fastest C++ code may have been 30 % faster than the fastest Java code, the slowest C++
code normally was a factor of 3 slower than the slowest Java code. In other words, while C++
gives more opportunities for optimization, it also gives more opportunities for very serious per-
formance degradation. This assessment is corroborated somewhat in the literature (Prechelt,
1999), where, in one example, it is demonstrated that interpersonal di�erences within the same
language are of the same magnitude as di�erences between languages.

In addition, it seems that the gap between C++ and Java has narrowed further since then.
Important di�erences remain in numerical applications, also partly because C++, other than
the Java, allows operator overloading.2 However, MATSim’s agent-based approach means that
complex objects are handled much more frequently than true numerical computations.

• One reason for using C++ was that it could be combined with MPI, which is a reliable
message passing standard for parallel computing. Parallel computing was necessary both for
performance reasons and to be able to run simulations that needed more than about 4 GB of
memory—the maximum that could be addressed with the 32 bit architecture standard at that
time. MPI is also available for Java, but it is much less well maintained.

With the advent of the 64 bit architectures, the second reason for parallel computing
became obsolete. In addition, with Kai Nagel now at a transport engineering department, it
seemed that making conceptual progress was more important than keeping the parallel com-
puting edge, especially since the maintenance of parallel code permanently consumes additional
resources.

With the decision to give up on parallel computing, it was no longer necessary to maintain
compatibility with MPI; thus, the move to Java was facilitated.

In terms of language, C# might have been an alternative to Java. However, C# depends much
more on the Microso� Windows platform, and community support is not as good as it is for Java.

Clearly, the code by Michael Balmer already had all the necessary data classes, readers and writ-
ers. The code was used as a starting point to re-implement MATSim in Java. Nevertheless, many
important elements like mobsim, events architecture, scoring, routing, and co-evolutionary archi-
tecture had to be re-implemented. It took about two years from making that decision to the �rst
plausible run of MATSim in Java.

Important early steps with MATSim in Java were to add time choice (Balmer et al., 2005b) and
mode choice (Rieser et al., 2009) as additional choice dimensions beyond route choice. A summary
of the status around 2008 was written by Balmer et al. (2009b).

46.2.1.5 Code Reorganization

The C++ version of MATSim was, similar to the original TRANSIMS, a collection of stand-alone
executables coupled by scripts. For example, the router would read plans and events and replace
some of the plans by other plans with modi�ed routes. The program �ow was organized with shell
scripts and make�les. Later, it was possible to start all modules simultaneously where they used
messages to interact (also see Gloor and Nagel, 2005), but the �le-based and scripted interaction
always remained available.

2 See http://en.wikipedia.org/wiki/Operator overloading.

Some History of MATSim 311

That approach had, in consequence, very clearly de�ned interfaces, i.e., the �les. Exchanging
information not included in the �les meant changing the readers and writers on both sides, which
was, in consequence, rarely done; stand-alone modules instead tried to work with the information
they had.

When MATSim was re-implemented in Java around 2006/07, it was re-implemented as one
system. Now, everything could interact with everything. For example, a router could modify the
network, compute routes on the modi�ed network and then modify it back. Clearly, it could make
an error in the process, thus erroneously modifying the network. In this way, any module could
modify any data of MATSim, greatly increasing the scope for misunderstandings and errors.

What created even more problems, however, were extensions to the program �ow. The pro-
gram �ow was, as it still is, organized by the Controler class.3 Originally, everybody who wanted
to change the program �ow and insert his or her own research modules, would inherit from
Controler, override some methods and insert his or her own instructions. This however, meant
that it was impossible to combine the extensions without possibly massive manual interventions,
illustrated as follows.

For example, assume the core program �ow as

class Controler {

void run() {

...

aMethod () ;

...

}

void aMethod () {

doA() ;

doB() ;

}

}

Also assume an extension called MyControler from one researcher and another extension called
YourControler by another researcher:

class MyControler extends Controler {

@Override

aMethod () {

doA() ;

doMyStuff () ;

doB() ;

}

}

class YourControler extends Controler {

@Override

aMethod () {

doA() ;

doYourStuff () ;

doB() ;

}

}

If you wanted to combine both approaches, you could neither say YourControler extends

MyControler nor MyControler extends YourControler, since either way one of the two exten-
sions would get lost. In this simple case, one could possibly address the problem through manual

3 Mis-spelled since its inception.

312 The Multi-Agent Transport Simulation MATSim

intervention, but in more complicated situations this would no longer possible without extensive
additional testing.

Therefore, in 2008, a decision was made to make MATSim more modular. The �rst step in that
direction was a decision to submit the whole MATSim repository to frequent refactorings, i.e., to
not leave the code alone as much as possible, instead forcing the community to get used to frequent
changes of code, while maintaining functionality. To facilitate that approach, coverage by automatic
regression tests on the build server was hugely increased and all developers were encouraged to
write automatic regression tests for their own code and projects.

The changes since then are too numerous to be listed here. They include, in particular, fairly
restrictive data classes no longer extended or modi�ed by every scienti�c project, and well-de�ned
extension points in both the iterative loop and inside the mobsim. See Chapter 45 for currently
existing extension points.

46.2.2 Kay W. Axhausen’s Perspective

46.2.2.1 ORIENT/RV: Parking in Travel Demand Models (Karlsruhe University)

In 1984, Kay Axhausen returned to Karlsruhe University4 a�er two years doing an MSc degree at
the University of Wisconsin, to start his PhD (Philosophiae Doctor – Doctor of Philosophy) at the
IfV (Institut für Verkehrswesen/Institute for Transport Studies). At that time, the IfV already had
a long tradition of tra�c �ow analysis (Leutzbach, 1972) and agent-based tra�c �ow simulation,
as pioneered by Wiedemann (1974) (see also Leutzbach and Wiedemann, 1986). In this environ-
ment, Sparmann and Leutzbach (1980) had implemented a sample enumeration-based simulation
of tra�c demand in the spirit of Poeck and Zumkeller (1978). This approach took the daily sched-
ule of the traveler and simulated it activity-by-activity, including the necessary travel. Neither the
tra�c �ow nor travel demand simulations aimed for equilibrium, but, in line with discussions at
the time, both were more interested in the underlying behaviors (e.g., Jones et al., 1983).

Faced with a project to simulate parking as an extension of Sparmann’s ORIENT approach, it
became clear to Axhausen that sample enumeration approaches could not account for the temporal
and spatial competition for parking spaces, but that the event-oriented approaches of the tra�c �ow
model naturally could. Merging the two approaches was the natural solution and he then designed
it for ORIENT/RV (Axhausen, 1989). Given the need to model the �ow of tra�c on the roads
as part of the daily dynamics, the approach of Schwerdtfeger, an IfV colleague, was a natural and
computationally-e�cient choice. Schwerdtfeger (1984) had developed a mesoscopic simulation
of tra�c �ow, which retained the agent-resolution, but employed macroscopic link-performance
functions to calculate link speeds.

The work of Swiderski (1983), a second IfV colleague, started Axhausen thinking about the need
to account for the constraints imposed by travelers’ mental maps. As a full implementation of
a mental map is impossible, even with today’s computers, he chose to condition travelers’ route
choices on their travel time expectations, which were based on shortest-paths over an initially
empty network. The agents reconsidered their routes at every junction if the experienced travel
time deviated beyond an adaptive threshold from expected travel times. In this case, the route was
recalculated with the current speeds. The framework was used to iterate (Axhausen, 1990) the
expectations via shortest-paths based on stored mean travel times from the last iteration, but no
formal tests of equilibrium were conducted, nor was the number of iterations extensive.

In the MATSim context, the competition for facilities was taken up by Horni et al. (2009).
Reconsidering routing decisions while already being en-route was taken up by Dobler (2013),

4 Now: Karlsruhe Institute of Technology (KIT).

Some History of MATSim 313

Number and type of activities
Sequence of activities

• Start and duration of activity
• Composition of the group undertaking the activity
• Expenditure division
• Location of the activity

• Movement between the sequential locations

• Location of access and egress from the mean of transport

• Parking type

• Vehicle/means of transport

• Route/service

• Group traveling

• Expenditure division

Source: Axhausen (2014, 2006, 2009)

Figure 46.1: Behavioral dimensions to be included in a fuller scheduling model.

where he showed that such an approach can approximate the equilibrium in a small number of
iterations.

46.2.2.2 From EUROTOPP to MATSim (Karlsruhe, Oxford, London, Innsbruck, Zürich)

The �rst framework program of the European Union o�ered a chance to continue with the work
in a larger context; unfortunately, this extended version of ORIENT/RV never went beyond the
design stage (Axhausen and Goodwin, 1991). The EUROTOPP approach was later implemented
in a changed form at the IfV, again by Zumkeller, who also had been one of the partners of the �rst
framework project (Schnittger and Zumkeller, 2004), and his students.

Moving to Oxford, London, Innsbruck and then Zürich in rapid succession kept Axhausen from
initiating serious work on a large-scale simulation system. The focus switched to data collection
and choice modeling and collaboration on travel demand simulation with Kai Nagel began when
he also joined ETH in 1999. While this was initially low key, Michael Balmer and David Charypar’s
move to Kay Axhausen’s group a�er Kai Nagel’s departure to TU Berlin jump-started further work,
which is now documented in this book.

46.2.2.3 “Best Response” and Further Choice Dimensions (ETH Zürich
Transport Engineering)

Departure time, mode and route choice are the heart of the transport modeling enterprise
and were addressed in MATSim almost from the start (Raney and Nagel, 2004; Balmer et al.,
2005b; Rieser et al., 2009). Work in Zürich addressed further behavioral dimensions, as shown in
Figure 46.1. earch or past studies, which did not produce stable enough code for general use. It
is clear that there are more dimensions to consider. Those listed in the �gure are only the more
obvious examples: for example, rail travel service class or activity engagement intensity are not
addressed .

Today, MATSim takes the activity chain and schedule, as given from the initial demand genera-
tion process, as input; modern “activity based-models” make it sensitive to accessibility, understood

314 The Multi-Agent Transport Simulation MATSim

as the logsum term of the included destination and mode choice model (route choice is generally
excluded in those models) (see Ben-Akiva et al., 1996, for an early example).Computational over-
head costs of calculating non-chosen alternatives sets becomes prohibitive at the scale for which
MATSim is designed, so alternative approaches were explored. Meister developed a genetic algo-
rithmonahousehold-basis to�ndoptimal schedules for allmembers simultaneously (reported
in Meister et al., 2005), but only its time-of-day choice element was used in later scenarios (Meister
et al., 2006). Feil set about �nding a best-response, but computationally fast approach to the

optimization of the number and sequence of activities into a schedule (Feil, 2010). While he
made substantial progress using a tabu search and a cloning approach, it is still too slow as it
currently stands. Fourie’s PSim (see Chapter 39) might remove that constraint.

While Meister and of Feil’s approaches, as well as the standard MATSim routing algorithm,
attempt to directly provide best response solutions, the standard MATSim evolutionary algo-
rithm also moves in the direction of good or best response (also see Section 97.3.1). With these
approaches, it is impossible to directly model destination choice, since the best response destina-
tion would just be the closest possible destination (Horni et al., 2009). The problem: destinations
similar from the analyst’s point of view are quite di�erent from each person’s point of view: for
example, allowing di�erent types of leisure activity. As further explained in Chapter 27, the problem
was addressed by attaching randomness directly to each person-alternative-pair (also see Horni
et al., 2012b).

The need to address parking is obvious and even more so when considering electric vehicles and
their current need to be recharged during the course of a day. Waraich addressed both aspects by
integrating a local search into the overall MATSim iteration scheme to identify preferred parking
spaces near the �nal destination (Chapter 13). Dobler’s approach (Dobler, 2013) to evacuation is
similar, but does not iterate, since that is not relevant for evacuation modeling. Waraich’s local
search can be extended with personalized walking time values.

The group composition for joint travel and joint activities is essential for making progress
on a number of fronts, but especially to understand destination choice and activity generation.
Gliebe and Koppelman (2005) or Zhang et al. (2005), for example, have proposed discrete choice
models for household activity allocation. However, these approaches cannot be easily integrated
into MATSim because of their computational costs. They are also too restrictive, with their
exclusive focus on the household. Based on parallel empirical work on social networks (see Larsen
et al., 2006; Kowald et al., 2013), Dubernet is currently exploring new game theoretic approaches
to co-ordinate the timings and activities of households and wider social networks. These social
networks are generated using the approach of Arentze et al. (2013), which was estimated against
Swiss data for leisure social contact (Kowald and Axhausen, 2012) so as to reproduce measured
characteristics of the real network, such as homophily, clustering and average number of leisure
social contacts.

The expenditure division question is a promising research avenue (Section 97.6) not yet
explored by transport planning and clearly interacting with joint activity participation and travel.

CHAPTER 47

Agent-Based Tra�c Assignment

Kai Nagel and Gunnar Flötteröd

47.1 Introduction

This chapter presents MATSim from a DTA perspective. The following material is an abridged and
edited version of Nagel and Flötteröd (2012).

The tra�c assignment problem, whether macroscopic or microscopic, static or dynamic, trip-
based or agent-based, is to identify a situation where travel demand and travel supply (network
conditions) are consistent with each other. Travel demand results from a demand model that reacts
to conditions in the network; these are the output of a supply model (network loading model) using
travel demand as its input. A solution of the tra�c assignment problem describes an equilibrium
between travel demand and travel supply.

Possibly, the most intuitive mathematical formulation of this problem is de�ned by a �xed
point: Find a demand pattern generating network conditions that, in turn, cause the same demand
pattern to re-appear. This formulation is operationally important because it motivates a straight-
forward way of calculating an equilibrium by alternately evaluating the demand model and the
supply model. If these iterations stabilize, a �xed point is attained that solves the tra�c assignment
problem.

The remainder of this chapter places MATSim into this DTA framework. Section 47.2 starts
out from the static and macroscopic assignment of route �ows and incrementally enriches this
formulation into a dynamic and fully disaggregate agent-based assignment problem. Section 47.3
then turns to the problem of how to simulate (solve) this model system, with a particular focus on
MATSim’s coevolutionary approach. Section 47.4 concludes the presentation.

How to cite this book chapter:

Nagel, K and Flötteröd, G. 2016. Agent-Based Tra�c Assignment. In: Horni, A, Nagel, K and Axhausen, K W.

(eds.)TheMulti-Agent Transport SimulationMATSim, Pp. 315–326. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.47. License: CC-BY 4.0

316 The Multi-Agent Transport Simulation MATSim

47.2 From Route Swapping to Agent Plan Choice

The following details an increasingly comprehensive speci�cation of the tra�c assignment prob-
lem, starting from the classical static user equilibrium model and ending with a fully dynamic
model that captures arbitrary travel demand dimensions at the individual level. Computationally,
the iterative �xed point solution procedure is carried throughout the entire development. Deliber-
ately, this solution method also has a behavioral interpretation as a model of day-to-day replanning;
see also Section 97.3.5.

We start by considering route assignment only. The generalization towards further choice
dimensions will turn out to be rather straightforward.

47.2.1 Static Tra�c Assignment

Consider a network of nodes and links, where some, or all, of the nodes are demand origins,
denoted by o, and/or demand destinations, denoted by d. The constant demand qod in an O-D
relation od splits up among a set of routes Kod. Denote the �ow on route k ∈ Kod by rodk , where
∑

k∈Kod rodk = qod.
Most route assignment models either specify a UE (User Equilibrium a.k.a. Wardrop’s �rst prin-

ciple) or an SUE (Stochastic User Equilibrium). A UE postulates that rodk is zero for every route k
of non-minimal cost (Wardrop, 1952):

c(k) = min
s∈Kod

c(s) ⇒ rodk ≥ 0 (47.1)

c(k) > min
s∈Kod

c(s) ⇒ rodk = 0 (47.2)

where c(k) is the cost (typically delay) on route k.
An alternative, frequently-used approach is to distribute the demand onto the routes such that

an SUE is achieved, where users have di�erent perceptions of route cost and every user takes the
route of perceived minimal cost (Daganzo and She�, 1977). Mathematically, this means that the
route �ows ful�ll some distribution

rodk = Podk (c(x({rodk }))) · qod (47.3)

where the route splits Podk are a function of the network costs c(x), which depend on the network

conditions x, which, in turn, depend on all route �ows {rodk }.
In either case, the model needs to be solved iteratively, which typically involves the following

steps (She�, 1985):

Algorithm 47.1 Macroscopic and static route assignment

1. Initial conditions: Compute some initial routes (e.g., best path on empty network for every
O-D pair).

2. Iterations: Repeat the following many times.

(a) Network loading: Load the demand on the network along its routes and obtain network
delays (congestion).

(b) Choice set generation: Compute new routes based on the network delays.

(c) Choice: Distribute the demand between the routes based on the network delays.

De�ning the network loading as more on the “physical” side of the system, the behaviorally
relevant steps are choice set generation and choice (Bowman and Ben-Akiva, 1998).

Agent-Based Tra�c Assignment 317

Choice set generation: O�en, the new routes are best paths based on the last iteration (“best
reply” or “best response” choice set generation). The routes are generated within the iterations
because an a priori enumeration of all possible routes is computationally unfeasible.
Choice: Usually, demand is shi�ed among the routes to improve consistency with the route

choice model, assuming—in the simplest case—constant network delays: In a UE, the �ow on the
current best routes is increased at the cost of the other route �ows (“best reply” or “best response”
choice), whereas for an SUE, �ows are shi�ed towards the desired route choice distribution (o�en a
version of multinomial logit, e.g., Dial, 1971; Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999).
For stability reasons, this shi� is typically realized in a gradual way that dampens the iteration
dynamics. See below for more discussion on convergence issues.

The iterations are repeated until some stopping criterion is ful�lled, indicating that a �xed point
is attained. In the best reply situation, the �xed point implies that no shi� between routes takes
place, i.e., what comes out as the best reply to the previous iteration is either the same, or at least
of the same performance, as what was used in the previous iteration. Since, in this situation, no
O-D pair can unilaterally improve by switching routes, the system is at a Nash equilibrium (e.g.,
Ho�auer and Sigmund, 1998). In the SUE situation, the �xed point means that a route �ow pattern
{rodk } is found that leads to exactly those network conditions the travelers (the O-D �ows) perceived
when choosing their routes, giving no incentive to re-route.

Destination choice and elasticity in the demand are behavioral dimensions beyond route choice
that can be captured by a static model. However, no technical generality is lost when discussing only
route choice; both additional choice dimensions can be rephrased as generalized routing problems
on an extended network (“supernetwork”; see, e.g., She�, 1985; Nagurney and Dong, 2002).

47.2.2 Dynamic Tra�c Assignment

The process above also works for dynamic tra�c assignment (DTA; see Peeta and Ziliaskopoulos,
2001), where both demand and network conditions are time-dependent and the time-dependent
travel times in the network de�ne a physically meaningful progression of a demand unit through
the network.

The algorithm structure does not change. The individual steps now look as follows:

Algorithm 47.2 Macroscopic and dynamic route assignment

1. Initial conditions: Compute some initial routing (e.g., best path on empty network for every
O-D pair and departure time).

2. Iterations: Repeat the following many times.

(a) Network loading: Load all demand items on the network according to their departure
times, let them follow their routes and obtain network delays (congestion).

(b) Choice set generation: Compute new routes based on the network delays.

(c) Choice: Distribute the demand between the routes based on the network delays.

Once more, if the new routes are best replies (i.e., best paths based on the last iteration), if
demand is shi�ed towards these new routes and if these iterations reach a �xed point, then this is
then a dynamic UE since best reply dynamics mean that no traveler (no O-D �ow) can unilaterally
deviate to a better route. The SUE interpretation carries over in a similar way.

Destination choice and elasticity in demand apply naturally to the dynamic case as well. Beyond
this, the dynamic setting also enables the modeling of departure time choice. Again, the sole con-
sideration of route choice does, at least technically, not constitute a limitation because departure

318 The Multi-Agent Transport Simulation MATSim

time choice can be translated into route choice in a time-expanded version of the original network
(van der Zijpp and Lindveld, 2001).

47.2.3 Individual Travelers

In both the static and dynamic case, it is possible to re-interpret the algorithm in terms of individual
travelers. In the static case, for every O-D pair, one needs to assume a steady (= constant) �ow of
travelers entering the network at the origin at a constant rate, corresponding to that O-D �ow. A
solution to the static assignment problem corresponds to the distribution of di�erent travelers onto
possibly di�erent paths.

In the dynamic case, one needs to generate the appropriate number of travelers for every O-D
pair and every time slot and distribute them across the time slot. From then on, the triple (origin,
destination, departure time) is �xed for every simulated traveler; its goal is to �nd an appropriate
path. Arguably, this re-interpretation is behaviorally more plausible in the dynamic case.

In a trip-based context, there are two major motivations to go from continuous �ows to
individual travelers:

• Tra�c �ow dynamics in complex network infrastructures are di�cult to model as continuous
�ows (e.g., Flötteröd and Rohde, 2011), but are relatively straightforward to simulate at the
individual vehicle level (TSS Transport Simulation Systems, accessed 2015; Quadstone Param-
ics Ltd., accessed 2015; Caliper, accessed 2015; PTV AG, accessed 2015; DynusT, accessed
August 2014; Zhou and Taylor, 2014). Disaggregating an O-D matrix into individual trip-
makers allows the assignment of one vehicle to every trip-maker in the microscopic tra�c �ow
simulation.

• It is computationally ine�cient to capture demand heterogeneity through a large number
of commodity �ows, but the sampling of trip-makers with di�erent characteristics is fairly
straightforward. For example, every vehicle can be given an individual route to its individual
destination.

For a �nite population of heterogeneous travelers, each traveler constitutes an integer commodity
and the choice step thus must be changed from “gradually shi� the route �ows towards something
consistent with the behavioral model” into “for a fraction of travelers, assign a single behaviorally
plausible route to each of these travelers”. The gradual shi� that helps stabilize iterations in the con-
tinuous assignment carries over here to an equally stabilizing “inert shi�”; not all travelers change
their routes at once. This is a consistent reformulation; if one reduces the traveler size from one to
ε → 0 and increases the number of travelers by a factor of 1/ε, a 10 % chance of changing routes
in the disaggregate case carries over to shi�ing 10 % of all �ows to new routes in the aggregate case
(“continuous limit”).

Apart from this, the iterations do not look much di�erent from what was shown before:

Algorithm 47.3 Microscopic and dynamic route assignment

1. Initial conditions: Compute some initial routing (e.g., best path on empty network for every
traveler).

2. Iterations: Repeat the following many times.

(a) Network loading: Load all travelers on the network according to their departure times,
let them follow their routes and obtain network delays (congestion).

(b) Choice set generation: Compute new routes based on the network delays.

(c) Choice: Assign every traveler to a route (which can be the previously chosen one) based
on network delays.

Agent-Based Tra�c Assignment 319

UE and SUE notions carry over to the disaggregate case if the notion of an O-D pair (or a
commodity) is replaced by an individual particle (= microscopic traveler).

A particle UEmay be de�ned as a system state where no particle can unilaterally improve itself.
This de�nition is consistent with de�nitions in game theory, which normally start from the discrete
problem. It should be noted, however, that this makes the problem combinatorial, which means that
even a problem that had a unique solution in its continuous version may have a large number of
solutions in its discrete version. Further, the complexity of �nding a solution increases similarly to
the situation where linear programming jumps to being NP-hard when the variables are required
to be integers.1 The particle UE is hence deliberately not searching for an integer approximation of
the continuous solution.

Situations may occur where mixed strategy equilibria exist; these are equilibria, where partici-
pants draw between di�erent �xed strategies randomly. This implies that the opponents need to
interpret the outcome of the game probabilistically: Even if they themselves play �xed strategies,
they need to maximize some expectation value.

For a particle SUE, the continuous limit assumption of the macroscopic model is discarded in
that the choice fractions Podk (c(x({rodk }))) in (47.3) are now interpreted as individual-level choice
probabilities Pnk (c(x({r

n
k }))) where rnk is a binary variable that indicates if traveler n takes route k

or not. This implies that the individual-level route �ows rnk are now random 0/1 variables; con-
sequently, the cost structure—based on individual choices made—becomes probabilistic as well
(Balijepalli et al., 2007; Cascetta and Cantarella, 1991; Cascetta, 1989).

A particle SUE is de�ned as a system state where travelers draw routes from a stationary choice
distribution and where the resulting distribution of tra�c conditions re-generates that choice
distribution.

An operational particle SUE speci�cation results if one assumes that travelers �lter out the
random �uctuations from what they observe and base their decisions only on average route costs:

Pn(k) = Pn
(

k | E{c(x({rnk }))}
)

(47.4)

where Pn(k) now is the probability that trip-maker n selects route k and E{·} denotes the expecta-
tion. This approach incorporates some generality; it can be shown that choice distributions based
on expected network conditions coincide, up to �rst order, with the stationary choice distributions
based on �uctuating network conditions (Flötteröd et al., 2011).

The resulting route �ows rnk represent not only mean network conditions but also their variability,
due to the individual-level route sampling. Alternatively, one could use the particles merely as a
discretization scheme of continuous O-D �ows and distribute them as closely as possible to the
macroscopic average �ow rates (e.g., Zhang et al., 2008). The latter approach, however, does not
lend itself to the subsequently developed behavioral model type.

No new behavioral dimensions are added when going from commodity �ows to particles. How-
ever, the microscopic approach allows simulation of greater behavioral variability within the given
choice dimensions because it circumvents the computational di�culties of tracking a large number
of commodity �ows. This will be discussed in more detail in Section 47.2.5.

47.2.4 Stochastic Network Loading

The network loading can be deterministic or stochastic. With deterministic network loading,
given time-dependent route in�ows, one obtains one corresponding vector of network costs. With
stochastic network loading, given the same input, one obtains a distribution of vectors of network
costs.

1 See http://en.wikipedia.org/wiki/Linear programming relaxation.

320 The Multi-Agent Transport Simulation MATSim

The macroscopic SUE approach of Section 47.2.1 assumes a distribution of choices but con-
verts choice probabilities into choice fractions before starting the network loading. That is, one
e�ectively performs NetworkLoading(E{Choices}). It is, however, not clear that this is the same as
E{NetworkLoading(Choices)}; in fact, with a non-linear network loading, even when it is deter-
ministic, the two are di�erent (Cascetta, 1989). Any Monte Carlo simulation of the particle SUE
makes this problem explicit: If, at the choice level, one generates draws from the choice distribu-
tion, it makes sense to �rst perform the network loading and then do the averaging, rather than
the other way around. This is especially true if day-to-day replanning is modeled, in which case
draws from the choice distribution have a behavioral interpretation as the actual choices of the trip
makers on a given day (but see also Section 97.3.5).

This, however, makes the output from the network loading e�ectively stochastic since the input
to the network loading is stochastic. In consequence, any behavioral model that uses the tra�c
conditions as input needs to deal with the issue that these inputs are stochastic. Thus, using a
stochastic instead of a deterministic network loading makes little di�erence. Making the network
loading stochastic simpli�es the implementation of certain network loading models. In particular,
randomness is a method to resolve fractional behavior in a model with discrete particles.

With stochastic network loading, additional aspects of the iterative dynamics need to be de�ned.
For example, a “best reply” could be against the last stochastic realization or against some average.

47.2.5 Extending the Route Assignment Loop to Other Choice Dimensions

Given the above behavioral interpretation, it is now straightforward to extend the assignment
loop to other choice dimensions. For example, the “best reply” can include optimal departure
time choice (e.g., de Palma and Marchal, 2002; Ettema et al., 2003) or optimal mode choice. This
becomes easiest to interpret (and, in our view, most powerful in practice) if one moves from the
concept of “trips” to daily plans. MATSim plans maintain the structure of DTA in terms of the triple
(origin, departure time, destination); see Section 2.2.2.3 for an example. However, di�erent from
DTA, all activities are chained together.

This widens the behavioral modeling scope dramatically; all choice dimensions of an all-day
travel plan can now be jointly equilibrated. This increases the degrees of freedom that need to be
modeled but also carries a set of natural constraints along, which again reduce the solution space.
Most notably, the destination of one trip must be the origin of the same agent’s (synthetic traveler’s)
subsequent trip and an agent must arrive before it departs. Also, constraints such as Hägerstrand’s
space-time prisms (Hägerstrand, 1970) are automatically enforced when the agents need to return
to their starting locations.

There is so signi�cant conceptual di�erence between the network loading of a route-based and
a plan-based model.

The notion of a particle (S)UE can now be naturally extended to agents that execute complete
plans.

An agent-based UE implies individual travelers (Section 47.2.3), additional choice dimensions
(Section 47.2.5) and possible stochastic network loading (Section 47.2.4). Corresponding to the
particle UE, it is de�ned as a system state where no agent can unilaterally improve its plan.

An agent-based SUE implies individual travelers (Section 47.2.3), additional choice dimensions
(Section 47.2.5) and, normally, stochastic network loading (Section 47.2.4). Corresponding to the
particle SUE, it is de�ned as a system state where agents draw from a stationary choice distribution
and where the resulting distribution of tra�c conditions re-generates that choice distribution.

If the iterations aim at an agent-based UE, then choice set generation and choice should imple-
ment a “best reply” logic; some ’optimal’ plans are calculated and assigned to the agents. This is
anything but an easy task.

Agent-Based Tra�c Assignment 321

The disaggregate counterpiece of an SUE implies that every agent considers a whole choice set of
(possibly suboptimal) plans and selects one of these plans probabilistically, which can lead to huge
data structures.

Summarizing, we have now arrived at a fully disaggregate dynamic DTA speci�cation that
accounts for arbitrary behavioral dimensions.

47.3 Agent-Based Simulation

The conceptual validity of the agent-based tra�c assignment model is fairly intuitive. However,
since it comes with a substantial computational burden of solving the model, it presents entirely
new challenges on the simulation side.

On the demand side, there is, in particular, the combinatorial number of choice alternatives that
must be considered. For example, random utility models rely on an a-priori enumeration of a choice
set that represents options each traveler considers when making a choice (Ben-Akiva and Lerman,
1985). This choice set is huge in an agent-based simulation (Bowman and Ben-Akiva, 1998). While
there are sampling-based approaches to the modeling of large choice sets that aim at reducing
this computational burden, they have not yet been carried over to the modeling of all-day-plan
choices (Ben-Akiva and Lerman, 1985; Frejinger et al., 2009b; Flötteröd and Bierlaire, 2013). See
also Chapter 49.

As long as household interactions are not included, the demand modeling problem can be
decomposed by agent once the network conditions are given—a great computational advantage.
The supply model, on the other hand, deals with congestion, which is, by de�nition, a result of all
travelers’ physical interactions. Modeling large urban areas requires dealing with millions of travel-
ers, and an operational supply simulation must be able to load all of these travelers on the network
in reasonable computation time .

The following sections describe solutions for these problems. Concrete examples of much of this
material are implemented within MATSim.

47.3.1 Agent-Based UE; One Plan per Traveler

The simulation of an agent-based UE is possible through the following implementation of the
behavioral elements.
Choice set generation: For every agent, generate what would have been best in the previous

iteration. This does not concern just the route but all considered choice dimensions, e.g., departure
times and/or mode choice.
Choice: Switch to the new plan with a certain probability.
The choice set generation implements a “best reply” dynamic. This now requires identi�cation

of an optimal all-day plan for given network conditions. While the calculation of time-dependent
shortest paths for UE route assignment is computationally manageable, the identi�cation of opti-
mal plans is far more di�cult (Recker, 2001). This is an important technical motivation to switch
to an agent-based SUE, where optimality is not required (see below).

Even in the manageable cases of, e.g., shortest paths, any best reply computation is an approx-
imation. Time-dependent routing algorithms require knowledge of every link’s travel time as a
function of the link entrance time. In computational practice, this information exists only in an
average, interpolated way. Thus, such computations become more robust if plan performance is
directly taken from the network loading instead of relying on the best reply computation predic-
tion; an agent sticks with a new plan only if it performs better than the previous plan (Raney and
Nagel, 2004). However, to keep run times manageable in computational practice, multiple agents

322 The Multi-Agent Transport Simulation MATSim

must make such trial-and-error moves simultaneously. This is, therefore, not an exact best reply
algorithm.

For the choice, a useful approach is to make the switching probability from current to best reply
solution proportional to the expected improvement, i.e.,

P(old → best) = min[1,µ · (Sbest − Sold)]

where Sbest and Sold are the (expected) scores of the best reply and the old plan, respectively, and
the min takes care of the fact that a probability should not be larger than one. Truncation at zero
is not necessary because the term Sbest − Sold cannot become negative. Chapter 3 gives an example
of what a scoring function for all-day plans could look like. Note how the decreasing switching
fraction of the continuous case is replaced by a decreasing switching probability (leading to a
switching rate).

Clearly, any �xed point of such iterations is a UE since no switching takes place at the �xed point,
meaning that the best reply plan has the same score as the already existing plan. Stability of the �xed
point depends on the switching rate slope at the �xed point, in the above formulation on the µ:
All else equal, making µ smaller makes the �xed point more stable but slows down convergence.
These observations hold not only in transportation (e.g., Watling and Hazelton, 2003) but quite
generally in the area of “evolutionary games and dynamical systems” (Ho�auer and Sigmund,
1998). In addition, in the context of tra�c assignment, the existence of physical queues allowing
for spillback across many links has apparently been shown to be an inevitable source of multiple
Nash equilibria (Daganzo, 1998).

Alternatively, some MSA-like scheme may be used (Liu et al., 2007). One disadvantagewith MSA
is that the switching rate does not depend on the magnitude of the expected improvement, which
could mean slow(er) convergence. An advantage of MSA is that one does not need to �nd out a
good value for the proportionality factor (µ in the above example).

Yet another approach would be to use a “gap” function measuring the distance of the current
assignment from an equilibrium and to infer the switching rate from the requirement that this
function must be minimized (Lu et al., 2009; Zhang et al., 2008). However, we are not aware of any
operational gap function that applies to all-day plans.

The biggest criticism of agent-based UE is its lack of behavioral realism. In a UE, every agent is
assumed to react with a best response according to a model of its objectives, which implies that real
travelers are able to compute best responses despite their combinatorial nature and high dimen-
sion (Bowman and Ben-Akiva, 1998). Furthermore, as in a pure route assignment, it is reasonable
to assume that (i) the behavioral objective is imperfectly modeled and that (ii) explorative travel
behavior leads to—more or less—random variations in what real travelers do. While (ii) explicitly
introduces stochasticity, (i) calls for it as a representation of imprecision in the behavioral model.

These considerations do not only lead naturally to the agent-based SUE; they also stimulate an
additional behavioral component capturing real travelers’ explorative learning. Similar to the sym-
metry between day-to-day replanning and the tra�c assignment problem’s iterative solution, an
explorative learning algorithm can be interpreted either as a model of real learning or as a compu-
tational method to solve a stochastic assignment problem. The following section presents a possible
implementation of such an algorithm.

47.3.2 Agent-Based SUE; Multiple Plans per Traveler

This section discusses MATSim’s co-evolutionary algorithm for simulating plan choices.
Chapters 49 and 51 provide an alternative perspective on MATSim’s plan choice mechanisms in
terms of mainstream discrete choice theory (Ben-Akiva and Lerman, 1985).

Agent-Based Tra�c Assignment 323

It is possible to approach every agent’s daily planning problem as a population-based search
algorithm. Such a search algorithm maintains a collection (= population) of possible solutions
to a problem instance and obtains better solutions via that collection’s evolution. This is a typi-
cal machine-learning (e.g., Russel and Norvig, 2010) approach; the best-known population-based
search algorithms (also called evolutionary algorithms) are genetic algorithms (e.g., Goldberg,
1989).

It is important to note that “population” here refers to the collection of solutions for a single
individual, as opposed to the population of travelers. Every individual uses a population-based
algorithm to “co-evolve” in the population of all travelers (also see Balmer, 2007).

A population-based search algorithm typically works as follows:

Algorithm 47.4 Population-based search

1. Initiation: Generate a collection of candidate solutions for a problem instance.

2. Iterations: Repeat the following many times.

(a) Scoring: Evaluate every candidate solution’s “score” or “�tness”.

(b) Selection:Decrease the occurrence of “bad” solutions. There are many ways how this can
be done.

(c) Construction of new solutions: Construct new solutions and add them to the candidate
solutions collection.

For the construction of new solutions, two operators are o�en used in genetic algorithms:
Mutation—which takes a candidate solution and performs small modi�cations to it; and
crossover—which takes two candidate solutions and constructs a new one from those. Since muta-
tion takes one existing solution and crossover takes two, it makes sense to also move in the opposite
direction and de�ne an operator that takes zero solutions as input, i.e., generates solutions from
scratch—a “best-reply to last iteration” would, for example, be such an operator.

Like what has been said before, we typically have a situation where multiple travelers evolve
simultaneously: a population of persons where every person has a population of plans. The
result is a co-evolutionary dynamic, where each person evolves according to a population-based
co-evolutionary algorithm. The overall approach reads as follows (see, e.g., Hraber et al., 1994;
Arthur, 1994, for similar approaches):

Algorithm 47.5 Co-evolutionary, population-based search

1. Initiation: Generate at least one plan for every agent.

2. Iterations: Repeat the following many times.

(a) Selection/Choice: Select one of the plans for every agent.

(b) Scoring: Obtain a score for every agent’s selected plan by executing all selected plans si-
multaneously in a simulation and attaching some performance measure to each executed
plan. Clearly, what was previously the network loading has now evolved into a full-�edged
agent-based simulation of daily activities. See Section 47.3.2.4 for more detail on scoring.

(c) Generation of new plans (innovation)/Choice set generation: For some of the agents,
generate new plans; for example, as “best replies” or as mutations of existing plans
(e.g., small departure time changes).

324 The Multi-Agent Transport Simulation MATSim

Note that this approach is really quite congruent with the SUE approach: Each person has a plan
collection, which may be interpreted as the choice set. As in SUE, the choice set can be generated
while the iterations run or before the iterations start. Each person selects between the plans, where
one can attach to every plan a score-based probability to be selected, which becomes in the end
similar to Equation (47.3). Clearly, a relevant related research topic is to specify an evolutionary
dynamic that can be shown to converge to choice sets that are generated consistently with discrete
choice theory requirements; see Chapter 49 and Section 97.3.

The following subsections give examples for the di�erent elements of this approach.

47.3.2.1 Selection (Choice)

A possible choice algorithm is the following: For persons with unscored plans, select an
unscored plan. For all other persons, select between existing plans with some SUE model, e.g., a
logit model, i.e.,

P(i) =
eµSi

∑

j e
µSj

(47.5)

where Si is the score of plan i and µ models the travelers’ ability to distinguish between plans with
di�erent scores. This is implemented in MATSim by SelectExpBeta.

In practice, we have found that it is much better to not use Equation (47.5) directly but instead
use a switching process that converges towards Equation (47.5). This can, for example, be achieved
by using a switching probability from i to j of the form

T(i → j) = γ eβ(Sj−Si)/2 (47.6)

where i is the previous plan, j is a randomly selected plan from the same person and γ is a pro-
portionality constant that needs to be small enough so that the expression is never larger than
one (since it denotes a probability). This works because the logit model (47.5) ful�lls the detailed
balance condition

P(i)T(i → j) = P(j)T(j → i) (47.7)

for these T(i→j) (e.g., Ross, 2006).2 This is implemented in MATSim by ChangeExpBeta.
The “switching approach” has additional advantages, including the following:

• Equation (47.6) can be behaviorally interpreted as the probability of switching from plan i to
plan j. Plausibly, this probability increases with the magnitude of the improvement.
For certain applications, one might want a more involved approach, e.g., an expected score of j,
which then initiates the switch.

• One could replace Equation (47.6) by a threshold-based dynamics, i.e., a switch to a better
solution will only take place if the improvement is above a certain threshold. One loses some
of the mathematical interpretation, but it may be more consistent with discussion of project
appraisal, where small improvements may not lead to a change in behavior.

Although not performed systematically in past work, it is possible to include formulations such
as path-size logit (Ben-Akiva and Bierlaire, 1999) in the choice model.

2 Assume that, after a number of iterations, there is no more innovation, i.e., the choice set for every agent is fixed and

that the scores are updated by MSA. On convergence of the iterations, all agents draw their plans from a fixed choice

set based on constant score expectations, cf. (47.4). This means that all agents make their choices independently

(and that all interactions are captured in the scores). The switching logic (47.6) then defines an ergodic Markovian

process, which converges to the unique steady state probabilities (47.5).

Agent-Based Tra�c Assignment 325

47.3.2.2 Score Convergence

The assumption that the scores eventually converge to some constant value intuitively means that
the scores cannot display spontaneous reactive behavior to a certain iteration. For example, a par-
ticular iteration might display a “network breakdown” (Rieser and Nagel, 2008). Converged scores
would not trigger a next-day reaction to that breakdown. In practice, this can be achieved by aver-
aging the scores over many iterations, which is somewhat similar to �ctitious play (Monderer and
Shapley, 1996; Garcia et al., 2000). Once more, MSA is an option (Section 3.3.4), with the same
advantages and disadvantages discussed before (Section 47.3.1). An alternative is to use a small
learning rate α (Section 3.3.3) in

Snew
i = (1 − α)Sold

i + α S̃i (47.8)

where Snew
i and Sold

i are the agent’s memorized scores for option i, and S̃i is the most recent actual
performance with that option; also see Chapter 49. The issue, in the end, is the same as the stable-
vs-unstable �xed points (cf. Section 47.3.1): If the system is well-behaved (corresponding to a stable
�xed point), it will converge benignly to constant scores and thus to the detailed balance solution.
If the system is not well-behaved, one can still force it to such a solution with MSA, but the meaning
is less clear (also see Sections 3.3.4 and 47.3.2.2).

As stated before, stochastic network loading makes no additional conceptual di�erence since
there is already stochasticity caused by choice behavior.

47.3.2.3 Innovation (Choice Set Generation)

So far, this leaves open the question on choice set generation, i.e., the part that generates new plans
or modi�es existing ones.

One computationally simple technique not requiring a choice set enumeration is to simulate
randomly disturbed link costs and run best response based on these costs. This, however, can yield
unrealistic results if one does not get the correlation structure of the noise right.

An alternative is to calculate separate best responses a�er every network loading. Since the pro-
cess is stochastic, this will generate di�erent solutions from iteration to iteration. An advantage is
that the correlations will be generated by the simulation—and are, presumably, realistic. Chapter 49
relates this to random utility modeling; see also Chapter 97.

Beyond that, there are many di�erent algorithms that could be used here. Besides the previously-
mentioned “mutation” (Balmer et al., 2005b) or “crossover” (Charypar and Nagel, 2005; Meister
et al., 2006), there are also many possibilities for constructive algorithms, such as “agent-based”
construction (Zhu et al., 2008). One attractive option, clearly, is to use a regular activity-based
demand generation code (e.g., Bowman et al., 1998; Miller and Roorda, 2003), although we have
found that this may not be as simple as it seems (Rieser et al., 2007b); in practice, activity-based
models are o�en constructed with O-D matrices in mind. A successful integration is described by
Ziemke et al. (2015).

47.3.2.4 Adjusting the “Improvement Function” from Shortest Time to Generalized
Utility Functions

This chapter takes an inductive approach and argues that one can make the network assignment
loop more general by including additional choice dimensions beyond routing. Clearly, for this
to work, the scoring needs to take the e�ects of these additional choice dimensions into account
(also see Balmer, 2007). Given evolutionary game theory, it is quite obvious how to do that: One
has to extend the cost function used for routing to a general scoring function for complete daily
plans.

326 The Multi-Agent Transport Simulation MATSim

That is, the performance of a daily plan needs to be scored. An established method to estimate
scoring functions for di�erent alternatives is random utility theory (e.g. Ben-Akiva and Lerman,
1985), which is why in the following “scoring” will be replaced by “utility”. For a utility function
for daily plans, the following arguments may serve as starting points:

• A heuristic approach, consistent with wide-spread assumptions about travel behavior, is to give
positive rewards to performing an activity and negative rewards to traveling.

• For the activities, one should select functions where the marginal reward of doing an activity
decreases over time.

• Without additional e�ects, such as opening times or time-varying congestion, the marginal
utilities of all performed activities should be the same.

MATSim has, in the past years, gained some experience with the approach described in Chapter 3
and with more theory in Chapter 51; this then closes the loop.

47.4 Conclusion

Starting from regular route assignment, this chapter explains how one can extend the iterative solu-
tion procedure of static or dynamic tra�c assignment to include additional behavioral dimensions
such as time adaptation, mode choice or secondary activity location choice. This is somewhat sim-
ilar to the so-called supernetworks approachbut argues from the viewpoint of the iterative solution
procedure rather than the problem de�nition.

To address the combinatorial explosion of commodities caused by the expansion of the choice
dimensions, a move to individual particles is suggested. This allows an interpretation of the solution
procedure as behavioral day-to-day learning but maintains a connection to the SUE de�nition by
interpreting synthetic travelers’ behavior as random draws from individual choice sets.

Most of this chapter discusses simulation/computer implementation issues. From the de�nition
given above, progress can be made by using methods from machine learning and co-evolutionary
search algorithms. The SUE problem of random selection between di�erent alternatives can be cast
as a so-called population-based optimization algorithm, where each synthetic traveler randomly
selects between the di�erent members of the population of possible solutions. At the same time,
the population of the travelers co-evolves towards a stationary distribution of choices.

Overall, this chapter has worked out the structural similarity between the “classical” DTA prob-
lem and the more recent agent-based assignment problem.3 The presentation has focused on
the algorithmic issue of how to �nd solutions to these problems. This is complemented by the
subsequent Chapters 48 to 50, which mostly discuss modeling (descriptive) aspects of MATSim.

3 It is, in fact, possible to run MATSim in DTA mode, by converting each trip into a dummy person, with dummy

activities at the beginning and end of the trip. The class RunExample5Trips (see http://matsim.org/javadoc →

main distribution) runs an example; the class itself points to a configuration file, which in turn points to examples

/equil/plans100trips.xml. A dummy person that denotes a trip from link 1 to link 20, departing at 6 am, is

coded as

<person id="1">

<plan>

<act type="dummy" link="1" end_time="06:00" />

<leg mode="car" />

<act type="dummy" link="20" dur="00:10" />

</plan>

</person >

.

CHAPTER 48

MATSim as a Monte-Carlo Engine

Gunnar Flötteröd

48.1 Introduction

“Agents” that “learn” in a “synthetic reality” is a common term in Arti�cial Intelligence (Russel and
Norvig, 2010) and/or Multi-Agent simulation (Ferber, 1999), but it does not belong to the standard
terminology of transport modeling. This chapter explains the functioning of MATSim in terms of
modeling and simulation concepts that are more established in the transportation �eld.

It is important to distinguish between a model and a simulation. A model describes certain
aspects of a system; a simulation evaluates a model. For instance, a simple route choice model
may state that route A is selected with 25 % probability and route B with 75 % probability. A sim-
ulation of this model then draws one or more realizations (route choices) from this distribution.
One always needs a model before one can simulate. Possible feedback from simulation to model-
ing comprises (i) new insights into emergent model properties and (ii) computational constraints
that prohibit overly complex model speci�cations. In MATSim, both kinds of feedback are strong
drivers of the modeling.

Consider Figure 48.1, displaying MATSim as a model system comprising a (travel) demand
model and a (network) supply model. The travel demand model predicts travelers’ behavior, given
their information about the network conditions. The network supply model predicts these network
conditions using a certain travel behavior chosen by all travelers in the system. This is comple-
mented by the modeling assumption that demand and supply are mutually consistent in the sense
that the network conditions resulting from a certain travel behavior are statistically equal to the
network conditions that caused this behavior.

Simulation addresses the question of how to identify this state of mutual demand/supply con-
sistency, i.e., it solves the model. The model system shown in Figure 48.1 is complicated—it
is nonlinear, stochastic and extremely high-dimensional. The only known operational tech-
nique to solve it exploits an additional modeling assumption that justi�es the real occurrence of

How to cite this book chapter:

Flötteröd, G. 2016. MATSim as a Monte-Carlo Engine. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 327–336. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.48. License: CC-BY 4.0

328 The Multi-Agent Transport Simulation MATSim

travel demand

• route choice

• dpt. time choice

• mode choice

• ...

network supply

• traffic flow

• congestion, delay

• reliability

• ...

travel behavior

network conditions

Figure 48.1: Demand/supply perspective on MATSim.

Algorithm 48.1 Iterative scheme to reach demand/supply consistency

1. Create a synthetic agent population.

2. Create a synthetic environment.

3. Iterate:

(a) All agents choose some planned travel behavior.

(b) All agents execute their travel plans.

(c) All agents see the resulting network conditions.

demand/supply consistency: travelers adjust their behavior for their own bene�t and only stop
doing that when further improvement is insubstantial. Demand/supply consistency characterizes
the outcome of this process jointly for all travelers.

Now, consider Algorithm 48.1, which displays the high-level simulation logic of MATSim. This
is indeed a logic that iteratively adjusts travel demand. If this logic adjusts the simulated behavior
of the simulated travelers until further simulated improvements are insubstantial, then this logic
should approach a state of demand/supply consistency. That is, Algorithm 48.1 may be a valid
solution method for the model system shown in Figure 48.1. However, that model system does
not specify how demand and supply become consistent; it merely speci�es that this eventually
happens. The only modeling assumption made is that some process of this type exists. The purpose
of Algorithm 48.1 is not to mimic this (unspeci�ed) process; it only identi�es the �nal outcome of
that process.

The fact that Algorithm 48.1 mimics real, urban, day-to-day dynamics invites misleading inter-
pretations of the underlying model system. In particular, it is a misconception that there is more
than a super�cial resemblance between the “learning agents” in MATSim and the (hardly under-
stood) learning processes of real humans. If the notion of “learning” has to be used at all when
interpreting Algorithm 48.1, it should be understood as “moving a MATSim model closer to its
solution point”. Also see Section 97.3.5.

The remainder of this chapter phrases these statements more technically and explains their
implications for the interpretation of MATSim outputs. This presentation is in parts a more
technical reformulation of Chapter 47.

MATSim as a Monte-Carlo Engine 329

48.2 Relaxation as a Stochastic Process

48.2.1 Probabilistic Model Components

Algorithm 48.1 can be written more formally. Denoting the iteration index by k, the following
happens in every iteration:

1. All agents choose some planned travel behavior, resulting in the travel demand Dk of the
entire agent population.

2. All agents execute their travel plans, resulting in the (time-of-day dependent) network
conditions Ck.

3. All agents see the resulting network conditions Ck. As a result, the information Zk is now
available to all agents.

The variables D and Z apply to the population as a whole, comprising all agents. Similarly, the
variableC represents network conditions for an entire day and for the entire physical system. Given
MATSim’s high level of detail, one can think of D, C and Z as placeholders for arbitrarily large and
complex data structures. Under MATSim’s standard conditions,D corresponds to the set of selected
plans, C to the collection of all events and Z to the full plans �le including the scores.

Step 1 evaluates the (stochastic) travel behavior model of each agent. Technically, this com-
prises (i) an optional update of the plan choice set and (ii) the choice of one plan to be executed.
Symbolically, this is written as

Dk ∼ P(D | Zk−1), (48.1)

meaning that the travel demand of iteration k follows a probability distribution that is conditional
on the information Zk−1 available to the agents at the end of iteration k− 1.

Step 2 runs the (stochastic) mobility simulation that moves all agents jointly through the network.
In symbols, this becomes

Ck ∼ P(C | Dk), (48.2)

meaning that the network conditions of iteration k follow a probability distribution that is
conditional on the demand Dk.

Step 3 updates the (possibly stochastic) information available to all agents using the new network
conditions Ck. This is written as

Zk ∼ P(Z | Ck,Zk−1). (48.3)

That is, the new information Zk is not only a transformation of the current network conditions Ck

but may also be based on the previously available information Zk−1.
The conditional distributions Equation (48.1)–(48.3) are detailed elsewhere in this book:

Chapter 49 describes the plan selection mechanisms leading to P(D | Ck−1), Chapter 50 explains
the physical processes underlying P(C | Dk), and Chapter 3 speci�es at least some of the informa-
tion update logic behind P(Z | Ck,Zk−1). A greater level of detail is, however, not necessary in this
chapter.

48.2.2 Markov Chain Perspective

Algorithm 48.1 constitutes a discrete time stochastic process. “Discrete-time” because it evolves
in stages (from iteration to iteration), stochastic because it evaluates stochastic models. Further,
one iteration of this process requires only information about the previous iteration’s outcome. This
allows the expression of Algorithm 48.1 in terms of a “Markov chain” (Ross, 2006).

In symbols, let Xk be the Markov chain’s stochastic state during stage k, and let P(Xk = x) be the
probability that the chain is in the concrete state x. Further, let Tx

y be the probability that the chain

330 The Multi-Agent Transport Simulation MATSim

enters state x in its next stage given that it is currently in state y. The transition from one stage to
the next can then be expressed as follows:

P(Xk+1 = x) =
∑

y

P(Xk = y) ·Tx
y . (48.4)

Each argument of the sum expresses the probability of the chain being in one particular state
y and then entering x. The overall probability of arriving in x results from summing up these
probabilities.

Markov chains tend, under certain assumptions sketched in the next section, to stabilize a�er
su�cient iterations, in the sense that a long-term probability 5(x) of encountering the process in
state x exists. This stationary distribution satis�es

5(x) =
∑

y

5(y) ·Tx
y , (48.5)

which essentially results from removing the k-indices from Equation (48.4). Intuitively, removing
the stage-indices k means that Equation (48.5) now applies, in the long term, for any stage k.

Given that the long-term behavior of Algorithm 48.1 shapes the predictions made with MATSim,
and updated information its characterization in terms of the stationary distribution of a corre-
sponding Markov chain is of interest. To obtain a Markov chain representation of Algorithm 48.1,
one needs to specify (i) what variables in MATSim represent the states of that chain and (ii) what
transition distribution underlies the MATSim simulation logic.

A state variable must provide su�cient information to simulate a process further into the future.
Candidates for MATSim’s state space arethe demand D, the network condition C and the informa-
tion Z. Of these, only the information Z quali�es as a state variable: If one knows Zk, it is possible
to draw the next day’s travel demand Dk+1 based on Equation (48.1), to insert this demand into
Equation (48.2) and obtain the network conditions Ck+1 and to �nally use both Ck+1 and Zk to
obtain an updated Zk+1 through Equation (48.3). This last step is what disquali�es D and C as
state variables because an evaluation of Equation (48.3) is impossible without having Z in the state
space.

LettingXk = Zk, the transition distribution hence needs to express how the informationZk avail-
able to the population in iteration k carries over to the informationZk+1 available in iteration k+ 1.
This relationship is given by

Tx
y =

∑

c

∑

d

P(Zk+1 =x | Ck=c,Zk=y)P(Ck=c | Dk=d)P(Dk=d | Zk=y). (48.6)

Each argument of the double sum represents the probability of one particular sequence of
given information y, resulting travel demand d, resulting network conditions c and updated
information x. The double sum over all possible travel demand realizations d and network con-
ditions c then accounts for the fact that there are many di�erent such sequences through which
one can start out at y and end up at x.

This completes the representation of MATSim in terms of a Markov chain. The next section
illustrates practical uses of this representation.

48.3 Existence and Uniqueness of MATSim Solutions

The long-term (stationary) behavior of a Markov chain can be derived from its transition function.
This also leads to useful insights for MATSim, despite of the complexity of its transition function
Equation (48.6).

MATSim as a Monte-Carlo Engine 331

Two key properties are aperiodicity and irreducibility. Informally, a Markov chain is aperiodic
if all of its states can be visited at irregular times; Figure (48.2) provides an example. It is irre-
ducible if it can reach any other state from any given initial state with one or more transitions; see
Figure (48.3) for an example. Aperiodicity and irreducibility are essential when it comes to
long-term predictions, where (i) aperiodicity guarantees that the concrete iteration in which one
evaluates the simulation does not play a role and (ii) irreducibility ensures that every possible
future system state can be reached (predicted) by the simulation. If both properties are given, the
Markov chain has the following properties (Ross, 2006):

1. A unique stationary distribution exists. The simulation process attains this distribution a�er
many iterations, independently of its initial state.

2. It is feasible to compute statistics of the stationary distribution from a single simulation run,
meaning that it is not necessary to run replications.

With respect to MATSim, the following holds:

• Periodicity is already broken if a nonzero probability of staying in the same state exists. This
is likely to be the case in MATSim, for instance because the following sequence of events may
occur by chance: (i) No agent uses plan innovation, (ii) all agents select the same plan as in
the previous iteration, (iii) the mobility simulation creates identical congestion and travel time
patterns as before, meaning that Zk from Equation (48.3) remains the same as Zk−1. Practically,
this means that all plan scores stay unchanged.
More intuitively: Even if the system returns multiple times exactly to a state where it has been
before, it unlikely that it does so in the same number of steps.

• With plan innovation (see Sections 4.5, 4.5.3 and 47.3.2.3) switched on, irreducibility cannot
be postulated:
Every time a new plan is added somewhere, the previous state space subspace where the plan
was not available cannot be reached any more until that plan is removed; similarly, every time
a plan is removed, the previous state space subspace where the plan was available cannot be

take
route A

take
route B

take
route A

take
route B

periodic aperiodic

Figure 48.2: Example of (a)periodicity

low traffic
high

traffic
grid lock low traffic

high
traffic

grid lock

reducible irreducible

Figure 48.3: Example of (ir)reducibility

332 The Multi-Agent Transport Simulation MATSim

reached any more until the plan is re-created again. (Chapter 49 discusses this in greater detail
and also suggests a solution for this problem.)
Even if plans creation and removal could be modeled such that irreducibility was guaranteed,
the resulting process dynamics would be slow due to the state space size.

• With plan innovation switched o�, MATSim in its standard con�guration is likely to be
irreducible. This is only “likely”, because the notion of a “standard con�guration” itself is
not rigorously speci�ed here. Arguments behind this follow Cascetta (1989), who presents a
related result for a much simpler, trip-based tra�c simulation that only allows for route choice.
Observing that travel plans are, technically, paths in a rather complicated decision network,
one can then carry this result over to MATSim. See also Nagel et al. (2000) and Flötteröd et al.
(2011).

• When scores are additionally forced to their expected values (Section 3.3.4), the system even-
tually draws agent behavior from �xed choice distributions, thus varying independently from
one iteration to the next.
If con�g option ChangeExpBeta is used, some correlation is maintained between choices in
subsequent iterations, even though the long-term choice distributions remain unchanged.

In summary, a mathematical framework exists allowing a rather rigorous characterization of the
outcome of MATSim’s relaxation process. It turns out that MATSim, in its current form, is not
necessarily a “well-behaved” stochastic process; however, casting it into this framework enables a
structured approach to developing the simulation logic further. An example of how to go about
this is given in Chapter 49.

48.4 Analyzing Simulation Outputs

Many of the models used in MATSim are stochastic. Examples are the discrete choice models used
for plan selection or the randomized selection of the next vehicle to enter a congested downstream
link in the mobility simulation. The reason for this randomness is that real mobility and trans-
portation processes are not completely understood. The insertion of randomness represents the
uncertainty remaining in the modeling.

This uncertainty may apply to both (i) model inputs, meaning that random variables are com-
puted once before a simulation run and then kept �xed (for instance, the random generation of a
synthetic population) and to (ii) processes, meaning that random variables are computed through-
out the simulation (for instance, the repeated evaluation of discrete choice models). Technically, if
a MATSim scenario is simulated R times with di�erent random seeds one obtains r = 1 . . .R inde-
pendent simulation outputs yr . Note that, while the raw outputs are plans and event �les, the actual
quantities for which yr stands here are numerical in the majority of applications.

Given that one has used di�erent random seeds, y1, . . . ,yR constitute independent draws from a
distribution 5(Y). This means that if one performed a huge number of simulation runs and plotted
a (possibly multidimensional) histogram of the y values, then this histogram would eventually
attain the shape of 5(Y). It is important to acknowledge that stochastic simulation outputs are a
desirable consequence of stochasticity inserted elsewhere in the simulation; just as a determinis-
tic model output is a truthful representation of its input consequences, a stochastic model output
contains a truthful representation of the prediction uncertainty resulting from uncertainties in its
input and its process speci�cation.

To help intuition, one may think in the following of yr as a large vector containing travel times
on all links in all one-hour time bins as observed during the last iteration of the rth simulation run.
Questions like these may then be asked:

MATSim as a Monte-Carlo Engine 333

• What travel times can one expect on average?
• What is the travel time variability?
• How probable are travel times beyond some threshold θ?
• ...

This list can be arbitrarily continued. It turns out that most (if not all) of these questions can also
be expressed symbolically. For instance:

• What travel times can one expect on average?

E{Y} =
∑

y

y · 5(Y = y) (48.7)

This asks for the expected value of the simulation output distribution.
• What is the travel time variability?

VAR{Y} =
∑

y

(y− E{Y})2 · 5(Y = y) (48.8)

This asks for the variance (or, for multidimensional outputs, the variance-covariance matrix).
• How probable are travel times beyond some threshold θ?

Pr(Y ≥ θ) =
∑

y

1(y ≥ θ) · 5(Y = y) (48.9)

This expression merely sums up the probabilities of all simulation outputs that exceed the
threshold.

• ...

This enumeration of symbols reveals a common structure. The mathematical formulation of
each question can be written in the form

∑

y

m(y) · 5(Y = y) (48.10)

with di�erent speci�cations of m(y) (see Table 48.1).
By de�nition, Equation (48.10) is the expectation E{m(Y)} given that Y is distributed according

to its stationary distribution 5(Y). Combining this with the observation that the mean over a

quantity of interest corresponding m(y)

E{Y} y
VAR{Y} (y− E{Y})2

Pr(Y ≥ θ) 1(y ≥ θ)

.

Table 48.1: Examples of m functions.

334 The Multi-Agent Transport Simulation MATSim

sample converges to its expectation as the number of samples grows (the Law of Large Numbers),
one obtains

E{m(Y)} =
∑

y

m(y) · 5(Y = y) (48.11)

= lim
R→∞

1

R

R
∑

r=1

m(yr) (48.12)

≈
1

R

R
∑

r=1

m(yr) for a �nite R, (48.13)

where the simulation outputs yr , r = 1 . . .R, are independent draws from 5(Y).
Now recall that initially certain questions about simulation outputs were asked. The Equa-

tion (48.11)(�rst row) represents exactly these questions in a formal way–and Equation (48.13) (last
row) provides a simple method for computing answers to these questions. It reads as follows:

1. De�ne the function m(y) that represents the question of interest.

2. Perform R independent simulation runs and obtain the outputs y1, . . . ,yR.

3. Compute m(yr) for all r = 1 . . .R and average these numbers.

Returning to the example questions, one thus obtains the following:

• What travel times can one expect on average?

E{Y} ≈
1

R

R
∑

r=1

yr (48.14)

Not surprisingly, this turns out to be the mean value over all simulated travel times.
• What is the travel time variability?

VAR{Y} ≈
1

R

R
∑

r=1

(yr − E{Y})2 (48.15)

This is the empirical variance of the simulated travel times. (Note that in practice E{Y} needs
to be replaced by its estimator.)

• How probable are travel times beyond some threshold θ?

Pr(Y ≥ θ) ≈
1

R

R
∑

r=1

1(yr ≥ θ) (48.16)

This divides the number of times the threshold was exceeded by the total number of experi-
ments, i.e. it yields the frequency of the event of interest.

• ...

MATSim as a Monte-Carlo Engine 335

Revisiting Section 48.3, it may be possible to make these computations more e�cient. If (i) there
is no uncertainty in the model inputs and (ii) the simulation uses �xed choice sets, then it could
be feasible to compute the above statistics by averaging over many stationary iterations of a single
simulation run instead of having to run a large number of replications to convergence.

Practically, all of this is just a starting point. Important questions, such as how precise these
estimates are, how many runs one needs to obtain a certain level of precision, etc. are not answered
here; Ross (2006) is a good starting point for further reading.

48.5 Summary

This chapter attempted to clarify certain mechanisms underlying MATSim’s iterative solution
scheme. The speci�cation of MATSim’s model (components) was distinguished from MATSim’s
iterative solution algorithm. It was stressed that the behavioral day-to-day interpretation of
MATSim is not to be taken literally; realism can only be expected from the long-term process
behavior.

This long-term behavior was then related to the properties of the iteration logic using the the
Markov chain formalism. MATSim was phrased as such a chain, with its state space comprised
of the information available for replanning. This representation was exploited to observe that the
long-term distribution of MATSim is likely to exist and be unique if the plan choice sets are a priori
�xed.

It further was explained that (i) there are good reasons for the stochasticity both in MATSim’s
inputs and outputs and that (ii) instead of avoiding stochasticity where it constitutes a truthful
representation of uncertainty, one should access adequate statistical techniques to make sense of it.

CHAPTER 49

Choice Models in MATSim

Gunnar Flötteröd and Benjamin Kickhöfer

This chapter attempts to reconcile MATSim’s mechanisms of plan “mutation”, “selection”
and “execution”, borrowed from evolutionary computation, with a discrete choice modeling
perspective.

Discrete choice theory originates in work by Luce and Suppes (1965) and McFadden (1975); Ben-
Akiva and Lerman (1985) and Train (2003) are the two standard textbooks in this area. The theory
is mainly used to describe individual choices among mutually exclusive alternatives. Discrete
choice models typically do not predict individual choices with complete accuracy. Luce and Suppes
(1965) distinguishes between two possible interpretations of this phenomenon: (1) People choose
randomly among their alternatives, rendering their behavior inherently unpredictable. (2) The
choice only appears to be random since the model does not perfectly capture the decision pro-
cess and its relevant decision variables. Both perspectives lead to the same result, the introduction
of probabilistic choice models.

Let Un be the universal set of all plans that may ever be considered by agent n and let Cn denote
that agent’s concrete plan choice set. The choice set independent probability that agent n selects
plan i for execution can then be written as

Pn(i | Un) =
∑

Cn⊂Un

Pn(i | Cn) · Pn(Cn | Un), (49.1)

explained as follows. Selecting a plan requires a plan choice set. The term Pn(Cn | Un) represents
the probability that this concrete choice set is Cn, which must be a subset of Un. Technically, the
MATSim plan innovation modules draw from this distribution. The term Pn(i | Cn) represents
the probability that agent n selects plan i given that its concrete choice set is Cn. Technically, the
MATSim plan selection modules draw from this distribution. The product of these terms thus

How to cite this book chapter:

Flötteröd, G and Kickhöfer, G. 2016. Choice Models in MATSim. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 337–346. London: Ubiquity Press.

DOI: http://dx.doi.org/10.5334/baw.49. License: CC-BY 4.0

338 The Multi-Agent Transport Simulation MATSim

represents the joint probability that choice set Cn is available and that plan i is chosen from that
set. The probability of selecting plan i independently of the concrete choice set then results from
summing up the probabilities of selecting it in the presence of all possible choice sets Cn ⊂ Un.

It is evident in Equation (49.1) that an agent’s behavior depends on both the choice model
Pn(i | Cn) and the way the choice set is generated through Pn(Cn | Un). The following two sections
will look at each step in more detail.

49.1 Evaluating Choice Models in a Simulated Environment

This section’s discussion focuses on the choice distribution Pn(i | Cn) for given choice sets. In
MATSim, a plan is evaluated and selected based on the score as the sole property of the plan. This
is only a technical speci�cation; the scoring and selection protocols are responsible for represent-
ing adequate perceptional and behavioral mechanisms. The notions of “choice” and “selection” are
subsequently used interchangeably (cf. Section 4.5.2).

The usual selection protocol of MATSim resembles a MNL choice model. Letting Sni be the score
of plan i of agent n, one has

Pn(i | Cn) =
eµSni

∑

j∈Cn
eµSnj

(49.2)

with µ controlling the preference for higher scores. It is set to one in the remainder of this section.

49.1.1 Case 1: Score is or Converges Towards a Deterministic Value

If the score of a plan was a deterministic number representing an expected value, then
Equation (49.2) would constitute a plain MNL choice model with µ taking the role of a scale param-
eter (see, e.g., Train, 2003, p.45). Such behavior can be approximated in MATSim by the following
con�guration settings:

• A �xed choice set Cn is eventually obtained by setting the con�guration option
fractionOfIterationsToDisableInnovation below one, meaning that innovation (see
Section 49.2) will be switched o� for the remaining fraction of iterations beyond the
con�gured value.

• Score convergence to its expectation value can be achieved by setting the con�guration
option fractionOfIterationsToStartScoreMSA below one, meaning that scores will be averaged
according to MSA (Method of Successive Averages) for the remaining fraction of iterations.

49.1.2 Case 2: More General

Without the particular con�guration mentioned in the previous section, things are somewhat
more complicated. Assume that the attribute vector xni of the alternatives in Equation (49.2) is
de�ned through (a transformation of) the network conditions observed during the last iteration(s).
Assume further that the score is a linear function of these attributes:

Sni = βTxni (49.3)

= βT(E{xni} + ηni) (49.4)

Choice Models in MATSim 339

where β is a coe�cient vector, superscript T denotes the transpose and ηni is a zero mean random
vector. In the general case of Sni being a random variable and not just an expected value, one obtains
a mixture-of-logit model with the choice distribution

Pn(i | Cn) =

∫

exp
(

βTE{xni} +βTηni
)

∑

j∈Cn
exp

(

βTE{xnj} +βTηnj

)p(ηn)dηn (49.5)

where p(ηn) is the probability density function of ηn = (ηni)i, i.e., the joint probability density
function of the random disturbances of all alternatives of individual n (Train, 2003, Section 6).
This formulation comprises most, if not all, MATSim con�gurations currently used. It repre-
sents the ExpBetaPlanSelector and the equivalent ExpBetaPlanChanger. It also comprises the
BestPlanSelector, because that is equivalent to the ExpBetaPlanSelector with a very large (in-
�nite) µ. Arbitrary score averaging schemes are also included; this only leads to di�erent instances
of p(ηn).

Mainstream applications of mixture-of-logit models attempt to combine the tractability of
closed-form logit models with the �exibility of simulating arbitrary p(ηn) distributions. The dis-
tribution of ηn is o�en as simple as a multivariate normal because this already allows for the
introduction of rich correlation structures into the underlying random utilities. In MATSim, how-
ever, the simulated error term ηn is extremely complicated. Revisiting Equation (49.4), it de�nes the
variability of the scores resulting from the fact that the simulated network conditions are stochastic.
The distribution from which these network conditions are drawn is de�ned implicitly through the
mobility simulation. It is not available in closed form; one can only draw from it.

Additional complexity results from the simulated network conditions being, in turn, the con-
sequence of simulated travel behavior that is again de�ned through Equation (49.5). Just as a
representation of the mutual demand/supply dependency is essential in transport planning, the
circular de�nition of the ηn terms adds realism to MATSim:

1. Assume one could somehow make the simulated network conditions more realistic. The
result would be a more realistic distribution p(ηn) of the simulated error terms.

2. All else equal, increasing the realism of p(ηn) in Equation (49.5) would also increase the
realism of the resulting choice distribution.

3. This, in turn, would lead to the selection of more realistic travel plans, meaning that their
execution would result in even more realistic network conditions.

However, this positive feedback only applies to the extent to which the error terms in the behav-
ioral model are indeed mobility simulation outputs. Simulated travel time (variability) is such a
case. Unobserved preferences of the decision maker, however, are not an output of the mobility
simulation and hence need to be di�erently captured.

It is by no means obvious how the randomness of the simulated network conditions should
enter ηn. The notion of “learning” again enters the picture, cf. Chapter 48. However, if the sim-
ulation iterations really represented simulated days then a real human learning model would
be needed to combine a sequence of past network conditions into an instantaneous ηn real-
ization. Without a sound instance of such a learning model, a learning-based interpretation of
Equation (49.5) cannot be given.

Another perspective on this problem is possible, continuing the arguments of Chapter 48. It
is stated there that the purpose of MATSim’s iterative mechanism is merely to attain a realis-
tic stationary distribution. If so, then the sole purpose of the simulated ηns is to yield a realistic

340 The Multi-Agent Transport Simulation MATSim

stationary choice distribution. To illustrate this perspective, consider the following moving-average
score updating rule:

S̄k+1
ni =

{

αSkni + (1 − α)S̄kni if n chose plan i

S̄kni otherwise
(49.6)

where S̄k is the �ltered score of iteration k and Sk is the concrete score observed in that iteration.
The learning rate α controls how strongly the �ltered score is smoothed out, thus controlling the
variability of ηn. MATSim enables this mechanism through the learningRate parameter.

Assuming – for simplicity – that the un�ltered stationary score S∞ �uctuates in stationary con-
ditions independently from iteration to iteration around its expected value, one can derive the
following (as demonstrated in this chapter’s appendix):

E{S̄∞
ni } = E{S∞

ni } (49.7)

VAR{S̄∞
ni } =

α

2 − α
VAR{S∞

ni }. (49.8)

This means that the �ltered score is unbiased with respect to the underlying score process and
that its variance is in the interval from zero to the variance of the un�ltered score, depending on the
chosen α. There is no need to justify this through a learning process. One has merely constructed a
parametrization of the distribution p(ηn). In the resulting mixture model Equation (49.5), α should
be estimated from real data, just like any other model parameter. Even though this apparently
has not yet been attempted, techniques necessary for such an endeavor are, in principle, available
(Gourieroux et al., 1993).

49.1.3 Expected Maximum Utility

The expected maximum utility of Equation (49.5) is relevant to the microeconomic interpretation
of MATSim outputs. A recipe for its computation is described next. Let

Ui = Vi + ηi + εi (49.9)

using the shortcuts Vi = βTE{xni}, ηi = βTηni, letting εi be the Gumbel error assumed by the
multinomial logit model and dropping the n index for brevity. Following this notation, Equa-
tion (49.4) is rewritten as

Si = Vi + ηi. (49.10)

One needs to distinguish between the score of a plan when it is selected and its updated score
a�er it has been executed. To start, it is assumed that the agent receives an expected maximum
utility depending on the scores at the time of plan selection, not a�er plan execution. The expected
maximum utility of Equation (49.5) could then be expressed as follows:

E

{

max
i∈Cn

Ui

}

= E

{

max
i∈Cn

Vi + εi + ηi

}

(49.11)

= Eη

{

Eε

{

max
i∈Cn

Vi + εi + ηi | η

}}

(49.12)

= Eη

ln
∑

i∈Cn

eVi+ηi

. (49.13)

Choice Models in MATSim 341

where the law of total expectation is used and Eε and Eη represent expectations with respect
to ε and η, respectively. The remaining argument of the expectation is the expected maximum
utility of a multinomial logit choice model given the systematic utilities Vi + ηi. This expression
can be numerically approximated by averaging over many realizations of ηi (i.e. over simulation
iterations):

Eη

ln
∑

i∈Cn

eVi+ηi

≈
1

R

R
∑

r=1

ln
∑

i∈Cn

eVi+ηri (49.14)

where ηri is the realization of ηi in iteration r. This expression holds regardless of the functional
form of the mobsim-generated mixture distribution.

Now, one needs to account for the fact that agents can only evaluate past information when
making a choice leads to a future score payo�. Recalling that score variability is represented by the
ηi variables in Equation (49.5),

ηi = η̂i + γi (49.15)

is written with ηi contributing to the score actually received Equation (49.10), η̂i being the agent’s
prediction of that and γi being a random variable capturing the di�erence between the two.

To express the expected maximum experienced utility, one hence needs to add (an estimator of)
the expectation of γi to Equation (49.14). Using Equation (49.15) and Equation (49.10), one obtains

γ = ηi − η̂i (49.16)

= (ηi +Vi) − (η̂i +Vi) (49.17)

= Si − Ŝi (49.18)

where Ŝi can be interpreted as the agent’s prediction of the selected alternative i’s score. The expec-
tation of this quantity can again be approximated by averaging, resulting in the following estimator
of the expected maximum experienced utility, with i(r) indicating the alternative that was selected
in iteration r:

E

{

max
i∈Cn

U
experienced
i

}

≈
1

R

R
∑

r=1

ln
∑

i∈Cn

eŜ
r
i +

1

R

R
∑

r=1

(

Sri(r) − Ŝri(r)

)

. (49.19)

The second sum of this expression estimates a “cost of uncertainty”; the less predictable the net-
work conditions (and thus the selected plan’s future score), the worse o� an agent is on average. The
usefulness of this expression depends on the simulation’s ability to create realistic network condi-
tion variability, for instance along the lines of the last paragraphs of Section 49.1.2. Section 51.2.5.5
discusses this a bit further.

49.2 Evolution of Choice Sets in a Simulated Environment

49.2.1 Overview

The choice set of agents can in principle be computed a priori and then held �xed during a MATSim
simulation run. However, the pre-computation would have to be done for every relevant system
state (e.g., before and a�er a policy change). Alternatively, MATSim can be used to generate agents’
choice sets within the iterative loop (Section 1.2).

342 The Multi-Agent Transport Simulation MATSim

As Equation (49.1) shows, the generation of the choice sets a�ects the simulated choices. The
simplest illustration of this mechanism isthat alternatives that never appear in the choice set cannot
be chosen. Similarly, including certain alternatives with a low (high) probability in the choice set
decreases (increases) their probability of being chosen, given that the choice model is not changed.
When a policy study’s synthetic choice sets are very di�erent from the alternatives considered in
the real world, it is unlikely that the simulation will display correct aggregated quantities or useful
sensitivities for policy measures.

These types of biases are well-known in the discrete choice community, even though the focus
is there, arguably, more on estimation than simulation. The problem is particularly acute in route
choice modeling because the combinatorial size of the universal route choice set prohibits its enu-
meration. Drawing further from the discrete choice literature (speci�cally Frejinger and Bierlaire,
2010), di�erent interpretations can be given to “plan mutation” and “plan innovation” in MATSim.

An interpretation of mutation and innovation as perceptional models of travel plan choice set
formation is hindered by the need to validate them against real and unobservable choice sets.
Alternatively, one may assume that travelers consider the universal choice set and that the choice
of unfeasible alternatives is impeded by correspondingly low utility values. In this setting, muta-
tion and innovation constitute sampling techniques serving the computational purpose of reducing
the universal choice set to a small, representative subset. However, one still faces the problem from
above that the concrete sampling protocol has a concrete e�ect on the simulated behavior. The cure
when estimating choice models is to correct for the sampling based on known sampling probabil-
ities (e.g. Ben-Akiva and Lerman, 1985, Chapter 9), even though these probabilities can be rather
di�cult to obtain (Flötteröd and Bierlaire, 2013; Frejinger et al., 2009a). The problem appears to
be less explored when it comes to simulation.

MATSim’s currently implemented mutation and innovation procedures constitute concrete, yet
heuristic, approaches to the choice set generation problem, aiming at valid predictions at the sys-
tem level. Possible biases induced by these procedures can, however, be di�cult to quantify. For
example, the current MATSim implementation might, under certain conditions, yield incomplete
choice sets and correlated alternatives (also see Chapter 51). To mitigate the e�ect of strong correla-
tions between alternatives within the choice set, so-called diversity increasing re-planning modules
have been tested (see, e.g., Nagel et al., 2014). In the same context, Grether (2014, Chapter 6) and
Neumann et al. (2013) have tested path size logit approaches (see, e.g., Daganzo and She�, 1977;
Frejinger and Bierlaire, 2007) to maintain diversity in the choice set by penalizing similar alterna-
tives. Still, these approaches are–as of now–ad-hoc solutions, with little theoretical foundation in
the simulation context.

It thus seems worthwhile to revisit the plan choice set generation problem from a statistical per-
spective. The goal of the following presentation is more to establish a corresponding mindset than
deliver a complete solution.

49.2.2 Towards Unbiased Choice Set Generation

To make the simulated long-term (stationary) plan choice independent of the plan choice set
generation, one may require the following stationary choice distribution:

Pn(i | Un) =
eµSni

∑

j∈Un
eµSnj

, (49.20)

meaning that plans are selected from the universal choice set Un.
Denoting by P(Cn → C′

n) the probability that plan mutation/innovation turns the choice set Cn

into C′
n, it is possible to enforce the long-term choice distribution Equation (49.20) through an

application of the MH (Metropolis-Hastings) algorithm (Hastings, 1970, see also Flötteröd and
Bierlaire (2013) for a related approach to a similar problem).

Choice Models in MATSim 343

The MH algorithm speci�es the transition distribution of a Markov chain so that a desired sta-
tionary distribution of that chain is reached. Given that Chapter 48 has established a formulation
of MATSim as such a chain, the MH machinery can hence be inserted into the MATSim itera-
tions. A simpli�cation made in the following is that the choice distribution of agent n is considered
independent of all other agents.

To make this concrete, let the state space of the algorithm be the tuple (Cn, i ∈ Cn) consisting
of choice set and resulting choice. During each (MATSim) iteration, one �rst draws a new choice
set C′

n, then draws a new choice i′ ∈ C′
n according to the usual model (49.2) and �nally accepts the

new state (C′
n, i

′) with probability

φ[(Cn, i), (C
′
n, i

′)] = min

{

Pn(i
′ | Un)

Pn(i | Un)
·
P(C′

n → Cn)Pn(i | Cn)

P(Cn → C′
n)Pn(i

′ | C′
n)

, 1

}

(49.21)

and rejects it otherwise (meaning that the original choice setCn and choice i ∈ Cn are maintained).1

Intuitively, the �rst fraction introduces a preference for states comprising a more probable choice
and the second fraction corrects for the way transitions between states are proposed.

Assume that the plan innovation yields exactly one new plan iin through a against
the last iteration. Let the corresponding plan innovation distribution be approximated by
eµinnoSni/

∑

j∈Un
eµinnoSnj with a very large µinno. Assume further that iin replaces exactly one uni-

formly selected plan iout, which implies that the choice set size J is constant and exclude for
simplicity the case that the best response innovation reconstructs the removed plan exactly. This
leads to

P(Cn → C′
n) =

1

J
·

eµinnoSniin
∑

j∈Un
eµinnoSnj

(49.22)

P(C′
n → Cn) =

1

J
·

eµinnoSniout

∑

j∈Un
eµinnoSnj

. (49.23)

Inserting this as well as Equation (49.2) and Equation (49.20) into Equation (49.21), one obtains

φ[(Cn, i), (C
′
n, i

′)] = min

eµSni′

eµSni
·

eµinnoSniout
eµSni

∑

j∈Cn
eµSnj

eµinnoSniin
eµSni′

∑

j∈C′
n
eµSnj

, 1

(49.24)

= min

{

eµinno(Sniout −Sniin) ·

∑

j∈C′
n
eµSnj

∑

j∈Cn
eµSnj

, 1

}

(49.25)

µinno→∞
=

{

1 if Sniout ≥ Sniin
0 otherwise.

(49.26)

1 The acceptance probability φ(X → X′) in MH sampling is calculated as

min

(

w(X′) · ppropose(X
′ → X)

w(X) · ppropose(X → X′)
,1

)

,

where ppropose(. → .) is the probability that a certain transition is proposed, and w(X), w(X′) are the relative weights

of the respective states. It is important to note thatw does not have to be normalized; it is sufficient ifw(X)/w(X′) =

p(X)/p(X′). P(C → C′)P(i′|C′) is the probability that the choice set transitions from C to C′ and that i′ is selected

from the resulting choice set.

344 The Multi-Agent Transport Simulation MATSim

Some care is needed when evaluating this expression because it assumes Sniin and Sniout to be inde-
pendent random variables, whereas Sniin is (due to the best response) always maximal among all
alternatives given the most recent iteration. One should thus evaluate this expression by computing
either score from the network conditions of a di�erent, randomly selected stationary iteration.

This would allow the selection of plans according to (49.20) from an unconstrained choice set,
even though one enumerates only a small subset of the full choice set, which is updated through a
computationally e�cient best-response mechanism.

In summary, one does the following for each agent in each iteration:
1. Randomly select a given plan for removal and compute a new best-response plan against the

last iteration.
2. Is the new plan better than the one selected for removal, based on network conditions from

two randomly selected stationary iterations?
•Yes: Keep the previously selected plan and the previous choice set.
•No: Remove the randomly selected plan from the choice set, add the newly generated plan
and select a new plan from the new choice set.

This (at �rst glance perhaps counter-intuitive) logic can be explained as follows: Best-response
creates new plans that are by chance better than any other plan in a given iteration. Best-response
is thus corrected for by accepting the new plan only if it is by chance worse than a randomly selected
alternative plan, with both plans being evaluated in randomly selected stationary iterations.

Note that the accuracy of this approach depends on the ability of the best-response plan innova-
tion to create su�ciently variable plans, in the sense that the plan choice set innovation process is
irreducible (Ross, 2006, see also Section 48.3 for an intuitive de�nition of irreducibility).

49.3 Summary

This chapter attempted to phrase MATSim’s mechanisms of plan scoring, innovation, mutation and
selection in the more mainstream terminology of discrete choice modeling. The implications of
evaluating stochastic scores when selecting a plan were explained. The chapter also addressed how
simulated choices depend on the way the underlying plan choice sets are generated, and di�erent
ways to address this problem were described.

The chapter clearly brought up more issues than it resolved. The take-away message, if any, is
probably that even though MATSim agent behavior is roughly based on discrete choice modeling,
one needs to be careful when assuming full consistency with a particular discrete choice model.

Appendix: Derivation of Filtered Score Statistics

Writing out the expectation:

E{S̄k+1
ni } = Pn(i)E{αSkni + (1 − α)S̄kni} + (1 − Pn(i))E{S̄kni} (49.27)

⇔ E{S̄k+1
ni } − E{S̄kni} = αPn(i)(E{Skni} − E{S̄kni}). (49.28)

From limk→∞ E{S̄k+1
ni } − E{S̄kni} = 0 then follows

lim
k→∞

(

E{Skni} − E{S̄kni}
)

= 0. (49.29)

Choice Models in MATSim 345

Proceeding in a similar way for the second moment:

E{(S̄k+1
ni)2} = Pn(i)E{(αSkni + (1 − α)S̄kni)

2}

+(1 − Pn(i))E{(S̄kni)
2} (49.30)

⇔ lim
k→∞

E{(S̄k+1
ni)2} − E{(S̄kni)

2} = Pn(i)α
[

αE{(Skni)
2}

+2(1 − α)E{Skni}
2 − (2 − α)E{(S̄kni)

2}
]

(49.31)

From limk→∞ E{(S̄k+1
ni)2} − E{(S̄kni)

2} = 0 then follows

limk→∞E{(S̄kni)
2} =

α

2 − α
E{(Skni)

2} −
2 − 2α

2 − α
E{Skni}

2. (49.32)

The limiting variance then results from inserting of Equation (49.29) and Equation (49.32) into

limk→∞VAR{S̄kni} = limk→∞

[

E{(S̄kni)
2} − E{S̄kni}

2
]

(49.33)

=
α

2 − α
VAR{(Skni)

2}. (49.34)

CHAPTER 50

Queueing Representation of Kinematic Waves

Gunnar Flötteröd

50.1 Introduction

MATSim comes with a number of mobsims (cf. Sections 4.3, 43.1); the most important are the so-
called QSim and JDEQSim. These di�er from the implementation perspective (time-stepping vs.
event-based, degree of parallelism), but all are (at least approximate) solvers of the same underlying
tra�c �ow model. The purpose of this chapter is to relate MATSim’s mobsims to the existing tra�c
�ow theory. There are other simulation packages rooted in the same underlying modeling concepts
(Tian et al., 2007; Zhou and Taylor, 2014).

The �ow-density relationship (also called FD (Fundamental Diagram)) shown in Figure 50.1 is
at the heart of MATSim’s tra�c �ow model. Given a long, homogeneous road, it predicts average
�ow q (in vehicles per time unit) through any cross-section of that road, given an average vehicle
density ̺ (in vehicles per length unit) on that road.

The FD is de�ned as the minimum of a sending function S(̺) (solid) and a receiving function
R(̺) (dashed), resulting overall in a triangular curve parametrized by free �ow speed v, maximum
density ˆ̺ and backward wave speed w. The maximum velocity is an observable parameter that
can be set in the network �le (freespeed attribute of the link element). The maximum density
equals one over the length of a vehicle (effectivecellsize attribute of the links element) for a
single-lane link and needs to be multiplied with the number of lanes (permlanes attribute of the
link element), otherwise. The backward wave speed turns out to be the (negative of the) ratio of
vehicle length to the safety time gap adopted by drivers in congested conditions. This parameter
is fairly constant; a vehicle length of 7.5 meters and a time gap of 2 seconds leads to a value of
(minus) 13.5 kilometers per hour. The backward wave speed can be set in the JDEQSim through
the gapTravelSpeed parameter; it cannot currently be set in the QSim.

The considered FD alone applies only in stationary conditions, where it predicts that (i) �ow
increases linearly with density at low densities (i.e., in uncongested conditions); (ii) �ow decreases

How to cite this book chapter:

Flötteröd, G. 2016. Queueing Representation of Kinematic Waves. In: Horni, A, Nagel, K and

Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 347–352. London: Ubiquity

Press. DOI: http://dx.doi.org/10.5334/baw.50. License: CC-BY 4.0

348 The Multi-Agent Transport Simulation MATSim

p

q

min{S(p),R(p)}

R(p)

v

S(p)

w

q̂

p̂

Figure 50.1: Fundamental diagram.

linearly with density at high densities (i.e., in congested conditions); and (iii) in between, it attains
a maximal value constituting the �ow capacity

q̂ =
vw ˆ̺

v+w
(50.1)

of the link. This parameter represents the maximum throughput of the link in the absence of any
other �ow constraint (such as downstream tra�c lights or other bottlenecks, which are discussed
further below).

A realistic representation of non-stationary tra�c �ow (where density and �ow change over
space and time) is possible by inserting the FD into a continuity equation (which intuitively models
vehicle conservation, in the sense that vehicles cannot vanish or spontaneously appear on a road
segment without on- and o�-ramps). This leads to the KWM (Kinematic Wave Model) of traf-
�c �ow (Lighthill and Witham, 1955; Richards, 1956), where the sending and receiving function
receive an intuitive interpretation: The instantaneous �ow across any interface, possibly with dif-
ferent densities prevailing and FDs applying up- and downstream of that interface, is de�ned by (i)
inserting the density upstream of the interface into the upstream sending function, (ii) inserting
the density downstream of that interface into the downstream receiving function and (iii) taking
the minimum of these two quantities (Daganzo, 1994; Lebacque, 1996). Intuitively: The �ow is
limited by what can be sent from upstream and what can be received downstream, but otherwise
it is maximized.

The remainder of this chapter expresses MATSim’s link model (Section 50.2) and its node model
(Section 50.3) in terms of the sending and receiving function framework of the KWM. Some tech-
nical detail is omitted from the presentation for the sake of readability; pointers to the literature
are provided.

50.2 Link Model

To compute �ows entering and leaving a link, one needs to know how much �ow can maximally
enter the link and how much �ow can maximally leave the link. Both constraints depend on the
internal (congestion) state of the link. In symbols, one is interested in the instantaneous receiv-
ing �ow rate R of the link’s upstream end and the instantaneous sending �ow rate S of the link’s
downstream end. Multiplying these rates by the duration δ of a simulation time step then yields
the maximum number of vehicles that can enter or leave the link during a time step.

MATSim also needs to compute these quantities; how it does so is rooted in Newell’s “simpli-
�ed theory of kinematic waves” (Newell, 1993), which provides a tracktable recipe for computing
�ow and density anywhere in a link, given that one keeps track only of the �ows at the link’s up-
and downstream interface. In the continuum model (i.e., one that allows for real-valued �ows and
densities at real-valued locations and times) speci�ed by Newell (1993), the cumulative in- and

Queueing Representation of Kinematic Waves 349

out�ow of a link are de�ned as

Nin(t) =

∫ t

0
qin(z)dz (50.2)

Nout(t) =

∫ t

0
qout(z)dz (50.3)

where t denotes time, qin and qoutare the instantaneous in- and out�ow rates (in vehicles per time
unit) of the link and an initially (at t = 0) empty link is assumed. From MATSim’s vehicle-discrete
perspective, cumulative in�ow (out�ow) at a given point in time hence represents the total number
of vehicles having entered (le�) the link up to that point in time.

Yperman et al. (2006); Yperman (2007) observe that if Newell’s theory allows computation of
instantaneous densities anywhere in a link, then it also allows computation of densities at the up-
and downstream ends of that link. Inserting these densities in the link’s sending and receiving
function then allows expressing the sending and receiving �ows as functions of time-shi�ed cumu-
lative in- and out�ows only, with the time-shi�s speci�ed according to the original Newell (1993)
formula:

R(t) = min
{

ˆ̺L−
[

Nin(t) −Nout(t+ δ − L/|w|)
]

, q̂δ
}

(50.4)

S(t) = min
{[

Nin(t+ δ − L/v) −Nout(t)
]

, q̂δ
}

(50.5)

where L is the link length and δ is the (small) discrete time step length. Yperman (2007) provides
some intuition for this rather formal speci�cation.

The connection to MATSim can now be made explicit by labeling the two bracketed terms in
Equation (50.4) and Equation (50.5) as “upstream queue” (UQ) and “downstream queue” (DQ)
(Osorio et al., 2011; Osorio and Flötteröd, published online in Articles in Advance):

UQ(t) = Nin(t) −Nout(t+ δ − L/|w|) (50.6)

DQ(t) = Nin(0, t+ δ − L/v) −Nout(t). (50.7)

These expressions can be given a recursive meaning. Evaluating UQ(t) − UQ(t− δ) yields
[Nin(t) −Nin(t− δ)] − [Nout(t+ δ − L/|w|) −Nout(t− L/|w|)], which under the assumption
that �ow rates are held constant throughout a simulation time step simpli�es into δ[qin(t− δ) −

qout(t− L/|w|)]. From this (and symmetric operations for DQ), one obtains

UQ(t) = UQ(t− δ) + δ
[

qin(t− δ) − qout(t− L/|w|)
]

(50.8)

DQ(t) = DQ(t− δ) + δ
[

qin(t− L/v) − qout(t− δ)
]

. (50.9)

These recursive de�nitions turn out to be the continuum version of how the JDEQSim updates its
link model: In every time step, all vehicles that have just le� the link are taken out of the DQ and all
vehicles that have entered the link L/v time units ago (corresponding to free-�ow travel time) are
inserted into the DQ. Similarly, all vehicles that have just entered the link are put into the UQ and
all vehicles that have le� the link L/|w| time units ago are only now taken out of the UQ. Further,
inserting (50.6) and (50.7) into (50.4) and (50.5) yields

R(t) = min
{

ˆ̺L− UQ(t), q̂δ
}

(50.10)

S(t) = min
{

DQ(t), q̂δ
}

, (50.11)

which again corresponds to how JDEQSim evaluates the boundary conditions of a link: The
amount of �ow allowed to enter the link is limited by the space in its UQ and the amount of �ow
allowed to leave the link is limited by the number of vehicles in its DQ.

350 The Multi-Agent Transport Simulation MATSim

A mobsim that implements the rules Equation (50.8), Equation (50.9), Equation (50.10) and
Equation (50.11) implements a KWM-consistent link model. This is almost the case for the JD-
EQSim, which, in its implementation as of December 2014, exhibits the sole inconsistency of not
limiting the link’s in�ow to its �ow capacity. The QSim turns out to be a particular instance of the
same model where backward wave speed is set to |w| = L/δ. Inserting this into Equation (50.8)
leads to

UQ(t) = UQ(t− δ) + δ
[

qin(t− δ) − qout(t− δ)
]

, (50.12)

which represents the total number of vehicles in the entire link. This corresponds to QSim behavior,
where in�ow to a link is limited only by the available space in the link as a whole. Letting |w| = L/δ
means that the QSim behaves like a KWM with an extremely high backward wave speed, which
physically means that a queue on the link does not dissolve from its downstream end but moves
”en block” over the link.

50.3 Node Model

All mobsims in MATSim implement the same node model. Surprisingly, this node model can be
traced back at least to (Cetin et al., 2003, under the name of “fair intersections”), while the literature
establishing its consistency with the KWM is only a few years old (Tampere et al., 2011; Flötteröd
and Rohde, 2011; Corthout et al., 2012).

Nodes in MATSim have no spatial dimension; they merely connect up- and downstream links.
Tampere et al. (2011) specify a set of requirements for a (continuum) node model to be consistent
with the KWM. They require that the �ow through the node shall be maximized subject to the
following constraints:

1. Flows are non-negative and conserved within the node. This means that vehicles cannot drive
backwards and they must neither disappear nor appear within the node.

2. Flow ratios comply with exogenously speci�ed turning fractions. For instance, if it is speci�ed
that 20 % of the out�ow of link i shall turn into link j, then the amount of �ow that actually
advances from link i into link j shall indeed be 20 % of the �ow that actually leaves link i.

3. Sending �ows of upstream links and receiving �ows of downstream links are not exceeded.
This is explained in Section 50.2.

4. The invariance principle of Lebacque and Khoshyaran (2005) is satis�ed. The most important
intuitive implication of this principle is that the advancement of a queuing vehicle is not
a�ected by the vehicles behind it.

5. A “supply constraint interaction rule” is satis�ed. It de�nes how the limited receiving �ow of
a downstream link is shared by competing upstream links: in practical terms, a right-of-way
speci�cation.

Flötteröd and Rohde (2011) specify an “incremental node model” that satis�es these requirements
and also provide an intuitive, computationally e�cient solution algorithm. In each simulation time
step, this algorithm incrementally (hence the name) moves �ow from upstream links into down-
stream links. It does so such that all the previously enumerated constraints are satis�ed anytime
during the transfer, terminating only once no more �ow can be moved. Thus, the ultimately moved
�ows also comply with all constraints and are maximal.

Queueing Representation of Kinematic Waves 351

Now consider the code documentation of MATSim’s queuesim.QueueNode.moveNode (as of
December 2014):

Moves vehicles from the inlinks’ buffer to the outlinks where

possible. The inLinks are randomly chosen, and for each link all

vehicles in the buffer are moved to their desired outLink as long as

there is space. If the front vehicle in a buffer cannot move across

the node because there is no free space on its destination link,

the work on this inLink is finished and the next inLink’s buffer is

handled.

This is an informal description of how the incremental node model of Flötteröd and Rohde
(2011) works, given that one adopts the conventions that the sending �ow of a link is stored in its
“bu�er” and that the receiving �ow of a link is labeled here as free space in (the upstream queue of)
that link. A more detailed inspection of the underlying implementation reveals no inconsistencies
with incremental node model speci�cation.

There are two aspects of the MATSim node model that are not re�ected by the above code
comment.

• The sending �ow of an upstream link may be limited by an out�ow capacity below the �ow
capacity Equation (50.1) of that link; for instance, to approximate a capacity reduction resulting
from a downstream tra�c light. This is still consistent with the framework described above.

• The selection probability of “inLinks” is proportional to their �ow capacity, meaning that links
with higher capacity send, on average, more �ow. This is again consistent with Flötteröd and
Rohde (2011) and constitutes a concrete “supply constraint interaction rule”, as required by
Tampere et al. (2011).

The relative simplicity of MATSim’s intersection logic may be re�ned in many ways. For instance,
turning pockets may be added and con�icts within intersections may be modeled (cf. Chapter 12).
However, some caution is needed when implementing such extensions. The present node model
is, due to its simplicity, guaranteed to yield unique node �ows. This property needs to be revisited
when implementing more complicated speci�cations (Corthout et al., 2012).

50.4 Summary

This chapter demonstrated that MATSim’s mobility simulation is already very close to imple-
menting a particle-discretized instance of the KWM. For full consistency, one needs to (i) use the
JDEQSim (or to implement a realistic backward wave speed in the QSim) and to (ii) limit the in�ow
of a link by its �ow capacity (which corresponds to the maximum of its triangular FD).

CHAPTER 51

Microeconomic Interpretation of MATSim for
Bene�t-Cost Analysis

Benjamin Kickhöfer and Kai Nagel

This chapter explains how MATSim’s agent-based framework can be interpreted from a micro-
economic perspective and how it can be used for the economic evaluation of transport policies,
e.g., for BCA (Ben�t-Cost Analysis). The text of this chapter is partly taken from Kickhöfer (2014,
Section 2.3).

Typically, the process of economic policy evaluation consists of three steps: First, forecasting
changes in the system by modeling users’ reactions to a policy (Section 51.1). Second, assigning
some (potentially monetary) valuation to these changes (Section 51.2). And third, applying an
appropriate aggregation rule (Section 51.3). As will be shown in the next sections, these steps are
neither completely independent nor completely dependent on each other.

51.1 Revisiting MATSim’s Behavioral Simulation

Estimating policy intervention bene�ts relies on a sound descriptive model able to predict indi-
viduals’ related behavioral changes. As explained in Section 1.2, agents in MATSim optimize their
mobility behavior over several iterations by reacting to the behavior of other agents. Even if one as-
sumes homogeneous individual preferences in the behavioral parameters of their utility functions
(see Section 3.4), activity locations and activity patterns of agents typically di�er, meaning that
the simulation deals with heterogeneous decision makers. It thus seems reasonable to interpret the
simulation from a discrete choice modeling perspective (see Chapter 49). Another attractive rea-
son to use this interpretation lies in the well-established approaches to estimate user bene�ts and
system welfare changes in discrete choice models.

How to cite this book chapter:

Kickhöfer, B and Nagel, K. 2016. Microeconomic Interpretation of MATSim for Bene�t-Cost Analysis.

In: Horni, A, Nagel, K and Axhausen, K W. (eds.) The Multi-Agent Transport Simulation MATSim,

Pp. 353–364. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/baw.51. License: CC-BY 4.0

354 The Multi-Agent Transport Simulation MATSim

As shown by Nagel and Flötteröd (2012, also see Chapter 47 and Section 49.1.1), the MATSim
choice model is equivalent to a standard MNL model under the following two conditions: �rst,
valid choice sets have been found for all individuals; second, the score of each plan has con-
verged to its expectation value (self-consistent state). An approximation of this can be reached
by switching innovation o� (Section 4.5.3) and forcing scores to convergence (Section 3.3.4, also
see Section 49.1.1). Still, the following methodological issues remain:

1. Choice set incomplete: The maximum number of plans J in each agent’s choice set is
limited by memory constraints; the choice set for decision making is, hence, unlikely to be
complete.

2. Plans correlation from innovation: Plans might be correlated. This is very likely if they are
modi�ed or replaced by best-response re-planning modules (e.g., the route choice module),
since they always have a tendency to generate the same answer. However, random muta-
tions, in general, also tend to result in correlated plans, since the concept of a mutation
implies only a small move away from the parent. This violates the required IIA (Inde-
pendence from Irrelevant Alternatives) property of the choice set necessary for a MNL
model.

3. Plans correlation fromplans removal: The current MATSimimplementation has a tendency
to retain similar, i.e., correlated, plans when the number of plans has grown beyond J, because
the current default plans remover deletes the plan with the lowest score, which is also typically
most di�erent from other plans. As a result, normally only very similar plans—with very
similar scores—remain in the choice set.

These three issues can lead to biased behavior, which would have consequences for economic
evaluation. Possible solutions for these shortcomings are discussed in Section 49.2, and again, from
a di�erent angle, in Section 97.3. For the rest of this chapter, it will be assumed that the above issues
are solved, and that a consistent solution has been found for the system states before and a�er the
policy change. However, the following text brie�y discusses possible impacts of the above issues on
policy appraisal results, to facilitate better understanding.

51.2 Valuing Human Behavior at the Individual Level

Following de Jong et al. (2007), a major advantage of the agent-based approach is a seamless
integration of (i) forecasting behavioral changes as a reaction to changes in the system, and (ii)
the subsequent economic evaluation. In this section, it is shown how estimated agent-speci�c pref-
erences, which determine behavior, can directly be used for deriving individual VTTSs and how
they need to be modi�ed for running a MATSim simulation to obtain individual utility di�erences
resulting from a policy change. The next Section 51.3 will then focus on how these individual
utility changes can be used to derive an indicator of overall welfare change for the considered
population.

51.2.1 The Utility of Time

The MATSim scoring function of plan (= alternative) i consisting of q = 0..N − 1 activities and
trips has been introduced in Chapter 3 in the following form:

U =
∑

q

Uact,q(tdur,q, ...) +
∑

q

Utrav,q(ttrav,q, ...) , (51.1)

Microeconomic Interpretation of MATSim for Benefit-Cost Analysis 355

where monetary payments (e.g., tolls) are included in Utrav,q and the index i was dropped for
notational convenience.1

An approximate argument about optimal time allocation can be made as follows: Assume
the constraint T −

∑

q tdur,q −
∑

q ttrav,q = 0, i.e., that the time per day is limited by T = 24h, dur-
ing which all trips and activities need to be completed. Let us now also assume that all travel times
are �xed; i.e., we ignore the possible optimization from departure time or mode switches and con-
centrate on the activity time allocation problem. Optimizing under this constraint leads to the
Lagrangian

L =
∑

q

Uact,q(tdur,q, ...) +
∑

q

Utrav,q(ttrav,q, ...) + µ · (T −
∑

q

tdur,q −
∑

q

ttrav,q) , (51.2)

where µ is the Lagrangian multiplier corresponding to the time constraint.2

Solving the optimization problem leads to

0
!
=

∂L

∂tdur,q
= U ′

act,q(tdur,q, ...) − µ (∀q) (51.3)

and the time constraint equation from above, where U ′
act,q := ∂Uact,q/∂tdur,q. Equation (51.3)

states that, at the optimum and without further constraints, the tdur,q need be selected for all
activities q such that all U ′

dur,q(tdur,q, ...) are the same and equal to µ.

Equation (51.2) can also be seen as a linearized version of the indirect utility function; for ex-
ample, reducing travel duration by 1tq a�ects not only Utrav,q, but will also lead to a utility change
of µ · 1tq from the constraint, which can be interpreted as the linearized utility e�ect of spending
that time otherwise.3 In consequence, the marginal utility of time spent traveling reads

∂L

∂ttrav,q
= U ′

trav,q(ttrav,q, ...) − µ . (51.4)

µ is the marginal utility of time as a resource—the marginal utility generated by increasing T,
i.e., by making the day longer than 24 hours. The marginal utility of time spent traveling is thus
determined by µ, modi�ed by “any enjoyment or dislike of the travel itself ” (Small, 2012).

To get a handle on the MATSim utility function in Equation (51.1), µ and U ′
trav,q need to be

obtained separately: µ in order to calibrate U ′
act,q as in Equation (51.3) and U ′

trav,q to calibrate the
direct utility of time spent traveling, the o�set to the marginal utility of time as a resource. This
will be further discussed in Section 51.2.4.

51.2.2 The Utility of Money

Time allocation theory (DeSerpa, 1971; Jara-Dı́az and Guevara, 2003) makes a similar argument
for money, with a budget constraint similar to the time constraint. Just as the time constraint leads
to a marginal utility of time as a resource, the budget constraint leads to a marginal utility of money
as a resource.

1 Strictly speaking, at this point, it would make more sense to stay with the scores S that MATSim generates.

Section 51.2.5 discusses the relation between MATSim scores S, systematic utilityV and total utilityU in more detail.

However, since the following text uses terms like “marginal utility of time” or “marginal utility of money”, equations

are also noted using U instead of S.
2 This should not be confused with the scale parameter from discrete choice theory; here, to be consistent with time

allocation theory, µ represents the marginal utility of time as a resource and corresponds to βdur in Chapter 3.
3 A reminder: the indirect utility function describes utility as a function of the value of the constraint that emerges

when, for each value of the constraint, utility is maximized.

356 The Multi-Agent Transport Simulation MATSim

However, MATSim does currently not include such a monetary budget constraint. It is also ques-
tionable whether it should be introduced: the typical theoretical argument assumes the possibility
of increasing one’s income by working more hours. It is questionable if this functions in European
countries, where work contracts typically include a �xed number of working hours, which cannot
easily be changed. Hence, an alternative derivation of the marginal utility of money is necessary.

Assume that Utrav,q includes a change in the monetary budget, λ · 1m, e.g., invoked by fares or
tolls. Then

∂U

∂m
=

∂Utrav,q

∂m
= λ, (51.5)

that is, reducing the monetary budget by 1m reduces the utility by λ · 1m. We will therefore inter-
pret λ as the marginal utility of money.4 Taking the �rst derivative of L with respect to m would
lead to the same result.

In contrast to the marginal utility of time above, we do not break down the marginal utility of
spending money for travel into a marginal utility of money as a resource, and an o�set for spending
money on a particular purpose (for an example of this decomposition, see, e.g. Munizaga et al.,
2008). Because there is no monetary budget constraint, there is also no neutral Lagrange multiplier
that would give the marginal utility of money as a resource.

This, however, leads to the problem that if there are multiple monetary channels, they may have
di�erent marginal utilities of money. For example, the marginal utility of toll payments is larger
than the marginal utility of payments for fuel—i.e., people �nd it less irritating to pay for fuel than
to pay tolls (see, e.g., Vrtic et al., 2008). That is, each monetary channel, such as fuel cost, toll, public
transport fare, or a toll refund, may lead to di�erent preference estimates.

To our knowledge, there is no best solution to this problem in the literature. For the time being,
we work with forcing all alternatives’ cost-related parameters to a uniform value in preference es-
timation. However, choice modelers typically avoid limiting the model’s degrees of freedom in this
way, since it suppresses some information contained in the data.5 It is therefore o�en impossible
to obtain necessary parameter estimates from the literature. Where raw data is available, the same
model can be re-estimated with a uniform marginal utility of money across alternatives (see, e.g.,
Kickhöfer et al., 2011; Tirachini et al., 2014).

Also, Small (2012) points out that the “neutral” marginal utility of money as a resource is di�cult
to estimate; for example, it is not the marginal utility of income. As an alternative research avenue,
we could hypothesize that a measure’s monetary channels are included in the choice experiment.
For example, a travel time improvement in a value-of-time study could come together with a hy-
pothetical income tax increase, or with a hypothetical toll. A rudimentary version of this actually
takes place in Switzerland, where large infrastructure investments are bundled with tax increases
that pay for them before they are put to public vote (see, e.g., BAV, 2013).

51.2.3 Value of Time

The VTTSof trip q is now de�ned as the marginal utility of time spent traveling (Equation (51.4)),
divided by the marginal utility of money (Equation (51.5)), i.e.,

VTTSq =
∂L/∂ttrav,q

∂L/∂m
, (51.6)

4 This constant, potentially person-specific, implies that income effects (Herriges and Kling, 1999; Daly et al., 2008;

Dagsvik and Karlström, 2005; Jara-Dı́az and Videla, 1989) do not play a role, i.e., that changes in expenses resulting

from transport policies are not strong enough to change λ. In microeconomic theory, λ is the usual variable for the

marginal utility of money and corresponds to βm in Chapter 3.
5 J. de Dios Ortúzar, personal communication.

Microeconomic Interpretation of MATSim for Benefit-Cost Analysis 357

where we are using the indirect utility function since we assume that the traveler compares optimal
allocations before and a�er the change.

With ∂L/∂ttrav,q = U ′
trav,q − µ from Equation (51.2) one obtains

VTTSq = −
U ′
trav,q

λ
+

µ

λ
, (51.7)

µ/λ is sometimes called the value of time as a resource.

51.2.4 From Estimated to MATSim Parameters

As stated above, most value of time studies do not separately estimate µ, λ, andU ′
trav,q (∀q). Assume

that an MNL estimation of behavioral parameters from a mode choice survey between car and PT
uses the following utility functions:

Ucar,q = β̂trav,car · tcar,q + β̂m · 1mcar,q

Upt,q = β̂0 + β̂trav,pt · tpt,q + β̂m · 1mpt,q ,
(51.8)

where tcar,q, tpt,q, 1mcar,q and 1mpt,q are, respectively, travel times and monetary costs in the

di�erent modes, and β̂x are the corresponding parameter estimates As explained in Section 51.2.2,

β̂m (the same as λ above) is assumed to be the same for all modes, or more precisely, for all types
of expenditure.

According to Equation (51.4), the marginal utility of time spent traveling needs to be split into
two components:

1. The marginal utility of time as resource, which needs to be used for U ′
act(tdur,q, ...) (∀q) in

Equation (51.3).

2. The direct marginal utility of time spent traveling, which needs to be used for
U ′
trav,q(ttrav,q, ...).

We do not know of any good way to perform this split; Kickhöfer et al. (2011) and Kickhöfer

(2014) use the least negative β̂trav,mode for µ (i.e., βdur) and then re-calculate all other direct
marginal utilities of travel time relative to that. As indicated in Section 3.4 of this book, this is
currently the preferred procedure.

51.2.5 From Simulation Output to Evaluation

At the end of the simulation run, each agent n has a number of plans i = 1..J, each of them as-
sociated with a score Sn,i, computed according to Equation (51.1). For economic evaluation, the
question arises how to aggregate these Sn,i into an agent-value Sn, which can then be interpreted
as a utility Un. Possibilities include using:

• the logsum of the agent’s plans scores, i.e., ln
∑

i e
Si

• the score of the agent’s last executed plan,
• the average of the agent’s plans scores, or
• the highest score of the agent’s plans.

51.2.5.1 Using the Logsum of the Agent’s Plans Scores

In literature, the logsum term

logsumn = ln
∑

i

eVi

358 The Multi-Agent Transport Simulation MATSim

has been proposed for applied welfare analysis with Discrete Choice Models (Small and Rosen,
1981; de Jong et al., 2006; Kohli and Daly, 2006; de Jong et al., 2007). Under the assumption of a
correctly speci�ed model and choice set, the logsum term represents the EMU (Expected Max-
imum Utility) for a user with several options i = 1..J in her choice set and the systematic utility
of each option i is Vi. It is the expectation value, given that a random (Gumbel-distributed) εi is
added to each Vi, and that the individual chooses the alternative with the highest Ui = Vi + εi.

6 In
this interpretation, the (expected/average) MATSim score Si is equated with the systematic part of
the utility Vi.

However, as described in the previous Section 51.1, the use of MATSim as choice set generator
yields issues with incompleteness of the choice set and with similarity of daily plans. In the current
MATSim implementation, the maximum error occurs when all plans are copies of the best plan,
rather than a diversity of plans. An upper bound of this error can be approximated as follows.
Without loss of generality, assume that i = 1 is the plan with the largest systematic utility. Then

logsumn = EMUn = ln

J
∑

i=1

eVi ≤ ln

J
∑

i=1

eV1 = ln(J · eV1) = ln J + lneV1 = V1 + ln J .

At the same time, obviously

logsumn = EMUn = ln

J
∑

i=1

eVi ≥ lneV1 = V1 .

Overall,
V1 ≤ logsumn ≤ V1 + ln J .

That is, for a choice set with I alternatives, the true logsum value lies between the systematic utility
of the best option, V1, and V1 + ln J.

51.2.5.2 Using the Score of the Agent’s Last Executed Plan

Using, for each agent, the logsum over the scores of all plans implies that all these plans are valid
behavioral choices. An alternative would be to simply use the score of the last executed plan. The
behavioral interpretation consistent with this procedure is that there is no additional relevant ran-
domness beyond what MATSim generates intrinsically. There has been no systematic work in this
direction in the MATSim context, but such an approach might be justi�ed in conjunction with
the idea of explicitly generating the missing εn,i for each person-alternative-pair n, i, then always
selecting the best plan, as described in Section 97.4.6.

51.2.5.3 Using the Average of the Agent’s Plans Scores

In principle, it is also possible to use

Sn =
1

J

J
∑

i=1

Sn,i · Pn,i , (51.9)

where Pn,i is the probability of plan i for agent n. This can, however, only be justi�ed when the
choice probabilities, Pn,i, are interpreted like mixed strategies from game theory, i.e., that sam-
pling from these probabilities is the true agent behavior. In principle, we cannot see why such an

6 At this point, we assume that Vi is absorbing the scale parameter.

Microeconomic Interpretation of MATSim for Benefit-Cost Analysis 359

interpretation should be plausible—except that it is statistically the same as Section 51.2.5.2 with
the advantage of having less variance. Note, however, that the approach is intertwined with the
choice model. If, e.g., Pn,i is one for the plan with the highest score and zero for all other plans,
then Section 51.2.5.2 and Equation (51.9) are identical.

51.2.5.4 Using the Highest Score of the Agent’s Plans

Alternatively, one could simply use the highest score that the agent has in its plan. This would only
make sense if true behavior is assumed to always select the plan with the highest score. Again, this
should then also be expressed by the choice model, i.e., using the highest score only makes sense
when the agent always selects the plan with the highest score, in which case the result becomes the
same as Section 51.2.5.2 and 51.2.5.3.

51.2.5.5 More Complicated Variants

Section 49.1.2 discusses the idea that MATSim’s typical choice model might be described by a
mixture-of-logit model. In that model, ǫni remains �xed per agent n and alternative i, but other
attributes such as the network conditions vary from one iteration to the next. In Equation (49.5),
ηni denotes these random, but simulation-generated, deviations from the average conditions; let
us add an index k for the iteration number, i.e., write ηkni. That is, it is postulated that a real person

would know both ǫni and ηkni, but the simulation only knows the latter (through the MATSim
score). Equation (49.5) then just describes the resulting choice distribution from what MATSim
o�en does, i.e., apply a logit model to scores that are not averaged.

At least for ηkni that are uncorrelated from one iteration to the next it is, however, clear that this
will not result in optimal average agent behavior – the agent may be pushed towards some choice by
a random �uctuation of the ηkni, but obtaining a much lower score from that choice in the average.
Overall, the agent would be better o� by �rst averaging the score of each alternative over many
iterations, and then basing her choice on those scores. This goes back to the converged scores of
Section 49.1.1.

Calculating bene�ts from a mixture-of-logit interpretation becomes thus rather involved: we
postulate that the agent sees the full MATSim score, plus some private ǫs; that she optimizes based
on the sum of these two; that the MATSim simulation, however, does not know the ǫs and thus
has to sample from the logit model; but that the economic utility has to include the e�ect of the ǫs
although we do not know them, as in Section 51.2.5.1. Overall, thus, assigning utility values to such
behavior as described by Equation (49.5) requires a better understanding of underlying behavioral
rationality. Section 97.4.6 discusses this further.

51.2.5.6 Summary

Overall, there seem to be two consistent strategies to aggregate various plan scores of an agent n
into one value:

• If the choice model is a logit model, then using the logsum term over all plan scores as the
agent’s utility Ui is consistent with the choice model.

• If the choice model is such that the plan with the highest score is selected, then using that score
as the agent’s utility Ui is consistent with the choice model.

In both cases, the choice model needs to be consistent with the behavioral assumption about the
agent, i.e., in the �rst case it needs to be assumed that the model does not know the true agent
choice beyond the choice probabilities and the model system thus has to repeatedly sample from
these probabilities. In the second case it needs to be assumed that the randomness has already been
“frozen” into the score computation (see Section 97.4.6) and the agent thus selects the plan with
the highest score.

360 The Multi-Agent Transport Simulation MATSim

In both cases, the calculated individual score di�erences that result from a policy measure can
be directly used in order to identify winners and losers.

Some economists claim that the modeler’s task of providing information for decision support
ends at this point (Ahlheim and Rose, 1989). However, in practice, some (monetary) valuation of
the resulting behavioral changes is o�en required. The next section reviews di�erent possibilities
to monetize and aggregate individual utility di�erences in the MATSim context.

51.3 Aggregating Individual Values

A�er having obtained the individual changes in terms of utility, it is o�en necessary to convert
these utility changes into monetary terms for economic evaluation, e.g., in BCA. Unfortunately,
no “correct” monetization or aggregation approach exists for individual utility di�erences. This is
re�ected by the ongoing discussion7 between transport policy appraisal experts:

1. The �rst stream argues in favor of a consistency in values used in demand modeling and ap-
praisal (Grant-Muller et al. (2001, p.255), Bickel et al. (2006, p.S4 and p.S8), and Proost8).
Values from literature should only be used if behavioral model values are not available. These
researchers are, however, aware that this procedure potentially limits the comparability of
projects in di�erent regions of the same state, or in di�erent member states of the EU (Euro-
pean Union). In consequence, additional indicators such as absolute time savings per income
group should also be reported to address equity issues.

2. In contrast to the above, Mackie and Worlsley (2013, p.12) state, that in the United King-
dom, “standard [VTTS] values per minute would be used across incomes, modes and regions.
Therefore, their practice is to use behavioral information for modeling but standard values
for appraisal.” Also Daly (2013) distinguishes between “valuation”, i.e., people’s willingness-
to-pay (or accept) for marginal changes, and “appraisal”, i.e., what these changes are worth
from a societal point of view.

3. Fowkes (2010), OECD (2006), and Gühnemann9 argue slightly di�erently, but in the same
direction: modeling and evaluation should be based on the best heterogeneous preferences
available; in the evaluation, additional weights should be introduced, e.g., to counter the ef-
fect of decreasing marginal utilities of money, or increasing VTTS with income, respectively.
These weights would, thus, de�ne the underlying equity concept of the appraisal method.

4. However, as Ahlheim and Rose (1989) point out, no approach to empirically determine these
weights is available without assuming some arbitrary a-priori speci�cation. In consequence,
every interpersonal comparison of utility changes requires some normative decision and the
weights need therefore to be determined on a political level.

One goal of this section 51.3 is to show the impact of a possible integration between behav-
ioral modeling and economic evaluation in the same agent-based framework. First, a conversion
into income equivalents, and second, a conversion into time equivalents (possibly followed by some
conversion into money terms).10 The choice of the procedure depends on a (normative) decision
whether one EUR or one h should be valued equally across individuals. It is, therefore, important

7 A similar overview on this discussion is given by Börjesson and Eliasson (2014).
8 S. Proost, personal communication.
9 A. Gühnemann, personal communication.
10 Kickhöfer (2014) shows that the choice of the monetization and aggregation procedure can have major impact on

the results when heterogeneity is assumed in user preferences.

Microeconomic Interpretation of MATSim for Benefit-Cost Analysis 361

that decision makers and modelers who deal with economic evaluation understand the possible
e�ects of that choice; simply going with the most common approach may not be advisable.

51.3.1 Income Equivalents

Basic Approach The most common approach used in welfare economics to convert utility
changes into money terms is to calculate the monetary amount 1Yn that one would need to give
or take from individual n to o�set the impact of the policy on the utility level 1Un. According to
Equation (51.1), it is calculated as

1Yn = −
1Un

λn
. (51.10)

Note that the marginal utility of money, λn, might be person-speci�c, e.g., dependent on the
person’s income.

The monetary amount −1Yn from above represents individual Consumer Surplus. Its absolute
value is, in the absence of income e�ects (see Footnote 4 in Section 51.2.1), equal to the Compen-
sating Variation and the Equivalent Variation (Daly et al., 2008). The overall welfare change 1W
for the population with individuals n = 1..N is then calculated by

1W = −

N
∑

n=1

1Yn . (51.11)

Equity The above approach is o�en criticized for equity reasons: if the marginal utility of money
is—in the behavioral model—assumed to decrease with income, and these values are directly (with-
out additional weights) used in economic evaluation, rich people will have a stronger impact in
the evaluation process than poor people. In turn, this might lead, e.g., to investments in expensive
high-speed trains on major corridors rather than a�ordable train services for everyone. In terms
of equity and public acceptance, such speci�cation in the appraisal method might not be desirable.
To counter this e�ect in economic evaluation, the use of standard or equity values is proposed in
the literature. In this context, Jara-Dı́az (2007, p.106�) introduces the social utility of money and
the social price of time. For a more general overview of possible solutions how to address equity
issues, see Rizzi and Steinmetz (2015).

A rather ad-hoc but simple possibility is to replace the person-speci�c marginal utility of money,
λn, with a population average,

λ :=
1

N

∑

n

λn , (51.12)

and then

1Yn = −
1Un

λ
. (51.13)

Following the argument by Fowkes (2010), OECD (2006) and Gühnemann et al. (2011) mentioned
above (Item 3), this would be one particular way to introduce the necessary weights. Alternatively,
one could think of �xing the social weight of every person to 1.0, and derive the social price of all
attributes included in the generalized costs from there (Jara-Dı́az, 2007, p.108f).

51.3.2 Time Equivalents

Another option to derive a monetary measure of welfare changes is composed of two steps: First, a
conversion of individual utility changes into equivalent hours of time as a resource (Jara-Dı́az et al.,
2008; Mackie et al., 2001). This would be the number of hours 1Tn that one would need to give or

362 The Multi-Agent Transport Simulation MATSim

take from individual n to o�set the policy impact on the utility level 1Un. Second, a monetization
of the resulting numbers through an arbitrary conversion factor, i.e., the monetary value of one
hour for the individual or for society.

In the MATSim sense, one could �rst calculate the corresponding time equivalent by

1Tn = −
1Un

µn
. (51.14)

Similar to the marginal utility of money, also the marginal utility of time as a resource, µn, might
be person-speci�c.

One option would be simply provide time equivalents, i.e., the BCA would return time equiva-
lents per invested monetary unit. In many situations, however, it is desirable to convert all impacts
of a policy into monetary terms, i.e., to compute,

1Yn = αn · 1Tn , (51.15)

and to compare 1Yn with investment or changes in external costs. The following options are then
possibilities for αn:

• The obtained time equivalents 1Tn could be converted in monetary terms using the person-
speci�c resource values of time, i.e.,

αn =
µn

λn
. (51.16)

This would obviously result in the same monetary amount as the income equivalent approach
from Equation (51.10).

• Following Mackie and Worlsley (2013), one could argue that the resource value of time should
be the same for every individual, and, thus, use some average value for monetization, e.g.,

αn ≡ α =
1

N

N
∑

n=1

µn

λn
.

• As another alternative, one could average over the marginal utility of money only, i.e.,

λ =
1

N

∑

n

λn

and then
αn =

µn

λ
. (51.17)

This would highlight that some persons are more pressed for time than others, while, at the
same time, using an equal value for the marginal utility of money. Clearly, this gives the same
result as Equations (51.12) and (51.13). It does, however, lend itself to a clearer interpretation:
�rst, all utility di�erences are converted to a comparable scale, i.e., time as a resource (Equation
51.14). Then, these times are converted to a monetary scale, using a conversion factor which
includes the pressure for time (i.e., the person-speci�c µn) but assumes an average marginal
utility of money.

In all cases, the overall welfare change 1W for the population with individuals n = 1..N is then

calculated identically to Equation (51.11), i.e., by 1W = −
∑N

n=1 1Yn.

Microeconomic Interpretation of MATSim for Benefit-Cost Analysis 363

51.3.3 Income vs Time Equivalents: Discussion

The sections above show how to monetize and aggregate individual utility di�erences though
income equivalents or time equivalents. To summarize:

• Income equivalents put emphasis on the individual willingness-to-pay, whereas time equiva-
lents focus on time pressure.

• The aggregation of income equivalents yields the overall equivalent monetary cash �ow that
would be generated by the project for the population considered. That is, one EUR is valued
equally across individuals.

• The aggregation of time equivalents yields the overall equivalent lifetime hours that would be
generated by the project for the population considered. That is, one hour of lifetime is valued
equally across individuals.

• A monetization of time equivalents using person- and activity-speci�c resource values of time
leads to the same total bene�t as directly aggregating income equivalents.

• A monetization of time equivalents using some average value of time as a resource, therefore
generally leads to a di�erent total bene�t than directly aggregating income equivalents. Such
an approach maintains the equal value for one h of lifetime.

51.3.4 Conclusion and Recommendations

Scoring Function A correct scoring function is central to correct MATSim functioning. The
mathematics and understanding of that scoring function need to be derived from time allocation
theory in economics. In particular, any marginal utility of travel time needs to be split into the
marginal utility of time as a resource (µ in the text above, and βdur in Section 3.4) and an addi-
tional direct marginal utility of time spent traveling (U ′

trav,q in the text above, and βtrav,mode,q in
Section 3.4).

Since most discrete choice models estimate the sum of these two, de�nition is required about
how to split up this sum. A somewhat ad-hoc way to achieve this is to �nd the mode with the
largest (= least negative) marginal utility of time and use that value for the marginal utility of time
as a resource. That reference mode’s direct marginal utility of time spent traveling is then zero; all
other modes’ direct marginal utilities of time spent traveling are relative to that of the reference
mode.

If one is interested in monetization, i.e., converting utility values into monetary terms, then ad-
ditionally the marginal utility of money as a resource (λ in the text above, and βm in Section 3.4)
needs to be known. Our current approach to obtain an approximation to λ is to force all monetary
preferences in the estimation of a choice model to a unique value. If this is not possible, then one
has to make a normative decision which monetary channel is considered most “neutral”, i.e., most
similar to an “unearned income” channel.

ChoiceModel and Score Aggregation MATSim agents normally have more than one plan; each
plan has a score. There are two consistent approaches to come up with a utility value from those
scores:

• Using a MNL choice model that makes probabilistic draws from those plans using their scores:
The correct aggregation is then the logsum of all scores.

• Using a choice model that selects the plan with the highest score: The correct aggregation is
then to use the score of that plan.

364 The Multi-Agent Transport Simulation MATSim

In both cases, the result is the total utility U of the choice set. In the �rst case, the logsum term
includes an expectation value of the randomness, typically denoted by ε. In the second case, all
randomness, if any, needs to be “frozen” into the alternatives, and included into the computation
of the score.

Monetization Individual utility di�erences resulting from a change in the transport system can
be converted into monetary terms by dividing them by λn. The result is the change in individual
user bene�t. Aggregating these individual bene�ts provides an indicator for the overall welfare
change. Since λn may vary among agents, e.g., according to their incomes, such approach will put
a higher weight on people with small λn, typically those with large incomes. An alternative is to use
an average λ for this conversion, even when the behavioral model (= the scoring function) uses
person-speci�c λn.

Acknowledgements

The authors are grateful to G. Liedtke (DLR Berlin) who provided very helpful and detailed feed-
back a�er reading two rather di�erent versions of this chapter. The authors would also like to thank
C. Winkler (DLR Berlin) for his useful comments, in particular on the use of the indirect utility
functions for economic evaluation. Finally, the authors are very thankful for the discussions with
F. B. Birke (DIW Berlin) who formalized the possible decomposition of the marginal utility of
money. The responsibility of any remaining errors stays with the authors.

PART IV

Scenarios

CHAPTER 52

Scenarios Overview

Marcel Rieser, Andreas Horni and Kai Nagel

This last book part summarizes MATSim scenarios, as located on the map in Figure 52.1 and listed
at http://matsim.org/scenarios.

Berlin

Switzerland

Munich
Sochi

Padang
Singapore

Sioux Falls

San Francisco Bay Area

Seattle
Toronto

Barcelona

Brussels

Cape Town

Cottbus
Dublin

Gauteng

London

New York City

Poznan
Rotterdam

Los Angeles

Seoul

Shanghai

Stockholm

Tampa

Tel Aviv

Trondheim

Cagayan de Oro City

Auckland

Caracas

İ zmir
Aliağ a

Nelson Mandela Bay
eThekwini

South Africa (freight only)

Kyoto

Zurich

Perth
Yarrawonga, Mulwala

Hamburg-Wilhelmsburg

Patna

Melbourne

Quito Ivory Coast

Baoding

Belgium

Yokohama

Samara City

Joinville

Tokyo

Santiago

Stuttgart

Figure 52.1: Locations with known MATSim scenarios. Most of them are described in this book.

How to cite this book chapter:

Rieser, M, Horni, A and Nagel, K. 2016. Scenarios Overview. In: Horni, A, Nagel, K and Axhausen,

K W. (eds.) The Multi-Agent Transport Simulation MATSim, Pp. 367–368. London: Ubiquity Press.

DOI: http://dx.doi.org/10.5334/baw.52. License: CC-BY 4.0

368 The Multi-Agent Transport Simulation MATSim

Although there are real-world scenarios based on free and public data such as the Santiago
or Cottbus scenarios (Chapters 84 or 66), many scenarios are not public, due to data privacy
issues. However, knowing about general methods and approaches adapted for scenario creation
and understanding problems faced during these processes might signi�cantly support and encour-
age the building of new scenarios. Each of the following chapters provides information on study
area, population and demand generation, activity locations, network, simulated modes, calibra-
tion and validation, achieved results, and associated projects. Further topics involve where to �nd
more information and where/when emphasis is put on certain scenario specialties—be it parsi-
monious data usage procedures, special modules used, or special modes simulated (such as the
parataxis in the Gauteng scenario). Some scenarios have been used for years, with ongoing further
development. We target the latest version when reporting.

Di�erent levels of MATSim involvement are possible. For some regions and projects, MATSim
is, for example, used only for tra�c assignment, where for others, the complete demand is endoge-
nously handled. Couplings with other forecasting models for transport demand generation have
been successfully applied, like the coupling with TASHA (Travel Activity Scheduler for Household
Agents) for Toronto, or the combination of MATSim with the Tel Aviv activity-based transport
model.

CHAPTER 53

Berlin I: BVG Scenario

Andreas Neumann

The BVG is Berlin’s main public transport company, running virtually all services, with the
exception of the S-Bahn urban rail system. This includes bus services, the subway network, the
largest tram network in Germany and ferry services. The bus network consists of 149 di�erent
lines, 6468 directed stops and a vehicle �eet of 1316 buses (BVG, 2012). In total, about 937 million
trips were served by BVG in 2012, 41% of them by bus.

With the opening of the new Berlin and Brandenburg BER international airport, Berlin expects
major travel demand changes; importantly, the existing airport Tegel, now exclusively served by
BVG-operated buses, will close. BVG thus had substantial interest in a new Berlin area transport
model. To deal with these changes, the model not only had to provide a base for future regional
transport system planning, but also had to supply detailed information about di�erent user groups’
passenger �ows. Such user group-speci�c analyses were very important for BVG in providing a
platform for their future business strategies; thus, an agent-based model was speci�cally requested.
Two scenarios were required, one for the year 2008 (actual state), and one for the year 2015 (predic-
tion). To meet the above needs, PTV (2013), Senozon (2013) and VSP (2012) at TU Berlin o�ered
a combined model consisting of both a static macroscopic model built with VISUM, as well as
an integrated, activity-based demand and dynamic tra�c assignment model, built with MATSim.
During the project, e�orts were made to base both models on the same data sources and to ensure
that both modeling processes interacted with each other to allow data exchange.

The model contains about 115 000 links, about 15 000 directed stops, about 6 million agents, and
539 public transport lines operated by BVG and other Berlin and Brandenburg state companies.
Besides motorized individual tra�c and public transport, the model also considers biking and
walking. For a more in-depth description of the model, its generation and its calibration, the reader
is referred to the work of Neumann et al. (2014). The model has extensively been used by Neumann
(2014, Ch. 7/8) for the development of the minibus module presented in Chapter 17.

How to cite this book chapter:

Neumann, A. 2016. Berlin I: BVG Scenario. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)TheMulti-Agent

Transport Simulation MATSim, Pp. 369–370. London: Ubiquity Press. DOI: http://dx.doi.org/10.5334/

baw.53. License: CC-BY 4.0

370 The Multi-Agent Transport Simulation MATSim

Figure 53.1: The city of Berlin and its transit network.

CHAPTER 54

Berlin II: CEMDAP-MATSim-Cadyts Scenario

Dominik Ziemke

To correctly model initial demand properties not included in MATSim iterations in speci�c studies
(i.e., activity choice), suitable data are needed. Travel diaries containing departure times, mode
choice decisions and activity locations are widely used. However, much of this data source content,
particularly location information, is considered sensitive in terms of data privacy legislation and
thus increasingly di�cult to obtain and process in many areas (e.g., in Germany and the United
States; Ziemke et al., 2015).

The Berlin II scenario (also referred to as the CEMDAP-MATSim-Cadyts scenario according to
the applied models in its setup), is the outcome of an alternative approach relying exclusively on
freely available or easy-to-obtain input data. All of these data do not rely on individual trajectories,
but instead on “anonymous” data that is aggregated so much that the data providers are no longer
concerned about privacy issues.

The starting point for this scenario is a publicly available commuting matrix containing homes
and workplaces of workers with social security on the municipality level. Based on this information,
it is possible to model morning and evening commuting peaks.

To obtain a full-population demand representation, two further major modeling steps are
required. First, in cases like the Berlin case, see below, where the commuter matrix spatial res-
olution is quite coarse, higher resolution O-D information is necessary. Second, a procedure is
needed to model secondary activities, i.e., all other activities beyond home and work.

The importance of the �rst step becomes obvious when looking at the German case; here, the
whole city of Berlin, with 3.4 million inhabitants, is represented by exactly one zone (Bundesagen-
tur für Arbeit, 2010). In the United States, commuting matrices are typically available only on
a county-to-county level. Since such location-aggregation-based matrices may become the rule,
rather than the exception, in privacy-sensitive societies, a (generalizable) method to attain O-D
information at a higher resolution is needed (Ziemke et al., 2015). The standard solution would be
to estimate an activity location choice model. This, however, is di�cult if no trip data to estimate

How to cite this book chapter:

Ziemke, D. 2016. Berlin II: CEMDAP-MATSim-Cadyts Scenario. In: Horni, A, Nagel, K and Axhausen, K W.

(eds.)TheMulti-Agent Transport SimulationMATSim, Pp. 371–372. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.54. License: CC-BY 4.0

372 The Multi-Agent Transport Simulation MATSim

the model is available. O-D matrix estimation studies (van Zuylen and Willumsen, 1980) suggest
that tra�c counts may be used to make an initially rough O-D matrix more appropriate for a region.
As MATSim is not based on O-D �ows, but on full daily plans, the issue comes down to whether a
procedure exists to update these initial full daily plans using tra�c counts. In the approach used to
create the Berlin II scenario, a procedure proposed by Flötteröd et al. (2011) and implemented in
the so�ware Cadyts—explained in Chapter 32—is applied for this task. Speci�cally, random draws
of possible home and work locations within the home or work municipality given by the commuter
matrix are made. Various MATSim plans, each containing one pair of home and work locations,
are created for each agent. Then, the Cadyts calibration procedure is applied within the iterative
MATSim simulation to select plans and locations more likely to occur with given tra�c counts.

As stated above, however, full daily plans (as opposed to mere home-work-home commuting pat-
terns) are needed. Therefore, the second modeling step, the modeling of secondary activities for
each individual in the region, needs to be addressed. For the Berlin II scenario, CEMDAP (Com-
prehensive Econometric Microsimulator for Daily Activity-Travel Patterns (Bhat et al., 2008)) is
used to generate initial complete daily plans for each individual. On one hand, however, no CEM-
DAP parameter set is available for Berlin. On the other hand, and more importantly, one major goal
of the study creating the Berlin II scenario was to show its generalizability (Ziemke et al., 2015).
So, the model parameters of CEMDAP estimated for the Los Angeles region (the estimation con-
text) are retained and then used to generate initial plans for individuals in Berlin (the application
context in the current paper), based on Berlin demographic data.

To sum up, home and work municipalities are taken from the commuter matrix. Within these
municipalities, a set of (more precisely spatially de�ned) potential home and work locations are
randomly chosen for each agent. Full daily plans incorporating the various potential locations of
each agent are generated with CEMDAP, based on a parameter set from another region.

Then, the Cadyts calibration procedure is used to select those initial full daily plans most consis-
tent with Berlin tra�c count data. In other studies, Cadyts has already been applied to update route
choice predictions, both for car (Flötteröd et al., 2011a) and for public transit (Moyo Oliveros and
Nagel, in press). However, it has not been used to update full daily activity-travel plans, as it was in
the procedure that created the Berlin II scenario.

The Berlin II scenario is thus an activity-plan-based MATSim transport model for Berlin based
exclusively on freely, or readily, available data. If a commuter matrix, some basic population
demographics, and tra�c counts (or, theoretically, another suitable data source on which to run
the calibration procedure) are available for a particular regional context, the approach used to cre-
ate the Berlin II scenario can be transferred to that other context. In fact, the Berlin II scenario
itself should be seen as a transferred model, because initial plans generated by CEMDAP are based
on parameter estimates from another geographic region (the Los Angeles area).

Through a validation based on the Berlin 2008 SrV (System repräsentativer Verkehrsbefragun-
gen (Ahrens et al., 2009)), an extensive, regularly-conducted travel survey, the created transport
demand representation quality has been successfully tested. So far, the Berlin II scenario exists for
a 1% and a 10% population sample of all persons, i.e., including workers without social security,
as well as non-working people, aged 18 and above, for the study region. Currently, only motorized
tra�c is considered. Stability tests, showing that plausible agents’ daily plans continue to be chosen
when Cadyts calibration functionality is switched o�, have been successfully carried out. This is a
clear indication that the scenario is applicable and meaningful for policy studies.

Further improvements, like the addition of public transport and a more realistic representation
of the population, are planned. Moreover, similar approaches to integrating activity-travel pattern
generators (e.g., the FEATHERS model) with MATSim in transport simulation are planned.

CHAPTER 55

Switzerland

Andreas Horni and Michael Balmer

The Switzerland scenario was initially created for the project Westumfahrung (Balmer et al., 2009a)
and serves as the base for the very frequently used Zürich scenario (Chapter 56).

Two main branches can be distinguished. The �rst, older one is based on a one-to-one translation
of the Swiss population census (Swiss Federal Statistical O�ce (BFS), 2000); the second applies
approaches from the IPF (Iterative Proportional Fitting) family, reported by Müller and Axhausen
(2013, 2012); Müller (2011b,a, 2012) to generate the synthetic population.

The scenario’s study area covered all of Switzerland. Due to administrative borders, no demand
and supply data were available for adjoining countries, which leads to boundary e�ects; studies
focusing on Swiss border areas are di�cult.

The population was derived from the Swiss Census of Population 2000 (Swiss Federal Statistical
O�ce (BFS), 2000). The complete Swiss population was modeled, resulting in around 7.5 million
agents.

This population’s home locations were given at hectare level and work locations were speci�ed at
municipality level from commuter matrices, a component of the Swiss Census of Population 2000
(Balmer et al., 2009a, p.35). A very good overview, in German, of the population generation, its
initial individual demand and activity locations can be found in Meister et al. (2009). Further
information is given by Ciari et al. (2008); Meister et al. (2010); Balmer et al. (2009a, 2010, 2009b).

Travel demand was basically taken from the 2000 and 2005 National Travel Surveys (Swiss
Federal Statistical O�ce (BFS), 2006) (Swiss microcensus), although this sample substantially
underestimated freight tra�c and ignored cross-border tra�c of non-Swiss residents. Freight
tra�c for Switzerland was missing at that time (except Zürich, see next chapter). Cross-border
tra�c was derived from mode-speci�c, hourly origin-destination matrices given by Vrtic et al.
(2007). These were disaggregated to around 600 000 individual MATSim plans for the whole coun-
try, which contain the cross-border tra�c originating outside Switzerland. Non-Swiss, cross-border
tra�c starting in Switzerland was supposed to be negligible.

How to cite this book chapter:

Horni, A and Balmer, M. 2016. Switzerland. In: Horni, A, Nagel, K and Axhausen, K W. (eds.)

The Multi-Agent Transport Simulation MATSim, Pp. 373–374. London: Ubiquity Press. DOI: http://

dx.doi.org/10.5334/baw.55. License: CC-BY 4.0

374 The Multi-Agent Transport Simulation MATSim

The activity location data set, comprising home, work, education, shopping and leisure loca-
tions, was also derived from the 2000 Swiss Census of Population and the 2001 Federal Enterprise
Census (Swiss Federal Statistical O�ce (BFS), 2001), providing hectare level information. Facility
generation was described by Balmer et al. (2009a, p.33).

For car tra�c, navigation networks from Teleatlas (Tele Atlas MultiNet, 2010) and NAVTEQ
(NAVTEQ, 2011) were available. The most-used network was the planning network derived from
from the Swiss National Transport Model (Vrtic et al., 2003).

The public transport simulation network was derived from the National Transport Model of
the UVEK (Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation),
described by Vrtic and Fröhlich (2010).

The scenario simulated car and public transport; schedules for public transport were given at the
municipality level. Fine-granular schedules were not available then, but were in preparation. The
modes walk and bike were usually “teleported”.

Calibration was mainly performed for modal split and distance distributions; utility function
values were set accordingly.

For validation, count data on city level, cantonal level and national level (ASTRA, 2006) were
available from various sources, resulting in 600 links measured for Switzerland. An average work-
ing day (Monday to Thursday, excluding public holidays) was used for comparisons in current
projects.

