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Dedicated to Prof. Peter Marwedel



Foreword

Professor Dr. Peter Marwedel has made many invaluable contributions to research
in the Electronic Design Automation area and specifically to the field of Embedded
System Design. Already in his young years, he placed a landmark in the field
of high-level synthesis and hardware description languages. In the mid-1970s,
he started to work on high-level synthesis—almost a decade before it became
mainstream. Peter Marwedel also laid ground for the field of retargetable compi-
lation, which he considered as a special case of high-level synthesis in which the
architecture was fixed. He designed the very first approach for generating a compiler
from a description of the processor architecture and published this work already in
the early 1980s—long before compilers were an accepted topic at EDA conferences.
In the early 1990s, Peter Marwedel realized that compilers for embedded processors
will become a crucial element in the toolchain for designing efficient embedded
systems. One of his most prominent activities in the area of compilers for embedded
systems is that of energy-aware compilation where he considered the energy
efficiency of compiled code. His work on exploiting scratchpad memories for
improving energy efficiency is well-known throughout the world. His engagement
in memory-architecture aware compilation is highly influential and can be seen as
an early contribution towards green computing.

In addition to being an outstanding researcher, Peter Marwedel has also proven
himself as a great educator and passionate teacher in the classroom. This is best
evidenced by his textbook “Embedded System Design” which has become standard
literature in higher-level education on Embedded Systems for over a decade now.
His excellence in teaching is documented, e.g., by the invitation of the Advanced
Institute of Information Technology (AIIT) to give a 1-week compact course on
embedded system design to Korean professors in Seoul in 2008 or by an invited talk
on embedded system education during the cyber-physical systems program at the
annual meeting of the US National Science Foundation (NSF).

While this Festschrift features a variety of contributions from his peers in the
professional community, we would like to take this opportunity to emphasize Peter
Marwedel’s role as an exemplary advisor for his students, all the way from freshmen
studying for their BS and MS degrees to PhD graduates and rising university
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viii Foreword

professors. His dedicated mentorship and valuable advice has had a tremendous
impact on many careers, as the following personal quotes show:

Back in July 1995, I was a student at the University of Dortmund, working hard to complete
my diploma thesis. At that time, my advisor Prof. Marwedel left Dortmund for a sabbatical
at the University of California. I vaguely remember the day when he sent me an email,
asking me if I would be interested to study for PhD in the USA. It took me less than 5 min
to respond with ’No, thank you!’ as I had always envisioned to spend my life and work
in Germany. Nine days later Peter Marwedel changed my life with a second email that
essentially read ’Think twice!’. So I did. Long story short, I moved to California and live
there since. I will be forever grateful for that second email which opened up a once-in-a-
lifetime opportunity for my successful career. Thank you!

Rainer Dömer (Professor, University of California at Irvine, USA)

I got in touch with Peter Marwedel’s chair for the first time in 1996 in the context of
my student project work on HW/SW co-design and FPGA synthesis. With my successful
graduation 1998, Peter offered me a PhD position in his group so that I had the chance to
collaborate with the IMEC in Leuven on high-level source code optimization techniques.
Having completed my PhD in 2004, Peter continued to support me so that I was able
to establish a team working on compilers for real-time systems. Besides this excellent
mentorship for more than a decade that finally led my to my current professorship at
TUHH, I always appreciated Peter Marwedel’s team spirit very much. Besides professional
activities, team building was always very important for him, leading to countless memories
of garden parties, barbecues with students in his chair’s backyard, bicycle tours, workshops
in the middle Rhine Valley, etc. This high degree of support and friendship is extraordinary
and I am happy about the opportunity to say thank you to Peter Marwedel in this Festschrift.

Heiko Falk (Professor, Hamburg University of Technology, Germany)

Even though I started as a postdoc in Peter Marwedel’s research group in 2010, I was able
to learn a lot from his decades of experience in teaching, scientific writing, and designing
research proposals. We were always eager to experiment with new approaches, such as
flipped classroom teaching, and to explore new research topics. All of this has had a
significant influence on my current work as professor at Coburg University. The extensive
research on compilers in Peter’s group also contributed to obtaining my new position at
NTNU. An invaluable benefit when working in a large, well-funded research group was
that I got to travel to so many interesting places and meet colleagues from all around the
world. Traveling was also a common topic on the private level, since Peter loves to travel
and to photograph. I fondly remember many hours of browsing through Peter’s diligently
prepared photo albums and listening to the stories of his trips. Going to Norway, I hope
that I can provide an exciting destination for an upcoming trip. Thanks a lot for everything,
Peter, and see you soon in Trondheim!

Michael Engel (Professor, NTNU, Trondheim, Norway).

Numerous anecdotes just like these could be added here, but that would fill an
entire book by itself. So without further ado, we conclude this foreword here with a
big THANK YOU to Peter Marwedel.

Workshop at TU Dortmund, July 2019 Rainer Dömer
Heiko Falk

Michael Engel



Acknowledgements

The workshop on embedded systems, dedicated to Peter Marwedel on the occasion
of his 70th birthday, and its festschrift have been partially supported by Deutsche
Forschungsgemeinschaft (DFG), Collaborative Research Center SFB 876 (http://
sfb876.tu-dortmund.de/), and Alumni der Informatik e.V. TU Dortmund.

ix

http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/


Contents

1 Peter Marwedel and the Department of Computer Science
of the TU Dortmund University . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Gernot Fink and Heinrich Müller

2 Testing Implementation Soundness of a WCET Analysis Tool . . . . . . . . 5
Reinhard Wilhelm, Markus Pister, Gernot Gebhard,
and Daniel Kästner

3 The Dynamic Random Access Memory Challenge
in Embedded Computing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Matthias Jung, Christian Weis, and Norbert Wehn

4 On the Formalism and Properties of Timing Analyses
in Real-Time Embedded Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Jian-Jia Chen, Wen-Hung Huang, Georg von der Brüggen,
Kuan-Hsun Chen, and Niklas Ueter

5 ASSISTECH: An Accidental Journey into Assistive Technology . . . . . 57
M. Balakrishnan

6 Reflecting on Self-Aware Systems-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Bryan Donyanavard, Tiago Mück, Kasra Moazzemi, Biswadip
Maity, Caio Batista de Melo, Kenneth Stewart, Saehanseul Yi,
Amir M. Rahmani, and Nikil Dutt

7 Pushing the Limits of Parallel Discrete Event Simulation
for SystemC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Rainer Dömer, Zhongqi Cheng, Daniel Mendoza, and Emad Arasteh

8 Impact of Negative Capacitance Field-Effect Transistor
(NCFET) on Many-Core Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Hussam Amrouch, Martin Rapp, Sami Salamin and Jörg Henkel

xi



xii Contents

9 Run-Time Enforcement of Non-functional Program Properties
on MPSoCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni,
Sascha Roloff, Wolfgang Schröder-Preikschat,
and Stefan Wildermann

10 Compilation for Real-Time Systems a Decade After PREDATOR . . . . . 151
Heiko Falk, Shashank Jadhav, Arno Luppold, Kateryna Muts,
Dominic Oehlert, Nina Piontek, and Mikko Roth

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



Contributors

Hussam Amrouch Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Emad Arasteh Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

M. Balakrishnan Indian Institute of Technology Delhi, Delhi, India

Jian-Jia Chen TU Dortmund, Dortmund, Germany

Kuan-Hsun Chen TU Dortmund, Dortmund, Germany

Zhongqi Cheng Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Bryan Donyanavard University of California, Irvine, CA, USA

Rainer Dömer Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Caio Batista de Melo University of California, Irvine, CA, USA

Nikil Dutt University of California, Irvine, CA, USA

Heiko Falk Institute of Embedded Systems, Hamburg University of Technology
(TUHH), Hamburg, Germany

Gernot Fink TU Dortmund, Dortmund, Germany

Gernot Gebhard AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Jörg Henkel Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Wen-Hung Huang TU Dortmund, Dortmund, Germany

Shashank Jadhav Institute of Embedded Systems, Hamburg University of Tech-
nology (TUHH), Hamburg, Germany

Matthias Jung Fraunhofer IESE, Kaiserslautern, Germany

xiii



xiv Contributors

Daniel Kästner AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Arno Luppold Institute of Embedded Systems, Hamburg University of Technol-
ogy (TUHH), Hamburg, Germany

Pouya Mahmoody Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlan-
gen, Germany

Biswadip Maity University of California, Irvine, CA, USA

Daniel Mendoza Center for Embedded and Cyber-Physical Systems, University of
California, Irvine, CA, USA

Kasra Moazzemi University of California, Irvine, CA, USA

Kateryna Muts Institute of Embedded Systems, Hamburg University of Technol-
ogy (TUHH), Hamburg, Germany

Tiago Mück University of California, Irvine, CA, USA

Heinrich Müller TU Dortmund, Dortmund, Germany

Dominic Oehlert Institute of Embedded Systems, Hamburg University of Tech-
nology (TUHH), Hamburg, Germany

Nina Piontek Institute of Embedded Systems, Hamburg University of Technology
(TUHH), Hamburg, Germany

Markus Pister AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Behnaz Pourmohseni Friedrich-Alexander-Universität Erlangen-Nürnberg,
Erlangen, Germany

Martin Rapp Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Amir M. Rahmani Technische Universität Wien, Vienna, Austria

Sascha Roloff Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany

Mikko Roth Institute of Embedded Systems, Hamburg University of Technology
(TUHH), Hamburg, Germany

Sami Salamin Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Wolfgang Schröder-Preikschat Friedrich-Alexander-Universität Erlangen-
Nürnberg, Erlangen, Germany

Kenneth Stewart University of California, Irvine, CA, USA

Jürgen Teich Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Ger-
many

Niklas Ueter TU Dortmund, Dortmund, Germany

Georg von der Brüggen TU Dortmund, Dortmund, Germany



Contributors xv

Norbert Wehn TU Kaiserslautern, Kaiserslautern, Germany

Christian Weis TU Kaiserslautern, Kaiserslautern, Germany

Stefan Wildermann Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlan-
gen, Germany

Reinhard Wilhelm Universität des Saarbrücken, Saarbrücken, Germany

Saehanseul Yi University of California, Irvine, CA, USA



Chapter 1
Peter Marwedel and the Department of
Computer Science of the TU Dortmund
University

Gernot Fink and Heinrich Müller

1.1 Introduction

Peter Marwedel was appointed Professor at the Department of Computer Science
of the University of Dortmund in 1989. He represented the area “Computer
Engineering and Embedded Systems” and headed the Chair of Computer Science
12 until his retirement in 2014. During this time, he has made a great contribution
to the Department of Computer Science, which continues to have a lasting effect
today. The following presentation is intended to give an idea of the extraordinary
breadth and importance of his activities in teaching, academic self-government,
basic research, and technology transfer.

1.2 Teaching

A special passion of Professor Marwedel is teaching, which is not self-evident for
a dedicated and successful researcher. In Dortmund, he was extremely involved in
basic teaching, which is particularly challenging given the high number of students
attending these courses. For many years he has held the introductory compulsory
lecture “Computer Structures” and the elective lectures “Embedded Systems” and
“Computer Architecture.” Through these courses, he has substantially contributed to
the basic training in technical computer science. His lectures were extremely well
prepared. The material was thoughtfully selected in all details, didactically carefully
prepared, and presented objectively and clearly. The courses have gained a high

G. Fink · H. Müller (�)
TU Dortmund, Dortmund, Germany
e-mail: Gernot.Fink@tu-dortmund.de; heinrich.mueller@cs.uni-dortmund.de
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2 G. Fink and H. Müller

reputation among the students. This was reflected in consistently excellent student
ratings and led to Professor Marwedel receiving the prestigious Teaching Award of
TU Dortmund University in 2003.

From the course “Embedded Systems” the first edition of the English textbook
“Embedded System Design” emerged in 2003. The book has established itself as an
international textbook and is often cited. Professor Marwedel has adapted it over the
years to current developments. The third edition has been published in 2018.

In addition to traditional teaching, Professor Marwedel has shown great interest
in the possibilities of new media and has made strong use of it. On YouTube he
has made available a significant number of educational videos that are particularly
associated with his courses “computer structures” and “computer architecture.” The
design of the videos focuses on the essentials and avoids superfluous, distracting
visual effects.

In his last active years at the department, Professor Marwedel experimented
with the concept of the inverted classroom as a natural consequence. This form
of teaching is still little used at German universities.

Particularly noteworthy is the fact that Professor Marwedel has conveyed his
concept of education in the field of embedded systems beyond its actual imple-
mentation. It was the subject of the Workshop on Embedded and Cyber-Physical
System Education (WESE) organized by him in Finland in 2012. In the same year,
he was invited to the annual meeting of the cyber-physical systems program of
the prestigious National Science Foundation (NSF) in Washington, USA, where he
gave a talk focusing on the Dortmund education concept in the field of Embedded
Systems.

Finally, it should be mentioned that Professor Marwedel contributed to the
internationalized teaching of the Department by participating in the English Mas-
ter’s program “Automation and Robotics” of the TU Dortmund University and his
contacts to Indian Institutes of Technology, which have led to internships of Indian
students in Dortmund.

1.3 Academic Self-Government

Professor Marwedel has always been active in the Department’s academic admin-
istration and beyond. He was Dean of Studies of the Department and member
of the Academic Senate of TU Dortmund. But here, too, his commitment to
teaching is particularly reflected. He was chairman of the teaching committee of
the Department and chairman of the educational committee of the Academic Senate
of the university. He was Dean of Studies of the Department from 2012 to 2014.
Beyond the university, he has worked on standards for the accreditation of computer
science curricula in the national organizations ASIIN and AVI.
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1.4 Basic Research and SFB 876

Professor Marwedel has contributed significantly to the international visibility of
the Department of Computer Science through his research in embedded and cyber-
physical systems. He has received several international honors, in particular the
EDAA Lifetime Achievement Award (2013), the ESWEEK Lifetime Achievement
Award (2014), and the ACM SIGDA Distinguished Service Award (2014). In 2010
he became an IEEE Fellow and a Fellow of the Design, Automation and Test
Conference in Europe (DATE).

A very special contribution to research at the Department and the university
was made by Professor Marwedel as co-initiator of the Collaborative Research
Center (CRC/SFB) 876, together with the main initiator Prof. Dr. Katharina Morik,
spokeswoman for the CRC. The CRC program of the Deutsche Forschungsgemein-
schaft (DFG) enjoys a high reputation and is extremely competitive. The topic of the
SFB 876 is “Providing Information by Resource-Constrained Data Analysis.” The
collaborative research center SFB 876 brings together data mining and embedded
systems. On the one hand, embedded systems can be improved using machine
learning. On the other hand, data mining algorithms can be realized in hardware,
e.g. FPGAs, or run on GPGPUs. The restrictions of ubiquitous systems in computing
power, memory, and energy demand new algorithms for known learning tasks. At
the time of the application, merging data analysis and resource constraints was
visionary—today it is highly relevant in many applications. In the SFB 876, about 20
research groups of the Department, of TU Dortmund University, and of neighboring
universities are working together since 2011 for 12 years in an interdisciplinary
manner.

1.5 Technology Transfer and ICD

Professor Marwedel has not only been active in basic research, but has also dealt
with applied research and the transfer of scientific results to the economy. For
many years he is CEO of the “Informatik Centrum Dortmund e.V.” (ICD) and
head of the Embedded Systems Group at ICD. The ICD was founded in 1989 from
the Department of Computer Science at the University of Dortmund. The ICD is
available to companies from all sectors of the economy. Its goal is to accelerate the
transfer of current research results in computer science and information technology
into industrial products. Under Professor Marwedel’s leadership, the ICD has
become a well-established, successful, and economically stable association.

1.6 Conclusion

The Department of Computer Science is extremely grateful to Professor Marwedel.
On the occasion of his seventieth birthday, it wishes him all the best for the future.
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Chapter 2
Testing Implementation Soundness
of a WCET Analysis Tool

Reinhard Wilhelm, Markus Pister, Gernot Gebhard, and Daniel Kästner

2.1 Introduction

Timing verification of a set of hard real-time tasks to be executed on a given
hardware platform attempts to prove that all tasks in the set when executed on that
platform always respect their deadlines, i.e., each task finishes its execution within
its deadline. Traditionally, timing verification is split into two subtasks: a timing
analysis also known as WCET analysis, which statically determines upper bounds
on the execution times of the tasks, and a schedulability analysis, which takes these
upper bounds and attempts to verify that all tasks in the given set, assuming these
upper bounds on their execution times, will respect their deadlines.

A preliminary version of this paper appeared in [16].

R. Wilhelm (�)
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2.1.1 Tool Qualification

WCET analysis is applied to time-critical and safety-critical embedded-system
software in problem-aware parts of the embedded-systems industry. Such systems
have to be developed in accordance with international safety norms, e.g., DO-
178B/C, DO-254, IEC 61508, and ISO 26262. While there are differences between
these norms, in particular regarding prescriptiveness and required level of rigor, they
have many aspects in common. All of them include guidance on the use of software
tools as a part of the development and verification process of safety-critical software.

The criticality level (also known as the design assurance level (DAL) or safety
integrity level (SIL)) of a component determines the effort to invest and the methods
required or recommended to deliver assurance of the correct functioning of the
component. The criticality level is derived from the impact of a failure of the
component on the functioning of the system. Similarly, the required activities to
provide confidence in the correct functioning of a software tool depend on its
criticality with respect to the overall system. For example, DO-178C, the current
international standard for avionics systems, defines five different tool qualification
levels (TQLs). The TQL is determined by the potential tool impact and the design
assurance level of the software. There are three tool-impact categories; the most
critical, Category 1, applies to tools whose output becomes part of the airborne
software. Similar considerations are also made in other norms, e.g., the ISO 26262
defines a tool confidence level (TCL) in a very similar way.

The overall goal of tool qualification is to provide confidence that the tool
operates correctly, i.e., according to its functional specification, in the operational
context of the tool user. In the following, we will focus on the tool qualification
requirements of the avionics industry, which are the most rigid of the safety-
critical industries. Certification of avionics systems is regulated by the international
standard DO-178C [1]. WCET analysis tools fare under verification tools. Veri-
fication tools have no overly rigid certification requirements, unlike development
tools: their impact category is Category 2 or Category 3, mostly depending on
whether the output of the tool is used to justify the elimination or reduction of other
verification or development activities or not. A prerequisite for tool qualification is
a specification of the tool functionality. The tool operational requirements (TOR)
specify the tool functions and technical features, which are stated as low-level
requirements on tool behavior under normal operating conditions. Another required
input is the verification test plan (VTP), which defines test cases demonstrating the
correct functioning of all specified requirements of the TOR. Test-case definitions
include the overall test setup as well as a detailed structural and functional
description of each test case, i.e., how the individual test case works and what the
expected result is.

Certification becomes more challenging through DO-333, the formal-methods
supplement to DO-178C. It asks for a statement that a formal method including the
underlying theory is adequate for solving the corresponding verification problem.
This introduces and enforces soundness of the methods and tools.
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Since the required effort for tool qualification can be high, ideally the software
qualification process is supported by a qualification support kit (QSK) supplied
by the tool provider. It must include TOR and VTP and typically provides a
validation suite, which allows users to execute the relevant test cases in the relevant
operational context. TOR, VTP, and a test execution report become part of the
certification package. Furthermore, it is typically required for a tool provider to
supply qualification software life cycle data to demonstrate that the development
process and the invested efforts to assure correctness, quality, and traceability are
adequate for usage in a safety-critical system context. The qualification software
life cycle is not covered in this article.

DO-178C exhales a test-based spirit: many verification activities are test based.
Well-defined coverage criteria try to capture to which extent the behavior of the
system under test has actually been exerted during testing. Note that in case of a
static verification tool, test coverage does not apply to the code to be analyzed: a
sound static-analysis tool provides full data and control coverage, i.e., it analyses
all paths and takes into account all potential data values for its analyses. What is
needed in case of the microarchitectural analysis, which is the focus of this article, is
to demonstrate the correctness of the microarchitecture model used by the analyzer.
To this end it is the instruction set architecture (ISA) and the set of paths through the
execution platform that need to be covered. Huge sets of test traces in qualification
suites are used at tool-qualification time to cover the sets of paths through the
execution platform.

Note the difference to measurement-based WCET analyses. It is known that they
are in general unsound. In order to provide a sufficient level of confidence in the
real-time behavior of industrial-size code they need an unacceptably huge set of
traces and accordingly an excessive effort at verification time. In the case of a static
WCET analysis tool, the testing effort is applied at tool-qualification time when
ample time is available.

2.1.2 Predictability

Timing predictability [3, 15] has long been recognized as essential for achieving
precise results of timing estimation at reduced analysis effort. In the context of the
current article, it is worth mentioning that it also reduces the number of test cases
for the validation of an abstract architectural model. In general, an increase in the
timing predictability of the underlying architecture leads to a decreasing number
of different instruction flow paths through the processor pipeline since they feature
less average-case performance-enhancing micro-optimizations like instruction and
data queues and buffers, data forwards, etc. Such architectures show a more regular
hardware design.
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2.1.3 WCET Analysis

Performance-enhancing architectural components such as caches, pipelines, and
speculation have made WCET analysis difficult. Execution times of consecutively
executed instructions do not compose easily because instruction execution times are
now dependent on the execution state in which they are executed. In the composition
A;B the execution time of statement B depends on the execution state produced
by executing statement A. The variability of execution times grows with several
architectural parameters, e.g., the cache-miss penalty and the costs for pipeline stalls
and for control-flow mispredictions. As approaches using exhaustive measurements
are infeasible due to the size of the search space, abstraction is applied leading to
an over-approximation of the set of potential executions. This over-approximation
introduces remaining uncertainty in the results of the microarchitectural analysis,
which grows with the same architectural parameters mentioned above unless the
architectural platform is predictable [18], see Sect. 2.1.2.

2.1.4 The Central Idea: Proving Safety Properties

We needed to solve the WCET problem for architectures with state-dependent
execution times. Figure 2.1 shows that this problem could be decomposed into
many subproblems. The main problem, specific for WCET analysis, was the
microarchitectural analysis, a combined cache and pipeline analysis. Let us describe
the central idea behind this phase in our WCET analysis method [17], first in
a conceptual way, i.e., not quite like it is implemented, later closer to how it is
implemented:

• We define any architectural effect that causes an instruction to execute longer
than its fastest execution time to be a timing accident. Typical such timing
accidents are cache misses, pipeline stalls, bus-access conflicts, or branch
mispredictions. Each timing accident is associated with a timing penalty. Timing
penalties may be constant, but may also be execution-state dependent. A cache-
miss penalty may be constant if the bus is always guaranteed to be free for the
cache reload. If this guarantee cannot be given, however, its size depends on
the execution state, namely whether the bus happens to be free.

The property that the execution of an instruction at some program point will
not cause a particular timing accident is then a safety property. The occurrence
of a timing accident thus violates a corresponding safety property.

• We then use an appropriate method for the verification of safety properties
to prove that for the instructions in the program some of the potential timing
accidents will never happen. The goal is to prove as many of such safety
properties as possible. Conceptually, the safety properties shown to hold could
be used to reduce the worst-case execution-time bound for an instruction, which
a naive, sound WCET analysis would have to assume, by the cost for the excluded
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Fig. 2.1 The architecture of the aiT tool

timing accidents. In practice, pipeline analysis drives a cycle-wise transition,
which considers the abstract execution state, e.g., makes no transition under a
cache miss if a cache miss can be excluded.

• We then prove these safety properties by abstract interpretation (AI) [4] in the
following way: Compute invariants at each program point, in our case an over-
approximation of the set of execution states that are possible when execution
reaches this program point. Derive the above mentioned safety properties, that
certain timing accidents will not happen, from these invariants. For example, AI
computes an abstract cache state at each program point, which overapproximates
the sets of concrete cache states that may reach this program point. The abstract
cache states are used to classify some memory accesses as definite hits. Another
cache analysis that underapproximates the set of possible concrete cache states
is able to predict definite misses. Predicted cache hits are then used to prove that
the timing accident, this memory access will miss the cache, will never happen
[8, 10].

This method for the microarchitectural analysis was the main innovation that
made our WCET analysis work for real-life architectures and scale to industrial-
size software [6].

Now follows the description of the microarchitectural analysis that is closer
to the implementation. Driver of this analysis is the pipeline analysis [14]. It
goes through the instruction stream, instruction by instruction, and executes the
current instruction in the current abstract execution state. This abstract execution
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state contains uncertainty, i.e., it lacks information about some state components.
Transitions to all potential successor states are performed whenever the transition to
the next state depends on such a missing part of the state. The timing contributions of
these transitions are accumulated until an instruction can be retired. In the end, upper
bounds on the execution times of basic blocks are obtained that are coefficients in
an integer linear program representing the control flow of the program [17]. Another
type of result is described below.

2.1.5 Terminology

We consider only sound WCET analysis methods. Soundness means that a method
and associated tool will always produce conservative WCET estimates, i.e., esti-
mates that will never be exceeded in any execution. Being conservative is a Boolean
property. Unfortunately, conservative is often used as a metric property, more
conservative meaning less precise. However, calling results of an unsound method
conservative is a misnomer. The really meant, other dimension, in addition to
soundness, is accuracy. Accuracy of some WCET estimate, obtained by a sound
method, expresses the degree of over-estimation, the difference between a WCET
estimate and the real WCET. It does not make sense to talk about the accuracy of
an unsafe estimate or an unsound method. In case of an unsound method it is not
even clear whether a “more conservative” estimate moves towards the real WCET
from below or is larger than the real WCET and moves further away from it. In
general, WCET estimates are below, i.e., underestimate the real WCET, if end-
to-end measurements are used. On the other hand, if piecewise measurements are
applied whose results are combined to an estimate of the overall execution times,
this often results in over-estimation of the real WCET.

WCET analysis can be seen as the search for a longest path in the state space
spanned by the program under analysis and by the architectural platform. Most real-
time software is written as to guarantee termination. Its state space can thus be easily
abstracted to a finite abstract state space, which is still too large to be exhaustively
explored. We can, therefore, not expect to identify the real WCET, but only safe
upper bounds to all execution times, which we will call WCET estimates. (Safe)
over-approximation is used in several places. In particular, an abstraction of the
execution platform is employed by the WCET analysis. How to convince oneself
(or the certification authorities) of the correctness of this architectural model is the
main subject of the next section.

2.2 Validation of Our WCET Analysis Tool

The claim that our WCET analysis tools produce safe results is a strong one and
often disputed by some proponents of unsound WCET analysis methods. Their
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argument is, to develop an error-free instantiation of the, in principle, sound WCET
analysis technology is so difficult, that one might use a simpler unsound method in
the first place. The main complaint is the complexity of the abstract architectural
models. So, what is the basis for our claims?

Several analyses in the tools are instances of abstract interpretation [4], a
scientific method with a strong underlying theory, relating analysis results to
semantic properties of analyzed programs. Value and loop bound analysis, c.f.
Fig. 2.1, are more or less standard abstract interpretations. The difference is that
these analyses are performed on the binary level and not on the source level. Still,
adequacy of these analyses is easily accepted. The instantiation of the abstract-
interpretation framework for the microarchitectural analysis of a given execution
platform, however, is far from trivial. In particular, it contains an abstraction
of the execution platform. How does one make sure that such an abstraction is
conservative? This will be explained in Sect. 2.2.3.

Let us give short descriptions of the different component analyses alongside
the particular validation activities before we come to the validation of the central
component.

2.2.1 Control-Flow Graph Reconstruction

The reconstruction of the control-flow graph (CFG) from a binary executable
means to compute a safe approximation of the inter-procedural control flow of the
executable [13]. This is achieved by the following two steps after having loaded
the executable:

1. Classification of the loaded byte stream to identify individual assembly instruc-
tions and

2. Recursive reconstruction of the control flow based on this assembly-instruction
classifications.

For Step 1, a specification of the instruction encoding is required. Instruction-
set-architecture manuals provide this information, which is then used to implement
instruction identification in the binary decoder of the aiT tool chain. To validate
the implementation, we perform the so-called decode tests. For each supported
instruction (in each supported addressing mode) we write a test case providing
a reference as the expected result of the decoding. The decoding result is then
compared to this reference.

In Step 2, the decoder uses the identified instruction stream to compose a
safe control-flow approximation. To validate this, we compile a representative set
of control structures (in a high-level language like C) and decode the resulting
executable to compare the reconstructed control flow with a reference result.
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2.2.2 Value Analysis

The value analysis determines safe approximations of the values in processor
registers and memory cells for every program point. These approximations are
used to determine bounds on the iteration number of loops and information about
the addresses of memory accesses. The value analysis is based on the instruction
semantics of the underlying target architecture. Like the instruction encoding,
architecture manuals provide this information.

To validate the instruction-semantics implementation, we create a test case for
each instruction and define pre- and post-conditions according to the expected effect
of the particular instruction. These conditions are expressed by user annotations,
which are read by the value analyzer. Pre-conditions are used to generate the
machine state needed to execute the tested instruction. The post-conditions define
the expected state after having executed the instruction under test.

2.2.3 Microarchitectural Analysis: Trace Validation

The microarchitectural analysis combines a cache and a pipeline analysis. It is
an abstract interpretation of the program’s execution on the underlying cache and
pipeline architecture. The execution of a program is abstractly executed by feeding
instruction sequences from the control-flow graph to the timing model, which then
computes the changes of the abstract execution state at cycle granularity and keeps
track of the elapsing clock cycles. The correctness proofs of the method have been
conducted by Thesing [14] based on the theory of abstract interpretation.

The cache analysis described in [2, 5, 7] is incorporated into the pipeline analysis.
At each memory access, where the concrete hardware would query and update the
contents of the cache(s), the cache analysis applies the corresponding abstract cache
effects to the abstract cache state.

The result of the microarchitectural analysis is either an upper execution-time
bound for every basic block or a prediction graph. In the first case, these upper
bounds are the coefficients in an integer linear program that represents the control
flow of the program. This is the version usually described in publications about
static WCET analysis, as it presents a clean work distribution. However, it has the
disadvantage that too much information is lost at basic-block boundaries, namely the
precise matching of final states at predecessor blocks to initial states at successor
blocks. This loss of information entails a loss in precision. The prediction graph
avoids this loss of precision. It consists of abstract states as nodes and edges for
the transition between states and represents the evolution of the abstract execution
states at processor-clock granularity and beyond basic-block boundaries. Note that
in the description of trace validation a prediction event graph appears, which is the
prediction graph extended by event annotations at its edges.
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Fig. 2.2 Evolution of abstract hardware states ŝi . Each edge denotes a single cycle transition in
the abstract state space. The gray boxes span the set of states that belong to the same basic block

As an example consider the prediction graph of Fig. 2.2, where the longest path
is four transitions long, i.e., it takes four processor cycles to complete the program.
Adding up the length of each longest path per basic block (denoted by the gray
boxes) would neglect that there is no connection between the abstract states ŝ3 and
ŝ5 and thus yield a worst-case estimate of five processor cycles.

Due to the complexity of the abstract architectural model, validation of the
pipeline analysis cannot be done solely by testing the abstract implementation of
individual instructions as we do it for CFG reconstruction and value analysis.

2.2.3.1 Semi-Automatic Derivation of the Abstract Architecture Model

Nowadays, hardware circuits are automatically synthesized from formal hardware
specifications like VHDL or Verilog. Besides a formalization of the functional
details, such specifications implicitly contain an execution model that also reflects
the timing behavior of the whole system. It was a tempting idea to derive a pipeline
analysis from the formal hardware model such that analysis and synthesized circuit
share the same basis [11, 12].

However, the semi-automatic derivation of a timing model approach has not
proven effective in the industrial context. Even if the hardware manufacturers grant
access to their formal models (which is often not the case), the derivation process
requires to fully understand the design, which might be a complex task for a
complete processor including peripheral devices. Additionally, the quality of the
resulting analysis depends on the coding style of the hardware model [11]. Results
are excellent if the code features minimal dependencies between processes, a clear
logical separation of different functionality into different processes/subprograms
and a sequential logic design. Ideally, the code reflects the structural composition of
the processor pipeline with explicit control signals to steer the flow of instructions
and data. Models not adhering to those design principles complicate state abstrac-
tions and thus result in prohibitively resource-consuming analyses.
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2.2.3.2 Trace Validation

For the reasons given above, the abstract architectural models are hand-crafted by
human experts based on the available hardware reference documentation, which
sometimes contains errors and usually lacks relevant details. Reverse engineering
based on specific runtime measurements needs to fill this gap. Even if it were
semi-automatically derived from a specification, the implementation of the microar-
chitectural analysis would still need to be validated. Trace validation checks for safe
over-approximations of the predictions by matching observable hardware events
recorded during concrete executions of instruction sequences against predictions
of those events produced by the microarchitectural analysis. This is done for a
sufficiently large set of instruction sequences that structurally covers the possible
instruction flows (wrt. the different functional units, instructions, dependencies
between instructions, etc.) of the processor pipeline.

Figure 2.3 shows the trace-validation workflow. An instruction sequence is
executed on the actual hardware, or its execution is simulated using a VHDL model,
to obtain an observed event trace. The microarchitectural analysis is modified to
predict those events and annotate them to the edges of the generated prediction
graph. In this fashion the microarchitectural analysis of an instruction sequence
generates a prediction event graph that describes an over-approximation of all
possible event traces that could occur while executing the instruction sequence. The
observed trace of events, the reached execution state, and the consumed time are

Test
Case

Architectural
Model

Real Device
or VHDL

Prediction
Event Graph

Observed
Event Trace

Trace
Validation

Validation
Result

Legend:

Data

Tool

Hardware

Fig. 2.3 Trace validation according to [9]. The instruction sequences together with the generated
prediction graphs annotated by state and timing information are part of the Qualification Support
Kit
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checked for containment in the prediction graph. Trace validation is successful if
the sequence of traced events is found in the prediction graph, and their predicted
execution time does not underestimate the observed execution time.

The granularity at which the comparison takes place strongly depends on the
debug facilities provided by the hardware. At best, timer interrupts are used to
stop execution after each execution cycle. This way, the execution of instruction
sequences is extended cycle by cycle to observe actual execution states and
execution times.

The behavior of some components of the architectural state, such as the cache
state, is unfortunately not directly observable. These need to be indirectly observed
through executions that are forced to lead to cache hits and cache misses.

Thus a tremendous effort is required to cover both all instructions and all
architectural components. This is essentially achieved by triggering many different
architectural states through the execution of dedicated test cases.

The validation suite of the AbsInt static WCET tool aiT may contain several
hundred individual test cases, even for a simple DLX-like architecture like the
ARM Cortex-M4. For multi-core architectures, such as the TriCore TC275, which
features three different cores, several thousand test cases are necessary to cover all
architectural features.

How many test cases are required to cover the whole architectural behavior
correlates to the complexity of the analyzed hardware, i.e., with the number of
available instructions of the instruction set architecture, the number of components
of the pipeline architecture like functional units, internal buffers, queues, memories,
buses, and their states. Often unexpected (undocumented) hardware behavior is
exposed while trying to understand existing test cases. This leads to additional
test cases. Hence, the number of test cases that are sufficient in order to cover the
(timing) relevant hardware behavior cannot be easily quantified in advance.

2.3 Conclusion

The AbsInt WCET analyzer aiT uses a combination of sound methods to derive safe
upper bounds on execution times. Their implementation is quite complex, such that
it is natural to query the soundness of the implementation of the technology. We
describe the validation efforts employed to convince ourselves, the customers, and
the certification authorities of the soundness of the implementation. The European
Aviation Safety Agency (EASA), obliged to follow the strictest certification rules,
those of DO178-C, has accepted AbsInt’s aiT as a validated WCET analysis tool for
several time-critical subsystems in the Airbus A380 and A350 planes.
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Chapter 3
The Dynamic Random Access Memory
Challenge in Embedded Computing
Systems

Matthias Jung, Christian Weis, and Norbert Wehn

3.1 Introduction

Dynamic random access memories (DRAMs) are key components in all comput-
ing systems that require large working memory. Due to the strong increase in
data volume in many embedded applications, such as machine learning, image
processing, autonomous systems, etc., DRAMs largely impact the overall system
performance and power consumption. In many of these applications, the overall
system performance is often limited by the memory bandwidth or latency and not by
the computation itself. Due to the dynamic storage scheme of DRAMs and shrinking
technology nodes, reliability is also a major concern in current and future DRAMs.

Therefore, new challenges arise, which we will discuss in this chapter. The
most important metrics, which are typically considered for DRAM subsystems
(especially in the high-performance computing (HPC) domain), are bandwidth,
latency, and capacity. However, in the context of embedded systems it requires
to consider further metrics, such as power, temperature, reliability, safety, and
security. In the following we will highlight these challenges and refer to some of
our recent contributions, which tackle these challenges.
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3.2 Bandwidth and Latency

Bandwidth is the amount of data that can be transferred between DRAM and a
computational unit within 1 s. The maximum DRAM bandwidth is limited to the
number of data pins times the interface frequency. Latency is the access time
that it takes to complete an access. In fact, latency helps bandwidth, but not
vice versa [33]. For instance, lower DRAM latency results in more accesses per
second, and therefore higher bandwidth, whereas increasing the number of data pins
increases the bandwidth without decreasing latency. A fast execution of applications
on embedded systems must not only be supported by the computational units, but
the memory subsystem must be designed to avoid hitting the memory wall [43]. For
example, embedded applications for autonomous driving will require between 400
and 1024 GB/s of memory bandwidth [16], which is hard to realize with the current
DRAM technologies. To put the problem in perspective, we survey current memory
architectures.

Figure 3.1 shows different DRAM-based memory subsystems, and Figs. 3.2 and
3.3 show their properties with respect to interface frequency, maximum theoretical
bandwidth, and energy consumption per transferred bit.1 The maximum bandwidth
of conventional DIMM-based DDR solutions is limited by the I/O count and
interface speed. This limitation arises due to the package, power considerations,
and costs on both the memory and processing sides.

Memory Cube:

3D-Stacked, Memory Controller on

Boom Layer, Serial Interconnect (SerDes)

e.g. HMC, SMC

CPU

3D/2.5D-Integrated:

Stacked on Logic or Silicon Interposer 

by means of TSVs

e.g. Wide I/O, HBM

Compute Logic Silicon Interposer / Package Substrate

GPU

DIMM Based:

General Purpose Computers

e.g. DDR3, DDR4

Computational Units

Device Based:

Embedded / Tablets / Graphic Cards

e.g. LPDDR3, GDDR5

x16

FPGA
or MPSoC

x16

. . .

Package on Package (PoP):

Soldered on top of the MPSoC.

Smartphones

e.g. LPDDR3, LPDDR4

MPSoC

DRAM

Buffer on Board:

Memory Controller on Buffer Chip,

Serial Connection

e.g. FBDIMM, IBM CDIMM, Intel SMI/SMB

CPU

Fig. 3.1 DRAM-based memory subsystems

1Note that the latency, actual sustainable bandwidth, and the total energy consumption of a DRAM
strongly depend on the application being executed. Reaching the maximum theoretical bandwidths
in Fig. 3.2 is practically impossible on general-purpose systems.
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Fig. 3.3 Properties of today’s DRAMs (Sources: Micron, Hynix, Nvidia, Xilinx, JEDEC)
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To avoid pin limitations, designers and vendors are using Buffer on Board
(BoB) organizations [7], in which an additional logic component is interposed
between the CPU and DRAM to control the memory and to communicate with
the CPU over a narrow, high-speed, serial interface. This technique is mainly used
in server applications where several terabytes of DRAM are required. The required
storage capacity in embedded systems is much smaller than in the high-performance
systems BoB targets, and thus this organization is inappropriate. All the other
following DRAM devices can achieve easily several GB capacity, which is enough
for most of the embedded applications.

Package on Package (PoP) organizations reduce the distance between the DRAM
and the MPSoC (from centimeters to millimeters), providing higher bandwidth,
lower latency, better power efficiency, and smaller form factors, all of which are
especially important for smartphones and tablets. Low power DDR DRAMs (e.g.,
LPDDR4) can be used either as a device on a PCB or mounted directly as PoP.
The latter organization permits only one device to be connected, requiring DRAM
commands to be serialized due to the resulting low pin count. For example, if
eight LPDDR4 devices are used on a PCB, they deliver a theoretical bandwidth
of 137 GB/s.

To address the huge memory demand of highly parallel GPUs, graphic DDR
DRAMs (e.g., GDDR5X or GDDR6) use techniques like quad data rate (QDR) to
deliver high bandwidth compared to conventional DDR DRAM. While LPDDR4
devices are designed and optimized for ultra-low power consumption with aggres-
sive power gating and higher-threshold transistors, GDDR5X/6 devices focus
on delivering the highest achievable bandwidth. Both use an architecture with
distributed banks (heavy sub-banking) due to the wider data I/O widths of ×16/×32
and the larger data prefetch of up to 16 bit per data I/O. However, GDDR5X/6
devices improve the column-to-column cycle time (tCCD) by reducing data path
delays from primary sense amplifiers to the global sense amplifiers. Furthermore,
GDDR5X/6 chips use an on-die phase lock loop (PLL) to achieve very high I/O
performance in QDR mode. In contrast, LPDDR4 devices have no on-die PLL
or delay lock loop (DLL). Combining 16 GDDR6 devices in QDR mode yields a
theoretical bandwidth of 1 TB/s, as shown in Fig. 3.2.

Another way of achieving high bandwidth is 3D stacking: examples include
WIDE I/O, Micron’s Hybrid Memory Cube (HMC), and Samsung’s High Bandwidth
Memory (HBM). These memories reduce the distance between CPU and external
RAM from centimeters to micrometers by means of through-silicon via (TSV)
technology. The available bandwidth increases due to more pins provided by the
TSVs, but, more importantly, this technology provides a major boost in energy
efficiency compared to standard off-chip (G)DDR devices.

The combination of high bandwidth communication and the lower power
consumption of 3D integrated memory is an ideal fit for embedded systems. For
example, four parallel HBM2 devices on a 2.5D silicon interposer can provide up to
1 TB/s [16]. However, 3D memories suffer from thermal issues, which we discuss
in Sect. 3.4.
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Fig. 3.4 Latency for an application running on DDR3 DRAM

From an application point of view, the DRAM subsystem has non-deterministic
timing behavior [8] due to its complex protocol (i.e., the latency of a DRAM request
depends on previous issued commands) and the runtime optimization of the memory
controller; this makes it difficult to provide predictable performance and thus to
guarantee real-time task predictability [1]. Figure 3.4 shows a histogram of the
CHStone ADPCM benchmark [11] simulated on the DRAMSys framework [18].2

Although the average latency is concentrated around 40 ns, the memory latency can
easily vary by an order of magnitude.

As with the bandwidth issues discussed above, the memory controller plays an
integral role in this non-deterministic timing behavior. The memory controller has to
manage, on one side, accesses to the DRAM memory from the compute fabric and,
on the other side, the complex interface protocol of the DRAMs. In the following we
discuss the main contributions to the DRAM latency that origin from the complex
internal memory architecture and the memory controller.

• Row Misses: The latency of a bank access varies depending on the state of its
row buffer. If a memory access targets the same row as the row currently cached
in the buffer (a row hit), it results in lower latency and lower energy memory

2The simulated DRAM is a DDR3 with a RBC address mapping and disabled scheduler.
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accesses. On the other hand, if a memory access targets a different row from
that currently in the buffer (a row miss), it results in higher latency and energy
consumption.

• Close vs. Open Page Policy: Commercial off-the-shelf (COTS) DRAM con-
trollers usually support two major modes: an open page policy (OPP) and
closed page policy (CPP). The OPP keeps the current row active after a read or
write, whereas the CPP precharges the row automatically after each access. The
latter makes the latency for each access more predictable, but it also decreases
performance for access patterns with high row-hit potential.

• Refresh: DRAMs must be refreshed regularly due to their charge-based bit
storage architecture. The memory controller has to issue this refresh operation
periodically (e.g., every 64 ms). Normal accesses to the DRAM have to be
blocked for the duration of the refresh operation tRFC (350 ns for DDR4), degrad-
ing performance with respect to both bandwidth and latency and increasing
energy consumption.3 If a memory access arrives at the same time that a refresh
happens it will experience unpredictable latency.

• Scheduling: COTS memory controllers are optimized for average case perfor-
mance and therefore employ runtime scheduling of requests (c.f. Sect. 3.2) for
online optimization. For example, with schedulers that attempt to maximize row
hits it is possible that a request that misses the row could starve, which again
results in a hardly predictable latency.

• Arbitration: A major challenge arises when several computational units are issu-
ing read and write requests to the memory controller. The different applications
running on these compute units will place their requests in different input buffers,
and arbitration must be performed. This leads to interference that can cause high
unpredictability.

• Command/Address and Data bus Contention: All banks in a DRAM share
the same command/address and data buses, which can limit overall performance.
If the data bus utilization is 100%, the maximum bandwidth is reached. On the
other hand if the command bus utilization is 100%, WR and RD commands must
be issued in later cycles that negatively impacts the bandwidth and the latency.

• Current Limiting and Power Supply Network: In order to limit peak currents
there exists a rolling time-frame, in which a maximum of four banks can
be activated, called four activate window (tFAW ). There is also a minimum
time interval between two ACT commands to different banks, (tRRD). Also
these constraints can influence bandwidth, latency, and predictability in specific
scenarios.

• Further Effects: Bank-Groups in DDR4 or GDDR or rank-to-rank switching
constraints in DDR memories also impact the predictability.

3In fact, the degradation grows linearly with the capacity, which means it grows exponentially with
each density generation. Liu et al. [27] and Bhati et al. [3] predicted that 40–50% of the power
consumption of future DRAM devices will be caused by refresh commands, and the maximum
DRAM bandwidth will be significantly reduced.
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Due to this unpredictable timing behavior, processors for embedded applications
with real-time and strict latency constraints have thus far largely avoided using
DRAM. For example, Infineon’s Aurix CPU, which is widely used for safety-critical
applications, does not provide a DRAM controller.

In past years there were many investigations with respect to DRAM controllers
for real-time and mixed-criticality applications in embedded systems. A detailed
book which summarizes those approaches has been presented by Goossens et al. [8].
Most of these approaches concentrate operating the DRAM with statically pre-
computed command patterns which guarantee a predictable behavior. However, this
predictability often comes with a degradation of sustainable bandwidth. Moreover,
the bandwidth numbers presented in Fig. 3.2 are theoretical maxima: the sustainable
memory bandwidth is much less, and it strongly depends on how the data is stored
in the memories, i.e., the memory access pattern [12]. Therefore, it is not only
important to choose a memory that provides high bandwidth, it is also important
to design a DRAM controller that can bring the sustainable bandwidth closer to the
theoretical maximum.

As already mentioned, general-purpose DRAM controllers use online scheduling
techniques to improve the sustainable bandwidth, e.g., by reducing the number of
row misses or read/write transitions. In order to reduce the number of read/write
transitions, DRAM controllers buffer read and write commands in two distinct
queues. An arbiter switches between read and write mode to diminish the tWT R

penalty, the minimum time interval between the end of a WR burst and a RD
command.

However, in embedded systems, many applications (e.g., signal, image, or neural
network processing) have regular, fixed, and deterministic memory access patterns.
On the compute side, inherent application-specific knowledge has been heavily
exploited for efficient compute architectures. However, on the memory side there
is limited research that exploits application knowledge to improve the memory
access behavior. In [12] we presented an application-specific memory controller
(ASMC). Key of this controller is an optimized mapping of the logical addresses
to physical DRAM addresses such that the row misses in the access pattern stream
are minimized. The corresponding mathematical optimization problem is an integer
linear programming problem. The solution of this problem maximizes the number
of row buffer hits and exploits the bank-level parallelism of the DRAM device
in order to reduce the latency and therefore to keep up the sustainable bandwidth
near to the maximum. Therefore, such an ASMC can outperform online schedulers
because it was designed with a global application view. Furthermore, for real-time
embedded systems with this method we can easily determine WCET bounds, since
no non-deterministic online scheduling is involved.

The efficiency of this approach is demonstrated on an industrial embedded
image processing application that consists of image rotation and FFT. Due to real-
time requirements this application requires a minimum bandwidth of 9.57 GB/s.
Figure 3.5 shows the bandwidth and energy for the standard address mappings of
a standard memory controller with standard row-bank-column (RBC) mapping and
bank-row-column (BRC) mapping, a manual optimization of the mapping of an
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Fig. 3.5 Industrial image processing application

experienced engineer and the ASMC approach. The ASMC approach has a runtime
of ∼50 min, whereas the manual approach requires ∼1 week for an engineer to
fully understand the application and analyze the behavior. Furthermore, by using
the generated address mapping, all the online scheduling capabilities of the memory
controller could be removed, which reduced the required area of the memory
controller by 35%.

As mentioned already in Sect. 3.2 the refresh has a large impact on DRAM’s
bandwidth and latency. The overhead of refreshes can be reduced by only refreshing
the memory cells inside the DRAM that hold data that are still alive. A large body of
research exists developing schemes that manually refresh the DRAM row-by-row,
characterizing each row’s ability to retain data and eliminating unnecessary Refresh
operations on rows that can be refreshed less often. These schemes have been
shown to be extremely efficient. Since eliminating refresh improves both energy and
performance of the memory system, these schemes offer the potential for significant
gains in DRAM-system efficiency. However, these schemes are incompatible with
the modern auto-refresh mechanism that is widely used: auto-refresh operates on
multiple rows at once and not on a row-by-row basis. In addition, auto-refresh
cannot skip any row, whether that row needs to be refreshed or not. Thus, the manual
schemes use explicit row-level Activate (ACT) and Precharge (PRE) commands to
refresh row-by-row, called row granular refresh (RGR). However, it was shown
in [4] that techniques based on RGR could never be as effective as the DRAM’s
internal auto-refresh.

In [28] we presented a technique called optimized RGR which allows a row-
by-row refresh with the same efficiency as the auto-refresh. Here, we investigated
the timings that are relevant to Activate and Precharge commands and showed
that these DRAM timing parameters can be reduced for performing the Refresh
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Fig. 3.6 Average response
latency using different refresh
techniques and modes
according to JEDEC: 1X—all
rows are refreshed per
Refresh command, 2X—half
of the rows are refreshed,
4X—a quarter of the rows are
refreshed
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operation row-by-row. We could demonstrate a reduction of latency and increase
of bandwidth compared to standard auto-refresh, as shown in Fig. 3.6. The results
can be even improved if only alive data is refreshed (ORGR select). Additionally,
ORGR improved the energy efficiency compared to RGR.

It is becoming clear that embedded applications must concentrate on DRAM
solutions like GDDR and HBM in combination with ASMCs and sophisticated
refresh mechanisms in order to cope with their high bandwidth and low latency
requirements.

3.3 Power Consumption

Power is one of the major challenges in today’s embedded system development.
According to Fig. 3.3, the preliminary choice for low power designs is LPDDR4
and Wide I/O2 due to their very low energy consumption. However, when aiming
at high memory bandwidth, e.g., 1 TB/s these devices are not optimal. For example,
to achieve the aforementioned bandwidth with LPDDR4, 64 devices (×32) are
required. Although the average power would be only ∼17 W at a peak frequency of
2000 MHz, the high number of resulting I/O pins (2048) becomes unfeasible. Hence,
the only alternative candidates for high bandwidth are HBM2 and GDDR5X/6.
According to Figs. 3.2 and 3.3 the average power consumed4 by the HBM (4
stack ×1024) and GDDR6 (16 devices, QDR, ×32) devices are ∼60 W and
∼150 W, respectively. These numbers show that DRAM will be a significant
power contributor to embedded systems which require a high memory bandwidth.
Therefore, it is mandatory to efficiently use DRAM’s power-down modes in order
to reduce power consumption.

In state-of-the-art memory controllers the entry to a power-down mode is
scheduled when there was no activity in a period of time called timeout. DRAMs

4Operated at respective peak frequency.
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Fig. 3.7 Comparison of energy savings normalized to power-down disabled

offer three power-down modes, called active power-down (PDNA), precharge
power-down (PDNP), and self-refresh (SREF). In [35] we showed that a highly
opportunistic SREF entry results in an increased power consumption, since the
SREF will always execute an internal refresh in the beginning. Therefore, the
timeout for a SREF entry should be at least 500 clock cycles for a Wide I/O DRAM.

In [19] we presented an optimized power-down policy, called staggered power-
down, which considers all three available DRAM power-down modes to achieve the
maximum saving in energy and the minimum in slow-down on the execution of the
applications. The basic idea is to change to the next more efficient power-down state
on a refresh event. With this method, unnecessary SREF entries will be avoided
and the hardware timeout counters, as used in state-of-the-art controllers, are not
required anymore. As shown in Fig. 3.7 for Wide I/O DRAMs an energy reduction
up to 10% in high activity periods and up to 13% in idle phases is feasible.

A high power consumption also fosters a high thermal dissipation that largely
impacts the reliability of a DRAM. This challenge is discussed in more detail in the
next paragraph.

3.4 Temperature vs. Reliability

DRAMs are very sensitive to high temperature, which increases the leakage in the
memory cells. Figure 3.8 shows the different leakage paths in a DRAM cell:
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Fig. 3.8 Leakage paths in
modern buried wordline
DRAM architecture [23, 34]

• Drain Leakage (1), which includes the P-N junction leakage as well as gate
induced drain leakage (GIDL). GIDL is mainly caused by trap assisted tunneling
(TAT), and it is influenced by the number and distribution of traps in the band-gap
region as well as the electric field. Since the negative wordline voltage and the
positive charge stored in the cell capacitor (when a 1 is stored in the cell) increase
the electric field in the band-gap region (gate-drain overlap region), GIDL is
the major source of leakage for a stored 1 in the DRAM cell [31].

• Sub-threshold Leakage (2), which is the drain-source leakage of the cell
transistor when it is in the OFF state. This current depends on various factors
such as negative wordline voltage, bulk voltage, etc. When the bitlines are in
precharged state (VDD/2) this can slightly charge the cell capacitor and therefore
cause the degradation of a 0 stored in the cell. It can also degrade a 1 stored in
the cell by discharging to the bitline, but the leakage will be very small due to the
increased threshold voltage of the access transistor when a 1 is stored (body-bias
effect).

• Cell Capacitor Leakage (3), which is the leakage through the cell capacitor
dielectric. With the technology scaling, also the capacitor area is decreasing.
Therefore, to maintain the cell capacitance at the previous value, dielectric
thickness has to be reduced, which increases the leakage. The use of new metal
insulator metal (MIM) structure with high-k dielectric materials has helped to
reduce this leakage. Capacitor leakage influences both stored 0’s and stored 1’s.

In order to avoid data corruption by retention errors due to leakage, the refresh
frequency needs to be increased. The general rule of thumb is to double the refresh
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rate for every 10 ◦C increase over 85 ◦C [20]. For example, the refresh period must
be decreased from 64 ms to 4–8 ms for 125 ◦C, which leads to a serious collapse of
the sustainable bandwidth [16].

This situation is even worse for today’s 3D stacked DRAM systems (e.g., Wide
I/O, HBM, HMC, etc.), which aggravate the thermal crisis: i.e., these DRAMs
are even more sensitive to temperature changes because of the stacked thin dies.
Additionally, when aiming for highest bandwidths with HBM or HMC, these
devices will consume, as mentioned before, a significant amount of power on a
small area compared to their commodity counterparts. Thus, the self-heating of 3D-
DRAMs is even more accelerated. Besides the leakage currents, crosstalk on bitlines
and wordlines can also disturb the data stored in the cells or disturb their sensing.
Due to the aforementioned effects and shrinking technology nodes, reliability is a
major concern in DRAMs. Many techniques exist to improve the reliability, e.g.,
using error correcting codes (ECC) and/or spatial redundancy.

Approximate and probabilistic computing evolved as design paradigms that
exploit the error resilience of applications to increase their performance and
decrease the power consumption [10]. This paradigm can be extended to DRAMs
resulting in approximate DRAMs (ADRAM) that enable a trade-off between energy
efficiency, performance, and reliability. The inherent error resilience of applications
allows sacrificing data storage robustness and stability by lowering the refresh rate
or disabling refresh in DRAMs completely, as shown in Fig. 3.9. However, to apply
ADRAM the statistical DRAM behavior with respect to retention time, process
variation, and temperature has to be characterized.

Several studies for the usage of ADRAM are presented in [13–15, 20]. One
scenario is safe refresh disabling, i.e., if the data lifetime is smaller than the refresh
period, the refresh can be completely switched off without impact on the system
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[42]

[18] [6]

[38]

Fig. 3.10 Simulation framework for approximate DRAM explorations

behavior. To perform an accurate characterization we measured state-of-the-art
DRAM devices, such as DDR3, DDR4, and Wide I/O. These measurements were
the base for a simulation platform for ADRAM investigations.

Exploring ADRAM in a system context is challenging, since a trade-off between
accuracy and simulation performance must be considered. Our framework relies
on SystemC Transaction Level Models (TLM) for fast and accurate simulation.
Figure 3.10 shows the closed loop simulation. This simulation loop consists of (1)
DRAM and gem5 Core Models [5, 18], (2) a DRAM power model [6, 29], which
uses either parameters from datasheets, or real measurements [13, 15], (3) a thermal
model based on 3D-ICE [38], and (4) a DRAM retention error model [42].

As mentioned before, ECC is an efficient technique to improve DRAM’s
reliability, e.g., retention errors or errors induced by crosstalk. State-of-the-art ECC
DDR DIMMs, for instance, consist of 8 DRAM devices and a further device for
storing the ECC redundancy. Moreover, vendors recently introduced on-die ECC
for LPDDR4 [24, 26] to correct retention errors. With ECC the refresh rate can
be lowered by 4×, which largely reduces the power consumption. Finding an
efficient ECC is a non-trivial task. Traditional ECC techniques for DRAMs assume
a symmetric behavior of the retention errors, i.e., the error probability for a stored 0
and 1 is identical. In [22] and [23] we presented a more accurate error model for the
retention behavior that exploits the internal cell structure (the so-called true- or anti-
cells) of a DRAM. This model is asymmetric and we could show that the channel
capacity according to Shannon’s capacity definition (the memory cell is considered
as a noisy channel) of a single memory cell is larger than in the traditional commonly
used symmetrical model. Hence, a more efficient coding must exist. In [23] we
presented a new and low-overhead coding scheme that improves the reliability with
respect to retention errors.
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3.5 Safety and Security

Since DRAMs are more and more used in safety-critical applications like automo-
tive, safety and security are major concerns for DRAMs that were originally mainly
developed for consumer applications. Apart from the temperature based retention
errors discussed in Sect. 3.4, DRAMs are also prone to transient soft errors, i.e.,
effects of cosmic particle strikes [9]. Moreover, due to the high frequency of DRAM
interfaces transient transmission errors on the DRAM bus can occur. Furthermore,
there can be hard errors related to stuck at failures or aging, which could result in
a defect column decoder. There exists only a limited amount of studies on DRAM
error rates in the field since manufacturers and data centers are very careful to share
this sensitive information [30, 36, 41]. Sridharan et al. report 20–66 FIT for a single
DRAM device [39, 40]. This highlights the need for appropriate safety mechanisms
in order to decrease the FIT rates. For example, the memory controller contains
an additional logic that tests the interface periodically in order to detect errors or
a strong ECC that is able to correct errors online in order to guarantee functional
safety.

Apart from random failures, malicious causes can lead to a safety goal violation,
too. Because of transitions to open environments for IoT or Car2X communication
the vulnerability of DRAMs for embedded systems must be considered. As DRAM
process technology scales down, the electrical interference between the memory
cells increases, which leads to disturbance errors. Recently, the row-hammer prob-
lem [21, 32] and its exploits [25, 37] have caused a lot of attention in research and
newspapers. By repeatedly opening and closing a DRAM row, called hammering,
bits in adjacent rows can flip. This effect can be exploited to write on memory
locations with prohibited access rights to, e.g., gain kernel privileges or escape a
sandbox or hypervisor. In [25] the author showed that secret data can be read with a
combination of row-hammer and data dependencies [23]. The row-hammer security
attack [21] is a potential malicious behavior that has to be avoided. Controller
triggered techniques like target row refresh where rows will be refreshed when their
activation count exceeds a threshold or techniques on the device level like [2, 44] can
alleviate this problem. In [17] a methodology for reverse engineering DRAMs by
reconstructing the physical location of memory cells without opening the device
package and microscoping the device was presented. This method consists of a
retention error analysis while a temperature gradient is applied to the DRAM device.
With this insight into the internal DRAM structure row-hammer countermeasure
techniques can be improved.

3.6 Conclusion

Emerging applications executed on embedded computing systems require ever
increasing main memory sizes. Thus, DRAMs are indispensable to be integrated
in such systems. However, the use of DRAMs implies many new challenges.
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In this chapter, we highlighted some of the major challenges for the integration
of DRAM subsystems into embedded computing systems. These challenges are
namely: bandwidth, latency, power, temperature, reliability, safety, and security.
Furthermore, we showed several solutions from our recent research activities in
order to tackle and overcome these challenges.
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Chapter 4
On the Formalism and Properties of
Timing Analyses in Real-Time Embedded
Systems

Jian-Jia Chen, Wen-Hung Huang, Georg von der Brüggen, Kuan-Hsun Chen,
and Niklas Ueter

4.1 Introduction

The advanced development of embedded computing devices, accessible networks,
and sensor devices has triggered the emergence of complex cyber-physical sys-
tems (CPS). In such systems, advanced embedded computing and information
processing systems heavily interact with the physical world. Cyber-physical systems
are integrations of computation, networking, and physical processes to achieve
high stability, performance, reliability, robustness, and efficiency [26]. A cyber-
physical system continuously monitors and affects the physical environment which
also interactively imposes feedback to the information processing system. The
applications of CPS include healthcare, automotive systems, aerospace, power grids,
water distribution, disaster recovery, etc.

Due to their intensive interaction with the physical world, in which time
naturally progresses, timeliness is an essential requirement of correctness for CPS.
Communication and computation of safety-critical tasks should be finished within
a specified amount of time, called deadline. Otherwise, even if the results are
correctly delivered from the functional perspective, the reaction of the CPS may
be too late and have catastrophic consequences. One example is the release of an
airbag in a vehicle, which only functions properly if the bag is filled with the correct
amount of air in the correct time interval after a collision, even in the worst-case
timing scenario. While in an entertainment gadget a delayed computation result is
inconvenient, in the control of a vehicle it can be fatal. Therefore, a modern society
cannot adopt a technological advance when it is not safe.
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Cyber-physical systems that require both functional and timing correctness are
called cyber-physical real-time systems. Since cyber-physical real-time systems are
replacing mechanical and control units that are traditionally operated manually,
providing both predictability and efficiency for such systems is crucial to satisfy the
safety and cost requirements in our society. Real-time computing for such systems
is to provide safe bounds for deterministic or probabilistic timing properties.
For providing deterministic timing guarantees, worst-case bounds are pursued.
Specifically, the worst-case execution time (WCET) of a program (when it is
executed exclusively in the system, i.e., without any interference) has to be safely
calculated, for details the reader is referred to [31]. The WCETs of multiple
programs are then used for analyzing the worst-case response time (WCRT) when
multi-tasking in the system.

The strongest deterministic timing guarantee ensures that there is no deadline
miss of a task by validating whether the WCRT is less than or equal to the specified
relative deadline. When the deadlines of all tasks in a system are satisfied, the
hard real-time requirements are met and the system is a hard real-time system.
The assumption behind the requirements of hard real-time guarantees is that a
deadline miss can result in fatal errors of the system. Ensuring worst-case timing
properties has been an important topic for decades. Initially, such worst-case
guarantees were achieved by constructing cyclically repetitive static schedules. The
timing properties of static schedules can be analyzed easily, but the constructed real-
time systems were inflexible to accommodate any upgrades or changes that were not
planned in advance.

The seminal work by Liu and Layland [23] provided fundamental knowledge to
ensure timeliness and allow flexibility for scheduling periodic real-time tasks in a
uniprocessor system. A periodic task τi is an infinite sequence of task instances,
called jobs, where two consecutive jobs of a task should arrive recurrently with a
period Ti (i.e., the time interval length between the arrival times of two consecutive
jobs is always Ti), all jobs of a task have the same relative deadline Di = Ti (i.e.,
the absolute deadline of a job arriving at time t is t + Di), and each job has the
same worst-case execution time (WCET) Ci [23]. The utilization Ui of a task τi

is hence defined as Ui = Ci/Ti . Although the periodic real-time task model is
not always suitable for industrial applications, the exploration of the fundamental
knowledge in the past decades provides significant insights. Specifically, Liu and
Layland proved the applicability of preemptive dynamic-priority and fixed-priority
scheduling algorithms and provided worst-case utilization analysis. To be precise,
they showed that as long as the utilization

∑n
i=1 Ci/Ti of the given n tasks is no

more than n(2
1
n − 1), which is ≥ 69.3%, then the worst-case response time of a

task τi is guaranteed to be no longer than Ti if the priorities are assigned in the
rate-monotonic (RM) order, i.e., τi has a higher priority when its period is shorter.
Similarly, under preemptive earliest-deadline-first (EDF) scheduling, the utilization
bound is guaranteed to be 100%.

However, in many scenarios occasional deadline misses are possible and accept-
able. Systems that can still function correctly under these conditions are called soft
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real-time systems. When the deadline misses are bounded and limited, the term
weakly hard real-time system is used. For such cases, safe and tight quantitative
properties of deadline misses have to be analyzed so that the system designers
can verify whether the occasional deadline misses are acceptable from the sys-
tem’s perspective. For this purpose, probabilistic timing properties can be very
useful, in which the probability of deadline misses or miss rates are pursued. In
safety standards, e.g., IEC-61508 and ISO-26262, the probability of failure has
to be proved to be sufficiently low. Probabilistic timing properties are important
to assure the service level agreements in many applications that require real-
time communication and real-time decision-making, such as autonomous driving,
smart building, internet of things, and industry 4.0. Deterministic guarantees
of interest for weakly hard real-time systems include the quantification of the
number of deadline misses within a specified time window length, the worst-
case tardiness, and the worst-case number of consecutive deadline misses. Such
deadline misses may be allowed and designed on purpose, especially to verify
the controller for the physical plant in a CPS. With potential deadline misses
in mind, suitable control approaches that can systematically account for data
losses can be applied. Such weakly hard real-time systems have been proposed
as a feature towards timing-aware control software design for automotive systems
in [33].

To design a timing predictable and rigorous cyber-physical real-time system, two
separate but co-related problems have to be considered:

1. how to design scheduling policies to feasibly schedule the tasks on the platform
and system model, referred to as the scheduler design problem, and

2. how to validate the schedulability of a task system under a scheduling algorithm,
referred to as the schedulability test problem, to ensure deterministic and/or
probabilistic timing guarantees.

The real-time systems research results in the past half-century have a significant
impact on the design of cyber-physical systems. Allowing system design flexibility
by using dynamic schedules (either fixed-priority or dynamic-priority schedules)
has not only academic values but also industrial penetration. Nowadays, most real-
time operating systems support fixed-priority schedulers and allow periodic as
well as sporadic task activations. When task synchronization or resource sharing
is necessary, the priority inheritance protocol and the priority ceiling protocol
developed by Sha et al. [27] are part of the POSIX Standards (in POSIX.1-2008).

Existing analyses and optimizations for scheduling algorithms and resource
management policies in complex real-time systems are usually ad-hoc solutions for
a specific studied problem. In this chapter, we challenge this design and analytical
practice, since the future design of real-time systems will be more complex, not
only in the execution model but also in the parallelization, communication, and
synchronization models.
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Our Conjecture
We strongly believe that the future design of real-time systems require formal
properties that can be used modularly to compose safe and tight analysis
as well as optimization for the scheduler design and schedulability test
problems. This chapter summarizes our recent progress at TU Dortmund for
property-based analyses of real-time embedded systems with respect to both
deterministic and probabilistic properties.

4.2 Formal Analysis Based on Schedule Functions

For uniprocessor systems, at most one job is executed at a time. Therefore, a
scheduling algorithm (or scheduler) determines the order, in which jobs are
executed on the processor, called a schedule. A schedule is an assignment of
the given jobs to the processor, such that each job is executed (not necessarily
consecutively) until completion. Suppose that J = {J1, J2, . . . Jn} is a set of
n given jobs. A schedule for J can be defined as a function σ : R → J ∪{⊥}, where
σ(t) = Jj denotes that job Jj is executed at time t , and σ(t) = ⊥ denotes that the
system is idle at time t .

If σ(t) changes its value at some time t , the processor performs a context switch
at time t . For a schedule σ to be valid with respect to the arrival time, the absolute
deadline, and the execution time of the given jobs, we need to have the following
conditions for each Jj in J for hard real-time guarantees:

• σ(t) �= Jj for any t ≤ rj and t > dj and

•
∫ dj

rj
1σ(t)=Jj

dt = Cj , where 1condition is a binary indicator. If the condition
holds, the value is 1; otherwise, the value is 0.

Note that the integration
∫

of 1σ(t)=certain job over time used in this chapter is
only a symbolic representation for summation.

For a given sporadic task set T, each task τi in T can generate an infinite number
of jobs as long as the temporal conditions of arrival times of the jobs generated by
task τi can satisfy the minimum inter-arrival time constraint.

Suppose that the j th job generated by task τi is denoted as Ji,j . Let the set of
jobs generated by task τi be denoted as FJi . A feasible set of jobs generated by a
sporadic real-time task τi satisfies the following conditions:

• By the definition of the WCET of task τi , the actual execution time Ci,j of job
Ji,j is no more than Ci , i.e., Ci,j ≤ Ci .

• By the definition of the relative deadline of task τi , we have di,j = ri,j + Di for
any integer j with j ≥ 1.

• By the minimum inter-arrival time constraint, we have ri,j ≥ ri,j−1 + Ti for any
integer j with j ≥ 2.
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A feasible set of jobs generated by a periodic real-time task τi should satisfy the
first two conditions above and the following condition:

• By periodic releases, we have ri,1 = Oi and ri,j = ri,j−1 + Ti for any integer j

with j ≥ 2.

A feasible collection FJ of jobs generated by a task set T is the union of the
feasible sets of jobs generated by the sporadic (or periodic) tasks in T, i.e., FJ =
∪τi∈TFJi . It should be obvious that there are infinite feasible collections of jobs
generated by a sporadic real-time task set T.

For a feasible collection FJ of jobs generated by T, a uniprocessor schedule for
FJ can be defined as a function σ : R → FJ ∪ {⊥}, where σ(t) = Ji,j denotes that
job Ji,j is executed at time t , and σ(t) = ⊥ denotes that the system is idle at time
t . Recall that we assume that the jobs of task τi should be executed in the FCFS
manner. Therefore, if σ(t) = Ji,j then σ(t ′) /∈ {

Ji,h|h = 1, 2, . . . , j − 1
}
, for any

t ′ > t and j ≥ 2.
The feasibility and optimality of scheduling algorithms should be defined based

on all possible feasible collections of jobs generated by T.

Definition 4.1 Suppose that we are given a set T of sporadic real-time tasks on a
uniprocessor system. A schedule σ of a feasible collection FJ of jobs generated by
T is feasible for hard real-time guarantees if the following conditions hold for each
Ji,j in FJ:

• σ(t) �= Ji,j for any t ≤ ri,j and t > di,j ,

•
∫ di,j

ri,j
1σ(t)=Ji,j

dt = Ci,j , and

• if σ(t) = Ji,j , then σ(t ′) /∈ {
Ji,h|h = 1, 2, . . . , j − 1

}
, for any t ′ > t and j ≥ 2.

A sporadic real-time task set T is schedulable for hard real-time guarantees under a
scheduling algorithm if the resulting schedule of any feasible collection FJ of jobs
generated by T is always feasible. A scheduling algorithm is optimal for hard real-
time guarantees if it always produces feasible schedule(s) when the task set T is
schedulable under a scheduling algorithm.

4.2.1 Preemptive EDF

For the preemptive earliest-deadline-first (EDF) scheduling algorithm, the job in the
ready queue whose absolute deadline is the earliest is executed on the processor. To
validate the schedulability of preemptive EDF, the demand bound function DBFi (t),
defined by Baruah et al. [1], has been widely used to specify the maximum demand
of a sporadic (or periodic) real-time task τi to be released and finished in a time
interval with length equal to t :

DBFi (t) = max

{

0,

⌊
t − Di

Ti

⌋

+ 1

}

× Ci. (4.1)
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To prove the correctness of such a demand bound function, we focus on all
possible feasible sets of jobs generated by a sporadic/periodic real-time task τi .
Recall that a feasible set FJi of jobs generated by a sporadic/periodic real-time task
τi should satisfy the following conditions:

• The actual execution time Ci,j of job Ji,j satisfies Ci,j ≤ Ci .
• di,j = ri,j + Di for any integer j with j ≥ 1.
• ri,j ≥ ri,j−1 + Ti for any integer j with j ≥ 2.

Lemma 4.1 For a given feasible set FJ i of jobs generated by a sporadic/periodic
real-time task τi , let FJ i,[r,r+t] be the subset of the jobs in FJ i arriving no earlier
than r and have absolute deadlines no later than r + t . That is,

FJ i,[r,r+t] = {
Ji,j | Ji,j ∈ FJ i , ri,j ≥ r, di,j ≤ r + t

}
. (4.2)

For any r and any t > 0,

∑

Ji,j ∈FJ i,[r,r+t]
Ci,j ≤ DBFi (t). (4.3)

Proof By definition, DBFi (t) ≥ 0. Therefore, if FJi,[r,r+t] is an empty set, we reach
the conclusion.

We consider that FJi,[r,r+t] is not empty for the rest of the proof. Let Ji,j∗ be the
first job generated by task τi in FJi,[r,r+t]. By the definition of FJi,[r,r+t] in Eq. (4.2),
the arrival time ri,j∗ of job Ji,j∗ is no less than r , i.e., ri,j∗ ≥ r . Since FJi,[r,r+t] is
not empty, ri,j∗ + Di ≤ r + t .

Since ri,j ≥ ri,j−1 +Ti for any integer j with j ≥ 2 for the jobs in FJi as well as
the jobs in FJi,[r,r+t], the absolute deadlines of the subsequent jobs in FJi,[r,r+t] are
at least ri,j∗ + Ti + Di, ri,j∗ + 2Ti + Di, ri,j∗ + 3Ti + Di, . . .. Therefore, there are

at most
⌊

r+t−(ri,j∗+Di)

Ti

⌋
+ 1 ≤

⌊
t−Di

Ti

⌋
+ 1 jobs in FJi,[r,r+t] since r ≤ ri,j∗ . Since

the actual execution time Ci,j of each job Ji,j is no more than Ci by the definition
of the jobs in FJi , we reach the conclusion. �

With the help of Lemma 4.1, the following theorem holds.

Theorem 4.1 A set T of sporadic tasks is schedulable under uniprocessor preemp-
tive EDF if and only if

∀t > 0,
∑

τi∈T

DBFi (t) ≤ t. (4.4)

Proof Only-if part, i.e., the necessary schedulability test. We prove the condition
by contrapositive. Suppose that there exists a t > 0 such that

∑
τi∈T DBFi (t) > t ,

for contrapositive.
For each task τi , we create a feasible set of jobs generated by task τi by releasing

the jobs periodically starting from time 0, and their actual execution times are all set
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to Ci . By the definition of a uniprocessor system in our scheduling model, at most
one job is executed at a time. Therefore, the demand of the jobs that are released no
earlier than 0 and must be finished no later than t is strictly more than the amount
of available time since

∑
τi∈T DBFi (t) > t . Therefore, (at least) one of these jobs

misses its deadline no matter which uniprocessor scheduling algorithm is used.
Therefore, we can conclude that if the task set T is schedulable under EDF-P,

then
∑

τi∈T DBFi (t) ≤ t,∀t > 0.
If part, i.e., the sufficient schedulability test: We prove the condition by

contrapositive. Suppose that the given task set T is not schedulable under EDF-P
for contrapositive.

Then, there exists a feasible collection of jobs generated by T which cannot be
feasibly scheduled under EDF-P. Let FJ be such a collection of jobs, where FJi is
its subset generated by a sporadic real-time task τi in T. Let σ : R → FJ ∪ {⊥} be
the schedule of EDF-P for FJ. Since at least one job misses its deadline in σ , let job
Jk,� be the first job which misses its absolute deadline dk,� in schedule σ . That is,

∫ dk,�

rk,�

1σ(t)=Jk,�
dt < Ck,� ≤ Ck. (4.5)

Let t0 be the earliest instant prior to dk,�, i.e., t0 < dk,�, such that the processor
only executes jobs with absolute deadlines no later than dk,� in time interval
(t0, dk,�] under EDF-P. That means, immediately prior to time t0, i.e., t = t0 − ε

for an infinitesimal ε, σ(t) is either ⊥ or a job whose absolute deadline is (strictly)
greater than dk,�. We note that t0 exists since it is at least the earliest arrival time of
the jobs in FJ. Moreover, since EDF-P does not let the processor idle unless there is
no job in the ready queue, t0 ≤ rk,�.

Let FJi,[t0,dk,�] be the subset of the jobs in FJi arriving no earlier than t0 and have
absolute deadlines no later than dk,�. That is, we define FJi,[t0,dk,�] by setting r to
t0 and t to dk,� − t0 in Eq. (4.2). Let FJ[t0,dk,�] be ∪τi∈T FJi,[t0,dk,�] for notational
brevity.

By the definition of t0, dk,�, and EDF-P, the processor executes only the jobs in
FJ[t0,dk,�], i.e., σ(t) ∈ FJ[t0,dk,�] for any t0 < t ≤ dk,�. Therefore,

dk,� − t0
1=

(∫ dk,�

t0

1σ(t)=Jk,�
dt

)

+
∑

Ji,j ∈FJ[t0,dk,�]\{Jk,�}

(∫ dk,�

t0

1σ(t)=Ji,j
dt

)

2≤
(∫ dk,�

t0

1σ(t)=Jk,�
dt

)

+
⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�

3=
(∫ dk,�

rk,�

1σ(t)=Jk,�
dt

)

+
⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�
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Eq. (4.5)
< Ck,� +

⎛

⎜
⎝

∑

τi∈T

∑

Ji,j ∈FJi,[t0,dk,�]
Ci,j

⎞

⎟
⎠ − Ck,�

Eq. (4.3)≤
∑

τi∈T

DBFi (dk,� − t0),

where the condition
1= is due to σ(t) ∈ FJ[t0,dk,�] for any t0 < t ≤ dk,�, the condition

2≤ is due to the definition of a schedule of the jobs in FJ[t0,dk,�] \
{
Jk,�

}
, the condition

3= is due to t0 ≤ rk,�, and σ(t) �= Jk,� for t0 < t ≤ rk,�. Hence, there is a certain � =
dk,� − t0 with

∑
τi∈T DBFi (�) > �. We reach our conclusion by contrapositive. �

4.2.2 Preemptive Fixed-Priority Scheduling Algorithms

Under preemptive fixed-priority (FP-P) scheduling, each task is assigned a unique
priority before execution and does not change over time. The jobs generated by a
task always have the same priority defined by the task. Here, we define hp(τk) as
the set of higher-priority tasks than task τk and lp(τk) as the set of lower-priority
tasks than task τk . When task τi has a higher priority than task τj , we denote their
priority relationship as τi > τj . We assume that the priority levels are unique.

For FP scheduling algorithms, we need another notation

FRJi,[r,r+�) = {
Ji,j | Ji,j ∈ FJi , ri,j ≥ r, ri,j < r + �

}
. (4.6)

That is, for a given feasible set FJi of jobs generated by a sporadic/periodic real-
time task τi , let FRJi,[r,r+�) be the subset of the jobs in FJi arriving in time
interval [r, r +�). By extending the proofs like in Sect. 4.2.1, we can also prove the
following lemma and theorem.

Lemma 4.2 The total amount of execution time of the jobs of τi that are released
in a time interval [r, r + �) for any � ≥ 0 is

∑

Ji,j ∈FRJi,[r,r+�)

Ci,j ≤
⌈

�

Ti

⌉

Ci
def= demandi(�). (4.7)

Theorem 4.2 Let �min > 0 be the minimum value that satisfies

�min = Ck +
∑

τi∈hp(τk)

demandi(�min). (4.8)

The WCRT Rk of task τk in a preemptive fixed-priority uniprocessor scheduling
algorithm is
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• Rk = �min, if �min ≤ Tk , and
• Rk > Tk , otherwise.

Theorem 4.2 can be re-written into a more popular form, called time-demand
analysis (TDA) proposed by Lehoczky et al. [21]: A (constrained-deadline) task τk

is schedulable under FP-P scheduling if and only if

∃t |0 < t ≤ Dk ≤ Tk, Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉

Ci ≤ t. (4.9)

Theorem 4.2 is a very interesting and remarkable result, widely used in the
literature. It suggests to validate the worst-case response time of task τk by

• releasing the first jobs of the higher-priority tasks in hp(τk) together with a job
of τk and

• releasing the subsequent jobs of the higher-priority tasks in hp(τk) as early as
possible by respecting their minimum inter-arrival times.

To explain the above phenomena, Liu and Layland in their seminal paper [23] in
1973 defined two terms (according to their wording):

• A critical instant for task τk is an instant at which a job of task τk released at
this instant has the largest response time.

• A critical time zone for task τk is a time interval starting from a critical instant
of τk to the completion of the job of task τk released at the critical instant.

Liu and Layland [23] concluded the famous critical-instant theorem as follows:
“A critical instant for any task occurs whenever the task is requested simultaneously
with requests for all higher-priority tasks.” Their proof was in fact incomplete.
Moreover, their definition of the critical-instant theorem was incomplete since the
condition �min > Tk was not considered in their definition. A precise definition of
the critical-instant theorem is revised as follows:

• A critical instant for task τk is an instant such that

– a job of task τk released at this instant has the largest response time if it is no
more than Tk or

– the worst-case response time of a job of task τk released at this instant is more
than Tk .

• A critical time zone for task τk is a time interval starting from a critical instant
of τk to the completion of the job of task τk released at the critical instant.

• In a critical time zone for task τk , all the tasks release their first jobs at a critical
instant for task τk and their subsequent jobs as early as possible by respecting
their minimum inter-arrival times.
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4.3 Utilization-Based Analyses for Fixed-Priority Scheduling

The TDA in Eq. (4.8) requires pseudo-polynomial-time complexity to check the
time points in (0,Dk] for Eq. (4.8), which can be further generalized for verifying
the schedulability of task τk under fixed-priority scheduling:

∃0 < t ≤ Dk s.t. Ck +
∑

τi∈hp(τk)

σ

(⌈
t

Ti

⌉

Ci + bCi

)

≤ t, (4.10)

where σ > 0 and b ≥ 0. Equation (4.10) can be used in many cases if Dk ≤ Tk ,
such as

• σ = 1 and b = 0 in Eq. (4.10) for uniprocessor sporadic task systems [21],
• σ = 1 and b = 1 in Eq. (4.10) for uniprocessor self-suspending sporadic task

systems [22] (under the assumption that task τk does not suspend itself), and
• σ = 1/M and b = 1 in Eq. (4.10) for multiprocessor global rate-monotonic

scheduling [2] on M identical processors.

Although testing Eq. (4.10) takes pseudo-polynomial time, it is not always
necessary to test all possible time points to derive a safe worst-case response
time or to provide sufficient schedulability tests. The general and key concept to
obtain sufficient schedulability tests in k2U in [7, 8] and k2Q in [6, 10] is to test
only a subset of such points for verifying the schedulability. Traditional fixed-
priority schedulability tests often have pseudo-polynomial-time (or even higher)
complexity. The idea implemented in the k2U and k2Q frameworks is to provide
a general k-point schedulability test, which only needs to test k points under any
fixed-priority scheduling when checking schedulability of the task with the kth
highest priority in the system. Suppose that there are k − 1 higher-priority tasks,
indexed as τ1, τ2, . . . , τk−1, than task τk . Recall that the task utilization is defined
as Ui = Ci/Ti . The success of the k2U framework is based on a k-point effective
schedulability test, defined as follows:

Definition 4.2 (Chen et al. [7, 8]) A k-point effective schedulability test is a
sufficient schedulability test of a fixed-priority scheduling policy that verifies the
existence of tj ∈ {t1, t2, . . . tk} with 0 < t1 ≤ t2 ≤ · · · ≤ tk such that

Ck +
k−1∑

i=1

αitiUi +
j−1∑

i=1

βitiUi ≤ tj , (4.11)

where Ck > 0, αi > 0, Ui > 0, and βi > 0 are dependent upon the setting of the
task models and task τi .

The properties in Definition 4.2 lead to the following lemmas for the k2U
framework which are proven in [8].
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Lemma 4.3 For a given k-point effective schedulability test of a scheduling
algorithm, defined in Definition 4.2, in which 0 < tk and 0 < αi ≤ α, and
0 < βi ≤ β for any i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling
algorithm if the following condition holds:

Ck

tk
≤

α
β

+ 1
∏k−1

j=1(βUj + 1)
− α

β
. (4.12)

Lemma 4.4 For a given k-point effective schedulability test of a scheduling
algorithm, defined in Definition 4.2, in which 0 < tk and 0 < αi ≤ α and
0 < βi ≤ β for any i = 1, 2, . . . , k − 1, task τk is schedulable by the scheduling
algorithm if

Ck

tk
+

k−1∑

i=1

Ui ≤ (k − 1)((α + β)
1
k − 1) + ((α + β)

1
k − α)

β
. (4.13)

Example 4.1 Suppose that Dk = Tk and the tasks are indexed by the periods,
i.e., T1 ≤ · · · ≤ Tk . When Tk ≤ 2T1, task τk is schedulable by preemptive rate-
monotonic (RM) scheduling if there exists j ∈ {1, 2, . . . , k} where

Ck +
k−1∑

i=1

Ci +
j−1∑

i=1

Ci = Ck +
k−1∑

i=1

TiUi +
j−1∑

i=1

TiUi ≤ Tj . (4.14)

Therefore, the coefficients in Definition 4.2 for this test are αi = βi = 1 and ti = Ti

for i = 1, 2, . . . , k − 1, and tk = Tk . Based on Lemma 4.3, the schedulability of
task τk under preemptive RM is guaranteed if

Ck

Tk

≤ 2
∏k−1

j=1(βUj + 1)
− 1 ⇒

k∏

j=1

(βUj + 1) ≤ 2. (4.15)

Based on Lemma 4.4, the schedulability condition of task τk under preemptive
RM is

k∑

i=1

Ui ≤ k(2
1
k − 1). (4.16)

The schedulability test in Eq. (4.15) was originally proposed by Bini and But-
tazzo [3], called hyperbolic bound, as an improvement of the utilization bound in
Eq. (4.16) by Liu and Layland in [23]. We note that the original proof in [23] was
incomplete, pointed out and fixed by Goossens [15].

The success of the k2Q framework is based on a k-point effective schedulability
test, defined as follows:
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Definition 4.3 A k-point last-release schedulability test under a given ordering π

of the k − 1 higher-priority tasks is a sufficient schedulability test of a fixed-priority
scheduling policy that verifies the existence of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk−1 ≤ tk such
that

Ck +
k−1∑

i=1

αitiUi +
j−1∑

i=1

βiCi ≤ tj , (4.17)

where Ck > 0, for i = 1, 2, . . . , k − 1, αi > 0, Ui > 0, Ci ≥ 0, and βi > 0 are
dependent upon the setting of the task models and task τi .

The properties in Definition 4.3 lead to the following lemmas for the k2Q
framework which are proven in [10].

Lemma 4.5 For a given k-point last-release schedulability test of a scheduling
algorithm in Definition 4.3, in which 0 < αi , and 0 < βi for any i = 1, 2, . . . , k−1,
0 < tk ,

∑k−1
i=1 αiUi ≤ 1, and

∑k−1
i=1 βiCi ≤ tk , task τk is schedulable by the fixed-

priority scheduling algorithm if the following condition holds:

Ck

tk
≤ 1 −

k−1∑

i=1

αiUi −
∑k−1

i=1 (βiCi − αiUi(
∑k−1

�=i β�C�))

tk
. (4.18)

Example 4.2 Suppose that Dk = Tk and the tasks are indexed by the periods, i.e.,
T1 ≤ · · · ≤ Tk . When Tk ≤ 2T1, task τk is schedulable by rate-monotonic (RM)
scheduling if there exists j ∈ {1, 2, . . . , k} where

Ck +
k−1∑

i=1

Ci +
j−1∑

i=1

Ci = Ck +
k−1∑

i=1

TiUi +
j−1∑

i=1

Ci ≤ Tj . (4.19)

Therefore, the coefficients in Definition 4.3 for this test are αi = βi = 1 and ti = Ti

for i = 1, 2, . . . , k − 1, and tk = Tk . Based on Lemma 4.5, the schedulability of
task τk under preemptive RM is

Ck

Tk

≤ 1 −
k−1∑

i=1

Ui −
∑k−1

i=1 (Ci − Ui(
∑k−1

�=i C�))

Tk

. (4.20)

The test in Eq. (4.20) is a quadratic form. The first quadratic bound (QB) by Davis
and Burns in Equation (26) in [14] and Bini et al. in Equation (11) in [4] is

k∑

i=1

Ui +
∑k−1

i=1 Ci − ∑k−1
i=1 UiCi

Tk

≤ 1. (4.21)

The test in Eq. (4.20) is superior to the test in Eq. (4.21).
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The generality of the k2Q and k2U frameworks has been demonstrated in [8, 10].
We believe that these two frameworks, to be used for different cases, have great
potential in analyzing many other complex real-time task models, where the existing
analysis approaches are insufficient or cumbersome.

For the k2Q and k2U frameworks, their characteristics and advantages over other
approaches have been already discussed in [8, 10]. In general, the k2U framework
is more precise by using only the utilization values of the higher-priority tasks.
If we can formulate the schedulability tests into the k2U framework, it is also
usually possible to model it into the k2Q framework. In such cases, the same
pseudo-polynomial-time test is used. When we consider the worst-case quantitative
metrics like utilization bounds, resource augmentation bounds, or speedup factors,
the result derived from the k2U framework is better for such cases. However, there
are also cases, in which formulating the test by using the k2U framework is not
possible. These cases may even start from schedulability tests with exponential-
time complexity. We have successfully demonstrated three examples in [6] by using
the k2Q framework to derive polynomial-time tests. In those demonstrated cases,
either the k2U framework cannot be applied or with worse results (since different
exponential-time or pseudo-polynomial-time schedulability tests are applied).

The automatic procedure to derive the parameters in the k2U can be found
in [9]. Previously, the parameters in all the examples in [8] were manually
constructed. This automation procedure significantly empowers the k2U framework
to automatically handle a wide range of classes of real-time execution platforms
and task models, including uniprocessor scheduling, multiprocessor scheduling,
self-suspending task systems, real-time tasks with arrival jitter, services and vir-
tualizations with bounded delays, etc. We believe that the k2U framework and the
automatic parameter derivations together can be a very powerful tool for researchers
to construct utilization-based analyses almost automatically. Depending on the
needs of the use scenarios, a more suitable schedulability test class should be chosen
for deriving better results.

Utilization-Based Analysis for Dynamic-Priority Scheduling Algorithms
The k2U and k2Q frameworks provide general utilization-based timing
analyses for fixed-priority scheduling. One missing building block is the
utilization-based timing analyses for dynamic-priority scheduling algorithms,
like EDF. The analytical framework in [8, 10] is based on analytical solutions
of linear programming. However, such formulations do not work for EDF.
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4.4 Probabilistic Schedulability Tests

In many real-time systems, it is tolerable that at least some of the tasks in the system
miss their deadline in rare situations. Regardless, these deadline misses must be
quantified to ensure the system’s safety. We examine the problem of determining
the deadline miss probability of a task under uniprocessor static-priority preemptive
scheduling for an uncertain execution behavior, i.e., when each task has distinct
execution modes and a related known probability distribution.

One important assumption for real-time systems is that a deadline miss, i.e., a
job that does not finish its execution before its deadline, will be disastrous and thus
the WCET of each task is always considered during the analysis. Nevertheless, if
a job has multiple distinct execution schemes, the WCETs of those schemes may
differ significantly. Examples are software-based fault-recovery techniques which
rely on (at least partially) re-executing the faulty task instance, mixed-criticality
systems, and a reduced CPU frequency to prevent overheating. In all these cases,
it is reasonable to assume that schemes with smaller WCET are the common case,
while larger WCETs happen rarely.

We use the example of software-based fault-recovery in the following discussion.
When such techniques are applied, the probability that a fault occurs and thus
has to be corrected is very low, since otherwise hardware-based fault-recovery
techniques would be applied. If re-execution may happen multiple times, the
resulting execution schemes have an increased related WCET, while the probability
decreases drastically. Therefore, solely considering the execution scheme with the
largest WCET at design time would lead to largely overdesigning the system
resources. Furthermore, many real-time systems can tolerate a small number of
deadline misses at runtime as long as these deadline misses do not happen too
frequently. This holds true especially if some of the tasks in the system only
have weakly hard or soft real-time constraints. Hence, being able to predict the
probability of a deadline miss is an important property when designing real-time
systems.

We focus on the probability of deadline misses for a single task here, which is
defined as follows:

Definition 4.4 (Probability of Deadline Misses) Let Rk,j be the response time of
the j th job of τk . The probability of deadline misses (DMP) of task τk , denoted by

k , is an upper bound on the probability that a job of τk is not finished before its
(relative) deadline Dk , i.e.,


k = max
j

{
P(Rk,j > Dk)

}
, j = 1, 2, 3, . . . . (4.22)

It was shown in [24] that the DMP of a job of a constrained- or implicit-deadline
task is maximized when τk is released at its critical instant. Hence, the time-demand
analysis (TDA) in Eq. (4.8) can be applied to determine the worst-case response time
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of a task when the execution time of each job is known. This implicitly assumes that
no previous job has an overrun that interferes with the analyzed job, i.e., we are
searching for the probability that the first job of τk misses its deadline after a longer
interval where all deadlines were met.

When probabilistic WCETs are considered, the WCET obtains a value in
(Ci,1, . . . , Ci,h) with a certain probability Pi (j) for each job of each task τi .
Therefore, TDA for a given t is not looking for a binary decision anymore. Instead,
we are interested in the probability that the accumulated workload St over an interval
of length t is at most t . The probability that τk cannot finish in this interval is denoted
accordingly with P(St > t). The situation where St is larger than t is called an
overload for an interval of length t and hence P(St > t) is the overload probability
at time t . Since TDA only needs to hold for one t with 0 < t ≤ Dk to ensure
that τk is schedulable, the probability that the test fails is upper bounded by the
minimum probability among all time points at which the test could fail. As a result,
the probability of a deadline miss 
k can be upper bounded by


k = min
0<t≤Dk

P(St > t). (4.23)

The number of points considered in the TDA can be reduced by only considering
the points of interest, i.e., Dk and the releases of higher-priority tasks.

Therefore, testing the schedulability efficiently requires an efficient routine to
calculate P(St > t) for a given t and a combination of given random variables St .
The research results at TU Dortmund have recently achieved efficient calculations
as follows:

• Chernoff bound in [5, 13]: The calculation of P(St > t) is based on the moment
generating function of the classical Chernoff bound.

• Multinomial-based approach in [30]: The calculation of P(St > t) uses the
multinomial distribution.

We note that the DMP is not identical to the deadline miss rate of a task and that
the deadline miss rate may be even higher than this probability, as detailed by Chen
et al. [11]. However, the approach in [11] utilizes approaches to approximate the
deadline miss probability as a subroutine when calculating the rate.

Generality of Using P(St > t)

The efficient calculation of P(St > t) results in efficient probabilistic
schedulability tests and deadline miss rate analyses for preemptive fixed-
priority uniprocessor systems. The general question is whether this holds also
for other scheduling problems and platforms, like multiprocessor systems.
Whether the applicability can be generalized is an open problem.
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4.5 Conclusion

The critical-instant theorem has been widely used in many research results. Some
of the extensions of the critical-instant theorem are correct, e.g., the level-i
busy window concept in [20], and some are unfortunately incorrect, e.g., for
self-suspending tasks in [18, 25]. Specifically, the misconception of modeling
self-suspension time of a higher-priority task as its release jitter in the worst-
case response time analysis in [25] and [19] had become a standard approach in
multiprocessor locking protocols in real-time systems since 2009 until the error was
found in 2016, summarized in Section 6 in [12].

In addition to the lack of formalism, the existing properties that have been
widely used in analyzing timing satisfactions in cyber-physical real-time systems
are also biased towards computation. One key assumption used in computation
is that the execution of one cycle on a processor reduces the execution of a task
by one cycle. If the problem under analysis does not have such a property, the
workload characterized by using uniprocessor systems cannot be used at all. To
explain this mismatch, consider the preemptive worm-hole switching protocol in
communication as an example. Suppose that a message has to be sent from node
A to node B by using two switches, called S1 and S2. Namely, the message has to
follow the path A → S1 → S2 → B. Suppose that the message is divided into f

communication units, in which a communication unit can be sent and received in
every time unit. A fast transmission plan is to fully parallelize the communication
if possible. That is, one communication unit from A to S1 for the first time unit,
one communication unit from A to S1 and S1 to S2 for the second time units, etc.
Therefore, the communication time of the message can be modeled as f + 2. This
analysis is correct under the assumption that S1 and S2 are not used by other flows.
However, if the usage of S1 or S2 is blocked during the transmission of the message
flow, using f +2 time units for analysis is problematic. For the fast transmission plan
with f +2 communication time, it is actually possible that the message is transmitted
in 3f time units as the links are blocked for any communication parallelism. To
handle the increase of time, several factors have been introduced into the real-time
analyses for priority-preemptive worm-hole networks, including direct interference,
indirect interference, backpressure, non-zero critical instant, sub-route interference,
and downstream multiple interference (summarized in Table VII in [17]). However,
since the problem under analysis is essentially not the same as a uniprocessor
schedule, applying the uniprocessor timing analysis with extensions is in my opinion
only possible after a rigorous proof of equivalence. This mismatch leads to a
significant amount of flaws in the literature in this topic. Specifically, the analysis
in [28] had been considered safe for a few years until a counterexample was
provided in [32].

To successfully tackle complex cyber-physical real-time systems that involve
computation, parallelization, communication, and synchronization, we believe that
new, mathematical, modulable, and fundamental properties for property-based
(schedulability) timing analyses and scheduling optimizations are strongly needed.
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They should capture the pivotal properties of cyber-physical real-time systems and
thus enable mathematical and algorithmic research on the topic. The view angles
should not be limited to the processor- or computation-centric perspective. When
there are abundant cores/processors, the bottleneck of the system design becomes
the synchronization and the communication among the tasks [16, 29]. Different
flexibility and tradeoff options to achieve real-time guarantees should be provided in
a modularized manner to enable tradeoffs between execution efficiency and timing
predictability.
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Chapter 5
ASSISTECH: An Accidental Journey
into Assistive Technology

M. Balakrishnan

5.1 The Beginning: Mainly a Facilitator (2000–2005)

My ASSISTECH journey started by accident. Myself and Mr. Dipendra Manocha
(see the adjoining profile) had a common acquaintance with whom he used to meet
and exchange audio cassettes in the late 90s and early 2000. Note Dipendra lost his
eye sight when he was around 12 years of age. On his reference, Dipendra one day
came to meet me with a request that can I help in making the “emacs” editor in Linux
accessible through the screen reader software. At that time Dipendra was managing
the computer center in NAB (National Association of Blind). At that time I myself
was deeply into research and tool development only in the broad areas of VLSI/EDA
tools with special focus on system level design that included high level synthesis as
well as hardware-software co-design. For such application development, I neither
had the skills nor any special interest. On the other hand, I was completely
overwhelmed by the sincerity and focus of Dipendra and thus I decided to involve
some students through a mini-project. They did manage to develop a basic solution
but the solution itself did not get widely deployed but formed the beginning of a very
long and fruitful relationship. In the initial years, most of our engagements were
similar—he would propose a project (mainly software based) and I would identify a
set of project students who would be jointly mentored by us to work on the solution.
We became closer and I was always impressed with his ease of understanding
the technological capabilities as well as limitations without any formal training in
Science or Engineering. Being blind did not seem to matter at all! Note Dipendra’s
formal college education consists of an under-graduate and post-graduate degree in
music. He had immense capability to explain the needs of the visually impaired in a
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language that could be easily understood by my CSE students. I started inviting him
regularly for engaging my CS class to talk about the challenges faced by the VI and
these talks were always a big hit and inspired many students.

5.2 Early Phase: Focus on Embedded Systems (2005–2010)

5.2.1 ASSISTECH and COP315

COP315 is a project based embedded systems course developed by me in late
90s. This course has an interesting German connection. I spent a year as a
visiting Professor (Konrad Zuse Fellow) in the Computer Science Department
at the University of Dortmund in 1994–1995. I came across this semester long
course (group project course) where a group of students (upto 10) did a project
that typically resulted in a small system development which they demonstrated at
the end of the semester. The course had no formal lectures and though they were
mentored by the research assistants but primarily were expected to rely on the
material available in the open domain for building their backgrounds and solving the
problems they encountered. I was impressed by the complexity as well as quality of
projects including use of FPGAs, etc. by which they could build their projects and
demonstrate. This was in spite of the fact that students at Dortmund had relatively
much less exposure through formal instruction in hardware design vis-à-vis IIT
Delhi students.

On my return to IIT Delhi, I decided to revamp a course which I used to teach for
third year students “Microprocessor based System Design”. This course initially had
lectures, regular practical assignments as well as a small project. After the change,
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we made groups of 4–6 students, offered them a list of projects while being open to
project suggestions from them as well. As in initial years almost all projects were
built around microcontrollers and peripheral devices, I gave them a set of lectures
on microcontroller based design. COP315 played a major role in the ASSISTECH
journey as it incubated many of the ideas that became successful products later not
only in Assistive Technology (AT) space but also in other domains.

5.2.2 SmartCane

The SmartCane journey began as a COP315 project in 2005. This was taken up by a
group of 4 students—Rohan Paul, Dheeraj Mehra, Vaibhav Jain, and Ankush Garg
who were at that time in the first semester of their third year. The first three students
were dual degree students and thus were to stay in the Department for another 3
years. Before the start of the semester, Dipendra first mentioned a key problem in
independent mobility of visually impaired in Indian infrastructure—White cane’s
inability to detect knee above overhanging obstacles on walking paths without
a footprint on the walking path itself. These obstacles can range from low
overhanging tree branches on roads and footpaths to jutting out window air-
conditioners and room coolers in corridors. This often resulted in upper body
injuries and resulted in loss of confidence in independent mobility.
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I am sure that the problem specification meetings the students had with Mr.
Manocha inspired them a lot. The unusually intense engagement of this student
group led by Mr. Rohan Paul with the objectives of the project was evident from the
very beginning. As they worked on the initial prototypes, they also made it known
to me that if opportunity is given they would like to work on it even beyond the
semester. This group of students continued to work on it for the next 3 years (except
Ankush who graduated in 2007), developed a series of prototypes and did multiple
user testing at NAB (National Association of Blind) with the help of Mr. Dipendra
Manocha. Many of the initial technical challenges were addressed in this phase that
lasted from 2005–2008. Except at the very end of this phase, we worked without
any external funding but were responsible for building some key collaborations that
have lasted more than a decade. First 3-D printing facility has been established in
IIT Delhi and was being managed by Prof. P.V.M. Rao in Mechanical Engineering
Department. To prototype the casing that was in the form of handle we established
contact with Prof Rao. He not only helped them fabricate but got soon involved in
various aspects of design. This was the beginning of the relationship that has played
a critical role in the success of ASSISTECH. Key technical achievements were also
very inter-disciplinary in nature. Apart from innovative use of ultrasonic sensor to
get the obstacle distance information and then to convey the same using a vibrator,
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Fig. 5.1 SmartCane through various stages of development: Laboratory (2005) to Product (2014)

key technical challenge revolved around reducing power consumption. It was not
only in the electronics but also in the coupling between the vibrator and handle for
efficient power transfer [2, 18, 19].

At the end of the prototype development (summer of 2007), by a chance
coincidence all the three students could get support to present their work at
TRANSED 2007 at Montreal. The fact that the paper also got noticed in the
conference and received very positive feedback, it helped to motivate the students.
Soon after that we were able to sign an agreement with Phoenix Medical Systems
(PMS), Chennai for technology transfer and licensing. The period from 2008–2011
was very frustrating as we wrote several proposals for support for translational
research to various Government agencies. Challenge was that significant support
was also required at the manufacturer’s end and agencies were willing to fund only
the IIT Delhi Component (Fig. 5.1).
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A chance meeting with Dr. Shirshendu Mukherjee, Country Manager of WT
(Wellcome Trust, UK) in India resulted in a major success in getting the grant from
WT in their first call for “Affordable Health Care in India”. Our application itself
was successful because the committee was impressed by the team composition—
academic entity with product know-how, a credible industrial partner and an NGO
in the space as dissemination partner. This clearly was a turning point for the
lab. The funding not only catered to the requirements of all the three partners but
also included many provisions for creating a quality product, e.g. plastic injection
mold costs, large scale multi-city validation trials and costs of getting CE marking.
This funding clearly helped us to do many things very systematically and with
professional support which is not typical of an academic project. Some of the key
features of the development process are listed below.

• A 30-member user group was involved in the early stages of the product design
and helped arrive at the requirements

• The product was validated by 150 users in 6 cities before its eventual launch on
31st March 2014. We have not come across any disability product anywhere in
the world that has been tested by so many users before its launch

We discuss some of the interesting user-centric design decisions related to
ergonomics and aesthetics. Initial designs were difficult for women to grip due
to their smaller hand sizes. This came to notice later as the focus group had only
men. This required a major redesign including a completely novel packaging.
Initially the color of the device was not being considered as it was thought that
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anyway it is a product for a blind person. A simple question from a blind woman
settled this question—do you choose color of the clothes to wear only for yourself
or for others as well to see and appreciate?

The success in launching the product within the project duration was highly
appreciated by the sponsor (WT) and resulted in significant funding for national
and International dissemination. While the industry partner focused on scaling
manufacturing, over the next 3 years a team from IIT Delhi and Saksham focused on
training users and mobility instructors and building partnership with 40+ agencies
across the country. This has played a significant role in widespread acceptance of
the device with sales crossing 70,000 units in 5 years (Figs. 5.2 and 5.3).

5.2.3 OnBoard

OnBoard is a globally unique solution for assisting visually impaired users to board
public buses independently. It addresses two challenges that are faced by the VI in
this process of independent boarding (Figs. 5.4 and 5.5).

Fig. 5.2 SmartCane as a product comes with number of support material for trainers as well as for
users (self-learning). It contains manuals in Braille and audio manual in different languages

Fig. 5.3 SmartCane assembly line facility at Phoenix Medical Systems Chennai and a batch of
devices packed in a box
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Fig. 5.4 This is a typical bus stop in Delhi. Very often a very large number of routes use the same
bus stop and visually impaired person requires the help of another passenger waiting at the stop to
help him/her identify the route number

Fig. 5.5 Buses for various reasons do not come and stop in the bay necessitating waiting
passengers to walk even up to 25 m to board the bus. For a visually impaired it becomes very
difficult as well as unsafe to locate the entry door to board the bus especially as the time available
is short and number of passengers may be rushing towards the bus

1. Typically many route numbers use the same bus stop. In Indian Metros in some
of the bus stops the number of route numbers being serviced may even go up to
50 but 15+ is quite common and 5+ is almost the norm except in the suburbs. A
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VI commuter always requires help of another commuter at the bus stop and that
poses two challenges.

• Off-peak time when it is convenient for travel due to buses being less crowded,
it may happen that the bus stop has no other passenger waiting

• Even if there are many other passengers waiting, inability of the VI person to
choose the right person for information may imply that help is being sought
from someone busy (may be on his/her phone) or himself a visitor resulting
often in unpleasant situations

2. The second challenge is more typical of bus stop infrastructure and practices
followed by buses in picking up the passengers. Buses do not always come and
stop in the bay for many reasons including presence of slow moving vehicles or
large number of waiting commuters spilling onto the bus lane as well as presence
of other buses in the bay. Thus for the VI person to locate the entry door can be
even a bigger challenge and our video recordings show that the person may have
to walk even up to 25 m.

Technically the work on OnBoard started more or less concurrently with Smart-
Cane but after the development of prototypes and some testing, further development
was shelved as the focus shifted to translational research on SmartCane. In hindsight
it was the right decision as the solution involved changes to the infrastructure
provided by a third party (bus operators) struggle has been much higher to
get it implemented. The key technical features included a simple user interface,
implementation of a slotted network protocol to simultaneously handle up to 8
buses at a bus stop and dual frequency protocol between the user device and the bus
device for meeting both the requirements—querying and getting the route number
and locating the entry door using an audio cue (Figs. 5.6 and 5.7).

Fig. 5.6 User presses the query button (user module): (1) RF query is sent to all buses in the
vicinity and buses respond with their route numbers. (2) User module reads out all the route
numbers one by one
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User selects
bus no. 501

“501..501..”

501

501

620

Other buses
do not respond

501

Voice output from the bus of interest
gives directional-cue to board the bus

Fig. 5.7 In case a route number is of user interest: (1) User presses the select button (user module),
This triggers a voice output from the speaker (bus module fixed near the door). (2) Acts as auditory
cue for locating the door

Starting 2014, with the help of TIDE scheme of DST, Govt of India, we restarted
this work and did some preliminary testing on DIMTS buses in Delhi. Subsequently
with the help of a very active organization in Mumbai (XRCVC1) we were able
to reach out to BEST where between January and April 2015 we installed these
devices on 25 buses (all buses on route numbers 121 and 134 from Back Bay depot).
We identified 21 blind bus users, trained them on the device with 5 to 6 supervised
boardings each and then asked them to do a total of 350 unsupervised boardings. As
they were unsupervised boardings, we needed to evolve a mechanism of assessing
the effectiveness of the solution. We asked the users to record the time they reached
the bus stop and the time they boarded the bus. Comparing the waiting time at the
bus stop with the frequency of the service, we could determine whether the user
could board the first bus on the route or not. We achieved 92%+ success rate in
users independently boarding the first bus on the route implying the device was very
effective. We believe the failure was lower than 8% as sometimes the depot change
the buses deployed on a specific route due to operational reasons and it was possible
that some of the buses deployed on these routes did not contain the OnBoard bus
device [8, 13, 16, 21].

Last 2 years had been spent in reducing the size of the user device and making
it aesthetically pleasing. The bus device has also been significantly miniaturized
and now it can be operated from the power source of the bus instead of a separate
battery as was the case during Mumbai trials Further, a simple protocol by which
the device can be retro-fitted in a few minutes has been developed and tested. At
present we are awaiting funding for a much larger trials where the users would use
the device over a period for their regular commute requirements. We feel such trials

1http://www.xrcvc.org/.

http://www.xrcvc.org/
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Fig. 5.8 Mumbai trials on BEST Buses (Jan–April 2015): Bus device was mounted on the window
and the unit operated with its own battery. The battery unit is seen below the front seat reserved for
the disabled

Fig. 5.9 Miniaturized bus device and user device (not to scale) used in the second Delhi trials.
The bus device is mounted on the DMITS orange cluster bus in Delhi. Again the validation trials
on these new devices were conducted successfully during May to July 2018

are required before we pursue the same becoming a regulatory requirement so that
the bus systems become inclusive which is part of the Government policy (Figs. 5.8
and 5.9).

5.3 Collaborations and Research: Formation of ASSISTECH
(2010–2013)

5.3.1 Student Projects to Research

This phase also saw a consolidation of our activities through the formation of
ASSISTECH group with a clear objective of working in the space of mobility
and education of visually impaired. Allocation of laboratory space in the newly
constructed School of Information Technology building significantly facilitated
this process. Apart from involvement of students through under-graduate projects,
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registration of first PhD student (Mr. Piyush Chanana) changed the nature of
activities in the laboratory. This also meant that a more structured approach to
involving users in evolving product/project specification became possible. Saksham
our collaborator posted two of its blind employees to the laboratory and that had an
impact at multiple levels. By this time it was clear that any design and product
development without involvement of users at all stages, a process that is today
referred to as co-creation is essential in this space. It is not sufficient for the
designers to understand the limitations of VI users but they also have to understand
their strengths in equal measure.

Inter-disciplinary research has gained traction globally but still very often the
laboratories draw students from within a single disciplinary background. ASSIS-
TECH with its user focus has been able to break this barrier and today has computer
science, electrical engineering, mechanical engineering and design expertise apart
from user community members under one roof. This has created a unique ecosystem
for user-centric approaches to problem solving.

5.3.2 NVDA Activities

NVDA or Non-visual Desk Top access is a screen reader software that makes
Microsoft Office products accessible to the visually impaired. It is an open source
movement and has been successful in creating a large user base globally. ASSIS-
TECH also participated in improving the NVDA tools to essentially support tables
that are found in documents. Navigation across the cells of a table in an intuitive
and non-verbose manner is critical for VI to comprehend tabular information.
ASSISTECH helped augment NVDA in multiple ways and worked closely with
the user groups [3, 4].

5.3.3 TacRead and DotBook

Refreshable Braille displays for accessing digital text are a technology which is
more than three decades old. These are line display devices that contain an array of
cells (typically ranging from 8 to 40) consisting of 6 or 8 pins per cell to create a
6-dot or 8-dot Braille character, respectively. The pins are driven by piezo actuators
and through their up and down movement form the Braille characters. Though the
devices have been around for a long time but the costs have been so high that there
was hardly any penetration in low-income countries like India. Combination of
patented technologies, low volume production associated with high margins from
monopoly cell manufactures meant the devices continued to cost USD 50 to USD
100 per cell. The rapid growth of screen readers that had started becoming available
on all platforms also meant that even in the high-income countries the Braille
displays saw a dwindling market. On the other hand, many studies have now shown
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Fig. 5.10 Initial single Braille cell based on SMA (Shape memory alloys) designed and fabricated
during 2014–2017

that if visually impaired persons do not learn to read their ability to write would be
minimal. This resulted in the transforming Braille project with worldwide interest
in producing low-cost Braille reading and writing devices.2

At the same time at ASSISTECH we were engaged in developing refreshable
Braille cells using shape memory alloys. The development process involved efforts
of multiple batches of mechanical engineering students working with our research
staff. These students not only worked on it as their course projects but often stayed
back after graduation to work on refining their designs to improve performance
or reduce size/weight/cost. It has taken more than 5 years of design, testing, and
instrumentation to produce reliable Braille cell modules. Based on the success of
the SmartCane, WT funded us again for the Refreshable Braille displays. This
time we had two industry partners (PMS and KSPL—KritiKal Solutions Private
Limited) and Saksham was again our dissemination partner. The modules produced
by Phoenix are being called TacRead, whereas the devices produced by KSPL using
these modules are named DotBook. We did a launch of 20-cell and 40-cell devices
on Feb 2019. Small volume production is on but some key changes and tooling
required for volume production is being setup (Fig. 5.10).

The device is highly complex and represents innovation and design in software,
electronics design, mechanical design as well as ergonomics. This also resulted in
a number of research papers as well as a well awarded Master’s thesis by Suman
Muralikrishna [1, 7, 17, 20]. DotBook provides all the key functionality of a laptop
including document editing, web browsing as well as emailing. Today all standard

2http://transformingbraille.org/.

http://transformingbraille.org/
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tools have software towards taking inputs from graphical user interfaces. They all
needed to be thought afresh as it was not only a character line display but had a
length of only 40 characters. Power delivery as well as consumption was a huge
challenge as SMA wires required heating to actuate and needed to be cooled to bring
the pin return to its original position. Overheating meant not only possibility of wire
breakage over time but also slower refresh rate due to higher latency required for
deactivation. Mechanical complexity was evident with 320 moving parts (8 pins per
cell and 40 cells) which need to be controlled such that the heights of actuated pins
are within + or − 0.1 mm in a 1 mm movement. Many user studies were conducted
both to identify the functions associated with the limited set of keys that are available
as well as their suitable positioning on the device. Volume production is expected to
begin by early 2020 as major reliability related issues in the cell module have been
sorted out (Fig. 5.11).

5.4 Change of Focus: Technology to Users (2013–2016)

5.4.1 Tactile Graphics Project

During the dissemination phase of SmartCane, it was decided to create a self-
learning manual for visually impaired. It was easy to print the Braille text in
English and Hindi but the manual also contained a set of simple diagrams to
explain ultrasonic ranging. In this process we realized that there is no structured
way for producing tactile diagrams in some volume in India. This was in sharp
contrast to what we saw in UK and USA where almost all the text material
including diagrams were available to visually impaired students as Braille books.
Clearly unavailability of tactile diagrams created a significant barrier to visually
impaired students to pursue STEM subjects—typically they were forced to study
only subjects like history and literature that did not require access to diagrams. This

Fig. 5.11 DotBook: 20-cell and 40-cell devices that were launched on 28 Feb 2019. Volume
production is expected to start in first quarter of 2020



5 ASSISTECH: An Accidental Journey into Assistive Technology 71

prompted us to develop a low-cost technology for production of tactile graphics.
Under a project sponsored by MEITY (Ministry of Information Technology), know-
how was created for production of low-cost tactile diagrams. This involved some
software adaptations, standardization of 3-D printing for preparing low-cost molds,
and setting up of facilities for production of tactile material using thermoforming.
As tactile route to learning is very different from visual route, guidelines have been
developed over many decades in the USA and Europe (e.g. BANA1). A set of tactile
designers were trained using these guidelines and then in collaboration with an apex
agency in India that is responsible for school curriculum and education, existing
Science and Mathematics books for School grades 9th and 10th were produced
with tactile diagrams. These were extensively tested with both children studying
in blind schools as well as inclusive schools [15]. Once the project was completed,
a non-profit company named Raised Lines Foundation3 (RLF) has been incubated in
August 2018. RLF is at present engaged in design and production of tactile diagrams
and other tactile material for education. Initial feedback suggests that it is helping
many visually impaired students to pursue STEM subjects all over India. In the next
few years not only we intend to scale this venture but also create partnerships across
the country for creation of tactile material in different Indian languages. It is also
planned to create a design service for organizations outside India (Figs. 5.12 and
5.13).

5.4.2 More Research Projects and International Collaboration

This period also saw enrollment of number of PhD and Masters students in this
space. As Design students started enrolling with us, it was clear that there were many

Fig. 5.12 Tactile diagrams developed as part of the project Tactile Graphics sponsored by MEITY,
Govt of India made innovative use of 3-D printing for production of low-cost tactile diagrams

3http://raisedlines.org/.

http://raisedlines.org/
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Fig. 5.13 A non-profit company has been formed using the know-how developed under the project
to produce school text books and other reading material for visually impaired. The company is in
operation since August 2018
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open questions to be answered to make the tactile diagrams effective. Also modern
tactile production processes have created more flexibility in production but there
have been little study on their effectiveness. Ms. Richa Gupta, a design graduate,
started studying effectiveness of various forms of representation of tactile diagrams
and is now close to finishing her work [10, 14].

This research on tactile diagrams also created our first significant collaboration
with IUPUI in Indianapolis. Prof. Steven Mannheimer, whom we met in a Indo-US
workshop in India was also interested in pursuing this area. He had already done
some work with Indianapolis School for the Blind (ISB). This collaboration enabled
Richa to conduct her studies and establish effectiveness of representation techniques
in two distinct geographies—NAB in New Delhi and ISB at Indianapolis [11].

5.5 Consolidation and Growth (2016 - )

The period after 2016 has seen lot of growth—both in terms of research projects,
students as well as activities. This period also saw lots of national and International
recognitions.

5.5.1 RAVI

Reading Assistant for Visually Impaired (RAVI) is a project aimed at making pdf
documents accessible. The work is under progress and we expect some initial results
next year [6, 12]. The challenge is manifold

• The legacy documents available in the digital library in Indian languages use
fonts that are not recognized by screen reader software. There is a need to convert
these into formats like ePUB that are accessible.

• Mathematics still poses a major challenge as very often in pdf documents the
equations are available as images. Even otherwise delivering a complex equation
in audio format that is linear and comprehensible is a challenge. One of the
visually impaired students in the group (Mr. Akashdeep Bansal) has taken it up
as his PhD research topic. We are also collaborating with Prof. Volker Sorge in
University of Birmingham (UK) who has had extensive experience in this field.

• Navigating through tables efficiently needs some research as well as tooling.
• Diagrams require associated description for delivery. Recent AI techniques are

making great progress in automatically describing images and we would like to
adapt these techniques for automatic generation of diagram descriptions
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5.5.2 MAVI

Mobility Assistant for Visually Impaired (MAVI) is a project to use modern AI
based image classification techniques for safe and efficient mobility of visually
impaired. The focus of this work is to look at object detection in the context of
street infrastructure that is typical of Indian cities. The initial prototypes have been
built but a usable solution is likely only by 2021. The video stream from the camera
is processed using multiple streams to detect

• Street stray animals like dogs and cattle for safety
• Potholes at a distance again for safety
• Multi-lingual street signage for assisting in navigation
• Face detection for social inclusion

5.5.3 NAVI

Navigation Assistant for Visually Impaired (NAVI) is a mobile app based solution
that can help in outdoor as well as indoor mobility. Mr. Piyush Chanana, a senior
scientist in ASSISTECH, understood the challenges of VI persons in independent
mobility by interacting with hundreds of blind users whom he has trained in the
use of SmartCane. He has captured this in the specification and design of an app
that can help visually impaired in outdoor mobility. Among other things, it involves
annotation of tactile landmarks that are “visible” to a blind user [5, 9].

Currently another PhD student, Mr. Vikas Upadhyay has started working on
indoor navigation. The work involves effective mapping of internal spaces, local-
ization with limited additional infrastructure, and an appropriate user interface for
visually impaired. Intent is not only to propose novel algorithms and techniques but
also to install it in couple of public buildings and validate.

5.5.4 Outreach Through Conferences

This period also saw our intent to outreach and create forums for all Assistive
Technology stakeholders to come together. Initially we organized two Indo-US
workshops with participation of 50+ persons in this space. This was followed
by two major assistive technology conferences in 2018 and 2019. EMPOWER
20184 and EMPOWER 20195 brought 250+ AT researchers, users, innovators and
entrepreneurs, educators, exhibitors, etc. on one platform and have been a major
success.

4http://assistech.iitd.ac.in/empower2018/.
5http://assistech.iitd.ac.in/empower2019/.

http://assistech.iitd.ac.in/empower2018/
http://assistech.iitd.ac.in/empower2019/
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5.5.5 Major Recognitions

This period also saw numerous awards being conferred for ASSISTECH activities.
A spotlight talk in London as part of the Grand Challenges6 meeting organized
by Gates foundation and Wellcome Trust in London on 24th Oct 2016 was the
first major recognition of ASSISTECH activities. Major Indian awards included
NCPEDP-Mphasis Universal Design award and three national awards. ACM recog-
nized our contribution through the ACM Eugene L Lawler7 award for Humanitarian
Contributions within Computer Science and Informatics at their annual awards
function in San Francisco on 15th June 2019.

5.6 Conclusion

Clearly my venturing into Assistive Technology from Embedded Systems/EDA
space has been an accident and thus I titled this paper as an accidental journey. The
work has been hugely satisfying primarily because of the impact it potentially has
on the lives of visually impaired people. The feedback we frequently get from our
numerous users on how our devices and solutions have positively affected their lives
is sufficient to drive and inspire us. Over a period ASSISTECH design philosophy
has become completely user-centric. In the initial years we used to choose the
problems to look at based on our own experience and expertise. Now if we learn
of a major challenge in the visually impaired community and then scout around and
try to put up a team by collaborating with people with the required expertise. Our
motto is to touch a million people by 2022.
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Chapter 6
Reflecting on Self-Aware
Systems-on-Chip

Bryan Donyanavard, Tiago Mück, Kasra Moazzemi, Biswadip Maity,
Caio Batista de Melo, Kenneth Stewart, Saehanseul Yi, Amir M. Rahmani,
and Nikil Dutt

6.1 Introduction to Self-Aware Systems-on-Chip

We are seeing an increasing number of complex cyber-physical systems (CPS)
deployed for various applications, such as road-traffic control involving commu-
nicating autonomous cars and infrastructure, or smart grids controlling energy
delivery down to the individual device. These distributed applications follow
common design objectives, such as energy-efficiency, and require guarantees for
high availability, real time or safety. In this context, autonomy is crucial: multiple
system goals varying over time need to be adaptively managed and objectives
holistically coordinated. By empowering future CPS with self-awareness, these
systems promise to dynamically adapt, learn, and manage unforeseen changes [6].

6.1.1 Computational Self-Awareness

Computational self-awareness is the ability of a computing system to recognize
its own state, possible actions, and the result of these actions on itself, its
operational goals, and its environment, thereby empowering the system to become
autonomous [6]. Computational self-awareness in itself is not a new field, but
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rather a unification of subjects studied disjointly in various fields including control
systems, artificial intelligence, autonomic computing, software engineering, among
others, and how such research can be applied toward building computer systems
with varying degrees of self-awareness in order to accomplish a task [8].

6.1.2 Cyber-Physical Systems-on-Chip

Battery-powered devices are the most ubiquitous computers in the world. Users of
battery-powered devices expect support for various high-performance applications
running on same device, potentially at the same time. Applications range from
interactive maps and navigation, to web browsers and email clients. In order to meet
performance demands by users utilizing complex workloads, increasingly powerful
hardware platforms are being deployed in battery-powered devices. Systems-on-
chip (SoCs) can integrate hundreds of heterogeneous cores and uncore components
on a single chip. Such systems are constrained by a limited amount of shared system
resources (e.g., power, interconnects). Simultaneously, the systems are expected
to support workloads with diverse characteristics and demands that may conflict
with system constraints. These platforms include a number of configurable knobs
throughout the system stack and with different scope that allow for a trade-off
between power and performance, e.g., dynamic voltage and frequency scaling
(DVFS), power gating, idle cycle injection. These knobs can be set and modified
at runtime based on the workload demands and system constraints. Heterogeneous
many-core processors (HMPs) have extended this principle of dynamic power-
performance trade-offs by incorporating single-ISA, architecturally differentiated
cores on a single processor, with each of the cores containing a number of
independent trade-off knobs. All of these configurable knobs allow for a huge
range of potential trade-off. With such a large number of possible configurations,
SoCs require intelligent runtime management in order to achieve system goals for
complex workloads. Additionally, the knobs may be interdependent, so the decisions
must be coordinated.

Cyber-physical systems-on-chip (CPSoC) [21] provide an infrastructure for
system introspection and reflective behavior, which is the foundation for compu-
tational self-awareness. Figure 6.1 shows the infrastructure of a sensor-actuator rich
platform, integrated with decision-making entities that observe system state through
virtual and physical sensors at various layers in order to set the system configuration
through actuators. The actuations are determined by policies that enforce the overall
application goals while considering system constraints. Such an infrastructure can
deploy reactive policies through the traditional Observe, Decide, and Act (ODA)
feedback loop, as well as proactive policies through the augmented self-aware
feedback loop. Figure 6.2 shows how the traditional ODA loop is augmented
with reflection to provide self-aware adaptation. In this chapter we explore the
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Fig. 6.1 CPSoC infrastructure: sensors and actuators throughout the system stack, with support
for adaptive policies that enforce a given goal (from [3])

Fig. 6.2 Self-aware feedback loop. Policies are deployed to make action decisions toward
achieving a goal by controlling the CPSoC based on observations and self-aware adaptation

use of computational self-awareness to address challenges of adaptive resource
management in cyber-physical systems-on-chip.1

1Throughout the remainder of this chapter we use SoC as an umbrella term that includes CPSoC.
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6.2 Reflective System Models

Traditionally, resource managers deploy an ODA feedback loop (lower half
(in black) of Fig. 6.3) to manage systems at runtime. However, recent works [1, 27]
have shown that a runtime model of the system can better manage the unpredictable
nature of workloads.

Reflection can be defined as the capability of a system to reason about itself and
act upon this information [26]. A reflective system can achieve this by maintaining
a representation of itself (i.e., a self-model) within the underlying system, which
is used for reasoning. Reflection is a key property of self-awareness. Reflection
enables decisions to be made based on both past observations, as well as predictions
made from past observations. Reflection and prediction involve two types of models:
(1) a self-model of the subsystem(s) under control, and (2) models of other policies
that may impact the decision-making process. Predictions consider future actions,
or events that may occur before the next decision, enabling “what-if” exploration
of alternatives. Such actions may be triggered by other policies invoked more
frequently than the decision loop. The top half of Fig. 6.3 (in blue) shows prediction
enabled through reflection that can be utilized in the decision-making process of a
feedback loop. The main goal of the predictive model is to estimate system behavior
based on potential actuation decisions as well as system dynamics.

6.2.1 Middleware for Reflective Decision-Making

The increasing heterogeneity in a platform’s resource types and the interactions
between resources pose challenges for coordinated model-based decision-making in
the face of dynamic workloads. Self-awareness properties address these challenges
for emerging SoC platforms through reflective resource managers. Reflective
resource managers build a model of the system which represents the software
organization or the architecture of the target platform. Resource managers can
use reflective models to anticipate the effects of changing the system configuration

Controller
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Predict

System—
Act

TaTT rget

Ta
rg

et Observe

Reflection

Fig. 6.3 Feedback loop overview. The bottom part of the figure represents a simple observe–
decide–act loop. The top part (in blue) adds the reflection mechanism to this loop, enabling
predictions for smart decision-making
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Fig. 6.4 MARS framework overview from [10]. Different layers of the system stack coordinate
through policies to orchestrate the management of resources: sensors inform policies of the
system state; policies coordinate with models to perform reflective queries, and make resource
management decisions; policies set actuators to enact changes on the system

at runtime. However, with SoC computing platform architectures evolving rapidly,
porting the self-aware decision logic across different hardware platforms is chal-
lenging, requiring resource managers to update their models and platform-specific
interfaces. To address this problem, we propose MARS (Middleware for Adaptive
and Reflective Systems), a cross-layer and multi-platform framework that allows
users to easily create resource managers by composing system models and resource
management policies in a flexible and coordinated manner.

Figure 6.4 shows an overview of the MARS framework (shaded), with Sensors
and Actuators interfacing across multiple layers of the system stack: Applications,
Linux kernel, and HW Platform. The components of MARS are explained next.

1. Sensors and actuators: The sensed data consists of performance counters
(e.g., instructions executed, cache misses, etc.) and other sensory information
(e.g., power, temperature, etc.). The collected data is used to assess the current
system state and to characterize workloads. Any updates to the system configu-
ration (e.g., CPU core frequency, GPU frequency, memory controller frequency,
task-to-core mapping) happen through system knobs. Actuators allow system
configuration changes to optimize operating point or control trade-offs.

2. Resource Management Policies: They are platform agnostic user-level daemons
implemented in MARS using supported sensors, actuators, and reflective system
models.

3. Reflective system model is used by the policies to make informed decisions. The
reflective model has the following subcomponents:
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(a) Models of policies implemented by the underlying OS kernel used for
coordinating decisions made within MARS with decisions made by the OS.

(b) Models of user policies that are automatically instantiated from any policy
defined within MARS.

(c) The baseline performance/power model. This model takes as input the pre-
dicted actuations generated from the policy models and produces predicted
sensed data.

4. The policy manager is responsible for reconfiguring the system by adding,
removing, or swapping policies to better achieve the current system goal.

MARS is implemented in the C++ language following an object-oriented
paradigm and works on hardware (e.g., Odroid-XU3, Nvidia Jetson TX2), simulated
(e.g., gem5), and trace-based offline [11] platforms. The framework is open source
and available online.2 While the current version of MARS targets energy-efficient
heterogeneous SoCs, we believe the MARS framework can be ported to a wider
range of systems (e.g., webservers, high-performance clusters) to support self-aware
resource management.

6.3 Managing Energy-Efficient Chip Multiprocessors

Dynamic resource management for HMPs is a well-known challenge: integration of
hundreds of cores running various workloads with conflicting constraints increases
the pressure on limited shared system resources. A promising and well-established
approach is the use of control-theoretic solutions based on rigorous mathematical
formalisms that can provide bounds and guarantees for system resource manage-
ment. In this context, we discuss efforts that deploy control-theoretic-centric runtime
resource management of HMPs, from simple Single Input Single Output (SISO)
controllers to more complex Supervisory Control Theory (SCT) methods.

6.3.1 Single Input Single Output Controllers

Conventional control theory methods proposed for resource management use
Single Input Single Output (SISO) controllers for the ease in deployment and
the guarantees they provide in tracking the target output. These SISO controllers
use Proportional Integral (PI), Proportional Integral Derivative (PID), or lead-lag
implementations [22]. Figure 6.5 depicts a first-order feedback SISO controller
which can be deployed either as a PI or a PID controller. The error e is the input
to the controller. Note that to compute the current control input u, the controller

2Code repository at https://github.com/duttresearchgroup/MARS.

https://github.com/duttresearchgroup/MARS
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Fig. 6.5 Single Input Single Output (SISO) feedback loop

needs to have the current value of the error e along with the past value of the error
and the past value of the control input. It is this memory inherent in the controller
that makes it dynamic.

6.3.2 Multiple Input Multiple Output Controllers

Modern HMPs execute diverse set of workloads with varying resource demands,
which sometimes exhibit conflicting constraints. In this context, the use of SISO
controllers might not be effective as multiple system goals varying over time need
to be managed in a coordinated and holistic manner. Multiple Input Multiple Output
(MIMO) control theory is able to coordinate and prioritize multiple design goals
and actions. MIMO controllers have proven effective for coordinating management
of multiple goals in unicore processors [17] and HMPs [12].

6.3.3 Adaptive Control Methods

Ideally, control-theoretic solutions should provide formal guarantees, be simple
enough for runtime implementation, and handle nonlinear system behavior. Static
linear feedback controllers such as SISO and MIMO can provide robustness and
stability guarantees with simple implementations, while adaptive controllers modify
the control law at runtime to adapt to the discrepancies between the expected and
the actual system behavior. However, modifying the controller at runtime is a costly
operation that also invalidates the formal guarantees provided at design time. In
order to be able to take predicted responsive actions against nonlinear behavior of
the computer systems, a well-established and lightweight adaptive control-theoretic
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technique called Gain Scheduling can be used. This method is used for dynamic
power management in chip multiprocessors in [2].

6.3.4 Hierarchical Controllers

Supervisory Control Theory (SCT) [19, 30] provides formal and systematic super-
vision of classical MIMO/SISO controllers. SCT uses modular decomposition of
control problems to manage their complexity. Specifically, supervisory control
has two key properties: (1) rapid adaptation in response to abrupt changes in
management policy and (2) low computational complexity by computing control
parameters for different policies offline. New policies and their corresponding
parameters can be added to the supervisor on demand. Therefore, SCT is suitable
for resource management problems (such as managing power, energy, and quality-
of-service metrics) that can be modeled using logic and discrete system dynamics.

Figure 6.6 depicts a high-level view of supervisory control for HMP resource
management. Either the user or the system software may specify Variable Goals
and Policies. The Supervisory Controller aims to meet system goals by managing
the low-level controllers. High-level decisions are made based on the feedback given
by the High-level Plant Model, which provides an abstraction of the entire system.
Various types of Classic Controllers, such as PID or state-space controllers, can be
used to implement each low-level controller based on the target of each subsystem.
The flexibility to incorporate any pre-verified off-the-shelf controllers without the
need for system-wide verification is essential for the modularity of this approach.
The supervisor provides parameters such as output references or gain values to
each low-level controller during runtime according to the system policy. Low-level
controller subsystems update the high-level model to maintain global system state,

Physical Plant Sub-plant 1 Sub-plant 2 Sub-plant N

Classic
Controller 1

Classic
Controller 2

Classic
Controller NLeaf Controllers

Supervisory
Controller

High-level
Plant Model

Variable Goals and Policies
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Commands Commands Commands

Control
Parameters

Virtual
Control

Information

State Updates

Fig. 6.6 High-level view of Supervisory Control Theory
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and potentially trigger the supervisory controller to take action. The high-level
model can be designed in various fashions (e.g., rule-based or estimator-based)
to track the system state and provide the supervisor with guidelines. Supervisory
control provides the opportunity to benefit from both classical control-theoretic
methods and heuristics in a robust fashion. The SCT hierarchy in Fig. 6.6 is
successfully used to manage quality-of-service (QoS) goals within a power budget
on an HMP in [18].

6.4 Heterogeneous Mobile Governors: Energy-Efficient
Mobile System-on-a-Chip

Mobile games stress modern SoCs by utilizing heterogeneous processing elements,
CPUs and GPUs, concurrently. However, the utilization of each processing element
may vary between games. Performance of these games that usually is measured
in frames per second (FPS) can highly depend on the operating frequency of
compute units. However, conventional DVFS governors conservatively choose high
frequencies without considering the utilization pattern of the games [16]. In order to
meet a performance goal while conserving energy, the frequency of each processing
element should be as low as possible without an observable effect on the FPS.

6.4.1 Sensors to Capture Dynamism

To coordinate frequency configuration decisions, a cooperative CPU-GPU DVFS
strategy, Co-Cap [14], limits the maximum frequency of CPUs and GPUs on a
game-specific basis. Based on the utilization of each processing element, games
are classified as one of the following classes: (1) No CPU-GPU Dominant; (2) CPU
Dominant; (3) GPU Dominant; and (4) CPU-GPU Dominant. Figure 6.7 shows the
classes and gives an example of each class. To determine a maximum frequency for
each game class, Co-Cap implements a frame rate sensor, which is affected by both
CPU and GPU frequencies. By limiting maximum frequencies for each game class,
Co-Cap reduces energy consumption without observable performance degradation.

The assumption in Co-Cap is that games can only belong to one of the classes.
However, some games might change their dynamic behavior throughout their life
cycle. To proactively respond to the dynamic CPU and GPU frequency requirements
of games, a DVFS governor policy requires more information about a game’s
workload dynamism. A Hierarchical Finite State Machine (HFSM) based CPU-
GPU governor, HiCAP [13], models the dynamic behavior of mobile gaming
workloads and applies a cooperative, dynamic CPU-GPU frequency-capping policy
to conserve energy by adapting to a game’s inherent dynamism. Using the HFSM,
a DVFS governor can predict the next workload feature for a certain window
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Fig. 6.7 Classification of CPU-GPU workloads observed in mobile games from [14]

at a game’s runtime. Through this added self-awareness, HiCAP reduces energy
consumption even further than Co-Cap.

Further dynamism exists in a game’s memory access patterns. Some scenes in
mobile games read more graphics data than others, resulting in increased memory
utilization. This may slow down the CPU portion of the game, but on the other
hand when memory utilization is low, it may run faster than originally predicted
by a conventional DVFS governor. A conventional DVFS governor cannot detect
these memory utilization changes by sensing utilization, causing prediction errors
to increase. MEMCOP, a Memory-aware Cooperative Power Management Governor
for Mobile games [5], senses the number of last level cache misses to monitor the
memory pressure of the system in addition to CPU, and GPU memory utilization.
This prevents the CPU DVFS governor from increasing frequency due to inaccurate
predictions caused by variation in memory access time.

6.4.2 Toward Self-Aware Governors

Co-Cap, HiCap, and MEMCOP DVFS policies are each steps toward a self-aware
DVFS governor policy for heterogeneous SoCs. Each policy monitors system’s state
using novel sensors, and defines runtime prediction rules to reflect and adapt to
changes in mobile game behavior. However, the predictive models are generated
statistically at design time, and remain the same during the execution. Moreover, as
the predictive model becomes more complex, prediction errors increase due to the
assumption of a linear relationship between the model’s input and output. ML-Gov,
a machine learning enhanced integrated CPU-GPU governor [15], tries to address
these issues by applying machine learning algorithms. This method does not require
rule tuning at design-time. ML-Gov’s machine learning algorithm helps to exploit
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nonlinear characteristics between frequency and performance. ML-Gov currently
builds the model offline, but through enhanced self-awareness via online updates of
the reflective model, could adapt to previously unknown games and classes.

6.5 Adaptive Memory: Managing Runtime Variability

Heterogeneous processing elements on mobile SoCs share limited memory
resources, leading to memory contention and stalled processes waiting for data.
This performance degradation is exacerbated by the Von Neumann bottleneck,
a prevalent problem in modern day computer systems. Data transfer speeds in
memory have not been able to keep up with the performance gains of processors
exemplified by Moore’s law. However, with the end of Moore’s law on the horizon
there is an ever increasing need to alleviate the Von Neumann bottleneck to increase
the performance of computer systems. There have been various approaches over
the years to address the Von Neumann bottleneck such as putting critical memory
in an easily accessible cache [25] and recently in an easily accessible Software-
Programmable Memory (SPM), also known as a scratchpad, using multi-threading
[9], and exploiting cache-coherency [7]. We address the bottleneck by providing
self-awareness with respect to memory resource utilization.

6.5.1 Sharing Distributed Memory Space

Software-Programmable Memories are a promising alternative to hardware-
managed caches in embedded systems. However, traditional approaches for
managing SPMs do not support sharing of distributed memory resources, missing
the opportunity to utilize those memory resources. Employing operating-system-
level awareness of SPM utilization, memory resources can be shared by allowing
threads to opportunistically exploit the entire memory space for unpredictable
application workloads. Best-effort policies can be used to maximize the usage of
on-chip SPMs. The policies can be supported by hardware via distributed memory
management units (MMUs), an on-chip component that can be used to exchange
information between the NoC and an MMU’s local SPM. Sharing distributed SPM
space reduces memory contention, resulting in reduced memory latency by reducing
off-chip memory accesses by about 14%. The off-chip access reduction decreases
average execution time by about 19.5%, which in turn reduces energy consumption
[23, 29]. More intelligent policies that explore a mixed SPM/cache hierarchy for
many-core embedded systems can yield further improvements.
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6.5.2 Memory Phase Awareness

Modern mobile devices use multi-core platforms that allow for concurrent execution
of multimedia and non-multimedia applications that enter and exit at unpredictable
times. Each application also has variable memory demands during these unpre-
dictable times. By being aware of the periodic patterns, or phasic behavior, of
an application’s memory usage (memory phases), a system’s on-chip memory can
be more efficiency utilized. Memory phases can be identified from memory usage
information extracted on an application basis, and can be used to prioritize different
memory pages in a multi-core platform without having any prior knowledge about
running applications. The identification process can be integrated into the runtime
system and done online. For example, memory phases can be used for effective
sharing of distributed SPMs for multi-core platforms to reduce memory access
latency and contention. Experiments on workloads with varying intra- and inter-
application memory-intensity show that using phase detection schemes can reduce
memory access latency up to 45% for configurations up to 16 cores [28]. Ongoing
work investigates more aggressive use of memory phasic behavior in many-core
architectures with hundreds of cores.

6.5.3 Quality-Configurable Memory

We have established how self-awareness can be achieved through formal control
theory. Figure 6.8 shows a closed feedback control loop with a quality monitor
that can measure memory utilization and processor usage with respect to a QoS
goal to fit the runtime requirements of applications. The quality monitor gives a
quality score and sends the collected data to a high-level controller. The controller
reflects on the data, then tunes knobs to adapt the memory utilization and processor
usage to minimize the error between the current quality and the quality-of-service
goal. The self-aware approach enables dynamic convergence toward dynamic
memory utilization and quality targets for unpredictable workloads. While current

Controller Memory Substrate

Application Quality
Monitor

+− Reliability
Knobs

Quality GoalQuality Goal

System

Fig. 6.8 Control loop implementing a self-aware approach to memory utilization optimization.
The controller optimizes memory knobs to improve application performance
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results indicate that a self-aware memory controller outperforms a manual quality
configuration scheme, there is much work to be done with to analyze energy trade-
offs when using a self-aware memory controller, and whether a MIMO controller
could be more effective for resource management in many-core systems with the
self-aware approach [24].

6.6 What’s Ahead?

Self-awareness enables a system to observe its context and make changes to
optimize its execution at runtime. For instance, it is possible to allow a system to
tune its execution to optimize power consumption. Through observing how it has
reacted to past changes in certain conditions, the system can learn what the impact
on the overall execution and power consumption was, and if a different adaptation
would be more appropriate in the future. To further explore such opportunities in
computing systems, we shift our focus to a new project: the Information Processing
Factory (IPF). IPF is a step toward autonomous many-core platforms in cyber-
physical systems (CPS) and the Internet of Things (IoT). It represents a paradigm
shift in platform design, with robust and independent platform operation in the focus
of platform-centric design rather than existing semiconductor device or software
technology, as mostly seen today [4].

We use the metaphor of an Information Processing Factory to draw similari-
ties between microelectronics systems and factories as follows: in a factory, all
components must adapt to the current workload [20]. Additionally, this adaptation
cannot be done offline and must instead be done in real time without interrupting the
baseline operations. Future microelectronic systems (e.g., MPSoCs) should operate
in a similar manner.

Clusters of component-specific, uncorrelated control occurrences cannot handle
operations of large scale systems with multi-criteria objective functions. Similarly,
a centralized controller model is also inadequate in this case because it cannot scale.
The goal of the IPF project is to demonstrate that a hybrid hierarchical approach,
sporting as much modularity as possible and as much centralized as necessary, is
a much more effective means of achieving the desired goal while maintaining cost
efficiency, low overhead, and scalability.

Figure 6.9 depicts how we envision the platform to be structured. Infor-
mation provided by sensors is gathered and merged into self-organizing, self-
aware (SO/SA) control processing instances across different hardware/software
abstraction layers comprising an MPSoC-based CPS system. The SO/SA instances
generate actuation directives affecting the MPSoC system components at same
or lower levels of abstraction. The SO/SA paradigm is not limited in scope
to optimization of CPS operational parameters/metrics. In fact, self- and group-
awareness can also enable higher level tasks such as self-protection of both the
MPSoC and the overall CPS system.
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Fig. 6.9 Idealized IPF
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6.6.1 Example Use Case: Autonomous Driving

The key innovation in automated driving as compared to driver assistance systems
is the transition of decision-making from the driver to the vehicle. The application
processing and communication requirements ask for platform performance, memory
capacity, and communication bandwidth and latency far beyond the capabilities of
current architectures. At the same time, these platforms must be highly reliable
and guarantee sufficient functionality under platform errors, aging, and degradation
to meet safety standards. That is, platforms and their components must be fail-
operational, i.e., must be able to continue driving, instead of fail-safe, as today.

Thus, the automated driving requirements can be mapped to corresponding
requirements of an Information Processing Factory. The system must be capable of
in-field integration, i.e., able to adapt to changes in the workload of both critical and
non-critical (best-effort) functions. The system must find a new suitable mapping
and must prevent the changes from violating the guarantees of other software
components. The software must be able to detect and to adapt to transient errors
in order to provide a reliable service. This requires self- diagnosis and self-healing.
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The system must be predictable and provide for minimum performance guarantees
for all scenarios.

Allowing and exploiting dynamic system behavior through IPF can significantly
improve platform performance and resource utilization. Thus, the system must
be able to optimize the execution and mapping online: self-optimization. The
optimization may target e.g. aging (temperature), power consumption, response
time, and resource utilization.

6.7 Summary

Future cyber-physical systems will host a large number of coexisting distributed
applications on hardware platforms with thousands to millions of networked
components communicating over open networks. These distributed applications will
include both critical and best-effort tasks, may be subject to permanent change,
environment dynamics and application interference. Using wisdom gathered from
our initial exploration into self-aware SoCs, we introduce a new Information
Processing Factory paradigm to manage current and future cyber-physical systems.
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Chapter 7
Pushing the Limits of Parallel Discrete
Event Simulation for SystemC

Rainer Dömer, Zhongqi Cheng, Daniel Mendoza, and Emad Arasteh

7.1 Introduction

The IEEE standard SystemC language [13] is widely used for the specification,
modeling, validation, and evaluation of electronic system level (ESL) models. The
Accellera Systems Initiative maintains not only the official SystemC language
definition, but also provides an open source proof-of-concept library that can be used
to simulate SystemC design models [1]. However, implementing the classic scheme
of discrete event simulation (DES), this reference simulator runs sequentially and
cannot utilize the parallel computing resources available on multi- and many-core
processor hosts. This severely limits the execution speed of SystemC simulation.

In order to provide faster execution, parallel discrete event simulation (PDES) [8,
12] techniques can be applied. While significant obstacles exist specifically for the
SystemC language [7], many parallel simulation approaches have been proposed [5,
11, 19, 21–24]. Beyond these synchronous PDES techniques, out-of-order PDES [6]
is even more aggressive. By localizing the simulation time to individual threads and
carefully handling events at different times, the simulator engine can issue threads
in parallel and ahead of time, following a partial ordering without loss of accuracy.
This results in better exploitation of the available parallelism and thus maximum
simulation speed.

The Recoding Infrastructure for SystemC (RISC) project described in this paper
implements out-of-order PDES for the IEEE SystemC language as open source.
Specifically, RISC provides a dedicated SystemC compiler and corresponding out-
of-order parallel simulator [2, 8, 16]. Compared to the other approaches, RISC
automatically analyzes the SystemC source code, identifies all potential race condi-
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tions, and then instruments the model to prevent any conflicts. This transformation
does not require any manual recoding or application-specific knowledge.

We share our RISC proof-of-concept implementation with the EDA community
as an open source software project in order to facilitate evaluation, promote parallel
SystemC simulation, and achieve fruitful collaboration [3, 4].

7.2 RISC Framework

While the RISC software framework may be used for many other analysis and
transformation tasks on SystemC models, parallel simulation is the main purpose.
To perform semantics-compliant parallel simulation with out-of-order scheduling,
we introduce a dedicated SystemC compiler that works hand in hand with a new
simulator. This is in contrast to the traditional SystemC simulation flow where
a SystemC-agnostic C++ compiler includes the SystemC headers and links the
design model directly against the Accellera reference library.

As shown in Fig. 7.1, the RISC compiler acts as a frontend that processes the
input model and generates an intermediate model with special instrumentation for
conflict-free parallel execution. The instrumented model is then linked against the
extended RISC SystemC library by the target compiler (a regular C++ compiler,
such as GNU gcc or Intel icpc) in order to produce the output executable model.
Out-of-order parallel simulation is then performed simply by running the generated
executable model.

From the user perspective, we simply replace the regular C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler).
Otherwise, the overall SystemC validation flow remains the same as the traditional
tool flow. Simulation is just faster due to the parallel execution. Note also that this
process is fully automated. No user interaction or manual code transformation is
necessary.

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Fig. 7.1 RISC tool flow for out-of-order parallel simulation of SystemC models [16]
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7.2.1 RISC Compiler

In order to produce a safe parallel model, the RISC compiler performs three major
tasks, namely segment graph construction, conflict analysis, and finally source code
instrumentation.

7.2.1.1 Segment Graph Construction

A segment graph (SG) [6] is a directed graph that represents the source code seg-
ments executed during the simulation between scheduling steps. More specifically,
every segment is associated with a corresponding scheduler entry point, namely
a wait statement in SystemC. All other statements in the SystemC source code
become part of those segment nodes where they are executed when the wait
statement resumes its execution.

The segment graph construction is a fully automatic but complex process which
we will not describe here (see [6] for detailed coverage). However, the RISC
compiler must parse the SystemC input model first into an Abstract Syntax Tree
(AST). Since SystemC is a syntactically regular C++ code, RISC relies here on the
ROSE compiler infrastructure [18]. The ROSE internal representation (IR) provides
RISC with a powerful C/C++ compiler foundation that supports AST generation,
traversal, analysis, and transformation.

As illustrated with the RISC software stack shown in Fig. 7.2, the RISC compiler
then builds a SystemC IR on top of the ROSE IR which accurately reflects the
SystemC structures, including the module and channel hierarchy, port connectivity,
and other SystemC-specific constructs. On top of the SystemC IR, the compiler
architecture then builds the Segment Graph generator and data structures, as well as
all other RISC analysis and transformation functions.

7.2.1.2 Conflict Analysis

The segment graph data structure serves as the foundation for segment conflict
analysis. At run time, the scheduler in the simulator must ensure that every parallel
thread to be issued has no conflicts with any other threads currently in the READY

Fig. 7.2 Software stack of
the RISC compiler [8]

RISC

C/C++ Foundation
ROSE IR

SystemC IR

Segment Graph
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and RUN queues. For this we use the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing
hazards, all of which may exist among the segments executed by the threads
considered for parallel execution. Again, we refer to [6] for a detailed discussion
of these hazards and their static or dynamic detection in RISC. However, we note
that if the hazards would be ignored, this would lead to race conditions at run time
and jeopardize the correctness of the SystemC simulation.

7.2.1.3 Source Code Instrumentation

As a result of the conflict analysis, the RISC compiler generates a set of conflict
and timing tables that describe all possible hazards between any two threads. Using
this conservative conflict information, the simulator can then at run time quickly
determine by a simple table look-up whether or not it is safe to issue a given thread
in parallel or ahead of time.

As shown above in Fig. 7.1, the RISC compiler and simulator work closely
together. The compiler performs conservative conflict analysis and passes the
analysis results to the simulator which then can make safe scheduling decisions
quickly.

To pass information from the compiler to the simulator, we use automatic source
code instrumentation. That is, the intermediate model generated by the compiler
contains instrumented (automatically generated) code which the simulator can then
safely rely on.

At the same time, the RISC compiler also instruments the SystemC wait
statements with corresponding segment ID and furnishes user-defined channels with
automatic protection against race conditions among communicating threads.

7.2.2 RISC Simulator

The RISC simulator supports out-of-order discrete event simulation (OoO PDES)
[6] for fast SystemC simulation. In OoO PDES, we break the strict order of time (the
synchronous barrier) by localizing time stamps to each thread. Since each thread has
its own time stamp, the OoO PDES scheduler relaxes the event and simulation time
updates, allowing more threads (at different simulation cycles) to run in parallel
and ahead of time. This results in a higher degree of parallelism and thus higher
simulation speed. We are using advanced static compile-time analysis to identify
all such potential conflicts. Based on this information (a simple table look-up is
sufficient), the OoO PDES scheduler can then at run time quickly decide whether or
not a set of threads has any conflicts with each other.
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Fig. 7.3 Module hierarchy visualization of a SystemC model of a Canny edge detector [17]

7.2.3 RISC Analysis and Transformation Tools

As an example of other SystemC analysis tools built on top of RISC, visual
[17] enables the user to visualize the SystemC module hierarchy. It supports a
graphical user interface implemented with the Gtk API and renders a specified
SystemC source file’s module hierarchy, which is drawn using the Cairo API.
The tool obtains module data from the SystemC IR in the RISC software stack
which contains information about nested modules and thus can recursively iterate
through nested lists of child modules in order to obtain enough information to
visualize the hierarchy of the entire SystemC source file. The input SystemC source
file may contain thousands of lines of code which can make manually drawing a
representation of the modules, ports, and channels described by the code a difficult
and time-consuming task. Thus the visual tool was created to address this issue.
It can automatically generate a visual representation of a SystemC model in a very
short period of time. Figure 7.3 shows the module visualization of a Canny edge
detector application.

7.3 Experiments

We will now evaluate the performance of the RISC simulator. The following
experiments show the speedup on an Intel Xeon PhiTM Coprocessor 5110P many-
core architecture. The coprocessor contains 60 cores where each core has a
vectorization unit of 512 bit. To obtain unambiguous measurements, we turn CPU
frequency scaling off for all experiments.

7.3.1 Mandelbrot Renderer

The Mandelbrot renderer is a parallel video application to compute the Mandelbrot
set. Basically, the device under test (DUT) hosts a number of renderer units. Each



102 R. Dömer et al.

Fig. 7.4 Speedup of the Mandelbrot Renderer [20]

unit computes a different slice of the Mandelbrot image. At compile time, the user
defines how many slices are available.

Figure 7.4 shows the simulation results [20]. Due to the minimal communication
needs in this application, highest speedups are reached. The vectorization unit with
512 bit can execute up to eight double-precision floating-point operations in parallel.
A speedup M of 6.9x is achieved. The thread-level parallelization increases strongly
on the 60 cores with a speedup N of 50x. Afterwards, the speed slows down due to
the 60 physical cores and use of hyper-threads. Notably, the combination of the
thread and data level parallelization N × M generates a speedup of up to 212x.

7.4 RISC Open Source Project

We make the Recoding Infrastructure for SystemC (RISC) described in this article
freely available online as a software artifact [9]. Generally, an artifact is a software
program together with an applicable data set and test suite that accompanies a
research publication for the purpose of independent evaluation.1The point here is that
the proposed algorithms and data structures are made available as proof-of-concept
implementation and can be used and evaluated by others. Experimental results may
be replicated and validated. The proposed approach can also be compared against
related work and in the presence of source code even be extended. Otherwise, great
challenges are posed in repeatability [15].

1Because of its importance, artifact evaluation has been adopted as integral part of the review
process in several computer science areas, such as Software Engineering and Programming
Languages [10, 14].
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Specifically, the presented RISC compiler and simulator are available as open
source on the web [2] and can be used without restrictions (BSD license terms).
RISC can be downloaded in both source code and binary format.

7.4.1 Open Source Code and Documentation

In its current version [4], the RISC open source package consists of approximately
162,000 lines of code and includes the C++ source code for the RISC compiler and
simulator, Linux build scripts and installation instructions, as well as comprehensive
documentation of the compiler and simulator APIs and tool manual pages. Example
SystemC models, such as an abstract DVD player and the Mandelbrot renderer, and
a regression test bench are included as well.

Given a suitable Linux platform,2the RISC source code package can be eas-
ily installed and then tested. After downloading and adjusting the installation
Makefile, a simple make all command builds and installs the RISC frame-
work and runs several demo examples. The user can then fully evaluate the software
with other SystemC examples and even extend our proof-of-concept implementation
with new features.

7.4.2 Binary Image for “Plug-and-Play” Evaluation

For a quick test run without compilation and installation, we also provide a Docker
container [3] for using RISC in “plug-and-play” fashion. The Docker image contains
RISC (and all needed libraries) in binary format and allows the user to test it with
just a few Linux commands, as shown in Fig. 7.5.

Fig. 7.5 Linux commands to use RISC in a Docker container

2Red Hat Enterprise and CentOS Linux version 6 and 7 are verified to work.
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7.5 Conclusion

The Recoding Infrastructure for SystemC (RISC) provides an automatic compiler-
based framework to analyze and simulate IEEE SystemC models in parallel. In
particular, we have introduced the RISC compiler and simulator. Using automatic
conflict analysis based on segment graph (SG) abstraction, OoO PDES can execute
threads safely in parallel and out-of-order (ahead of time) and thus achieves
fastest simulation speed but nevertheless maintains the classic SystemC modeling
semantics. In order to foster collaboration in the EDA community, we provide the
RISC framework as a free open source artifact for full evaluation and possible
extension.

For the future, we intend to expand our open source efforts and hope to involve
other members of the EDA community to use, evaluate, and extend the RISC
framework.
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Chapter 8
Impact of Negative Capacitance
Field-Effect Transistor (NCFET)
on Many-Core Systems

Hussam Amrouch, Martin Rapp, Sami Salamin, and Jörg Henkel

8.1 Introduction

More than a decade ago, the semiconductor technology had entered the so-called
nano-CMOS era, in which the transistor’s feature sizes became below 90 nm. Since
then, the prior trend of voltage scaling came to an end leading to the discontinuation
of Dennard’s scaling [7]. In Dennard’s scaling, both the dimensions of transistor
and the operating voltage are typically scaled by the same factor in order to ensure
a constant electric field. Due to the non-scalable voltage, ever-increasing power
densities in chips became a substantial obstacle for technology scaling due to the
limited ability of existing cooling solutions to dissipate the generated heat [8]. To
overcome this fundamental problem, the maximum frequency of processors had
stopped increasing with every new generation in order to keep the on-chip power
densities under acceptable levels and since 2005 the era of many-core processors
had started.

To understand the inability of technology to scale voltage, we need to understand
what determines the speed of a processor. As a matter of fact, the drive current
(ON current) of a transistor dictates its switching speed and hence it ultimately
determines the maximum delay of logic paths that form the processor’s netlist.
The ON current of a transistor is proportional to (VDD − VT ), where VT denotes
the threshold voltage of transistor and VDD denotes the operating voltage. In
order to maintain the same level of current, while VDD is scaled down, VT must
also be reduced by almost the same amount. However, reducing VT comes with
an exponential increase in the leakage current (OFF current) of transistor. This
is primarily because that the sub-threshold swing of transistor is fundamentally
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limited to 60 mV/decade at room temperature akin to “Boltzmann tyranny” [21].
Such a fundamental limit inevitably restricts the minimum possible VT to be at
least 300 mV. To ensure a reliable operation, different kinds of safety margins
need to be added on top of the minimum voltage, which enforces the operating
voltage to remain almost the same with every new technology generation. As above-
mentioned, the inability to scale voltage has led to the discontinuation of Dennard’s
scaling, which, in turn, had led to preventing the frequency of processors from
increasing.

In summary, the fundamental limit of sub-threshold swing of transistor is
the primary reason behind not scaling voltage and it is the origin of on-chip
power density problems that processor’s designers are facing since more than a
decade ago.

8.1.1 Negative Capacitance Field-Effect Transistor (NCFET)

NCFET integrates a ferroelectric layer inside the gate stack of a transistor, which
acts as a negative capacitance. Such a layer provides an amplification of the vertical
electric field that the transistor perceives. This, in turn, allows the transistor to
overcome the fundamental limitation of sub-threshold swing of 60 mV at room
temperature. The principle of NCFET was first proposed in 2008 by S. Salahuddin
and S. Datta [16]. After which, it very rapidly gained a large popularity due to the
remarkable steep switching and high ON current of transistors [1]. Many experi-
ments have consistently proved NCFET [10]. A breakthrough has recently occurred
when GlobalFoundries demonstrated NCFET-based circuits using their state-of-the-
art industrial 14 nm FinFET technology [9]. This showed, for the first time, that
NCFET technology has become compatible with the existing CMOS fabrication
process. In fact, such a compatibility is essential for any emerging technology to be
adopted by semiconductor companies. Otherwise, massive production will never be
possible.

In practice, NCFET technology enables the transistor to reach the same ON
current, without increasing the OFF current, but at a much lower voltage [2]. This is
only possible due to steeper sub-threshold swing. Therefore, in an NCFET technol-
ogy, the processor can still meet the same performance (as in the conventional FET)
but at a lower operating voltage leading to a significant power saving. Beside the
low-power usage scenario of NCFET, high-performance usage scenario does also
exist. NCFET enables the processor to be clocked at a higher frequency (compared
to the conventional FET), while it still be operated at the same voltage due to the
increase in the ON current. NCFET technology comes with an important side effect
in which it increases the total capacitance of transistor. Such an increase can lead
to reliability problems caused by IR-drop and voltage fluctuation during circuit’s
operation [2, 18]. At the same time, because NCFET technology enables circuits
to operate at lower voltages, it is expected that other reliability problems, related to
lifetime, to become much less because all the underlying aging mechanisms, such as



8 Impact of Negative Capacitance Field-Effect Transistor (NCFET) on Many-. . . 109

negative bias temperature instability (BTI) and hot-carrier injection (HCI), strongly
depend on the operating voltage [20].

In the following sections, we explain how modeling the NCFET effects from
physics all the way to the system level can be done. Then, we explore how a many-
core system can profit from the NCFET technology. Finally, we explore the impact
that NCFET has on power management schemes and how existing assumptions w.r.t
voltage-leakage dependency become not valid anymore when it comes to NCFET,
which creates the necessity to develop novel power management techniques.

8.2 Modeling NCFET at the System Level

In the following we provide an overview of how NCFET is modeled at the system
level, i.e., for the purpose of simulating many-core processors. Fundamentally, the
properties of the ferroelectric layer are modeled at the physics level [12]. Figure 8.1
presents our methodology in which we traverse all layers from physics, through
device, gate, and processor level, to model NCFET at the system level. The behavior
of transistors with varying thickness of the ferroelectric layer is modeled following
the industrial-standard compact model (BSIM-CMG) [5, 14]. Based on this model,
we created NCFET-aware cell libraries supporting four different thicknesses of the
ferroelectric layer under a wide range of the operating voltage [1]. The thickness
ranges from 1 nm (called TFE1) up to 4 nm (TFE4). We then implemented a
single many-core tile to the GDSII level and performed timing and power signoffs.
The results are explained in detail in the next section. Signoff tools allow to
compare power and performance of a processor implemented in different NCFET
configurations and are used to extract frequency-dependent scaling factors for
dynamic and leakage power. These factors serve as an abstraction at the system
level and allow to estimate the power of an NCFET-based processor if the power of

Ferroelectric Modelling [162]

FinFET Compact Model (BSIM-CMG) [169]

NCFET-Aware Cell Libraries [15]

Processor Timing and Power Signoffs (GDSII) [149]

Frequency-Dependent Scaling Factors for Dyn./Leak. Power [149]

Simulation of NCFET-Based Many-Cores

Physics Level

Device Level

Gate Level

Processor Level

System Level

Fig. 8.1 Modeling NCFET at the system level (many-core processors) requires to traverse the
whole stack from the physics level, where the effects of the ferroelectric layer are modeled, to the
system level, where performance and power of many-core processors are affected
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a baseline implementation (conventional FinFET) is known. Finally, these factors
are used to simulate a many-core processor (further details in Sect. 8.2.2).

8.2.1 Processor-Level Investigation

This section shows how NCFET affects the performance and power of a single
processor. The insights gained from this evaluation are important to build system-
level NCFET models and explain observations from system-level simulations. We
implemented the layout (GDSII level) of a single tile of the OpenPiton many-
core [3], which contains a CPU, caches, and a NoC router. Power and timing signoffs
are performed for different NCFET configurations (TFE1 to TFE4) and different
operating voltages. Further details of the experimental setup can be found in [15].

Figure 8.2a shows how NCFET increases the performance of a processor. It
allows to clock a processor at a higher frequency at the same operating voltage
or allows to reduce the voltage while still maintaining the same performance (fre-
quency). This is due to the inherent voltage amplification provided by the additional
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Fig. 8.2 (a) NCFET increases the frequency of a processor at a certain operating voltage, but
(b) also increases the dynamic power consumption due to the increase in the transistor gate
capacitance and frequency. (c) While leakage increases almost linearly with the operating voltage
with conventional FinFET (baseline), this dependency gets weaker with a thin ferroelectric layer
and even reverses with TFE4 due to a negative DIBL effect
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ferroelectric layer. Like explained earlier, the ferroelectric layer increases the total
gate capacity. Together with increased frequency, this increases the dynamic power
consumption (Fig. 8.2b). The thicker the ferroelectric layer gets, the higher get the
gains in the frequency, but also the higher gets the dynamic power. Figure 8.2c
shows that leakage power is affected more severely. NCFET fundamentally changes
the trend. With conventional FinFET (baseline), leakage power increases strongly
with increasing voltage. When a thin ferroelectric layer is added (TFE1 and TFE2),
this dependency becomes weaker, until at TFE3, leakage is almost independent
of the voltage. With a thick ferroelectric layer (TFE4), an effect called negative
drain-induced barrier lowering (negative DIBL) reverses the leakage dependency
on the voltage [13]. Here, leakage increases at lower voltages. We will explain later
(Sect. 8.3.3) how this necessitates developing novel power management techniques.

8.2.2 Simulation of NCFET-Based Many-Core

We use the Sniper many-core simulator [6] to simulate many-core processors.
McPAT [11] is used to periodically estimate the power consumption of each core.
Since McPAT does not support NCFET, it is used to estimate the power with
conventional FinFET instead. We develop frequency-dependent scaling factors for
dynamic and leakage power based on the processor-level investigation explained
earlier.

Figure 8.3 shows the dynamic and leakage power of the single processor studied
in the previous section depending on the frequency, as opposed to voltage like
in Fig. 8.2. Two effects play a role for the dynamic power: NCFET technologies
increase the dynamic power at a certain operating voltage (Fig. 8.2b), but also
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Fig. 8.3 (a) While NCFET technologies increase the dynamic power at iso-voltage, they also
lower the required operating voltage at iso-frequency, which in total decreases the dynamic power
at the same frequency. (b) NCFET technologies with a thin ferroelectric layer lower the leakage
power, whereas leakage increases with a thick layer (TFE4). Most importantly, the negative DIBL
effect reverses the leakage dependency, where lowering the V/f-levels increases leakage
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allow to go to a lower operating voltage (Fig. 8.2a) while still maintaining the
same frequency. Lowering the operating voltage has a stronger effect on the
dynamic power. Consequently, NCFET technologies lower the dynamic power when
operating at the same frequency (Fig. 8.3a). Figure 8.3b shows how leakage power
depends on the V/f-level. The reverse leakage dependency with TFE4 strongly
increases the leakage power. Below 700 MHz, TFE4 would allow to reduce the
voltage below 0.2 V, which is the lower limit of the cell library.

Figure 8.3a,b allows to estimate the dynamic and leakage power consumption of
a processor that is implemented in NCFET, if the power consumption in the baseline
(conventional FinFET) is known. We extract frequency-dependent scaling factors
for both dynamic and leakage power. These factors serve as an abstraction that
allows simulation of complex benchmark applications, like PARSEC [4], on many-
core processors with dozens of cores. We thereby scale the leakage and dynamic
power that is estimated by McPAT to estimate the power consumption of NCFET-
based many-cores. For brevity, details on this approach are omitted here and can be
found in [15].

8.3 Performance, Power, and Cooling Trade-Offs
with NCFET-based Many-Cores

NCFET fundamentally changes the characteristics of transistors and therefore also
changes the performance and power of circuits [19], single-core processors [1], and
many-core processors [15]. This section demonstrates the impact of the thickness of
the ferroelectric layer on the power and performance of a many-core processor. We
show that the optimal thickness depends on many factors, such as the application
characteristics and the cooling scenario. This section evaluates performance, power,
and cooling of a 25-core many-core operating under a thermal constraint of 80◦C.
We study PARSEC [4] tasks with up to eight slave threads. Their characteristics
range from highly memory-bound (e.g., canneal) to highly compute-bound (e.g.,
swaptions).

8.3.1 Impact of NCFET on Performance

Due to high power densities (failure of Dennard’s scaling) and limited cooling
capabilities, it is not always possible in modern technology nodes to simultaneously
operate all cores at the peak V/f-levels without violating the thermal constraint. This
study investigates the use-case in which cores with an active thread are operated at
the peak V/f-levels and cores without a thread mapped to it are power-gated. In this
use-case, four factors affect the thermally sustainable utilization (i.e., the number of
cores that can be turned on): the application characteristics (power consumption),
the mapping of threads to cores, the cooling system, and the transistor technology.
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Fig. 8.4 NCFET technologies increase the thermally sustainable utilization of a 25-core many-
core, i.e., the number of usable cores without violating the thermal constraint, compared to the
baseline (conventional FinFET). The optimal thickness of the ferroelectric layer depends on the
application characteristics

We use an Integer Linear Program to obtain the thermally-optimal mapping of
threads to cores, which minimizes the formation of hotspots and, thereby, maximizes
the thermally sustainable utilization. We study the use-case of a passive cooling, i.e.,
there is no fan on top of the heat sink.

Figure 8.4 shows the thermally sustainable utilization of two benchmarks
bodytrack and swaptions during the parallel section of the benchmarks (Region
of Interest) for different NCFET technologies. Other benchmarks are available
in [15]. Swaptions is a highly compute-intensive task, which results in high power
consumption and therefore, the thermally sustainable utilization in the baseline is
low (only 8 out of 25 cores). Dynamic power forms the major part of the total
power consumption and therefore, thicker ferroelectric layers increase the thermally
sustainable utilization because dynamic power is reduced (compare Fig. 8.3a).
Consequently, the highest performance is observed with the thickest ferroelec-
tric layer (TFE4). Bodytrack is less compute-intense and has lower dynamic
power consumption and consequently lower total power. This results in a higher
thermally sustainable utilization compared to swaptions. However, due to lower
dynamic power, leakage power accounts for a larger fraction of the total power.
As demonstrated in Fig. 8.3b, TFE4 increases the leakage significantly over TFE3.
Consequently, TFE4 results in a lower thermally sustainable utilization than TFE3
for bodytrack and the highest performance is observed with TFE3.

These investigations show that the optimal thickness of the ferroelectric layer
depends on the application characteristics. Further investigations on how NCFET
affects the performance in the case that cores are not operated at the peak V/f-levels
can be read in [15]. These investigations additionally study forced-convection
cooling (a heat sink with a fan) and reveal that the optimal thickness of the
ferroelectric layer also depends on the cooling scenario.
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8.3.2 Impact of NCFET on Cooling Requirements

This section studies how NCFET reshapes the existing trade-off between cooling
costs and achievable performance, where higher performance comes at the cost of
higher power dissipation and therefore higher cooling costs. We study the use-case
in which the many-core is operated at its peak performance, i.e., all cores are active
at the peak V/f-levels and determine the cooling capabilities that are required to
make this use-case thermally safe. The cooling capabilities are measured by the
inverse of thermal resistance of the heat sink 1/Rth. Varying this value corresponds
to changing the air convection.

Figure 8.5 shows the required cooling capabilities for the three PARSEC
benchmarks swaptions, bodytrack, and canneal during the parallel section of
the benchmarks (Region of Interest). NCFET technologies allow to reduce the
cooling capabilities over the baseline (conventional FinFET). Most importantly,
the required cooling capabilities are minimized at different thicknesses of the
ferroelectric layer depending on the application. Swaptions is highly compute-
intensive and consequently, dynamic power accounts for the majority of the total
power. Increasing the thickness of the ferroelectric layer reduces the dynamic power
(see Fig. 8.3) and therefore reduces the required cooling. Canneal on the other side
is highly memory-bound and therefore, the power consumption is dominated by
leakage. Leakage is minimized at TFE2, which consequently minimizes the cooling
requirements. Bodytrack shows intermediate values for the dynamic power and
therefore, TFE3 is optimal. This investigation shows again that the optimal thickness
of the ferroelectric layer depends on the application characteristics and ranges from
2 nm to 4 nm.

Fig. 8.5 NCFET
technologies decrease the
required cooling capabilities
while maintaining the same
maximum temperature of
80◦C under full system
utilization (all cores active at
peak V/f-levels). The
thickness of the ferroelectric
layer that results in the lowest
cooling costs depends on the
application characteristics
and ranges from 2 nm (with
canneal) to 4 nm (with
swaptions)
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8.3.3 Impact of NCFET on Power Management Techniques

The above investigations use the well-established concept of V/f-pairs that are
determined at design time by selecting the operating voltage for a given frequency
as the lowest voltage that makes operating at this frequency reliable. This is a
reasonable approach with conventional transistor technologies, because using a
higher voltage would unnecessarily increase both dynamic and leakage power.
However, this is no longer true with NCFET with a thick ferroelectric layer
(TFE4). Here, increasing the voltage decreases the leakage power. This leads to
new optimization potential by selecting the operating voltage for a given frequency,
which is demonstrated in the next section.

8.4 NCFET-Aware Voltage Scaling

Dynamic voltage scaling (DVS) technique for processor power management is
considered to be one of the most effective ways to reduce the energy consumption
of an application. DVS technique typically selects the minimum operating voltage
Vmin that sustains the operating frequency of the processor at runtime based on
the frequency demands of the application being executed. Reducing the operating
voltage, in conventional FET, results in reducing the total power consumption,
which implicitly reduces both dynamic and leakage power. However, such a well-
known voltage dependency becomes inverse with respect to leakage power in
NCFET due to the negative DIBL effect (see Sect. 8.2.1). With such opposed
dependencies (dynamic and leakage) to the operating voltage, total power follows
the dominant component when voltage changed which leads to a novel trade-off.
Consequently, power is not necessarily minimized at the minimum voltage Vmin,
which traditional DVS selects, but at another voltage Vopt . Unawareness of NCFET
and its trade-off could lead to not minimize the total power consumption. Therefore,
in this section, a novel NCFET-aware voltage scaling technique is presented [17] to
overcome the shortness that traditional DVS has in NCFET-based processors.

8.4.1 Importance of NCFET-Aware DVS

With traditional DVS, a set of voltage-frequency pairs are typically selected at
design time and later are employed by the DVS technique at runtime to optimize
the power. In this case, the lower the selected voltage is, the lower the total power
is. Due to the new inverse dependency in leakage power that NCFET exhibits, this
is not always valid with respect to NCFET. To demonstrate the consequence of such
an inverse dependency at the system level, we plot the total power consumption and
its components of the master thread of PARSEC canneal benchmark in Fig. 8.6.
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Fig. 8.6 Total power and its
components (i.e., leakage and
dynamic) of canneal master
thread starting from the
minimum voltage Vmin
required to sustain 1.0 GHz
frequency. The total power is
not minimized at Vmin. The
operating voltage required to
minimize total power Vopt

appears at a higher voltage
than Vmin due to leakage
increases in NCFET
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The power examined starting from Vmin, that traditional DVS selects to sustain the
required frequency, and then to overscale the operating voltage. The result shows
that the power is not minimized at Vmin (i.e., Vopt �=Vmin).

Different workloads exhibit different characteristics and hence different total
power. Therefore, the contribution of power components differs. Traditional DVS
neglects this difference as both contributions (leakage and dynamic) are affected in
the same manner with voltage (both are reduced). With NCFET, the contribution
of leakage to the total power cannot be neglected because it affects the operating
voltage selection when DVS tries to minimize total power. Hence, based on the
leakage share, Vopt could differ from Vmin.

For the aforementioned reasons, NCFET-aware DVS is crucial due to the change
in the behavior of total power consumption over voltage scaling which emerges from
the inverse dependency with respect to leakage power in NCFET.

8.4.2 NCFET-Aware DVS Technique

To enable runtime voltage selection, DVS first needs to determine workload
characteristics and then Vopt can be correctly selected. Therefore, determining V/f-
pairs at runtime, like in traditional DVS techniques, is not possible here. Instead,
the results from Sect. 8.2.1 have been used to build the power and performance
analytical models at design time. Then, these models can be integrated with our
new NCFET-aware DVS technique for runtime voltage selection.

8.4.2.1 Design-Time Models

Power and Performance Modeling The maximum operating frequency fmax(V )

depends on the voltage V over the minimum delay dmin(V ):
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dmin(V ) = adel · V bdel + cdel; fmax(V ) = 1

dmin(V )
(8.1)

adel>0, bdel<0, cdel≥0 are constants fitting parameters obtained at design time.
Peak leakage and peak dynamic power consumption results by operating at maxi-
mum frequency are

Pleak(V ) = aleak · V bleak (8.2)

P
peak
dyn (V , dmin(V )) = adyn · V bdyn + cdyn (8.3)

adyn>0, bdyn>1, cdyn≥0, aleak>0, bleak<0 are constant fitting parameters obtained

at design time. Both P
peak
dyn (V , dmin(V )) and Pleak(V ) are convex in V . By lowering

the operating frequency of the CPU (higher delay), dynamic power decreases.
However, since leakage power is independent from CPU activity, it is not affected.

P
peak
dyn (V , d) = dmin(V )

d
· P

peak
dyn (V , dmin(V )) (8.4)

Therefore, P
peak
dyn (V , d) is convex in V (for constant d) if bdyn + bdel>1.

8.4.2.2 Runtime Models

Workload-Dependent Power Modeling Dynamic power consumption Pdyn(V, d)

is affected by the running workload, which is reduced by a factor 0≤rdyn≤1 from

the peak dynamic power P
peak
dyn (V , d):

Pdyn(V, d) = rdyn · P
peak
dyn (V , d) (8.5)

Ptotal(V , d) = Pdyn(V, d) + Pleak(V ) (8.6)

rdyn is not constant since it represents the current workload activity. Therefore, total
power consumption Ptotal(Vc, d) at the current voltage Vc, rdyn is

rdyn = Pdyn(Vc, d)

P
peak
dyn (Vc, d)

= Ptotal(Vc, d) − Pleak(Vc)

P
peak
dyn (Vc, d)

(8.7)

Optimal Voltage Computing Vopt that minimizes the total power can be obtained
from the power and performance models:

Vmin(d) =
(

d − cdel

adel

) 1
bdel

(8.8)
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Algorithm 1 NCFET-aware voltage scaling algorithm to select the optimal voltage
(Vopt ) at runtime [17]

Require: Power and performance models: P
peak
dyn (c, d) and Pleak(V ), current operating voltage

Vc and delay d, current power consumption Pcurr , min. voltage resolution ε

Ensure: Optimal operating voltage Vopt

1: rdyn ← (Pcurr−Pleak(Vc)) /P
peak
dyn (Vc, d) � Eq. (8.7)

2: Vopt ← Vmin(d) � Eq. (8.8)
3: repeat
4: �Vopt ← −Ptotal(Vopt , d)′/Ptotal(Vopt , d)′′
5: Vopt ← Vopt + �Vopt � iterative update
6: if Vopt<Vmin(d) then return Vmin(d) � out of bounds

7: if Vopt>Vmax then return Vmax � out of bounds

8: until �Vopt < ε � Termination criteria
9: return Vopt

Vopt (d, rdyn) = arg min
Vmin(d)≤V ≤Vmax

Ptotal(V , d) (8.9)

Since Ptotal(V , d) is composed of convex functions, our implemented algorithm
exploits that Ptotal(V , d) is convex in V . This guarantees that Ptotal(V , d) has
exactly one minimum w.r.t. V within the range [Vmin(d), Vmax]. Algorithm 1
summarizes our implemented DVS technique and obtaining Vopt .

8.4.3 Operating Voltage Selection

Both DVS techniques differ in the way they select the operating voltage. Therefore,
to show the different behavior between both techniques in operating voltage
selection, the design space of the operating voltage selection with NCFET-aware
(Vopt ) and NCFET-unaware DVS (Vmin) has been explored in Fig. 8.7. NCFET-
unaware DVS sets Vmin that is needed to sustain the required frequency and therefore
workload characteristic is not considered. Contrarily, NCFET-aware DVS considers
the workload characteristic as it depends on the ratio of leakage to total power
measured at Vmin. The explored design space in Fig. 8.7 shows two distinct regions:
(1) For low leakage to total power ratio and for high frequencies, the same voltage
is selected (similar action) by both techniques (i.e., Vopt=Vmin). (2) For high
ratios of leakage to total power or low frequencies, NCFET-aware DVS selects a
higher voltage (Vopt>Vmin). Moreover, Fig. 8.7 reveals that: the higher the required
frequency or the higher the leakage to total power ratio, the higher Vopt is.
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Fig. 8.7 Operating voltage selection using both DVS techniques. Two regions appear: (1) NCFET-
aware selection differs from NCFET-unaware (Vmin �=Vopt ). (2) Similar action is done by both DVS
as they select the same operating voltage (Vmin=Vopt ). NCFET-unaware DVS selects Vmin (that
sustains the required frequency) and NCFET-aware selects Vopt to minimize the power depending
on the frequency and the ratio of leakage to total power. NCFET-aware DVS selects higher voltages
when leakage power becomes prominent or at lower frequency

8.4.4 Evaluation

8.4.4.1 Experimental Setup

Using the same setup in Sect. 8.2.1, power and delay results were examined using
the highest ferroelectric thickness (4 nm). Afterwards, the power and performance
analytical models have been developed as described in Sect. 8.4.2.

For system-level simulation, relying on the setup described in Sect. 8.2.2, the
NCFET-aware DVS technique (Algorithm 1) has been used to select the operating
voltage when a set of tasks were examined from the PARSEC benchmark suite [4].
The frequencies are set between 1.0 GHz and 2.4 GHz. Vdd is set between 0.2 V
and 0.7 V. The low operating voltages Vdd in NCFET are lower than traditional
FET due to the inherent voltage amplification in NCFET provided by the negative
capacitance. For fair comparisons, simulators for both DVS cases were configured
to have: the same frequencies, and architecture, in addition to running the same
benchmarks. Hence, only voltage selection differs based on DVS decision.

8.4.4.2 NCFET-Aware DVS Results and Analysis

To show the effectiveness of the NCFET-aware DVS, we first show how NCFET-
aware DVS actually operates to save power and later to report the energy savings
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Fig. 8.8 (a) Operating voltage and (b) total power consumption during an interval of the execution
time of the canneal master thread with NCFET-unaware and NCFET-aware DVS. NCFET-aware
DVS selects higher voltage most of the time (in this particular example) and reduces the power
further at the same CPU frequency. Voltage selection is based on workload characteristics

for different benchmarks in comparison with NCFET-unaware DVS. Accordingly,
an illustrative example of the master thread of PARSEC canneal benchmark was
selected. Figure 8.8 shows distinct phases during an interval of the execution time.
In phase-1, in Fig. 8.8b, it shows the total power consumption when the frequency
is set at 1.7 GHz. Traditional DVS sets Vdd to the minimum voltage (0.28 V)
which required to sustain this frequency. Thus, dynamic power is minimized but the
leakage power is not. NCFET-aware DVS sets Vdd to a higher value to guarantee a
better trade-off. This will increase the dynamic power but strongly decreases leakage
power resulting in a power saving. In phase-2, the master thread is idle and waits for
the termination of the slave threads. Therefore, frequency is reduced to the minimum
frequency (1.0 GHz). Traditional DVS reduces Vdd to 0.2 V due to the low required
frequency in which it increases the leakage power. NCFET-aware DVS, instead of
reducing Vdd , increases the voltage to 0.53 V, which decreases the leakage power.
Thereby, the total power consumption in phase-2 is reduced by 67 % compared to
the traditional DVS. In phase-3, after the slaves terminated, the master resumes
operation and its frequency is boosted again to 1.7 GHz. It is worth to mention that
the performance obtained with both DVS techniques is the same. This is because
they do not affect the frequency, but only set the Vdd under performance constraint.

To reveal the energy savings, different PARSEC benchmarks were examined
when active threads are operated at 1.7 GHz and idle cores are suppressed to
1.0 GHz. Figure 8.9 summarizes the energy savings. Energy savings range as shown
in Fig. 8.9 from 14 % up to 27 % and in average are up to 20 %.
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Fig. 8.9 Energy saving results of different benchmarks using the NCFET-aware DVS compared
to NCFET-unaware DVS. Energy savings range from 14 % up to 27 % , and in average 20%

8.5 Conclusion

In this chapter, we investigated how NCFET technology impacts the existing
trade-offs in processors and how it can reshape the future of many-core systems.
Compared to the existing FinFET technology, NCFET technology allows the pro-
cessor to operate at a much lower voltage while it still meets the same performance.
This results in a considerable power saving and as a result the total number of
cores, that can be simultaneously turned on at the maximum frequency, increases
without violating the predetermined thermal constraints. We also showed how
NCFET inverses the leakage-voltage dependency and proposed a new NCFET-
aware DVS technique that provides an energy saving of 20% on average compared
to conventional DVS techniques, which are unaware of the new leakage-voltage
dependency that NCFET brings.
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Chapter 9
Run-Time Enforcement of
Non-functional Program Properties
on MPSoCs

Jürgen Teich, Pouya Mahmoody, Behnaz Pourmohseni, Sascha Roloff,
Wolfgang Schröder-Preikschat, and Stefan Wildermann

9.1 Introduction

In a broad range of embedded systems, e.g., in real-time and safety-critical
domains, applications require guarantees (rather than a best-effort behavior) w.r.t.
non-functional properties of their execution such as timing characteristics and
reliability. Delivering the required guarantees is, therefore, of utmost importance
for the successful introduction of multi-/many-core architectures in the embedded
domains of computing. In a many-core context, existing analysis tools either
impose an immense computational complexity or deliver worst-case guarantees that
suffer from a massive over-/under-approximation for the vast majority of execution
scenarios (due to the inherent uncertainty of these scenarios) and, hence, are of no
practical interest. Noteworthy, a major source of this uncertainty originates from the
interferences among concurrent applications.

In view of abundant computational and storage resources becoming available,
new programming paradigms such as invasive computing [22] have proved effective
in alleviating these interferences by means of spatial isolation among applications.
Here, hybrid (static analysis/dynamic mapping) approaches, e.g., [11, 19, 20, 24],
enable a static generation of different mappings for each application on system
resources in form of mapping classes rather than individual mappings. For each
concrete mapping within such a class, safe bounds on the non-functional execution
properties, e.g., latency, may hold, see, e.g., [25]. The statically generated and
analyzed sets of optimal mapping classes are then provided to the run-time system
which checks the availability of such constellations of resources under the current
system workload, and, if enough resources are available, finally launches the
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application [25]. Such a hybrid approach has been implemented within the language
InvadeX10, a library-based extension of the X10 programming language. In this
extension, the so-called requirements [23] on non-functional execution properties,
e.g., latency, may be annotated to individual applications or program segments
thereof.

Although spatial isolation among applications significantly reduces the afore-
mentioned uncertainties, a considerable degree of them remain unaffected which
might be unacceptable, e.g., for safety-critical applications. But also, real-world
applications from the domain of streaming often exhibit a large jitter in the
latency and throughput (in spite of inter-application resource isolation) which is
not tolerable, e.g., in case of camera-based medical surgery. This intolerable or
annoying variation mainly stems from two sources of uncertainty that cannot be
eliminated or restricted through resource isolation:

• Execution State Uncertainty. This source of uncertainty originates either from
the environment (termed exogenous), e.g., ambient temperature, or from within
the computing system itself (termed endogenous), e.g., cache states or the
voltage/frequency modifications applied by the power manager. While the vast
majority of exogenous sources of uncertainty cannot be avoided or controlled,
endogenous sources of uncertainty may be eliminated, e.g., by flushing caches
before execution or by pinning the voltage/frequency of each core to a desired
fixed level.

• Input Uncertainty. This source of uncertainty originates from the application’s
input(s). For instance, in image processing, the content of a scene may greatly
influence the amount of workload to be processed per image.

In the presence of execution state and input uncertainties, application-specific
run-time techniques can offer a practical approach to confine the non-functional
properties of execution within acceptable bounds or to prevent the violation of
requirements. Such techniques dynamically adjust a given set of control knobs, e.g.,
voltage/frequency settings, in reaction to observed (or predicted) changes in the
input and/or environment states to steer the non-functional properties of execution
within the desired range. Examples of such approaches include the enforcement
of safety properties using automata [13] or the satisfaction of timing constraints
(while minimizing energy) using control-theory oriented approaches [9]. We refer
to this emerging class of application-specific run-time techniques as Run-Time
Requirement Enforcement (RRE). This paper presents the fundamentals, definitions,
and taxonomy of RRE in the context of many-core systems. We exemplify the
practice of different classes of RRE techniques and present a discussion on their
advantages, drawbacks, and challenges in a case study on the enforcement of timing
requirements for a distributed real-time image processing application.
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9.2 Preliminaries and Definitions

9.2.1 System Model

A many-core architecture is typically organized as a set of so-called storage, I/O,
and compute tiles which are interconnected by a Network-on-Chip (NoC) for
scalability, see, e.g., Fig. 9.1. Memory and I/O tiles enable mass storage and off-
chip access, respectively. Each compute tile is typically organized as a multi-core
or a processor array and comprises a set of processing cores, peripherals such as
memories, and a network adapter which are interconnected via one or more buses.
An application to be executed on the architecture is typically composed of a set of
processing tasks with known data dependencies, provided as a task graph. In case
of periodic applications, actor-based models of computation and languages such as
ActorX10 [17] may be used for parallel programming of MPSoCs. Each application
may be augmented with one or a set of requirements on specific non-functional
properties of its execution, e.g., execution time, throughput, or power corridors. In
the following, a mapping of an application on a given architecture corresponds to
a binding of its tasks to platform cores, a routing of the data exchanged between
communicating tasks, an allocation of the required processing, communication, and
storage resources, and a scheduling of tasks and communications on the allocated
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resources. Alternatively to concrete mappings, a set of constraints that reflect
a constellation of required resources and, hence, correspond to several concrete
deployments of the application on the architecture may be characterized at design
time through techniques of design space exploration [19, 24, 25].

9.2.2 *-Predictability

Non-functional requirements of applications, e.g., real-time constraints, can often
be expressed in form of intervals according to the definition for the predictability of
a non-functional property from [23]:

Definition 9.1 (*-predictability) Let o denote a non-functional property of a
program (implementation) p and the uncertainty of its input (space) given by I

and environment by Q. The predictability (marker) of objective o for program p is
defined by the interval

o(p,Q, I) = [inf o(p,Q, I), . . . , supo(p,Q, I)] (9.1)

where inf o and supo denote the infimum and supremum of property o, respectively,
under variation of state q ∈ Q and input i ∈ I .

Figure 9.2 exemplifies Definition 9.1 for three implementations p1, p2, and p3 of
an application with two requirements in terms of latency and power consumption.1

The rectangle associated with each implementation pi confines the observable
latency and power range for pi under the variation of input i ∈ I and state q ∈ Q.
As illustrated, p1 never satisfies the latency requirement under any input/state and,
thus, is of no interest. Contrarily, p2 satisfies both requirements in all input/state
scenarios which—although offering desirable qualities—is achieved through, e.g.,
an over-reservation of resources or a persistently maximized core voltage/frequency
which is often not affordable and/or practical. Contrarily to p1 and p2, p3 exhibits
an attractive case: Under certain input/state scenarios it satisfies the requirements
(with an affordable resource demand), while under other scenarios the acceptable
latency-power region is surpassed.

In real-life use cases, the observable predictability intervals are often too coarse,
so that a large share of viable implementations (like p3) do not satisfy the

1Note that a lower bound on latency makes sense in many applications that communicate result
data to other applications or systems. Here, either buffer limitations would cause overflows in case
the producer would be faster than the consumer. Alternatively, data might get lost if the producer
overwrites not yet consumed data. Similarly, a minimal lower bound is the default in the case
of reliability requirements. There, the lower bound could indicate a minimal expected lifetime.
Finally, even lower power bounds can be found in the area of high-performance computing. In fact,
the energy bill of a supercomputer increases by the amount of not consumed power but reserved
by the provider.
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Fig. 9.2 Example of a program p with a latency requirement and a power requirement given each
by an interval (corridor). Shown are three program implementations. p1 does not satisfy the latency
requirement for any possible execution. p2 satisfies the two requirements for any possible variation
in input i ∈ I and state q ∈ Q. Finally, p3 may satisfy the two requirements, but obviously not for
all observable executions. Here, run-time requirement enforcement techniques might be applicable
to control the resources of the platform based on run-time monitoring to stay within the requirement
corridors

given requirements under all input/state scenarios. For such partially satisfactory
implementations, run-time techniques can be employed to render them consistently
satisfactory by regularly monitoring (or predicting) the online input/state scenario
and either acting proactively to avoid any violation of a set of given requirements,
e.g., by adjusting the voltage/frequency settings of cores prior to program execution,
or in reaction to any observed violation. The purpose of such run-time techniques is,
therefore, to enforce that the desired latency and power corridor are never (or only
occasionally) violated. We refer to these application-specific run-time techniques as
Run-Time Requirement Enforcement (RRE) in the following.

9.3 Run-Time Requirement Enforcement

To satisfy a set of given requirements, the observable predictability intervals of
the partially satisfactory implementations must be obviously reduced. In general,
this can be achieved by techniques such as restricting the input space I or
using approximate computing [23]. Alternatively, isolation techniques that reduce
the state space Q may be applied such as the use of simpler cores, resource
reservation protocols, or using invasive computing [22]. In the latter approach,
an application program invades a set of processing and communication resources
prior to execution. Through inter-application isolation, composability is established
which is essential for an independent analysis of individual applications [1, 8, 12].

Definition 9.2 (Run-Time Requirement Enforcer (RRE)) A Run-Time Require-
ment Enforcer (RRE) of a requirement ro(p) = [LBo, UBo] of a program p is a
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Fig. 9.3 Example of Run-Time Requirement Enforcement (RRE)

control technique to steer o within the corridor spanned by a lower bound LBo and
an upper bound UBo for each execution of p.

Figure 9.3 exemplifies Definition 9.2 for a latency and a power requirement
corridor of an implementation p of an application. An RRE is also depicted whose
task is to confine the observable predictability interval of p within the corridor
specified by the latency and power requirements. Given the actual (current) input
iact ∈ I and state qact ∈ Q, the RRE in this case proactively estimates the expected
latency Lest and power consumption Pest based on which it takes actions (outgoing
arcs of the RRE) with the goal to avoid any violation of the requirements. Examples
of RRE actions include adjusting the voltage/frequency of the cores or awaking
reserved cores that are currently in a sleep state for power reduction, or even
changing the mapping of some tasks to other cores [14].

9.4 Taxonomy of Run-Time Requirement Enforcers

According to [23], each requirement of an application can be either soft or hard.
In case of a soft requirement, occasional violations are still considered acceptable.
In this context, a RRE can be classified as either a loose or a strict enforcement
technique as follows:

Definition 9.3 (Loose/Strict RRE) A Run-Time Requirement Enforcer (RRE) of a
requirement ro(p) = [LBo, UBo] of a program p is called strict if it can be formally
proven that no concrete execution of p will leave the given corridor at run-time. It
is called loose, if one or multiple consecutive violations of o are tolerable.

Independent from the above definition, an RRE can be classified as a centralized
or a distributed enforcement technique:
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Fig. 9.4 Centralized RRE

Definition 9.4 (Centralized/Distributed RRE) A Run-Time Requirement Enfor-
cer (RRE) of a requirement ro(p) = [LBo, UBo] of a program p is called centralized
if a single enforcer instance is used to enforce the requirement. It is called distributed
in case multiple enforcers jointly enforce the requirement.

Figure 9.4 illustrates an example of a centralized RRE of a latency requirement
for an object detection streaming application from the area of robot vision illustrated
in Fig. 9.6. Here, the execution time of the 9 tasks (actors) of the application is
monitored by a local so-called Run-Time Requirement Monitor (RRM) instantiated
on each of the invaded tiles. A centralized RRE instance is also instantiated which,
in the example, receives the monitored timing information of the last actor in the
chain, i.e., Image Sink (ISi), from the RRM on the respective tile based on which
it conducts enforcement decisions. During the execution of the application, each
RRM derives the time elapsed for the execution of its local actor(s) for the current
image frame and creates a time stamp that is sent together with the processed
frame to the subsequent actor. Thus, each actor in the chain is provided with the
information about the time already elapsed for the processing of the frame by the
previous actors based on which it determines the slack available for the remainder
of the processing. Once the last actor in the chain has completed its processing, the
local RRM computes and sends a completion time stamp to the centralized RRE. In
case of a soft latency requirement, a loose RRE would react to any latency corridor
violation by adjusting the voltage/frequency of the tiles that host the time-critical
actors, i.e., SIFT Description (SD) and SIFT Matching (SM), with the goal to steer
the latency of the chain back into the corridor for subsequent image frames.
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Fig. 9.5 Distributed RRE
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Fig. 9.6 Object detection streaming application

Figure 9.5 illustrates an example of a distributed RRE for the object detection
application. Here, the overall time requirement per image frame could be partitioned
into sub-corridors (or interval budgets) which are assigned to the invaded tiles. Also,
in addition to the RRMs, a local RRE is instantiated per tile to enforce its assigned
sub-corridor locally. Evidently, distributed RRE benefits from a simpler realization
and scalability in comparison to centralized RRE. Nonetheless, centralized enforce-
ment could better use global information to optimize secondary goals such as energy
consumption, as we will show in Sect. 9.5.

9.4.1 Enforcement Automata (EA)

Although arbitrary algorithmic behavior can be envisioned for enforcement, in the
following we focus on automata-based enforcement techniques, as they are simpler
to generate and ideal for application of formal verification techniques for proof
of correctness due to their strong formal semantics. Formal proofs are necessary
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Fig. 9.7 Example of an Enforcement Automaton (EA). Depending on the input i of a program p

and a current state s, the automaton takes a state transition to enforce a requirement. In the example,
in state s ∈ S, the EA outputs how many cores n(s) shall be powered on and in which power mode
m(s) (voltage, frequency) p shall be executed

particularly for enforcement of hard requirements. Figure 9.7 illustrates an example
of an enforcement automaton (EA) of type Moore in which the input is a measure of
the current workload i of a periodically executed program (segment or task) p, e.g.,
an image processing actor or kernel. In each state s ∈ S, the EA produces a vector
of two outputs: the number n(s) of cores to be powered on for executing the current
job and the power mode m(s) to be applied to the active core(s). As illustrated, the
RRE acts as an interface between the application and the system software of the
tile. Although in the examples provided in this paper, only the power management
facility (voltage/frequency settings) and the degree of parallelism are controlled by
RREs, they could in general control or restrict other system software components as
well, e.g., the thread scheduler or the memory managing unit, for the enforcement
of the given requirements.
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9.4.2 i-lets and e-lets

Whereas for centralized enforcement, we assume that only one enforcer is instanti-
ated per application program p, each task/actor of a distributedly mapped appli-
cation program will be assigned its own local enforcer. In our implementation,
an enforcer is implemented as a preferential thread called e-let in the following
whereas application threads spawned for each task execution are called i-lets. Note
that even if both are considered logically equivalent in terms of executable threads
at the level of operating system, there is a notable difference between both: Even
if i-lets present the application code for which requirements need to be guaranteed,
they are usually not preferred by the operating system over other threads of their
kind of the same application program. Whereas e-lets are always considered the
preferred execution entities of the application program, they dominate the i-lets also
included in this program. In addition, according to the principle of least privilege, e-
lets have the capability to overrule or restrict the behavior of system-level software
components including schedulers as well as cache, memory, and power managers in
order to be able to enforce the properties required of their assigned i-lets. Another
major difference between application i-lets and e-lets is the way they are executed.
Whereas i-lets are created and executed upon each activation, e-lets are created only
once at the time where an application program invades a tile of cores. They remain
active not only for one iteration, but until the whole application retreats from all
occupied resources. e-lets, in particular, state transitions in case the behavior is
described by an EA, are triggered by incoming events, very similar to data-driven
execution. In case of the following robot vision application, e.g., a state transition
is triggered each time a new frame is arriving from a neighbor tile. In normal
execution, the i-lets of an activated application task start after the EA has transited
from the actual to the next state and have run-to-completion semantics. Whereas, e-
lets may alternatively be triggered by asynchronous events, e.g., an exception from
a temperature monitor.

Since an e-let is to be provided with special system privileges, including in
particular the capability for immediate and low-latency response in bounded time
to system events and operational state changes, it is implemented as a kernel-level
thread. As a first-class object of the operating-system kernel, such a thread makes
it possible to establish and maintain a semantic relationship between system-level
and user-level code. The same applies to an i-let, but without granting the associated
kernel-level thread any special privileges.

An ensemble of kernel-level threads with and without special capabilities for
the control of system behavior depending on the particular requirements of an
application program is managed by the kernel in the shape of a squad. A squad
is a special unit within a team (a non-empty set of processes sharing a common
address space and common computing resources [4]) of related kernel-level threads.
This unit consists of two types of threads: on the one hand, those that make up the
actual lead of the application program and on the other hand at least one aide who
assists the lead threads as system mediator. From the kernel’s point of view, the
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aide has all the capabilities to assure the lead the required system behavior in a
controlled manner. In addition to be able to override or modify certain operating-
system decisions, the aide is able to instantly respond to system events. In such a
setting, an e-let is mapped to an aide, while the i-lets for which certain properties
are enforced appear as lead.

9.5 Case Study

In this section, we present examples of enforcement techniques for strict vs. loose as
well as distributed vs. centralized enforcement of timing requirements for the case
study of the previously introduced object detection application depicted in Fig. 9.6.
The application consists of a chain of 9 tasks (actors) processing each input image
in succession: an image source (ISo) actor to read in input images periodically at
a constant rate, a gray-scale (GS) conversion actor, a Sobel edge detection (ED)
actor and a Harris corner (HC) detection actor to determine, respectively, edges and
corners in an image, a SIFT orientation (SO) actor to achieve invariance to image
rotation, a SIFT description (SD) actor to extract the features in an image, a SIFT
matching (SM) actor to detect objects in the image based on a previously trained
set of object features, and a RANSAC (RS) actor to insert the detected objects into
the image which is finally sent out by an image sink (ISi) actor. As platform, we
consider a NoC-based 3 × 3 many-core architecture as depicted in Fig. 9.1 and map
the application’s actors on the architecture as illustrated in Figs. 9.4 and 9.5. All
evaluations presented in this section are carried out using InvadeSIM [16, 18], a
high-level functional simulation framework for multi-/many-core architectures and
supporting resource-aware programming.

9.5.1 Enforcement Problem Description

In the following, we assume that each image frame of the given time-critical
application must be processed within a latency upper bound UBL = 115 ms.
Table 9.1 provides the average, standard deviation, and overall contribution of
each actor’s latency when processing a sequence of 9 149 images stemming from
different sources of video streams when each actor is processed in isolation on
a single core and running constantly at maximum frequency. As can be seen in
Table 9.1, the SD and SM actors exhibit the highest degree of input-dependent
variation in execution time and also the highest contribution to the overall latency.
The remaining actors, on the other hand, do not exhibit a comparable execution time
jitter and/or a comparable contribution to the overall application latency across the
input space.
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Table 9.1 Average, standard deviation, and overall contribution to the overall latency of each actor
of the object detection application in Fig. 9.6 when processing a test sequence of 9 149 images and
executed each in isolation on a single core running constantly at maximum frequency according to
Table 9.2

Actor
Latency index GS ED HC SO SD SM RS

Average [ms] 0,21 0,18 1,50 1,79 146,86 21,02 0,01

Std. deviation [ms] 0,09 0,08 0,64 0,80 106,15 15,04 0,03

Overall contribution 0,1 % 0,1 % 0,9 % 1,0 % 85,6 % 12,3 % 0,0 %

In the following, we present examples of RRE techniques using Dynamic Voltage
and Frequency Scaling (DVFS) [3, 10, 21, 26] to enforce the global latency upper
bound UBL = 115 ms for the given application. Due to the small variation
and overall latency contribution of all except the actors SD and SM according
to Table 9.1, we dedicate a time budget of 20 ms to the other actors altogether,
assuming that their cumulative latency per input image does not exceed this budget.
This translates into a latency upper bound of UBL = 95 ms for the SD and SM
actors. For the demonstration of distributed RRE techniques, we further decide to
split this bound into two individual latency upper bounds, namely UBL = 80 ms for
SD and UBL = 15 ms for SM. Next, we present examples of loose vs. strict as well
as distributed vs. centralized enforcement. As a merit of profit, we also investigate
the potential energy savings of each RRE strategy in addition to evaluating its
capability in enforcing the latency requirement(s).

According to Fig. 9.7, the following RRE techniques implemented as enforce-
ment automata are privileged to adjust two control knobs prior to processing an
image frame: (a) the degree of execution parallelism per actor that is adjusted by
setting the number n of active cores that process the workload of each actor and
(b) the power (voltage/frequency) mode m of the core(s) allocated for each actor
adjusted through DVFS (for active cores) and power gating (for inactive cores).
To this end, each RRE decides on a per input image basis how to distribute the
workload of each actor being enforced between one and four cores available per tile
according to the mappings shown in Figs. 9.4 and 9.5. At the same time, it sets the
power mode of the cores of each tile to either a power-gated mode (with f =0 and
VDD =0) or 20 possible DVFS configurations (with a frequency step size of 0.2 GHz
and a maximum frequency of 4 GHz) summarized in Table 9.2. For both actors
under enforcement, SD and SM, we analyzed the major source of latency variation
according to Table 9.1 (single core, constant maximal frequency) as stemming from
the variability in the number i of features in each image to be processed. Therefore,
this number is used as a direct indicator of the input workload to the following RRE
strategies.
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Table 9.2 Voltage/frequency (DVFS) modes of each core

mode f (m) VDD(m) mode f (m) VDD(m) mode f (m) VDD(m) mode f (m) VDD(m)

m [GHz] [V] m [GHz] [V] m [GHz] [V] m [GHz] [V]

1 0.2 0.5 6 1.2 0.91 11 2.2 1.26 16 3.2 1.58

2 0.4 0.6 7 1.4 0.98 12 2.4 1.32 17 3.4 1.65

3 0.6 0.69 8 1.6 1.05 13 2.6 1.39 18 3.6 1.71

4 0.8 0.77 9 1.8 1.12 14 2.8 1.45 19 3.8 1.78

5 1.0 0.84 10 2.0 1.19 15 3.0 1.52 20 4.0 1.84

9.5.2 Power, Latency, and Energy Model

Our investigation of enforcement strategies involves the evaluation of power con-
sumption, execution latency, and energy demand per actor under enforcement. To
evaluate the power consumption P(m) of a core in power mode m, we use Eq. (9.2)
in which the first summand represents the dynamic power contribution calculated
based on the effective switching capacitance Ceff and the supply voltage VDD(m)

and operating frequency f (m) of the core in power mode m. The second summand
describes the static power consumption calculated as the product of leakage current
Ileak and supply voltage VDD(m).

P(m) = Ceff · VDD(m)2 · f (m) + Ileak · VDD(m) (9.2)

For the construction of proper enforcement automata, we need to know the
relation between the number i of input features and the execution latency L of
each actor to be enforced in dependence of the number n of cores and power mode
m. Let L(1, 1,mmax) denote the latency for processing one feature on one core in
power mode mmax (highest voltage and frequency). In the following, L(1, 1,mmax)

is determined by simulatively determining the execution latency of each actor per
image for a representative set of 9 149 test images that fully covers the considered
input space. Subsequently, the latency per feature of an actor is determined for
each image by dividing its latency by the number of features i in that image.
Figure 9.8 illustrates the distribution (left) and the cumulative distribution (right)
of the per-feature latency for the SD actor. Based on the obtained distribution, we
then determine L(1, 1,mmax) according to the strictness of the latency requirement
which specifies the minimum rate s ∈ [0, 1] of requirement satisfaction that must
be achieved, specified by the user. In case of (a) strict enforcement, a strictness of
s = 1 is considered, and hence, the maximum observed per-feature latency among
all images is used as L(1, 1,mmax). For (b) loose enforcement, i.e., when s < 1,
L(1, 1,mmax) is set to the lowest per-feature latency among all images such that for
s ·100 % of images, the latency per feature is lower than or equal to the selected
L(1, 1,mmax). In Fig. 9.8 (right), this calculation corresponds to finding the lowest
x-coordinate with a cumulative density of s. Having L(1, 1,mmax) determined, the
following Eq. (9.3) is then used to determine the actor latency L(i, n,m) based on
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Fig. 9.8 Distribution (left) and cumulative distribution (right) of observed per-feature latency of
the SD actor for a test sequence of 9 149 input images with number i of features to be processed
varying between 0 and 5 513. To the right, the value of L(1, 1,mmax) is marked for requirement
strictness values of s = 0.5, 0.84, and 0.98

the number of features i to be processed within an image, the number of cores n

employed, and the power mode m selected by an RRE scheme. In Eq. (9.3), e(n)

denotes the parallel efficiency in dependence of the number of cores n employed for
the computation with e(n) = 1 in the best case. In our experiments, we consider
e(n) = 1.

L(i, n,m) = L(1, 1,mmax) ·
⌈

i

n · e(n)

⌉

· f (mmax)

f (m)
(9.3)

Note that Eq. (9.3) is a latency model specific to the SD and SM actors of our
running application where L(1, 1,mmax) must be determined individually for each
actor to be enforced. Moreover, Eq. (9.3) could be alternatively replaced with an
elaborate many-core timing analysis, e.g., those from [2, 5–7, 15, 25], to derive tight
worst-case latencies that support a variety of different resource arbitration policies
and resource sharing schemes. Based on the power consumption and latency models
in Eqs. (9.2) and (9.3), the energy E(i, n,m) required by the actor for processing an
image with i features using n cores running in power mode m is derived using
Eq. (9.4).

E(i, n,m) = L(i, n,m) · P(m) · n (9.4)

Finally, the maximum number of features that can be processed within a
given latency bound UBL using n active cores running in power mode m

can be determined using Eq. (9.5) which is derived from Eq. (9.3), considering
L(i, n,m) ≤ UBL.

imax(UBL, n,m) =
⌊

n · e(n) ·
⌊

UBL

L(1, 1,mmax)
· f (m)

f (mmax)

⌋⌋

(9.5)

For example, with Eq. (9.5), we may compute imax(80, 4, 20) for the SD actor which
is the highest number i of features of an input image for which a latency upper
bound of UBL =80 ms can be enforced with a strictness of s ∈ [0, 1]. For instance,
for loose enforcement with s = 0.5, we obtain imax(80, 4, 20) = 828, and for
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strict enforcement where s = 1, the maximum enforceable workload decreases to
imax(80, 4, 20) = 760 features.

9.5.3 Energy-Minimized Timing Enforcement

According to Fig. 9.7, RRE may involve to set, modify, or impose restrictions on
typically OS-related techniques such as thread scheduling or memory management.
In the following examples, we exemplify enforcement strategies for latency enforce-
ment of individual actor executions or complete applications by varying the number
n ∈ [1, 4] of cores (parallelism) and the power mode m ∈ [1, 20] configuration for
each actor execution. As, in general, multiple ways and settings for n and m might
be feasible to enforce a requirement, the question becomes which requirement-
adhering constellation the enforcer selects at run-time. Often, this freedom of choice
may be exploited by optimizing one or more (secondary) objectives in addition to
satisfying the given requirement. In the following, we consider energy demand as an
objective to be minimized.2 Given a latency requirement UBL and the RRE decision
space of n ∈ [1, 4] and m ∈ [1, 20], design space exploration can be conducted per
actor (or a set of actors) to derive, e.g., in our running example for the SD actor, the
maximum number imax of features that can be processed under each choice of (n,m)

while respecting the latency requirement. Taking the SD actor with a latency upper
bound UBL =80 ms as an example, Fig. 9.9 illustrates the maximum workload imax
and the respective energy demand for each of the 80 possible (n,m) configurations
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Fig. 9.9 Maximum enforceable workload imax and energy demand of the SD actor under the
variation of the number n ∈ [1, 4] of active cores and their power mode m ∈ [1, 20] for a hard
(s = 1) latency bound of UBL = 80 ms. Pareto-optimal (n,m) configurations are connected by a
red line. For an exemplary subset of them, the Pareto-optimal configuration (n,m) is also annotated

2Other objectives for choice of settings could be to activate the least number n of cores for
increasing aspects of long-term reliability.
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derived using Eqs. (9.5) and (9.4), respectively, in case of strict enforcement (s =1).
The red line designates Pareto-optimal (n,m) configurations.

Based on such a design space exploration and the Pareto front of (n,m)

configurations derived thereby, an energy-minimizing enforcement automaton may
be systematically constructed in which prior to each execution of the SD actor,
the enforcement automaton selects a state (Pareto-optimal (n,m) configuration)
that is energy-minimal while satisfying the latency requirement in case input
i is enforceable, thus if i ≤ imax(UBL, n,m). For the example in Fig. 9.9,
the enforcement automaton has 31 states, each corresponding to one of the 31
Pareto-optimal (n,m) configurations and the maximum enforceable workload imax
associated with that configuration. Here, the state selection is steered solely by the
number i of features in the image to be processed by the SD actor.3 For instance, for
images with i ≤ 9 features, n = 1 and m = 1 minimizes the energy demand of the
SD actor without violating the given latency requirement UBL = 80 ms. For input
images with 142 ≤ i ≤ 152 features, an energy-minimal and requirement-adhering
execution can be realized only if n = 4 cores are used for SD in parallel and power
mode m = 4. Finally, a strict enforcement becomes impossible if i > 760, even
using the configuration with the highest compute power, i.e., n = 4 and m = 20.
For non-enforceable inputs, the enforcer needs to either throw an exception, stop
processing (drop) the image, or process only as much as the latency bound allows to
be processed. In Sect. 9.5.6, we propose a number of exception handling techniques
under the topic of range extension. Before that, we first present techniques for
distributed enforcement where each actor is individually enforced. Subsequently,
we present also an example of centralized enforcement in which a more global view
of the system state can be obtained by a centralized RRE instance that can take
decisions affecting multiple actors and resources.

9.5.4 Distributed Enforcement

Figure 9.10 shows the resulting automatically generated energy-minimizing
enforcement automata for a distributed enforcement strategy of the two individual
actors SD and SM with latency upper bounds 80 ms and 15 ms, respectively. The
EAs for selecting the energy-minimizing (n,m) configurations obtained through
the previously presented design space exploration are implemented as lightweight
lookup tables for each actor. At run-time, once an image is ready to be processed,
the number i of features in it becomes known. Prior to processing an image, the
RRE (e-let) retrieves the energy-minimizing (n,m) configuration corresponding to

3Note that in this example, the RRE could also be represented by a function table rather than an
FSM, as the selection of state is only dependent on the input. More general cases such as restricting
the allowed settings in each state to allow only step-wise increase or decrease of DVFS modes can
be constructed.
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tile #1 tile #2

tile #1 tile #2

. . . HC SD SM RS . . .

introducing distributed enforcement

. . . HC RRM RRE SD RRM RRE SM RS . . .i i

(n , m )

power manager

(n , m )

power manager

i [0, 9] [10, 19] . . . [142, 152] [153, 171] . . . [721, 760]

n 1 1 . . . 4 3 . . . 4
m 1 2 . . . 4 6 . . . 20

i [0, 12] [13, 25] . . . [115, 128] [129, 153] . . . [985, 1036]

n 1 1 . . . 2 3 . . . 4
m 1 2 . . . 5 4 . . . 20

non-enforced actor enforced actor

Fig. 9.10 Implementation of distributed RRE using pre-explored energy-optimal parallelism
degree and DVFS settings (n,m) for SD and SM actors with hard (s = 1) latency upper bounds of
UBL =80 ms and UBL =15 ms, respectively

i features from the table and instructs the power manager to use these settings. As
shown in Fig. 9.10, the integration of enforcers may be achieved at the level of actor
graphs as a model transformation by inserting the enforcer as an actor in front of
each actor to be enforced, such that for each image to be processed, the energy-
minimizing (n,m) configuration is set prior to execution of the image, and the
configuration stays constant over the duration of processing this image. Employing
the above enforcement strategy, the run-time manager is not compelled to run the
enforced actors constantly with the maximum number n = 4 of cores and in the
highest power mode m = 20 to guarantee the satisfaction of latency constraints in
the presence of input variations, unless i ≥721 for SD or i ≥985 for SM. Also note
that the given latency bounds cannot be strictly enforced for a feature count i >760
for SD and i > 1 036 for SM. Thus, the maximum workload that can be strictly
enforced by both actors is limited to i = 760 features.

The histograms of observable latencies of the SD and SM actors (a) without
enforcement (n=4 and m=20) and (b) with enforcement considering hard (s = 1)
latency upper bounds of UBL = 80 ms and 15 ms for SD and SM, respectively, are
illustrated in Fig. 9.11. As shown in the plots, the RREs choose a power mode that
maximizes energy savings while satisfying the given latency upper bound of each
actor under enforcement. For a variety of requirement strictness levels, Table 9.3
finally presents the average dynamic energy consumption and the achieved dynamic
energy savings of the SD and SM actors compared to the non-enforced scenario
with n = 4 and m = 20. As can be seen, in case of loose enforcement, i.e., a
strictness s < 1, the RRE achieves between 38.3 % and 41.2 % dynamic energy
savings per enforced actor (respectively, between 39.3 % and 40.8 % collectively
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Fig. 9.11 Latency distribution for the SD (left) and SM (right) actors. The enforced case
corresponds to the energy-minimized enforcement for hard (s = 1) latency bounds of UBL =80 ms
for SD and UBL =15 ms for SM. The non-enforced case corresponds to a fixed setting of n = 4
and m = 20 per actor

for the two actors) while satisfying latency upper bounds of 80 ms and 15 ms for the
SD and SM actors, respectively. In case of strict enforcement which corresponds to
a requirement satisfaction rate of s = 1, the RRE still is able to achieve dynamic
energy savings of 37.6% for SD and 37.2% for SM (respectively, 37.6% collectively
for the two actors) while guaranteeing that the given latency upper bound for each
actor will never be violated. Evidently, this guarantee holds only for enforceable
input images, i.e., those with i ≤760 features for the SD actor and i ≤1 036 for SM
(see the RRE tables in Fig. 9.10). In Sect. 9.5.6, we discuss approaches that can be
employed to enable the enforcement of latency requirements for inputs which are
not enforceable merely using the given RRE control knobs. Finally, when analyzing
the overall energy consumption of all actors per input frame, we obtain an overall
dynamic energy reduction of 33.8 % in case of strict enforcement (s = 1) and
between 35.4 % and 36.8 % in case of loose enforcement (s < 1) for the whole
application, even though only two out of 9 actors are enforced. Noteworthy, the
additional execution time and energy consumption of the RREs themselves can
be neglected as these are implemented by simple table lookups.

9.5.5 Centralized Enforcement

In this section, we consider the combined enforcement of the SD and SM actors
using centralized enforcement. As depicted in Fig. 9.12, a single instance of
an RRE is now enforcing the overall hard (s = 1) latency upper bound of
UBL = 80 + 15 = 95 ms for both SD and SM actors collectively. Similar to the
distributed case, the energy-minimizing (n,m) configurations which are required
for the construction of the RRE are obtained through a previously presented design
space exploration, but now considering a unified latency upper bound UBL = 95 ms
for the execution of both SD and SM actors. Note that considering a compound
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Fig. 9.12 Implementation of a centralized RRE using pre-explored energy-optimal parallelism
degree and DVFS settings (n,m) for SD and SM actors with a hard (s = 1) latency upper bound
of UBL = 95 ms for both actors collectively
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Fig. 9.13 Latency distribution of the SD and SM actors when collectively enforced for a hard
(s = 1) compound latency bound of UBL =95 ms. The enforced scenario is realized using energy-
minimized enforcement, and the non-enforced scenario corresponds to a fixed configuration of
n = 4 and m = 20 per actor

latency bound for both actors enables enforcing this bound for images with up to
i = 790 features.

The histogram of observable collective latency of the SD and SM actors (a) with-
out enforcement (n = 4 and m = 20 for both actors) and (b) with enforcement
considering a hard latency upper bound, i.e., for a requirement strictness of s = 1,
is illustrated in Fig. 9.13. As shown in the plots, the RRE assigns the number n of
active cores and their power mode m for each actor under enforcement to maximize
energy savings while satisfying the given latency upper bound of UBL = 95 ms
collective for both actors. For a variety of requirement strictness levels, Table 9.4
finally presents the average dynamic energy consumption and the achieved dynamic
energy savings of the two enforced actors using centralized enforcement compared
to the non-enforced scenario with n = 4 and m = 20. As can be seen, the
RRE achieves in case of loose enforcement, i.e., strictness s < 1, between 39.7 %
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and 42.1 % dynamic energy savings collectively for the two enforced actors while
satisfying a compound latency upper bound of 95 ms. In case of strict enforcement
(s = 1), the RRE still is able to achieve dynamic energy savings of 38.8%
collectively for the two actors while guaranteeing that the given latency upper bound
UBL = 95 ms will never be violated. Finally, when analyzing the overall energy
consumption of all actors per input frame, we obtain a dynamic energy reduction of
35 % in case of strict enforcement (s = 1) and between 35.7 % and 37.9 % in case
of loose enforcement (s < 1), even though only two out of 9 actors are enforced.
In summary, compared to distributed enforcement, the centralized scheme is able to
even save slightly more dynamic energy while enforcing a higher workload.

9.5.6 Lower Latency Bound Enforcement and Range
Extenders

In certain cases, a latency requirement may introduce—in addition to an upper
bound UBL—also a lower bound, LBL, thus, demanding the enforcement of a
latency corridor. Such a lower latency bound could be enforced by means of, e.g.,
a simple timer (counter) that measures the time elapsed from the beginning of
the current execution of the actor(s) under enforcement. The transmission of the
produced result(s) to the next actor(s) could then be simply delayed to the time
the timer indicates that the time interval of LBL has passed, see Fig. 9.14. More
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Fig. 9.14 Examples of range extenders and enforcement of lower latency bounds LBL and thus
latency corridors
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difficult and also diverse in the space of possible solutions, however, is the question
of how to deal with non-enforceable inputs. In case of our running distributed object
detection application, our test image sequences on purpose contained images with
more features i than for which the given latency upper bound can be enforced with
only n = 4 cores in highest power mode m = 20. In case of strict enforcement
(s = 1) corresponding to hard real-time requirements, not even a single violation
of a latency upper bound is tolerable. Hence, there must be techniques to avoid
such violations per construction, if a non-enforceable input is observed. This is a
matter of current research. We therefore briefly outline a few techniques how to
deal with these cases: input omission (dropping), approximate computing to trade
off processing speed with result accuracy (if applicable), revision of scheduling
decisions, over-allocation of resources, or a dynamic reconfiguration between
different mappings at run-time (change of operating point [14]), see also Fig. 9.14.

9.6 Conclusions

In this paper, we presented a formalization, classification, and the practice of a
class of run-time techniques subsumed under the term of Run-Time Requirement
Enforcement (RRE) that make the system management software of an MPSoC
platform become the advocate of a parallel application program instead of both
acting independently with the goal to provide means for the satisfaction of given
non-functional requirements of parallel program execution such as performance
(latency, throughput), power or energy consumption, or reliability. The non-
functional requirements can thereby be expressed by interval ranges and specified
over the application program as a whole, e.g., when specified by an actor graph.
Alternatively, requirements can be specified for individual actors/tasks or threads,
or even segments thereof. The goal of RRE is to enforce the satisfaction of
these requirements at run-time. It has been shown by introductory examples on
latency enforcement of a distributed object detection application that enforcers
may be generated through profiling and the creation of high priority system-level
threads called e-lets that are formally described in behavior by an enforcement
automaton each. These e-lets proactively control the system resources claimed
by an application program in view of observed workload variation. First, based
on the assignment of exclusive resources to periodic workload such as streaming
applications, composability is created that is necessary to allow for a static and
independent analysis of each application running on a given MPSoC platform.
This enables us to statically analyze non-functional properties of applications or
parts thereof and define RRE techniques to control requirements dynamically. For
a distributed object detection application as an example, it has been shown that
the variability of non-functional execution properties can be greatly reduced in
dependence of the level of strictness that shall be fulfilled for each requirement.
Moreover, it has been shown that RRE techniques can be either implemented
in a centralized or distributed manner. In the future, we want to look at how
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to decompose requirement corridors for distributed enforcement and study the
control overheads of centralized enforcement. Finally, techniques for simultaneous
enforcement of multiple non-functional requirements need to be investigated, as
here, not only the input (workload) variation as considered in this seminal paper,
but also the shared system state must be taken into account once multiple RREs are
at work.
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Chapter 10
Compilation for Real-Time Systems
a Decade After PREDATOR

Heiko Falk, Shashank Jadhav, Arno Luppold, Kateryna Muts,
Dominic Oehlert, Nina Piontek, and Mikko Roth

10.1 Introduction

PREDATOR was a collaborative research project running from February 2008 until
January 2011 that was funded by the European 7th Framework Programme under
the lead of Reinhard Wilhelm, Saarland University, Germany. It was concerned
“with embedded systems that are characterized by efficiency requirements on the
one hand and worst-case constraints on the other. [. . .] Embedded systems with
critical constraints need off-line guarantees for the satisfaction of these constraints.
Unfortunately, it can be observed that in computer system design, the gap between
average-case and worst-case behavior increases rapidly. This entails a decreasing
precision of performance analysis results.” Therefore, PREDATOR proposed “a
new research and design discipline that looks at predictability and efficiency in a
synergistic manner and that involves all levels of abstraction and implementation in
embedded system design” [6, 34].

These different abstraction levels were reflected by the project’s scientific work
packages. WP1 (led by Luca Benini, University of Bologna, Italy) dealt with
predictable and efficient hardware architectures. Both functional and power models
of a predictable architecture were developed and their sensitivity to architectural
parameters that influence predictability and their costs were analyzed. WP2 (lead:
Peter Marwedel, University of Dortmund, Germany) focused on compiler and code
generation techniques for a single application task. Here, optimizations that are
aware of hard real-time constraints and of Worst-Case Execution Times (WCET)
were proposed; multi-objective trade-offs between real-time guarantees and energy
consumption or code size were envisioned. WP3 was led by Giorgio Buttazzo
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(Scuola Superiore Sant’Anna, Pisa, Italy) and targeted the coordination of multiple
application tasks. Off-line and online coordination techniques were investigated
such that guarantees on tasks’ response times were derived under simultaneous
optimization of resource usage. In the context of WP4 (lead: Lothar Thiele,
ETH Zürich, Switzerland), distributed embedded systems were considered and the
modular analysis of Multi-Processor Systems on Chip (MPSoC) with respect to
performance and predictability was investigated. Finally, cross-layer aspects of the
design and analysis of predictable and efficiency were considered in WP5 (lead:
Reinhard Wilhelm).

Overall, PREDATOR was a high-quality collaborative effort that produced many
seminal results in the field of designing predictable and efficient hardware and soft-
ware architectures. On the occasion of Peter Marwedel’s 70th anniversary, this arti-
cle surveys the results in the area of compilers for real-time systems that have been
achieved under his leadership within PREDATOR. The foundational character of this
project is highlighted by providing an overview over code optimizations and analy-
ses proposed in the past decade since PREDATOR was executed. These recent works
directly base on challenges identified during and on results produced by PREDATOR.

Section 10.2 puts the state-of-the-art in compilation for real-time systems by the
end of PREDATOR in a nutshell. Recent developments that integrate task coordi-
nation into compiler optimizations are described in Sect. 10.3. The combination of
system-level analysis and code generation techniques for parallel multi-core systems
is the subject of Sect. 10.4. Section 10.5 discusses multi-objective compiler opti-
mizations that are able to adhere to real-time constraints, and Sect. 10.6 concludes
this article and provides an outlook over future work.

10.2 Challenges and State-of-the-Art in WCET-Aware
Compilation During PREDATOR

A program’s WCET stands for its maximal possible execution time, irrespective of
possible input data and of initial states of the hardware architecture. For the design
of hard real-time systems, the WCET is a critical design parameter, since it allows
to reason about whether a program always meets its deadline or not. However, the
exact computation of a program’s WCET is infeasible in general so that conservative
WCET estimates are used instead. In the domain of hard real-time systems, such
WCET estimates are usually produced by static timing analysis tools, e.g., aiT [1].
During PREDATOR’s single-task activities carried out within Work Package WP2,
such a timing analyzer was tightly integrated into a compiler framework. This
allowed the compiler to perform WCET analyses in a fully automated fashion during
code generation. The WCET data gathered this way constitutes a precise worst-case
timing model inside the compiler which contrasts sharply with standard compilers
that focus on average-case scenarios and that do not feature any timing models at
all. The resulting WCET-aware C Compiler WCC [8] finally exploits this precise
timing model in dedicated WCET-aware, single-task code optimizations.
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However, modern real-time systems do not consist of only a single task—they are
multi-task systems instead where tasks are preempted and scheduled according to an
operating system’s scheduling policy. Thus, the design of a timing predictable multi-
task system includes the consideration of all tasks’ end-to-end latencies including
blocking times due to preemptions, i.e., the tasks’ Worst-Case Response Times
(WCRT). Based on the tasks’ WCRTs, a subsequent schedulability analysis can be
used to determine whether all tasks definitely meet their respective deadlines. Since
WCETs are characterized by the behavior of machine code for a given processor
architecture, and since WCRTs and schedulability analyses rely on given WCET
values and mostly depend on task-level scheduling properties, there is a natural link
between compilers and operating systems: the former generate the machine code
that the latter have to schedule. This link was already identified during PREDATOR:

Challenge #1

“The compiler [. . .] will apply optimizations not for each individual task in
isolation, but will consider all tasks of the entire system in a holistic view.
Furthermore, it is planned to take the individual scheduling policies [. . .] into
account” [5].

Plazar et al. proposed a software-based cache partitioning for real-time multi-
task systems [29]. Cache partitioning is able to make the behavior of instruction
caches more predictable, since each task of a system is assigned to a unique cache
partition. The tasks in such a system can only evict cache lines residing in the
partition they are assigned to. As a consequence, multiple tasks do not interfere with
each other any longer w.r.t. the cache during context switches. This allows to apply
static WCET analysis for each individual task of the system in isolation. The overall
WCET of a multi-task system using partitioned caches is then composed of the
WCETs of the single tasks given a certain partition size, plus the overhead required
for scheduling and context switching. Until the completion of PREDATOR, an
integration of schedulability analyses and a consideration of individual scheduling
policies during compilation could not be realized due to a shortage of time.

In the context of performance analysis for massively parallel multi-core archi-
tectures, PREDATOR proposed a modular approach where a WCET analysis is
performed for each application per individual processor core in isolation. By
exploiting how often each core accesses the shared bus that connects all cores in
a given MPSoC architecture, the additional timing interference that each processor
core exhibits due to temporarily blocked bus accesses is estimated. According
to PREDATOR’s design rules for predictable architectures [38], TDMA-arbitrated
shared buses were considered during modular performance analysis. In the end,
upper timing bounds of all applications running on all processor cores are derived
in a modular fashion which allows to reason about schedulability for such parallel
multi-core systems [30].
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Various execution models for the applications running on such an MPSoC
architecture were considered. In the so-called Dedicated Access Model, applications
are structured into three distinct phases: acquisition, execution, and replication.
Only during the first and the latter, a task is allowed to access the shared bus
in order to fetch input data or to write back computed results, resp. Since the main
execution phase of a task is free of shared bus accesses, it cannot suffer from
delays induced by other cores which allows for a very precise timing analysis.
In the General Access Model, accesses to the shared bus can happen anytime
during acquisition, replication, and execution. Thus, a timing analysis becomes
more pessimistic here [31].

As the precision of timing analysis for MPSoCs thus strongly depends on the
execution behavior of tasks, mechanisms enforcing well-suited and predictable
access patterns to shared buses would be advantageous.

Challenge #2

“One new possibility to reduce the effect of (timing) interactions [. . .] is the use of
traffic shapers. It is an open problem to include these units into a system-wide per-
formance analysis that considers computation and communication resources” [5].

However, PREDATOR did not come up with approaches addressing this challenge.
PREDATOR explicitly considered the trade-off between predictability where hard

constraints on a system’s resource usage must be met versus the efficiency of a
system in the average case.

Challenge #3

“We will develop models capturing various optimization objectives within the
compiler, e.g. code size or energy dissipation [. . .]. Novel optimization strategies are
designed in order to minimize an objective other than WCET, under simultaneous
adherence to real-time constraints” [5].

Since the WCC compiler featured a detailed WCET timing model right from
the project start, and since modeling code size at the assembly code level is trivial
from a compiler’s point of view, it was obvious to consider trade-offs between
these two objectives in the beginning. For this purpose, simple heuristics for the
optimization Procedure Cloning were proposed where WCETs were minimized as
long as the resulting code sizes did not exceed a user-provided threshold [19]. Later,
WCC was coupled with an instruction set simulator allowing to perform dynamic
profiling during compilation. Furthermore, data from an instruction-level energy
model [32] was also integrated. This way, the compiler was able to simultaneously
model WCET, code size, ACET, and energy consumption of generated machine
code.
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These models were used to determine Pareto-optimal sequences of compiler
optimizations. It is a well-known problem that the order in which a compiler
applies its optimizations can have a significant impact on the quality of the finally
generated code. In the context of PREDATOR, a stochastic evolutionary multi-
objective algorithm [20, 21] found optimization sequences that trade pairs of
objectives, i.e., 〈WCET, ACET〉 and 〈WCET, code size〉, resp. True multi-objective
code optimizations that inherently model and consider different criteria at the same
time during code generation have, however, not been investigated in depth during
PREDATOR.

10.3 Integration of Task Coordination into WCET-Aware
Compilation

Many architectures are equipped with fully software-controllable secondary mem-
ories. These are memories that are tightly integrated with the processor to achieve
the best possible performance. These Scratchpad Memories (SPMs) can be accessed
directly and are therefore in general well-suited for optimizations regarding energy
consumption and execution times.

SPMs turned out to be ideal for WCET-centric optimizations, since their timing
is fully predictable. The WCC compiler exploits SPMs for WCET minimization by
placing assorted parts of a program into a scratchpad memory. During PREDATOR,
an Integer-Linear Program (ILP) originally proposed by Suhendra et al. [33] was
extended towards a single-task SPM allocation where binary decision variables xi

are used per basic block bi . bi is moved from main memory onto the scratchpad
memory if xi equals 1. The overall goal of this ILP is to find an assignment of
values to the variables xi such that the resulting SPM allocation leads to the minimal
WCET of the whole task. Constraints are added to the ILP that model the task’s
internal program structure. For each basic block bi and each successor bsucc of bi in
the task’s Control Flow Graph (CFG), a constraint is set up bounding the WCET ci

of bi :

ci ≥ csucc + costi,main_mem − gaini ∗ xi (10.1)

This constraint states that the WCET ci of a path starting in bi must be larger than
the WCET csucc of any of the successors of bi , plus the contribution of bi to the
WCET itself with bi located in main memory (costi,main_mem), minus the potential
gain when moving bi from main memory onto the scratchpad memory. Additional
constraints in the ILP model loops and function calls. The limited available capacity
of the SPM is considered as well as the additional overhead due to long-distance
jumps from the main memory to the SPM or back. In the end, the WCET of an
entire task is represented in the ILP model by a variable c

entry
main which models the

WCET of the path starting at the task’s entry point, i.e., at its main function [7].
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This basic ILP model turned out to be very powerful and flexible so that it served
as the basis for the optimization of multi-task systems. For this purpose, all tasks of
a multi-task application were modeled in the ILP as described above. As a conse-
quence, the ILP variables cj associated with the entry points of the tasks τj describe
a safe upper bound of the tasks’ WCETs. An early work [22] towards PREDATOR’s
Challenge #1 on optimization of multi-task systems under consideration of schedul-
ing policies integrated Joseph’s schedulability analysis [15] into this multi-task ILP.

For priority-based scheduling, a task τj ’s WCRT rj is the maximum possible
time interval between the activation of a task and its end, including penalties due to
preemptions by higher-priority tasks. The tasks’ WCRTs are computed as follows:

rj = cj +
j−1∑

h=0

⌈
rj

Th

⌉

∗ ch (10.2)

Eq. (10.2) accumulates the net WCET cj of task τj and the penalties due to
tasks τ0, . . . , τj−1 having higher priority than τj . Each such high-priority task τh

preempts τj a total of
⌈

rj
Th

⌉
times where Th denotes a task’s period. For each

preemption of τj by τh, the higher-priority task’s WCET ch is considered.
However, it is not straightforward to integrate Eq. (10.2) into an optimization’s

ILP, since both the WCETs ch and the WCRTs rj are ILP variables so that the

multiplication of
⌈

rj
Th

⌉
by ch is infeasible. In order to solve this problem, an integer

variable pj,h is added to the ILP for every combination of low- and high-priority
tasks τj and τh, resp. pj,h denotes the timing penalty that is added to τj ’s WCRT
due to preemptions by τh. Using these variables, Eq. (10.2) can be rewritten to:

rj = cj +
j−1∑

h=0

pj,h (10.3)

In order to model pj,h, the following linearization scheme is applied: If rj is
lower than or equal to τh’s period Th, τj can be preempted at most once by τh, thus
leading to pj,h = 1 ∗ ch. If rj is greater than Th but lower than or equal to 2 ∗ Th,
pj,h = 2 ∗ ch results, etc. In general, it has been proven that

Theorem 10.1 If τj is preempted at least N times by τh, then pj,h ≥ (N + 1) ∗ ch

must hold.

Such so-called conditional constraints can efficiently be translated into ILP in
Eq. [25]. A natural upper bound for the number N of preemptions of τj by τh is⌈

Dj

Th

⌉
where Dj denotes task τj ’s deadline. Thus, the conditional constraints from

Theorem 10.1 are added to the ILP for all values of N with 0 ≤ N ≤
⌈

Dj

Th

⌉
− 1 and

for all pairs of low- and high-priority tasks τj and τh, resp. Finally, the schedulability
of the entire multi-task set is ensured during this ILP-based optimization by adding
constraints
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rj ≤ Dj (10.4)

such that the WCRT of each task τj must be within its respective deadline.
While this work is a first step towards schedulability-aware compiler

optimization, it suffers from a couple of limitations: First, the task model only
supports fixed-priority scheduling and periodic tasks. Second, preemption costs due
to the execution of an actual scheduler and context switching overheads are not
considered. Finally, the number of constraints of the ILP proposed in [22] grows
quadratically with the size of the task set, and it depends on the actual values for
tasks’ deadlines and periods.

The consideration of Liu and Layland’s schedulability test [18] helped to
overcome the limitation to fixed priorities:

u =
∑

j

cj

Tj

≤ 1 (10.5)

Eq. (10.5) states that a system that is scheduled with dynamic priorities using
Earliest Deadline First (EDF) is schedulable if and only if the system load u is
less than or equal to 1. Due to the already linear nature of Eq. (10.5), it is easy to
integrate this schedulability test into an ILP [22].

The relaxation of strictly periodic task sets required to use an event-based task
model supporting arbitrary task activation patterns and deadlines [24]. For this
purpose, the ILP described above has been extended by support for density and
interval functions η and ε, resp., as originally proposed by Gresser [10] and later
taken up by Albers et al. [2]. In this approach, an arbitrary kind of task activation
pattern can be characterized by the density function η that denotes the maximum
number of events (i.e., task activations) in some time interval �t . The interval
function ε models the inverse behavior and returns the minimal time interval �t

in which n tasks are activated. This task model provides a high flexibility so that
periodical multi-task systems, periodical systems with jitter or bursts, or systems
with fully arbitrary task activations can be modeled in the optimization’s ILP.

The consideration of an actual scheduler’s overhead for context switching can be
added to the ILP-based framework described above by introducing an implicit task
τ0 with the highest priority into the multi-task system. τ0 represents the periodically
executed scheduler, and by considering an actual scheduler’s WCET c0 and its
period T0, it can smoothly be integrated into the optimization framework [23].

As an alternative to Joseph’s schedulability test (cf. Eq. (10.2)), Baruah proposed
the so-called processor demand test [3]. It states that a multi-task system is
schedulable if and only if the amount of required computation time is less than
or equal to the amount of available computation time:

�t ≥
∑

∀τj

[
ηj

(
�t − Dj

) ∗ (
cj + oj

)]
(10.6)
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According to the event-based task model described above, �t denotes one time
interval to be analyzed. ηj (�t − Dj) returns the number of activations of task τj

that happen within �t and that must be finished before the deadline Dj . Each task
activation is multiplied by the task’s respective maximum computational demand,
i.e., its WCET plus additional preemption overheads oj .

Since Eq. (10.6) is linear, it can directly be added to our multi-tasking ILP
model for each task τj . This schedulability test has to be modeled for all possible
time intervals �t . The maximal interval to be considered is regularly given by the
task set’s hyperperiod. Checking all possible intervals �t up to the hyperperiod is
practically infeasible. Fortunately, task preemptions can only occur if a new task is
ready for execution for many real-life scheduling policies like, e.g., EDF. Thus, the
schedulability test from Eq. (10.6) has to be modeled in the ILP only at the points of
discontinuity of the task set’s density functions η. Finally, one constraint needs to be
added that ensures that the system’s overall load due to periodically repeating task
activations stays below 100%. It is also possible to extend this approach towards
fixed-priority scheduling, and the resulting ILP model grows only linearly with
the number of events that have to be analyzed, in contrast to the quadratic nature
inherent to [22, 24].

Figure 10.1 shows the effect of our ILP-based multi-task SPM allocation on
schedulability of task sets featuring 8 tasks. We randomly selected 20 different
task sets from TACLeBench [9]. Task periods were also randomly determined using
UUniFast [4] and adjusted [39]. For each task set, periods were assembled such
that the entire system has an approximate initial load of 0.8, 1.0, . . . , 2.2 i.e.,
8 different system loads are evaluated per task set. Task deadlines were chosen
uniform randomly between 0.8 and 1.2 times the task’s period. Furthermore, a jitter
of up to 1% of each task’s period was chosen uniform randomly. Our evaluation
considered an ARM-based architecture with access latencies for main memory and
SPM of 6 and 1 clock cycles, resp. The scratchpad size was set to 40% of each task
set’s total size.
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Fig. 10.1 Evaluation of schedulability-aware SPM allocation for 8 tasks
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Figure 10.1 shows the schedulability of the task sets for the given initial system
loads, using Deadline-Monotonic Scheduling (DMS) and Earliest Deadline First
(EDF). The green and orange bars show the percentage of schedulable systems
without any optimization applied, while the purple and yellow bars represent the
schedulability after our ILP-based multi-task SPM allocation.

For an initial system load of 0.8, all task sets are schedulable, irrespective of the
considered scheduling policy or whether the SPM allocation was applied or not. This
is not surprising, since the considered systems feature sufficient idle times so that
valid schedules are always found. The situation changes when considering higher
initial system loads that range from 1.0 up to 2.2. In these scenarios, no task set
was schedulable in an unoptimized state where the scratchpad memories were not
used at all. However, our multi-task optimization is able to turn the vast majority of
initially unschedulable task sets schedulable. For DMS scheduling, our ILP-based
optimization achieves rates of schedulable task sets ranging from 100% (initial
system loads of 1.0 and 1.2) to still 75% for an initial system load of 2.2. For EDF
scheduling, the percentages of finally schedulable task sets are slightly smaller—
they range from 95% (initial system load of 1.0) to 75% again. The time required
to solve our ILPs is moderate. The whole compilation, analysis, and optimization
process using a modern ILP solver like, e.g., gurobi required less than 6 CPU
minutes on average over all considered task sets.

10.4 Analysis and Optimization of Multi-Processor Systems
on Chip

To address PREDATOR Challenge #2 on analyzing and shaping the communication
traffic for MPSoC architectures, it is important to understand when events happen
in a multi-core architecture which potentially influences the cores’ timing behavior.
For this purpose, modular performance analyses use so-called request functions α

which are very similar to the density function η from Sect. 10.3. In the context
of MPSoCs, however, such functions characterize how often a processor core
requests the shared bus of a multi-core architecture within a certain interval
of time. Usually, such functions are provided at a very abstract level assuming
execution models consisting of, e.g., the aforementioned acquisition, execution,
and replication phases. For a precise analysis when each core attempts to access
a shared hardware resource, it is, therefore, beneficial to extract request functions at
the machine code level [14, 27].

For a precise and tight MPSoC performance analysis, both lower and upper
bounds of resource requests are generated. Positions within the machine code
executed on the different cores are identified where timing-relevant requests are
generated, i.e., where shared hardware resources are accessed. Based on the code’s
Control Flow Graph (CFG), all possible sub-paths inside the code that feature these
identified positions have to be considered. For this purpose, the well-known Implicit
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Fig. 10.2 Extracted request functions for selected benchmarks. (a) Compressdata. (b)
binarysearch

Path Enumeration Technique (IPET) [17] has been modified to find the maximum
number of requests potentially occurring in a given time interval along any path of a
program. An algorithm has been proposed [27] that provides bounds on the number
of requests for time intervals �t of a program’s runtime under consideration of
all possible paths inside the CFG. This algorithm can be parameterized to trade
precision of the generated request functions versus required execution time by
varying the number of sampling points, i.e., the granularity of time intervals �t

considered by the algorithm.
Examples of lower (α−) and upper (α+) request functions generated for

two selected benchmarks compressdata and binarysearch are shown in
Fig. 10.2. The vertical distance between the lower and upper functions shows the
variation of the number of produced requests. For example, compressdata
can terminate with solely 82 shared bus accesses in total, or with up to 131.
For binarysearch, both the lower and upper request functions converge to a
common value, since each possible path through the program’s code covers an
identical number of bus requests. Only the points in time when these events occur
differ.

Figure 10.3 shows the influence of the number of considered sampling points
on the precision of the upper request function α+ of compressdata. The finest-
possible granularity, i.e., �t = 1 clock cycle, leads to 131 samples in total and to
a very smooth and precise result. When reducing the granularity such that only 50
samples are considered, the resulting request function has a clearly visible stepwise
shape. However, the resulting function for 50 samples always dominates the most
precise function so that no unsafe results are produced. For the highest precision
with 131 samples, our algorithm requires 48 CPU seconds. In contrast, the time
required to generate the request function for compressdata decreases down to
10 CPU seconds if 50 sampling points are considered.



10 Compilation for Real-Time Systems a Decade After PREDATOR 161

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
0

50

100

150

Δt [Clock Cycles]

N
um

be
ro

fR
eq

ue
sts

α+ (50 Sample Points)
α+ (131 (Max) Sample Points)

Fig. 10.3 Request functions for compressdata with different precision levels

0 2 4 6 8 10 12 14
0

1

2

3

Dt [Clock Cycles]

N
um

be
r
of

R
eq
ue
st
s

a+

b
dmax

Fig. 10.4 Request functions α and delivery functions β

While request functions α denote the resource demand of a task w.r.t. shared bus
accesses, so-called delivery functions β model the available capacity of a shared
hardware resource during modular performance analysis [12, 35]. The relationship
between both types of functions is illustrated in Fig. 10.4. The maximal horizontal
distance between α+ and β represents the maximum delay dmax a task exhibits due
to blocked shared bus requests. In the figure, a task requests 2 bus accesses during
interval lengths of 3 clock cycles. However, the bus can deliver the desired capacity
only within 13 clock cycles. Thus, a blocking time of 10 clock cycles results from
Fig. 10.4.

If a compiler could modify the generated code such that a task’s request function
is shifted towards the rightmost end of Fig. 10.4, its blocking time gets reduced
which in turn probably decreases WCRTs and improves schedulability for the entire
MPSoC system. This approach was investigated by a Master’s Thesis [28] where
instruction scheduling was exploited. Locally within basic blocks, those instruc-
tions requesting shared bus accesses were postponed by scheduling independent
instructions in front of them. If this succeeds for all program paths of a given length
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�t (e.g., for �t = 3 in Fig. 10.4), then the request functions are actually shifted
as intended. This work revealed that compilers can be enabled to systematically
reduce blocking times this way. For MPSoC task sets generated from the MRTC [11]
and UTDSP [37] benchmark collections, blocking time reductions of up to 22.5%
were reported. A solely local rescheduling of instructions, however, suffers from
the inherent limitation that there is not too much potential for postponing shared bus
accesses within a single basic block. Thus, maximal WCRT reductions of only up
to 7.3% were achieved.

This basic idea to reshape bus requests at the code level is also pursued in
currently ongoing work. By transforming the behavior of a task, its request function
is modified such that its traffic will match a required profile. This is done by
inserting additional machine instructions into the code, i.e., NOPs. Therefore, this
approach does not rely on specific hardware or on operating systems that realize
traffic shaping. Instead, the notion of code-inherent traffic shaping is introduced.
If the places where to insert such additional instructions in a task’s CFG are
carefully chosen, parts of its request function that do not fit to a given access
profile can be shaped systematically, even without necessarily increasing the task’s
WCET. For this purpose, two shaping algorithms using a greedy heuristic and an
evolutionary algorithm have been designed which support various kinds of Leaky
Bucket shapers [36].

The effectiveness of code-inherent shaping is depicted in Fig. 10.5 by means of
MRTC’s select benchmark. Based on a Leaky Bucket that generates a stepwise
shaping profile, a delivery function β is assumed such that only half of the requests
originally issued by the task within 1000 clock cycles can be fulfilled. It can be seen
that the systematic insertion of a total of 408 NOP instructions results in a shaped
request function that always stays below this delivery function. For this particular
select task, its WCET increases from originally 36,019 clock cycles up to 50,317
clock cycles. While this WCET increase by 40% seems disadvantageous at a first
glance, it is absolutely acceptable if the task still meets its deadline and if the shaped
request function enables schedulability of the entire MPSoC task set.
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Fig. 10.5 Traffic shaping of select with β(�t) being 50% of α(�t) for �t = 1000
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10.5 Multi-Objective Compiler Optimizations Under
Real-Time Constraints

The simultaneous consideration of multiple optimization objectives by a compiler
according to PREDATOR Challenge #3 can, to some extent, already be achieved
using ILP-based techniques, even though ILPs only allow for one objective func-
tion to be maximized or minimized. PREDATOR’s distinction between efficiency
requirements on the one hand and worst-case constraints on the other hand naturally
suggests to model critical constraints that must always be fulfilled as inequations
in an ILP. Efficiency requirements are then modeled by an ILP’s objective function
and get optimized in addition to the satisfaction of critical constraints. This way,
it is rather straightforward to turn the multi-task scratchpad memory allocation
described in Sect. 10.3 into a multi-objective WCET-, schedulability- and energy-
aware optimization.

The schedulability tests from Eq. (10.4) or (10.6) are mandatory constraints
in the SPM allocation’s ILP model. Using an energy model like, e.g., [32], the
energy consumption ei of each basic block bi can be characterized in dependence
of the ILP’s binary decision variables xi . By combining these block-level energy
values with profiling-based information about the blocks’ execution frequencies,
the overall energy consumption ej of task τj can be modeled. Multiplying these
task-level energy values with the tasks’ activation functions ηj (cf. Sect. 10.3) over
the entire task set’s hyperperiod H yields an expression that models the energy
dissipation of the complete multi-task system and that thus can be minimized under
simultaneous adherence to the ILP’s schedulability constraints:

min
∑

j

ηj (H) ∗ ej (10.7)

Evaluation results for randomly generated sets of 6 tasks are depicted in Fig. 10.6,
the experimental setup is the same as described in Sect. 10.3. Figure 10.6a shows the
task sets’ schedulability for their respective initial system loads, again using DMS
and EDF scheduling. As can be seen, the multi-objective ILP is able to turn more
than 95% of all task sets schedulable for initial system loads of up to 1.6. For higher
initial loads, schedulability was still achieved for more than 70% of all task sets.

Simultaneously, considerable energy reductions compared to systems that do not
use the SPM were achieved, cf. Fig. 10.6b. For initial system loads of up to 1.8, the
task sets’ energy dissipation was reduced down to less than 70%. For higher initial
system loads, the resulting energy consumption still ranges from 71 to 77%.

Another common additional optimization goal is to meet code size requirements.
Code compression might be used to meet code size constraints in embedded
systems. However, the performance overhead of such techniques might be critical
for real-time systems that must adhere to strict timing constraints. In the context
of PREDATOR Challenge #3, we thus recently considered compiler-based code
compression for hard real-time systems for the very first time [26]. This approach
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Fig. 10.6 Evaluation of multi-objective schedulability- and energy-aware SPM allocation for 6
tasks. (a) Schedulability. (b) Energy consumption

exploits lossless asymmetric compression algorithms [13] where a computationally
demanding and highly effective code compression is performed at compile time,
while the decompression is computationally lightweight so that it is feasible to
perform it at runtime.

In the proposed approach, complete binary executable functions are selected
and compressed by the WCC compiler and the resulting bit stream is added to the
executable code produced by the compiler. Furthermore, the executable is extended
by specifically tailored code for the decompression of the selected functions.
Upon execution of a program optimized this way, all compressed functions are
decompressed in one go during the program’s start. For this purpose, a processor’s
scratchpad memory is used as a buffer that finally holds all decompressed functions.
These functions are then directly executed from the SPM.

This approach trades code size reductions due to the selection of functions to be
compressed with the decompression overheads in terms of WCET which should be
as small as possible. For this purpose, an ILP is proposed whose binary decision
variables xi encode whether function fi is compressed or not.

For each function fi that might be compressed, its original, uncompressed code
size S

orig
i and its Worst-Case Execution Time C

orig
i are pre-computed. Assuming

that fi would be compressed, the corresponding values S
comp
i and C

comp
i can also

be pre-determined. For the WCET analysis of a potentially compressed function
fi , the decompression routine is added by the compiler, and the loops therein
are precisely annotated with upper iteration bounds for the decompression of the
currently considered function fi in order to support the WCET analyzer aiT. Based
on this data, the impact of fi’s compression on the entire program’s code size �Si

and Worst-Case Execution Time �Ci can be expressed in the ILP.
ILP constraints ensure that the decompressed functions fit in the available SPM,

that the entire program never gets larger due to the inserted decompression routine,
and that the WCET increases of all functions always stay below a user-provided
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Fig. 10.7 Evaluation of compiler-based WCET-aware code compression for MediaBench

threshold �Climit. Under these constraints, the ILP finally minimizes the entire
program’s code size by selecting appropriate functions fi for compression.

For six large-sized benchmarks from MediaBench [16], the effects of the
proposed compiler-based code compression for an Infineon TriCore architecture
are depicted in Fig. 10.7. For each considered benchmark, the diagram shows
the resulting relative WCETs and code sizes, as well as the code size of the
decompression routine added by the compiler. The 100% baseline of Fig. 10.7
denotes the WCETs and code sizes of the original, unoptimized benchmarks, resp.
For the ILP-based selection of functions to be compressed, the threshold �Climit

was set to 0.5 so that maximum WCET increases by 50% were still accepted by the
optimization.

As can be seen from Fig. 10.7, the finally obtained WCET increases are way
below this user-provided upper bound. For epic and mpeg2, the WCETs degrade
only marginally by 0.6% and 0.5%, resp. The WCETs of the other benchmarks
increase between 3.5% and 14.1% only. In contrast to this, our approach achieves
rather large code size reductions. After the optimization of gsm_dec, its executable
occupies only 73% of its original memory space. For all other benchmarks, an even
higher degree of compression was achieved that reduces code sizes by more than
a half. This way, the code size of cjpeg_transupp was reduced to 42% of its
original size, and a maximal reduction down to only 13% of the original code size
was achieved for mpeg2. Finally, Fig. 10.7 shows that adding extra code to the
generated binaries for the decompression routine is worthwhile, since this overhead
is over-compensated by the achieved overall code size reductions. As can be seen,
the code size overhead due to the decompressor varies between 2% (gsm, gsm_enc
and mpeg2) up to 15% (cjpeg_transupp) only, compared to the benchmarks’
original code size.
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10.6 Conclusions

This article presented a survey of work done in the field of compiler techniques
for real-time systems in the authors’ group during the past 10 years. Origin of
all these activities was the collaborative research project PREDATOR funded by
the European 7th Framework Programme. During this project, seminal work was
carried out in order to design predictable yet efficient embedded systems. A couple
of scientific challenges has been identified that have initially been considered
during PREDATOR and that, due to their complexity, required continuous research
effort over many years even after the end of this collaborative research project.
This article summarized these compiler-centric activities and their corresponding
scientific challenges:

Challenge #1: Integration of task coordination into WCET-aware compilation
Challenge #2: Analysis and optimization of Multi-Processor Systems on Chip
Challenge #3: Predictable multi-objective compiler optimizations

Despite the advances in the field of compilation for real-time systems achieved
in the past years, we expect that a continuation of this effort is necessary in
the future. This is motivated by the trend towards massively parallel embedded
real-time systems on the one hand, which still requires dedicated analyses and
optimizations that are capable to support current and future many-core architectures.
On the other hand, the simultaneous trade-off of various optimization objectives and
the corresponding systematic exploration of the design space is still an unsolved
problem for optimizing compilers. Last but not least, another important driver for
future research is the increasing complexity of the involved system- and code-level
analyses and optimizations which needs to be managed to obtain automated design
tools that are usable in practice even for highly sophisticated and massively parallel
systems.
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