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Foreword

When investigating theories at the tiniest conceivable scales in Nature, almost all
researchers today revert to the quantum language, accepting the verdict that we shall
nickname “the Copenhagen doctrine” that the only way to describe what is going
on will always involve states in Hilbert space, controlled by operator equations.
Returning to classical, that is, non quantum mechanical, descriptions will be forever
impossible, unless one accepts some extremely contrived theoretical contraptions
that may or may not reproduce the quantum mechanical phenomena observed in
experiments.

Dissatisfied, this author investigated how one can look at things differently. This
book is an overview of older material, but also contains many new observations and
calculations. Quantum mechanics is looked upon as a tool, not as a theory. Exam-
ples are displayed of models that are classical in essence, but can be analysed by the
use of quantum techniques, and we argue that even the Standard Model, together
with gravitational interactions, might be viewed as a quantum mechanical approach
to analyse a system that could be classical at its core. We explain how such thoughts
can conceivably be reconciled with Bell’s theorem, and how the usual objections
voiced against the notion of ‘superdeterminism’ can be overcome, at least in princi-
ple. Our proposal would eradicate the collapse problem and the measurement prob-
lem. Even the existence of an “arrow of time” can perhaps be explained in a more
elegant way than usual.

Gerard ’t HooftUtrecht, The Netherlands
May 2016
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Preface

This book is not in any way intended to serve as a replacement for the standard
theory of quantum mechanics. A reader not yet thoroughly familiar with the basic
concepts of quantum mechanics is advised first to learn this theory from one of the
recommended text books [24, 25, 60], and only then pick up this book to find out
that the doctrine called ‘quantum mechanics’ can be viewed as part of a marvellous
mathematical machinery that places physical phenomena in a greater context, and
only in the second place as a theory of Nature.

This book consists of two parts. Part I deals with the many conceptual issues,
without demanding excessive calculations. Part II adds to this our calculation tech-
niques, occasionally returning to conceptual issues. Inevitably, the text in both parts
will frequently refer to discussions in the other part, but they can be studied sepa-
rately.

This book is not a novel that has to be read from beginning to end, but rather a
collection of descriptions and derivations, to be used as a reference. Different parts
can be read in random order. Some arguments are repeated several times, but each
time in a different context.

Gerard ’t HooftUtrecht, The Netherlands
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Part I
The Cellular Automaton Interpretation

as a General Doctrine



Chapter 1
Motivation for This Work

This book is about a theory, and about an interpretation. The theory, as it stands,
is highly speculative. It is born out of dissatisfaction with the existing explanations
of a well-established fact. The fact is that our universe appears to be controlled by
the laws of quantum mechanics. Quantum mechanics looks weird, but nevertheless
it provides a very solid basis for doing calculations of all sorts that explain the
peculiarities of the atomic and sub-atomic world. The theory developed in this book
starts from assumptions that, at first sight, seem to be natural and straightforward,
and we think they can be very well defended.

Regardless whether the theory is completely right, partly right, or dead wrong,
one may be inspired by the way it looks at quantum mechanics. We are assuming
the existence of a definite ‘reality’ underlying quantum mechanical descriptions.
The assumption that this reality exists leads to a rather down-to-earth interpretation
of what quantum mechanical calculations are telling us. The interpretation works
beautifully and seems to remove several of the difficulties encountered in other
descriptions of how one might interpret the measurements and their findings. We
propose this interpretation that, in our eyes, is superior to other existing dogmas.

However, numerous extensive investigations have provided very strong evidence
that the assumptions that went into our theory cannot be completely right. The ear-
liest arguments came from von Neumann [86], but these were later hotly debated
[6, 15, 49]. The most convincing arguments came from John S. Bell’s theorem,
phrased in terms of inequalities that are supposed to hold for any local classical in-
terpretation of quantum mechanics, but are strongly violated by quantum mechanics.
Later, many other variations were found of Bell’s basic idea, some even more pow-
erful. We will discuss these repeatedly, and at length, in this work. Basically, they
all seemed to point in the same direction: from these theorems, it was concluded by
most researchers that the laws of Nature cannot possibly be described by a local,
deterministic automaton. So why this book?

There are various reasons why the author decided to hold on to his assumptions
anyway. The first reason is that they fit very well with the quantum equations of
various very simple models. It looks as if Nature is telling us: “wait, this approach
is not so bad at all!”. The second reason is that one could regard our approach
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simply as a first attempt at a description of Nature that is more realistic than other
existing approaches. We can always later decide to add some twists that introduce
indeterminism, in a way more in line with the afore mentioned theorems; these
twists could be very different from what is expected by many experts, but anyway,
in that case, we could all emerge out of this fight victorious. Perhaps there is a subtle
form of non-locality in the cellular automata, perhaps there is some quantum twist
in the boundary conditions, or you name it. Why should Bell’s inequalities forbid
me to investigate this alley? I happen to find it an interesting one.

But there is a third reason. This is the strong suspicion that all those “hidden vari-
able models” that were compared with thought experiments as well as real experi-
ments, are terribly naive.1 Real deterministic theories have not yet been excluded. If
a theory is deterministic all the way, it implies that not only all observed phenom-
ena, but also the observers themselves are controlled by deterministic laws. They
certainly have no ‘free will’, their actions all have roots in the past, even the distant
past. Allowing an observer to have free will, that is, to reset his observation appara-
tus at will without even infinitesimal disturbances of the surrounding universe, in-
cluding modifications in the distant past, is fundamentally impossible.2 The notion
that, also the actions by experimenters and observers are controlled by determinis-
tic laws, is called superdeterminism. When discussing these issues with colleagues
the author got the distinct impression that it is here that the ‘no-go’ theorems they
usually come up with, can be put in doubt.3

We hasten to add that this is not the first time that this remark was made [50, 51].
Bell noticed that superdeterminism could provide a loophole around his theorem,
but as most researchers also today, he was quick to dismiss it as “absurd”. As we
hope to be able to demonstrate, however, superdeterminism may not quite be as
absurd as it seems.4

In any case, realizing these facts sheds an interesting new light on our questions,
and the author was strongly motivated just to carry on.

Having said all this, I do admit that what we have is still only a theory. It can
and will be criticized and attacked, as it already was. I know that some readers
will not be convinced. If, in the mind of some others, I succeed to generate some
sympathy, even enthusiasm for these ideas, then my goal has been reached. In a

1Indeed, in their eagerness to exclude local, realistic, and/or deterministic theories, authors rarely
go into the trouble to carefully define what these theories are.
2Later in this book (Sect. 3.8), we replace “free will” by a less emotional but more accurate concept,
which can be seen to lead to the same apparent clashes, but is easier to handle mathematically. It
will also be easier to see what might well be wrong with it.
3Some clarification is needed for our use of the words ‘determinism’ and ‘deterministic’. It will
always be used in the sense: ‘leaving nothing to chance; all physical processes are completely
controlled by laws.’ Thus, Nature’s basic laws will always produce certainties, rather than prob-
abilities, in contrast with today’s understanding of quantum mechanics. Neither determinism nor
‘superdeterminism’ imply ‘pre-determinism, since no human and no machine can ever calculate
faster than Nature itself.
4We do find some “absurd” correlation functions, see e.g. Sect. 3.7.1.
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somewhat worse scenario, my ideas will be just used as an anvil, against which
other investigators will sharpen their own, superior views.

In the mean time, we are developing mathematical notions that seem to be co-
herent and beautiful. Not very surprisingly, we do encounter some problems in the
formalism as well, which we try to phrase as accurately as possible. They do indi-
cate that the problem of generating quantum phenomena out of classical equations is
actually quite complex. The difficulty we bounce into is that, although all classical
models allow for a reformulation in terms of some ‘quantum’ system, the result-
ing quantum system will often not have a Hamiltonian that is local and properly
bounded from below. It may well be that models that do produce acceptable Hamil-
tonians will demand inclusion of non-perturbative gravitational effects, which are
indeed difficult and ill-understood at present.

It is unlikely, in the mind of the author, that these complicated schemes can be
wiped off the table in a few lines, as is asserted by some.5 Instead, they warrant in-
tensive investigation. As stated, if we can make the theories more solid, they would
provide extremely elegant foundations that underpin the Cellular Automaton Inter-
pretation of quantum mechanics. It will be shown in this book that we can arrive at
Hamiltonians that are almost both local and bounded from below. These models are
like quantized field theories, which also suffer from mathematical imperfections, as
is well-known. We claim that these imperfections, in quantum field theory on the
one hand, and our way of handling quantum mechanics on the other, may actually
be related to one another.

Furthermore, one may question why we would have to require locality of the
quantum model at all, as long as the underlying classical model is manifestly local
by construction. What we exactly mean by all this will be explained, mostly in Part II
where we allow ourselves to perform detailed calculations.

1.1 Why an Interpretation Is Needed

The discovery of quantum mechanics may well have been the most important sci-
entific revolution of the 20th century. Not only the world of atoms and subatomic
particles appears to be completely controlled by the rules of quantum mechanics,
but also the worlds of solid state physics, chemistry, thermodynamics, and all ra-
diation phenomena can only be understood by observing the laws of the quanta.
The successes of quantum mechanics are phenomenal, and furthermore, the theory
appears to be reigned by marvellous and impeccable internal mathematical logic.

Not very surprisingly, this great scientific achievement also caught the attention
of scientists from other fields, and from philosophers, as well as the public in gen-
eral. It is therefore perhaps somewhat curious that, even after nearly a full century,
physicists still do not quite agree on what the theory tells us—and what it does not
tell us—about reality.

5At various places in this book, we explain what is wrong with those ‘few lines’.
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The reason why quantum mechanics works so well is that, in practically all areas
of its applications, exactly what reality means turns out to be immaterial. All that
this theory6 says, and that needs to be said, is about the reality of the outcomes
of an experiment. Quantum mechanics tells us exactly what one should expect, how
these outcomes may be distributed statistically, and how these can be used to deduce
details of its internal parameters. Elementary particles are one of the prime targets
here. A theory6 has been arrived at, the so-called Standard Model, that requires the
specification of some 25 internal constants of Nature, parameters that cannot be
predicted using present knowledge. Most of these parameters could be determined
from the experimental results, with varied accuracies. Quantum mechanics works
flawlessly every time.

So, quantum mechanics, with all its peculiarities, is rightfully regarded as one
of the most profound discoveries in the field of physics, revolutionizing our under-
standing of many features of the atomic and sub-atomic world.

But physics is not finished. In spite of some over-enthusiastic proclamations just
before the turn of the century, the Theory of Everything has not yet been discov-
ered, and there are other open questions reminding us that physicists have not yet
done their job completely. Therefore, encouraged by the great achievements we wit-
nessed in the past, scientists continue along the path that has been so successful.
New experiments are being designed, and new theories are developed, each with
ever increasing ingenuity and imagination. Of course, what we have learned to do is
to incorporate every piece of knowledge gained in the past, in our new theories, and
even in our wilder ideas.

But then, there is a question of strategy. Which roads should we follow if we
wish to put the last pieces of our jig-saw puzzle in place? Or even more to the point:
what do we expect those last jig-saw pieces to look like? And in particular: should
we expect the ultimate future theory to be quantum mechanical?

It is at this point that opinions among researchers vary, which is how it should
be in science, so we do not complain about this. On the contrary, we are inspired to
search with utter concentration precisely at those spots where no-one else has taken
the trouble to look before. The subject of this book is the ‘reality’ behind quantum
mechanics. Our suspicion is that it may be very different from what can be read
in most text books. We actually advocate the notion that it might be simpler than
anything that can be read in the text books. If this is really so, this might greatly
facilitate our quest for better theoretical understanding.

Many of the ideas expressed and worked out in this treatise are very basic.
Clearly, we are not the first to advocate such ideas. The reason why one rarely
hears about the obvious and simple observations that we will make, is that they
have been made many times, in the recent and the more ancient past [86], and were
subsequently categorically dismissed.

6Interchangeably, we use the word ‘theory’ for quantum mechanics itself, and for models of parti-
cle interactions; therefore, it might be better to refer to quantum mechanics as a framework, assist-
ing us in devising theories for sub systems, but we expect that our use of the concept of ‘theory’
should not generate any confusion.



1.1 Why an Interpretation Is Needed 7

The primary reason why they have been dismissed is that they were unsuccessful;
classical, deterministic models that produce the same results as quantum mechanics
were devised, adapted and modified, but whatever was attempted ended up looking
much uglier than the original theory, which was plain quantum mechanics with no
further questions asked. The quantum mechanical theory describing relativistic, sub-
atomic particles is called quantum field theory (see Part II, Chap. 20), and it obeys
fundamental conditions such as causality, locality and unitarity. Demanding all of
these desirable properties was the core of the successes of quantum field theory, and
that eventually gave us the Standard Model of the sub-atomic particles. If we try to
reproduce the results of quantum field theory in terms of some deterministic under-
lying theory, it seems that one has to abandon at least one of these demands, which
would remove much of the beauty of the generally accepted theory; it is much sim-
pler not to do so, and therefore, as for the requirement of the existence of a classical
underlying theory, one usually simply drops that.

Not only does it seem to be unnecessary to assume the existence of a classi-
cal world underlying quantum mechanics, it seems to be impossible also. Not very
surprisingly, researchers turn their heads in disdain, but just before doing so, there
was one more thing to do: if, invariably, deterministic models that were intended to
reproduce typically quantum mechanical effects, appear to get stranded in contra-
dictions, maybe one can prove that such models are impossible. This may look like
the more noble alley: close the door for good.

A way to do this was to address the famous Gedanken experiment designed by
Einstein, Podolsky and Rosen [33, 53]. This experiment suggested that quantum
particles are associated with more than just a wave function; to make quantum me-
chanics describe ‘reality’, some sort of ‘hidden variables’ seemed to be needed.
What could be done was to prove that such hidden variables are self-contradictory.
We call this a ‘no-go theorem’. The most notorious, and most basic, example was
Bell’s theorem [6], as we already mentioned. Bell studied the correlations between
measurements of entangled particles, and found that, if the initial state for these par-
ticles is chosen to be sufficiently generic, the correlations found at the end of the
experiment, as predicted by quantum mechanics, can never be reproduced by infor-
mation carriers that transport classical information. He expressed this in terms of the
so-called Bell inequalities, later extended as CHSH inequality [20]. They are obeyed
by any classical system but strongly violated by quantum mechanics. It appeared to
be inevitable to conclude that we have to give up producing classical, local, realistic
theories. They don’t exist.

So why the present treatise? Almost every day, we receive mail from amateur
physicists telling us why established science is all wrong, and what they think a
“theory of everything” should look like. Now it may seem that I am treading in
their foot steps. Am I suggesting that nearly one hundred years of investigations of
quantum mechanics have been wasted? Not at all. I insist that the last century of
research has led to magnificent results, and that the only thing missing so-far was a
more radical description of what has been found. Not the equations were wrong, not
the technology, but only the wording of what is often referred to as the Copenhagen
Interpretation, should be replaced. Up to now, the theory of quantum mechanics
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consisted of a set of very rigorous rules as to how amplitudes of wave functions
refer to the probabilities for various different outcomes of an experiment. It was
stated emphatically that they are not referring to ‘what is really happening’. One
should not ask what is really happening, one should be content with the predictions
concerning the experimental results. The idea that no such ‘reality’ should exist at
all sounds mysterious. It is my intention to remove every single bit of mysticism
from quantum theory, and we intend to deduce facts about reality anyway.

Quantum mechanics is one of the most brilliant results of one century of sci-
ence, and it is not my intention to replace it by some mutilated version, no matter
how slight the mutilation would be. Most of the text books on quantum mechanics
will not need the slightest revision anywhere, except perhaps when they state that
questions about reality are forbidden. All practical calculations on the numerous
stupefying quantum phenomena can be kept as they are. It is indeed in quite a few
competing theories about the interpretation of quantum mechanics where authors
are led to introduce non-linearities in the Schrödinger equation or violations of the
Born rule that will be impermissible in this work.

As for ‘entangled particles’, since it is known how to produce such states in prac-
tice, their odd-looking behaviour must be completely taken care of in our approach.

The ‘collapse of the wave function’ is a typical topic of discussion, where several
researchers believe a modification of Schrödinger’s equation is required. Not so in
this work, as we shall explain. We also find surprisingly natural answers to questions
concerning ‘Schrödinger’s cat’, and the ‘arrow of time’.

And as of ‘no-go theorems’, this author has seen several of them, standing in the
way of further progress. One always has to take the assumptions into consideration,
just as the small print in a contract.

1.2 Outline of the Ideas Exposed in Part I

Our starting point will be extremely simple and straightforward, in fact so much so
that some readers may simply conclude that I am losing my mind. However, with
questions of the sort I will be asking, it is inevitable to start at the very basic begin-
ning. We start with just any classical system that vaguely looks like our universe,
with the intention to refine it whenever we find this to be appropriate. Will we need
non-local interactions? Will we need information loss? Must we include some ver-
sion of a gravitational force? Or will the whole project run astray? We won’t know
unless we try.

The price we do pay seems to be a modest one, but it needs to be mentioned:
we have to select a very special set of mutually orthogonal states in Hilbert space
that are endowed with the status of being ‘real’. This set consists of the states the
universe can ‘really’ be in. At all times, the universe chooses one of these states to
be in, with probability 1, while all others carry probability 0. We call these states
ontological states, and they form a special basis for Hilbert space, the ontological
basis. One could say that this is just wording, so this price we pay is affordable,
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but we will assume this very special basis to have special properties. What this does
imply is that the quantum theories we end up with all form a very special subset of
all quantum theories. This then, could lead to new physics, which is why we believe
our approach will warrant attention: eventually, our aim is not just a reinterpretation
of quantum mechanics, but the discovery of new tools for model building.

One might expect that our approach, having such a precarious relationship with
both standard quantum mechanics and other insights concerning the interpretation
of quantum mechanics, should quickly strand in contradictions. This is perhaps the
more remarkable observation one then makes: it works quite well! Several models
can be constructed that reproduce quantum mechanics without the slightest modifi-
cation, as will be shown in much more detail in Part II. All our simple models are
quite straightforward. The numerous responses I received, saying that the models
I produce “somehow aren’t real quantum mechanics” are simply mistaken. They
are really quantum mechanical. However, I will be the first to remark that one can
nonetheless criticize our results: the models are either too simple, which means they
do not describe interesting, interacting particles, or they seem to exhibit more subtle
defects. In particular, reproducing realistic quantum models for locally interacting
quantum particles along the lines proposed, has as yet shown to be beyond what
we can do. As an excuse I can only plead that this would require not only the re-
production of a complete, renormalizable quantum field theoretical model, but in
addition it may well demand the incorporation of a perfectly quantized version of
the gravitational force, so indeed it should not surprise anyone that this is hard.

Numerous earlier attempts have been made to find holes in the arguments initi-
ated by Bell, and corroborated by others. Most of these falsification arguments have
been rightfully dismissed. But now it is our turn. Knowing what the locality struc-
ture is expected to be in our models, and why we nevertheless think they reproduce
quantum mechanics, we can now attempt to locate the cause of this apparent dis-
agreement. Is the fault in our models or in the arguments of Bell c.s.? What could
be the cause of this discrepancy? If we take one of our classical models, what goes
wrong in a Bell experiment with entangled particles? Were assumptions made that
do not hold? Do particles in our models perhaps refuse to get entangled? This way,
we hope to contribute to an ongoing discussion.

The aim of the present study is to work out some fundamental physical prin-
ciples. Some of them are nearly as general as the fundamental, canonical theory
of classical mechanics. The way we deviate from standard methods is that, more
frequently than usual, we introduce discrete kinetic variables. We demonstrate that
such models not only appear to have much in common with quantum mechanics.
In many cases, they are quantum mechanical, but also classical at the same time.
Some of our models occupy a domain in between classical and quantum mechanics,
a domain often thought to be empty.

Will this lead to a revolutionary alternative view on what quantum mechanics is?
The difficulties with the sign of the energy and the locality of the effective Hamil-
tonians in our theories have not yet been settled. In the real world there is a lower
bound for the total energy, so that there is a vacuum state. The subtleties associated
with that are postponed to Part II, since they require detailed calculations. In sum-
mary: we suspect that there will be several ways to overcome this difficulty, or better
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still, that it can be used to explain some of the apparent contradictions in quantum
mechanics.

The complete and unquestionable answers to many questions are not given in this
treatise, but we are homing in to some important observations. As has happened in
other examples of “no-go theorems”, Bell and his followers did make assumptions,
and in their case also, the assumptions appeared to be utterly reasonable. Neverthe-
less we now suspect that some of the premises made by Bell may have to be relaxed.
Our theory is not yet complete, and a reader strongly opposed to what we are trying
to do here, may well be able to find a stick that seems suitable to destroy it. Others,
I hope, will be inspired to continue along this path.

We invite the reader to draw his or her own conclusions. We do intend to achieve
that questions concerning the deeper meanings of quantum mechanics are illumi-
nated from a new perspective. This we do by setting up models and by doing calcu-
lations in these models. Now this has been done before, but most models I have seen
appear to be too contrived, either requiring the existence of infinitely many universes
all interfering with one another, or modifying the equations of quantum mechanics,
while the original equations seem to be beautifully coherent and functional.

Our models suggest that Einstein may have been right, when he objected the con-
clusions drawn by Bohr and Heisenberg. It may well be that, at its most basic level,
there is no randomness in Nature, no fundamentally statistical aspect to the laws of
evolution. Everything, up to the most minute detail, is controlled by invariable laws.
Every significant event in our universe takes place for a reason, it was caused by the
action of physical law, not just by chance. This is the general picture conveyed by
this book. We know that it looks as if Bell’s inequalities have refuted this possibility,
in particular because we are not prepared to abandon notions of locality, so yes, they
raise interesting and important questions that we shall address at various levels.

It may seem that I am employing rather long arguments to make my point.7

The most essential elements of our reasoning will show to be short and simple,
but just because I want chapters of this book to be self-sustained, well readable
and understandable, there will be some repetitions of arguments here and there, for
which I apologize. I also apologize for the fact that some parts of the calculations
are at a very basic level; the hope is that this will also make this work accessible for
a larger class of scientists and students.

The most elegant way to handle quantum mechanics in all its generality is Dirac’s
bra-ket formalism (Sect. 1.6). We stress that Hilbert space is a central tool for
physics, not only for quantum mechanics. It can be applied in much more general
systems than the standard quantum models such as the hydrogen atom, and it will
be used also in completely deterministic models (we can even use it in Newton’s
description of the planetary system, see Sect. 5.7.1).

In any description of a model, one first chooses a basis in Hilbert space. Then,
what is needed is a Hamiltonian, in order to describe dynamics. A very special
feature of Hilbert space is that one can use any basis one likes. The transformation

7A wise lesson to be drawn from one’s life experiences is, that long arguments are often much
more dubious than short ones.
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from one basis to another is a unitary transformation, and we shall frequently make
use of such transformations. Everything written about this in Sects. 1.6, 3.1 and 11.3
is completely standard.

In Part I of the book, we describe the philosophy of the Cellular Automaton
Interpretation (CAI) without too many technical calculations. After the Introduction,
we first demonstrate the most basic prototype of a model, the Cogwheel Model, in
Chap. 2.

In Chaps. 3 and 4, we begin to deal with the real subject of this research: the
question of the interpretation of quantum mechanics. The standard approach, re-
ferred to as the Copenhagen Interpretation, is dealt with very briefly, emphasizing
those points where we have something to say, in particular the Bell and the CHSH
inequalities.

Subsequently, we formulate as clearly as possible what we mean with determin-
istic quantum mechanics. The Cellular Automaton Interpretation of quantum me-
chanics (Chaps. 4 and 5) must sound as a blasphemy to some quantum physicists,
but this is because we do not go along with some of the assumptions usually made.
Most notably, it is the assumption that space-like correlations in the beables of this
world cannot possibly generate the ‘conspiracy’ that seems to be required to violate
Bell’s inequality. We derive the existence of such correlations.

We end Chap. 3 with one of the more important fundamental ideas of the CAI:
our hidden variables do contain ‘hidden information’ about the future, notably the
settings that will be chosen by Alice an Bob, but it is fundamentally non-local in-
formation, impossible to harvest even in principle (Sect. 3.7.1). This should not be
seen as a violation of causality.

Even if it is still unclear whether or not the results of these correlations have
a conspiratory nature, one can base a useful and functional interpretation doctrine
from the assumption that the only conspiracy the equations perform is to fool some
of today’s physicists, while they act in complete harmony with credible sets of phys-
ical laws. The measurement process and the collapse of the wave function are two
riddles that are completely resolved by this assumption, as will be indicated.

We hope to inspire more physicists to investigate these possibilities, to consider
seriously the possibility that quantum mechanics as we know it is not a fundamental,
mysterious, impenetrable feature of our physical world, but rather an instrument to
statistically describe a world where the physical laws, at their most basic roots,
are not quantum mechanical at all. Sure, we do not know how to formulate the
most basic laws at present, but we are collecting indications that a classical world
underlying quantum mechanics does exist.

Our models show how to put quantum mechanics on hold when we are construct-
ing models such as string theory and “quantum” gravity, and this may lead to much
improved understanding of our world at the Planck scale. Many chapters are rea-
sonably self sustained; one may choose to go directly to the parts where the basic
features of the Cellular Automaton Interpretation (CAI) are exposed, Chaps. 3–10,
or look at the explicit calculations done in Part II.

In Chap. 5.2, we display the rules of the game. Readers might want to jump to
this chapter directly, but might then be mystified by some of our assertions if one has
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not yet been exposed to the general working philosophy developed in the previous
chapters. Well, you don’t have to take everything for granted; there are still problems
unsolved, and further alleys to be investigated. They are in Chap. 9, where it can be
seen how the various issues show up in calculations.

Part II of this book is not intended to impress the reader or to scare him or her
away. The explicit calculations carried out there are displayed in order to develop
and demonstrate our calculation tools; only few of these results are used in the more
general discussions in the first part. Just skip them if you don’t like them.

1.3 A 19th Century Philosophy

Let us go back to the 19th century. Imagine that mathematics were at a very ad-
vanced level, but nothing of the 20th century physics was known. Suppose someone
had phrased a detailed hypothesis about his world being a cellular automaton.8 The
cellular automaton will be precisely defined in Sect. 5.1 and in Part II; for now, it
suffices to characterize it by the requirement that the states Nature can be in are
given by sequences of integers. The evolution law is a classical algorithm that tells
unambiguously how these integers evolve in time. Quantum mechanics does not en-
ter; it is unheard of. The evolution law is sufficiently non-trivial to make our cellular
automaton behave as a universal computer [37, 61]. This means that, at its tiniest
time and distance scale, initial states could be chosen such that any mathematical
equation can be solved with it. This means that it will be impossible to derive exactly
how the automaton will behave at large time intervals; it will be far too complex.

Mathematicians will realize that one should not even try to deduce exactly what
the large-time and large-distance properties of this theory will be, but they may
decide to try something else. Can one, perhaps, make some statistical statements
about the large scale behaviour?

In first approximation, just white noise may be seen to emerge, but upon closer
inspection, the system may develop non-trivial correlations in its series of integers;
some of the correlation functions may be calculable, just the way these may be
calculated in a Van der Waals gas. We cannot rigorously compute the trajectories
of individual molecules in this gas, but we can derive free energy and pressure of
the gas as a function of density and temperature, we can derive its viscosity and
other bulk properties. Clearly, this is what our 19th century mathematicians should
do with their cellular automaton model of their world. In this book we will indicate
how physicists and mathematicians of the 20th and 21st centuries can do even more:
they have a tool called quantum mechanics to derive and understand even more
sophisticated details, but even they will have to admit that exact calculations are
impossible. The only effective, large scale laws that they can ever expect to derive
are statistical ones. The average outcomes of experiments can be predicted, but not

8One such person is E. Fredkin, an expert in numerical computation techniques, with whom we
had lengthy discussions. The idea itself was of course much older [92, 98].
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the outcomes of individual experiments; for doing that, the evolution equations are
far too difficult to handle.

In short, our imaginary 19th century world will seem to be controlled by effective
laws with a large stochastic element in them. This means that, in addition to an
effective deterministic law, random number generators may seem to be at work that
are fundamentally unpredictable. On the face of it, these effective laws together may
look quite a bit like the quantum mechanical laws we have today for the sub-atomic
particles.

The above metaphor is of course not perfect. The Van der Waals gas does obey
general equations of state, one can understand how sound waves behave in such
a gas, but it is not quantum mechanical. One could suspect that this is because the
microscopic laws assumed to be at the basis of a Van der Waals gas are very different
from a cellular automaton, but it is not known whether this might be sufficient to
explain why the Van der Waals gas is clearly not quantum mechanical.

What we do wish to deduce from this reasoning is that one feature of our world is
not mysterious: the fact that we have effective laws that require a stochastic element
in the form of an apparently perfect random number generator, is something we
should not be surprised about. Our 19th century physicists would be happy with
what their mathematicians give them, and they would have been totally prepared for
the findings of 20th century physicists, which implied that indeed the effective laws
controlling hydrogen atoms contain a stochastic element, for instance to determine
at what moment exactly an excited atom decides to emit a photon.

This may be the deeper philosophical reason why we have quantum mechanics:
not all features of the cellular automaton at the basis of our world allow to be extrap-
olated to large scales. Clearly, the exposition of this chapter is entirely non-technical
and it may be a bad representation of all the subtleties of the theory we call quantum
mechanics today. Yet we think it already captures some of the elements of the story
we want to tell. If they had access to the mathematics known today, we may be led
to the conclusion that our 19th century physicists could have been able to derive an
effective quantum theory for their automaton model of the world. Would the 19th
century physicists be able to do experiments with entangled photons? This question
we postpone to Sect. 3.6 and onwards.

Philosophizing about the different turns the course of history could have chosen,
imagine the following. In the 19th century, the theory of atoms already existed. They
could have been regarded as physicists’ first successful step to discretize the world:
atoms are the quanta of matter. Yet energy, momenta, and angular momenta were
still assumed to be continuous. Would it not have been natural to suspect these to
be discrete as well? In our world, this insight came with the discovery of quantum
mechanics. But even today, space and time themselves are still strictly continuous
entities. When will we discover that everything in the physical world will eventually
be discrete? This would be the discrete, deterministic world underlying our present
theories, as was advertised, among others, by Fredkin. In this scenario, quantum
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mechanics as we know it today, is the imperfect logic resulting from an incomplete
discretization.9

1.4 Brief History of the Cellular Automaton

A cellular automaton is a mathematical model of a physical system that reduces the
physical variables to discrete integers, defined on a one- or higher dimensional grid.
The locations on the grid are referred to as ‘cells’, whose positions are indicated by
a series of integers, the coordinates of the grid. At the beat of a clock, the variables
in the cells on this grid are all renewed, so that they are time dependent. The rule
according to which they are renewed reflects the laws of physics. For each cell,
typically, the renewed values only depend on the values the cell had previously, and
the contents of the neighbouring cells. This property we call ‘locality’.

The earliest mention of such a concept was by John von Neumann [87] and
Stanislaw Ulam [84]. Both were interested in the question how, in a physical world
with simple laws of evolution, structures could arise that reproduce themselves: the
emergence of life. This was in the 1940s. However, it really became a popular sub-
ject of study in the 1970s when John Conway [39, 40] proposed an interesting ex-
ample of an automaton on a two-dimensional grid, called Conway’s game of life.
The evolution rules, standing for the ‘laws of physics’, for this system were very
simple. The grid was a rectangular one, so that each cell had 4 closest neighbours
plus 4 next-to-closest ones, diagonally separated. The data in each cell could take
just two values: 0 and 1. Conveniently, these two states of a cell would be called
‘dead’ and ‘alive’. At each beat of the clock every cell was renewed as follows:

– Any live cell with fewer than 2 of its 8 neighbours alive, will die, “as if caused by
loneliness”;

– Any live cell with 2 or 3 live neighbours lives on to the next generation;
– Any live cell with more than 3 live neighbours will die, “as if by over-population”;
– Any dead cell with exactly 3 live neighbours becomes alive, “as if by reproduc-

tion”.

The initial state could be assumed to be anything. At every beat of the clock,
every cell was renewed according to the above rules. The evolution of the entire
system could be followed indefinitely. In principle, the grid was assumed to be of
infinite size, but one could also consider any type of boundary conditions.

The game became popular when Martin Gardner described it in the October 1970
issue of Scientific American [39, 40]. In that time, physicists could watch the evo-
lution of such automata on computers, and they noticed that the “game of life”
could serve as a primitive model of an evolving universe with living creatures in it.

9As I write this, I expect numerous letters by amateurs, but beware, as it would be easy to propose
some completely discretized concoction, but it is very hard to find the right theory, one that helps
us to understand the world as it is using rigorous mathematics.
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It was found that some structures, if surrounded by empty cells, would be stable,
or periodic. Other structures, called “gliders” or “space ships”, would move along
horizontal, vertical, or diagonal paths.

Thus it was found, that relatively simple, primary laws of physics could lead
to complexity, and some asserted that a universe with ‘consciousness’ and ‘free
will’ could emerge. Cellular automaton rules were divided into classes to distinguish
distinct, global properties: some systems of automata would quickly evolve into
stable or featureless final states, some would quickly lead to apparently completely
chaotic final structures. The most interesting cellular automata would evolve into
recognizable structures with increasing complexity. These class 4 automata were
suspected to be applicable for performing complex calculations.

Most of the more interesting examples, such as the ‘game of life’, are not re-
versible in time, since many different initial patterns can lead to the same final state.
This makes them less interesting for physics at first glance, since, at the atomic
level, most of the physical laws are time-reversible. Most of the models studied in
our book, are also time reversible. Later in our study, however, we shall observe the
importance of time non-reversibility in cellular automata for physics, so that mod-
els such as the ‘game of life’ enter into the picture again. Most of the members of
the interesting class 4 are not time-reversible, and this is an other reason to suspect
that time non-reversibility might add an interesting form of stability to our systems,
which may add to their significance for physics. More about time non reversibility
in Chap. 7.

Cellular automata are often used as models for physical systems such as liquids or
other complex mixtures of particles. However, there was also an interest to use cel-
lular automata as theories of physics. Could it be that physics, at its most primordial
level, is based on discrete laws? In 1967, this idea was pioneered by Konrad Zuse
[97] in his book Rechnender Raum (Calculating Space), where it was suggested that
the entire universe is the output of a deterministic law of computation in an automa-
ton. Indeed, this idea did not sound so crazy, considering the fact that fundamental
particles appear to behave as single bits of information running around. In particular
fermions look like bits, when they are written in coordinate representation.

The concept was phrased as “It from Bit” by John Archibald Wheeler [89, 90],
which is the idea that particles of matter (“it”) may well be identified with the infor-
mation transmitted by them, which in turn is needed for their description (“bit”).

An extensive study of the role of cellular automata as models for addressing sci-
entific questions was made by Stephen Wolfram in his book A New Kind of Science
[92]. He attached a special philosophy to his approach. Since cellular automata have
complexity and computational universality in common with many models of phys-
ical systems, Wolfram suggests that experiments with cellular automata themselves
can reveal many special features of such physical systems. The reader might have
the impression that our book is a follow-up on Wolfram’s pioneering work, but we
do not have such ambitions as yet. The classes of models considered by Wolfram
may well be too restrictive for our purposes, and furthermore, our basic question
very specifically pertains to the origin of quantum mechanical phenomena.

Both Zuse and Wolfram already speculated that quantum mechanical behaviour
should be explained in terms of cellular automata, but did not really attempt to get
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to the bottom of this—how exactly do we explain quantum mechanics in terms of a
cellular automaton? Do we need a very special automaton or does every automaton
sooner or later produce quantum mechanical behaviour?

Computational scientists have studied many features of cellular automata that
will not be used in this work; this is because these issues involve quite special initial
states, while quantum mechanics will force us to consider primarily generic states.

1.5 Modern Thoughts About Quantum Mechanics

The discovery of the laws of quantum mechanics has severely affected the way in-
vestigators now think about ‘reality’. Even authorities such as Richard Feynman
were baffled: “I think I can safely say that nobody today understands quantum me-
chanics” [36]. One fact was established with very little doubt: the theory is com-
pletely coherent and it agrees amazingly well with experiment.

It would be nice if an evolution law for a cellular automaton could be found that
generates the particles of the Standard Model and the characteristics of their interac-
tions, but most investigators today find it quite unlikely that we will soon be able to
identify such a system starting with what we know. What we do have, could be for-
mulated as a dictionary of information: our particles represent information, which
is passed on and is being processed. Today, we experience these processes as if it is
quantum mechanical information: superpositions of eigen states of operators called
observables. If one system of information carriers could be exactly transformed into
another system of information carriers, with other rules of processing this infor-
mation, then we would never be able to decide which of these systems is more
‘fundamental’. Consequently, we might end up with classes of cellular automaton
systems, such that we cannot decide which element in one particular class represents
our world. David Deutsch [28] formulates this situation in his constructor theory.
The key point is distinguishability of different physical systems.

The proposal presented in this book is that at least one element in such classes
should turn out to be a classical automaton, but this step is usually not made. More
frequently, it is found that a ‘many world’ interpretation seems to be inevitable [88].

Also, the idea that non-linear modifications of the Schrödinger equation, no mat-
ter how small, would be needed to explain the collapse of the wave function, still
seems to persist. The density matrix calculated from the Schrödinger equation con-
tains off-diagonal terms, and no matter how fast these might oscillate, or how un-
stable the phases of these terms are, something seems to be needed to erase them
altogether. We will show that this is not the case in our theory.

A poll held by A. Zeilinger et al. [74] concerning positions taken by participants
of a conference on the foundations of quantum mechanics, was quite revealing. Al-
though perhaps the questions themselves were somewhat biased, it appeared that
a majority is divided over the exact wording to be chosen, but agrees that quan-
tum information is fundamentally different from classical information. None of the
participants believed in an underlying deterministic theory. Most of them thought
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that Einstein, in his criticism of Bohr’s formulation of quantum mechanics, was
simply mistaken. In this book we hope to convince the reader that a deterministic
underpinning theory may not be impossible at all, and, although Niels Bohr was
right in a pragmatic sense, there are amendments to be made to the Copenhagen
doctrine. A bird’s eye version of the views elaborated in this book, was presented
in Ref. [109]. Other, preliminary excursions by the present author are described in
[101, 119, 120] and [125].

Practically all investigators [22, 23] adhere to the concept called freedom of
choice, which means that an observer, at any time, must enjoy the freedom to choose
which observable property of a system is to be measured. Zeilinger [94] claims that
this freedom can be guaranteed in experiments. In our book however, we observe
that there may be a severe restriction to this freedom of choice, due to very strong
spacelike correlations. By carefully defining exactly what freedom of choice means,
we shall replace ‘free will’ by something mathematically more precise. We then ob-
serve that although all observers at a given time indeed have the freedom to choose
their settings, correlation functions then dictate, non-locally, what the ontological
states of the observed objects such as elementary photons may be. In short, the
choices made by an observer will have to comply with the correlation functions im-
posed by physical laws. The laws are local, but the correlation functions are not. We
shall see how these correlation functions may affect our conclusions concerning the
mysteries of quantum mechanics.

1.6 Notation

In most parts of this book, quantum mechanics will be used as a tool kit, not a
theory. Our theory may be anything; one of our tools will be Hilbert space and the
mathematical manipulations that can be done in that space. Although we do assume
the reader to be familiar with these concepts, we briefly recapitulate what a Hilbert
space is.

Hilbert space H is a complex10 vector space, whose number of dimensions is
usually infinite, but sometimes we allow that to be a finite number. Its elements are
called states, denoted as |ψ〉, |ϕ〉, or any other “ket”.

We have linearity: whenever |ψ1〉 and ψ2〉 are states in our Hilbert space, then

|ϕ〉 = λ|ψ1〉 +μ|ψ2〉, (1.1)

10Some critical readers were wondering where the complex numbers in quantum mechanics should
come from, given the fact that we start off from classical theories. The answer is simple: complex
numbers are nothing but man-made inventions, just as real numbers are. In Hilbert space, they are
useful tools whenever we discuss something that is conserved in time (such as baryon number),
and when we want to diagonalize a Hamiltonian. Note that quantum mechanics can be formulated
without complex numbers, if we accept that the Hamiltonian is an anti-symmetric matrix. But
then, its eigen values are imaginary. We emphasise that imaginary numbers are primarily used to
do mathematics, and for that reason they are indispensable for physics.
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where λ and μ are complex numbers, is also a state in this Hilbert space. For every
ket-state |ψ〉 we have a ‘conjugated bra-state’, 〈ψ |, spanning a conjugated vector
space, 〈ψ |, 〈ϕ|. This means that, if Eq. (1.1) holds, then

〈ϕ| = λ∗〈ψ1| +μ∗〈ψ2|. (1.2)

Furthermore, we have an inner product, or inproduct: if we have a bra, 〈χ |, and a
ket, |ψ〉, then a complex number is defined, the inner product denoted by 〈χ |ψ〉,
obeying

〈χ |(λ|ψ1〉 +μ|ψ2〉
)= λ〈χ |ψ1〉 +μ〈χ |ψ2〉; 〈χ |ψ〉 = 〈ψ |χ〉∗. (1.3)

The inner product of a ket state |ψ〉 with its own bra is real and positive:

‖ψ‖2 ≡ 〈ψ |ψ〉 = real and ≥ 0, (1.4)

while 〈ψ |ψ〉 = 0 ↔ |ψ〉 = 0. (1.5)

Therefore, the inner product can be used to define a norm. A state |ψ〉 is called a
physical state, or normalized state, if

‖ψ‖2 = 〈ψ |ψ〉 = 1. (1.6)

Later, we shall use the word template to denote such state (the word ‘physical state’
would be confusing and is better to be avoided). The full power of Dirac’s notation
is exploited further in Part II.

Variables will sometimes be just numbers, and sometimes operators in Hilbert
space. If the distinction should be made, or if clarity may demand it, operators will
be denoted as such. We decided to do this simply by adding a super- or subscript
“op” to the symbol in question.11

The Pauli matrices, �σ = (σx, σy, σz) are defined to be the 2 × 2 matrices

σ
op
x =

(
0 1
1 0

)
, σ

op
y =

(
0 −i
i 0

)
σ

op
z =

(
1 0
0 −1

)
. (1.7)

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

11Doing this absolutely everywhere for all operators was a bit too much to ask. When an operator
just amounts to multiplication by a function we often omit the super- or subscript “op”, and in some
other places we just mention clearly the fact that we are discussing an operator.



Chapter 2
Deterministic Models in Quantum Notation

2.1 The Basic Structure of Deterministic Models

For deterministic models, we will be using the same Dirac notation. A physical state
|A〉, where A may stand for any array of numbers, not necessarily integers or real
numbers, is called an ontological state if it is a state our deterministic system can
be in. These states themselves do not form a Hilbert space, since in a deterministic
theory we have no superpositions, but we can declare that they form a basis for a
Hilbert space that we may herewith define [102, 122], by deciding, once and for all,
that all ontological states form an orthonormal set:

〈A|B〉 ≡ δAB. (2.1)

We can allow this set to generate a Hilbert space if we declare what we mean when
we talk about superpositions. In Hilbert space, we now introduce the quantum states
|ψ〉, as being more general than the ontological states:

|ψ〉 =
∑

A

λA|A〉,
∑

A

|λA|2 ≡ 1. (2.2)

A quantum state can be used as a template for doing physics. With this we mean the
following:

A template is a quantum state of the form (2.2) describing a situation where
the probability to find our system to be in the ontological state |A〉 is |λA|2.

Note, that λA is allowed to be a complex or negative number, whereas the phase of
λA plays no role whatsoever. In spite of this, complex numbers will turn out to be
quite useful here, as we shall see. Using the square in Eq. (2.2) and in our definition
above, is a fairly arbitrary choice; in principle, we could have used a different power.
Here, we use the squares because this is by far the most useful choice; different
powers would not affect the physics, but would result in unnecessary mathematical
complications. The squares ensure that probability conservation amounts to a proper
normalization of the template states, and enable the use of unitary matrices in our
transformations.

© The Author(s) 2016
G. ’t Hooft, The Cellular Automaton Interpretation of Quantum Mechanics,
Fundamental Theories of Physics 185, DOI 10.1007/978-3-319-41285-6_2
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Occasionally, we may allow the indicators A,B, . . . to represent continuous vari-
ables, a straightforward generalization. In that case, we have a continuous determin-
istic system; the Kronecker delta in Eq. (2.1) is then replaced by a Dirac delta, and
the sums in Eq. (2.2) will be replaced by integrals. For now, to be explicit, we stick
to a discrete notation.

We emphasise that the template states are not ontological. Hence we have no
direct interpretation, as yet, for the inner products 〈ψ1|ψ2〉 if both |ψ1〉 and |ψ2〉
are template states. Only the absolute squares of 〈A|ψ〉, where〈A| is the conjugate
of an ontological state, denote the probabilities |λA|2. We briefly return to this in
Sect. 5.5.3.

The time evolution of a deterministic model can now be written in operator form:

|A(t)〉 = ∣∣P (t)op A(0)
〉
, (2.3)

where P (t)op is a permutation operator. We can write P (t)op as a matrix P (t)AB containing
only ones and zeros. Then, Eq. (2.3) is written as a matrix equation,

|A(t)〉 =UAB(t)|B(0)〉, U(t)AB = P (t)AB. (2.4)

By definition therefore, the matrix elements of the operator U(t) in this bases can
only be 0 or 1.

It is very important, at this stage, that we choose P (t)op to be a genuine permutator,
that is, it should be invertible.1 If the evolution law is time-independent, we have

P (t)op = (
P (δt)op

)t/δt
, Uop(t)=

(
Uop(δt)

)t/δt
, (2.5)

where the permutator P (δt)op , and its associated matrix Uop(δt) describe the evolution
over the shortest possible time step, δt .

Note, that no harm is done if some of the entries in the matrix U(δt)ab , instead
of 1, are chosen to be unimodular complex numbers. Usually, however, we see no
reason to do so, since a simple rotation of an ontological state in the complex plane
has no physical meaning, but it could be useful for doing mathematics (for example,
in Sect. 15 of Part II, we use the entries ±1 and 0 in our evolution operators).

We can now state our first important mathematical observation:
The quantum-, or template-, states |ψ〉 all obey the same evolution equation:

|ψ(t)〉 =Uop(t)|ψ(0)〉. (2.6)

It is easy to observe that, indeed, the probabilities |λA|2 evolve as expected.2

Much of the work described in this book will be about writing the evolution
operators Uop(t) as exponentials: Find a Hermitian operator Hop such that

1One can imagine deterministic models where P (t)op does not have an inverse, which means that
two different ontological states might both evolve into the same state later. We will consider this
possibility later, see Chap. 7.
2At this stage of the theory, one may still define probabilities to be given as different functions of
λA, in line with the observation just made after Eq. (2.2).
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Uop(δt)= e−iHopδt , so that Uop(t)= e−iHopt . (2.7)

This elevates the time variable t to be continuous, if it originally could only be an
integer multiple of δt . Finding an example of such an operator is actually easy. If,
for simplicity, we restrict ourselves to template states |ψ〉 that are orthogonal to the
eigenstate of Uop with eigenvalue 1, then

Hopδt = π − i
∞∑

n=1

1

n

(
Uop(nδt)−Uop(−nδt)

)
(2.8)

is a solution of Eq. (2.7). This equation can be checked by Fourier analysis, see
Part II, Sect. 12.2, Eqs. (12.8) – (12.10).

Note that a correction is needed: the lowest eigenstate |∅〉 of H , the ground state,
has Uop|∅〉 = |∅〉 and Hop|∅〉 = 0, so that Eq. (2.8) is invalid for that state, but here
this is a minor detail3 (it is the only state for which Eq. (2.8) fails). If we have a
periodic automaton, the equation can be replaced by a finite sum, also valid for the
lowest energy state, see Sect. 2.2.1.

There is one more reason why this is not always the Hamiltonian we want: its
eigenvalues will always be between 0 and 2π/δt , while sometimes we may want
expressions for the energy that take larger values (see for instance Sect. 5.1).

We do conclude that there is always a Hamiltonian. We repeat that the ontological
states, as well as all other template states (2.2) obey the Schrödinger equation,

d

dt
|ψ(t)〉 = −iHop|ψ(t)〉, (2.9)

which reproduces the discrete evolution law (2.7) at all times t that are integer mul-
tiples of δt . Therefore, we always reproduce some kind of “quantum” theory!

2.1.1 Operators: Beables, Changeables and Superimposables

We plan to distinguish three types of operators:

(I) beables: these denote a property of the ontological states, so that beables are
diagonal in the ontological basis {|A〉, |B〉, . . .} of Hilbert space:

Oop|A〉 = O(A)|A〉, (beable). (2.10)

(II) changeables: operators that replace an ontological state by another ontological
state, such as a permutation operator:

Oop|A〉 = |B〉, (changeable); (2.11)

These operators act as pure permutations.

3In Part II, we shall see the importance of having one state for which our identities fail, the so-called
edge state.
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(III) superimposables: these map ontological states onto superpositions of ontolog-
ical states:

Oop|A〉 = λ1|A〉 + λ2|B〉 + · · · . (2.12)

Now, we will construct a number of examples. In Part II, we shall see more examples
of constructions of beable operators (e.g. Sect. 15.2).

2.2 The Cogwheel Model

One of the simplest deterministic models is a system that can be in just 3 states,
called (1), (2), and (3). The time evolution law is that, at the beat of a clock,
(1) evolves into (2), (2) evolves into (3), and state (3) evolves into (1), see Fig. 2.1a.
Let the clock beat with time intervals δt . As was explained in the previous section,
we associate Dirac kets to these states, so we have the states |1〉, |2〉, and |3〉. The
evolution operator Uop(δt) is then the matrix

Uop(δt)=
(0 0 1

1 0 0
0 1 0

)

. (2.13)

It is now useful to diagonalize this matrix. Its eigenstates are |0〉H , |1〉H , and |2〉H ,
defined as

|0〉H = 1√
3

(|1〉 + |2〉 + |3〉),
|1〉H = 1√

3

(|1〉 + e2πi/3|2〉 + e−2πi/3|3〉), (2.14)

|2〉H = 1√
3

(|1〉 + e−2πi/3|2〉 + e2πi/3|3〉),
for which we have

Uop(δt)

( |0〉H
|1〉H
|2〉H

)

=
⎛

⎝
|0〉H

e−2πi/3|1〉H
e−4πi/3|2〉H

⎞

⎠ . (2.15)

In this basis, we can write this as

Uop = e−iHopδt , with Hop = 2π
3δt diag(0,1,2). (2.16)

At times t that are integer multiples of δt , we have, in this basis,

Uop(t)= e−iHopt , (2.17)

Fig. 2.1 a Cogwheel model
with three states. b Its three
energy levels
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but of course, this equation holds in every basis. In terms of the ontological basis of
the original states |1〉, |2〉, and |3〉, the Hamiltonian (2.16) reads

Hop = 2π
3δt

( 1 κ κ∗
κ∗ 1 κ

κ κ∗ 1

)

, with κ = − 1
2 + i

√
3

6 , κ∗ = − 1
2 − i

√
3

6 . (2.18)

Thus, we conclude that a template state |ψ〉 = λ(t)|1〉+μ(t)|2〉+ν(t)|3〉 that obeys
the Schrödinger equation

d

dt
|ψ〉 = −iHop|ψ〉, (2.19)

with the Hamiltonian (2.18), will be in the state described by the cogwheel model at
all times t that are an integral multiple of δt . This is enough reason to claim that the
“quantum” model obeying this Schrödinger equation is mathematically equivalent
to our deterministic cogwheel model.

The fact that the equivalence only holds at integer multiples of δt is not a restric-
tion. Imagine δt to be as small as the Planck time, 10−43 seconds (see Chap. 6),
then, if any observable changes take place only on much larger time scales, devia-
tions from the ontological model will be unobservable. The fact that the ontological
and the quantum model coincide at all integer multiples of the time dt , is physi-
cally important. Note, that the original ontological model was not at all defined at
non-integer time; we could simply define it to be described by the quantum model
at non-integer times.

The eigenvalues of the Hamiltonian are 2π
3δt n, with n= 0,1,2, see Fig. 2.1b. This

is reminiscent of an atom with spin one that undergoes a Zeeman splitting due to
a homogeneous magnetic field. One may conclude that such an atom is actually a
deterministic system with three states, or, a cogwheel, but only if the ‘proper’ basis
has been identified.

The reader may remark that this is only true if, somehow, observations faster than
the time scale δt are excluded. We can also rephrase this. To be precise, a Zeeman
atom is a system that needs only 3 (or some other integer N ) states to characterize
it. These are the states it is in at three (or N ) equally spaced moments in time. It
returns to itself after the period T =Nδt .

2.2.1 Generalizations of the Cogwheel Model: Cogwheels with N
Teeth

The first generalization of the cogwheel model (Sect. 2.2) is the system that per-
mutes N ‘ontological’ states |n〉ont, with n = 0, . . .N − 1, and N some positive
integer > 1. Assume that the evolution law is that, at the beat of the clock,

|n〉ont → |n+ 1 mod N〉ont. (2.20)

This model can be regarded as the universal description of any system that is pe-
riodic with a period of N steps in time. The states in this evolution equation are
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regarded as ‘ontological’ states. The model does not say anything about ontological
states in between the integer time steps. We call this the simple periodic cogwheel
model with period N .

As a generalization of what was done in the previous section, we perform a dis-
crete Fourier transformation on these states:

|k〉H def= 1√
N

N−1∑

n=0

e2πikn/N |n〉ont, k = 0, . . .N − 1; (2.21)

|n〉ont = 1√
N

N−1∑

k=0

e−2πikn/N |k〉H . (2.22)

Normalizing the time step δt to one, we have

Uop(1)|k〉H = 1√
N

N−1∑

n=0

e2πikn/N |n+ 1 mod N〉ont = e−2πik/N |k〉H , (2.23)

and we can conclude

Uop(1)= e−iHop; Hop|k〉H = 2πk
N

|k〉H . (2.24)

This Hamiltonian is restricted to have eigenvalues in the interval [0,2π). where
the notation means that 0 is included while 2π is excluded. Actually, its definition
implies that the Hamiltonian is periodic with period 2π , but in most cases we will
treat it as being defined to be restricted to within the interval. The most interesting
physical cases will be those where the time interval is very small, for instance close
to the Planck time, so that the highest eigenvalues of the Hamiltonian will be so large
that the corresponding eigen states may be considered unimportant in practice.

In the original, ontological basis, the matrix elements of the Hamiltonian are

ont〈m|Hop|n〉ont = 2π
N2

N−1∑

k=1

ke2πik(m−n)/N . (2.25)

This sum can we worked out further to yield

Hop = π
(

1 − 1

N

)
− π

N

N−1∑

n=1

(
i

tan(πn/N)
+ 1

)
Uop(n). (2.26)

Note that, unlike Eq. (2.8), this equation includes the corrections needed for the
ground state. For the other energy eigenstates, one can check that Eq. (2.26) agrees
with Eq. (2.8).

For later use, Eqs. (2.26) and (2.8), without the ground state correction for the
case U(t)|ψ〉 = |ψ〉, can be generalised to the form

Hop = C − πi
T

tn<T∑

tn>0

Uop(tn)

tan(πtn/T )
T→∞−→ C − i

∑

tn �=0

Uop(tn)

tn
, (2.27)
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where C is a (large) constant, T is the period, and tn = nδt is the set of times where
the operator U(tn) is required to have some definite value. We note that this is a
sum, not an integral, so when the time values are very dense, the Hamiltonian tends
to become very large. There seems to be no simple continuum limit. Nevertheless,
in Part II, we will attempt to construct a continuum limit, and see what happens
(Sect. 13).

Again, if we impose the Schrödinger equation d
dt |ψ〉t = −iHop|ψ〉t and the

boundary condition |ψ〉t=0 = |n0〉ont, then this state obeys the deterministic evo-
lution law (2.20) at integer times t . If we take superpositions of the states |n〉ont

with the Born rule interpretation of the complex coefficients, then the Schrödinger
equation still correctly describes the evolution of these Born probabilities.

It is of interest to note that the energy spectrum (2.24) is frequently encountered
in physics: it is the spectrum of an atom with total angular momentum J = 1

2 (N−1)
and magnetic moment μ in a weak magnetic field: the Zeeman atom. We observe
that, after the discrete Fourier transformation (2.21), a Zeeman atom may be re-
garded as the simplest deterministic system that hops from one state to the next in
discrete time intervals, visiting N states in total.

As in the Zeeman atom, we may consider the option of adding a finite, univer-
sal quantity δE to the Hamiltonian. It has the effect of rotating all states with the
complex amplitude e−iδE after each time step. For a simple cogwheel, this might
seem to be an innocuous modification, with no effect on the physics, but below we
shall see that the effect of such an added constant might become quite significant
later.

Note that, if we introduce any kind of perturbation on the Zeeman atom, caus-
ing the energy levels to be split in intervals that are no longer equal, it will no
longer look like a cogwheel. Such systems will be a lot more difficult to describe
in a deterministic theory; they must be seen as parts of a much more complex
world.

2.2.2 The Most General Deterministic, Time Reversible, Finite
Model

Generalizing the finite models discussed earlier in this chapter, consider now a
model with a finite number of states, and an arbitrary time evolution law. Start with
any state |n0〉ont, and follow how it evolves. After some finite number, say N0, of
time steps, the system will be back at |n0〉ont. However, not all states |n〉ont may have
been reached. So, if we start with any of the remaining states, say |n1〉ont, then a new
series of states will be reached, and the periodicity might be a different number, N1.
Continue until all existing states of the model have been reached. We conclude that
the most general model will be described as a set of simple periodic cogwheel mod-
els with varying periodicities, but all working with the same universal time step δt ,
which we could normalize to one; see Fig. 2.2.
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Fig. 2.2 Example of a more
generic finite, deterministic,
time reversible model

Figure 2.3 shows the energy levels of a simple periodic cogwheel model (left),
a combination of simple periodic cogwheel models (middle), and the most general
deterministic, time reversible, finite model (right). Note that we now shifted the
energy levels of all cogwheels by different amounts δEi . This is allowed because the
index i, telling us which cogwheel we are in, is a conserved quantity; therefore these
shifts have no physical effect. We do observe the drastic consequences however
when we combine the spectra into one, see Fig. 2.3c.

Figure 2.3 clearly shows that the energy spectrum of a finite discrete determinis-
tic model can quickly become quite complex.4 It raises the following question: given
any kind of quantum system, whose energy spectrum can be computed. Would it be
possible to identify a deterministic model that mimics the quantum model? To what
extent would one have to sacrifice locality when doing this? Are there classes of
deterministic theories that can be mapped on classes of quantum models? Which of
these would be potentially interesting?

Fig. 2.3 a Energy spectrum of the simple periodic cogwheel model. δE is an arbitrary energy
shift. b Energy spectrum of the model sketched in Fig. 2.2, where several simple cogwheel models
are combined. Each individual cogwheel i may be shifted by an arbitrary amount δEi . c Taking
these energy levels together we get the spectrum of a generic finite model

4It should be self-evident that the models displayed in the figures, and subsequently discussed, are
just simple examples; the real universe will be infinitely more complicated than these. One critic
of our work was confused: “Why this model with 31 states? What’s so special about the number
31?” Nothing, of course, it is just an example to illustrate how the math works.
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Chapter 3
Interpreting Quantum Mechanics

This book will not include an exhaustive discussion of all proposed interpretations
of what quantum mechanics actually is. Existing approaches have been described in
excessive detail in the literature [1, 6–8, 10, 11, 35], but we think they all contain
weaknesses. The most conservative attitude is what we shall call the Copenhagen
Interpretation. It is also a very pragmatic one, and some mainstream researchers
insist that it contains all we need to know about quantum mechanics.

Yet it is the things that are not explained in the Copenhagen picture that often
capture our attention. Below, we begin with indicating how the cellular Automaton
interpretation will address some of these questions.

3.1 The Copenhagen Doctrine

It must have been a very exciting period of early modern science, when researchers
began to understand how to handle quantum mechanics, in the late 1920s and sub-
sequent years [64]. The first coherent picture of how one should think of quantum
mechanics, is what we now shall call the Copenhagen Doctrine. In the early days,
physicists were still struggling with the equations and the technical difficulties. To-
day, we know precisely how to handle all these, so that now we can rephrase the
original starting points much more accurately. Originally, quantum mechanics was
formulated in terms of wave functions, with which one referred to the states elec-
trons are in; ignoring spin for a moment, they were the functionsψ(�x, t)= 〈�x|ψ(t)〉.
Now, we may still use the words ‘wave function’ when we really mean to talk of ket
states in more general terms.

Leaving aside who said exactly what in the 1920s, here are the main points of
what one might call the Copenhagen Doctrine. Somewhat anachronistically,1 we
employ Dirac’s notation:

1Let me stress here again that from our use of terms such as “Copenhagen Interpretation”, or
“Copenhagen doctrine”, it should not be inferred that our descriptions would be attempts to rewrite
history; the philosophical debates that did take place among the “Copenhagen group”, whoever
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A system is completely described by its ‘wave function’ |ψ(t)〉, which is an
element of Hilbert space, and any basis in Hilbert space can be used for its
description. This wave function obeys a linear first order differential equation
in time, to be referred to as Schrödinger’s equation, of which the exact form
can be determined by repeated experiments.

A measurement can be made using any observable O that one might want
to choose (observables are Hermitian operators in Hilbert space). The theory
then predicts the average measured value of O , after many repetitions of the
experiment, to be

〈O〉 = 〈ψ(t)|O|ψ(t)〉. (3.1)

As soon as the measurement is made, the wave function of the system col-
lapses to a state in the subspace of Hilbert space that is an eigenstate of
the observable O, or a probabilistic distribution of eigenstates, according to
Eq. (3.1).

When two observables O1 and O2 do not commute, they cannot both be
measured accurately. The commutator [O1,O2] indicates how large the prod-
uct of the ‘uncertainties’ δO1 and δO2 should be expected to be. The mea-
suring device itself must be regarded as a classical object, and for large sys-
tems the quantum mechanical measurement approaches closely the classical
description.

Implicitly included in Eq. (3.1) is the element of probability. If we expand the wave
function |ψ〉 into eigenstates |ϕ〉 of an observable O, then we find that the prob-
ability that the experiment on |ψ〉 actually gives as a result that the eigenvalue of
the state |ϕ〉 is found, will be given by P = |〈ϕ|ψ〉|2. This is referred to as Born’s
probability rule [12, 13].

We note that the wave function may not be given any ontological significance.
The existence of a ‘pilot wave’ is not demanded; one cannot actually measure 〈ϕ|ψ〉
itself; only by repeated experiments, one can measure the probabilities, with intrin-
sic margins of error. We say that the wave function, or more precisely, the ampli-
tudes, are psi-epistemic rather than psi-ontic.

An important element in the Copenhagen interpretation is that one may only ask
what the outcome of an experiment will be. In particular, it is forbidden to ask: what
is it that is actually happening? It is exactly the latter question that sparks endless
discussions; the important point made by the Copenhagen group is that such ques-
tions are unnecessary. If one knows the Schrödinger equation, one knows everything
needed to predict the outcomes of an experiment, no further questions should be
asked.

This is a strong point of the Copenhagen doctrine, but it also yields severe lim-
itations. If we know the Schrödinger equation, we know everything there is to be
known; however, what if we do not yet know the Schrödinger equation? How does

these were really meant to be, were quite complex and diverse. Here, we just use these phrases to
characterize one particular general attitude towards quantum mechanics.
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one arrive at the correct equation? In particular, how do we arrive at the correct
Hamiltonian if the gravitational force is involved?

Gravity has been a major focus point of the last 30 years and more, in elementary
particle theory and the theory of space and time. Numerous wild guesses have been
made. In particular, (super)string theory has made huge advances. Yet no convinc-
ing model that unifies gravity with the other forces has been constructed; models
proposed so-far have not been able to explain, let alone predict, the values of the
fundamental constants of Nature, including the masses of many fundamental par-
ticles, the fine structure constant, and the cosmological constant. And here it is,
according to the author’s opinion, where we do have to ask: What is it, or what
could it be, that is actually going on?

One strong feature of the Copenhagen approach to quantum theory was that it
was also clearly shown how a Schrödinger equation can be obtained if the classical
limit is known:

If a classical system is described by the (continuous) Hamilton equations, this
means that we have classical variables pi and qi , for which one can define
Poisson brackets. Replacing these by commutators, one obtains a quantum
model whose classical limit (� → 0) corresponds to the given classical sys-
tem.

This is a very powerful trick, but unfortunately, in the case of the gravitational force,
it is not good enough to give us ‘quantum gravity’. The problem with gravity is not
just that the gravitational force appears not to be renormalizable, or that it is difficult
to define the quantum versions of space- and time coordinates, and the physical
aspects of non-trivial space-time topologies; some authors attempt to address these
problems as merely technical ones, which can be handled by using some tricks. The
real problem is that space-time curvature runs out of control at the Planck scale.
We will be forced to turn to a different book keeping system for Nature’s physical
degrees of freedom there.

A promising approach was to employ local conformal symmetry [59, 111, 112]
as a more fundamental principle than usually thought; this could be a way to make
distance and time scales relative, so that what was dubbed as ‘small distances’ ceases
to have an absolute meaning. The theory is recapitulated in Appendix B. It does
need further polishing, and it too could eventually require a Cellular Automaton
interpretation of the quantum features that it will have to include.

3.2 The Einsteinian View

This section is called ‘The Einsteinian view’, rather than ‘Einstein’s view’, because
we do not want to go into a discussion of what it actually was that Einstein thought.
It is well-known that Einstein was uncomfortable with the Copenhagen Doctrine.
The notion that there might be ways to rephrase things such that all phenomena
in the universe are controlled by equations that leave nothing to chance, will now
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be referred to as the Einsteinian view. We do ask further questions, such as Can
quantum-mechanical description of physical reality be considered complete? [33,
53], or, does the theory tell us everything we might want to know about what is
going on?

In the Einstein–Podolsky–Rosen discussion of a Gedanken experiment, two par-
ticles (photons, for instance), are created in a state

x1 − x2 = 0, p1 + p2 = 0. (3.2)

Since [x1 − x2,p1 +p2] = 0, both equations in (3.2) can be simultaneously sharply
imposed.

What bothered Einstein, Podolsky and Rosen was that, long after the two parti-
cles ceased to interact, an observer of particle # 2 might decide either to measure its
momentum p2, after which we know for sure the momentum p1 of particle # 1, or
its position x2, after which we would know for sure the position x1 of particle #1.
How can such a particle be described by a quantum mechanical wave function at
all? Apparently, the measurement at particle # 2 affected the state of particle #1, but
how could that have happened?

In modern quantum terminology, however, we would have said that the mea-
surements proposed in this Gedanken experiment would have disturbed the wave
function of the entangled particles. The measurements on particle # 2 affects the
probability distributions for particle # 1, which in no way should be considered as
the effect of a spooky signal from one system to the other.

In any case, even Einstein, Podolsky and Rosen had no difficulty in computing
the quantum mechanical probabilities for the outcomes of the measurements, so
that, in principle, quantum mechanics emerged unharmed out of this sequence of
arguments.

It is much more difficult to describe the two EPR photons in a classical model.
Such questions will be the topic of Sect. 3.6.

Einstein had difficulties with the relativistic invariance of quantum mechanics
(“does the spooky information transmitted by these particles go faster than light?”).
These, however, are now seen as technical difficulties that have been resolved. It may
be considered part of Copenhagen’s Doctrine, that the transmission of information
over a distance can only take place, if we can identify operators A at space-time
point x1 and operators B at space-time point x2 that do not commute: [A,B] �= 0.
We now understand that, in elementary particle theory, all space-like separated ob-
servables mutually commute, which precludes any signalling faster than light. It is a
built-in feature of the Standard Model, to which it actually owes much of its success.

So, with the technical difficulties out of the way, we are left with the more essen-
tial Einsteinian objections against the Copenhagen doctrine for quantum mechanics:
it is a probabilistic theory that does not tell us what actually is going on. It is some-
times even suggested that we have to put our “classical” sense of logic on hold.
Others deny that: “Keep remembering what you should never ask, while reshaping
your sense of logic, and everything will be fine.” According to the present author,
the Einstein–Bohr debate is not over. A theory must be found that does not force us
to redefine any aspect of classical, logical reasoning.
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What Einstein and Bohr did seem to agree about is the importance of the role
of an observer. Indeed, this was the important lesson learned in the 20th century: if
something cannot be observed, it may not be a well-defined concept—it may even
not exist at all. We have to limit ourselves to observable features of a theory. It is an
important ingredient of our present work that we propose to part from this doctrine,
at least to some extent: Things that are not directly observable may still exist and as
such play a decisive role in the observable properties of an object. They may also
help us to construct realistic models of the world.

Indeed, there are big problems with the dictum that everything we talk about
must be observable. While observing microscopic objects, an observer may disturb
them, even in a classical theory; moreover, in gravity theories, observers may carry
gravitational fields that disturb the system they are looking at, so we cannot afford
to make an observer infinitely heavy (carrying large bags full of “data”, whose sheer
weight gravitationally disturbs the environment), but also not infinitely light (light
particles do not transmit large amounts of data at all), while, if the mass of an ob-
server would be “somewhere in between”, this could entail that our theory will be
inaccurate from its very inception.

An interesting blow was given to the doctrine that observability should be cen-
tral, when quark theory was proposed. Quarks cannot be isolated to be observed
individually, and for that reason the idea that quarks would be physical particles
was attacked. Fortunately, in this case the theoretical coherence of the evidence in
favour of the quarks became so overwhelming, and experimental methods for ob-
serving them, even while they are not entirely separated, improved so much, that all
doubts evaporated.

In short, the Cellular Automaton Interpretation tells us to return to classical logic
and build models. These models describe the evolution of large sets of data, which
eventually may bring about classical phenomena that we can observe. The fact that
these data themselves cannot be directly observed, and that our experiments will
provide nothing but statistical information, including fluctuations and uncertainties,
can be fully explained within the settings of the models; if the observer takes no
longer part in the definition of physical degrees of freedom and their values, then his
or her limited abilities will no longer stand in the way of accurate formalisms.

We suspect that this view is closer to Einstein’s than it can be to Bohr, but, in a
sense, neither of them would fully agree. We do not claim the wisdom that our view
is obviously superior, but rather advocate that one should try to follow such paths,
and learn from our successes and failures.

3.3 Notions Not Admitted in the CAI

It is often attempted to attach a physical meaning to the wave function beyond what
it is according to Copenhagen. Could it have an ontological significance as a ‘pilot
wave function’ [10, 11, 26]? It should be clear from nearly every page of this book
that we do not wish to attach any ontological meaning to the wave function, if we
are using it as a template.
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In an ontological description of our universe, in terms of its ontological basis,
there are only two values a wave function can take: 1 and 0. A state is actually
realized when the wave function is 1, and it does not describe our world when the
wave function is zero. It is only this ‘universal wave function’, that for that reason
may be called ontological.

It is only for mathematical reasons that one might subsequently want to equip
this wave function with a phase, eiϕ . In the ontological basis, this phase ϕ has no
physical meaning at all, but as soon as one considers operators, such as the time-
evolution operator U(t), and the Hamiltonian, these phases have to be chosen. From
a physical point of view, any phase is as good as any other, but for keeping the
mathematical complexity under control, precise definitions of these phases is cru-
cial. One can then perform the unitary transformations to any of the basis choices
usually employed in physics. The template states subsequently introduced, all come
with precisely defined phases.

A semantic complication is caused as soon as we apply second quantization.
Where a single particle state is described by a wave function, the second-quantized
version of the theory sometimes replaces this by an operator field. Its physical mean-
ing is then completely different. Operator fields are usually not ontological since
they are superimposables rather than beables (see Sect. 2.1.1), but in principle they
could be; wave functions, in contrast, are elements of Hilbert space and as such
should not be confused with operators, let alone beable operators.

How exactly to phrase the so-called ‘Many World Interpretation’ [35] of quantum
mechanics, is not always agreed upon [29, 30]. When doing ordinary physics with
atoms and elementary particles, this interpretation may well fulfill the basic needs
of a researcher, but from what has been learned in this book it should be obvious
that our theory contrasts strongly with such ideas. There is only one single world
that is being selected out in our theory as being ‘the real world’, while all others
simply are not realized.

The reader may have noticed that the topic in this book is being referred to alter-
nately as a ‘theory’ and as an ‘interpretation’. The theory we describe consists not
only of the assumption that an ontological basis exists, but also that it can be derived,
so as to provide an ontological description of our universe. It suggests pathways to
pin down the nature of this ontological basis. When we talk of an interpretation, this
means that, even if we find it hard or impossible to identify the ontological basis, the
mere assumption that one might exist suffices to help us understand what the quan-
tum mechanical expressions normally employed in physics, are actually standing
for, and how a physical reality underlying them can be imagined.

There is another aspect of our theory that is different from ordinary quantum me-
chanics; it is the notion that our ontological variables, the beables, probably only ap-
ply to the most basic degrees of freedom of the physical world, i.c. the ones that are
relevant at the Planck scale. This is the smallest distance scale relevant for physics,
and we shall return to it. It is not at all clear whether we can transform ontological
variables to ones that still make sense at scales where physicists can do experiments
today, and this may well be the reason why such variables still play practically no
role in existing models of Nature such as the Standard Model.
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We have reasons to suspect that this is the very reason why we have quantum me-
chanics rather than an ontological theory, describing the known particles and forces
today: physics was not yet ready to identify the truly ontological degrees of freedom.

3.4 The Collapsing Wave Function and Schrödinger’s Cat

The following ingredient in the Copenhagen interpretation, Sect. 3.1, is often the
subject of discussions:

As soon as an observable O is measured, the wave function of the system
collapses to a state in the subspace of Hilbert space that is an eigenstate of
the observable O, or a probabilistic distribution of eigenstates.

This is referred to as the “collapse of the wave function”. It appears as if the action of
the measurement itself causes the wave function to attain its new form. The question
then asked is what physical process is associated to that.

Again, the official reply according to the Copenhagen doctrine is that this ques-
tion should not be asked. Do the calculation and check your result with the experi-
ments. However, there appears to be a contradiction, and this is illustrated by Erwin
Schrödinger’s Gedanken experiment with a cat [75–77]. The experiment is summa-
rized as follows:

In a sealed box, one performs a typical quantum experiment. It could be
a Stern Gerlach experiment where a spin 1/2 particle with spin up is sent
through an inhomogeneous magnetic field that splits the wave function ac-
cording to the values of the spin in the y direction, or it could be a radioactive
atom that has probability 1/2 to decay within a certain time. In any case, the
wave function is well specified at t = 0, while at t = 1 it is in a superposition
of two states, which are sent to a detector that determines which of the two
states is realized. It is expected that the wave function ‘collapses’ into one of
the two possible final states.

The box also contains a live cat (and air for the cat to breathe). Depending
on the outcome of the measurement, a capsule with poison is broken, or kept
intact. The cat dies when one state is found, and otherwise the cat stays alive.
At the end of the experiment, we open the box and inspect the cat.

Clearly, the probability that we find a dead cat is about 1/2, and otherwise we find
a live cat. However, we could also regard the experiment from a microscopic point
of view. The initial state was a pure, ‘conventional’, quantum state. The final state
appears to be a mixture. Should the cat, together with the other remains of the ex-
periment, upon opening the box, not be found in a superimposed state: dead and
alive?

The collapse axiom tells us that the state should be ‘dead cat’ or ‘live cat’,
whereas the first parts of our description of the quantum mechanical states of Hilbert
space, clearly dictates that if two states, |ψ1〉 and |ψ2〉 are possible in a quantum sys-
tem, then we can also have α|ψ1〉 + β|ψ2〉. According to Schrödinger’s equation,
this superposition of states always evolves into a superposition of the final states.
The collapse seems to violate Schrödinger’s equation. Something is not quite right.
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An answer that several investigators have studied [65, 66], is that, apparently,
Schrödinger’s equation is only an approximation, and that tiny non-linear ‘correc-
tion terms’ bring about the collapse [4, 41, 73]. One of the problems with this is that
observations can be made at quite different scales of space, time, energy and mass.
How big should the putative correction terms be? Secondly, how do the correction
terms know in advance which measurements we are planning to perform?

Some authors try to attribute the splitting of the dead cat state and the live cat
state to ‘decoherence’. But then, what exactly is decoherence? Why can we not
consider the entire box with the cat in it, in perfect isolation from its environment?

This, we believe, is where the cellular automaton interpretation of quantum me-
chanics will come to the rescue. It is formulated using no wave function at all, but
there are ontological states instead. It ends up with just one wave function, taking
the value 1 if we have a state the universe is in, and 0 if that state is not realized.
There are no other wave functions, no superposition.

How this explains the collapse phenomenon will be explained in Chap. 4. In sum-
mary: quantum mechanics is not the basic theory but a tool to solve the mathemat-
ical equations. This tool works just as well for superimposed states (the templates)
as for the ontological states, but they are not the same thing. The dead cat is in an
ontological state and so is the live one. The superimposed cat solves the equations
mathematically in a perfectly acceptable way, but it does not describe a state that
can occur in the real world. We postpone the precise explanation to Chap. 4. It will
sound very odd to physicists who have grown up with standard quantum mechanics,
but it does provide the logical solution to the Schrödinger cat paradox.2

One may ask what this may imply when we have transformations between on-
tological states and template states. Our experiences tell us that all template states
that are superpositions α|ψ1〉+β|ψ2〉 of ontological states, may serve as suitable ap-
proximations describing probabilistic situations in the real world. How can it be that,
sometimes, they do seem to be ontological? The most likely response to that will be
that the transformation does not always have to be entirely local, but in practice may
involve many spectator states in the environment. What we can be sure of is that all
ontological states form an orthonormal set. So, whenever we use α|ψ1〉 + β|ψ2〉 to
describe an ontological state, there must be other wave functions in the environment
which must be chosen differently for any distinct pair α and β , such that the entire
set that we use to describe physical situations are always orthonormal.

This should be taken in mind in the next sections where we comment on the Alice
and Bob Gedanken experiments.

In Ref. [96], it is argued that the collapse axiom in conventional descriptions
of quantum mechanics, essentially leads to requiring the existence of a preferred
orthonormal set of basis states. Our reasoning is the other way around: we start
with the fundamental orthonormal basis and derive from that the emergence of the
collapse of the wave function.

2Critical readers will say: Of course, this theory isn’t quantum mechanics, so it doesn’t share any of
its problems. True, but our theory is supposed to generate quantum mechanics, without generating
its associated problems.
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3.5 Decoherence and Born’s Probability Axiom

The cellular automaton interpretation does away with one somewhat murky ingre-
dient of the more standard interpretation schemes: the role of ‘decoherence’. It is
the argument often employed to explain why macroscopic systems are never seen
in a quantum superposition. Let |ψ1〉 and |ψ2〉 be two states a classical system can
be in, such as a cat being dead and a cat being alive. According to Copenhagen, in
its pristine form, quantum mechanics would predict the possibility of a third state,
|ψ3〉 = α|ψ1〉 + β|ψ2〉, where α and β can be any pair of complex numbers with
|α|2 + |β|2 = 1.

Indeed, it seems almost inevitable that a system that can evolve into state |ψ1〉
or into state |ψ2〉, should also allow for states that evolve into |ψ3〉. Why do we not
observe such states? The only thing we do observe is a situation whose probability
of being in |ψ1〉 might be |α|2 and the probability to be in |ψ2〉 is |β|2. But that is
not the same as state |ψ3〉.

The argument often heard is that, somehow, the state |ψ3〉 is unstable. According
to Copenhagen, the probability of a state |ψ〉 to be in state |ψ3〉 is

P3 = |〈ψ3|ψ〉|2 = |α|2|〈ψ1|ψ〉|2 + |β|2|〈ψ2|ψ〉|2 + 2Re
(
α∗β〈ψ |ψ1〉〈ψ2|ψ〉). (3.3)

The last term here is the interference term. It distinguishes the real quantum theory
from classical theories. Now it is said that, if |ψ1〉 and |ψ2〉 become classical, they
cannot stay immune for interactions with the environment. In the presence of such
interactions, the energies of |ψ1〉 and |ψ2〉 will not exactly match, and consequently,
the interference term, will oscillate badly. This term might then be seen to average
out to zero. The first two terms are just the probabilities to have either |ψ1〉 or |ψ2〉,
which would be the classical probabilities.

If indeed the last term becomes unobservable, we say that the two states decohere
[73, 95], so that the interference term should be replaced by zero. The question is,
if we include the environment in our description, the energies should still be exactly
conserved, and there is no rapid oscillation. Is it legal to say nevertheless that the
interference term will disappear? Note that its absolute value on average does remain
large.

The CAI will give a much more direct answer: if states |ψ1〉 and |ψ2〉 are classi-
cal, then they are ontological states. State |ψ3〉 will then not be an ontological state,
and the states of the real universe, describing what happens if an actual experiment
is carried out, never include state |ψ3〉. It is merely a template, useful for calcula-
tions, but not describing reality. What it may describe is a situation where, from the
very start, the coefficients α and β were declared to represent probabilities.

Copenhagen quantum mechanics contains an apparently irreducible axiom: the
probability that a state |ψ〉 is found to agree with the properties of another state |ϕ〉,
must be given by

P = |〈ϕ|ψ〉|2. (3.4)

This is the famous Born rule [12, 13]. What is the physical origin of this axiom?
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Note, that Born did not have much of a choice. The completeness theorem of
linear algebra implies that the eigenstates |ϕ〉 of an Hermitian operator span the
entire Hilbert space, and therefore,

∑

ϕ

|ϕ〉〈ϕ| = I;
∑

ϕ

|〈ϕ|ψ〉|2 =
∑

ϕ

〈ψ |ϕ〉〈ϕ|ψ〉 = 〈ψ |ψ〉 = 1, (3.5)

where I stands for the identity operator. If Born would have chosen any other ex-
pression to represent probabilities, according to Gleason’s theorem [43], they would
not have added up to one. The expression (3.4) turns out to be ideally suited to serve
as a probability.

Yet this is a separate axiom, and the question why it works so well is not mis-
placed. In a hidden variable theory, probabilities may have a different origin. The
most natural explanation as to why some states are more probable than others may
be traced to their initial states much earlier in time. One can ask which initial states
may have led to a state seen at present, and how probable these may have been.
There may be numerous answers to that question. One now could attempt to esti-
mate their combined probabilities. The relative probabilities of some given observed
final states could then be related to the ratios of the numbers found. Our question
then is, can we explain whether and how the expression (3.4) is related to these
numbers? This discussion is continued in Sect. 3.7 and in Sect. 4.3.

3.6 Bell’s Theorem, Bell’s Inequalities and the CHSH Inequality

One of the main reasons why ‘hidden variable’ theories are usually dismissed, and
emphatically so when the theory obeys local equations, is the apparent difficulty in
such theories to represent entangled quantum states. Just because the De Broglie–
Bohm theory (not further discussed here) is intrinsically non-local, it is generally
concluded that all hidden variable theories are either non-local or unable to repro-
duce quantum features at all. When J.S. Bell was investigating the possibility of
hidden variable theories, he hit upon the same difficulties, upon which he attempted
to prove that local hidden variable theories are impossible.

As before, we do not intend to follow precisely the historical development of
Bell’s theory [7, 8], but limit ourselves to a summary of the most modern formula-
tion of the principles. Bell designed a Gedanken experiment, and at the heart of it is
a pair of quantum-entangled particles. They could be spin- 1

2 particles, which each
can be in just two quantum states described by the Pauli matrices (1.7), or alterna-
tively spin 1 photons. There are a few subtle differences between these two cases.
Although these are not essential to the argument, let us briefly pause at these differ-
ences. We return to the more crucial aspects of the Bell inequalities after Eq. (3.9).

The two orthonormal states for photons are the ones where they are polarized
horizontally or vertically, while the two spin- 1

2 states are polarized up or down.
Indeed, quite generally when polarized particles are discussed, the angles for the
photons are handled as being half the angles for spin- 1

2 particles.



3.6 Bell’s Theorem, Bell’s Inequalities and the CHSH Inequality 39

A second difference concerns the entangled state, which in both cases has total
spin 0. For spin- 1

2 , this means that (�σ1 + �σ2)|ψ〉 = 0, where �σ are the Pauli matrices,
Eqs. (1.7), so that

|ψ〉 = 1√
2
(|↑↓〉 − |↓↑〉), (3.6)

which means that the two electrons are polarized in opposite directions.
For spin 1, this is different. Let us have these photons move in the ±z-direction.

Defining A± = 1√
2
(Ax ± iAy) as the operators that create or annihilate one unit of

spin in the z-direction, and taking into account that photons are bosons, the 2 photon
state with zero spin in the z-direction is

|ψ〉 = 1√
2

(
A
(1)
+ A

(2)
− +A(1)− A

(2)
+
)| 〉 = 1√

2
|z,−z〉 + 1√

2
|−z, z〉, (3.7)

and since helicity is spin in the direction of motion, while the photons go in opposite
directions, we can rewrite this state as

|ψ〉 = 1√
2
(|++〉 + |−−〉), (3.8)

where ± denote the helicities. Alternatively one can use the operators Ax and Ay to
indicate the creators of linearly polarized photons, and then we have

|ψ〉 = 1√
2

(
A(1)x A

(2)
x +A(1)y A(2)y

)| 〉 = 1√
2
(|xx〉 + |yy〉). (3.9)

Thus, the two photons are linearly polarized in the same direction.
Since the experiment is mostly done with photons, we will henceforth describe

the entangled photon state.
Back to business. The Bell experiment is illustrated in Fig. 3.1. At the point S, an

atom ε is prepared to be in an unstable J = 0 state at t = t1, such that it can decay
only into an other J = 0 state, by simultaneously emitting two photons such that
�J = 0, and the two photons, α and β , must therefore be in the entangled Stot = 0
state, at t = t2.

After having travelled for a long time, at t = t3, photon α is detected by ob-
server A (Alice), and photon β is detected by B (Bob). Ideally, the observers use a
polarization filter oriented at an angle a (Alice) and b (Bob). If the photon is trans-
mitted by the filter, it is polarized in the direction of the polarization filter’s angle, if
it is reflected, its polarization was orthogonal to this angle. At both sides of the filter
there is a detector, so both Alice and Bob observe that one of their two detectors
gives a signal. We call Alice’s signal A = +1 if the photon passed the filter, and
A= −1 if it is reflected. Bob’s signal B is defined the same way.

According to quantum theory, if A= 1, Alice’s photon is polarized in the direc-
tion a, so Bob’s photon must also be polarized in that direction, and the intensity
of the light going through Bob’s filter will be cos2(a − b). Therefore, according
to quantum theory, the probability that B = 1 is cos2(a − b). The probability that
B = −1 is then sin2(a − b), and the same reasoning can be set up if A= −1. The
expectation value of the product AB is thus found to be

〈AB〉 = cos2(a − b)− sin2(a − b)= cos 2(a − b), (3.10)

according to quantum mechanics.
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Fig. 3.1 A Bell-type experiment. Space runs horizontally, time vertically. Single lines denote
single bits or qubits travelling; widened lines denote classical information carried by millions of
bits. Light travels along 45◦, as indicated by the light cone on the right. Meaning of the variables:
see text

In fact, these correlation functions can now be checked experimentally. Beautiful
experiments [2, 3] confirmed that correlations can come close to Eq. (3.10).

The point made by Bell is that it seems to be impossible to reproduce this strong
correlation between the findings A and B in any theory where classical information
is passed on from the atom ε to Alice (A) and Bob (B). All one needs to assume
is that the atom emits a signal to Alice and one to Bob, regarding the polarization
of the photons emitted. It could be the information that both photons α and β are
polarized in direction c. Since this information is emitted long before either Alice
or Bob decided how to orient their polarization filters, it is obvious that the sig-
nals in α and β should not depend on that. Alice and Bob are free to choose their
polarizers.

The correlations then directly lead to a contradiction, regardless of the classical
signals’ nature. The contradiction is arrived at as follows. Consider two choices that
Alice can make: the angles a and a′. Similarly, Bob can choose between angles
b and b′. Whatever the signal is that the photons carry along, it should entail an
expectation value for the four observations that can be made: Alice observes A or
A′ in the two cases, and Bob observes B or B ′. If both Alice and Bob make large
numbers of observations, every time using either one of their two options, they can
compare notes afterwards, and measure the averages of AB,A′B,AB ′, and A′B ′.
They calculate the value of

S = 〈AB〉 + 〈
A′B

〉+ 〈
AB ′〉− 〈

A′B ′〉, (3.11)

and see how it depends on the polarization angles a and b.
Now suppose we assume that, every time photons are emitted, they have well-

defined values for A,A′,B , and B ′. Whatever the signals are that are carried by the
photons, at each measurement these four terms will take the values ±1, but they can
never all contribute to the quantity S with the same sign (because of the one minus
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sign in (3.11)). Because of this, it is easy to see that S is always ±2, and its average
value will therefore obey:

|〈S〉| ≤ 2; (3.12)

this modern version of Bell’s original observation is called the Clauser–Horne–
Shimony–Holt (CHSH) inequality [20, 78]. However, if we choose the angles

a = 22.5◦, a′ = −22.5◦, b= 0◦, b′ = 45◦, (3.13)

then, according to Eq. (3.10), quantum mechanics gives for the expectation value

S = 3 cos
(
45◦)− cos 135◦ = 2

√
2> 2. (3.14)

How can this be? Apparently, quantum mechanics does not give explicit values
±1 for the measurements of A and A′; it only gives a value to the quantity actually
measured, which in each case is either A or A′ and also either B or B ′. If Alice
measures A, she cannot also measure A′ because the operator for A′ does not com-
mute with A; the polarizers differ by an angle of 45◦, and a photon polarized along
one of these angles is a quantum superposition of a photon polarized along the other
angle and a photon polarized orthogonally to that. So the quantum outcome is com-
pletely in accordance with the Copenhagen prescriptions, but it seems that it cannot
be realized in a local hidden variable theory.

We say that, if A is actually measured, the measurement of A′ is counterfactual,
which means that we imagine measuring A′ but we cannot actually do it, just as we
are unable to measure position if we already found out what exactly the momentum
of a particle is. If two observables do not commute, one can measure one of them,
but the measurement of the other is counterfactual.

Indeed, in the arguments used, it was assumed that the hidden variable theory
should allow an observer actually to carry out counterfactual measurements. This
is called definiteness. Local hidden variable theories that allow for counterfactual
observations are said to have local definiteness. Quantum mechanics forbids local
counterfactual definiteness.

However, to use the word ‘definiteness’, or ‘realism’, for the possibility to per-
form counterfactual observations is not very accurate. ‘realism’ should mean that
there is actually something happening, not a superposition of things; something is
happening for sure, while something else is not happening. That is not the same
thing as saying that both Alice and Bob at all times can choose to modify their
polarization angles, without allowing for any modification at other places [85].

It is here that the notion of “free will” is introduced [22, 23], often in an imprecise
manner.3 The real extra assumption made by Bell, and more or less tacitly by many
of his followers, is that both Alice and Bob should have the “free will” to modify
their settings at any moment, without having to consult the settings at the system S
that produces an unstable atom. If this were allowed to happen in a hidden variable
theory, we would get local counterfactual definiteness, which was ruled out.

3See Sect. 3.8.
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The essence of the argument that now follows has indeed been raised before.
The formulation by C.H. Brans [14] is basically correct, but we add an extra twist,
something to be called the ‘ontology conservation law’ (Sect. 3.7.1), in order to
indicate why violation of Bell’s theorem does not require ‘absurd physics’.

How can we deny Alice and/or Bob their free will? Well, precisely in a deter-
ministic hidden variable theory, Alice and Bob can only change their minds about
the setting of their polarizers, if their brains follow different laws than they did be-
fore, and, like it or not, Alice’s and Bob’s actions are determined by laws of physics
[118], even if these are only local laws. Their decisions, logically, have their roots in
the distant past, going back all the way to the Big Bang. So why should we believe
that they can do counterfactual observations?

The way this argument is usually countered is that the correlations between the
photons c from the decaying atom and the settings a and b chosen by Alice and
Bob have to be amazingly strong. A gigantically complex algorithm could make
Alice an Bob take their decisions, and yet the decaying atom, long before Alice
and Bob applied this algorithm, knew about the result. This is called ‘conspiracy’,
and conspiracy is said to be “disgusting”. “One could better stop doing physics than
believe such a weird thing”, is what several investigators quipped.

In Sects. 3.7.1, 5.7.3, and 10.3.3, we go to the core of this issue.

3.7 The Mouse Dropping Function

To illustrate how crazy things can get, a polished version of Bell’s experiment was
proposed: both Alice and Bob carry along with them a mouse in a cage,4 with food.
Every time they want to set the angles of their polarizers, they count the number of
mouse droppings. If it is even, they choose one angle, if it is odd, they choose the
other. “Now, the decaying atom has to know ahead of time how many droppings the
mouse will produce. Isn’t this disgusting?”

To see what is needed to obtain this “disgusting” result, let us consider a simple
model. We assume that there are correlations between the joint polarizations of the
two entangled photons, called c, and the settings a chosen by Alice and b chosen by
Bob. All these angles are taken to be in the interval [0,180◦]. Define the function
W(c|a, b) as being the conditional probability to have both photons polarized in the
direction c, given a and b. Assume that Alice’s outcome A = +1 as soon as her
‘ontological’ photon has |a − c| < 45◦ or > 135◦, otherwise A = −1. For Bob’s
measurement, replacing a↔ b, we assume the same. Everything will be periodic in
a, b, and c with period π(180◦).

It is reasonable to expect that W only depends on the relative angles c − a and
c− b:

W(c|a, b)=W(c− a, c− b);
∫ π

0
dcW(c− a, c− b)= 1. (3.15)

4This version was brought forward in a blog discussion. Unfortunately, I do not remember who
raised it, and I cannot find it back.
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Introduce a sign function s(ϕ) as follows:5

s(ϕ) ≡ sign
(
cos(2ϕ)

); A= s(c−a), B = s(c−b). (3.16)

The expectation value of the product AB is

〈AB〉 =
∫

dcW(c|a, b)s(c−a)s(c−b), (3.17)

How should W be chosen so as to reproduce the quantum expression (3.10)?
Introduce the new variables

x = c− 1
2 (a + b), z= 1

2 (b− a), W =W(x + z, x − z). (3.18)

Quantum mechanics demands that
∫ π

0
dxW(x + z, x − z)s(x+z)s(x−z) = cos 4z. (3.19)

Writing

s(x+z)s(x−z) = sign
(
cos 2(x + z) cos 2(x − z))= sign(cos 4x + cos 4z), (3.20)

we see that the equations are periodic with period π/2, but looking more closely,
we see that both sides of Eq. (3.19) change sign if x and z are shifted by an amount
π/4. Therefore, one first tries solutions with periodicity π/4. Furthermore, we have
the symmetry x↔ −x, z↔ −z.

Equation (3.19) contains more unknowns than equations, but if we assume W
only to depend on x but not on z then the equation can readily be solved. Differ-
entiating Eq. (3.19) to z, one only gets Dirac delta functions inside the integral, all
adding up to yield:

4
∫ π/4

0
W(x)dx

(−2δ(x + z− π/4))= −4 sin 4z, if 0< z < 1
4π (3.21)

(the four parts of the integral in Eq. (3.19) each turn out to give the same contribu-
tion, hence the first factor 4). Thus one arrives at

W(c |a, b)=W(x + z, x − z)= 1
2 | sin 4x| = 1

2

∣∣sin(4c− 2a − 2b)
∣∣. (3.22)

This also yields a normalized 3-point probability distribution,

W(a,b, c)= 1
2π2

∣∣sin(4c− 2a − 2b)
∣∣. (3.23)

By inspection, we find that this correlation function W indeed leads to the
quantum expression (3.10). We could call this the ‘mouse dropping function’ (see
Fig. 3.2). If Alice wants to perform a counterfactual measurement, she modifies the
angle a, while b and c are kept untouched. She herewith chooses a configuration that
is less probable, or more probable, than the configuration she had before. Taking in

5We use the brackets in subscript so as to avoid confusion with simple multiplications in our
subsequent calculations.
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Fig. 3.2 The mouse dropping function, Eq. (3.23). Horizontally the variable x = c − 1
2 (a + b).

Averaging over any of the three variables a, b, or c, gives the same result as the flat line; the
correlations then disappear

mind a possible interpretation of the Born probabilities, as expressed in Sects. 3.5
and 4.3, this means that the configuration of initial states where Alice’s mouse pro-
duced a different number of droppings, may be more probable or less probable than
the state she had before. In quantum mechanics, we have learned that this is accept-
able. If we say this in terms of an underlying deterministic theory, there seem to be
problems with it.

3.7.1 Ontology Conservation and Hidden Information

In fact, all we have stated here is that, even in a deterministic theory obeying local
equations, configurations of template states may have non-trivial space-like corre-
lations. It is known that this happens in many physical systems. A liquid close to
its thermodynamical critical point shows a phenomenon called critical opalescence:
large fluctuations in the local density. This means that the density correlation func-
tions are non-trivial over relatively large space-like distances. This does not entail
a violation of relativity theory or any other principle in physics such as causality;
it is a normal phenomenon. A liquid does not have to be a quantum liquid to show
critical opalescence.

It is still true that the effect of the mouse droppings seems to be mysterious, since,
in a sense, we do deny that Alice, Bob, and their mice have “free will”. What exactly
is ‘free will’? We prefer a mathematical definition rather than an emotional one (see
Sect. 3.8), and we also return to this subject, in our final discussion in Sects. 10.2 and
10.3. All we can bring forward now is that mice guts also obey energy-, momentum-
and angular momentum conservation because these are general laws. In our ‘hidden
variable’ theory, a general law will have to be added to this: an ontological state
evolves into an ontological state; superpositions evolve into superpositions. If the
mouse droppings are ontological in one description and counterfactual in another,
the initial state from which they came was also ontological or counterfactual, ac-
cordingly. This should not be a mysterious statement.

There is a problematic element in this argument however, which is that, somehow,
the entangled photons leaving the source, already carry information about the set-
tings that will be used by Alice and Bob. They don’t tell us the settings themselves,
but they do carry information about the correlation function of these settings. Thus,
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non-local information about the future is already present in the ‘hidden’ ontological
data of the photons, information that disappears when we rephrase what happens in
terms of standard quantum mechanical descriptions. Thus, there is non-trivial infor-
mation about the future in the ontological description of what happens. We claim
that, as long as this information is subject to a rigorous conservation law—the law
of the conservation of ontology as described above—there is no contradiction here,
but we do suspect that this may shed at least an unusual light on the idea of superde-
terminism.

Actually, there is an even stronger arrangement than the mouse droppings by
which Alice and Bob can make their decisions. They could both monitor the light
fluctuations caused by light coming from different quasars, at opposite points in
the sky [38], and use these to decide about the settings a and b of their filters.
These quasars, indicated asQA andQB in Fig. 3.1, may have emitted their photons
shortly after the Big Bang, at time t = t0 in the Figure, when they were at billions
of light years separation from one another. The fluctuations of these quasars should
also obey the mouse dropping formula (3.22). How can this be? The only possible
explanation is the one offered by the inflation theory of the early universe: these two
quasars, together with the decaying atom, do have a common past, and therefore
their light is correlated.

Note that the correlation generated by the probability distribution (3.23) is a gen-
uine three-body correlation. Integrating over any one of the three variables gives a
flat distribution. The quasars are correlated only through the state the decaying atom
is in, but not directly with one another. It clearly is a mysterious correlation, but it
is not at odds with what we know about the laws of physics, see remarks at the end
of Sects. 20.6 and 20.7 in Part II.

In fact, these space-like correlations must be huge: who knows where else in
the universe some alien Alices and Bobs are doing experiments using the same
quasars. . . .

3.8 Free Will and Time Inversion

The notion of “free will” can be confusing. At some occasions, the discussion seems
to border to a religious one. It should be quite clear that the theories of Nature
discussed in this book, have nothing to do with religion, and so we must formulate
in a more concrete manner what is meant by “free will”.

The idea behind what is often called ‘free will’ is actually extremely simple, in
principle. Imagine that we have a model that describes what is going on in Nature,
for instance the thought experiment for which Bell and CHSH wrote their inequali-
ties. Suppose we have described the decaying atom, emitting two photons, in terms
of some kinematic variables. All we want to know is how the system in the model
would react if we make a small change in the settings chosen by Alice while keep-
ing Bob and the entangled photons untouched. How would the stream of information
carriers interact to yield results that violate these inequalities?
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We know that there exists no divine model maker who can make such changes,
but that is not the point. We know that, strictly speaking, Bob does not have the free
will to make the changes all by itself. But what would the model say? What one
might expect in a theory is that:

the theory predicts how its variables evolve, in an unambiguous way, from any
chosen initial state.

In a Bell-type experiment, suppose we start from a configuration with given set-
tings a of Alice’s filters and b of Bob’s. We see entangled particles moving from the
source to the two detectors. We need our model to prescribe what happens when we
look at the state that was modified as described above. Thus, it is actually the free-
dom to choose the initial state at any time t , that one wishes to impose on a theory.

Note, that this is done at a price: one assumes that one can ignore the question
how these states could have evolved from configurations in the past. The whole ‘free
will’ argument assumes that we don’t need to check which modifications would
be needed in the past events to realize the new modification. No matter what the
state is, the theory should produce a prediction. Bell derived his inequalities for the
outcomes of different initial states that he chose, and these inequalities appear to be
violated by quantum mechanics.

We derived in Sect. 3.7 that, in order to reproduce the quantum mechanical re-
sult, the probabilities of the settings a, b and c must be correlated, and the correla-
tion function associated to one simple model was calculated. Here we see how, in
principle, the notion of free will as given above can be obstructed:

If a modification is made in the given values of the kinetic variables, they might
have a much larger or smaller probability than the original configuration.

The correlation function we found describes 3-point correlations. All two-point cor-
relations vanish.

Now the situation can be further clarified if we make use of an important prop-
erty that Schrödinger’s equation shares with Newton’s classical equations: the mi-
croscopic laws can be solved backwards in time.

Only Alice, but not Bob, modified her settings, and the photons are left as they
are. We then may arrive at a configuration that appears to violate Bell’s, or the CHSH
inequality.6 In the older discussions of superdeterminism, it would have been stated
that Alice does not have the ‘free will’ to do this, but now we say: maybe not, but we
can certainly allow ourselves to study the state obtained, and ask what the physical
structure was in its past, by solving the microscopic equations backwards in time.

And now, it is not difficult to see what then happens. The quantum state of the
entangled photons will no longer be as it was originally prepared: the photon leaving
Alice (backwards in time) now has a different polarization. The original state where
the total spin of the two photons was zero (an S-state), will now partly contain a D-
state, with total spin s = 2. Thus, by choosing a different setting, either Alice or Bob

6That is, in a statistical sense; there have been more clever constructions of states that would lead
to configurations that are excluded altogether when written in terms of hidden variables.
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modified the states of the photons they are detecting. Following this s = 2 state back
to the past, we do not see a simple decaying atom, but a much less probable state
of photons bouncing off the atom, refusing to perform the assumed decay process
backwards in time. Thermodynamically, this is a much less probable initial state; it
is a counterfactual initial state.

This counterfactual initial state will be an entirely legal one in terms of the mi-
croscopic laws of physics, but probably not at all in terms of the macroscopic laws,
in particular, thermodynamics. What this argument shows is that, Bell’s theorem
requires more hidden assumptions than usually thought: The quantum theory only
contradicts the classical one if we assume that the ‘counterfactual modification’
does not violate the laws of thermodynamics.

In our models, we must assume that it does. Inevitably, a more ‘probable’ modi-
fication of the settings does turn the photon state into a different one. At first sight,
this seems odd: the modification was made in one of the settings, not in the ap-
proaching photons. However, we must admit that the photons described in quantum
mechanical language, are in template states; the ontological states, forming an or-
thonormal set, must involve many more ontological degrees of freedom than just
these two photons, in order to stay orthonormal.

Note that, here finally, the cause of the violation of the CHSH inequalities is
pinned down. In summary: the notion of ‘free will’ must be replaced with the no-
tion that a useful model of Nature should give correct predictions concerning what
happens for any given initial state (freedom of choosing the initial state), while
the counterfactual initial state considered in Bell’s Gedanken experiment causes the
original entangled photons to obtain a spin 2 admixture, which would significantly
suppress the probability of this state.

In Sects. 4.2 and 4.3 we shall see that quantum mechanical probabilities can
actually be traced back to probabilities in the initial state. So when at time t = t3 an
amplitude is found to be low and the Born probability is small, this actually can be
attributed to a smaller probability of the initial state chosen, at t = t1. The spin = 2
state for the decaying atom has much smaller probability than the spin = 0 state.
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Chapter 4
Deterministic Quantum Mechanics

4.1 Introduction

Most attempts at formulating hidden variable theories in the presently existing lit-
erature consist of some sort of modification of the real quantum theory, and of a
replacement of ordinary classical physics by some sort of stochastic formalism. The
idea behind this is always that quantum mechanics seems to be so different from the
classical regime, that some deep modifications of standard procedures seem to be
necessary.

In the approach advocated here, what we call deterministic quantum mechanics
is claimed to be much closer to standard procedures than usually thought to be
possible.

Deterministic quantum mechanics is neither a modification of standard quan-
tum mechanics, nor a modification of classical theory. It is a cross section of
the two.

This cross section is much larger and promising than usually thought. We can phrase
the theory in two ways: starting from conventional quantum mechanics, or starting
from a completely classical setting. We have seen already in previous parts of this
work what this means; here we recapitulate.

Starting from conventional quantum mechanics, deterministic quantum mechan-
ics is a small subset of all quantum theories: we postulate the existence of a very
special basis in Hilbert space: the ontological basis. An ontological basis is a basis
in terms of which the Schrödinger equation sends basis elements into other basis
elements at sufficiently dense moments in time.

Very likely, there will be many different choices for an ontological basis (often
related by symmetry transformations), and it will be difficult to decide which of
these is “the real one”. Any of these choices for our ontological basis will serve
our purpose but only one of them will be the ‘true’ ontological basis, and it will be
essentially impossible for us to decide which one that is.

This is not so much our concern. Finding quantum theories that have an ontolog-
ical basis will be an important and difficult exercise. Our hope is that this exercise
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might lead to new theories that could help elementary particle physics and quan-
tum gravity theories to further develop. Also it may help us find special theories of
cosmology.

Our definition of an ontological basis is deliberately a bit vague. We do not spec-
ify how dense the moments in time have to be, nor do we exactly specify how time
is defined; in special relativity, we can choose different frames of reference where
time means something different. In general relativity, one has to specify Cauchy sur-
faces that define time slices. What really matters is that an ontological basis allows
a meaningful subset of observables to be defined as operators that are diagonal in
this basis. We postulate that they evolve into one another, and this implies that their
eigenvalues remain sharply defined as time continues. Precise definitions of an on-
tological basis will be needed only if we have specific theories in mind; in the first
simple examples that we shall discuss, it will always be clear what this basis is. In
some cases, time is allowed to flow continuously, in others, notably when we have
discrete operators, time is also limited to a discrete subset of a continuous time line.

Once such a basis has been identified, we may have in our hands a set of observ-
ables in terms of which the time evolution equations appear to be classical equations.
This then links the system to a classical theory. But it was a quantum theory from
where we started, and this quantum theory allows us without much ado to transform
to any other basis we like. Fock space for the elementary particles is constructed
from such a basis, and it still allows us to choose any orthonormal sets of wave
functions we like for each particle type. In general, a basis in Fock space will not be
an ontological basis. We might also wish to consider the basis spanned by the field
operators φ(�x, t),Aμ(�x, t), and so on. This will also not be an ontological basis, in
general.

Clearly, an ontological basis for the Standard Model has not yet been found, and
it is very dubious whether anything resembling an ontological basis for the Stan-
dard Model exists. More likely, the model will first have to be extended to encom-
pass gravity in some way. This means that, quite probably, our models require the
description of variables at the Plank scale. In the mean time, it might be a useful
exercise to isolate operators in the Standard Model, that stay diagonal longer than
others, so they may be closer to the ontological variables of the theory than other
operators. In general, this means that we have to investigate commutators of oper-
ators. Can we identify operators that, against all odds, accidentally commute? We
shall see a simple example of such a class of operators when we study our “neu-
trino” models (Sect. 15.2 in Part II); “neutrinos” in quotation marks, because these
will be idealized neutrino-like fermions. We shall also see that anything resembling
a harmonic oscillator can be rephrased in an ontological basis to describe classi-
cal variables that evolve periodically, the period being that of the original oscillator
(Sect. 13 in Part II).

We shall also see in Part II that some of the mappings we shall find are not
at all fool-proof. Most of our examples cease to be linked to a classical system if
interactions are turned on, unless one accepts that negative-energy states emerge
(Sect. 9.2). Furthermore, we have the so-called edge states. These are states that
form a subset of Hilbert space with measure zero, but their contributions may still
spoil the exact correspondence.
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Rather than searching for an ontological basis in an existing quantum system, we
can also imagine defining a theory for deterministic quantum mechanics by starting
with some completely classical theory. Particles, fields, and what not, move around
following classical laws. These classical laws could resemble the classical theories
we are already familiar with: classical mechanics, classical field theories such as the
Navier Stokes equations, and so on. The most interesting class of models, however,
are the cellular automata. A cellular automaton is a system with localized, classical,
discrete degrees of freedom,1 typically arranged in a lattice, which obey evolution
equations. The evolution equations take the shape of a computer program, and could
be investigated in computers exactly, by running these programs in a model. A typi-
cal feature of a cellular automaton is that the evolution law for the data in every cell
only depends on the data in the adjacent cells, and not on what happens at larger
distances. This is a desirable form of locality, which indeed ensures that informa-
tion cannot spread faster than some limiting speed, usually assumed to be the local
speed of light2

In principle, these classical theories may be chosen to be much more general than
the classical models most often used in physics. As we need a stabilization mecha-
nism, our classical model will usually be required to obey a Hamiltonian principle,
which however, for discrete theories, takes a shape that differs substantially from the
usual Hamiltonian system, see Part II, Chap. 19. A very important limitation would
then be the demand of time reversibility. If a classical model is not time reversible, it
seems at first sight that our procedures will fail. For instance, we wish our evolution
operator to be unitary, so that the quantum Hamiltonian will turn out to be a Hermi-
tian operator. But, as we shall see, it may be possible to relax even this condition.
The Navier Stokes equations, for instance, although time reversible at short time
scales, do seem to dissipate information away. When a Navier Stokes liquid comes
to rest, due to the viscosity terms, it cannot be followed back in time anymore. Nev-
ertheless, time non reversible systems may well be of interest for physical theories
anyway, as will be discussed in Sect. 7.

Starting from any classical system, we consider its book keeping procedure, and
identify a basis element for every state the system can be in. These basis elements
are declared to be orthonormal. In this artificial Hilbert space, the states evolve,
and it appears to be a standard exercise first to construct the evolution operator that
describes the postulated evolution, and then to identify a quantum Hamiltonian that
generates this evolution operator, by exponentiation.

As soon as we have our Hilbert space, we are free to perform any basis transfor-
mation we like. Then, in a basis where quantum calculations can be done to cover
long distances in space and time, we find that the states we originally called “onto-
logical” now indeed are quantum superpositions of the new basis elements, and as

1Besides this, one may also imagine quantum cellular automata. These would be defined by quan-
tum operators (or qubits) inside their cells. These are commonly used as ‘lattice quantum field
theories’, but would not, in general, allow for an ontological basis.
2This notion of locality does not prevent distant quasars to be correlated, see Sect. 3.7.1.
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such, they can generate interference phenomena. The central idea behind determin-
istic quantum mechanics is that, at this stage our transformations tend to become so
complex, that the original ontological states can no longer be distinguished from any
other superposition of states, and this is why, in conventional quantum mechanics,
we treat them all without distinction. We lost our ability to identify the ontological
states in today’s ‘effective’ quantum theories.

4.2 The Classical Limit Revisited

Now there are a number of interesting issues to be discussed. One is the act of mea-
surement, and the resulting ‘collapse of the wave function’. What is a measurement
[93]?

The answer to this question may be extremely interesting. A measurement allows
a single bit of information at the quantum level, to evolve into something that can be
recognized and identified at large scales. Information becomes classical if it can be
magnified to arbitrary strength. Think of space ships that react on the commands of
a computer, which in turn may originate in just a few electrons in its memory chips.
A single cosmic ray might affect these data. The space ship in turn might affect the
course of large systems, eventually forcing planets to alter their orbits, first in tiny
ways, but then these modifications might get magnified.

Now we presented this picture for a reason: we define measurement as a process
that turns a single bit of information into states where countless many bits and bytes
react on it. Imagine a planet changing its course. Would this be observable in terms
of the original, ontological variables, the beables? It would be very hard to imagine
that it would not be. The interior of a planet may have its ontological observables ar-
ranged in a way that differs ever so slightly from what happens in the vacuum state.
Whatever these minute changes are, the planet itself is so large that the tiny differ-
ences can be added together statistically so that the classical orbit parameters of a
planet will be recognizable in terms of the original ontological degrees of freedom.

In equations, consider a tiny fraction δV of the volume V of a planet. Consider
the ontological variables inside δV and compare these with the ontological variables
describing a similar volume δV in empty space. Because of the ‘quantum’ fluctu-
ations, there may be some chance that these variables coincide, but it is hard to
imagine that they will coincide completely. So let the probability P(δV ) that these
coincide be somewhat less than 1, say:

P(δV )= 1 − ε, (4.1)

with a small value for ε > 0. Then the odds that the planet as a whole is indistin-
guishable from the vacuum will be

Ptot = (1 − ε)V/δV ≈ e−εV/δV → 0, (4.2)

if the volume V of the planet is sufficiently large. This means that large planets must
be well distinguishable from the vacuum state.
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This is a very important point, because it means that, at a large scale, all other
classical observables of our world must also be diagonal in terms of the ontological
basis: large scale observables, such as the orbits of planets, and then of course
also the classical data shown in a detector, are beables. They commute with our
microscopic beable operators. See also Fig. 4.1.

Let us now again address the nature of the wave functions, or states |ψ〉, that rep-
resent real observed phenomena. In terms of the basis that we would normally use
in quantum mechanics, these states will be complicated quantum superpositions. In
terms of the original, ontological basis, the beables will just describe the elementary
basis elements. And now what we just argued is that they will also be elementary
eigen states of the classical observables at large scales! What this means is that
the states |ψ〉 that we actually produce in our laboratories, will automatically col-
lapse into states that are distinguishable classically. There will be no need to modify
Schrödinger’s equation to realize the collapse of the wave function; it will happen
automatically.3

This does away with Schrödinger’s cat problem. The cat will definitely emerge
either dead or alive, but never in a superposition. This is because all states |ψ〉 that
we can ever produce inside the cat-killing machine, are ontological. When we write
them as superpositions, it is because the exact state, in terms of ontological basis
elements, is not precisely known.

In Schrödinger’s Gedanken experiment, the state actually started from was an
ontological state, and for that reason could only evolve into either a dead cat or a
live cat. If we would have tried to put the superimposed state, α|dead〉 + β|alive〉
in our box, we would not have had an ontological state but just a template state.
We can’t produce such a state! What we can do is repeat the experiment; in our
simplified description of it, using our effective but not ontological basis, we might
have thought to have a superimposed state as our initial state, but that of course
never happens, all states we ever realize in the lab are the ontological ones, that later
will collapse into states where classical observables take definite values, even if we
cannot always predict these.

In the author’s mind this resolution to the collapse problem, the measurement
problem and the Schrödinger cat problem is actually one of the strongest arguments
in favour of the Cellular Automaton Interpretation.

4.3 Born’s Probability Rule

4.3.1 The Use of Templates

For the approach advocated in this book, the notion of templates was coined, as in-
troduced in Sect. 2.1. We argue that conventional quantum mechanics is arrived at

3Therefore, it is meaningless to ask when, and how quickly, the collapse takes place.
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Fig. 4.1 Classical and quantum states. a The sub-microscopic states are the “hidden variables”.
Atoms, molecules and fields are templates, defined as quantum superpositions of the sub-micro-
scopic states, and used at the conventional microscopic scale. The usual “classical” objects, such
as planets and people, are macroscopic, and again superpositions of the micro-templates. The lines
here indicate quantum matrix elements. b The classical, macroscopic states are probabilistic dis-
tributions of the sub-microscopic states. Here, the lines therefore indicate probabilities. All states
are astronomical in numbers, but the microscopic templates are more numerous than the classical
states, while the sub-microscopic states are even more numerous

if we perform some quite complicated basis transformation on the ontological basis
states. These new basis elements so obtained will all be quite complex quantum su-
perpositions of the ontological states. It is these states that we call “template states”;
they are the recognizable states we normally use in quantum mechanics. It is not
excluded that the transformation may involve non-locality to some extent.

Upon inverting this transformation, one finds that, in turn, the ontological states
will be complicated superpositions of the template states. The superpositions are
complicated because they will involve many modes that are hardly visible to us. For
instance, the vacuum state, our most elementary template state, will be a superposi-
tion of very many ontic (short for ontological) states. Why this is so, is immediately
evident, if we realize that the vacuum is the lowest eigenstate of the Hamiltonian,
while the Hamiltonian is not a beable but a ‘changeable’ (see Sect. 2.1.1). Of course,
if this holds for the vacuum (Sect. 5.7.5), it will surely also hold for all other template
states normally used. We know that some ontic states will transform into entangled
combinations of templates, since entangled states can be created in the laboratory.

The macroscopic states, which are the classical states describing people and plan-
ets, but also the pointers of a measuring device, and of course live and dead cats,
are again superpositions of the template states, in general, but they are usually not
infinitely precisely defined, since we do not observe every atom inside these objects.
Each macroscopic state is actually a composition of very many quantum states, but
they are well-distinguishable from one another.

In Fig. 4.1, the fundamental ontological states are the sub-microscopic ones, then
we see the microscopic states, which are the quantum states we usually consider, that
is, the template states, and finally the macroscopic or classical states. The matrix
elements relating these various states are indicated by lines of variable thickness.

What was argued in the previous section was that the classical, or macroscopic,
states are diagonal in terms of the sub-microscopic states, so these are all ontic
states. It is a curious fact of Nature that the states that are most appropriate for
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us to describe atoms, molecules and sub-atomic particles are the template states,
requiring superpositions. So, when we observe a classical object, we are also looking
at ontological things, which is why a template state we use to describe what we
expect to see, “collapses” into delta peeked probability distributions in terms of the
classical states.

In discussions with colleagues the author noticed how surprized they were with
the above statements about classical states being ontological. The reasoning above is
however almost impossible to ignore, and indeed, our simple observation explains
a lot about what we sometimes perceive as genuine ‘quantum mysteries’. So, it
became an essential ingredient of our theory.

4.3.2 Probabilities

At first sight, it may seem that the notion of probability is lost in our treatment of
quantum mechanics. Our theory is ontic, it describes certainties, not probabilities.

However, probabilities emerge naturally also in many classical systems. Think of
how a 19th century scientist would look at probabilities. In a particle collision ex-
periment, two beams of particles cross in an interaction area. How will the particles
scatter? Of course, the particles will be too small to aim them so precisely that we
would know in advance exactly how they meet one another, so we apply the laws
of statistics. Without using quantum mechanics, the 19th century scientist would
certainly know how to compute the angular distribution of the scattered particles,
assuming some classical interaction potential. The origin of the statistical nature of
the outcome of his calculations is simply traced to the uncertainty about the initial
state.

In conventional quantum mechanics, the initial state may seem to be precisely
known: we have two beams consisting of perfectly planar wave functions; the sta-
tistical distribution comes about because the wave functions of the final state have a
certain shape, and only there, the quantum physicist would begin to compute ampli-
tudes and deduce the scattering probabilities from those. So this looks very different.
We are now going to explain however, that the origin of the statistics in both cases
is identical after all.

In our theory, the transition from the classical notation to the quantum notation
takes place when we decide to use a template state |ψ(t)〉 to describe the state of the
system. At t = 0, the coefficients |λA|2, where (see the remarks following Eq. (2.2))

〈
ont(0)A

∣∣ψ(0)
〉= λA, (4.3)

determine the probability that we are starting with ontological state #A. We then use
our Schrödinger equation to determine |ψ(t)〉. When, at some time t1, the asymp-
totic out-state is reached, we compute 〈ont(t1)A|ψ(t1)〉, where now the ontological
state represents the outcome of a particular measurement, say, the particles hitting
a detector at some given angle. According to quantum mechanics, using the Born
rule, the absolute square of this amplitude is the probability of this outcome. But,
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according to our theory, the initial ontological states |ont(0)〉A evolved into final
ontological states |ont(t1)〉A, so, we have to use the same coefficients λA. And now,
these determine the probability of the given outcome. So indeed, we conclude that
these probabilities coincide with the probabilities that we started with given onto-
logical in-states.

The final ontological states are the ontological states that lead to a given outcome
of the experiment. Note, that we used superpositions in calculating the transition am-
plitudes, but the final answers just correspond to the probability that we started with
a given ontological in-state that, with certainty, evolved into a given final, classical
out-state.

Our template states form a very tiny subset of all ontological states, so that every
time we repeat an experiment, the actual ontic state is a different one. The initial
template state now does represent the probabilities of the initial ontic states, and
because these are projected into the classical final states, the classical final states
obey the Born rule if the initial states do. Therefore, we can prove that our theory
obeys the Born rule if we know that the initial state does that regarding the ontic
modes. If we now postulate that the template states used always reflect the relative
probabilities of the ontic states of the theory, then the Born rule appears to be an
inevitable consequence [113].

Most importantly, there is absolutely no reason to attempt to incorporate devia-
tions from Born’s probability interpretation of the Copenhagen interpretation into
our theory. Born’s rule will be exactly obeyed; there cannot be systematic, repro-
ducible deviations. Thus, we argue, Born’s rule follows from our requirement that
the basis of template states that we use is related to the basis of ontological states by
an orthonormal, or unitary, transformation.

Thus, we derived that: as long as we use orthonormal transformations to go from
one basis to another, Born’s rule, including the use of absolute squares to represent
probabilities, is the only correct expression for these probabilities.
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Chapter 5
Concise Description of the CA Interpretation

Of course we assume that the reader is familiar with the ‘Schrödinger representa-
tion’ as well as the ‘Heisenberg representation’ of conventional quantum mechanics.
We often use these intermittently.

5.1 Time Reversible Cellular Automata

The Cogwheel Model, which, as described in Sect. 2.2, can be mapped on a Zeeman
atom with equally spaced energy levels. It is the prototype of an automaton. All our
deterministic models can be characterized as ‘automata’. A cellular automaton is an
automaton where the data are imagined to form a discrete, d -dimensional lattice, in
an n= d + 1 dimensional space–time. The elements of the lattice are called ‘cells’,
and each cell can contain a limited amount of information. The dataQ(�x, t) in each
cell (�x, t) could be represented by an integer, or a set of integers, possibly but not
necessarily limited by a maximal value N . An evolution law prescribes the values
of the cells at time t + 1 if the values at time t (or t and t − 1) are given.1 Typically,
the evolution law for the data in a cell at the space–time position

(�x, t), �x = (
x1, x2, . . . , xd

)
, xi, t ∈ Z, (5.1)

will only depend on the data in neighbouring cells at (�x ′, t − 1) and possibly those
at (�x, t − 2). If, in this evolution law, ‖�x ′ − �x‖ is limited by some bound, then the
cellular automaton is said to obey locality.

Furthermore, the cellular automaton is said to be time-reversible if the data in the
past cells can be recovered from the data at later times, and if the rule for this is also
a cellular automaton. Time reversibility can easily be guaranteed if the evolution
law is assumed to be of the form

Q(�x, t + 1)=Q(�x, t − 1)+ F(�x, {Q(t)}), (5.2)

1In the latter case, the ontological basis must consist of the data in two consecutive time layers.

© The Author(s) 2016
G. ’t Hooft, The Cellular Automaton Interpretation of Quantum Mechanics,
Fundamental Theories of Physics 185, DOI 10.1007/978-3-319-41285-6_5

57

http://dx.doi.org/10.1007/978-3-319-41285-6_5


58 5 Concise Description of the CA Interpretation

whereQ(�x, t) represent the data at a given point (�x, t) of the space–time lattice, and
F(�x, {Q(t)}) is some given function of the data of all cells neighbouring the point �x
at time t . The + here stands for addition, addition modulo some integer N , or some
other simple, invertible operation in the space of variables Q. Of course, we then
have time reversibility:

Q(�x, t − 1)=Q(�x, t + 1)− F(�x, {Q(t)}), (5.3)

where − is the inverse of the operation +.
The simple cogwheel model allows for both a classical and a quantum mechani-

cal description, without any modification of the physics. We can now do exactly the
same thing for the cellular automaton. The classical states the automaton can be in,
are regarded as an orthonormal set of basis elements of an ontological basis. The
evolution operator Uop(δt) for one single time step whose duration is δt , is a unitary
operator, so that all its eigen states |Ei〉 are unimodular:

Uop(δt)|Ei〉 = e−iωi |Ei〉, 0 ≤ ω < 2π, (5.4)

and one can find an operator Hop such that

Uop(δt)= e−iHopδt , 0 ≤Hop < 2π/δt. (5.5)

However, one is free to add integer multiples of 2π/δt to any of the eigen values
of this Hamiltonian without changing the expression for Uop, so that there is a lot
of freedom in the definition of Hop. One may add arbitrary phase angles to the
eigenstates, |Ei〉 → eiϕi |Ei〉, and these modifications may also depend on possible
conserved quantities. Clearly, one can modify the Hamiltonian quite a bit without
damaging its usefulness to generate the evolution operator Uop. In Sect. 2.2.2 of
Sect. 2.2, it is demonstrated how quite complex energy spectra can emerge this way
in relatively simple generalizations of the cogwheel model.

Modifications of this sort in the Hamiltonian may well be needed if we wish to
reflect the locality property of the cellular automaton in the Hamiltonian:

Hop
?=
∑

�x
Hop(�x),

[
Hop

(�x ′),Hop(�x)
]→ 0 if ‖�x ′ − �x‖ � 1, (5.6)

but it is an important mathematical question whether a Hamiltonian obeying
Eq. (5.6) can be constructed even if the classical cellular automaton is local in the
sense described above. This problem is discussed further in Sect. 5.6.1, in Sect. 9.1,
and in Part II, Chaps. 14 and 22. There, we shall see that the situation can become
quite complex. Very good approximations may exist for certain cellular automa-
ton systems with possibly some modified locality properties and a Hamiltonian that
approximately obeys a locality principle as in Eq. (5.6).

Note, that a Hamiltonian that obeys (5.6) in combination with Poincaré invari-
ance will correspond to a fully renormalized quantum field theory, with all com-
plexities of that, and this assures that finding a complete mathematical solution to
the problems sketched will not be easy.
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5.2 The CAT and the CAI

The Cellular Automaton Theory (CAT) assumes that, once a universal Schrödinger
equation has been identified that encapsulates all conceivable phenomena in the
universe (a Grand Unified Theory, or a Theory for Everything), it will feature an
ontological basis that maps the system into a classical automaton. It is possible,
indeed quite likely, that the true automaton of the universe will be more complex
than an ‘ordinary’ cellular automaton as sketched here, but it may well share some
of its main characteristics. The extent to which this is so, will have to be sorted out
by further research.

How the symmetries of Nature will be reflected in these classical rules is also
difficult to foresee; it is difficult to imagine how Lorentz invariance and diffeomor-
phism invariance can be realized in these classical rules. Probably, they will refer to
more general quantum basis choices. This we will assume, for the time being, see
in Part II, Chap. 18 on symmetries.

This theory then does seem to be what is usually called a ‘hidden variable theory’.
Indeed, in a sense, our variables are hidden; if symmetry transformations exist that
transform our basis into another one, which diagonalizes different operators, then it
will be almost impossible for us to tell which of these is the ‘true’ ontological basis,
and so we will have different candidates for the ‘hidden variables’, which will be
impossible to distinguish in practice.

The Cellular Automaton Interpretation (CAI) [104] takes it for granted that this
theory is correct, even if we will never be able to explicitly identify any ontological
basis. We assume that the templates presently in use in quantum mechanics are to
be regarded as superpositions of ontological states, and that the classical states that
describe outcomes of observations and measurements are classical distributions of
ontological states. If two classical states are distinguishable, their distributions have
no ontological state in common (see Fig. 4.1b). The universe is in a single ontologi-
cal state, never in a superposition of such states, but, whenever we use our templates
(that is, when we perform a conventional quantum mechanical calculation), we use
superpositions just because they are mathematically convenient. Note that, because
the superpositions are linear, our templates obey the same Schrödinger equation as
the ontological states do.

In principle, the transformation from a conventional quantum basis to an onto-
logical basis may be quite complex. Only the eigenvalues of the Hamiltonian will be
unaffected, and also in deterministic models, these can form quite general spectra,
see Fig. 2.3c. In group theory language, the Hamiltonians we obtain by transforming
to different basis choices, will form one single conjugacy class, characterized by the
set of eigenvalues.

Eventually, our quantum system should be directly related to some quantum
field theory in the continuum limit. We describe quantum field theories in Part II,
Chap. 20. At first sight, it may seem to be obvious that the Hamiltonian should
take the form of Eq. (5.6), but we have to remember that the Hamiltonian defini-
tions (2.8), (2.18), (2.26) and the expressions illustrated in Fig. 2.3, are only well-
defined modulo 2π/δt , so that, when different, non interacting systems are com-
bined, their Hamiltonians do not necessarily have to add up.
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These expressions do show that the Hamiltonian Hop can be chosen in many
ways, since one can add any operator that commutes with Hop. Therefore it is rea-
sonable to expect that a Hamiltonian obeying Eq. (5.6) can be defined. An approach
is explained in much more detail in Part II, Chap. 21, but some ambiguity remains,
and convergence of the procedure, even if we limit ourselves to low energy states,
is far from obvious.

What we do see is this: a Hamiltonian obeying Eq. (5.6) is the sum of terms that
each are finite and bounded from below as well as from above. Such a Hamiltonian
must have a ground state, that is, an eigenstate |∅〉 with lowest eigenvalue, which
could be normalized to zero. This eigenstate should be identified with the ‘vacuum’.
This vacuum is stationary, even if the automaton itself may have no stationary so-
lution. The next-to-lowest eigenstate may be a one-particle state. In a Heisenberg
picture, the fields Q(�x, t) will behave as operators Qop(�x, t) when we pass on to a
basis of template states, and as such they may create one-particle states out of the
vacuum. Thus, we arrive at something that resembles a genuine quantum field the-
ory. The states are quantum states in complete accordance with a Copenhagen inter-
pretation. The fieldsQop(�x, t) should obey the Wightman axioms [55, 79]. Quantum
field theories will further be discussed in Chap. 20.

However, if we start from just any cellular automaton, there are three ways in
which the resulting theory will differ from conventional quantum field theories. One
is, of course, that space and time are discrete. Well, maybe there is an interesting
‘continuum limit’, in which the particle mass(es) is(are) considerably smaller than
the inverse of the time quantum, but, unless our models are chosen very carefully,
this will not be the case.

Secondly, the generic cellular automaton will not even remotely be Lorentz in-
variant. Not only will the one-particle states fail to exhibit Lorentz invariance, or
even Galilei invariance; the states where particles may be moving with respect to
the vacuum state will be completely different from the static one-particle states.
Also, rotation symmetry will be reduced to some discrete lattice rotation group if
anything at all. So, the familiar symmetries of relativistic quantum field theories will
be totally absent.

Thirdly, it is not clear that the cellular automaton can be associated to a single
quantum model or perhaps many inequivalent ones. The addition or removal of other
conserved operators toHop is akin to the addition of chemical potential terms. In the
absence of Lorentz invariance, it will be difficult to distinguish the different types
of ‘vacuum’ states one thus obtains.

For all these reasons, most cellular automaton models will be very different from
the quantized field theories for elementary particles. The main issue discussed in
this book, however, is not whether it is easy to mimic the Standard Model in a
cellular automaton, but whether one can obtain quantum mechanics, and something
resembling quantum field theory, at least in principle. The origin of the continuous
symmetries of the Standard Model will stay beyond what we can handle in this
book, but we can discuss the question to what extent cellular automata can be used
to approximate and understand the quantum nature of this world. See our discussion
of symmetry features in Part II, Sect. 18.
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As will be explained later, it may well be that invariance under general coordi-
nate transformations will be a crucial ingredient in the explanation of continuous
symmetries, so it may well be that the ultimate explanation of quantum mechanics
will also require the complete solution of the quantum gravity problem. We cannot
pretend to have solved that.

Many of the other models in this book will be explicitly integrable. The cellular
automata that we started off with in the first section of this chapter illustrate that our
general philosophy also applies to non-integrable systems. It is generally believed,
however, that time reversible cellular automata can be computationally universal
[37, 61]. This means that any such automaton can be arranged in special subsets of
states that obey the rule of any other computationally universal cellular automaton.
One would be tempted to argue then, that any computationally universal cellular
automaton can be used to mimic systems as complicated as the Standard Model of
the subatomic particles. However, in that case, being physicists, we would ask for
one single special model that is more efficient than any other, so that any choice of
initial state in this automaton describes a physically realizable configuration.

5.3 Motivation

It is not too far-fetched to expect that, one day, quantum gravity will be completely
solved, that is, a concise theory will be phrased that shows an air-tight description of
the relevant physical degrees of freedom, and a simple model will be proposed that
shows how these physical variables evolve. We might not even need a conventional
time variable for that, but what we do need is an unambiguous prescription telling
us how the physical degrees of freedom will look in a region of space–time that lies
in the future of a region described at an earlier time.

A complete theory explaining quantum mechanics can probably not be formu-
lated without also addressing quantum gravity, but what we can do is to formulate
our proposal, and to establish the language that will have to be employed. Today,
our description of molecules, atoms, fields and relativistic subatomic particles is in-
terspersed with wave functions and operators. Our operators do not commute with
operators describing other aspects of the same world, and we have learned not to be
surprized by this, but just to choose a set of basis elements as we please, guess a
reasonable looking Schrödinger equation, and calculate what we should find when
we measure things. We were told not to ask what reality is, and this turned out to be
a useful advice: we calculate, and we observe that the calculations make sense. It is
unlikely that any other observable aspects of fields and particles can ever be calcu-
lated, it will never be more than what we can derive from quantum mechanics. For
example, given a radio-active particle, we cannot calculate exactly at what moment
it will decay. The decay is controlled by a form of randomness that we cannot con-
trol, and this randomness seems to be far more perfect than what can be produced
using programmed pseudo-random sequences. We are told to give up any hope to
outsmart Nature in this respect.
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The Cellular Automaton Interpretation (CAI) suggests to us what it is that we
actually do when we solve a Schrödinger equation. We thought that we are following
an infinite set of different worlds, each with some given amplitude, and the final
events that we deduce from our calculations depend on what happens in all these
worlds. This, according to the CAI, is an illusion. There is no infinity of different
worlds, there is just one, but we are using the “wrong” basis to describe it. The word
“wrong” is here used not to criticize the founding fathers of quantum mechanics,
who made marvellous discoveries, but to repeat what they of course also found out,
which is that the basis they are using is not an ontological one. The terminology
used to describe that basis does not disclose to us exactly how our world, our single
world, ‘actually’ evolves in time.

Many other proposed interpretations of quantum mechanics exist. These may
either regard the endless numbers of different worlds all to be real, or they require
some sort of modification, mutilation rather, to understand how a wave function
can collapse to produce measured values of some observable without allowing for
mysterious superpositions at the classical scale.

The CAI proposes to use the complete mathematical machinery that has been
developed over the years to address quantum mechanical phenomena. It includes
exactly the Copenhagen prescriptions to translate the calculations into precise pre-
dictions when experiments are done, so, at this point, definitely no modifications are
required.

There is one important way in which we deviate from Copenhagen however.
According to Copenhagen, certain questions are not to be asked:

Can it be that our world is just a single world where things happen, ac-
cording to evolution equations that might be fundamentally simpler than
Schrödinger’s equation, and are there ways to find out about this? Can one
remove the element of statistical probability distributions from the basic laws
of quantum mechanics?

According to Copenhagen, there exist no experiments that can answer such ques-
tions, and therefore it is silly even to ask them. But what I have attempted to show
in this work is that not experimentally, but theoretically, we may find answers. We
may be able to identify models that describe a single classical world, even if forbid-
dingly complex compared to what we are used to, and we may be able to identify its
physical degrees of freedom with certain quantum variables that we already know
about.

The cellular automaton described in the preceding sections, would be the pro-
totype example; it is complicated yet quite possibly not complicated enough. It has
symmetries, but in the real world there are much larger symmetry groups, such as the
Lorentz or Poincaré group, showing relations between different kinds of events, and
these are admittedly difficult to implement. The symmetry groups, think of space–
time translation symmetry, may actually be at the roots of the mysterious features
that were found in our quantum world, so that these may have natural explanations.

Why should we want just a single world with classical equations describing its
evolution? What’s wrong with obeying Copenhagen’s dictum about not asking ques-
tions, if they will not be experimentally accessible anyway?
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According to the author, there will be overwhelming motivations: If a classical
model does exist, it will tremendously simplify our view of the world, it will help us
once and forever to understand what really happens when a measurement is made
and a wave function ‘collapses’. It will explain the Schrödinger cat paradox once
and for good.

Even more importantly, the quantum systems that allow for a classical interpre-
tation form an extremely tiny subset of all quantum models. If it is indeed true that
our world falls in that class, which one may consider to be likely after having read
all this, then this restricts our set of allowable models so much that it may enable us
to guess the right one, a guess that otherwise could never have been made. So in-
deed, what we are really after is a new approach towards guessing what the ‘Theory
of the World’ is. We strongly suspect that, without this superb guide, we will never
even come close. Thus, our real motivation is not to be able to better predict the
outcomes of experiments, which may not happen soon, but rather to predict which
class of models we should scrutinize to find out more about the truth.

Let us emphasize once more, that this means that the CAI/CAT will primarily
be of importance if we wish to decipher Nature’s laws at the most fundamental
time- and distance scales, that is, the Planck scale. Thus, an important new frontier
where the empire of the quantum meets the classical world, is proclaimed to be
near the Planckian dimensions. As we also brought forward repeatedly, the CAI
requires a reformulation of our standard quantum language also when describing
the other important border: that between the quantum empire and the ‘ordinary’
classical world at distance scales larger than the sizes of atoms and molecules.

The CAI actually has more in common with the original Copenhagen doctrine
than many other approaches, as will be explained. It will do away with the ‘many
worlds’, more radically than the De Broglie–Bohm interpretation. The CAI assumes
the existence of one or more models of Nature that have not yet been discovered.
We do discuss many toy models. These toy models are not good enough to come
anywhere close to the Standard Model, but there is reason to hope that one day such
a model will be found. In any case, the CAI will apply only to a tiny sub class of all
quantum mechanical models usually considered to explain the observed world, and
for this reason we hope it might be helpful to pin down the right procedure to arrive
at the correct theory.

Other models were exposed in this work, just to display the set of tools that one
might choose to use.

5.3.1 The Wave Function of the Universe

Standard quantum mechanics can confront us with a question that appears to be
difficult to answer: Does the universe as a whole have a wave function? Can we
describe that wave function? Several responses to this question can be envisaged:

(1) I do not know, and I do not care. Quantum mechanics is a theory about obser-
vations and measurements. You can’t measure the entire universe.
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(2) I do care, but I do not know. Such a wave function might be so much entangled
that it will be impossible to describe. Maybe the universe has a density matrix,
not a wave function.

(3) The universe has no fixed wave function. Every time an observation or measure-
ment is made, the wave function collapses, and this collapse phenomenon does
not follow any Schrödinger equation.

(4) Yes, the universe has a wave function. It obeys the Schrödinger equation, and at
all times the probability that some state |ψ〉 is realized is given by the norm of
the inner product squared. Whenever any ‘collapse’ takes place, it always obeys
the Schrödinger equation.

The agnostic answers (1) and (2) are scientifically of course defensible. We should
limit ourselves to observations, so don’t ask silly questions. However, they do seem
to admit that quantum mechanics may not have universal validity. It does not ap-
ply to the universe as a whole. Why not? Where exactly is the limit of the validity
of quantum mechanics? The ideas expressed in this work were attacked because
they allegedly do not agree with observations, but all observations ever made in
atomic and subatomic science appear to confirm the validity of quantum mechanics,
while the answers (1) and (2) suggest that quantum mechanics should break down
at some point. In the CAI, we assume that the mathematical rules for the applica-
tion of quantum mechanics have absolute validity. This, we believe, is not a crazy
assumption.

In the same vein, we also exclude answer (3). The collapse should not be re-
garded as a separate axiom of quantum mechanics, one that would invalidate the
Schrödinger equation whenever an observation, a measurement, and hence a col-
lapse takes place. Therefore, according to our theory, the only correct answer is
answer (4). An apparent problem with this would be that the collapse would re-
quire ‘conspiracy’, a very special choice of the initial state because otherwise we
might accidentally arrive at wave functions that are quantum superpositions of dif-
ferent collapsed states. This is where the ontological basis comes to the rescue. If
the universe is in an ontological state, its wave function will collapse automatically,
whenever needed. As a result, classical configurations, such as the positions and ve-
locities of the planets are always described by wave functions that are delta-peaked
at these values of the data, whereas wave functions that are superpositions of planets
in different locations, will never be ontological.

The conclusion of this subsection is that, as long as we work with templates, our
amplitudes are psi-epistemic, as they were in the Copenhagen view, but a psi-ontic
wave function does exist: the wave function of the universe itself. It is epistemic and
ontological at the same time.

Now, let us go back to Copenhagen, and formulate the rules. As the reader can
see, in some respects we are even more conservative than the most obnoxious quan-
tum dogmatics.
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5.4 The Rules

As for the Copenhagen rules that we keep, we emphasise the ones most important
to us:

(i) To describe a physical phenomenon, the use of any basis is as legitimate as
any other. We are free to perform any transformation we like, and rephrase the
Schrödinger equation, or rather, the Hamiltonian employed in it, accordingly.
In each basis we may find a useful description of variables, such as positions of
particles, or the values of their momenta, or the energy states they are in, or the
fields of which these particles are the energy quanta. All these descriptions are
equally ‘real’ .

But none of the usually employed descriptions are completely real. We often see that
superpositions occur, and the phase angles of these superpositions can be measured,
occasionally. In such cases, the basis used is not an ontological one. In practice, we
have learned that this is just fine; we use all of these different basis choices in order
to have templates. We shall impose no restrictions on which template is ‘allowed’,
or which of them may represent the truth ‘better’ than others. Since these are mere
templates, reality may well emerge to be a superposition of different templates.

Curiously, even among the diehards of quantum mechanics, this was often
thought not to be self-evident. “Photons are not particles, protons and electrons are”,
was what some investigators claimed. Photons must be regarded as energy quanta.
They certainly thought it was silly to regard the phonon as a particle; it is merely the
quantum of sound. Sometimes it is claimed that electric and magnetic fields are the
‘true’ variables, while photons are merely abstract concepts. There were disputes
on whether a particle is a true particle in the position representation or in the mo-
mentum representation, and so on. We do away with all this. All basis choices are
equivalent. They are nothing more than a coordinate frame in Hilbert space. As long
as the Hamiltonian employed appears to be such that finite-time evolution operators
turn diagonal operators (beables) into non-diagonal ones (superimposables), these
basis choices are clearly non-ontological; none of them describes what is really hap-
pening. As for the energy basis, see Sect. 5.6.3.

Note, that this means that it is not really the Hamiltonian that we will be inter-
ested in, but rather its conjugacy class. If a HamiltonianH is transformed into a new
Hamiltonian by the transformation

H̃ =GHG−1, (5.7)

where G is a unitary operator, then the new Hamiltonian H̃ , in the new basis, is just
as valid as the previous one. In practice, we shall seek the basis, or its operator G,
that gives the most concise possible expression for H̃ .

(ii) Given a ket state |ψ〉, the probability for the outcome of a measurement to be
described by a given state |a〉 in Hilbert space, is exactly given by the absolute
square of the inner product 〈a|ψ〉.
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This is the well-known Born rule. We shall never modify its mathematical form;
only the absolute squares of the inner products can be used. However, there is a lim-
itation in principle: the bra state 〈a| must be an ontological state. In practice, this is
always the case: the bras 〈a| usually are represented by the classical observations.
The Born rule is often portrayed as a separate axiom of the Copenhagen Interpre-
tation. In our view it is an inevitable consequence of the mathematical nature of
quantum mechanics as a tool to perform calculations, see Sect. 4.3.

The most important point where we depart from Copenhagen is that we make
some fundamental assumptions:

(a) We postulate the existence of an ontological basis. It is an orthonormal basis
of Hilbert space that is truly superior to the basis choices that we are familiar
with. In terms of an ontological basis, the evolution operator for a sufficiently
fine mesh of time variables, does nothing more than permute the states.

How exactly to define the mesh of time variables we do not know at present, and
it may well become a subject of debate, particularly in view of the known fact that
space–time has a general coordinate invariance built in. We do not claim to know
how to arrive at this construction—it is too difficult. In any case, the system is ex-
pected to behave entirely as a classical construction. Our basic assumption is that a
classical evolution law exists, dictating exactly how space–time and all its contents
evolve. The evolution is deterministic in the sense that nothing is left to chance.
Probabilities enter only if, due to our ignorance, we seek our refuge in some non-
ontological basis.

(b) When we perform a conventional quantum mechanical calculation, we employ a
set of templates for what we thought the wave function is like. These templates,
such as the orthonormal set of energy eigen states of the hydrogen atom, just
happen to be the states for which we know how they evolve. However, they are
in a basis that is a rather complicated unitary transformation of the ontological
basis.

Humanity discovered that these templates obey Schrödinger equations, and we em-
ploy these to compute probabilities for the outcomes of experiments. These equa-
tions are correct to very high accuracies, but they falsely suggest that there is a
‘multiverse’ of many different worlds that interfere with one another. Today, these
templates are the best we have.

(c) Very probably, there are more than one different choices for the ontological
basis, linked to one another by Nature’s continuous symmetry transformations
such as the elements of the Poincaré group, but possibly also by the local diffeo-
morphism group used in General Relativity. Only one of these ontological bases
will be ‘truly’ ontological.

Which of them will be truly ontological will be difficult or impossible to determine.
The fact that we shall not be able to distinguish the different possible ontological
bases, will preclude the possibility of using this knowledge to perform predictions
beyond the usual quantum mechanical ones. This was not our intention anyway. The
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motivation for this investigation has alway been that we are searching for new clues
for constructing models more refined than the Standard Model.

The symmetry transformations that link different (but often equivalent) ontolog-
ical basis choices are likely to be truly quantum mechanical: operators that are di-
agonal in one of these ontological bases may be non diagonal in an other. However,
in the very end we shall only use the ‘real’ ontological basis. This will be evident in
axiom (e).

(d) Classical states are ontological, which means that classical observables are
always diagonal in the ‘truly’ ontological basis.

This would be more difficult to ‘prove’ from first principles, so we introduce it
indeed as an axiom. However, it seems to be very difficult to avoid: it is hard to
imagine that two different classical states, whose future evolution will be entirely
different in the end, could have non-vanishing inner products with the same onto-
logical state.

(e) From the very beginning onwards, the Universe was, and it always will be, in
a single, evolving ontological state. This means that not only the observables
are diagonal in the ontological basis, but the wave function always takes the
simplest possible form: it is one of the elements of the basis itself, so this wave
function only contains a single 1 and for the rest zeros.

Note that this singles out the ‘true’ ontological basis from other choices, where the
physical degrees of freedom can also be represented by ‘beables’, that is, operators
that at all times commute. So, henceforth, we only refer to this one ‘true’ ontological
basis as ‘the’ ontological basis.

Most importantly, the last two axioms completely solve the measurement prob-
lem [93], the collapse question and Schrödinger’s cat paradox. The argument is now
simply that Nature is always in a single ontological state, and therefore it has to
evolve into a single classical state.

5.5 Features of the Cellular Automaton Interpretation (CAI)

A very special feature of the CAI is that ontological states do never form superpo-
sitions. From day and time zero onwards, the universe must have been in a single
ontological state that evolves. This is also the reason why it never evolves into a
superposition of classical states. Now remember that the Schrödinger equation is
obeyed by the ontological states the universe may be in. This then is the reason why
this theory automatically generates ‘collapsed wave functions’ that describe the re-
sults of a measurement, without ever parting from the Schrödinger equation. For the
same reason, ontological states can never evolve into a superposition of a dead cat
and a live cat. Regarded from this angle, it actually seems hard to see how any other
interpretation of quantum mechanics could have survived in the literature: quantum
mechanics by itself would have predicted that if states |ψ〉 and |χ〉 can be used as
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initial states, so can the state α|ψ〉 + β|χ〉. Yet the superposition of a dead cat and
a live cat cannot serve to describe the final state. If |ψ〉 evolves into a live cat and
|χ〉 into a dead one, then what does the state α|ψ〉 + β|χ〉 evolve into? the usual
answers to such questions cannot be correct.2

The Cellular Automaton Interpretation adds some notions to quantum mechanics
that do not have any distinguished meaning in the usual Copenhagen view. We in-
troduced the ontological basis as being, in some sense, superior to any other choice
of basis. One might naturally argue that this would be a step backwards in physics.
Did Copenhagen, in Sect. 5.4, not emphasise that all choices of basis are equivalent?
Why would one choice stand out?

Indeed, what was stated in rule #i in Sect. 5.4 was that all basis choices are
equivalent, but what we really meant was that all basis choices normally employed
are equivalent. Once we adopt the Copenhagen doctrine, it does not matter anymore
which basis we choose. Yet there is one issue in the Copenhagen formalism that has
been heavily disputed in the literature and now is truly recognized as a weakness:
the collapse of the wave function and the treatment of measurements. At these points
the superposition axiom fails. As soon as we admit that one superior basis exists,
this weakness disappears. All wave functions may be used to describe a physical
process, but then we have to tolerate the collapse axiom if we do not work in the
ontological basis.

The CAI allows us to use a basis that stands out. It stands out because, in this
basis, we recognize wave functions that are special: the ontological wave functions.
In the ontological basis, the ontological wave functions are the wave functions that
correspond to the basis elements; each of these wave functions contains a one and
for the rest zeros. The ontological wave functions exclusively evolve into ontolog-
ical wave functions again. In this basis, there is no room for chance anymore, and
superpositions can be completely avoided.

The fact that, also in the usual formalism of quantum mechanics, states that start
out with a classical description, such as beams of particles aimed at each other, end
up as classical probability distributions of particles coming out of the interaction
region, in our view can be seen as evidence for an ‘ontology conservation law’,
a law that says that an ontological basis exists, such that true ontological states at
one moment of time, always evolve into true ontological states at later times. This
is a new conservation law. It is tempting to conclude that the CAI is inevitable.

In the ontological basis, the evolution is deterministic. However, this term must
be used with caution. “Deterministic” cannot imply that the outcome of the evolu-
tion process can be foreseen. No human, nor even any other imaginable intelligent
being, will be able to compute faster than Nature itself. The reason for this is ob-
vious: our intelligent being would also have to employ Nature’s laws, and we have
no reason to expect that Nature can duplicate its own actions more efficiently than
having them happen in the first place. This is how one may restore the concept of
“free will”: whatever happens in our brains is unique and unforeseeable by anyone
or anything.

2I here refer to the argument that decoherence, some way or other, does the job. See Sect. 3.5.
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5.5.1 Beables, Changeables and Superimposables

Having a special basis and special wave functions, also allows us to distinguish spe-
cial observables or operators. In standard quantum mechanics, we learned that oper-
ators and observables are indistinguishable, so we use these concepts interchange-
ably. Now, we will have to learn to restore the distinctions. We repeat what was
stated in Sect. 2.1.1, operators can be of three different forms:

(I) beables Bop: these denote a property of the ontological states, so that beables
are diagonal in the ontological basis {|A〉, |B〉, . . .} of Hilbert space:

B aop|A〉 = B a(A)|A〉, (beable). (5.8)

Beables will always commute with one another, at all times:
[
B aop(�x1, t1),B bop(�x2, t2)

]= 0 ∀�x1, �x2, t1, t2. (5.9)

Quantized fields, copiously present in all elementary particle theories, do obey
Eq. (5.9), but only outside the light cone (where |t1 − t2| < |�x1 − �x2|), not inside
that cone, where Eqs. (20.29), see Part II, do not hold, as can easily be derived
from explicit calculations. Therefore, quantized fields are altogether different from
beables.

(II) changeables Cop: operators that replace an ontological state |A〉 by another on-
tological state |B〉, such as a permutation operator:

Cop|A〉 = |B〉, (changeable). (5.10)

Changeables do not commute, but they do have a special relationship with beables;
they interchange them:

B(1)op Cop = CopB(2)op . (5.11)

We may want to make an exception for infinitesimal changeables, such as the Hamil-
tonian Hop:

[Bop,Hop] = i ∂
∂t

Bop. (5.12)

(III) superimposables Sop: these map an ontological state onto any other, more gen-
eral superposition of ontological states:

Sop|A〉 = λ1|A〉 + λ2|B〉 + · · · , (superimposable). (5.13)

All operators normally used are superimposables, even the simplest position or
momentum operators of classroom quantum mechanics. This is easily verified by
checking the time-dependent commutation rules (in the Heisenberg representation).
In general:3

[�x(t1), �x(t2)
] �= 0, if t1 �= t2. (5.14)

3A rare exception, for example, is the harmonic oscillator when the time span is an integer multiple
of the period T .
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5.5.2 Observers and the Observed

Standard quantum mechanics taught us a number of important lessons. One was
that we should not imagine that an observation can be made without disturbing the
observed object. This warning is still valid in the CAI. If measuring the position of

a particle means checking the wave function whether perhaps �x ?= �x(1), this may be
interpreted as having the operator Pop(�x(1)) act on the state:

|ψ〉 → Pop
(�x(1))|ψ〉, Pop

(�x(1))= δ(�xop − �x(1)). (5.15)

This modifies the state, and consequently all operators acting on it after that may
yield results different from what they did before the “measurement”.

However, when a genuine beable acts on an ontological state, the state is simply
multiplied with the value found, but will evolve in the same way as before (as-
suming we chose the ‘true’ ontological basis, see axiom #c in Sect. 5.4). Thus,
measurements of beables are, in a sense, classical measurements. They would be
the only measurements that do not disturb the wave function, but of course, such
measurements cannot be performed in practice.

Other measurements, which seem to be completely legal according to conven-
tional quantum mechanics, will not be possible in the CAI. In the CAI, as in ordinary
quantum mechanics, we can consider any operator and study its expectation value.
But since the class of physically realizable wave functions is now smaller than in
standard QM, certain states can no longer be realized, and we cannot tell what the
outcome of such a measurement could possibly be. Think of any (non infinitesi-
mal) changeable Cop. All ontological states will give the ‘expectation value’ zero to
such a changeable, but we can consider its eigenvalues, which in general will not
yield the value zero. The corresponding eigenstates are definitely not ontological
(see Sect. 5.7.1).

Does this mean that standard quantum mechanics is in conflict with the CAI?
We emphasize that this is not the case. It must be realized that, also in conventional
quantum mechanics, it may be considered acceptable to say that the Universe has
been, and will always be, in one and the same quantum state, evolving in time in
accordance with the Schrödinger equation (in the Schrödinger picture), or staying
the same (in the Heisenberg picture). If this state happens to be one of our ontolog-
ical states then it behaves exactly as it should. Ordinary quantum mechanics makes
use of template states, most of which are not ontological, but then the real world in
the end must be assumed to be in a superposition of these template states so that the
ontological state resurfaces anyway, and our apparent disagreements disappear.

5.5.3 Inner Products of Template States

In doing technical calculations, we perform transformations and superpositions that
lead to large sets of quantum states which we now regard as templates, or candidate
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models for (sub) atomic processes that can always be superimposed at a later stage
to describe the phenomena we observe. Inner products of templates can be studied
the usual way.

A template state |ψ〉 can be used to serve as a model of some actually observed
phenomenon. It can be any quantum superposition of ontological states |A〉. The
inner product expressions |〈A|ψ〉|2 then represent the probabilities that ontological
state |A〉 is actually realized.

According to the Copenhagen rule #ii, Sect. 5.4, the probability that the template
state |ψ1〉 is found to be equal to the state |ψ2〉, is given by |〈ψ1|ψ2〉|2. However,
already at the beginning, Sect. 2.1, we stated that the inner product 〈ψ1|ψ2〉 should
not be interpreted this way. Even if their inner product vanishes, template states |ψ1〉
and |ψ2〉 may both have a non vanishing coefficient with the same ontological state
|A〉. This does not mean that we depart from Copenhagen rule #ii, but that the true
wave function cannot be just a generic template state; it is always an ontological
state |A〉. This means that the inner product rule is only true if either |ψ1〉 or |ψ2〉
is an ontological state while the other may be a template. We are then considering
the probability that the template state coincides exactly with one of the ontological
state |A〉.

Thus, we use the Born interpretation of the inner product |〈ψ1|ψ2〉|2 if one of the
two templates is regarded as a candidate ontological state. This is legitimate, as we
know that the ontological states are complicated superpositions of our templates.
There are unobserved degrees of freedom, and how these are entangled with this
state is then immaterial. Thus, one of our template states then can be assumed to
represent a probability distribution of the ontological states of the universe, the other
is a model of an ontological state.

We see that the inner product rule can be used in two ways; one is to describe
the probability distribution of the initial states of a system under consideration, and
one is to describe the probability that a given classical state is reached at the end of
a quantum process. If the Born rule is used to describe the initial probabilities, the
same rule can be used to calculate the probabilities for the final states.

5.5.4 Density Matrices

Density matrices are used when we neither know exactly the ontological states nor
the templates. One takes a set of templates |ψi〉, and attributes to them probabilities
Wi ≥ 0, such that

∑
i Wi = 1. This is called a mixed state. In standard quantum

mechanics, one then finds for the expectation values of an operator O:

〈O〉 =
∑

i

Wi〈ψi |O|ψi〉 = Tr(�O); �=
∑

i

Wi |ψi〉〈ψi |. (5.16)

The operator � is called the density matrix.
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Note that, if the ontologic basis is known, and the operator O is a beable, then
the probabilities are indistinguishable from those generated by a template,

|ψ〉 =
∑

i

λi
∣∣ψont
i

〉
, |λi |2 =Wi, (5.17)

since in both cases the density matrix in that basis is diagonal:

�=
∑

i

Wi
∣∣ψont
i

〉〈
Ψ ont
i

∣∣. (5.18)

If O is not a beable, the off-diagonal elements of the density matrix may seem to be
significant, but we have to remember that non-beable operators in principle cannot
be measured, and this means that the formal distinction between density matrices
and templates disappears.

Nevertheless, the use of density matrices is important in physics. In practice,
the density matrix is used to describe situations where less can be predicted than
what can be maximally obtained in ideal observations. Take a single qubit as an
example. If we consider the expectation values of the Pauli matrices σx,σy, and σz,
a calculation using the qubit will yield

|〈σx〉|2 + |〈σy〉|2 + |〈σz〉|2 = 1, (5.19)

whereas a mixed state will give

|〈σx〉|2 + |〈σy〉|2 + |〈σz〉|2 < 1. (5.20)

This amounts to a loss of information in addition to the usual quantum uncertainty.

5.6 The Hamiltonian

As was explained in the Introduction to this chapter, Sect. 5.1, there are many ways
to choose a Hamiltonian operator that correctly produces a Schrödinger equation for
the time dependence of a (cellular) automaton. Yet the Hamiltonian for the quantum
world as we know it, and in particular for the Standard Model, is quite unique. How
does one derive the ‘correct’ Hamiltonian?

Of course there are conserved quantities in the Standard Model, such as chemi-
cal potentials, global and local charges, and kinematical quantities such as angular
momentum. Those may be added to the Hamiltonian with arbitrary coefficients, but
they are usually quite distinct from what we tend to call ‘energy’, so it should be
possible to dispose of them. Then, there are many non-local conserved quantities,
which explains the large number of possible shifts δEi in Fig. 2.3, Sect. 2.2.2. Most
of such ambiguities will be removed by demanding the Hamiltonian to be local.
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5.6.1 Locality

Our starting expressions for the Hamiltonian of a deterministic system are Eqs. (2.8)
and (2.26). These, however, converge only very slowly for large values of n. If we
apply such expansions to the cellular automaton, Eqs. (5.2) and (5.3), we see that
the nth term will involve interactions over neighbours that are n steps separated. If
we write the total Hamiltonian H as

H =
∑

�x
H(�x), H(�x)=

∞∑

n=1

Hn(�x), (5.21)

we see contributions Hn(�x) that involve interactions over n neighbours, with coef-
ficients dropping typically as 1/n. Typically,

[
Hn(�x),Hm

(�x ′)]= 0 only if |�x − �x ′|> n+m, (5.22)

while in relativistic quantum field theories, we have [H(�x),H(�x ′)] = 0 as soon as
�x �= �x ′. Considering that the number of interacting neighbouring cells that fit in a d-
dimensional sphere with radius n, may grow rapidly with n, while the leading terms
start out being of the order of the Planck energy, we see that this convergence is too
slow: large contributions spread over large distances. This is not the Hamiltonian
that has the locality structure typical for the Standard Model.

Now this should not have been surprising. The eigenvalues of Hamiltonians (2.8)
and (2.26) are both bounded to the region (0,2π/δt), while any Hamiltonian de-
scribed by equations such as (5.21), should be extensive: their eigenvalues may grow
proportionally to the volume of space.

A better construction for a cellular automaton is worked out further in Part II,
Chap. 21. There, we first introduce the Baker Campbell Hausdorff expansion. In
that, also, the lowest terms correspond to a completely local Hamiltonian density,
while all terms are extensive. Unfortunately, this also comes at a price that is too
expensive for us: the Baker Campbell Hausdorff series does not seem to converge at
all in this case. One could argue that, if used only for states where the total energies
are much less than the Planck energy, the series should converge, but we have no
proof for that. Our problem is that, in the expressions used, the intermediate states
can easily represent higher energies.

Several attempts were made to arrive at a positive Hamiltonian that is also a space
integral over local Hamiltonian densities. The problem is that the cellular automaton
only defines a local evolution operator over finite time steps, not a local Hamilto-
nian that specifies infinitesimal time evolution. Generically valid formal procedures
seem to fail, but if we stick closer to procedures that resemble perturbative quan-
tum field theories, we seem to approach interesting descriptions that almost solve
the problem. In Chap. 22 of Part II, we use second quantization. This procedure
can be summarized as follows: consider first a cellular automaton that describes
various types of particles, all non-interacting. This automaton will be integrable,
and its Hamiltonian, H0, will certainly obey locality properties, and have a lower
bound. Next, one must introduce interactions as tiny perturbations. This should not
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be difficult in cellular automata; just introduce small deviations from the free par-
ticle evolution law. These small perturbations, even if discrete and deterministic,
can be handled perturbatively, assuming that the perturbation occurs infrequently,
at sufficiently separated spots in space and time. This should lead to something that
can reproduce perturbative quantum field theories such as the Standard Model.

Note, that in most quantum field theories, perturbation expansions have been
used with much success (think for instance of the calculation of the anomalous
magnetic moment g − 2 of the electron, which could be calculated and compared
with experiment in superb precision), while it is still suspected that the expansions
eventually do not converge. The non-convergence, however, sets in at very high
orders, way beyond today’s practical limits of accuracy in experiments.

We now believe that this will be the best way to construct a Hamiltonian with
properties that can be compared to experimentally established descriptions of parti-
cles. But, it is only a strategy; it was not possible to work out the details because the
deterministic free particle theories needed are not yet sufficiently well understood.

Thus, there is still a lot of work to be done in this domain. The questions are
technically rather involved, and therefore we postpone the details to Part II of this
book.

5.6.2 The Double Role of the Hamiltonian

Without a Hamiltonian, theoretical physics would look completely different. In clas-
sical mechanics, we have the central issue that a mechanical system obeys an energy
conservation law. The energy is a non negative, additive quantity that is locally well-
defined. It is these properties that guarantee stability of mechanical systems against
complete collapse or completely explosive solutions.

The classical Hamiltonian principle is a superb way to implement this mecha-
nism. All that is needed is to postulate an expression for the non-negative, conserved
quantity called energy, which turns into a Hamiltonian H(�x, �p) if we carefully de-
fine the dynamical quantities on which it depends, being canonical pairs of posi-
tions xi and momenta pi . The ingenious idea was to take as equation of motion the
Hamilton equations

d

dt
xi(t)= ∂

∂pi
H(�x, �p), d

dt
pi(t)= − ∂

∂xi
H(�x, �p). (5.23)

This guarantees that d
dt H(�x, �p)= 0 . The fact that the equations (5.23) allow for a

large set of mathematical transformations makes the principle even more powerful.
In quantum mechanics, as the reader should know, one can use the same Hamil-

tonian function H to define a Schrödinger equation with the same property: the
operator H is conserved in time. If H is bounded from below, this guarantees the
existence of a ground state, usually the vacuum,

Thus, both quantum and classical mechanics are based on this powerful principle,
where a single physical variable, the Hamiltonian, does two things: it generates the
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equations of motion, and it gives a locally conserved energy function that stabilizes
the solutions of the equations of motion. This is how the Hamiltonian principle de-
scribes equations of motion, or evolution equations, whose solutions are guaranteed
to be stable.

Now how does this work in discrete, deterministic systems of the kind stud-
ied here? Our problem is that, in a discrete, classical system, the energy must also
be discrete, but the generator of the evolution must be an operator with continuous
eigenvalues. The continuous differential equations (5.23) must be replaced by some-
thing else. In principle, this can be done, we could attempt to recover a continuous
time variable, and derive how our system evolves in terms of that time variable.
What we really need is an operator H , that partly represents a positive, conserved
energy, and partly a generator of infinitesimal time changes. We elaborate this issue
further in Part II, Chap. 19, where, among other things, we construct a classical, dis-
cretized Hamiltonian in order to apply a cellular automaton version of the Hamilton
principle.

5.6.3 The Energy Basis

In Sect. 5.5.1, it was explained, that a deterministic model of a quantum mechani-
cal system is obtained if we can find a set of beable operators, (5.8), that commute
at all times, see Eq. (5.9). The ontological states are then eigenstates of these be-
ables. There is a trivial example of such operators and such states in the real world:
the Hamiltonian and its eigenstates. According to our definition they form a set of
beables, but unfortunately, they are trivial: there is only one Hamiltonian, and the en-
ergy eigenstates do not change in time at all. This describes a static classical world.
What is wrong with it?

Since we declared that superpositions of ontological states are not ontological,
this solution also tells us that, if the energy eigenstates would be considered as
ontological, no superpositions of these would be admitted, while all conventional
physics only re-emerges when we do consider superpositions of the energy eigen-
states. Only superpositions of different energy states can be time-dependent, so yes,
this is a solution, but no, it is not the solution we want. The energy basis solution
emerges for instance if we take the model of Sect. 2.2.2, Figs. 2.2 and 2.3, where
we replace all loops by trivial loops, having only a single state, while putting all
the physics in the arbitrary numbers δEi . It is in accordance with the rules, but not
useful.

Thus, the choice of the energy basis represents an extreme limit that is often
not useful in practice. We see this also happen when a very important procedure
is considered: it seems that we will have to split energy into two parts: on the one
hand, there is a large, classical component, where energy, equivalent to mass, acts as
the source of a gravitational field and as such must be ontological, that is, classical.
This part must probably be discretized. On the other hand, we have the smaller
components of the energy that act as eigen values of the evolution operator, over
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sufficiently large time steps (much larger than the Planck time). These must form a
continuous spectrum.

If we would consider the energy basis as our ontological basis, we would regard
all of the energy as classical, but then the part describing evolution disappears; that
is not good physics. See Part II, Fig. 19.1, in Sect. 19.4.1. The closed contours in
that figure must be non-trivial.

5.7 Miscellaneous

5.7.1 The Earth–Mars Interchange Operator

The CAI surmises that quantum models exist that can be regarded as classical sys-
tems in disguise. If one looks carefully at these classical systems, it seems as if any
classical system can be rephrased in quantum language: we simply postulate an el-
ement of a basis of Hilbert space to correspond to every classical physical state that
is allowed in the system. The evolution operator is the permutator that replaces a
state by its successor in time, and we may or may not decide later to consider the
continuous time limit.

Naturally, therefore, we ask the question whether one can reverse the CAI, and
construct quantum theories for systems that are normally considered classical. The
answer is yes. To illustrate this, let us consider the planetary system. It is the proto-
type of a classical theory. We consider large planets orbiting around a sun, and we
ignore non-Newtonian corrections such as special and general relativity, or indeed
the actual quantum effects, all of which being negligible corrections. We regard the
planets as point particles, even if they may feature complicated weather patterns, or
life; we just look at their classical, Newtonian equations of motion.

The ontological states are defined by listing the positions �xi and velocities �vi of
the planets (which commute), and the observables describing them are the beables.
Yet also this system allows for the introduction of changeables and superimposables.
The quantum Hamiltonian here is not the classical thing, but

H quant =
∑

i

( �pop
x,i · �vi + �pop

v,i · �Fi(x)/mi
)
, (5.24)

where

�pop
x,i = −i ∂

∂ �xi , �pop
v,i = −i ∂

∂ �vi , and x = {�xi}. (5.25)

Here, �Fi(x) are the classical forces on the planets, which depend on all positions.
Equation (5.24) can be written more elegantly as

H quant =
∑

i

(
�pop
x,i ·

∂H class

∂ �pi − �pop
p,i ·

∂H class

∂ �xi
)
, (5.26)
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where pop
p,i = m−1

i p
op
v,i . Clearly, �pop

xi , �pop
vi and �pop

pi are infinitesimal changeables,
and so is, of course, the Hamiltonian H quant. The planets now span a Hilbert space
and behave as if they were quantum objects. We did not modify the physics of the
system.

We can continue to define more changeables, and ask how they evolve in time.
One of the author’s favourites is the Earth–Mars interchange operator. It puts the
Earth where Mars is now, and puts Mars where planet Earth is. The velocities are
also interchanged.4 If Earth and Mars had the same mass then the planets would
continue to evolve as if nothing happened. Since the masses are different however,
this operator will have rather complicated properties when time evolves. It is not
conserved in time.

The eigenvalues of the Earth–Mars interchange operator XEM are easy to calcu-
late:

XEM = ±1, (5.27)

simply because the square of this operator is one. In standard QM language, XEM
is an observable. It does not commute with the Hamiltonian because of the mass
differences, but, at a particular moment, t = t1, we can consider one of its eigenstates
and ask how it evolves.

Now why does all this sound so strange? How do we observe XEM? No-one can
physically interchange planet Earth with Mars. But then, no-one can interchange
two electrons either, and yet, in quantum mechanics, this is an important operator.
The answer to these questions is, that regarding the planetary system, we happen to
know what the beables are: they are the positions and the velocities of the planets,
and that turns them into ontological observables. The basis in which these observ-
ables are diagonal operators is our preferred basis. The elements of this basis are
the ontological states of the planets. If, in a quantum world, investigators one day
discover what the ontological beables are, everything will be expressed in terms of
these, and any other operators are no longer relevant.

It is important to realize that, in spite of the fact that, in Copenhagen language,
XEM is an observable (since it is Hermitian), we cannot measure it, to see whether
it is +1 or −1 . This is because we know the wave function |ont〉 . It is 1 for the
actual positions of Earth and Mars, 0 when we interchange the two. This is the
superposition

|ont〉 = 1√
2

(|XEM = 1〉 + |XEM = −1〉); (5.28)

which is a superposition of two template states. According to Copenhagen, a mea-
surement would yield ±1 with 50 %/50 % chances.

4We disregarded the moons for a moment; we could drag the moons along as well, or keep them
where they are. They don’t play a role in this argument.
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5.7.2 Rejecting Local Counterfactual Definiteness and Free Will

The arguments usually employed to conclude that local hidden variables cannot
exist, begin with assuming that such hidden variables should imply local counter-
factual definiteness. One imagines a set-up such as the EPR-Bell experiment that we
exposed in Sect. 3.6. Alice and Bob are assumed to have the ‘free will’ to choose
the orientation of their polarization filters anytime and anyway they wish, and there
is no need for them to consult anyone or anything to reach their (arbitrary) decision.
The quantum state of the photon that they are about to investigate should not depend
on these choices, nor should the state of a photon depend on the choices made at the
other side, or on the outcome of those measurements.

This means that the outcomes of measurements should already be determined by
some algorithm long before the actual measurements are made, and also long before
the choice was made what to measure. It is this algorithm that generates conflicts
with the expectations computed in a simple quantum calculation. It is counterfactual,
which means that there may be one ‘factual’ measurement but there would have been
many possible alternative measurements, measurements that are not actually carried
out, but whose results should also have been determined. This is what is usually
called counterfactual definiteness, and it has essentially been disproven by simple
logic.

Now, as has been pointed out repeatedly, the violation of counterfactual definite-
ness is not at all a feature that is limited to quantum theory. In our example of the
planetary system, Sect. 5.7.1, there is no a priori answer to the question which of
the two eigenstates of the Earth–Mars exchange operator, the eigenvalue +1 or −1,
we are in. This is a forbidden, counterfactual question. But in case of the planetary
system, we know what the beables are (the positions and velocities of the planets),
whereas in the Standard Model we do not know this. There, the illegitimacy of coun-
terfactual statements is not immediately obvious. In essence, we have to posit that
Alice and Bob do not have the free will to change the orientation of their filters; or
if we say that they do, their decisions must have their roots in the past and, as such,
they affect the possible states a photon can be in. In short, Alice and Bob make
decisions that are correlated with the polarizations of the photons, as explained in
Sect. 3.6.

It is the more precise definition of ‘free will’, as the freedom to choose one’s
state at any given time, that should be used in these arguments, as was explained in
Sect. 3.8.

5.7.3 Entanglement and Superdeterminism

An objection often heard against the general philosophy advocated in this work,
is that it would never enable accommodation for entangled particles. The careful
reader, however, must realize by now that, in principle, there should be no problem
of this sort. Any quantum state can be considered as a template, and the evolution
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of these templates will be governed by the real Schrödinger equation. If the relation
between the ontological basis and the more conventional basis choices is sufficiently
complex, we will encounter superimposed states of all sorts, so one definitely also
expects states where particles behave as being ‘quantum-entangled’.

Thus, in principle, it is easy to write down orthonormal transformations that turn
ontic states into entangled template states.

There are some problems and mysteries, however. The EPR paradox and Bell’s
theorem are examples. As explained in Sect. 3.6, the apparent contradictions can
only be repaired if we assume rather extensive correlations among the ‘hidden vari-
ables’ everywhere in the Universe. The mapping of ontic states into entangled states
appears to depend on the settings chosen by Alice and Bob in the distant future.

It seems as if conspiracy takes place: due to some miraculous correlations in the
events at time t = 0, a pair of photons ‘knows in advance’ what the polarization
angles of the filters will be that they will encounter later, and how they should pass
through them. Where and how did this enter in our formalism, and how does a
sufficiently natural system, without any conspiracy at the classical level, generate
this strange behaviour?

It is not only a feature among entangled particles that may appear to be so prob-
lematic. The conceptual difficulty is already manifest at a much more basic level.
Consider a single photon, regardless whether it is entangled with other particles or
not. Our description of this photon in terms of the beables dictates that these beables
behave classically. What happens later, at the polarization filter(s), is also dictated
by classical laws. These classical laws in fact dictate how myriads of variables fluc-
tuate at what we call the Planck scale, or more precisely, the smallest scale where
distinguishable physical degrees of freedom can be recognized, which may or may
not be close to what is usually called the Planck scale. Since entangled particles oc-
cur in real experiments, we claim that the basis-transformations will be sufficiently
complex to transform states that are ontic at the Planck scale, into entangled states.

But this is not the answer to the question posed. The usual way to phrase the
question is to ask how ‘information’ is passed on. Is this information classical or
quantum? If it is true that the templates are fundamentally quantum templates, we
are tempted to say, well, the information passed on is quantum information. Yet
it does reduce to classical information at the Planck scale, and this was generally
thought not to be possible.

That must be a mistake. As we saw in Sect. 3.6, the fundamental technical
contradiction goes away if we assume strong correlations between the ‘quantum’
fluctuations—including the vacuum fluctuations—at all distance scales (also includ-
ing correlations between the fluctuations generated in quasars that are separated by
billions of light years). We think the point is the following. When we use templates,
we do not know in advance which basis one should pick to make them look like the
ontological degrees of freedom as well as possible. For a photon going through a
polarization filter, the basis closest to the ontological one is the basis where coordi-
nates are chosen to be aligned with the filter. But this photon may have been emitted
by a quasar billions of years ago, how did the quasar know what the ontological
basis is?
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The answer is that indeed the quasar knows what the ontological basis is, because
our theory extends to these quasars as well. The information, ‘this is an ontologi-
cal state, and any set of superimposed states is not’, is a piece of information that,
according to our theory, is absolutely conserved in time. So, if that turns out to be
the basis now, it was the basis a billion years ago. The quasars seem to conspire in
a plot to make fools of our experimenters, but in reality they just observe a conser-
vation law: the information as to which quantum states form the ontological basis,
is conserved in time. Much like the law of angular momentum, or any other exactly
conserved entity, this conservation law tells us what this variable is in the future if
it is known in the past, and vice-versa.

The same feature can be illustrated by a thought experiment where we measure
the fluctuations of photons emitted by a quasar, but first we send the photons through
a polarization filter. The photographs we make will be classical objects. Here also,
we must conclude that the photons emitted by the quasar already ‘knew’ what their
polarizations were when they left, billions of years ago. This isn’t conspiracy, it is
just the consequence of our conservation law: ontological states, indeed only onto-
logical states, evolve into other ontological states.

We must conclude that, if there seems to be conspiracy in our quantum descrip-
tion of reality, then that is to be considered as a feature of our quantum techniques,
not of the physical system we are looking at. There is no conspiracy in the classical
description of the cellular automaton. Apparent conspiracy is a feature, not a bug.

The answer given here, is often called superdeterminism. It is the idea that in-
deed Alice and Bob can only choose ontological states to be measured, never the
superimposed states, which we use as templates. In a sense, their actions were pre-
determined, but of course in a totally unobservable way. Superdeterminism only
looks weird if one adheres to the description of entangled particles as being quan-
tum systems, described by their quantum states. The ontological description does
not use quantum states. In that description, the particles behave in a normal, causal
manner. However, we do have to keep in mind that these particles, and everything
else, including Bob and Alice’s minds, are all strongly correlated. They are corre-
lated now as strongly as when the photons were emitted by the source, as was laid
down5 in the mouse-dropping function, Fig. 3.2 in Sect. 3.7.

In Sect. 3.8, it was explained in explicitly physical terms, what ‘free will’ should
really stand for, and why superdeterminism can clash with it.

5.7.4 The Superposition Principle in Quantum Mechanics

What exactly happened to the superposition principle in the CA Interpretation of
quantum mechanics? Critics of our work brought forward that the CAI disallows

5The mouse-dropping function does not show a 100 % correlation. This is a feature due to the
somewhat artificial nature of the model used for the detection. If we use more realistic models for
the detection, the mouse-dropping function might consist of sharper peaks.
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superposition, while obviously the superposition principle is serving quite well as
a solid back bone of quantum mechanics. Numerous experiments confirm that if
we have two different states, also any superposition of these states can be realized.
Although the reader should have understood by now how to answer this question,
let us attempt to clarify the situation once again.

At the most basic level of physical law, we assume only ontological states to oc-
cur, and any superposition of these, in principle, does not correspond to an ontolog-
ical state. At best, a superposition can be used to describe probabilistic distributions
of states (we call these “template states”, to be used when we do not have the ex-
act information at hand to determine with absolute certainty which ontological state
we are looking at). In our description of the Standard Model, or any other known
physical system such as atoms and molecules, we do not use ontological states but
templates, which can be regarded as superpositions of ontological states. The hydro-
gen atom is a template, all elementary particles we know about are templates, and
this means that the wave function of the universe, which is an ontological state, must
be a superposition of our templates. Which superposition? Well, we will encounter
many different superpositions when doing repeated experiments. This explains why
we were led to believe that all superpositions are always allowed.

But not literally all superpositions can occur. Superpositions are man-made. Our
templates are superpositions, but that is because they represent only the very tiny
sector of Hilbert space that we understand today. The entire universe is in only
one ontological state at the time, and it of course cannot go into superpositions of
itself. This fact now becomes manifestly evident when we consider the “classical
limit”. In the classical limit we again deal with certainties. Classical states are also
ontological. When we do a measurement, by comparing the calculated “template
state” with the ontological classical states that we expect in the end, we recover the
probabilities by taking the norm squared of the amplitudes.

It appears that for many scientists this is difficult to accept. During a whole cen-
tury we have been brainwashed with the notion that superpositions occur every-
where in quantum mechanics. At the same time we were told that if you try to
superimpose classical states, you will get probabilistic distributions instead. It is
here that our present theory is more accurate: if we knew the wave function of the
universe exactly, we would find that it always evolves into one classical state only,
without uncertainties and without superpositions.

Of course this does not mean that standard quantum mechanics would be wrong.
Our knowledge of the template states, and how these evolve, is very accurate today.
It is only because it is not yet known how to relate these template states to the
ontological states, that we have to perform superpositions all the time when we
do quantum mechanical calculations. They do lead to statistical distributions in our
final predictions, rather than certainties. This could only change if we would find the
ontological states, but since even the vacuum state is expected to be a template, and
as such a complicated superposition of uncountably many ontic states, we should
expect quantum mechanics to stay with us forever—but as a mathematical tool, not
as a mystic departure from ordinary, “classical”, logic.
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5.7.5 The Vacuum State

Is the vacuum state an ontological state? The vacuum state is generally defined to be
the state with lowest energy. This also means that no particles can be found in this
state, simply because particles represent energy, and, in the vacuum state, we have
not enough energy even to allow for the presence of a single particle.

The discretized Hamiltonian is only introduced in Sect. 19 of Part II. It is a be-
able, but being discrete it can only be a rough approximation of the quantum Hamil-
tonian at best, and its lowest energy state is highly degenerate. As such, this is not
good enough to serve as a definition of a vacuum. More to the point, the Hamilto-
nian defined in Sect. 19.2 is quantized in units that seem to be as large as the Planck
mass. It will be clear that the Hamiltonian to be used in any realistic Schrödinger
equation has a much more dense, basically continuous, eigenvalue spectrum. The
quantum Hamiltonian is definitely not a beable, as we explained earlier above, in
Sect. 5.6.3. Therefore, the vacuum is not an ontological state.

In fact, according to quantum field theories, the vacuum contains many virtual
particles or particle-antiparticle pairs that fluctuate in- and out of existence ev-
erywhere in space–time. This is typical for quantum superpositions of ontological
states. Furthermore, the lightest particles in our theories are much lighter than the
Planck mass. They are not ontological, and demanding them to be absent in our
vacuum state inevitably turns our vacuum itself also into a non-ontological state.

This is remarkable, because our vacuum state has one more peculiar property: its
energy density itself is almost perfectly vanishing. Due to the cosmological constant,
there is energy in our vacuum state, but it is as small as about 6 protons per m3, an
extremely tiny number indeed, considering the fact that most length scales in particle
physics are indeed much smaller than a metre. This very tiny but non-vanishing
number is one of Nature’s greater mysteries.

And yet, the vacuum appears to be non-ontological, so that it must be a place
full of activity. How to reconcile all these apparently conflicting features is not at all
understood.6

The vacuum fluctuations may be seen as one of the primary causes of non-
vanishing, non-local correlations, such as the mouse dropping function of Sect. 3.6.
Without the vacuum fluctuations, it would be difficult to understand how these cor-
relations could be sustained.

5.7.6 A Remark About Scales

Earlier, we raised the question in what way our quantum world differs from a more
classical, chaotic system such as the Van der Waals gas. There is one important

6There is room for lots of speculations. One is that the vacuum state, as a template state, is a
superposition of very many ontic states, each of which generating only negligible amounts of
gravitation, so that the vacuum stays practically flat. We decide not to delve much further into this
question, as long as quantum gravity is not better understood.
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aspect, which actually may shed some further light on some of the ‘quantum pecu-
liarities’ that we encounter.

The picture of our world that we obtain seems to be as follows. Imagine a screen
displaying the evolution of our cellular automaton. We imagine its pixels to have
roughly the size of one Planck length, 10−33 cm. All possible states seem to occur,
so that our screen may appear to feature mainly just white noise. Now, the scale
of atoms, molecules and sub-atomic particles is roughly at 10−8 to 10−15 cm, or
typically some 20 factors of 10 larger. It is as if we are looking at a typical computer
screen from the distance of one light year, roughly.

However, imagine that we flip just one pixel from 0 to 1 or back, without touching
any of its neighbors. This is the action of an operator that modifies the energy of the
system by typically one unit of Planck energy, or, the kinetic energy of a moderately
sized airplane. Therefore:

flipping one pixel has a formidable effect on the state we are looking at.

If we want to make less energetic changes, we have to flip the information over
a domain with much less energy, or typically thousands of times bigger than the
Planck size. This means that

States that are easier to encounter in ordinary systems would require flipping
millions of pixels, not just one.

It is not obvious what we have to conclude from this. It may well be that we have
to connect this observation with our ideas of information loss: in making a change
representing information that is not easily lost, we will find that millions of pixels
are involved.

Finally, when we apply an operator affecting (1020)3 pixels, or so, we achieve
a state where a tiny atom or molecule is flipped to another quantum state. Thus,
although our system is deterministic, it is forbidden to modify just exactly one pixel;
this is not what can be achieved in simple quantum experiments. It is important to
realize this fact when discussing the vacuum correlation functions in connection
with Bell’s theorem and similar topics.

5.7.7 Exponential Decay

Vacuum fluctuations must be the primary reason why isolated systems such as atoms
and molecules in empty space, show typical quantum features. A very special quan-
tum mechanical property of many particles is the way they can decay into two or
more other particles. Nearly always, this decay follows a perfect exponential decay
law: the probability P(t) that the particle of a given type has not yet decayed after
elapsed time t obeys the rule

dP(t)

dt
= −λP (t), → P(t)= P(0)e−λt , (5.29)

where λ is a coefficient that often does not at all depend on external circumstances,
or on time. If we start off with N0 particles, then the expectation value 〈N(t)〉 of the
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particle number N(t) after time t follows the same law:
〈
N(t)

〉=N0e
−λt . (5.30)

If there are various modes in which the particle can decay, we have λ= λ1 +λ2 +
· · · , and the ratios of the λi equals the ratios of the modes of the decays observed.

Now how can this be explained in a deterministic theory such as a cellular au-
tomaton? In general, this would not be possible if the vacuum would be a single
ontological state. Consider particles of a given type. Each individual particle will
decay after a different amount of time, precisely in accordance to Eq. (5.29). Also,
the directions in which the decay products will fly will be different for every indi-
vidual particle, while, if there are three or more decay products involved, also the
energies of the various decay products will follow a probability distribution. For
many existing particles, these distributions can be accurately calculated following
the quantum mechanical prescriptions.

In a deterministic theory, all these different decay modes would have to corre-
spond to distinct initial states. This would be hopeless to accommodate for if every
individual particle would have to behave like a ‘glider solution’ of a cellular au-
tomaton, since all these different decay features would have to be represented by
different gliders. One would quickly find that millions, or billions of different glider
modes would have to exist.

The only explanation of this feature must be that the particles are surrounded by
a vacuum that is in a different ontological state every time. A radio-active particle is
continuously hit by fluctuating features in its surrounding vacuum. These features
represent information that flies around, and as such, must be represented by almost
perfect random number generators. The decay law (5.29) thus emerges naturally.

Thus it is inevitable that the vacuum state has to be regarded as a single template
state, which however is composed of infinitely many ontological states. The states
consisting of a single particle roaming in a vacuum form a simple set of different
template states, all orthogonal to the vacuum template state, as dictated in the Fock
space description of particle states in quantum field theory.

5.7.8 A Single Photon Passing Through a Sequence of Polarizers

It is always illustrative to reduce a difficulty to its most basic form. The conceptual
difficulty one perceives in Bell’s gedanken experiment, already shows up if we con-
sider a single photon, passing through a sequence of polarization filters, F1, . . . ,FN .
Imagine these filters to be rotated by angles ϕ1, ϕ2, . . . , ϕN , and every time a pho-
ton hits one of these filters, say Fn , there is a probability equal to sin2ψn, with
ψn = ϕn−1 − ϕn, that the photon is absorbed by this filter. Thus, the photon may be
absorbed by any of the N polarizers. What would an ontological description of such
a setup be like?

Note that, the setup described here resembles our description of a radio-active
particle, see the previous subsection. There, we suggested that the particle is con-
tinuously interacting with the surrounding vacuum. Here, it is easiest to assume that
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the photon interacts with all filters. The fact that the photon arrives at filter Fn as a
superposition of two states, one that will pass through and one that will be absorbed,
means that, in the language of the ontological theory, we have an initial state that we
do not quite know; there is a probability cos2ψn that we have a photon of the pass-
through type, and a probability sin2ψn that it is of the type that will be absorbed. If
the photon passes through, its polarization is again well-defined to be ϕn. This will
determine what the distribution is of the possible states that may or may not pass
through the next filter.

We conclude that the filter, being essentially classical, can be in a very large
number of distinct ontological states. The simplest of all ontological theories would
have it that a photon arrives with polarization angle ψn with respect to the filter.
Depending on the ontological state of the filter, we have probability cos2ψ that the
photon is allowed through, but rotated to the direction ϕn, and probability sin2ψ

that it is absorbed (or reflected and rotated).
Now, return to the two entangled photons observed by Alice and Bob in Bell’s

set-up. In the simplest of all ontological theories, this is what happens: Alice’s and
Bob’s filters act exactly as above. The two photons carry both the same information
in the form of a single angle, c. Alice’s filter has angle a, Bob’s has angle b. As
we saw in Sect. 3.7, there is a 3-point correlation between a, b and c, given by the
mouse-dropping function, (3.23) and Fig. 3.2.

Now note, that the mouse-dropping function is invariant under rotations of a, b
and/or c by 90◦. The nature of the ontological state depends very precisely on the
angles a, b, and c, but each of these states differs from the others by multiples of
90◦ in these angles. Therefore, as soon as we have picked the desired orthonormal
basis, the basis elements will be entirely uncorrelated. This makes the correlations
unobservable whenever we work with the templates. Assuming the ontological con-
servation law at work here, we find that the ontological nature of the angles a, b and
c is correlated, but not the physical observables. It is to be expected that correlations
of this sort will pervade all of physics.

Our description of a photon passing through a sequence of polarization filters,
requires that the ontological initial state should include the information which of
the filters actually absorbs (or reflects) the photon. According to standard quantum
mechanics, this is fundamentally unpredictable. Apparently, this means that the ex-
act ontological state of the initial photon cannot be known when it occurs. This
makes our ‘hidden variables’ invisible. Due to the conspicuous correlation func-
tions of these initial states, an observer of the hidden variable would have access to
information that is forbidden by the Copenhagen doctrine. We suspect this to be a
special—and very important—property of the cellular automaton.

5.7.9 The Double Slit Experiment

Now that we have some idea how quantum mechanics should be explained in terms
of a cellular automaton, one might consider settings such as the double slit exper-
iment. It actually makes more sense to consider more general optical settings with
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screens with openings in them, lenses, polarizers, birefractors, Stern–Gerlach split-
ters, etc.

The general question would be how to understand how given |in〉 states lead to
given |out〉 states. The more specific question is how this could yield interference
patterns, and in particular, how these could become dependent on phase angles,
which are generally thought of as typical quantum phenomena.

As for the first question, our general theory says that the number of possible
in-states and the number of possible out-states are huge, and transitions can occur
between many in-states and many out-states . As was explained before, the ampli-
tudes that are obtained in the end, actually represent the probabilities that were put
in when we constructed the initial states; this is how Born’s probabilities eventually
came out.

The phases emerge primarily when we consider the time dependence of the
states. All ontological states were postulated to obey evolution equations where the
evolution operators U(t) were written as e−iH t , where H is the Hamiltonian. In
our simplified ontological models, we see what these phase angles really mean: If
our system tends to become periodic after a time T , the phase angle, e−iHT returns
to one. The phase therefore indicates the position of an ontological variable in its
periodic orbit.

This should explain everything. All ontological variables consist of basic ele-
ments that are periodic in time. The question about the probability of a given in-
state to evolve into a given out-state depends on where in its periodic orbit it hits. If
there are two or more paths from a given in-state to a given out-state, the probabil-
ity increases when the two paths are in phase and decreases if they are completely
out of phase. Of course this is true if these ontological variables would be classical
waves, in which case this is the standard interference phenomenon, such as is the
case with photons. The ontological variables associated to photons are essentially
the Maxwell fields. Now, we see that this is more generally true. All ontological
variables, in their most pristine form, must apparently be periodic in time, and if
there are many ways for one ontological state to evolve into an other ontological
state, the probabilities depend on the extent to which one phase angle is reached in
more different ways (more probably) than the opposite phase angle.

We do emphasize that this is not a very familiar formulation for classical pro-
cesses. What we are looking at here is the ultimate physics relevant near Planckian
scales, where much of what is going on will be new to physicists.

5.8 The Quantum Computer

Quantum mechanics is often endowed with mysterious features. There are vigorous
attempts to turn some of these features to our advantage. One famous example is the
quantum computer. The idea is to use entangled states of information carriers, which
could be photons, electrons, or something else, to represent vastly more information
than ordinary bits and bytes, and are therefore called qubits.
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Since the machines that investigators plan to construct would obey ordinary
quantum mechanics, they should behave completely in accordance with our theo-
ries and models. However, this seems to lead to contradictions.

In contrast with ordinary computers, the amount of information that can be car-
ried by qubits in a quantum computer, in principle, increases exponentially with the
number of cells, and consequently, it is expected that quantum computers will be
able to perform calculations that are fundamentally impossible in ordinary comput-
ers. An ordinary, classical computer would never be able to beat a quantum com-
puter even if it took the size of the universe, in principle.

Our problem is then, that our models underlying quantum mechanics are classi-
cal, and therefore they can be mimicked by classical computers, even if an experi-
mentalist would build a ‘quantum computer’ in such a world. Something is wrong.

Quantum computers still have not been constructed however. There appear to be
numerous practical difficulties. One difficulty is the almost inevitable phenomenon
of decoherence. For a quantum computer to function impeccably, one needs to have
perfect qubits.

It is generally agreed that one cannot make perfect qubits, but what can be done
is correct them for the errors that may sometimes occur. In a regular computer,
errors can easily be corrected, by using a slight surplus of information to check for
faulty memory sites. Can the errors of qubits also be corrected? There are claims
that this can be done, but in spite of that, we still don’t have a functioning quantum
computer, let alone a quantum computer that can beat all classical computers. Our
theory comes with a firm prediction:

Yes, by making good use of quantum features, it will be possible in principle,
to build a computer vastly superior to conventional computers, but no, these
will not be able to function better than a classical computer would do, if its
memory sites would be scaled down to one per Planckian volume element (or
perhaps, in view of the holographic principle, one memory site per Planck-
ian surface element), and if its processing speed would increase accordingly,
typically one operation per Planckian time unit of 10−43 seconds.

Such scaled classical computers can of course not be built, so that this quantum
computer will still be allowed to perform computational miracles, but factoring a
number with millions of digits into its prime factors will not be possible—unless
fundamentally improved classical algorithms turn out to exist. If engineers ever suc-
ceed in making such quantum computers, it seems to me that the CAT is falsified;
no classical theory can explain perfect quantum computers.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.



Chapter 6
Quantum Gravity

The Planck scale has been mentioned many times already. It is the scale of time,
lengths, masses, and energies, where three grand physical theories all play equally
significant roles, being special relativity (where the speed of light c is essential),
quantum mechanics (with Planck’s constant �) and Newton’s theory of gravity (with
Newton’s constant G). Having

c= 299 792 458 m/s,

�= 1.05457 × 10−34 kg m2/s,

G= 6.674 × 10−11 m3 kg−1 s−2, (6.1)

one finds

the Planck length, LPl =
√
G�

c3 = 1.616 × 10−35 m, (6.2)

the Planck time, TPl =
√
G�

c5 = 5.391 × 10−44 s, (6.3)

the Planck mass, MPl =
√
c�
G

= 21.76 µg, (6.4)

and the Planck energy, EPl =
√
c5
�

G
= 1.956 × 109 J. (6.5)

In this domain of physics, one expects Special and General Relativity and Quan-
tum Mechanics all to be relevant, but a complete synthesis of these three has not yet
been achieved—in fact, our continued struggle towards finding such a synthesis was
one of the main motivations for this work.

It is not unreasonable to suspect that the Planck length is the smallest significant
length scale in physics, and the Planck time is the smallest time scale at which
things can happen, but there is more. General Relativity is known to cause space
and time to be curved, so, if one might talk of some “lattice” in space and time,
curvature may be expected to cause defects in this lattice. Alternatively, one might
suspect that lattice-like behaviour can also be realized by imposing a cutoff in local
momentum and energy scales (a so-called bandwidth cut-off [57]); however, with
such a cut-off, deterministic models are difficult to construct.
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It is also important to note that General Relativity is based on the local auto-
morphism group. This means that time translations are locally defined, so that one
may expect that gravity could be essential to realize locality requirements for the
Hamiltonian. Mass, energy and momentum are local sources of gravitational fields,
but there is more.

Gravitation is a destabilizing force. Causing masses to attract one another, it gen-
erates greater masses and thus even stronger attraction. This may lead to gravita-
tional implosion. In contrast, electric as well as magnetic charges act repulsively
(if they have equal signs), which makes electromagnetism a lot more stable than
gravity as a force system.

When gravitational implosion takes place, black holes may form. Microscopic
black holes must play an essential role at the Planck scale, as they may act as vir-
tual particles, taking part in the vacuum fluctuations. When one tries to incorporate
black holes in an all-embracing theory, difficulties arise. According to standard cal-
culations, black holes emanate elementary particles, and this effect (Hawking effect
[47, 48]) allows one to compute the density of quantum states associated to black
holes. This density is very large, but as black holes increase in size, the number of
states does not grow as fast as one might expect: it grows exponentially with the
size of the surface, rather than the encapsulated volume. The quantum states that
one might expect in the bulk of a black hole mysteriously disappear.

We expect all this to produce a profound effect on the putative deterministic
models that could possibly lie at the basis of quantum theory. Discreteness of space
and time comes for free, because one can also argue that the number of quantum
states inside a volume V can never exceed that of a black hole occupying V , so
that the surface at the border of V dictates how many independent ontological states
are allowed inside V , an effect called the ‘holographic principle’ [81, 117]. Lo-
cality may come naturally because of the automorphism group as mentioned. Yet
space–time curvature causes problems. Nature’s book keeping system is still very
ill-understood.
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Chapter 7
Information Loss

Gravity is perhaps not the only refinement that may guide us towards better models.
Another interesting modification—though possibly related—might be of help. We
shall now discuss information loss [9, 108].

7.1 Cogwheels with Information Loss

Let us return to the Cogwheel Model, discussed in Sect. 2.2. The most general au-
tomaton may have the property that two or more different initial states evolve into
the same final state. For example, we may have the following evolution law involv-
ing 5 states:

(4)→ (5)→ (1)→ (2)→ (3)→ (1). (7.1)

The diagram for this law is a generalization of Fig. 2.1, now shown in Fig. 7.1. We
see that in this example state #3 and state #5 both evolve into state #1.

At first sight, one might imagine to choose the following operator as its evolution
operator:

U(δt)
?=

⎛

⎜⎜⎜
⎝

0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

⎞

⎟⎟⎟
⎠
. (7.2)

However, since there are two states that transform into state #1 whereas there are
none that transform into state #4, this matrix is not unitary, and it cannot be written
as the exponent of −i times an Hamiltonian.

One could think of making tiny modifications in the evolution operator (7.2),
since only infinitesimal changes suffice to find some sort of (non Hermitian) Hamil-
tonian of which this then would be the exponent. This turns out not to be such a
good idea. It is better to look at the physics of such models. Physically, of course, it
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Fig. 7.1 a Simple 5-state automaton model with information loss. b Its three equivalence classes.
c Its three energy levels

is easy to see what will happen. States #4 and #5 will only be realized once if ever.
As soon as we are inside the cycle, we stay there. So it makes more sense simply to
delete these two rather spurious states.

But then there is a problem: in practice, it might be quite difficult to decide which
states are inside a closed cycle, and which states descend from a state with no past
(“gardens of Eden”). Here, it is the sequence #4, #5. but in many more realistic
examples, the gardens of Eden will be very far in the past, and difficult to trace. Our
proposal is, instead, to introduce the concept of information equivalence classes
(info-equivalence classes for short):

Two states (a) and (b) at time t0 are equivalent if there exists a time t1 > t0
such that, at time t1 , state (a) and (b) have evolved into the same state (c).

This definition sends states #5 and #3 in our example into one equivalence class,
and therefore also states #4 and #2 together form an equivalence class. Our example
has just 3 equivalence classes, and these classes do evolve with a unitary evolution
matrix, since, by construction, their evolution is time-reversible. Info-equivalence
classes will show some resemblance with gauge equivalence classes, and they may
well actually be quite large. Also, the concept of locality will be a bit more dif-
ficult to understand, since states that locally look quite different may nevertheless
be in the same class. Of course, the original underlying classical model may still
be completely local. Our pet example is Conway’s game of life [39, 40]: an arbi-
trary configuration of ones and zeros arranged on a two-dimensional grid evolve
according to some especially chosen evolution law, see Sect. 1.4. The law is not
time-reversible, and information is lost at a big scale. Therefore, the equivalence
classes are all very big, but the total number of equivalence classes is also quite
large, and the model is physically non-trivial. An example of a more general model
with information loss is sketched in Fig. 7.2. We see many equivalence classes that
each may contain variable numbers of members.

Thus, we find how models with information loss may still be connected with
quantum mechanics:

Each info-equivalence class corresponds to an element of the ontological ba-
sis of a quantum theory.

Can information loss be helpful? Intuitively, the idea might seem to be attrac-
tive. Consider the measurement process, where bits of information that originally
were properties of single particles, are turned into macroscopic observables. These
may be considered as being later in time, and all mergers that are likely to happen
must have taken place. In other words, the classical states are obviously represented
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Fig. 7.2 Example of a more generic finite, deterministic, time non reversible model. Largest (pink
and blue) dots: these also represent the equivalence classes. Smallest (green) dots: “gardens of
Eden”. Heavier dots (blue): equivalence classes that have “merge sites” among their members.
The info-equivalence classes and the energy spectrum are as in Figs. 2.2 and 2.3

by the equivalence classes. However, when we were still dealing with individual
qubits, the mergers have not yet taken place, and the equivalence classes may form
very complex, in a sense “entangled”, sets of states. Locality is then difficult to in-
corporate in the quantum description, so, in these models, it may be easier to expect
some rather peculiar features regarding locality—perhaps just the thing we need.

What we also need is a better understanding of black holes. The idea that black
holes, when emitting Hawking radiation, do still obey quantum unitarity, which
means that the Hamiltonian is still Hermitian, is gaining in acceptance by re-
searchers of quantum gravity, even among string theorists. On the other hand, the
classical black hole is surrounded by a horizon from which nothing seems to be
able to escape. Now, we may be able to reconcile these apparently conflicting no-
tions: the black hole is an example of a system with massive amounts of information
loss at the classical level, while the quantum mechanics of its micro-states is nev-
ertheless unitary. The micro states are not the individual classical states, but merely
the equivalence classes of classical states. According to the holographic principle,
these classes are distributed across the horizon in such a way that we have one bit
of information for each area segment of roughly the Planck length squared. We now
interpret this by saying that all information passing through a horizon disappears,
with the exception of one bit per unit horizon area.

We return to Hawking radiation in Sect. 9.4.

7.2 Time Reversibility of Theories with Information Loss

Now when we do quantum mechanics, there happens to be an elegant way to restore
time reversibility. Let us start with the original evolution operator U(δt), such as
the one shown in Eq. (7.2). It has no inverse, but, instead of U−1, we could use
U† as the operator that brings us back in time. What it really does is the following:
the operator U†(δt), when acting on an ontological state |ont(t0)〉 at time t0, gives
us the additive quantum superposition of all states in the past of this state, at time
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t = t0 − δt . The norm is now not conserved: if there were N states in the past of a
normalized state |ont(t0)〉, the state produced at time t0 − δt now has norm

√
N . If

the state |ont(t0)〉 was a garden of Eden, then U†|ont(t0)〉 = 0.
Now remember that, whenever we do quantum mechanics, we have the freedom

to switch to another basis by using unitary transformations. It so happens that with
any ontological evolution operator U1 that could be a generalization of Eq. (7.2),
there exists a unitary matrix X with the property

U
†
1X =XU2, (7.3)

where U2 again describes an ontological evolution with information loss. This is not
hard to prove. One sees right away that such a matrix X should exist by noting that
U

†
1 and U2 can be brought in the same normal form. Apart from the opposite time

ordering, U1 and U2 have the same equivalence classes.
Finding the unitary operator X is not quite so easy. We can show how to produce

X in a very simple example. SupposeU1 is a very simpleN×N dimensional matrix
D of the form

D =

⎛

⎜
⎜
⎝

1 1 1 · · ·
0 0 0
0 0 0
...

⎞

⎟
⎟
⎠ , D† =

⎛

⎜
⎜
⎝

1 0 0 · · ·
1 0 0
1 0 0
...

⎞

⎟
⎟
⎠ , (7.4)

so D has N 1’s on the first row, and 0’s elsewhere. This simply tells us that D sends
all states |1〉, . . . |N〉 to the same state |1〉.

The construction of a matrix Y obeying

D†Y = YD, (7.5)

can be done explicitly. One finds

Yk� = 1√
N
e2πik�/N . (7.6)

Y is unitary and it satisfies Eq. (7.5), by inspection.
This result may come unexpected. Intuitively, one might think that information

loss will make our models non-invariant under time reversal. Yet our quantum me-
chanical tool does allow us to invert such a model in time. A “quantum observer” in
a model with information loss may well establish a perfect validity of symmetries
such as CPT invariance. This is because, for a quantum observer, transformations
with matrices X merely represent a transition to another orthonormal basis; the ma-
trix Y is basically the discrete Fourier transform matrix. Note that merger states (see
Fig. 7.2) transform into Gardens of Eden, and vice versa.

7.3 The Arrow of Time

One of the surprising things that came out of this research is a new view on the
arrow of time. It has been a long standing mystery that the local laws of physics
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appear to be perfectly time-reversible, while large-scale, classical physics is not at
all time-reversible. Is this not a clash with the reduction principle? If large-scale
physics can be deduced from small-scale physics, then how do we deduce the fact
that the second law of thermodynamics dictates that entropy of a closed system can
only increase and never decrease?

Most physicists are not really worried by this curious fact. In the past, this author
always explained the ‘arrow of time’ by observing that, although the small-scale
laws of Nature are time-reversible, the boundary conditions are not: the state of the
universe was dictated at time t = 0, the Big Bang. The entropy of the initial state
was very small, probably just zero. There cannot be any boundary condition at the
Big Apocalypse, t = t∞. So, there is asymmetry in time and that is that. For some
reason, some researchers are not content with such a simple answer.

We now have a more radical idea: the microscopic laws may not at all be time-
reversible. The classical theory underlying quantum mechanics does not have to be,
see Sect. 7.1. Then, in Sect. 7.2, we showed that, even if the classical equations
feature information loss at a great scale—so that only tiny fractions of information
are preserved—the emerging quantum mechanical laws continue to be exactly time-
reversible, so that, as long as we adhere to a description of things in terms of Hilbert
space, we cannot understand the source of time asymmetry.

In contrast, the classical, ontological states are very asymmetric in time, because,
as we stated, these are directly linked to the underlying classical degrees of freedom.

All this might make information loss acceptable in theories underlying quantum
theory. Note, furthermore, that our distinction of the ontological states should be
kept, because classical states are ontological. Ontological states do not transform
into ontological states under time reversal, since the transformation operators X
and Y involve quantum superpositions. In contrast, templates are transformed into
templates. This means automatically that classical states (see Sect. 4.2), are not
invariant under time reversal. Indeed, they do not look invariant under time reversal,
since classical states typically obey the rules of thermodynamics.

The quantum equations of our world are invariant (more precisely: covariant)
under time reversal, but neither the sub-microscopical world, where the most funda-
mental laws of Nature reign, nor the classical world allow for time reversal.

Our introduction of information loss may have another advantage: two states can
be in the same equivalence class even if we cannot follow the evolution very far back
in time. In practice, one might suspect that the likelihood of two distinct states to
actually be in one equivalence class, will diminish rapidly with time; these states will
show more and more differences at different locations. This means that we expect
physically relevant equivalence classes to be related by transformations that still
look local at the particle scale that can presently be explored experimentally. This
brings us to the observation that local gauge equivalence classes might actually be
identified with information equivalence classes. It is still (far) beyond our present
mathematical skills to investigate this possibility in more detail.

Finally, note that info-equivalence classes may induce a subtle kind of apparent
non-locality in our effective quantum theory, a kind of non-locality that may help to
accept the violation of Bell’s theorem (Sect. 3.6).
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The explicit models we studied so-far usually do not have information loss. This
is because the mathematics will be a lot harder; we simply have not yet been able to
use information loss in our more physically relevant examples.

7.4 Information Loss and Thermodynamics

There is yet another important novelty when we allow for information loss, in par-
ticular when it happens at a large scale (such as what we expect when black holes
emerge, see above). Neither the operator U nor U† are unitary now. In the example
of Eq. (7.4), one finds

DD† =N |1〉〈1|, D†D =N |e〉〈e|, (7.7)

where |e〉 is the normalized state

|e〉 = 1√
N

(|1〉 + · · ·X|N〉) (7.8)

(which shows that the matrix Y here must map the state |1〉 onto the state |e〉. Note,
thatD andD† are in the same conjugacy class). Thus, during the evolution, the state
|1〉 may become more probable, while the probabilities of all other states dwindle
to zero. Some equivalence classes may gain lots of members this way, while others
may stay quite small. In large systems, it is unlikely that the probability of a class
vanishes altogether, so it might become possible to write the amplitudes as

e−iH t−
1
2βE, (7.9)

where one might be tempted to interpret the quantity E as a (classical) energy, and
1
2β as an imaginary component of time. This aspect of our theory is still highly
speculative. Allowing time to obtain complex values can be an important instrument
to help us understand the reasons why energy has a lower bound.
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Chapter 8
More Problems

It may take years, decades, perhaps centuries to arrive at a comprehensive theory of
quantum gravity, combined with a theory of quantum matter that will be an elaborate
extension of the Standard Model. Only then will we have the opportunity to isolate
the beables that are the basic ingredients for an ontological theory; the templates of
that theory will be projected onto the beable basis. Only then can we tell whether
the CAI really works. Conceivably however, we may be able to use the CAI as a
guide to arrive at such theories. That was the main motivation for writing this book.

8.1 What Will Be the CA for the SM?

There are numerous problems remaining. The first of these was encountered by
the author right-away: how to convince a majority of researchers who have been
working in this field for many decades, that the views expressed here may well be
basically correct. In particular we state the most important conclusions:

– there’s only a single, essentially classical, discrete, universe, not an infinity of
distinct universes, as advocated in the Many World Interpretation, whether or not
being guided by a pilot wave that is active in all those worlds.

– The Born probabilities hold exactly true, requiring no corrections of any form,
since they were put in the state vectors (templates) to describe the probability
distribution of the initial states. What has been put in, comes out unchanged: the
Born probabilities.

– The “collapse of the wave function” takes place automatically, without requiring
any corrections to Schrödinger’s equation, such as non-linearities. This is because
the universe is in a single ontological state from the Big Bang onwards, whereas
the final result of an experiment will also always be a single ontological state. The
final state can never be in a superposition, such as a live cat superimposed with a
dead cat.

– The underlying theory may well be a local one, but the transformation of the clas-
sical equations into the much more efficient quantum equations, involves some
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degree of non-locality, which leaves no trace in the physical equations, apart from
the well-known, apparent ‘quantum miracles’.

– It is very much worth-while to search for more models where the transformation
can be worked out in detail; this could lead to a next generation of Standard
Models, with ‘cellular automaton restrictions’ that can be tested experimentally.

The problem how to set up such searches in a systematic way is very challenging
indeed. Presumably a procedure corresponding to second quantization has to be
employed, but as yet it is only clear how to do this for fermionic fields. The problem
is then that we also must replace the Dirac equation for the first-quantized particles
by a deterministic one. This could be done for free, massless particles, which is
not a bad start, but it is also not good enough to proceed. Then, we have some
rudimentary ideas about bosonic force-carrying fields, as well as a suggestive string-
like excitation (worked out further in Part II), but again, it is not known yet how to
combine these into something that can compete with the Standard Model known
today.

8.2 The Hierarchy Problem

There is a deeper reason why any detailed theory involving the Planck scale, quan-
tum mechanics and relativity, may be extremely difficult to formulate. This is the
empirical fact that there are two or more radically different scales of very special
significance: the Planck scale and the mass scale(s) of the most significant particles
in the system. The amazing thing about our world as that these various scales are
many orders of magnitude apart. The Planck scale is at ≈ 1019 GeV, the nuclear
scale is at ≈ 1 GeV, while there are also electrons, and finally neutrinos at some
10−11 GeV.

The origin of these large differences in scales, which are essential for the universe
to function the way it does, is still entirely obscure. We could add to this that there
are very few experiments that reach accuracies better than 1 part in 1011, let alone
1019, so that it is questionable whether any of the fundamental principles pertaining
to one scale, are still valid at an other—they could well be, but everything could
also be different. There is no lack of speculative ideas to explain the origins of
these numbers. The simplest observation one can make is that fairly down-to-earth
mathematics can easily generate numbers of such magnitudes, but to make them
arise naturally in fundamental theories of Nature is not easy at all.

Most theories of Planck scale physics, such as superstring theory and loop quan-
tum gravity, make no mention of the origins of large numbers, whereas, we believe,
good theories should.1 In discrete cellular automata, one can certainly observe that,

1An important exception is the theory of the anthropic principle, the idea that some numbers
are very large or very small, just because these would be the only values that can yield planets
with civilized creatures (anthropoi) on them. This notion has been around for some time, but,
understandably, it does not gather much adherence.
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if lattices in space and time play any role, there may be special things happening
when the lattice is exactly regular—such lattices have zero curvature. The curvature
of our universe is extremely tiny, being controlled by numbers even more extreme
than the hierarchy scales mentioned: the cosmological constant is described by a
dimensionless number of the order of 10−122. This might mean that, indeed, we are
dealing with a regular lattice, but it must accommodate for rare lattice defects.

In general, a universal theory must explain the occurrence of very rare events,
such as the mass terms causing zitterbewegung in fermions such as electrons. We
do believe that cellular automaton models are in a good position to allow for special
events that are very rare, but it is far too early to try to understand these.

In short, the most natural way to incorporate hierarchies of scales in our theory
is not clear.
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Chapter 9
Alleys to Be Further Investigated and Open
Questions

9.1 Positivity of the Hamiltonian

As we shall argue at length in Part II, it is quite likely that the gravitational force
will be a crucial ingredient in resolving the remaining difficulties in the CAT theory.
One of the various arguments for this is that gravity is partly based on the existence
of local time translations, which are redefinitions of time that depend on the location
in space. The generator for these transformations is the Hamiltonian density, which
here must be a local operator. At the same time, it is important also for gravity theory
to have a lower bound on energy density. Apparently, gravity hinges exactly on
those two important demands on the Hamiltonian operator that are causing us some
troubles, and so, conceivably, the problem of quantizing gravity and the problem of
turning quantum mechanics into a deterministic theory for dynamics, will have to
be solved together.

On the other hand one might argue that the non-locality of the quantum-induced
Hamiltonian is exactly what we need to explain away Bell’s theorem.

The exact position of the gravitational force in our theory is not completely clear.
Therefore, one might hope that the inclusion of a gravitational force can be post-
poned, and that cellular automaton models exist also on flat space–time lattices. In
Part II, we shall see that our PQ formalism, Chap. 16, allows us to split space-like
coordinates into two parts: integers that specify the location of a point on a lattice,
and fractional, or periodic, coordinates that could be used to position a point within
one lattice cell, or else merely play the role of canonically conjugated variables as-
sociated to a discretized momentum variable. Here, however, accommodating for
non-compact symmetries such as Lorentz invariance is extremely difficult.

The most obnoxious, recurring question will be that the Hamiltonians reproduced
in our models, more often than not, appear to lack a lower bound. This problem will
be further studied in Part II, Chaps. 14, 22, and in Sect. 19.1. The properties that
seem to raise conflicts when combined, are

1. H must be constant in time:
d

dt
H = 0, (9.1)
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2. H must be bounded from below:

〈ψ |H |ψ〉 ≥ 0, (9.2)

3. H should be extensive, that is, it must be the sum (or integral) of local terms:

H =
∑

�x
H(�x), (9.3)

4. And finally, it must generate the equations of motion:

U(t)= e−iH t , (9.4)

or equivalently, for all states |ψ〉 in Hilbert space,

d

dt
|ψ〉 = −iH |ψ〉. (9.5)

In standard quantum theories, one starts with just any classical model, and subjects
it to the well-known procedure of “quantization”. One then usually has no difficulty
finding an operator H that obeys these conditions. However, when we start with a
classical model and search directly for a suitable Hamiltonian operator generating
its evolution law (9.5), then it will rarely obey both (9.2) and (9.3).

All these equations are absolutely crucial for understanding quantum mechanics.
In particular, the importance of the bound (9.2) is sometimes underestimated. If the
bound would not have been there, none of the familiar solutions of the Schrödinger
equation would be stable; any, infinitesimally tiny, perturbation inH would result in
a solution with energy E that decays into a combination of two spatially separated
solutions with energies E + δE and −δE.

All solutions of the Schrödinger equation would have such instabilities, which
would describe a world quite different from the quantum world we are used to.

This is the reason why we always try to find an expression for H such that a
lower bound exists (which we can subsequently normalize to be exactly zero). From
a formal point of view, it should be easy to find such a Hamiltonian. Every classical
model should allow for a description in the form of the simple models of Sect. 2.2.1,
a collection of cogwheels, and we see in Fig. 2.3 that we can subsequently adjust
the constants δEi so that the bound (9.2) exists, even if there are infinitely many
cogwheels with unlimited numbers of teeth.

However, also the third condition is needed. H(�x) is the Hamiltonian density.
Locality amounts to the demand that, at distances exceeding some close distance
limit, these Hamilton densities must commute (Eq. (5.22)).

One may suspect that the ultimate solution that obeys all our demands will come
from quantizing gravity, where we know that there must exist a local Hamiltonian
density that generates local time diffeomorphisms. In other treatises on the inter-
pretation of quantum mechanics, this important role that might be played by the
gravitational force is rarely mentioned.

Some authors do suspect that gravity is a new elementary source of ‘quantum
decoherence’, but such phrases are hardly convincing. In these arguments, gravity
is treated perturbatively (Newton’s law is handled as an additive force, while black
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holes and scattering between gravitational waves are ignored). As a perturbative,
long-range force, gravity is in no fundamental way different from electromagnetic
forces. Decoherence [95] is a concept that we completely avoid here (see Sect. 3.5).

Since we have not solved the Hamiltonian positivity problem completely, we
have no systematic procedure to control the kind of Hamiltonians that can be gener-
ated from cellular automata. Ideally, we should try to approximate the Hamiltonian
density of the Standard Model. Having approximate solutions that only marginally
violate our requirements will not be of much help, because of the hierarchy prob-
lem, see Sect. 8.2: the Standard Model Hamiltonian (or what we usually put in its
place, its Lagrangian), requires fine tuning. This means that very tiny mismatches
at the Planck scale will lead to very large errors at the Standard Model scale. The
hierarchy problem has not been solved, so this indeed gives us an other obstacle.

Regarding locality of the Hamiltonian, there may be an other message hidden
in quantum gravity when applied to black holes. Unfinished research indicates a
non commutative property of the space–time coordinates, leading to uncertainty
relations of the form

δx · δt = O
(
L2

Pl

)
, (9.6)

where LPl is the Planck length. Regarding the Hamiltonian to be a generator of
infinitesimal time translations (as opposed to evolution operators that produce finite
shifts in time), one may suspect that the Hamiltonian requires δt to be infinitesimal.
In that case, δx is large, so that one may expect the Hamiltonian density to be a non-
local operator. The fact that locality is restored when δt is kept finite then implies
that the cellular automaton may still be local.

9.2 Second Quantization in a Deterministic Theory

When Dirac arrived at the famous Dirac equation to describe the wave function of an
electron, he realized that he had a problem: the equation allows for positive energy
solutions, but these are mirrored by solutions where the energy, including the rest-
mass energy, is negative. The relativistic expression for the energy of a particle with
momentum �p (in units where the speed of light c= 1), is

E = ±
√
m2 + �p 2. (9.7)

If a partial differential equation gives such an expression with a square root, it is
practically impossible to impose conditions on the wave function such that the un-
wanted negative sign is excluded, unless such a condition would be allowed to be
a non-local one, a price Dirac was not prepared to pay. He saw a more natural way
out:

There are very many electrons, and theN -electron solution obeys Pauli’s prin-
ciple: the wave function must switch sign under interchange of any pair of
electrons. In practice this means that all electrons each must occupy differ-
ent energy levels. Levels occupied by one electron cannot be reached by other
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electrons. Thus, Dirac imagined that all negative energy levels are normally
filled by electrons, so that others cannot get there. The vacuum state is by def-
inition the lowest energy state, so the negative-energy levels are all occupied
there. If you put an extra electron in a positive energy level, or of you remove
an electron from a negative energy spot, then in both cases you get a higher
energy state.

If an electron is removed from a negative energy level, the empty spot there carries
a net energy that is positive now. Its charge would be opposite to that of an electron.
Thus, Dirac predicted an antiparticle associated to the electron:1 a particle with
mass me and charge +e, where normal electrons have mass me and charge −e.
Thus, the positron was predicted.

In cellular automata we have the same problem. In Sect. 14, it will be explained
why we cannot put the edge of the energy spectrum of an automaton where we
would like to put it: at zero energy, the vacuum state, which would then naturally be
the lowest energy state. We see that locality demands a very smooth energy func-
tion. If we symmetrize the spectrum, such that −π < Eδt < π , we get the same
problem that Dirac had to cope with, and indeed, we can use the same solution: sec-
ond quantization. How it works will be explained in Sect. 15. We take k fermionic
particles, which each can occupy N states. If we diagonalize the U operator for
each ‘particle’, we find that half of the states have positive energy, half negative. If
we choose k = 1

2N , the lowest energy state has all negative energy levels filled, all
positive energies empty; this is the lowest energy state, the vacuum.

The excited states are obtained if we deviate slightly from the vacuum config-
uration. This means that we work with the energy levels close to the center of the
spectrum, where we see that the Fourier expansions of Sect. 14 still converge rapidly.
Thus, we obtain a description of a world where all net energies are positive, while
rapid convergence of the Fourier expansion guarantees effective locality.

Is this then the perfect solution to our problem? Nearly, but not quite. First, we
only find justifiable descriptions of second quantized fermions. The bosonic case
will be more subtle, and is not yet quite understood2 Secondly, we have to replace
the Dirac equation by some deterministic evolution law, while a deterministic theory
to be exposed in Sect. 15.2 describes sheets, not particles. We do not know how to
describe local deterministic interactions between such sheets. What we have now,
is a description of non-interacting particles. Before introducing interactions that are
also deterministic, the sheet equations will have to be replaced by something differ-
ent.

1Dirac first thought that this might be the proton, but that was untenable; the mass had to be equal
to the electron mass, and the positron and the electron should be able to annihilate one another
when they come close together.
2But we made a good start: bosons are the energy quanta of harmonic oscillators, which we should
first replace by harmonic rotators, see Chaps. 12.1–13. Our difficulty is to construct harmonically
coupled chains of such rotators. Our procedures worked reasonably well in one space-, one time
dimension, but we do not have a bosonic equivalent of the neutrino model (Sect. 15.2), for example.
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Supposing this problem can be addressed, we work out the formalism for inter-
actions in Sect. 22.1. The interaction Hamiltonian is obtained from the determin-
istic law for the interactions using a BCH expansion, which is not guaranteed to
converge. This may be not a problem if the interaction is weak. We bring forward
arguments why, in that case, convergence may still be fast enough to obtain a useful
theory. The theory is then not infinitely accurate, but this is not surprising. We could
state that, indeed, that problem was with us all along in quantum field theory: the
perturbative expansion of the theory is fine, and it gives answers that are much more
precise that the numbers that can be obtained from any experiment, but they are not
infinitely precise, just because the perturbation expansion does not converge (it can
be seen to be merely an asymptotic expansion). Thus, our theory reproduces exactly
what is known about quantum mechanics and quantum field theory, just telling us
that if we want a more accurate description, we might have to look at the original
automaton itself.

Needless to emphasize, that some of the ideas brought forward here are mostly
speculation, they should still be corroborated by more explicit calculations and mod-
els.

9.3 Information Loss and Time Inversion

A very important observation made in Sect. 7 is that, if we introduce information
loss in the deterministic model, the total number of orthogonal basis elements of
the ontological basis may be considerable reduced, while nevertheless the resulting
quantum system will not show any signs of time irreversibility. The classical states
however, referring to measurement results and the like, are linked to the original
ontological states, and therefore do possess a thermodynamical arrow of time.

This may well explain why we have time non reversibility at large, classical
scales while the microscopic laws as far they are known today, still seem to be
perfectly time reversible.

To handle the occurrence of information loss at the sub-microscopic level, we
introduced the notion of info-equivalence classes: all states that, within a certain
finite amount of time evolve into the same ontological state |ψ(t)〉, are called info-
equivalent, all being represented as the same quantum basis element |ψ(0)〉. We
already alluded to the similarity between the info-equivalence classes and the local
gauge equivalence classes. Could it be that we are therefore talking about the same
thing?

If so, this would mean that local gauge transformations of some state represented
as an ontological state, may actually describe different ontological states at a given
time t = t0, while two ontic states that differ from one another only by a local gauge
transformation, may have the property that they both will evolve into the same final
state, which naturally explains why observers will be unable to distinguish them.

Now we are aware of the fact that these statements are about something being
fundamentally unobservable, so their relevance may certainly be questioned.

Nevertheless this suggestion is justifiable, as follows. One may observe that for-
mulating quantum field theory without employing the local gauge-equivalence prin-
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ciple, appears to be almost impossible,3 so the existence of local gauge equivalence
classes can be ascribed to the mathematical properties of these quantized fields.
Only rarely can one replace a theory with local gauge equivalence by one where
this feature is absent or of a totally different nature.4 Exactly the same can be said
about ontological equivalence classes. They will be equally unobservable at large
scales—by definition. Yet rephrasing the deterministic theory while avoiding these
equivalence classes altogether may be prohibitively difficult (even if it is not prin-
cipally excluded). So our argument is simply this: these equivalence classes are so
similar in Nature, that they may have a common origin.

This then leaves an exciting question: general relativity is also based on a local
gauge principle: the equivalence of locally curved coordinate frames. Can we say the
same thing about that gauge equivalence class? Could it also be due to information
loss? This would mean that our underlying theory should be phrased in a fixed local
coordinate frame. General coordinate invariance would then be ascribed to the fact
that the information that determines our local coordinates is something that can get
lost. Is such an idea viable? Should we investigate this?

My answer is a resounding yes! This could clarify some of the mysteries in to-
day’s general relativity and cosmology. Why is the cosmological constant so small?
Why is the universe spatially flat (apart from local fluctuations)? And, regarding our
cellular automaton: How should we describe an automaton in curved space–time?

The answers to these questions are then: yes, our universe is curved, but the
curvature is limited to local effects. We do have an important variable playing the
role of a metric tensor gμν(�x, t) in our automaton, but it lives in a well-defined
coordinate frame, which is flat. Take a gauge condition obeying gi0 = gi0 = 0, i =
1,2,3. Let then λi be the three eigenvalues of gij , the space-like components of the
inverse metric (so that (λi)−1 ≡ λi are the eigenvalues of gij ). Let λ0 = |g00|. Then
the local speed of light, in terms of the coordinates used, is given by c2 = |�λ|/λ0.
We can impose an inequality on c: assume that the values of the metric tensor are
constrained to obey |c| ≤ 1. If now we write gμν = ω2(�x, t)ĝμν , with a constraint
on ĝμν such as det(ĝμν)= −1 (See Appendix B), then there is no limitation on the
value of ω. This means that the universe can inflate towards any size, but on the
average it may stay flat.

We continue this subject in Part II, Sect. 22.4.

9.4 Holography and Hawking Radiation

There is an other reason to expect information loss to be an inescapable feature of
an ultimate theory of physics, which concerns microscopic black holes. Classically,
black holes absorb information, so, one may have to expect that our classical, or
‘pre-quantum’ system also features information loss. Even more compelling is the

3The interactions would have to be kept quite weak, such as the electro-magnetic ones.
4Examples are known, in the form of dual transformations.
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original idea of holography [81, 117]. It was Stephen Hawking’s important deriva-
tion that black holes emit particles [47, 48], due to quantum fluctuations near the
horizon. However, his observation appeared to lead to a paradox:

The calculation suggests that the particles emerge in a thermal state, with
perfect randomness, regardless how the black hole was formed. Not only in
deterministic theories, but also in pure quantum theories, the arrangement of
the particles coming out should depend to some extent on the particles that
went in to form a black hole.

In fact, one expects that the state of all particles emerging from the black hole should
be related to the state of all particles that formed the black hole by means of a unitary
matrix, the scattering matrix S [100, 103].

Properties of this matrix S can be derived using physical arguments [106]. One
uses the fact that particles coming out must have crossed all particles that went in,
and this involves the conventional scattering matrix determined by their “Standard
Model” interactions. Now since the centre-of-mass energies involved here are often
much larger than anything that has been tested in laboratories, much stays uncertain
about this theory, but in general one can make some important deductions:

The only events that are relevant to the black hole’s reaction upon the particles
that went in, take place in the region very close to the event horizon. This
horizon is two-dimensional.

This means that all information that is processed in the vicinity of a black hole, must
be effectively represented at the black hole horizon. Hawking’s expression for the
black hole entropy resulting from his analysis of the radiation clearly indicates that
it leaves only one bit of information on every surface element of roughly the Planck
length squared. In natural units:

S = πR2 = log(W)= (log 2)2logW ; W = 2Σ/4 log 2, (9.8)

where Σ = 4πR2 is the surface area of the horizon.
Where did the information that went into the bulk of space–time inside a black

hole go? We think it was lost. If we phrase the situation this way, we can have
holography without losing locality of the physical evolution law. This evolution law
apparently is extremely effective in destroying information.5

Now we can add to this that we cannot conceive of a configuration of matter in
space–time that is such that it contains more information per unit of volume than a
black hole with radius corresponding to the total energy of the matter inside. There-
fore the black hole obeys the Bekenstein limit [5]:

the maximum amount of information that fits inside a (spherical) volume V is
given by the entropy of the largest black hole that fits inside V .

5Please do not confuse this statement with the question whether quantum information is lost near a
black hole horizon. According to the hypothesis phrased here, quantum information is what is left
if we erase all redundant information by combining states in equivalence classes. The black hole
micro states then correspond to these equivalence classes. By construction, equivalence classes do
not get lost. Recently, it was discovered that this requires antipodal entanglement [127].
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Information loss in a local field theory must then be regarded in the following way
(“holography”):

In any finite, simply connected region of space, the information contained in
the bulk gradually disappears, but what sits at the surface will continue to be
accessible, so that the information at the surface can be used to characterize
the info-equivalence classes.

At first sight, using these info-equivalence classes to represent the basis elements
of a quantum description may seem to be a big departure from our original theory,
but we have to realize that, if information gets lost at the Planck scale, it will be
much more difficult to lose any information at much larger scales; there are so many
degrees of freedom that erasing information completely is very hard and improba-
ble; rather, we are dealing with the question how exactly information is represented,
and how exactly do we count bits of information in the info-equivalence classes.

Note that, in practice, when we study matter in the universe, the amount of en-
ergy considered is far less that what would correspond to a black hole occupying
the entire volume of space. So in most practical cases, the Bekenstein limit is not
significant, but we have to remember that, in those cases, we always consider matter
that is still very close to the vacuum state.

Information loss is mostly a local feature; globally, information is preserved. This
does mean that our identification of the basis elements of Hilbert space with info-
equivalence classes appears to be not completely local. On the other hand, both the
classical theory and the quantum theory naturally forbid information to be spread
faster than the speed of light.

Let us end this section with our view on the origin of Hawking radiation. The
physical laws near the horizon of a black hole should be derived from the laws
controlling the vacuum state as seen by an observer falling in. This vacuum is in a
single quantum state, but consists of myriads of ontological states, distinguishable
by considering all conceivable fluctuations of the physical fields. Normally, all these
states form a single equivalence class.

At the horizon, however, signals entering the black hole cannot return, so the
mixture of the information that causes all these states to form a single equivalence
class, is rearranged substantially by the presence of the black hole, so much so
that, as seen by the distant observer, not a single equivalence class is experienced,
but very many classes. Thus, the vacuum is replaced by the much larger Hilbert
space spanned by all these classes. They together form the rich spectrum of physical
particles seen to emerge from the black hole.
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Chapter 10
Conclusions

In an earlier version of this text, a sub title was added to the title of this book: A view
on the quantum nature of our universe. This raised objections: “your view seems to
be more classical than anything we’ve seen before!” Actually, this can be disputed.
We argue that classical underlying laws can be turned into quantum mechanical ones
practically without leaving any trace. We insist that it is real quantum mechanics that
comes out, including all “quantum weirdness”. The nature of our universe is quan-
tum mechanical, but it may have a classical explanation. The underlying classical
laws may be seen to be completely classical. We show how ‘quantum mechanical’
probabilities can originate from completely classical probabilities.

Whether the views presented here are ‘superior’ over other interpretations, we
leave to the reader to decide. The author’s own opinion should be clear. I don’t
believe in contrived concoctions some of my colleagues come forward with; as for
those, I would prefer the original Copenhagen interpretation without any changes at
all.

It may seem odd that our theory, unlike most other approaches, does not contain
any strange kinds of stochastic differential equations, no “quantum logic”, not an in-
finity of other universes, no pilot wave, just completely ordinary equations of motion
that we have hardly been able to specify, as they could be almost anything. Our most
essential point is that we should not be deterred by ‘no go theorems’ if these con-
tain small print and emotional ingredients in their arguments. The small print that
we detect is the assumed absence of strong local as well as non-local correlations
in the initial state. Our models show that there should be such strong correlations.
Correlations do not require superluminal signals, let alone signals going backwards
in time.

The emotional ingredient is the idea that the conservation of the ontological na-
ture of a wave function would require some kind of ‘conspiracy’, as it is deemed
unbelievable that the laws of Nature themselves can take care of that. Our point is
that they obviously can. Once we realize this, we can consider studying very simple
local theories.

Is a cellular automaton equivalent to a quantum theory, or indeed, a quantum
field theory? As stated above, the answer is: formally yes, but in most cases the
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quantum equations will not resemble the real world very much. To obtain locality in
the quantum sense out of a cellular automaton that is local classically, is hard, and
the positivity of the Hamiltonian, or the boundedness of the Hamiltonian density,
are difficult to prove in most cases.

In principle it is almost trivial to obtain “quantum mechanics” out of classical
theories. We demonstrated how it can be done with a system as classical as the
Newtonian planets moving around the sun. But then difficulties do arise, which of
course explain why our proposal is not so simple after all. The positivity of the
Hamiltonian is one of the prime stumbling blocks. We can enforce it, but then the
plausibility of our models needs to be scrutinized. At the very end we have to con-
cede that the issue will most likely involve the mysteries of quantum gravity. Our
present understanding of quantum gravity suggests that discretized information is
spread out in a curved space–time manifold; this is difficult to reconcile with Na-
ture’s various continuous symmetry properties such as Lorentz invariance. So, yes,
it is difficult to get these issues correct, but we suggest that these difficulties will
only indirectly be linked to the problem of interpreting quantum mechanics.

This book is about these questions, but also about the tools needed to address
them; they are the tools of conventional quantum mechanics, such as symmetry
groups and Noether’s theorem.

A distinction should be made between on the one hand explicit theories con-
cerning the fate of quantum mechanics at the tiniest meaningful distance scale in
physics, and on the other hand proposals for the interpretation of today’s findings
concerning quantum phenomena.

Our theories concerning the smallest scale of natural phenomena are still very
incomplete. Superstring theory has come a long way, but seems to make our view
more opaque than desired; in any case, in this book we investigated only rather
simplistic models, of which it is at least clear what they say.

10.1 The CAI

What we found, seems to be more than sufficient to extract a concrete interpretation
of what quantum mechanics really is about. The technical details of the underlying
theory do not make much difference here. All one needs to assume is that some
ontological theory exists; it will be a theory that describes phenomena at a very tiny
distance scale in terms of evolution laws that process bits and bytes of information.
These evolution laws may be “as local as possible”, requiring only nearest neigh-
bours to interact directly. The information is also strictly discrete, in the sense that
every “Planckian” volume of space may harbour only a few bits and bytes. We also
suspect that the bits and bytes are processed as a function of local time, in the sense
that only a finite amount of information processing can take place in a finite space–
time 4-volume. On the other hand, one might suspect that some form of information
loss takes place such that information may be regarded to occupy surface elements
rather than volume elements, but this we could not elaborate very far.
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In any case, in its most basic form, this local theory of information being pro-
cessed, does not require any Hilbert space or superposition principles to be properly
formulated. At the most basic level of physics (but only there), the bits and bytes
we discuss are classical bits and bytes. At that level, qubits do not play any role,
in contrast with more standard approaches considered in today’s literature. Hilbert
space only enters when we wish to apply powerful mathematical machinery to ad-
dress the question how these evolution laws generate large scale behaviour, possibly
collective behaviour, of the data.

Our theory for the interpretation of what we observe is now clear: humanity dis-
covered that phenomena at the distance and energy scale of the Standard Model
(which comprises distances vastly larger, and energies far smaller, than the Planck
scale) can be captured by postulating the effectiveness of templates. Templates are
elements of Hilbert space that form a basis that can be chosen in numbers of ways
(particles, fields, entangled objects, etc.), which allow us to compute the collective
behaviour of solutions to the evolution equations that do require the use of Hilbert
space and linear operations in that space. The original observables, the beables,
can all be expressed as superpositions of our templates. Which superpositions one
should use, differs from place to place. This is weird but not inconceivable. Appar-
ently there exists a powerful scheme of symmetry transformations allowing us to
use the same templates under many different circumstances. The rule for transform-
ing beables to templates and back is complex and not unambiguous; exactly how
the rules are to be formulated, for all objects we know about in the universe, is not
known or understood, but must be left for further research.

Most importantly, the original ontological beables do not allow for any super-
position, just as we cannot meaningfully superimpose planets, but the templates,
with which we compare the beables, are elements of Hilbert space and require the
well-known principles of superposition.

The second element in our CAI is that objects we normally call classical, such as
planets and people, but also the dials and all other detectable signals coming from
measurement devices, can be directly derived from beables, in principle without the
intervention of the templates.

Of course, if we want to know how our measurement devices work, we use our
templates, and this is the origin of the usual “measurement problem”. What is often
portrayed as mysteries in quantum theory: the measurement problem, the ‘collapse
of the wave function’, and Schrödinger’s cat, is completely clarified in the CAI. All
wave functions that will ever occur in our world, may seem to be superpositions
of our templates, but they are completely peaked, ‘collapsed’, as soon as we use
the beable basis. Since classical devices are also peaked in the beable basis, their
wave functions are collapsed. No violation of Schrödinger’s equation is required for
that, on the contrary, the templates, and indirectly, also the beables, exactly obey the
Schrödinger equation.

In short, it is not Nature’s degrees of freedom themselves that allow for super-
position, it is the templates we normally use that are man-made superpositions of
Nature’s ontological states. The fact that we hit upon the apparently inevitable para-
doxes concerning superposition of the natural states, is due to our intuitive thinking
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that our templates represent reality in some way. If, instead, we start from the onto-
logical states that we may one day succeed to characterize, the so-called ‘quantum
mysteries’ will disappear.

10.2 Counterfactual Definiteness

Suppose we have an operator Oop
1 whose value cannot be measured since the value

of another operator, Oop
2 , has been measured, while [Oop

1 ,O
op
2 ] �= 0. Counterfactual

reality is the assumption that, nevertheless, the operator Oop
1 takes some value, even

if we don’t know it. It is often assumed that hidden variable theories imply coun-
terfactual definiteness. We should emphasize categorically that no such assumption
is made in the Cellular Automaton Interpretation. In this theory, the operator Oop

2 ,
whose value has been measured, apparently turned out to be composed of onto-
logical observables (beables). Operator Oop

1 is, by definition, not ontological and
therefore has no well-defined value, for the same reason why, in the planetary sys-
tem, the Earth–Mars interchange operator, whose eigenvalues are ±1, has neither of
these values; it is unspecified, in spite of the fact that planets evolve classically, and
in spite of the fact that the Copenhagen doctrine would dictate that these eigenvalues
are observable!

The tricky thing about the CAI when applied to atoms and molecules, is that
one often does not know a priori which of our operators are beables and which
are changeables or superimposables (as defined in Sects. 2.1.1 and 5.5.1). One only
knows this a posteriori, and one might wonder why this is so. We are using templates
to describe atoms and molecules, and these templates give us such a thoroughly
mixed-up view of the complete set of observables in a theory that we are left in the
dark, until someone decides to measure something.

It looks as if the simple act of a measurement sends a signal backwards in time
and/or with superluminal speed to other parts of the universe, to inform observers
there which of their observables can be measured and which not. Of course, that is
not what happens. What happens is that now we know what can be measured ac-
curately and which measurements will give uncertain results. The Bell and CHSH
inequalities are violated as they should be in quantum field theory, while neverthe-
less quantum field theory forbids the possibility to send signals faster than light or
back to the past.

10.3 Superdeterminism and Conspiracy

Superdeterminism may be defined to imply that not only all physical phenomena
are declared to be direct consequences of physical laws that do not leave anything
anywhere to chance (which we refer to as ‘determinism’), but it also emphasizes
that the observers themselves behave in accordance with the same laws. They also
cannot perform any whimsical act without any cause in the near past as well as in
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the distant past. By itself, this statement is so obvious that little discussion would be
required to justify it, but what makes it more special is that it makes a difference.
The fact that an observer cannot reset his or her measuring device without changing
physical states in the past is usually thought not to be relevant for our description of
physical laws. The CAI claims that it is. Further explanations were given in Sect. 3.8,
where we attempted to demystify ‘free will’.

It is often argued that, if we want any superdeterministic phenomenon to lead
to violations of the Bell-CHSH inequalities, this would require conspiracy between
the decaying atom observed and the processes occurring in the minds of Alice and
Bob, which would be a conspiracy of a kind that should not be tolerated in any
decent theory of natural law. The whole idea that a natural mechanism could exist
that drives Alice’s and Bob’s behaviour is often found difficult to accept.

In the CAI, however, natural law forbids the emergence of states where beables
are superimposed. Neither Alice nor Bob will ever be able to produce such states by
rotating their polarization filters. Indeed, the state their minds are in, are ontological
in terms of the beables, and they will not be able to change that.

Superdeterminism has to be viewed in relation with correlations over space-like
distances. We claim that not only there are correlations, but the correlations are also
extremely strong. The state we call ‘vacuum state’ is full of correlations. Quantum
field theory (to be discussed in Part II, Sect. 20), must be a direct consequence
of the underlying ontological theory. It explains these correlations. All 2-particle
expectation values, called propagators, are non-vanishing both inside and outside
the light cone. Also the many-particle expectation values are non-vanishing there;
indeed, by analytic continuation, these amplitudes are seen to turn into the complete
scattering matrix, which encapsulates all laws of physics that are implied by the
theory. In Chap. 3.6, it is shown how a 3-point correlation can, in principle, generate
the violation of the CHSH inequality, as required by quantum mechanics.

In view of these correlation functions, and the law that says that beables will
never superimpose, we now suspect that this law forbids Alice and Bob to both
change their minds in such a way that these correlation functions would no longer
hold.

10.3.1 The Role of Entanglement

We do not claim that these should be the last words on Bell’s interesting theorem.
Indeed, we could rephrase our observations in a somewhat different way. The reason
why the standard, Copenhagen theory of quantum mechanics violates Bell is sim-
ply that the two photons (or electrons, or whatever the particles are that are being
considered), are quantum entangled. In the standard theory, it is assumed that Alice
may change her mind about her setting without affecting the photon that is on its
way to Bob. Is this still possible if Alice’s photon and Bob’s photon are entangled?

According to the CAI, we have been using templates to describe the entangled
photons Alice and Bob are looking at, and this leads to the violation of the CHSH
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inequalities. In reality, these templates were reflecting the relative correlations of
the ontological variables underlying these photons. To describe entangled states as
beables, their correlations are essential. We assume that this is the case when par-
ticles decay into entangled pairs because the decay has to be attributed to vacuum
fluctuations (see Sect. 5.7.5), while also the vacuum cannot be a single, translation
invariant, ontological state.

Resetting Alice’s experiment without making changes near Bob would lead to
a state that, in quantum mechanical terms, is not orthogonal to the original one,
and therefore not ontological. The fact that the new state is not orthogonal to the
previous one is quite in line with the standard quantum mechanical descriptions;
after all, Alice’s photon was replaced by a superposition.

The question remains how this could be. If the cellular automaton stays as it is
near Bob, why is the ‘counterfactual’ state not orthogonal to it? The CAI says so,
since the classical configuration of her apparatus has changed, and we stated that
any change in the classical setting leads to a change in the ontological state, which
is a transition to an orthogonal vector in Hilbert space.

We cannot exclude the possibility that the apparent non-locality in the ontic—
template mapping is related to the difficulty of identifying the right Hamiltonian for
the standard quantum theory, in terms of the ontic states. We should find a Hamilto-
nian that is the integral of a local Hamiltonian density. Strictly speaking, there may
be a complication here; the Hamiltonian we are using is often an approximation,
a very good one, but it ignores some subtle non-local effects. This will be further
explained in Part II.

10.3.2 Choosing a Basis

Some physicists of previous generations thought that distinguishing different basis
sets is very important. Are particles ‘real particles’ in momentum space or in config-
uration space? Which are the ‘true’ variables of electro-magnetism, the photons or
the electric and magnetic fields?1 The modern view is to emphasize that, any basis
serves our purposes as well as any other, since, usually, none of the conventionally
chosen basis spaces is truly ontological.

In this respect, Hilbert space should be treated as any ordinary vector space,
such as the space in which each of the coordinates of the planets in our planetary
system are defined. It makes no difference which coordinate frame we use. Should
the z-axis be orthogonal to the local surface of the earth? Parallel to the earth’s axis
of rotation? The ecliptic? Of course, the choice of coordinates is immaterial. Clearly,
this is exemplified in Dirac’s notation. This beautiful notation is extremely general
and as such it is quite suitable for the discussions presented in this book.

1W, Lamb is well-known for his quote: I suggest that a license be required for use of the word
photon, and I offer to give such license to properly qualified people.
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But then, after we declared all sets of basis elements to be as good as any other,
in as far as they describe some familiar physical process or event, we venture into
speculating that a more special basis choice can be made. A basis could exist in
which all super-microscopic physical observables are beables; these are the observ-
able features at the Planck scale, they all must be diagonal in this basis. Also, in this
basis, the wave function only consists of zeros and a single one. It is ontological.
This special basis, called ‘ontological basis’, is hidden from us today but it should
be possible to identify such a basis,2 in principle. This book is about the search for
such a basis. It is not the basis of the particles, the fields of the particles, of atoms
or molecules, but something considerably more difficult to put our hands on.

We emphasize that also all classical observables, describing stars and planets, au-
tomobiles, people, and eventually pointers on detectors, will be diagonal in the same
ontological basis. This is of crucial importance, and it was explained in Sect. 4.2.

10.3.3 Correlations and Hidden Information

An essential element in our analysis may be the observations expressed in
Sect. 3.7.1. It was noted that the details of the ontological basis must carry cru-
cial information about the future, yet in a concealed manner: the information is
non-local. It is a simple fact that, in all of our models, the ontological nature of a
state the universe is in, will be conserved in time: once we are in a well-defined on-
tological state, as opposed to a template, this feature will be preserved in time (the
ontology conservation law). It prevents Alice and Bob from choosing any setting
that would ‘measure’ a template that is not ontological. Thus, this feature prevents
counterfactual definiteness. Even the droppings of a mouse cannot disobey this prin-
ciple.

In adopting the CAI, we accept the idea that all events in this universe are highly
correlated, but in a way that we cannot exploit in practice. It would be fair to say
that these features still carry a sense of mystery that needs to be investigated more,
but the only way to do this is to search for more advanced models.

10.4 The Importance of Second Quantization

We realize that, in spite all observations made in this book, our arguments would
gain much more support if more specific models could be constructed where solid
calculations support our findings. We have specific models, but so-far, these have
been less than ideal to explain our points. What would really be needed is a model
or a set of models that obviously obey quantum mechanical equations, while they

2There may be more than one, non equivalent choices, as explained later (Sect. 22.3).
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are classical and deterministic in their set-up. Ideally, we should find models that re-
produce relativistic, quantized field theories with interactions, such as the Standard
Model.

The use of second quantization, will be explained further in Sects. 15.2.3 and
22.1 of Part II. We start with the free Hamiltonian and insert the interactions at a
later stage, a procedure that is normally assumed to be possible using perturbation
expansion. The trick used here is, that the free particle theory will be manifestly
local, and also the interactions, represented by rare transitions, will be local. The
interactions are introduced by postulating new transitions that create or annihilate
particles. All terms in this expansion are local, so we have a local Hamiltonian.
To handle the complete theory, one then has to do the full perturbation expansion.
Obeying all the rules of quantum perturbation theory, we should obtain a description
of the entire, interacting model in quantum terms. Indeed, we should reproduce a
genuine quantum field theory this way.

Is this really true? Strictly speaking, the perturbation expansion does not con-
verge, as is explained also in Sect. 22.1. However, then we can argue that this is a
normal situation in quantum field theory. Perturbation expansions formally always
diverge, but they are the best we have—indeed they allow us to do extremely accu-
rate calculations in practice. Therefore, reproducing these perturbative expansions,
regardless how well they converge, is all we need to do in our quantum theories.

A fundamentally convergent expression for the Hamiltonian does exist, but it is
entirely different. The differences are in non-local terms, which we normally do not
observe. Look at the exact expression, Eq. (2.8), first treated in Sect. 2.1 of Chap. 2:

Hopδt = π − i
∞∑

n=1

1

n

(
Uop(nδt)−Uop(−nδt)

)
. (10.1)

This converges, except for the vacuum state itself. Low energy states, states very
close to the vacuum, are the states where convergence is excessively slow. Conse-
quently, as was explained before, terms that are extremely non-local, sneak in.

This does not mean that the cellular automaton would be non-local; it is as local
as it can be, but it means that if we wish to describe it with infinite precision in
quantum mechanical terms, the Hamiltonian may generate non-localities. One can
view these non-localities as resulting from the fact that our Hamiltonian replaces
time difference equations, linking instances separated by integral multiples of δt , by
differential equations in time; the states in between the well-defined time spots are
necessarily non-local functions of the physically relevant states.

One might argue that there should be no reason to try to fill the gaps between in-
teger times steps, but then there would not exist an additive energy function, which
we need to stabilize the solutions of our equations. Possibly, we have to use a combi-
nation of a classical, integer-valued Hamilton function (Chap. 19 of Part II), and the
periodically defined Hamiltonian linking only integer-valued time steps, but exactly
how to do this correctly is still under investigation. We have not yet found the best
possible approach towards constructing the desired Hamilton operator for our tem-
plate states. The second-quantized theory that will be further discussed is presently
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our best attempt, but we have not yet been able to reproduce the quite complex
symmetry structure of the Standard Model, in particular Poincaré invariance.

As long as we have no explicit model that, to the extent needed, reproduces
Standard Model-like interactions, we cannot verify the correctness of our approach.
Lacking that, what has to be done next is the calculations in models that are as
realistic as possible.

Possibilities for experimental checks for the CA theory, unfortunately, are few
and far between. Our primary goal was not to change the quantum laws of physics,
but rather to obtain a more transparent description of what it is that actually is
going on. This should help us to construct models of physics, particularly at the
Planck scale, and if we succeed, these models should be experimentally verifiable.
Most of our predictions are negative: there will be no observable departure from
Schrödinger’s equation and from Born’s probability expression.

A more interesting negative prediction concerns quantum computers, as was ex-
plained in Sect. 5.8. Quantum devices should, in principle allow us to perform a very
large number of calculations ‘simultaneously’, so that there are mathematical prob-
lems that can be solved much faster than with standard, classical computers. Then
why have these quantum computers not yet been built? There seem to be some
‘technical difficulties’ standing in the way: the quantum bits that are employed—
qubits—tend to decohere. The remedy expected to resolve such disturbing features,
is a combination of superior hardware (the qubits must be disconnected from the
environment as well as possible) and software: error correction codes. And then, the
quantum computer should be able to perform mathematical miracles.

According to the CA theory, our world is merely quantum mechanical because
it would be too complicated to even approximately follow the cellular data at the
length and time scale where they occur, most likely the Planck units. If we could
follow these data, we could do this using classical devices. This means that a clas-
sical computer should be able to reproduce the quantum computer’s results, if its
memory cells and computing time would be scaled to Planckian dimensions. No-
one can construct such classical computers, so that indeed, quantum computers will
be able to perform miracles; but there are clear limits: the quantum computer will
never outperform classical computers when these would be scaled to Planckian di-
mensions. This would mean that numbers with millions of digits can never be de-
composed into prime factors, even by a quantum computer. We predict that there
will be fundamental limits in our ability to avoid decoherence of the qubits. This is
a non-trivial prediction, but not one to be proud of.
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Chapter 11
Introduction to Part II

Many of the technical calculations and arguments mentioned in Part I of this book,
were postponed to the second part, so as to make the first part easier to read while
keeping it coherent, and to give some nice firework in the second part. The price we
pay for this is that there will be a number of repetitions, for which we apologize.

11.1 Outline of Part II

One of our main themes is that quantum mechanics may be viewed as a mathe-
matical tool rather than a new theory of physical phenomena. Indeed, in condensed
matter theory, several models exist where the physical setup and the questions asked
are fundamentally classical, yet the calculations are performed by regarding the sys-
tem as a quantum mechanical one. The two-dimensional Ising Model is a beautiful
example of this [56].

There is no better way to illustrate our approach than by actually showing
how such calculations are done. The Cogwheel Model was already introduced in
Sect. 2.2. Now, in Chaps. 12.1–13, we show some more of our mathematical tools,
how to construct quantum Hamiltonians and how to approach continuum limits.
Here, the cogwheel model is linked to the harmonic rotator, but also other, no-
toriously ‘classical’ structures, such as the planetary system, are transformed into
models that appear to be quantum mechanical.

The continuum limit of a single, periodic cogwheel is an important example. It
approaches the ordinary quantum harmonic oscillator with the same period T . The
continuum cogwheel is actually a smoothly rotating wheel. Is the classical rotating
wheel equivalent to a quantum harmonic oscillator? In a sense, yes, but there are
some subtleties that one has to be aware of. This is why we decided to do this limit
in two steps: first transform the cogwheel into a harmonic rotator, allowing the teeth
to form a representation of the group SU(2), and only then consider the continuum
limit. This enables us to recognize the operators x and p of a genuine harmonic
oscillator already in finite cogwheels.
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Like other technical calculations elsewhere in this book, they were done on order
to check the internal consistency of the systems under study. It was fun to do these
calculations, but they are not intended to discourage the reader. Just skip them, if
you are more interested in the general picture.

The issue of the locality of the Hamiltonian is further treated in Chap. 14. It will
come up frequently in almost any deterministic model, and again the mathematics
is interesting. We observe that a lot depends on the construction of the vacuum
state. It is the state of lowest energy, and the solution of the equation “energy =
lowest”, generates non-localities indeed. In reality, as is well known in quantum
field theories, signals will not go faster than the speed of light. What will be shown in
this chapter is that there is a way to avoid non-localities when objects move around
surrounded by a vacuum, provided one uses a first-quantized theory where only the
center part of the energy spectrum is used. Consequently, energy can be positive or
negative there. Subsequently, one introduces anti-particles, such that the negative
energy states actually represent holes of antiparticles. It is nothing but Dirac’s trick
to ensure that the physical vacuum has lowest possible energy.

Dirac first phrased his theory for fermionic particles. Indeed, fermions are easier
to understand in this respect that bosons are. Therefore, we first introduce fermions
as an essential element in our models, see Chap. 15.

It so happens that Dirac’s equation for the electron is well suited to demonstrate
our prescription of searching for “beables” in a quantum theory. Section 15.2 also
begins at an easy pace but ends up in lengthy derivations. Here also, the reader is
invited to enjoy the intricate features of the ‘neutrino’ model, but they can just as
well be skipped.

We take the simplified case of the Dirac equation for a two-component neutrino.
It is fundamentally simpler than the Dirac equation for the electron. Furthermore,
we assume the absence of interactions. The math starts out simple, but the result
is striking: neutrinos are configurations of flat membranes, or ‘sheets’, rather than
particles. the sheets move around classically. This is not a theory but a mathematical
fact, as long as we keep mass terms and interactions out of the picture; these must
be left for later.

Having observed this, we asked the question how to go from the sheet variables
back to the neutrino’s quantum operators such as position �x, momentum �p, and
spin �σ . Here, the math does become complicated, and it is interesting as an exer-
cise (Sects. 15.2.1 and 15.2.2). The neutrinos are ideal for the application of second
quantization (Sect. 15.2.3), although, in this language, we cannot yet introduce in-
teractions for them.

Our models, discussed in Chaps. 12–17 and 19, have in common that they are
local, realistic, and based on conventional procedures in physics. They also have
in common that they are limited in scope, they do not capture all features known
to exist in the real world, such as all particle species, all symmetry groups, and in
particular special and general relativity. The models should be utterly transparent,
they indicate directions that one should look at, and, as was our primary goal, they
suggest a great approach towards interpreting the quantum mechanical laws that are
all so familiar to us.
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PQ theory, Chap. 16 is a first attempt to understand links between theories based
on real numbers and theories based on integer, or discrete, numbers. The idea is
to set up a clean formalism connecting the two, so that it can be used in many
instances. Chapter 16 also shows some nice mathematical features, with good use
of the elliptic theta functions. The calculations look more complicated than they
should be, just because we searched for an elegant mechanism relating the real line
to pairs of integers on the one hand and the torus on the other, keeping the symmetry
between coordinates and momenta.

In Chap. 17, we find some other interesting extensions of what was done in
Chap. 16. A very straightforward argument drew our interest to String Theory and
Superstring Theory. We are not strongly advocating the idea that the only way to
do interesting physics at the Planck scale is to believe what string theoreticians tell
us. It is not clear from our work that such theories are the way to go, but we do
notice that our program shows remarkable links with string theory. In the absence
of interactions, the local equations of string- and superstring theory appear to al-
low the construction of beables, exactly along the route that we advocate. The most
striking feature exposed here, is that quantized strings, written in the usual form of
continuous quantum field theories in one space, and one time dimension, map onto
classical string theories that are not defined in a continuous target space, but on a
space–time lattice, where the lattice spacing a is given as a = 2π

√
α′.

Symmetries, discussed in Chap. 18, are difficult to understand in the CA Inter-
pretation of quantum mechanics. However, in the CAI, symmetry considerations are
as important as anywhere else in physics. Most of our symmetries are discrete, but
in some cases, notably in string theory, continuous symmetries such as the Poincaré
group, can be recovered.

In Chap. 19, we address the positivity problem of the Hamiltonian from a dif-
ferent perspective. There, the usual Hamiltonian formalism is extended to include
discrete variables, again in pairs Pi,Qi , evolving in discrete time. When we first
tried to study this, it seemed like a nightmare, but it so happens that the ‘discrete
Hamilton formalism’ comes out to be almost as elegant as the usual differential
form. And indeed here, the Hamiltonian can easily be chosen to be bounded from
below.

Eventually, we wish to reproduce effective laws of Nature that should take the
form of today’s quantum field theories. This is still quite difficult. It was the reason
for setting up our procedures in a formal way, so that we will keep the flexibility
to adapt our systems to what Nature seems to be telling us through the numerous
ingenious experiments that have been performed. We explain some of the most im-
portant features of quantum field theory in Chap. 20. Most notably: in quantum field
theories, no signal can carry useful information faster than the speed of light, and
probabilities always add up to one. Quantum field theory is entirely local, in its own
inimitable quantum way. These features we would like to reproduce in a determin-
istic quantum theory.

To set up the Cellular Automaton Interpretation in more detail, we first elaborate
some technical issues in cellular automata in general (Chap. 21). These are not the
technicalities encountered when computer programs are written for such systems;
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software experts will not understand much of our analysis. This is because we are
aiming at understanding how such systems may generate quantum mechanics at the
very large time and distance limit, and how we may be able to connect to elementary
particle physics. What we find is a beautiful expression for a quantum Hamiltonian,
in terms of an expansion called the BCH expansion. Everything would have been
perfect if this were a convergent expansion.

However, it is easy to see that the expansion is not convergent. We try a number
of alternative approaches with some modest successes, but not all issues will be re-
solved, and the suspicion is aired concerning the source of our difficulties: quantum
gravitational effects may be of crucial importance, while it is exactly these effects
that are still not understood as well as is needed here. We do propose to use the BCH
expansion for many classes of cellular automata to demonstrate how they could be
used to interpret quantum mechanics. I know that the details are not yet quite right,
but this probably has to be attributed to the simple fact that we left out lots of things,
notably special and general relativity

11.2 Notation

It is difficult keep our notation completely unambiguous. In Chap. 16, we are deal-
ing with many different types of variables and operators. When a dynamical variable
is an integer there, we shall use capitals A,B, . . . ,P ,Q, . . . . Variables that are peri-
odic with period 2π , or at least constrained to lie in an interval such as (−π,π], are
angles, mostly denoted by Greek lower case letters α,β, . . . , κ, θ, . . . , whereas real
variables will most often be denoted by lower case Latin letters a, b, . . . , x, y, . . . .
Yet sometimes we run out of symbols and deviate from this scheme, if it seems to
be harmless to do so. For instance, indices will still be i, j, . . . for space-like vector
components, α,β, . . . for spinors and μ,ν, . . . for Lorentz indices. The Greek letters
ψ and ϕ will be used for wave functions as well.

Yet it is difficult to keep our notation completely consistent; in some chapters
before Chap. 16, we use the quantum numbers � andm of the SU(2) representations
to denote the integers that earlier were denoted as k or k −m, and later in Chap. 16
replaced by capitals.

As in Part I, we use a super- or subscript “op” to distinguish an operator from an
ordinary numerical variable. The caret ( ˆ ) will be reserved for vectors with length
one, the arrow for more general vectors, not necessarily restricted to three dimen-
sional space. Only in Chap. 20, where norms of vectors do not arise, we use the
caret for the Fourier transform of a function.

Dirac’s constant � and the velocity of light c will nearly always be defined to be
one in the units chosen. In previous work, we used a spacial symbol to denote e2π

as an alternative basis for exponential functions. This would indeed sometimes be
useful for calculations, when we use fractions that lie between 0 and 1, rather than
angles, and it would require that we normalize Planck’s original constant h rather
then � to one, but in the present monograph we return to the more usual notation.
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Concepts frequently discussed are the following:

– discrete variables are variables such as the integer numbers, whose possible val-
ues can be counted. Opposed to continuous variables, which are typically repre-
sented by real or complex numbers.

– fractional variables are variables that take values in a finite interval or on a circle.
The interval may be [0,1), [0,2π), (− 1

2 ,
1
2 ], or (−π,π]. Here, the square bracket

indicates a bound whose value itself may be included, a round bracket excludes
that value. A real number can always be decomposed into an integer (or discrete)
number and a fractional one.

– a theory is ontological, or ‘ontic’, if it only describes ‘really existing’ objects; it
is simply a classical theory such as the planetary system, in the absence of quan-
tum mechanics. The theory does not require the introduction of Hilbert space,
although, as will be explained, Hilbert space might be very useful. But then, the
theory is formulated in terms of observables that are commuting at all times.

– a feature is counterfactual when it is assumed to exist even if, for fundamental
reasons, it cannot actually be observed; if one would try to observe it, some other
feature might no longer be observable and hence become counterfactual. This
situation typically occurs if one considers the measurement of two or more oper-
ators that do not commute. More often, in our models, we shall encounter features
that are not allowed to be counterfactual.

– We talk of templates when we describe particles and fields as solutions of Schrö-
dinger’s equation in an ontological model, as was explained in Sect. 4.3.1. Tem-
plates may be superpositions of ontic states and/or other templates, but the ontic
states all form an orthonormal set; superpositions of ontic states are never ontic
themselves.

11.3 More on Dirac’s Notation for Quantum Mechanics

A denumerable set of states |ei〉 is called an orthonormal basis of H if every state
|ψ〉 ∈ H can be approximated by a linear combination of a finite number of states
|ei〉 up to any required precision:

|ψ〉 =
N(ε)∑

i=1

λi |ei〉 + |ε〉, ‖ε‖2 = 〈ε|ε〉< ε2, for any ε > 0 (11.1)

(a property called ‘completeness’), while

〈ei |ej 〉 = δij (11.2)

(called ‘orthonormality’). From Eqs. (11.1) and (11.2), one derives

λi = 〈ei |ψ〉,
∑

i

|ei〉〈ei | = I, (11.3)

where I is the identity operator: I|ψ〉 = |ψ〉 for all |ψ〉.
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In many cases, the discrete sum in Eqs. (11.1) and (11.3) will be replaced by
an integral, and the Kronecker delta δij in Eq. (11.2) by a Dirac delta function,
δ(x1 −x2). We shall still call the states |e(x)〉 a basis, although it is not denumerable.

A typical example is the set of wave functions ψ(�x) describing a particle in
position space. They are regarded as vectors in Hilbert space where the set of delta
peak wave functions |�x〉 is chosen to be the basis:

ψ(�x)≡ 〈�x|ψ〉, 〈�x|�x ′〉 = δ3(�x − �x ′). (11.4)

The Fourier transformation is now a simple rotation in Hilbert space, or a transition
to the momentum basis:

〈�x|ψ〉 =
∫

d3 �p 〈�x| �p〉〈 �p|ψ〉; 〈�x| �p〉 = 1
(2π)3/2

ei �p·�x. (11.5)

Many special functions, such as the Hermite, Laguerre, Legendre, and Bessel
functions, may be seen as generating different sets of basis elements of Hilbert
space.

Often, we use product Hilbert spaces: H1 ⊗ H2 = H3, which means that states
|φ〉 in H3 can be seen as normal products of states |ψ(1)〉 in H1 and |ψ(2)〉 in H2:

|φ〉 = ∣∣ψ(1)
〉∣∣ψ(2)

〉
, (11.6)

and a basis for H3 can be obtained by combining a basis in H1 with one in H2:
∣∣e(3)ij

〉= ∣∣e(1)i
〉∣∣e(2)j

〉
. (11.7)

Often, some or all of these factor Hilbert spaces are finite-dimensional vector
spaces, which of course also allow all the above manipulations.1 We have, for exam-
ple, the 2-dimensional vector space spanned by spin 1

2 particles. A basis is formed
by the two states |↑〉 and |↓〉. In this basis, the Pauli matrices σ op

x,y,z are defined as
in Part I, Eqs. (1.7). The states

| →〉 = 1√
2

(
1
1

)
, | ←〉 = 1√

2

(
1

−1

)
, (11.8)

form the basis where the operator σx is diagonal: σ op
x → ( 1 0

0 −1

)
.

Dirac derived the words ‘bra’ and ‘ket’ from the fact that the expectation value
for an operator Oop can be written as the operator between brackets, or

〈
Oop〉= 〈ψ |Oop|ψ〉. (11.9)

More generally, we shall often need the matrix elements of an operator in a basis
{|ei〉}:

Oij = 〈ei |Oop|ej 〉. (11.10)

1The term Hilbert space is often restricted to apply to infinite dimensional vector spaces only; here
we will also include the finite dimensional cases.
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The transformation from one basis {|ei〉} to another, {|e′i〉} is a unitary operator Uij :

|e′i〉 =
∑

j

Uij |ej 〉, Uij = 〈ej |e′i〉;
∑

k

UikUjk =
∑

k

〈e′i |ek〉〈ek|e′j 〉 = δij .
(11.11)

This will be used frequently. For instance, the Fourier transform is unitary:
∫

d3 �p 〈�x| �p〉〈 �p|�x′〉 = 1
(2π)3

∫
d3 �p ei �p·�x−i �p·�x′ = δ3(�x − �x′). (11.12)

The Schrödinger equation will be written as:

d
dt |ψ(t)〉 = −iH op|ψ(t)〉, d

dt 〈ψ(t)| = 〈ψ(t)|iH op;
|ψ(t)〉 = e−iH opt |ψ(0)〉, (11.13)

where H op is the Hamiltonian, defined by its matrix elements Hij = 〈ei |H op|ej 〉.
Dirac’s notation may be used to describe non-relativistic wave functions in three

space dimensions, in position space, in momentum space or in some other basis,
such as a partial wave expansion, it can be used for particles with spin, it can be
used in many-particle systems, and also for quantized fields in solid state theory or
in elementary particle theory. The transition from a Fock space notation, where the
basis is spanned by states containing a fixed number N of particles (in position or
in momentum space, possibly having spin as well), to a notation where the basis
is spanned by the functions representing the fields of these particles, is simply a
rotation in Hilbert space, from one basis into another.
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Chapter 12
More on Cogwheels

12.1 The Group SU(2), and the Harmonic Rotator

Let us return to the original cogwheel with N teeth, as introduced in Chap. 2,
Sect. 2.2. It may be very illuminating to define the constant � = (N − 1)/2, and
introduce the operators L1,L2 and L3 as follows (k = 0,1, . . . ,2� is the energy
quantum number; the time step is δt = 1):

L3 = N
2π Hop − �= k − �,

L1 = 1
2 (L+ +L−), L2 = − 1

2 i(L+ −L−),
L+|k〉H =√

(k + 1)(2�− k)|k + 1〉H ,
L−|k〉H =√

k(2�+ 1 − k)|k − 1〉H .

(12.1)

Using the quantum number m= k − �= L3, we get the more familiar expressions
for the angular momentum operators La,a = 1,2,3, obeying the commutation re-
lations

[La,Lb] = iεabcLc. (12.2)

The original ontological states |n〉ont can be obtained from the angular momentum
states by means of the transformation rules (2.21) and (2.22). It is only these that
evolve as ontological states. Other operators can be very useful, however. Take, for
instance,

x = 1√
�
L1, p = − 1√

�
L2, [x,p] = i(1 − 2�+1

2π� Hop
)
, (12.3)

then, for states where the energy 〈Hop〉 � 1, we have the familiar commutation rules
for positions x and momenta p, while the relation L2

1 + L2
2 + L2

3 = L2 = �(�+ 1)
implies that, when 〈Hop〉 � 1/

√
�,

H → 2π
N

1
2

(
p2 + x2 − 1

)
, (12.4)

which is the Hamiltonian for the harmonic oscillator (the zero point energy has been
subtracted, as the lowest energy eigen state was set at the value zero). Also, at low
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values for the energy quantum number k , we see that L± approach the creation and
annihilation operators of the harmonic oscillator (see Eqs. (12.1)):

L− → √
2�+ 1a, L+ → √

2�+ 1a†. (12.5)

Thus, we see that the lowest energy states of the cogwheel approach the lowest
energy states of the harmonic oscillator. This will be a very useful observation if
we wish to construct models for quantum field theories, starting from deterministic
cogwheels. The model described by Eqs. (12.1)–(12.3) will be referred to as the
harmonic rotator. The Zeeman atom of Sect. 2.2 is a simple example with �= 1.

Note, that the spectrum of the Hamiltonian of the harmonic rotator is exactly
that of the harmonic oscillator, except that there is an upper limit, Hop < 2π . By
construction, the period T = (2�+ 1)δt of the harmonic rotator, as well as that of
the harmonic oscillator, is exactly that of the periodic cogwheel.

The Hamiltonian that we associate to the harmonic rotator is also that for a spin-
ning object that exhibits precession due to a torque force on its axis. Thus, phys-
ically, we see that an oscillator drawing circles in its (x,p) phase space is here
replaced by a precessing top. At the lowest energy levels, they obey the same equa-
tions.

We conclude from this section that a cogwheel withN states can be regarded as a
representation of the group SU(2) with total angular momentum �, and N = 2�+ 1.
The importance of this approach is that the representation is a unitary one, and
that there is a natural ground state, the ground state of the harmonic oscillator. In
contrast to the harmonic oscillator, the harmonic rotator also has an upper bound
to its Hamiltonian. The usual annihilation and creation operators, a and a†, are
replaced by L− and L+, whose commutator is not longer constant but proportional
to L3, and therefore changing sign for states |k〉 with � < k ≤ 2�. This sign change
assures that the spectrum is bounded from below as well as above, as a consequence
of the modified algebra (12.2).

12.2 Infinite, Discrete Cogwheels

Discrete models with infinitely many states may have the new feature that some or-
bits may not be periodic. They then contain at least one non-periodic ‘rack’. There
exists a universal definition of a quantum Hamiltonian for this general case, though
it is not unique. Defining the time reversible evolution operator over the smallest
discrete time step to be an operator Uop(1), we now construct the simplest Hamil-
tonian Hop such that Uop(1) = e−iHop . For this, we use the evolution over n steps,
where n is positive or negative:

Uop(n)=Uop(1)
n = e−inHop . (12.6)

Let us assume that the eigenvalues ω of this Hamiltonian lie between 0 and 2π . We
can then consider the Hamiltonian in the basis where both U(1) andH are diagonal.
Write

e−inω = cos(nω)− i sin(nω), (12.7)
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and then use Fourier transformations to derive that, if −π < x < π ,

x = 2
∞∑

n=1

(−1)n−1 sin(nx)

n
. (12.8)

Next, write Hop = ω= x + π , to find that Eq. (12.8) gives

ω= π − 2
∞∑

n=1

sin(nω)

n
. (12.9)

Consequently, as in Eq. (2.8),

ω= π −
∞∑

n−1

i

n

(
U(nδt)−U(−nδt)) and

Hop = π −
∞∑

n−1

i

n

(
Uop(nδt)−Uop(−nδt)

)
.

(12.10)

Very often, we will not be content with this Hamiltonian, as it has no eigenvalues
beyond the range (0,2π). As soon as there are conserved quantities, one can add
functions of these at will to the Hamiltonian, to be compared with what is often
done with chemical potentials. Cellular automata in general will exhibit many such
conservation laws. See Fig. 2.3, where every closed orbit represents something that
is conserved: the label of the orbit.

In Sect. 13, we consider the other continuum limit, which is the limit δt → 0 for
the cogwheel model. First, we look at continuous theories more generally.

12.3 Automata that Are Continuous in Time

In the physical world, we have no direct indication that time is truly discrete. It is
therefore tempting to consider the limit δt → 0. At first sight, one might think that
this limit should be the same as having a continuous degree of freedom obeying
differential equations in time, but this is not quite so, as will be explained later in
this chapter. First, in this section, we consider the strictly continuous deterministic
systems. Then, we compare those with the continuum limit of discrete systems.

Consider an ontological theory described by having a continuous, multi-
dimensional space of degrees of freedom �q(t), depending on one continuous time
variable t , and its time evolution following classical differential equations:

d

dt
qi(t)= fi(�q), (12.11)

where fi(�q) may be almost any function of the variables qj .
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An example is the description of massive objects obeying classical mechanics in
N dimensions. Let a = 1, . . . ,N, and i = 1, . . . ,2N :

{i} = {a} ⊕ {a +N}, qa(t)= xa(t), qa+N(t)= pa(t),
fa(�q)= ∂Hclass(�x, �p)

∂pa
, fa+N(�q)= −∂Hclass(�x, �p)

∂xa
,

(12.12)

where Hclass is the classical Hamiltonian.
An other example is the quantum wave function of a particle in one dimension:

{i} = {x}, qi(t)=ψ(x, t); fi(�q)= −iHSψ(x, t), (12.13)

where nowHS is the Schrödinger Hamiltonian. Note, however, that, in this case, the
function ψ(x, t) would be treated as an ontological object, so that the Schrödinger
equation and the Hamiltonian eventually obtained will be quite different from the
Schrödinger equation we start off with; actually it will look more like the corre-
sponding second quantized system (see later).

We are now interested in turning Eq. (12.11) into a quantum system by changing
the notation, not the physics. The ontological basis is then the set of states |�q〉,
obeying the orthogonality property

〈�q∣∣�q ′〉= δN (�q − �q ′), (12.14)

where δ is now the Dirac delta distribution, and N is the dimensionality of the
vectors �q .

If we wrote
d

dt
ψ(�q) ?= − fi(�q) ∂

∂qi
ψ(�q) ?= − iHopψ(�q), (12.15)

where the index i is summed over, we would read off that

Hop
?= − ifi(�q) ∂

∂qi
= fi(�q)pi, pi = −i ∂

∂qi
. (12.16)

This, however, is not quite the right Hamiltonian because it may violate hermiticity:
Hop �= H †

op. The correct Hamiltonian is obtained if we impose that probabilities
are preserved, so that, in case the Jacobian of �f (�q) does not vanish, the integral∫

dN �qψ†(�q)ψ(�q) is still conserved:

d

dt
ψ(�q)= −fi(�q) ∂

∂qi
ψ(�q)− 1

2

(
∂fi(�q)
∂qi

)
ψ(�q)= −iHopψ(�q), (12.17)

Hop = −ifi(�q) ∂
∂qi

− 1
2 i

(
∂fi(�q)
∂qi

)

= 1
2

(
fi(�q)pi + pifi(�q)

)≡ 1
2

{
fi(�q),pi

}
. (12.18)

The 1/2 in Eq. (12.17) ensures that the productψ†ψ evolves with the right Jacobian.
Note that this Hamiltonian is Hermitian, and the evolution equation (12.11) follows
immediately from the commutation rules

[qi,pj ] = iδij ; d

dt
Oop(t)= −i[Oop,Hop]. (12.19)
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Now, however, we encounter a very important difficulty: this Hamiltonian has no
lower bound. It therefore cannot be used to stabilize the wave functions. Without
lower bound, one cannot do thermodynamics. This feature would turn our model
into something very unlike quantum mechanics as we know it.

If we take �q space either one-dimensional, or in some cases two-dimensional, we
can make our system periodic. Then let T be the smallest positive number such that

�q(T )= �q(0). (12.20)

We have consequently

e−iHT |�q(0)〉 = |�q(0)〉, (12.21)

and therefore, on these states,

Hop|�q〉 =
∞∑

n=−∞

2πn

T
|n〉HH 〈n|�q〉. (12.22)

Thus, the spectrum of eigenvalues of the energy eigenstates |n〉H runs over all inte-
gers from −∞ to ∞.

In the discrete case, the Hamiltonian has a finite number of eigenstates, with
eigenvalues 2πk/(Nδt)+ δE where k = 0, . . . ,N − 1, which means that they lie in
an interval [δE,2π/T + δE], where T is the period, and δE can be freely chosen.
So here, we always have a lower bound, and the state with that energy can be called
‘ground state’ or ‘vacuum’.

Depending on how the continuum limit is taken, we may or may not preserve
this lower bound. The lower bound on the energy seems to be artificial, because
all energy eigenstates look exactly alike. It is here that the SU(2) formulation for
harmonic rotators, handled in Sect. 12.1, may be more useful.

An other remedy against this problem could be that we demand analyticity when
time is chosen to be complex, and boundedness of the wave functions in the lower
half of the complex time frame. This would exclude the negative energy states, and
still allow us to represent all probability distributions with wave functions. Equiv-
alently, one could consider complex values for the variable(s) �q and demand the
absence of singularities in the complex plane below the real axis. Such analytic-
ity constraints however seem to be rather arbitrary; they are difficult to maintain as
soon as interactions are introduced, so they would certainly have to be handled with
caution.

One very promising approach to solve the ground state problem is Dirac’s great
idea of second quantization: take an indefinite number of objects �q , that is, a Hilbert
space spanned by all states |�q(1), �q(2), . . . �q(n)〉, for all particle numbers n, and regard
the negative energy configurations as ‘holes’ of antiparticles. This we propose to do
in our ‘neutrino model’, Sect. 15.2, and in later chapters.

Alternatively, we might consider the continuum limit of a discrete theory more
carefully. This we try first in the next chapter. Let us emphasize again: in general, ex-
cising the negative energy states just like that is not always a good idea, because any
perturbation of the system might cause transitions to these negative energy states,
and leaving these transitions out may violate unitarity.
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The importance of the ground state of the Hamiltonian was discussed in Chap. 9
of Part I. The Hamiltonian (12.18) is an important expression for fundamental dis-
cussions on quantum mechanics.

As in the discrete case, also in the case of deterministic models with a continuous
evolution law, one finds discrete and continuous eigenvalues, depending on whether
or not a system is periodic. In the limit δt → 0 of the discrete periodic ontological
model, the eigenvalues are integer multiples of 2π/T , and this is also the spectrum
of the harmonic oscillator with period T , as explained in Chap. 13. The harmonic
oscillator may be regarded as a deterministic system in disguise.

The more general continuous model is then the system obtained first by having
a (finite or infinite) number of harmonic oscillators, which means that our system
consists of many periodic substructures, and secondly by admitting a (finite or infi-
nite) number of conserved quantities on which the periods of the oscillators depend.
An example is the field of non-interacting particles; quantum field theory then corre-
sponds to having an infinite number of oscillating modes of this field. The particles
may be fermionic or bosonic; the fermionic case is also a set of oscillators if the
fermions are put in a box with periodic boundary conditions. Interacting quantum
particles will be encountered later (Chap. 19 and onwards).
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Chapter 13
The Continuum Limit of Cogwheels, Harmonic
Rotators and Oscillators

In the N → ∞ limit, a cogwheel will have an infinite number of states. The Hamil-
tonian will therefore also have infinitely many eigenstates. We have seen that there
are two ways to take a continuum limit. AsN → ∞, we can keep the quantized time
step fixed, say it is 1. Then, in the Hamiltonian (2.24), we have to allow the quantum
number k to increase proportionally to N , keeping κ = k/N fixed. Since the time
step is one, the Hamiltonian eigenvalues, 2πκ , now lie on a circle, or, we can say
that the energy takes values in the continuous line segment [0,2π) (including the
point 0 but excluding the point 2π ). Again, one may add an arbitrary constant δE to
this continuum of eigenvalues. What we have then, is a model of an object moving
on a lattice in one direction. At the beat of a clock, a state moves one step at a time
to the right. This is the rack, introduced in Sect. 12.2. The second-quantized version
is handled in Sect. 17.1.

The other option for a continuum limit is to keep the period T of the cogwheel
constant, while the time quantum δt tends to zero. This is also a cogwheel, now with
infinitely many, microscopic teeth, but still circular. Since nowNδt = T is fixed, the
ontological1 states of the system can be described as an angle:

2πn/N → ϕ,
d

dt
ϕ(t)= 2π

T
. (13.1)

The energy eigenvalues become

Ek = 2πk/T + δE, k = 0,1, . . . ,∞. (13.2)

If δE is chosen to be π/T , we have the spectrum Ek = (2π/T )(k + 1
2 ). This is the

spectrum of a harmonic oscillator. In fact, any periodic system with period T , and
a continuous time variable can be characterized by defining an angle ϕ obeying the
evolution equation (13.1), and we can attempt to apply a mapping onto a harmonic
oscillator with the same period.

1The words ‘ontological’ and ‘deterministic’ will be frequently used to indicate the same thing: a
model without any non deterministic features, describing things that are really there.
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Mappings of one model onto another one will be frequently considered in this
book. It will be of importance to understand what we mean by this. If one does
not put any constraint on the nature of the mapping, one would be able to map
any model onto any other model; physically this might then be rather meaningless.
Generally, what we are looking for are mappings that can be prescribed in a time-
independent manner. This means that, once we know how to solve the evolution law
for one model, then after applying the mapping, we have also solved the evolution
equations of the other model. The physical data of one model will reveal to us how
the physical data of the other one evolve.

This requirement might not completely suffice in case a model is exactly inte-
grable. In that case, every integrable model can be mapped onto any other one, just
by considering the exact solutions. In practice, however, time independence of the
prescription can be easily verified, and if we now also require that the mapping of
the physical data of one model onto those of the other is one-to-one, we can be con-
fident that we have a relation of the kind we are looking for. If now a deterministic
model is mapped onto a quantum model, we may demand that the classical states
of the deterministic model map onto an orthonormal basis of the quantum model.
Superpositions, which look natural in the quantum system, might look somewhat
contrived and meaningless in the deterministic system, but they are certainly ac-
ceptable as describing probabilistic distributions in the latter. This book is about
these mappings.

We have already seen how a periodic deterministic system can produce a discrete
spectrum of energy eigenstates. The continuous system described in this section
generates energy eigenstates that are equally spaced, and range from a lowest state
to E→ ∞. Mapping this onto the harmonic oscillator, seems to be straightforward;
all we have to do is map these energy eigenstates onto those of the oscillator, and
since these are also equally spaced, both systems will evolve in the same way. Of
course this is nothing to be surprized about: both systems are integrable and periodic
with the same period T .

For the rest of this section, we will put T = 2π . The Hamiltonian of this harmonic
oscillator can then be chosen to be2

Hop = 1
2

(
p2 + x2 − 1

); Hop|n〉H = n|n〉H , n= 0,1, . . . ,∞. (13.3)

The subscript H reminds us that we are looking at the eigenstates of the Hamiltonian
Hop. For later convenience, we subtracted the zero point energy.3

In previous versions of this book’s manuscript, we described a mapping that goes
directly from a deterministic (but continuous) periodic system onto a harmonic os-
cillator. Some difficulties were encountered with unitarity of the mapping. At first

2In these expressions, x,p, a, and a† are all operators, but we omitted the subscript ‘op’ to keep
the expressions readable.
3Interestingly, this zero point energy would have the effect of flipping the sign of the amplitudes
after exactly one period. Of course, this phase factor is not directly observable, but it may play
some role in future considerations. In what we do now, it is better to avoid these complications.
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sight, these difficulties seemed not to be very serious, although they made the ex-
position less than transparent. It turned out, however, that having a lower bound but
not an upper bound on the energy spectrum does lead to pathologies that we wish to
avoid.

It is much better to do the mapping in two steps: have as an intermediate model
the harmonic rotator, as was introduced in Chap. 12.1. The harmonic rotator differs
from the harmonic oscillator by having not only a ground state, but also a ceiling.
This makes it symmetric under sign switches of the Hamiltonian. The lower energy
domain of the rotator maps perfectly onto the harmonic oscillator, while the transi-
tion from the rotator to the continuous periodic system is a straightforward limiting
procedure.

Therefore, let us first identify the operators x and p of the harmonic rotator, with
operators in the space of the ontological states |ϕ〉ont of our periodic system. This
is straightforward, see Eqs. (12.3). In the energy basis of the rotator, we have the
lowering operator L− and the raising operator L+ which give to the operators x and
p the following matrix elements between eigenstates |m〉,−�≤m≤ �, of Hop:

〈m− 1|x|m〉 = 1
2

√
(m+ �)(�+ 1 −m)

�
= 〈m|x|m− 1〉,

〈m− 1|p|m〉 = − 1
2 i

√
(m+ �)(�+ 1 −m)

�
= −〈m|p|m− 1〉,

(13.4)

while all other matrix elements vanish.

13.1 The Operator ϕop in the Harmonic Rotator

As long as the harmonic rotator has finite �, the operator ϕop is to be replaced by a
discrete one:

ϕop = 2π

2�+ 1
σ, σ = −�,−�+ 1, . . . ,+�. (13.5)

By discrete Fourier transformations, one derives that the discrete function ϕ(σ)
obeys the finite Fourier expansion,

σ = i
2�∑

k=1

(−1)k

2 sin ( πk2�+1 )
e

2πikσ
2�+1 . (13.6)

By modifying some phase factors, we replace the relations (2.21) and (2.22) by

|m〉H ≡ 1√
2�+ 1

�∑

σ=−�
e

2πimσ
2�+1 |σ 〉ont, (13.7)

|σ 〉ont = 1√
2�+ 1

�∑

m=−�
e

−2πimσ
2�+1 |m〉H (13.8)

(which symmetrizes the Hamiltonian eigenvalues m, now ranging from −� to �).
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One now sees that the operator e
2πi

2�+1σ increases the value m by one unit, with
the exception of the state |m= �〉, which goes to |m= −�〉. Therefore,

e
2πiσ
2�+1 = (�+ 1 −H)−1/2L+(�+ 1 +H)−1/2 + | − � 〉〈� | ;

e
−2πiσ
2�+1 = (�+ 1 +H)−1/2L−(�+ 1 −H)−1/2 + |� 〉〈−� | ,

(13.9)

and Eq. (13.6) can now be written as

〈m+ k|σ |m〉 = i(−1)k

2 sin( πk2�+1 )
, k �= 0,

〈m|σ |m〉 = 0.

(13.10)

Equations (13.9) can easily be seen to be unitary expressions, for all � in the har-
monic rotator. Care was taken to represent the square roots in the definitions of L±
correctly: since now |H | ≤ �, one never encounters division by 0. The quantitym+k
characterizing the state in Eq. (13.10) must be read Modulo 2�+ 1, while observing
the fact that for half-odd-integer values of � the relations (13.7) and (13.8) are both
anti periodic with period 2�+ 1.

The operator σ in Eqs. (13.9) and (13.10) can now be seen to evolve determinis-
tically:

σ(t)= σ(0)+ (2�+ 1)t/T . (13.11)

The eigenstates |ϕ〉 of the operator ϕop are closely related to Glauber’s coher-
ent states in the harmonic oscillator [42], but our operator ϕop is Hermitian and its
eigenstates are orthonormal; Glauber’s states are eigenstates of the creation or anni-
hilation operators, which were introduced by him following a different philosophy.
Orthonormality is a prerequisite for the ontological states that are used in this work.

13.2 The Harmonic Rotator in the x Frame

In harmonic oscillators, it is quite illuminating to see how the equations look in the
coordinate frame. The energy eigen states are the Hermite functions. It is an inter-
esting exercise in mathematical physics to investigate how the ontological operator
(beable) ϕop can be constructed as a matrix in x-space. As was explained at the
beginning of this chapter however, we refrain from exhibiting this calculation as it
might lead to confusion.

The operator ϕop is represented by the integer σ in Eq. (13.5). This operator is
transformed to the energy basis by Eqs. (13.7) and (13.8), taking the form (13.9). In
order to transform these into x space, we first need the eigen states of Lx in the en-
ergy basis. This is a unitary transformation requiring the matrix elements 〈m3|m1〉,
where m3 are the eigen values of L3 and m1 those of Lx . Using the ladder operators
L±, one finds the useful recursion relation

2m1〈m1|m3〉 = √
(�+m3 + 1)(�−m3)〈m1|m3 + 1〉

+√
(�+m3)(�+ 1 −m3)〈m1|m3 − 1〉, (13.12)
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Fig. 13.1 a Plot of the inner products 〈m3|m1〉; b Plot of the transformation matrix 〈m1|σ 〉ont (real
part). Horiz.: m1, vert.: σ

First remove the square roots by defining new states ‖m3〉 and ‖m1〉:
‖m3〉 ≡√

(�+m3)!(�−m3)!|m3〉,
‖m1〉 ≡√

(�+m1)!(�−m1)!|m1〉.
(13.13)

For them, we have

L±‖m3〉 = (�∓m3)‖m3〉, (13.14)

so that the inner products of these new states obey

2m1〈m1‖|m3〉 = (�−m3)〈m1‖|m3 + 1〉 + (�+m3)〈m1‖|m3〉;
〈m1‖|m3〉 = 〈m3‖|m1〉.

(13.15)

These equations can easily be inserted in a numerical procedure to determine the
matrix elements of the transformation to the ‘coordinate frame’ Lx . With Eqs. (13.7)
and (13.8), we now find the elements 〈m1|σ 〉 of the matrix relating the beable eigen
states |σ 〉ont to the x eigen states of Lx . A graphic expression of the result (for
�= 40), is displayed in Fig. 13.1. We see in Fig. 13.1b that the ontological variable is
loosely following the template degree of freedom x =m1/

√
�, just as it will follow

the momentum p = −m2/
√
�, with a 90◦ phase shift.
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Chapter 14
Locality

Replacing harmonic oscillators by harmonic rotators may be the first step towards
obtaining a Hamiltonian that describes deterministic processes on the one hand, and
still obeys a lower bound on the other hand. Yet we did pay a price. We modified the
commutation rules between the coordinate operators called x and the momentum
operators p. If we would apply this to field theories, we would find it difficult to
decompose the fields into harmonic modes. These modes would no longer commute
with one another, and that would constitute a serious blow to the concept of locality.

We have also seen how a Hamiltonian can be constructed starting off from just
any deterministic system, including systems that are entirely local in the usual sense.
If time is continuous, that Hamiltonian tends to take the form of Eq. (12.18), which
has neither a lower nor an upper bound, but it does seem to be local. In contrast,
the Hamiltonians of the discrete-time models, such as Eqs. (2.8), (2.26), (2.27), and
(12.10), have in common that they are bounded, but they are expressed in terms of
the evolution operators at fairly large times t = nδt . For cellular automaton mod-
els, discussed in Sect. 5.1 and Chap. 21, the evolution operator over n time steps,
involves interactions among neighbours that are n space-steps apart. If, instead, we
wish to restrict ourselves to local expressions, this means that a cut-off will have
to be introduced when defining H , but this is only allowed if the sums in ques-
tion converge sufficiently rapidly. It seems to be the combination of the positivity
requirement and the locality requirement that is often difficult to obey.

Can this conflict be avoided? Should we search for different models, or should we
search for different approximation methods in all models we are using? The author’s
present understanding is, that we will have to put constraints on the models to which
we can apply our theories. Different models will be discussed later (Sect. 9.2). Let
us here concentrate on the nature of the conflict.

In Part I, Sect. 2.1, we introduced the concept of the templates. Let us see what
happens when we impose a further constraint on the templates: Consider only those
template states that are slowly varying in time. We assume that the time dependence
in the templates is much slower than the fundamental time interval δt in the onto-
logical evolution law. This means that we consider only those elements of Hilbert
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142 14 Locality

space where the eigenvalue E of H lies in an interval |E| ≤ 1
2Λ, or, when we add

our free constant to the energy levels, we impose

0 ≤E ≤Λ. (14.1)

States composed as superpositions of these energy eigenvalues will show probabil-
ities |〈ont|ψ(t)〉|2 whose time dependence only contains terms eiωt with |ω| ≤ Λ.
Templates obeying Ineq. (14.1) will be referred to as slow templates.

It is advised, however, to be reserved in the use of slow templates; in classical
states, energies can easily reach values above the Planck energy (the kinetic en-
ergy of a small passenger airplane at cruise speed), and these would require faster
templates.

Figure 14.1a shows the approximation obtained for the Hamiltonian, in the case
we use the expansion (2.8), with a smooth cut-off. We introduced a suppression
factor e−k/R for the kth term (in the figure, R = 30). What happens when we use
this approximation for the Hamiltonian?

First, it is not quite local anymore. In a cellular automaton, where we have only
nearest neighbour interactions, the Hamiltonian will feature ‘ghost interactions’ be-
tween neighbours at k units of distance apart, assuming that the kth term contains
the evolution operator U(±kδt). With the suppression factor, we expect the Hamil-
tonian to have non-local features over distance scales of the order of Rδtc, where
c is the maximal velocity of information transfer in the automaton, since the expo-
nential suppression factor strongly suppresses effects ranging further out.

On the other hand, if we use the suppression factor, the lowest energy states in
the spectrum will be altered, see the arrow in Fig. 14.1a. Unfortunately, this is ex-
actly the physically most important region, near the vacuum state (the lowest energy
state). It is not difficult to estimate the extent of the deformation close to the origin.
The sum with cut-off can be evaluated exactly. For large values of the cut-off R, and
0<ω < π , the approximation ωapprox for the true eigenvalues ω of the Hamiltonian
will be:

ωapprox = π − 2
∞∑

n=1

sin(nω)e−n/R

n
= 2 arctan

(
e1/R − cosω

sinω

)

= 2 arctan

(
1 − cosω+ 1/R

sinω

)
= 2 arctan

(
sinω

1 + cosω
+ 1/R

sinω

)
, (14.2)

where we replaced e1/R by 1 + 1/R since R is large and arbitrary.
Writing sinα

1+cosα = tan 1
2α , we see that the approximation becomes exact in the

limit R→ ∞. We are interested in the states close to the vacuum, having a small but
positive energy H = α. Then, at finite R, the cut-off at R replaces the eigenvalues
H of the Hamiltonian Hop by

H →H + 2

RH
, (14.3)

which has its minimum at H0 ≈ √
2/R, where the value of the minimum is H ≈

2
√

2/R. This is only acceptable if

R�MPl/〈Hop〉2. (14.4)
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Fig. 14.1 The spectrum of the Hamiltonian in various expansions. a The Fourier expansion (2.8)
with suppression factor, where we chose R = 30. The most important region, near the vacuum,
shown by the arrow, is maximally distorted by the suppression factor. b Using the expansion
(14.6) for arcsin(z) to get the most accurate expansion for H near the center of the spectrum. The
curves for R = 9 and R = 31 are shown. c Result after multiplying with cosω/| cosω|. The curves
shown go up to the powers 13 and 41. d Stretching the previous curve by a factor 2 then removes
the unwanted states (see text). Powers shown are 10, 30 and 120 (The difference between figures a
and d is that in d, the straight line at the center is approached much more precisely)

Here, MPl is the “Planck mass”, or whatever the inverse is of the elementary time
scale in the model. This cut-off radius R must therefore be chosen to be very large,
so that, indeed, the exact quantum description of our local model generates non-
locality in the Hamiltonian.

Thus, if we want a Hamiltonian that represents the behaviour near the vacuum
correctly, so that time scales of the order T are described correctly, the Hamiltonian
generated by the model will be non-local over much larger distances, of the order
of T 2MPl. Apparently, a deterministic automaton does generate quantum behaviour,
but the quantum Hamiltonian features spurious non-local interactions.

It is not difficult to observe that the conflict between locality and positivity that
we came across is caused by the fact that the spectrum of the energy had to be
chosen such that a θ jump occurs at ω = 0, exactly where we have the vacuum
state (see Fig. 14.1a). The Fourier coefficients of a function with a θ function jump
will always converge only very slowly, and the sharper we want this discontinuity
to be reproduced by our Hamiltonian, the more Fourier coefficients are needed.
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Indeed, the induced non-locality will be much greater than the size of the system
we might want to study. Now, we stress that this non-locality is only apparent; the
physics of the automaton itself is quite local, since only directly neighbouring cells
influence one another. Yet the quantum mechanics obtained does not resemble what
we see in the physical world, where the Hamiltonian can be seen as an integral over
a Hamilton density H(�x), where [H(�x),H(�x ′)] = 0 as soon as |�x − �x ′|> ε > 0. In
standard quantum field theories, this ε tends to zero. If it stretches over millions of
CA cells this would still be acceptable if that distance is not yet detectable in modern
experiments, but what we just saw was unacceptable. Clearly, a better strategy has
to be found.

Our best guess at present for resolving this difficulty is second quantization,
which was introduced in Sect. 9.2, and we return to it in Sects. 20.3 and 22.1. Here,
we just mention that second quantization will allow us to have the most important
physics take place in the central region of this spectrum, rather than at the edges,
see the arrow in Fig. 14.1b. In this region, our effective Hamiltonians can be made
to be very accurate, while still local. Suppose we expand the Hamiltonian in terms
of Fourier coefficients that behave as

(sinω)n = (i/2)n(U(δt)−U(−δt))n, (14.5)

with a limit on the power n. For small ω, the most accurate approximation may seem
to be

ω=
(R−1)/2∑

n=0

an(sinω)2n+1, (14.6)

where an = 1, 1
6 ,

3
40 ,

5
112 , . . . are the coefficients of the expansion of arcsin(z) in

powers of z. If we continue that to the power R, we get a very rapidly converging
expression for the energy near the center of the spectrum, where ω is small. If we
use that part of the spectrum, the error in the Hamiltonian will be of order (ωδt)R+2,
so that only a few neighbours suffice to give a sufficiently accurate Hamiltonian.

However, Fig. 14.1b is still not quite what we want. For all states that have ω near
±π , the energies are also low, while these are not the states that should be included,
in particular when perturbations are added for generating interactions. To remove
those states, we desire Fourier expansions that generate the curves of Fig. 14.1d.
Here, the states with ω≈ π still contribute, which is inevitable because, indeed, we
cannot avoid a θ jump there, but since the lines are now much steeper at that spot,
the states at ω = ±π may safely be neglected; the best expression we can generate
will have a density of the spurious states that drops as 1/

√
R times the density of

the allowed states. How does one generate these Fourier expansions?
To show how that is done, we return the Fig. 14.1b, and notice that differentiating

it with respect to ω gives us the Fourier expansion of a θ function. Multiplying that
with the original should give us the functions of Fig. 14.1c. The easiest way to see
what happens is to observe that we multiply the limit curve (the zigzag line in 14.1b)
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with cosω/| cosω|, where the denominator is expanded in powers of sinω. Then,
we are given the functions

H(ω)= cosω
(R−1)/2∑

k=0

bk(sinω)2k+1, (14.7)

where
∑
k bkz

2k+1, with bk = 1, 2
3 ,

8
15 ,

16
35 ,

128
315 , . . . , is the power expansion of

(arcsin z)/
√

1 − z2, (14.8)

in powers of z.
Finally, because Fig. 14.1c is periodic with period π , we can stretch it by multi-

plying ω by 2. This gives Fig. 14.1d, where the limit curve is approximated by

H(ω)= sinω
R−1∑

k=0

bk
(
(1 − cosω)/2

)k
, (14.9)

with the same coefficients bk . Thus, it is now this equation that we use to determine
the operator H from the one-time-step evolution operator U = U(δt). Using U to
denote the inverse, U =U(−δt)=U−1, we substitute in Eq. (14.9):

sinω= i
2 (U −U), (1 − cosω)/2 = 1

4 (2 −U −U). (14.10)

The trick we can then apply is to consider the negative energy states as repre-
senting antiparticles, after we apply second quantization. This very important step,
which we shall primarily apply to fermions, is introduced in the next section, while
interactions are postponed to Sect. 22.1.
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Chapter 15
Fermions

15.1 The Jordan–Wigner Transformation

In order to find more precise links between the real quantum world on the one hand
and deterministic automaton models on the other, much more mathematical machin-
ery is needed. For starters, fermions can be handled in an elegant fashion.

Take a deterministic model with M states in total. The example described in
Fig. 2.2 (page 26), is a model with M = 31 states, and the evolution law for one
time step is an element P of the permutation group forM = 31 elements: P ∈ PM .
Let its states be indicated as |1〉, . . . , |M〉. We write the single time step evolution
law as:

|i〉t → |i〉t+δt = |P(i)〉t =
M∑

j=1

Pij |j 〉t , i = 1, . . . ,M, (15.1)

where the latter matrix P has matrix elements 〈j |P |i〉 that consists of 0s and 1s,
with one 1 only in each row and in each column. As explained in Sect. 2.2.2, we
assume that a Hamiltonian matrix H op

ij is found such that (when normalizing the
time step δt to one)

〈j |P |i〉 = (
e−iH op)

ji
, (15.2)

where possibly a zero point energy δE may be added that represents a conserved
quantity: δE only depends on the cycle to which the index i belongs, but not on the
item inside the cycle.

We now associate to this model a different one, whose variables are Boolean
ones, taking the values 0 or 1 (or equivalently, +1 or −1) at every one of these M
sites. This means that, in our example, we now have 2M = 2,147,483,648 states,
one of which is shown in Fig. 15.1. The evolution law is defined such that these
Boolean numbers travel just as the sites in the original cogwheel model were dic-
tated to move. Physically this means that, if in the original model, exactly one par-
ticle was moving as dictated, we now have N particles moving, where N can vary
between 0 andM . In particle physics, this is known as “second quantization”. Since
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Fig. 15.1 The “second
quantized” version of the
multiple-cogwheel model of
Fig. 2.2. Black dots represent
fermions

no two particles are allowed to sit at the same site, we have fermions, obeying Pauli’s
exclusion principle.

To describe these deterministic fermions in a quantum mechanical notation, we
first introduce operator fields φop

i , acting as annihilation operators, and their Her-

mitian conjugates, φop†
i , which act as creation operators. Denoting our states as

|n1, n2, . . . , nM〉, where all n’s are 0 or 1, we postulate

φ
op
i |n1, . . . , ni, . . . , nM〉 = ni |n1, . . . , ni − 1, . . . , nM 〉,

φ
op†
i |n1, . . . , ni, . . . , nM〉 = (1 − ni)|n1, . . . , ni + 1, . . . , nM 〉, (15.3)

At one given site i, these fields obey (omitting the superscript ‘op’ for brevity):

(φi)
2 = 0, φ

†
i φi + φiφ†

i = I, (15.4)

where I is the identity operator; at different sites, the fields commute: φiφj = φjφi ;
φ

†
i φj = φjφ†

i , if i �= j .
To turn these into completely anti-commuting (fermionic) fields, we apply the

so-called Jordan-Wigner transformation [54]:

ψi = (−1)n1+···+ni−1φi, (15.5)

where ni = φ†
i φi = ψ†

i ψi are the occupation numbers at the sites i, i.e., we insert a
minus sign if an odd number of sites j with j < i are occupied. As a consequence
of this well-known procedure, one now has

ψiψj +ψjψi = 0, ψ
†
i ψj +ψjψ†

i = δij , ∀(i, j). (15.6)

The virtue of this transformation is that the anti-commutation relations (15.6) stay
unchanged after any linear, unitary transformation of the ψi as vectors in our M-
dimensional vector space, provided that ψ†

i transform as contra-vectors. Usually,
the minus signs in Eq. (15.5) do no harm, but some care is asked for.

Now consider the permutation matrix P and write the Hamiltonian in Eq. (15.2)
as a lower case hij ; it is an M ×M component matrix. Writing Uij (t)= (e−iht )ij ,
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we have, at integer time steps, P top = Uop(t). We now claim that the permutation

that moves the fermions around, is generated by the Hamiltonian H op
F defined as

H
op
F =

∑

ij

ψ
†
j hjiψi. (15.7)

This we prove as follows:
Let

ψi(t)= eiH
op
F tψie

−iH op
F t ,

d

dt
e−iH

op
F t = −iH op

F e
−iH op

F t = −ie−iH op
F tH

op
F ;

(15.8)

Then

d

dt
ψk(t)= ieiH

op
F t

∑

ij

[
ψ

†
j hjiψi,ψk

]
e−iH

op
F t (15.9)

= ieiH op
F t

∑

ij

hji
(−{

ψ
†
j ,ψk

}
ψi +ψ†

j {ψi,ψk}
)
e−iH

op
F t (15.10)

= −ieiH op
F t

∑

i

hkiψie
−iH op

F t = −i
∑

i

hkiψi(t), (15.11)

where the anti-commutator is defined as {A,B} ≡ AB + BA (note that the second
term in Eq. (15.10) vanishes).

This is the same equation that describes the evolution of the states |k〉 of the
original cogwheel model. So we see that, at integer time steps t , the fields ψi(t)
are permuted according to the permutation operator P t . Note now, that the empty
state |0〉 (which is not the vacuum state) does not evolve at all (and neither does the
completely filled state). The N particle state (0 ≤N ≤M), obtained by applying N
copies of the field operators ψ†

i , therefore evolves with the same permutator. The
Jordan Wigner minus sign, (15.5), gives the transformed state a minus sign if after
t permutations the order of the N particles has become an odd permutation of their
original relative positions. Although we have to be aware of the existence of this
minus sign, it plays no significant role in most cases. Physically, this sign is not
observable.

The importance of the procedure displayed here is that we can read off how anti-
commuting fermionic field operators ψi , or ψi(x), can emerge from deterministic
systems. The minus signs in their (anti-)commutators is due to the Jordan-Wigner
transformation (15.5), without which we would not have any commutator expres-
sions at all, so that the derivation (15.11) would have failed.

The final step in this second quantization procedure is that we now use our free-
dom to perform orthogonal transformations among the fields ψ and ψ†, such that
we expand them in terms of the eigenstates ψ(Ei) of the one-particle Hamiltonian
hij . Then the state |∅〉 obeying

ψ(Ei)|∅〉 = 0 if Ei > 0; ψ†(Ei)|∅〉 = 0 if Ei < 0, (15.12)
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has the lowest energy of all. Now, that is the vacuum state, as Dirac proposed. The
negative energy states are interpreted as holes for antiparticles. The operators ψ(E)
annihilate particles if E > 0 or create antiparticles if E < 0. For ψ†(E) it is the
other way around. Particles and antiparticles now all carry positive energy. Is this
then the resolution of the problem noted in Chap. 14? This depends on how we
handle interactions, see Chap. 9.2 in Part I, and we discuss this important question
further in Sect. 22.1 and in Chap. 23.

The conclusion of this section is that, if the Hamiltonian matrix hij describes a
single or composite cogwheel model, leading to classical permutations of the states
|i〉, i = 1, . . . ,M , at integer times, then the model with Hamiltonian (15.7) is related
to a system where occupied states evolve according to the same permutations, the
difference being that now the total number of states is 2M instead of M . And the
energy is always bounded from below.

One might object that in most physical systems the Hamiltonian matrix hij would
not lead to classical permutations at integer time steps, but our model is just a first
step. A next step could be that hij is made to depend on the values of some local
operator fields ϕ(x). This is what we have in the physical world, and this may result
if the permutation rules for the evolution of these fermionic particles are assumed to
depend on other variables in the system.

In fact, there does exist a fairly realistic, simplified fermionic model where hij
does appear to generate pure permutations. This will be exhibited in the next section.

A procedure for bosons should go in analogous ways, if one deals with bosonic
fields in quantum field theory. However, a relation with deterministic theories is
not as straightforward as in the fermionic case, because arbitrarily large numbers of
bosonic particles may occupy a single site. To mitigate this situation, the notion of
harmonic rotators was introduced, which also for bosons only allows finite numbers
of states. We can apply more conventional bosonic second quantization in some
special two-dimensional theories, see Sect. 17.1.1.

How second quantization is applied in standard quantum field theories is de-
scribed in Sect. 20.3.

15.2 ‘Neutrinos’ in Three Space Dimensions

In some cases, it is worth-while to start at the other end. Given a typical quantum
system, can one devise a deterministic classical automaton that would generate all
its quantum states? We now show a new case of interest.

One way to determine whether a quantum system may be mathematically equiv-
alent to a deterministic model is to search for a complete set of beables. As defined
in Sect. 2.1.1, beables are operators that may describe classical observables, and
as such they must commute with one another, always, at all times. Thus, for con-
ventional quantum particles such as the electron in Bohr’s hydrogen model, neither
the operators x nor p are beables because [x(t), x(t ′)] �= 0 and [p(t),p(t ′)] �= 0 as
soon as t �= t ′. Typical models where we do have such beables are ones where the
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Hamiltonian is linear in the momenta, such as in Sect. 12.3, Eq. (12.18), rather than
quadratic in p. But are they the only ones?

Maybe the beables only form a space–time grid, whereas the data on points in
between the points on the grid do not commute. This would actually serve our pur-
pose well, since it could be that the physical data characterizing our universe really
do form such a grid, while we have not yet been able to observe that, just because
the grid is too fine for today’s tools, and interpolations to include points in between
the grid points could merely have been consequences of our ignorance.

Beables form a complete set if, in the basis where they are all diagonal, the col-
lection of eigenvalues completely identify the elements of this basis.

No such systems of beables do occur in Nature, as far as we know today; that
is, if we take all known forces into account, all operators that we can construct
today cease to commute at some point. We can, and should, try to search better, but,
alternatively, we can produce simplified models describing only parts of what we
see, which do allow transformations to a basis of beables. In Chap. 12.1, we already
discussed the harmonic rotator as an important example, which allowed for some
interesting mathematics in Chap. 13. Eventually, its large N limit should reproduce
the conventional harmonic oscillator. Here, we discuss another such model: massless
‘neutrinos’, in 3 space-like and one time-like dimension.

A single quantized, non interacting Dirac fermion obeys the Hamiltonian1

H op = αipi + βm, (15.13)

where αi,β are Dirac 4 × 4 matrices obeying

αiαj + αjαi = 2δij ; β2 = 1; αiβ + βαi = 0. (15.14)

Only in the case m= 0 can we construct a complete set of beables, in a straight-
forward manner.2 In that case, we can omit the matrix β , and replace αi by the three
Pauli matrices, the 2 × 2 matrices σi . The particle can then be looked upon as a
massless (Majorana or chiral) “neutrino”, having only two components in its spinor
wave function. The neutrino is entirely ‘sterile’, as we ignore any of its interactions.
This is why we call this the ‘neutrino’ model, with ‘neutrino’ between quotation
marks.

There are actually two choices here: the relative signs of the Pauli matrices could
be chosen such that the particles have positive (left handed) helicity and the antipar-
ticles are right handed, or they could be the other way around. We take the choice
that particles have the right handed helicities, if our coordinate frame (x, y, z) is
oriented as the fingers 1,2,3 of the right hand. The Pauli matrices σi obey

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2; σ 2
1 = σ 2

2 = σ 2
3 = 1. (15.15)

1Summation convention: repeated indices are usually summed over.
2Massive ‘neutrinos’ could be looked upon as massless ones in a space with one or more extra
dimensions, and that does also have a beable basis. Projecting this set back to 4 space–time dimen-
sions however leads to a rather contrived construction.
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The beables are:
{
Oop
i

}= {q̂, s, r}, where

q̂i ≡ ±pi/|p|, s ≡ q̂ · �σ, r ≡ 1
2 (q̂ · �x + �x · q̂). (15.16)

To be precise, q̂ is a unit vector defining the direction of the momentum, modulo its
sign. What this means is that we write the momentum �p as

�p = pr q̂, (15.17)

where pr can be a positive or negative real number. This is important, because we
need its canonical commutation relation with the variable r , being [r,pr ] = i, with-
out further restrictions on r or pr . If pr would be limited to the positive numbers
|p|, this would imply analyticity constraints for wave functions ψ(r).

The caret ˆ on the operator q̂ is there to remind us that it is a vector with length
one, |q̂| = 1. To define its sign, one could use a condition such as q̂z > 0. Alterna-
tively, we may decide to keep the symmetry Pint (for ‘internal parity’),

q̂↔ −q̂, pr ↔ −pr, r↔ −r, s↔ −s, (15.18)

after which we would keep only the wave functions that are even under this reflec-
tion. The variable s can only take the values s = ±1, as one can check by taking the
square of q̂ · �σ . In the sequel, the symbol p̂ will be reserved for p̂ = + �p/|p|, so that
q̂ = ±p̂.

The last operator in Eq. (15.16), the operator r , was symmetrized so as to guar-
antee that it is Hermitian. It can be simplified by using the following observations.
In the �p basis, we have

�x = i ∂
∂ �p ; ∂

∂ �ppr = q̂;

[xi,pr ] = iq̂i; [xi, q̂j ] = i

pr
(δij − q̂i q̂j );

(15.19)

xi q̂i − q̂ixi = 2i

pr
→ 1

2 (q̂ · �x + �x · q̂)= q̂ · �x + i

pr
. (15.20)

This can best be checked first by checking the case pr = |p|> 0, q̂ = p̂, and noting
that all equations are preserved under the reflection symmetry (15.18).

It is easy to check that the operators (15.16) indeed form a completely commuting
set. The only non-trivial commutator to be looked at carefully is [r, q̂] = [q̂ · �x, q̂] .
Consider again the �p basis, where �x = i∂/∂ �p : the operator �p ·∂/∂ �p is the dilatation
operator. But, since q̂ is scale invariant, it commutes with the dilatation operator:

[
�p · ∂
∂ �p , q̂

]
= 0. (15.21)

Therefore,

[q̂ · �x, q̂] = i
[
p−1
r �p · ∂

∂ �p , q̂
]

= 0, (15.22)

since also [pr, q̂] = 0, but of course we could also have used Eq. (15.19), # 4.
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The unit vector q̂ lives on a sphere, characterized by two angles θ and ϕ. If we
decide to define q̂ such that qz > 0 then the domains in which these angles must lie
are:

0 ≤ θ ≤ π/2, 0 ≤ ϕ < 2π. (15.23)

The other variables take the values

s = ±1, −∞< r <∞. (15.24)

An important question concerns the completeness of these beables and their re-
lation to the more usual operates �x, �p and �σ , which of course do not commute so
that these themselves are no beables. This we discuss in the next subsection, which
can be skipped at first reading. For now, we mention the more fundamental obser-
vation that these beables can describe ontological observables at all times, since the
Hamiltonian (15.13), which here reduces to

H = �σ · �p, (15.25)

generates the equations of motion

d

dt
�x = −i[�x,H ] = �σ , d

dt
�p = 0,

d

dt
σi = 2εijkpjσk; (15.26)

d

dt
p̂ = 0; d

dt
(p̂ · �σ)= 2εijk(pi/|p|)pjσk = 0,

d

dt
(p̂ · �x)= p̂ · �σ,

(15.27)

where p̂ = �p/|p| = ±q̂ , and thus we have:

d

dt
θ = 0,

d

dt
ϕ = 0,

d

dt
s = 0,

d

dt
r = s = ±1. (15.28)

The physical interpretation is simple: the variable r is the position of a ‘particle’
projected along a predetermined direction q̂ , given by the two angles θ and ϕ, and
the sign of s determines whether it moves with the speed of light towards larger or
towards smaller r values, see Fig. 15.2.

Note, that a rotation over 180◦ along an axis orthogonal to q̂ may turn s into
−s, which is characteristic for half-odd spin representations of the rotation group,
so that we can still consider the neutrino as a spin 1

2 particle.3

What we have here is a representation of the wave function for a single ‘neu-
trino’ in an unusual basis. As will be clear from the calculations presented in the
subsection below, in this basis the ‘neutrino’ is entirely non localized in the two
transverse directions, but its direction of motion is entirely fixed by the unit vector
q̂ and the Boolean variable s. In terms of this basis, the ‘neutrino’ is a deterministic

3But rotations in the plane, or equivalently, around the axis q̂ , give rise to complications, which
can be overcome, see later in this section.
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Fig. 15.2 The beables for the
“neutrino”, indicated as the
scalar r (distance of the sheet
from the origin), the Boolean
s, and the unit vectors q̂, θ̂ ,
and ϕ̂. O is the origin of
3-space

object. Rather than saying that we have a particle here, we have a flat sheet, a plane.
The unit vector q̂ describes the orientation of the plane, and the variable s tells us in
which of the two possible directions the plane moves, always with the speed of light.
Neutrinos are deterministic planes, or flat sheets. The basis in which the operators
q̂, r , and s are diagonal will serve as an ontological basis.

Finally, we could use the Boolean variable s to define the sign of q̂ , so that it
becomes a more familiar unit vector, but this can better be done after we studied the
operators that flip the sign of the variable s, because of a slight complication, which
is discussed when we work out the algebra, in Sects. 15.2.1 and 15.2.2.

Clearly, operators that flip the sign of s exist. For that, we take any vector q̂ ′
that is orthogonal to q̂ . Then, the operator q̂ ′ · �σ obeys (q̂ ′ · �σ)s = −s(q̂ ′ · �σ) , as
one can easily check. So, this operator flips the sign. The problem is that, at each
point on the sphere of q̂ values, one can take any unit length superposition of two
such vectors q̂ ′ orthogonal to q̂ . Which one should we take? Whatever our choice,
it depends on the angles θ and ϕ. This implies that we necessarily introduce some
rather unpleasant angular dependence. This is inevitable; it is caused by the fact that
the original neutrino had spin 1

2 , and we cannot mimic this behaviour in terms of the
q̂ dependence because all wave functions have integral spin. One has to keep this in
mind whenever the Pauli matrices are processed in our descriptions.

Thus, in order to complete our operator algebra in the basis determined by the
eigenvalues q̂, s, and r , we introduce two new operators whose squares ore one. De-
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fine two vectors orthogonal to q̂ , one in the θ -direction and one in the ϕ -direction:

q̂ =
(
q1
q2
q3

)

, θ̂ = 1
√
q2

1 + q2
2

(
q3q1
q3q2
q2

3 − 1

)

,

ϕ̂ = 1
√
q2

1 + q2
2

(−q2
q1
0

)

.

(15.29)

All three are normalized to one, as indicated by the caret. Their components obey

qi = εijkθjϕk, θi = εijkϕj qk, ϕi = εijkqj θk. (15.30)

Then we define two sign-flip operators: write s = s3, then

s1 = θ̂ · �σ , s2 = ϕ̂ · �σ , s3 = s = q̂ · �σ . (15.31)

They obey:

s2
i = I, s1s2 = is3, s2s3 = is1, s3s1 = is2. (15.32)

Considering now the beable operators q̂, r, and s3, the translation operator pr for
the variable r , the spin flip operators (“changeables”) s1 and s2, and the rotation op-
erators for the unit vector q̂ , how do we transform back to the conventional neutrino
operators �x, �p and �σ ?

Obtaining the momentum operators is straightforward:

pi = pr q̂i , (15.33)

and also the Pauli matrices σi can be expressed in terms of the si , simply by inverting
Eqs. (15.31). Using Eqs. (15.29) and the fact that q2

1 + q2
2 + q2

3 = 1, one easily
verifies that

σi = θis1 + ϕis2 + qis3. (15.34)

However, to obtain the operators xi is quite a bit more tricky; they must com-
mute with the σi . For this, we first need the rotation operators �Lont . This is not
the standard orbital or total angular momentum. Our transformation from standard
variables to beable variables will not be quite rotationally invariant, just because
we will be using either the operator s1 or the operator s2 to go from a left-moving
neutrino to a right moving one. Note, that in the standard picture, chiral neutrinos
have spin 1

2 . So flipping from one mode to the opposite one involves one unit � of
angular momentum in the plane. The ontological basis does not refer to neutrino
spin, and this is why our algebra gives some spurious angular momentum violation.
As long as neutrinos do not interact, this effect stays practically unnoticeable, but
care is needed when either interactions or mass are introduced.

The only rotation operators we can start off with in the beable frame, are the
operators that rotate the planes with respect to the origin of our coordinates. These
we call �Lont:

Lont
i = −iεijkqj ∂

∂qk
. (15.35)
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By definition, they commute with the si , but care must be taken at the equator,
where we have a boundary condition, which can be best understood by imposing
the symmetry condition (15.18).

Note that the operators Lont
i defined in Eq. (15.35) do not coincide with any of

the conventional angular momentum operators because those do not commute with
the si , as the latter depend on θ̂ and ϕ̂. One finds the following relation between the
angular momentum �L of the neutrinos and �Lont:

Lont
i ≡ Li + 1

2

(
θis1 + ϕis2 − q3θi√

1 − q2
3

s3

)
; (15.36)

the derivation of this equation is postponed to Sect. 15.2.1.
Since �J = �L+ 1

2 �σ , one can also write, using Eqs. (15.34) and (15.29),

Lont
i = Ji − 1

1 − q2
3

(
q1
q2
0

)

s3. (15.37)

We then derive, in Sect. 15.2.1, Eq. (15.60), the following expression for the
operators xi in the neutrino wave function, in terms of the beables q̂, r and s3, and
the changeables4 Lont

k ,pr , s1 and s2:

xi = qi
(
r − i

pr

)
+ εijkqjLont

k /pr

+ 1

2pr

(
−ϕis1 + θis2 + q3√

1 − q2
3

ϕis3

)
(15.38)

(note that θi and ϕi are beables since they are functions of q̂).
The complete transformation from the beable basis to one of the conventional

bases for the neutrino can be derived from

〈 �p,α|q̂, pr , s〉 = prδ3( �p− q̂pr )χsα(q̂), (15.39)

where α is the spin index of the wave functions in the basis where σ3 is diagonal,
and χsα is a standard spinor solution for the equation (q̂ · �σαβ)χsβ(q̂)= sχsα(q̂).

In Sect. 15.2.2, we show how this equation can be used to derive the elements of
the unitary transformation matrix mapping the beable basis to the standard coordi-
nate frame of the neutrino wave function basis5 (See Eq. 15.83):

〈�x,α|q̂, r, s〉 = i

2π
δ′(r − q̂ · �x)χsα(q̂), (15.40)

where δ′(z) ≡ d
dz δ(z). This derivative originates from the factor pr in Eq. (15.39),

which is necessary for a proper normalization of the states.

4See Eq. (15.47) and the remarks made there concerning the definition of the operator 1/pr in the
world of the beables, as well as in the end of Sect. 15.2.2.
5In this expression, there is no need to symmetrize q̂ · �x, because both q̂ and �x consist of C-numbers
only.
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15.2.1 Algebra of the Beable ‘Neutrino’ Operators

This subsection is fairly technical and can be skipped at first reading. It derives the
results mentioned in the previous section, by handling the algebra needed for the
transformations from the (q̂, s, r) basis to the (�x,σ3) or ( �p,σ3) basis and back. This
algebra is fairly complex, again, because, in the beable representation, no direct
reference is made to neutrino spin. Chiral neutrinos are normally equipped with
spin + 1

2 or − 1
2 with spin axis in the direction of motion. The flat planes that are

moving along here, are invariant under rotations about an orthogonal axis, and the
associated spin-angular momentum does not leave a trace in the non-interacting,
beable picture.

This forces us to introduce some axis inside each plane that defines the phases of
the quantum states, and these (unobservable) phases explicitly break rotation invari-
ance.

We consider the states specified by the variables s and r , and the polar coordi-
nates θ and ϕ of the beable q̂ , in the domains given by Eqs. (15.23), (15.24). Thus,
we have the states |θ,ϕ, s, r〉. How can these be expressed in terms of the more fa-
miliar states |�x,σz〉 and/or | �p,σz〉, where σz = ±1 describes the neutrino spin in the
z-direction, and vice versa?

Our ontological states are specified in the ontological basis spanned by the oper-
ators q̂, s(= s3), and r . We add the operators (changeables) s1 and s2 by specifying
their algebra (15.32), and the operator

pr = −i∂/∂r; [r,pr ] = i. (15.41)

The original momentum operators are then easily retrieved. As in Eq, (15.17), define

�p = pr q̂. (15.42)

The next operators that we can reproduce from the beable operators q̂, r , and
s1,2,3 are the Pauli operators σ1,2,3:

σi = θis1 + ϕis2 + qis3. (15.43)

Note, that these now depend non-trivially on the angular parameters θ and ϕ, since
the vectors θ̂ and ϕ̂, defined in Eq. (15.29), depend non-trivially on q̂ , which is the
radial vector specified by the angles θ and ϕ. One easily checks that the simple
multiplication rules from Eqs. (15.32) and the right-handed orthonormality (15.30)
assure that these Pauli matrices obey the correct multiplication rules also. Given the
trivial commutation rules for the beables, [qi, θj ] = [qi, ϕj ] = 0, and [pr, qi] = 0,
one finds that [pi, σj ] = 0, so here, we have no new complications.

Things are far more complicated and delicate for the �x operators. To reconstruct
an operator �x = i∂/∂ �p, obeying [xi,pj ] = iδij and [xi, σj ] = 0, we first introduce
the orbital angular momentum operator

Li = εijkxipk = −iεijkqj ∂
∂qk

(15.44)
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(where σi are kept fixed), obeying the usual commutation rules

[Li,Lj ] = iεijkLk, [Li, qj ] = iεijkqk, [Li,pj ] = iεijkpk, etc., (15.45)

while [Li,σj ] = 0. Note, that these operators are not the same as the angular mo-
menta in the ontological frame, the Lont

i of Eq. (15.35), since those are demanded to
commute with sj , while the orbital angular momenta Li commute with σj . In terms
of the orbital angular momenta (15.44), we can now recover the original space op-
erators xi, i = 1,2,3, of the neutrinos:

xi = qi
(
r − i

pr

)
+ εijkqjLk/pr . (15.46)

The operator 1/pr , the inverse of the operator pr = −i∂/∂r , should be −i times
the integration operator. This leaves the question of the integration constant. It is
straightforward to define that in momentum space, but eventually, r is our beable
operator. For wave functions in r space, ψ(r, . . .) = 〈r, . . . |ψ〉, where the ellipses
stand for other beables (of course commuting with r), the most careful definition is:

1

pr
ψ(r)≡

∫ ∞

−∞
1
2 i sgn

(
r − r ′)ψ(r ′)dr ′, (15.47)

which can easily be seen to return ψ(r) when pr acts on it. “sgn(x)” stands for
the sign of x. We do note that the integral must converge at r → ±∞. This is a
restriction on the class of allowed wave functions: in momentum space, ψ must
vanish at pr → 0. Restrictions of this sort will be encountered more frequently in
this book.

The anti Hermitian term −i/pr in Eq. (15.46) arises automatically in a careful
calculation, and it just compensates the non hermiticity of the last term, where qj
and Lk should be symmetrized to get a Hermitian expression.Lk commutes with pr .
The xi defined here ends up being Hermitian.

This perhaps did not look too hard, but we are not ready yet. The operators Li
commute with σj , but not with the beable variables si . Therefore, an observer of the
beable states, in the beable basis, will find it difficult to identify our operators Li . It
will be easy for such an observer to identify operators Lont

i , which generate rotations
of the qi variables while commuting with si . He might also want to rotate the Pauli-
like variables si , employing a rotation operator such as 1

2 si , but that will not do, first,
because they no longer obviously relate to spin, but foremost, because the si in the
conventional basis have a much less trivial dependence on the angles θ and ϕ, see
Eqs. (15.29) and (15.31).

Actually, the reconstruction of the �x operators from the beables will show a non-
trivial dependence on the variables si and the angles θ and ϕ. This is because �x and
the si do not commute. From the definitions (15.29) and the expressions (15.29) for
the vectors θ̂ and ϕ̂, one derives, from judicious calculations:

[xi, θj ] = i

pr

(
q3√

1 − q2
3

ϕiϕj − θiqj
)
, (15.48)
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[xi, ϕj ] = −iϕi
pr

(
qj + θjq3√

1 − q2
3

)
, (15.49)

[xi, qj ] = i

pr
(δij − qiqj ). (15.50)

The expression q3/

√
1 − q2

3 = cot(θ) emerging here is singular at the poles, clearly
due to the vortices there in the definitions of the angular directions θ and ϕ.

From these expressions, we now deduce the commutators of xi and s1,2,3:

[xi, s1] = i

pr

(
ϕiq3√
1 − q2

3

s2 − θis3
)
, (15.51)

[xi, s2] = −i
pr
ϕi

(
s3 + q3√

1 − q2
3

s1

)
, (15.52)

[xi, s3] = i

pr
(σi − qis3)= i

pr
(θis1 + ϕis2). (15.53)

In the last expression Eq. (15.43) for �σ was used. Now, observe that these equations
can be written more compactly:

[xi, sj ] = 1
2

[
1

pr

(
−ϕis1 + θis2 + q3ϕi√

1 − q2
3

s3

)
, sj

]
. (15.54)

To proceed correctly, we now need also to know how the angular momentum
operators Li commute with s1,2,3. Write Li = εijkxj q̂kpr , where only the functions
xi do not commute with the sj . It is then easy to use Eqs. (15.51)–(15.54) to find the
desired commutators:

[Li, sj ] = 1
2

[
−θis1 − ϕis2 + q3θi√

1 − q2
3

s3, sj

]
, (15.55)

where we used the simple orthonormality relations (15.30) for the unit vectors θ̂ , ϕ̂,
and q̂ . Now, this means that we can find new operators Lont

i that commute with all
the sj :

Lont
i ≡ Li + 1

2

(
θis1 + ϕis2 − q3θi√

1 − q2
3

s3

)
,

[
Lont
i , sj

]= 0, (15.56)

as was anticipated in Eq. (15.36). It is then of interest to check the commutator
of two of the new “angular momentum” operators. One thing we know: according
to the Jacobi identity, the commutator of two operators Lont

i must also commute
with all sj . Now, expression (15.56) seems to be the only one that is of the form
expected, and commutes with all s operators. It can therefore be anticipated that
the commutator of two Lont operators should again yield an Lont operator, because
other expressions could not possibly commute with all s. The explicit calculation
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of the commutator is a bit awkward. For instance, one must not forget that Li also
commutes non-trivially with cot(θ):

[
Li,

q3√
1 − q2

3

]
= iϕi

1 − q2
3

. (15.57)

But then, indeed, one finds
[
Lont
i ,L

ont
j

]= iεijkLont
k . (15.58)

The commutation rules with qi and with r and pr were not affected by the additional
terms:

[
Lont
i , qj

]= iεijkqk,
[
Lont
i , r

]= [
Lont
i , pr

]= 0. (15.59)

This confirms that we now indeed have the generator for rotations of the beables qi ,
while it does not affect the other beables si , r and pr .

Thus, to find the correct expression for the operators �x in terms of the beable
variables, we replace Li in Eq. (15.46) by Lont

i , leading to

xi = qi
(
r − i

pr

)
+ εijkqjLont

k /pr

+ 1

2pr

(
−ϕis1 + θis2 + q3√

1 − q2
3

ϕis3

)
. (15.60)

This remarkable expression shows that, in terms of the beable variables, the �x coor-
dinates undergo finite, angle-dependent displacements proportional to our sign flip
operators s1, s2, and s3. These displacements are in the plane. However, the operator
1/pr does something else. From Eq. (15.47) we infer that, in the r variable,

〈r1| 1

pr
|r2〉 = 1

2 i sgn(r1 − r2). (15.61)

Returning now to a remark made earlier in this chapter, one might decide to use
the sign operator s3 (or some combination of the three s variables) to distinguish
opposite signs of the q̂ operators. The angles θ and ϕ then occupy the domains
that are more usual for an S2 sphere: 0< θ < π , and 0< ϕ ≤ 2π . In that case, the
operators s1,2,3 refer to the signs of q̂3, r and pr . Not much would be gained by such
a notation.

The Hamiltonian in the conventional basis is

H = �σ · �p. (15.62)

It is linear in the momenta pi , but it also depends on the non commuting Pauli
matrices σi . This is why the conventional basis cannot be used directly to see that
this is a deterministic model. Now, in our ontological basis, this becomes

H = spr . (15.63)
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Thus, it multiplies one momentum variable with the commuting operator s. The
Hamilton equation reads

dr

dt
= s, (15.64)

while all other beables stay constant. This is how our ‘neutrino’ model became
deterministic. In the basis of states |q̂, r, s〉 our model clearly describes planar sheets
at distance r from the origin, oriented in the direction of the unit vector q̂ , moving
with the velocity of light in a transverse direction, given by the sign of s.

Once we defined, in the basis of the two eigenvalues of s, the two other operators
s1 and s2, with (see Eqs. (15.32))

s1 =
(

0 1
1 0

)
, s2 =

(
0 −i
i 0

)
, s3 = s =

(
1 0
0 −1

)
, (15.65)

in the basis of states |r〉 the operator pr = −i∂/∂r , and, in the basis |q̂〉 the operators
Lont
i by

[
Lont
i ,L

ont
j

]= iεijkLont
k ,

[
Lont
i , qj

]= iεijkqk,
[
Lont
i , r

]= 0,
[
Lont
i , sj

]= 0,
(15.66)

we can write, in the ‘ontological’ basis, the conventional ‘neutrino’ operators �σ
(Eq. (15.43)), �x (Eq. (15.60)), and �p (Eq. (15.42)). By construction, these will obey
the correct commutation relations.

15.2.2 Orthonormality and Transformations of the ‘Neutrino’
Beable States

The quantities that we now wish to determine are the inner products

〈�x,σz|θ,ϕ, s, r〉, 〈 �p,σz|θ,ϕ, s, r〉. (15.67)

The states |θ,ϕ, s, r〉 will henceforth be written as |q̂, s, r〉. The use of momen-
tum variables q̂ ≡ ± �p/|p|, qz > 0, together with a real parameter r inside a Dirac
bracket will always denote a beable state in this subsection.

Special attention is required for the proper normalization of the various sets of
eigenstates. We assume the following normalizations:

〈�x,α|�x′, β
〉= δ3(�x − �x′)δαβ, (15.68)

〈 �p,α| �p′, β
〉= δ3( �p− �p′)δαβ, (15.69)

〈�x,α| �p,β〉 = (2π)−3/2ei �p·�xδαβ; (15.70)
〈
q̂, r, s|q̂ ′, r ′, s′

〉= δ2(q̂, q̂ ′)δ
(
r − r ′)δss′, (15.71)

δ2(q̂, q̂ ′)≡ δ(θ − θ ′)δ(ϕ − ϕ′)
sin θ

, (15.72)
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and α and β are eigenvalues of the Pauli matrix σ3; furthermore,
∫
δ3 �x

∑

α

|�x,α〉〈�x,α| = I=
∫

d2q̂

∫ ∞

−∞
dr

∑

s=±
|q̂, r, s〉〈q̂, r, s|;

∫
d2q̂ ≡

∫ π/2

0
sin θ dθ

∫ 2π

0
dϕ.

(15.73)

The various matrix elements are now straightforward to compute. First we define
the spinors χ±

α (q̂) by solving

(q̂ · �σαβ)χsβ = sχsα;
(
q3 − s q1 − iq2
q1 + iq2 −q3 − s

)(
χs1
χs2

)
= 0, (15.74)

which gives, after normalizing the spinors,

χ+
1 (q̂)=

√
1
2 (1 + q3); χ−

1 (q̂)= −
√

1
2 (1 − q3);

χ+
2 (q̂)=

q1 + iq2√
2(1 + q3)

; χ−
2 (q̂)=

q1 + iq2√
2(1 − q3)

,
(15.75)

where not only the equation s3χ±
α = ±χ±

α was imposed, but also

sα1βχ
±
α = χ∓

β , sα2βχ
±
α = ±iχ∓

β , (15.76)

which implies a constraint on the relative phases of χ+
α and χ−

α . The sign in the
second of these equations is understood if we realize that the index s here, and later
in Eq. (15.80), is an upper index.

Next, we need to know how the various Dirac deltas are normalized:

d3 �p = p2
r d

2q̂dpr ; δ3(q̂pr − q̂ ′p′
r

)= 1

p2
r

δ2(q̂, q̂ ′)δ
(
pr − p′

r

)
, (15.77)

We demand completeness to mean
∫

d2q̂

∫ ∞

−∞
dpr

∑

s=±
〈 �p,α|q̂, pr , s〉〈q̂, pr , s| �p′, α′〉 = δαα′δ3( �p− �p′); (15.78)

∫
d3 �p

2∑

α=1

〈q̂, pr , s| �p,α〉〈 �p,α|q̂ ′,p′
r , s

′〉 = δ2(q̂, q̂ ′)δ
(
pr − p′

r

)
δss′ , (15.79)

which can easily be seen to imply6

〈 �p,α|q̂, pr , s〉 = prδ3( �p− q̂pr )χsα(q̂), (15.80)

since the norm p2
r has to be divided over the two matrix terms in Eqs (15.78) and

(15.79).

6Note that the phases in these matrix elements could be defined at will, so we could have chosen
|p| in stead of pr . Our present choice is for future convenience.
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This brings us to derive, using 〈r|pr 〉 = (2π)−1/2eipr r ,

〈 �p,α|q̂, r, s〉 = 1√
2π

1

pr
δ2
(± �p

|p| , q̂
)
e−i(q̂· �p)rχsα(q̂), (15.81)

where the sign is the sign of p3.
The Dirac delta in here can also be denoted as

δ2
(± �p

|p| , q̂
)

= (q̂ · �p)2δ2( �p ∧ q̂), (15.82)

where the first term is a normalization to ensure the expression to become scale
invariant, and the second just forces �p and q̂ to be parallel or antiparallel. In the
case q̂ = (0,0,1), this simply describes p2

3δ(p1)δ(p2).
Finally then, we can derive the matrix elements 〈�x,α|q̂, r, s〉. Just temporarily,

we put q̂ in the 3-direction: q̂ = (0,0,1),

〈�x,α|q̂, r, s〉 = 1√
2π
(2π)−3/2

∫
d3 �p (q̂ · �p)2

pr
δ2( �p ∧ q̂)e−i(q̂· �p)r+i �p·�xχsα(q̂)

= 1

(2π)2

∫
d3 �pp3δ(p1)δ(p2)e

ip3(x3−r)χsα(q̂)

= 1

2π

id

dr
δ(r − q̂ · �x)χsα(q̂)=

i

2π
δ′(r − q̂ · �x)χsα(q̂). (15.83)

With these equations, our transformation laws are now complete. We have all
matrix elements to show how to go from one basis to another. Note, that the states
with vanishing pr , the momentum of the sheets, generate singularities. Thus, we
see that the states |ψ〉 with 〈pr = 0|ψ〉 �= 0, or equivalently, 〈 �p = 0|ψ〉 �= 0, must
be excluded. We call such states ‘edge states’, since they have wave functions that
are constant in space (in r and also in �x), which means that they stretch to the
‘edge’ of the universe. There is an issue here concerning the boundary conditions at
infinity, which we will need to avoid. We see that the operator 1/pr , Eq. (15.47), is
ill defined for these states.

15.2.3 Second Quantization of the ‘Neutrinos’

Being a relativistic Dirac fermion, the object described in this chapter so-far suffers
from the problem that its Hamiltonian, (15.25) and (15.63), is not bounded from
below. There are positive and negative energy states. The cure will be the same as
the one used by Dirac, and we will use it again later: second quantization. We follow
the procedure described in Sect. 15.1: for every given value of the unit vector q̂ , we
consider an unlimited number of ‘neutrinos’, which can be in positive or negative
energy states. To be more specific, one might, temporarily, put the variables r on a
discrete lattice:

r = rn = nδr, (15.84)

but often we ignore this, or in other words, we let δr tend to zero.
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We now describe these particles, having spin 1
2 , by anti-commuting fermionic

operators. We have operator fieldsψα(�x) andψ†
α(�x) obeying anticommutation rules,

{
ψα(�x),ψ†

β

(�x′)}= δ3(�x − �x′)δαβ. (15.85)

Using the transformation rules of Sect. 15.2.2, we can transform these fields into
fields ψ(q̂, r, s) and ψ†(q̂, r, s) obeying

{
ψ(q̂, r, s),ψ†(q̂ ′, r ′, s′

)}= δ2(q̂, q̂ ′)δ
(
r − r ′)δss′ → δ2(q̂, q̂ ′)δnn′δss′ . (15.86)

At any given value of q̂ (which could also be chosen discrete if so desired), we
have a straight line of r values, limited to the lattice points (15.84). On a stretch of
N sites of this lattice, we can imagine any number of fermions, ranging from 0 to
N . Each of these fermions obeys the same evolution law (15.64), and therefore also
the entire system is deterministic.

There is no need to worry about the introduction of anti-commuting fermionic
operators (15.85), (15.86). The minus signs are handled through the Jordan-Wigner
transformation, implying that the creation or annihilation of a fermion that has an
odd number of fermions at one side of it, will be accompanied by an artificial minus
sign. This minus sign has no physical origin but is exclusively introduced in order to
facilitate the mathematics with anti-commuting fields. Because, at any given value
of q̂ , the fermions propagate on a single line, and they all move with the same speed
in one direction, the Jordan-Wigner transformation is without complications. Of
course, we still have not introduced interactions among the fermions, which indeed
would not be easy as yet.

This ‘second quantized’ version of the neutrino model has one big advantage:
we can describe it using a Hamiltonian that is bounded from below. The argument
is identical to Dirac’s own ingenious procedure. The Hamiltonian of the second
quantized system is (compare the first quantized Hamiltonian (15.25)):

H =
∫

d3 �x
∑

α

ψ∗α(�x)hβαψβ(�x), hβα = −i �σβα · ∂
∂ �x . (15.87)

Performing the transformation to the beable basis described in Sect. 15.2.2, we find

H =
∫

d2q̂

∫
dr

∑

s

ψ∗(q̂, r, s)(−is) ∂
∂r
ψ(q̂, r, s). (15.88)

Let us denote the field in the standard notation as ψ stand
α (�x) or ψ stand

α ( �p), and
the field in the ‘beable’ basis as ψont

s (q̂, r). Its Fourier transform is not a beable
field, but to distinguish it from the standard notation we will sometimes indicate it
nevertheless as ψont

s (q̂,pr).
In momentum space, we have (see Eq. 15.39):

ψ stand
α ( �p)= 1

pr

∑

s

χsα(q̂)ψ
ont
s (q̂,pr); (15.89)

ψont
s (q̂,pr)= pr

∑

α

χsα(q̂)
∗ψ stand
α ( �p), �p ≡ q̂pr , (15.90)
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where ‘stand’ stands for the standard representation, and ‘ont’ for the ontological
one, although we did the Fourier transform replacing the variable r by its momentum
variable pr . The normalization is such that

∑

α

∫
d3 �p∣∣ψ stand

α ( �p)∣∣2 =
∑

s

∫

q̂3>0
d2q̂

∫ π/δr

−π/δr
dpr

∣∣ψont
s (q̂,pr)

∣∣2, (15.91)

see Eqs. (15.77)–(15.80).
In our case, ψ has only two spin modes, it is a Weyl field, but in all other respects

it can be handled just as a massless Dirac field. Following Dirac, in momentum
space, each momentum �p has two energy eigenmodes (eigenvectors of the operator
h
β
α in the Hamiltonian (15.87)), which we write, properly normalized, as

ustand±
α ( �p)= 1√

2|p|(|p| ± p3)

(±|p| + p3
p1 + ip2

)
; E = ±|p|. (15.92)

Here, the spinor lists the values for the index α = 1,2. In the basis of the beables:

uont±
s (q̂,pr)=

(
1
0

)
if ± pr > 0,

(
0
1

)
if ± pr < 0; (15.93)

E = ±|pr |. (15.94)

Here, the spinor lists the values for the index s = + and −.
In both cases, we write

ψ( �p)= u+a1( �p)+ u−a†
2(− �p); {a1, a2} = {

a1, a
†
2

}= 0, (15.95)
{
a1( �p), a†

1

( �p′)}= {
a2( �p), a†

2

( �p′)}= δ3( �p− �p′) or δ
(
pr − p′

r

)
δ2(q̂, q̂ ′); (15.96)

H op = |p|(a†
1a1 + a†

2a2 − 1
)
, (15.97)

where a1 is the annihilation operator for a particle with momentum �p, and a†
2 is

the creation operator for an antiparticle with momentum − �p. We drop the vacuum
energy −1 . In case we have a lattice in r space, the momentum is limited to the
values | �p| = |pr |< π/δr .

15.3 The ‘Neutrino’ Vacuum Correlations

The vacuum state |∅〉 is the state of lowest energy. This means that, at each momen-
tum value �p or equivalently, at each (q̂,pr), we have

ai |∅〉 = 0, (15.98)

where ai is the annihilation operator for all states withH = σ · �p = spr > 0, and the
creation operator if H < 0. The beable states are the states where, at each value of
the set (q̂, r, s) the number of ‘particles’ is specified to be either 1 or 0. This means,
of course, that the vacuum state (15.98) is not a beable state; it is a superposition of
all beable states.
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One may for instance compute the correlation functions of right- and left moving
‘particles’ (sheets, actually) in a given direction. In the beable (ontological) basis,
one finds that left-movers are not correlated to right movers, but two left-movers are
correlated as follows:

P(r1, r2)− P(r1)P (r2)
= δr2〈∅|ψ∗

s (r1)ψs(r1)ψ
∗
s (r2)ψs(r2)|∅〉conn

=
∣∣∣∣
δr

2π

∫ π/δr

0
dp eip(r2−r1)

∣∣∣∣

2

=
{

δr2

π2|r1−r2|2 if r1−r2
δr

= odd ,

1
4δr1,r2 if r1−r2

δr
= even,

(15.99)

where δr2, the unit of distance between two adjacent sheets squared, was added for
normalization, and ‘conn’ stands for the connected diagram contribution only, that
is, the particle and antiparticle created at r2 are both annihilated at r1. The same
applies to two right movers. In the case of a lattice, where δr is not yet tuned to
zero, this calculation is still exact if r1 − r2 is an integer multiple of δr . Note that,
for the vacuum, P(r)= P(r, r)= 1

2 .
An important point about the second quantized Hamiltonian (15.87), (15.88): on

the lattice, we wish to keep the Hamiltonian (15.97) in momentum space. In position
space, Eqs. (15.87) or (15.88) cannot be valid since one cannot differentiate in the
space variable r . But we can have the induced evolution operator over finite integer
time intervals T = ntδr . This evolution operator then displaces left movers one
step to the left and right movers one step to the right. The Hamiltonian (15.97)
does exactly that, while it can be used also for infinitesimal times; it is however
not quite local when re-expressed in terms of the fields on the lattice coordinates,
since now momentum is limited to stay within the Brillouin zone |pr |< π/δr . This
feature, which here does not lead to serious complications, is further explained, for
the bosonic case, in Sect. 17.1.1.

Correlations of data at two points that are separated in space but not in time, or
not sufficiently far in the time-like direction to allow light signals to connect these
two points, are called space-like correlations. The space-like correlations found in
Eq. (15.99) are important. They probably play an important role in the mysterious
behaviour of the beable models when Bell’s inequalities are considered, see Part I,
Chap. 3.6 and beyond.

Note that we are dealing here with space-like correlations of the ontological de-
grees of freedom. The correlations are a consequence of the fact that we are looking
at a special state that is preserved in time, a state we call the vacuum. All physical
states normally encountered are template states, deviating only very slightly from
this vacuum state, so we will always have such correlations.

In the chapters about Bell inequalities and the Cellular Automaton Interpretation
(Sect. 5.2 and Chap. 3 of Part I), it is argued that the ontological theories proposed
in this book must feature strong, space-like correlations throughout the universe.
This would be the only way to explain how the Bell, or CHSH inequalities can be so
strongly violated in these models. Now since our ‘neutrinos’ are non interacting, one
cannot really do EPR-like experiments with them, so already for that reason, there
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is no direct contradiction. However, we also see that strong space-like correlations
are present in this model.

Indeed, one’s first impression might be that the ontological ‘neutrino sheet’
model of the previous section is entirely non local. The sheets stretch out infinitely
far in two directions, and if a sheet moves here, we immediately have some informa-
tion about what it does elsewhere. But on closer inspection one should concede that
the equations of motion are entirely local. These equations tell us that if we have a
sheet going through a space–time point x, carrying a sign function s, and oriented
in the direction q̂ , then, at the point x, the sheet will move with the speed of light in
the direction dictated by q̂ and σ . No information is needed from points elsewhere
in the universe. This is locality.

The thing that is non local is the ubiquitous correlations in this model. If we have
a sheet at (�x, t), oriented in a direction q̂ , we instantly know that the same sheet will
occur at other points (�y, t), if q̂ · (�y− �x)= 0, and it has the same values for q̂ and σ .
It will be explained in Chap. 20, Sect. 20.7, that space-like correlations are normal
in physics, both in classical systems such as crystals or star clusters and in quantum
mechanical ones such as quantized fields. In the neutrino sheets, the correlations are
even stronger, so that assuming their absence is a big mistake when one tries to draw
conclusions from Bell’s theorem.
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Chapter 16
PQ Theory

Most quantum theories describe operators whose eigenvalues form continua of real
numbers. Examples are one or more particles in some potential well, harmonic os-
cillators, but also bosonic quantum fields and strings. If we want to relate these to
deterministic systems we could consider ontological observables that take values in
the real numbers as well. There is however an other option.

One important application of the transformations described in this book could be
our attempts to produce fundamental theories about Nature at the Planck scale. Here,
we have the holographic principle at work, and the Bekenstein bound [5]. What
these tell us is that Hilbert space assigned to any small domain of space should be
finite-dimensional. In contrast, real numbers are described by unlimited sequences
of digits and therefore require infinite dimensional Hilbert spaces. That’s too large.
One may suspect that uncertainty relations, or non-commutativity, add some blur to
these numbers. In this chapter, we outline a mathematical procedure for a systematic
approach.

For PQ theory, as our approach will be called, we employed a new notation in
earlier work [114, 115], where not � but h is normalized to one. Wave functions
then take the form e2πipx = εipx , where ε = e2π ≈ 535.5. This notation was very
useful to avoid factors 1/

√
2π for the normalization of wave functions on a circle.

Yet we decided not to use such notation in this book, so as to avoid clashes with
other discussions in the standard notation in various other chapters. Therefore, we
return to the normalization � = 1. Factors

√
2π (for normalized states) will now

occur more frequently, and hopefully they won’t deter the reader.
In this chapter, and part of the following ones, dynamical variables can be real

numbers, indicated with lower case letters: p,q, r, x, . . . , they can be integers indi-
cated by capitals: N,P, Q,X, . . . , or they are angles (numbers defined on a circle),
indicated by Greek letters α,η, κ,�, . . . , usually obeying −π < α ≤ π , or some-
times defined merely modulo 2π .

A real number r , for example the number r = 137.035999074 · · · , is composed
of an integer, here R = 137, and an angle, �/2π = 0.035999074 · · · . In examples
such as a quantum particle on a line, Hilbert space is spanned by a basis defined on
the line: {|r〉}. In PQ theory, we regard such a Hilbert space as the product of Hilbert
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space spanned by the integers |R〉 and Hilbert space spanned by the angles, |�〉. So,
we have

1√
2π

|r〉 = |R,�〉 = |R〉|�〉. (16.1)

Note that continuity of a wave function |ψ〉 implies twisted boundary conditions:

〈R + 1, �|ψ〉 = 〈R,�+ 2π |ψ〉. (16.2)

The fractional part, or angle, is defined unambiguously, but the definition of the
integral part depends on how the angle is projected on the segment [0,2π], or: how
exactly do we round a real number to its integer value? We’ll take care of that when
the question arises.

So far our introduction; it suggests that we can split up a coordinate q into an
integer part Q and a fractional part ξ/2π and its momentum into an integer part
2πP and a fractional part κ . Now we claim that this can be done in such a way that
both [P,Q] = 0 and [ξ, κ] = 0.

Let us set up our algebra as systematically as possible.

16.1 The Algebra of Finite Displacements

Let there be given an operator qop with non-degenerate eigenstates |q〉 having eigen-
values q spanning the entire real line. The associated momentum operator is pop
with eigenstates |p〉 having eigenvalues p, also spanning the real line. The usual
quantum mechanical notation, now with �= 1, is

qop|q〉 = q|q〉; pop|p〉 = p|p〉; [qop,pop] = i;
〈
q|q ′〉= δ(q − q ′); 〈

p|p′〉= δ(p− p′); 〈q|p〉 = 1√
2π
eipq

(16.3)

(often, we will omit the subscript ‘op’ denoting that we refer to an operator, if this
should be clear from the context)

Consider now the displacement operators e−ipopa in position space, and eiqopb in
momentum space, where a and b are real numbers:

e−ipopa|q〉 = |q + a〉; eiqopb|p〉 = |p+ b〉. (16.4)

We have

[qop,pop] = i, eiqopbpop = (pop − b)eiqopb;
eiqopbe−ipopa = e−ipopaeiabeiqopb

= e−ipopaeiqopb, if ab= 2π × integer.

(16.5)

Let us consider the displacement operator in position space for a = 1. It is unitary,
and therefore can be written uniquely as e−iκ , where κ is a Hermitian operator with
eigenvalues κ obeying −π < κ ≤ π . As we see in Eq. (16.4), κ also represents
the momentum modulo 2π . Similarly, eiξ , with −π < ξ ≤ π , is defined to be an
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operator that causes a shift in the momentum by a step b = 2π . This means that
ξ/2π is the position operator q modulo one. We write

p = 2πK + κ, q =X+ ξ/2π, (16.6)

where both K and X are integers and κ and ξ are angles. We suggest that the reader
ignore the factors 2π at first reading; these will only be needed when doing precise
calculations.

16.1.1 From the One-Dimensional Infinite Line
to the Two-Dimensional Torus

As should be clear from Eqs. (16.5), we can regard the angle κ as the generator of a
shift in the integer X, and the angle ξ as generating a shift in K :

e−iκ |X〉 = |X+ 1〉, eiξ |K〉 = |K + 1〉. (16.7)

Since κ and ξ are uniquely defined as generating these elementary shifts, we
deduce from Eqs. (16.5) and (16.7) that

[ξ, κ] = 0. (16.8)

Thus, consider the torus spanned by the eigenvalues of the operators κ and ξ . We
now claim that the Hilbert space generated by the eigenstates |κ, ξ 〉 is equivalent to
the Hilbert space spanned by the eigenstates |q〉 of the operator qop, or equivalently,
the eigenstates |p〉 of the operator pop (with the exception of exactly one state, see
later).

It is easiest now to consider the states defined on this torus, but we must pro-
ceed with care. If we start with a wave function |ψ〉 that is continuous in q , we
have twisted periodic boundary conditions, as indicated in Eq. (16.2). Here, in the ξ
coordinate,

〈X+ 1, ξ |ψ〉 = 〈X,ξ + 2π |ψ〉, or

〈κ, ξ + 2π |ψ〉 = 〈
κ, ξ |eiκ |ψ 〉, (16.9)

whereas, since this wave function assumesX to be integer, we have strict periodicity
in κ :

〈κ + 2π, ξ |ψ〉 = 〈κ, ξ |ψ〉. (16.10)

If we would consider the same state in momentum space, the periodic boundary
conditions would be the other way around, and this is why, in the expression used
here, the transformations from position space to momentum space and back are
non-trivial. For our subsequent calculations, it is much better to transform first to a
strictly periodic torus. To this end, we introduce a phase function φ(κ, ξ) with the
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following properties:

φ(κ, ξ + 2π)= φ(κ, ξ)+ κ; φ(κ + 2π, ξ)= φ(κ, ξ); (16.11)

φ(κ, ξ)= −φ(−κ, ξ)= −φ(κ,−ξ); φ(κ, ξ)+ φ(ξ, κ)= κξ/2π. (16.12)

An explicit expression for such a function is derived in Sect. 16.2 and summarized in
Sect. 16.3. Here, we just note that this function suffers from a singularity at the point
(κ = ±π, ξ = ±π). This singularity is an inevitable consequence of the demands
(16.11) and (16.12). It is a topological defect that can be moved around on the torus,
but not disposed of.

Transforming |ψ〉 now with the unitary transformation

〈κ, ξ |ψ〉 = 〈κ, ξ |U(κ, ξ)|ψ̃〉; U(κ, ξ)= eiφ(κ,ξ) = eiκξ/2π−iφ(ξ,κ), (16.13)

turns the boundary conditions (16.9) and (16.10) both into strictly periodic bound-
aries for |ψ̃〉.

For the old wave function, we had X = i∂/∂κ , so, qop = i∂/∂κ + ξ/2π . The
operator pop would simply be −2πi∂/∂ξ , assuming that the boundary condition
(16.9) ensures that this reduces to the usual differential operator. Our new, trans-
formed wave function now requires a modification of these operators to accommo-
date for the unusual phase factor φ(κ, ξ). Now our two operators become

qop = i ∂
∂κ

+ ξ

2π
−
(
∂

∂κ
φ(κ, ξ)

)
= i ∂
∂κ

+
(
∂

∂κ
φ(ξ, κ)

)
; (16.14)

pop = −2πi
∂

∂ξ
+ 2π

(
∂

∂ξ
φ(κ, ξ)

)
= −2πi

∂

∂ξ
+ κ − 2π

(
∂

∂ξ
φ(ξ, κ)

)
. (16.15)

This is how the introduction of a phase factor φ(κ, ξ) can restore the symmetry be-
tween the operators qop and pop. Note that, although φ is not periodic, the derivative
∂φ(κ, ξ)/∂ξ is periodic, and therefore, both qop and pop are strictly periodic in κ
and ξ (beware the reflections ξ ↔ κ in Eqs. (16.14) and (16.15)).

We check that they obey the correct commutation rule:

[qop,pop] = i. (16.16)

It is very important that these operators are periodic. It implies that we have no theta
jumps in their definitions. If we had not introduced the phase function φ(κ, ξ), we
would have such theta jumps and in such descriptions the matrix elements in Q,P
space would be much less convergent.

The operators i∂/∂κ and −i∂/∂ξ now do not exactly correspond to the operators
X and K anymore, because of the last terms in Eqs. (16.14) and (16.15). They are
integers however, which obviously commute, and these we shall call Q and P . To
obtain the operators qop and pop in the basis of the states |Q,P 〉, we simply expand
the wave functions in κ, ξ space in terms of the Fourier modes,

〈κ, ξ |Q,P 〉 = 1

2π
eiP ξ−iQκ . (16.17)
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We now need the Fourier coefficients of the phase function φ(κ, ξ). They are given
in Sect. 16.2, where we also derive the explicit expressions for the operators qop and
pop in the Q,P basis:

qop =Qop + aop; 〈Q1,P1|Qop|Q2,P2〉 =Q1δQ1Q2δP1P2,

〈Q1,P1|aop|Q2,P2〉 = (−1)P+Q+1iP

2π(P 2 +Q2)
,

(16.18)

where Q stands short for Q2 −Q1, and P = P2 − P1.
For the p operator, it is derived analogously,

pop = 2πPop + bop, 〈Q1,P1|Pop|Q2,P2〉 = P1δQ1Q2δP1P2; (16.19)

〈Q1,P1|bop|Q2,P2〉 = (−1)P+QiQ
P 2 +Q2

. (16.20)

And now for some surprise. Let us inspect the commutator, [qop,pop], in the
basis of the integers Q and P . We have

[Qop,Pop] = 0; [aop, bop] = 0;
[qop,pop] = [Qop, bop] + 2π[aop,Pop];
〈
Q1,P1|[qop,pop]|Q2,P2

〉= −i(−1)P+Q)(1 − δQ1Q2δP1P2).

(16.21)

Here, the delta function is inserted because the commutator vanishes if Q1 = Q2

and P1 = P2. So, the commutator is not equal to i times the identity, but it can be
written as

[qop,pop] = i(I− |ψe〉〈ψe|
)
, where 〈Q,P |ψe〉 = (−1)P+Q. (16.22)

Apparently, there is one state |ψe〉 (with infinite norm), for which the standard com-
mutator rule is violated. We encounter more such states in this book, to be referred
to as edge states, that have to be factored out of our Hilbert space. From a physical
point of view it will usually be easy to ignore the edge states, but when we do math-
ematical calculations it is important to understand their nature. The edge state here
coincides with the state δ(κ−π)δ(ξ−π) , so its mathematical origin is easy to spot:
it is located at the singularity of our auxiliary phase function φ(κ, ξ) , the one we
observed following Eqs. (16.11) and (16.12); apparently, we must limit ourselves to
wave functions that vanish at that spot in (κ, ξ ) space.

16.1.2 The States |Q,P 〉 in the q Basis

As in other chapters, we now wish to identify the transformation matrix enabling us
to transform from one basis to an other. Thus, we wish to find the matrix elements
connecting states |Q,P 〉 to states |q〉 or to states |p〉. If we can find the function
〈q|0,0〉, which gives the wave function in q space of the state with Q = P = 0,
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Fig. 16.1 The wave function
of the state |Q,P 〉 when
P =Q= 0. Below, the
asymptotic form of the little
peaks far from the centre,
scaled up

finding the rest will be easy. Section 16.4, shows the derivation of this wave function.
In (κ, ξ) space, the state |q〉 is

〈κ, ξ |q〉 = eiφ(κ,2πq)δ(ξ − ξq), (16.23)

if q is written as q =X+ ξq/2π , and X is an integer. Section 16.4 shows that then
the wave function for P =Q= 0 is

〈q|0,0〉 = 1
2π

∫ 2π

0
dκ e−iφ(κ,2πq). (16.24)

The general wave function is obtained by shifting P and Q by integer amounts:

〈q|Q,P 〉 = 1
2π e

2πiPq
∫ 2π

0
dκ e−iφ(κ,2π(q−Q)). (16.25)

The wave function (16.24), which is equal to its own Fourier transform, is special
because it is close to a block wave, having just very small tails outside the domain
|q|< 1

2 , see Fig. 16.1.
The wave 〈q|Q,P 〉 is similar to the so-called wavelets [83], which are sometimes

used to describe pulsed waves, but this one has two extra features. Not only is it
equal to its own Fourier transform, it is also orthogonal to itself when shifted by an
integer. This makes the set of waves |Q,P 〉 in Eq. (16.25) an orthonormal basis.

This PQ formalism is intended to be used to transform systems based on integer
numbers only, to systems based on real numbers, and back. The integers may be
assumed to undergo switches described by a permutation operator Pop. After iden-
tifying some useful expression for a HamiltonianHop, with Pop = e−iHopδt , one can
now transform this to a quantum system with that Hamiltonian in its new basis.

For a single PQ pair, constructing a deterministic model whose evolution op-
erator resembles a realistic quantum Hamiltonian is difficult. A precise, canonical,
discrete Hamiltonian formalism is possible in the PQ scheme, but it requires some
more work that we postpone to Sect. 19. Interesting Hamiltonians are obtained in
the multidimensional case: Pi,Qi . Such a system is considered in Chap. 17.
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16.2 Transformations in the PQ Theory

The following sections, with which we end Chap. 16, can be read as Appendices to
Chap. 16. They contain technicalities most readers might not be interested in, but
they are needed to understand the details of some features that were encountered, in
particular when explicit calculations have to be done, connecting the basis sets of
the real numbers q , their Fourier transforms p , the integers (Q,P ) and the torus
(κ, ξ).

Let us first construct a solution to the boundary conditions (16.11) and (16.12)
for a phase function φ(κ, ξ),

φ(κ, ξ + 2π)= φ(κ, ξ)+ κ; φ(κ + 2π, ξ)= φ(κ, ξ); (16.26)

φ(κ, ξ)= −φ(−κ, ξ)= −φ(κ,−ξ); φ(κ, ξ)+ φ(ξ, κ)= κξ/2π. (16.27)

At first sight, these conditions appear to be contradictory. If we follow a closed
contour (κ, ξ) = (0,0)→ (2π,0)→ (2π,2π)→ (0,2π)→ (0,0), we pick up a
term 2π . This implies that a function that is single valued everywhere does not exist,
hence, we must have a singularity. We can write down an amplitude ψ(κ, ξ)= reiφ
of which this is the phase, but this function must have a zero or a pole. Let’s assume
it has a zero, and r is simply periodic. Then one can find the smoothest solution. If
r and φ are real functions:

r(κ, ξ)eiφ(κ,ξ) =
∞∑

N=−∞
e−π(N− ξ

2π )
2+iNκ , (16.28)

one finds that this is obviously periodic in κ , while the substitution

ξ → ξ + 2π, N →N + 1, (16.29)

gives the first part of Eq. (16.26).
The sum in Eq. (16.28), which fortunately converges rapidly, is a special case of

the elliptic function ϑ3, and it can also be written as a product [31, 45]:

r(κ, ξ)eiφ(κ,ξ) = e− ξ2

4π

∞∏

N=1

(
1 − e−2πN )

×
∞∏

N=0

(
1 + eξ+iκ−2πN−π )(1 + e−ξ−iκ−2πN−π ), (16.30)

from which we can easily read off the zeros: they are at (κ, ξ) = (2πN1 + π,
2πN2 +π). We deliberately chose these to be at the corners (±π,±π) of the torus,
but it does not really matter where they are; they are simply unavoidable.
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The matrix elements 〈Q1,P1|qop|Q2,P2〉 are obtained by first calculating them
on the torus. We have1

qop =Qop + a(ξ, κ); Qop = i ∂
∂κ
, a(ξ, κ)=

(
∂

∂κ
φ(ξ, κ)

)
. (16.31)

To calculate a(ξ, κ) we can best take the product formula (16.30):

a(ξ, κ)=
∞∑

N=0

aN(ξ, κ),

aN(ξ, κ)= ∂

∂κ

(
arg

(
1 + eκ+iξ−2π(N+ 1

2 )
)+ arg

(
1 + e−κ−iξ−2π(N+ 1

2 )
))
. (16.32)

Evaluation gives (note the interchange of κ and ξ ):

aN(ξ, κ)=
1
2 sin ξ

cos ξ + cosh(κ − 2πN − π) +
1
2 sin ξ

cos ξ + cosh(κ + 2πN + π), (16.33)

which now allows us to rewrite it as a single sum for N running from −∞ to ∞
instead of 0 to ∞.

Let us first transform from the ξ basis to the P basis, leaving κ unchanged. This
turns a(ξ, κ) into an operator aop. With

〈P1|ξ 〉〈ξ |P2〉 = 1
2π e

iP ξ , P = P2 − P1, (16.34)

we get the matrix elements of the operator aop in the (P, κ) frame:

〈P1|aop(κ)|P2〉 =
∞∑

N=−∞
aN(P,κ), P ≡ P2 − P1, (16.35)

and writing z= eiξ , we find

aN(P,κ)=
∮

dz

2πiz
zP

− 1
2 i(z− 1/z)

z+ 1/z+ eR + e−R , R = κ + 2πN + π,
aN(P,κ)= 1

2 sgn(P )(−1)P−1ie−|P(κ+2πN+π)|,
(16.36)

where sgn(P ) is defined to be ±1 if P ≷ 0 and 0 if P = 0. The absolute value
taken in the exponent indeed means that we always have a negative exponent there;
it originated when the contour integral over the unit circle forced us to choose a pole
inside the unit circle.

Next, we find the (Q,P ) matrix elements by integrating this over κ with a factor
〈Q1|κ〉〈κ|Q2〉 = 1

2π e
iQκ , with Q = Q2 − Q1. The sum over N and the integral

over κ from 0 to 2π combine into an integral over all real values of κ , to obtain the
remarkably simple expression

〈Q1,P1|aop|Q2,P2〉 = (−1)P+Q+1iP

2π(P 2 +Q2)
. (16.37)

1With apologies for interchanging the κ and ξ variables at some places, which was unavoidable,
please beware.
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In Eq. (16.14), this gives for the q operator:

qop =Qop + aop;
〈Q1,P1|qop|Q2,P2〉 =Q1δQ1Q2δP1P2 + 〈Q1,P1|aop|Q2,P2〉.

(16.38)

For the p operator, the role of Eq. (16.31) is played by

pop = 2πP + b(κ, ξ); P = −i ∂
∂ξ
, b(κ, ξ)= 2π

(
∂

∂ξ
φ(κ, ξ)

)
, (16.39)

and one obtains analogously, writing P ≡ P2 − P1,

pop = 2πPop + bop, 〈Q1,P1|Pop|Q2,P2〉 = P1δQ1Q2δP1P2; (16.40)

〈Q1,P1|bop|Q2,P2〉 = (−1)P+QiQ
P 2 +Q2

. (16.41)

Note, in all these expressions, we have the symmetry under the combined inter-
change

pop ↔ 2πqop, P ↔Q, X↔K,

ξ ↔ κ, i↔ −i, 2πaop ↔ bop.
(16.42)

16.3 Resume of the Quasi-periodic Phase Function φ(ξ, κ)

Let Q and P be integers while ξ and κ obey −π < ξ < π,−π < κ < π . The oper-
ators obey

[Qop,Pop] = [ξop,Pop] = [Qop, κop] = [ξop, κop] = 0. (16.43)

Inner products:

〈κ|Q〉 = 1√
2π
e−iQκ, 〈ξ |P 〉 = 1√

2π
eiP ξ . (16.44)

The phase angle functions φ and φ̃ are defined obeying (16.26) and (16.27), and

φ̃(ξ, κ)= φ(κ, ξ), φ(ξ, κ)+ φ̃(ξ, κ)= ξκ/2π. (16.45)

When computing matrix elements, we should not take the operator φ itself, since
it is pseudo periodic instead of periodic, so that the edge state δ(κ ± π) gives sin-
gularities. Instead, the operator ∂φ(ξ, κ)/∂κ ≡ a(ξ, κ) is periodic, so we start from
that. Note that, on the (ξ, κ)-torus, our calculations often force us to interchange the
order of the variables ξ and κ . Thus, in a slightly modified notation,

a(ξ, κ)=
∞∑

N=−∞
aN(ξ, κ); aN(ξ, κ)=

1
2 sin ξ

cos ξ + cosh(κ + 2π(N + 1
2 ))
. (16.46)
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With P2 − P1 ≡ P , we write in the (κ,P ) basis
〈
κ1,P1|aop

N |κ2,P2
〉 = δ(κ1 − κ2)aN(κ1,P )

aN(κ,P ) ≡ 1
2π

∫ 2π

0
dξeiP ξ aN(ξ, κ) = 1

2 sgn(P )(−1)P−1ie−|P(κ+2πN+π)|,

a(κ,P ) = 1
2 i(−1)P−1 cosh(P κ)

sinh(Pπ)
.

(16.47)

Conversely, we can derive in the (Q, ξ) basis, with Q2 −Q1 ≡Q:

〈Q1, ξ1|aop
N |Q2, ξ2〉 = δ(ξ1 − ξ2)aN(Q, ξ1)

aN(Q, ξ)= 1

4π
sin ξ

∫ π

−π
dκ

eiQκ

cos ξ + cosh(κ + 2πN + π) ;

a(Q, ξ)=
∑

N

aN(Q, ξ)= (−1)Q
sinh(Qξ)

2 sinh(Qπ)

(16.48)

(the latter expression is found by contour integration).
Finally, in the (Q,P ) basis, we have, either by Fourier transforming (16.47) or

(16.48):

〈Q1,P1|aop|Q2,P2〉 = −i
2π
(−1)Q+P P

Q2 + P 2
. (16.49)

The operators qop and pop are now defined on the torus as

qop(κ, ξ)=Qop + a(ξ, κ), pop(κ, ξ)= 2π
(
Pop + a(κ, ξ)), (16.50)

with Qop = i∂/∂κ , Pop = −i∂/∂ξ . This reproduces Eqs. (16.37) and (16.41).

16.4 The Wave Function of the State |0,0〉
We calculate the state |q〉 in the (κ, ξ) torus. Its wave equation is (see Eq. (16.14))

qop|q〉 = ieiφ(ξ,κ) ∂
∂κ

(
e−iφ(ξ,κ)|q〉)= q|q〉. (16.51)

This equation is easy to solve:

〈κ, ξ |q〉 = C(ξ)eiφ(ξ,κ)−iqκ . (16.52)

Since the solution must be periodic in κ and ξ , while we have the periodicity condi-
tions (16.26) for φ, we deduce that this only has a solution if ξ/2π is the fractional
part of q , or, q =X+ ξ/2π , where X is integer. In that case, we can write

〈κ, ξ |q〉 = C(ξ)e−iXκ−iφ(κ,ξ) = C(ξ)e−iφ(κ,2πq). (16.53)

The complete matrix element is then, writing q =X+ ξq/2π ,

〈κ, ξ |q〉 = Ce−iφ(κ,2πq)δ(ξ − ξq) (16.54)
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(note that the phase φ(κ, ξ) is not periodic in its second entry ξ ; the entries are
reversed compared to Eqs. (16.26)). The normalization follows from requiring

∫ 2π

0
dκ

∫ 2π

0
dξ 〈q1|κ, ξ 〉〈κ, ξ |q2〉 = δ(q1 − q2);

∫ ∞

−∞
dq 〈κ1, ξ1|q〉〈q|κ2, ξ2〉 = δ(κ1 − κ2)δ(ξ1 − ξ2),

(16.55)

from which

C = 1. (16.56)

Note that we chose the phase to be +1. As we also find elsewhere in this book,
phases can be chosen freely.

Since

〈κ, ξ |Q,P 〉 = 1
2π e

iP ξ−iQκ , (16.57)

we have

〈q|Q,P 〉 = 1
2π

∫ 2π

0
dκ eiP ξ−iQκ+iφ(κ,2πq)

= 1
2π e

2πiPq
∫ 2π

0
dκ eiφ(κ,2π(q−Q)). (16.58)
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Chapter 17
Models in Two Space–Time Dimensions
Without Interactions

17.1 Two Dimensional Model of Massless Bosons

An important motivation for our step from real numbers to integers is that we re-
quire deterministic theories to be infinitely precise. Any system based on a classical
action, requires real numbers for its basic variables, but this also introduces limited
precision. If, as one might be inclined to suspect, the ultimate physical degrees of
freedom merely form bits and bytes, then these can only be discrete, and the proto-
types of discrete systems are the integers. Perhaps later one might want to replace
these by integers with a maximal size, such as integers modulo a prime number p,
the elements of Z/pZ.

The question is how to phrase a systematic approach. For instance, how do we
mimic a quantum field theory? If such a theory is based on perturbative expansions,
can we mimic such expansions in terms of integers? Needless to observe that stan-
dard perturbation expansions seem to be impossible for discrete systems, but various
special kinds of expansions can still be imagined, such as 1/N expansions, where
N could be some characteristic of an underlying algebra.

We shall not be able to do this in this book, but we make a start at formulating
systematic approaches. In this chapter, we consider a quantized field, whose field
variables, of course, are operators with continua of eigenvalues in the real numbers.
If we want to open the door to perturbative field theories, we first need to understand
free particles. One example was treated in Sect. 15.2. These were fermions. Now,
we try to introduce free bosons.

Such theories obey linear field equations, such as

∂2
t φ(�x, t)=

d∑

i=1

∂2
i φ(�x, t)−m2φ(�x, t). (17.1)

In the case of fermions, we succeeded, to some extent, to formulate the massless
case in three space dimensions (Sect. 15.2, Sect. 15.2.3), but applying PQ theory to
bosonic fields in more than two dimensions has not been successful. The problem
is that equations such as Eq. (17.1) are difficult to apply to integers, even if we may
fill the gaps between the integers with generators of displacements.
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In our search for systems where this can be done, we chose, as a compromise,
massless fields in one space-like dimension only. The reason why this special case
can be handled with PQ theory is, that the field equation, Eq. (17.1), can be reduced
to first order equations by distinguishing left-movers and right-movers. Let us first
briefly summarize the continuum quantum field theory for this case.

17.1.1 Second-Quantized Massless Bosons in Two Dimensions

We consider a single, scalar, non interacting, massless field q(x, t) . Both x and t
are one-dimensional. The Lagrangian and Hamiltonian are:

L = 1
2

(
∂tq

2 − ∂xq2); Hop =
∫

dx
( 1

2p
2 + 1

2∂xq
2), (17.2)

where we use the symbol p(x) to denote the canonical momentum field associated
to the scalar field q(x), which, in the absence of interactions, obeys p(x)= ∂tq(x).
The fields q(x) and p(x) are operator fields. The equal-time commutation rules are,
as usual:

[
q(x), q(y)

]= [
p(x),p(y)

]= 0; [
q(x),p(y)

]= iδ(x − y). (17.3)

Let us regard the time variable in q(x, t) and p(x, t) to be in Heisenberg notation.
We then have the field equations:

∂2
t q = ∂2

xq, (17.4)

and the solution of the field equations can be written as follows:

aL(x, t)= p(x, t)+ ∂xq(x, t)= aL(x + t); (17.5)

aR(x, t)= p(x, t)− ∂xq(x, t)= aR(x − t). (17.6)

The equations force the operators aL to move to the left and aR to move to the right.
In terms of these variables, the Hamiltonian (at a given time t) is

Hop =
∫

dx 1
4

((
aL(x)

)2 + (
aR(x)

)2)
. (17.7)

The commutation rules for aL,R are:
[
aL, aR

]= 0,
[
aL(x1), a

L(x2)
]= 2iδ′(x1 − x2),

[
aR(x1), a

R(x2)
]= −2iδ′(x1 − x2),

(17.8)

where δ′(z)= ∂
∂z
δ(z).

Now let us Fourier transform in the space direction, by moving to momentum
space variables k, and subtract the vacuum energy. We have in momentum space
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(note that we restrict ourselves to positive values of k):

aL,R(k)= 1√
2π

∫
dxe−ikxaL,R(x), a†(k)= a(−k); (17.9)

Hop =
∫ ∞

0
dk 1

2

(
aL†(−k)aL(−k)+ aR†(k)aR(k)

)
, (17.10)

k, k′ > 0 : [
aL(−k1), a

L(−k2)
]= 0,

[
aL(−k1), a

L†(−k2)
]= 2k1δ(k1 − k2).

(17.11)

[
aR(k1), a

R(k2)
]= 0,

[
aR(k1), a

R†(k2)
]= 2k1δ(k1 − k2).

(17.12)

In this notation, aL,R(±k) are the annihilation and creation operators, apart from a
factor

√
2k, so the Hamiltonian (17.7) can be written as

Hop =
∫ ∞

0
dk

(
kNL(−k)+ kNR(k)). (17.13)

where NL,R(∓k)dk are the occupation numbers counting the left and right moving
particles. The energies of these particles are equal to the absolute values of their
momentum. All of this is completely standard and can be found in all the text books
about this subject.

Inserting a lattice cut-off for the UV divergences in quantum field theories is also
standard practice. Restricting ourselves to integer values of the x coordinate, and
using the lattice length in x space as our unit of length, we replace the commutation
rules (17.3) by

[
q(x), q(y)

]= [
p+(x),p+(y)

]= 0; [
q(x),p+(y)

]= iδx,y (17.14)

(the reason for the superscript + will be explained later, Eqs. (17.30)–(17.32)). The
exact form of the Hamiltonian on the lattice depends on how we wish to deal with
the lattice artefacts. The choices made below might seem somewhat artificial or
special, but it can be verified that most alternative choices one can think of can be
transformed to these by simple lattice field transformations, so not much generality
is lost. It is important however that we wish to keep the expression (17.13) for the
Hamiltonian; also on the lattice, we wish to keep the same dispersion law as in the
continuum, so that all excitations must move left or right exactly with the same
speed of light (which of course will be normalized to c= 1).

The lattice expression for the left- and right movers will be

aL(x + t)= p+(x, t)+ q(x, t)− q(x − 1, t); (17.15)

aR(x − t)= p+(x, t)+ q(x, t)− q(x + 1, t). (17.16)

They obey the commutation rules
[
aL, aR

]= 0; [
aL(x), aL(y)

]= ±i if y = x ± 1; else 0; (17.17)
[
aR(x), aR(y)

]= ∓i if y = x ± 1; else 0. (17.18)
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They can be seen to be the lattice form of the commutators (17.8). In momentum
space, writing

aL,R(x)≡ 1√
2π

∫ π

−π
dκaL,R(κ)eiκx, aL,R†(κ)= aL,R(−κ); (17.19)

the commutation rules (17.11) and (17.12) are now
[
aL(−κ1), a

L†(−κ2)
]= 2 sinκ1δ(κ1 − κ2); (17.20)

[
aR(κ1), a

R†(κ2)
]= 2 sinκ1δ(κ1 − κ2), (17.21)

so our operators aL,R(∓κ) and aL,R†(∓κ) are the usual annihilation and creation
operators, multiplied by the factor

√
2| sinκ|. (17.22)

If we want the Hamiltonian to take the form (17.13), then, in terms of the creation
and annihilation operators (17.20) and (17.21), the Hamiltonian must be

Hop =
∫ π

0
dκ

κ

2 sinκ

(
aL†(−κ)aL(−κ)+ a†R(κ)aR(κ)

)
. (17.23)

Since, in momentum space, Eqs. (17.15) and (17.16) take the form

aL(κ)= p+(κ)+ (
1 − e−iκ)q(κ), aR(κ)= p+(κ)+ (

1 − eiκ)q(κ), (17.24)

after some shuffling, we find the Hamiltonian (ignoring the vacuum term)

Hop = 1
2

∫ π

0
dκ

(
κ

tan 1
2κ

|p+(κ)|2 + 4k tan 1
2κ|q(κ)+ 1

2p
+(κ)|2

)
, (17.25)

where |p+(κ)|2 stands for p+(κ)p+(−κ). Since the field redefinition q(x) +
1
2p

+(x)→ q(x) does not affect the commutation rules, and

lim
κ→0

κ

2 tan( 1
2κ)

= 1, 4 sin2( 1
2κ

)∣∣q(κ)
∣∣2 → ∣∣(∂xq)(κ)

∣∣2, (17.26)

we see that the continuum limit (17.2), (17.10) is obtained when the lattice length
scale is sent to zero.

Because of the factor (17.22), the expression (17.23) for our Hamiltonian shows
that the operators a and a†, annihilate and create energies of the amount |κ|, as
usual, and the Hamilton equations for aL,R are

d

dt
aL(−κ, t)= −i[aL(−κ, t),Hop

]= −iκ
2 sinκ

2 sinκaL(−κ)
= −iκaL(−κ, t);

d

dt
aR(κ, t)= −iκaR(κ, t).

(17.27)

Consequently,

aL(−κ, t)e−iκx = aL(−κ,0)e−iκx−iκt ;
aR(κ, t)eiκx = aR(κ,0)eiκx−iκt . (17.28)
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We now notice that the operators aL(x, t) = aL(x + t) and aR(x, t) = aR(x − t)
move exactly one position after one unit time step. Therefore, even on the lattice,

aL(x,1)= aL(x + 1,0), aR(x,1)= aR(x − 1,0), etc. (17.29)

and now we can use this to eliminate p+(x, t) and q(x, t) from these equations.
Writing

p+(x, t)≡ p(x, t + 1
2

)
, (17.30)

one arrives at the equations

q(x, t + 1)= q(x, t)+ p(x, t + 1
2

); (17.31)

p
(
x, t + 1

2

)= p(x, t − 1
2

)+ q(x − 1, t)− 2q(x, t)+ q(x + 1, t). (17.32)

We now see why we had to shift the field q(x, t) by half the field momentum in
Eq. (17.25): it puts the field at the same position t + 1

2 as the momentum variable
p+(x, t).

Thus, we end up with a quantum field theory where not only space but also time
is on a lattice. The momentum values p(x, t + 1

2 ) can be viewed as variables on the
time-like links of the lattice.

At small values of κ , the Hamiltonian (17.23), (17.25) closely approaches that of
the continuum theory, and so it obeys locality conditions there. For this reason, the
model would be interesting indeed, if this is what can be matched with a cellular
automaton. However, there is a problem with it. At values of κ approaching κ →
±π , the kernels diverge. Suppose we would like to write the expression (17.23) in
position space as

Hop = 1
2

∑

x,s

M|s|
(
aL(x)aL(x + s)+ aR(x)aR(x + s)), (17.33)

then Ms would be obtained by Fourier transforming the coefficient κ/2 sin(κ) on
the interval [−π,π] for k. The factor 1

2 comes from symmetrizing the expression
(17.33) for positive and negative s. One obtains

Ms = 1
2π

∫ π−λ

−π+λ
κ dκ

2 sinκ
e−isκ = 1

2

{
log 2

λ
−∑s/2−1

k=0
1

k+1/2 if s = even

log(2λ)+∑(s−1)/2
k=1

1
k

if s = odd
(17.34)

where λ is a tiny cut-off parameter. The divergent part of Hop is

1
4

(
log

1

λ

)∑

x,y

(−1)x−y
(
aL(x)aL(y)+ aR(x)aR(y))

= 1
4

(
log

1

λ

)((∑

x

(−1)xaL(x)

)2

+
(∑

x

(−1)xaR(x)

)2)
. (17.35)

Also the kernel 4κ tan 1
2κ in Eq. (17.25) diverges as κ → ±π . Keeping the di-

vergence would make the Hamiltonian non-local, as Eq. (17.35) shows. We can’t
just argue that the largest κ values require infinite energies to excite them because
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they do not; according to Eq. (17.13), the energies of excitations at momentum κ

are merely proportional to κ itself. We therefore propose to make a smooth cut-off,
replacing the divergent kernels such as 4κ tan 1

2κ by expressions such as

(
4κ tan 1

2κ
)(

1 − e−Λ2(π−κ)2), (17.36)

where Λ can be taken to be arbitrarily large but not infinite.
We can also say that we keep only those excitations that are orthogonal to plane

waves where aL(x) or aR(x) are of the form C(−1)x . Also these states we refer to
as edge states.

What we now have is a lattice theory where the Hamiltonian takes the form
(17.13), where NL(−κ) and NR(κ) (for positive κ) count excitations in the left-
and the right movers, both of which move with the same speed of light at all modes.
It is this system that we can now transform to a cellular automaton. Note, that even
though the lattice model may look rather contrived, it has a smooth continuum limit,
which would correspond to a very dense automaton, and in theories of physics, it
is usually only the continuum limit that one can compare with actual observations,
such as particles in field theories. We emphasize that, up this point, our system can
be seen as a conventional quantum model.

17.1.2 The Cellular Automaton with Integers in 2 Dimensions

The cellular automaton that will be matched with the quantum model of the previ-
ous subsection, is a model defined on a square lattice with one space dimension x
and one time coordinate t , where both x and t are restricted to be integers. The vari-
ables are two sets of integers, one set being integer numbers Q(x, t) defined on the
lattice sites, and the other being defined on the links connecting the point (x, t) with
(x, t + 1). These will be called P(x, t + 1

2 ), but they may sometimes be indicated
as

P+(x, t)≡ P−(x, t + 1)≡ P (x, t + 1
2

)
. (17.37)

The automaton obeys the following time evolution laws:

Q(x, t + 1)=Q(x, t)+ P (x, t + 1
2

); (17.38)

P
(
x, t + 1

2

)= P (x, t − 1
2

)+Q(x − 1, t)− 2Q(x, t)+Q(x + 1, t), (17.39)

just analogously to Eqs. (17.31) and (17.32). It is also a discrete version of a clas-
sical field theory where Q(x, t) are the field variables and P(x, t)= ∂

∂t
Q(x, t) are

the classical field momenta.
Alternatively, one can write Eq. (17.39) as

Q(x, t + 1)=Q(x − 1, t)+Q(x + 1, t)−Q(x, t − 1), (17.40)

which, incidentally, shows that the even lattice sites evolve independently from the
odd ones. Later, this will become important.
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As the reader must understand by now, Hilbert space for this system is just
introduced as a tool. The basis elements of this Hilbert space are the states
|{Q(x,0),P+(x,0)}〉. If we consider templates as superpositions of such states, we
will simply define the squares of the amplitudes to represent the probabilities. The
total probability is the length-squared of the state, which will usually be taken to be
one. At this stage, superpositions mean nothing more than this, and it is obvious that
any chosen superposition, whose total length is one, may represent a reasonable set
of probabilities. The basis elements all evolve in terms of a permutation operator
that permutes the basis elements in accordance with the evolution equations (17.38)
and (17.39). As a matrix in Hilbert space, this permutation operator only contains
ones and zeros, and it is trivial to ascertain that statistical distributions, written as
“quantum” superpositions, evolve with the same evolution matrix.

As operators in this Hilbert space, we shall introduce shift generators that are
angles, defined exactly as in Eq. (16.7), but now at each point x1 at time t = 0, we
have an operator κ(x1) that generates an integer shift in the variable Q(x1) and an
operator ξ+(x1) generating a shift in the integer P+(x1):

e−iκ(x1)
∣∣{Q,P+}〉= ∣∣{Q′(x),P+(x)

}〉; Q′(x)=Q(x)+ δxx1; (17.41)

eiξ
+(x1)

∣∣{Q,P+}〉= ∣∣{Q(x),P+′
(x)

}〉; P+′
(x)= P+(x)+ δxx1; (17.42)

The time variable t is an integer, so what our evolution equations (17.38) and
(17.39) generate is an operator Uop(t) obeying Uop(t1 + t2) = Uop(t1)Uop(t2), but
only for integer time steps. In Sect. 12.2, Eq. (12.10), a Hamiltonian Hop was found
that obeys Uop(t)= e−iHopt , by Fourier analysis. The problem with that Hamilto-
nian is that

1. It is not unique: one may add 2π times any integer to any of its eigenvalues; and
2. It is not extensive: if two parts of a system are space-like separated, we would

like the Hamiltonian to be the sum of the two separate Hamiltonians, but then
it will quickly take values more than π , whereas, by construction, the Hamilto-
nian (12.10) will obey |H | ≤ π .

Thus, by adding appropriate multiples of real numbers to its eigenvalues, we would
like to transform our Hamiltonian into an extensive one. The question is how to do
this.

Indeed, this is one of the central questions that forced us to do the investigations
described in this book; the Hamiltonian of the quantum field theory considered here
is an extensive one, and also naturally bounded from below.

At first sight, the similarity between the automaton described by the equations
(17.38) and (17.39), and the quantum field theory of section (17.1.1) may seem
to be superficial at best. Quantum physicists will insist that the quantum theory is
fundamentally different.

However, we claim that there is an exact mapping between the basis elements of
the quantized field theory of Sect. 17.1.1 and the states of the cellular automaton
(again, with an exception for possible edge states). We shall show this by concen-
trating on the left-movers and the right-movers separately.
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Our procedure will force us first to compare the left-movers and the right-movers
separately in both theories. The automaton equations (17.38) and (17.39) ensure
that, if we start with integers at t = 0 and t = 1

2 , all entries at later times will be
integers as well. So this is a discrete automaton. We now introduce the combinations
AL(x, t) andAR(x, t) as follows (all these capital letter variables take integer values
only):

AL(x, t)= P+(x, t)+Q(x, t)−Q(x − 1, t); (17.43)

AR(x, t)= P+(x, t)+Q(x, t)−Q(x + 1, t), (17.44)

and we derive

AL(x, t + 1)= P+(x, t)+Q(x − 1, t + 1)− 2Q(x, t + 1)+Q(x − 1, t + 1)

+Q(x, t + 1)−Q(x − 1, t + 1)

= P+(x, t)+Q(x − 1, t + 1)−Q(x, t + 1)

= P+(x, t)+Q(x − 1, t)+ P+(x − 1, t)−Q(x, t)− P+(x, t)
= P+(x − 1, t)+Q(x − 1, t)−Q(x, t)=AL(x − 1, t). (17.45)

So, we have

AL(x − 1, t + 1)=AL(x, t)=AL(x + t); AR(x, t)=AR(x − t), (17.46)

which shows that AL is a left-mover and AR is a right mover. All this is completely
analogous to Eqs. (17.15) and (17.16).

17.1.3 The Mapping Between the Boson Theory
and the Automaton

The states of the quantized field theory on the lattice were generated by the left- and
right moving operators aL(x + t) and aR(x − t), where x and t are integers, but aL

and aR have continua of eigenvalues, and they obey the commutation rules (17.17)
and (17.18):

[
aL, aR

]= 0; [
aL(x), aL(y)

]= ±i if y = x ± 1; else 0; (17.47)
[
aR(x), aR(y)

]= ∓i if y = x ± 1; else 0. (17.48)

In contrast, the automaton has integer variables AL(x + t) and AR(x − t),
Eqs, (17.43) and (17.44). They live on the same space–time lattice, but they are
integers, and they commute.

Now, PQ theory suggests what we have to do. The shift generators κ(x1) and
ξ(x1) (Eqs. (17.41) and (17.42)) can be combined to define shift operators ηL(x1)

and ηR(x1) for the integers AL(x1, t) and AR(x1, t). Define

eiη
L(x1)

∣∣{AL,AR
}〉= ∣∣{AL

′
,AR

}〉
, AL

′
(x)=AL(x)+ δx,x1 , (17.49)

eiη
R(x1)

∣∣{AL,AR
}〉= ∣∣{AL,AR

′}〉
, AR

′
(x)=AR(x)+ δx,x1 . (17.50)
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These then have to obey the following equations:

ξ(x)= ηL(x)+ ηR(x);
−κ(x)= ηL(x)+ ηR(x)− ηL(x + 1)− ηR(x − 1).

(17.51)

The first of these tells us that, according to Eqs. (17.43) and (17.44), raising P+(x)
by one unit, while keeping all others fixed, implies raising this combination of AL

andAR . The second tells us what the effect is of raising onlyQ(x) by one unit while
keeping the others fixed. Of course, the additions and subtractions in Eqs. (17.51)
are modulo 2π .

Inverting Eqs. (17.51) leads to

ηL(x + 1)− ηL(x − 1)= ξ(x)+ κ(x)− ξ(x − 1),

ηR(x − 1)− ηR(x + 1)= ξ(x)+ κ(x)− ξ(x + 1).
(17.52)

These are difference equations whose solutions involve infinite sums with a bound-
ary assumption. This has no further consequences; we take the theory to be de-
fined by the operators ηL,R(x), not the ξ(x) and κ(x). As we have encountered
many times before, there are some non-local modes of measure zero, ηL(x + 2n)=
constant, and ηR(x + 2n)= constant.

What we have learned from the PQ theory, is that, in a sector of Hilbert space
that is orthogonal to the edge state, an integer variable A, and its shift operator η,
obey the commutation rules

Aeiη = eiη(A+ 1); [η,A] = i. (17.53)

This gives us the possibility to generate operators that obey the commutation rules
(17.47) and (17.48) of the quantum field theory:

aL(x)
?= √

2πAL(x)− 1√
2π
ηL(x − 1); (17.54)

aR(x)
?= √

2πAR(x)− 1√
2π
ηR(x + 1). (17.55)

The factors
√

2π are essential here. They ensure that the spectrum is not larger or
smaller than the real line, that is, without gaps or overlaps (degeneracies).

The procedure can be improved. In the expressions (17.54) and (17.55), we have
an edge state whenever ηL,R take on the values ±π . This is an unwanted situation:
these edge states make all wave functions discontinuous on the points aL,R(x) =√

2π(N(x)+ 1
2 ). Fortunately, we can cancel most of these edge states by repeating

more precisely the procedure explained in our treatment of PQ theory: these states
were due to vortices in two dimensional planes of the tori spanned by the η variables.
Let us transform, by means of standard Fourier transforming the A lattices to the η
circles, so that we get a multi-dimensional space of circles—one circle at every
point x.

As in the simple PQ theory (see Eqs. (16.14) and (16.15)), we can introduce
a phase function ϕ({ηL}) and a ϕ({ηR}), so that Eqs. (17.54) and (17.55) can be
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replaced with

aL(x)= −i√2π
∂

∂ηL(x)
+ √

2π

(
∂

∂ηL(x)
ϕ
({
ηL

}))− 1√
2π
ηL(x − 1), (17.56)

aR(x)= −i√2π
∂

∂ηR(x)
+ √

2π

(
∂

∂ηR(x)
ϕ
({
ηR

}))− 1√
2π
ηR(x + 1), (17.57)

where ϕ({η(x)}) is a phase function with the properties

ϕ(
{
ηL(x)+ 2πδx,x1

}= ϕ({ηL(x)})+ ηL(x1 + 1); (17.58)

ϕ(
{
ηR(x)+ 2πδx,x1

}= ϕ({ηR(x)})+ ηR(x1 − 1). (17.59)

Now, as one can easily check, the operators aL,R(x) are exactly periodic for all η
variables, just as we had in Sect. 16.

A phase function with exactly these properties can be written down. We start
with the elementary function φ(κ, ξ) derived in Sect. 16.2, Eq. (16.28), having the
properties

φ(κ, ξ + 2π)= φ(κ, ξ)+ κ; φ(κ + 2π, ξ)= φ(κ, ξ); (17.60)

φ(κ, ξ)= −φ(−κ, ξ)= −φ(κ,−ξ); φ(κ, ξ)+ φ(ξ, κ)= κξ/2π. (17.61)

The function obeying Eqs. (17.58) and (17.59) is now not difficult to construct:

ϕ
({
ηL

})=
∑

x

φ
(
ηL(x + 1), ηL(x)

);

ϕ
({
ηR

})=
∑

x

φ
(
ηR(x − 1), ηR(x)

)
,

(17.62)

and as was derived in Sect. 16.2, a phase function with these properties can be given
as the phase of an elliptic function,

r(κ, ξ)eiφ(κ,ξ) ≡
∞∑

N=−∞
e−π(N− ξ

2π )
2−iNκ , (17.63)

where r and φ are both real functions of κ and ξ .
We still have edge states, but now these only sit at the corners where two con-

secutive η variables take the values ±π . This is where the phase function φ, and
therefore also ϕ, become singular. We suspect that we can simply ignore them.

We then reach an important conclusion. The states of the cellular automaton can
be used as a basis for the description of the quantum field theory. These models are
equivalent. This is an astounding result. For generations we have been told by our
physics teachers, and we explained to our students, that quantum theories are funda-
mentally different from classical theories. No-one should dare to compare a simple
computer model such as a cellular automaton based on the integers, with a fully
quantized field theory. Yet here we find a quantum field system and an automaton
that are based on states that neatly correspond to each other, they evolve identically.
If we describe some probabilistic distribution of possible automaton states using
Hilbert space as a mathematical device, we can use any wave function, certainly
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also waves in which the particles are entangled, and yet these states evolve exactly
the same way.

Physically, using 19th century logic, this should have been easy to understand:
when quantizing a classical field theory, we get energy packets that are quantized
and behave as particles, but exactly the same are generated in a cellular automaton
based on the integers; these behave as particles as well. Why shouldn’t there be a
mapping?

Of course one can, and should, be skeptical. Our field theory was not only con-
structed without interactions and without masses, but also the wave function was
devised in such a way that it cannot spread, so it should not come as a surprise that
no problems are encountered with interference effects, so yes, all we have is a prim-
itive model, not very representative for the real world. Or is this just a beginning?

Note: being exactly integrable, the model discussed in this section has infinitely
many conservation laws. For instance, one may remark that the equation of motion
(17.40) does not mix even sites with odd sites of the lattice; similar equations select
out sub-lattices with x + t = 4k and x and t even, from other sub-lattices.

17.1.4 An Alternative Ontological Basis: The Compactified Model

In the above chapters and sections of this chapter, we have seen various examples of
deterministic models that can be mapped onto quantum models and back. The reader
may have noticed that, in many cases, these mappings are not unique. Modifying
the choices of the constant energy shifts δEi in the composite cogwheel model,
Sect. 2.2.2, we saw that many apparently different quantum theories can be mapped
onto the same set of cogwheels, although there, the δEi could have been regarded as
various chemical potentials, having no effect on the evolution law. In our PQ theory,
one is free to add fractional constants to Q and P , thus modifying the mapping
somewhat. Here, the effect of this would be that the ontological states obtained from
one mapping do not quite coincide with those of the other, they are superpositions,
and this is an example of the occurrence of sets of ontological states that are not
equivalent, but all equally legal.

The emergence of inequivalent choices of an ontological basis is particularly
evident if the quantum system in question has symmetry groups that are larger than
those of the ontological system. If the ontological system is based on a lattice, it can
only have some of the discrete lattice groups as its symmetries, whereas the quantum
system, based on real coordinates, can have continuous symmetry groups such as the
rotation, translation and Lorentz group. Performing a symmetry transformation that
is not a symmetry of the ontological model then leads to a new set of ontological
states (or “wave functions”) that are superpositions of the other states. Only one of
these sets will be the “real” ontological states. For our theory, and in particular the
cellular automaton interpretation, Chaps. 5 and 21, this has no further consequences,
except that it will be almost impossible to single out the “true” ontological basis as
opposed to the apparent ones, obtained after quantum symmetry transformations.
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In this subsection, we point out that even more can happen. Two (or perhaps
more) systems of ontological basis elements may exist that are entirely different
from one another. This is the case for the model of the previous subsection, which
handles the mathematics of non-interacting massless bosons in 1 + 1 dimensions.
We argued that an ontological basis is spanned by all states where the field q(x, t)
is replaced by integers Q(x, t). A lattice in x, t was introduced, but this was a tem-
porary lattice; we could send the mesh size to zero in the end.

In Sect. 17.1.2, we introduced the integers AL(x) and AR(x), which are the
integer-valued left movers and right movers; they span an ontological basis. Equiva-
lently, one could have taken the integers Q(x, t) and P+(x, t) at a given time t , but
this is just a reformulation of the same ontological system.

But why not take the continuous degrees of freedom ηL(x) and ηR(x) (or equiv-
alently, ξ(x, t) and κ(x, t))? At each x, these variables take values between −π
and π . Since they are also left- and right movers, their evolution law is exactly as
deterministic as that of the integers AL and AR :

∂

∂t
ηL(x, t)= ∂

∂x
ηL(x, t),

∂

∂t
ηR(x, t)= − ∂

∂x
ηR(x, t), (17.64)

while all η’s commute.
Actually, for the η fields, it is much easier now to regard the continuum limit for

the space–time lattice. The quantum operators aL,R are still given by Eqs, (17.56)
and (17.57). There is a singularity when two consecutive η fields take the values
±π , but if they don’t take such values at t = t0, they never reach those points at
other times.

There exists a somewhat superior way to rephrase the mapping by making use of
the fact that the η fields are continuous, so that we can do away with, or hide, the
lattice. This is shown in more detail in Sect. 17.3.5, where these ideas are applied in
string theory.

What we conclude from this subsection is that both our quantum model of bosons
and the model of left and right moving integers are mathematically equivalent to a
classical theory of scalar fields where the values are only defined modulo 2π . From
the ontological point of view, this new model is entirely different from both previous
models.

Because the variables of the classical model only take values on the circle, we call
the classical model a compactified classical field theory. At other places in this book,
the author warned that classical, continuous theories may not be the best ontological
systems to assume for describing Nature, because they tend to be chaotic: as time
continues, more and more decimal places of the real numbers describing the initial
state will become relevant, and this appears to involve unbounded sets of digital
data. To our present continuous field theory in 1 + 1 dimensions, this objection does
not apply, because there is no chaos; the theory is entirely integrable. Of course, in
more complete models of the real world we do not expect integrability, so there this
objection against continuum models does apply.
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17.1.5 The Quantum Ground State

Nevertheless, the mappings we found are delicate ones, and not always easy to im-
plement. For instance, one would like to ask which solution of the cellular automa-
ton, or the compactified field theory, corresponds to the quantum ground state of the
quantized field theory. First, we answer the question: if you have the ground state,
how do we add a single particle to it?

Now this should be easy. We have the creation and annihilation operators for left
movers and right movers, which are the Fourier transforms of the operators aL,R(x)
of Eqs. (17.56) and (17.57). When the Fourier parameter, the lattice momentum κ ,
is in the interval −π < κ < 0, then aL(κ) is an annihilation operator and aR(κ) is a
creation operator. When 0< κ < π , this is the other way around. Since nothing can
be annihilated from the vacuum state, the annihilation operators vanish, so aL,R(x)
acting on the vacuum can only give a superposition of one-particle states.

To see how a single left-moving particle is added to a classical cellular automa-
ton state, we consider the expression (17.56) for aL(x), acting on the left-mover’s
coordinate x + t → x when t = 0. The operator ∂/∂ηL(x) multiplies the amplitude
for the state with iAL(x); the other operators in Eq. (17.56) are just functions of
ηL at the point x and the point x − 1. Fourier transforming these functions gives us
the operators e±NiηL multiplied with the Fourier coefficients found, acting on our
original state. According to Eq. (17.49), this means that, at the two locations x and
x − 1, we add or subtract N units to the number AL there, and then we multiply the
new state with the appropriate Fourier coefficient. Since the functions in question
are bounded, we expect the Fourier expansion to converge reasonably well, so we
can regard the above as being a reasonable answer to the question how to add a
particle. Of course, our explicit construction added a particle at the point x. Fourier
transforming it, gives us a particle with momentum −κ and energy κ .

In the compactified field model, the action of the operators (17.56) and (17.57)
is straightforward; we find the states with one or more particles added, provided
that the wave function is differentiable. The ontological wave functions are not
differentiable—they are delta peaks, so particles can only be added as templates,
which are to be regarded as probabilistic distributions of ontological states.

Finding the vacuum state, i.e. the quantum ground state itself, is harder. It is
that particular superposition of ontological states from which no particles can be
removed. Selecting out the annihilation parts of the operators aL,R(x) means that
we have to apply the projection operator P− on the function aL(x) and P+ on
aR(x), where the projection operators P± are given by

P±a(x)=
∑

x′
P±(x − x′)a

(
x′), (17.65)

where the functions P±(y) are defined by

P±(y)= 1

2π

∫ π

0
dκe±iyκ = ±i

πy
if y odd, 1

2δy,0 if y even. (17.66)
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The state for which the operators P+aL(x) and P−aR(x) vanish at all x is the
quantum ground state. It is a superposition of all cellular automaton states.

Note that the theory has a Goldstone mode [44, 62], which means that an exci-
tation in which all fields q(x, t), or all automaton variables Q(x, t), get the same
constant Q0 added to them, does not affect the total energy. This is an artefact of
this particular model.1 Note also that the projection operators P±(x) are not well-
defined on x- independent fields; for these fields, the vacuum is ill-defined.

17.2 Bosonic Theories in Higher Dimensions?

At first sight, it seems that the model described in previous sections may perhaps be
generalized to higher dimensions. In this section, we begin with setting up a scheme
that should serve as an approach towards handling bosons in a multiply dimensional
space as a cellular automaton. Right-away, we emphasize that a mapping in the same
spirit as what was achieved in previous sections and chapters will not be achieved.
Nevertheless, we will exhibit here the initial mathematical steps, which start out as
deceptively beautiful. Then, we will exhibit, with as much clarity as we can, what,
in this case, the obstacles are, and why we call this a failure in the end. As it seems
today, what we have here is a loose end, but it could also be the beginning of a
theory where, as yet, we were forced to stop half-way.

17.2.1 Instability

We would have been happy with either a discretized automaton or a compactified
classical field theory, and for the time being, we keep both options open.

Take the number of space-like dimensions to be d , and suppose that we replace
Eqs. (17.38) and (17.39) by

Q(�x, t + 1)=Q(�x, t)+ P (�x, t + 1
2

); (17.67)

P
(�x, t + 1

2

)= P (�x, t − 1
2

)

+
d∑

i=1

(
Q(�x − êi , t)− 2Q(�x, t)+Q(�x + êi , t)

)
, (17.68)

where êi are unit vectors in the ith direction in space.
Next, consider a given time t . We will need to localize operators in time, and

can do this only by choosing the time at which an operator acts such that, at that
particular time, the effect of the operator is as concise as is possible. This was why,

1Paradoxically, models in two space–time dimensions are known not to allow for Goldstone modes;
this theorem [21], however, only applies when there are interactions. Ours is a free particle model.
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for the P operators, in Eqs. (17.67) and (17.68), we chose to indicate time as t ± 1
2

(where t is integer). Let κop(�x, t + 1
2 ) be the generator of a shift of Q(�x, t) and

the same shift in Q(�x, t + 1) (so that P(�x, t + 1
2 ) does not shift), while ξop(�x, t)

generates identical, negative shifts of P(�x, t + 1
2 ) and of P(�x, t − 1

2 ), without shift-
ing Q(�x, t) at the same t , and with the signs both as dictated in Eqs. (17.41) and
(17.42). Surprisingly, one finds that these operators obey the same equations (17.67)
and (17.68): the operation

κop(�x, t + 1
2

)
has the same effect as

κop(�x, t + 3
2

)−
2d∑

i=1

(
ξop(�x + êi , t + 1)− ξop(�x, t + 1)

)
,

and ξop(�x, t) has the same effect as

ξop(�x, t + 1)− κop(�x, t + 1
2

)

(17.69)

(where the sum is the same as in Eq. (17.68) but in a more compact notation) and
therefore,

ξop(�x, t + 1)= ξop(�x, t)+ κop(�x, t + 1
2

); (17.70)

κop(�x, t + 1
2

)= κop(�x, t − 1
2

)

+
d∑

i=1

(
ξop(�x − êi , t)− 2ξop(�x, t)+ ξop(�x + êi , t)

)
, (17.71)

and, noting thatQ and P are integers, while κop and ξop are confined to the interval
[0,2π), we conclude that again the same equations are obeyed by the real number
operators

qop(�x, t) ?=Q(�x, t)+ 1
2π ξ

op(�x, t), and

pop(�x, t + 1
2

) ?= 2πP
(�x, t + 1

2

)+ κop(�x, t + 1
2

)
.

(17.72)

These operators, however, do not obey the correct commutation rules. There even

appears to be a factor 2 wrong, if we would insert the equations [Q(�x), κop(�x′)] ?=
iδ�x,�x′ , [ξop(�x),P (�x′)] ?= iδ�x,�x′ . Of course, the reason for this failure is that we have
the edge states, and we have not yet restored the correct boundary conditions in ξ, κ
space by inserting the phase factors ϕ, as in Eqs. (17.56), (17.57), or φ in (16.14),
(16.15). This is where our difficulties begin. These phase factors also aught to obey
the correct field equations, and this seems to be impossible to realize.

In fact, there is an other difficulty with the equations of motion, (17.67), (17.68):
they are unstable. It is true that, in the continuum limit, these equations generate
the usual field equations for smooth functions q(�x, t) and p(�x, t), but we now have
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lattice equations. Fourier transforming the equations in the space variables �x and
time t , one finds

−2i
(
sin 1

2ω
)
q(�k,ω)= p(�k,ω),

−2i
(
sin 1

2ω
)
p(�k,ω)=

d∑

i=1

2(coski − 1)q(�k,ω). (17.73)

This gives the dispersion relation

4 sin2 1
2ω= 2(1 − cosω)=

d∑

i=1

2(1 − coski). (17.74)

In one space-like dimension, this just means that ω= ±k, which would be fine, but
if d > 1, and ki take on values close to ±π , the r.h.s. of this equation exceeds the
limit value 4, the cosine becomes an hyperbolic cosine, and thus we find modes that
oscillate out of control, exponentially with time.

To mitigate this problem, we would somehow have to constrain the momenta
ki towards small values only, but, both in a cellular automation where all variables
are integers, and in the compactified field model, where we will need to respect the
intervals (−π,π), this is hard to accomplish. Note that we used Fourier transforms
on functions such as Q and P in Eqs. (17.67) and (17.68) that take integer values.
In itself, that procedure is fine, but it shows the existence of exponentially exploding
solutions. These solutions can also be attributed to the non-existence of an energy
function that is conserved and bounded from below. Such an energy function does
exist in one dimension:

E = 1
2

∑

x

P+(x, t)2 + 1
2

∑

x

(
Q(x, t)+ P+(x, t)

)

× (
2Q(x, t)−Q(x − 1, t)−Q(x + 1, t)

)
, (17.75)

or in momentum space, after rewriting the second term as the difference of two
squares,

E = 1
2

∫ ∞

−∞
dk
((

cos 1
2k
)2∣∣P+(k)

∣∣2 + 4
(
sin 1

2k
)2∣∣Q(k)+ 1

2P
+(k)

∣∣2). (17.76)

Up to a factor sink/k, this is the Hamiltonian (17.25) (since the equations of motion
at different k values are independent, conservation of one of these Hamiltonians
implies conservation of the other).

In higher dimensions, models of this sort cannot have a non-negative, conserved
energy function, and so these will be unstable.
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17.2.2 Abstract Formalism for the Multidimensional Harmonic
Oscillator

Our PQ procedure for coupled harmonic oscillators can be formalized more suc-
cinctly and elegantly. Let us write a time-reversible harmonic model with integer
degrees of freedom as follows. In stead of Eqs. (17.67) and (17.68) we write

Qi(t + 1)=Qi(t)+
∑

j

TijPj
(
t + 1

2

); (17.77)

Pi
(
t + 1

2

)= Pi
(
t − 1

2

)−
∑

j

VijQj (t). (17.78)

Here, t is an integer-valued time variable. It is very important that both matrices T
and V are real and symmetric:

Tij = Tji; Vij = Vji . (17.79)

Tij would often, but not always, be taken to be the Kronecker delta δij , and Vij
would be the second derivative of a potential function, here being constant coef-
ficients. Since we want Qi and Pi both to remain integer-valued, the coefficients
Tij and Vij will also be taken to be integer-valued. In principle, any integer-valued
matrix would do; in practice, we will find severe restrictions.

Henceforth, we shall omit the summation symbol
∑
j , as its presence can be

taken to be implied by summation convention: every repeated index is summed
over.

When we define the translation generators for Qi and Pi , we find that, in a
Heisenberg picture, it is best to use an operator κop

i (t + 1
2 ) to add one unit to Qi(t)

while all other integersQj(t) with j �= i and all Pj (t + 1
2 ) are kept fixed. Note that,

according to the evolution equation (17.77), this also adds one unit to Qi(t + 1)
while all other Qj(t + 1) are kept fixed as well, so that we have symmetry around
the time value t + 1

2 . Similarly, we define an operator ξop
i (t) that shifts the value of

both Pi(t− 1
2 ) and Pi(t+ 1

2 ), while all otherQ and P operators at t− 1
2 and at t+ 1

2
are kept unaffected; all this was also explained in the text between Eqs. (17.68) and
(17.69).

So, we define the action by operators κop
i and ξop

i by

e−iκ
op
i (t+ 1

2 )
∣∣{Qj(t),Pj

(
t + 1

2

)}〉= ∣∣{Q′
j (t),Pj

(
t + 1

2

)}〉
or

e−iκ
op
i (t+ 1

2 )
∣∣{Qj(t + 1),Pj

(
t + 1

2

)}〉 = ∣∣{Q′
j (t + 1),Pj

(
t + 1

2

)}〉
with

Q′
j (t)=Qj(t)+ δji , Q′

j (t + 1)= qj (t + 1)+ δji;
(17.80)

eiξ
op
i (t)

∣∣{Qj(t),Pj
(
t + 1

2

)}〉= ∣∣{Qj(t),P ′
j

(
t + 1

2

)}〉
or

eiξ
op
i (t)

∣∣{Qj(t),Pj
(
t − 1

2

)}〉= ∣∣{Qj(t),P ′
j

(
t − 1

2

)}〉
with

P ′
j

(
t ± 1

2

)= Pj
(
t ± 1

2

)+ δji .
(17.81)
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The operators ξop
i (t) and κop

i (t + 1
2 ) then obey exactly the same equations as

Qi(t) and Pi(t + 1
2 ) , as given in Eqs. (17.77) and (17.78):

ξ
op
i (t + 1)= ξop

i (t)+ Tij κop
j

(
t + 1

2

); (17.82)

κ
op
i

(
t + 1

2

)= κop
i

(
t − 1

2

)− Vij ξop
j (t). (17.83)

The stability question can be investigated by writing down the conserved energy
function. After careful inspection, we find that this energy function can be defined
at integer times:

H1(t)= 1
2TijPi

(
t + 1

2

)
Pj

(
t − 1

2

)+ 1
2VijQi(t)Qj (t), (17.84)

and at half-odd integer times:

H2
(
t + 1

2

)= 1
2TijPi

(
t + 1

2

)
Pj

(
t + 1

2

)+ 1
2VijQi(t)Qj (t + 1). (17.85)

Note that H1 contains a pure square of the Q fields but a mixed product of the
P fields while H2 has that the other way around. It is not difficult to check that
H1(t)=H2(t + 1

2 ):

H2 −H1 = − 1
2TijPi

(
t + 1

2

)
VjkQk(t)+ 1

2VijQi(t)TjkPk
(
t + 1

2

)= 0. (17.86)

Similarly, we find that the Hamiltonian stays the same at all times. Thus, we have a
conserved energy, and that could guarantee stability of the evolution equations.

However, we still need to check whether this energy function is indeed non-
negative. This we do by rewriting it as the sum of two squares. In H1, we write the
momentum part (kinetic energy) as

1
2Tij

(
Pi
(
t + 1

2

)+ 1
2VikQk(t)

)(
Pj

(
t + 1

2

)+ 1
2Vj�Q�(t)

)

− 1
8TijVikVj�Qk(t)Q�(t), (17.87)

so that we get at integer times (in short-hand notation)

H1 = �Q( 1
2V − 1

8V T V
) �Q+ 1

2

( �P+ + 1
2

�QV )T ( �P+ + 1
2V

�Q), (17.88)

and at half-odd integer times:

H2 = �P ( 1
2T − 1

8T V T
) �P + 1

2

( �Q− + 1
2

�PT )V ( �Q− + 1
2T

�P ), (17.89)

where P+(t) stands for P(t + 1
2 ), and Q−(t + 1

2 ) stands for Q(t) .
The expression (17.85) for H2 was the one used in Eq. (17.75) above. It was

turned into Eq. (17.89) in the next expression, Eq. (17.76).
Stability now requires that the coefficients for these squares are all non-negative.

This has to be checked for the first term in Eq. (17.88) and in (17.89). If V and/or
T have one or several vanishing eigenvectors, this does not seem to generate real
problems, and we replace these by infinitesimal numbers ε > 0. Then, we find that,
on the one hand one must demand

〈T 〉> 0, 〈V 〉> 0; (17.90)
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while on the other had, by multiplying left and right by V −1 and T −1:
〈
4V −1 − T 〉≥ 0,

〈
4T −1 − V 〉≥ 0. (17.91)

Unfortunately, there are not so many integer-valued matrices V and T with these
properties. Limiting ourselves momentarily to the case Tij = δij , we find that the
matrix Vij can have at most a series of 2’s on its diagonal and sequences of ±1 ’s on
both sides of the diagonal. Or, the model displayed above in Eq. (17.67) and (17.68),
on a lattice with periodicity N , is the most general multi-oscillator model that can
be kept stable by a nonnegative energy function.

If we want more general, less trivial models, we have to search for a more ad-
vanced discrete Hamiltonian formalism (see Sect. 19).

If it were not for this stability problem, we could have continued to construct
real-valued operators qop

i and pop
i by combining Qi with ξop

i and Pi with κop
i .

The operators eiQξ
op
i and e−iP κ

op
i give us the states |{Qi,Pi}〉 from the ‘zero-

state’ |{0,0}〉. This means that only one wave function remains to be calculated
by some other means, after which all functions can be mapped by using the oper-
ators eiaipi and eibj qj . But since we cannot obtain stable models in more than 1
space-dimensions, this procedure is as yet of limited value. It so happens, however,
that the one-dimensional model is yet going to play a very important role in this
work: (super)string theory, see the next section.

17.3 (Super)strings

What follows next, the description of string theory and superstring theory in terms
of a cellular automaton, was described by the author in Ref. [126]. In searching for
older material, he recently unearthed a letter, written to him by J.G. Russo [69] in
March 1993, which contained the details of essentially the same idea concerning the
most important case: the bosonic string. Clearly, all priority claims should go to him.

So-far, most of our models represented non-interacting massless particles in a
limited number of space dimensions. Readers who are still convinced that quantum
mechanical systems will never be explained in terms of classical underlying models,
will not be shocked by what they have read until now. After all, one cannot do
Gedanken experiments with particles that do not interact, and anyway, massless
particles in one spacial dimension do not exhibit any dispersion, so here especially,
interference experiments would be difficult to imagine. This next chapter however
might make him/her frown a bit: we argue that the bulk region of the (super)string
equations can be mapped onto a deterministic, ontological theory. The reason for
this can be traced to the fact that string theory, in a flat background, is essentially just
a one-space, one-time massless quantum field theory, without interactions, exactly
as was described in previous sections.

As yet, however, our (super)strings will not interact, so the string solutions will
act as non-interacting particles; for theories with interactions, go to Chaps. 9, 19,
and 21.

Superstring theory started off as an apparently rather esoteric and formal ap-
proach to the question of unifying the gravitational force with other forces. The
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starting point was a dynamical system of relativistic string-like objects, subject to
the rules of quantum mechanics. As the earliest versions of these models were beset
by anomalies, they appeared to violate Lorentz invariance, and also featured excita-
tion modes with negative mass-squared, referred to as “tachyons”. These tachyons
would have seriously destabilized the vacuum and for that reason had to be disposed
of. It turned out however, that by carefully choosing the total number of transverse
string modes, or, the dimensions of the space–time occupied by these strings, and
then by carefully choosing the value of the intercept a(0), which fixes the mass
spectrum of the excitations, and finally by imposing symmetry constraints on the
spectrum as well, one could make the tachyons disappear and repair Lorentz in-
variance [46, 67, 68]. It was then found that, while most excitation modes of the
string would describe objects whose rest mass would be close to the Planck scale,
a very specific set of excitation modes would be massless or nearly massless. It is
these modes that are now identified as the set of fundamental particles of the Stan-
dard Model, together with possible extensions of the Standard Model at mass scales
that are too large for being detected in today’s laboratory experiments, yet small
compared to the Planck mass.

A string is a structure that is described by a sheet wiped out in space–time, the
string ‘world sheet’. The sheet requires two coordinates that describe it, usually
called σ and τ . The coordinates occupied in an n= d + 1 dimensional space–time,
temporarily taken to be flat Minkowski space–time, are described by the symbols2

Xμ(σ, τ), μ= 0,1, . . . , d .
Precise mathematical descriptions of a classical relativistic string and its quan-

tum counterpart are given in several excellent text books [46, 67, 68], and they will
not be repeated here, but we give a brief summary. We emphasize, and we shall re-
peat doing so, that our description of a superstring will not deviate from the standard
picture, when discussing the fully quantized theory. We do restrict ourselves to stan-
dard perturbative string theory, which means that we begin with a simply connected
piece of world sheet, while topologically non-trivial configurations occur at higher
orders of the string coupling constant gs . We restrict ourselves to the case gs = 0.

Also, we do have to restrict ourselves to a flat Minkowski background. These
may well be important restrictions, but we do have speculations concerning the back
reaction of strings on their background; the graviton mode, after all, is as dictated in
the standard theory, and these gravitons do represent infinitesimal curvatures in the
background. Strings in black hole or (anti)-de Sitter backgrounds are as yet beyond
what we can do.

17.3.1 String Basics

An infinitesimal segment d� of the string at fixed time, multiplied by an infinitesimal
time segment dt , defines an infinitesimal surface element dΣ = d�∧ dt . A Lorentz

2To stay in line with most literature on string theory, we chose here capital Xμ to denote the (real)
space–time coordinates. Later, these will be specified either to be real, or to be integers.
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invariant description of dΣ is

dΣμν = ∂X
μ

∂σ

∂Xν

∂τ
− ∂X

ν

∂σ

∂Xμ

∂τ
. (17.92)

Its absolute value dΣ is then given by

±dΣ2 = 1
2Σ

μν dΣμν = (
∂σX

μ
)2(
∂τX

ν
)2 − (

∂σX
μ∂τX

μ
)2
, (17.93)

where the sign distinguishes space-like surfaces (+) from time-like ones (−). The
string world sheet is supposed to be time-like.

The string evolution equations are obtained by finding the extremes of the Nambu
Goto action,

S = −T
∫

dΣ = −T
∫

dσ dτ
√(
∂σXμ∂τXμ

)2 − (
∂σXμ

)2(
∂τXν

)2
, (17.94)

where T is the string tension constant; T = 1/(2πα′).
The light cone gauge is defined to be the coordinate frame (σ, τ ) on the string

world sheet where the curves σ = const. and the curves τ = const. both represent
light rays confined to the world sheet. More precisely:

(
∂σX

μ
)2 = (

∂τX
μ
)2 = 0. (17.95)

In this gauge, the Nambu–Goto action takes the simple form

S = T (∂σXμ
)(
∂τX

μ
)

(17.96)

(the sign being chosen such that if σ and τ are both pointing in the positive time
direction, and our metric is (−,+,+,+)), the action is negative. Imposing both light
cone conditions (17.95) is important to ensure that also the infinitesimal variations
of the action (17.96) yield the same equations as the variations of (17.94). They
give:

∂σ ∂τX
μ = 0, (17.97)

but we must remember that these solutions must always be subject to the non-linear
constraint equations (17.95) as well.

The solutions to these equations are left- and right movers:

Xμ(σ, τ)=XμL(σ)+XμR(τ);
(
∂σX

μ
L

)2 = 0,
(
∂τX

μ
R

)2 = 0 (17.98)

(indeed, one might decide here to rename the coordinates σ = σ+ and τ = σ−). We
now will leave the boundary conditions of the string free, while concentrating on
the bulk properties.

The re-parametrization invariance on the world sheet has not yet been removed
completely by the gauge conditions (17.95), since we can still transform

σ → σ̃ (σ ); τ → τ̃ (τ ). (17.99)

The σ and τ coordinates are usually fixed by using one of the space–time variables;
one can choose

X± = (
X0 ±Xd)/√2, (17.100)
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to define

σ = σ+ =X+
L , τ = σ− =X+

R . (17.101)

Substituting this in the gauge condition (17.95), one finds:

∂σX
+
L ∂σX

−
L = ∂σX−

L = 1
2

d−1∑

i=1

(
∂σX

i
L

)2
, (17.102)

∂τX
+
R∂τX

−
R = ∂τX−

R = 1
2

d−1∑

i=1

(
∂τX

i
R

)2
. (17.103)

So, the longitudinal variables X±, or, X0 and Xd are both fixed in terms of the
d − 1 = n− 2 transverse variables Xi(σ, τ ).

The boundary conditions for an open string are then

X
μ
L(σ + �)=XμL(σ)+ uμ, X

μ
R(σ )=XμL(σ), (17.104)

while for a closed string,

X
μ
L(σ + �)=XμL(σ)+ uμ X

μ
R(τ + �)=XμR(τ)+ uμ, (17.105)

where � and uμ are constants. uμ is the 4-velocity. One often takes � to be fixed,
like 2π , but it may be instructive to see how things depend on this free world-sheet
coordinate parameter �. One finds that, for an open string, the action over one period
is3

Sopen = 1
2T

∫ �

0
dσ

∫ �

0
dτ ∂σX

μ∂τX
μ = 1

2T u
2. (17.106)

For a particle with constant momentum pμ, the action over an amount of time X0 =
u0 is S = ( �p · �̇q − p0)u0 = pμuμ, and from that, one derives that the open string’s
momentum is

pμopen = 1
2T u

μ. (17.107)

For a closed string, the action over one period is

Sclosed = T
∫ �

0
dσ

∫ �

0
dτ ∂σX

μ∂τX
μ = T u2, (17.108)

and we derive that the closed string’s momentum is

p
μ
closed = T uμ. (17.109)

Note that the length � of the period of the two world sheet parameters does not enter
in the final expressions. This is because we have invariance under re-parametrization
of these world sheet coordinates.

3The factor 1/2 originates from the fact that, over one period, only half the given domain is cov-
ered. Do note, however, that the string’s orientation is reversed after one period. One can also
understand the factor 1/2 by regarding the open string as a double strand of a closed string.
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Now, in a flat background, the quantization is obtained by first looking at the
independent variables. These are the transverse components of the fields, being
Xi(σ, τ ), with i = 1,2, . . . , d − 1. This means that these components are promoted
to being quantum operators. Everything is exactly as in Sect. 17.1. XiL are the left
movers, XμR are the right movers. One subsequently postulates that X+(σ, τ ) is
given by the gauge fixing equation (17.101), or

X+
L (σ )= σ, X+

R (τ)= τ, (17.110)

while finally the coordinate X−(σ, τ ) is given by the constraint equations (17.102)
and (17.103).

The theory obtained this way is manifestly invariant under rotations among the
transverse degrees of freedom, Xi(σ, τ ) in coordinate space, forming the space-like
group SO(d − 1). To see that it is also invariant under other space-like rotations,
involving the dth direction, and Lorentz boosts, is less straightforward. To see what
happens, one has to work out the complete operator algebra of all fields Xμ, the
generators of a Lorentz transformation, and finally their commutation algebra. After
a lengthy but straightforward calculation, one obtains the result that the theory is
indeed Lorentz invariant provided that certain conditions are met:

– the sequences J = a(s) of string excited modes (“Regge trajectories”) must show
an intercept a(0) that must be limited to the value a(0)= 1 (for open strings), and

– the number of transverse dimensions must be 24 (for a bosonic string) or 8 (for a
superstring), so that d = 25 or 9, and the total number of space–time dimensions
D is 26 or 10.

So, one then ends up with a completely Lorentz invariant theory. It is this theory that
we will study, and compare with a deterministic system. As stated at the beginning
of this section, many more aspects of this quantized relativistic string theory can be
found in the literature.

The operators X+(σ, τ ) and X−(σ, τ ) are needed to prove Lorentz invariance,
and, in principle, they play no role in the dynamical properties of the transverse
variables Xi(σ, τ ). It is the quantum states of the theory of the transverse modes
that we plan to compare with classical states in a deterministic theory. At the end,
however, we will need X+ and X− as well. Of these, X+ can be regarded as the
independent target time variable for the theory, without any further dynamical prop-
erties, but then X−(σ, τ ) may well give us trouble. It is not an independent variable,
so it does not affect our states, but this variable does control where in space–time
our string is. We return to this question in Sect. 17.3.5.

17.3.2 Strings on a Lattice

To relate this theory to a deterministic system [126], one more step is needed: the
world sheet must be put on a lattice [58], as we saw in Sect. 17.1.1. How big or how
small should we choose the meshes to be? It will be wise to choose these meshes
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small enough. Later, we will see how small; most importantly, most of our results
will turn out to be totally independent of the mesh size aworldsheet. This is because
the dispersion properties of the Hamiltonian (17.25) have been deliberately chosen
in such a way that the lattice artefacts disappear there: the left- and right movers
always go with the local speed of light. Moreover, since we have re-parametrization
invariance on the world sheet, in stead of sending aworldsheet to zero, we could decide
to send the length � of the world sheet lattice to infinity. This way, we can keep
aworldsheet = 1 throughout the rest of the procedure. Remember that, the quantity
� did not enter in our final expressions for the physical properties of the string,
not even if they obey boundary conditions ensuring that we talk of open or closed
strings. Thus, the physical limit will be the limit �→ ∞, for open and for closed
strings.

We now proceed as in Sects. 17.1.1 and 17.1.2. Assuming that the coordinates x
and t used there, are related to σ and τ by4

σ = 1√
2
(x + t), τ = 1√

2
(t − x); x = 1√

2
(σ − τ), t = 1√

2
(σ + τ),

(17.111)

we find that the Nambu Goto action (17.96) amounts to d − 1 copies of the two-
dimensional action obtained by integrating the Lagrangian (17.2):

L =
d−1∑

i−1

∂σX
i∂τX

i, (17.112)

provided the string constant T is normalized to one. (Since all d + 1 modes of the
string evolve independently as soon as the on shell constraints (17.101)–(17.103)
are obeyed, and we are now only interested in the transverse modes, we may here
safely omit the 2 longitudinal modes).

If our units are chosen such that T = 1, so that α′ = 1/2π , we can use the lattice
rules (17.43) and (17.44), for the transverse modes, or

XiL(x, t)= pi(x, t)+Xi(x, t)−Xi(x − 1, t); (17.113)

XiR(x, t)= pi(x, t)+Xi(x, t)−Xi(x + 1, t). (17.114)

where P i(x, t) = ∂tXi(x, t) (cf Eqs. (17.15) and (17.16), or (17.43) and (17.44)).
Since these obey the commutation rules (17.17) and (17.18), or

[
XiL,X

j
R

]= 0; [
XiL(x),X

j
L(y)

]= ±iδij if y = x ± 1, else 0, (17.115)
[
XiR(x),X

j
R(y)

]= ∓iδij if y = x ± 1, else 0, (17.116)

we can write these operators in terms of integer-valued operators AiL,R(x) and their

associated shift generators ηiL,R , as in Eqs. (17.56) and (17.57). There, the η basis

4With apologies for a somewhat inconsistent treatment of the sign of time variables for the right-
movers; we preferred to have τ go in the +t direction while keeping the notation of Sect. 17.1 for
left- and right movers on the world sheet.
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was used, so that the integer operators AiL,R are to be written as −i∂/∂ηiL,R . To
make an important point, let us, momentarily, replace the coefficients there by α,β,
and γ :

XiL(x)= −iα ∂

∂ηiL(x)
+ β

(
∂

∂ηiL(x)
ϕ
({
ηiL

}))− γ ηiL(x − 1), (17.117)

and similarly forXiR ; here ϕ({η(x)}) is the phase function introduced in Eqs. (17.58)
and (17.59).

What fixes the coefficients α,β and γ in these expressions? First, we must
have the right commutation relations (17.115) and (17.116). This fixes the product
αγ = 1. Next, we insist that the operators XiL are periodic in all variables ηiL(x).
This was why the phase function ϕ({η}) was introduced. It itself is pseudo peri-
odic, see Eq. (17.58). Exact periodicity of XiL requires β = 2πγ . Finally, and this
is very important, we demand that the spectrum of values of the operators X−

L,R

runs smoothly from −∞ to ∞ without overlaps or gaps; this fixes the ratios of the
coefficients α and γ : we have α = 2πγ . Thus, we retrieve the coefficients:

α = β = √
2π; γ = 1/

√
2π. (17.118)

The reason why we emphasize the fixed values of these coefficients is that we
have to conclude that, in our units, the coordinate functions XiL,R(x, t) of the cel-

lular automaton are
√

2π times some integers. In our units, T = 1/(2πα′) = 1;
α′ = 1/(2π). In arbitrary length units, one gets that the variables XiL,R are integer
multiples of a space–time lattice mesh length aspacetime, with

aspacetime =√
2π/T = 2π

√
α′. (17.119)

In Fig. 17.1, the spectrum of the allowed string target space coordinates in the quan-
tum theory is sketched. Only if Eq. (17.119) is exactly obeyed, the classical system
exactly matches the quantum theory, otherwise false voids or overlappings appear.5

What we find is that our classical string lives on a square lattice with mesh size
aspacetime. According to the theory explained in the last few sections of this chap-
ter, the fully quantized bosonic string is entirely equivalent to this classical string;
there is a dual mapping between the two. The condition (17.119) on the value of
the lattice parameter aspacetime is essential for this mapping. If string theoreticians
can be persuaded to limit themselves to string coordinates that live on this lattice,
they will see that the complete set of quantum states of the bosonic string still
spans the entire Hilbert space they are used to, while now all basis elements of
this Hilbert space propagate classically, according to the discrete analogues of the
classical string equations.

Intuitively, in the above, we embraced the lattice theory as the natural ontological
system corresponding to a non-interacting string theory in Minkowski space. How-
ever, in principle, we could just as well have chosen the compactified theory. This

5If the mesh size would be chosen exactly half that of Eq. (17.119), a universal overlap factor of
2d−1 would emerge, a situation that can perhaps be accounted for in superstring theory.
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Fig. 17.1 The spectrum of allowed values of the quantum string coordinates Xμ. a The case
aspacetime > 2π

√
α′, b The case aspacetime = 2π

√
α′, c The case aspacetime < 2π

√
α′. The squares,

representing the ranges of the η parameters, were rounded a bit so as to show the location of
possible edge states

theory would assert that the transverse degrees of freedom of the string do not live
on R

d−1, but on T
d−1, a (continuous) torus in d − 1 dimensions, again with peri-

odicity conditions over lengths 2π
√
α′, and these degrees of freedom would move

about classically.
In Sect. 17.3.5 we elaborate further on the nature of the deterministic string ver-

sions.

17.3.3 The Lowest String Excitations

String theory is a quantum field theory on the 1 + 1 dimensional world sheet of the
string. If this quantum field theory is in its ground state, the corresponding string
mode describes the lightest possible particle in this theory. As soon as we put excited
states in the world sheet theory, the string goes into excited states, which means that
we are describing heavier particles. This way, one describes the mass- or energy
spectrum of the string.

In the original versions of the theory, the lightest particle turned out to have a
negative mass squared; it would behave as a tachyon, which would be an unwanted
feature of a theory.

The more sophisticated, modern versions of the theory are rearranged in such a
way that the tachyon mode can be declared to be unphysical, but it still acts as a
description of the formal string vacuum. To get the string spectrum, one starts with
this unphysical tachyon state and then creates descriptions of the other states by
considering the action of creation operators.

To relate these string modes to the ontological states at the deterministic, clas-
sical sides of our mapping equation, we again consider the ground state, as it was
described in Sect. 17.1.5, to describe the tachyon solution. Thus, the same proce-
dure as in that subsection will have to be applied. Similarly one can get the physical
particles by having the various creation operators act on the tachyon (ground) state.
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This way, we get our description of the photon (the first spin one state of the open
string) and the graviton (the spin 2 excited state of the closed string).

17.3.4 The Superstring

To construct theories containing fermions, it was proposed to plant fermionic de-
grees of freedom on the string world sheet. Again, anomalies were encountered,
unless the bosonic and fermionic degrees of freedom can be united to form super
multiplets. Each bosonic coordinate degree of freedom Xμ(σ, τ) would have to be
associated with a fermionic degree of freedom ψμ(σ, τ). This should be done for
the left-moving modes independently of the right-moving ones. A further twist can
be given to the theory by only adding fermionic modes to the left-movers, not to the
right movers (or vice versa); this way, chirality can be introduced in string theory,
not unlike the chirality that is clearly present in the Standard Model. Such a theory
is called a heterotic string theory.

Since the world sheet is strictly two-dimensional, we have no problems with spin
and helicity within the world sheet, so, here, the quantization of fermionic fields—at
least at the level of the world sheet—is simpler than in the case of the ‘neutrinos’
discussed in Sect. 15.2.3.

Earlier, we used the coordinates σ and τ as light cone coordinates on the world
sheet; now, temporarily, we want to use there a space-like coordinate and a time-like
one, which we shall call x1 = x and x0 = t .

On the world sheet, spinors are 2-dimensional rather than 4-dimensional, and we
take them to be Hermitian operators, called Majorana fields, which we write as

ψμ∗(x, t)=ψμ(x, t), and ψμ†(x, t)=ψμ∗T
(x, t) (17.120)

(assuming a real Minkowskian target space; the superscripts ∗T mean that if ψ =
(
ψ1
ψ2
) then ψ∗T = (ψ∗

1 ,ψ
∗
2 )).

There are only two Dirac matrices, call them �0 and �1, or, after a Wick rotation,
�1 and �2. They obey

�0 = i�2,
{
�α,�β

}= �α�β + �β�α = 2ηαβ, (α,β = 1,2). (17.121)

A useful representation is

�1 = σx =
(

0 1
1 0

)
, �2 = σy =

(
0 −i
i 0

)
; �0 =

(
0 1

−1 0

)
. (17.122)

The spinor fields conjugated to the fields ψμ(x, t) are ψ
μ
(x, t), here defined by

ψ
μ =ψμT �2, (17.123)

Skipping a few minor steps, concerning gauge fixing, which can be found in the text
books about superstrings, we find the fermionic part of the Lagrangian:

L(x, t)= −
d∑

μ=0

ψ
μ
(x, t)�α∂αψ

μ(x, t). (17.124)
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Since the �2 is antisymmetric and fermion fields anti-commute, two different
spinors ψ and χ obey

χψ = χT �2ψ = i(−χ1ψ2 + χ2ψ1)= i(ψ2χ1 −ψ1χ2)=ψT �2χ =ψχ.
(17.125)

Also we have

χ�μψ = −ψ�μχ, (17.126)

an antisymmetry that explains why the Lagrangian (17.124) is not a pure derivative.
The Dirac equation on the string world sheet is found to be

2∑

α=1

�α∂αψ
μ = 0. (17.127)

In the world sheet light cone frame, one writes

(�+∂− + �−∂+)ψ = 0, (17.128)

where, in the representation (17.122),

�± = 1√
2

(
�0 ± �1), and (17.129)

�+ = −�− = √
2

(
0 0
1 0

)
, �− = −�+ = √

2

(
0 −1
0 0

)
. (17.130)

The solution of Eq. (17.127) is simply

ψμ(σ, τ)=
(
ψ
μ
L(σ)

ψ
μ
R(τ)

)
. (17.131)

Thus, one finds that the fermionic left-movers and right-movers have no further
spinor indices.

As is the case for the bosonic coordinate fields XμL,R(x), also the fermionic field
components ψμL,R have two longitudinal modes, μ = ±, that are determined by
constraint equations. These equations are dictated by supersymmetry. So for the
fermions also, we only keep the d − 1 transverse components as independent dy-
namical fields (d is the number of space-like dimensions in target space).

The second-quantized theory for such fermionic fields has already briefly
been discussed in our treatment of the second-quantized ‘neutrino’ system, in
Sect. 15.2.3. Let us repeat here how it goes for these string world sheet fermions.
Again, we assume a lattice on the world sheet, while the Dirac equation on the lat-
tice now reduces to a finite-step equation, so chosen as to yield exactly the same
solutions (17.131):

ψi(x, t)= − 1√
2
�0(�+ψi(x − 1, t − 1)+ �−ψi(x + 1, t − 1)

)
,

i = 1, . . . , d − 1. (17.132)
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The deterministic counterpart is a Boolean variable set si(x, t), which we assume to
be taking the values ±1. One may write their evolution equation as

si(x, t)= si(x − 1, t − 1)si(x + 1, t − 1)si(x, t − 2). (17.133)

of which the solution can be written as

si(x, t)= siL(x, t)siR(r, t), (17.134)

where siL and siR obey

siL(x, t)= siL(x + 1, t − 1); siR(x, t)= siR(x − 1, t − 1), (17.135)

which is the Boolean analogue of the Dirac equation (17.132).
One can see right away that all basis elements of the Hilbert space for the Dirac

equation can be mapped one-to-one onto the states of our Boolean variables. If we
would start with these states, there is a straightforward way to construct the anti-
commuting field operators ψiL,R(x, t) of our fermionic system, the Jordan–Wigner
transformation [54], also alluded to in Sect. 15.2.3. At every allowed value of the
parameter set (x, i, α), where α stands for L or R, we have an operator aiα(x) acting
on the Boolean variable siα(x) as follows:

a|+〉 = |−〉; a|−〉 = 0. (17.136)

These operators, and their Hermitian conjugates a† obey the mixed commutation -
anti-commutation rules

{
aiα(x), a

i
α(x)

}= 0,
{
aiα(x), a

i†
α (x)

}= I, (17.137)

[
aiα(x1), a

j
β(x2)

]= 0,
[
aiα(x1), a

j†
β (x2)

]= 0 if

{
x1 �= x2

and/or i �= j
and/or α �= β.

(17.138)

Turning the commutators in Eq. (17.138) into anti-commutators is easy, if one
can put the entire list of variables x, i and α in some order. Call them y and consider
the ordering y1 < y2. Then, the operators ψ(y) can be defined by:

ψ(y)≡
(∏

y1<y

s(y1)

)
a(y). (17.139)

This turns the rules (17.137) and (17.138) into the anti-commutation rules for
fermionic fields:

{
ψ(y1),ψ(y2)

}= 0; {
ψ(y1),ψ

†(y2)
}= δ(y1, y2). (17.140)

In terms of the original variables, the latter rule is written as

{
ψiα(x1),ψ

j†
β (x2)

}= δ(x1 − x2)δ
ij δaβ . (17.141)
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Let us denote the left-movers L by α = 1 or β = 1, and the right movers R by α = 2
or β = 2. Then, we choose our ordering procedure for the variables y1 = (x1, i, α)

and y2 = (x2, j, β) to be defined by

if α < β then y1 < y2;
if α = β and x1 < x2 then y1 < y2;

if α = β and x1 = x2 and i < j then y1 < y2,

else y1 = y2 or y1 > y2.

(17.142)

This ordering is time-independent, since all left movers are arranged before all right
movers. Consequently, the solution (17.131) of the ‘quantum’ Dirac equation holds
without modifications in the Hilbert space here introduced.

It is very important to define these orderings of the fermionic fields meticulously,
as in Eqs. (17.142). The sign function between brackets in Eq. (17.139), which
depends on the ordering, is typical for a Jordan–Wigner transformation. We find
it here to be harmless, but this is not always the case. Such sign functions can be an
obstruction against more complicated procedures one might wish to perform, such
as interactions between several fermions, between right-movers and left-movers, or
in attempts to go to higher dimensions (such as in k-branes, where k > 2).

At this point, we may safely conclude that our dual mapping between quantized
strings and classical lattice strings continues to hold in case of the superstring.

17.3.5 Deterministic Strings and the Longitudinal Modes

The transverse modes of the (non interacting) quantum bosonic and superstrings (in
flat Minkowski space–time) could be mapped onto a deterministic theory of strings
moving along a target space lattice. How do we add the longitudinal coordinates,
and how do we check Lorentz invariance? The correct way to proceed is first to
look at the quantum theory, where these questions are answered routinely in terms
of quantum operators.

Now we did have to replace the continuum of the world sheet by a lattice, but
we claim that this has no physical effect because we can choose this lattice as fine
as we please whereas rescaling of the world sheet has no effect on the physics since
this is just a coordinate transformation on the world sheet. We do have to take the
limit �→ ∞ but this seems not to be difficult.

Let us first eliminate the effects of this lattice as much as possible. Rewrite
Eqs. (17.5) and (17.6) as:

p(x, t)= ∂xk(x, t), aL,R(x, t)= ∂xbL,R(x, t); (17.143)

bL(x + t)= k(x, t)+ q(x, t); bR(x − t)= k(x, t)− q(x, t); (17.144)

the new fields now obey the equal time commutation rules
[
q(x, t), k

(
x′, t

)]= 1
2 i sgn

(
x − x′); (17.145)

[
bL(x), bL(y)

]= −[
bR(x), bR(y)

]= −i sgn(x − y), (17.146)

where sgn(x)= 1 if x > 0, sgn(x)= −1 if x < 0 and sgn(0)= 0.
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Staying with the continuum for the moment, we cannot distinguish two “adja-
cent” sites, so there will be no improvement when we try to replace an edge state
that is singular at η(x)= ±π by one that is singular when this value is reached at
two adjacent sites; in the continuum, we expect our fields to be continuous. In any
case, we now drop the attempt that gave us the expressions (17.56) and (17.57), but
just accept that there is a single edge state at every point. This means that, now, we
replace these mapping equations by

bL(x)= √
2πBLop(x)+

1√
2π
ζLop(x), (17.147)

bR(x)= √
2πBRop(x)+

1√
2π
ζRop(x), (17.148)

where the functions BL,R will actually play the role of the integer parts of the coor-
dinates of the string, and ζL,Rop (x) are defined by their action on the integer valued
functions BL,R(x), as follows:

eiζ
L(x1)

∣∣{BL,R(x)
}〉= ∣∣{B ′L,R(x)

}〉
,

{
B ′L(x)= BL(x)+ θ(x − x1) ,

B ′R(x)= BR(x); (17.149)

eiζ
R(x1)

∣∣{BL,R(x)
}〉= ∣∣{B ′′L,R(x)

}〉
,

{
B ′′L(x)= BL(x),

B ′′R(x)= BR(x)+ θ(x1 − x), (17.150)

so that, disregarding the edge state,
[
BL(x), ζL(y)

]= −iθ(x − y), [
BR(x), ζR(y)

]= −iθ(y − x). (17.151)

This gives the commutation rules (17.146). If we consider again a lattice in x space,
where the states are given in the ζ basis, then the operator BLop(x) obeying commu-
tation rule (17.151) can be written as

BLop(x1)=
∑

y<x1

−i ∂

∂ζL(y)
. (17.152)

Now the equations of motion of the transverse string states are clear. These just
separate into left-movers and right-movers, both for the discrete lattice sitesXi(σ, τ )
and for the periodic ηi(σ, τ ) functions, where i = 1, . . . , d − 1. Also, the longitu-
dinal modes split up into left moving ones and right moving ones. These, however,
are fixed by the gauge constraints. In standard string theory, we can use the light
cone gauge to postulate that the coordinate variable X+ is given in an arbitrary way
by the world sheet coordinates, and one typically chooses the constraint equations
(17.101).

This means that

a+
L (σ )= 1, a+

R (τ)= 1, (17.153)

but by simple coordinate transformations σ → σ1(σ ) and τ → τ1(τ ), one can
choose any other positive function of the coordinate σ (left-mover) or τ (right
mover). Now, Eqs. (17.95) here mean that

(
a
μ
L(σ )

)2 = (
a
μ
R(τ)

)2 = 0, (17.154)
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so that, as in Eqs. (17.102) and (17.103), we have the constraints

a+
L (σ )= 1

2

d−1∑

i=1

(
aiL(σ )

)2
, a+

R (τ)= 1
2

d−1∑

i=1

(
aiR(t)

)2
, (17.155)

where aiL,R(x)= ∂xbiR,L(x) (see the definitions 17.143).

In view of Eq. (17.152) for the operator BiL(x), it is now tempting to write for
the longitudinal coordinate X+

L : ∂σBiL(σ )= −i ∂

∂ζ iL(σ )
, so that

∂σX
+
L (σ )

?= 1
2

d−1∑

i=1

(
− 2π∂2

∂ζ(σ )2
+ 1

2π

(
∂σ ζ(σ )

)2 − 2i

{
∂

∂ζ(σ )
, ∂σ ζ(σ )

})
, (17.156)

but the reader may have noticed that we now disregarded the edge states, which
here may cause problems: they occur whenever the functions ηi cross the values
±π , where we must postulate periodicity.

We see that we do encounter problems if we want to define the longitudinal
coordinates in the compactified classical field theory. Similarly, this is also hard in
the discrete automaton model, where we only keep the BiL,R as our independent
ontological variables. How do we take their partial derivatives in σ and τ?

Here, we can bring forward that the gauge conditions (17.153) may have to be
replaced by Dirac delta functions, so as to reflect our choice of a world sheet lattice.

These aspects of the string models we have been considering are not well under-
stood. This subsection was added to demonstrate briefly what happens if we study
the gauge constraints of the theory to get some understanding of the longitudinal
modes, in terms of the ontological states. At first sight it seemed that the compacti-
fied deterministic theory would offer better chances to allow us to rigorously derive
what these modes look like; it seems as if we can replace the world sheet lattice by
a continuum, but the difficulties are not entirely resolved.

If we adopt the cellular automaton based on the integers BiL,R , use of a world
sheet lattice is almost inevitable. On the world sheet, the continuum limit has to be
taken with much care.

17.3.6 Some Brief Remarks on (Super)string Interactions

As long as our (super)strings do not interact, the effects of the constraints are minor.
They tell us what the coordinates X−(σ, τ ) are if we know all other coordinates on
the world sheet. In the previous section, our point was that the evolution of these co-
ordinates on the world sheet is deterministic. Our mappings from the deterministic
string states onto the quantum string states is one-to-one, apart from the edge states
that we choose to ignore. In the text books on string theory, superstring interac-
tions are described by allowing topologically non-trivial world sheets. In practice,
this means that strings may exchange arms when they meet at one point, or their
end points may join or tear apart. All this is then controlled by a string coupling
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Fig. 17.2 Deterministic
string interaction. This
interaction takes place
whenever two pieces of string
meet at one space–time point

constant gs ; an expansion in powers of gs yields string world sheet diagrams with
successively higher topologies.

Curiously, one may very well imagine a string interaction that is deterministic,
exactly as the bulk theory obeys deterministic equations. Since, in previous sections,
we did not refer to topological boundary conditions, we regard the deterministic
description obtained there as a property of the string’s ‘bulk’.

A natural-looking string interaction would be obtained if we postulate the fol-
lowing:

Whenever two strings meet at one point on the space–time lattice, they ex-
change arms, as depicted in Fig. 17.2.

This “law of motion” is deterministic, and unambiguous, provided that both strings
are oriented strings. The deterministic version of the interaction would not involve
any freely adjustable string constant gs .

If we did not have the problem how exactly to define the longitudinal compo-
nents of the space–time coordinates, this would complete our description of the de-
terministic string laws. Now, however, we do have the problem that the longitudinal
coordinates are ‘quantum’; they are obtained from constraints that are non-linear in
the other fields Xμ(σ, τ), each of which contain integer parts and fractional parts
that do not commute.

This problem, unfortunately, is significant. It appears to imply that, in terms of
the ‘deterministic’ variables, we cannot exactly specify where on the world sheet the
exchange depicted in Fig. 17.2 takes place. This difficulty has not been resolved, so
as yet we cannot produce a ‘deterministic’ model of interacting ‘quantum’ strings.

We conclude from our exercise in string theory that strings appear to admit a
description in terms of ontological objects, but just not yet quite. The most severe
difficulties lie in the longitudinal modes. They are needed to understand how the
theory can be made Lorentz invariant. It so happens that local Lorentz invariance
is a problem for every theory that attempts to describe the laws of Nature at the
Planck scale, so it should not come as a surprise that we have these problems here
as well. We suspect that today’s incomplete understanding of Lorentz invariance at
the Planck scale needs to be repaired, but it may well be that this can only be done in
full harmony with the Cellular Automaton Interpretation. What this section suggests
us is that this cannot be done solely within the framework of string theory, although
strings may perhaps be helpful to lead us to further ideas.

An example of a corner of string theory that has to be swept clean is the black
hole issue. Here also, strings seem to capture the physical properties of black holes
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partly but not completely; as long as this is the case one should not expect us to be
able to formulate a concise ontological theory. This is why most parts of this book
concentrate on the general philosophy of the CAI rather than attempting to construct
a complete model.
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Chapter 18
Symmetries

In classical and in quantum systems, we have Noether’s theorem [16, 63]:

Whenever there is a continuous symmetry in a system, there exists a conserved
quantity associated with it.

Examples are conservation of momentum (translation symmetry), conservation of
energy (symmetry with respect to time translations), and angular momentum (ro-
tation symmetry). In classical systems, Noether’s theorem is limited to continuous
symmetries, in quantum systems, this theorem is even more universal: here also
discrete symmetries have their associated conservation laws: parity P = ±1 of a
system or particle (mirror symmetry), non commuting discrete quantum numbers
associated with more general discrete permutations, etc. Also, in a quantum system,
one can reverse the theorem:

Every conserved quantity is associated to a symmetry,

for instance isospin symmetry follows from the conservation of the isospin vector
�I = (I1, I2, I3), baryon number conservation leads to a symmetry with respect to
U(1) rotations of baryonic wave functions, and so on.

18.1 Classical and Quantum Symmetries

We now claim that this more generalized Noether theorem can also be applied to
classical systems, simply by attaching a basis element of Hilbert space to every
state the classical system can be in. If, for instance, the evolution law Ut,t+δt is in-
dependent of time t , we have a conserved energy. This energy is obtained from the
eigenvalue of Ut,t+δt for the smallest admissible value of δt . Now since an energy
eigenstate will usually not be an ontological state of the system, this energy conser-
vation law only emerges in our quantum procedure; it does not show up in standard
classical considerations. For us, this is very important: if δt is as small as the Planck
time, the energy eigenstates, all the way to the Planck energy, are superpositions of
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ontological states. If, as we usually do, we limit ourselves to quantum systems with
much lower energies, we are singling out a section of Hilbert space that is not rep-
resented by individual ontological states, and for this reason we should not expect
recognizable classical features in the quantum systems that we are usually looking
at: atoms, molecules, elementary particles.

Often, our deterministic models are based on a lattice rather than a space–time
continuum. The classical space–time symmetries on a lattice are more restricted
than those of a continuum. It is here that our mappings onto quantum systems may
help. If we allow ontological states to have symmetry relations with superimposed
states, much more general symmetry groups may be encountered. This is further
illustrated in this chapter.

Since we often work with models having only finite amounts of data in the form
of bits and bytes in given volume elements, we are naturally led to systems defined
on a lattice. There are many ways in which points can be arranged in a lattice config-
uration, as is well known from the study of the arrangement of atoms in crystalline
minerals. The symmetry properties of the minerals are characterized by the set of
crystallographic point groups, of which there are 32 in three dimensions [72].

The simplest of these is the cubic symmetry group generated by a cubic lattice:

�x = (n1, n2, n3), (18.1)

where n1, n2 and n3 are integers. What we call the cubic group here, is the set of all
48 orthogonal rotations including the reflections of these three integers into ± each
other (6 permutations and 23 signs). This group, called O(3,Z), is obviously much
smaller than the group O(3,R) of all orthonormal rotations. The cubic group is a
finite subgroup of the infinite orthogonal group.

Yet in string theory, Sect. 17.3.2, something peculiar seems to happen: even
though the string theory is equivalent to a lattice model, it nevertheless appears
not to lose its full orthogonal rotation symmetry. How can this be explained?

18.2 Continuous Transformations on a Lattice

Consider a classical model whose states are defined by data that can be arranged
in a d dimensional cubic lattice. Rotation symmetry is then usually limited by the
group O(d,Z). If now we introduce our Hilbert space, such that every state of the
classical system is a basis element of that, then we can introduce superpositions, and
much more symmetry groups are possible. There are several ways now to introduce
continuous translations and rotations.

To this end, it is, again, very instructive to do the Fourier transformation:

〈�x|ψ〉 = (2π)−d/2
∫

|κi |<π
dd �κ 〈�κ|ψ〉ei�κ·�x. (18.2)

Here, |ψ〉 describes a single particle living on the lattice, but we could also take it as
the operator field of a second-quantized system, as is usual in quantum field theories.
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Of course, as is usual in physics notation, 〈�x| are the bras in x space (where �x is
Eq. (18.1), the lattice), whereas 〈�κ| are the bras in momentum space, where �κ are
continuous, and all its components κi obey |κi |< π .

The inverse of the Fourier transform (18.2) is:

〈�κ|ψ〉 = (2π)−d/2
∑

�x∈Zd
〈�x|ψ〉e−i�κ·�x. (18.3)

18.2.1 Continuous Translations

Translations over any distance �a can now be defined as the operation

〈�κ|ψ〉 → 〈�κ|ψ〉e−i�κ·�a, (18.4)

although only if �a has integer components, this represents an ontological shift

〈�x|ψ〉 → 〈�x − �a|ψ〉, (18.5)

since �x must sit in the lattice, otherwise this would represent a non ontological state.
If �a has fractional components, the translation in x space can still be defined.

Take for instance a fractional value for ax , or, �a = (ax,0,0). Then

〈κx |ψ〉 → 〈κx |ψ〉e−iκxax , 〈x|ψ〉 →
∑

x′

〈
x′|ψ 〉�ax

(
x − x′),

�ax (x1)= (2π)−1
∫ π

−π
dκx e

−iaxκx+iκxx1 = sinπ(x1 − ax)
π(x1 − ax) ,

(18.6)

where we also used Eq. (18.3) for the inverse of Eq. (18.2).
One easily observes that Eq. (18.6) reduces to Eq. (18.5) if ax tends to an integer.

Translations over a completely arbitrary vector �a are obtained as the product of
fractional translations over (ax,0,0), (0, ay,0) and (0,0, az):

〈�x|ψ〉 →
∑

x′,y′,z′
〈�x′|ψ〉��a

(�x − �x′), ��a(�x1)=�ax (x1)�ay (y1)�az(z1). (18.7)

Notice that the kernel function ��a(�x1) maximizes for the values of �x1 closest to �a,
so, even for translations over fractional values of the components of �a, the transla-
tion operation involves only the components of |ψ〉 closest to the target value �x− �a.

The generator for infinitesimal translations is the operator �ηop. Translations
over a finite distance �a can then be described by the operator ei�a·�ηop . Writing
�ηop = (ηx, ηy, ηz), and taking ηx, ηy, and ηz each to act only in one dimension,
we have

〈�κ|�ηop|ψ〉 = −�κ〈�κ|ψ〉, (18.8)

〈x|eiηxax |ψ〉 =
∑

x′
〈x′|ψ〉 sinπ(x − x′ − ax)

π(x − x′ − ax) , (18.9)
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and when ax is taken to be infinitesimal, while x and x′ are integers, one finds

〈x|(I+ iηxax)|ψ〉 =
∑

x′
〈x′|ψ〉

(
δxx′ + (1 − δxx′)

(−1)x−x′
(−πax)

π(x − x′)

)
; (18.10)

〈x|ηx |x〉 = 0, 〈x|ηx |x′〉 = i(−1)x−x′

x − x′ if x �= x′. (18.11)

The eigenstates |ηx〉 of the operator ηx can be found: 〈x|ηx〉 = e−iηxx .
The expressions we found for this generator are the most natural ones but not

the only possible choices; we must always remember that one may add multiples of
2π to its eigenvalues. This modifies the matrix elements (18.11) while the effects of
translations over integer distances remain the same.

An important feature of our definition of fractional translations on a lattice is their
commutation rules. These translations are entirely commutative (as we can deduce
from the definition Eq. (18.4)):

[�η, �η′] = 0. (18.12)

18.2.2 Continuous Rotations 1: Covering the Brillouin Zone with
Circular Regions

What can be done with translations on a lattice, can also be done for rotations, in
various ways. Let us first show how to obtain a perfect general rotation operator on
a lattice, in principle. Again, we start from the Fourier modes, eiκx , Eq. (18.2). How
do we generate arbitrary rotations?

Taking again the cubic lattice as our prototype, we immediately see the diffi-
culty: the space of allowed values for �κ is a square (in 2 dimensions) or a cube
(in 3 dimensions). This square and this cube are only invariant under the discrete
rotation group O(d,Z) . Therefore, rotations over other angles can at best be ap-
proximate, it seems. We illustrate the situation for a two-dimensional square lattice,
but extrapolation to d > 2 space dimensions and/or other lattice configurations is
straightforward.

The space of allowed momentum values is called the Brillouin zone, and it is
the square in Fig. 18.1a. A first approximation for a rotation of the lattice by any
angle ϕ is obtained by drawing the largest possible circle in the Brillouin zone (or
the largest possible sphere in the 3 or higher dimensional case) and rotate the region
inside that. The data on the remainder of the Brillouin zone, outside the circle, are
ignored or replaced by zero.

This procedure perhaps looks good for the lower frequency modes, but it does
not rotate everything, and it would clearly disobey the desired group properties of
rotations and translations, so we must do something better with the remainder of the
Brillouin zone. This is possible, see Fig. 18.1b. The rotation operator could then be
defined as follows.
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Fig. 18.1 Rotations in the Brillouin zone of a rectangular lattice. a We can limit ourselves to the
region inside the largest circle that fits in the Brillouin zone (A). The shaded region (B) is neglected
and the amplitude there replaced by zero. This is good if strongly fluctuating modes in �x space
may be ignored, such as in a photograph with a rectangular grid of pixels. b Unitarity is restored
if we also fill the remainder of the Brillouin zone also with circles, B,C, etc., the larger the better
(as explained in the text), but never overlapping. In the picture, the shaded regions should also be
filled with circles. The rotation operator must rotate every circle by the same angle ϕ (arrows)

We fill the entire Brillouin zone with circular regions, such that they completely
cover the entire space without overlappings. As will be explained shortly, we prefer
to keep these circles as large as possible to get the best1 result. The action of the
rotation operator will now be defined to correspond to a rotation over the same
angle ϕ inside all of these circles (arrows in Figs. 18.1a and b). With “circles” we
here mean circular regions, or, if d > 2, regions bounded by (d − 1)-spheres.

This is—nearly2—the best we can do in the Brillouin zone, being the space of
the Fourier vectors �κ . The reason why we split the Brillouin zones into perfectly
spherical regions, rather than other shapes, becomes clear if we inspect the action
of this operator in �x-space: how does this operator work in the original space of the
lattice sites �x?

Let us first consider the action of a single circle, while the data on the rest of the
Brillouin zone are replaced by zero. First take a circle (if d = 2) or sphere (if d = 3)
whose centre is at the origin, and its radius is r . Projecting out this circle means that,
in �x-space, a wave function ψ(�x) is smeared as follows:

ψ ′(�x)= (2π)−d
∑

�x′

∫

|�κ|<r
dd �κ ei�κ·(�x−�x′)ψ

(�x′)

=
∑

�x′

(
r

π

)d
Kd

(
r
π

∣∣�x − �x′∣∣)ψ
(�x′). (18.13)

1“Best” here means that the effect of the rotation is maximally local, as will be seen in the sequel.
2A slight complication that can be cured, is explained shortly after Eq. (18.19) on page 221.
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Fig. 18.2 The function
Kd(y), a for d = 2, and b for
d = 5

The kernel of this rotationally symmetric expression turns out to be a Bessel
function:

Kd(y)= π
d−1

2

2dΓ (d+1
2 )

∫ 1

−1
dk

(
1 − k2) d−1

2 eiπky = (2y)−d/2Jd/2(πy). (18.14)

It is a smooth function, dropping off at infinity as a power of y (see Fig. 18.2):

Kd(y)−→ 2 sinπ(y + 1−d
4 )

π(2y)
d+1

2

as y→ ∞. (18.15)

We infer from Eq. (18.13) that, projecting out the inside of a circle with radius r
in the Brillouin zone, implies smearing the data on the lattice over a few lattice sites
in all directions, using the kernel Kd(y). The smaller the radius r , the further out
the smearing, which is why we should try to keep our circles (spheres) as large as
possible.

Next, we notice that most of the circles in Fig. 18.1b are off-centre. A displace-
ment by a vector �κ1 in the Brillouin zone corresponds to a multiplication in con-
figuration space by the exponent ei�κ1·�x . Projecting out a circle with radius r and its
origin on the spot �κ1 in the Brillouin zone, means dividing the wave function ψ(�x)
by the exponent ei�κ1·�x , smearing it with the kernel Kd(y), then multiplying with the
exponent again (thus, we bring the circle to the origin, project out the centralized
circle, then move it back to where it was). This amounts to smearing the original
wave function with the modified kernel

Kd(y, �κ1)=Kd(y)ei�κ1·(�x−�x′), y = r
π

∣∣�x − �x′∣∣. (18.16)

If we add the projections of all circles with which we covered the Brillouin zone,
the total effect should be that we recover the original wave function on the lattice.

And now we can rotate. Rotating a circle (r, κ1) in the Brillouin zone over any
angle ϕ has exactly the same effect as (1) finding the smeared wave function using
the kernel Kd(y)e−i�κ1·�x′

, rotating the resulting continuous function over the angle
ϕ in �x-space, and then multiplying with the exponential ei�κ1·�x . If we add together
the effects of all circles, we get the rotation operator. If we want the effect of an
orthogonal rotation Ω in �x-space, then this results in

ψ ′(�x)=
∑

�x′

∑

i

Kd
( ri
π

∣∣Ω �x − �x′∣∣)ei�κi ·(�x−�x′)ψ
(�x′), (18.17)

where the index i counts the circles covering the Brillouin zone.
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The transformations described in this subsection form a perfectly acceptable rota-
tion group, converging to the usual rotations in the continuum limit. This can easily
be seen by noting that the continuum case is dominated by the small values of �κ ,
which are all in the primary circle. The other circles also rotate the wave functions
to the desired location, but they only move along the rapidly oscillating parts, while
the vectors �κ1 stay oriented in the original direction.

The desired group properties of this operator follow from the fact that the circles
cover the Brillouin zone exactly once.

Ω3 =Ω1Ω2. (18.18)

Of course, the operation (18.17), to be referred to as R(Ω), is not quite an ordi-
nary rotation. If T (�a) is the translation over a non-lattice vector �a as described in
Sect. 18.2.1, then

R(Ω)T (�a) �= T (Ω �a)R(Ω), (18.19)

and furthermore, ifΩ is chosen to be one of the elements of the crystal group of the
lattice, R(Ω) does still not coincide with Ω itself. This latter defect can be cured,
but we won’t go into these details.

The best feature of this rotation operator is that it appears to act really locally in
�x-space, spreading the lattice points only slightly with the Bessel function kernels
(18.14), but it also has disadvantages: it will be extremely difficult to construct some
deterministic evolution law that respects this transformation as a symmetry. For this
reason, we now consider other continuous transformation prescriptions that yield
rotations.

18.2.3 Continuous Rotations 2: Using Noether Charges
and a Discrete Subgroup

In a deterministic theory then, we wish to identify an evolution law that respects
our symmetries. This requires a different choice for the definitions of the symme-
tries involved. To this end, we enter Noether’s theorem, as it was introduced at the
beginning of this chapter. For example, symmetry under time translations is associ-
ated to the conservation of energy, translation symmetry is associated to momentum
conservation, and rotation symmetry leads to the conservation of angular momen-
tum. We refer to these conserved quantities as Noether charges. All these conserved
charges are observable quantities, and therefore, if we wish to investigate them in
a quantum theory that we relate to a deterministic system, then this deterministic
system should also exhibit observable quantities that can be directly related to the
Noether charges.

In the PQ formalism, the Noether charges for translation symmetry are built in,
in a sense. Translations in the Qi variables are associated to quantities pi , of which
the integer parts Pi are ontological observables. Only the fractional parts generate



222 18 Symmetries

translations, which then must be integer steps on the Q lattice. We need both com-
ponents of the momentum. If the lattice length is small, the quanta of the integer
parts of the momenta are large. Planets have very large momenta, cold atoms have
very small momenta. Large momenta also are sources of gravitational fields, and
as such directly observable. What about the transition region? It happens to be in a
very familiar domain—the Planck unit of momentum is ∼ 6.5 kg m/sec. Momen-
tum in that domain must be a mixture of the P observables and theQ displacement
operators, whereas in ordinary physics we notice nothing special in that domain.

In the case of angular momentum, we may note that angular momentum is quan-
tized anyway. Can we associate an ontological observable (beable) to angular mo-
mentum? Not so easily, because angular momentum consists of non-commuting
components. At best we will have ontological quantized variables playing the role
of “the classical parts” of angular momentum, supplemented by quantum degrees
of freedom (changeables) that restore the commutation rules. We observe that, for
small particles, angular momentum is only partly observable; sometimes it is a be-
able, sometimes a changeable. For large systems, angular momentum is observable,
with some margin of error.

This leads us to consider the following structure—and indeed we will have to
use similar methods whenever a symmetry group becomes large, meaning that it
has very many elements. Since angular momenta are non commutative, they cannot
be quite ontological, but their ‘classical parts’ must be. Therefore, we assume that
the total angular momenta operators Ji can be written as follows:

Ji = Li + λi, [Ji, Jj ] = iεijkJk, (18.20)

where Li represents the expectation values of Ji in all ontological states, so that Li
are beables. The λi represent the remainder, and their expectation values in ontolog-
ical states vanish:

〈ont|λi |ont〉 = 0 for each ontological state |ont〉. (18.21)

The following subsection will show an explicit procedure to obtain Li and λi .

18.2.4 Continuous Rotations 3: Using the Real Number Operators
p and q Constructed Out of P and Q

If our theory is defined on a lattice, there is another great way to recover many of
the symmetries of the continuum case, by using the PQ trick as it was exposed in
Sect. 16. We saw that string theory, Sect. 17.3, was re-written in such a way that
the string moves on a lattice in target space, where the lattice basically describes the
integer parts of the coordinates, while the space in between the lattice sites actually
correspond to the eigenstates of the displacement operators for the momentum vari-
ables P . Together, they form a continuum, and since the entire system is equivalent
to the continuum string theory, it also shares all continuous translation and rotation
symmetries with that theory.
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By allowing the application of this mechanism, string theory appears to be more
powerful than theories of point particles; the commutation rules for the operators in
target space are fundamentally different, and string theory allows target space to be
in a high number of dimensions.

Thus, in the PQ formalism, we now use the continuum definition of angular mo-
mentum. Consider the wave function of a single particle in three space dimensions,
so that it lives on the product of three P,Q lattices. These lattices generate the three
quantum coordinates qi . Its Hilbert space H is the product space of three Hilbert
spaces H1,H2 and H3.

Write, as in Eqs. (16.18) and (16.19),

q
op
i =Qi + aop

i , p
op
i = 2πPi + bop

i , (18.22)

so that the angular momentum operator is (in the 3-dimensional case)

Ji = εijkqop
j p

op
k = εijk

(
2πQjPk + 2πaop

j Pk +Qjbop
k + aop

j b
op
k

)
. (18.23)

Since the expectation values of aop
i and bop

i vanish in the ontological states, |ont〉 =
| �P , �Q〉, and since the last term will be ≤ O(2π), we can identify Li with the first
term:

Li ≈ 2πεijkQjPk. (18.24)

Note, that the Li are quantized in multiples of 2π rather than one, as one might
have expected, so Eq. (18.24) cannot hold exactly.

Let us now inspect the modifications on the commutation rules of these angular
momentum operators caused by the edge states. In each of the three Hilbert spaces
Hi , i = 1,2,3,, we have Eq. (16.22), while the operators of one of these Hilbert
spaces commute with those of the others. Writing the indices explicitly:

[q1,p1] = iI2I3
(
I1 − ∣∣ψ1

e

〉〈
ψ1
e

∣∣), [q1,p2] = 0, and cyclic permutations,

(18.25)

where Ii are the identity operators in the ith Hilbert space, and |ψie〉 are the edge
states on the ith P,Q lattice. One then easily derives that the three angular mo-
mentum operators Ji defined in the usual way, Eq. (18.23), obey the commutation
rules

[J1, J2] = iJ3I1I2
(
I3 − ∣

∣ψ3
e

〉〈
ψ3
e

∣
∣), and cyclic permutations. (18.26)

The importance of this result is that now we observe that the operator J3 only acts
in Hilbert spaces 1 and 2, but is proportional to the identity in H3 (since J3 contains
only q1, q2,p1, and p2). So the projection operator for the edge state |ψ3

e 〉 com-
mutes with J3. This implies that, if we limit ourselves to states that are orthogonal
to the edge states, they will also rotate to states orthogonal to the edge states. In this
subspace of Hilbert space the rotations act normally. And we think that this is re-
markable, because certainly the “ontological” basis defined on the six-dimensional
�P , �Q lattice has no built-in continuous rotation invariance at all.
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18.2.5 Quantum Symmetries and Classical Evolution

In previous subsections it was observed that, when we project classical models on
Hilbert spaces, new symmetries may emerge. These are symmetry transformations
that map classical states onto superpositions of states. A few examples were shown.

None of our procedures are fool proof. In the special case to be discussed next,
we study time translation invariance. As stated earlier, we might split the energy
E into a classical part (δE ) and a quantum part (the generator of discrete time
translations, the Hamiltonian H that lies in the interval [0,2π/δt). However, this
would suggest that we can only measure energies with 2π/δt as our margin of error.
That cannot be right: if δt is the Planck time, then the energy quantum is the Planck
energy, EPlanck, which is about 543 kiloWatt-hours; yet we pay our electricity bills
per kiloWatt-hour, and those bills are certainly ontological. Mutations in our DNA
profiles might require only a couple of electronVolts to take place, and these might
be crucial for our genetically inherited identities; an electronVolt is about 10−28

times the Planck energy. Even that may have to be (mostly) ontological.
Of course we are primarily interested in symmetries that are symmetries of the

evolution operator. The cogwheel model, Sect. 2.2.1, for instance has the classical
symmetry of rotations over N steps, if N is the number of cogwheel position states.
But if we go to the energy eigenstates |k〉H , k = 0, . . .N−1 (Eqs. (2.21) and (2.22)),
we see that, there, a translation over n teeth corresponds to multiplication of these
states as follows:

|k〉H → e2πikn/N |k〉H . (18.27)

Since these are eigenstates of the Hamiltonian, this multiplication commutes with
H and hence the symmetry is preserved by the evolution law.

We now found out that we can enlarge the symmetry group by choosing the
multiplication factors in frequency space

|k〉H → e2πikα/N |k〉H . (18.28)

where α now may be any real number, and this also corresponds to a translation in
time over the real number α. This enhances the symmetry group from the group of
the cyclic permutations of N elements to the group of the continuous rotations of a
circle.

18.2.6 Quantum Symmetries and Classical Evolution 2

An other rather trivial yet interesting example of a symmetry that is enlarged if
we apply our quantum constructions, occurs in a simple cellular automaton in any
number d of space dimensions. Consider the Boolean variables σ(�x, t) = ±1 dis-
tributed over all even sites in a lattice space–time, that is, over all points (�x, t) =
(x1, . . . , xd, t) with xi and t all integers, and x1 + · · · + xd + t = even.



18.2 Continuous Transformations on a Lattice 225

Let the evolution law be

σ(�x, t + 1)=
(
d∏

i=1

σ(�x + �ei, t)σ (�x − �ei, t)
)

σ(�x, t − 1), (18.29)

where �ei are the unit vectors in the ith direction in d dimensional space. Or: the
product of the data on all direct space–time neighbours of any odd site (�x, t) is
+1. This law is manifestly invariant under time reversal, and we see that it fixes all
variables if the data are given on a Cauchy surface consisting of two consecutive
layers in time t, t − 1. The classical model has the manifest translation symmetry
over vectors δx = (a1, . . . , ad, τ ) with

∑
i ai + τ even.

Now let us introduce Hilbert space, and consider the odd lattice sites. On these
odd sites, we define the action of changeables σ1(�x1, t1) as follows:

The data on the time frame t = t1, are kept unchanged;
on the time frame t = t1 − 1, only σ(�x1, t1 − 1) changes sign, and all others
remain unchanged;
consequently, according to the evolution law, also on the time frame t = t1 +1,
only σ(�x1, t1 + 1) changes sign, all others stay the same.

The reason for the notation σ1 is that in a basis of Hilbert space where
σ(�x1, t1 − 1) = σ3 = ( 1 0

0 −1

)
, our new operator is σ1(�x, t1) = σ1 = ( 0 1

1 0

)
, as in

the Pauli matrices.
Now, checking how the action of σ1(�x, t) propagates through the lattice, we ob-

serve that

σ1(�x, t + 1)=
(
d∏

i=1

σ1(�x + �ei, t)σ1(�x − �ei, t)
)

σ1(�x, t − 1), (18.30)

where now the vector (�x, t) is even, while in Eq. (18.29) they were odd. Thus the
product of the changeables σ1(�x′, t ′) that are direct space–time neighbours of an
even site (�x, t) is also one.

Since we recovered the same evolution law but now on the sites that before were
empty, our translation symmetry group now has twice as many elements. Now, we
can perform a translation over a vector, whose sum of components is odd, but the
states in Hilbert space then have to undergo a transformation; at every site:

|ψ(�x, t)〉 →Uop|ψ(�x, t)〉, Uopσ1U
−1
op = σ3; Uop = 1√

2

(
1 1

1 − 1

)
. (18.31)

Since U2 = 1, this is actually a reflection. This means that the succession of two
odd translations gives an even translation without further phase changes.

This simple model shows how the introduction of Hilbert space may enhance the
symmetry properties of a theory. In this case it also implies that the Brillouin zone
for momentum space becomes twice as large (see Fig. 18.3). A quantum physicist
living in this world will not be able to distinguish the even sites from the odd ones.
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Fig. 18.3 a The Brillouin zone for the lattice momentum �κ of the ontological model described by
Eq. (18.29), in two space dimensions, with data only on the even lattice sites (smaller square, tilted
by 45◦), and b the Brillouin zone for the Hilbert space description of this model (larger square)

18.3 Large Symmetry Groups in the CAI

We end this chapter with a general view of large symmetry groups, such as trans-
lations in space and in time, and the Lorentz group. They have infinite numbers
of group elements. Now we imagine our automaton models to have discretized
amounts of information spread over space and time. How can we have infinite and/or
continuous symmetry groups act on them?

Our impression from the previous results is that the conventional symmetry gen-
erators, as used in quantum theories, will be operators that always consist of combi-
nations of beables and changeables: the Noether charges, such as angular momen-
tum, energy and momentum, will have classical limits that are perfectly observable,
hence they are beables; yet quantum mechanically, the operators do not commute,
and so there must also be changeable parts.

The beable parts will be conjugated to the tiniest symmetry operations such as
very tiny translations and rotations. These are unlikely to be useful as genuine trans-
formations among the ontological data—of course they are not, since they must
commute with the beables.

The changeable parts of these operators are not ontological observables as they
do not commute. The PQ formalism, elaborated in Sect. 16, is a realization of this
concept of splitting the operators: here, both in position space and in momentum
space, the integer parts of the translation operators are beables, the fractional parts
are changeables. The continuous translation operators pop consist of both ingredi-
ents. We suspect that this will have to become a general feature of all large symme-
try groups, in particular the Hamiltonian itself, and this is what we shall attempt to
implement in the next chapter 19.
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Chapter 19
The Discretized Hamiltonian Formalism in PQ
Theory

19.1 The Vacuum State, and the Double Role of the Hamiltonian
(Cont’d)

The energy conservation law is usually regarded as an interesting and important
feature of both classical and quantum mechanics, but it is often not fully realized
how important the role of this law really is. The importance of energy is that it is
conserved, it is defined locally, and that it cannot be negative.1 This allows us to
define the vacuum as the single quantum state of the universe that has the lowest
possible energy (or energy per unit of volume).

Consider a small perturbation of this vacuum: a light particle, or a grain of dust.
It carries only a small amount of energy. In our world, this energy cannot increase
spontaneously, because the surrounding vacuum cannot deliver it, and its own en-
ergy cannot increase. All transitions, all processes inside the grain of dust, can only
transform the object into other states with exactly the same energy. If the object de-
cays, the decay products must have even lower amounts of energy. Since the number
of distinct states with the same or less energy is very limited, not much can happen;
the object represents a very stable situation.

But now imagine an alien world where the concept of a conserved, positive en-
ergy would not exist. Perhaps our alien world would nevertheless have something
like a vacuum state, but it would have to be defined differently. In this alien world,
our tiny object could grow spontaneously, since we postulated that there is no con-
served quantity such as energy to stop it from doing so. What this means is that the
tiniest perturbations around the vacuum state will destabilize this vacuum. Similarly,
any other initial state may turn out to be unstable.2

1Often, the Casimir effect is brought forward as a counter example. Of course, it is important to
realize that this effect can produce small regions of negative energy, but those regions are always
accompanied by domains of much larger amounts of positive energy nearby, so that this effect has
little impact on the fundamental issues of stability raised here.
2The absence of a stabilizer does not imply that a dynamical system has to destabilize; the solar
system is a classical case in point, it stayed in roughly the same state for billions of years, without
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We can state this differently: solutions of the equations of motion are stationary
if they are in thermal equilibrium (possibly with one or more chemical potentials
added). In a thermal equilibrium, we have the Boltzmann distribution:

Wi = Ce−βEi+
∑
j μjRji , (19.1)

where β = 1/kT is the inverse of the temperature T , with Boltzmann constant k,
and i labels the states; μj are chemical potentials, and Rji the corresponding con-
served quantities.

If the energies Ei were not properly bounded from below, the lowest energies
would cause this expression to diverge, particularly at low temperatures.

What is needed is a lower bound of the energies Ei so as to ensure stability of our
world. Furthermore, having a ground state is very important to construct systematic
approximations to solutions of the time-independent Schrödinger equation, using
extremum principles. This is not just a technical problem, it would raise doubt on
the mere existence of correct solutions to Schrödinger’s equation, if no procedure
could be described that allows one to construct such solutions systematically.

In our world we do have a Hamiltonian function, equal to the total energy, that
is locally conserved and bounded from below. Note that “locally conserved” means
that a locally defined tensor Tμν(�x, t) exists that obeys a local conservation law,
∂μTμν = 0, and this feature is connected in important ways not only to the theory of
special relativity, but also to general relativity.

Thus, the first role played by the Hamiltonian is that it brings law and order in
the universe, by being (1) conserved in time, (2) bounded from below, and (3) local
(that is, it is the sum of completely localized contributions).

Deriving an equation of motion that permits the existence of such a function, is
not easy, but was made possible by the Hamiltonian procedure, first worked out for
continuum theories (see Sect. 5.6.2 in Part I).

Hamilton’s equations are the most natural ones that guarantee this mechanism to
work: first make a judicious choice of kinetic variables xi and pi , then start with
any function H({xi,pj }) that is bounded and local as desired, and subsequently
write down the equations for dxi/dt and dpj/dt that guarantee that dH/dt = 0.
The principle is then carried over to quantum mechanics in the standard way.

Thus, in standard physics, we have a function or operator called Hamiltonian that
represents the conserved energy on the one hand, and it generates the equations of
motion on the other.

And now, we argue that, being such a fundamental notion, the Hamiltonian prin-
ciple should also exist for discrete systems.

any conspicuous reason for not converting into a more “probable” state. Therefore, the argument
presented here must be handled with care.
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19.2 The Hamilton Problem for Discrete Deterministic Systems

Consider now a discrete, deterministic system. Inevitably, time will also be discrete.
Time steps must be controlled by a deterministic evolution operator, which implies
that there must be a smallest time unit, call it δt . When we write the evolution
operator U(δt) as U(δt) = e−iEquantδt then Equant is defined modulo 2π/δt , which
means that we can always choose Equant to lie in the segment

0 ≤Equant < 2π/δt, (19.2)

Instead, in the real world, energy is an additively conserved quantity without any
periodicity. In the PQ formalism, we have seen what the best way is to cure such a
situation, and it is natural to try the same trick for time and energy: we must add a
conserved, discrete, integer quantum to the Hamiltonian operator:Eclass = 2πN/δt ,
so that we have an absolutely conserved energy,

E
?=Equant +Eclass. (19.3)

In the classical theory, we can only use Eclass to ensure that our system is stable, as
described in the previous section.

In principle, it may seem to be easy to formulate a deterministic classical system
where such a quantity Eclass can be defined, but, as we will see, there will be some
obstacles of a practical nature. Note that, if Eq. (19.3) is used to define the total
energy, and ifEclass reaches to infinity, then time can be redefined to be a continuous
variable, since now we can substitute any value t in the evolution operator U(t)=
e−iEt .

One difficulty can be spotted right away: usually, we shall demand that energy
be an extensive quantity, that is, for two widely separated systems we expect

Etot =E1 +E2 +Eint, (19.4)

where Eint can be expected to be small, or even negligible. But then, if both E1 and
E2 are split into a classical part and a quantum part, then either the quantum part of
Etot will exceed its bounds (19.2), or Eclass will not be extensive, that is, it will not
even approximately be the sum of the classical parts of E1 and E2.

An other way of phrasing the problem is that one might wish to write the total
energy Etot as

Etot =
∑

lattice sites i

Ei →
∫

dd �xH(�x), (19.5)

where Ei or H(�x) is the energy density. It may be possible to spread Etot
class over

the lattice, and it may be possible to rewrite Equant as a sum over lattice sites, but
then it remains hard to see that the total quantum part stays confined to the interval
[0,2π/δt) while it is treated as an extensive variable at the same time. Can the
excesses be stowed in Eint?

This question will be investigated further in our treatment of the technical details
of the cellular automaton, Chap. 22.
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19.3 Conserved Classical Energy in PQ Theory

If there is a conserved classical energy Eclass( �P , �Q), then the set of �P , �Q values
with the same total energy E forms closed surfaces ΣE . All we need to demand for
a theory in ( �P , �Q) space is that the finite-time evolution operator U(δt) generates
motion along these surfaces [116]. That does not sound hard, but in practice, to
generate evolution laws with this property is not so easy. This is because we often
also demand that our evolution operator U(δt) be time-reversible: there must exist
an inverse, U−1(δt).

In classical mechanics of continuous systems, the problem of characterizing
some evolution law that keeps the energy conserved was solved: let the continuous
degrees of freedom be some classical real numbers {qi(t),pi(t)}, and take energy
E to be some function

E =H( �p, �q)= T ( �p)+ V (�q)+ �p · �A(�q), (19.6)

although more general functions that are bounded from below are also admitted. The
last term, describing typically magnetic forces, often occurs in practical examples,
but may be omitted for simplicity to follow the general argument.

Then take as our evolution law:

dqi
dt

= q̇i = ∂H( �p, �q)
∂pi

, ṗi = −∂H( �p, �q)
∂qi

. (19.7)

One then derives

dH( �p, �q)
dt

= Ḣ = ∂H
∂qi
q̇i + ∂H

∂pi
ṗi = ṗi q̇i − q̇i ṗi = 0. (19.8)

This looks so easy in the continuous case that it may seem surprising that this
principle is hard to generalize to the discrete systems. Yet formally it should be easy
to derive some energy-conserving evolution law:

Take a lattice of integers Pi and Qi , and some bounded, integer energy func-
tion H( �P , �Q). Consider some number E for the total energy. Consider all
points of the surface ΣE on our lattice defined by H( �P , �Q)=E. The number
of points on such a surface could be infinite, but let us take the case that it is fi-
nite. Then simply consider a path Pi(t),Qi(t) onΣE , where t enumerates the
integers. The path must eventually close onto itself. This way we get a closed
path on ΣE . If there are points on our surface that are not yet on the closed
path that we just constructed, then we repeat the procedure starting with one
of those points. Repeat untilΣE is completely covered by closed paths. These
closed paths then define our evolution law.

At first sight, however, generalizing the standard Hamiltonian procedure now seems
to fail. Whereas the standard Hamiltonian formalism (19.8) for the continuous case
involves just infinitesimal time steps and infinitesimal changes in coordinates and
momenta, we now need finite time steps and finite changes. One could think of
making finite-size corrections in the lattice equations, but that will not automatically
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work, since odds are that, after some given time step, integer-valued points in the
surface ΣE may be difficult to find. Now with a little more patience, a systematic
approach can be formulated, but we postpone it to Sect. 19.4.

19.3.1 Multi-dimensional Harmonic Oscillator

A superior procedure will be discussed in the next subsections, but first let us con-
sider the simpler case of the multi-dimensional harmonic oscillator of Sect. 17.2,
Sect. 17.2.2: take two symmetric integer-valued tensors Tij = Tji , and Vij = Vji .
The evolution law alternates between integer and half-odd integer values of the time
variable t . See Eqs. (17.77) and (17.78):

Qi(t + 1)=Qi(t)+ TijPj
(
t + 1

2

); (19.9)

Pi
(
t + 1

2

)= Pi
(
t − 1

2

)− VijQj (t). (19.10)

According to Eqs. (17.84), (17.85), (17.88) and (17.89), the conserved classical
Hamiltonian is

H = 1
2TijPi

(
t + 1

2

)
Pj

(
t − 1

2

)+ 1
2VijQi(t)Qj (t)

= 1
2TijPi

(
t + 1

2

)
Pj

(
t + 1

2

)+ 1
2VijQi(t)Qj (t + 1)

= 1
2

�P+T �P+ + 1
2

�P+T V �Q+ 1
2

�QV �Q
= 1

2

( �P+ + 1
2

�QV )T ( �P+ + 1
2V

�Q)+ �Q( 1
2V − 1

8V T V
) �Q

= �P+( 1
2T − 1

8T V T
) �P+ + 1

2

( �Q+ 1
2

�P+T
)
V
( �Q+ 1

2T
�P+), (19.11)

where in the last three expressions, �Q = �Q(t) and �P+ = �P(t + 1
2 ). Equa-

tions (19.11) follow from the evolution equations (19.9) and (19.10) provided that
T and V are symmetric.

One reads off that this Hamiltonian is time-independent. It is bounded from be-
low if not only V and T but also either V − 1

4V T V or T − 1
4T V T are bounded

from below (usually, one implies the other).
Unfortunately, this requirement is very stringent; the only solution where this

energy is properly bounded is a linear or periodic chain of coupled oscillators, as in
our one-dimensional model of massless bosons. On top of that, this formalism only
allows for strictly harmonic forces, which means that, unlike the continuum case,
no non-linear interactions can be accommodated for. A much larger class of models
will be exhibited in the next section.

Returning first to our model of massless bosons in 1+1 dimensions, Sect. 17, we
note that the classical evolution operator was defined over time steps δt = 1, and this
means that, knowing the evolution operator specifies the Hamiltonian eigenvalue up
to multiples of 2π . This is exactly the range of a single creation or annihilation
operator aL,R and aL,R†. But these operators can act many times, and therefore the
total energy should be allowed to stretch much further. This is where we need the
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exactly conserved discrete energy function (19.11). The fractional part of H , which
we could call Equant, follows uniquely from the evolution operator U(δt). Then we
can add multiples of 2π times the energy (19.11) at will. This is how the entire
range of energy values of our 2 dimensional boson model results from our mapping.
It cannot be a coincidence that the angular energy function Equant together with the
conserved integer valued energy function Eclass taken together exactly represent the
spectrum of real energy values for the quantum theory. This is how our mappings
work.

19.4 More General, Integer-Valued Hamiltonian Models
with Interactions

According to the previous section, we recuperate quantum models with a continuous
time variable from a discrete classical system if not only the evolution operator over
a time step δt is time-reversible, but in addition a conserved discrete energy beable
Eclass exists, taking values 2πN/δt where N is integer. Again, let us take δt = 1. If
the eigenvalues of Uop(δt) are called e−iEquant

, with 0 ≤ Equant < 2π then we can
define the complete Hamiltonian H to be

H =Equant +Eclass = 2π(ν +N), (19.12)

where 0 ≤ ν < 1 (or alternatively, −1/2< ν ≤ 1/2) and N is integer. The quantity
conjugated to that is a continuous time variable. If we furthermore demand that
Eclass is bounded from below then Eq. (19.12) defines a genuine quantum system
with a conserved Hamiltonian that is bounded from below.

As stated earlier, it appears to be difficult to construct explicit, non-trivial exam-
ples of such models. If we try to continue along the line of harmonic oscillators,
perhaps with some non-harmonic forces added, it seems that the standard Hamilto-
nian formalism fails when the time steps are finite, and if we find a Hamiltonian that
is conserved, it is usually not bounded from below. Such models then are unstable;
they will not lead to a quantum description of a model that is stable.

In this section, we shall show how to cure this situation, in principle. We con-
centrate on the construction of a Hamiltonian principle that keeps a classical energy
function Eclass exactly conserved in time.

In the multidimensional models, we had adopted the principle that we in turn
update all variablesQi , then all Pi . That has to be done differently. To obtain better
models, let us phrase our assignment as follows:

Formulate a discrete, classical time evolution law for some model with the fol-
lowing properties:

i The time evolution operation must be a law that is reversible in time.3 Only then
will we have an operator U(δt) that is unitary and as such can be re-written as
the exponent of −i times a Hermitian Hamiltonian.

3When information loss is allowed, as in Sect. 7 of Part I, we shall have to relax this condition.
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ii There must exist a discrete function Eclass depending on the dynamical variables
of the theory, that is exactly conserved in time.

iii This quantity Eclass must be bounded from below.

When these first three requirements are met we will be able to map this system on a
quantum mechanical model that may be physically acceptable. But we want more:

iv Our model should be sufficiently generic, that is, we wish that it features inter-
actions.

v Ideally, it should be possible to identify variables such as our Pi and Qi so that
we can compare our model with systems that are known in physics, where we
have the familiar Hamiltonian canonical variables �p and �q .

vi We would like to have some form of locality; as in the continuum system, our
Hamiltonian should be described as the integral (or sum) of a local Hamiltonian
density, H(�x), and there should exist a small parameter ε > 0 such that at fixed
time t , H(�x) only depends on variables located at �x′ with |�x′ − �x|< ε.

The last condition turns our system in some discretized version of a field theory
( �P and �Q are then fields depending on a space coordinate �x and of course on time t).
One might think that it would be hopeless to fulfill all these requirements. Yet there
exist beautiful solutions which we now construct. Let us show how our reasoning
goes.

Since we desire an integer-valued energy function that looks like the Hamiltonian
of a continuum theory, we start with a Hamiltonian that we like, being a continuous
function Hcont(�q, �p) and take its integer part, when also �p and �q are integer. More
precisely (with the appropriate factors 2π , as in Eqs. (16.6) and (18.22) in previous
chapters): take Pi and Qi integer and write4

Eclass( �Q, �P)= 2πH class( �Q, �P),
H class( �Q, �P)= int

( 1
2π Hcont( �Q,2π �P)), (19.13)

where ‘int’ stands for the integer part, and

Qi = int(qi), Pi = int(pi/2π), for all i. (19.14)

This gives us a discrete, classical ‘Hamiltonian function’ of the integer degrees
of freedom Pi and Qi . The index i may take a finite or an infinite number of values
(i is finite if we discuss a finite number of particles, infinite if we consider some
version of a field theory).

Soon, we shall discover that not all classical models are suitable for our con-
struction: first of all: the oscillatory solutions must oscillate sufficiently slowly to
stay visible in our discrete time variable, but, as we shall see, our restrictions will
be somewhat more severe than this.

4Later, in order to maintain some form of locality, we will prefer to take our ‘classical’ Hamiltonian
to be the sum of many integer parts, as in Eq. (19.27), rather than the floor of the sum of local parts,
as in Eq. (19.13).
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It will be easy to choose a Hamiltonian obeying these (mild) constraints, but what
are the Hamilton equations? Since we wish to consider discrete time steps (δt = 1),
the equations have to be rephrased with some care. As is the case in the standard
Hamiltonian formalism, the primary objective that our equations of motion have to
satisfy is that the functionH( �Q, �P)=Eclass must be conserved. Unlike the standard
formalism, however, the changes in the values �Q and �P at the smallest possible time
steps cannot be kept infinitesimal because both time t and the variables �Q and �P
contain integer numbers only.

The evolution equations will take the shape of a computer program. At integer
time steps with intervals δt , the evolution law will “update” the values of the integer
variables Qi and Pi . Henceforth, we shall use the word “update” in this sense. The
entire program for the updating procedure is our evolution law.

As stated at the beginning of this section, it should be easy to establish such
a program: compute the total energy E of the initial state, H( �Q(0), �P (0)) = E.
Subsequently, search for all other values of ( �Q, �P) for which the total energy is
the same number. Together, they form a subspace ΣE of the �Q, �P lattice, which
in general may look like a surface. Just consider the set of points in ΣE , make a
mapping ( �Q, �P ) #→ ( �Q′, �P ′) that is one-to-one, inside ΣE . This law will be time-
reversible and it will conserve the energy. Just one problem then remains: how do
we choose a unique one-to-one mapping?

To achieve this, we need a strategy. Our strategy now will be that we order the
values of the index i in some given way (actually, we will only need a cyclic or-
dering), and update the (Q,P ) pairs sequentially: first the pair (Q1,P1), then the
pair (Q2,P2), and so on, until we arrive at the last value of the index. This sequence
of updating every pair (Qi,Pi) exactly once will be called a cycle. One cycle will
define the smallest step Uop(t, t + δt) for the evolution law.

This reduces our problem to that of updating a single Q,P pair, such that the
energy is conserved. This should be doable. Therefore, let us first consider a single
Q,P pair.

19.4.1 One-Dimensional System: A Single Q,P Pair

While concentrating on a single pair, we can drop the index i. The Hamiltonian will
be a function of two integers, Q and P . For demonstration purposes, we restrict
ourselves to the case

H(Q,P )= T (P )+ V (Q)+A(Q)B(P ), (19.15)

which can be handled for fairly generic choices for the functions T (P ),V (Q),A(Q)
and B(P ). The last term here, the product AB , is the lattice generalization of the
magnetic term �p · �A(�q) in Eq. (19.6). Many interesting physical systems, such as
most many body systems, will be covered by Eq. (19.15). It is possible to choose
T (P )= P 2, or better: 1

2P(P − 1), but V (Q) must be chosen to vary more slowly
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with Q, otherwise the system might tend to oscillate too quickly (remember that
time is discrete). Often, for sake of simplicity, we shall disregard the AB term.

The variables Q and P form a two-dimensional lattice. Given the energy E,
the points on this lattice where the energy H(Q,P )= E form a subspace ΣE . We
need to define a one-to-one mapping of ΣE onto itself. However, since we have just
a two-dimensional lattice of points (Q,P ), we encounter a risk: if the integer H
tends to be too large, it will often happen that there are no other values of Q and P
at all that have the same energy. Then, our system cannot evolve. So, we will find
out that some choices of the function H are better than others. In fact, it is not so
difficult to see under what conditions this problem will occur, and how we can avoid
it: the integer-valued Hamiltonian should not vary too wildly with Q and P . What
does “too wildly” mean? If, on a small subset of lattice points, a (Q,P ) pair does
not move, this may not be so terrible: when embedded in a larger system, it will
move again after the other values changed. But if there are too many values for the
initial conditions where the system will remain static, we will run into difficulties
that we wish to avoid. Thus, we demand that most of the surfaces ΣE contain more
than one point on them—preferably more than two. This means that the functions
V (Q), T (P ),A(Q) and B(P ) should not be allowed to be too steep.

We then find the desired invertible mapping as follows. First, extrapolate the
functions T ,P,A and B to all real values of their variables. Write real numbers q
and p as

q =Q+ α, p = P + β, Q and P integer, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. (19.16)

Then define the continuous functions

V (q)= (1 − α)V (Q)+ αV (Q+ 1),

T (p)= (1 − β)T (P )+ βT (P + 1),
(19.17)

and similarly A(q) and B(p). Now, the spacesΣE are given by the lines H(q,p)=
T (p)+V (q)+A(q)B(p)=E, which are now sets of oriented, closed contours, see
Fig. 19.1. They are of course the same closed contours as in the standard, continuum
Hamiltonian formalism.

The standard Hamiltonian formalism would now dictate how fast our system runs
along one of these contours. We cannot quite follow that prescription here, because
at t = integer we wish P andQ to take integer values, that is, they have to be at one
of the lattice sites. But the speed of the evolution does not affect the fact that energy
is conserved. Therefore we modify this speed, by now postulating that

at every time step t → t + δt , the system moves to the next lattice site that is
on its contour ΣE .

If there is only one point on the contour, which would be the state at time t , then
nothing moves. If there are two points, the system flip-flops, and the orientation of
the contour is immaterial. If there are more than two points, the system is postulated
to move in the same direction along the contour as in the standard Hamiltonian for-
malism. In Fig. 19.1, we see examples of contours with just one point, and contours
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Fig. 19.1 The QP lattice in the 1 + 1 dimensional case. Constant energy contours are here the
boundaries of the differently coloured regions. Points shown in white are local extrema; they are
not on a contour and therefore these are stable rest points. Black points are saddle points, where
two contours are seen to cross one another. Here, some unique evolution prescriptions must be
phrased, such as: “stick to your right”, and it must be specified which of the two contours contains
the black dot. All these exceptional points are related to local minima (−) and maxima (+) of the
functions T and V

with two or more points on them. Only if there is more than one point, the evolution
will be non-trivial.

In some cases, there will be some ambiguity. Precisely at the lattice sites, our
curves will be non-differentiable because the functions T ,C,A, and B are non-
differentiable there. This gives some slight complications in particular when we
reach extreme values for both T (p) and V (q). If both reach a maximum or both a
minimum, the contour shrinks to a point and the system cannot move. If one reaches
a minimum and the other a maximum, we have a saddle point, and some extra rules
must be added. We could demand that the contours “have to be followed to the
right”, but we also have to state which of the two contours will have to be followed
if we land on such a point; also, regarding time reversal, we have to state which of
the two contours has the lattice point on it, and which just passes by. Thus, we can
make the evolution law unique and reversible. See Fig. 19.1. The fact that there are
a few (but not too many) stationary points is not problematic if this description is
applied to formulate the law for multi-dimensional systems, see Sect. 19.4.2.

Clearly, this gives us the classical orbit in the correct temporal order, but the
reader might be concerned about two things: one, what if there is only one point
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Fig. 19.2 A small region in
the QP lattice where the
(integer valued) Hamiltonian
is reasonably smooth. See
Eq. (19.18). The sides of the
tilted square are ε

√
a2 + b2.

Contours of approximately
constant H values are
indicated

on our contour, the point where we started from, and two, we have the right time
ordering, but do we have the correct speed? Does this updating procedure not go too
fast or too slowly, when compared to the continuum limit?

As for the first question, we will have no choice but postulating that, if there is
only one point on a contour, that point will be at rest, our system does not evolve.
Later, we shall find estimates on how many of such points one might expect.

Let us first concentrate on the second question. How fast will this updating pro-
cedure go? how long will it take, on average, to circle one contour? Well, clearly,
the discrete period T of a contour will be equal to the number of points on a contour
(with the exception of a single point, where things do not move5). How many points
do we expect to find on one contour?

Consider now a small region on the (Q,P ) lattice, where the Hamiltonian H class

approximately linearizes:

H class ≈ aP + bQ+C, (19.18)

with small corrections that ensure that H class is an integer on all lattice points. With
a little bit of geometry, one finds a tilted square with sides of length ε

√
a2 + b2,

where the values of H class vary between values C and C + K , with K = ε(a2 +
b2). Assuming that all these integers occur at about the same rate, we find that the
total number of lattice sites inside the square is ε2(a2 + b2), and since there are K
contours, every contour has, on average,

ε2(a2 + b2)/K = ε (19.19)

points on it. The lengths of the contours in Fig. 19.2 is ε
√
a2 + b2, so that, on

average, the distance between two points on a contour is
√
a2 + b2.

This little calculation shows that, in the continuum limit, the propagation speed
of our updating procedure will be

√(
δq

δt

)2

+
(
δp

δt

)2

=
√(
∂H

∂p

)2

+
(
∂H

∂q

)2

, (19.20)

5But we can also say that, in that case, the period is δt , the time between two updates.
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completely in accordance with the standard Hamilton equations! (Note that the fac-
tors 2π in Eqs. (19.13) and (19.14) cancel out)

A deeper mathematical reason why our discrete lattice Hamiltonian formalism
generates the same evolution speed as the continuum theory may be traced to the
Liouville theorem: a co-moving infinitesimal volume element in (p, q)-space stays
constant in the continuum theory; in the discrete lattice case, time reversibility en-
sures that the number of lattice points inside a small volume on the lattice stays fixed,
so that we have the same Liouville theorem on the lattice. When increasing values
for the partial derivatives of the Hamiltonian cause a squeezing of the infinitesimal
volume elements, both the continuum theory and the lattice theory require the same
increase in the velocities to keep the volume elements constant.

One concludes that our updating procedure exactly leads to the correct contin-
uum limit. However, the Hamiltonian must be sufficiently smooth so as to have more
than one point on a contour. We now know that this must mean that the continuous
motion in the continuum limit cannot be allowed to be too rapid. We expect that, on
the discrete lattice, the distance between consecutive lattice points on a contour may
vary erratically, so that the motion will continue with a variable speed. In the con-
tinuum limit, this must average out to a smooth motion, completely in accordance
with the standard Hamilton equations.

Returning to the question of the contours with only one point on them, we ex-
pect their total lengths, on average, to be such that their classical periods would
correspond to a single time unit δt . These periods will be too fast to monitor on our
discrete time scale.

This completes our brief analysis of the 1+1 dimensional case. We found an evo-
lution law that exactly preserves the discrete energy function chosen. The procedure
is unique as soon as the energy function can be extended naturally to a continuous
function between the lattice sites, as was realized in the case H = T + V +AB in
Eq. (19.17). Furthermore we must require that the energy function does not vary too
steeply, so that most of the closed contours contain more than one lattice point.

An interesting test case is the choice

T (P )= 1
2P(P − 1); V (Q)= 1

2Q(Q− 1), (19.21)

This is a discretized harmonic oscillator whose period is not exactly constant, but
this one is easier to generalize to higher dimensions than the oscillator described in
Sect. 17.2 and Sect. 19.3.1.

19.4.2 The Multi-dimensional Case

A single particle in 1 space- and 1 time dimension, as described in the previous
section, is rather boring, since the motion occurs on contours that all have rather
short periods (indeed, in the harmonic oscillator, where both T and V are quadratic
functions of their variables, such as in Eq. (19.21), the period will stay close to
the fundamental time step δt itself). In higher dimensions (and in multi component
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oscillators, particularly when they have non-linear interactions), this will be quite
different. So now, we consider the variables Qi,Pi, i = 1, . . . , n. Again, we postu-
late a Hamiltonian H( �Q, �P ) that, when Pi and Qi are integer, takes integer values
only. Again, let us take the case that

H( �Q, �P )= T ( �P )+ V ( �Q)+A( �Q)B( �P ). (19.22)

To describe an energy conserving evolution law, we simply can apply the procedure
described in the previous section n times for each cycle. For a unique description,
it is now mandatory that we introduce a cyclic ordering for the values 1, . . . , n that
the index i can take. Naturally, we adopt the notation of the values for the index i to
whatever ordering might have been chosen:

1< 2< · · ·< n< 1 . . . . (19.23)

We do emphasize that the procedure described next depends on this ordering.
Let Uop

i be our notation for the operation in one dimension, acting on the vari-
ablesQi,Pi at one given value for the index i. Thus,Uop

i maps (Pi,Qi) #→ (P ′
i ,Q

′
i )

using the procedure of Sect. 19.4.1 with the Hamiltonian (19.22), simply keeping
all other variables Qj,Pj , j �= i fixed. By construction, Uop

i has an inverse Uop−1
i .

Now, it is simple to produce a prescription for the evolution Uop for the entire sys-
tem, for a single time step δt = 1:

Uop(δt)=Uop
n U

op
n−1 . . .U

op
1 , (19.24)

where we intend to use the physical notation: Uop
1 acts first, then Uop

2 , etc., although
the opposite order can also be taken. Note, that we have some parity violation: the
operators Uop

i and Uop
j will not commute if i �= j , and therefore, if n ≥ 3 , the

resulting operator Uop is not quite the same as the one obtained when the order is
reversed.

Time inversion gives:

Uop(−δt)=Uop−1(δt)=Uop−1
1 U

op−1
2 · · ·Uop−1

n . (19.25)

Finally, if the exchange Uop
i ↔ U

op−1
i might be associated with “particle–anti-

particle conjugation”, C, then the product P (parity) T (time inversion) C (conju-
gation) may still be a good symmetry. In the real world, this might lead to a natural
explanation of CPT symmetry, while P , T , or CP are not respected.

19.4.3 The Lagrangian

It was emphasized by Elze [34] that systems with a discrete Hamiltonian should also
have an action principle. If both time as well as the variables P and Q are discrete,
one could consider Lagrangians such as

L(t)
?= 1

2P(t)
(
Q(t + 1)−Q(t − 1)

)−H (
P(t),Q(t)

)
,

S =
∑

t∈Z
L(t).

(19.26)
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This, however, would lead to Lagrange equations that are finite difference equa-
tions, at best, while they would no longer guarantee conservation of energy. Some
Lagrangians may exist that are purely quadratic in the integers P and Q, but, as we
saw, this would be too strong a restriction that excludes any non-trivial theory. At
this moment we have no proposal for a Lagrange principle that works as well as our
discrete Hamilton formalism.

19.4.4 Discrete Field Theories

An important example of an infinite-dimensional (Qi,Pi) system is a local field the-
ory. Suppose that the index i is replaced by a lattice coordinate �x, plus possibly other
indices j labelling species of fields. Let us rename the variables (Φj (�x),Pj (�x)),
where Φj are canonical fields and Pj are their momentum variables (often, in the
continuum theory, d

dt Φj ). Now assume that the Hamiltonian of the entire system is
the sum of local terms:

Hint =
∑

�x
Hint(�x), Hint(�x)= V

( �Φ(�x), �Φ(�x′))+ T ( �P (�x)), (19.27)

where the coordinates �x′ are limited to neighbours of �x only, and all functions V and
T are integers. This would be a typical discretization of a (classical or quantum) field
theory (ignoring, for simplicity, magnetic terms).

We can apply our multi-dimensional, discrete Hamiltonian equations to this case,
but there is one important thing to remember: where in the previous subsections we
stated that the indices i must be cyclically ordered, this now means that, in the
field theory of Eq. (19.27), not only the indices i but also the coordinates �x must
be (cyclically) ordered. The danger of this is that the functions Vi(�x) also refer
to neighbours, and, consequently, the evolution step defined at point �x affects the
evolution at its neighbouring points �x′, or: [Uop(�x),Uop(�x′)] �= 0. Performing the
updates in the order of the values of the coordinates �x, might therefore produce
signals that move much faster than light, possibly generating instantaneous non local
effects across the entire system over a single time step t → t + δt . This we need to
avoid, and there happens to be an easy way to do this:

First make sure that the interaction terms in the Hamiltonian only involve
nearest neighbours, The evolution equations (e.o.m.) of the entire system over
one time step δt , are then obtained by ordering the coordinates and other in-
dices as follows: first update all even lattice sites, then update all odd lattice
sites.

Since the Uop operators generated by Hi(�x) do commute with the evolution op-
erators Uop(�x′) when �x and �x′ are both on an even site or both on an odd site of
the lattice (so that they are not nearest neighbours), this ordering does not pass on
signals beyond two lattice links. Moreover, there is another huge advantage of this
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law: the order in which the individual even sites of the lattice are updated is now
immaterial, and the same for the set of all odd sites.

Thus, we obtained a cellular automaton whose evolution law is of the type

Uop =AopBop, Aop =
∏

�x=even

Aop(�x), Bop =
∏

�y=odd

Bop(�y), (19.28)

where the order inside the products over the sites �x and �y is immaterial, except
that Aop(�x) and Bop(�y) do not commute when �x and �y are direct neighbours. Such
automata are interesting objects to be studied, see Chap. 21.

19.4.5 From the Integer Valued to the Quantum Hamiltonian

A deterministic system obeying a discrete Hamiltonian formalism as described in
the previous sections is of particular interest when we map it onto a quantum sys-
tem following the program discussed in this book. This is because we here have
two different operators that both play the role of energy: we have the integer val-
ued, discrete Hamiltonian Hclass that generates the classical equations of motion,
and we have the angular, or fractional valued Hamiltonian Hquant, defined from the
eigenstates and eigenvalues of the one-time step evolution operator Uop(δt):

Uop(δt)= e−iH op
quant , 0 ≤Hquant < 2π (δt = 1), (19.29)

where Hquant refers to the eigenvalues of the operator H op
quant.

As anticipated in Sect. 19.4, we can now uniquely define a total Hamiltonian that
is a real number operator, by

H =Hclass +H op
quant. (19.30)

The bounds imposed in Eq. (19.29) are important to keep in mind, since Hquant,
as defined, is strictly periodic. Hclass is assumed to take only integer values, times
2π/δt . In this section we study the quantum theory defined by the Hamiltonian
(19.30).

We have seen, for instance in Chap. 2, Sect. 2.2.1, Eq. (2.26) in Part I, and in
Chap. 12, Sect. 12.2, Eq. (12.10) in Part II, how the operator H op

quant can be calcu-
lated from the eigenvalues U(δt) of the operator Uop(δt): for instance by Fourier
transformations, one derives that, if the eigenvalues of Hquant are assumed to lie
between 0 and 2π , then

H
op
quant = π −

∞∑

n−1

i

n

(
Uop(nδt)−Uop(−nδt)). (19.31)

This sum converges nearly everywhere, but the vacuum is the edge state where the
equation does not hold, and it is not quite local, since the evolution operator over n
steps in time, also acts over n steps in space.
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But both Hclass and Hquant are uniquely defined, and since Hquant is bound to an
interval while Hclass is bounded from below, also H is bounded from below.

Note that demanding a large number of low energy states near the vacuum (the
absence of a large mass gap) implies that Uop(nδt) be non-trivial in the Hclass = 0
sector. This is often not the case in the models described in Sect. 19.4.2, but in
principle there is no reason why such models should not exist also. In fact, some
of the cellular automaton models discussed later in Chap. 21 have no manifestly
conserved Hclass, so that all their states can be regarded as sitting in the Hclass = 0
sector of the theory.

Because of the non-locality of Eq. (19.31), the Hamiltonian (19.31) does not obey
the rule vi, see page 233, but if Uop(δt) is the product of local evolution operators,
the evolution over integer time steps nδt is local, so the theory can be claimed to
obey locality, as long as we refrain from defining its states at time t when t is not an
integer.6

As we have seen in Sect. 14, the sum (19.31) does not converge rapidly every-
where in Hilbert space. We are particularly interested in the Hamiltonian as it acts
on states very close to the vacuum, in our notation: Hclass = 0, Hquant = ω, where
0< ω� 2π . Suppose then that we introduce a cut-off in the sum (19.31) (or 12.8)
by multiplying the summand with e−n/R , where R is also the range of non-locality
of the last significant terms of the sum. As we have seen in Sect. 14, breaking off
the expansion at the point R modifies the Hamiltonian as follows:

Hquant →Hquant + 2

RHquant
, (19.32)

and this is only acceptable if

R�MPl/〈Hquant〉2. (19.33)

Here, MPl is the “Planck mass”, or whatever the inverse is of the elementary time
scale in the model. This cut-off radius R must therefore be chosen to be very large,
so that, indeed, the exact quantum description of our local model generates non-
locality in the Hamiltonian.

We conclude that the Hamiltonian can be expressed in terms of local terms, but
we need to include the operators Uop(±�t) where �t is large compared to the
inverse of the Hamiltonian we wish to calculate. These will develop non localities
that are still serious. This is still an obstacle against the construction of a local
quantum Hamiltonian density (the classical component, H class obeys condition vi).
As yet, therefore, more has to be done to obtain locality: second quantization.

The apparent locality clash between the quantum Hamiltonian and the classical
theory may well be looked upon as a possible additional explanation of the appar-
ent non-localities expected in ‘hidden variable’ theories: neither the pure quantum

6Some have tried to shoot down our theories by objecting that our classical/quantum equivalence
only holds for integer times. Of course we simply point out then that, if we restrict ourselves to
sufficiently low energies, the time-variability is sufficiently slow that having an equation that only
holds rigorously at integer multiples of δt is all we need.
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system that we usually employ in quantum field theories, nor the associated clas-
sical system exhibit any non-locality, but the mapping between them does. This
non-locality is spurious, it has no physical consequence whatsoever, but mathe-
matically it may imply that the quantum system should not be split up into local
wave functions that do not communicate with each other—perhaps that is the route
along which apparent non-locality arises in classical mechanical models. There is
no non-locality in the classical theory, but it is in the representation of the quantum
variables, or: the classical-quantum mapping.
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Chapter 20
Quantum Field Theory

One might not have expected a chapter on standard quantum field theory in a book
about the interpretation of quantum mechanics. Yet the notions of locality, of limits
in the speed at which signals can travel, and of relativistic invariance, are considered
to be central in our theories. This brings us naturally to quantum field theory, since
it is now well known that the generic solution to the question how to reconcile rel-
ativity with quantum mechanics, is indeed the doctrine called quantum field theory.
In this chapter, we give a brief summary of the features of quantum field theory that
we shall need to understand in this book.

We have seen that producing quantum Schrödinger equations starting from non
quantum mechanical systems is essentially straightforward. However, to employ
this observation as a viable ontological interpretation of quantum mechanics, more
is needed. The main objection against these concepts has always been that quantum
theories obeying locality in the quantum sense, are much more difficult to repro-
duce with classical systems obeying locality in the classical sense, and impossible
according to many.

Locality means that interaction at a distance can only occur with signals that
undergo some delay. Locality in the classical sense here means that the classical
evolution laws are based on interactions with neighbouring sites only, in such a way
that information cannot spread faster than the speed of light. Locality in the quantum
sense means the same thing, except that we allow for any kind of quantum mechan-
ical interactions between neighbouring sites. If Oi (x) is an operator only depending
on fundamental variables in the immediate vicinity of a space–time point x, enu-
merated by an index i, then quantum locality means that the commutation property

[
Oi (x),Oj

(
x′)]= 0, (20.1)

holds as soon as the two space–time points x and x′ are space-like separated:
(
x − x′)2 ≡ (�x − �x′)2 − c2(t − t ′)2

> 0. (20.2)

The relativistic quantized field theories employed in the Standard Model are in-
deed strictly local in the quantum mechanical sense, obeying Eqs. (20.1), (20.2).
It is important to recall here the essential features of these systems. A point to
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be made right-away is, that quantum field theories are quite complicated. This is
partly due to the fact that we usually want special relativity to be valid, which is
a difficult—while highly interesting—demand. But even without special relativity,
there are some fairly intricate issues such as second quantization, perturbation the-
ory, infinities, renormalization, symmetries and anomalies. This is why the topic of
this book is actually quite difficult: not only are we attempting to derive quantum
mechanics from scratch, but also (fully renormalized) quantum field theory.

Relativistic quantum field theories with a proper continuum limit can only incor-
porate elementary fields with spin 0, 1

2 and 1. As is well-known, gravity would be
propagated by gravitons with spin 2, and supergravity would add one or more grav-
itino species with spin 3/2, but then, if we want these fields to interact, we would
have to be close to the Planck scale, and this would require discretization due to mi-
cro states. Since ordinary quantum field theories assume strict continuity, they only
apply to the continuum limit, which implies that we can safely omit spin 2 and spin
3/2 fields in those theories. The way this works in quantum field theory is that, at
the Standard Model scales, interactions with gravitons and gravitinos are extremely
weak.

On the other hand, one could argue that also special relativity is not our first pri-
ority, and ignoring special relativity would imply no rigorous constraint on spin. If
we ignore special as well as general relativity, we could just as well ignore rotation
invariance.1 What is left then is a theory of quantized fields enumerated by an index
that may or may not represent spin. Later we may wish to reinstate Poincaré invari-
ance, at least at the quantum side of the equation, but this will have to be left as an
important exercise for the (hopefully near) future.

What we want to keep is a speed limit for signals that describe interactions, so
that the notion of locality can be addressed. In practice, an elegant criterion can
be given that guarantees this kind of locality. Consider the quantum system in its
Heisenberg notation. We have operators Oi (�x, t) where both the space coordinates
�x and the time coordinate t may be either continuous or discrete. The discrete index
i enumerates different types of operators.

When our operator fields obey quantum locality, Eqs. (20.1) and (20.2), in the
continuous case, this means that the Hamiltonian must be the integral of a Hamilto-
nian density:

H =
∫

d3 �xH(�x, t), [
H(�x, t),H(�x′, t

)]= 0 if �x �= �x′, (20.3)

while, when x → x′, the commutator [H(�x, t),H(�x′, t)], may contain derivatives
of Dirac delta distributions. Note that, here, we kept equal times t so that these
space–time points are space-like separated unless they coincide.

1Ignoring such important symmetries in considering certain models does not mean that we believe
these symmetries to be violated, but rather that we wish to focus on simple models where these
symmetries do not, or not yet, play a role. In more sophisticated theories of Nature, of course one
has to obey all known symmetry requirements.
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On a discrete space-like lattice, it is tempting to replace Eqs. (20.3) by the lattice
expressions

H =
∑

�x
H(�x, t), [

H
(�x,′ , t),H(�x′, t

)]= 0 if |�x − �x′|> a, (20.4)

where a is the link size of the lattice. The Hamiltonian densities at neighbouring
sites, |�x − �x′| = a, will, in general, not commute. Although Eqs. (20.4) may well
serve as a good definition of locality, they do not guarantee that signals are subject
to a speed limit. Only in the continuum limit, one may recover commutation at
space-like separations, (20.2), if special relativity holds (in that limit).

Cellular automata are typically lattice theories. In general, these theories are dif-
ficult to reconcile with Lorentz invariance. This does not mean that we plan to give
up Lorentz invariance; quite possibly, this important symmetry will be recovered at
some stage. But since we want to understand quantum mechanics as a reflection of
discreteness at a scale comparable to the Planck scale, we are unable at present to
keep Lorentz invariance in our models, so this price is paid, hopefully temporarily.

For simplicity, let us now return our attention to continuum quantum field theo-
ries, which we can either force to be Lorentz invariant, or replace by lattice versions
at some later stage. The present chapter is included here just to emphasize some
important features.

20.1 General Continuum Theories—The Bosonic Case

Let the field variables be real number operators Φi(�x, t) and their canonical conju-
gates Pi(�x, t). Here, i is a discrete index counting independent fields. The commu-
tation rules are postulated to be

[
Φi(�x, t),Φj

(�x′, t
)]= [

Pi(�x, t),Pj
(�x′, t

)]= 0,
[
Φi(�x, t),Pj

(�x′, t
)]= iδij δ3(�x − �x′) (20.5)

(for simplicity, space was taken to be 3-dimensional).
In bosonic theories, when writing the Hamiltonian as

H =
∫

d�xH(�x), (20.6)

the Hamiltonian density H(�x) typically takes a form such as

H(�x)=
∑

i

( 1
2P

2
i (�x)+ 1

2

(�∂Φi(�x)
)2 + V ( �Φ(�x))). (20.7)

If we are in 3+1 dimensions, and we want the theory to be renormalizable, V ( �Φ(�x))
must be a polynomial function of �Φ , of degree 4 or lower. Typically, one starts with

V ( �Φ)= 1
2

∑

i

m2
i

�Φ2
i + V4( �Φ), (20.8)
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where mi are the (unrenormalized) masses of the particles of type i, and V4 is a
homogeneous quartic expression in the fields �Φi(�x) such as a self interaction 1

4!λΦ
4.

However, when �Φ(�x) contains components that form a vector in 3-space,
Lorentz-invariance dictates a deviation from Eq. (20.7). We then have local gauge
invariance, which implies that a constraint has to be imposed. Writing these vec-
tor fields as �A(�x), and their associated momentum fields as �E(�x), one is forced to
include a time component A0(�x).

Gauge-invariance must then be invoked to ensure that locality and unitarity of
the theory are not lost, but the resulting Hamiltonian deviates a bit from Eq. (20.7).
This deviation is minimal if we choose the space-like radiation gauge

3∑

i=1

∂iAi(�x)= 0, (20.9)

since then the Hamiltonian will have the quadratic terms

H2(�x)= 1
2

�E2(�x)+ 1
2

(�∂Ai(�x)
)2 − 1

2

(�∂A0(�x)
)2
. (20.10)

In addition, one might have linear terms,

HJ (�x)= �J (�x) · �A(�x)+ �(�x)A0(�x), H ≡ H2 +HJ +Hint, (20.11)

where �J and � are some given background functions. �J (�x) is a current density
and �(�x) a charge density. In a relativistic theory, �J and � form a 4-vector. All
remaining terms in the Hamiltonian, typically higher powers of the fields, which
may cause interactions among particles to occur, are collected in Hint.

Notably, the field A0(�x) does not have a canonical partner that would have been
called E0(�x), and therefore, the field A0 can be eliminated classically, by extremiz-
ing the HamiltonianH = ∫

d�xH(�x), which leads to the Coulomb force between the
sources �. This Coulomb force is instantaneous in time, and would have destroyed
locality (and hence Lorentz invariance) if we did not have local gauge invariance.

This, of course, is a description of quantized field theories in a nut shell,
as yet only for bosonic particles. How then the Schrödinger equation is solved
by perturbation expansion in powers of the coupling constant(s) λ and/or gauge
coupling parameters g, is well-known and discussed in the standard text books.
[52, 70, 121, 123]

The most important point we need to emphasise is that the above formulation of
quantized field theories is easy to replace by discretized versions. All we need to do
is replace the partial derivatives ∂i = ∂/∂xi by lattice derivatives:

∂iΦ(�x)→ 1

a

(
Φ(�x + �eia)−Φ(�x)

)
, (20.12)

where a is the lattice link size, and �ei is the unit vector along a lattice link in the
i direction. The continuum limit, a ↓ 0, seems to be deceptively easy to take; in
particular, renormalization will now only lead to finite correction terms. Note how-
ever, that symmetries such as rotation symmetry and Lorentz invariance will be lost.
Recovering such symmetries in more sophisticated models (without taking a contin-
uum limit) is beyond our abilities just now—but notice that our treatment of string
theory, Sect. 17.3, appears to be heading in the right direction.
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20.2 Fermionic Field Theories

Fermionic field systems are also an essential element in the Standard Model. The
fundamental variables are the Dirac fields ψi(�x) and their canonical associates
ψ

†
i (�x). They are spinor fields, so that i contains a spinor index. The fields anti-

commute. The anti-commutation rules are
{
ψ

†
i (�x),ψj (�x′)

}= δij δ(�x − �x′), {ψi,ψj } = {
ψ

†
i ,ψ

†
j

}= 0, (20.13)

where {a, b} ≡ ab+ ba. Note, that these rules are typical for operators of the form( 0 1
0 0

)
and

( 0 0
1 0

)
, so these rules mean that ψi(�x) is to be regarded as an operator that

annihilates an object i at position �x, and ψ†
i (�x) creates one. The rules imply that

ψ2
i (�x)= 0 and (ψ†

i (�x))2 = 0, so that we cannot create or annihilate two objects i at
the same spot �x. A state containing two (or more) particles of different type, and/or
at different positions �x, will always be antisymmetric under interchange of two such
fermions, which is Pauli’s principle.

In conventional quantum field theory, one now proceeds to the Lagrange for-
malism, which works magnificently for doing fast calculations of all sorts. For our
purpose, however, we need the Hamiltonian. The quantum Hamiltonian density for
a fermionic field theory is (compare Sect. 15.2):

HF (�x)=ψ
(
m+W( �Φ)+ �γ · �∂)ψ, (20.14)

whereW( �Φ) stands short for the Yukawa interaction terms that we may expect, and
ψ =ψ†γ4.

The matrices γμ,μ= 1,2,3,4, need to obey the usual anti-commutation rule

{γμ, γν} = 2δμν, (20.15)

which requires them to be at least 4 × 4 matrices, so that the spinors are 4 dimen-
sional. One can, however, reduce these to 2 component spinors, called Majorana
spinors, by using a constraint such as

ψ = Cψ̃ = Cγ̃4ψ
†, ψ† = C∗γ4ψ, (20.16)

where ˜ stands for transposition, and C is a spinor matrix obeying2,3

γμC = −Cγ ∗
μ, C†C = 1, C = C†. (20.17)

Just as in the bosonic case, we may consider replacing the continuum in space by
a space-like lattice, using expressions such as Eq. (20.12), at the price of (hopefully
temporarily) giving up Lorentz invariance.

2In Sect. 15.2, we also used 2 dimensional spinors. The two-component spinor field used there is
obtained by using one of the projection operators P± = 1

2 (1 ± γ5). The mass term can be made
compatible with that.
3The reason why Dirac needed a four-dimensional representation is that the constraint (20.16)
would not allow coupling to an electromagnetic field since this would violate gauge-invariance (in
particular the mass term).
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The Yukawa term W(Φ) in Eq. (20.14) may include interactions with gauge
fields in the usual way. The question addressed in this work is to what extent Hamil-
tonians such as the sum of Eqs. (20.7) and (20.14) can be obtained from determin-
istic theories.

20.3 Standard Second Quantization

Accurate calculations in field theories for interacting particles are practically impos-
sible without a systematic approximation procedure of some sort. The most efficient
approximation scheme used is that of the perturbation expansion in terms of pow-
ers of all interaction parameters. This works because, when the interaction terms
vanish, the fields will obey linear field equations, which are trivial to solve.

These linear equations happen to coincide with the linear Schrödinger equations
obeyed by single particle states. It is as if the wave functions |φi(�x, t)〉, |ψi(�x, t)〉
and their associated bra states are replaced by classical ontological fields Φi(�x, t),
ψi(�x, t) and their canonical conjugates, after which the quantization procedure is
applied to these fields yet again, replacing Poisson brackets by commutators or anti-
commutators. This explains the term “second quantization” by which this procedure
is known.

In fact it is not hard to show that the complete Hilbert space of all quantum
states of the quantized field system (20.5) and (20.13) can be described as the prod-
uct space of all sets of multi particle states that can be formed out of the ‘single-
quantized’ particles.

Then, however, one has to insert the interaction terms of the Hamiltonian. We
write

H = H0 +�H0 +Hint +�Hint, (20.18)

where H0 = H2 +HJ is the bilinear part of H, and Hint contains the higher powers
of the fields, causing interactions. �H0 and �Hint are extra terms that are of the
same form as H0 and Hint themselves, but they are taken care of at later stages of
the perturbation expansion, just for technical reasons (renormalization). This is how
one begins to set up perturbation theory.

Now, in relativistic quantum theories, the single-quantized free particles have en-
ergy spectra that take the form E = ±√

p2 +m2 (for bosons), or E = �α · �p + βm
(for fermions; αi and β are the Dirac matrices). This implies that the energies of
single particles appear to be unbounded from below. The beauty of the second-
quantized theory is that we can replace negative-energy particles by holes of pos-
itive energy antiparticles. This automatically ensures a lower bound for the total
Hamiltonian.

For the case of fermions, it is easy to accept the idea that negative energy parti-
cles have to be regarded as holes in the sea of antiparticles, because Pauli’s exclusion
principle forbids the presence of more than one particle in any energy level. In the
case of bosons, the situation becomes clear if we regard every mode of the energy
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spectrum as a harmonic oscillator, controlled by creation and annihilation opera-
tors. Its energy is also bounded from below. Note that, in terms of the quantum
field variables Φ and ψ , the Hamiltonian was non-negative by construction—if one
disregards the complications due to renormalization.

Thus, the second quantization procedure restores a lower bound to the Hamil-
tonian, simply by allowing indefinite numbers of particles. We can allow the same
mechanism to work for a cellular automaton, if the automaton also can be described
in terms of particles. A particle hops over a grid of points in 3-space, and its evolu-
tion operator generates a Hamiltonian that may be unbounded from below. Second
quantization now means that we allow for the presence of indefinite numbers of
these particles, which may either behave as fermions or as bosons. The particle–
antiparticle procedure then ensures positivity of the total Hamiltonian.

20.4 Perturbation Theory

How to compute the effects of these Hamiltonians in perturbation theory, such as
mass spectra, cross sections and lifetimes of the quantized particles that it contains,
is standard text material, and not the subject of this treatise, but we do need to know
about some essential features for our further discussion.

Split up the Hamiltonian into a “free” part H0 and the various interaction parts,
as in Eq. (20.18), where the free part only contains terms that are bilinear in the
field variablesΦi(�x),Pi(�x),ψi(�x) and ψi(�x) (possibly after having shifted some of
the fields by a vacuum value, such as in the Brout–Englert–Higgs mechanism). The
interaction Hamiltonian Hint may also contain bilinear terms, here written as �H0,
needed to renormalize divergent effective interactions. There is some freedom as to
whether we put parts of these so-called counter terms in H0 or in �H0, and how to
split the interaction terms in Hint and �Hint, which in fact is a choice concerning
the book keeping process of the perturbative expansion. The fact that final results of
the calculation should be independent of these choices is an important ingredient of
what is called the renormalization group of the theory (see Sect. 20.8).

Hint is assumed to depend on the coupling parameters λi, gi, etc., of the theory,
such that Hint vanishes if these parameters are set to zero.

As already mentioned in Sect. 20.1, the analysis is facilitated by the introduction
of auxiliary terms in the Hamiltonian, called source terms, which are linear in the
fields:

HJ (�x, t)=
∑

i

Ji(�x, t)Φi(�x)+
∑

i

ηi(�x, t)ψi(�x)+
∑

i

ψi(�x)ηi(�x, t), (20.19)

where the “source functions” Ji(�x, t), ηi(�x, t) and ηi(�x, t) are freely chosen func-
tions of space and time, to be replaced by zero at the end of the computation (the
time dependence is not explicitly mentioned here in the field variables, but, in a
Heisenberg representation, of course also the fields are time dependent).
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These source terms could serve as simple models for the creation of the initial
particles in a scattering experiment, as well as the detection process for the parti-
cles in the final state, but they can also simply be regarded as useful devices for a
mathematical analysis of the physical properties of the system. One can then find
all amplitudes one needs to know, by computing at any desired order in perturba-
tion theory, that is, up to certain powers of the coupling parameters and the source
functions, the vacuum-to-vacuum amplitude:

t=∞〈∅|∅〉t=−∞

= 1 − i
2

∫ ∫
d4x d4x′ Ji(x)Jj

(
x′)Pij

(
x − x′)

+ 1
6

∫ ∫ ∫
d4x d4x′ d4x′′Wijk

(
x, x′, x′′)Ji(x)Jj

(
x′)Jk

(
x′′)+ · · · ,

(20.20)

where x stands short for the space–time coordinates (�x, t), and the correlation func-
tions Pij (x−x′),Wijk(x, x′, x′′) and many more terms of the sequence are to be cal-
culated. Physically, this means that we compute expectation values of the products
of operators Φi(�x, t),ψi(�x, t) and ψi(�x, t) of Eq. (20.19) in a Heisenberg represen-
tation. Local products of these operators also follow from the expressions (20.20),
if we take space–time points x and x′ to coincide.

The algorithm for the calculation of the two-point functions P , the three-point
functions W , etc., is conveniently summarized in the so-called Feynman rules, for
which we refer to the standard text books. [27, 121, 123]

20.4.1 Non-convergence of the Coupling Constant Expansion

There are some conditions where particles interact strongly. Quarks are fermionic
particles that interact so strongly that the forces between them keep them perma-
nently bound in hadrons, the so-called quark confinement mechanism. This, how-
ever, only happens at the distance scale of the Standard Model. When extrapolated to
the Planck scale, these strong interactions have been calculated to be about as weak
as the other forces, notably electromagnetism and the weak force. This means that,
in a conveniently large domain near the Planck scale, all perturbation expansions
may be rapidly convergent: there, one never needs to know the very high-order per-
turbative correction terms, since these are many times smaller than the usual margins
of error in our description of the dynamics.

It now so happens that, when we apply second quantization in our cellular au-
tomaton models, something very similar may happen. If we choose our interactions
to originate from rare coincidences in the cellular configurations, then most of the
interaction events may be far separated at the Planck scale. This may imply that
we have freely moving particles interacting only weakly by means of an interaction
Hamiltonian. Since this Hamiltonian starts out to be local, only a few higher order
calculations may suffice to obtain an accurate description of the dynamics.
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We can now consider combining the quantum field theoretic perturbation expan-
sion with the expansion needed to generate the interaction Hamiltonian itself. The
resulting theory will still be accurate in the domain close to the Planck scale. Our
proposal is to start from this theory, and to apply the usual renormalization group
procedures (Sect. 20.8) to transform everything to the Standard Model scale.

20.5 The Algebraic Structure of the General, Renormalizable,
Relativistic Quantum Field Theory

The reasons for limiting ourselves to renormalizable quantum field theories are
not completely obvious. When coupling strengths become large, renormalizable
field theories may generate poles where the perturbation expansion diverges. We
call these Landau poles. Renormalization is then of little help. The renormaliza-
tion group (Sect. 20.8) explains how the Landau poles can arise. If a Landau pole
emerges in the small-distance domain, one has to conclude that the renormalization
procedure fails, and here is little one can do about this. If however a Landau pole is
related to a large distance divergence, it can be attributed to non-canonical behaviour
of the force fields at large distances, which can be investigated and understood.

Landau poles do also occur when the couplings are weak, but since they are non-
perturbative effects, these poles retreat to very distant domains of extremely high
energies, so that they quickly turn harmless. This is the case where, by demanding
renormalizability, we can select out a precisely defined class of models that are
mathematically accurate, and most useful for comparison with experiments. They
are not infinitely accurate, but, as we shall see in Sect. 22.1, also the procedure that
we can use to derive a field theory out of a cellular automaton, will have an accuracy
that appears to be limited by the interaction strength.

Finally, we note that, indeed, in the Standard Model itself, the interaction param-
eters are remarkably small. This was not known or expected to be the case, a few
decades ago.

Relativistically invariant, renormalizable quantum field theories have a remark-
ably rich mathematical structure. There are vector fields (for elementary particles
with spin 1), spinor fields (fermions with spin 1/2), and scalars (spin 0).

The vector fields have to be associated with a local gauge theory, usually of the
Yang–Mills type. The number of distinct vector particle species equals the number
of dimensions, also called the rank, of the local gauge group. Electromagnetism has
U(1) as its local gauge group; the dimension is 1, so there is one photon species.

The electro-weak interactions have this local gauge theory enlarged to U(1)⊗
SU(2), with group dimension 4, while the strong force adds to this SU(3), with
dimension 8.

The fermionic and the scalar fields must all come as representations of the gauge
group. They each transform trivially or non-trivially under local gauge transforma-
tions. This determines how these particles couple to the vectorial gauge fields.

The fermions are based on Dirac’s field equation, and the scalars start off with
the Klein–Gordon equation. The interactions between these fields are written as
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Yukawa terms for the fermions, and quartic, sometimes also cubic, self interactions
for the scalars. The allowed couplings are severely constrained by the condition that
the system has to be renormalizable and gauge-invariant.

After all algebraic equations have been written down, it must be checked ex-
plicitly whether there are chiral anomalies. These are clashes between current-
conservation laws in the chiral symmetries one might expect in the theory. Anoma-
lies that would be harmful for the self consistency of the theory only occur when
right-handed fermions couple differently to the gauge fields than left handed ones.
One then has to see to it that these anomalies cancel out. They indeed do in the
Standard Model.

In the Standard Model, the algebra turns out to be arranged in such a way that
the fermions come as three identical copies (“generations”) of quarks and leptons.
Quarks come as triplet representations of the gauge SU(3) group, while the leptons
are SU(3) singlets. All fermions couple, at least to some extent, to the SU(2)⊗U(1)
gauge fields, with the exceptions of the right-handed components of the neutrinos,
which do not couple to the gauge fields at all.

In principle, however, the mathematical rules known today would have allowed
just any compact Lie group as the gauge group, and any kinds of representations for
the fermions and the scalars, as long as there are not too many of those.

This summary here illustrates that the mathematical structure of the generic quan-
tum field theory, and the Standard Model in particular, is fairly complex. It would
have to be reproduced in a deterministic theory of Nature. Further details are to be
found in numerous text books. See for instance [27, 52, 70].

20.6 Vacuum Fluctuations, Correlations and Commutators

Because all contributions to our Hamiltonian are translation invariant, one expects
the correlation functions to be translation invariant as well, and this is a good reason
to consider their Fourier transforms, so, instead of x space, one considers k space:

Pij
(
x(1) − x(2))= (2π)−4

∫
d4k P̂ij (k)e

ik·(x(1)−x(2)), (20.21)

where we will often omit the caret (ˆ).
Disregarding factors 2π for the moment, one finds that the two-point functions

are built from elementary expressions such as the Feynman propagator,

�Fm(x)≡ −i
∫

d4k
eikx

k2 +m2 − iε ,
x = x(1) − x(2), k2 = �k2 − k2

0, (20.22)

where ε is an infinitesimal positive number, indicating how one is allowed to arrange
the complex contour when k0 is allowed to be complex. This propagator describes
the contribution of a single, non interacting particle to the two-point correlation
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function. If there are interactions, one finds that, quite generally, the two-point cor-
relation functions take the form of a dressed propagator:

�F (x)=
∫ ∞

0
dm�(m)�Fm(x), (20.23)

where �(m) is only defined for m≥ 0 and it is always non-negative. This property
is dictated by unitarity and positivity of the energy, and always holds exactly in a
relativistic quantum field theory [123]. The function �(m) can be regarded as the
probability that an intermediate state emerges whose centre-of-mass energy is given
by the numberm. In turn, �(m) can be computed in terms of Feynman diagrams with
two external legs; it describes what may happen to a virtual particle as it travels from
x(2) to x(1). Diagrams with more external legs (which are usually the contributions
to the scattering matrix with given numbers of free particles asymptotically far away
in the in-state and the out-state), can be computed with these elementary functions
as building blocks.

The two-point function physically corresponds to the vacuum expectation value
of a time-ordered product of operators:

Pij
(
x(1) − x(2))= 〈∅|T (Φi

(
x(1)

)
,Φj

(
x(2)

)|∅〉, (20.24)

where

T
(
A(t1),B(t2)

)=A(t1)B(t2), if t1 > t2,

= B(t2)A(t1), if t2 > t1 (20.25)

(for fermions, this is to be replaced by the P product: a minus sign is added if two
fermions are interchanged).

We shall now show how, in explicit calculations, it is always found that two
operators O1(x

(1)) and O2(x
(2)) commute when they both are local functions of the

fields Fi(�x, t), and when their space–time points are space-like separated:

(�x)2 − (
x0)2

> 0, x = x(1) − x(2). (20.26)

To this end, one introduces the on-shell propagators:

�±
m(x)= 2π

∫
d4k eikxδ

(
k2 +m2)θ

(±k0); kx = �k · �x − k0x0. (20.27)

By contour integration, one easily derives:

�Fm(x)=�+
m(x) if x0 > 0;

=�−
m(x)=�+

m(−x) if x0 < 0;
�F∗
m (x)=�−

m(x) if x0 > 0;
=�+

m(x) if x0 < 0.

(20.28)

Here,�F∗
m is obtained from the Feynman propagatorDFm in Eq. (20.22) by replacing

i with −i.
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Now we can use the fact that the expressions for �Fm(x) and �±
m(x) are Lorentz-

invariant. Therefore, if x is space-like, one can always go to a Lorentz frame where
x0 > 0 or a Lorentz frame where x0 < 0, so then,

�Fm(x)=�+
m(x)=�−

m(x)=�F∗
m (x)=�Fm(−x). (20.29)

This implies that, in Eq. (20.24), we can always change the order of the two op-
erators O(x(1)) and O(x(2)) if x(1) and x(2) are space-like separated. Indeed, for
all two-point functions, one can derive from unitarity that they can be described by
a dressed propagator of the form (20.23), where, due to Lorentz invariance, �(m)
cannot depend on the sign of x0. The only condition needed in this argument is
that the operator O1(x

(1)) is a local function of the fields Φi(x(1)), and the same
for O2(x

(2)). To prove that composite fields have two-point functions of the form
(20.23), using unitarity and positivity of the Hamiltonian, we refer to the literature
[121]. To see that Eqs. (20.29) indeed imply that commutators between space-like
separated operators vanish, and that this implies the non existence of information
carrying signals between such points, we refer to Sect. 20.7.

Now it is crucial to notice that the Feynman propagator �Fm(x) itself does not
vanish at space-like separations. In general, one finds for free fields with mass m, at
vanishing x(1)0 − x(2)0, and writing �r = �x(1) − �x(2),

〈∅|T (Φ(x(1)),Φ(x(2))|∅〉 = (2π)−4�Fm(0, �r)=
∫

d3�k 1

2(2π)3
√�k2 +m2

ei
�k·�r

= 1

(2π)2

∫ ∞

0

k2

√
k2 +m2

eik|�r|, (20.30)

but, since the fields here commute, we can omit the T symbol. When the product
m|�r| becomes large, this vanishes rapidly. But whenm vanishes, we have long-range
correlations:

〈∅|Φ(0, �r)Φ(0, �0)|∅〉 = 1

(2π)2�r2
. (20.31)

For instance, for the photon field, the vacuum correlation function for the two-point
function is, in the Feynman gauge,

〈∅|Aμ(0, �r)Aν(0, �0)|∅〉 = gμν

(2π)2�r2
. (20.32)

This means that we do have correlations over space-like distances. We attribute
this to the fact that we always do physics with states that are very close to the vac-
uum state. The correlations are non-vanishing in the vacuum, and in all states close
to the vacuum (such as all n-particle states, with n finite). One may imagine that,
at very high or infinite temperature, all quantum states will contribute with equal
probabilities to the intermediate states, and this may wipe out the correlations, but
today’s physics always stays restricted to temperatures that are very low compared
to the Planck scale, most of the time, at most places in the Universe.

There is even more one can say. Due to the special analytic structure of the propa-
gators �Fm(x), the n point functions can be analytically continued from Minkowski
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space–time to Euclidean space–time and back. This means that, if the Euclidean
correlation functions are known, also the scattering matrix elements in Minkowski
space–time follow, so that the entire evolution process at a given initial state can
be derived if the space like correlation functions are known. Therefore, if some-
one thinks there is “conspiracy” in the space-like correlations that leads to peculiar
phenomena later or earlier in time, then this might be explained in terms of the fun-
damental mathematical structure of a quantum field theory. The author suspects that
this explains why “conspiracy” in “unlikely” space-like correlations seems to in-
validate the Bell and CHSH inequalities, while in fact this may be seen as a natural
phenomenon. In any case, it should be obvious from the observations above, that the
correlations in quantized field theories do not require any conspiracy, but are totally
natural.

20.7 Commutators and Signals

We shall now show that, just because all space-like separated sets of operators com-
mute, no signal can be exchanged that goes faster than light, no matter how entan-
gled the particles are that one looks at. This holds for all relativistic quantum field
theories, and in particular for the Standard Model. This fact is sometimes overlooked
in studies of peculiar quantum phenomena.

Of course, if we replace the space–time continuum by a lattice in space, while
time stays continuous, we lose Lorentz invariance, so that signals can go much
faster, in principle (they still cannot go backwards in time).

Consider a field φ(x), where x is a point in space–time. Let the field be self-
adjoint:

φ(x)= φ†(x). (20.33)

In conventional quantum field theories, fields are operators in the sense that they
measure things and at the same time modify the state, all at one space–time point x.
Usually, the field averages in vacuum are zero:

〈∅|φ(x)|∅〉 = 0. (20.34)

Can a signal arrive at a point x(1) when transmitted from a point x(2)? To find out,
take the field operators φ(x(1)) and φ(x(2)). Let us take the case t (1) ≥ t (2). In this
case, consider the propagator

〈∅|T (φ(x(1)), φ(x(2)))|∅〉 = 〈∅|φ(x(1))φ(x(2))|∅〉
=�Fm

(
x(1) − x(2))=�+

m

(
x(1) − x(2)). (20.35)

It tells us what the correlations are between the field values at x(1) and at x(2). This
quantity does not vanish, as is typical for correlation functions, even when points
are space-like separated.

The question is now whether the operation of the field at x(2) can affect the state
at x(1). This would be the case if the result of the product of the actions of the fields
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depends on their order, and so we ask: to what extent does the expression (20.35)
differ from

〈∅|φ(x(2))φ(x(1))|∅〉 = (〈∅|φ†(x(1)
)
φ†(x(2)

)|∅〉)∗ = (〈∅|T (φ(x(1)), φ(x(2)))|∅〉)∗
=�F∗

m

(
x(1) − x(2))=�−

m

(
x(1) − x(2)). (20.36)

In stead of �m(x) we could have considered the dressed propagators of the in-
teracting fields, which, from general principles, can be shown to take the form of
Eq. (20.23). We always end up with the identity (20.29), which means that the com-
mutator vanishes:

〈∅|[φ(x(1)), φ(x(2))]|∅〉 = 0, (20.37)

if x(1) and x(2) are space-like separated. Thus, it makes no difference whether we
act with φ(x(1)) before or after we let φ(x(2)) act on the vacuum. This means that
no signal can be sent from x(2) to x(1) if it would have to go faster than light.

Since Eqs. (20.29) can be proved to hold exactly in all orders of the perturbation
expansion in quantum field theory, just by using the general properties (20.28) of
the propagators in the theory, one concludes that conventional quantum field the-
ories never allow signals to be passed on faster than light. This is very important
since less rigorous reasoning starting from the possible production of entangled par-
ticles, sometimes make investigators believe that there are ‘spooky signals’ going
faster than light in quantum systems. Whatever propagates faster than light, how-
ever, can never carry information. This holds for quantum field theories and it holds
for cellular automata.

20.8 The Renormalization Group

A feature of quantum field theories that plays a special role in our considerations
is the renormalization group. This group consists of symmetry transformations that
in their earliest form were assumed to be associated to the procedure of adding
renormalization counter terms to masses and interaction coefficients of the theory.
These counter terms are necessary to assure that higher order corrections do not
become infinitely large when systematic (perturbative) calculations are performed.
The ambiguity in separating interaction parameters from the counter terms can be
regarded as a symmetry of the theory [80].

In practice, this kind of symmetry becomes important when one applies scale
transformations in a theory: at large distances, the counter terms should be cho-
sen differently from what they are at a small distance scale, if in both cases we
require that higher order corrections are kept small. In practice, this has an im-
portant consequence for most quantum field theories: a scale transformation must
be accompanied by small, calculable corrections to all mass terms and interaction
coefficients. This then adds ‘anomalous dimensions’ to the mass and coupling pa-
rameters [17, 82, 123]. In lowest order, these anomalies are easy to calculate, and
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the outcome is typically:

μd

dμ
λ(μ)= βλλ(μ)2 +O

(
λ(μ)3

)
,

μd

dμ
m(μ)= βmλ(μ)m(μ)+O

(
λ(μ)2

)
,

(20.38)

with dimensionless coefficients βλ and βm. Here, μ represents the mass scale at
which the coupling and mass parameters are being considered.

In gauge theories such as quantum electrodynamics, it is the charge squared,
e(μ)2, or equivalently, the fine structure constant α(μ), that plays the role of the
running coupling parameter λ(μ). A special feature for non-Abelian gauge theo-
ries is that, there, the coefficient βg2 receives a large negative contribution from the
gauge self couplings, so, unless there are many charged fields present, this renor-
malization group coefficient is negative.

Note, that Eqs. (20.38) cause important modifications in λ(μ) and m(μ) when
log(μ) varies over large values. It is important to observe, that the consideration of
the renormalization group would have been quite insignificant had there not been
large scale differences that are relevant for the theory. These differences originate
from the fact that we have very large and very tiny masses in the system. In the
effective Hamiltonians that we might be able to obtain from a cellular automaton,
it is not quite clear how such large scale differences could arise. Presumably, we
have to work with different symmetry features, each symmetry being broken at a
different scale. Here we just note that this is not self-evident. The problem that we
encounter here is the hierarchy problem, the fact that enormously different length-,
mass- and time scales govern our world, see Sect. 8.2. This is not only a problem
for our theory here, it is a problem that will have to be confronted by any theory
addressing physics at the Planck scale.

The mass and coupling parameters of a theory are not the only quantities that
are transformed in a non-trivial way under a scale transformation. All local oper-
ators O(�x, t) will receive finite renormalizations when scale transformations are
performed. When composite operators are formed by locally multiplying different
kinds of fields, the operator product expansion requires scale dependent counter
terms. What this means is that operator expressions obtained by multiplying fields
together undergo thorough changes and mixtures upon large scale transformations.
The transformation that leads us from the Planck scale to the Standard Model scale
is probably such a large scale transformation,4 so that not only the masses and cou-
plings that we observe today, but also the fields and operator combinations that we
use in the Standard Model today, will be quite different from what they may look
like at the Planck scale.

Note that, when a renormalization group transformation is performed, couplings,
fields and operators re-arrange themselves according to their canonical dimensions.
When going from high mass scales to low mass scales, coefficients with highest

4Unless several extra space–time dimensions show up just beyond the TeV domain, which would
bring the Planck scale closer to the Standard Model scale.
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mass dimensions, and operators with lowest mass dimensions, become most sig-
nificant. This implies that, seen from a large distance scale, the most complicated
theories simplify since, complicated, composite fields, as well as the coefficients
they are associated with, will rapidly become insignificant. This is generally as-
sumed to be the technical reason why all our ‘effective’ theories at the present mass
scale are renormalizable field theories. Non-renormalizable coefficients have be-
come insignificant. Even if our local Hamiltonian density may be quite ugly at the
Planck scale, it will come out as a clean, renormalizable theory at scales such as the
Standard Model scale, exactly as the Standard Model itself, which was arrived at by
fitting the phenomena observed today.

The features of the renormalization group briefly discussed here, are strongly
linked to Lorentz invariance. Without this invariance group, scaling would be a lot
more complex, as we can see in condensed matter physics. This is the reason why
we do not plan to give up Lorentz invariance without a fight.
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Chapter 21
The Cellular Automaton

The fundamental notion of a cellular automaton was briefly introduced in Part I,
Sect. 5.1. We here resume the discussion of constructing a quantum Hamiltonian
for these classical systems, with the intention to arrive at some expression that
may be compared with the Hamiltonian of a quantum field theory [110], resem-
bling Eq. (20.6), with Hamiltonian density (20.7), and/or (20.14). In this chapter,
we show that one can come very close, although, not surprisingly, we do hit upon
difficulties that have not been completely resolved.

21.1 Local Time Reversibility by Switching from Even to Odd
Sites and Back

Time reversibility is important for allowing us to perform simple mathematical ma-
nipulations. Without time reversibility, one would not be allowed to identify single
states of an automaton with basis elements of a Hilbert space. Now this does not in-
validate our ideas if time reversibility is not manifest; in that case one has to identify
basis states in Hilbert space with information equivalence classes, as was explained
in Sect. 7. The author does suspect that this more complicated situation might well
be inevitable in our ultimate theories of the world, but we have to investigate the
simpler models first. They are time reversible. Fortunately, there are rich classes of
time reversible models that allow us to sharpen our analytical tools, before making
our lives more complicated.

Useful models are obtained from systems where the evolution law U consists
of two parts: UA prescribes how to update all even lattice sites, and UB gives the
updates of the odd lattice sites. So we have U =UA ·UB .

21.1.1 The Time Reversible Cellular Automaton

In Sect. 5.1, a very simple rule was introduced. The way it was phrased there, the
data on two consecutive time layers were required to define the time evolution in
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the future direction as well as back towards the past—these automata are time re-
versible. Since, quite generally, most of our models work with single time layers
that evolve towards the future or the past, we shrink the time variable by a fac-
tor 2. Then, one complete time step for this automaton consists of two procedures:
one that updates all even sites only, in a simple, reversible manner, leaving the odd
sites unchanged, while the procedure does depend on the data on the odd sites, and
one that updates only the odd sites, while depending on the data at the even sites.
The first of these operators is called UA. It is the operator product of all operations
UA(�x), where �x are all even sites, and we take all these operations to commute:

UA =
∏

�x even

UA(�x);
[
UA(�x),UA

(�x′)]= 0, ∀�x, �x′. (21.1)

The commutation is assured if UA(�x) depends only on its neighbours, which are
odd, but not on the next-to-nearest neighbours, which are even again. Similarly, we
have the operation at the odd sites:

UB =
∏

�y odd

UB(�y);
[
UB(�y),UB

(�y′)]= 0, ∀�y, �y′, (21.2)

while [UA(�x),UB(�y)] �= 0 only if �x and �y are direct neighbours.
In general, UA(�x) and UB(�y) at any single site are sufficiently simple (often they

are finite-dimensional, orthogonal matrices) that they are easy to write as exponen-
tials:

UA(�x)= e−iA(�x),
[
A(�x),A(�x′)]= 0;

UB(�y)= e−iB(�y),
[
B(�y),B(�y′)]= 0.

(21.3)

A(�x) and B(�y) are defined to lie in the domain [0,2π), or sometimes in the domain
(−π,π].

The advantage of this notation is that we can now write1

UA = e−iA, A=
∑

�x even

A(�x); UB = e−iB, B =
∑

�y odd

B(�y), (21.4)

and the complete evolution operator for one time step δt = 1 can be written as

U(δt)= e−iH = e−iAe−iB . (21.5)

Let the data in a cell �x be called Q(�x). In the case that the operation UA(�x)
consists of a simple addition (either a plane addition or an addition modulo some
integer N ) by a quantity δQ(Q(�yi)), where �yi are the direct neighbours of �x, then
it is easy to write down explicitly the operators A(�x) and B(�y). Just introduce the
translation operator

Uη(�x)= eiη(�x), Uη|Q(�x)〉 ≡ |Q(�x)− 1 modulo N〉, (21.6)

1The sign in the exponents is chosen such that the operators A and B act as Hamiltonians them-
selves.
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to find

UA(�x)= e−iη(�x)δQ(Q(�yi)),
A(�x)= η(�x)δQ(Q(�yi)

); B(�y)= η(�y)δQ(Q(�xi)
)
.

(21.7)

The operator η(�x) is not hard to analyse. Assume that we are in a field of
additions modulo N , as in Eq. (21.6). Go the basis of states |k〉U, with k =
0,1, . . . ,N − 1, where the subscript U indicates that they are eigenstates of Uη and
η (at the point �x):

〈Q|k〉U ≡ 1√
N
e2πikQ/N . (21.8)

We have

〈Q|Uη|k〉U = 〈Q+ 1|k〉U = e2πik/N 〈Q|k〉U; Uη|k〉 = e2πik/N |k〉U (21.9)

(if − 1
2N < k ≤ 1

2N ), so we can define η by

η|k〉U = 2π

N
k|k〉U,

〈Q1|η|Q2〉 =
∑

k

〈Q1|k〉U

( 2π
N
k
)

U〈k|Q2〉

= 2π

N2

∑

|k|< 1
2N

ke2πik(Q1−Q2)/N = 4πi

N2

1
2N∑

k=1

k sin
(
2πk(Q1 −Q2)/N

)
,

(21.10)

mathematical manipulations that must look familiar now, see Eqs. (2.25) and (2.26)
in Sect. 2.2.1.

Now δQ(�yi) does not commute with η(�yi), and in Eq. (21.7) our model assumes
the sites �yi to be only direct neighbours of �x and �xi are only the direct neighbours
of �y. Therefore, allA(�x) also commute with B(�y) unless |�x− �y| = 1. This simplifies
our discussion of the Hamiltonian H in Eq. (21.5).

21.1.2 The Discrete Classical Hamiltonian Model

In Sect. 19.4.4, we have seen how to generate a local discrete evolution law from
a classical, discrete Hamiltonian formalism. Starting from a discrete, non negative
Hamiltonian function H , typically taking values N = 0,1,2, . . . , one searches for
an evolution law that keeps this number invariant. This classical H may well be
defined as a sum of local terms, so that we have a non negative discrete Hamiltonian
density. It was decided that a local evolution law U(�x) with the desired properties
can be defined, after which one only has to decide in which order this local operation
has to be applied to define a unique theory. In order to avoid spurious non-local
behaviour, the following rule was proposed:
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The evolution equations (e.o.m.) of the entire system over one time step δt ,
are obtained by ordering the coordinates as follows: first update all even lattice
sites, then update all odd lattice sites

(how exactly to choose the order within a given site is immaterial for our discussion).
The advantage of this rule is that the U(�x) over all even sites �x can be chosen
all to commute, and the operators on all odd sites �y will also all commute with
one another; the only non-commutativity then occurs between an evolution operator
U(�x) at an even site, and the operator U(�y) at an adjacent site �y.

Thus, this model ends up with exactly the same fundamental properties as the
time reversible automaton introduced in Sect. 21.1.1: we have UA as defined in
Eq. (21.1) and UB as in (21.2), followed by Eqs. (21.3)–(21.5).

We conclude that, for model building, splitting a space–time lattice into the even
and the odd sub lattices is a trick with wide applications. It does not mean that we
should believe that the real world is also organized in a lattice system, where such
a fundamental role is to be attributed to the even and odd sub lattices; it is merely
a convenient tool for model building. We shall now discuss why this splitting does
seem to lead us very close to a quantum field theory.

21.2 The Baker Campbell Hausdorff Expansion

The two models of the previous two subsections, the arbitrary cellular automaton
and the discrete Hamiltonian model, are very closely related. They are both de-
scribed by an evolution operator that consists of two steps, UA and UB , or, Ueven
and Uodd. The same general principles apply. We define A,A(�x),B and B(�x) as in
Eq. (21.4).

To compute the Hamiltonian H , we may consider using the Baker Campbell
Hausdorff expansion [71]:

eP eQ = eR,
R = P +Q+ 1

2 [P,Q] + 1
12

[
P, [P,Q]]

+ 1
12

[[P,Q],Q]+ 1
24

[[
P, [P,Q]],Q]+ · · · ,

(21.11)

a series that continues exclusively with commutators. Replacing P by −iA, Q by
−iB and R by −iH , we find a series for H in the form of an infinite sequence of
commutators. We noted at the end of the previous subsection that the commutators
between the local operators A(�x) and B(�x′) are non-vanishing only if �x and �x′ are
neighbours, |�x − �x′| = 1. Therefore, if we insert the sums (21.4) into Eq. (21.11),
we obtain again a sum. Writing

K(�r)=A(�r) if �r is even, and B(�r) if �r is odd,

L(�r)=A(�r) if �r is even, and −B(�r) if �r is odd,
(21.12)

so that

A(�r)= 1
2

(
K(�r)+L(�r)) and B(�r)= 1

2

(
K(�r)−L(�r)), (21.13)



21.3 Conjugacy Classes 265

we find

H =
∑

�r
H(�r),

H(�r)= H1(�r)+H2(�r)+H3(�r)+ · · · , (21.14)

where

H1(�r)=K(�r),
H2(�r)= 1

4 i
∑

�s

[
K(�r),L(�s)],

H3(�r)= 1
24

∑

�s1,�s2

[
L(�r), [K(�s1),L(�s2)

]]
, etc.

(21.15)

The sums here are only over close neighbours, so that each term here can be regarded
as a local Hamiltonian density term.

Note however, that as we proceed to collect higher terms of the expansion, more
and more distant sites will eventually contribute; Hn(�r) will receive contributions
from sites at distance n− 1 from the original point �r .

Note furthermore that the expansion (21.14) is infinite, and convergence is not
guaranteed; in fact, one may suspect it not to be valid at all, as soon as energies
larger than the inverse of the time unit δt come into play. We will have to discuss
that problem. But first an important observation that improves the expansion.

21.3 Conjugacy Classes

One might wonder what happens if we change the order of the even and the odd
sites. We would get

U(δt)= e−iH ?= e−iBe−iA, (21.16)

instead of Eq. (21.5). Of course this expression could have been used just as well. In
fact, it results from a very simple basis transformation: we went from the states |ψ〉
to the statesUB |ψ〉. As we stated repeatedly, we note that such basis transformations
do not affect the physics.

This implies that we do not need to know exactly the operator U(δt) as defined
in Eqs. (21.5) or (21.16), we need just any element of its conjugacy class. The con-
jugacy class is defined by the set of operators of the form

GU(δt)G−1, (21.17)

where G can be any unitary operator. Writing G= eF , where F is anti-Hermitian,
we replace Eq. (21.11) by

eR̃ = eF eP eQe−F , (21.18)
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so that

R̃ =R + [F,R] + 1
2

[
F, [F,R]]+ 1

3!
[
F,

[
F, [F,R]]]+ · · · . (21.19)

We can now decide to choose F in such a way that the resulting expression becomes
as simple as possible. For one, interchanging P andQ should not matter. Secondly,
replacing P and Q by −P and −Q should give −R̃, because then we are looking
at the inverse of Eq. (21.19).

The calculations simplify if we write

S = 1
2 (P +Q), D = 1

2 (P −Q); P = S +D, Q= S −D (21.20)

(or, in the previous section, S = − 1
2 iK, D = − 1

2 iL ). With

eR̃ = eF eS+DeS−De−F , (21.21)

we can now demand F to be such that:

R̃(S,D)= R̃(S,−D)= −R̃(−S,−D), (21.22)

which means that R̃ contains only even powers of D and odd powers of S. We can
furthermore demand that R̃ only contains terms that are commutators of D with
something; contributions that are commutators of S with something can be removed
iteratively by judicious choices of F .

Using these constraints, one finds a function F(S,D) and R̃(S,D). First let us
introduce a short hand notation. All our expressions will consist of repeated com-
mutators. Therefore we introduce the notation

{X1,X2, . . . ,Xn} ≡ [X1, [X2, [· · · ,Xn]] · · ·]. (21.23)

Subsequently, we even drop the accolades { }. So when we write

X1X2X
2
3X4, we actually mean: [X1, [X2, [X3, [X3,X4]]]].

Then, with F = − 1
2D + 1

24S
2D+ · · ·, one finds

R̃(S,D)= 2S − 1
12DSD+ 1

960D
(
8S2 −D2)SD

+ 1
60480D

(−51S4 − 76DSDS + 33D2S2 + 44SD2S − 3
8D

4)SD

+O(S,D)9. (21.24)

There are three remarks to be added to this result:

(1) It is much more compact than the original BCH expansion; already the first two
terms of the expansion (21.24) correspond to all terms shown in Eq. (21.11).

(2) The coefficients appear to be much smaller than the ones in (21.11), consider-
ing the factors 1/2 in Eqs. (21.20) that have to be included. We found that, in
general, sizeable cancellations occur between the coefficients in (21.11).

(3) However, there is no reason to suspect that the series will actually converge any
better. The definitions of F and R̃ may be expected to generate singularities
when P and Q, or S and D reach values where eR̃ obtains eigenvalues that
return to one, so, for finite matrices, the radius of convergence is expected to be
of the order 2π .
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In this representation, all terms Hn(�r) in Eq. (21.14) with n even, vanish. Using

S = − 1
2 iK, D = − 1

2 iL, R̃ = −iH̃ , (21.25)

one now arrives at the Hamiltonian in the new basis:

H̃1(�r)=K(�r),
H̃3(�r)= 1

96

∑

�s1,�s2
[L(�r), [K(�s1),L(�s2)]],

H̃5(�r)= 1
30720

∑

�s1,...,�s4
[L(�r),

(
8[K(�s1), [K(�s2)−[L(�s1), [L(�s2)

)
, [K(�s3),L(�s4)]]]],

(21.26)

and H̃7 follows from the second line of Eq. (21.24).
All these commutators are only non-vanishing if the coordinates �s1, �s2, etc., are

all neighbours of the coordinate �r . It is true that, in the higher order terms, next-
to-nearest neighbours may enter, but still, one may observe that these operators all
are local functions of the ‘fields’ Q(�x, t), and thus we arrive at a Hamiltonian H
that can be regarded as the sum over d-dimensional space of a Hamiltonian density
H(�x), which has the property that

[
H(�x),H(�x′)]= 0, if |�x, �x′| � 1. (21.27)

At every finite order of the series, the Hamiltonian density H(�x) is a finite-
dimensional Hermitian matrix, and therefore, it will have a lowest eigenvalue h.
In a large but finite volume V , the total Hamiltonian H will therefore also have a
lowest eigenvalue, obeying

E0 > hV. (21.28)

However, it was tacitly assumed that the Baker–Campbell–Hausdorff formula
converges. This is usually not the case. One can argue that the series may perhaps
converge if sandwiched between two eigenstates |E1〉 and |E2〉 of H , where E1 and
E2 are the eigenvalues, that obey

|E1 −E2| � 2π, (21.29)

We cannot exclude that the resulting effective quantum field theory will depend
quite non-trivially on the number of Baker–Campbell–Hausdorff terms that are kept
in the expansion.

The Hamiltonian density (21.26) may appear to be quite complex and unsuitable
to serve as a quantum field theory model, but it is here that we actually expect that
the renormalization group will thoroughly cleanse our Hamiltonian, by invoking the
mechanism described at the end of Sect. 20.8.
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Chapter 22
The Problem of Quantum Locality

When we have a classical cellular automaton, the condition of locality is easy to
formulate and to impose. All one needs to require is that the contents of the cells are
being updated at the beat of a clock: once every unit of time, δt . If we assume the
updates to take place in such a way that every cell is only affected by the contents
of its direct neighbours, then it will be clear that signals can only be passed on with
a limited velocity, c, usually obeying

|c| ≤ |δx/δt |, (22.1)

where |δx| is the distance between neighbouring cells. One could argue that this is
a desirable property, which at some point might be tied in with special relativity, a
theory that also demands that no signals go faster than a limiting speed c.

The notion of locality in quantum physics is a bit more subtle, but in quantum
field theories one can also demand that no signals go faster than a limiting speed c.
If a signal from a space–time point x(1) can reach an other space–time point x(2),
we say that x(2) lies in the forward light cone of x(1). If x(2) can send a signal to
x(1), then x(2) is in the backward light cone of x(1); if neither x(1) can affect x(2)

nor x(2) can affect x(1), we say that x(1) and x(2) are space-like separated.
The way to implement this in quantum field theories is by constructing a Hamilto-

nian in such a way that, for space-like separated space–time points, all quantum op-
erators defined at x(1) commute with all operators defined at x(2). The quantum field
theories used to describe the Standard Model obey this constraint. We explained in
Sect. 20.7 that then, performing any operation at x(1) and any measurement at x(2),
give the same result regardless the order of these two operations, and this means that
no signal can be transferred.

However, the existence of light cones, due to a fixed light velocity c, would not
have been easy to deduce from the Hamiltonian unless the theory happens to obey
the restrictions of special relativity. If the model is self-consistent in different inertial
frames, and space-like operators commute at equal times, then relativity theory tells
us they must commute everywhere outside the light cone. Now, most of our cellular
automaton models fail to obey special relativity—not because we might doubt on
the validity of the theory of special relativity, but because relativistically invariant
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cellular automaton models are extremely difficult to construct. Consequently, our
effective Hamiltonians for these models tend to be non-commutative also outside
the light cone, in spite of the fact that the automaton cannot send signals faster than
light.

This is one of the reasons why our effective Hamiltonians do not even approxi-
mately resemble the Standard Model. This does seem to be a mere technical prob-
lem; it is a very important one, and the question we now wish to pose is whether any
systematic approach can be found to cure this apparent disease.

This important question may well be one of the principal reasons why as of the
present only very few physicists are inclined to take the Cellular Automaton Inter-
pretation seriously. It is as if there is a fundamental obstacle standing in the way of
reconstructing existing physical models of the world using cellular automata.

Note, that the Baker–Campbell–Hausdorff expansion does seem to imply a
weaker form of quantum locality: if we terminate the expansion at any finite or-
der N , then the effective Hamiltonian density H(�x(1)) commutes with H(�x(2)) at
equal times, if |�x(1)− �x(2)| ≥N |δ�x|. As we stated earlier, however, this is not good
enough, because the BCH expansion is not expected to converge at all. We have to
search for better constructions.

22.1 Second Quantization in Cellular Automata

A promising approach for dealing with the danger of non-locality and unbounded-
ness of the Hamiltonian may also be to stick more closely to quantum field theories.
As it turns out, this requires that we first set up automata that describe freely moving
particles; subsequently, one follows the procedure of second quantization, described
in Sect. 15, and further elaborated in Sect. 15.2.3, and Sect. 20.3.

In our theory, this means that we first have to describe deterministic motion of
a single particle. We have already examples: the massless “neutrino” of Sect. 15.2,
and the superstring, Sect. 17.3, but if we wish to reproduce anything resembling
the Standard Model, we need the complete set, as described in Sect. 20.5: fermions,
scalar bosons, gauge bosons, and perhaps gravitons. This will be difficult, because
the fields we have today are mirroring the wave functions of standard quantum par-
ticles, which propagate non-deterministically.

We now have to replace these by the wave functions of deterministic objects, in
line with what has been discussed before, and rely on the expectation that, if we do
this right, renormalization group effects may turn these into the more familiar quan-
tized fields we see in the Standard Model. The advantage of this approach should
be that now we can start with first-quantized states where the energy needs not be
bounded from below; second quantization will take care of that: we get particles and
antiparticles, see Sect. 20.3.

A conceivable approach towards deterministic first-quantized particles is to start
with discrete PQ variables: discrete positions of a particle are labelled by three
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dimensional vectors �Q, and their momenta by discrete variables �P . The conjugated
variables are fractional momenta �κ and fractional positions �ξ , and we start with

e−iκi | �Q, �P 〉 = | �Q+ ei, �P 〉, eiξi | �Q, �P 〉 = | �Q, �P + ei〉, (22.2)

where ei are unit vectors spanning over one lattice unit in the ith direction. Subse-
quently, we add phases ϕ(�κ, �ξ) as in Chap. 16. We then choose deterministic evolu-
tion equations for our ‘primordial’ particle in terms of its ( �P , �Q) coordinates. Our
first attempt will be to describe a fermion. It should resemble the “neutrino” from
Chap. 15.2, but we may have to replace the sheets by point particles. This means
that the primordial particle cannot obey Dirac’s equation. The important point is
that we give the primordial particle a Hamiltonian hop

0 having a spectrum ranging
from −π/δt to π/δt in natural units, using the systematic procedure described in
Chap. 14. hop

0 does not yet describe interactions. It is a free Hamiltonian and there-
fore it allows for a detailed calculation of the particle’s properties, which of course
will be trivial, in a sense, until we add interactions.

Upon second quantization then, if the negative energy levels are filled, and the
positive energy levels are kept empty, we have the vacuum state, the state with lowest
energy.

This gives us a local Hamilton density H op
0 , and the evolution operator over one

unit δt in time will be generated by the operator (see Sect. 15; we set δt = 1 again)

U
op
A = e−iH op

0 , H op = $ψhop
0 ψ, (22.3)

This operator obeys locality and positivity by construction: locality follows from the
observation described in Chap. 14, which is that the expansion of arc sines converge
rapidly when we limit ourselves to the middle of the energy spectrum, and positivity
follows from second quantization.

Now we carefully insert interactions. These will be described by an evolution
operator Uop

B = e−iBop
. Of course, this operator must also be deterministic. Our

strategy is now that Uop
B will only generate rare, local interactions; for instance, we

can postulate that two particles affect each other’s motion only under fairly special
circumstances of the surrounding vacuum. Note, that the vacuum is filled with parti-
cles, and these degrees of freedom may all play a role. We ensure that the interaction
described by Uop

B is still local, although perhaps next-to-next-to nearest neighbours
could interact.

The total evolution operator is then

e−iH op =Uop(δt)= (
U

op
A

) 1
2U

op
B

(
U

op
A

) 1
2 = e− 1

2 iH
op
0 e−iBop

e−
1
2 iH

op
0 , (22.4)

which we symmetrized with the powers 1/2 for later convenience. This, we subject
to the Baker–Campbell–Hausdorff expansion, Sect. 21.2.

Now, it is important to make use of the fact that Bop is small. Expanding with
respect to Bop, we may start with just the first non-trivial term. Using the notation
defined in Eq. (21.23) of Sect. 21.3, we can find the complete set of terms in the
expansion of H op to all powers of H op

0 but up to terms linear in Bop only. This goes
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as follows: let A,B, and C(t) be operators, and t an arbitrary, small parameter. We
use the fact that

eFRe−F = {
eF ,R

}=R+ [F,R] + 1
2!
[
F, [F,R]]+ 1

3!
[
F,

[
F, [F,R]]]+ · · · ,

(22.5)

and an expression for differentiating the exponent of an operator C(t), to derive:

eC(t) = e 1
2AetBe

1
2A,

d
dt e
C(t) =

∫ 1

0
dxexC(t) dC

dt e
(1−x)C(t) = e 1

2ABetBe
1
2A = e 1

2ABe−
1
2AeC(t)

→
∫ 1

0
dx

{
exC(t), dC

dt

}= {
eC(t)−1
C(t)

, dC
dt

}= {
e

1
2A,B

}
,

(22.6)

where, in the last line, we multiplied with e−C(t) at the right. Expanding in t , writing
C(t)=A+ tC1 +O(t2), we find

dC(t)
dt = {

C(t)

eC(t)−1
e

1
2A,B

}; C(t)=A+ {
A

2 sinh( 1
2A)
, tB

}+O
(
t2B2). (22.7)

From this we deduce that the operator H op in Eq. (22.4) expands as

H op =H op
0 + { H

op
0

2 sin( 1
2H

op
0 )
,Bop}+O

(
Bop)2

. (22.8)

Expanding the inverse sine, the accolades give

x
2 sin(x/2) = 1 + 1

24x
2 + 7

5760x
4 + · · · →

{ H
op
0

2 sin( 1
2H

op
0 )
,Bop}= Bop + 1

24

[
H

op
0 ,

[
H

op
0 ,B

op]]

+ 7
5760

[
H

op
0 ,

[
H

op
0 ,

[
H

op
0 ,

[
H

op
0 ,B

op]]]]+ · · ·
+O

(
Bop)2

.

(22.9)

We can now make several remarks:

– This is again a BCH expansion, and again, one can object that it does not con-
verge, neither in powers of H op

0 nor in powers of Bop.
– However, now Bop may be assumed to be small, so we do not have to go to high

powers of Bop, when we wish to compute its effect on the Hamiltonian.
– But the expansion in H op

0 at first sight looks worrying. However:
– We have the entire expression (22.8), (22.9) to our disposal. The term linear in
Bop can be rewritten as follows:

Let Bk� be the matrix elements of the operator Bop in the basis of eigenstates
|E0〉 ofH op

0 . Then, the expression in accolades can be seen to generate the matrix
elements of H op:

Hk� = �Eok�

2 sin( 1
2�E

o
k�)
Bk�, (22.10)

where �Eok� is the energy difference between the two basis elements considered.
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– Since Bop is considered to be small, the energies E0 of the states considered are
expected to stay very close to the total energies of these states.

– It is perhaps not unreasonable now to assume that we may limit ourselves to ‘soft
templates’, where only low values for the total energies are involved. This may
mean that we might never have to worry about energies as large as 2π/δt , where
we see the first singularity in the expansion (22.9).

Thus, in this approach, we see good hopes that only the first few terms of the BCH
expansion suffice to get a good picture of our interacting Hamiltonian. These terms
all obey locality, and the energy will still be bounded from below.

There will still be a long way to go before we can make contact with the Standard
Model describing the world as we know it. What our procedure may have given us
is a decent, local as well as bounded Hamiltonian at the Planck scale. We know from
quantum field theories that to relate such a Hamiltonian to physics that can be ex-
perimentally investigated, we have to make a renormalization group transformation
covering some 20 orders of magnitude. It is expected that this transformation may
wipe out most of the effective non-renormalizable interactions in our primordial
Hamiltonian, but all these things still have to be proven.

An interesting twist to the second-quantization approach advocated here is that
we have a small parameter for setting up a perturbation expansion. The sequence
of higher order corrections starts out to converge very well, but then, at very high
orders, divergence will set in. What this means is that, in practice, our quantum
Hamiltonian is defined with a built-in margin of error that is extremely tiny but non-
vanishing, just as what we have in quantum field theory. This might lead to a formal
non-locality that is far too small to be noticed in our quantum calculations, while it
could suffice to take away some of the apparent paradoxes that are still bothering
many of us.

Thus, in this section, we produced a credible scenario of how a theory not unlike
the Standard Model may emerge from further studies of the approach proposed here.
It was an argument, not yet a proof, in favour of the existence of cellular automaton
models with this capacity.

22.2 More About Edge States

The notion of edge states is used in solid state physics and presumably elsewhere
in mathematical physics as well. In our book, states that deserve to be called “edge
states” arise when we attempt to reproduce canonical commutation rules such as

[q,p] = iI, (22.11)

in a finite dimensional vector space. To prove that this is fundamentally impossible
is easy: just note that

Tr(pq)= Tr(qp), Tr(I)=N, (22.12)
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where N is the dimensionality of the vector space. So, we see that in a finite-
dimensional vector space, we need at least one state that violates Eq. (22.11). This
is then our edge state. When we limit ourselves to states orthogonal to that, we re-
cover Eq. (22.11), but one cannot avoid that necessarily the operators q and p will
connect the other states to the edge state eventually.

In the continuum, this is also true; the operators q and p map some states with
finite L2 norm onto states with infinite norm.

Often, our edge states are completely delocalized in space–time, or in the space
of field variables. To require that we limit ourselves to quantum states that are or-
thogonal to edge states means that we are making certain restrictions on our bound-
ary conditions. What happens at the boundary of the universe? What happens at the
boundary of the Hamiltonian (that is, at infinite energies)? This seems to be hardly
of relevance when questions are asked about the local laws of our physical world. In
Chap. 16, we identified one edge state to a single point on a two-dimensional torus.
There, we were motivated by the desire to obtain more convergent expressions. Edge
states generate effective non-locality, which we would like to see reduced to a min-
imum.

We also had to confront edge states in our treatment of the constraints for the lon-
gitudinal modes of string theory (Sect. 17.3.5). Intuitively, these edge state effects
seem to be more dangerous there.

Note furthermore, that in our first attempts to identify the vacuum state, Sect. 14,
it is found that the vacuum state may turn out to be an edge state. This is definitely
a situation we need to avoid, for which we now propose to use the procedure of
second quantization. Edge states are not always as innocent as they look.

22.3 Invisible Hidden Variables

In the simplest examples of models that we discussed, for instance those in
Chaps. 13 and 15, the relation between the deterministic states and the quantum
basis states is mostly straightforward and unambiguous. However, when we reach
more advanced constructions, we find that, given the quantum Hamiltonian and the
description of the Hilbert space in which it acts, there is a multitude of ways in
which one can define the ontological states. This happens when the quantum model
possesses symmetries that are broken in the ontological description. Look at our
treatment of string theory in Sect. 17.3: the quantum theory has the entire contin-
uous, D dimensional Poincaré group as a symmetry, whereas, in the deterministic
description, this is broken down to the discrete lattice translations and rotations in
the D − 2 dimensional transverse space.

Since most of our deterministic models necessarily consist of discretized vari-
ables, they will only, at best, have discrete symmetries, which means the all contin-
uous symmetries C of the quantum world that we attempt to account for, must be
broken down to discrete subgroups D ⊂ C. This means that there is a group C/D
of non-trivial transformations of the set of ontological variables onto another set of
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variables that, amongst themselves, also completely commute, so that these could
also serve as ‘the’ ontological variables. We can never know which of these sets are
the ‘true’ ontological variables, and this means that the ‘true’ ontological variables
are hidden from us. Thus, which operators exactly are to be called true beables,
which are changeables and which are superimposables, will be hidden from our
view. This is why we are happy to adopt the phrase ‘hidden variables’ to describe
our ontological variables. Whether or not we can call them ‘invisible’ depends on
the question whether any quantum states can be invisible. That phrase might be
misleading.

For our analysis of Bell’s theorem, this is an important issue. If the true onto-
logical variables could have been identified, it would have been possible to deduce,
in advance, how Alice and Bob will choose their settings. The fact that this is now
impossible removes the ‘conspiracy’ aspect of the CAI.

22.4 How Essential Is the Role of Gravity?

Quantum gravity is not sufficiently well understood to allow us to include the grav-
itational force in our quantum theories. This may well be the reason why some
aspects of this work are leaving holes and question marks. Gravity is active at the
smallest conceivable scale of physics, which is exactly the scale where we think our
theories are most relevant. So no-one should be surprised that we do not completely
succeed in our technical procedures. As stated, what we would wish to be able to do
is to find a class of deterministic models that are locally discrete and classical, but
that can be cast in a form that can be described by a quantum field theory.

As emphasised before (Sect. 19.1), our quantum field theories are described by
a Hamiltonian that is both extensive and bounded from below. It means that the
Hamiltonian can be written as

H =
∫

d3 �x T 00(�x). (22.13)

The operator T 00 is the Hamilton density, and locality and causality in quantum
field theory require that, at equal times, t = t0,

[
T 00(�x1, t0), T

00(�x2, t0)
]= 0 if �x1 �= �x2. (22.14)

Having difficulties recuperating Eq. (22.14) from our cellular automaton, it may be
worth while to observe that the operator T 00 pays the important role of generator of
space-dependent time translations: if we change the metric tensor g00 in the time
direction by an amount δg00(�x, t), then the change in the total action of matter is

δS = 1
2

∫
d3 �x dt

√−gT 00δg00(�x, t), (22.15)

(which can actually be seen as a definition of the stress-energy-momentum tensor
T μν ). Indeed, if we take δg00 to be independent of the space coordinate �x, then the
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amount of time that went by is modified by 1
2

∫
δg00dt , which therefore yields a

reaction proportional to the total Hamiltonian H .
The operator

∫
d3 �x√−gT 00(�x)f (�x) is the generator of a space dependent time

translation: δt = f (�x). One finds that T μν(�x, t) is the generator of general coordi-
nate transformations. This is the domain of gravity. This gives us reasons to believe
that quantum theories in which the Hamiltonian is extrinsic, that is, the integral of
local terms T 00(�x, t), are intimately connected to quantum gravity. We still have
problems formulating completely self-consistent, unambiguous theories of quan-
tum gravity, while this seems to be a necessary ingredient for a theory of quantum
mechanics with locality.

Apart from the reasons just mentioned, we suspect an essential role for gravity
also in connection with our problem concerning the positivity of the Hamiltonian.
In gravity, the energy density of the gravitational field is well-known to be negative.
Indeed, Einstein’s equation,

Tμν − 1
8πGGμν = 0, (22.16)

can be interpreted as saying that the negative energy momentum density of gravity
itself, the second term in Eq. (22.16), when added to the energy momentum tensor
of matter, Tμν , leads to a total energy-momentum tensor that vanishes. The reason
why the total energy-momentum tensor vanishes is that it generates local coordinate
transformations, under which all amplitudes should be invariant.

In Sect. 7, and in Sect. 9.3, it was indicated that gravity might be associated with
local information loss. This would then mean that information loss should become
an essential ingredient in theories that explain the emergence of quantum mechanics
with locality from a cellular automaton model with locality built in.
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Chapter 23
Conclusions of Part II

We had three reasons for working out many of our technical exercises in the second
part of this book. First, we wanted to show what techniques can be used to support
our assertions made earlier, which state that there are many ways to link quantum
mechanical models with completely deterministic ones. Most of these deterministic
models were chosen just to demonstrate some points; these were too simple to show
delicate structures of direct physical interest. Some of our models are “computation-
ally universal”, which means that they contain sufficient amounts of complexity to
investigate their physical interest [37, 61].

Secondly, we wish to demonstrate that conventional quantum mechanics contains
extensive mathematical tools that can be employed here as well. Fourier expan-
sions, Taylor expansions, unitary transformations in Hilbert space, perturbation ex-
pansions, the Noether theorem, and other well-known procedures, are all extremely
useful here. We wish to sketch the picture that quantum mechanics, as we know it,
should be looked upon as a powerful mathematical tool to handle statistical features
of our theories. If the dynamical equations are too complex to allow us to solve
them, the quantum statistical approach may be the only option we have. No other
systematic mathematical machinery would allow us to examine statistical features
of any non-trivial cellular automaton when stretched over scales a billion times a bil-
lion times as large as the elementary scale of the individual cells. In quantized field
theories, the tool that makes such jumps over scales is called the renormalization
group.

Thirdly, we do not want to belittle the difficulties that are still there. A completely
systematic strategy for constructing models as complex as the Standard Model, has
not yet been found; instead, we found several procedures that could be considered
as useful ingredients for such a strategy, even if still quite incomplete. We empha-
sise that “no-go” theorems, such as Bell’s theorem and the CHSH inequalities, do
contain the loopholes that have been pointed out repeatedly. “Super determinism”,
abhorred by a majority of researchers, becomes less fearsome if one realizes that it
comes with its own conservation law, the conservation of the ontic nature of a quan-
tum state. To describe our universe, we have to limit ourselves to the ontic states.
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These form a very small subset of the “template states” that are normally used in
quantum mechanics. Ontic states can only evolve into ontic states.

The issue of ‘conspiracy’ may still be worrisome to the reader, even if it is clear
that our theory will not allow us to predict anything about the settings to be used
by Alice and Bob. The notion of ‘free will’ can be addressed without religious or
emotional overtones; it is simply a statement about correlation functions in the initial
state, see Sect. 3.8 about this. Complete clarifications of some issues may have to
wait until more is known about how to handle quantum field theories such as the
Standard Model, and quantum gravity, in the CAI.

Quite generally, symmetries, symmetry conservation laws and symmetry trans-
formations, are central not only in conventional quantum mechanics but also in its
CA interpretation. A special point was raised in connection with the non-compact,
or infinite symmetry groups, such as the various components of the Poincaré group.
Their Noether charges are observable in the classical limit, but in the quantum do-
main these charges do not commute. This means that these charges must be con-
glomerates of beables and changeables, and this causes complications in reproduc-
ing such symmetries as features in our cellular automata.

We found a conspicuous property of the quantized strings and superstrings. With-
out modifying any of their physics, it was noted that their ontological degrees of
freedom appear to live on a space–time lattice, with a lattice length parameter
aspacetime = 2π

√
α′. This not only reflects the fact that string theory is finite, but

gives it a clear physical interpretation.
The Cellular Automaton Interpretation has to deal with more mysteries. We

do reproduce quantum mechanics exactly, so also the numerous peculiarities and
counter intuitive characteristics of quantum mechanics are duly reproduced. There
are however other reasons why the most explicit model constructions sketched here
are not, or not yet, sufficiently refined to serve as models where we can explain
all typically quantum mechanical consequences. A critical reader may rightly point
to these obstacles; we bring forward as our defence that the Cellular Automaton
Interpretation of quantum mechanics yields a considerable amount of clarification
of features of quantum mechanics that have been shrouded by mysteries over the
years: the collapse question, the measurement problem, Schrödinger’s cat, the links
between quantum mechanical descriptions and classical descriptions of our world,
as well as clear indications as to how to avoid the “many worlds” as well as the “pilot
waves”. All these came as bonuses, while our real motivation has always been the
question of reconciling the gravitational force with quantum mechanics. We suspect
that the work presented here will be very helpful in achieving such aims.

Not only the interpretation of quantum mechanics, but also some issues in the
foundations of quantum field theories may be at stake in this approach. We ob-
served that the procedure of second quantization may have to be applied not only in
the use of quantum field theories, but also for the construction of our Hamiltonian,
and this raises issues of convergence of the perturbation expansion. Our conclusion
is now that this expansion may not converge, just as what we have in quantum field
theory. Here, however, this leads us to suggest a novel implication: there is an un-
avoidable margin of error not only in our use of quantum field theories to calculate
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particle properties, but a similar margin of error may also exist in our use of quantum
mechanics altogether: quantum calculations cannot be done with infinite accuracy.

Perhaps the only infinitely precise calculations that can be done are explicit com-
puter simulations of the cellular automata themselves.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, dupli-
cation, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, a link is provided to the Creative Com-
mons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.



Appendix A
Some Remarks on Gravity in 2 + 1 Dimensions

Gravity in 2+1 dimensions is a special example of a classical theory that is difficult
to quantize properly, at least if we wish to admit the presence of matter.1 One can
think of scalar (spin zero) particles whose only interactions consist of the exchange
of a gravitational force. The classical theory [99, 105, 124] suggests that it can be
quantized, but something very special happens [107], as we shall illustrate now.

The Einstein equations for regions without matter particles read

Rμν = 0, (A.1)

but in 2 + 1 dimensions, we can write

Sαβ = Sβα = 1
4ε
αμνεβκλRμνκλ, Rμνκλ = εμναεκλβSαβ,

Rμν = gμνSαα − Sμν, Sμν = −Rμν + 1
2Rgμν.

(A.2)

Consequently, Eq. (A.1) also implies that the Riemann tensor Rμνκλ vanishes.
Therefore, matter-free regions are flat pieces of space–time (which implies that,
in 2 + 1 dimensions, there are no tidal forces).

When a particle is present, however, Rμν does not vanish, and therefore a particle
is a local, topological defect. One finds that a particle, when at rest, cuts out a wedge
from the 2-dimensional space surrounding it, turning that 2-space into a cone, and
the deficit angle of the excised region is proportional to the mass: In convenient
choices of the units, the total wedge angle is exactly twice the mass μ of the particle.

When the particle moves, we choose to orient the wedge with its deficit angle
such that the particle moves in the direction of the bisector of the angle. Then, if we
ask for the effect of the associated Lorentz transformation, we see that the wedge
is Lorentz contracted. This is illustrated in Fig. A.1, where the crosses and circles
indicate which points are identified when we follow a loop around the particle. We
see that, because we chose the particle to move along the bisector, there is no time
shift at this identification, otherwise, there would have been. This way we achieve

1In 2 + 1 dimensions, gravity without particles present can be quantized [18, 19, 91, 105, 124], but
that is a rather esoteric topological theory.
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Fig. A.1 The angle cut out of
space when a particle moves
with velocity ξ . See text

that the surrounding space can be handled as a Cauchy surface for other particles
that move around.

Some arithmetic shows that, if the particle’s velocity is defined as tanh ξ , the
Lorentz contraction factor is cosh ξ , and the opening angleH of the moving particle
is given by

tanH = cosh ξ tanμ. (A.3)

If η is the velocity of the seam between the two spaces (arrow in Fig. A.1), then we
find

tanhη= sinH tanh ξ, (A.4)

cosμ= cosH coshη, (A.5)

sinhη= sinμ sinh ξ. (A.6)

Equation (A.3) gives a relation between H and μ that turns into the usual relation
between mass in motion and energy in the weak gravity limit, while deficit angles
such as H are additive and conserved. Therefore, we interpret H as the energy of
the moving particle, in the presence of gravity.

In Ref. [107], we argued that, taking μ to be constant, d(cosH coshη) = 0, so
that

− sinH coshη dH + cosH sinhη dη= 0,
∂H

∂η
= tanhη

tanH
. (A.7)

Furthermore, it was derived that we can make tessellations of Cauchy surfaces using
configurations such as in Fig. A.1 in combination with vertices where no particles
are residing, so that the Cauchy surface is built from polygons. The edges Li where
one polygon is connected to another either end in one of these auxiliary vertices or
one of the physical particles. We can then calculate how the lengths of the edges Li
grow or shrink.

Both end points of a boundary line make the line grow or shrink with independent
velocities, but the orthogonal components are the same. To define these unambigu-
ously, we take a point such as the small circle in Fig. A.1, which moves in a direction
orthogonal to the seam. We now see that our particle gives a contribution to dL/dt
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equal to

dL

dt

∣
∣∣∣
ξ

= tanh ξ cosH. (A.8)

Combining this with Eqs. (A.4) and (A.7), one finds

dL

dt

∣∣∣∣
ξ

= tanhη

tanH
= ∂H
∂η
. (A.9)

Furthermore, the Hamiltonian does not depend on L, while η does not depend on
time, so that

dη

dt
= −∂H

∂L
= 0. (A.10)

These last two equations can be seen as the Hamilton equations for L and η.
This means that η and L are canonically associated with one another. If there are
many polygons connected together with seams Li , moving with transverse veloci-
ties tanhηi , then we obtain Hamiltonian equations for their time dependence, with
Poisson brackets

{Li, ηj } = δij . (A.11)

Thus, the lengths Li are like positions and the ηi are like the associated momenta.
This clearly suggests that all one needs to do to obtain the quantum theory is to
postulate that these Poisson brackets are replaced by commutators.

A.1 Discreteness of Time

There is, however, a serious complication, due to the nature of our Hamiltonian. If
we have many particles, all adding deficit angles to the shape of our Cauchy surface,
one can easily see what might happen:2

If the total energy due to matter particles exceeds the value π , the universe
will close into itself, allowing only the value 2π for its total Hamiltonian,

assuming that the universe is simply connected. Thus, the question arises what it
means to vary the Hamiltonian with respect to η’s, as in Eq. (A.9).

There is a way to handle this question: consider some regionX in the universeΩ ,
and ask how it evolves with respect to data in the rest of the universe, Ω\X. The
problem is then to define where the boundary between the two regions X and Ω\X
is.

An other peculiar feature of this Hamiltonian is that it is defined as an angle
(even if it might exceed the value π ; it cannot exceed 2π ). In the present work,

2Note, that there is factor 1/2 in the relation between the Hamiltonian and the total deficit angles,
see Fig. A.1; the total curvature of a simply connected closed surface is 4π .
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we became quite familiar with Hamiltonians that are actually simple angles: this
means that their conjugate variable, time, is discrete. The well-defined object is not
the Hamiltonian itself, but the evolution operator over one unit of time: U = e−iH .
Apparently, what we are dealing with here, is a world where the evolution goes in
discretized steps in time.

The most remarkable thing however, is that we cannot say that the time for the
entire universe is discrete. Global time is a meaningless concept, because gravity is
a diffeomorphism invariant theory. Time is just a coordinate, and physical states are
invariant under coordinate transformations, such as a global time translation. It is
in regions where matter is absent where we have local flatness, and only in those
regions, relative time is well-defined, and as we know now, discrete. Because of
the absence of a global time concept, we have no Schrödinger equation, or even a
discrete time-step equation, that tells us how the entire universe evolves.

Suppose we split the universe Ω into two parts, X and Ω\X. Then the edges
Li in X obey a Schrödinger equation regarding their dependence on a relative time
variable t (it is relative to time in Ω\X). The Schrödinger equation is derived from
Eq. (A.5), where now H and η are operators:

η= −i ∂
∂L
, H = i ∂

∂t
. (A.12)

If the wave function is ψ(L, t), then

(cosH)ψ(L, t)= 1
2

(
ψ(L, t + 1)+ψ(L, t − 1)

)
, (A.13)

and the action of 1/ coshη on ψ(L, t) can be found by Fourier transforming this
operator:

(coshη)−1ψ(L, t)=
∫ ∞

−∞
dy

1

2 cosh(πy/2)
ψ(L+ y, t). (A.14)

So, the particle in Fig. A.1 obeys the Schrödinger equation following from Eq. (A.5):

ψ(L, t + 1)+ψ(L, t − 1)=
∫ ∞

−∞
dy

cosμ

cosh(πy/2)
ψ(L+ y, t). (A.15)

The problem with this equation is that it involves all L values, while the poly-
gons forming the tessellation of the Cauchy surface, whose edge lengths are given
by the Li , will have to obey inequalities, and therefore it is not clear to us how
to proceed from here. In Ref. [107] we tried to replace the edge lengths Li by the
particle coordinates themselves. It turns out that they indeed have conjugated mo-
menta that form a compact space, so that these coordinates span some sort of lattice,
but this is not a rectangular lattice, and again the topological constraints were too
difficult to handle.

The author now suspects that, in a meaningful theory for a system of this sort,
we must require all dynamical variables to be sharply defined, so as to be able to
define their topological winding properties. Now that would force us to search for
deterministic, classical models for 2+1 dimensional gravity. In fact, the difficulty of
formulating a meaningful ‘Schrödinger equation’ for a 2 + 1 dimensional universe,
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and the insight that this equation would (probably) have to be deterministic, was
one of the first incentives for this author to re-investigate deterministic quantum
mechanics as was done in the work reported about here: if we would consider any
classical model for 2 + 1 dimensional gravity with matter (which certainly can be
formulated in a neat way), declaring its classical states to span a Hilbert space in the
sense described in our work, then that could become a meaningful, unambiguous
quantum system [99, 105, 124].

Our treatment of gravity in 2 + 1 dimensions suggests that the space–time met-
ric and the gravitational fields should be handled as being a set of beables. Could
we do the same thing in 3 + 1 dimensions? Remember that the source of gravita-
tional fields, notably the energy density, is not a beable, unless we decide that the
gravitational fields generated by energies less than the Planck energy, are negligible
anyway (in practice, these fields are too feeble to detect), while our considerations
regarding the discretized Hamiltonian, Sects. 19.2 and 19.3, suggest the one can
define large, discretized, amounts of energy that indeed behave as beables.

Consider a 3 + 1 dimensional gravitating system, where one of the space dimen-
sions is compactified. It will then turn into a 2 + 1 dimensional world, which we
just argued should be subject to the CAI. Should our universe not be regarded as
just such a world in the limit where the compactification length of the third spacial
dimension tends to infinity? We believe the answer is yes.



Appendix B
A Summary of Our Views on Conformal Gravity

Whenever a fundamental difficulty is encountered in handling deterministic versions
of quantum mechanics, we have to realize that the theory is intended in particular
to apply to the Planck scale, and that is exactly where the gravitational force can-
not be ignored. Gravity causes several complications when one tries to discretize
space and time. One is the obvious fact that any regular lattice will be fundamen-
tally flat, so we have to address the question where the Riemann curvature terms
can come from. Clearly, we must have something more complicated than a regular
lattice. A sensible suspicion is that we have a discretization that resembles a glassy
lattice.

But this is not all. We commented earlier on the complications caused by having
non-compact symmetry groups. The Lorentz group generates unlimited contractions
both in the space- and in the time direction. This is also difficult to square with any
lattice structure.1

Furthermore, gravity generates black hole states. The occurrence of stellar-sized
black holes is an unavoidable consequence of the theory of General Relativity. They
must be interpreted as exotic states of matter, whose mere existence will have to be
accommodated for in any “complete” theory of Nature. It is conceivable that black
holes are just large-size limits of more regular field configurations at much smaller
scales, but this is also far from being a settled fact. Many theories regard black holes
as fundamentally topologically distinct from other forms of matter such as the ones
that occur in stars that are highly compressed but did not, or not yet, collapse.

To make a link to any kind of cellular automaton (thinking of the glassy types,
for instance), it seems reasonable first to construct a theory of gravity where space–
time, and the fields defined on it, are topologically regular. Consider the standard
Einstein–Hilbert action with a standard, renormalizable field theory action for mat-

1An important comment was delivered by F. Dowker: There is only one type of lattice that reflects
perfect Lorentz invariance (and other non-compact symmetries), and this is the completely random
lattice [32].
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ter added to it:

Ltotal = √−g(LEH +Lmatter),

LEH = 1

16πGN
(R − 2Λ),

Lmatter = − 1
4G

a
μνG

a
μν −ψγμDμψ − 1

2 (Dϕ)
2 − 1

2m
2
ϕϕ

2 − 1
12Rϕ

2

− V4(ϕ)− V3(ϕ)−ψ
(
yiϕi + iy5

i γ
5ϕi +md

)
ψ.

(B.1)

Here, Λ is the cosmological constant, ϕ stands for, possibly more than one, scalar
matter fields, V4 is a quartic interaction, V3 a cubic one, yi and u5

i are scalar and
pseudo-scalar Yukawa couplings,mϕ andmd are mass terms, and the term − 1

12Rϕ
2

is an interaction between the scalar fields and the Ricci scalar R that is necessary
to keep the kinetic terms for the ϕ field conformally covariant.2 Subsequently, one
rewrites

gμν = ω2(�x, t)ĝμν, ϕ = ω−1ϕ̂,

ψ =w−3/2ψ̂,
√−g = ω4

√
−ĝ, (B.2)

and substitutes this everywhere in the total Lagrangian (B.1).
This leaves a manifest, exact local Weyl invariance in the system:

ĝμν →Ω2(�x, t)ĝμν, ω→Ω(�x, t)−1ω,

ϕ̂→Ω(�x, t)−1ϕ̂, ψ̂ →Ω(�x, t)−3/2ψ̂.
(B.3)

The substitution (B.2) turns the Einstein–Hilbert Lagrangian into

LEH = 1

16πGN

(
ω2R̂ − 2ω4Λ+ 6ĝμν∂μω∂νω

)
. (B.4)

Rescaling the ω field: ω= κ̃χ, κ̃2 = 4
3πGN , turns this into

1
2 ĝ
μν∂μχ∂νχ + 1

12 R̂χ
2 − 1

6 κ̃
2Λχ4. (B.5)

The resemblance between this Lagrangian for the χ field and the kinetic term
of the scalar fields ϕ in Eq. (B.1), suggests that no singularity should occur when
χ → 0, but we can also conclude directly from the requirement of exact confor-
mal invariance that the coupling constants should not run, but keep constant values
under (global or local) scale transformations.3 Note, that χ → 0 describes the small-
distance limit of the theory.

The theory was originally conceived as an attempt to mitigate the black hole
information paradox [111, 112], then it was found that it could serve as a theory
that determines the values of physical parameters that up to the present have been

2Since this term can be replaced by others when the field equations are inserted, its physical sig-
nificance is indirect.
3The usual, non-vanishing β-functions in quantum field theories, refer to the scaling behaviour of
ratios, such as ϕ/χ .
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theoretically non calculable (this should follow from the requirement that all renor-
malization group functions βi should cancel out to be zero [112]).

For this book, however, a third feature may be important: with judiciously chosen
conformal gauge-fixing procedures, one may end up with models that feature upper
limits on the amount of information that can be stowed in a given volume, or 4-
volume, or surface area.



Appendix C
Abbreviations

In order to avoid irritating the reader, only very few abbreviations were used. Here
is a short list:

BCH expansion Baker Campbell Hausdorff expansion
CA Cellular automaton
CAI Cellular Automaton Interpretation
CAT Cellular Automaton Theory
CPT symmetry operation obtained by combining C (charge

conjugation), P (parity reversal, or mirror transformation)
and T (time reversal)

CHSH inequality Clauser–Horne–Shimony–Holt inequality
D state state with spin 2
DNA Deoxyribonucleic acid, name of the molecules occurring

in all living organisms, containing most of their genetic
information

GeV giga-electronvolt or 109 eV, a measure for energy, or
mass-energy of a sub-atomic particle

SM Standard Model of the sub-atomic particles
EPR Einstein Podolsky Rosen
PQ formalism (theory) formalism (theory) using discrete variables P andQ as in

Chap. 16
P state state with spin 1
QM quantum mechanics
S state state with spin 0
UV divergence ultra-violet (short distance) divergence
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