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Preface

This collection is composed of a collection of ten papers, all of which focus on the theme of
quantum dynamics. This topic has been the subject of numerous articles and conferences
recently, and the papers cover a wide range of topics which fall into this category. The
works represented here also report on new phenomena such as emergence of quasiperiodic
patterns, dynamic localization and strongly correlated sources of radiation and nonequilibri‐
um dynamics. There are two papers which investigate the subject of quantum walks, a
study of dissipative quantum dynamics, control of particle dynamics, radiative states in a
two-dimensional system, dynamic resonant tunneling, unitary approaches to dissipative
quantum dynamics, nonequilibrium transport as it relates to the Quantum Hall effect, tech‐
niques for quantum wave packet methods to describe molecular dynamics and finally a pa‐
per on the quantum dynamics of Maxwell's demon. The intention of the papers in the
collection is to make available to workers in the field of quantum mechanics and mathemati‐
cal physics recent work on some of the more important subjects of current research in this
important area.

The book has been put together by an international group of invited authors, and it is a
pleasure to thank them for their hard work and significant contributions to this volume. I
gratefully thank for Ms Andrea Koric, who was the publishing manager throughout the
publishing process, for her assistance and help provided as well as the Intech publishing
group for the opportunity to publish this volume.

Dr Paul Bracken
Department of Mathematics

University of Texas Rio Grande Valley
USA
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Chapter 1

Invariance in Quantum Walks

Miquel Montero

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62872

Abstract

In this Chapter, we present some interesting properties of quantum walks on the line. We
concentrate our attention in the emergence of invariance and provide some insights into
the ultimate origin of the observed behavior. In the first part of the Chapter, we review
the building blocks of the quantum-mechanical version of the standard random walk in
one dimension. The most distinctive difference between random and quantum walks is
the replacement of the random coin in the former by the action of a unitary operator upon
some internal property of the later. We provide explicit expressions for the solution to the
problem when the most general form for the homogeneous unitary operator is consid‐
ered, and we analyze several key features of the system as the presence of symmetries or
stationary limits. After that, we analyze the consequences of letting the properties of the
coin operator change from site to site, and from time step to time step. In spite of this lack
of homogeneity, the probabilistic properties of the motion of the walker can remain
unaltered if the coin variability is chosen adequately. Finally, we show how this invariance
can be connected to the gauge freedom of electromagnetism.

Keywords: quantum walks, invariance, symmetry, Dirac equation, gauge transform

1. Introduction

In  their  origins  [1–5],  quantum  walks  (QWs)  were  thought  as  the  quantum-mechanical
generalization of  the standard random walk in  one dimension:  the mathematical  model
describing the motion of a particle which follows a path that consists of a succession of jumps
with fixed length whose direction depends on the random outcome of flipping a coin. In the
quantum version, the coin toss is replaced by the action of a unitary operator upon some intrinsic
degree of freedom of the system, a quantum observable with only two possible eigenvalues: for
example, the spin of an electron, the polarization of a photon, or the chirality of a molecule.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



After this preliminary analysis, it became clear that the similitude between these two processes
was mainly formal and that random and QWs displayed divergent properties [6]. The most
remarkable of these discrepancies is perhaps the ability of unbiased QWs to spread over the
line, not as the square root of the elapsed time, the fingerprint of any diffusion process, but
with constant speed [7]. This higher rate of percolation enables the formulation of quantum
algorithms [8, 9] that can tackle some problems in a more efficient way than their classical
analogs: For instance, QWs are very promising resources for optimal searching [10–12]. Today,
QWs have exceeded the boundaries of quantum computation and attracted the attention of
researchers from other fields as, for example, information theory or game theory [13–16].

As a consequence of this wide interest, diverse extensions of the discrete-time QW on the line
have been considered in the past. Most of these variations are related with the properties of
the unitary coin operator [17], backbone of the novel features of the process. Thus, one can find
in the literature QWs whose evolution depends on more than one coin [18–20], QWs that suffer
from decoherence [21, 22], or QWs driven by inhomogeneous, site-dependent coins [23–28].
There are also precedents where the temporal variability of the QW is explicit: in the form of
a recursive rule for the coin selection, as in the so-called Fibonacci QWs [29, 30], through a
given function that determines the value of the coin parameters [31–33], or by means of an
auxiliary random process that modifies properties of the coin [34].

The main goal in most of these seminal papers is to find out new and exciting features that the
considered modifications introduce in the behavior of the system, like the emergence of
quasiperiodic patterns or the induction of dynamic localization. Recent works [35–37],
however, have also regarded the issue from the opposite point of view, by exploring the
conditions under which the evolution of the system results unchanged. In particular, Montero
[37] considers the case of a discrete-time QW on the line with a time-dependent coin, a unitary
operator with changing phase factors.

These phase factors are three parameters that appear in the definition of the coin operator
whose relevance has been sometimes ignored in the past: When these phases are static
magnitudes, they are superfluous [38], but if they are dynamic quantities, they can substan‐
tially modify the evolution of the system. This fact does not close the door to the possibility
that a set of well-tuned variable phase factors can keep the process unchanged from a proba‐
bilistic perspective. This defines a control mechanism that can compensate externally induced
decoherence and introduces a nontrivial invariance to be added to other well-known symme‐
tries of QWs [39–41].

In this Chapter, we will review the approach taken in [37] and consider a generalization of it.
Now, the evolution of the discrete-time quantum walker on the line will be subjected to the
introduction of a fully inhomogeneous coin operator: The properties of the unitary operator
will depend both on the location and on the present time through the action of the aforemen‐
tioned phase factors. This extra variability leads to additional constraints to be satisfied by
these magnitudes if one wants to guarantee that the properties of the motion of the walker
remain unaltered. Finally, we will connect our results with those appearing in the study of Di
Molfetta et al. [36], where the authors considered how the inclusion of time- and site-dependent
phase factors in the coin operator of a quantum walk on the line may induce some dynamics
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which, in the continuous limit, can be linked with the propagation of a Dirac spinor coupled
to some external electromagnetic field. We will also explore the implications of this mapping
here.

2. Fundamentals of QWs

We begin this Chapter with a survey of the fundamental concepts required in the designing
of discrete QWs on the line. In its simplest version, the particle represented by the walker can
occupy detached and numerable locations on a one-dimensional space. This space of positions
may be just a topological space (a graph or a chain, for instance) or can be endowed with a
metric. In such a case, it is usual to consider that the sites are separated by a fixed distance , so
that X =n ⋅ l. Within this standard framework, time increases in discrete steps as well, 1 T = t ⋅τ,
τ being the sojourn time so that variable t  becomes a non-negative integer index,
t∈{0,1,2,⋯}, and the evolution of the system is just a sequence of states, |ψ t.

Up to this point, there is no significant difference between random and quantum walks. The
major distinction is found in the nature of the random event that determines the progress of
the particle. While in a world governed by the laws of classical mechanics, randomness is the
way in which we describe the uncertain effect of multiple (and usually uncontrollable) external
agents acting upon a system, in the realms of quantum mechanics randomness is not an
exogenous ingredient. This means that we can use some internal degree of freedom in the
quantum system with two possible eigenvalues (the spin, the polarization, or the chirality) as
a proxy for the coin and understand that any change in this inner property is the result of the
act of tossing. Therefore, to represent the state of the walker, we need two different Hilbert
spaces: ℋP , the Hilbert space of particle positions spanned by the basis {|n :n∈ ℤ}, and the
Hilbert space of the coin states, ℋC , which is spanned by the basis {| + , | − }. The expression
of |ψ t  in the resulting Hilbert space ℋ , ℋ ≡ℋC ⊗ℋP , reads

[ ]
=

| = ( , ) | | ( , ) | | ,t
n

n t n n t ny y y
¥

+ -
-¥

ñ +ñÄ ñ + -ñÄ ñå (1)

where we have introduced the wave-function components ψ±(n, t), the two-dimensional
projection of the state of the walker into the elements of the basis:

( , ) | | ,tn t ny y+ º á Ä á+ ñ (2)

1 There is another kind of QW, called continuous quantum walk, in which the walker can modify its position at any time:
this is the quantum counterpart of continuous-time random walk. The evolution of processes belonging to this category
is ruled by a Hamiltonian and the corresponding Schrödinger equation. In spite they are different, discrete, and
continuous QWs share common traits [42].
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( , ) | | .tn t ny y- º á Ä á- ñ (3)

Now, we have to consider the mechanism that connects these two properties, position and
quirality, which eventually leads to a model for the dynamics of ψ±(n, t). Evolution in the
discrete-time, discrete-space QW can be regarded as the result of the action of operator

 on the state of the system |ψ t . As it can be observed, the practical implementation

of operator  has two stages: In the first one, the unitary operator  modifies exclusively the
internal degree of freedom of the quantum system, in what represents the throw of the coin
as indicated earlier,

µ
=

[ cos | | sin | |

sin | | cos | |] | | .

i i i

n
i i

e e e

e e n n

c a b

b a

q q

q q

¥
-

-¥

-

º +ñá+ + +ñá-

+ -ñá+ - -ñá- Ä ñá

åU
(4)

In a second step, the shift operator Ŝ moves the walker depending on the result obtained after
the last toss: 2

µ ( )| | =| | 1 .n n±ñ Ä ñ ±ñ Ä ± ñS (5)

Therefore, the state of the system at a later time |ψ t+1 is recovered by application of T̂ to the
preset state:

µ
1| = | ,t ty y+ñ ñT (6)

and the complete evolution of the system is determined once |ψ 0≡ |ψ t=0 is selected. As in
any quantum problem, one can consider for the initial state of the walker any combination of
the elements in the basis of ℋ , a configuration that may lead to some degree of uncertainty
in the position and/or the chirality of the system. However, the interest in establishing
parallelisms between classical and quantum walkers encourages the choice in which, at the
beginning, the particle position is known exactly, but its internal degree of freedom is aligned
arbitrarily:

( )0| = cos | sin | | 0 .ie gy h hñ +ñ + -ñ Ä ñ (7)

2 With the present definition, the problem is spatially homogeneous and the system displays translational invariance.
Therefore, alternative shift rules may be considered with equivalent results, as in the case of directed quantum walks [43,
44], where the particle can either remain still in the place or proceed in a fixed direction but never move backward.
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Needless to say that the linearity and the translational invariance of the problem ensure that
the solution for a general initial state can be recovered by direct superposition of the evolution
of Eq. (7), Eqs. (14) to (17) later.

The similarities and dissimilarities between classical and QWs must be grounded on the
analysis of the probability mass function (PMF) of the process, ρ(n, t), the probability that the
walker can be found in a particular position n at a given time t . The PMF for a random walk
is

2 2
c .( , ) = (1 ) ,

2

t n t n

las

t
n t p pt nr

+ -æ ö
ç ÷ -+ç ÷ç ÷
è ø

(8)

where p is the probability of obtaining a head as the result of flipping the coin. For the QW,
ρ(n, t) is the sum of the squared modulus of the wave-function components,

2 2( , ) = ( , ) ( , ) .n t n t n tr y y+ -+ (9)

On the basis of the values of the moduli of ψ±(n, t) we can also express the probability of
obtaining a head value or a tail value when measuring the global coin state of the walker:

2

=
( ) ( , ) ,

n
P t n ty

¥

± ±
-¥

º å (10)

or the value of M (n, t),

2 2( , ) ( , ) ( , ) ,M n t n t n ty y+ -º - (11)

another interesting magnitude that can be connected with the local magnetization of the system
if the internal degree of freedom has its origin in the spin of the particle [45].

2.1. General solution

The evolution operator  induces the following set of recursive equations in the wave-function
components,

( , ) = [ cos ( 1, 1) sin ( 1, 1)],i i in t e e n t e n tc a by q y q y-
+ + -- - + - - (12)
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and

( , ) = [ sin ( 1, 1) cos ( 1, 1)],i i in t e e n t e n tc b ay q y q y-
- + -+ - - + - (13)

whose general solution [38] can be written in a compact way by using ψ+(0,0) and ψ−(0,0),

(0,0) = cos ,

(0,0) = sin ,ie g

y h

y h
+

-

and the nonzero components of the wave function at time t =1,

( )

( )

( 1,1) = cos cos sin sin ,

( 1,1) = cos sin sin cos ,

i i i

i i i

e e e

e e e

c a g b

c b g a

y h q h q

y h q h q

-
+

-
-

é ù+ +ë û
é ù- -ë û

since ψ+(−1,1)=ψ−( + 1,1)=0, cf. Eqs. (12) and (13). In terms of the preceding quantities, and for
n∈{− t , − t + 2,⋯, t −2,t}, one has

( ) ( )( , ) = (0,0) ( , ) ( 1,1) ( 1, 1) ,i t n in t e n t e n tc a c ay y y× + × - +
+ + +é ùL + + L - +ë û (14)

and

( ) ( )( , ) = (0,0) ( , ) ( 1,1) ( 1, 1) ,i t n in t e n t e n tc a c ay y y× - × - -
- - -é ùL + - L + +ë û (15)

where

,
=1 ,

1 1 ( 1) 1( , ) cos ( 1) ,
1 2 cos 1

t t

r t
r r t

rnn t t
t t

pw
w

ì ü+ -ï ïé ùL º + - × -í ýê ú+ +ë ûï ïî þ
å (16)

and

, arcsin cos sin .
1r t

r
t
pw qæ öº ç ÷+è ø

(17)

It is noted that in this picture the evolution of each component depends only on their own
initial values. In fact, it can be shown [38] that |ψ+( + 1,1)| 2 can be understood as the “rightward
initial velocity” of our quantum walker, whereas |ψ−(−1,1)| 2 would play the role of the
“leftward initial velocity.”
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Even though the expression for Λ(n, t) is completely explicit, Eq. (16), it may be instructive to
show how the set of equations that cross correlate the evolution of the two components of the
wave function, Eqs. (12) and (13), turns now into a single, two-step recursive formula that
governs the whole dynamics:

[ ]( , ) = cos ( 1, 1) ( 1, 1) ( , 2).n t n t n t n tqL L - - - L + - + L - (18)

Equation (16) is recovered from the above relationship once one considers the initial condition
Λ(0,0)=1, together with the boundary conditions Λ(−n, t)=Λ(n, t)=0, for n ≥ t ≥1.

Observe how Λ(n, t) does not depend on χ, α, β, γ, or η. It is a function of θ through the value
of cosθ, a property that can be also observed in Eq. (18). One could infer from this feature that
cos2θ plays in QWs the same role of p in random walks and that the rest of parameters
represent mathematical degrees of freedom without correspondence in the physical world.
This impression can be strengthened by computing the value of the PMF in simple examples
as, for instance, when n coincides with t: in this case, ρclas.(t , t)= p t  while ρ(t , t)=cos2tθ.

This conclusion is illusory, however. It is well known [19] that ρ(n, t) does not depend on χ
and that α, β and γ appear in the PMF only in the following combination φ =α + β −γ. But it is
true as well that one needs to specify θ, φ , and η to determine even the most basic aspects of
the evolution of QWs. Figure 1 illustrates this fact. In the upper panel, we observe how the
probability is distributed unevenly for positive and negative values of n, although θ =π / 4. In
the lower panel, we face the reversed situation, θ =π / 8 but ρ(n, t) shows no clear asymmetry.

2.2. Stationary PMF

Figure 1 also shows us that the disparity in the bias is not the most striking aspect that
distinguishes QWs from their classical analogues. These differences can be appreciated more
easily when one considers the stationary limit [34]. It can be shown [38] that for t≫1, the
probability mass function ρ(n, t) is well described by ρ̄(n, t),

( )2 2 2 22

sin 1 1( , ) = [ cos2 sin 2 tan cos ],
cos

n t t n
t n t n

qr h h q j
p q

+ +
- -

(19)

in the range − tcosθ <n < tcosθ, 0<θ <π / 2. As it can be seen in Figure 1, the agreement between
ρ(n, t) and ρ̄(n, t) is greater for small values of n, whereas when |n| approaches to tcosθ, ρ(n, t)
displays an oscillatory behavior around ρ̄(n, t). Regardless of this, Eq. (19) captures the essence
of ρ(n, t): its U-shaped profile, with a central flat region and two local maxima in the vicinity
of ±tcosθ. These traits are in clear contrast to the bell-shaped contour of the classical PMF,
centered around (2p −1)⋅ t , the mean value of the displacement of the random walker (Figure
1).
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Figure 1. Probability mass function after t = 100 time steps. The dots correspond to the exact result for: (a) θ =π / 4,

η =π / 16, φ =π; (b) θ =π / 8, η =3π / 16, φ =π; the boxes represent classical probabilities with p =cos2θ, where‐
as the black solid lines correspond to ρ̄(n, t), cf. Eq. (19). We have only depicted probabilities for even values of n,
since in this case probabilities for odd values of n are identically null.

Regarding the expectation value of the position of the quantum walker, X t ,

=
( , ),t

n
X n n tr

¥

-¥

á ñ º × ål (20)

its magnitude does not stem from the location of the largest maximum of ρ(n, t), but has its
origin in the skewness of the distribution. An elementary analysis of ρ̄(n, t) reveals that any
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bias in X t  is determined in the long run by the sign of the expression between parentheses
in the right-hand side of Eq. (19). Therefore, as long as

cos2 sin 2 tan cos 0,h h q j+ ¹

the expectation value of the position of the walker will increase linearly with time:

( )( )1 sin cos2 sin 2 tan cos ,tX tq h h q já ñ - +l: (21)

as it can be checked in Figure 2. The converse is not true [40, 41]: in order to get quantum
walkers that show an exact symmetry in the parity one has to demand that

cos2 sin 2 tan cos = 0,h h q j+ (22)

Figure 2. Expectation value of the position of the walker after t = 40 time steps. The dots correspond to the exact result

for the QW with θ =π / 6, η =π / 6, φ =0, the boxes represent the classical mean position when p =cos2θ =3 / 4,
whereas the black solid line corresponds to the approximate law, Eq. (21), which in this case reads X t∼ t / 2 when

l=1.

but also that 3

cos2 sin 2 tan 2 cos = 0,h h q j+ (23)

3 Eq. (23) implies |ψ+( + 1, 1)| 2 = |ψ−(−1, 1)| 2 =1 / 2, see Eqs. (26) and (27) below. In other words, this is the
condition that ensures the absence of bias in the “initial velocities.”
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equations that have only three main families of solutions [38], being the most relevant of them
the one corresponding to η =π / 4, φ =π / 2, for any choice of θ.

3. Inhomogeneous QWs

The fact that not only χ but even α and β (after a suitable choice of γ) can be completely ignored
in the previous analysis can lead to the false conclusion that these phases can be disregarded
in any other situation. We will devote the rest of this Chapter to the analysis of a framework
where these magnitudes play a crucial role.

Consider a general inhomogeneous, time-dependent unitary operator Ût :

µ , , ,
, ,

=

, ,
, ,

[ cos | | sin | |

sin | | cos | |] | |,

i i in t n t n t
t n t n t

n
i in t n t

n t n t

e e e

e e n n

c a b

b a

q q

q q

¥ -

-¥

-

º +ñá+ + +ñá-

+ -ñá+ - -ñá- Ä ñá

åU
(24)

where αn,t , βn,t , χn,t  , and θn,t  are two-dimensional sets of real quantities. Now, we can define a

new evolution operator  based on  and the standard shift operator  Eq. (5),  in such
a way that the state of the particle at time t + 1 is the result of the application of T̂t  to |ψ t,

µ
1| = | .tt ty y+ñ ñT (25)

In this case, the information supplied by the initial state of the system is not so important:
Assume that |ψ 0 is of the form depicted in Eq. (7). Then, one has that

2
0,0 0,0 0,0

1( 1,1) = 1 cos2 cos2 sin 2 sin 2 cos ,
2

y h q h q j+ é ù+ + +ë û (26)

2
0,0 0,0 0,0

1( 1,1) = 1 cos2 cos2 sin 2 sin 2 cos ,
2

y h q h q j- é ù- - -ë û (27)

with φ0,0 ≡α0,0 + β0,0 −γ. Note how this expression is invariant under the interchange

0,0

0,0 0,0

,
.

h q

g a b

«

« +
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In practice, this means that we can modify θ0,0 and α0,0 + β0,0 in order to obtain any desired value
for |ψ+( + 1,1)|  and |ψ−(−1,1)| , irrespective of η and γ. The complex arguments of ψ+( + 1,1)

and ψ−(−1,1) can be recovered with a suitable choice of χ0,0 and α0,0 −β0,0.

The recursive equations of the wave-function components under the present dynamics
induced by  are straightforward variations of Eqs. (12) and (13):

1, 1 1, 1
1, 1

1, 1
1, 1

( , ) = [ cos ( 1, 1)

sin ( 1, 1)],

i in t n t
n t

i n t
n t

n t e e n t

e n t

c a

b

y q y

q y

- - - -
+ - - +

- - -
- - -

- -

+ - -

o o
o o

o
o

(28)

and

1, 1 1, 1
1, 1

1, 1
1, 1

( , ) = [ sin ( 1, 1)

cos ( 1, 1)].

i in t n t
n t

i n t
n t

n t e e n t

e n t

c b

a

y q y

q y

+ - + -
- + - +

- + -
+ - -

+ -

- + -

o o
o o

o
o

(29)

Since we have a specific interest in revealing a new kind of invariance, we will introduce
ψ± (n, t), the solution to a certain inhomogeneous, time-dependent appealing problem

1, 1 1, 1
1, 1

1, 1
1, 1

( , ) = [ cos ( 1, 1)

sin ( 1, 1)],

i in t n t
n t

i n t
n t

n t e e n t

e n t

c a

b

y q y

q y

- - - -
+ - - +

- - -
- - -

- -

+ - -

o o
o o

o
o

(30)

and

1, 1 1, 1
1, 1

1, 1
1, 1

( , ) = [ sin ( 1, 1)

cos ( 1, 1)].

i in t n t
n t

i n t
n t

n t e e n t

e n t

c b

a

y q y

q y

+ - + -
- + - +

- + -
+ - -

+ -

- + -

o o
o o

o
o

(31)

Therefore, our task is to find out nontrivial relationships connecting both set of parameters.
Regarding this, note that θn,t  is the same in both cases: as we have seen in Section 2, there are
some features of the process, which are exclusively encoded in these magnitudes, and
therefore, we will exclude them from the present analysis.

Invariance in Quantum Walks
http://dx.doi.org/10.5772/62872

13



4. Invariance

The properties of the system enumerated up to this point are based on the moduli of the
components of the wave function. This means, in particular, that if one has that ψ±(n, t) and

ψ± (n, t) are linked through the following identities:

,( , ) = ( , ) ,
i n tn t n t e
x

y y+ +
o (32)

and

,( , ) = ( , ) ,
i n tn t n t e
z

y y- -
o (33)

ρ(n, t) or M (n, t) will remain unchanged. The new magnitudes introduced in Eqs. (32) and
(33), ξn,t  and ζn,t , are two additional sets of arbitrary real constants, whose meaning will be
discussed below.

If we assume the validity of Eqs. (32) and (33) and replace these expressions in Eqs. (28) and
(29), the conditions to recover Eqs. (30) and (31) are

, , , , , 1, 1

, , , , , 1, 1

, , , , , 1, 1

, , , , , 1, 1

= ,

= ,

= ,

= .

n t n t n t n t n t n t

n t n t n t n t n t n t

n t n t n t n t n t n t

n t n t n t n t n t n t

c a c a x x

c a c a z z

c b c b x z

c b c b z x

+ +

- +

- +

+ +

+ + + -

- - + -

+ + + -

- - + -

o o

o o

o o

o o

These equations lead to the following prescription to modify the phases leaving invariant the
moduli of the components of the wave function:

1, 1 , 1, 1 ,
, ,= ,

2
n t n t n t n t

n t n t

x x z z
c c + + - +- + -

+o (34)

1, 1 , 1, 1 ,
, ,= ,

2
n t n t n t n t

n t n t

x x z z
a a + + - +- - +

+o (35)

1, 1 , 1, 1 ,
, ,= .

2
n t n t n t n t

n t n t

z z x x
b b - + + ++ - -

+o (36)
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4.1. Invariance of global observables

The first conclusion that can be drawn from Eqs. (34)–(36) is that there is an infinite variety of
choices for ξn,t and ζn,t that does not modify the main properties of the quantum walker. The
hard task is to identify those with a clear physical meaning or relevance. In a previous work
[37], it has been considered one example that belongs to the following category:

1, 1 ,= ,n t n tx x+ + (37)

1, 1 ,= .n t n tz z- + (38)

This assumption simplifies enormously Eqs. (34)–(36):

, ,= ,n t n tc c o (39)

, ,= ,n t n ta a o (40)

, , , ,= .n t n t n t n tb b z x+ -o (41)

One particular choice that satisfies the above requirements is βn,t =β0, a constant value for all n
and t, and the following functional forms for ξn,t  and ζn,t :

( ), 1 0= ,
2n t

n tx b b-
- (42)

( ), 1 0= ,
2n t

n tz b b+
- (43)

a possible solution of Eqs. (37) and (38). The above expressions lead to the following homo‐
geneous update rule for βn,t , t ≥0,

( ), 0 1 0= = ,n t t tb b b b b+ - (44)

where β1 is an arbitrary constant, whose value cannot be assessed on the basis of the knowledge
of ρ(t , n), P±(t), or M (n, t): it can only be inferred from the relative phase of the spinor com‐
ponents.

Invariance in Quantum Walks
http://dx.doi.org/10.5772/62872

15



We illustrate in Figure 3 the invariance of ρ(t , n) in spite of the time- and site-inhomogeneous
phase shifts that Eq. (44) introduces in the wave-function components, cf. Eqs. (42) and (43).
Here, we have set θ =π / 3, η =π / 3, γ =0, χ =0, α =0, β0 =0 , and β1 =1 / 10. With this choice, ψ± (n, t)
are real functions that solve a stationary homogeneous problem, whereas ψ±(n, t) exhibit a

complex, correlated behavior: for example, ψ− (n, t) is a symmetric function around n =0, while
neither the real part nor the imaginary part of ψ−(n, t) shows this symmetry.

We can sketch a complementary picture that may help in the understanding the behavior of
Ût  when βt  follows Eq. (44), through a geometrical analogy. Let us introduce ut , a time-

dependent, unit-length vector in R3. Let us denote by θ and βt  its polar and azimuthal spherical
coordinates, respectively. Then, we can recover the coin operator Ût  through the scalar
projection of the Pauli vector of operators, σ

^
, with Cartesian components

µ

µ

µ

| | | |,

| | | |, and

| | | |,

x

y

z

i i

s

s

s

º +ñ á- + -ñ á+

º - +ñ á- + -ñ á+

º +ñ á+ - -ñ á-

onto the ut direction, that is,

µ ( )ˆ ,t Pt Iº × Ä $U u s (45)

where Î P  is the identity operator defined in the position space ℋP . The evolution of ut  is a
step-like precession around the North Pole. Observe how, as in the example shown in Figure
2, when (β1−β0) /π is an irrational number, the precession of ut is not a periodic phenomenon
at all. The absence of periodicity implies that vector ut defines an everywhere dense but
enumerable subset of points in the ring associated with colatitude θ on the sphere, and thus,
the unconditional probability of choosing a particular value for βt  is uniformly distributed in
the stationary limit.

4.2. Exact invariance

Obviously, we can go further and demand exact invariance in the problem. This can be
achieved by setting ζn,t =ξn,t . Eqs. (34)–(36) read now [36]:

1, 1 1, 1 ,
, ,

2
= ,

2
n t n t n t

n t n t

x x x
c c + + - ++ -

+o (46)
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2
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2
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x x x
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1, 1 1, 1
, ,= ,

2
n t n t

n t n t

x x
a a + + - +-

+o (47)

1, 1 1, 1
, ,= .

2
n t n t

n t n t

x x
b b + + - +-

-o (48)

Figure 3. Comparison of the wave function after t = 16 time steps. The red solid lines and dots correspond to a timeho‐
mogeneous QW. The blue-dotted lines show the real parts of the magnitudes associated with a time-dependent QW,
while the imaginary parts are depicted by green-dashed lines.

As is shown below, these equations can be expressed in terms of finite differences which in
turn lead to partial derivatives. In fact, in the expression of χn,t  , it appears a time derivative,
whereas the formulas for αn,t  and βn,t  contain a spatial derivative. To illustrate these statements,
consider the simple choice

, = .n t a n tx × × (49)
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Equations (46) to (48) read, as we have anticipated,

, ,= ,n t n t a nc c + ×o (50)

, ,= ( 1),n t n t a ta a + +o (51)

, ,= ( 1).n t n t a tb b - +o (52)

This means, in particular, that we can transform an inhomogeneous coin into a time-dependent

one

, ,= = 0,n t n ta nc c- × ®o

, ,= 0 = ( 1),n t n t a ta a® +o

, ,= 0 = ( 1).n t n t a tb b® - +o

4.3. Continuous limit

Let us express Eqs. (34) to (36) in a slightly different way. Consider the discrete difference

operators Δn and Δt  defined as follows:

, 1, , ,n n t n t n tx x x+D º - (53)

, , 1 , ,t n t n t n tx x x+D º - (54)

and similarly for Δnζn,t  and Δtζn,t . In terms of these operators, Eqs. (34) to (36) now read:

( ) ( ), , , 1 1, 1 , ,
1= ,
2n t n t n n t n t t n t n tc c x z x z+ - +é ù+ D - + D +ë û

o (55)

( ) ( ), , , 1 1, 1 , ,
1= ,
2n t n t n n t n t t n t n ta a x z x z+ - +é ù+ D + + D -ë û

o (56)
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o (55)

( ) ( ), , , 1 1, 1 , ,
1= ,
2n t n t n n t n t t n t n ta a x z x z+ - +é ù+ D + + D -ë û

o (56)
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( ) ( ), , , , , 1 1, 1 , ,
1= .
2n t n t n t n t n n t n t t n t n tb b z x x z x z+ - +é ù+ - - D + + D -ë û

o (57)

Observe how the expression connecting βn,t  and βn,t  depends explicitly on ξn,t  and ζn,t , in the
sense that it is not merely a function of the increments, cf. Eq. (41) above. In fact, we can
rearrange the previous expressions in order to emphasize the distinct effects of ξn,t  and ζn,t :

, , , , , 1 ,= ,n t n t n t n t n n t t n tc a c a x x++ + + D + Do o (58)

, , , , 1, 1 ,= ,n t n t n t n t n n t t n tc a c a z z- +- - - D + Do o (59)

, , , , , ,= .n t n t n t n t n t n ta b a b z x+ + + -o o (60)

At this point, it is appropriate to note that we are not taking into account the issue of the parity
of indexes n and t: since the instances of ξn,t  and ζn,t  that appear in Eqs. (34) to (36) are those
whose subscripts have the same parity, only one of the two terms in the right-hand side of Eqs.
(53) and (54) is relevant or even well defined.

However, our interest in this Section is to analyze the continuous limit, τ→0, l→0. Up to the
first order in τ and l, one has that discrete difference operators Δn and Δt  become partial
derivatives:

,

.

n

t

X

T
t

¶
D

¶
¶

D
¶

l:

:

We need to relate l and τ in order to obtain an unambiguous limit. We will assume that
l=c ⋅τ, where c is the characteristic speed associated with the action of the shift operator Ŝ upon
the state of the walker. Therefore, depending on the physical nature of the system, c represents
the velocity at which the information is transferred, and it may coincide with the speed of light
in vacuum. With this prescription, one has that Eqs. (55)–(57) turn into

[ ],
2

c c x z+ -+ ¶ + ¶o l: (61)

[ ],
2

a a x z+ -+ ¶ - ¶o l: (62)
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[ ],
2

b b z x x z+ -+ - - ¶ - ¶o l: (63)

where ∂±  are defined as follows,

1= ,
X c T X± ±

¶ ¶ ¶
¶ º × ±

¶ ¶ ¶
(64)

and X ± = c ⋅T ± X  are the coordinates of the null geodesics in a flat (1+1) space and time.
Observe how we have removed the subscripts: the dependency on X and T of all the magni‐
tudes is implicitly assumed from now on.

The exact invariance, ζ =ξ , was analyzed in detail in the study of Di Molfetta et al [36]. There,
it is shown how the recurrence equations of the wave-function components of the walker, Eqs.
(28) and (29), can be mapped into equations describing the propagation of a Dirac spinor with
charge e and masses m± coupled to a two-dimensional Maxwell potential A:

( ) = 0,T Xi e A A m cy y y+ + + + -¶ + + -h (65)

( ) = 0,T Xi e A A m cy y y- - - - +¶ + - -h (66)

whose respective space-time components must change according to the formulas

0
= ,limT TA A

ec t

c c
t®

-
+

o
o h (67)

0
= ,limT TA A

ec t

c c
t®

-
+

o
o h (68)

Note that ζ =ξ  implies that

,
T
xc c t ¶+
¶

o: (69)

,
X
xa a ¶

+
¶

o l: (70)
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,
X
xb b ¶

-
¶

o l: (71)

and, when one introduces these relationships into Eqs. (67) and (68), one obtains the standard
gauge transformations for the components of the potential A,

= ,T TA A
ec T

x¶
+ ×

¶
o h

(72)

= ,X XA A
e X

x¶
+ ×

¶
o h

(73)

a transform that keeps invariant the electric field EX acting upon the system,

= = .X T X T
X X

A A A AE c c E
T X T X

¶ ¶ ¶ ¶
º - -
¶ ¶ ¶ ¶

o o
o (74)

If we reconsider the example introduced at the end of Section 4.2,

= ,XeE X Tx × ×
o

h

we can conclude that it corresponds to a case in which the electric field EX  is constant, where
we are replacing the electric potential ϕ , ϕ = −c ⋅AT , by a time-dependent magnetic potential
AX,

= = 0,

= 0 = .

X
T T

X X X

EA X A
c

A A E T

- × ®

® ×

o
o

o o

In the most general case, when ζ ≠ξ , the transformation rule for A is

[ ]= ,
2T TA A
e

x z+ -+ ¶ + ¶o h
(75)

[ ]= ,
2X XA A
e

x z+ -+ ¶ - ¶o h
(76)
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which departs from the gauge invariance of potential A. However, if we investigate the change
in the electric field induced by Eqs. (75) and (76) we find

[ ]= = .
2

X X T T
X X

A A A A cE E c
T X e

x z- + + -

é ù é ù¶ - ¶ -ë û ë û- - ¶ ¶ - ¶ ¶
¶ ¶

o o
o h (77)

Clearly, ζ =ξ  is not the only solution to the constraint

= 0,x z- + + -¶ ¶ - ¶ ¶ (78)

that results in the invariance of the electric field. A possible choice is to demand that both ξ
and ζ  satisfy the 2-dimensional wave equation by their own

2 2 2 2

2 2 2 2 2 2

1 1= = 0.
c T X c T X

x x z z¶ ¶ ¶ ¶
- -

¶ ¶ ¶ ¶
(79)

Another alternative solution to Eq. (78) has appeared above, in Section 4.1. The equivalent
expressions for Eqs. (37) and (38) in the continuous limit read:

= = 0,x z+ -¶ ¶

what provides another solution to Eq. (78). Note that in this case Eqs. (65) and (66) show not
merely covariance but perfect invariance in the mass-less case, m+ =m−=0, since

= ,T X T XA A A A
e

x++ + + ¶o o h
(80)

= .T X T XA A A A
e

z-- - + ¶o o h
(81)

5. Conclusion

Along this Chapter, we have analyzed some interesting aspects of discrete-time QWs on the
line, specifically those related with the emergence of invariance. In the first part, we have
elaborated a succinct but comprehensive review covering the main features of the most
elementary version of this process, when the unitary operator which assumes the function of
the coin in the classical analog is kept fixed. We have described the dynamics that determines
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the evolution of the walker, supplied explicit formulas for assessing the precise state of the
system at any time and approximate expressions that capture the main traits of the process in
the stationary limit. These equations have been very useful to pinpoint the role played by the
different parameters on the solution to the problem and put into context the generalization
considered afterward.

The second part of the Chapter contemplates the situation in which the coin is time and site
dependent. In particular, we have focused our interest on the phase parameters that define the
unitary operator and determined the constraints that must be imposed in these changing
phases if one wants to obtain invariance. This invariance can be demanded at two different
levels: one can require that the invariance connects states belonging to the same ray of the
Hilbert space or a milder condition, that the transformation modifies unevenly the two wave-
function components. In this latter case, global properties (e.g., the probability that the particle
is in a particular place or in a given spin state) remain unaltered but some other local quantum
properties depending on the relative phase of these components can become modified.

The Chapter ends by analyzing the introduced invariance in the continuous limit. This
approach unveils that the evolution of a time- and site-inhomogeneous quantum walk can be
understood in terms of the dynamics of a particle coupled to an electromagnetic field and that
the new symmetry shown by the walker can be interpreted as a manifestation of the well-
known gauge invariance of electromagnetism.
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Abstract

Quantum walks are quantum counterparts of random walks. While probability distri‐
butions of random walks diffusively spread out as the walkers are updating, quan‐
tum walks have ballistic behavior. Some of the ballistic behaviors have been revealed
in long-time limit theorems and their probability distributions are all far away from
the Gaussian distributions, which are known as limit distributions of random walks.
In this chapter, we are going to be seeing limit distributions for a standard quantum
walk on the line and two kinds of time-dependent quantum walk on the line.
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1. Introduction

Quantum walks (QWs) are mathematical models on graphs whose systems repeatedly update
according to time-evolution rules. They have been in an emerging field which describes the
quantum world. Experts in mathematics, physics, and information theory have been interest‐
ed in them and to study QWs, and a lot of fascinating properties of QWs have been discov‐
ered. Historically, QWs were independently introduced in science from several view points;
mathematics in 1988 [1], physics in 1993 [2], and computer science in 1996 [3]. After a while, they
began to get attention around 2000. Since QWs can be considered as quantum counterparts of
random walks in mathematics, they are also called quantum random walks. The dynamics of
QWs are similar to those of random walks in mathematical terms. But, whereas a random walker
moves on a graph at random, a quantum walker spreads out as a wave on a graph. Although
random walks are stochastic processes, QWs are different. They are unitary processes be‐
cause the systems of quantum walkers get updated with unitary operators. In quantum physics,
the update rules of QWs are interpreted as discretized models of Dirac equations.  High
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dimensional Dirac equations are hard to solve even in numerics due to their complexities, and
then we expect QWs to become alternative systems to solve the equations on computer. QWs
also play an important role in quantum computers because they are quantum algorithms
themselves.  Indeed, some quantum algorithms based on QWs show quadratic speed-up,
compared to the corresponding classical algorithms [4]. Such algorithms imply that quantum
computers could give rise to excellent performance.

In this chapter, we are going to be seeing mathematical aspects of the QWs, which will be
described as limit theorems. We first observe a standard QW on the line in Sec.2 Then we shift
our focus to time-dependent QWs on the line in Secs. 3 and 4.

2. A quantum walk on the line

We start off with the description of a standard QW on the line. The system of the QW is defined
in a tensor space of two Hilbert spaces. One is a Hilbert space ℋp spanned by an orthogonal
normalized basis {| x : x ∈ ℤ}, the other is a Hilbert space ℋc spanned by an orthogonal
normalized basis {|0 , {|1 }. We can consider |0  and |1  in the Hilbert space ℋc as the down-
spin and the up-spin states of a quantum particle, respectively. The Hilbert space ℋp is called
a position space and the Hilbert space ℋc is called a coin space. A QW on the line at time t 
(=0, 1, 2 …) is expressed in the tensor Hilbert space,

ψ
∈

Ψ 〉 〉⊗ 〉∈ ⊗∑


 | = | | ( ) .t t p c
x

x x (1)

Customarily, |ψt(x) ∈ ℋc is called a coin state or an amplitude at position x at time t. Given
an initial state |Ψ0 , the walker is repeatedly updating,

+Ψ 〉 Ψ 〉1| = | ,t tSC (2)

with

∈

〉 〈 ⊗∑


= | | ,
x

C x x U (3)

∈

− 〉 〈 ⊗ 〉 〈 + + 〉 〈 ⊗ 〉 〈∑


= | 1 | |0 0| | 1 | |1 1|,
x

S x x x x (4)

where U is a unitary operator. In this chapter, we employ a form of the operator
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θ θ θ θ θ π〉 〈 + 〉 〈 + 〉 〈 − 〉 〈 ∈= cos |0 0| sin |0 1| sin |1 0| cos |1 1| ( [0,2 )),U (5)

and an initial state

α βΨ 〉 〉 ⊗ 〉 + 〉0| =|0 ( |0 |1 ), (6)

assuming the complex numbers α and β satisfy the condition |α|2 + |β|2 = 1. The reason that
we assigned unitarity to the operator U and assumed the constraint |α|2 + |β|2 = 1 is that we
define the probability that the quantum walker is observed at position x at time t,

 
〈Ψ 〉 〈 ⊗ 〉 〈 Ψ 〉  

 
∑

1

=0
( = ) = | | | | | | ,t t t

j
X x x x j j (7)

where the random variable Xt is regarded as the position of the walker at time t. Thanks to the
assignment and the constraint, the right side of Eq. (7) certainly becomes a probability
distribution. Figure 1 shows the probability distribution ℙ(Xt = x) at time 500 when the walker
starts updating with α =1 / 2 and β = i / 2. In these pictures, only positive values of the
probability are plotted. While random walkers normally show diffusive behavior, it is known
that the quantum walker acts ballistic as time goes up. We see for certain the ballistic behavior
of the probability distribution ℙ(Xt = x) in Figure 2 when we take α =1 / 2 and β = i / 2. As
shown in Figure 1, the probability distribution ℙ(Xt = x) holds two sharp peaks and where they
occur strongly depends on the value of the parameter θ. We get more detailed information
about that from Figure 3.

Figure 1. Probability distribution at time 500.
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Figure 2. Time evolution of the probability distribution ℙ(Xt = x).

The definition of the standard QW on the line has been done. So, what are we curious about?
One of the major studies on QWs is to know how their probability distributions behave after
they have updated a lot of times. For the probability distribution of the QW defined in this
section, one can assert a limit theorem which tells us an approximate behavior of the probability
distribution ℙ(Xt = x) after time t goes enough up. First, we see a limit theorem (Theorem 1)
when the value of the parameter θ, which is embedded in the operator U, is picked in the
interval [0, π). Then we will extend it for θ ∈ [0, 2π) (Theorem 2) which is easily proved by
making the most of Theorem 1.

Theorem 1Assume that θ ∈ [0, π) and θ ≠ 0, π/2. For a real number x, we have

θ θ

θ

π θ

θ αβ αβα β
θ

−∞→∞

−

 
≤ 

− − 

  + × − − +  
    

∫
2 22

2 2
( |cos |,|cos |)

sin=lim
(1 ) cos

sin ( )1 | | | | ( ) ,
cos

xt

t

X
x

t y y

y I y dy
(8)

where IA(x) is an indicator function such that

 ∈



1 ( )
( ) = .

0 ( )A

x A
I x

otherwise (9)
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This limit theorem, to be exact which was a theorem for a general unitary operator U ∈ U(2),
was proven for the first time by a combinatorial method in 2002 [5]. It was also possible to
obtain by Fourier analysis introduced by Grimmett et al. [6]. Here we use the second method
to derive the limit theorem. Let | ψ̂t(k )  be the Fourier transform of the quantum walker in the
form

ψ ψ π π−

∈

〉 〉 ∈ −∑


ˆ| ( ) = | ( ) ( [ , )).ikx
t t

x
k e x k (10)

Oppositely, we can obtain the coin states by inverse Fourier transformation,

π

π
ψ ψ

π −
〉 〉∫

1 ˆ| ( ) = | ( ) .
2

ikx
t tx e k dk (11)

Figure 3. This picture shows how the probability distribution at time 150 depends on the value of the parameter θ.

(α =1 / 2, β = i / 2).

Equation (2) gives the evolution of the Fourier transform,

ψ ψ+ 〉 〉1ˆ ˆ| ( ) = ( ) | ( ) ,t tk R k U k (12)
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with

−〉 〈 + 〉 〈( ) = |0 0| |1 1|.ik ikR k e e (13)

The iteration by Eq. (12) connects the system at time t to the initial state,

ψ ψ〉 〉0ˆ ˆ| ( ) = ( ( ) ) | ( ) .t
t k R k U k (14)

To prove the theorem, we concentrate on a convergence

∞

−∞→∞
∫ [( / ) ] = ( ) ( = 0,1,2, ),lim r r

t
t

X t x f x dx r (15)

with

θ θ

θ

π θ

θ αβ αβα β
θ −

− −

  + × − − +  
    

2 22

2 2
( |cos |,|cos |)

sin( ) =
(1 ) cos

sin ( )1 | | | | ( ).
cos

f x
x x

x I x
(16)

It is known from probability theory that the convergence guarantees Eq. (8). Before we compute
the limit, let us depict the r-th moment E(Xt

r)=∑x=−∞
∞ x rℙ(Xt = x) in Fourier picture. Since the

initial state is given by the form of Eq. (6), the Fourier transform at time t is rewritten in a finite
sum

ψ ψ ψ
∞

− −

−∞ −

〉 〉 〉∑ ∑
= =

ˆ| ( ) = | ( ) = | ( ) .
t

ikx ikx
t t t

x x t
k e x e x (17)

Noting that

ψ ψ−

−

〉 − 〉∑
=

ˆ| ( ) = ( ) | ( ) ,
r t

r ikx
t tr

x t

d k ix e x
dk

(18)

we have
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ψ ψ ψ ψ

ψ ψ

−

− −

−

− −

〈 〉 〈 〉

〈 〉

∑ ∑

∑∑
= =

( )

= =

ˆ ˆ( )| | ( ) = ( ( )|)( | ( ) )

= ( )| ( ) .

r t t
ikyr ikx r

t t t tr
x t y t

t t
ik x yr

t t
x t y t

dk i k e x y e y
dk

x e x y
(19)

Integrating Eq. (19) over the interval [−π, π), one can generate the r-th moment of the random
variable Xt,

π π

π π
ψ ψ ψ ψ

π ψ ψ π ψ ψ

π π

−

− −
− −

∞

− −∞
∞

−∞

〈 〉 〈 〉

〈 〉 〈 〉

∑∑∫ ∫

∑ ∑

∑  

( )

= =

= =

=

ˆ ˆ( )| | ( ) = ( )| ( )

= 2 ( )| ( ) = 2 ( )| ( )

= 2 ( = ) = 2 ( ),

r t t
ik x yr r

t t t tr
x t y t

t
r r

t t t t
x t x

r r
t t

x

dk i k dk y e x y dk
dk

x x x x x x

x X x X

(20)

from which the r-th moment results in a representation in Fourier picture,

π

π
ψ ψ

π −
〈 〉∫ 1 ˆ ˆ( ) = ( )| | ( ) .

2

r
r r
t t tr

dX k i k dk
dk

(21)

Here, let λj(k) (j = 1, 2) be the eigenvalues of the matrix R(k)U, and |vj(k )  be the normalized
eigenvector associated to the eigenvalue λj(k). Then the initial state of the Fourier transform is
decomposed by the normalized eigenvectors,

ψ ψ ψ〉 〈 〉 〉 + 〈 〉 〉0 1 0 1 2 0 2ˆ ˆ ˆ| ( ) = ( )| ( ) | ( ) ( )| ( ) | ( ) .k v k k v k v k k v k (22)

The Fourier transform at time t is, therefore, expressed with the eigenvalues and the eigen‐
vectors,

ψ ψ λ ψ〉 〉 〈 〉 〉∑
2

0 0
=1

ˆ ˆ ˆ| ( ) = ( ( ) ) | ( ) = ( ) ( )| ( ) | ( ) ,t t
t j j j

j
k R k U k k v k k v k (23)

which also gives a description of the derivative

ψ λ λ ψ− −′〉 ⋅ 〈 〉 〉 +∑
2

1
0

=1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( )| ( ) | ( ) ( ),
r

t r r r
t r j j j jr

j

d k t k k v k k v k O t
dk

(24)
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where (t)r = t(t −1)(t −2)× ⋯ ×(t − r + 1)=∏ j=t−r+1
t j and λj′(k) = (d/dk)λj(k). Recalling the initial state

in Eq. (6), we now have the Fourier transform at time 0 in the form

ψ α β〉 〉 + 〉0ˆ| ( ) = |0 |1 .k (25)

Equations (23) and (24) change the integral picture in Eq. (21),

π

π

π

π

ψ ψ
π

λ
ψ

π λ

−

−

−

〈 〉

 ′
 ⋅ 〈 〉 +
 
 

∫

∑ ∫



2
2 1

0
=1

1 ˆ ˆ( ) = ( )| | ( )
2

( )1 ˆ= ( ) | ( )| ( ) | ( ).
2 ( )

r
r r
t t tr

r

j r
r j

j j

dX k i k dk
dk

i k
t v k k dk O t

k

(26)

Dividing Eq. (26) by tr, we reach a representation

π

π

λ
ψ

π λ

−

−

 ′
 ⋅ 〈 〉 +
 
 

∑ ∫
 12

2
0

=1

( )( ) ( ) 1 ( )ˆ= | ( )| ( ) | ,
2 ( )

r
r r

jt r
jr r r

j j

i kX t O tv k k dk
kt t t

(27)

and obtain a convergence as t → ∞,

π

π

λ
ψ

π λ−→∞ →∞

   ′     〈 〉        
∑ ∫


2

2
0

=1

( )( ) 1 ˆ= = | ( )| ( ) | .lim lim 2 ( )

r
r r

jt t
jr

t t j j

i kX X
v k k dk

t kt
(28)

Now what we need more has made sense. It is the eigensystem of the operator R(k)U. To make
a computation about it, we give a standard basis to the Hilbert space ℋc,

   
〉 〉   

   

1 0
|0 = , |1 = ,

0 1 (29)

from which a matrix representation follows,

θ θ
θ θ− −

 
 

−  

cos sin
( ) = .

sin cos

ik ik

ik ik

e e
R k U

e e
(30)

The matrix contains two different eigenvalues
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λ − − − +2 2( ) = ( 1) 1 sin ( = 1,2),sinj
j k c k ic k j (31)

in which c and s are short for cosθ and sinθ, respectively. Differentiating Eq. (31) with respect

to the variable k, we get

{ }λ ′ − − − − − +
−

2 2

2 2

cos( ) = ( 1) ( 1) 1 sin ,sin
1 sin

j j
j

ic kk c k ic k
c k

(32)

from which the function iλj′(k)/λj(k) is computed,

λ

λ

′
−

− 2 2

( ) cos= ( 1) .
( ) 1 sin

j j

j

i k c k
k c k

(33)

The normalized eigenvector associated to the eigenvalue λj(k) has a form

 
〉  

 − − − − 
2 2

1| ( ) = ,
( ) cos ( 1) 1 sin

ik

j j
j

se
v k

N k c k c k
(34)

with its normalized factor

{ }− − + −2 22 2( ) = 2 1 1 ( 1) cos .sin sin j
jN k c k c k c k (35)

Back in Eq. (28), we put iλj′(k)/λj(k) = x (j = 1, 2) and then obtain another integral form
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π

π

λ
ψ

π λ

αβ αβα β
π

αβ αβα β
π

−→∞

−

−
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(36)

Equation (36) allows us to hold Eq. (8).

Now that we have obtained a limit theorem for the QW whose operator was defined by

θ θ θ θ θ π〉 〈 + 〉 〈 + 〉 〈 − 〉 〈 ∈= cos |0 0| sin |0 1| sin |1 0| cos |1 1| ( [0, )),U (37)

Theorem 1 can be extended for the parameter θ ∈ [0, 2π).

Theorem 2Assume that θ ∈ [0, 2π) and θ ≠ 0, π/2, π, 3π/2. For a real number x, we have

θ θ

θ

π θ

θ αβ αβα β
θ

−∞→∞

−

 
≤ 

− − 

  + × − − +  
    

∫
2 22

2 2
( |cos |,|cos |)

|sin |=lim
(1 ) cos

sin ( )1 | | | | ( ) .
cos

xt

t

X
x

t y y

y I y dy
(38)

Since we already had the limit theorem for the parameter θ ∈ [0, π) as Theorem 1, it is enough
to prove Theorem 2 for θ ∈ [π, 2π) (θ ≠ π, 3π/2). Do you think we have to carry out the same
calculation for such a parameter again? We do not actually have to do that and can avoid the
same math by applying a small skill to the operator U. Let us slightly change the form of the
operator U, which is described by U(θ) below,

{
}

θ θ θ θ θ
θ π θ π

θ π θ π θ π

〉 〈 + 〉 〈 + 〉 〈 − 〉 〈

− − 〉 〈 + − 〉 〈

+ − 〉 〈 − − 〉 〈 − −

( ) := = cos |0 0| sin |0 1| sin |1 0| cos |1 1|
= cos( )|0 0| sin( )|0 1|

sin( )|1 0| cos( )|1 1| = ( ).

U U

U
(39)
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to prove Theorem 2 for θ ∈ [π, 2π) (θ ≠ π, 3π/2). Do you think we have to carry out the same
calculation for such a parameter again? We do not actually have to do that and can avoid the
same math by applying a small skill to the operator U. Let us slightly change the form of the
operator U, which is described by U(θ) below,

{
}

θ θ θ θ θ
θ π θ π

θ π θ π θ π

〉 〈 + 〉 〈 + 〉 〈 − 〉 〈

− − 〉 〈 + − 〉 〈

+ − 〉 〈 − − 〉 〈 − −

( ) := = cos |0 0| sin |0 1| sin |1 0| cos |1 1|
= cos( )|0 0| sin( )|0 1|

sin( )|1 0| cos( )|1 1| = ( ).
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The negative sign in front of the operator U(θ − π) in Eq. (39) does not affect the probability
distribution ℙ(Xt = x), which means the probability distribution given by the operator U(θ) is
completely same as that given by the operator U(θ − π). Moreover, as long as the parameter θ
picks a value in the interval [π, 2π), the variable θ − π stays in the interval [0, π). Since Theorem
1 works on the QW operated by U(θ − π) (θ ∈ [π, 2π)), one can assert a limit theorem for the
parameter θ ∈ [π, 2π),

{

θ π θ π

θ π α β
π θ π

θ π αβ αβ
θ π

θ

π θ

θ αβ αβα β
θ

→∞

−∞

− − −

−∞

 
≤ 

 
−  − −− − −

− + + 
−  

−

− −
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    

∫

∫



2 2

2 22

( |cos( )|,|cos( )|)

2 22

2 2
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sin( )= 1 | | | |
(1 ) ( )cos

sin( )( ) ( )
cos( )

sin=
(1 ) cos

sin ( )1 | | | |
cos

t

t

x

x

X
x

t

y y

y I y dy

y y

y I θ θ−( |cos |,|cos |)( )y dy

(40)

We should remark that Eq. (40) holds under the condition θ − π ≠ 0, π/2, that is, θ ≠ π, 3π/2.
As a consequence of Theorem 1 and Eq. (40), Theorem 2 comes up.

Figure 4 shows an example of the limit density function.

θ θ

θ

π θ

θ αβ αβα β
θ

→∞

−

 
≤ 

 

− −

  + × − − +  
    



2 22

2 2
( |cos |,|cos |)

lim

|sin |=
(1 ) cos

sin ( )1 | | | | ( ) .
cos

t

t

Xd x
dx t

x x

x I x dy

(41)

We see that the limit density function reproduces the features of the probability distribution
shown in Figure 1.
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Figure 4. The limit density function (α =1 / 2, β = i / 2).

3. Two-period time-dependent QW

In this section, we see a time-dependent QW whose coin-flip operator depends on time. The
evolution of the QW is given by two unitary operators,

θ θ θ θ〉 〈 + 〉 〈 + 〉 〈 − 〉 〈
〉 〈 + 〉 〈 + 〉 〈 − 〉 〈

1 1 1 1 1

1 1 1 1

= cos |0 0| sin |0 1| sin |1 0| cos |1 1|
= |0 0| |0 1| |1 0| |1 1|,

U
c s s c

(42)

θ θ θ θ〉 〈 + 〉 〈 + 〉 〈 − 〉 〈
〉 〈 + 〉 〈 + 〉 〈 − 〉 〈

2 2 2 2 2

2 2 2 2

= cos |0 0| sin |0 1| sin |1 0| cos |1 1|
= |0 0| |0 1| |1 0| |1 1|,

U
c s s c

(43)

with θj ∈ [0, 2π) (j = 1, 2), and cosθj (resp. sinθj) has been briefly written as cj (resp. sj). The total
system at time t evolves to the next state at time t + 1 according to the time evolution rule

+

 Ψ 〉Ψ 〉  Ψ 〉




1
1

2

| ( = 0,2,4, )
| = ,

| ( = 1,3,5, )
t

t
t

SC t
SC t (44)

where

∈

〉 〈 ⊗∑


= | | ( = 1,2).j j
x

C x x U j (45)

It is plane that the operators C1 and C2 are alternately casted on the QW, which means that the
unitary operator 2-periodically changes in time-line. If the parameters θ1 and θ2 take the same
value, then the QW becomes the standard walk defined in Sec.

Now, we are looking at examples of the probability distribution when the walker starts off
with |Ψ0 = |0 ⊗ (1 / 2 |0 + i / 2 |1 ). Figure 5 draws the probability distribution at time 500
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and two sharp peaks are observed in each picture. In the pictures, only positive values of
probability are plotted. As shown in Figure 6, the probability distribution is spreading in
proportion to time t. We also see how it depends on the parameters θ1 and θ2 in Figure 7.

The features, which we have seen in Figures 5 to 7 are caught by a limit theorem.

Theorem 3Assume that θ1, θ2 ≠ 0, π/2, π, 3π/2. For a real number x, we have

ξ θ θ ξ θ θ

ξ θ θ

π ξ θ θ

θ αβ αβ
α β

θ

−∞→∞

−

− 
≤ 

− − 

  +  × − − + 
    

∫
2

1 2

2 2 2
1 2

2 2 1
( ( , ), ( , ))1 2 1 2

1

1 ( , )
=lim

(1 ) ( , )

sin ( )
1 | | | | ( ) ,

cos

xt

t

X
x

t y y

y I y dy

(46)

with ξ(θ1, θ2) = min{|cosθ1|, |cosθ2|}.

Figure 5. Probability distribution at time 500 (α =1 / 2, β = i / 2).

This limit theorem was proved by Fourier analysis in 2010 [7]. First, we find the time evolution

of the Fourier transform | ψ̂t(k ) =∑x∈ℤ e −ikx |ψt(x) (k ∈ −π, π)),
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ψ
ψ

ψ+

 〉〉  〉




1
1

2

ˆ( ) | ( ) ( = 0,2,4, )ˆ| ( ) = ,
ˆ( ) | ( ) ( = 1,3,5, )

t
t

t

R k U k t
k

R k U k t (47)

which comes from Eq. (44). We should recall R(k) = eik|0 0| + e− ik|1 1|. From the recurrence,

the transform at each time gets a connection to its initial state,

ψ ψ〉 〉2 2 1 0ˆ ˆ| ( ) = ( ( ) ( ) ) | ( ) ,t
t k R k U R k U k (48)

ψ ψ+ 〉 〉2 1 1 2 1 0ˆ ˆ| ( ) = ( ) ( ( ) ( ) ) | ( ) .t
t k R k U R k U R k U k (49)

Figure 6. Time evolution of the probability distribution (α =1 / 2, β = i / 2).

The eigensystem of the matrix R(k)U2R(k)U1 reforms Eqs. (48) and (49),

ψ λ ψ〉 〈 〉 〉∑
2

2 0
=1

ˆ ˆ| ( ) = ( ) ( )| ( ) | ( ) ,t
t j j j

j
k k v k k v k (50)
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ψ λ ψ+ 〉 〈 〉 〉∑
2

2 1 1 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( )| ( ) | ( ) .t
t j j j

j
k R k U k v k k v k (51)

Figure 7. These pictures show how the probability distribution at time 150 depends on the value of the parameters θ1

and θ2 (α =1 / 2, β = i / 2).

Arranging the r-th derivatives (r = 0, 1, 2, …) of the Fourier transform on the scale of time t,

ψ λ λ ψ− −
′〉 ⋅ 〈 〉 〉 +∑

2
1

2 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( )| ( ) | ( ) ( ),
r

t r r r
t r j j j jr

j

d k t k k v k k v k O t
dk

(52)

ψ λ λ ψ−
′+

−

〉 ⋅ 〈 〉 〉

+

∑
2

2 1 1 0
=1

1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( ) ( )| ( ) | ( )

( ),

r
t r r

t r j j j jr
j

r

d k t R k U k k v k k v k
dk
O t

(53)

we obtain the representations of the r-th moment of the random variable Xt,

π

π

λ
ψ

π λ
′ −

−

 
 ⋅ 〈 〉 +
 
 

∑ ∫
2 2 1

2 0
=1

( )1 ˆ( ) = ( ) ( )| ( ) ( ),
2 ( )

r

jr r
t r j

j j

i k
X t v k k dk O t

k
(54)

π

π

λ
ψ

π λ
′ −

+ −

 
 ⋅ 〈 〉 +
 
 

∑ ∫
2 2 1

2 1 0
=1

( )1 ˆ( ) = ( ) ( )| ( ) ( ).
2 ( )

r

jr r
t r j

j j

i k
X t v k k dk O t

k
(55)

Quantum Walks
http://dx.doi.org/10.5772/62481

41



Dividing these equations by time 2t or 2t + 1 followed by taking a limit makes the same
expression,

π

π

λ
ψ

π λ−→∞

 ′
  〈 〉
 
 

∑ ∫
 2 2

2
0

=1

( )( ) 1 ˆ= ( )| ( ) ,lim 2 2 ( )(2 )

r
r

jt
jr

t j j

i kX
v k k dk

kt
(56)

π

π

λ
ψ

π λ

+ +

→∞ →∞

′

−

 
⋅  ++  

 
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 
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2
2

0
=1

( ) ( ) 2=lim lim 2 1(2 1) (2 )

( )1 ˆ= | ( )| ( ) | ,
2 2 ( )

rr r
t t

r r
t t

r

j
j

j j

X X t
tt t

i k
v k k dk

k

(57)

which are combined as

π

π

λ
ψ

π λ

+

→∞ →∞

−

      
      +         

 ′
  〈 〉
 
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 2 2 1

2 2

0
=1
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2 2 ( )

r r

t t
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j
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X X
t t

i k
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(58)

As a result, we have

π

π

λ
ψ

π λ
′

−→∞

    
    〈 〉        
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2 2

0
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( )1 ˆ= ( )| ( ) .lim 2 2 ( )

rr
jt

j
t j j

i kX
v k k dk

t k
(59)

The Hilbert space ℋc spanned by Eq. (29) gives a matrix representation to the operator
R(k)U2R(k)U1,

− −

 + −
 
− + +  

2 2
1 2 1 2 1 2 1 2

2 1 2 2
1 2 1 2 1 2 1 2

( ) ( ) = ,
ik ik

ik ik

c c e s s s c e c s
R k U R k U

s c e c s c c e s s
(60)

and one can find its eigenvalues

λ + − − − + 2
1 2 1 2 1 2 1 2( ) = cos2 ( 1) 1 ( cos2 ) ( = 1,2).j

j k c c k s s i c c k s s j (61)
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Dividing these equations by time 2t or 2t + 1 followed by taking a limit makes the same
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X X t
tt t

i k
v k k dk

k

(57)

which are combined as

π

π

λ
ψ

π λ

+

→∞ →∞

−

      
      +         

 ′
  〈 〉
 
 

∑ ∫

 2 2 1

2 2

0
=1

=lim lim2 2 1

( )1 ˆ= ( )| ( ) .
2 2 ( )

r r

t t

t t

r

j
j

j j

X X
t t

i k
v k k dk

k

(58)

As a result, we have

π

π

λ
ψ

π λ
′

−→∞

    
    〈 〉        

∑ ∫
2 2

0
=1

( )1 ˆ= ( )| ( ) .lim 2 2 ( )

rr
jt

j
t j j

i kX
v k k dk

t k
(59)

The Hilbert space ℋc spanned by Eq. (29) gives a matrix representation to the operator
R(k)U2R(k)U1,

− −

 + −
 
− + +  

2 2
1 2 1 2 1 2 1 2

2 1 2 2
1 2 1 2 1 2 1 2

( ) ( ) = ,
ik ik

ik ik

c c e s s s c e c s
R k U R k U

s c e c s c c e s s
(60)

and one can find its eigenvalues

λ + − − − + 2
1 2 1 2 1 2 1 2( ) = cos2 ( 1) 1 ( cos2 ) ( = 1,2).j

j k c c k s s i c c k s s j (61)
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The normalized eigenvector associated to the eigenvalue λj(k) takes a form

{ }
 −
 〉
 − − − − +
 

2
1 2 1 2

2
1 2 1 2 1 2

1| ( ) = ,
sin 2 ( 1) 1 ( cos2 )( )

ik

j j
j

s c e c s
v k

i c c k c c k s sN k
(62)

with

− − − − +

+ − − +

2 2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 2

2
1 2 1 2 1 2

( ) = 1 ( )( ) 4 cos2 2 2sin

( 1) 2 sin 2 1 ( cos2 ) .
j

j

N k c s c s c c s s k c c k

c c k c c k s s
(63)

Here we compute

λ

λ

′
−

− +
1 2

2
1 2 1 2

( ) sin 2
= ( 1) ,

2 ( ) 1 ( cos2 )
j j

j

i k c c k
k c c k s s

(64)

from Eq. (61). Putting iλj′(k)/2λj(k) = x (j = 1, 2) gives rise to another expression of Eq. (59),

ξ θ θ ξ θ θ

ξ θ θ

π ξ θ θ

θ αβ αβ
α β

θ

∞

−∞→∞

−

  − 
  
  − −  
  +  × − − + 
    

∫
2

1 2

2 2 2
1 2

2 2 1
( ( , ), ( , ))1 2 1 2

1

1 ( , )
=lim

(1 ) ( , )

sin ( )
1 | | | | ( ) .

cos

r
rt

t

X
x

t x x

x I x dx

(65)

For the same reason as the proof for Theorem 1, this convergence promises Theorem 3. As
mentioned earlier, if the parameters θ1 and θ2 take the same value θ, then the 2-period time-
dependent QW is the standard walk shown in Sec.2. In that case, Theorem 3 is in agreement
with Theorem 2. Indeed, inserting a value, which is supposed to be θ now, to both θ1 and θ2

in Theorem 2 produces the limit probability distribution below,

θ θ

θ

π θ

θ αβ αβα β
θ

−∞→∞

−

 
≤ 

− − 

  + × − − +  
    

∫
2 22

2 2
( |cos |,|cos |)

|sin |=lim
(1 ) cos

sin ( )1 | | | | ( ) .
cos

xt

t

X
x

t y y

y I y dy
(66)

Given an initial state with α =1 / 2, β = i / 2, Figure 8 draws the limit density function
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ξ θ θ ξ θ θ

ξ θ θ

π ξ θ θ
−

→∞

− 
≤ 

− − 


2
1 2

( ( , ), ( , ))2 2 2 1 2 1 2
1 2

1 ( , )
= ( ).lim

(1 ) ( , )
t

t

Xd x I x
dx t x x

(67)

We confirm that the function has two singularities at the points ± ξ(θ1, θ2) which correspond
to two sharp peaks in Figure 5.

Figure 8. Limit density function (α =1 / 2, β = i / 2).

4. Three-period time-dependent QW

The standard QW in Sec.2 and the two-period time-dependent QW in Sec.3 have the same type
of limit density function. In the final section, we see a three-period time-dependent QW and
its limit density function. As a result, a different type of limit density function will be discov‐
ered. With a unitary operator U ∈ U(2), the system of three-period time-dependent QW is
periodically updating,

+

 Ψ 〉
Ψ 〉 Ψ 〉
 Ψ 〉





1

| ( = 0,3,5, )
| = | ( = 1,4,6, ) ,

| ( = 2,5,7, )

t

t t

t

SC t
SC t
S t

(68)

where

∈

〉 〈 ⊗∑


= | | ,
x

C x x U (69)

∈

− 〉 〈 ⊗ 〉 〈 + + 〉 〈 ⊗ 〉 〈∑


= | 1 | |0 0| | 1 | |1 1|.
x

S x x x x (70)
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its limit density function. As a result, a different type of limit density function will be discov‐
ered. With a unitary operator U ∈ U(2), the system of three-period time-dependent QW is
periodically updating,

+

 Ψ 〉
Ψ 〉 Ψ 〉
 Ψ 〉





1

| ( = 0,3,5, )
| = | ( = 1,4,6, ) ,

| ( = 2,5,7, )

t

t t

t

SC t
SC t
S t

(68)

where

∈

〉 〈 ⊗∑


= | | ,
x

C x x U (69)

∈

− 〉 〈 ⊗ 〉 〈 + + 〉 〈 ⊗ 〉 〈∑


= | 1 | |0 0| | 1 | |1 1|.
x

S x x x x (70)
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The 3-period time-dependent QW was studied by Grünbaum and Machida [8] when the
unitary operator U was of the form

θ θ θ θ〉 〈 + 〉 〈 + 〉 〈 − 〉 〈
〉 〈 + 〉 〈 + 〉 〈 − 〉 〈

= cos |0 0| sin |0 1| sin |1 0| cos |1 1|
= |0 0| |0 1| |1 0| |1 1|,

U
c s s c (71)

with θ ∈ [0, 2π). Note that we have abbreviated cosθ and sinθ to c and s in Eq. (71), respectively.
Let us view the probability distribution ℙ(Xt = x) when the initial state is given by

|Ψ0 = |0 ⊗ (1 / 2 |0 + i / 2 |1 ). The operator in Eq. (71) can give rise to probability distribu‐

tions which have four sharp peaks, as shown in Figure 9. These four peaks can also be observed
at relatively small time in Figure 10. Seeing Figure 11, we guess some values of the parameter
θ when the number of sharp peaks is three. They are π/3, 2π/3, 4π/3, and 5π/3, and these values
can be exactly estimated by a limit theorem which will be introduced later.

We find a long-time limit theorem in the paper [8] and it asserts the convergence of a random
variable rescaled by time t.

Theorem 4Assume that θ ≠ 0, π/2, π, 3π/2. For a real number x, we have

{ }

{ }

ν α β

ν α β

 −∞ − +→∞  
  
 

 
+ − − −  

 

 
≤ − 

 

+ + − −

∫
2 21 4 1 8,

3 3

2 21 8 1 4,
3 3

= [ 1 ( , ; ) ( ) ( )lim

1 ( , ; ) ( ) ( )] ,

xt

c ct

c c

X
x y f y I y

t

y f y I y dy
(72)

Figure 9. Probability distribution at time 500 (α =1 / 2, β = i / 2)
.
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Figure 10. Time evolution of the probability distribution (α =1 / 2, β = i / 2).

where

( )
π + −

+

−

2

2

| | | | ( )
( ) = ,

(1 ) ( ) ( ) ( )

s s x D x
f x

x W x W x D x (73)

(74)

+ −2 2 2( ) = 1 8 9 ,D x c c x
(75)

+ − − + − +2 2 2( ) = (1 4 ) 3(1 2 ) 2| | ( ) ,W x c c x s x D x
(76)

− + − + −2 2 2( ) = 1 8 3(1 2 ) 2| | ( ) ,W x c c x s x D x (77)
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Figure 11. This picture shows how the probability distribution at time 150 depends on the value of the parameter θ.
(α =1 / 2, β = i / 2).

and ℜ (z) denotes the real part of the complex number z.

This limit theorem can be derived by Fourier analysis as well. For the Fourier transform
| Ψ̂t(k ) =∑x∈ℤ e −ikx |ψt(x) (k ∈ −π, π)), Eq. (68) produces a time evolution of the Fourier
transform,

{ }
{ }

{ }

ψ

ψ

ψ

+

+

〉 Ψ 〉

〉 Ψ 〉

〉 Ψ 〉

2
3 0

2
3 1 0

2 2
3 2 0

ˆˆ| ( ) = ( )( ( ) ) | ( ) ,

ˆˆ| ( ) = ( ) ( )( ( ) ) | ( ) ,

ˆˆ| ( ) = ( ( ) ) ( )( ( ) ) | ( ) .

t

t

t

t

t

t

k R k R k U k

k R k U R k R k U k

k R k U R k R k U k

(78)

Given an orthogonal normalized basis such as Eq. (29), the matrix

− − − −

 + −
 
− + +  

2 3 2 3
2

3 2 3 2( )( ( ) ) =
ik ik ik ik

ik ik ik ik

c e s e cse cse
R k R k U

cse cse c e s e
(79)

has two eigenvalues

λ + − − − +2 2 2 2 2( ) = cos3 cos ( 1) 1 ( cos3 cos ) ( = 1,2).j
j k c k s k i c k s k j (80)

A possible expression of the normalized eigenvector associated to the eigenvalue λj(k) is
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 −
〉  

 + + − − + 

2

2 2 2 2 2

2 sin1| ( ) = ,
( ) sin 3 sin ( 1) 1 ( cos3 cos )

ik

j j
j

cse k
v k

N k c k s k c k s k
(81)

where Nj(k) is the normalization factor

{
}

− +

+ − + − +

2 2 2

2 2 2 2 2

( ) = 2 1 ( cos3 cos )

( 1) ( sin 3 sin ) 1 ( cos3 cos ) .

j

j

N k c k s k

c k s k c k s k
(82)

With a decomposition | Ψ̂3t(k ) =∑ j=1
2 λj

t(k ) vj(k )| Ψ̂0(k ) |vj(k ) , we get representations in the

eigenspace,

ψ λ ψ〉 〈 〉 〉∑
2

3 0
=1

ˆ ˆ| ( ) = ( ) ( )| ( ) | ( ) ,t
t j j j

j
k k v k k v k (83)

ψ λ ψ+ 〉 〈 〉 〉∑
2

3 1 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( )| ( ) | ( ) ,t
t j j j

j
k R k U k v k k v k (84)

ψ λ ψ+ 〉 〈 〉 〉∑
2

2
3 2 0

=1

ˆ ˆ| ( ) = ( ( ) ) ( ) ( )| ( ) | ( ) ,t
t j j j

j
k R k U k v k k v k (85)

and compute their derivatives

ψ λ λ ψ− −
′〉 〈 〉 〉 +∑

2
1

3 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( )| ( ) | ( ) ( ),
r

t r r r
t r j j j jr

j

d k t k k v k k v k O t
dk

(86)

ψ λ λ ψ−
+

−

′〉 〈 〉 〉

+

∑
2

3 1 0
=1

1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( ) ( )| ( ) | ( )

( ),

r
t r r

t r j j j jr
j

r

d k t R k U k k v k k v k
dk

O t
(87)

ψ λ λ ψ−
+

−

′〉 〈 〉 〉

+

∑
2

2
3 2 0

=1

1

ˆ ˆ| ( ) = ( ) ( ( ) ) ( ) ( ) ( )| ( ) | ( )

( ).

r
t r r

t r j j j jr
j

r

d k t R k U k k v k k v k
dk

O t
(88)

Research Advances in Quantum Dynamics48



 −
〉  

 + + − − + 

2

2 2 2 2 2

2 sin1| ( ) = ,
( ) sin 3 sin ( 1) 1 ( cos3 cos )

ik

j j
j

cse k
v k

N k c k s k c k s k
(81)

where Nj(k) is the normalization factor

{
}

− +

+ − + − +

2 2 2

2 2 2 2 2

( ) = 2 1 ( cos3 cos )

( 1) ( sin 3 sin ) 1 ( cos3 cos ) .

j

j

N k c k s k

c k s k c k s k
(82)

With a decomposition | Ψ̂3t(k ) =∑ j=1
2 λj

t(k ) vj(k )| Ψ̂0(k ) |vj(k ) , we get representations in the

eigenspace,

ψ λ ψ〉 〈 〉 〉∑
2

3 0
=1

ˆ ˆ| ( ) = ( ) ( )| ( ) | ( ) ,t
t j j j

j
k k v k k v k (83)

ψ λ ψ+ 〉 〈 〉 〉∑
2

3 1 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( )| ( ) | ( ) ,t
t j j j

j
k R k U k v k k v k (84)

ψ λ ψ+ 〉 〈 〉 〉∑
2

2
3 2 0

=1

ˆ ˆ| ( ) = ( ( ) ) ( ) ( )| ( ) | ( ) ,t
t j j j

j
k R k U k v k k v k (85)

and compute their derivatives

ψ λ λ ψ− −
′〉 〈 〉 〉 +∑

2
1

3 0
=1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( )| ( ) | ( ) ( ),
r

t r r r
t r j j j jr

j

d k t k k v k k v k O t
dk

(86)

ψ λ λ ψ−
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+

∑
2

3 1 0
=1

1

ˆ ˆ| ( ) = ( ) ( ) ( ) ( ) ( )| ( ) | ( )
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r
t r r

t r j j j jr
j

r

d k t R k U k k v k k v k
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ψ λ λ ψ−
+

−

′〉 〈 〉 〉

+

∑
2

2
3 2 0

=1

1

ˆ ˆ| ( ) = ( ) ( ( ) ) ( ) ( ) ( )| ( ) | ( )
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t r r

t r j j j jr
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The moments E(X3t
r ), E(X3t+1

r ), and E(X3t+2
r ) turn out to be of the form

π

π

λ
ψ

π λ
−

−

 ′
 ⋅ 〈 〉 +
 
 

∑ ∫
2 2 1

0
=1

( )1 ˆ( ) ( )| ( ) ( ),
2 ( )

r

j r
r j

j j

i k
t v k k dk O t

k
(89)

and we see

π

π

λ
ψ

π λ

+ +

→∞ →∞ →∞

′

−

          
          + +               

 
  〈 〉
 
 

∑ ∫

  3 3 1 3 2

2 2

0
=1

= =lim lim lim3 3 1 3 2

( )1 ˆ= ( )| ( ) ,
2 3 ( )

r r r

t t t

t t t

r

j
j

j j

X X X
t t t

i k
v k k dk

k

(90)

which is put together as

π

π

λ
ψ

π λ−→∞

   ′ 
    〈 〉        

∑ ∫
2 2

0
=1

( )1 ˆ= ( )| ( ) ,lim 2 3 ( )

rr
jt

j
t j j

i kX
v k k dk

t k
(91)

where

λ

λ

′ +
−

− +

2 2

2 2 2

( ) 3 sin 3 sin= ( 1) .
3 ( ) 3 1 ( cos3 cos )

j j

j

i k c k s k
k c k s k

(92)

Setting iλj
′(k ) / 3λj(k )= x ( j =1, 2) in Eq. (91) leads us to an integral expression of the limit,

{ }

{ }

ν α β

ν α β

∞

 −∞ − +→∞  
  
 

 
+ − − −  

 

  
  − 
   

+ + − −

∫
2 21 4 1 8,

3 3

2 21 8 1 4,
3 3

= [ 1 ( , ; ) ( ) ( )lim

1 ( , ; ) ( ) ( )] ,

r
rt

c ct

c c

X
x x f x I x

t

x f x I x dx
(93)

which guarantees Theorem 4. Figure 12 shows the limit density function (d/dx)ℙ(Xt/t ≤ x) when

α =1 / 2, β = i / 2, and we view the features of Figure 9 in the limit density function. The density

function contains singular points at ±(1−4c 2) / 3, ± 1 + 8c 2 / 3. When θ = π/4, they are found at
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±1 / 3(= ± 0.333⋯ ), ± 5 / 3(= ± 0.745⋯ ) in Figure 12-(a), and when θ = 2π/5, at

±( 5−1) / 6(= ± 0.206⋯ ), ± 4− 5 / 3(= ± 0.442⋯ ) in Figure 12-(b).

Figure 12. Limit density function (α =1 / 2, β = i / 2).
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Abstract

The physics of dynamic resonant tunneling is investigated.

First, the resonant tunneling effect through an opaque barrier via a delta-function well is
illustrated. Then, it is shown that, even in the adiabatic regime, where the dynamics can
be governed by an analytic solution, the particle can be activated to higher energies. If the
well varies quickly enough that the particle cannot escape from the well during the
energetic elevation, the activation can be enhanced, as was anticipated by Azbel. However,
and this is the main result of this work, the quasi-bound state of the well can even “reduce”
the activation. In fact, because the resonant energy of the well matches twice the incoming
particle’s energy, and if the contribution to the wave function from both parts destruc‐
tively interferes, then the particle cannot dwell in the well and activation is suppressed.

This effect can be utilized in frequency-controlled transistors, and it is even speculated
that it may explain the reason that humans can distinguish between tens of thousands
of different odors with merely few hundreds of odor receptors.

Lastly, the short time dynamics of a very fast perturbative well is also discussed.

Keywords: Resonant Tunneling, Dynamic Tunneling, Vibrational Tunneling, Odor
detection, Olfactory, Forbidden activation, Selected Activation

1. Introduction

Resonant tunneling is a fascinating quantum phenomenon. It manifests the ability of quantum
particles to pass with high probability through an opaque barrier by traveling via a semibound
state [1–3].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The high sensitivity of the current on the bound-state parameters suggested harnessing this
effect to heterostructure devices in general and transistors in particular [4–10].

Resonant tunneling is usually described as a one-dimensional (1D) phenomenon; however,
resonant tunneling in higher number of dimensions was also investigated (see, for example,
[11, 12]). Nevertheless, because the main features of resonant tunneling appear in 1D, most of
the research was concentrated on the simplest 1D systems.

Tunneling and resonant tunneling are rarely stationary processes. They are affected by thermal
noises, and clearly, the accumulation of particles in the bound state varies the potential. It is
well known that tunneling in the presence of an oscillating barrier can cause activation (higher
energy) and therefore can increase substantially the tunneling current.

This phenomenon was investigated in electronics [13], nanotechnology [14–16], the founda‐
tions of quantum mechanics [17–33], and even biology and biochemistry [34–39].

The resonant tunneling effect occurs when the incoming particle’s energy coincides with the
eigenenergy of the quasi-bound state. In case the barrier is very opaque, the particle remains
inside the well at the quasi-bound state for exponentially long time. Therefore, when the
particle is quasi-trapped inside the well, its state has to vary with the changes in the well, and
its energy varies with the eigenenergy of the quasi-bound state because it does not have the
time to escape from the well. Therefore, it was conjectured (see refs. [17, 20]) that a decrease
in the perturbation time-scale will enhance the activation. However, not in any energy the
particle can remain within the well. Destructive interference can prevent particle trapping and
therefore suppress particle activation [23, 33]. In the next several sections, we will elaborate
on the delicate structure of these effects.

2. Stationary tunneling

Let us begin with the propagation of a quantum particle through an opaque but stationary
barrier. The Schrödinger equation is then

(1)

Hereinafter for simplicity, we adopt the units, where the electron mass is half and the reduced
Planck constant is unity (i.e., m=1/2 and ℏ=1).

In the stationary case (i.e., when the potential is time independent), there is no change in the
incoming particle’s energy. For any incoming energy ω, the generic stationary solution looks
like

(2)
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where φω(x) are the solutions of the stationary Schrödinger equation:

(3)

Therefore, every solution can be written as a superposition of incoming [φω
+(x)] and outgoing

[φω
−(x)] solutions, where

(4)

Physically, φω
+(x) and φω

−(x) stand for beams of particles coming from the left and right
respectively. tω and rω are the transmission and reflection coefficients of the barrier for energy
ω, respectively. In the WKB approximation (see, for example, ref. [19]), the transmission
coefficient can be evaluated as

(5)

where xL and xR are the left and right boundaries of the barrier. For a rectangular barrier, an
exact expression can be derived [19]:

(6)

where k≡ ω and K ≡ U −ω. Therefore, when the barrier is opaque [i.e., U −ωL >>1 (high and/
or wide)], the transmission is exponentially small.

3. Resonant tunneling via a delta-function well

Let us introduce a delta-function well in the barrier (at x = x0; in Figure 1, x0=0). Then, the
Schrödinger equation is

(7)
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It is convenient to use the outgoing Green function Gω
+(x,x0), which is a solution of the equation:

(8)

with the boundary conditions:

(9)

Therefore, the outgoing Green function reads

(10)

Using the Green function, we can easily construct a solution for the wave equation with the
combined potential (the barrier with the delta-function well). In which case, the solution reads

(11)

which for x>x0 is

In case of a rectangular barrier, i.e.,

(12)

then

(13)

where 2L is the width of the barrier, and tω is taken from (6), i.e.,
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Figure 1. In a stationary resonant tunneling process, only when the particle’s energy is equal to the quasi-eigenstate
energy can the particle penetrate the barrier with high probability.

(14)

At the resonance ω=Ω*=U−f0
2/4, T=|tω|2=1, (see Figure 2).

Figure 2. Transmission T=|tω|2 as a function of the particles energy ω for the parameters U=1, L=4 and f0=1.2.

4. Adiabatic transition

Now, let us take a varying potential well,

(15)
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In the adiabatic approximation, τ is longer than any other time-scale of the problem. The
relevant time-scale (i.e., the longest one) is the resonance time or the dwelling time of the
resonant state. Therefore, in the adiabatic approximation,

(16)

the potential can be regarded as stationary, and the wavefunction simply reads

(17)

The resonance energy of this system varies in time Ω*(t)=U−f2(t/τ)/4; therefore, large trans‐
mission occurs for ω=Ω*(t) and, in principle, can be as high as 1 when the well is located at the
center of the barrier, i.e.,

When the lowest eigenenergy of the well

(18)

is higher than the incoming energy ω, then the effect of the varying well is negligible; however,
if the lowest eigenenergy of the well is lower than the incoming energy ω, then the eigenstate

crosses the incoming energy twice. At the vicinity of the crossing time t ≅ t0 = ± τ ln ( λ0

2Kτ ), the
solution has the Lorentzian shape:

(19)

5. The general scenario

In principle, in the adiabatic approximation, the outgoing energy is equal to the incoming
energy (i.e., ωout=ωin±τ−1), where τ−1 should be exponentially small
τ −1 < <U exp(−2 U −ω(L −|x0|)). However, in practice, the situation can be quite different due
to the exponential decay of low energies in the tunneling process.

In general, the generic Schrödinger equation (see refs. [17, 33])

(20)

can be solved by a superposition of solutions of the type (11), namely,
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(21)

where it is taken that the incoming energy is Ω.

By substituting solution (21) into Eq. (20) (and after spatial integration), the solution can be
reduced to the integral equation [17]:

(22)

where f (ω)= ∫
−∞

∞

dtf (t / τ) exp(− iωt) is the Fourier transform of the perturbation’s amplitude.

6. Adiabatic and slow variations

In general, due to the complex structure of the Green function, this is a complex integral
equation; nevertheless, as long as the spectrum of the function is mainly concentrated near the
incoming energy Ω, i.e., |a(|ω − Ω|τ > > 1)| < < |a(ω = Ω)|, the contribution to the integral of
the components |ω − Ω|τ > > 1 is negligible; therefore, we can replace Gω

+(0) with GΩ
+(0). In

this case, the integral equation reduces to

(23)

which is merely a convolution equation; therefore, the inverse Fourier transform of the solution

(24)

obeys [24, 33]

(25)

Clearly, resonance occurs when f (t / τ)ℜGΩ
+ (x0, x0)=1. We will see in the next sections that

nontrivial effects occur when f (0)ℜGΩ
+ (x0, x0)>1. In this regime, it is invalid to substitute GΩ

+
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(x0,x0) for Gω
+(x0,x0). However, in the f (0)ℜGΩ

+ (x0, x0)<1 (where it is taken that f(0) = max{f(t/
τ)}) regime, this approximation is still valid.

It is clear, for example, that, when f (0)ℜGΩ
+ (x0, x0)< <1, which is equivalent to the adiabatic

regime,that

(26)

and thus

which means that the spectrum broadening is exactly similar to the spectrum of the perturba‐
tion; in which case the solution is simply

(27)

7. Activation

From Eq. (27), it is evident that elevation to higher energies is still a possibility even in the
adiabatic and slowly varying cases, and because the Green function Gω

+(x,x0) increases with
the energy, there is still a possibility that the mean exit energy will be considerably higher than
the incoming one. The outcome depends only on the specific functional shape of the pertur‐
bation spectrum.

More importantly, when the perturbation becomes more energetic and τ decreases so that
f (0)ℜGΩ

+ (x0, x0) approaches 1 from below (i.e., there is still no intersection), the adiabatic Eq.
(25) is still approximately valid. In this case, however, one can take

(28)

Then, after substituting Eq. (28) in Eq. (25) and both of them in Eq. (24),

(29)
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where β≡(λ0 / τ)GΩ+ (x0, x0). Therefore,

(30)

Now, because the Green function can be written (beyond the barrier) approximately as

(31)

then the exponent in the integrand, which can be regarded as an approximate evaluation of
the spectrum of the outgoing wavefunction, consists of two main terms (two peaks):

(32)

The first peak occurs around the incoming energy Ω (suppressed activation) and the second
one occurs around the barrier’s height U (activation).

Each one of these peaks has a different height. The higher one will determine whether
activation will occur. Therefore, the probability to tunnel through the barrier and to exit with
energy ωout is approximately [33]

(33)

which means that the activation probability peak is proportional to

(34)

whereas the inactivation probability peak (i.e., the probability for suppressed activation) goes
like

(35)

In Figure 3, we demonstrate the fact that the spectrum is governed by two maxima (peaks)
and that Eq. (33) is a good approximation to the numerical solution at the vicinity of these
maxima. Therefore, activation occurs when
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(36)

This occurs approximately at the time scale

(37)

or, for a given τ, the transition occurs for the following incoming energy:

(38)

Figure 3. Comparison between the logarithm of the exact numerical solution (solid line) and the analytical approxima‐
tion (dashed line), i.e., Eq. (33), for 

λ0=100,L U =150, Ω/U =0.6=ΩT , τ=τT =280U
.

Clearly, this energy is lower than the minimum resonance energy

(39)

In Figure 4, the dependence of the spectrum on the transition time-scale τ is presented for three
different values: below τT where activation prevails, above τT when simple tunneling wins,
and when they are equal, and the outgoing particle’s spectrum has two equally probable
outgoing energies.
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It should be stressed that, because these peaks are exponentially narrow, the transition is
extremely abrupt (i.e., the process resembles a phase transition). The identification of the
process as a phase transition was first suggested by Azbel [17].

However, it was wrongly assumed that, if the particle’s incoming energy matches the quasi-
eigenstate energy, then an eigenstate-assisted activation (EAA) effect occurs (i.e., if Ω>Ωmin*,
then activation will definitely increase). In fact, it will be shown that this process is more
complicated, and at some energies (above Ωmin*), activation is “totally” suppressed.

Figure 4. The (logarithm of) the exit probability as a function of the activation energy ωact for the parameters

λ0 =100, L U =150, Ω / U=0.6, for three different perturbation time scales: τ = τT (solid line), τ = τT + 20 (dashed
line) and τT − 20 (dotted line).

8. Selected elevations and forbidden activations

For Ω>Ωmin*, the spectrum’s shape becomes more complicated. Instead of only two peaks, it
has a more complex structure. There is a clear difference between the ωact<Ω (i.e., the under‐
activated regime) and the ωact>Ω (i.e., the activated one). The former oscillates as a function of
ωact but almost independent of the incoming Ω, whereas the latter oscillates as a function of
the incoming Ω but has a mild dependence on the outgoing ωact. In Figure 5, there is an
illustration of this behavior, where a small change in the incoming particle’s energy has an
enormous effect on the activated regime. In Figure 6, a numerical example illustrates this
phenomenon where a ~6.7% change in the incoming energy made a dramatic change from full
activation to suppressed one.

As a consequence, it is clear that, for specific incoming particle’s energies, the entire activated
part of the spectrum is suppressed. To illustrate this point, we define the mean activated energy
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(40)

where P(ωactΩ) is the probability of an incoming particle with energy Ω to exit the barrier with
the energy ωact.

Figure 5. Schematic illustration of the suppressed activation. For most energies, activation occurs (i.e., ωact ≅ U); how‐
ever, for the specific energies (i.e., Ω=Ωm), activation is suppressed and ωact ≅ Ω = Ωm.

Figure 6. Absolute value of the transmission coefficient a(ω) as a function of the activation energy ωact. The dashed
curve corresponds to the case Ω/U = 0.6 and the solid line corresponds to Ω/U = 0.56. The other parameters are

λ0 =100, L U =10, τU =60.6.

In Figure 7 the mean activation energy <ωact> is plotted as a function of the perturbation time
scale τ, and in Figure 8, <ωact> is plotted as a function of the incoming particle’s energy Ω. It is
clearly seen that activation (<ωact> ≅ U) occurs mainly below τ<τT. However, even below this
time-scale, there are specific values of τ, for which activation is suppressed (i.e., <ωact> ≅ Ω).
Similarly, activation occurs <ωact> ≅ U mainly above Ω>ΩT; however, even in the activation
regime, there are specific energies for which <ωact> ≅ Ω (i.e., suppressed activation).
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Figure 7. Mean activation energy as a function of the time-scale τ for the parameters: Ω/U = 0.6, L U =6, λ0 =100.

When τ<τT, two important things occur: (1) At two specific times, the particle’s incoming
energy is equal to the eigenenergy of the quasi-bound state of the varying well. (2) The well
varies quickly enough so the particle has no time to escape from the well.

As a consequence of these two, the particle’s state changes with the well’s eigenstate; therefore,
it is easier to excite the particle energetically. That was the logic that led Azbel to predict the
EAA effect. Indeed, this effect does occur, and it is clearly seen (see Figure 4) that, when τ<τT,
then, for most values of τ, the spectrum’s energy is concentrated around the barrier’s height
U. However, this process cannot last if the particle cannot dwell inside the quasi-bound state.
This event occurs when there is destruction interference inside the well.

Had it been a stationary eigenstate with an eigenenergy Ω0 the eigenstate would accumulate
a linear phase [i.e., exp(−iΩ0t)].

Figure 8. Mean activation energy as a function of the incoming energy Ω/U for τU =79, L U =6, λ0 =100, ΩR is
the resonance energy
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However, because the quasi-bound state evolves in time, it gains the integral

(41)

When the incoming energy is above the minimum eigenenergy (i.e., Ω>Ωmin*=U−λ0
2/4τ2), there

are two times, in which Ω=Ω*(t1)=Ω*(t2) (see Figure 9), and due to the temporal symmetry of
the perturbation t1=−t2. Therefore, the particle has two options to be temporally bounded to

the quasi-eigenstate: it can either begin at t1 and gain the phase exp(− i ∫
t1

t

dt 'Ω *(t ')) or at t2 and

gain the phase exp(− iΩ(t2 − t1)− i ∫
t2

t

dt 'Ω *(t ')). If the two components are out of phase and a

destructive interference occurs [33], i.e.,

(42)

the particle cannot survive within the well, and activation is frustrated.

Figure 9. When the minimum of the resonance energy of the perturbation is lower than the incoming energy Ω, then
the instantaneous resonance energy Ω*t crosses the incoming energy twice (at t1 and t2). For successful activation, the
cumulative phase between these two events must be constructive.

In our case, at the vicinity of the parabola peak,
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(43)

After substituting (43) into (42), the values of the forbidden energies Ωm, for which destructive
interference occurs and the activation is suppressed, are directly given

(44)

In each one of these energies, the activation is suppressed.

To determine these energies more accurately, we take advantage of the fact that, at the vicinity
of the minimum Ωmin*, the instantaneous resonance energy has a parabola shape; therefore,
any varying potential with the same parabola should have approximately the same suppressed
energies. Therefore, we replace the Gaussian with a parabolic function, that is, we choose Eq.
(28) for the perturbation, namely, f(t/τ) ≅ (λ0/τ)(1 − t2/τ2), then

(45)

Therefore, the integral equation

(46)

reduces to the differential equation

(47)

where we used the dimensionless parameters n=(ω−Ω)τ and .

After linearization of the Green function, Eq. (47) can be approximated to

(48)

where again K ≡ U −Ω.

The solution that maintain the boundary conditions that s(n → ∞) → 0 is
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(49)

where ξ≡(n + K(λ0/τ − 2K)τ)/(2λ0K)1/3, ξ0≡(K(λ0/τ − 2K)τ)/(2λ0K)1/3 and Ai and Bi are the Airy
functions [40].

Therefore, it is clear that activation is suppressed when

(50)

which, in the slowly varying approximation (i.e., large τ), correspond to (see [40])

(51)

Therefore, the incoming energies for which Ωact ≅ Ω, and thus no activation occurs, are
approximately (see Figures 10 and 11)

(52)

Therefore, Eq. (42) should be rewritten more accurately as

(53)

like destructive interference condition in the WKB approximation (see, for example, ref. [19]).
Eq. (53) can be applied to any varying potential whose temporal shape has minima.
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Figure 10. Approximate analytical expression of the forbidden time-scales (dashed curves) with the exact numerical
solution of the probability density (the darker the spot the higher probability it represents). τm are the time scales for
suppressed activations (52). τR is the minimum time scale τR≡−λ0GΩ

+ (0), and τT is the transition time when activation

wins. With the parameters: Ω / U =0.6, λ0 =100, and L U =10.

Figure 11. Presentation of the analytical suppressed activation energies Ωm (dashed lines) on top of the numerical solu‐
tion of the probability to be activated to energy ωact (the darker the spot, the higher the probability it represents). ΩT is
the transition energy when activation wins, and ΩR is the minimum resonant energy. The other parameters are

τU =75, λ0 =100and L U =10.

Because (52) was derived for any potential, which can be approximated by a parabola [Eq. (28)],
then the same conclusions and the same suppression of activation are valid to periodic
potentials of the type
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(54)

See ref. [23] for a more extensive study on these potentials; nevertheless, the suppressed
activation energies (52) and (53) are still valid for these potentials.

9. Instantaneous changes

Lastly, we are going to investigate the scenario in which the perturbation appears instantane‐
ously. In this case, the Schrödinger equation reads

(55)

where u(t)= {1 t ≥0
0 t <0 is the Heaviside step function.

It was shown in ref. [41] that the effect of such a perturbation has a universal pattern in the
short time domain and in fact depends only on the product of the strength of the delta-function
(f0 in this case) and the local value of the initial wavefunction. The idea is [41] that an instan‐
taneous delta-function perturbation is equivalent to a discontinuity in the wavefunction, and
it was proven elsewhere [42, 43] that such a discontinuity has, in the short time, a universal
pattern even in the presence of potentials [44]. Therefore, if the initial state was

(56)

then, after the instantaneous perturbation, the short time dynamics is simply [41]

(57)

Because the first term is exponentially smaller than the second one, then very quickly the
second term becomes dominant. In fact, it becomes dominant as early as

(58)

If the delta-function well is turned on instantaneously but only for a period of 2τ, then the
Schrödinger equation can be written as
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(59)

and the solution is

(60)

which can be further simplified (provided τ<<t) to

(61)

where sinc(x)≡ sin(x)/x.

This result again suggests that, if the variation occurs quickly enough, there is no dependence
on the incoming particle’s energy Ω. In fact, the variation term vanishes for

(62)

Moreover, when 
τ(x − x0)2

4t 2 < <1, the second term has a totally universal pattern, which is even

independent of τ:

(63)

10. Applications

(A) The effect of controlled activation can be used in dynamic heterostructures, which can be
used as frequency effect transistors. A schematic presentation of the system is presented in
Figure 12. The barrier can be constructed by a semiconductor, and its potential shape can be
controlled by the gate’s voltage. In such a device, the current from source to drain will be
governed by the frequency of the gate and therefore can be much more sensitive than any other
transistor (because frequency, unlike voltage or currents, can be determined with great
accuracy).
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In Figure 13, the current j ∝ |iψ ' (x, t)ψ*(x, t) − c. c.| [where ψ(x,t) is the solution of Eq. (21)]
of such a device is plotted as a function of the incoming energy Ω and τ. The forbidden
activations values are clearly seen by the white stripes. They are exponentially narrow;
therefore, the device’s current can be controlled by small variations in τ.

Figure 12. Schematic illustration of a frequency effect transistor. The semiconductor functions as an effective barrier,
and the gate voltage oscillates with frequency ω to create the oscillating region. The insulating layer prevents current
leakage from the gate to the drain.

Figure 13. Plot of the current j ∝ |iψ ' (x, t)ψ*(x, t) − c. c.| as a function of the Ω and τ for λ0 =100and L U =10.
The darker the color, the higher is the current.

(B) As mentioned in the Section 1, there are evidences that odor detection is governed by
dynamic resonant tunneling. It is known that odor receptors are, in some sense, like resonant
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tunneling devices—only specific molecules, with the right chemical properties, “activate” the
receptor, which sends a signal to the brain. However, it was recently recognized that the
olfactory system could distinguish between two molecules, which have the same chemistry
but have different mechanical properties. That is, in cases where one of the atoms in a molecule
is replaced with one of its isotopes (e.g., deuterium instead of hydrogen), a different odor is
detected. It was therefore suggested that the receptor actually operates as a “dynamic”
resonant tunneling device [38], which is sensitive on the molecule vibrations. If this is indeed
the case, an enigma still remains: how humans can distinguish between approximately 10,000
different smells while they have only few hundred receptors. If every receptor is calibrated to
a specific molecule with a specific vibration, then only several hundred odors should have
been detected. The dynamics, which is presented by us in this chapter by the forbidden
activation energy, suggests that each molecule has a different fingerprint, and every molecule
can activate several receptors in a specific combination, which characterizes only the specific
molecule. From this specific combination (instead of a single specific receptor), the brain can
identify the specific detected molecule (see Figure 14).

Figure 14. A receptor as a resonant tunneling system distinguishes between molecules, which are identical chemically
but different mechanically. The heavier the molecule, the lower the vibrational frequencies and therefore have a differ‐
ent impact on each one of the receptors. Thus, every molecule would have a unique combination of activated recep‐
tors.

11. Summary

Resonant tunneling is a fascinating quantum phenomenon. In this chapter, we have focused
on the transmission of a quantum particle through an opaque (mostly rectangular) barrier via
a delta-function potential. We have discussed all dynamics regimes—stationary resonant
tunneling, adiabatic changes, activation, forbidden activation, and instantaneous changes. The
generic dynamic problem is highly complex. Each one of these regimes has its specific
characteristics.

The main results are related to the domain in which the incoming particle’s energy is higher
than the minimum eigenenergy of the changing well and the changes are fast enough to
prevent particle escape. Unlike previous predictions, the fact that the particle can be trapped
in the well does not mean by itself that it will necessarily be activated. In fact, in some cases,
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the particle’s wavefunction experiences “destructive interference” inside the well, and as a
consequence, activation is suppressed. We show that all the cases in which the potential’s
temporal minima has a parabola shape have the same forbidden energies, and for the first time,
we present a generic solution for this case.

Furthermore, the instantaneous case is also discussed for the first time. In this case, the
dependence on the specific incoming energy vanishes, and a generic universal pattern appears.

Finally, we suggest testing this effect as a frequency effect transistor, which have the potential
to be used as a highly accurate transistor.

Moreover, it is suggested that the effect of forbidden activation energies may explain the reason
that humans can distinguish between 10,000 different odors while they have only several
hundred odor receptors. According to this suggestion, every molecule can trigger different
receptors, and only the combination of the activated ones creates the perception of the right
smell. In any case, this research shows that dynamic resonant tunneling, in general (and
forbidden activation, in particular), has a major, and totally nontrivial, role in the olfactory
mechanism.
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Control of Quantum Particle Dynamics by Impulses of
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Abstract

In the present chapter, the possibility of spin states control in quantum dots as bases of
creation of logic elements on the basis of quantum semi-conductor systems is dis‐
cussed. In particular, the multi-particle approach to the description of spin system and
control of coherent spin conditions is developed. It is shown that at action by an impulse
of a magnetic field two types of spin conditions are possible, depending on initial data:
conditionally steady and absolutely steady. The second type of conditions is important
for information storage.

Keywords: spin states, control, information, stability, magnetic field, quantum dot,
quantum dynamics

1. Introduction

Now, a lot of works on search of materials for development of qubits as bases of element base
for quantum calculations has conducted. It is conducted in several directions, but the most
perspective, in our opinion, possibility of creation of qubits (elements of quantum calcula‐
tions) on the basis of low-dimensional quantum semiconductor systems with quantum dots is
represented [1]. With search of perspective materials, the important problem is development
both the new and other adapted under concrete quantum nanostructures algorithms and
schemes of the quantum calculations allowing to realize logical schemes and elements. Since
1994, when Shor [2], Shor and Preskil [3], and Shor and Smolin [4] offered effective algorithm
of polynomial (power) type for the solution of a problem of factorization of large numbers on
quantum computers, the intensive development of algorithms of quantum calculations began.
Essential feature of quantum computers is possibility of implementation of Fourier transfor‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



mation for polynomial (power) number of operations depending on the task size. In that, there
is the fundamental difference of quantum calculations from classical ones, where the exponen‐
tial number of operations is necessary for using of Fourier’s transformations.

At the present moment, three classes of quantum algorithms are known [5–8]. The first class
of algorithms is intended for the solution of tasks like factorization of numbers, the second
class of algorithms is developed for modeling of the quantum phenomena [9], and the third
class of algorithms is intended for search of object in an unstructured random database [10].

In this first part of the chapter, the possibility of control of spin states in quantum dots as bases
of creation of logical elements on the basis of quantum semiconductor systems has discussed.
In particular, multi-particle approach to the description of spin system and control of coherent
spin states has developed. It has shown that at action by an impulse of a magnetic field and
depending on initial data two types of spin states are possible: non-steady and absolutely
steady. The second type of states is important for storage of the information.

2. Physical basics for development of control of spin system

2.1. Matrix representation of spin operators in multiparticle approach

To solve the control problem of many-particle spin system, we need to develop the many-
particle operators for spin operators. For the creation of the multi-particle description, we will
use operator representation for spin operators. As an example, we will consider the X com‐
ponent of the spin operator for system of two particles. We will enter designations for states
with back as “0” state down, and a state with back as a state “1” up.

|11 | and | 00 |>=­­> >=¯¯>

Let the operator I acts only the second particle. Then, the action of the operator can be presented
in the form:

x2I (2) | 00 | 01>= > (1)

22 (2) | 01 | 00xI >= >

2 (2) |10 |11xI >= >

2 (2) |11 |10xI >= >
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If to enter new designations for states |00> = | 0>, |01> = |1>, |10> = |2>, |11> = |3>, then we
will gain the following impression:

2 (2) | 0 |1xI >= > (2)

2 (2) |1 | 0xI >= >

2 (2) | 2 | 3xI >= >

2 (2) | 3 | 2xI >= >

respectively, in matrix representation, we will receive the operator for the X components:

0 1
1 0

2
0 1
1 0

xI

æ ö
ç ÷
ç ÷=
ç ÷
ç ÷
è ø

(3)

Repeating these reasonings for other components, we will gain a multi-particle expression for
spin operators in a matrix form:

0 1 0
0 0 1

2 2
0 1 0

0 0 1

y z

i
i

I I
i

i

æ ö æ ö
ç ÷ ç ÷- -ç ÷ ç ÷= =
ç ÷ ç ÷
ç ÷ ç ÷

- -è ø è ø

(4)

Further, it is easy to construct similar operators for system of N particles in the form of N × N
matrix.

2.2. Control of two-particle quantum system

Below we study the two-particle system—system from two particles with spins. The Hamil‐
tonian for the movement of spin in a magnetic field has a standard form:

( ),zH BI h B I B Ig g + - - += - - +h (5)

where components of a magnetic field are equal
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.x yB h ih± = ± (6)

Here, the raising (lowering) operators have an appearance:

|1 0 | | 0 1|.I I- += >< = >< (7)

In a matrix form, they have following matrixes 4 × 4:

0 0 0 1
1 0 0 0

2 2
0 0 0 1
1 0 0 0

I I- +

æ ö æ ö
ç ÷ ç ÷
ç ÷ ç ÷= =
ç ÷ ç ÷
ç ÷ ç ÷
è ø è ø

(8)

We find the solution of Schrödinger’s equation in the form as:

0 1 2 3( ) ( ) | 0 ( ) |1 ( ) | 2 ( ) | 3 .t c t c t c t c ty = > + > + > + > (9)

Here, variable coefficients are equal:

0 0/ 2 / 2
2 2 0 0( ) (0) ; ( ) (0)i t i tc t c e c t c ew w= = (10)

0 0/ 2 / 2
3 3 1 1( ) (0) ( ) (0) .i t i tc t c e c t c ew w-= =

And after that we will consider change of population of levels depending on initial condi‐
tions. Let us choose the following initial data:

A)

0 1
1(0) , (0) .
2 2

ic c= =

The relevant solutions have the following form:

[ ] [ ]
0 1

cos( / 2) sin( / 2) cos( / 2) sin( / 2)
( ) , ( )

2 2
t t t t

c t c t i
W - W W + W

= = (11)
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The probability of staying at the given level is equal:

2 2
0 1 1 1

1 1| ( ) | (1 sin( )), | ( ) | (1 sin( )).
2 2

c t t c t t= - W = + W (12)

It is easy to see that also depends on duration of the applied impulse:

2 2
1 0 1 1 1

1At / 2 / | ( ) | | ( ) |
2

t c t c tp p= W = W = =

2 2
1 0 1 1 1At / 2 | ( ) | 0, | ( ) | 1t c t c tp= W = = (13)

2 2
1 0 1 1 1Andat 3 / 2 | ( ) | 1, | ( ) | 0t c t c tp= W = =

According to the obtained results, such a studied configuration with the probability of staying
and transition between levels is defined by duration of impulses of a field.

B) Let us use another initial data:

0 1
1(0) (0) .
2

c c= = ±

So the corresponding solutions have a form:

0 1
exp( / 2) exp( / 2)( ) , ( ) .

2 2
i t i tc t c t iW W

= = (14)

The probability of stay at the level is constant and does not depend on impulse duration.

2 2
0 1 1 1

1| ( ) | | ( ) | .
2

c t c t= = (15)

These configurations we will call as absolutely steady. Similar solutions are obtained too under
the following initial conditions:

0 1(0) (0) .
2
ic c= = ±
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As a result, we have following solutions

1 0
exp( / 2) exp( / 2)( ) , ( ) .

2 2
i t i tc t c t iW W

= ± = ± (16)

The probability of stay on these levels is constant and does not depend on impulse duration:

2 2
0 1 1 1

1| ( ) | | ( ) | .
2

c t c t= = (17)

Thus, in the above part of the chapter, the multi-particle approach to the description of spin
system and control of coherent spin states is developed. This multi-particle approach is used
for strict description of transfer processes in the quantum systems with many particles. As
application of the developed method, the system of two particles with spins is studied. The
obvious expressions for spin operators in a multi-particle case are constructed. And control of
multi-particle system by the variation of magnetic field is investigated. It is shown that at action
by an impulse of a magnetic field and depending on initial data two types of spin states are
possible: Stability of first type of states depends on the action of external magnetic field, and
second type of spin states is absolutely steady. The second type of states is important for storage
and further keeping of the quantum information.

3. The mathematical formulation of control problem in the system in a
magnetic field

The second part of chapter devoted to more mathematical description of control problem. In
the first paragraph, we study the particle (spin) motion in the electromagnetic field; the general
equations have obtained. The criteria for optimal time, reaching the desired point, have
analyzed, and the calculations for the specific types of control from impulse of the field to the
power and Gauss driving force spectrums have made in the two paragraphs. The obtained
results shortly discussed in the three paragraphs.

3.1. The equations of motion within a magnetic field with control

A particle motion within a magnetic field is known to be described by the following equation:

[ ] ( ) [ ]dV q qm V B U t V h
dt c c

= ´ + ´ (18)

where V is the velocity of the particle, B is the constant magnetic field, m is the mass of the
particle, q is the charge of the particle, H (t)=U (t)h  is the alternating magnetic field, h is the
unity vector, and U (t) is the absolute value of the control.
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Considering the equation in components and introducing state vector function X =(x1, x2),
X ∈ R 2, U ∈ R, we may formulate the following model of the controlled system:

( )( )X A U t C X= +& (19)

where the matrices A and C are defined by the following expressions: A=( 0 Ω
−Ω 0 ),

C =( 0 ω
−ω 0 ), and parameters Ω and ω—by the following ones: Ω = qB

mc  and ω = qh
mc .

As mentioned above, this model describes various physical problems, in particular a particle
motion in a magnetic field and spin precession in a magnetic field. From the standpoint of
control theory, the task formulated belongs to the degenerate class of the optimal control tasks,
since there are additional invariants—the integrals of motion in accordance with the law of
conservation of energy:

( )2 2 ,1 2X X const m const+ = = (20)

The problem of particle motion control in a magnetic field has formulated as the following: to
define the time to reach a given point depending on the parameters of control—the amplitude
and the period of control pulse, as well as the specter of external impact. The functional
describing the reaching of the given point in space is defined to solve this problem:

( ) ( ) ( )1 , ,1 21 2
f fL T x T x x T xf f f

æ öæ ö æ ö= - +ç ÷ ç ÷ç ÷è ø è øè ø
(21)

Here, X f =(x1
f , x2

f ) is final state vector function, X (Tf )= (x1, x2) is current state vector function.
The optimal time to reach the given point has defined by fulfilling the condition of functional
extreme (minimum).

The motion of particles within a magnetic field under various external impacts has been
considered. The trunk solutions and the dependence of particles phases on the amplitude,
duration, and the specter of the impact of fields have been established.

Let us consider the circular particle motion. The simplest way to solve the task is using the
complex form. Thus, a complex variable z = x1 + ix2 = | z | e −iφ is introduced, and then the system
of the motion equations is transformed to the following simple view:

0,
d z
dt

=
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( )d U t
dt
j
= W + (22)

The first equation corresponds to the law of energy conservation (the motion amplitude
conservation). The second equation describes the phase alternation while circular motion
under the control impact. Thus, the circular motion with the radius specified is completely
defined by its phase values. The alternation of the phase is defined by the external impact in
turn.

According to Eq. (22), the general solution has such form:

( ) ( )t t U t dtj w= W + ò (23)

3.2. Control of particle motion

According to the conditions formulated for optimal control earlier to define the time for
reaching the given point, the functional (21) needs to be built.

Consider some point on the circle as the current one.

,1 2
iz x ix z e j-= + =

where the phase is defined by the Eq. (22). The final point is chosen to be on the circle for
example as at 45°:

* * * /4
1 2

iz x ix z e p-= + =

Then, the functional to be found takes this form:

( ) ( )( ){ }( )2
1 1 sin 2

2
yL T t U t dtf w= - + + ò

Accordingly, the condition of the functional minimum is defined by the condition for phase:

( ) ( ) 2
0

FT
T T U t dtF Fj w p= + =ò (24)

Thus, the time for optimal reaching the given point at the Tf trajectory is defined by the
functional Eq. (24).
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3.3. The dependence of particles phase on the control amplitude, duration, and specter

In the absence of external impact, U(t) regular standard solution with the initial angular
velocity Ω arises:

( ) ( )
( ) ( )

cos0 ,
sin0

V t V tx
V t V ty

j

j

ì = W +ï
í = W +ïî

(25)

Then, the time for reaching is defined by the statement:

4
TF

j p
w w
D

= = (26)

These solutions are known as Trunk solutions [11] in mathematics.

The dependence of the phase of particle circular motion on the control type and duration is
analyzed, and the time for reaching is calculated below. Particle motion under various types
of external control is considered—see [12] too.

(1) In case of pulse external impact the control function takes the form:

( ) ( ) ( ) or0U t U t tq e q= - - (27)

( ) ( ) ( ).0U t U t n t
n

t q= - -å

Then time TF may be defined from this expression:

2 .0T uFp w t= +

2 20 0UTF
p t wp t
w w w
- æ ö= = - ç ÷

è ø
(28)

The time for reaching decreases in comparison with the case of impact absence due to the
impact amplitude ω0. When the condition fulfilled:

20w t p= (29)

reaching is immediate:
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0TF =

(2) In case of exponentially fading impacts the control function takes this form:

( ) 0
tU t U e a-=

In this case, the time to reach the point may be defined by the following:

( )202 10 2
U TT eFp w é - ù= + -ê úë û

(30)

Consider the cases:

4a) 1, then
0

T TF F
p

a
w a

<< =
+

(31)

In the case of adiabatic impact, the time to reach the point increases.

In case of rapid impact.

0
4) 1, theb n

U

T TF F

p
aa

w

-
>> = (32)

In the case of Gaussian impact, the control function takes this form:

( ) ( )2 2
.0

t
U t U e

b-
=

( ) ( )
0

FT
U t dt erfc TF

p b
b

=ò (33)

where erfc(x)= ∫
0

x

e (−x 2)dx.

Consider the following cases:
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a) βTF < <1, then (ω + β)TF = π
4 , which yields

( )4
TF

p
w b

=
+ (34)

б) βTF > >1, then ωTF +
U 0 π
β = π

4  and

0
4

U

TF

p p
b
w

-
= (35)

(3) In case of power distribution, the motion function takes this form:

( )

( )

( )

( )

0

1
10 0

0

10

1

0

, 0.

1
1 1

,
4 1

, 1.
4

FT

F

F

F
F

tU t U

U t UU t dt T

U T T

T T

g

g
g

g

g
g

g

g
t

g t g t
p w

g t

pw t w g
t

+
+

+

-

æ ö= >ç ÷
è ø

æ ö= =ç ÷+ +è ø

= +
+

æ ö + = -¥ < £ -ç ÷
è ø

ò
(36)

Consider three cases:

a) −∞ <γ < −1, then:

1
0 4

TF TF
g pw t w

t

-æ ö + =ç ÷
è ø

(37)

1
,0

TF TF
g

w t w
t

-æ ö- <<ç ÷
è ø

then

4
TF

p
w

= (38)

in case of strong impacts.
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In the opposite case of weak impacts

1
,0

TF TF
g

w t w
t

-æ ö- >>ç ÷
è ø

then

1
1

4 0

TF p g
t w t

æ ö -= ç ÷
è ø

(39)

.TF ®¥

The dependence increases for short time to reach the point.

б) −1<γ <0, than:

( )
1

0 4
TF TF

g pw t w
t

+æ ö + =ç ÷
è ø

(40)

At short times, time to reach the point does not depend on the specter of time distribution:

( )
1

0 4
TF TF

g pw t w
t

-æ ö + =ç ÷
è ø

(41)

When TF →∞

1
1 1

4 0
TF

p g
w t

æ ö -= ç ÷
è ø

(42)

At large times, time to reach the point is defined by the specter of distribution.

c) γ >0

then (TF )γ+1 + ωTF = π
4 , that yields

1
1

4 0
TF

p gt
w t

æ ö += ç ÷
è ø

(43)
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At short times with low impact, time to reach the point is not sensitive to the specter and then
TF = π

4ω .

At large times with strong impact, time to reach the point is defined by the type of the specter.

4. Conclusion

Thus, in this chapter, the multi-particle approach to the description of spin system and control
of coherent spin states is developed. Obvious expressions for spin operators in a multi-particle
case are constructed. On the example of two-partial system, control of system by the variation
of magnetic field is investigated. It has shown that at action by an impulse of a magnetic field
and depending on initial data two types of spin states are possible: conditionally steady and
absolutely steady. The second type of states is important for storage of quantum information.

Thus, the second part of the chapter describes particle motion both without and under the
impact of external fields. The possibility to control the motion and reaching of the given
point under different types of external impact is investigated. The dependence of time to
reach the given point at the trajectory on the specter of the impact has been established; this
dependence has particularly been expressed for the power specter also.
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Chapter 5

A highly ordered radiative state in a 2D
electron system
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Additional information is available at the end of the chapter
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Abstract

A two-dimensional (2D) electron system in a perpendicular magnetic field acts like a
macroscopic strongly correlated source of radiation with inherent temporal and spatial
correlations. The formation of the correlated macroscopic state of 2D electrons passes
through uniform and nonuniform states of the electron subsystem. These are reflected in
two types of noise of photoresponse in the 2D system. The strange attractor character‐
ized by small-sized dynamics in the phase space of a photoluminescence of 2D elec‐
trons is revealed.

Keywords: giant optical fluctuations, highly ordered correlated state of electrons,
nonlinear dynamics, quantum Hall effect, strange attractor

1. Introduction

The formation of a highly ordered correlated state in low-dimensional electron systems is well
known to produce fluctuations of their physical parameters (a potential fluctuation, spin and
charge fluctuations, phase fluctuations of wave functions, etc.) [1]. The fluctuation character of
various kinds of phenomena can be implicitly indicative of their fundamental nature. In
particular, the studies of quantum shot noise made it possible to reveal the fractional electron
effective charge [2,3]. The strong correlation effects may occur in a quasi-two-dimensional (2D)
electron system in a transverse magnetic field, such as the fractional quantum Hall effect (FQHE)
[4] and the pinned Wigner solid [5]. However, to date, quantum-sized electron systems have
not been investigated in terms of the fluctuations in their optical response. In that context, the
optical methods could provide information that is beyond the reach of the magnetoresistance

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



studies. These are the single-particle density of states immediately below the Fermi level, single-
particle energy gaps, some information on a random potential (the amplitude and characteris‐
tic length scales), interference-enhanced effects, polarization correlations, coherence time, and
so on. It is also important to emphasize here that quantum localization effects are not the strong
restriction for the optical technique in the QHE regime [6].

In a series of articles [7–17], we reported that the giant optical fluctuations (GOFs) occur in a
photoexcited 2D electron system (GaAs/AlGaAs quantum wells) in the QHE regime. Initially,
it was revealed that the rated value of a variance of an intensity of radiative recombination of
2D electrons with photoexcited holes increases by several orders of magnitude for certain
values of the Landau-level filling factor ν [the ratio of a 2D electron concentration ns to the
multiplicity of the Landau-level degeneracy (2πL2

B)-1; LB=(ħ/eB) 1/2 is the magnetic length, ħ is
the Plank constant, B is a magnetic field, and e is the elementary charge] [7]. The fluctuations
are of a low-frequency character with characteristic times on the order of tens, hundreds, and
even thousands of seconds. The follow-up study revealed that these fluctuations occur due to
the strong interaction between elements of the photoexcited 2D system and have large-scale
spatial and temporal correlations [8,9]. Moreover, we revealed that the signal intensity of
intersubband inelastic light scattering in the QHE regime [the spin-density excitation (SDE)
mode] exhibits giant fluctuations similar to the luminescence intensity fluctuations [10].

Fluctuations of optical signals are considered traditionally in the theory of optical coherence
[18]. It is thus considered that the source of radiation is in a stationary state close to thermody‐
namic equilibrium and only field fluctuations are taken into account. However, besides optical
coherence, intrinsic times of quantum dynamics of an electron subsystem can be perceptible in
an optical signal. It seems that the consideration of source fluctuations under thermodynami‐
cally nonequilibrium conditions is a reasonable generalization of the existing theory. In partic‐
ular, the source can be in a deterministic chaos regime, as it must occur at critical points and
phase transitions. QHE is the macroscopic quantum effect that is manifested in the quantiza‐
tion of the Hall resistance ρxy and disappearance of the diagonal resistance ρxx. In that context,
ρxx valleys can be considered as the system states in the vicinity of a critical point. It is reasona‐
ble to expect in the circumstances that the radiation of a source will be not chaotic. Indeed, we
found that the radiation of the GOF source has correlations [8,12–14]. This radiation is not
chaotic a priori and has nonlinear dynamics of photon counts as revealed from the time series
analysis [11,15]. At that, there are conditions in a vicinity of the filling factor ν=2, where the
system behaves as the macroscopic correlated (“coherent”) source of radiation [16,17].

2. GOF detection under QHE conditions: sample structure and initial
experimental conditions

High-quality samples containing a 250-Å-wide GaAs/Al0.3Ga0.7As quantum well were used as
a standard object where the effect of GOF is observed [7]. Figure 1 shows the sample structure
in which the radiative recombination of 2D electrons with photoexcited holes was studied.
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even thousands of seconds. The follow-up study revealed that these fluctuations occur due to
the strong interaction between elements of the photoexcited 2D system and have large-scale
spatial and temporal correlations [8,9]. Moreover, we revealed that the signal intensity of
intersubband inelastic light scattering in the QHE regime [the spin-density excitation (SDE)
mode] exhibits giant fluctuations similar to the luminescence intensity fluctuations [10].

Fluctuations of optical signals are considered traditionally in the theory of optical coherence
[18]. It is thus considered that the source of radiation is in a stationary state close to thermody‐
namic equilibrium and only field fluctuations are taken into account. However, besides optical
coherence, intrinsic times of quantum dynamics of an electron subsystem can be perceptible in
an optical signal. It seems that the consideration of source fluctuations under thermodynami‐
cally nonequilibrium conditions is a reasonable generalization of the existing theory. In partic‐
ular, the source can be in a deterministic chaos regime, as it must occur at critical points and
phase transitions. QHE is the macroscopic quantum effect that is manifested in the quantiza‐
tion of the Hall resistance ρxy and disappearance of the diagonal resistance ρxx. In that context,
ρxx valleys can be considered as the system states in the vicinity of a critical point. It is reasona‐
ble to expect in the circumstances that the radiation of a source will be not chaotic. Indeed, we
found that the radiation of the GOF source has correlations [8,12–14]. This radiation is not
chaotic a priori and has nonlinear dynamics of photon counts as revealed from the time series
analysis [11,15]. At that, there are conditions in a vicinity of the filling factor ν=2, where the
system behaves as the macroscopic correlated (“coherent”) source of radiation [16,17].

2. GOF detection under QHE conditions: sample structure and initial
experimental conditions

High-quality samples containing a 250-Å-wide GaAs/Al0.3Ga0.7As quantum well were used as
a standard object where the effect of GOF is observed [7]. Figure 1 shows the sample structure
in which the radiative recombination of 2D electrons with photoexcited holes was studied.
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Figure 1. Layer-by-layer structure of the sample studied and the corresponding schematic energy band structure.

The samples were grown by molecular beam epitaxy on a GaAs substrate by the following
scheme: GaAs buffer layer 3000 Å thick, undoped GaAs/AlGaAs (30/100 Å) superlattice 13,000
Å in total thickness, GaAs quantum well 250 Å thick, AlGaAs spacer 400 Å thick, doped
AlGaAs:Si layer (doping level, 1018 cm–3) 650 Å thick, and GaAs cap layer 100 Å thick. The
characteristic mobility of 2D electrons and the concentration in these structures were μ=1.3×106

cm2/(V s) and ns=3.8×1011 cm–2, respectively. The sample under study was immersed into a
liquid helium cryostat with the superconducting solenoid provided magnetic field B from 0
to 12 T. The temperature of the sample T was varied from 1.5 to 4.2 K. In early experiments,
the system was optically excited by a laser diode with photon energy EL=1.653 eV and output
power time instability of less than 10–4. The photoexcitation was delivered and the photolu‐
minescence (PL) signals were collected using optical fibers. Here, it is appropriate to mention
another advantage of the magneto-optics over magnetotransport measurements. The fact is
that, under the conditions of nonequilibrium electron-hole pair injection, along with the
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reduction of the concentration of 2D electrons, their mobility considerably increases. This is
because the concentration of charged centers decreases near a heteroboundary under illumi‐
nation [19]. In early experiments in GOF, we used an optical scheme with a small photoexci‐
tation spot (dPE≤3 mm). Herein, the excitation of PL signals and their collection was
accomplished using one of the registering fibers. The GOF effect is characterized as follows
under these conditions. These are telegraph noise of the spectral position of a 2D PL line and
a giant noise of the PL intensity. Figure 2a represents a set of 2D PL intensity spectra in a color
scale measured at T=1.65 K in the range of magnetic field B=0–10 T at small steps of 0.1 T: the
higher intensity corresponds to white and the black color corresponds to a weak intensity.

Figure 2a illustrates a simple method to find out the location of the required filling factor ν
and to get the GOF conditions. Each PL spectrum was detected using a semiconductor charge-
coupled detector (CCD; Princeton Instruments) with 1340×100 imaging array and the high
quantum efficiency (QE=70%) available in the near-infrared regions of the spectrum. A
“Monospec” spectrometer was used as a spectral instrument providing a spectral resolution
of 0.03 meV. This allowed the entire luminescence spectrum to be measured simultaneously
in the wavelength region of our interest. The CCD matrix response speed (1 spectrum per
second) was quite sufficient for studying 2D PL fluctuations. The positions of filling factors

Figure 2. (a) 2D PL spectra measured in the range of magnetic field B=0–10 T (the color scale) and (b) ratio of the var‐
iance to the mean intensity D / I . One can see that the PL statistic acts deviate significantly from the Poisson distri‐
bution and D / I > >1 at integer even filling factors ν=8, 6, 4, and 2 (T=1.65 K).
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ν=8, 6, 4, and 2 correspond to very sharp jumps in the spectral positions of 2D PL lines. The
transport characteristics of the samples were measured in parallel with the optical studies
(under continuous laser illumination) to control the magnetoresistance at the Shubnikov-de
Haas oscillation minima corresponding to the QHE (see [7]). Figure 2b illustrates the magnetic
field dependence of the ratio of the variance D = I 2 - I 2 to the mean intensity I  (the mean
number of photon counts) of a PL signal from the lowest Landau level in the sample studying.
The spectra were processed mathematically simultaneously with their recording. It is seen that
this parameter increases by an order of magnitude at these values of ν:

1.D
I

>> (1)

Thus, this distribution of photon counts differs substantially from the Poisson distribution and
the magnitude of fluctuations has a maximum in the vicinity of the filling factor ν=2.

Figure 3. Time dependences of the spectral positions of the SDE line and the PL lines of the ground (0SB) and the first
excited (1SB) size-quantized subbands.

It should be noted here that such a regime occurs also for ν=1 and for fractional factors ν as
well at lower temperatures [11]. By studying the inelastic light scattering spectra under the
QHE conditions, we revealed that the intensity of intersubband Raman scattering (SDE mode)
undergoes giant fluctuations analogous to the PL intensity fluctuations [10]. In addition to the
fluctuations in the inelastic light scattering intensity, we also revealed the telegraph noise of
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the SDE spectral line analogue to the PL spectral lines of the ground (0SB) and the first excited
(1SB) size-quantized subbands in the vicinity of ν=2 (Figure 3). Fluctuations of the SDE mode
intensity are observed simultaneously and in phase with fluctuations of the 2D PL intensity,
and the recombination and inelastic light scattering processes proceed consistently over a long
period of time. This fact indicates that, under the QHE conditions, the electronic system is in
a macroscopic correlated state.

3. Macroscopic character of giant fluctuations of 2D electrons: a
multifiber scheme technique

We applied the correlation analysis to the study of formation and characteristic aspects of the
revealed macroscopic state in a 2D electron system. Correlation functions are quite often used
in the analysis of noise due to the ease of interpretation. Correlation spectroscopy was for the
first time applied to study of intensity fluctuations by Hanbury Brown and Tviss [20].
Subsequently, it was gradually resulting in a situation where the correlation spectroscopy
became the traditional tool of quantum optics. However, as mentioned above, this method
had rarely been used for studying fluctuations near critical points or phase transitions.
Meanwhile, the correlation spectroscopy could be used successfully for spatial and tempo‐
ral analysis of optical fluctuations of complex systems. In a critical point, a characteristic range
of correlations (correlation radius) significantly exceeds the interparticle distance and a
system is becoming susceptible to changes of local concentrations [21]. If the photoexcited 2D
electron system is in the quasi-equilibrium under IQHE conditions, then the intensity of
recombination radiation consists of a convolution of 2D electron and photoexcited hole
distribution functions [6]:

( ) ( ) ( ) ( ) ( )
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The width of the experimentally measured hole distribution function fh turns out to be small;
therefore, the 2D line spectrum reflects the energy distribution of the single-particle 2D electron
density of states De (E)∝dns/dE [6]. Thus, if we consider fluctuations of 2D PL intensity under
the existing conditions, they will depend on the fluctuations of a local concentration of 2D
electrons ns. The connection between De(E)иns will remain in the case of interparticle interaction
as well, but the energy spectrum will be significantly complicated and it is necessary to apply
for the Green function approach. This means that a random potential screening will play a
significant role in nonequilibrium processes and the 2D electron redistribution. In this context,
high electron concentrations in doped quantum wells (as in the case of our samples) are
sensitive to optical excitation [22] and deviations from the single-particle scenario of the integer
QHE can occur resulting in that fluctuations and correlation effects are enhanced. The exciton
effects are of little importance in this case because of the screening of exciton states by a system
of 2D electrons in the doped systems. It was observed in both luminescence and reflectance
spectra [23].
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Figure 4. (a) An optical multifiber scheme used to record PL signals from seven sections of the surface; the transparent
glass plate G was placed between the multifiber set and the lens to eliminate the laser light reflectance (a dark spot on
the glass plate at the point-focused image). (b) Cij for different pairs of fibers at the magnetic field B=7.78 (T=1.65 K).

In steady-state conditions, time dependence of the radiation intensity represents a realization
of a stationary random process. The intensity correlation functions depend only on the time
difference. The information on the concentration redistribution is contained in correlation
functions of intensity fluctuations. In analyzing the autocorrelation function, it is possible to
study periodic processes to find the characteristic time of a relaxation and dynamics of
attractors. Cross-correlation function can provide information on spatial correlations in the
system of interacting carriers.

We used special multifiber optical scheme to record and analyze the spatial correlation
between the radiation intensities of PL signals from different points of a large sample (S∝1
cm2) in the lateral direction (Figure 4) [14]. Pumping a fiber F1 with a core of 0.4 mm in diameter
gave a light spot of approximately 1 cm in diameter on the sample surface (the spot appeared
larger than the sample size). Short-focus (f=15 mm) lens L formed an image of the sample with
a magnification close to unity in the plane where the edges of the registering fibers (F2-F8) were
arranged. These fibers with the same core in diameter were arranged right up to each other
with distances between their centers of approximately 1.2 mm, which did not overlap with
each other. Sufficiently long sequences of the photo count time dependences were recorded at
a step of 1 s. These sequences were simultaneously measured from two different fibers Fi and
Fj. The subscript indexes i and j mean any pair of a number of F2-F8. The 2D system was optically
excited by a continuous wave (CW) semiconductor laser Uptronic with photon energy of 1.536
eV and an output power of 75 mW. The correlation coefficients Cij were calculated between
the radiation intensities (Ii and Ij):

,i j
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i j
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where Δ Ii( j) = Ii( j) - Ii( j) , Di and Dj are variances of Ii and Ij respectively. The values of Cij

ranged from 0.80 to 0.97 for different sets of indexes i,j at ν=2 (Figure 4b). This result is quite
surprising, indicating that local electron concentrations at different points in the entire area of
the 2D system are essentially equal. That is, all areas of the 2D electron system spaced at
approximately 1 cm can emit light in a strongly correlated way. This is the point of uniformity
of the electronic density (B=7.78 T, ν=2). Both types of noise (intensity fluctuations and noise
of the spectral position) are simultaneously observed in this point. The existence of a common
optical excitation spot is essential for the correlations observed [8]. The resonant photoexcita‐
tion (it was carried out by means of a tunable diode laser DL pro 780 with an output power of
15 mW) in the first excited subband (E1SB) of a quantum well has shown that this state formation
occurs due to the exchange of electrons between the neighboring regions of a 2D layer [16].
Figure 5 shows spectra measured in two different points of a sample separated by a distance
of 6 mm (i=2, j=7). It is easily seen that PL lines, originally not coinciding by spectral positions,
converge to the same value of energy EJ=1.517 eV (a point of uniformity). In the work [16], a
2D electron system near ν=2 is considered as being in one of the radiant states: uniform electron
density in 2D layer and a nonuniform one. The switching between these two states represents
a telegraph noise where the autocorrelation function is given by:
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where |I0| is a fixed value of intensity, and τs is the average switching time. This value can
reach hundreds of seconds at T < 1.7 K.

Figure 5. 2D electron PL spectra measured in two different points of a sample separated by a distance of 6 mm [fiber 2
(green curves) and fiber 7 (blue curves)] at B=7.55 T (a) and B=7.78 T (b) (ν=2; T=1.65 K). PL spectra (in color scale;
bottom) have identical spectral positions at ν=2 for all points of a sample.
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With further increase in magnetic field (B > 7.78 T, ν ≤ 2), the telegraph noise disappears and
the intensity noise amplitude decreases by more than one order of magnitude.

The range of an intensity noise covers a much wider range of a magnetic field (~2 T; see Figure
6) than it occurs in the case of a small spot of photoexcitation (0.005–0.01 T). We decided to
analyze the noise region in terms of possible regularities in its dynamics and turned to the
analysis of autocorrelation and cross-correlation functions of 2D PL signals in this region.

It was revealed that time dependences of the PL autocorrelation AS (τ) and cross-correlation
CS (τ) functions have a periodic component and they practically coincide at B=7.78 T [16]:

( ) ( ) ( )2 / /21 cos .s d
S SA C e e

P
t t t tptt t - -æ ö» µ + ç ÷

è ø
(5)

Here, P is a period of oscillations and τd is a damping time. A term referred to as the damping
time τd was introduced in formula (5), where the experimental dependences need to be
adequately described [16].

Figure 6. Ratio D / I  calculated for a 2D PL intensity measured in two different points of the 2D plane (fibers 2 and
7) simultaneously in the range of magnetic fields of B=7.5–10 T at T=1.65 K.

Here, it must be taken into consideration that damped autocorrelation function is one of the
criteria for the strange attractor of a dynamical system (see the next section). Figure 7a shows
these correlations. Practically complete coincidence of the functions AS(τ) and CS(τ) means that
the processes in two spatially spaced points of a sample proceed consistently. This confirms
the fact that we have some kind of a macroscopic correlated radiative source. With the increase
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in magnetic field (B > 7.78 T), the first exponential term in (5) disappears, and cross-correlation
functions have only oscillating terms and a damped component:
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where ∆Φ=Φj−Φi is a difference in phase of stationary waves in corresponding points of the
sample.

Figure 7. Autocorrelation functions of 2D PL signals from the fifth fiber and cross-correlation functions for the pair of
fibers (2 and 5) at the magnetic fields of B=7.78 T (a) and B=7.9 T (b).

Thus, cross-correlation functions are sensitive to this difference in phase of stationary waves
in corresponding points of the sample (Figure 7b). A phase difference indicates that the phase
is not a random variable, but it has a fixed value, unalterable by the switching. It appears that
a 2D PL intensity is modulated by “a standing wave”, whose phase is defined by experimental
conditions. An example of 2D electron systems in which a standing wave can be generated is
plasmon excitation in the microwave (MW) field [ [24]

4. Phase space portrait of the GOFs: beginning of the instability in the 2D
system in a vicinity of ν = 2; overview of the GOF effect and its possible
mechanisms

It is well known that the comprehensive analysis of the time-series data of fluctuating signals
may give useful information on the evolution of many kinds of dynamical systems. The study
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of GOF time dependences, using this idea, showed that there are complex regimes of a motion
in our 2D electron system in the vicinity of ν=2 [14].

In particular, it was natural to expect a specific dynamics of PL intensity fluctuations with the
presence of a modulating standing wave in a point of uniformity of the electron density. The
phase portrait of a possible strange attractor of dissipative dynamical systems can be received
using the methods described in the works [25–27].

It was shown in [26] that a time series of measurements of a single observable x(t) of the
dynamic system trajectory can be used to reconstruct qualitative features of the strange
attractor in phase space. In our case, such a component is the time dependence of 2D electron
PL intensity I(t).

Sufficiently long (1–3 h) time sequences I(t) with the steps of ∆t=1 s at different values of
magnetic field in the vicinity of ν = 2 were recorded and analyzed. The sequence of the m-phase
space vectors of one component x(t) is given by:

( ) ( ) ( ) ( ) ( )( ){ }, , 2 ,..., 1 .x t I t I t I t I t mt t t= + + + - (7)

Here, m is the embedding dimension and τ is the time shift. The parameter τ is taken to be the
temporal correlation radius, whereby the autocorrelation function A(t) of a time sequence goes
to zero or has the first minimum. We used system (7) for the reconstruction of a pseudo-
attractor of the fluctuating 2D system at various values of magnetic field. We revealed that, at
the value m=3, there is such mode of noise in the point of uniformity of the electronic density
(B=7.78 T) where the value of vectors (7) are eventually grouped in the vicinity of each of three
axes of phase space (Figure 8, green curve). Moreover, it was found that the pronounced
multiplying effect occurs in the phase space volume in this regime, that is, this phase portrait
has distinctive features of a strange attractor [for the time sequences measured at the other
magnetic, a strange attractor was not observed (Figure 8, red curve)]. The central 3D graph
(the blue curve) demonstrates the result of a similar reconstruction when re-recording the noise
under the close conditions; however, it has no such a characteristic phase portrait as shown in
the top figure. A set of trajectories in phase space forms a structureless sphere in this case. A
noise character differs for these two cases (Figure 8, left). In the first instance, fluctuations have
discrete regions where the noise amplitude is insignificant. In the latter, the GOFs occur in a
continuous mode, practically throughout all time series I(t). It is necessary to notice that a noise
character is essential to the understanding of this regime of a motion: fluctuations have discrete
regions where the noise amplitude is insignificant. A strange attractor is absent in the system
when the fluctuations occur in a continuous mode. An evaluation of correlation dimension
requires some adjustment in the presence of data, taking into account transient states in the
dynamics of attractors. We have provided a qualitative picture of the attractors here. An
extensive statistical analysis including a consideration of these transient processes and the
correlation entropy will be the subject of subsequent works. Nevertheless, we note that there
is the process stage with nonlinear small-sized dynamics in a point of uniformity. The process
of GOFs is not random in this regime but is governed by the limited number of control
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parameters. Such nonlinear small-sized dynamics is defined by the coherence of elements of
2D electron system. The described analysis points to a certain determinism in the behavior of
a 2D electron system under the GOF conditions. Such determinism takes place at the beginning
of instability in the system [25].

Figure 8. Time dependences of a 2D PL intensity measured at ν = 2 (green and blue curves) and ν < 2 (red curve; left).
The measurements are carried out for the maximum of a PL line of the lowest Landau level; corresponding phase
space portraits (right).

As an autocorrelation function of a periodic function is a function with the same period, the
characteristic time tin of the beginning of system instability can be derived. AS(t) data set at ν=2
showed that tin greatly varies from several seconds to dozens of minutes. The study of the 2D
PL spectral power density (SPD) obtained through the fast Fourier transform of AS(t) functions
in the vicinity of ν=2 has revealed that this time can be as long as 20 min (Figure 9).

This time may be called an electronic “coherence” time. It should be noted that optical
coherence time in the system studied is very short and it is defined by a spectral line width
(t ∞ 1 ps). Figure 9 demonstrates the initiating step of the GOF process since before a point of
uniformity. An SPD of noise is at a maximum value in the GOF regime. Following the factor
ν=2, SPD decreased by several times within a narrow magnetic field interval (∆B=0.02 T).

Thus, there is a mechanism that makes 2D electron concentration uniformly distributed across
the all illuminated surface (S ∞ 1 сm2) under photoexcitation in the QHE regime. This attenu‐
ation of the electron density along a sample surface occurs due to the exchange of electrons
between the neighboring regions of a 2D layer.

One possible scenario of this specific ordered 2D electron state formation under QHE condi‐
tions is the phase transition in the 2D electron system. A phenomenological model, describing
the correlation functions of 2D PL signals, has been developed based on experimental data [17].
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characteristic time tin of the beginning of system instability can be derived. AS(t) data set at ν=2
showed that tin greatly varies from several seconds to dozens of minutes. The study of the 2D
PL spectral power density (SPD) obtained through the fast Fourier transform of AS(t) functions
in the vicinity of ν=2 has revealed that this time can be as long as 20 min (Figure 9).

This time may be called an electronic “coherence” time. It should be noted that optical
coherence time in the system studied is very short and it is defined by a spectral line width
(t ∞ 1 ps). Figure 9 demonstrates the initiating step of the GOF process since before a point of
uniformity. An SPD of noise is at a maximum value in the GOF regime. Following the factor
ν=2, SPD decreased by several times within a narrow magnetic field interval (∆B=0.02 T).

Thus, there is a mechanism that makes 2D electron concentration uniformly distributed across
the all illuminated surface (S ∞ 1 сm2) under photoexcitation in the QHE regime. This attenu‐
ation of the electron density along a sample surface occurs due to the exchange of electrons
between the neighboring regions of a 2D layer.

One possible scenario of this specific ordered 2D electron state formation under QHE condi‐
tions is the phase transition in the 2D electron system. A phenomenological model, describing
the correlation functions of 2D PL signals, has been developed based on experimental data [17].
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Figure 9. SPD for the second fiber at different magnetic fields (ν≥2, ν=2, and ν≤2). The maximum time value of the be‐
ginning of system instability tin=1370 s.

It gives the explanation for various phase conditions of a 2D electron system in a vicinity of
the filling factor ν=2 in terms of the formation of incompressible quantum liquid. In that case,
once the electron concentration is attenuated along the entire surface, a random impurity
potential is no longer to be screened. Therefore, a large electrostatic energy is attributing to
that state. This uniform state is unstable and there are spontaneous transitions between the
Hall insulator states and a conducting state in the system that results in the two types of a noise
in 2D system. When a magnetic field is over the uniformity point (ν=2), the system is divided
into regions where there are drops of Hall liquid and an electron gas. Optical fluctuations go
on, but the correlation between the regions decreases. With a further increase in a magnetic
field, the drops gradually disappear. Vacuum fluctuations of the electromagnetic field can
become an additional contribution to the system noise [10].

Under QHE conditions, small electron-density fluctuations can give rise to giant fluctuations
of the conductivity of the 2D electron system and lead to fluctuation metal-insulator transi‐
tions. Another possibility involves the occurrence of a new coherent macroscopic state of the
electron system described by a common wave function with a unified phase similar to
superfluidity. Such coherent ordered electron states could occur due to the quantum leakage,
such as the steady-state Josephson effect.

5. Summary

Thus, a system of 2D electrons in a perpendicular magnetic field in a vicinity of the filling factor
ν=2 exhibits GOFs. The photon count statistics deviates appreciably from the Poisson descrip‐
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tion and a 2D electron layer in this regime cannot be considered as a system consisting of a
high number of independent systems. A technique for the study of spatial correlations of
optical fluctuations in 2D layer by means of the multifiber set under conditions of a big
photoexcitation spot (S ∞ 1 cm2) was developed. The study of the optical fluctuations, using
this technique, showed that there are strong correlations between the radiation intensities from
different points of the large sample. All areas of the 2D electron system emit light in a strongly
correlated way under these circumstances, that is, the correlations are restricted by the
dimensions of a sample. Hence, a 2D electron system acts like a macroscopic light source.
Correlation analysis of the fluctuations showed that, in a 2D electron system, the uniform state
with low PL intensity (ν=2) or the nonuniform state with high intensity (ν < 2) could exist. The
autocorrelation and cross-correlation functions of the fluctuations are periodic and practically
coincide at ν=2 (a point of uniformity of the electron density). Сross-correlation functions are
sensitive to the difference in the phase of stationary waves in corresponding points of the
sample and the phase is strongly defined by the experimental conditions. When the filling
factor ν=2, the electron density equalizing along the sample surface, as a consequence, we
observe correlations of the PL signals at macroscopic distances. The noise correlation time
(electronic “coherence” time) varies from several seconds to dozens of minutes. A photoexcited
2D electron system can be considered as an open dissipative system being far from equilibrium
because it continuously gains energy due to laser excitation and consumes energy through the
recombination of 2D electrons with photoexcited holes. The use of a mathematical analysis
tool of the theory of nonlinear dynamic systems showed that the GOFs are a manifestation of
complex dynamics in the system of interacting 2D electrons. The behavior of a 2D electron
system at ν=2 corresponds to the regime of deterministic chaos: the strange attractor charac‐
terized by small-sized dynamics was revealed in the phase space of a 2D PL intensity in this
regime. Thus, in this study, we deal with the radiation source in the 2D electron system in the
vicinity of a critical point. This source is not chaotic and has a specific shape and intrinsic time
of correlations. In the following studies, the question to be answered is whether these corre‐
lations resulted from the phase transition in a 2D electron system or the formation of a strongly
correlated superfluidity-like quantum state.
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Abstract

This  chapter  is  about  the  minimum  time  evolution  between  two  quantum  states
considering the dynamics obeying either time-invariant Hamiltonians or time-varying
ones. Merit figures are defined to help quantum control designers to define optimiza‐
tion parameters. The expressions are derived from the time-energy uncertainty relations
and a practical case is studied as an example.

Keywords: merit figures, minimum time, quantum control, quantum evolution, un‐
certainty relations

1. Introduction

One of the most important problems in quantum control [1, 2], as well in quantum informa‐
tion processing and quantum computing [3, 4], is the transition from an initial state to a target
state in minimum time. In fact, the existence of the Decoherence phenomenon in quantum systems,
characterized by extremely short coherence times, presents serious difficulties on implement‐
ing quantum information devices [3, 5].

Indeed, one of the difficulties of the operational nature in quantum systems lies in the fact that
they are very sensitive to the presence of the external environment, which often destroys its
main quantum characteristics, which are essential, for example, for the implementation of
systems processing quantum information, as well as for the viability of quantum computing.
This is the problem of quantum decoherence. Thus, it is widely desirable for expedients and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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methods of optimal control of time minimization, applied to quantum systems, be the most
efficient possible accordingly, whether of analytical nature, or of algorithmic and computa‐
tional nature. However, there are physical limitations inherent by quantum dynamics, which
relate to the minimum time, physically possible, so that a transition from quantum states
occurs.

Therefore, it is natural to ask, what is the shortest physically possible time for a quantum state
to evolve to another? The answer is provided by time-energy uncertainty relations. Opposing the
famous quantum uncertainty relations regarding non-commuting operators, for example,
position and momentum, time-energy uncertainty relations have a different mathematical and
physical nature; they are deeply rooted in quantum dynamics.

The Soviet physicists Leonid I Mandelstam and Igor E. Tamm carried out the first successful
theoretical approach addressing this issue, in the 1940s [6]. Under the hypothesis of time-
independent Hamiltonian, Mandelstam and Tamm deduced a quantum dynamical inequality
for time-energy, which sets up the temporal lower bound for a quantum state transition.

It is our goal, in the first section of this Chapter, to follow the theoretical steps of [6], translating
the deductions to the modern quantum mechanical formalism, and to perform detailed
analyses of the dynamical issues. Thereafter, we wish to apply the Mandelstam-Tamm time-
energy inequality to a quantum system of interest, for example, the Fahri-Gutmann model of
digital quantum computation [7], in order to obtain an analytical expression for the minimal
time required for a state transition in such a quantum system. These analyses allow us to
ultimately introduce a quantitative measure for the performance of time-optimal quantum
controls [8].

In a subsequent section, we shall drop the time-independent Hamiltonian hypothesis of
the original time-energy uncertainty relation and generalize it in the case of a time-
dependent Hamiltonian Ĥ = Ĥ (t).  This is a type of Hamiltonian operators one finds in
quantum control systems. In fact, appropriately shaped time-dependent electromagnetic
fields or laser beams act as control efforts u(t) [1]. The theoretical starting point for such
generalization is to take into account the time evolution operator Û (t , t0) for the time-
dependent Hamiltonian operator Ĥ = Ĥ (t).  Other approach to minimal time in quantum
dynamical evolution is when one considers time-dependent Hamiltonians to employ the
time-energy uncertainty relation obtained by Pfeifer [9].

2. Minimum time for quantum state transitions

Before tackling the control problem in quantum systems with respect to minimum time, that
is, to make a given state transfer from a prescribed initial state to a desired target state as quickly
as possible, one must take into account a fundamental issue of physical nature, which can be
stated as follows. Given an initial state |ψI , which evolves over time according to the
Schrödinger picture of quantum dynamics, that is, by means of the action of the time-evolution
operator, dependent on the Hamiltonian of the system, how fast is the transition to a final state

Research Advances in Quantum Dynamics112



methods of optimal control of time minimization, applied to quantum systems, be the most
efficient possible accordingly, whether of analytical nature, or of algorithmic and computa‐
tional nature. However, there are physical limitations inherent by quantum dynamics, which
relate to the minimum time, physically possible, so that a transition from quantum states
occurs.

Therefore, it is natural to ask, what is the shortest physically possible time for a quantum state
to evolve to another? The answer is provided by time-energy uncertainty relations. Opposing the
famous quantum uncertainty relations regarding non-commuting operators, for example,
position and momentum, time-energy uncertainty relations have a different mathematical and
physical nature; they are deeply rooted in quantum dynamics.

The Soviet physicists Leonid I Mandelstam and Igor E. Tamm carried out the first successful
theoretical approach addressing this issue, in the 1940s [6]. Under the hypothesis of time-
independent Hamiltonian, Mandelstam and Tamm deduced a quantum dynamical inequality
for time-energy, which sets up the temporal lower bound for a quantum state transition.

It is our goal, in the first section of this Chapter, to follow the theoretical steps of [6], translating
the deductions to the modern quantum mechanical formalism, and to perform detailed
analyses of the dynamical issues. Thereafter, we wish to apply the Mandelstam-Tamm time-
energy inequality to a quantum system of interest, for example, the Fahri-Gutmann model of
digital quantum computation [7], in order to obtain an analytical expression for the minimal
time required for a state transition in such a quantum system. These analyses allow us to
ultimately introduce a quantitative measure for the performance of time-optimal quantum
controls [8].

In a subsequent section, we shall drop the time-independent Hamiltonian hypothesis of
the original time-energy uncertainty relation and generalize it in the case of a time-
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-|ψF ? In other words, what is the shortest possible time so that a transition of quantum states
can occur?

This problem of a theoretical nature has been widely studied and it is closely linked to
dynamical characterizations derived from time-energy uncertainty relations. Such relation‐
ships differ fundamentally from the Heisenberg’s uncertainty principle (e.g., the simultaneous
measurement uncertainty of the position and the linear momentum of a quantum particle),
which comes from the incompatibility between the quantum observables, a physical fact that
arises, within the mathematical and theoretical framework of quantum mechanics, from the
non-commutability of the quantum observables involved in the measurement process. The time-
energy uncertainty, on the other hand, finds its roots in quantum dynamics, as we are about
to see.

From a historical point of view, since the so-called “old quantum theory,” pioneered by Max
Planck, Albert Einstein, Niels Bohr, among others, comprising the first two decades of the last
century and firmly established, was the Planck-Einstein equation, which relates the energy
and frequency of a photon through the Planck’s fundamental constant h:

E hn= (2.1)

As we know, such relationship is fundamental not only for the pioneering and groundbreaking
Planck’s hypothesis of quantization of radiation emission by an ideal black body, written in
1900 but also for the explanation given by Einstein for the photoelectric effect in 1905. More‐
over, the atomic model introduced by Bohr in 1913, which explained the stability of the
hydrogen atom by means of quantized energy levels corresponding to the stable possible orbits
for the electron; postulated in addition that, when jumping to an energy level (or orbit) more
or less energetic, the electron absorbed or emitted a quantum of energy, respectively, following
the relationship (2.1), corresponding to a photon with frequency ν.

So, given a trivial variation in frequency at a given time interval, such as

. ~ 1TnD D (2.2)

providing the same account of an “uncertainty” Δν for the frequency measurement of a
monochromatic radiation at the ΔT  time interval, by making use of the expression (2.1), we
are led to the following:

. ~E T hD D (2.3)

This “uncertainty relation” deduction is eminently heuristic, although expression (2.3) still has
experimental support within the physical conditions one has evoked to get it. Nevertheless, if
one tries to generalize it as something of the form:
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. ~H T hD D (2.4)

because the Hamiltonian corresponds to the energy of a mechanical system (classical or
quantum), one will run into serious difficulties. If H represents a quantum observable in the
current quantum mechanical sense, in the same way Paul Dirac had formally stated in the very
first edition of his famous treatise [10], dating back to 1930, we can no longer identify the energy
with the frequency of the monochromatic radiation times the Planck’s constant. Moreover,
expression (2.4) becomes inherently invalid and devoid of meaning for any quantum system
when properly mathematically treated.

The Soviet physicists Leonid I. Mandelstam and Igor E. Tamm in the 1940s carried out the first
successful theoretical approach addressing this quantum dynamical issue, the statement of a
meaningful time-energy uncertainty relation [6].

So, let us try to present their theoretical starting point drawing on modern quantum mechanical
formalism and its current notation, and finally arrive at the desired time-energy uncertainty
relation through rigorous deductions combined with detailed analyses. The goal is also to
modify it, in order to obtain variants of it and alternative expressions suitable for some
purposes, which will become clear in the sections ahead.

Let R
⌢

 and S
⌢

 be two generic Hermitian operators (quantum observables). The following
relationships hold [6]:

1ˆ ˆ ˆ.
2

S R RS SRD D ³ -
) ) )

(2.5)

ˆd 1 ˆ ˆ,
d

R
R H

t i
é ù= ë ûh

(2.6)

where ΔS
⌢

 and ΔR̂ are the square root of the mean square deviations (or variances) of operators

S
⌢

 and S
⌢

, respectively, also known as “dispersion operator,” or simply “standard deviation”
in statistics terminology. Expression (2.6) is nothing but the dynamical evolution equation in

the Heisenberg picture for the expectation value of observable R
⌢

. If we impose Ŝ ≡ Ĥ  on (2.5)
and apply the result of (2.6), the following inequality is obtained:

ˆdˆ ˆ.
2 d

R
H R

t
D D ³

h
(2.7)
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because the Hamiltonian corresponds to the energy of a mechanical system (classical or
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when properly mathematically treated.

The Soviet physicists Leonid I. Mandelstam and Igor E. Tamm in the 1940s carried out the first
successful theoretical approach addressing this quantum dynamical issue, the statement of a
meaningful time-energy uncertainty relation [6].

So, let us try to present their theoretical starting point drawing on modern quantum mechanical
formalism and its current notation, and finally arrive at the desired time-energy uncertainty
relation through rigorous deductions combined with detailed analyses. The goal is also to
modify it, in order to obtain variants of it and alternative expressions suitable for some
purposes, which will become clear in the sections ahead.

Let R
⌢

 and S
⌢

 be two generic Hermitian operators (quantum observables). The following
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This expression provides, therefore, the connection between the standard deviation ΔĤ  of the
total energy and the uncertainty in determining the energy of an isolated system, the standard
deviation ΔR̂ (uncertainty) of some other dynamical quantity, relating them to the rate of
change of the expectation value of the same physical amount.

Relationship (2.7) may be expressed otherwise. Since the modulus of an integral is less than
or equal to the integral of the integrand modulus [11], upon performing an integration of (2.7)
from t to t + Δt, and taking into account that ΔĤ  is constant, one derives inequality:

ˆ ˆ
ˆ . ˆ2

t t tR R
H t

R

+D -
D D ³

D

h (2.8)

in which the denominator of the right side of the inequality denotes the average value of ΔR̂
during the amount of time Δt.

It is appropriate to introduce, at this point, a special notation, ΔT, for the shortest time, during
which the average value of a certain physical quantity is changed by an amount equal to the
standard deviation thereof. Thus, ΔT can be called standard deviation (uncertainty) of time;
making use of this notation, (2.8) can be rewritten as follows:

ˆ .
2

H TD D ³
h

(2.9)

Now, let us consider a projection operator of form Λ̂≡ |ψ0 ψ0 | . One can immediately notice
that only one of its eigenvalues is unitary (when the projection operator is applied to the
eigenstate |ψ0 ) and all the others are zero. Thus, we have:

2ˆ ˆ ˆ ˆL = LL = L (2.10)

Indeed, Λ̂ is an idempotent operator, as one can easily verify.

Furthermore, the expectation value Λ̂  may be interpreted as the probability of finding the
quantum system in a specific quantum state |ψ , considering the initial state |ψ0 , since from
the average value (or expectation value) definition, we have
Λ̂ ψ ≡ ψ | Λ̂|ψ = ψ |ψ0 ψ0 |ψ = | ψ |ψ0 | 2 = Pψ. Of course, Λ̂  has its values within the

interval 0≤ Λ̂ ≤1. According to (2.10), it follows that

2 22ˆ ˆ ˆ ˆ ˆDL = L - L = L - L (2.11)
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Therefore, making use of the expressions (2.7) and (2.11); then, applying operator Λ̂ in the place
of R̂, we obtain

2 ˆdˆ ˆ ˆ.
2 d

H
t

L
D L - L ³

h
(2.12)

This inequality contains only one-time variable quantity, Λ̂= Λ̂(t), and its time derivative, so
that it can be integrated with respect to time. If, for example, Λ̂(t)= Λ̂(0)=1, that is, at the instant
of time t =0, we were certain that the system was in the initial state |ψ0 , then it follows from
(2.12) that, for t ≥0,

ˆ .ˆarcsin ( )
2

H ttp D
- L £

h
(2.13)

From (2.13), by using basic trigonometric properties and simple algebraic manipulations, it
leads to the following expression:

2
ˆ .ˆ ( ) cos H tt

æ öD
L ³ ç ÷ç ÷

è øh
(2.14)

for t ≥0.

Here, an important fact should be noted. Although the projection operator Λ̂ as Λ̂≡ |ψ0 ψ0 |
has been defined with the outer product given by the ket and the bra corresponding to a state
ψ0, we could have also defined it, in a more general manner, such as Λ̂≡ |ψt ψt | ; that is, for a
generic quantum state ψt evolved in time, for any instant of time t, so that the idempotency
property of Λ̂, as well as all the expressions, arguments, and previous deductions are analo‐
gous, remaining valid, thus, enjoying full generality.

From (2.14), two expressions relevant to our purposes shall be deduced. Since the average
value of the projection operator Λ̂ corresponds to the probability of observing the system at a
given quantum state |ψ , more generally, at a certain state |ψt  evolving over time, having
been (or been prepared) at an initial state |ψ0  of the system, then inequality (2.14) shall be
rewritten as

2
ˆ .cost

H tP
æ öD

³ ç ÷ç ÷
è øh

(2.15)
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where Pt = | ψt |ψ0 | 2 is the probability of finding the system in |ψt  from |ψ0 ; indeed,
Λ̂(t) = ψ0 | Λ̂(t)|ψ0 = ψ0 |ψt ψt |ψ0 = | ψt |ψ0 | 2 = Pt .

Finally, from (2.15), it can be deduced that the lowest physically possible time, or more
generally, the inferior time limit,1 physically needed to perform a transition between quantum
states, under the assumption of a time-independent Hamiltonian, is given by the following
inequality, which takes into account the uncertainty in determining the energy (dispersion or
standard deviation of Ĥ ):

arccosˆ tt P
H

³
D
h

(2.16)

in which t is the necessary time for a quantum transition of states that its associated probability
is Pt = | ψt |ψ0 | 2.

From (2.16), it is immediately noticed that the time t is always a real number, despite the
internal product (“bracket”) of states being, in general, a complex number. Likewise, as any
quantum observable, ΔĤ  always results in a real number. Moreover, since Pt = | ψt |ψ0 | 2 is
defined in [0,1], when the state normalization conditions are taken for granted, ensuring that
the obtained probabilities vary always in the real interval [0,1]; it follows that the range of
arccos function for this specific domain and, therefore, the values of t, will always be positive.

Some remarks about technological issues and its terminology are in order here. In quantum
control literature, inequality (2.16) is also known as the “Bhattacharyya limit,” after a paper
by the Indian physicist Kamal Bhattacharyya, in which the author revisits the Mandelstam-
Tamm’s time-energy uncertainty relations, in order to apply them in decay or non-decay
problems in quantum systems [12].

Inequality (2.16) gives a strong motivation to introduce a quantitative measure for the
evaluation of the quantum control systems performance, with special interest on the time-
optimal quantum control, for example, [1] and [13]. Lets then define the following figure of merit,

min

CQS
t

t
t

h º (2.17)

where tmin is the shortest physically possible time to obtain a desired transition of quantum
states, and tCQS is the time by which such transition can be effectively accomplished in the
controlled quantum system, hence, the notation chosen is [8].

In general, analytical solutions to problems of optimal quantum control are rare, and in most
cases, control algorithms and numerical simulations are employed to obtain the desired results

1 Mathematically speaking, one can say it is the inf or greatest lower bound (GLB) of the subset S of the physically possible
times for quantum states transitions.
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[1]. Indeed, in an article by Caneva and other authors [13], the Krotov algorithm is employed,
for example, [14] and [15], and applied on the Landau-Zener system, as well as on a theoretical
scheme of quantum information transfer in a spin chain (“One dimensional Heisenberg spin
chain of length N”). The authors obtained state transition times close to the “Bhattacharyya
limit,” which is equivalent to inequality (2.16) for both systems studied [13].

Regarding the figure of merit ηt, it is easy to notice that ηt is a real number and a dimensionless
quantity, defined on the interval [0,1]: ηt ∈R : 0≤ηt ≤1, such that the extremal values correspond,
respectively, to the cases in which the transition of quantum states has not been accomplished;
in other words, the employed control algorithm did not converge to the desired target state
(or mathematically speaking, it took an “infinite time”); on the other hand, there has been an
ideal temporal state transfer: the control algorithm has achieved maximum efficiency in terms
of the demanded time to perform the desired quantum state transition.

Combining the expressions (2.16) and (2.17), ηt can be more explicitly expressed as

CQS

.arccos
ˆ .

t
t

P
H t

h =
D

h
(2.18)

or, alternatively as

F I

CQS

arccos
ˆ .T H t
y y

h =
D

h
(2.19)

where |ψI  and |ψF  correspond, respectively, to some initial state and a certain desired final
state (or target state, in control terminology).

From the dimensional analysis point of view, it is straightforward to verify that ηt, as expressed
by (2.18) and (2.19), is consistent with the adimensionality requirement, since the constant ℏ
has dimension of action (energy × time), and the dispersion operator (or standard deviation)
of the system’s Hamiltonian ΔĤ  has natural dimension of energy.

Frequently, in practical applications, it is not always possible to obtain the “exact transition”
of quantum states by the use of control algorithms and numerical simulations per se, from an
initial state to the desired goal state, such as |ψG . Instead, one looks for optimal control actions
that maximizes the measure of quantum fidelity:

2
G TF y y= (2.20)

or, in dual form, which minimize the amount of quantum infidelity:
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2
G1 TI y y= - (2.21)

that is, control actions such that, once elapsed control time T, the probability for the evolved
state in time |ψ(T )  to be found at the target state |ψG  gets arbitrarily close to unity. Therefore,

one can analyze the performance of the iterative process as a function of T and show that the
algorithmic method in question is capable of producing infidelities arbitrarily close to zero [13].

3. Application to a particular quantum state transition

Now, consider the application of the time-energy uncertainty relations (2.15) and (2.16) to a
specific and very important quantum state transition, namely the transition between two
orthogonal states.2 By rewriting inequality (2.15), in order to make explicit the probability
associated to the transition from an initial state to a time-evolving state, on the left side of the
expression, we have

2 2
0

ˆ .cost
H ty y

æ öD
³ ç ÷ç ÷

è øh
(3.1)

where ΔĤ = Ĥ 2
ψ − Ĥ ψ2 is the dispersion of Ĥ  or the uncertainty for determining the energy.

Let us consider a quantum dynamical evolution, starting from a generic state |ψ , which the
system dynamics leads it to the orthogonal state |ψ ⊥ , by means of the actuation of the time-
evolution operator Û (t , t0). Schematically, we have

0
ˆ ( , )U t ty y ^® ®

with Û (t , t0)= e
−i H

^
(t −t0)

ℏ —the time-evolution operator for a time-independent Hamiltonian Ĥ ,

upon which t0 = 0 can be imposed without loss of generality.

Adapting the expression (3.1) for such a case, results in

2 2
0

ˆ .ˆ ( , ) cos H tU t ty y
æ öD

³ ç ÷ç ÷
è øh

(3.2)

2 Or orthonormal states, once the normalization condition is taken for granted.
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which its associated probability amplitude, ψ | Û (t , t0)|ψ , can be regarded as a survival
amplitude of the state |ψ , evolving in time according to Û (t , t0) and ΔĤ , the energy uncer‐
tainty is given by

22ˆ ˆ ˆH H Hy y y y yD = - (3.3)

If a state transition from |ψ  to |ψ ⊥  occurs, the probability amplitude of (3.2) becomes zero,
being able to define formally the first instant of time t, for which such transition takes place as
follows:

0
ˆinf{ 0 : ( , ) 0}t U t ty yt y y® ^ º ³ = (3.4)

Therefore, it is straightforward to conclude from (3.2) that τψ→ψ⊥ is inferiorly bounded by the
inequality:

ˆ2 Hy y
pt ® ^ ³ D
h

(3.5)

Furthermore, the quantitative measure of temporal transfer efficiency can be defined for this
specific case, figure of merit ηψ→ψ⊥ for such quantum state transfer, as

CQS

y y
y y

t
h

t
® ^

® ^ º (3.6)

or, more explicitly, taking into account (3.5),

CQS
ˆ2 Hy y
ph
t® ^ = D
h

(3.7)

where τψ→ψ⊥ is the shortest physically possible time, such that the first transition to the
orthogonal state occurs, and τCQS can be stated as the time effectively spent by the controlled
system or control algorithm, in order to perform such state transfer.

Finally, it is worthwhile mentioning the transitions or transfers between orthogonal (ortho‐
normal) quantum states are of paramount importance to any schemes or devices, whether
theoretical, experimental, or of technological nature, aimed at implementing quantum
information processing, or quantum computing. The interested reader is referred to standard
and authoritative sources like [3,4].
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4. An analytical case study: The Fahri-Gutmann system

In this section, an application example is presented for illustrating the ideas and theoretical
concepts developed so far. The Fahri-Gutmann system is a digital quantum computing model,
which in its turn can be interpreted as a variation of the quantum search algorithm, similar to
the well-known Grover’s algorithm [16]. Here, we follow the steps of [17].

Let |a  and |b  be the initial and the target state, respectively, and the system’s Hamiltonian
defined as:

ˆ
a bH E a a E b b= + (4.1)

where Ea and Eb are positive constants.

As already stressed, there can be computational difficulties to achieve the exact desired transfer
of states, that is, from the initial state to the target one over the time evolution. Nevertheless,
one can think of formulating the quantum control problem in a less restrictive manner, namely
in terms of a state transition, as fast as possible, such that one can ensure maximum fidelity.
Translating it into quantum mechanical language, we want to maximize the quantity:

2

0
ˆ ( , )tF P b U t t aº = (4.2)

Firstly, let us impose a |b = s. Without loss of generality, is assumed that s is a real number,
since a phase factor can be associated to |a  or |b . Given the Fahri-Gutmann Hamiltonian
expression (4.1), it is evident that it acts non-trivially only on the subspace spanned by the
eigenstates |a  and |b , so it suffices to consider only this two-dimensional subspace. The
computational basis of this quantum model is as follows:

{ } ( )
2

,such that 1, ' '
1

b b b a s b
s

= -
-

(4.3)

which, in fact, consists of an orthonormal basis for the subspace spanned by |a  and |b .

Considering E = Ea + Eb, x = Ea – Eb, and defining the quantity:

( )
2

2 21xs s
E

m æ öº + -ç ÷
è ø

(4.4)

Minimum Time in Quantum State Transitions: Dynamical Foundations and Applications
http://dx.doi.org/10.5772/63025

121



We shall assume that Ea >0 and Eb >0. It is evident that s ≤μ ≤1 and s =μ if, and only if, Ea = Eb.
In the computational basis {|b , |b' }, states |a  and |b  are represented, respectively, by the
vectors:

2
:

1

s
a

s

æ ö
= ç ÷ç ÷-è ø

(4.5a)

1
:

0
b æ ö

= ç ÷
è ø

(4.5b)

By defining the auxiliary constant λ as follows:

2 2(1 )xs s
E

l = - - (4.6)

the Hamiltonian Ĥ = Ea |a a | + Eb |b b | , considering the basis given by (4.6), has its matricial
representation, with E being an arbitrary constant:

2 2 2
2 2

2 2
2 2 2

1 (1 ) 1 1
1ˆ :

2 11 1 1 (1 )

x xs s s s
E E EH

x xs s s s
E E

l m l

m l l

æ öæ ö+ - - + -ç ÷ç ÷ æ ö+ -è øç ÷ ç ÷= =
ç ÷ ç ÷æ ö - -è ø+ - - + -ç ÷ç ÷
è øè ø

(4.7)

so that this matrix can be diagonalized as follows:

( )

( )
1

1 0
2ˆ

0 1
2

E

H U U
E

m

m

-

æ ö+ç ÷
ç ÷=
ç ÷-ç ÷
è ø

(4.8)

with the U matrix given by

1 1
1
2

1 1
U

l l
m m

l l
m m

æ ö
+ -ç ÷

ç ÷= ç ÷
ç ÷- - +ç ÷
è ø

(4.9)
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corresponding to the diagonalization unitary operator built up with the eigenvectors of Ĥ  as
given by its matrix representation (4.7).

After performing some cumbersome, but straightforward calculations, to diagonalize Ĥ , given
by (4.7), making use of (4.8) and (4.9), one finally obtains from (4.5a) and (4.5b) the time
transition probability Pt, which can be regarded as a fidelity measure between the “search

state” e
−i H

^
(t −t0)

ℏ |a  and the target state |b :

2

2 2
2

ˆ 1exp( ) 1 sin 1
2t

iHt EtP b a s m
m

æ öæ ö- æ ö= = - +ç ÷ç ÷ ç ÷
è øè øè øh h

(4.10)

where we have imposed t0 = 0 on the time-evolution operator Û (t , t0)= e
−i H

^
(t −t0)

ℏ .

Noting that s ≤ μ ≤ 1, it is easy to see that the maximum value of the probability Pt is

2

max 0
max tt

sP P
m³

æ ö
= = ç ÷

è ø
(4.11)

indeed, it suffices to impose that the value of the function sin2( μEt
2ℏ ) must be 1 in the expression

(4.10) to obtain (4.11).

In the same way, once achieving sin2( μEt
2ℏ )=1 in (4.10), it can be conclude that the first instant

of time t, for which maximum probability (or maximum fidelity), is given by

first maxinf{ 0 : }tt t P P
E
p

m
= ³ = =

h
(4.12)

Thus, for the Fahri-Gutmann’s quantum computing model, the particular figure of merit that
quantifies the time transition efficiency can be stated as

FG
CQSE

ph
mt

=
h

(4.13)

where τCQS is the time effectively spent to drive the search state Û (t , t0)|a  to the target state
|b .
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5. Quantum systems with time-dependent Hamiltonians: Two theoretical
approaches to minimum time in quantum state transitions

Let us consider, a time-evolution operator Û (t , t0) characterized by a time-dependent Hamil‐

tonian Ĥ = Ĥ (t), such that Ĥ (t1), Ĥ (t2) =0, ∀ t1, t2 ∈ I ⊂R+, t1 ≠ t2; that is, the Hamiltonian
operator of the quantum system of interest varies with time; however, it always commutes for
any distinct instants of time t1 and t2, t1 ≠ t2.

In quantum control, this is by far the most commonly found and studied case regarding the
attempts to find control laws u(t) to achieve a certain control goal of interest, which involves,
for example, the minimization or maximization of dynamical variables to perform desired state
transitions. Here, we are interested in minimizing transfer times between quantum states.
Physically speaking, for example, a spin ½ system (e.g., an electron) subjected to a magnetic
field which magnitude varies in time, but not in direction.

The time-evolution operator Û (t , t0) associated with such a time-dependent Hamiltonian is
given by [18]

0

0
ˆ ˆ( , ) exp d ' ( ')

t

t

iU t t t H t
é ùæ ö= -ê úç ÷
è øê úë û

òh
(5.1)

Therefore, given an initial state |ψI  and a final state |ψF  (or “target state”), the shortest
physically possible time (or minimum time) can be formally defined such that this transition
of states occurs as follows:

2

min F 0 I
ˆinf{ 0 : ( , ) 1}t t U t ty yº ³ = (5.2)

where Û (t , t0) is given by the expression (5.1).

In an applied point of view, given the vector representations of |ψI  and |ψF  expressed in
terms of a suitable basis (built up of linearly independent and orthonormal vectors), as well a
matrix representation of Ĥ = Ĥ (t), by calculating the integral of (5.1), expression (5.2) will
provide the necessary formula to obtain the minimum time value.3

Now, the focus is on another possible formulation addressing this quantum dynamical issue.
The goal is to directly employ a time-dependent energy uncertainty (or standard deviation)
Δ(Ĥ (t)) to formally obtain an expression for the minimum time associated with transitions of
states in quantum systems with dynamics governed by a time-dependent Hamiltonian
Ĥ = Ĥ (t). The Schrödinger equation taking into account such a Hamiltonian is written as

3 In [8], we present an analytical case study of a time-dependent Hamiltonian, namely the Landau-Zener system.
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where Û (t , t0) is given by the expression (5.1).

In an applied point of view, given the vector representations of |ψI  and |ψF  expressed in
terms of a suitable basis (built up of linearly independent and orthonormal vectors), as well a
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with a time-evolving state |ψ(t) , from an initial state |ψ0 .

From this particular Schrödinger equation, Pfeifer proposed the following expression for a
time-dependent energy uncertainty [9]:

( ) ( )ˆˆ( ( ), ( ) , ( ) ) 1 ( ) ( )
t

H t t t t t
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y
y y y y

¶
D = -

¶
& h (5.4)

in which we can immediately notice the dependency on the time-evolved state |ψ(t) , as well
on its time derivative. From the original expression (5.4), some manipulations are carried out
to deduce an alternative expression for the time-dependent energy uncertainty
Δ(Ĥ (t), |ψ(t) , | ψ̇(t) ), such that it may be more useful for our purposes:
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wherein, at the first step, we replaced the time derivative of |ψ(t)  making use of (5.3), so that
we could eliminate the dependency on | ψ̇(t) , the outer product |ψ(t) ψ(t)| , and the constant
ℏ, as well (second and third steps, respectively). As a result, we were able to express
Δ(Ĥ (t), |ψ(t) ) as a functional of vector Ĥ (t)|ψ(t)  and of the time-evolving state |ψ(t) ,
multiplied by the scalar quantity correspondent to the expectation value of the Hamiltonian
Ĥ (t).

Now, let us consider a time-energy uncertainty relation of the form ΔE .Δt ≈ℏ, similar to those
one can find in the time-independent Hamiltonian case, in terms of stationary states of energy
[18]. Afterwards, through methods and concepts from the time-dependent perturbative
theory, Sakurai shows that such relation remains valid for the time-dependent case [18]. So, it
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becomes natural to evoke one of the Mandelstam-Tamm’s time-energy uncertainty relations,
namely

ˆ .
2

H TD D ³
h

(5.6)

Furthermore, to achieve the perspective of our chain of theoretical reasoning so far, we restate
it in the following way:

ˆ( ( ), ( ) ).
2

H t t tyD ³
h

(5.7)

in which the energy uncertainty is now considered as depending on a time-dependent
Hamiltonian Ĥ (t), and, without loss of generality, t0 = 0 in ΔT  is imposed.

Finally, the minimum time for a generic quantum state transition, between an initial state
|ψ0 , which begins to evolve over time, and a final state |ψF = |ψ(T ) , can be formally defined
in such a way that it can also be defined in function of an instant of time T. Its final state is
achieved or characterized by

2
min 0inf{ 0 : ( ) ( , ) 1}Ft t P t t t Ty yº ³ = = = (5.8)

or, in terms of the maximum possible quantum fidelity, also by

2
min 0inf{ 0 : ( , ) 1}Ft t F t t Ty yº ³ º ® = (5.9)

Finally, taking into account expressions (5.7) and (5.5), we have

min
/ 2

ˆ( ( ), ( ) )
t

H t ty
³
D

h
(5.10)
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/ 2
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³
-

h
(5.11)

obtaining an alternative expression for the greatest temporal lower bound for a generic
transition of states, that occurs in a quantum system with dynamics governed by a time-
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obtaining an alternative expression for the greatest temporal lower bound for a generic
transition of states, that occurs in a quantum system with dynamics governed by a time-
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dependent Hamiltonian Ĥ (t), thus, without relying on the approximative hypothesis of time
independency in the characteristic Hamiltonian of the system.
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Chapter 7

Linking Non-equilibrium Transport with the Many
Particle Fermi Sea in the Quantum Hall Regime

Josef Oswald

Additional information is available at the end of the chapter
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Abstract

The communication of the electron system with the outside world at low excitation
transport experiments happens by exchanging electrons at the Fermi level. We argue that
the locations where this is possible in the quantum Hall effect regime are the so-called
edge channels. We explain that these channels can be understood as a more general
representation of the many-particle quantum Hall (QH) system close to equilibrium that
allows describing transport due to non-equilibrium on a very fundamental level. Based
on fundamental principles of quantum physics, a transfer matrix formulation for the local
non-equilibrium electrochemical  potential  in  a  network  of  interconnected  directed
quantum channels can be used to solve the lateral distribution of the non-equilibrium
excitation potentials. Instead of using the Landauer formula or other tools like the Kubo
formula for addressing conductance’s just a transfer matrix formulation for the transfer
of electrochemical potentials is used to find the self-consistent lateral distribution of the
non-equilibrium electrochemical potentials. Currents and potentials that are measured
at contacts are only calculated as a post-processing step right at the contacts, and they
allow calculating all the resistances and conductance’s like known from QH experi‐
ments. The interplay between transport and the many-particle system is of general interest
when dealing with accessing information about quantum systems. Our approach allows
modeling electron systems in the QH regime for realistic sample geometries, including
inhomogeneities, like present in real samples or that are forced by gate electrodes as well
as the random disorder potential. We combine our network model for transport with the
Hartree–Fock method that allows the inclusion of realistic screening effects as well as the
magnetic field-dependent enhanced g-factor.

Keywords: network model, quantum Hall effect, magneto-transport, conductance
quantization, non-equilibrium transport, exchange interaction, Hartree-Fock approxi‐
mation, many particle quantum system
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1. Introduction

Even more than 35 years after discovering the integer quantum Hall effect [1], it is still a lively
discussed topic at many conferences. In the quantum Hall (QH) regime, the many-particle
quantum nature of the electron system can be studied from mesoscopic to nearly macroscopic
length scales. The challenge in modeling electron transport in this regime is that the many-
particle quantum states of the electron system exist as stationary states at thermal equilibri‐
um, while transport is driven by introducing deviations from the equilibrium. Even for the QH
experiments that happen close to thermal equilibrium, a direct modeling of current flow does
not fit the world of stationary states. The general purpose of quantum Hall effect experiments
is to unveil the physics of the stationary many-particle quantum states behind. This implies that
such experiments should happen close to the thermal equilibrium and therefore they are mostly
performed also at lowest achievable temperatures. However, any experiment in quantum
physics is a disruption of the quantum states under investigation and that is true also for the
quantum Hall experiments. On this background, the major question arises to what extend
experiments can provide information about the underlying physics of the stationary many-
particle states. At the same time, one has to consider that the stationary state under investiga‐
tion itself cannot be directly used for modeling current flow. Stationary states do not exhibit any
time-dependent observables, except while destroying them. This fundamental dilemma can be
seen as the playground for the numerous theoretical approaches to the quantum Hall effects in
order to compare theory and experiment. Various theoretical approaches focus on finding a
basis for relating steady state properties of the quantum system to experimental properties
without finally being able to model directly the current flow like it happens in the various
experiments. One most prominent theoretical approach is the scaling theory [2], that is based
on the localization picture of the quantum Hall effect and that relates the localization length of
the stationary quantum states to experimental properties like the width of the quantum Hall
plateau transition regimes that can be affected by experimental conditions like temperature [3]
and measurement frequency [4]. Despite the great success of this theory, that finally proofs the
quantum nature of the physics behind; the current flow itself is not addressed by this method.
A further step in this direction is the usage of local conductance’s that are extracted from the
network of quantum channels evolving for the steady state. However, local conductances are
finally introduced even for such most successful and sophisticated methods like, for example,
the Kubo formula [5], while any local quantities associated with local current flow is finally a
violation of the many-particle physics, as will be discussed in the next section.

2. Single-particle picture versus many-particle states

One of the most important aspects for the interpretation and modeling of experimental
investigations is the fact that electrical measurements in the quantum Hall regime deal in fact
with single particles in terms of counting carriers when measuring currents. On this back‐
ground, it is not that surprising that also the interpretation and the way of thinking about the
quantum Hall system is dominated by the single-electron picture. Anyway the human ability
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for thinking, intuition and finally picturing processes that take place in the electron system is
limited to the imagination of single electrons, or at least single quasi-particles. From the general
point of view, any electrical measurement as performed in the quantum Hall system has to be
understood as an extraction and/or injection of single electrons from and to a many-particle
quantum system at the contacts, while any imagination of the movement of single electrons
between those contacts in the electron system must consequently fail and is finally forbidden.
However, there still exist very useful pictures and models that are based on single electrons
moving along the quantum Hall systems like, for example, the edge channel picture [6] that
has proven to be very successful especially for the interpretation of QH experiments. Last but
not least the scientific community needs such restricted pictures in order to communicate and
deal with the subject. Therefore, it is a special challenge to find out to what extend such single-
electron pictures may be used without seriously violating the many-particle physics behind,
but also finding out, why such “wrong” pictures still give right answers and where the limits
for the applications of these “wrong pictures” are. In the following, we finally try to extend
the limits of these “wrong” single-particle pictures by a modified interpretation of the single-
electron picture.

As already mentioned, one of the most prominent and useful single-electron pictures in the
QH physics is the so-called edge channel picture that gives useful results even when consid‐
ering the single electrons as interaction free. Edge channels act as one-dimensional directed
quantum channels. However, before having a closer look to this model, we should have to
look at some basic aspects about one-dimensional channels in general.

Figure 1. Band structure of a one-dimensional channel with parabolic k-branches for forward and backward direction;
labels 1 and 2 indicate the quasi-Fermi levels for the case of an injected non-equilibrium by opposite contacts. The bold
parabolic branches indicate the filled states in k-space, which are different for the two k-branches at non-equilibrium.

Figure 1 schematically shows the band structure of a one dimensional channel. It consists of
two branches in k-space, one for the forward and one for the backward direction of the channel.
This picture is often used to introduce the one-dimensional quantized conductance, and it
allows getting the correct value of G =2e 2 / h  for spin degenerate electron channels on the basis
of semiclassical arguments. The main assumption for this is that only those electrons contribute
to the current that are occupying states in the energy interval between μ1 and μ2. However,
despite the correct result, this picture gets in serious conflict with the many-particle nature of
the electron system if one takes that assumption for true. Already the interpretation of this
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simple picture seems to be crucial, and it is worth to find out why to some extend the main
results are still valid and if we need to change the way of thinking how the single electrons in
the channel carry the current.

It is well known that according to the above semiclassical model, a net current flows, if the two
branches in k-space are driven out of thermal equilibrium by applying different voltages to
the contacts that inject carriers from opposite sides via the opposite k-branches. However, a
common misinterpretation in this context is now to say that all electrons on opposite lying
states in k-space do not produce a net current flow because of k-cancellation; only those
electrons occupying the states between μ1 and μ2 produce a net current that can be measured
in experiments. If thinking this way, we attribute single individual electrons to single quantum
states; or at least, we attribute different groups of electrons to sit on different regions in k-space.
That is clearly in contradiction with the many-particle picture, because that interpretation
suggests that only a small fraction (group) of (necessarily distinguishable) electrons carry the
current. According to the many-particle picture, all electrons and single-electron states should
lose their individuality and it should not be allowed to attribute any subset of electrons to any
subset of states. Nevertheless, the consequent further application of this interpretation leads
still to the correct value of the one-dimensional conductance. This fact makes it difficult to
realize if the limits of interpretation are already violated or not. We identify this as the main
source of many controversial discussions in the community. But how can we think about
electrons acting in any system without the ability of attributing subsets of electrons to
particular regions, states, or considering different electrons for different actions?

In order to reconsider this problem for trying to find an appropriate re-interpretation, we
would like to draw the attention back to the very basics of the many-particle picture. It is well
known that the many-particle states are composed by single-particle states by superposition
while mixing up all different configurations for the occupation of different states by different
electrons. This means that all single electrons lose completely any relation or association with
any particular states and they get complete delocalized in space as well as in energy. This
happens while preserving the negative Eigenvalue of the operator for exchanging any two
single electrons of the system, like demanded for Fermions. Just as a reminder, the composition
for a two-electron state in this context reads as follows:

{ }1 22 1
1| ,  ,  
2

ñ = -ψ ψ ψ ψ ψ (1)

Here, |ψ1, ψ2  means that electron 1 occupies state 1 and electron 2 occupies state 2, while
|ψ2, ψ1  means electron 1 occupies state 2 and electron 2 occupies state 1. By superposition of
the different configurations, the electrons lose their identity and their association with a
particular single-electron state and the negative sign in the superposition ensures the required
change of sign when interchanging any two electrons as required for Fermions. For more than
two electrons and more than two states, this composition is done in real space representation
by applying the so-called Slater determinant for mixing up all possibilities of attributing all
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results are still valid and if we need to change the way of thinking how the single electrons in
the channel carry the current.
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the contacts that inject carriers from opposite sides via the opposite k-branches. However, a
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states in k-space do not produce a net current flow because of k-cancellation; only those
electrons occupying the states between μ1 and μ2 produce a net current that can be measured
in experiments. If thinking this way, we attribute single individual electrons to single quantum
states; or at least, we attribute different groups of electrons to sit on different regions in k-space.
That is clearly in contradiction with the many-particle picture, because that interpretation
suggests that only a small fraction (group) of (necessarily distinguishable) electrons carry the
current. According to the many-particle picture, all electrons and single-electron states should
lose their individuality and it should not be allowed to attribute any subset of electrons to any
subset of states. Nevertheless, the consequent further application of this interpretation leads
still to the correct value of the one-dimensional conductance. This fact makes it difficult to
realize if the limits of interpretation are already violated or not. We identify this as the main
source of many controversial discussions in the community. But how can we think about
electrons acting in any system without the ability of attributing subsets of electrons to
particular regions, states, or considering different electrons for different actions?

In order to reconsider this problem for trying to find an appropriate re-interpretation, we
would like to draw the attention back to the very basics of the many-particle picture. It is well
known that the many-particle states are composed by single-particle states by superposition
while mixing up all different configurations for the occupation of different states by different
electrons. This means that all single electrons lose completely any relation or association with
any particular states and they get complete delocalized in space as well as in energy. This
happens while preserving the negative Eigenvalue of the operator for exchanging any two
single electrons of the system, like demanded for Fermions. Just as a reminder, the composition
for a two-electron state in this context reads as follows:

{ }1 22 1
1| ,  ,  
2

ñ = -ψ ψ ψ ψ ψ (1)

Here, |ψ1, ψ2  means that electron 1 occupies state 1 and electron 2 occupies state 2, while
|ψ2, ψ1  means electron 1 occupies state 2 and electron 2 occupies state 1. By superposition of
the different configurations, the electrons lose their identity and their association with a
particular single-electron state and the negative sign in the superposition ensures the required
change of sign when interchanging any two electrons as required for Fermions. For more than
two electrons and more than two states, this composition is done in real space representation
by applying the so-called Slater determinant for mixing up all possibilities of attributing all
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electrons to all available single-electron wave functions. This technique is applied also in
context with the Hartree–Fock [7] approach as used in our modeling below. At this point, only
the fundamental consequences should be brought back to attention. The crucial point is that
the human way of thinking is always bound to the imagination of single electrons and the
fundamental question arises if there exists a more appropriate way of intuitive thinking about
single electrons that is more suitable for the many-particle physics. This question is important,
because most of the controversial discussions in the scientific community arise from the way,
how different people obtain their mostly intuitive understanding in terms of single electrons,
which anyway has to fail at some point for the many-particle system. Therefore, we have to
re-interpret the single-electron aspect on the background of the many-particle system. For this
purpose, we have to answer two fundamental questions that have to be correctly answered
also by any interpretation in terms of single electrons [8]:

I. What is the ground state energy of the many-particle system?

II. Which of the supposed single electrons are sitting right at that ground state energy?

According to the basic principles of quantum physics, the ground state energy has to be defined
in terms of an “observable” that needs an appropriate operator for measuring that physical
quantity. This “measurement” has to be based either on a real experiment or at least on a
“Gedankenexperiment.” On this basis, the two questions can be re-formulated as follows:

ad I) At which energy can we extract any single electron from the system without destroying the ground
state of the system left behind, after just taking an electron, or just adding an electron?

It quickly becomes clear that a single electron has to be extracted from or added to the Fermi
level if subsequent relaxation processes of the electron system should be avoided. If we, for
example, pull out an electron at lower energy than the Fermi energy, an excited hole would
have been left behind that subsequently relaxes. If adding an electron at higher energy, it is
also clear that we would create an excited state that still has to relax into the ground state
subsequently. The only way to put in or take out an electron without the need of subsequent
spontaneous relaxation is if that happens right at the Fermi energy. The Fermi energy therefore
appears as the lowest possible energy at which the electron system can communicate with the
outside world, as, for example, done by a transport experiment at low temperatures and low
driving currents. Consequently, the Fermi energy should be defined as the (observable) ground
state of the many-particle systems.

ad II) What is the probability for “catching” any particular single electron of the system at the Fermi
energy?

We consider the electron system in the ground state as a black box, and we randomly take out
and put back electrons at the Fermi level according to I. Knowing how the many-particle state
is constructed [see e.g. Eq. (1)], it becomes immediately clear that we can find each individual
electron of the system with same probability sitting at any electronic state, which applies of
course also for the Fermi level! So if one particular electron out of N electrons can be found at
the Fermi level with probability 1

N
, this can only mean that all single electrons sit right at the
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Fermi level. In this case, the “observation” has to overrule some possibly contradicting
intuition.

In contrast to the most common way to look at the many-particle electron system in a single-electron
representation, we consequently have to consider all single electrons sitting right at the Fermi energy.

Except this maybe somehow counter intuitive fact which we have to accept some how, we now
can go on to think in terms of single electrons. In this context, it is interesting to reconsider the
conductance of the one-dimensional channel according to Figure 1: All electrons are consid‐
ered to sit at the top occupied energy level, that is, twofold degenerate for the +/− k-branches
in the case of equilibrium. Additionally, the “single electrons” are also delocalized between
these degenerate levels because of the many-particle character of the whole system. The single-
particle wave functions are consequently just plane waves at kF for all electrons, which still
compensate each other at thermal equilibrium, meaning that the quasi-Fermi levels in the two
branches of the k-space are the same (see Figure 2 left) and the counter-propagating identical
electron waves create a stationary periodic charge distribution along the channel.

Figure 2. Left: Counter-propagating electron waves from states in the opposite k-branches at Fermi level for equilibri‐
um. Right: Counter-propagating electron waves from states in the opposite k-branches at quasi-Fermi levels that are
slightly shifted against each other by a small potential difference introduced by opposite contacts.

If we now introduce a vanishing small non-equilibrium Δµ between the two k-branches by
applying a vanishing small potential difference at the associated contacts, the two counter-
propagating single-electron wave functions face a slight energy difference that affects the result
of their superposition (see Figure 2 right). This energy difference affects the usually not
observable universal time dependence of stationary quantum states that reads as follows:

( ) ( )
2 E

,
i t

hx t x e
p ×

-
= ×ψ ψ (2)

However, this time dependence becomes relevant in case of superposition. The superposition
of the counter-propagating waves with slightly different energy EI and EII leads now to a
beating effect in time that causes a lateral movement of the whole charge distribution that is
associated with the superposition that originally resembles just a standing wave (that now
starts to move). The beating frequency ν therefore derives as ν =Δμ / h  which finally leads to a
non-stationary time-dependent state that now creates charge transport. This fact can be seen
as a most elementary step of composing a non-stationary state by the superposition of two
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stationary states at slightly different energy. It is easy to convince oneself that during a single
beating cycle, the original charge distribution is restored, while the charge distribution as a
whole moved on by exactly one period of the initial charge distribution. This represents a
certain transferred charge from one contact to the other. We know that a single electron on the
Nth quantum state in space representation is build up by N charge maxima that are distributed
along the channel. Since they shift laterally by one period during a single beating cycle, the
transferred charge relates to a fraction of Δq =qe/N of the charge of one single electron. However,
due to the many-particle aspect and the Pauli principle, we know that we have also a total of
N electrons in the whole system that subsequently fills up all lower states. Since we have to
consider all N electrons equally at the Fermi energy, they consequently contribute all equally
in parallel. All together we get therefore a charge transfer of N times the fraction Δq of charge.
This gives in total charge per beating cycle of ΔQ = N ⋅Δq. This finally appears to be the charge
of a single electron qe. As a consequence, we obtain the fundamental result that the complete
electron system transfers exactly the charge of one single electron during each beating cycle
from one contact to the other. Assuming spin degeneracy, we just have to multiply by a factor
of 2 and we get I =2⋅ν ⋅qe as the total current which easily allows deriving an associated
conductance:

2

2 eG
h

= × (3)

In this way, we end up with the well-known quantized value for the conductance of a spin
degenerate one-dimensional channel. However, it results from a slightly different way to look
at the many-particle systems in term of single electrons that strictly avoids attributing
individual electrons to individual single-electron states, but at the same time including all
electrons of the system.

If we reconsider now the implications for transport experiments, it becomes clear, that for low-
excitation experiments close to the thermal equilibrium, the electron system is only accessible
in regions where the spectrum of the single electrons has states close to the Fermi level. These
Fermi edge electrons take the role as a representation of the whole electron system that,
however, can be accessed close to the ground state only at the Fermi level. Therefore, these
electrons seem to appear just at locations, where there are states at the Fermi level in the single-
electron picture that make up the quantum channels or so-called edge channels in the QH
regime. However, it is a common misinterpretation to conclude that current carrying electrons
exist only in those channels. Moreover, according to the composition of the many-particle
states, it is even forbidden to attribute single electrons to special regions, energies, and states.
The channels are only regions where one can communicate with the electron system close to
thermal equilibrium, while the electrons themselves remaining de-localized over the whole
system [8]. We may picture the transport channels as the dip of the iceberg that sticks out of
the Fermi sea, but still belonging to the one and only many-particle system. Doing low-
excitation transport is like walking on the tip of the iceberg, and it crucially depends on the
topology of the ground on the dip.
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The consequences of these considerations in this paragraph will become clearer if applying
them to the edge channel picture in the next paragraph.

3. The edge channel picture

Since the edge channel picture [6] is a widely known model, only a short qualitative overview
of the main aspects should be given in this chapter. However, we need this chapter in order
to make clear the consequences of the above discussion and the implications for our modeling
below. The main ingredient of how edge channels are created is that for the Schrödinger’s
equation a strong homogeneous magnetic field appears as an effective parabolic confinement
potential that acts in addition to a possibly present electrical potential. A strong magnetic field
in this context is present, if the magnetic length is small as compared to the typical length scales
of the electrical potential or in other words, if the electrical potential varies slowly on the length
scale of the cyclotron radius. However, the centre coordinate for the magnetic contribution to
the confinement potential is not fixed in space and has therefore a free centre coordinate for
the Schrödinger’s equation (see e.g. Ref. [9]). Furthermore, for realistic magnetic fields of
several Tesla and sample parameters as used in real experiments, the quantization due to the
magnetic confinement dominates strongly over the contribution of the electrical field. In this
regime, the quantization due to the magnetic field leads to the well-known Landau levels, just
like without electrical field. It appears as a good approximation for the energy spectrum that
the local electrical potential simply shifts the magnetically split LLs parallel in energy. This is
shown in Figure 3.

Figure 3. (a) Schematic representation of the laterally varying Landau levels across the bulk in the transverse y-direc‐
tion that mimic the lateral electrical potential fluctuations; at interceptions with the Fermi energy, there appear direct‐
ed channels that resemble loops around potential hills or valleys and edge channels along the sample edge near the
sample boundaries (blue color); (b) schematic representation of the Hall geometry with the bulk area in top view with
the edge channels along the edge and loops (magnetic bound states) in the bulk region.
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In this regime, the states at the Fermi energy (EF) extend only along equipotentials, where the
LLs intercept EF, while in direction transverse to the equipotentials, they are localized on the
length scale of the cyclotron radius. These equipotentials resemble directed channels along the
edges of the electronic system and create directed loops in the bulk region that might also
couple opposite edges by tunneling across magnetic bound states [10]. Conduction through
the bulk becomes possible, if the bulk states, that mostly create localized loops, extend over
the sample size. That happens, if the Fermi level is close to the centre of the potential fluctua‐
tions, which also means the centre of the disorder broadened LL. Whenever a bulk current is
possible, we get into the regime between QHE plateaus and whenever the bulk is insulating,
we are in the plateau regime. This aspect is used by the Chalker–Coddington network model
[11], which has been introduced in order to calculate the localization length that is decisive for
the bulk states whether they contribute to the spectrum of the localized states or they belong
to the spectrum of de-localized states within the DOS peaks of the LLs.

Figure 4 schematically summarizes the results of the so-called localization picture of the QHE
[12] that finally leads to the scaling theory of the QHE [2]. The essential point of the scaling
theory is that the localization length of an electronic state close to the centre of the Landau level
scales according to a particular exponent of the inverse energy relative to the LL centre.

Figure 4. Schematic representation of the localization picture of the integer quantum Hall effect. It illustrates the densi‐
ty of states (DOS) for the two lowest Landau levels (LL). The energy interval ΔE indicates that part of the DOS around
the centre of the LL, in which there exist delocalized states with respect of the sample size. The shaded tails of the DOS
are explained to contain localized states. The dashed lines indicate schematically the dependence of the localization
length ξ on the energy of the states relative to the LL centre.

This suggests that at zero temperature the localization length would diverge to infinity for one
particular energy right at the centre of the LL. For finite sample size, any localization length
larger than the sample size produces consequently delocalized states that open up a window
of de-localized states around the LL centre. But also a finite temperature opens up such a
window because a finite temperature brings in a phase uncertainty that destroys quantum-
driven localization mechanisms like, for example, Anderson localization for localization
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lengths above certain values. Intensive experimental investigations of this scaling behavior as
well as theoretical investigations confirmed that the scaling exponent results from quantum
percolation, which can be seen as the main message for the ongoing chapter.

In conclusion of the scaling theory, the experimentally obtained scaling exponent suggests that
bulk transport is indeed driven by quantum percolation. We also want to emphasize at this
point that the Chalker–Coddington network model is a powerful tool for successfully dealing
with the localization problem, but definitely it deals with the stationary states of the system at
the Fermi level at equilibrium. The mapping onto the scaling behavior of experimentally
investigated quantities is the most important contribution of the CC model for understanding
the QHE, but it does not directly explain the excess current flow as it happens in real experi‐
ments.

4. Introducing non-equilibrium

From the previous section, we conclude that the channels of non-vanishing DOS at the Fermi
level which develop at the intersections of the LLs with the Fermi energy are indeed quantum
channels. Now, we need a model that captures the behavior of these channels if introducing
non-equilibrium like in real experiments.

In Figure 3, there has been already shown a QHE sample with edge channels, as introduced
by Büttiker [6]. The blue lines are the edge channels that appear as intersections of the LLs that
follow the uprising potential at the edges of the sample. Topologically opposite pairs of
channels belong to a single channel that follows the edge all around the sample. However,
current contacts at the ends break up the loop, leaving two opposite directed channels, but
they have still to be understood as parts of one common channel (still created by one and the
same many-particle electron system). These opposite directed channels can be seen as the two
opposite branches in k-space of an ordinary one-dimensional channel as depicted in Section
2. From this point of view, such a pair of opposite located edge channels have still to be
understood as one single one-dimensional channel that in total is able to contribute the
quantized conductance. The most important criterion is that one must not consider the edge
currents as real currents located just at the edges while current flowing just in narrow channels.
Using the arguments given in Section 2, the edge channels are not more than the locations on
the sample area, at which one can communicate with the electron system close to equilibrium
by transport experiments (the channels are the possible walk ways on the dip of the “many-
particle iceberg”). But it is not allowed by quantum physics to even think that single electrons
are moving just there semiclassically like in a narrow classical conductor. In other words, the
so-called edge current is not a current flowing at the edges; it is carried by the edge channel
pair as a whole that is just a representation of the whole electron system. According to the
many-particle character of the whole electron system, all electrons are delocalized in between,
which means that the path for single electron is completely unknown between the sample
boundaries, as it should be in a quantized system. On this background, the historic battle
between the so-called edge channel picture and bulk-current picture of the QHE has no real
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meaning and is just a result of overstretching the single-electron picture as discussed in Section
2.

If we look at the bulk region, the interceptions with the Fermi energy produce mostly closed
loops around hills or valleys of the potential fluctuations which would encircle those in
opposite directions. Physically, those loops are the same like the edge channels which run all
around the sample, except that edge channels will be interrupted by contacts, while in the bulk
region these channels stay to be closed loops. The only way to connect to those loops is either
by tunneling if such loops come close to each other at potential saddles, or if such loops finally
start to merge, while the Fermi level touches the saddle energy.

The plateau regime of the quantum Hall effect is perfectly described by the edge channel
picture that in this context means indeed the channels that run along the edge, while the bulk
channels do not contribute. However, the physically most interesting and challenging problem
is the transition regime between QH plateaus, at which also a bulk current is flowing. The
representation of this bulk current is therefore is the major goal of the ongoing discussion.

A fundamental building block of our approach is the tunneling regime between loops at the
potential saddles. Such saddles exist in real electronic structures in a random potential, but as
will be shown subsequently they can be used also as the nodes or building blocks of a network
approach in order to discriticize a realistic random potential distribution.

For this purpose, we represent such a saddle by some kind of circuit element that consists of
two counter-propagating channels that get close to each other and couple, for example, by
tunneling.

Figure 5 shows the situation of two counter-propagating channels, while they get close at the
potential saddle and can couple by tunneling. The channels are part of closed loops that can
couple also at other saddles to other loops as will be shown below. The most important aspect
now is how a tunneling current between the channels has to be handled. In this context, our
discussion in Sections 2 and 3 play a major role. There we argued that the counter-propagating
channels can be seen as those regions, at which transport close to thermal equilibrium is
possible, but all channels belong to the same many-particle quantum state as a whole. If we
forget about the association with particular channel pairs unlike done in Figure 5, we get two
possibilities for building channel pairs, as would be the case if considering the encircled node
as a black box. The one is like shown in Figure 5, but there is also the possibility to build a pairs
with channels 1 → 4 and 3 → 2. Considering the saddle as black box both combinations are
possible on equal basis and therefore have to be just different representations of the same
problem. If we now consider an introduced non-equilibrium at input channels 1 and 3 that
means that the input potentials V1 and V3 are set to be different, the associated currents have
to serve consistently both possibilities to build channel pairs. Using channel pair 1 → 2 and 3
→ 4, they represent a horizontal current transport in Figure 5 from the right to the left by
I xx =(μ1 −μ4)⋅ e

h
 that is also I xx =(μ2 −μ3)⋅ e

h
. Using the notation for the quantum Hall effect I xx

would serve as sample current, (μ1 −μ4) and (μ2 −μ3) would be measured like Hall voltages,
while (μ1 −μ2) and (μ4 −μ3) would be measured like longitudinal voltage drops. However,
considering 1 → 4 and 3 → 2 as channel pairs, they represent a current in vertical direction
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I yy =(μ1 −μ2)⋅ e
h

 that is also I yy =(μ3 −μ4)⋅ e
h

. For the quantum Hall notation, in this case, I yy

would serve as sample current, (μ1 −μ2) and (μ4 −μ3) would be measured like Hall voltages,
while (μ1 −μ4) and (μ2 −μ3) would be measured like longitudinal voltage drops. In this context,
we can interpret the saddle situation in Figure 5 as a single-channel quantum Hall sample, for
which we define the longitudinal voltage drop in horizontal direction as V xx =V1 −V2 that is
also given by V xx =V4 −V3 and the Hall voltage V xy =V1 −V4 that is also given by V xy =V2 −V3.

Using further the definition of the longitudinal resistance Rxx = V xx
I xx

 and the Hall resistances

Rxy = V xy
I xx

, we can write the following equations:

2xx
R hR
T e

= × (4)

2xy
hR
e

= (5)

The above equations use also the fact that the relation between the currents I yy
I xx

 is identical

to the associated relation between the probabilities for single carriers that means I yy
I xx

= R
T

 and

we define P = R
T

. There is another interesting fact to be checked: A current I xx and a longitudinal

voltage V xx imply a dissipated power of Pxx = I xx ⋅V xx in the node. However, since a particular
choice of the channel pairs is just one of two possible equivalent choices for the same electron
system, the other choice of tunneling current I yy and transverse (Hall) voltage V xy with
dissipated power Pyy = I yy ⋅V xy should represent the same power dissipation Pyy = Pxx, which
is indeed the case and can be easily checked. Turning the node by 90°, which means flipping
the x and y directions leads just to a replacement of P by 1

P
. The most important aspect is that

we can use this node as a kind of building block to build a more complex circuit as a network.
Also in real, it happens that several loops get arranged in the bulk region of a real sample that

Figure 5. Representation of the situation at a saddle point that can be used as a node of a network. The channels 1 → 2
and 3 → 4 pass each other and the tunneling rate between them is represented by the factor P = R / T  where R means
the tunneling probability and T =1− R.
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Using further the definition of the longitudinal resistance Rxx = V xx
I xx

 and the Hall resistances

Rxy = V xy
I xx

, we can write the following equations:
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The above equations use also the fact that the relation between the currents I yy
I xx

 is identical

to the associated relation between the probabilities for single carriers that means I yy
I xx

= R
T

 and

we define P = R
T

. There is another interesting fact to be checked: A current I xx and a longitudinal

voltage V xx imply a dissipated power of Pxx = I xx ⋅V xx in the node. However, since a particular
choice of the channel pairs is just one of two possible equivalent choices for the same electron
system, the other choice of tunneling current I yy and transverse (Hall) voltage V xy with
dissipated power Pyy = I yy ⋅V xy should represent the same power dissipation Pyy = Pxx, which
is indeed the case and can be easily checked. Turning the node by 90°, which means flipping
the x and y directions leads just to a replacement of P by 1

P
. The most important aspect is that

we can use this node as a kind of building block to build a more complex circuit as a network.
Also in real, it happens that several loops get arranged in the bulk region of a real sample that

Figure 5. Representation of the situation at a saddle point that can be used as a node of a network. The channels 1 → 2
and 3 → 4 pass each other and the tunneling rate between them is represented by the factor P = R / T  where R means
the tunneling probability and T =1− R.
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may get interconnected by tunneling. Therefore, as the next step we use a periodic arrangement
in two directions to fill the space in two dimensions. This is schematically shown in Figure 6
below.

Figure 6. Arrangement of the nodes in Figure 5 in order to resemble a single closed loop in the bulk that allows cou‐
pling to adjacent loops in order to fill up the whole area.

From Figure 6, one can easily imagine that it is possible to fill up the space with any number
of adjacent loops that may fill the bulk region. However, besides the Eqs. (4) and (5), we need
a more compact relation that allows obtaining the output potentials of the nodes in terms of
the input potentials. For this purpose, we rewrite Eqs. (4) and (5) in terms of potential differ‐
ences, which means (μ1 −μ2)= (μ4 −μ3)= (R

T )⋅ (μ1 −μ4)= (R
T )⋅ (μ2 −μ3). After some steps of deriva‐

tions, we can show that for each single node, the potentials of the input channels are translated
to the potentials of the output channels by some kind of transfer matrix:
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34

T R
R T

mm
mm
æ öæ ö æ ö

= × ç ÷ç ÷ ç ÷
è øè ø è ø

(6)

This provides a basis for a numerical approach to find the lateral distribution of the potentials
over the whole network. It should be emphasized at this point that these are potentials that
have to be understood as the deviations from the equilibrium potentials that would be all the
same in thermal equilibrium, which of course is the trivial solution for the network. For a non-
trivial solution, we need at least two channels of the whole network to be fixed at different
potentials, so that the remaining network has to adjust self consistently to these non-equili‐
brium potentials.

Considering the single nodes of the network, the tunneling current between adjacent loops
depends on the relative position of the Fermi energy and the saddle energy, while the
smoothness of the saddle potential serves an important parameter. However, this also means
that a formulation in terms of the filling factor should be possible too. In Ref. [13], this problem
has been considered in detail and formulations have been presented for the dependence on
the Fermi energy as well as the dependence on the filling factor. The main results will be
discussed in the following and for details please refer to the cited literature [13].
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Figure 7. Saddle potential that is produced by a two-dimensional Cosine function; xn and yn are the tunneling distance
between loops, if they come close to each other in either x or y direction.

As a first step, the situations have been analyzed for saddle potentials that are created by a
two-dimensional Cosine function. However, the choice of this special function is not a
restriction to a special case, because tunneling becomes important only if the Fermi level gets
close to the saddle energy at which the opposite channel can get close to each other. In this
regime, the saddle potential can be represented already in very good approximation by the
second-order saddle curvature, which is very well parametrized by a Cosine function in both
directions. Figure 7 shows a part of the potential modulation near such a saddle. The bold line
for this case represents the channels at a Fermi energy that is slightly below the saddle energy,
at which the loops encircle the potential valleys and get close to each other in y-direction by
yn. If the Fermi level moves slightly above that saddle energy, it is easily seen that the loops
will encircle potential hills in opposite direction and they get close to each other in x direction
by xn, which resembles a node that is turned by 90°. On this basis, the following equation has
been found in Ref. [13]:

2

0

FL E e BP exp
e V h

é ù×
= ± ×ê ú×ë û

(7)

In this equation, EF is the Fermi energy relative to the saddle energy, L is the period, and V0 is
the amplitude of the representing Cosine function that has been taken into account up to the
second-order Taylor expansion. If the Fermi energy crosses the saddle energy, the argument
of the exponent changes sign which automatically means that P→ 1

P
 and at the same time, the

node turns by 90°, as already mentioned above. Considering one square of length L, that is,
one full period L of the Cosine function in both directions, the above equation can be mapped
onto the filling factor scale [13]:

2Δ e BP exp L
h

n ×é ù= - × ×ê úë û
(8)
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Δν is the difference of the filling factor relative half filling. The above equation suggests that
at half filling at Δν =0 exactly half of the area defined by L2 is occupied with electrons.

As can be seen in Figure 8b, at exactly half filling when the Fermi level meets the saddle energy,
exactly half of the area appears as shaded, which means filled with electrons. If the Fermi level
is slightly above the saddle like shown in Figure 8a, a small shaded gap opens right at the
saddle that indicates that the shaded area starts to dominate, and at the same time, the shaded
areas get interconnected to each other across the saddle, while the unshaded areas shrink to
isolated droplets. The opposite happens if the Fermi level is slightly below the saddle energy
like shown in Figure 8c, because in this case, a gap of empty states now opens up at the saddle
that now interconnects the unshaded areas and leaving the shaded areas as isolated droplets.
This behavior is in agreement with the so-called bulk-current picture of the QHE regime that
is explained as a mixture of a so call QH liquid phase (shaded area) and an insulating phase
(unshaded areas) [14]. Due to the bulk-current picture, a plateau transition happens, if the one
phase takes over from the other and this happens around the half-filled LL. In context with
Figure 8 and Eq. (8), we get the quite simple and universal looking equation P =exp −ΔN ,
where ΔN  is the number of electrons that are either in excess or missing from an exactly half-
filled Landau level on a square defined by the period L.

Figure 8. Top view of a complete period L containing a central saddle at (a) Fermi energy slightly above saddle energy,
(b) Fermi energy exactly at saddle energy, (c) Fermi energy slightly below saddle energy. The areas filled with elec‐
trons are shaded; the unshaded areas are empty.

A major necessary further step is now the introduction of a disorder potential. This is achieved
by the superposition of a random potential to the so far regular saddle potentials. That leads
to the effect that no longer all nodes behave the same. Looking at the filling factor represen‐
tation, a random potential also leads to a lateral fluctuation of the local filling factors at the
positions of the nodes.

Including an additional long range disorder potential, the saddle energies get nonuniformly
distributed and a partly transmission and reflection at the nodes appears only at those locations
where the saddle energy stays close to the Fermi energy. This usually happens only for a small
fraction of the nodes in the network, like indicated schematically in Figure 9. All nodes
(saddles) with energy far from the Fermi energy have either full transmission (T = 1, R = 0) or
full reflection (T = 0, R = 1), depending on whether the Fermi energy is above or below the
saddle energy. In this way, the network guides the channels around potential fluctuations and
only those nodes at which the saddle energy gets close to the Fermi energy become physically
active as tunneling junctions (red arrows in Figure 9). In this context, our network, which we
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call non-equilibrium network model (NNM) can be understood as a method to approximate
arbitrarily shaped magnetic bound states and it also finds the “hot spots” (active saddles of
the disordered potential).

Figure 9. Schematic representation of the effect of a random potential that is superimposed on the regular periodic grid
of saddles. The yellow areas indicate regions of saddle potentials below the Fermi energy that lead to higher carrier
density and hence local filling factors larger than ν=0.5, while the white areas indicate larger saddle potentials above
the Fermi level leading to lower carrier density and hence local filling factors lower than ν=0.5. At the boundaries be‐
tween these regions we cross the situation of half-filled LLs, where the Fermi energy meets saddles and as discussed
already before, while crossing the saddle energy the involved nodes turn by 90°. This can be seen by either following a
particular row or column of nodes if we enter or leave the yellow colored area.

The NNM as introduced so far is a standalone model for describing the non-equilibrium
transport that means the lateral distribution of the disruption from thermal equilibrium. The
physics, how the screened potentials or local filling factors are obtained as input information
for the nodes, is not directly addressed by the NNM. There exist different levels for approach‐
ing the underlying electron system from semiclassical screening effects that neglect exchange
interaction to a full treatment as many-particle system on, for example, the Hartree–Fock level.
While for the semiclassical model, the screened electrostatic potential can be used as an input
for the network, this might not be sufficient for the Hartree–Fock treatment, because the
exchange contribution might dominate over the pure classical electrostatic part of the carrier
distribution, and therefore, there is good reason to use the network representation in terms of
the local filling factors.

Another very important aspect of our non-equilibrium network model is that it addresses
finally only the lateral distribution of the non-equilibrium excitation potentials without
explicitly relating to quantities like local currents or local conductivities, which would be in
violation of the many-particle physics, because of implying an existence of individual electrons
in the system. The currents of the non-equilibrium are not addressed while solving the
problem. Only as a post-processing step, the currents are calculated just at the contacts where
the system communicates with the outside world. Therefore, our network model is compatible
also with the demands of many-particle physics, and it is independent of the type of carriers
that show up as quasi-particles just at the contact in a post-processing step. In this post-
processing step, the type of carriers become relevant only by the way how the current balance
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at the contact has to be done. For electrons, this is the usual quantized conductance times the
potential difference. At this point it should be reminded that also for the usual electrically
confined one-dimensional channels the quantized conductance G = 2⋅e2 / h appears only in
context with the presence of metallic contacts. However, there is no reason why the same
network model should not be used for fractional channels exactly in the same way, where the
only modification would be that the current balance at the contact has to be done for the
fractional charges of composite fermions. This is the subject of future work.

5. Implications

Many implications of the various approaches and arguments as given above can be found
retrospective already in the literature, and therefore, the next paragraph is devoted to numer‐
ous already existing implications. For better readability in the above modeling sections, only
some of those citations concerning primary resources are contained. It is also worth to mention
that the presentation as it appears above is not the chronological process of a recent develop‐
ment. The chronological process contains many partly independent steps collected over almost
20 years of research that finally have been but together by the time. Therefore, there already
exists a huge punch of related literature, in which supporting implications for many of the
different features and aspects of our model can be found. In this section, we will address part
of this additional background literature for the reader to gather some further insights of
different aspects, however, without being able to make a full review that would definitely go
beyond the boundaries of this chapter.

Let us start directly with Eq. (8) that is one of the major ingredients of our model. Almost 20
years ago, a similar equation has been found to be necessary in order to meet specific symmetry
conditions of quantum Hall measurements [15]. That equation has been applied to a quantum
Hall sample as a whole and the typical behavior now turns out to apply also for a single node
of our network model. Even without creating a full network, there have been attempts to put
together an equivalent circuit for a quantum Hall sample. Each channel pair of the whole
sample has been handled like a single node of our network, but only for the channel pair
representing the top LL backscattering (P > 0) has been assumed. The total sample has been
modeled by parallel connection of the suitable number of edge channel pairs [16]. Although
there have been strong indications that tunneling may play an important role, the particular
shape as an exponential function of P versus filling factor ν at that time was found initially just
by symmetry requirements. A similar function had been found also by Shahar et al. [17], who
needed it for interpretation of experimental data in context with deviations from scaling theory
that the authors have been observing. Their results have been inspiring in the sense that the
scaling theory is an important aspect of the QHE, but maybe not directly the driving force for
the existence of the QHE. A first version of the network model has been formulated on the
basis of local filling factors [18], which in turn is based on a special earlier version for addressing
the Hall insulator [19]. The tunneling process was explicitly addressed later when looking for
a better way to introduce the disorder potential that was expected to be dominated by the
screened electrostatic potential [13]. Using just a semiclassical approach to screening for
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modeling and shaping the samples structures has already proven to be sufficient for success‐
fully modeling many features of quantum Hall samples in terms of all geometrical aspects like
length and distance between contact arms [20], effects of gate electrodes [21, 22], effects due
to the different equilibration lengths [20], effects due to the number of contact arms and non-
local effects [23], inhomogeneous magnetic fields [24] and also most complex sample geome‐
tries like an anti-Hall bar structure that is embedded in a Hall bar [25–27]. The latter
demonstrates the appearance of simultaneous independent Hall effects for the inner and outer
boundaries of the same electron system that is supplied in parallel by different independent
constant current sources. That example was at the same time a demonstration of the flexibility
of our network model in terms of addressing most complex experimental conditions.

But even much earlier, we have found indications of such a unique behavior when coupling
quantum channels that carry different electrochemical potentials, which now turn out to look
similar like the formulations for our network model. That behavior has been found by
investigating magneto-transport in quasi-3D systems that do not show quantum Hall effect.
In this context, we have performed magneto-transport experiments and modeling for the so-
called wide parabolic quantum wells [28, 29]. These structures are no longer two-dimensional
because the sub-band splitting is smaller as compared to the LL splitting, which means that
those structures are somehow in the regime between 2D and 3D. Although there have not been
observed any quantum Hall plateaus, relations between longitudinal and transverse (Hall)
resistance have been found that in a retrospective view also support the relations between the
chemical potentials as discussed above. The wide parabolic quantum wells at large filling
factors had been created by the Narrow Gap Semiconductor PbTe and instead of quantum
Hall plateaus magneto-resistance fluctuations have been found at temperatures below 100 mK
and at small current of the order of a few nA. The temperature and current dependence of
these fluctuations that also appeared in a so-called non-local contact configuration even at
macroscopic sample size [30] indicated the involvement of quantum channels [31]. In this
context, the relations between the potentials of channels that meet at non-equilibrium situation
seem to be valid also for that regime far from the standard quantum Hall regime in the clean
two-dimensional case. That can be seen as a hint that the basic principles addressed in the
previous sections seem to be more general and hold also beyond the standard quantum Hall
regime. There are also other examples from the literature, in which a behavior similar to that
in a single node was found by Haug et al. [32]. However, that was derived just for the special
case of a gate initiated scattering experiment in the QHE regime and has not been considered
further from a more general point of view. Another interesting connection can be found with
the work of Chklovskii et al. [33], where the authors deal with the conductance of the central
compressible bulk channel. Such a compressible bulk channel appears in the transition regime
between conductance plateaus, while successively depopulating the LLs by either increasing
the magnetic field or successively narrowing a channel by spit gates until the density in the
center falls below the density of a fully populated LL. Besides the screening properties, which
the authors handled as a pure classical electrostatic problem, they use some kind of semi
empirical formula in order to translate the electron density in the central compressible bulk
stripe into a conductance of that stripe:
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Here, ν(0) means the filling factor in the center of the compressible bulk channel at ν(0) < 1.
This Eq. (9) has been extracted from a paper of Beenakker et al. [34] who deals with edge
channel transport in the fractional quantum Hall regime. Equation(9) can be seen as an
appropriate approach to give a correct interpolation between conductance steps. At this point,
we want to extend the discussion of our model in order to demonstrate that our approach
captures the main features of the approach of these authors as well. We make a simplification
and use only a single node of our network in order to capture the situation of two opposite
channels that merge in the centre of a sample. This situation has been already addressed in
Ref. 13 (there in context to Figure 14). It can be also understood if considering just a single node
like in Figure 5. Without backscattering (P = 0), the quantized conductance of the node for

transmission from right to left is G = e 2

h
. This value would be measured only if terminals 2 and

3 of the node are connected together at an ideal metallic contact on the left and terminals 1 and
4 are connected to another ideal metallic contact of the right. If applying a potential difference

between those contacts, a current according to that quantized conductance e
2

h
 would flow. If

we now merge the channels in the centre of the nodes, reflection and transmission get equal
probability, which means R = T = 0.5 and R

T
=1. According to Eq. (4), this means that the junction

itself represents the universal conduction e
2

h
 that adds another universal conductance in series

to the backscattering free case, which means that now we have connected in series two times
the universal conduction which gives in total:
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This fits exactly Eq. (9) for ν(0) = 0.5, which means a half-filled LL. Obviously, this is also in
agreement with Eq. (8), for which the exponent vanishes right at a half-filled LL. The advantage
in our case is that we can extend our model to a network in order to capture further details
like length, width, and also inhomogeneities of the metallic bulk stripe, while the authors of
Ref. [33] have to restrict them self to special cases and assumptions. Another point is that the
approach of Chklovskii et al. provides no handle for extending their approach beyond
semiclassical treatment of the stripes, and therefore, they neglect many body effects that have
been found to play an important role in the quantum Hall regime. Since we consider current
transport from a most general point of view and taking into account facts related to many-
particle physics, the application of our transport model has no such restriction and can be
applied also to a modeling based on many body effects, as will be demonstrated in the next
section.
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The fact, that there can be found numerous implications for the basic behavior that is repre‐
sented by the nodes of the network, suggests that there are more general aspects behind that
might be interesting also for communities outside the quantum Hall community. That was
finally the motivation to propose this chapter as a very fundamental step toward introducing
some kind of dynamic in terms of stationary net current flow close to thermal equilibrium
while starting from the stationary many-particle ground states. In the final chapter, we present
some most recent results for the quantum Hall regime on the basis of a many-particle system
by applying the Hartree–Fock approximation for finding the stationary ground state and
introducing the presented treatment of non-equilibrium for obtaining the longitudinal and
Hall resistances as a function of magnetic field.

6. Recent results

In the previous section, we have presented a selection of examples for implications of our
model that can be already found in the literature that give support for the results of our
modeling. This is done mainly just by referring to the literature without reproducing the results
in detail. Therefore, the reader is advised to refer to the cited literature for further details. In
this paragraph, we want to present most recent results by taking into account the many-particle
physics up to the Hartree–Fock level including disorder. The particular numerical Hartree–
Fock approximation as used here has been outlined in several publications, and therefore, the
reader is also advised to look up further details in the given Refs. [35–37]. Here, we will just
present the results for two examples.

6.1. Imaging of condensed quantum states

The first example deals with a many-particle system that contains only few electrons that get
localized in some model potential and which do not directly contribute to transport. This
system is considered as embedded in a conducting environment and the impact of the charge
distribution of such a localized state on the tunneling barrier of a nearby quantum point contact
(QPC) is taken into account. Such a QPC can be understood as a saddle potential that acts as
a charge detector for nearby charge distributions. In this case, the nodes of the network for
transport at the QPC are controlled by the local potentials based on Eq. (7). For demonstration,
an artificial confining potential ring (see Figure 10) has been created and filled with eight
electrons. These eight electrons are treated as a many-particle system using the Hartree–Fock
method and as shown in Figure 11 the charge density resembles a periodic structure along the
ring that can be understood also as a one-dimensional Wigner crystal. Here, just the main
results are presented and for further details please refer to Ref. [38]

The eight confined electrons have been treated as a many-particle system separately from the
conducting environment that has been represented by a semiclassical approach based on Eq.
(7) of the NNM. The presence of the charge distribution in the ring was taken into account by
using the recalculated Hartree potential of the charge distribution in the ring at the potential
saddles of the QPCs. The transmission of the QPCs, that have been modeled using the network
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some most recent results for the quantum Hall regime on the basis of a many-particle system
by applying the Hartree–Fock approximation for finding the stationary ground state and
introducing the presented treatment of non-equilibrium for obtaining the longitudinal and
Hall resistances as a function of magnetic field.

6. Recent results

In the previous section, we have presented a selection of examples for implications of our
model that can be already found in the literature that give support for the results of our
modeling. This is done mainly just by referring to the literature without reproducing the results
in detail. Therefore, the reader is advised to refer to the cited literature for further details. In
this paragraph, we want to present most recent results by taking into account the many-particle
physics up to the Hartree–Fock level including disorder. The particular numerical Hartree–
Fock approximation as used here has been outlined in several publications, and therefore, the
reader is also advised to look up further details in the given Refs. [35–37]. Here, we will just
present the results for two examples.

6.1. Imaging of condensed quantum states

The first example deals with a many-particle system that contains only few electrons that get
localized in some model potential and which do not directly contribute to transport. This
system is considered as embedded in a conducting environment and the impact of the charge
distribution of such a localized state on the tunneling barrier of a nearby quantum point contact
(QPC) is taken into account. Such a QPC can be understood as a saddle potential that acts as
a charge detector for nearby charge distributions. In this case, the nodes of the network for
transport at the QPC are controlled by the local potentials based on Eq. (7). For demonstration,
an artificial confining potential ring (see Figure 10) has been created and filled with eight
electrons. These eight electrons are treated as a many-particle system using the Hartree–Fock
method and as shown in Figure 11 the charge density resembles a periodic structure along the
ring that can be understood also as a one-dimensional Wigner crystal. Here, just the main
results are presented and for further details please refer to Ref. [38]

The eight confined electrons have been treated as a many-particle system separately from the
conducting environment that has been represented by a semiclassical approach based on Eq.
(7) of the NNM. The presence of the charge distribution in the ring was taken into account by
using the recalculated Hartree potential of the charge distribution in the ring at the potential
saddles of the QPCs. The transmission of the QPCs, that have been modeled using the network
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model as described above, has been calculated, while a repulsive potential distortion was
superimposed at different locations in the ring area. The potential distortion represents the
moving tip of a so-called scanning gate microscope [39]. The effect of the tip on the condensed
quantum state affects the charge distribution, which affects the nearby saddle potentials that
finally modulates any tunneling current in the environment nearby the ring. If a current in the
environment of the ring passes those saddles, this current give a response if the SGM-tip hits
the charge maxima of the condensed state. If the total sample current is recorded as a function
of tip position, the response pattern creates something like an image of the charge distribution
of the quantum state.

Figure 10. Contour plot of the bare ring-shaped confinement potential with a diameter of about 100 nm and a depth of
about 15 meV as compared to the saddle energies of the QPCs.

Figure 11. Contour plot of the charge distribution obtained from the Hartree–Fock calculation in multiples of 1014cm-2

for a magnetic field of B = 2.5 Tesla. In this regime, the electron system appears fully spin polarized.
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Figure 12. SGM response pattern as a contour plot of the two-point conductance (in multiples of e2/h) of a nearby QPC
in the tunneling regime as a function of SGM tip position. Tip parameters: circular Gaussian shape of repulsive height
1 mV and half-width diameter of 20 nm.

Figure 12 shows the response pattern of the total current that passes the nearby potential
saddles and indeed this pattern images the charge distribution in the ring, even though the
electrons in the ring are excluded from transport.

It is important to note that this is just a demonstration of the mechanism that transfers
information from a decoupled localized many-particle quantum state to a current response of
a nearby electron system. A more realistic structure requires a much larger system size of up
to several microns length that so far is out of reach for our simulation capabilities. Therefore,
in our example, the space beyond the QPC’s that carries the environmental current can be
understood to be folded back to the same area of the localized states and thus is used twice as
some kind of second layer in the model, but assuming that this current bypasses the localized
states. The necessary extensions of the model are the subject of ongoing work which needs also
to acquire more computing power.

Anyway, this example demonstrates the basic mechanism that allows the SGM-method to
create images of charge distribution from condensed quantum states and serves at the same
time as an example for the application of the network model for transport where the driving
force is coulomb interaction that can be addressed by using Eq. (7) for controlling the nodes
of the network.

6.2. Quantum transport at large filling factors

The previous example for a system of just few electrons is far from a fully filled Landau level,
and the interaction with the environment was still just coulomb interaction that can be handled
with the network model on the basis of Eq. (7) as demonstrated. Now, we turn to the extreme
opposite regime of many electrons that fill up several LLs. That means that now we have of
the order of 500 electrons in the system instead of eight electrons that is addressed by the
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Hartree–Fock model. We use a random potential at an average carrier density of 2 × 1011 cm−2.
Because of the many-particle physics at higher-filled LLs, we have to expect that the usage of
the Hartree potential for the network will be insufficient because we expect a significant impact
from the exchange interaction. In this case, the better representation of the electronic system
for the NNM is therefore the local filling factor that is controlled by both the Hartree and the
exchange interaction. Once more we want to bring to attention that also Beenakker [34] had
found the local filling factor to be relevant for the transport behavior also in the fractional
quantum Hall effect, where many-particle physics plays the dominant role. We have compared
both methods and plotted the results on top of each other. Exchange-driven effects are lost if
using just Eq (7) that also means that enhanced spin splitting is lost because that results from
the exchange-driven enhancement of the g-factor. In order to get the right position of the peaks
in QHE, one has to introduce the exchange-enhanced g-factor into the NNM, while no such
adjustments are needed if using the filling factor version based on Eq. (8). By choice of using
Eq. (7) or (8) for the simulation and comparison with experiment, we have a tool to distinguish
between effects that are either strongly affected by exchange interaction or not. From our
simulations, we get the strong indication that exchange effects are dominating almost all
transport regimes that involve more than a single-filled LL even at moderate magnetic fields
between B = 1–2 Tesla. That has a significant impact on screening effects that turn out to be
strongly reduced as compared to semiclassical modeling as based on, for example, a Thomas-
Fermi approach. Investigations concerning the screening properties in context with many-
particle physics are in progress.

In the following, we present an example for the simulation of QHE measurements of a
disordered sample. The sample is of mesoscopic size of 600 nm length and 400 nm width. We
used two degrees of disorder and compare also the different calculation methods, the full
many-particle approach in combination with the filling factor version of the NNM as well as
the Hartree version.

Figure 13. Disorder potential for the case of strong disorder as used for the HF simulation of the bulk region. The col‐
ors represent the potential in mV as given in the color map.
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Figure 13 shows the bulk potential distribution for the case of strong disorder as used for the
Hartree–Fock calculation of the bulk region. Alternatively also a low disorder potential was
used that makes use of the same random distribution of Gaussian peaks in order to produce
the random potential, but the Gaussians are just half of amplitude and half of width that ends
up in a weaker disorder potential. In all cases, an average fixed carrier density of 2 × 1011 cm−2

has been used, that results in 480 electrons in the sample area, that get distributed.

The lateral carrier distribution obtained from the Hartree–Fock calculation is shown in Figures
14 and 15 which show the carrier distributions for spin 1 and spin 2 separately. This is
important since it turns out that the many-particle system avoids as good as possible to have
partly filled spin 1 and spin 2 LLs at the same time. The calculation was done at magnetic field
B = 2.3 Tesla that means a total filling factor close to ν = 3.5. This means automatically that the
higher second spin 1 LL remains partly filled, while the lower second spin 2 LL is fully
occupied. As can be seen in Figure 14, this average filling factor of ν = 1.5 of the spin 1 LLs is
achieved by creating areas that are close to filling factor ν = 2 in red and filling factor ν = 1 in
blue. That regions are separated by green stripes around filling factor ν = 1.5. An indicated
enhanced occurrence of filling factors close to of ν = 1.5 is the subject of ongoing investigations.
According to Eq. (8) these green-colored stripes will create stripes of good transmission of the
excitation potential in the network model and represent at the same time also the so-called
compressible stripes, while the other regions remain insulating. Looking at Figure 15 for the
spin 2 electrons, one can see that the dominating part of the sample area remains close to filling
factor ν = 2 which therefore do not contribute to transport that also will have only a weak
contribution to screening.

Figure 14. Lateral carrier distribution of the spin 1 electrons, mapped on the filling factor scale. The color mapping
ranges over three colors from blue to green to yellow that spans a filling range from about ν = 1 to ν = 2, which means
that green appears around filling factor ν = 1.5.
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Figure 15. Lateral carrier distribution of the spin 2 electrons, mapped on the filling factor scale. The color mapping
ranges over three colors from blue to green to yellow that spans a filling range from about ν = 1.5 to ν = 2.3, which
means that green appears close filling factor ν = 2.

The whole calculation has been repeated for different magnetic fields, and the network model
has been used to solve the lateral distribution of the excitation potential. For this purpose, the
non-equilibrium potential has been set to different fixed values at the supposed current
contacts on the left and right boundaries.

In Figure 16, there is shown the solution for the lateral distribution of the excitation potential
for the same situation like in Figure 14. By comparing with Figure 14, the transmitting stripes
that evolve in the network follow the green stripes. The color represents the potentials that
those stripes pick up at the boundaries they are coming from and they may mix up a locations
where channels of different excitation potentials meet. By comparing with Figure 13, one can
see that those stripes follow just roughly the contours of the disorder potential, but deviate
from the details. This is a clear indication that besides the Hartree contribution also the
exchange interaction is important. After finding the lateral distribution of the excitation
potential as shown in Figure 16, only directly at the current contacts along sides 1 and 2, the
currents are calculated by using Eq. (2) for each channel pair that is arriving at each point of
the metallic contacts. Voltage probes have been created at locations 3–6 at the boundaries by
just placing a metallic contact, but keeping the potential numerically floating, which means
that no current is extracted or injected at those locations. A Hall voltage can be obtained, for
example, by taking the difference of the excitation potentials between contacts 3 and 5 or 4 and
6. If dividing by the obtained sample current, we get the Hall resistance that is plotted as a
function of the magnetic field. The same can be done for the longitudinal resistance by taking
first the potential differences between contacts 3 and 4 or 5 and 6 and dividing by the total
current.
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Figure 16. Screenshot of the NNM showing the lateral distribution of the injection potential in the network model. The
high potential appears in red and is injected from the left, and the low potential appears in green and is injected from
the right. The chirality of the edge channels appears as clockwise. Expect the top spin1 LL, all lower LLs create narrow
channels at the network boundaries that experience no backscattering.

In this way, the simulation follows the same procedure like any real experiment that measures
voltages and currents and only then the values are translated into resistances, without
calculating a total resistance or conductance in terms of butting together elements of any kind
of equivalent circuit. In this way, we avoid to use any quantities that might be related to local
behavior in terms of conductance or local Ohm’s law for the electron system and thus conse‐
quently avoid any steps that could be used to attribute single electrons to particular locations
or areas of the sample. Constant colour of the stripes in Figure 16 indicates that there is no
current flow within those stripes because of the missing gradient of the chemical potential.
The current therefore has to be attributed to the mostly dark regions between stripes of
different potential. The current path within these regions remains unknown, like demanded
by a quantum system. If stripes of different potential meet the appearing potential gradient
(crossing over the yellow colour) between them indicates dissipation in this region. Sometimes
numerical noise can also lead to yellow colour in usually de-coupled (black) regions, which,
however, does not harm the total current balance.

Figure 17 shows the magnetic field-dependent two-point conductance for strong and low
disorder potential and also for the two different methods of incorporating the Hartree–Fock
solution into the NNM. Using just the Hartree part of screening of the random potential on
the basis of Eq. (7), we have the possibility of manually taking into account exchange-enhanced
spin splitting or not. When neglecting the enhanced spin splitting only the even conductance
plateaus appear (dashed blue). If introducing the enhanced g-factor manually all plateaus
appear correctly also in the Hartree version (red). However, the transition regime looks
different if looking at details. Especially, the ν = 5 plateau of the Hartree version (red color) is
almost wiped out because of a strong overlap of the spin split ν = 5 LL (see also below). The
strongest deviations in the transition regime are between the case of strong (pink color) and
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weak disorder (green color), which is not really surprising. For strong disorder, there appear
additional overshoots and dips, which result from the fact, that the strong disorder for this
small sample dimensions acts already as an inhomogeneity.

Figure 17. Total sample current mapped out as two-point conductance as a function of the magnetic field. The simula‐
tion was done for the structure shown in Figure 13 for the shown strong disorder potential and the not shown weaker
disorder potential. HF means that the full Hartree–Fock contribution has been used in the NNM by using the local
filling factor on the basis of Eq. (8); H means that the full Hartree–Fock carrier distribution has been obtained as well,
but from that only the Hartree potential has been recalculated in order to get its contribution to screening of the ran‐
dom potential and Eq. (7) has been used in the NNM. If using just the Hartree part of screening on the basis of Eq. (7),
the LLs have to be calculated separately on the basis of a semiclassical model directly in the NNM, which also requires
to use the g-factor the for spin splitting as a semi empirical parameter; the label geff means that a semi empirical en‐
hanced g-factor of geff = 14 has been used, while no geff means that enhanced spin splitting has been neglected.

If extracting potential differences between Hall voltage probes and calculating the Hall
resistances for the same cases as in Figure 17 as a function of magnetic field, we obtain Figure
18.

Figure 18. Hall resistance for the same parameters as described in Figure 17.

The Hall plateau values for all cases are of course the same, also the plateau transitions appear
almost at the same magnetic fields, just the transition itself is different for the different
calculations. An exception is again the non-spin split case (blue) where only the even Hall
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plateaus appear. The slight fluctuations in the transition regime comes from the fact that also
the Hartree part of the Hartree–Fock solution fluctuates with changing magnetic field, and this
is communicated to the NNM as well. When using the enhanced g-factor in the higher magnetic
field regime (red), the agreement between the two versions is quite good. Only at low magnetic
fields, there is again a strong deviation between the Hartree and the HF version because the
semiclassical representation of the LLs in the Hartree version of the NNM overestimates the
LL overlap between different spins. This results in a wiped out ν = 5 plateau of red curve. But
we know that the Hartree–Fock solution tries to avoid different partly filled spin LLs at the
same time, and therefore, the ν = 5 plateau of the HF versions is still well developed (green).
For the strong disordered and almost inhomogeneous sample, we get strong fluctuations and
over shoots in the plateau transitions (pink)

Figure 19. Longitudinal resistance versus magnetic field for the same cases as explained in context with Figure 17.

Figure 19 finally shows the longitudinal resistance for the different cases. The overall shape is
covered with strong magneto-resistance fluctuations for all cases, as one expects from QH
samples of mesoscopic size. The peak positions of the Hartree version with correctly set
enhanced g-factor (red) matches quite well the HF-version (green), again except at fields below
B = 2 Tesla. Here, the Hartree version (red) produces a strongly overlapping double peak that
results from the overlapping spin 1 and spin 2 levels of the third LL. Exchange interaction
counteracts this overlap, and therefore, there appear two separated sharp peaks for the HF
version (green), one at B = 1.5 Tesla that corresponds to ν = 5.5 and the other at 1.85 Tesla that
corresponds to ν = 4.5. For strong disorder, the Rxx peaks (pink) are almost missing in the field
range below 3 Tesla. That can be understood by the fact, that the strong disorder produces
already an inhomogeneity that can lead to the fact, that not all edge channels reach also the
voltage probes at the boundaries, as e.g. can be seen in Figure 16. This results in the fact that
any dissipation that is generated by the two inner stripes is not monitored by the contacts at
the boundaries, and therefore, the associated Rxx peaks are missing. The blue dashed curve
again represents the Hartree version without enhanced spin splitting, which means that the
Rxx peaks appear at odd filling factors ν = 5 and ν = 3, where both overlapping spin 1 and spin
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2 levels of LL 3 and LL2 are taken into account as half filled, which is not the case in the HF
solution because of the enhanced spin splitting.

7. Summary

Based on a fundamental discussion of the many-particle aspects of the electron system, we
have presented a modified way to look at the many-particle electron system in terms of a single-
particle picture that considers channels for current flow from a more general point of view.
While quantum channels like the edge channels in the QHE regime can be identified as
locations on the sample area where current exchange for transport experiments is possible,
one must not attribute any current flow exclusively to those channels like for classical wires;
instead, the whole electron system is understood to carry the sample current, while it is not
possible to track individual electrons through the electronic system. Instead of directly
addressing current flow, we describe the lateral transmission of the experimentally introduced
non-equilibrium electrochemical potentials between such channels on the bases a network
approach. This network is used to find a solution for the lateral distribution of the injected
non-equilibrium without needing to consider explicitly current flow or local conductances.
Conductances come into play only in context with experiments when extracting electrons just
directly at contacts by relating the applied non-equilibrium potentials and the resulting flow
of electrons through these contacts. Only the lateral distribution of the non-equilibrium
potentials is found by our network model on the basis of an iterative procedure, and currents
are only obtained as a post-processing step just directly at the current contacts where the
electrons are extracted like also in real experiments! This makes our transport model also
applicable for systems that forbid the way of thinking in terms of single electrons moving
through the electron system, like this is the case in many-particle systems. This has been
demonstrated by applying our transport model to the many-particle electron system for which
realistic results have been achieved by simulating quantum Hall measurements for disordered
samples of mesoscopic size. This makes our network model also applicable for the fractional
quantum hall regime, which is the topic of future work.
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Abstract

We describe in detail a general system–bath strategy for investigating the quantum
behavior of small systems interacting with complex environments. In this approach, a
simplified heat bath is used as a surrogate for realistic environments, and explicit, unitary
quantum simulations of the “universe” (the system plus the bath) are performed by means
of high-dimensional wave-packet techniques. In this chapter, we describe the underly‐
ing Hamiltonians and the related reduced dynamical descriptions, show how to recast
real-world problems into this form, introduce some of the methods currently used to deal
with high-dimensional quantum dynamics, and present the results of this strategy when
applied to numerous problems of physicochemical interest.

Keywords: System–bath dynamics, Multi-configuration time-dependent methods,
Generalized Langevin equation, Brownian motion, Effective modes

1. Introduction

Recent years have witnessed an ever growing interest in dynamical processes that occur
in  complex  environments,  for  example,  ground-  and  excited-state  molecular  reaction
dynamics in condensed phase, charge and excitation energy transfer in organic function‐
al  materials  and biomaterials,  and elementary processes  at  the  gas–solid interface  [1–6].
Their importance is hardly overemphasized, because of the key role they play in fields as
diverse as catalysis, optoelectronics, nanotechnology, biochemistry, and astrophysics, just
to mention a few.

The common structure of these problems—a relatively simple system that can be measured
and manipulated and that is coupled to an environment only partially under control—has long
been subjected to thorough theoretical investigation. Since Einstein’s [7] seminal work on

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Brownian motion, many important analytical results have been obtained regarding the
statistical description of the effect that a large medium—being it a surface or a solvent—has
on the dynamics of the small system of interest [8]. The environment, usually designated as
the “bath,” is seen to exert two different kinds of force, a friction, and a stochastic force. They
result, respectively, in dissipation and fluctuations in the system dynamics and represent two
opposite but intimately related effects that ultimately lead to the establishment of equilibrium.
This has been made apparent since Langevin formulated the first sound description of an open-
system dynamics in 1908, with his equation of motion (the Langevin Equation, LE) and its
Generalized version (GLE) [8–10].

These ideas have been extensively deepened in classical mechanics in the following years and
thoroughly validated in both model and realistic systems by several numerical experiments,
that is, explicit molecular dynamics (MD) simulations of a “universe” (the system plus the bath)
comprising a huge number of degrees of freedom [11].

In quantum dynamics, the situation is considerably more complicated. A brute-force ap‐
proach is out of reach because of a well-known exponential scaling problem; hence, much
of the research in this field focused on reduced dynamical descriptions and aimed at
obtaining reasonable master equations for the system density operator [12]. In these open-
system quantum dynamical approaches, the degrees of freedom of the environment are
traced out and the system undergoes a dissipative, non-unitary dynamics. These ap‐
proaches are exact in limiting cases only, since most often strong assumptions are need‐
ed to obtain manageable equations in a closed form. Among these, the Markov
approximation is often invoked (and an effective coarse graining of the dynamics per‐
formed) on the basis that the environment correlations last much less than the character‐
istic time of the system dynamics, a condition that not always holds in practice. Lifting
these constraints is possible, for instance, with the help of auxiliary density matrices, but
a price of an enormous increase of complexity.

An intermediate possibility between the impractical brute-force approach and the limited
reduced dynamics is the so-called system–bath approach, whereby one introduces a surrogate
for the environment and explicitly describes its degrees of freedom in the dynamics. In this
effective description, the bath is a collection of simple systems (e.g., harmonic oscillators [13–
15]) and evolves with a relatively simple dynamics. Hence, it is possible to exploit the progress
that has been made in the last 20 years or so in propagating high-dimensional wave packets
in time [16]. These wave-packet approaches make the unitary evolution of the universe (the
system plus the bath) computationally feasible for a large number of coordinates, in many cases
large enough to mimic true dissipative environments. The expectation values of interest can
then be extracted from the full dynamical evolution using the relevant system operators, and
thermal effects can be handled by sampling the mixed initial state of the universe.

In this chapter, we present the work done in the last few years in mapping a physical problem
of interest into a system–bath model—the so-called independent oscillator (IO) model—and
in solving such model with multi-configuration wave-packet approaches. The dissipative
processes investigated range from small amplitude, damped vibrations in model anharmonic
systems to “real-world” problems such as hydrogen atom sticking on graphene.
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The chapter is organized as follows: Firstly, we describe the IO model in the framework of
classical and quantum statistical mechanics, with a focus on its relationship to the generalized
Langevin equation and on the role played by the so-called spectral density (SD) of the
environmental coupling J0(ω) [13,14,17–19]. In addition to the well-established results, we
include some recent developments that improved the numerical appeal of the model [20–28].
Secondly, we address the problem of mapping a complex (realistic) dynamics into an IO model
and deriving the appropriate SD [29–31]. We focus in particular on dynamical approaches that
suit well to the current practice of accessing dynamical information using on-the-fly simula‐
tions, thereby bypassing the need of computing and fitting accurate model potentials. The third
part of this contribution deals with the problem of the dynamical evolution of a small system
coupled to its IO bath. We describe the now standard and numerically exact multi-configura‐
tional time-dependent Hartree (MCTDH) approach [16,32,33], as well as related approximate
approaches which better suit to the description of a bath in the IO form. In particular, we
discuss in some detail the local coherent-state approximation (LCSA), where the bath evolution
is described by a number of Hartree products of pseudo-classically evolving coherent states
[34–36]. All these approaches are variational and, as such, they share a number of highly
desirable features which will be described in some detail. Finally, we present the results of
some numerical investigations on both model and realistic systems. Issues, such as vibrational
relaxation, decoherence, and scattering, have been extensively investigated in model systems
(a harmonic or a Morse oscillator coupled to an oscillator bath) [27,29,34–39] and will be
summarized in the following. Work on “real-world” problems is still at its infancy, but already
offers some notable examples. For instance, we have recently settled a long-standing issue
concerning chemisorption of hydrogen atoms on graphene and obtained the first fully
quantum and numerically converged results for the probability that the atoms stick on the
surface [40,41]. We describe these first exciting results and further provide an outlook of the
application of our strategy to other challenging physicochemical problems.

2. Independent oscillator models

The IO Hamiltonian is a popular and extremely powerful tool to study the dynamics of an
open system in a quantum setting [13–15]. Here, we discuss its connection with the generalized
Langevin equation, emphasizing the role played by the SD in the mapping between the two
[18,19]. Later, we introduce an effective mode transformation that casts the IO bath into a
linear-chain form which suits well to truncation schemes [20–22,25,26,28].

2.1. Generalized Langevin equation and SD

The generalized Langevin equation describes the dynamics of a Brownian particle in both the
classical and the quantum (Heisenberg) setting. It is a stochastic equation for a system degree
of freedom s of mass m subjected to a deterministic potentialV, a random Gaussian force ξ and
a friction term, determined by a memory kernel γ(t),
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(1)

Causality of the memory kernel (γ(t) = 0 for t < 0) has important implications for the analytic

properties of its Fourier transform γ
~
(ω)= ∫γ(t)eiωtdt when continued to the upper-half complex

ω-plane. The SD of the environmental coupling, J0(ω), is defined with the help of the real part
of γ̃(ω)

(2)

and fully determines the memory kernel by virtue of the Kramers–Kronig relations, namely
through

(3)

where Θ(t) is the Heaviside step function. It further determines the stochastic process ξ(t),
provided is Gaussian, by virtue of a fluctuation–dissipation (FD) theorem of the second kind,
1

(4)

here written for a quantum environment (the classical result follows in the limit of high
temperatures, β = (kBT)− 1 → 0 and takes the form ξ(t)ξ(0) = Θ(t)mγ(t)/β). Hence, all the envi‐
ronment-related terms included in the GLE are uniquely defined by the SD.

Once J0(ω) is known, it can be used to construct an IO Hamiltonian2

(5)

that can be made (quasi) equivalent to the GLE above by appropriately choosing the harmonic
oscillator (HO) frequencies and the coupling coefficients. In Eq. (5), the system degree of
freedom s is coupled to a collection of harmonic oscillators (xk, pk) of mass3 mk and frequency
ωk. The system–bath coupling is a linear function of the bath coordinates, whereas its depend‐
ence on the system coordinate is here specified through the function f(s), which typically

1 Here and in the following  … denotes an average over the canonical equilibrium.
2 This is also known as Caldeira–Leggett Hamiltonian, after the seminal work by Caldeira and Leggett on the effects of
dissipation on quantum tunneling [17].
3 In the following we will adopt, without loosing generality, the same mass for all the oscillators, i.e. mk≡µ for all k, 
where µ is a numerically convenient value.
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complicates the GLE (by introducing state-dependent friction) but is often necessary on
physical grounds. The simple linear coupling which makes Eq. (5) equivalent to the standard
GLE of Eq. (1) is appropriate to cases where only the near equilibrium configurations of the
system are explored (s ≈ 0), but is clearly limited because it describes a coupling which steadily
increases when moving the system out of its equilibrium position. Thus, for instance, in
previous scattering calculations using a model Morse potential, a coupling function with a
finite limit for s → + ∞ [27,36],

(6)

(but yet such that f(s) ≈ s for s ≈ 0 was used to correctly describe the asymptotically free system.

Notice that in Eq. (5), a system potential counter-term f(s)2 appears which balances the
distortion induced by the system–bath coupling and ensures the thermodynamic stability of
the Hamiltonian [14]. Indeed, in the form given in Eq. (5), the bath adds only quadratic terms
(the sum on the r.h.s.) to the system Hamiltonian, thereby guaranteeing a lower bound to the
energy spectrum for any reasonable system potential.

The equivalence between the two dynamical formulations [Eqs. (1) vs. (5)] is established when
the coupling coefficients sample the SD J0(ω) of the problem, for example, for evenly spaced
bath frequencies ωk = kΔω, when the coefficients are set according to

(7)

It rigorously holds for a finite time only, determined by the size of the bath in Eq. (5). For
longer times, Eq. (1) keeps on describing a dissipative dynamics, whereas the Hamiltonian
dynamics of Eq. (5) displays the consequences of discretely sampling the bath frequencies.
More precisely, the equivalence is guaranteed up to the Poincaré recurrence time tP = 2π ∕ Δω
of the finite system, which thus needs to be set larger than the any time scale of interest. This
has to be done by choosing the appropriate discretization Δω, compatibly with a reasonable
number of oscillators N and a high frequency cutoff ωc = NΔω of the bath. The latter
determines the smaller time that can be resolvedtc = 2π ∕ ωc; higher frequencies, if present,
can always be absorbed in a mass renormalization term provided we are not interested in
times smaller than tc.

Unlike the starting GLE, the IO Hamiltonian of Eq. (5) can be quantized by applying standard
quantization rules. Furthermore, the relatively trivial dynamics followed by the harmonic
oscillators of the bath makes the use of standard time-dependent wave-packet approaches to
the dynamics possible. As long as a system–bath Hamiltonian can be effectively mapped into
a GLE, this represents a powerful and general methodology to tackle an open-system quantum
dynamical problem.
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2.2. Chain representation of the bath

Recent work has shown that the IO Hamiltonian of Eq. (5) can be expressed in an alternative
representation which is particularly suited to truncation schemes or hierarchical descriptions
of the dynamics [20,23,24,27,42]. The idea is incredibly simple and reads as follows. Eq. (5)
naturally introduces a collective or “effective” mode X1 =∑k =1

N ck xk / D0 (here D0
2 =∑k =1

N ck
2 is just

a kind of normalization constant) that allows one to write the interaction term as

(8)

The definition of this effective mode fixes the first “column” of an orthogonal transformation
of the original bath coordinates into a new set of coordinates, otherwise arbitrary. The rest of
the transformation matrix can be fixed by requiring that the “residual bath” is in normal form.
In this way, Eq. (5) becomes an equivalent IO Hamiltonian for the s plus X1 degree of freedom,
coupled to a bath of N − 1 oscillators. The coupling only occurs through X1, and allows one to
define a new function J1(ω), that is, the SD felt by the mode X1 as a consequence of its interaction
with the residual bath. In the continuum limit, this procedure can be indefinitely iterated to
define a sequence of effective modes X1, X2 … XM … coupled in a linear chain form and a
corresponding sequence of SDs J1(ω), J2(ω) … JM(ω) … which describe the residual bath “felt”
by each mode. The sequence of SDs is determined by a simple recurrence relation which can
be started with J0(ω) [23,24], that is, Jn + 1(ω) only requires the previous SD Jn(ω) and two of its
functionals

(9)

Here,
+(ω)
Wn

 is the limit on the real axis (from above) of the “Cauchy transform” of Jn(ω),

(10)

and

(11)

determines the coupling coefficients between the nth and the (n+1)th effective modes. The linear
chain form of the Hamiltonian further requires the frequency Ωn + 1 of the (n+1)th effective mode,
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and reads, for mass-scaled coordinates, as

(13)

Here, ΔV(s) is the potential counter-term

(14)

And {(Xn, Pn)}n = 1 … ∞ is the set of effective modes and their conjugated momenta. Equivalently,
Eq. (13) can be rearranged to explicitly display its thermodynamic stability [29]

(15)

by introducing new coordinates, X ′ 0 = s and X ′n = Xn / μ for n=1,2.., the bare effective mode
frequencies ωn

2 = Ωn
2 − δΩn

2 (where δΩn
2 is defined analogously to δΩ0

2 above, Eq. (14), but in
terms of Jn and µ) and the coefficients β1 = D0 / μω1

2 and βn = Dn − 1/ωn
2 for n > 1.

One interesting issue concerning Eq. (13) is whether a limiting residual SD exists and, in that
case, which forms takes lim

n
Jn. It can be readily shown [23] that, if the limit exists, it is the quasi-

Ohmic SD given by the Rubin dissipative model. Numerical tests have further shown that this
convergence is fast enough that inclusion of a relatively small number of effective modes in
an enlarged system makes the resulting dynamics effectively Markovian. Thus, the chain
transformation provides a powerful tool for describing non-Markovian phenomena by means
of Markovian master equations (applied to enlarged systems).4 Further analytical work
rigorously proved the convergence conditions of the sequence of spectral densities and
established the connection between the chain construction and the moment problem, the
theory of orthogonal polynomials, and the Padé approximants [21].

One further issue on the effective mode construction is of much practical interest and concerns
its role in defining approximate representations of the bath [24]. In fact, the construction of the
linear chain amounts to “unroll” the memory kernel in time—any excitation initially localized
in the system necessarily moves sequentially along the chain starting from its end attached to
the system. This is contrast to what happens with Eq. (5), where the coupling pattern is
appropriate for a frequency resolution of the kernel. As a consequence, truncated or Markov-
closed chains with n effective modes can be shown to exactly reproduce γ(t) to the fourth order

4 Strictly speaking such “Markovian reduction” rigorously holds in classical mechanics only; in a quantum setting the
very definition of Markovian dynamics is still debated. Thus, one should better refer here to an “Ohmic embedding”.
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in time, up to an irrelevant constant of order γ(0)/n [24]. Apart from its conceptual significance,
this property proves to be extremely useful for numerical simulations too, since it allows one
to single out those bath modes which are most important for the system dynamics. In this
representation, in fact, one can easily identify “primary modes” that need to be treated at a
high correlation level and “secondary modes” that can be left weakly correlated or even
uncorrelated. As it will be shown in the following with some numerical examples, this simple
prescription offers the opportunity of tackling long-time issues in explicit dynamical studies
of system–bath problems [27].

3. Mapping of a complex system to an IO model

The possibility of using the IO Hamiltonian for simulations of “real-world” systems relies on
the existence of a general strategy to derive a GLE from a given microscopic model. In the past,
the fundamental problem of mapping in an exact way a reduced dynamics into a GLE was
addressed by many authors,5 but seldom checked in realistic physicochemical problems
[43,44]. A substantial contribution in this direction has been recently given by Ivanov and co-
workers [30,31], who proposed a classical MD-based methodology that makes use of the
combined information of two correlation functions to extract the SD of the bath, and validated
it in realistic molecular problems. Their technique is similar in spirit to the one that will be
described in the following and that we independently devised at the same time. Though of
more limited applicability, the latter has the advantage on relying only on simple dynamical
information and does not require any a priori knowledge of the system potential. It thus suits
well to an ab initio MD determination of the environmental forces. This inversion procedure
(from the dynamics to the SD that generated it) is briefly described in this section, along with
an account of its numerical performance [29]. In concluding this section, we further address
the problem of going beyond the simple IO model in order to capture anharmonic effects of
the environment [29,39].

3.1. Inversion of classical dynamics

When the Brownian motion along s is limited to near-equilibrium configurations, the bare

system potential is harmonic, V(s) = 1
2 mω0

2s2, and the SD determines not only the correlation
function of the environmental fluctuations [see Eq. (4)], but also the frequency-dependent
autocorrelation function of the position,

(16)

namely through

5 The problem is essentially classical in nature, since the statistical properties of the bath (when subsumed in the spectral
density J0(ω) are the same for both the classical and quantum GLE.
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that follows from Eq. (1) by harmonic analysis. This equation relates the reduced dynamics of
the system to its coupling with the environment and can be “inverted” to give an analytic
expression for J0(ω) in terms ofC̃(ω). This can be accomplished by introducing the retarded

correlation function 
+(t)=Θ(t)C(t)

C  and by exploiting the analytic properties of its Fourier

transform (see Ref. [29] for the detailed derivation). The resulting formula for J0(ω) is as follows

(18)

Where 
→0+Γ(ω + i)
+(ω)= lim

Γ
 is the limit on the real axis from the u.h.p. of the function,

(19)

that is, the Cauchy transform of the function f(ω)=ωC̃(ω) / 2. Here, the displacement autocor‐
relation function C(t)(or, equivalently, the velocity autocorrelation) (t)(0) = − d2C(t)/dt2 is readily
available from equilibrium MD and is the only dynamical information required.

3.2. Numerical tests

In Ref. [29], we tested the inversion procedure of Eq. (18) on some model systems to elucidate
how its effectiveness is affected by the presence of an harmonicities and/or by a “Debye” cutoff
frequency in the environment. A number of IO Hamiltonians of the kind of Eq. (5) and its
variants were used to generate the dynamics, with a reasonable choice of the parameters that
mimicked typical molecular problems. Some key alternatives were considered (e.g., a harmonic
vs. an anharmonic system oscillator, Ohmic vs. non-Ohmic baths, small vs. large oscillator
frequency [compared to the Debye cutoff], etc.), and the position correlation function C(t) was
computed with MD and then inverted according to Eq. (18). Some results of these numerical
tests are displayed in Figure 1.

The main conclusions of such numerical analysis can be summarized as follows. When the
system is a harmonic oscillator, the transformation perfectly recovers the original SD up to the
bath Debye frequency ωD (1000 cm− 1 in our numerical tests). For higher frequencies, the
spectrum is not identically zero but rather shows an increasing baseline due to the numerical
implementation of the Cauchy transform6 of Eq. (19). Further, when the system frequency ωs

lies above ωD, the SD features a single Lorentzian peak, which stands out from the background
and is robust against variations of the bath and/or the temperature. This is the numerical
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representation of a Dirac-δ contribution7 that follows from Eq. (18) when ωs lies outside the
support of J0 (ω). Anharmonicity has two strong effects in this case: on the one hand, it causes
the appearance of higher harmonics at a frequency 2ωs; on the other hand, it induces a
broadening of the Dirac-δ signal that is about twice as large as the spectral width of the bath
(i.e., the appearance of combination frequencies ωs ± ωB). Importantly, the temperature has a
dramatic effect on the computed SD: At “high” temperature, and in contrast to the HO case,
the remnant of the δ-peak undergoes substantial broadening, in striking contrast with the
expectation of a temperature-independent SD.

Figure 1. The spectral densities (atomic units) obtained by “inverting” the dynamical information of the position corre‐
lation function according to Eq. (18) (color coded as in that figure) are compared to the original non-Markovian SD
used to define the models (green lines). Results are shown for different temperature—50 and 300 K—and for different
choices of the system potential—harmonic and Morse—with an intrinsic frequency either above or below the Debye
frequency ωD of the bath. Dotted lines mark the frequencies of the system oscillators.

The presence of these features warns against blind application of the transformation of Eq. (18),
particularly when the system frequency is larger than ωD. The temperature-dependent
background in the SD at high frequencies is unphysical and reflects just the anharmonicity in
the system. However, provided such effect is clearly identified, no real problem arises in
modeling since the anharmonicity in the system potential can always be included in the IO
Hamiltonian by using the appropriate potential V(s).

3.3. Nonlinear extensions of the IO Hamiltonian

As mentioned in the previous section, system anharmonicity poses no real problem to
modeling, and only generates a spurious high-frequency coupling that can be minimized by
working at low enough temperature. In realistic situations, however, structured features in
the spectral region ω > ωD are expected quite generally also from the failure of the bilinear
coupling model and/or of the harmonic approximation of the bath oscillators. In both cases,
the apparent coupling at frequencies above the Debye bath cutoff does have a physical origin,

6 Numerical evaluation of Eq. (19) requires the introduction of a high-frequency cutoff. The problem arises when using
an “unbiased” cut-off frequency well above the spectral range of interest (ωc = 4000cm− 1 in the simulations) and can be
easily amended by setting ωc equal to the bath Debye frequency (if known).
7 A fictitious coupling to the bath appears here because numerically the autocorrelation function needs to be damped.
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and thus the question arises whether J0(ω) at such frequencies can be a surrogate for a more
complicated coupling model. This is a rather intricate issue related to the general problem of
whether a mapping of the system dynamics to a GLE exists and how it can be realized in
practice (see, e.g., Ref. [30] for a recent, in-depth analysis of this issue). In general, real
molecular oscillators are not harmonic and the system–bath coupling is not bilinear—
especially if highly excited vibrational states are being probed—two factors which are hard to
disentangle at finite temperature. In these situations, the present “dynamical” approach, when
considered in the low-T limit above, can only provide the small-amplitude expansion of the
coupling term and needs to be integrated with some empirical knowledge about the interaction
between the system and the environment that could guide the formulation of an extended IO
model.

In Eq. (5), our definition of IO Hamiltonian, we have already included a coupling which is not
linear with respect to the system coordinate. It involves a shape function f(s) that can be used
to modulate the strength of the coupling to the bath in the state space of the system, thereby
giving rise, as already mentioned, to state-dependent friction. Such extension seems to be a
necessary (and simple) modification to address realistic situations; for instance, if s is the height
of an adsorbate above a surface, the coupling should vanish for large s and exponentially
increase for smalls, as indeed occurs with Eq. (6).

As for the bath, the consideration of a nonlinear coupling poses more problems. In general, an
exponential interaction model seems to be appropriate in typical physicochemical situations,
where relaxation occurs as a consequence of close encounters between the molecular system
of interest and the atoms of the environment. One simple ansatz of this kind is the replacement
of f(s)∑ckxk in Eq. (5) with

(20)

Such coupling can be justified in the context of the linear-chain representation of the bath (see
Section 2.2) and follows from Eq. (15) upon replacing the first harmonic term of the series with
a Morse potential with the same frequency. Here, α− 1 is an empirical parameter that describes
the characteristic length of the interaction and, for consistency, should be of the order of the
atom dimensions. The thus-defined exponential model makes use of the spectral properties of
the proper bath only (i.e., for frequencies ω < ωD) to introduce multiphonon relaxing pathways
already at the lowest order in perturbation theory, as a simple calculation of the Fermi’s golden-
rule rate shows. It is further simple enough to be easily handled with the same numerical
methods to be described below and can thus be considered beyond the limits of applicability
of perturbation theory.

As a last possibility, there may be realistic situations in which the dynamics of the bath per se
shows strong anharmonic effects. For such purpose, in Ref. [39], a new IO Hamiltonian was
proposed in which a bath of Morse oscillators was nonlinearly coupled to the system, according
to
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(21)

where, as before, (s, ps) and (xk, pk) denote the coordinates and momenta of the system and of
the bath degrees of freedom, respectively. In Eq. (20), the parameters of the Morse potentials,
Dk and αk, can be specified by fixing the oscillator frequencies and ensuring a uniform number
of bound states Λ over the bath oscillators. Similarly, the coupling coefficients can be chosen
to sample a given SD according to Eq. (7).

The bath dynamics entailed by Eq. (21) can be highly nonlinear, especially for those low-
frequency oscillators which undergo large amplitude motion.8 In Ref. [39], this Hamiltonian
was used to show that the anharmonicity of the bath induces in fact nontrivial variations in
the (quantum) vibrational dynamics and in the corresponding relaxation rates.

4. Techniques for high-dimensional wave-packet dynamics

As is well known, the brute-force numerical solution of the Schrodinger equation rapidly runs
into troubles when increasing the system dimensions. This is clearly seen by a simple scaling
argument: With N degrees of freedom, if each of them requires on average a basis functions
(or grid points), the total number of vector components is aN and that of any operator (matrix)
is aN × aN. For a = 6 and double precision (complex) arithmetic, this means ∼ 102N byte for just
storing the vector representing the wave function, an incredibly large number for all but the
smallest N. Hence, it became clear soon that developing approximate methods was a necessity
for facing large-dimensional quantum problems, and much effort has been spent to this end
since the dawn of molecular quantum dynamics. The ideal method should be accurate enough
to provide reliable information on the dynamics but also sufficiently cheap to be used for
extensive sampling of “initial conditions.”

Clearly, one central point to address when devising a method that could fulfill the above
requirements is how to define approximate equations of motion. According to our experience,
the most general strategy relies on the use of a variational principle that, apart from being
physically transparent and mathematically sound, endows the resulting scheme with nontri‐
vial properties. These features have important consequences in practice (e.g., norm and energy
conservation issues are settled at the outset) and will be discussed in some detail in the next
subsection. In the rest of the section, a number of multi-configurational methods of increasing
simplicity (and decreasing computational costs) will be introduced, with a focus on the
dynamics at T = 0K where a wave-function suffices. Finite temperature situations can be
handled (at least in principle) by applying the same methodologies to the realizations used to
sample the mixed (initial) state of the whole system.

8 In principle, such model also describes energetic processes that irreversibly modify the environment, a phenomenon
that can be mimicked by the dissociation of one or more oscillators.
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4.1. Variational principle and Hamiltonian flows

The time-dependent variational principle is usually stated in terms of the Dirac–Frenkel
condition

(22)

where Ψ is the approximate solution sought for at a time t (the “trial” wave function which
lies in some specified variational manifold) and δΨ is an arbitrary variation (an arbitrary
vector tangent to the manifold in Ψ). The condition does lead to the Schrödinger equation
when the manifold extends over the whole Hilbert state of the system9 and admits a very
simple interpretation, which is the best seen when multiplying Eq. (22) by –i/ℏ. In fact, − i/
ℏHΨ is easily recognized to be the exact time derivative for the system state Ψ, and thus Eq.
(22) is seen to be a condition on the “error” vector (∂t - ∂t

exact )Ψ. As such, it has a trivial
geometrical solution: ∂tΨ  needs to be the projection of the exact time derivative onto the
tangent space, a recipe that guarantees that the state vector keeps on staying on the mani‐
fold during the time evolution.

The above analysis shows that the time-dependent variational principle provides a local-in-
time approximation to the system dynamics: It represents the best one can do in the short run,
for the given state at time t. It does not offer, though, any guarantee that the solution Ψ(t) at a
finite time t is “close enough” to the exact solution for some specified initial state Ψ(0), not
even that is the best one can do with the specified manifold at that time.10 However, the
expectation is that if the trial manifold is flexible enough to include much of the state space
spanned by the exact solution during its journey, the variational solution will remain a rather
good approximation at any time, and one can thus exploit the nice features associated with the
variational principle.

Energy and norm conservation follow immediately from Eq. (22) under quite mild condi‐
tions. For the energy, just notice that ∂tΨ is always an allowed variation (and assume H be
self-adjoint, of course). Norm conservation follows similarly when the manifold is scale-
invariant, since in that case, Ψ itself is an allowed variation. A much deeper result emerges
though when the Dirac–Frenkel condition is replaced by the (quasi) equivalent lowest action
principle11 δS = 0 and can be formulated as follows: Any variational quantum method, under
quite mild regularity conditions, can be recast in the form of a symplectomorphism on a
symplectic manifold [45]. Here, the relevant action functional is determined by the (real)
Lagrangian

9 In fact, this is the condicio sine qua non for the existence of a variational principle.
10 In fact, the best approximation would just be the point on the manifold that lies closest to the exact solution at time t
(whose identity may further depend on the adopted metrics).
11 This is the true variational principle, i.e. a stationarity condition of some cleverly designed functional (something
which Eq. (22) is not). However, the two formulations can be shown to be equivalent under quite mild conditions that
are usually satisfied in practice.
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(23)

We expand somehow on this issue in the following since it does not seem to be widely
appreciated, despite its deep significance and its potential practical utility. To this end, let us
first briefly introduce the concept of Hamiltonian flows and symplectic manifolds [46]. A
symplectic manifold is a differentiable manifold equipped with a closed, non-degenerate 2-form
ω. In a coordinate system xi, it can be written asω = ∑i,j >iωijdxidxj, where dxi are the fundamental
1-form—that is dxi(v) = vi for any tangent vector v in a given point x—and the product of
differentials is the so-called “wedge” product. Non-degeneracy means in practice that ωij is
non-singular everywhere in the manifold,12 and this allows one to set up a one-to-one map
between tangent and co-tangent vectors (1-form). That is, for a given 1-form α = ∑αidxi, there

exists an associated vector field Xα such that 
Xα, v
α(v)=ω

, and its flow, defined by the curves

x́ i = Xα
i. Then, given a smooth function H (which can be called a Hamiltonian) and its 1-form

dH, the flow induced by its associated vector field XH (what can be called a Hamiltonian flow)
conserves the function itself, dH(XH) = ω(XH, XH) = 0. Closedness (dω = 0 where d is the “exterior”
derivative) means that these properties can be “transported” over the manifold and guarantees
that the symplectic form ω itself is invariant under any Hamiltonian flow (formally L X H

ω =0,

LY being the Lie derivative along the vector field Y. This forms the basis for Liouville’s theorem).

With this premise in mind, we (smoothly) introduce a set of real variational parameters x,
forming a coordinate system in the sample space.13 In terms of this parametrization, the
Lagrangian reads as

(24)

Where H(x) = Ψ(x) ∨ H ∨ Ψ(x)/Ψ(x) ∨ Ψ(x) and Zi = iħ
2 Ψ | Ψ

( Ψ | ∂Ψ
∂ x i - ∂Ψ

∂ x i | Ψ ).The latter are

the components of a 1-form α = − ∑Zidxi that can be differentiated to give a closed 2-form,
ω = dα = ∑ωijdxidxj. Provided ωij = ∂Zi/∂xj − ∂Zj/∂xi is non-singular, such 2-form is non-degenerate
and thus represents a symplectic structure. In fact, the variational equations of motion take the
form

(25)

or, equivalently, for a generic tangent vector v,

12 This condition restricts the analysis to even dimensional manifolds.
13 That is, we set Ψ = Ψ(x), where x are, e.g., the real and the imaginary parts of a set of complex parameters specifying the
wave function. Though not necessarily finite in number or numerable, it is conceptually easier to think of a large but finite
number of parameters.
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Hence, if ω is a symplectic form, the “variational flow” is the Hamiltonian flow of the Hamil‐
tonian H(x), namely x́ = XH . Under such circumstances, the equations of motion can also be
written with the help of the Poisson brackets

(27)

which are defined by {f, g} = ω(Xg, Xf) for any two smooth functions f and g, or, equivalently,
by

(28)

(where ξij is the matrix inverse of ωij) when a coordinate system is introduced.

The importance of the symplectic structure thus described is hardly overemphasized. Apart
from its possible consequences on fundamental issues such as the emergence of classicality,
or the coexistence of quantum and classical worlds, it offers in practice the possibility of
introducing robust propagation schemes in solving the variational equations of motion. These
symplectic propagators would not only conserve energy (and norm) but also the whole
symplectic structure, a property that might be of great help when numerically investigating
the emergence of irreversibility in Hamiltonian systems like the ones described by Eq. (5).

4.2. MCTDH, G-MCDTH, LCSA, and related methods

In this section, we give a brief account of (wave packet) quantum dynamical methods that have
been applied in the past to system–bath problems of the kind discussed in this Chapter. The
presentation is necessarily limited and, following authors’ personal experience, focuses on the
so-called multi-configurational methods only. In these methods, the wave function is written
as a superposition of “Hartree products” of single-particle states (or single-particle functions,
spf’s), and both the coefficients of such superposition and the single-particle states (or some of
them) are variationally optimized. The accuracy, the numerical complexity and the target
problems of the method strongly depend on the choice of spf’s, that is, whether they are fully
flexible, constrained to a given functional form or frozen. As a result, several different methods
exist which stem from the same multi-configurational ansatz.

Among the various possibilities, the conceptually simplest method is the multi-configuration
time-dependent Hartree (MTDH), developed decades ago by Meyer et al. [32]. The ansatz is a
straightforward expansion of the wave function in terms of (orthonormal) single-particle
states,

(29)
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where the sum runs over the possible configurations labeled by the multi-index J = (j1,.. jN)and
|ϕj

(k )  for j = 1,.. Nk is a set of orthonormal states for the kth “particle.” Here the “particle” can
be either a single degree of freedom or a collection of modes, according to what is called a
“mode combination.” The corresponding variational manifold is obtained by varying the
complex amplitude coefficients of the superposition and the single-particle states, which are
assumed to be orthogonal to each other but otherwise fully flexible in their respective Hilbert
space. The orthogonality condition proves to be a key strength of the method, since it guar‐
antees that the configurations entering Eq. (29) are orthogonal to each other.

The equations of motion follow from the application of the Dirac–Frenkel condition to the
above MCDTH ansatz, under the orthonormality constraints on the spf’s which are typically
introduced by means of arbitrary Hermitian matrices g(k) (one for each mode) that fix the
evolution of the spf’s in the “occupied” space. The important equations of motion are for the
evolution of the spf’s in the “unoccupied” space and for the evolution of the amplitude
coefficients. Their derivation is straightforward, though lengthy, and the result can be
summarized as follows. The amplitude coefficients satisfy a kind of matrix form of the
Schrödinger equation in the basis of configurations

(30)

only corrected for the “gauge” terms arising from the orthonormality constraints. Here,
L = (l1,.. lF) is a multi-index analogous to J above, L and J are shorthands for the configurations,
jk is the kth index of J, and Jk(l) is the same multi-index J with l replacing jk. The orbital equations,
on the other hand, are mean-field like14

(31)

and involve the projection Pk onto the space spanned by the spf’s of the kth mode, the mean-
field operators Hlm

(k ) = Ψl
(k ) | H |Ψm

(k )  and the inverse of the density-matrices15 ρk,
(ρk )lm = Ψl

(k ) |Ψm
(k ) , here written in terms of hole wave functions, that is, |Ψm

(k ) =am
(k ) ∨Ψ , where

am
(k ) annihilates the state m of the kth mode. Details on the method and its numerical implemen‐

tation can be found in the literature [16,32,33].

Some general considerations are in order. The MCDTH method does not solve the exponential
scaling problem of quantum dynamics, but considerably alleviates it since replaces a poten‐
tially large number of (static) basis functions with a smaller set of “dynamically optimized”

14 This expression is generally written as an explicit equation for the orbitals, by adding the above mentioned projection
onto the occupied space of the spf velocity.
15 Strictly speaking, ρk is the transpose of the 1-particle density for the kth mode, in the spf’s basis.
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elements. As such, it is extremely flexible and allows a systematic search of the convergence
of the solution with respect to the length of the expansion of Eq. (29). In fact, provided large
enough computational resources are available (how large depends of course on the problema
at hand), the MCTDH solution can be made numerically exact.

A second issue concerns the kind of problems MCTDH may handle. The method is “general
purpose” and can tackle arbitrary problems, provided the interaction terms between modes
can be reasonably described as (sum of) products of terms involving one mode at a time. This
is due to the appearance of the mean-field operators above, whose evaluation requires
“tracing” over potentially many degrees of freedom. Apart from this, there exists no limitation
in the form of the system Hamiltonian and indeed, MCTDH has been applied with success to
a very large number of different problems. The application to system–bath problems to be
described below represents just one possible problem where the method applies; further
applications can be found in the original research papers and in the extensive review literature
[16]. Here, we just mention that a user-friendly, highly efficient, general MCDTH code which
takes arbitrary Hamiltonians as input is freely available upon request to the author [47].

A second class of multi-configurational methods is represented by the Gaussian-multi-
configuration time-dependent Hartree (G-MTDH) developed a while ago by Burghardt et al. [48].
It is still a general-purpose method that can handle different kinds of quantum dynamical
problems, and it is obtained from Eq. (22) by fully or partially replacing the flexible spf’s with
Gaussians. As a result, the equations of motion for the Gaussians become classical-like with
considerable saving of memory and computer time (in fact, one propagates the few parameters
needed to define the Gaussians), at the expense of introducing overlap matrix elements
between them.

Though the method has several variants depending on the number of Gaussians introduced,
it was originally formulated for system–bath-like problems, where one easily identifies
primary modes (to be described at the high, fully flexible level) and secondary, less important
modes that can be managed with moving Gaussians. In that case, the equations of motion for
the amplitude coefficients and for the fully flexible spf’s of the primary modes are similar to
those of the MCDTH above, with minor modifications only, whereas a new set of first-order
differential equations appear for the Gaussian parameters [48].

Along this line of thought, LCSA was specifically designed as a local coherent-state approxima‐
tion [34] to the dynamics of system–bath Hamiltonians of the general form

(32)

where Henv is an “environment” Hamiltonian (comprising the coupling with the system) which
is supposed to be local in system coordinate(s) s and approximately harmonic in the bath degrees
of freedom (..qk, pk..). In this case, the shaping of the wave function relies on the fact that (i) the
coupling to the bath is local in system coordinates, and (ii) the bath is approximately harmon‐
ic. Upon introducing a set of system discrete variable representation (DVR) states16 one expands
the wave function as
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(33)

where ξα is a DVR set for the subsystem coordinates, and Φα are the resulting local bath states
(one for each grid point α used to cover the relevant system configuration space). The latter
are then written as products of HO coherent states (CSs), that is,

(34)

and, as a result, the bath dynamics is described by a set of coupled, pseudo-classical trajectories
zα

k = zα
k (t), one for each bath degree of freedom k and system grid point α. The system dynamics,

on the other hand, is contained in the time evolution of the amplitude coefficients17 Cα.

Equations of motion can be derived from the Dirac–Frenkel condition, using Cα and zα
k  as

dynamical variables [34]. When using conventional phase factors for the CSs, they take the
following form. The “system equation” is a kind of Schrödinger–Langevin equation

(35)

in which the elements of the system DVR Hamiltonian are damped by the overlap between bath
states, Hαβ

damp = Hαβ
sys Zα ∨Zβ  . The local, effective potential, veff = vlmf + vgauge, contains a “local

mean-field” potential

(36)

(here, Hord
env is the environment Hamiltonian operator expressed in terms in ak

†, ak  and normally
ordered, that is, with all ak

†’s on the left of ak’s) and a gauge potential

(37)

16 These are highly localized objects in configuration space which underlie the use of any “grid”. See Refs. [49,50] for a
formal introduction.
17 Rigorously speaking, the system reduced density matrix ρ also requires the overlap between bath state, ραβ = CαCβ
Zβ ∨ Zα in the underlying DVR.

Research Advances in Quantum Dynamics182



(33)

where ξα is a DVR set for the subsystem coordinates, and Φα are the resulting local bath states
(one for each grid point α used to cover the relevant system configuration space). The latter
are then written as products of HO coherent states (CSs), that is,

(34)

and, as a result, the bath dynamics is described by a set of coupled, pseudo-classical trajectories
zα

k = zα
k (t), one for each bath degree of freedom k and system grid point α. The system dynamics,

on the other hand, is contained in the time evolution of the amplitude coefficients17 Cα.

Equations of motion can be derived from the Dirac–Frenkel condition, using Cα and zα
k  as

dynamical variables [34]. When using conventional phase factors for the CSs, they take the
following form. The “system equation” is a kind of Schrödinger–Langevin equation

(35)

in which the elements of the system DVR Hamiltonian are damped by the overlap between bath
states, Hαβ

damp = Hαβ
sys Zα ∨Zβ  . The local, effective potential, veff = vlmf + vgauge, contains a “local

mean-field” potential

(36)

(here, Hord
env is the environment Hamiltonian operator expressed in terms in ak

†, ak  and normally
ordered, that is, with all ak

†’s on the left of ak’s) and a gauge potential

(37)

16 These are highly localized objects in configuration space which underlie the use of any “grid”. See Refs. [49,50] for a
formal introduction.
17 Rigorously speaking, the system reduced density matrix ρ also requires the overlap between bath state, ραβ = CαCβ
Zβ ∨ Zα in the underlying DVR.

Research Advances in Quantum Dynamics182

which can be explicitly written down with the bath equations below. The bath equations are
pseudo-classical

(38)

and contain both a classical (local) force (− i/ℏCα times the second term on the r.h.s) and a
quantum one (− i/ℏCα times the first term on the r.h.s) coupling the CSs of the same degree of
freedom at different grid points. The latter is essential for a quantum, though approximate,
description of the bath dynamics. For a detailed derivation of the equations see Ref. [34], and
notice that, in general, [a, ford(a†, a)] = ∂ford(a†, a)/∂a†.

This concludes the description of the original LCSA method. Several variants are possible (e.g.,
replacing the DVR states with energy eigenstates or fully flexible system states) and can be
found in the original literature [35,36]. Also, the closely related CC-TDSCF method [49] in
which the CSs are replaced by fully flexible functions has been shown to provide essentially
the same results as LCSA [36], thereby showing the soundness of the CS approximation for
the (local) bath dynamics.

In fact, among the features of LCSA, one key strength of the method is that it reduces the bath
dynamics to classical-like evolution, with a number of trajectories that scales linearly with the
bath dimensions. This means that the method itself has a power-low scaling with such
dimensions, the exponent of this scaling depending (eventually) on the interaction between
bath modes. For bath modes coupled to the system only [as in Eq. (5)], linear scaling has been
observed and model simulations with tens of thousands of bath degrees of freedom performed
on modest computers. This good scaling is in common with mixed quantum-classical methods,
which, however, fail to correctly represent the system–bath correlations.

Coupled trajectories also arise in a number of closely related approaches, namely the coupled
coherent-state method of Shalashilin and Child [50,51] and the G-MCTDH method mentioned
above. The latter, in fact, is strongly connected with LCSA and reduces to it as a limiting case
(see Appendix B of Ref. [34]). The main difference between the two is that in LCSA all the
configurations are orthogonal to each other, as a consequence of the presence of a different
DVR state in each of them. This leads to considerable simplifications in the resulting equations,
at the price of a reduced accuracy.

Finally, one interesting property about the pseudo-classical description of the bath degrees of
freedom is that it suits well to induce dissipative dynamics into the total system. This can be
accomplished by adding a suitably designed friction coefficient η to the bath equations,
mimicking the presence of a secondary (infinite, memory-less) bath. More formally, it can be
shown that applying the LCSA approximation to a system+bath+secondary bath configuration,
a classical approximation to the secondary bath dynamics, and standard assumptions (Ohmic
bath in the continuum limit) a friction coefficient appears in the LCSA equations for the system
+bath degrees of freedom18 (see Appendix A of Ref. [34]). This possibility has been exploited,
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especially in conjunction with the need of removing numerical instabilities of the method
without altering the system dynamics.

5. Applications

Here, we present some numerical applications of the IO model, starting from simple simula‐
tions of a Brownian anharmonic oscillator—used as a testing ground for new dynamical
methodologies [34,36–38] and/or for different representation of the Hamiltonian [27]. The last
part of the contribution will be devoted to a “real-world” application, namely the hydrogen
atom dynamics on the graphene surface [40,41].

5.1. Model systems

We consider here a model Hamiltonian describing an anharmonic (Morse) oscillator coupled
to a heat bath. A typical problem considered in this context is the small amplitude, damped
motion of the oscillator. The initial state is taken in product form, with the bath in its ground
state (to mimic relaxation at T = 0K), and the system slightly displaced from its equilibrium
position.

Figure 2. The small amplitude relaxation problem described in the text, for an Ohmic bath with relaxation time γ
− 1 = 850, 200 fs (panels from left to right). The energy of the system is computed with standard LCSA (blue line), LCSA
coupled to a secondary bath with η− 1 = 12 fs (green), and eLCSA (red), and compared with the MCTDH benchmark
(black line).

This type of simulations was used in Ref. [34,36] to test the performances of different quantum
dynamical approximations (the LCSA and its energy-local version, eLCSA). In Figure 2, the
results of these techniques are shown along with benchmark MCTDH results, for different
Ohmic spectral densities sampled with a bath of 80 oscillators. A Markovian exponential decay
of the energy was found for all but the strongest coupling case, where some energy oscillations

18 The same applies to finite temperature cases where, as expected, both a friction and a fluctuating term appear in the
LCSA equations of each realization.
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are clearly evident. The graph illustrates the main problems of standard LCSA, an inherent
numerical instability related to saturation of the bath. These problems are solved in either its
“damped” version [34] or with eLCSA [36]. The good agreement between LCSA and MCTDH
is impressive, especially in light of the timing of the calculations (for LCSA only 2–3 min on a
standard PC).

Similarly, in Ref. [27], the small amplitude relaxation of the Morse oscillator was used to
illustrate the advantages of the chain transformation (Section 2.2). Here, MCTDH was used
and different degrees of correlation were introduced along the chain, namely a small number
of oscillators were described by a full, many particle expansion, whereas the rest of the chain
was treated with one spf per mode. In this way, we exploited the strengths of the linear-chain
representation of the bath to enlarge the physical time window of the simulation (i.e., to increase
the recurrence time) at a computational cost which scaled only linearly with the chain length
[27].

Some results for small amplitude relaxation with the bath in linear-chain form are reported in
Figure 3, for different structured SDs. The agreement with the benchmark is rather satisfactory
and, as expected, the minor discrepancies were removed by increasing the correlation level.
This is true both for the average system energy and for more detailed quantities like the
position correlation functions.

The Morse oscillator was also used to model a dissipative scattering event, one in which the
system is initially asymptotically free and moves toward the potential well where energy
exchange with the bath occurs. Typically, in the interaction region, the wave-packet splits into
two parts: One gets trapped in the well and fully relaxes on the long run, while the other returns
to the asymptotic region. The first fraction, possibly resolved over the collision energy of the
incoming wave packet, defines the “sticking” probability (having in minds problems where
the bath represents a surface and a projectile sticks to it).

Figure 3. Small amplitude motion for the two non-Ohmic models of Ref. [27]. Computed system energy is shown for
chain baths of increasing level of correlation, specified by Np, that is, the number of fully correlated effective modes of
the chain (red, blue, green lines for Np = 5, 10 and 15, respectively). Also shown for comparison the benchmark ob‐
tained with the bath in normal form, as in Eq. (5) (black line).
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Figure 4. Sticking probability as a function of the incident energy, for the Morse scattering problem described in the
main text. Left panel: Results for eLCSA (red circles) are compared to the MCTDH benchmark (black circles) for an
Ohmic model with γ− 1 = 1 ps. Right panel: The structured SD of Ref. [27] is adopted, and results are shown for baths in
chain form with three different correlation schemes of increasing Np, that is, the number of fully correlated chain oscil‐
lators (red, blue, green circles for Np = 5, 10 and 15, respectively). Black circles are benchmark results obtained with the
bath in normal form. Lines serve as a guide to the eye.

The sticking problem was considered as a test case for both LCSA and for the linear-chain
representation of the bath with MCTDH (Figure 3). Simulations with standard LCSA showed
that the numerical instabilities were too severe to extract meaningful sticking coefficients, even
if the energy dissipation was described quite accurately [35]. On the contrary, the energy-local
variant eLCSA gave stable results but only in semi-quantitative agreement with the bench‐
mark. A detailed analysis showed that this is due to an inadequate system–bath correlation in
the adopted ansatz, which is crucial for the energy transfer and hence the sticking process.
Excellent results, on the other hand, were obtained by applying MCTDH with a partially
correlated linear chain of oscillators [27]. Importantly, the results were shown to steadily and
quickly converge toward the benchmark when increasing the level of correlation.

5.2. Hydrogen atom dynamics on graphene

In the last decade, the activated dynamics of hydrogen sticking on graphitic/graphenic surfaces
has been one of the most studied gas–surface scattering problems. Despite the apparent
simplicity of the system, the presence of both dissipative and quantum features makes it a
challenging dynamical problem.

Recently, we have devised a rather elaborate system–bath model to describe hydrogen
chemisorption of graphene and used it in a fully quantum study of the sticking dynamics with
the MCDTH method. The model consists of an accurate description of the hydrogen atom and
its bonding carbon atom (a 4D system), which were then coupled to the graphene sheet
described by a phonon bath. It rests on the following, reasonable assumptions: (i) The energy
exchange that occurs between the system and the lattice for near equilibrium configurations
is representative of energy dissipation; (ii) relaxation proceeds through sequential energy
transfer from the hydrogen atom to the carbon atom; (iii) a mapping holds, at least approxi‐
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mately, which relates the classical Hamiltonian dynamics of the interesting C and H atoms to
a GLE description. On this basis, the following form was adopted for the Hamiltonian

(39)

Here, xH is the position of the H atom, zC the height of the binding C atom above the surface,
pH and pC the corresponding momenta, and Vs(xH, zC) an appropriate 4D system potential. The
frequencies ωk and couplings ck of the IO bath were chosen to sample the spectral density
Jc(ω)) that describes the coupling of the C atom to the rest of the lattice. The latter was obtained by
applying twice the inversion procedure (Section 3.1), using as only input the position corre‐
lation function CH(t) describing the equilibrium dynamics of the hydrogen atom [40].

The thus-obtained SD JC(ω) is shown in Figure 5 and presents a clear separation between the
low-frequency region (0–900 cm− 1) – associated with the “surface” stretching19—and the high-
frequency region of the C–H stretching. Details on how it was extracted and thoroughly
checked can be found in the original research paper [40].

Figure 5. The functionJc(ω)), that is, the spectral density “felt” by the carbon in the CH model of Eq. (39). The SD has
been obtained from the inversion procedure described in the text and used for the high-dimensional quantum dynam‐
ics calculations of Refs. [40,41].

Once the coupling of the C atom with its environment was introduced, the Hamiltonian model
of Eq. (39) could be used to investigate the hydrogen atom dynamics. We start here by
considering the relaxation problem of the C–H bond. In this case, the system was prepared in
an eigenstate of the Vs potential and allowed to relax because of the interaction with the bath
(initially in its ground state, to mimic a T = 0 K situation).

19 The “surface” stretching is one of the normal mode of the 4D system potential Vs(xH, zC). This eigen-mode lying at
~460 cm− 1 approximately corresponds to block oscillations of the C-H unit above the surface plane.
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Figure 6. Time evolution of the system energy for the lowest lying vibrational states of the CH potential, computed
with MCTDH and here labeled by the three appropriate quantum numbers (νs,CH, νs,surf, νb) where νs,CH is the C–H
stretching, νs,surf is the surface stretching, and νb is the doubly degenerate C–H bending. The panel on the left gives the
vibrational energy spectrum of the system. The dashed lines mark the recurrence time of the bath models adopted.

As is shown in Figure 5, relaxation from the surface stretching mode proceeds over a very
short time scale and is complete in a few tens of fs. Despite the fast relaxation dynamics
indicates a strong coupling between this coordinate and the bath, the energy decay shows
essentially a Markovian behavior, except for the slippage at short time which extends for a
considerable fraction of the relaxation window. This feature is related to the prepared initial
states and to the switching on of the coupling term, which actually causes a slight increase of
the system energy. The opposite behavior, on the other hand, is seen in the relaxation of the
C–H stretching mode that takes place over a picosecond scale and seems to be complete on a
time scale much larger than the 3.0 ps limit imposed by the recurrence time of our bath
discretization. The resulting relaxation rate (τ ∼ 5.0 ps) is determined only by the background
around the main peak in the SD. Its magnitude is (maybe incidentally) very close to the result
obtained by Sakong and Kratzer [52], who applied perturbation theory from first principles and
found τ = 5.2 ps.

Next, we consider the quantum simulations of the collinear sticking dynamics [41], that is, the
process in which a gas-phase hydrogen atom colliding at normal incidence above a carbon
atom exchanges energy with the surface and gets trapped in the chemisorption well. We used
the MCTDH method once again and, in addition, classical and quasi-classical methods to single
out quantum effects in the results (Figure 7).
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Figure 7. Sticking probability as a function of the collision energy as obtained from the MCTDH calculations with the
CH system–bath model described in the main text (green curve). Also shown for comparison the classical sticking
curves at T = 50 and 300 K (solid and dashed black lines, respectively) and the quasi-classical results (red line), ob‐
tained with the same IO model.

Before discussing the quantum dynamical results, it is instructive to first focus on some
classical aspects of the sticking process. In Figure 7, the classical results are reported for two
different surface temperatures, T =50 and 300 K. At low temperature, the sticking probability
is negligibly small below the (static) barrier energy of ∼ 0.24 eV, whereas above the barrier it
reaches a saturation value Ps ≈ 1.0 in a relatively narrow energy range, and decreases afterward.
The detail analysis of the dynamical process [41] shows that in the below-barrier energy regime
sticking is only determined by the probability that the projectile overcomes the barrier, since
in the interaction region, the atom easily dissipates the (small) amount of energy required to
get trapped in the chemisorption well. Above the barrier, energy transfer to the surface
represents the limiting factor to sticking: Only if a large amount of energy can be transferred
to the bath, the projectile is prevented to recross the barrier and to return to the gas phase. As
a consequence, a simple, impulsive model of the dynamics describes the results rather well [41].

The quantum results differ from the classical ones in the whole energy range considered. While
quantum effects (tunneling) can be invoked in the low-energy regime, above saturation the
discrepancy is necessarily due to the quantum nature of the low-temperature surface which,
in this T = 0 K limit, shows pronounced zero-point energy effects on the projectile dynamics.
As a consequence, quasi-classical simulations show a rather good agreement with the quantum
results, apart from the threshold region where tunneling through the barrier dominates. A
logarithmic plot of the curves in this energy region (Figure 7) shows though that the effect of
tunneling is moderate (less than one order of magnitude), in contrast with the effect of the
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lattice quantum fluctuations (up two orders of magnitudes). Furthermore, it has been shown
that the quantum results are well described by the above-mentioned impulsive model of the
dynamics, provided it is extended in order to account for the lattice quantum fluctuations and
it is applied at energies not too small compared to the barrier height [41].
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Abstract

A solution to the time‐dependent Schrödinger equation is  required in a variety of
problems in physics and chemistry. In this chapter, recent developments of numerical
and theoretical techniques for quantum wave packet methods efficiently describe the
dynamics of molecular dynamics, and electronic dynamics induced by ultrashort laser
pulses in atoms and molecules will be reviewed, particularly on the development of
grid methods and time‐propagation or  pseudo‐time evolution methods developed
recently. Applications of the quantum wave packet for studying the reactive resonan‐
ces in F + H2/HD and O + O2 reaction, dissociative chemisorption of water on transition‐
metal  surfaces,  state‐to‐state  reaction  dynamics,  state‐to‐state  tetra‐atomic  reaction
dynamics using transition wave packet method and reactant coordinate method, and
electronic dynamics in H2

+ and H2 molecules will be presented.

Keywords: wave packet method, molecular and electronic dynamics, grid methods,
time propagators, molecular dynamics on surface

1. Introduction

Accurate and efficient solution to the Schrödinger equation is important in the fields of atomic
physics, molecular physics, and chemical dynamics, which include the dynamics of atoms and
molecules in time‐dependent electromagnetic fields, a variety of atomic and/or molecular
collision problems, molecular photodissociation, molecular dynamics on a surface, and in
describing the behavior of materials subjected to internal and external forces, and the produc‐
tion of solitons and quantum vortices in Bose‐Einstein condensates. In many situations, especially
at the nanoscale level, the evolution of the physical system occurs over multiple length and
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timescales, and a computationally efficient approach is a necessity to make progress. Theoret‐
ical modeling of all of these phenomena is important to obtain a fundamental understanding of
atomic processes at the nanoscale level and to provide a scientific base for the design and
development of nanostructured materials and for the optimal control over a chemical reaction.

The numerical solution of the time‐dependent (TD) Schrödinger equation relies heavily on the
discretization of the variables (r, t) in coordinate space, or named as grid method [1–4]. The
usage of numerical grid methods, which have numerically spectral convergence, has become
the most important tools to solve the Schrödinger equation and has been well developed in
the past decades because the grid methods are convenient for evolving the TD Schrödinger
equation with an initial value with iterative approaches. The early attempts to demonstrate
the computational viability of various grid methods for molecular dynamics have been largely
superseded by applications to specific problems and deeper research into more sophisticated
molecular systems. The grid methods, however, for efficiently solving the electronic Schrö‐
dinger equation are under active development currently, mainly due to the Coulomb‐attractive
and repulsive singularities, which are quite different from the potential energy surface (PES)
experienced by the nuclei in molecular dynamics calculations.

Once a grid method has been chosen, a suitable iterative method, or an evolving method for
the initial wave function, must be determined accordingly. The efficiency of the evolving
methods of the Schrödinger equation with time‐independent (TID) or TD Hamiltonian is
crucial for computer modeling of the quantum dynamics. They have been well developed
before 1990; among them, the most famous two are the Chebyshev polynomial expansion with
a TID Hamiltonian and split operator with a TD or TID Hamiltonian [5,6]. Recently, there is
particular interest in developing efficient and accurate propagators with a TD Hamiltonian.

An efficient quantum dynamics code comes from an optimal combination of the time propa‐
gator and the spatial grid method. Especially, recent rapid developments in hardware
capabilities, as exemplified by the Intel's many integrated cores, Nvidia graphics processing
unit cards, have added another dimension to increasing the number of floating‐point opera‐
tions per second that can be executed.

In the final of this part, we would like to note that, in the past, usually we would like to state
that the solutions of the Schrödinger equation with the TID method, that is, matrix diagonal‐
ization methods, are much more computer consuming than the solutions with the TD method,
that is, iterative methods for an initial value problem. Along with the development of the
numerical method, such as the filter method or spectral transform method, this is true only
conditionally [4,7,8]. Especially, with the intention of the real Chebyshev wave packet method,
there is no distinction between the TID and TD method anymore [4].

In this work, the spatial grid methods and time propagators to solve the Schrödinger equation
with TD and TID Hamiltonian will be reviewed, and some of their applications, that is,
describing the resonances and isotope effects in molecular reaction dynamics, molecular
dynamics on surface, and electronic dynamics in atoms and molecules induced by ultrashort
laser pulses, will be presented.
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2. The Schrödinger equation

The time‐dependent Schrödinger equation usually can be written as

ˆ ˆ ˆ( )i H T V
t
¶
Y = Y = + Y

¶

and for the dynamics of a molecule, the Hamiltonian and wave function are functions of R and
r, where r is a collection of the coordinates of electrons and R is a collection of the coordinates
of nuclei. In the case where we are interested in the dynamics of nuclei, usually, first the
electronic structure theory is applied to construct the potential energy surface (PES) using the
Born‐Oppenheimer approximation, then the coordinate r disappears in the equation and we
can conveniently carry out molecular dynamics simulations. In the case where we are inter‐
ested in the electronic dynamics processes, especially which are induced by ultrashort laser
pulses, the coordinate r has to be considered explicitly, and usually the coordinate R is fixed
since the movement of the nuclei is much more slow.

In any case, in a modern solution to the TD Schrödinger equation, the spatial coordinates of
the Hamiltonian have to be discretized to facilitate the wave function propagation, where
iterative evaluations of the action of Hamiltonian operator on the wave function are required.
Sometimes, the time variable also requires discretization; thus, the wave function propagation
is accomplished by a series of advancing the wave function from t  to t + Δt , where Δt  is the
time interval or time step. In the following, recent developments concerning these two aspects
will be briefly reviewed. The author notes that the selected contents purely come from personal
interest and expresses his apologies to the authors whose intelligent works are not included
here.

3. The spatial discretization methods

Discretization of the spatial coordinates is very important in an efficient and accurate quantum
dynamics calculation. For a special problem, a careful designed grid method would lead to
substantial decrease of the computational effort. Basically, there are three approaches to the
discretization of the spatial coordinates of the Hamiltonian: (1) local methods, such as the finite
difference methods; (2) global methods, which includes all of the spectral methods and the
corresponding grid methods; and (3) spectral element methods. Each has its advantages and
limitations.

The local method usually applies with low‐order finite difference method and is simple to use,
thus leading to very sparse Hamiltonian matrix. However, they usually have limited accuracy
since they converge with both the number of the grid points and the spacing of the grid points.
When boundary region is important in the model, we need to impose the boundary conditions
carefully, which results in an asymmetric Hamiltonian matrix, and unphysical states may arise.
The grid points in finite difference calculations connect with each other only “locally,” that is,
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connect with the nearby grid points; thus, parallel algorithm can be efficiently applied with
MPI.

On the contrary, the global methods usually are derived based on the classical orthogonal
polynomial. The grid point connects with all of the other points, necessarily or unnecessarily,
which leads to the dense Hamiltonian matrix. However, the global method usually has spectral
convergence, and results of machinery accuracy can be obtained. Due to limited accuracy of
finite element method, spectral element method is much more popular in a quantum molecular
and atomic dynamics calculation [9–11]. The grid points in an element of the spectral element
are determined by the Lobatto‐Chebyshev or Lobatto‐Legendre quadrature. To set up the
connection between different elements, many proposals have been put forward. The spectral
element usually leads to numerical accuracy between the spectral method and low‐order finite
difference method, and results in Hamiltonian matrix sparser than that using the global
method. Currently, the spectral element method has popular applications in solving electronic
Schrödinger equation induced by ultrashort laser pulses. However, due to the denser grid
points around both ends of each element, the spectral range of the Hamiltonian matrix usually
is necessarily large; especially, high‐order Lagrange polynomials are applied in each element
for obtaining results of high accuracy. This unnecessary huge spectral range results in much
difficulty in searching for an efficient matched time propagator.

Besides these three spatial discretization methods, we also have higher order finite difference
method, spectral difference method, and the distributed approximation functional (DAF)
method [12–16]. They usually exhibit spectral convergence, exactly same as the global spectral
methods. However, they connect only with the nearby “necessary” grid points, thus leading
to denser Hamiltonian matrix than that with low‐order finite difference method, but sparser
Hamiltonian matrix than that with the global methods. The grid points distribute evenly in
the spectral difference method, but the grid points distribute exactly the same as their prece‐
dent Gauss quadrature of the kernel in the DAF method. They avoid the discontinuities
between elements in the spectral method, thus an optimal choice in a calculation with smooth
interaction potential functions. Since the grid points connect with each other semilocally,
methods of this kind are suitable in a parallel calculation also, similar to the spectral element
method. The higher order difference or spectral difference method and DAF method have been
applied successfully in the molecular dynamics field. Recently, Sun also puts forward DAF
method, which is capable of accurately describing the Coulomb singularity.

In the following, brief introductions to several spatial discretization methods, which currently
are popular in a quantum dynamics calculation, will be given.

3.1. Discrete variable representation (DVR)

The DVR has been used quite successfully for a variety of problems, including the calculation
of the ro‐vibrational spectra of complex molecules and the reactive scattering cross sections of
atoms and molecules [17,18]. In a usual variational or spectral calculation, one chooses some,
in principle, complete, orthonormal basis set, φ, with truncation to a finite number of terms,
N, and then evaluates all of the matrix elements of the Hamiltonian analytically, or by a
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quadrature technique. If the spectral basis is chosen to be one of the classical orthogonal
functions, satisfying the three‐term recursion relationship,

1 1 1 2( )n n n n n nxb f a f b f- - - -= - - (1)

then there exists an associated Gauss quadrature rule with the same number of points and
weights, which integrates exactly any integrand of degree (2N - 1) or less. By diagonalizing
the tridiagonal matrix built from the recursion coefficients α and β, the points and weights may
be obtained. Under these conditions, it is possible to transform from the original spectral basis
of N functions, φ, to a new basis of DVR or coordinate functions, called O , as follows:
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=
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Here, all of the integrals are performed using the Gauss quadrature rule; there are no approx‐
imations as a consequence of the fact that the quadrature rule is exact for all integrands (2N -
1) or less. The Fourier functions or particle in a box, which are not even polynomials, can be
verified to exactly satisfy Eq. (2) with a suitably chosen quadrature rule. In all of these cases,
there exists a unitary transformation between the original spectral and coordinate basis. In the
DVR, the potential V(x) can be written as

( )i j i ijO V O V x d=

since V(x) can be written as

0
( ) k

k
k

V x a x
¥

=

=å

Thus, the matrix elements of the potential operator are equal to their values at the Gauss
quadrature points and diagonal. In a wide class of problems, this approximation has been
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proved to be accurate. As a result, there are significant advantages in transforming to the DVR
basis over the original spectral basis in that the complex matrix elements of the potential are
diagonal and are simply equal to their values as the quadrature points. This is very convenient
in a numerical calculation since it leads to a sparse form of the Hamiltonian matrix.

As the other part of the Hamiltonian, the matrix elements of the kinetic energy operator, while
not diagonal in the DVR basis, usually can be evaluated simply and exactly or analytically.
Since the kinetic operator part of the Hamiltonian matrix is a separable sum over the particle
and coordinate variables, a direct product DVR basis results in a very sparse matrix represen‐
tation in n‐body problems. This has a number of advantages which can be well exploited in
the iterative stage, where the action of the Hamiltonian matrix on the wave function needs to
be evaluated many times, such as the time propagation step or the iterative computation in
Lanczos method for calculating the eigenstates. In a practical calculation, the basis functions
are not necessary to be the classical polynomials or the trigonometric functions. Usually, the
eigenstates calculated in a reduced dimensional model are taken as the basis function, which
often leads to efficient potential optimized DVR. In the past decades, complicated but efficient
sequential truncation techniques and phase optimization methods have been developed for
solving ro‐vibrational states of polyatomic molecules [8,19]. Calculations of reactive scattering
and ro‐vibrational state of molecules with dimensionality of nine using the DVR technique in
a direct product form have been reported.

Usually, the DVR invented in the field of molecular dynamics does not work well with
electronic dynamics; especially, the Coulomb singularity was rigorously included. The
exception is the Lobatto‐DVR method, which based on the Legendre polynomials but with
Gauss‐Lobatto quadrature [20]. However, with suitable phase optimization technique, the
trigonometric functions can work well with the Coulomb singularities, even for describing the
electrons of diatomic molecule in cylindrical coordinates.

The Lagrange meshes (LM) method is popular in the field of atomic physics [21]. Same as the
DVR method, the LM method is a global method, using information from the whole domain
of definition of the studied problem, an approximate spectral method taking the form of a
collocation method. The LM method is a special case of DVR method, and when classical
orthogonal polynomials are adopted as the basis, the LM and the DVR methods are identical.
However, the LM method is derived from the Lagrange functions, which make it to be
convenient for regularization of the singularity, starting from the basis function. However,
usually, the quadrature in a DVR calculation is obtained by diagonalizing the coordinate
matrix Xij = ϕi | x |ϕj , and the kinetic matrix in DVR is given by

2 2

2( ) ( )
2

bFBR
ij i ja

dT x x
m dx

f f= - ò
h

DVR FBR 1T OT O-=
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where O  is an orthogonal matrix, which diagonalizes the coordinate matrix, X , defined as

( )ij j i jO xw f=

This fact makes DVR be convenient for various generalizations and for the optimization of the
DVR. The basic idea is to get rid of the constraints on the choice of the mesh points and
associated weights. They are close to the collocation spirit, but they cannot be so easily related
to the LM method. It has been proven that these generalizations are capable of giving very
accurate results.

The quadrature discretization (QD) method is efficient for calculating low‐bound states of
molecules [22]. Same as the DVR and the LM methods, the QD method is a global method. The
QD method is very similar to DVR method, but using nonclassical polynomials. In the QD

method, a differential operator is replaced by a matrix. The mth derivative  d
m

d x m is represented

by the mth power of a matrix representing  d
d x

 in a basis of nonclassical orthogonal polyno‐

mials. Like in the DVR method, a matrix transformation leads to a basis where the potential is
represented by a diagonal matrix. In a basis of N polynomials, ϕj(x), orthogonal with respect
to a weight function, ω(x), a Gauss quadrature is obtained with the zeros xi of ϕN (xi) and
weights ωi, and the Hamiltonian matrix can be written as
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where matrix D is obtained by an orthogonal transformation based on O  from the matrix
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When ω(x) is chosen as V (x), it means
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[ ]2
0( ) ( )x xw y=

where ψ0(x) is the ground‐state wave function of the potential V (x). Thus, this method is
particularly useful for calculating low‐lying bound states.

3.2. Multidomain spectral element method

The Coulomb‐attractive singularities between nuclei and electrons are very difficult to describe
accurately. At the same time, usually the range of the radial coordinate in a calculation has to
be large, which leads to large Hamiltonian matrix using a global spectral method and results
in heavy computational effort. The Lobatto‐DVR, using the Lagrange interpolation polyno‐
mials on the Gauss‐Legendre‐Lobatto quadrature, is particularly suitable for describing the
Coulomb‐attractive singularity, whose quadrature, however, clusters densely around the two
grid ends. Thus, average efficiency of the quadrature is not high. To overcome these two
difficulties, the multidomain spectral method was purposed [3,4]. In this method, the whole
range of the radial coordinate is divided into M segmentations or finite elements with
boundaries,

10 1M Mx x x x-£ £ £L

The wave functions are represented in a basis of functions which are local to each finite element.
In this spectral element method (which is also named as finite element [FE]‐DVR), a few of the
Lobatto‐DVR functions,
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are applied for each of the element. The basis function is then defined explicitly with N
quadrature as
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where the “bridge” function is used to ensure the communication between two adjacent
elements and guarantees the continuity of the wave function. Correspondingly, the kinetic
matrix is given by
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assuming each element has same N Lagrange functions. Further, tmn
i  is given by
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where sk = 2xk
i − (x i−1 + x i) / (x i − x i−1)  and L N −1(s) are the N‐order Legendre polynomials. For
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thus, the first and last diagonal values can be found to be
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Figure 1 illustrates the structure for the kinetic energy matrix of one dimension. Since the
many‐particle kinetic energy operators are the sum of one‐particle operators, the generaliza‐
tion to tensor product basis sets is straightforward. Figure 2 shows the gird points of a typical
FE‐DVR grid with 11 basis functions per element and the resulting grid spacing.
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Figure 1. Left: FE‐DVR basis functions for three elements, where each element has four basis functions. The solid and
dashed lines correspond to the element and bridge functions, respectively. Right: The structure of the 1D Hamiltonian
matrix, corresponding to the basis in the left panel.

Figure 2. Grid points (left panels) and their spacing (right panels) of a typical FE‐DVR grid (upper panels) and opti‐
mized FE‐DVR grid (lower panels) with 11 basis functions per finite element. The oscillatory structure in the grid spac‐
ing of upper panels is a consequence of the Gauss‐Lobatto quadrature. However, after optimization, the oscillation is
much more gentle.

Even the finite‐element DVR has been proven to work well in many cases; the oscillatory
distribution of the grid and the bridge function leads to unphysically large spectral range of
the Hamiltonian matrix, as shown in the upper panels of Figure 3. This fact not only leads to
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low grid efficiency but also makes the iterative propagator, such as short‐time iterative Lanczos
(SIL) method, converge slowly [23]. To overcome this difficulty, one can use the variable
mapping method or prolate spheroidal wave functions to get a more uniform spatial grid far
from the origin and dense spatial grid around the origin, to increase the numerical efficiency
[24,25]. In the bottom panels of Figure 2, the gird distribution becomes nearly even after
optimization, which improves the efficiency of the grid. At the same time, the spectral range
of the Hamiltonian matrix reduces several times against that of the original FE‐DVR.

Figure 3. Left panels: The low eigen energies of the kinetic matrix grow quadratically of a usual FE‐DVR (upper) and
optimized FE‐DVR (bottom). Right panels: For higher energies, the spectrum contains “unphysical” steps due to the
division into finite elements, which reduces much of optimized FE‐DVR (bottom right panel).

On the other hand, in order to exploit the sparseness of the Hamiltonian matrix in finite element
DVR, the powerful split operator propagator cannot be applied, which even is insensitive to
the spectral range of the Hamiltonian. The common choice is the short‐time iterative Lanczos
method, which requires a significant amount of computer memory. And, due to the fact that
the continuity between elements only is guaranteed with the wave function other than the
derivatives, which introduce numerical complications, results with spectral accuracy cannot
be obtained.

3.3. Distributed approximating functionals (DAF) method

Even though it is known that for well‐conditioned problems, that is, when infinitely differen‐
tiable solutions exist almost everywhere, global methods provide a better accuracy than local
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methods using information from pieces of the domain, such that the Lobatto‐DVR method is
capable of giving results of higher accuracy than finite element DVR method, the drawback is
that the Hamiltonian matrix is dense and sometimes requires more computational effort. The
higher‐order finite difference (FD) method is a good choice for obtaining results of high
accuracy, but possibly with sparsest Hamiltonian matrix, especially with spectral difference
method where accelerating weights are applied.

However, in the case of Coulomb potential with singularity, the boundary conditions are very
important to the convergence of the FD method. Usually with well‐defined boundary condi‐
tions, the resulted Hamiltonian matrix is asymmetric, which leads to unphysical states that
may be numerically unstable.

The distributed approximating functional (DAF) method presents a good solution to these
problems, which reduce the correlated region around the grid point by a controllable Gaussian
weight ϖ(x, σ), but retaining the numerical accuracy by monitoring the convergence [12,26–
30]. This kind of method uses the fact that the grid is unnecessary to correlate with all of the
remaining grids, especially in the case where large spatial grid range has to be applied. The
basis functions with specified DVR functions ϕi(x) as the kernel of the DAF may be defined as

( , ) ( ) ( , )i ix x xs f v sF =

where ϖ(x, σ) is defined as

2

2

( )( , ) exp( )
2

ix xxv s
s
-

= -

with a controllable parameter σ. In the DAF, the momentum and kinetic operator can be
derived from those of Pi , j and Ti , j in the corresponding DVR method directly by the following
equations:

, , ,( , ) ( , )i j i j j i i j j iP P x xv s d v s¢= + (3a)

and

, , , ,( , ) 2 ( , ) ( , )i j i j j i i j j i i j j iT T x P x xv s v s d v s¢ ¢¢= + + (3b)

The potential operator has exactly the same form as that in the precedent DVR method. Thus,
the Hamiltonian matrix for one dimension has similar form as that using higher‐order FD
method, as shown in Figure 4.
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Figure 4. The matrix in the DVR method (red and blue elements) and the corresponding DAF method (red elements). The
matrix using the DAF is much sparser.

As observed from Eq. (3), the DAF concept can be conveniently applied with many DVR
kernels. The usage of DAF and the corresponding DVR method can be switched back and forth
conveniently for checking convergence and saving computational effort, since the introduction
of the DAF only reduces the computational effort, without affecting the numerical efficiency
of its precedent DVR. The DAF method has been successfully applied for solving vibrational
bound state, reactive scattering process, and calculating electronic states with explicit Coulomb
singularity.

3.4. Sparse grid (SG)

With increasing dimensionality, the computational effort for solving Schrödinger equation
increases exponentially using the basis space by a direct product expansion of a one‐dimen‐
sional (1D) basis, regardless of how efficient the grid is for one dimension. As we understand,
the physically required phase space does not increase so fast with increasing dimensionality
in a specified energy range. Thus, many grid points (combinations) from different degrees of
freedom in a direct product form are actually useless.

In 1963, Smolyak first introduced a multivariable integral method to overcome this difficulty
[31]. This approach constructs a multidimensional multilevel basis by a special truncation of
the tensor product expansion of a one‐dimensional multilevel basis, which holds the promise
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of alleviating the restriction of excessively large numbers of unknowns and solves a set of
differential equations using significantly fewer unknown. In the limit of high accuracy, the
number of unknowns required by the sparse grid combination technique is independent of
the spatial dimensionality of the problem. For example, asymptotically, a spatial 3D problem
requires the same order of unknowns as a spatial 1D problem.

Sparse grids for solving a discretized partial differential equation (PDE) were introduced in
1990 by Zenger [32], in order to significantly reduce the number of degrees of freedom, while
causing only a marginal increase in the representation error relative to the standard discreti‐
zation. In 1992, Griebel et al. [33] showed that, for two and three dimensions, the sparse grid
complexity and representation error can also be achieved by the so‐called combination
technique which is suitable for a parallel computation.

The sparse grid combination technique can be understood as a multivariate extrapolation
technique. Instead of solving a set of differential equations on a single grid, solutions are
obtained on a number of semi‐coarsened grids. After solving these semi‐coarsened problems,
the solutions are combined to obtain a single, more accurate solution. Currently, there is
focused interest for solving various PDE using sparse grid technique with different quadra‐
tures and in combination with multidomain techniques.

There are many studies on the introduction of the sparse grid method in the literature, and
their theoretical details are not presented here. With multidimensional sparse grid and
hierarchical bases, vibrational states of a molecule with dimensionality of 64 have been
obtained [34], electronic structures of small molecules have been solved [35–40], and solution
of the time‐dependent Schrödinger equation of model potentials with split operator method,
with hierarchical Fourier basis, have been reported [41].

In passing, we note that the coordinate choice is important in an efficient quantum dynamics
calculation, especially for a calculation using sparse grid technique where the combination
technique can be effectively realized. In spirit, the usage of hierarchical basis is very similar to
the high‐dimensional representations (HDMR) and multiconfiguration time‐dependent
Hartree (MCTDH) method [42], and general applications of the multidimensional sparse grid
and hierarchical basis in the high‐dimensional atomic and molecular dynamics are expected
in the near future [43]. Inspecting the prospective development of multidomain technique for
solving PDE and the coordinate problem in a state‐to‐state reactive scattering calculation, we
might also expect that an exploration of multidomain technique in the field of molecular
reaction dynamics would be prospective.

4. Time discretization methods

Besides the importance of the coordinate discretization methods for solving the TD Schrö‐
dinger equation, the efficiency of a time propagator is also vital. Especially, it is not surprised
that the efficiency of a time propagator is only high for special spatial discretization methods.
During the past decades, various time propagators have been developed, which roughly can
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be classified into two classes: One is short‐time propagator which often is of low order and the
other one is long‐time propagator by a polynomial expansion which often is accurate. In the
following, only the most useful ones are briefly reviewed.

4.1. Split operator method (second and higher order)

The second‐order split operator method is the most popular one in a quantum dynamics
calculation, especially in a molecular quantum dynamics calculation in combination with the
DVR method [1]. The second‐order split operator method is realized as

ˆ ˆ ˆ ˆexp( ) exp( / 2)exp( )exp( / 2)i tH i tT i tV i tT- D = - D - D - D

or

ˆ ˆ ˆ ˆexp( ) exp( / 2)exp( )exp( / 2)i tH i tV i tT i tV- D = - D - D - D

for the TID Hamiltonian or TD Hamiltonian, ignoring the time ordering. With the DVR method
or the Fourier basis, where fast Fourier transform (FFT) can be applied, the split operator can
be conveniently implemented. Higher order split operator can be numerically much more
efficient than the second‐order split operator for evolving the wave function of a diatomic
molecule or triatomic reactive scattering [44,45].

4.2. Crank‐Nicolson and spectral transformed Crank‐Nicolson propagator

The Crank‐Nicolson is particularly popular for solving a TD Schrödinger equation in the field
of atomic physics. One reason, which is well known, is that the Coulomb singularity is difficult
for a spectral method, but the finite difference is good for describing the Coulomb singularity
thus often adopted. The finite difference in combination with the Crank‐Nicolson propagator
is very efficient as a propagator of TD Schrödinger equation by solving a linear equation. The
other one reason is not so explicit and needs a bit more explanation, which comes from the
concept of spectral transformed Hamiltonian [46]. As we know, with a TID Hamiltonian Ĥ ,

ˆ ˆ ˆexp( ) cos( ) sin( )i tH tH i tH- D = D - D

and

ˆ ˆ ˆexp( ) cos( ) sin( )i tH tH i tHD = D + D

Thus
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ˆ ˆexp( ) 1 tan( )ˆexp( 2 ) ˆ ˆexp( ) 1 tan( )
i tH i tHi tH

i tH i tH
- D - D

- D = =
D + D

By retaining the first Taylor expansion term of tan(x), we obtain the usual Crank‐Nicolson
propagator

ˆ1 / 2ˆexp( ) ˆ1 / 2
i tHi tH
i tH

- D
- D »

+ D

On the other hand, we can define a spectral transformed Hamiltonian Θ̂ as

ˆˆ 2arctan( )
2
tHD

Q = (4)

Hamiltonian Θ̂ has the exactly same eigenfunctions as the original Hamiltonian Ĥ , but with
different eigenvalues. The TD Schrödinger equation with Hamiltonian Θ̂ can be written as

ˆi
t

¶Y
= QY

¶

For this equation, we conveniently have an exact short‐time propagator

ˆ ˆ1 tan( / 2) 1 / 2ˆexp( ) ˆ ˆ1 tan( / 2) 1 / 2
i t i tHi t
i t i tH

- D Q - D
- D Q = =

+ D Q + D

Therefore, in the traditional usage of the Crank‐Nicolson propagator, the wave function
actually is propagated with the spectral transformed Hamiltonian Θ̂. In the case where the
time step is small, the energy of a wave function of the Hamiltonian Ĥ  can be effectively
approximated by the one of Θ̂.

In the calculation involving Coulomb singularity, the spectral range of the Hamiltonian usually
is quite huge, which imposes the upper limit for the time step by

max min

2t
E E

p
D £

-

As seen from Eq. (4), this spectral transformation reduces the original huge spectral range of
Hamiltonian Ĥ  into a very limited one, −π / 2, π / 2 , which alleviates the upper limit of the
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time step much. This fact explains why the split operator in the exponential form is less accurate
than that in the Crank‐Nicolson form, contrary to intuition.

4.3. Short‐time iterative Lanczos method

Another popular short‐time propagator is the short‐time iterative Lanczos (SIL) method [47].
The Lanczos method initially was proposed to calculate the eigenvalues and eigenfunctions
of a symmetric Hamiltonian matrix by solving a tridiagonal matrix, which was given by a
similar transformation of the original Hamiltonian matrix through the Krylov vectors.
Therefore, the fundamental idea of the Lanczos method is to iteratively build a small, orthor‐
normal set of vectors using the Krylov subspace generated from the solution to the time‐
dependent Schrödinger equation at the previous time step as the initial vector. This small set
of vectors are used to diagonalize the Hamiltonian, which enables the exponentiation of the
matrix to be carried out. The SIL method is realized by initializing

0 (0)q = Y

0 0 0 0 1Ĥq q qa b= +

and by expressing generally

1 1 1
ˆ

j j j j j j jHq q q qb a b- - += + +

where the coefficients are given by

ˆ
j j jq H qa =

1 1
ˆ

j j jq H qb - -=

The projected subspace representation of the Hamiltonian operator has the tridiagonal form

0 0

0 1 1

1 2 2

3 2 2

2 1

n n n

n n

Z

a b
b a b

b a b

b a b
b a

- - -

- -

ì ü
ï ï
ï ï
ï ïï ï= í ý
ï ï
ï ï
ï ï
ï ïî þ

O O O

Electronic and Molecular Dynamics by the Quantum Wave Packet Method
http://dx.doi.org/10.5772/63999

213



Then, the propagation can be accomplished by diagonalizing a small matrix Z :

ˆ( ) exp( ) (0)
exp( ) (0)

t i tH
i tZ

Y D = - D Y
» - D Y

The SIL method requires memory usually one order larger than that required in a calculation
using the split operator or Crank‐Nicolson method. However, since SIL does not need to switch
between different representations, unlike that using the split operator method, the SIL method
can explore the block sparseness of the kinetic operator matrix for one dimension. Several
works have been reported on the combination usage of the SIL method and the FE‐DVR
method. On the other hand, the iteration number for a convergent result using the SIL has
direct ratio to the spectral range of the Hamiltonian. Therefore, even the SIL method takes well
the advantage of the sparseness of the Hamiltonian matrix using the FE‐DVR method; the
unphysically large spectral range resulted from the finite element method reduces the
convergence of the SIL method, which requires more iterations, and thus more memory and
more computational effort.

4.4. Symplectic propagator

Symplectic time propagators for time‐dependent Schrödinger equation are of particular
interest, especially higher order ones. They can be very accurate and implemented simply [48].
For a typical symplectic propagator, the implementation can be done by separately expressing
the wave function into real and imaginary parts,

ij gY = +

where both φ and γ are real. Then, the time‐dependent Schrödinger equation can be written
as

ˆ( ) ( )t H t
t
j g¶

=
¶

ˆ( ) ( )t H t
t
g j¶

= -
¶

which can be rewritten as

ˆ0
( )

ˆ 0

H
A B

t H

j j j
g g g

æ öì ü ì ü ì ü¶
= = +ç ÷í ý í ý í ýç ÷¶ -î þ î þ î þè ø

(5)
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0 00 ,an
ˆ

ˆd
0 0 0

HA B
H

æ ö æ ö
= =ç ÷ ç ÷ç ÷ ç ÷-è ø è ø

The evolution operator of Eq. (5) can be written as

ˆ ˆcos( ) sin( )
( )

ˆ ˆsin( ) cos( )

tH tH
O t

tH tH

æ öD D
D = ç ÷ç ÷- D Dè ø

(6)

which is an orthogonal and symplectic matrix. Direct evaluation of Eq. (6) is expensive. By
using composition methods, evaluation of Eq. (6) can be written as

1 1( ) k ktb B ta A tb B ta AO t e e e eD D D DD = L

where

,and
0

ˆ

0
ˆ

tA

tB

I He t
I

I
e t

H I

D

D

æ ö
= D ç ÷ç ÷

è ø
æ ö

= D ç ÷ç ÷-è ø

Various coefficients determined by the composition methods have been reported, which have
been proven highly accurate for solving a time‐dependent Schrödinger equation to molecular
dynamics.

Even symplectic propagator implemented in this form is accurate and straightforward; it is
unstable and gives diverged results when the adopted time step is larger than an upper limit.
Usually, this upper limit is not large, which is determined by the spectral range of the Ham‐
iltonian. Thus, the numerical efficiency of symplectic propagator, usually, is not high. This is
quite different from the split operator in exponential form whose time step is only determined
by the numerical error. This fact explains its much less popularities in a practical quantum
dynamics calculation.

4.5. Chebyshev and real Chebyshev polynomial expansion with a TID Hamiltonian

The most popular long‐time propagator is Chebyshev polynomial propagator, introduced by
Taz and Kosloff [2]. It is accomplished as follows:
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max min max min

1 max min

( ) 2ˆ( ) exp( ) (0) exp (0)
2

N

n n
n

i E E t E E Ht itH a P
E E=

æ ö- + -é ùY = - Y = - Yç ÷ê ú -ë û è ø
å

where Pn is the n‐order of Chebyshev polynomial. Emax and Emin are the maximal and minimal
energies of the Hamiltonian. The expansion coefficient an is given by

0 max min(2 ) [( ) / 2]n
n n na i J E E td= - -

where Jn is the n‐order Bessel function of first class. Since the Chebyshev polynomials can be
obtained by the following iteration,

1 2( ) 2 ( ) 2 ( )n n nP x P x P x- -= +

0 1( ) 1, and ( )P x P x x= =

the propagation of the wave function by the Chebyshev polynomial expansion can be imple‐
mented by an iterative procedure.

For the initial wave function which has only the real part, the time evolution of the wave
function can be achieved in the order domain of Chebyshev polynomial, instead of the time
domain [49,50]. This can be understood as follows:

ˆ ˆ ˆ( ) exp( ) (0) cos( ) (0) sin( ) (0)t i tH tH i tHY D = - D Y = D Y - D Y

ˆ ˆ ˆ( ) exp( ) (0) cos( ) (0) sin( ) (0)t i tH tH i tHY -D = D Y = D Y + D Y

With Ψ =φ + iγ, we have

ˆ( ) ( ) 2cos( ) (0)t t tHj j jD = - -D + D

and

ˆ( ) ( ) 2cos( ) (0)t t tHg g gD = - -D + D

Therefore, the real and imaginary parts of the wave function can be propagated separately. By
introducing the spectral transformed Hamiltonian,
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where Jn is the n‐order Bessel function of first class. Since the Chebyshev polynomials can be
obtained by the following iteration,

1 2( ) 2 ( ) 2 ( )n n nP x P x P x- -= +

0 1( ) 1, and ( )P x P x x= =

the propagation of the wave function by the Chebyshev polynomial expansion can be imple‐
mented by an iterative procedure.

For the initial wave function which has only the real part, the time evolution of the wave
function can be achieved in the order domain of Chebyshev polynomial, instead of the time
domain [49,50]. This can be understood as follows:

ˆ ˆ ˆ( ) exp( ) (0) cos( ) (0) sin( ) (0)t i tH tH i tHY D = - D Y = D Y - D Y

ˆ ˆ ˆ( ) exp( ) (0) cos( ) (0) sin( ) (0)t i tH tH i tHY -D = D Y = D Y + D Y

With Ψ =φ + iγ, we have

ˆ( ) ( ) 2cos( ) (0)t t tHj j jD = - -D + D

and

ˆ( ) ( ) 2cos( ) (0)t t tHg g gD = - -D + D

Therefore, the real and imaginary parts of the wave function can be propagated separately. By
introducing the spectral transformed Hamiltonian,
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arccos ˆ( )tHX = D

Then, in the space of Ξ, the evolution of the real‐wave function φ can be written as

ˆ( ) ( ) 2 (0)t t tHj j jD = - -D + D (7)

Here, the time step Δt  is only an arbitrary parameter; thus, we simply set it as 1.0. Equa‐
tion (7) then becomes

ˆ( 1) ( 1) 2 ( )k k tH kj j j+ = - - + D (8)

with φ(1)= Ĥφ(0); the evolution of the wave function can then be carried out simply by the
iterative action of the Hamiltonian on the wave function, according to Eq. (8). It has been
proven that the real Chebyshev wave packet method is about two times faster than the
Chebyshev polynomial expansion method, but the DVR method for direct reaction is less
efficient than the second‐order split operator [51,52].

4.6. Propagator with explicitly TD Hamiltonian

When the Hamiltonian is time‐dependent, such as in a case where there is interaction between
laser pulse and molecule or atom, the time ordering in a calculation using short‐time propa‐
gator for numerical results of high accuracy has to be considered sometimes. For short‐time
propagators, one can supplement with a Euler‐MacLaurin expansion for the time‐integrated
nonhomogeneous term or with a Magnus expansion for considering the time ordering [53,54].
Tal‐Ezer and his coworkers recently introduced a new Chebyshev polynomial expansion
method for nonhomogenous time‐dependent Schrödinger equation. For more details, one may
refer Ref. [55].

5. Boundary conditions

In a solution to TD Schrödinger equation using spatial discretization method, the spatial grid
range has to be limited. However, during the propagation time, the wave function usually can
extend out of the grid. We have to artificially impose the boundary condition, which is capable
of damping the wave function before reaching the end of the grid, but without affecting the
interior wave function. A usual choice is by including the absorbing potential in the potential
operator or by imposing damping function to the wave function. Smooth exterior complex
scaling method was reported to be a more accurate way to impose the boundary conditions in
a numerical solution to TD Schrödinger equation, which has been applied in a calculation of
electronic dynamics induced by ultrashort laser pulses.
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6. Applications

With the pioneer work in the solution to the Schrödinger equation in the field of molecular
quantum dynamics, the developments of quantum wave packet now have a general applica‐
tion in the field of atomic physics, molecular physics, molecular reaction dynamics, and the
structure simulations of semiconductors or nanomaterials. In the following sections, only those
chosen from the author's personal interest are briefly reviewed, which may not be the most
representative works.

6.1. Feschbash resonance in the reaction of F + H2/HD (v0 = 0, j0 = 0) and Cl + HD (v0 = 1, j0 =
0)

The reactive resonances discover the quasi‐bound states of the reaction complex with unique
clarity, and they do exist. Recognition of the reactive resonances is helpful for understanding
how elementary chemical processes at a single quantum‐state level take place. F + H2 and its
isotopic analogs are the most classical prototypes [56].

Interest in the F + H2 reaction largely results from Lee's benchmark molecular beam studies
[57] and early chemical laser work [58]. In 2000, the work on the F + HD reaction of Dong et
al. [59] discovered the existence of reactive resonances in crossed beam experiments, where a
resonance‐enhanced step in the excitation function was observed.

Figure 5. Schematic diagram indicating the resonance‐mediated reaction mechanism for the F + H2 reaction, which has
two resonance states trapped in the HF(v’ = 3)‐H vibrational adiabatic potential (VAP)well. The 1D wave functions of
the two resonance states are also given. The (003) state is the lowest ground resonance state; the (103) resonance is the
first excited resonance state. Calculated van der Waals states for the lower VAPs are also given. OP, overtone pump‐
ing; Eb, barrier height; Ec, collision energy.

In 2006, with both theory and experiment exhibiting consistent behavior on XXZ PES, the work
of Qiu et al. [60] reported the evidence for the resonances in the F + H2 reaction, as shown in
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Figure 5. The appearance of this report is enabled by the crossed molecular beam combined
with high‐resolution Rydberg state tagging technique, the developments on quantum scatter‐
ing method development, and ab initio method. The sharp forward peak arising at the collision
energy of 0.52 kcal/mol is actually due to the interference between the first two Feshbach
resonances. With total angular momentum as zero, there are two resonance states at collision
energies of 0.26 and 0.46 kcal/mol. Along with increasing J, the resonance energy will shift to
higher collision energy. The three‐dimensional (3D) scattering wave function at the collision
energy of 0.26 kcal/mol suggests the existence of three nodes along the H‐F coordinate (which
correlates to the HF product) in the HF‐H’ complex with zero node along the reaction coordi‐
nate. The projection of the J = 0 scattering wave function at 0.26 kcal/mol to the HF vibrational
states suggests that the dominant character of this wave function is HF (v’ = 3), with the
outgoing waves mostly on HF (v’ = 2). This implies that the resonance state at 0.26 kcal/mol is
the lowest resonance state, (003), which is trapped in the HF (v’ = 3)‐H’ vibrational adiabatic
potential (VAP) well.

The 3D scattering wave function for J = 0 at the collision energy of 0.46 kcal/mol suggests the
existence of three nodes along the HF coordinate (which correlates to the HF product) in the
HF‐H’ complex, with a single node along the reaction coordinate. The projection of the J = 0
scattering wave function at 0.46 kcal/mol to the HF vibrational states indicates that the
dominant character in this wave function is HF (v’ = 3), but with the outgoing waves also mostly
on HF (v’ = 2). This indicates that the resonance state at 0.46 kcal/mol is the excited reaction
resonance state trapped in the HF (v’ = 3)‐H’ VAP well. This resonance state can be assigned
to the (103) resonance state, which has one‐quantum vibration along the reaction coordinate,
zero‐quantum vibration on the bending motion (or hindered rotation), and three‐quanta
vibration along the HF stretching. The resonance schemes were shown in Figure 5.

Their next work at higher collision energy (0.94 kcal/mol) revealed the tunneling and shape
resonance effects [61], other than Feschbash resonance leading to the forward scattering in the
reaction of F + H2, which indicated that the reactive resonances played quite distinguished
roles in the same reaction but at different collision energies.

Figure 6. Theoretical and experimental 3D plots for the product of translational energy and angular distributions for
the F(2P3/2) + HD(j0 = 0) → HF + D reaction at different collision energies: 0.43 kcal/mol (a); 0.48 kcal/mol (b); 0.52 kcal/
mol; and (c) 0.71 kcal/mol (d).

In 2008, Ren et al. [62] measured the DCSs at several different collision energies, which
suggested strong variation as a function of collision energies, resulting from the existence of
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strong reactive resonance states. The theoretical DCSs on the new version PES developed by
Zhang and his coworkers (FXZ PES) showed good agreement with the experimental observa‐
tion, as shown in Figure 6, which demonstrated that the F + H2 reaction is the first reaction
which can be investigated with spectroscopy accuracy, besides the H + H2 reaction.

To have a better understanding about the reactive resonance state, the ground resonance state
wave function of the F + HD → HF + D, along with the two‐dimensional (2D) minimal potential,
which was optimized along the angle degree of freedom, is presented in Figure 7. It is seen
there that the wave function shows features of a semibound state. The outgoing part, corre‐
sponding to the HF(v’ = 2) product, has two nodes of structure, but the inside peak has three
nodes, corresponding to an excited vibrational state of v’ = 3.

Figure 7. The 3D ground reaction resonance wave function of the F(2P3/2) + HD(j0 = 0) → HF + D reaction, along with the
potential, which is optimized along angle degree of freedom.

In 2015, the resonances in the Cl +HD (v0 = 1, j0 = 0) reaction were experimentally observed, a
first example besides the resonances in F + H2 and F + HD [63]. The quantum dynamics revealed
that the resonances in the Cl + HD reaction come from the bond‐softening due to the strong
anharmonicity over the transition barrier. Reactive resonances of this kind are expected to arise
in many reactions; thus, the existence of reactive resonances is not so rare as we had thought.

6.2. Isotope effects in the O + O2 reaction

The O + O2 isotope exchange reactions play an important role in measuring the oxygen isotopic
composition of a number of trace gases in the atmosphere. Their temperature dependence and
kinetic isotope effects (KIEs) provide important constraints on our understanding of the origin
and mechanism of these and other uncommon oxygen KIEs, which are important in the
atmosphere [64,65]. Since there is a deep potential well in the process of the reaction and
relative large mass of O atom, the rigorous state‐to‐state quantum dynamics calculation
requires much computation. Thanks to the development of the numerical methods and
computer techniques, on the most recent Dawes‐Lolur‐Li‐Jiang‐Guo (DLLJG) potential energy
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surface [66], calculation of the state‐to‐state differential cross sections and thermal reaction rate
constant is possible [67–70].

For studying the KIEs in the O + O2 reaction, using the reactant coordinate‐based time‐
dependent wave packet method, where DVR method was applied for each degree of freedom,
the integral cross sections (ICSs) of the 18O + 32O2 and 16O + 36O2 reactions with the initial states
of (v0, j0) = (0, 1), (0, 5), (0, 9), and (0, 21) have been calculated explicitly on the newly constructed
DLLJG PES. The ICSs for other j0 ≤ 21 values were estimated by a j0‐interpolation method and
those for j0 > 21 were estimated by extrapolation. These ICSs yield the corresponding initial
state‐specified reaction rate coefficients. Thermal reaction rate coefficients with Boltzmann,
averaging over all relevant initial states were thus calculated approximately, and they exhibit
clear negative temperature dependences for both reactions.

The calculated thermal reaction rate coefficients of both the 18O + 32O2 and 16O + 36O2 reactions
on the DLLJG PES show a clear negative temperature dependence, in sharp contrast with the
positive temperature dependence obtained on the earlier modified Siebert‐Schinke‐Bittererova
(mSSB) PES [71]. In addition, there is an improved agreement between the calculated KIE and
the experiment. These results validated the absence of the “reef” structure in the entrance/exit
channels of the DLLJG PES, which is present in the mSSB PES.

The calculated total reaction probabilities of the 18O + 32O2 and 16O + 36O2 reactions on the DLLJG
PES as a function of the total angular momentum (J) suggest that the O + O2 exchange reactions
are dominated by resonances at very low collision energies (<0.2 eV) immediately above the
reaction threshold, as shown in Figure 8. These resonances depend strongly on the masses of
the oxygen atoms involved and/or the zero‐point energy difference between the reactant and
product diatoms. Though it appears that the isotopic effects in the exchange reactions come
from the ZPE difference, the underlying physical mechanism for the isotope effects is shown
here to result from strong near‐threshold reactive resonances which mediate the reactions.
Thus, it was first time pointed out that the accurate characterization of the reactivity for these
near‐thermoneutral reactions immediately above the reaction threshold is important for
correct characterization of the thermal reaction rate coefficients [47].

Figure 8. The 2D plot of smoothened total reaction probabilities as a function of collision energy and total angular mo‐
mentum J of 16O + 36O2 (6 + 88) and 18O + 32O2 (8 + 66), with the initial state of j0 = 1 on the mSSB PES. The J‐shifting rule
is clearly observed in both plots, and the reactivity of 8 + 66 is larger at collision energies below 0.15 eV, resulting from
the resonance enhancement.
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6.3. State‐to‐state cross sections calculation of a chemical reaction

Theoretical method for a state‐to‐state calculation is of vital importance in the field of molecular
reaction dynamics, which enables a detailed comparison between theoretical results and the
experimental differential cross sections by crossed molecular beams [72]. Traditionally, there
is only product coordinate‐based method to achieve this goal using time‐dependent quantum
wave packet method in Jacobi coordinates. In 1996, John Zhang and coworkers put forward
an efficient reactant‐product decoupling method for a direct reaction. Recently, reactant
coordinate‐based method and transition state wave packet method were also proposed for a
state‐to‐state reaction calculation.

The transition state wave packet (TSWP) method is a relatively new method for computing
the reactive S‐matrix elements, and has recently been demonstrated to be accurate and efficient
for computing J = 0 state‐to‐state reaction probabilities for three, four, and also six atoms [73–
79]. The TSWP method is based on the quantum transition state theory of Miller [80,81], who
provided a direct way to calculate the cumulative reaction probability (CRP), N (E ), and
thermal rate coefficient, k(T), from a flux correlation function on the dividing surfaces located
near the transition state [82]. Recently, Manthe and coworkers extended this formulism to
compute the S‐matrix elements from generalized flux correlation functions of TSWPs [49,83].
Specifically, a set of initial TSWPs are calculated as the eigenstates of the thermal flux operator,
which is defined in the transition state region as [84]

ˆ ˆ/ 2 / 2ˆ ˆB BH k T H k T
TF e Fe- -= ,

where T  is a reference temperature in Kelvin, and kB denotes the Boltzmann constant. These
TSWPs are then propagated independently into both the reactant and product arrangement
channels, and the S‐matrix elements are obtained from the resulting cross‐correlation func‐
tions:
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where { f T
n, | f T

n } are the thermal flux eigenpairs at the reference temperature of T, and ηυp jp
+ (E )

and ηυr jr
− (E ) are energy‐normalizing factors of the asymptotic wave functions (|Φυp jp

+  and

|Φυr jr
− ) for the two channels.

In addition to its conceptual clarity, the TSWP method has several numerical advantages. First,
the propagation of each TSWP is essentially an inelastic calculation in the appropriate Jacobi
coordinates, in which much smaller bases/grids are needed. One of course needs to transform
the initial TSWPs prepared in one coordinate into the other, but this transformation is per‐
formed only once in a small region near the transition state. Second, the existence of either a
pre‐reaction or a post‐reaction well has a limited impact on the computational costs, as the
analysis plane can be placed deep into the asymptotic region without significantly impeding
the numerical efficiency. Third, in contrast to the initial state‐specific wave packet (ISSWP)
approach, the entire S‐matrix can be obtained at all energies in one complete calculation.
Finally, the multiple propagations of TSWPs are “embarrassingly” parallel, adding further to
its numerical efficiency. However, with the increase of energy, the number of involved TSWPs
grows rapidly, especially for those systems with small vibrational frequencies of the activated
complex.

The reactant coordinate‐based (RCB) method for computing the reactive S‐matrix elements
has been widely used for the triatomic reaction systems [40,85–89], but it is only recently that
the RCB method is extended to tetra‐atomic systems [90,91]. The key idea of the RCB method
is to propagate the time‐dependent initial wave packet deep into the product asymptotic
region, where the product states are well defined on an analysis plane. There are generally two
schemes to define the product states on the analysis plane: one evaluates product states on the
grids of reactant coordinates with an interpolation scheme, while the other projects product
states onto a set of intermediate coordinates. The interpolation scheme saves grid points in
expressing the product wave functions, thus saving computer memory, and the intermediate
coordinate method is numerically more efficient.

In the intermediate coordinate scheme, the projection plane for a particular product channel
is designed to include the corresponding scattering coordinate that is defined as the separation
of the two products. This enables the expression of the product wave packet in a product form,
in which the product wave packet in the scattering coordinate is simply a delta. The remaining
degrees of freedom are chosen from reactant coordinate, which renders the projection of time‐
dependent wave packet on the intermediate coordinate very efficient. The calculation of
overlaps between the time‐dependent wave packets and the product states is carried out on
the intermediate coordinate by transforming them from the respective reactant and product
Jacobi coordinates into a set of intermediate coordinates.

Compared to the TSWP method, the RCB method has the advantage of propagating the wave
packet in only the reactant Jacobi coordinates, which allows the simultaneous analysis of the
two product channels with only a single propagation. However, RCB has a genesis of ISSWP
method, and it only calculates a column of the S‐matrix.
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6.4. Dissociative chemisorption of water on transition‐metal surfaces

The interaction of molecular species with metal surfaces is of great importance to many
industrial applications. The dissociative chemisorption of water on transition‐metal surfaces
plays a pivotal role in understanding many industrial heterogeneous processes such as steam
reforming, and represents the rate‐limiting step in low‐temperature WGS reaction on copper
catalysts [92]. Tremendous progress has been made for the dissociative chemisorption
dynamics.

Figure 9. Schematic of the TSWP method. The TSWPs are prepared near the transition state region and then propagat‐
ed to both the reactant and product sides to resolve the state‐to‐state information (Adopted from Ref. [4]).

Figure 10. Two‐dimensional PES plot in the RCB method for both the H’ + H2O → H’H + OH abstraction (Abs.) and H’
+ H2O → H + H’OH exchange (Exc.) channels in the reactant Jacobi coordinates R and r1. Other degrees of freedom are
optimized. The initial wave packet is prepared in the reaction‐asymptotic region, and two projection planes are located
in the asymptotic regions of the corresponding product channels (adopted from Ref. [67]).

A total of 9 degrees of freedom should be considered for the dynamics of H2O molecule on a
rigid surface (as shown in Figure 11), rendering it formidable to carry out a fully coupled nine‐
dimensional (9D) quantum dynamics calculations. Guo and coworkers performed six‐
dimensional (6D) quantum dynamics calculations to study the mode specificity of H2O and
bond selectivity of HOD on a rigid flat Cu(111) surface [93–95], employing their 6D PESs
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developed by permutationally invariant polynomials (PIP). The 6D model neglects the effects
of impact sites and surface corrugation, because the surface‐lateral coordinates (X and Y) and
the azimuthal angle were fixed at the values of transition state. The first quantum‐state
resolved molecular beam experiment on the dissociative chemisorptions of D2O on Ni(111)
demonstrated a large enhancement in reactivity upon excitation of the asymmetric stretching
mode of D2O [96]. The observed mode specificity was semiquantitatively understood by Guo
and coworkers using the 6D quantum dynamical approach on a 6D PES. Recently, Jiang and
Guo investigated 6D site‐specific dissociation probabilities of this system, but based on a new
9D PES developed by permutation‐invariant polynomial‐neural network (PIP‐NN) method
[97].

Figure 11. The 9D dissociation probability and 7D site‐specific (top, bridge, fcc, hcp, and TS sites) probabilities with
H2O initially in the ground ro‐vibrational state (000). The 9D molecular coordinates of the H2O/Cu(111) system are
shown in the inset.

Very recently, we reported the first seven‐dimensional (7D) quantum dynamics study for the
dissociative chemisorption of H2O on Cu(111), based on an accurate 9D PES developed by
neural network approach [98,99]. The dissociation probabilities exhibit strong azimuthal angle
dependence, and large differences were seen between 7D and 6D results, indicating that the
6D quantum model, neglecting the azimuthal angle, can introduce substantial errors. A
significant step forward in simulating gas‐surface reactions from the first‐principles was
recently achieved, where we reported the first full‐dimensional quantum dynamics study of
chemisorption process of H2O on rigid Cu(111), with all 9 degrees of freedom (9D) fully
coupled on a global potential energy surface [100]. We found that the full‐dimensional
quantum‐mechanical reactivity is quite different from the corresponding results obtained by
previous reduced‐dimensional models, indicating the importance of the challenging full‐
dimensional quantum‐mechanical calculations to achieve a quantitatively accurate under‐
standing of this reaction. The excitations in vibrational modes of H2O, in particular the
stretching modes, are more efficacious than increasing the translational energy in promoting
the reaction, much stronger than observed in previous reduced‐dimensionality quantum
studies. The full‐dimensional quantum‐mechanical calculations not only offer the dynamic
features with the highest accuracy but also allow a conclusive examination of previous
dynamical approximations.
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6.5. Electronic states of H2
+ and H2 by mapped DVR using cylindrical coordinate

For describing the low‐lying electronic state of a diatomic molecule, the prolate spheroidal
coordinate is a natural choice. However, it may be not an optimal choice for describing high‐
lying state. The Hamiltonian operator of electrons in a diatomic molecule is very simple and
easy for numerical evaluation. It is well known that the Coulomb singularity numerically is
very difficult to deal with, and in cylindrical coordinate, it is even more difficult.

To overcome this difficulty, a numerical scheme by a combination of mapped sinc DVR and
cosine DVR method was introduced in the work by Lin and Sun [101]. The mapped function
for variables is as follows:

( )1 0 1 1
1 arctanf x A x xr b
b

æ ö
= = -ç ÷

è ø

and

2 2 2 2
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Figure 12. A typical 2D distribution of the grid points of H2
+ in cylindrical coordinate after variable's mapping. In the

bottom, an enlarged part of the distribution is shown.

The parameter A0 is applied to determine the grid range of ρ, but the parameter β is to adjust
the relative distribution of the grid points of ρ degree of freedom. The parameter E0, which
approximately corresponds to the energy of the reference state, following a phase optimization
philosophy, is used to adjust the distribution of the grid points of z degree of freedom, along
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with Z0 parameter. Z0 approximately corresponds with the nuclear charges. The parameter z0

makes function g(0)=0, and ρ1 is the starting grid point of ρ degree of freedom. The evenly
distributed grid points in the coordinate x1 and x2 are shown in Figure 12 as a function of ρ
and z, where the grid points cluster around the nuclear positions.

With this mapped DVR method, the energy of the lowest electronic state, which is most
sensitive to the accuracy of the description of the singularity, can be given with 10 significant
numbers only with 65 and 100 grid points for ρ and z. The method also was applied to H2

molecule, including correlation of electrons. It was found that a straightforward extension of
the method for H2

+ only is capable of giving the energy of ground electronic state with three
or four significant digits, with the parameters as follows:

1 1 20N Nr r= =

1 1 60z zN N= =

20N Nq q= =

The nuclear distance is 1.4 Bohr (a.u.). The grid range for ρ1 and ρ2 is [0, 20>] a.u., for z1 and
z2, it is [-30, 30] a.u., and for θ, it is [0, π].

Figure 13. The ground state and low‐lying excited states potential energy curves of H2, calculated by the mapped DVR
method and the MRCI/AV6Z method by the Molpro package.

Figure 13 presents the potential energy curves of the ground electronic state and low‐lying
excited states of H2 as a function of nuclear distance, calculated by the mapped DVR method
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(symbols) with the same parameters listed above, along with those (lines) obtained with the
MRCI/AV6Z method in the Molpro package [44]. The potential energy curves of the excited
electronic states obtained by the mapped DVR method are always lower than those calculated
by the MRCI/AV6Z method; however, the curve of the ground electronic state by the mapped
DVR method is a little higher than the one obtained by the MRCI/AV6Z method in the
dissociation region, because of the strong electronic correlation energy of the ground electronic
state. Further numerical studies indicate that by making the grid point distribute more densely
around the middle position of the two nuclei, the accuracy of description of the mapped DVR
method for the electronic correlation effects can be improved by two orders, which may be
enough for a quantum calculation of the electronic dynamics induced by ultrashort laser pulses
[102].

6.6. Electronic dynamics in bichromatic circularly polarized attosecond laser fields

Bichromatic circularly polarized attosecond laser pulses are new tools for investigating
electron dynamics in strong field ionization of atoms, molecules, and even surfaces, following
early experiments on polarization properties of high‐intensity high‐order harmonic generation
[103]. Photoionization in atoms and molecules by various frequency combinations of co‐
rotating and counter‐rotating bichromatic circularly polarized attosecond ultraviolet pulses
exhibits signature of spiral interference patterns in photoelectron momentum distributions.
The generation of electronic currents such as vortices [104–106] has been proposed as sources
of attosecond magnetic field pulses [107,108]. It is found that the helicity of circularly polarized
pulses is the essence for the spiral photoelectron distributions. Starace and coworkers [82] have
shown that for the cases with two identical frequency circularly polarized attosecond ultra‐
violet pulses, circularly symmetric patterns independent of the electron ejection angle are
produced in photoelectron momentum distributions in atomic He. The corresponding
momentum rings are also insensitive to the pulse phases. Electronic vortices can only be
obtained by opposite helicity laser pulses.

We numerically solve the three‐dimensional time‐dependent Schrödinger equation of the
aligned molecular ion H2

+ at equilibrium. A five‐point finite difference method combined with
fast Fourier transform technique is adopted to describe the molecular Hamiltonian in spatial
space [85]. The electron wave function is propagated in time domain with high‐order split‐
operator methods [109,110]. We use an efficient method by calculating a radial flux (electron
current density at an asymptotic point) to simulate the ionization spectra [111]. At large
asymptotic point, the angular flux distributions can be ignored. As a result, we only need to
consider the radial part of the electronic flux along the radial direction. Results show that in
bichromatic circular polarization ionization, spiral interference patterns can be observed for
both cases with co‐rotating and counter‐rotating components, which are sensitive to the pulse
frequencies, phase, and time delays, as shown in Figure 14. We analyze these results by an
attosecond perturbation ionization model. Coherent electron wave packets with same kinetic
energies created respectively by the two color pulses in the continuum interfere with each
other. Photoionization distributions are functions of the photoelectron momentum and the
ejection angle, thus giving rise to spiral distributions. Such sensitivity of the spiral electron
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distributions to the laser parameters offers an ideal means of characterizing these pulses and
timing ultrafast photoionization processes by such circular attosecond pulses.

Figure 14. Photoelectron momentum distributions of z‐aligned H2
+ in bichromatic (x, y) circularly polarized attosecond

ultraviolet laser pulses with (upper row) co‐rotating and (bottom row) counter‐rotating components at different fre‐
quencies.

7. Conclusion

Recent developments of quantum wave packet in atomic and molecular dynamics and their
applications are reviewed. The continuous expansion of computing power and numerical
techniques in quantum wave packet method leads to solve the molecular dynamics with
increasingly complicated problems. Foreseeably, more general applications of the quantum
wave packet method will result in more exciting discoveries in exploration of the quantum
dynamics of molecules and atoms.
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Chapter 10

Quantum Dynamics, Entropy and Quantum Versions of
Maxwell’s Demon
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Abstract

Several subjects which reside in the overlap area of quantum mechanics, statistical physics
and thermodynamics are investigated in depth. This collection of subjects shares a common
domain which is referred to as Maxwell’s demon. The classical version of this idea is
introduced, and then, the contribution made by Szilard to the subject is presented. Several
demons are considered, and it is shown that to best understand this area, quantum
mechanics and the role information plays in it must be appreciated deeply.

Keywords: quantum dynamics, entropy, wave function, information, density matrix,
quantum measurement

1. Introduction

This is an introduction to the paradox referred to as Maxwell’s demon from both the perspec‐
tive of the second law of thermodynamics and its consequences for quantum dynamics and
recent progress in resolving it [1–3]. The classical paradox of Maxwell’s demon has been around
for a century and a half and has had a strong influence on the study of the second law of
thermodynamics and statistical mechanics in general in addition to the area of quantum
dynamics and information theory. Many new ideas and paradigms have been introduced as a
result of this paradox. Maxwell first introduced the idea in one of his books in 1871 as a way of
discussing limitations of the second law of thermodynamics [4, 5]. Clausius’s version of the
second law states that, “It is impossible to devise an engine which, working in a cycle, will
produce no effect other than the transfer of heat from a colder to a hotter body.”

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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In brief, the classical Maxwell’s demon has the capacity to separate hot particles, atoms or
molecules from cold particles and therefore obtains work from a single heat bath, which
seemed to violate the second law of thermodynamics [6, 7]. The classical paradox which arose
well before quantum mechanics was developed and it will be introduced from the point of
view of a physical model. The demon operates a tiny door in a partition that divides a box into
two parts of equal volumes and contains a gas in thermal equilibrium, and hence, temperature
is uniform over the box. The demon observes the molecules in the left side, and if a molecule
is seen approaching the door with speed less than the average speed of the molecules, he opens
the door and lets the molecules go right; if he sees one approaching with a speed greater than
average, he opens the door to let it move into the left. Once a small temperature difference has
been induced between the right and left sides, his action continues to transfer heat from a
colder to a hotter region without exerting any work. This violates Clausius’s form of the second
law of thermodynamics. This process is referred to as temperature demon.

Another type of demon can be imagined which produces a difference in pressure. This is
referred to as pressure demon. This demon runs a cycle by making the gas interact with a heat
bath at constant temperature after generating a pressure inequality. This cycle converts heat
transferred from the bath to work. This violates the second law in terms of the Kelvin form of
the second law. Thus, in either case, for either type of demon, based on temperature or pressure,
the role of the demon is to decrease the entropy of the whole system in a cyclic process.

It was Szilard who first made some progress subduing the demon [8]. Szilard had the idea of
treating the demon’s memory or intelligence, as a form of information that could be linked to
physics, to thermodynamics in fact. Szilard took a gas consisting of a single molecule, and as
a first step, a thin massless adiabatic partition is inserted into the chamber quickly which
divides it into two parts of equal volume. The demon measures the position coordinate of the
molecule on the left or right sides and records the result for the next step. A mass is attached
to the partition on the side where the molecule is found. Using a heat bath to stabilize the
temperature T, the demon lets the gas do work W by quasistatic isothermal expansion. The
gas returns to its initial state and occupies the whole volume of the chamber. While this takes
place, heat Q is extracted from the bath and so W = Q, as it is an isothermal process. The cycle
is completed as the extracted heat Q is turned into an equal amount of mechanical work.

During isothermal expansion of the gas then, if kB is Boltzmann’s constant, the amount of
extracted work is given by the following equation:
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W k T V dV k T (1.1)

It may be asked whether it is reasonable to say the one-molecule gas is a normal ideal gas.
Consider an ensemble of one-molecule gases, as it is done in statistical mechanics. By taking
averages over the ensemble, calculations will be made as if it were an ideal gas composed of
a large number of molecules. By considering the position of the molecule, one is led to its dual
interpretation in terms of both thermodynamics and information theory. As a result of the
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perfect conversion of heat Q into work W, the entropy of the heat bath is reduced by the
following:

= = ln(2).B
Q W k
T T

(1.2)

The second law demands an entropy increase of at least the same amount somewhere in order
to compensate for this decrease. Szilard attributed this increase to measurement. Although
Szilard thought that the demon’s memory was important in analyzing the engine, he failed to
uncover its role in terms of the second law.

2. A classical Szilard engine

The first to state clearly that the paradox of Maxwell’s demon could be solved by considering
the increase in entropy due to memory erasure was Penrose in his well-known book on
statistical mechanics [4]. It was later on that Landauer, and independently Bennett, arrived at
a similar conclusion [9, 10]. Bennett realized that a major result from the thermodynamics of
computation by Rolf Landauer could be used to show that a Maxwell’s demon could not violate
the second law. Information processing must be carried out by some sort of physical system,
and thus, it follows that there should be a one-to-one correspondence between logical and
physical states. Let us state that logical states can be described as an abstract set of variables
on which the task of information processing will be carried out. A reversible process, which
means an injective or one-to-one mapping for logical states, corresponds to a reversible
physical process. If a correspondence between logical and physical entropies is assumed, it
implies that a reversible logical process can be realized physically by a process which is
isentropic. For our purposes, an isentropic process is an entropy-preserving process.

On the other hand, a logically irreversible process is a many-to-one mapping and thus
noninjective. The mapping cannot be inverted and many initial states correspond to a single
resulting state. Memory erasure is a logically irreversible process because many possible states
of memory should be in one specific state in order not to carry any information. The specific
state after erasure is called standard state. In terms of physical states, a logically irreversible
process reduces degrees of freedom of a system, implying an entropy decrease. It was
Landauer who realized that logical irreversibility must involve dissipation, and thus, erasure
of information in a memory implies entropy increase in the environment. This result has been
formulated into a statement that is now called Landauer’s erasure principle. Alternatively,
Landauer’s principle states that although logically reversible computational processes can in
principle be performed with arbitrarily little dissipation, erasure is a logically irreversible act
that has a threshold entropy production. Landauer then states that for each erased bit, the
entropy sent to the environment is at least kBln(2). A complete thermodynamic analysis of a
demon’s cyclic operations requires that its memory be brought back to its initial state. The
entropy returned to the environment is just large enough to save the second law.
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Bennett made another important contribution regarding the physics of information. Measure‐
ment can be carried out reversibly without any change in entropy, provided the measuring
apparatus is in a standard state. This means that storing information in the memory does not
involve the erasure of information previously stored in the same memory. Measurement will
be regarded as a process that correlates the memory with the system, which can be achieved
reversibly in principle. This process will be considered as one that copies the memory state to
another system in a standard state [11].

Since measurement will be taken without energy use, it is dissipation due to erasure that
compensates the entropy decrease induced by the demon in Szilard’s model. The demon
commits the result to memory by establishing the position in the box. The molecule is either
on the left (L) or right (R) side, depending on the information it stores. The prescription for
erasing the stored information is to remove the partition, insert a piston on the right when the
standard memory state is (L) and move it left isothermally at temperature T until the com‐
pressed volume is V/2. The resulting state (L) is for both initial states and the information is
erased. The erasing process should not depend on the initial state of the memory, and thus,
erasure should be independent of the initial memory state. The work invested to compress the
volume from V to V/2 is Werasure = kBT ln(2). This is dissipated as heat into the environment,
thereby increasing its entropy by kB ln(2), in agreement with Landauer’s principle.

It is shown that the erasure work is proportional to the amount of information stored, that is,
Werasure = kBT ln(2) H(p), where p is the probability for the molecule to be in state L and H(p) is
the binary Shannon entropy. In other words, suppose a tendency in the frequency of appear‐
ance of a particular memory state exists, can we ask what the erasure work is. An unbalanced
tendency between L and R can be expressed by the numbers of molecules in each region.
Consider only an ideal gas, so removing the partition at the beginning allows the gas an
undesired irreversible adiabatic expansion or compression. Let the gases in both parts expand
or contract isothermally by making the partition free to move without friction. The gases
generate work toward the outside. Let PL, PR and VL denote the pressures in the left and right
sides and volume on the left of the partition, respectively. The work done by the gases is given
as follows:

/ 2 / 2

1= ( ) = ( )

= [ln(2) ln( ) (1 )ln(1 )].

-
- -

-
+ + - -

ò ò
pV pV

L R L B LV V
L L

B

p pW P P dV Nk T dV
V V V

Nk T p p p p
(2.1)

This work can be expressed in terms of the Shannon entropy which is defined to be

2 2( ) = (1 ) (1 ).log log- - - -H p p p p p (2.2)

To do so, transform ln(x) to log2(x) by means of the base change formula log2(x) = ln(x)/ln(2)to
obtain
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2 2= ln(2)[1 (1 ) (1 )] = ln(2) [1 ( )].log log+ + - - × × -B BW Nk T p p p p Nk T H p (2.3)

Since the pressures in the left and right are equal, this returns us to the configuration with the
partition in the middle. Hence, at least NkBTln(2) of work needs to be consumed to set the
memory to the standard state. In total, after dividing out N, an amount

= ln(2) = ln(2) ( )-erasure B BW k T W k T H p (2.4)

of work per molecule is invested. Supposing the memory is in the standard state to begin with,
Werasure gives a measure of the additional energy required to erase the memory due to its
information content. Without violating the second law, the state of the whole system consisting
of the heat engine and demon is restored after completing a thermodynamic cycle.

3. The von Neumann entropy as the quantum entropy

Entropy is not an observable property, and thus, there does not exist an operator with the
property that its expectation value in some state would give the entropy. Entropy is a state
function. In order to study entropy in the context of quantum systems, it is necessary to give
a precise definition of the concept before proceeding [7].

To provide some motivation for this, it may be supposed that the ground state of a quantum
system is described by its density matrix ρ. If A is an observable which pertains to the system
characterized by ρ, the spectral theorem permits the spectral decomposition of A as
A=∑i aiPi, where Pi is a projection operator onto the state with eigenvalue ai. The probability
of obtaining aj in a measurement is given by pj = Tr(ρP j)= Tr(Pjρ). The uncertainty in a given
observable can be expressed by means of the Pi through the Shannon entropy, S(p), not to
confuse it with von Neumann entropy SN(A).

Definition 3.1. The uncertainty in a collection of possible classical states {ai} with correspond‐
ing probability distribution p = p(ai) is given by its entropy, the Shannon entropy

2( ) = ( ) ( ( )),log-å i i
i

S p a p ap (3.1)

The Shannon information is a good indicator of how much two given observables are corre‐
lated. This quantity is inherently classical, as it describes the correlations between single
observables. The quantity that is related to the correlations in the overall state as a whole is
the von Neumann entropy or mutual information. It is assigned to a state as a whole, so
naturally it depends on the density matrix.

Definition 3.2. The von Neumann entropy of a quantum system described by the density
matrix ρ is defined to be
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( ) = Tr( ln( )).-NS r r r (3.2)

 

The von Neumann entropy can also be defined in terms of the base two logarithms. Defined
in this way, Eq. (3.2) implies that if λi are the eigenvalues of ρ. the von Neumann entropy can
be expressed in Shannon form as SN (ρ)= −∑iλilog2(λi)=S(λ(ρ)). There have been several studies
recently of quantum operations that preserve the von Neumann entropy of quantum states.
The Shannon entropy S(p) is equal to the von Neumann entropy only when it describes the
uncertainties in the values of observables that commute with the density matrix and S(p) ≥ S(N)

(A) otherwise. Here, A is any observable of a system described by the density matrix ρ. There
are two important properties of the entropy in Eq. (3.2) which should be noted.

(a) additivity

( ) = ( ) ( ).Ä +N A B N A N BS S Sr r r r (3.3)

(b) concavity

( ) ( ).³å åN i i i N i
i i

S Sl r l r (3.4)

As in the classical instance, property (a) states that entropies add up. The concavity property
(b) simply reflects the fact that mixing increases uncertainty. The von Neumann mutual
information refers to the correlation between whole subsystems rather than that relating only
two variables and it is introduced as follows.

Definition 3.3. The von Neumann mutual information between two subsystems ρU and ρV of
a joint state ρUV is defined as follows:

( : : ) = ( ) ( ) ( ).+ -N U V UV N U N V N UVI S S Sr r r r r r (3.5)

This quantity can be interpreted as a distance between two quantum states.

Definition 3.4. The von Neumann relative entropy between two states σ and ρ is defined as
follows:

( || ) = (ln ln ).-NS Trs r s s r (3.6)

The relative entropy expresses how difficult it is to distinguish the state σ from the state ρ.
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4. A quasi-classical erasure process

An example of an erasure process that can be studied in detail is a way to erase classical
information encoded in quantum states [6]. It straddles the classical-quantum interface and
can be accomplished by thermal randomization. Thermal randomization makes use of the
randomness of states in a heat bath, which is in thermal equilibrium. If a heat bath at temper‐
ature T and a state, which could represent a message, are brought into contact, the state will
approach equilibrium with the heat bath. A message state ρi changes gradually after an
interaction with the heat bath. A sufficient number of collisions make the state indistinguish‐
able from that of the heat bath. In this way, the information that was carried by ρi is lost
irreversibly. The entropy of the whole system necessarily increases.

Suppose each external ‘message’ state is in a pure state. Before erasure, the whole message
consists of an ensemble {pi,|ϕi〉}. Thus, its average state is described by a density operator of
the form ρ =∑i pi |ϕi ϕi | . The process of thermalization brings all states |ϕi〉 to the same state,
φ in thermal equilibrium at temperature T. Consequently, the density matrix is as follows:

ˆ1= = | |,- ñáåH
j j j

j
e q e e

Z
bj (4.1)

where Ĥ =∑iei | ei ei |  is the Hamiltonian operator of the message state in terms of energy
eigenstates |ei〉, and Z = Tr(e −βH

^
) is the partition function. It follows from Eq. (4.1) that Trφ =

1.

The total entropy ΔSerasure is the sum of the entropy change of the message or reference system
and of the heat bath: ΔSerasure = ΔSsystem + ΔSbath. Since the state before erasure is pure and its
state after erasure is the same as the heat bath, the minimum entropy change in the reference
state is given by the following equation:

= ln(2) ( ),D system BS k S j (4.2)

where S(φ) = − Tr(φln(φ)) is the von Neumann entropy of state φ.

The entropy change in the heat bath is equal to the average heat transfer from the bath to the
reference system divided by temperature T,

1= .D Dbath bathS Q
T

(4.3)

The heat change in the heat bath must agree with that of the system, but with an opposite sign,
ΔQbath = −ΔQsystem. When heat transfer is done quasistatically, the mechanical work required
for the state change is arbitrarily close to zero. Moreover, energy conservation requires ΔQsystem
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be equal to the change of internal energy of the system, ΔUsystem. This can be computed as the
change of average values of the Hamiltonian Ĥ before and after the erasure process,

1 1 1 1ˆ ˆ ˆ= = = [ ( ) ( )] = [( ) ].D - D - D - - - -bath system systemS Q U Tr H Tr H Tr H
T T T T

j r j r (4.4)

The Hamiltonian Ĥ can be expressed using Eq. (4.1) as Ĥ = −kBTln(Zφ). As Z is a trace, it follows
from the properties of the trace, converting the natural logarithm to base two that the following
result holds

2= [( ) ln( )] = [( ) ln( )] = ln(2)[ ( ) ( )].logD - - - +bath B B BS k Tr Z k Tr k S Trj r j j r j j r j (4.5)

Therefore, the required total energy change is given by the following equation:

2= = ln(2) ( ).logD D + D -erasure system bath BS S S k Tr r j (4.6)

Since the quantum relative entropy satisfies the following inequality

2( || ) = ( ) Tr( ) 0,log- - ³NS Sr j r r j (4.7)

the minimum of the entropy change ΔSerasure can be obtained,

erasure 2= ln(2) Tr( ) ( ).logD - ³B NS k Sr j r (4.8)

The minimum corresponding to equality in Eq. (4.8) is achieved by choosing the temperature
of the bath and {pi,|ϕi〉} such that ρ =∑i pi |ϕi ϕi |  is the same as the thermal equilibrium state.

Consequently, the minimum entropy increase required for erasure of the classical information
which is encoded in quantum states is given by the von Neumann entropy SN(ρ), where ρ is
the average state of the system, in place of the Shannon entropy, H(ρ), in the case of information
erasure of classical states.

5. Quantum entanglement and Maxwell’s demon

Formally, entanglement is defined as a form of quantum correlation that is not present in any
separable states and represents a true type of quantum behavior [12, 13]. Entanglement can be
approached from the point of view of Maxwell’s demon. Let ℋA and ℋP  be the Hilbert spaces
for two spatially separated or noninteracting subsystems, called A and P, and define the entire
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Hilbert space ℋAP =ℋA⊗ℋP . Let S(ℋ) denote the state space that consists of a set of density
operators acting in ℋ. The case studied here is that of bipartite entanglement.

A state of a bipartite system is said to be separable or classically correlated if its density operator
can be expressed as a convex sum of products of density operators

=1
= ,Äå

n
A P

i i i
i

pr r r (5.1)

where all the pi are nonnegative and ∑i pi =1. Any state that cannot be written in the form of
Eq. (5.1) is called entangled. Let  denote the subspace that contains all separable states.

It is natural to ask whether or not a given state  is separable considering how
important the subject of entanglement is in quantum mechanics. This can usually be expressed
in terms of an operator or function. In general, it is very hard to obtain a good separability
criterion, that is, something that is efficient and singles out as many entangled states as
possible. The separable subspace formed by all separable states is convex and is the main
reason for the difficulty of the problem.

Another question pertains to the amount of entanglement a pair or set of quantum objects
contains. The amount plays a major role when it comes to characterization or manipulation of
entanglement. This topic might be approached by trying to quantify entanglement by means
of a thermodynamic quantity.

In a chamber such as the one encountered in Szilard’s engine, it can be thought of as a general
information-storage apparatus, that is, physical states are distinguishable by measurement,
and therefore, stored information will be extracted. Information could be transferred from a
different system to the memory of a Szilard engine, if the initial state of the engine is in a
standard state.

Now that the memory has been identified with the one molecule gas of Szilard’s engine,
consider the following picture. From an ensemble of memories, each of which stores the value
of an n-bit random variable η, mechanical work can be extracted whose average amount per
single memory register is

= ( ),-cW n H h (5.2)

where H (η) is the Shannon entropy of η, in units such that kB ln 2 = 1. The extractable work is
the work done by the gas, so it is W = N kBTln(2) 1−H (η)  when n = 1. To understand Eq. (5.2)
more completely, suppose there are N memory registers. If all N registers are measured, the
remaining uncertainty in the memory is zero, hence Nn bits of work can be obtained. However,
the information due to the measurement on memory is kept, and this must be erased in order
to consider the amount of extractable work. The least energy consumption needed to erase
information is NH (η) bits, according to the erasure principle. The maximum total extractable
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work is N η −H (η) . Also, from the thermodynamic point of view Eq. (5.2) follows, as the work
done by the gas in an isothermal process is equal to the entropy change multiplied by the
temperature.

This argument can be applied to the case of work extraction from quantum bits. Let ρ be the
density operator for the state in a given ensemble. The qubits are in a known pure state after
measurements, which is essentially classical in terms of information. Information stored in this
set of pure states can be copied to the Szilard memory, and each register gives one bit of work.
After erasing the information acquired by measurement, the net maximum amount of work
we obtain becomes 1−SN (ρ) bits of work.

The work deficit is a difference between the globally and locally extractable work within the
context of local operations, or at least when ρ is a system with spatially separated subsystems.
Suppose there is an n-qubit state ρAP shared by A and P, then the optimal extractable work is
given by

= ( ),- AP
global NW n S r (5.3)

If the entire system can be accessed globally. On the other hand, letting Wlocal be the largest
amount of work that A and P can locally extract from the same system under local operations
and classical communication. Define the deficit to be Δ =W global −Wlocal . In order to understand
this, the deficits for a classically correlated state
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will be calculated.

The globally extractable work W global
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AP  is simply one bit. The locally extractable work
Wlocal

cl  is also one bit. The strategy is as follows: observer A will measure its bit in the basis
{|0 , |1 } and will send the result to observer A, who obtains one bit of work from it. Although
A can extract one bit of work from A′s own bit, using A’s measurement result, A needs to
consume all this energy to erase the information stored in the memory used to communicate
with observer P. Thus, the deficit for state ρcl

AP  is Δcl =1−1=0. The locally extractable work is
the same, one bit, even if the state is maximally entangled as in Eq. (5.5). However, as this state
is globally pure, it must be W global =2−SN (|Φ AP Φ AP |)=2, and therefore, Δentangled =2−1=1.
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It can be shown that the deficit is bounded from below as follows:
Δ ≥max{SN (ρ A), SN (ρ B)}−SN (ρ), where ρ A and ρ B are given by ρ A = Tr

P
(ρ) and ρ P = Tr

A
ρ. The

bound can be achieved when the state is pure and turns out to be equal to the entanglement
measure for pure states. This is simply due to the fact that a pure state can be expressed as
|ψ =∑iαi | ei | f i  in the Schmidt decomposition, then Δ =SN (ρ A)= E (ψ), where
ρ A = Tr

P |ψ ψ |  and E· is the entanglement measure for pure states.

6. A nuclear magnetic resonance demon

A very sophisticated model of a demon which is based on a type of nuclear magnetic resonance
experiment to introduced. The model studied here is close to the one originally proposed by
Lloyd [14] in 1997. It is worth discussing the model though as it may be possible to realize it
experimentally. It permits a detailed discussion on several levels and unites several subjects.
This gives a nontrivial, fully quantum mechanical model that unlike semiclassical models
allows the thermodynamics of the demon’s entire cycle of operation to be treated within a
unified quantum picture. In this section, the abbreviation βi =1 / kBTi will be used.

A spin is immersed in a magnetic field B. If the spin has the same direction as B, it has energy
−μB, where μ is the spin’s magnetic dipole moment, B is the magnitude of the field. In the
opposite direction, the spin has energy +μB. The spin can be flipped from one energy to another
by applying a π pulse at the spin’s precession frequency, ω =2μB /ℏ. When the spin flips, it
exchanges energy with the oscillatory field. When it absorbs one photon of energy ℏω from
the field, it goes from lower to higher energy, and proceeding the other way, it coherently emits
a photon of energy ℏω to the field. When the field is in a coherent state, as with fields which
are normally produced by lasers or masers, the energy exchange involves no information
exchange, entropy increase or loss of quantum coherence and so the oscillating field may be
treated as if it were classical.

A device that acquires information about such a spin could use the information to make the
spin do work. Suppose a device can measure whether the spin is in the low-energy quantum
state | ↓  or the high-energy state | ↑ . If it is in the high-energy state, a π pulse is sent to
extract its energy. This device waits for the spin to come to equilibrium at T1 > >2μB / kB  and
repeats the operation. Each time, it converts an average of μB of heat into work. It is
Landauer’s principle which prevents such a device from violating the second law of
thermodynamics. To proceed in a cyclic fashion, the device must erase the information that
it has gained about the state of the spin. At erasure, entropy Sout ≥kBln(2) is forced into the
environment, which compensates for the entropy Sspin =kBln(2) in the spin originally. If the
environment is a heat bath at T2 different from the temperature of the spin heat bath T1,
heat kBT2ln(2) flows to the heat bath along with entropy, decreasing the energy available to
convert into work. To account for energy and entropy in the cycle, the heat in is Qin =T1Sin,
and the heat out is Qout =T2Sout . Thus, the work out is Wout =Qin −Qout , and the efficiency 

Quantum Dynamics, Entropy and Quantum Versions of Maxwell’s Demon
http://dx.doi.org/10.5772/63563

251



satisfies  where  is the Carnot efficiency. Landauer’s
principle implies that instead of violating the second law, the device operates as a heat
engine, pumping heat from a high-temperature reservoir to one at low-temperature and
doing work in the process.

It can be shown that such a device operates as a heat engine that undergoes a cycle analogous
to a Carnot cycle. Thus, a quantum device that interacts with a thermal environment can get
information and use it to do useful work, but not by violating the second law of thermody‐
namics. A detailed picture of the erasure model agrees with Landauer’s principle. Two sets of
modes of the electromagnetic field constitute the environment for the spins. The first will be
a set of modes at T1 with average frequency ω1 and frequency spread greater than the coupling
constant |κ |  between the spins but less than ω1 −ω2. The second will be a set of modes at
temperature T2 with average frequency ω1 and the same frequency spread. This can be achieved
by immersing the spins in incoherent radiation with the given frequencies and temperatures.
This should provide separate heat reservoirs for spin 1 and 2. This means spin 1 interacts
strongly with the on-resonance radiation at frequency ω1, and weakly with the off-resonance
radiation at ω2, with the reverse for spin 2. Spin 1 can be regarded as interacting only with
mode 1, and spin 2 as interacting only with mode 2.

With respect to this approximation, the initial probabilities for the state of the j-th spin are

, ,

1 1 1= , = , = .
-

­ ¯

B Bj j
j j

j j B

p e p e
Z Z k T

m b m b
b (6.1)

Using Eq. (6.1), the energy can be calculated to be the following:

, ,= = tanh( ).­ ¯- + -j j j j jj jE Bp Bp B Bm m m m b (6.2)

The entropy is given by

( ), ( ),
= ,

1= ln( ) = ln( ),
­ ¯

- +åj B i j i j j B j
i

S k p p E k Z
T (6.3)

where Zj = e −μjβB + e μjβB =2cosh (μjβB). Spin 2 can acquire information about spin 1, and this
information can be exploited to perform work. Therefore, the spins can function as a heat
engine by passing through the following cycle:

First, using spin coherence double resonance, flip spin 2 if spin 1 is in state | ↑ 1. This causes
spin 2 to acquire information (S̃ 2 −S2) / kBln(2) about spin 1 at the cost of W1 = p↑,12μ2Btanh (μ2Bβ)

of work supplied by the oscillating field, where S̃ 2 = −kB∑i=↑,↓ p̃(i),2ln(p(i),2), such that
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p̃↑,2 = p↑,1p↓,2 + p↓,1p↑,2 and p̃↓,2 = p↓,1p↓,2 + p↑,1p↑,2 are the two probabilities for the states of spin 2
after the conditional spin flip.

Second, flip spin 1 if spin 2 is in the state | ↑ 1. This step permits spin 2 to take the amount
(S2−S1) / kBln(2) of the information it has acquired, and in the process carry out work
−μ1B tanh (μ1Bβ1)− tanh (μ2Bβ2)  back on the field.

Third, spin 2 still has information in the amount (S̃ 2−S1) / kBln(2) about spin 1, which can be
converted into work by flipping spin 2 if spin 1 is in state | ↑ 1, thereby carrying out work in
the amount p↑,22μ2Btanh (μ1Bβ2) on the field.

The set of pulses has finally exchanged the information associated in 1 with the information
in 2. Next, after the three conditional spin flips, spin 1 has probabilities p ′(i ),1 = p(i),2, while 2 has
probabilities p ′(i ),2 = p(i),1. Consequently, S ′

1 =S2 and S ′
2 =S1 and the new energies of the spins are

given by the following equation:

1 1 2 2 2 2 1 1= tanh( ), = tanh( ).¢ ¢- -E B B E B Bm m b m m b (6.4)

Thus, the total amount of work done by the spins on the field is given as follows:

1 2 1 2 1 2 1 1 2 2= ( ) = ( ) [tanh( ) tanh( )]¢ ¢- + - - - - -W E E E E B B Bm m m b m b (6.5)

When the temperatures satisfy the inequalities Ti > >μi B / kB, then work W simplifies to the form

2
1 2

1 2
1 2

= ( )( ) .- - -
B

BW
T T k
m mm m (6.6)

These results for work done are a function of only conservation of energy and not the pulse.
If T1 = T2, Eq. (6.6) implies W is zero or negative, no work can be extracted from the spins at
equilibrium. The cycle can be completed by allowing the spins to re-equilibrate with their
reservoirs. The following two steps then can be included to allow the spins to re-equilibrate
isentropically.

Return spin 1 to its original state: take the spin out of contact with its reservoir by varying the
frequency of the reservoir modes; next vary the field according to B→ B̂ = BT1 / T2 adiabatically,
with no heat flowing between spin and reservoir; thirdly, slowly change B̂→B, keeping the
spin in contact with the reservoir at temperature T1, so that heat flows isentropically between
the spin and reservoir. Entropy S1−S2 moves from the spin to the reservoir while the spin does
work of E1−E1′ −T1(S2−S1) on the field.

Spin 2 returns to its original state by the same steps. The total work done by the spins on the
electromagnetic field throughout the cycle is WC =(T1−T2)(S1−S2).
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Consider a simple model in which spin 1 is initially in the state

1 1 1
1| = (| | ).
2

®ñ ­ñ + ¯ñ (6.7)

This state has nonminimum free energy available for conversion into work. Apply a π/2 pulse
to rotate spin 1 into state | ↓ 1, thereby adding energy μ1B to the field. Suppose the demon
operates in a mode whereby, instead of taking the energy directly, it uses magnetic resonance
to correlate the state of 2 with the state of 1. Suppose 2 is in state | ↓ 2 initially; coherently
flipping 2 if 1 is in state | ↑ 1 results in the state

1 2 1 2
1 [| | | | ].
2

­ñ ­ñ + ¯ñ ¯ñ (6.8)

This represents an entangled state in which the state 2 is perfectly correlated with the state of
1. Energy extraction can be continued by flipping spin 1 if spin 2 is in state | ↑ 2 which allows
energy of (μ1 – μ2)B to be taken from the spin. The resulting state of the spins is

1

2
| ↓ 1

| →
2
. No extra thermodynamic cost has been incurred up till now. Since the condi‐

tional spin flipping occurs coherently, the process may be reversed by repeating the steps in
reverse order to return to the original state | → 1, with a total energy and entropy change of
zero.

In the original cycle, decoherence occurs when 2 is placed in contact with the reservoir to erase
it. The energy exchange between spin and reservoir is an incoherent process such that the pure
state | → 2 =1 / 2(| ↑ 2 + | ↓ 2) transforms into the mixed state which has density matrix

ρ̃ =1 / 2(| ↑ 2 ↑ | + | ↓ 2 ↓ |). This is significant since interaction of the spin with the reservoir
turns the process by which 2 coherently picks up quantum information about 1 into a deco‐
herent measurement process and creates one bit of information. The bit corresponds to an
entropy increase in kBln(2). In agreement with Landauer’s principle, erasure results in the
transfer of entropy from spin 2 to the low-temperature reservoir.

The amount of inefficiency generated by decohering 2 to measure spin 1 increasing the entropy
may be measured by means of a Carnot cycle model. A general state for the 1 spin would have
density matrix

1 1 1 1( ) | | ( )| |= ­ ­ ñ á­ + ¯ ¯ ñ á¯pJ J J J J Jr r (6.9)

where the basis {|↑ϑ , |↓ϑ } is made up of spin states along an axis making an angle ϑ with
the z-axis. Let temperature T1 and field B be chosen so that
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Eq. (6.9) is not an equilibrium state and has free energy that may be extracted by applying a
tipping pulse that rotates the spin by ϑ and carries out the mapping |↑ϑ → | ↑  and
|↓ϑ → | ↓ . The amount of extracted work is

* * * *
1 1 1 1 1 1 1 1= = [ ( ) ( )] [ ( ) ( )],- ­ - ¯ - ­ - ¯W E E B p p B p pm m (6.11)

with p1
*(↑ )= p1(↑ )cos2ϑ + p1(↓ )sin2ϑ and p1

*(↓ )= p1(↓ )cos2ϑ + p1(↑ )sin2ϑ. Undergoing a
Carnot cycle through the five steps just presented above extracts work of (T1 – T2)(S1 – S2) and
energy is extracted isentropically with no entropy increase. By performing measurements with
respect to which the density matrix is diagonal, the upper limit  can be attained. If the
tipping pulse is used at first to remove the free energy from 1, the demon is carrying out
measurements such that the density matrix possesses off-diagonal elements. As a result, the
measurement introduces information and the efficiency satisfies the inequality .

The steps can be summarized in this way: three conditional spin flips swap the states of 1 and
2 so that spin 1 is in state ρ2 and 2 is in state ρ ′2 =ρ ′1. Interaction with the heat reservoir decohers
2 and destroys the off-diagonal elements in the density matrix so that

* *
2 1 1( ) | | ( ) | |,¢ ® ­ ­ñá­ + ¯ ¯ñá¯p pr (6.12)

which has entropy

* * *
1 1 1

= ,

= ( )ln( ( )),
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- åB
i

S k p i p i (6.13)

with ΔS0 =S1
*−S1 as the extra entropy introduced by quantum decoherence. The entropy S1

*−S2

that flows out to reservoir 2 is then greater than the entropy Sin = S1 – S2 that flowed in from 1.
The total amount of work done is then T1(S1−S2)−T2(S1

*−S2) + W * and less than (T1 – T2)(S1 –
S2) + W*, which is done by simply undoing the tipping pulse and running the engine as before.

7. Conceptual systems for future speculation and conclusions: quantum
Szilard engines

The preceding model showed how a quantum system that obtains information about another
quantum system can function in the capacity of a Maxwell’s demon using information to
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perform work. It would be interesting if progress could be made on the experimental front in
this area. At some point, nucleon-nucleon double resonance methods could be used to
construct a demon in the form of a maser that functions as a demon and carries out a net
amplification of pulses that causes spins to flip. Two different species of nucleons must start
the cycle at different temperatures, which could be achieved by preparing one of them in a
low temperature state using electron-nucleon double resonance as in the Pound-Overhauser
effect.

Three final systems are presented to provide a summary and conclusion, both illustrate what
has been achieved and provide work for the future. These are more conceptual in nature and
are given in summary form. The processes in the first two examples are likely to be difficult
to realize in practice. The first shows that there is a close relationship between dynamical
evolutions, which violate some fundamental principle of quantum theory and those forbidden
by the second law of thermodynamics. Thermodynamics does impose severe constraints on
the choice of the fundamental axioms of quantum theory. This relies on the equivalence of the
von Neumann entropy to ordinary entropy appearing in thermodynamics. Perhaps some of
these physical situations would end up providing a test of this. The von Neumann entropy is
essential in the second model, which represents a true quantum version of a Szilard engine,
and it appears in the analysis of two cycles. The last system that involves a molecule in a
variable double well may be closer to realization experimentally. A solvable model is proposed
and used to describe it here. The conclusion to be drawn is that if the integrity of the axiomatic
structure of quantum theory is not strictly respected, then every aspect of the theory must be
examined.

(1) The first model to be studied is due to Peres and is a conceptual experiment based on the
distinguishability of quantum states [12, 13]. Peres showed that if it were possible to distin‐
guish nonorthogonal quantum states perfectly, then the second law of thermodynamics would
necessarily be violated. Consider an elementary work extraction process that uses a collection
of pure orthogonal states. A chamber is partitioned into two sections with volumes p1

V and p2
V

such that p1 + p2 = 1. The chamber contains a gas of molecules whose quantum internal degree
of freedom is a spin; as a first example before the more novel case of Peres, consider a gas with
spin up |↑> on the left and spin down |↓> on the right. Similar experiments could also be
imagined using polarized photons as well. The existence of semipermeable membranes is
essential to all of this formalism. In this event, introduce two membranes M↑ and M↓ which
distinguish the orthogonal states. The convention is that the membrane M↑ is completely
transparent to the |↓> spin gas and opaque to the |↑> spin gas. The membrane M↑ has exactly
the opposite properties. If the membranes replace the partition so that M↑ and M↓ face the |↓>
and |↑> gases, respectively, the gases give work expanding isothermally by contact with a heat
bath at temperature T. The total extractable work is then W = –p1 log2 p1 – p2 log2 p2.

The cycle imagined by Peres is related to this example; however, the key to its impact is the
use of nonorthogonal states. The volume of the chamber is 2V and in the initial state, the gas
of volume V is divided into two equal volumes V/2 and separated by an impenetrable wall.
On the left side, the gas molecules are in the state |↑> but on the right side, they are in the linear
combination state
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Both sections contain the same number of gas molecules N/2 and hence the same pressure.

The first step of the cycle is to let the gas expand isothermally at temperature T, so the entire
chamber is finally occupied. During the expansion, the gases exert work equal to NkBT ln(2)
toward the outside and absorbing the same amount of heat from the bath.

In the second step, conceptual membranes are introduced, which have the ability to distinguish
nonorthogonal states. The partition at the center has to be replaced by these membranes. Next,
insert an impenetrable piston on the right side of the vessel. The membrane M↑ transparent to
|→, but opaque to |↑>, is fixed at the center, while the other membrane M→ of opposite
transparency to M↑ can move in the left-hand region. As the piston is inserted on the right, M→

is forced to the left at the same speed so that the volume and pressure of the spin |→ gas in
between the piston and membrane M→ will remain constant. Due to the nature of the mem‐
branes, this process can be done without friction or resistance, and consequently, there is no
work consumption or heat transfer required.

At this point, the vessel is a mixture of two spin states. In terms of the basis {|↑>,|↓>}, the
density matrix for the mixture using Eq. (7.1) is
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This ρ can be mapped to a matrix representation given as follows:
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The eigenvalues of matrix Eq. (7.3) are found to be

1 2
1 1 1 1= (1 ), = (1 ),
2 22 2

+ -l l (7.4)

and the corresponding eigenvectors in terms of the {|↑>,|↓>} bases have the form,
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If the membranes M↑, M→ are replaced by two new membranes that distinguish between the
two orthogonal states |φi  in Eq. (7.5), which we call M|ϕi

, the reverse process separates the

states |φ1  and |φ2 . After replacing the semipermeable membrane by an impenetrable wall,
the gases on the left and right segments are compressed isothermally until the total volume
and pressure of the gases become equal to the initial ones. This compression requires work of
−λ1log2λ1−λ2log2λ2 =0.6 upon using Eq. (7.4), which is dissipated into the heat bath.

Finally, an opaque wall is inserted into the vessel which divides the volume V occupied by the
gases in two. Next rotate the state |ϕ1 → | ↑  in the first region on the left |ϕ1 → |→  in the
center and |ϕ2 → |→  on the right, along with a trivial spatial shift restores the initial state.
Rotations are unitary transformations and an isentropic process, so any energy that has to be
supplied can be reversibly recaptured. Hence work expenditure need not be considered in
principle when the process is isentropic.

Throughout this cycle, the network gained is 1.0–0.6 = 0.4 bits. Therefore, it is concluded that
Peres’s system can complete a cycle that can withdraw heat from a heat bath and converts it
into mechanical work without leaving any other effect on the environment. This model actually
implies that the second law itself sets a strict barrier to quantum state discrimination.

(2) Quantum variants of the basic Szilard engine have seen renewed interest recently [15–17],
partly because of their overlap with statistical mechanics and also due to links with quantum
information theory and computation. Zurek [18, 19] examined the Szilard one-particle gas
obeying Boltzmann statistics quantum mechanically. He begins by noting that a one-molecule
gas is a microscopic system and it may be wondered whether conclusions of Szilard’s classical
analysis remain valid in the quantum domain. Following Jauch and Baron [20], it may be
argued that Szilard’s analysis is inconsistent because it employs two different, incompatible
classical idealizations of the one-molecule gas, dynamical and thermodynamical. Zurek shows
that the apparent inconsistency pointed out by Jauch and Baron is removed by a quantum
treatment. Thermodynamic entropy is incompatible with classical mechanics, as it becomes
infinite in the limit ℏ→0. Thus, he views partitioning as a slow, reversible process that creates
a potential barrier of some height which is large relative to kBT. The system’s energy levels are
then modified.

In the quantum Szilard engine, the appearance of a wall is signaled by the increase in height
of a potential barrier, which becomes infinite when it is impermeable. This is crucial since the
energy levels in the box vary with potential height and boundary conditions. The energy levels
contribute to the quantum thermodynamic work and internal energy of the device. The
position of the barrier and the rate of its appearance influence the level shifts. The faster the
height of the barrier increases, the greater the change of internal energy of the system. The
energy becomes infinite when the height of the barrier approaches infinity instantaneously. If
the system is initially in the ground state and the barrier appears in an adiabatic fashion with
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the barrier off center, the particle will end up in the larger region of the box, and different from
the classical situation. For isothermal insertion, the effect of energy level shifts is concealed by
heat exchange. In order to show quantum effects of the quantum Szilard engine completely,
it is necessary to consider adiabatic insertion. In this instance, a cycle of the quantum Szilard
engine can be treated with fully quantum considerations.

Recently, such a model has been worked out in detail under the hypothesis that the von
Neumann entropy determines the entropy of the quantum state. The model is based on a one-
dimensional infinite square well, and the device is allowed to pass through two different cyclic
processes. Here, the model will simply be introduced and then two distinct cycles will be
outlined. It is too long to look at entirely. Consider a single particle of mass m which is confined
to a one-dimensional infinite well of width a. The eigenvalues En and eigenstates |En depend
on the dimension of the box and are given as follows:
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where k is a positive integer and 0 ≤ x ≤ a.

Since the particle’s state is determined by a wave function, crucial properties such as the
number of nodes in the wave function are determined by the dimension of the box. These may
vary during an expansion or contraction phase.

Assume that the system is initially in thermal equilibrium with a bath at temperature T. The
density matrix ρ0(a) takes the form

0 ( ) = ( ) | ( ) ( ) |, ( ) = ,
( )
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ñáå
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and pn(a) is the probability of the particle residing in the eigenstate |En> and is normalized to
unity. Also, Z(a) is the associated partition function given by the following:

=1
( ) =

¥
-å En

n
Z a e b (7.8)

The internal energy of the internal energy U0(a) and von Neumann entropy S0 are given in
terms of Eqs. (7.6) and (7.7) as
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The model is capable of working over at least two different cycles. There is a cycle where the
expansion is isothermal and a different cycle in which the expansion phase is adiabatic. Each
of these cycles is composed of four segments. First, there is adiabatic insertion, measurement,
expansion, and finally, there is extraction. The first two steps can usually be performed
simultaneously and so can be regarded as one. Based on these cycles, the physics can be
revealed by calculating the physical quantities, namely the internal energy, work, heat and
entropy changes over each of the segments of the cycle being studied using the formulas for
the basic physical quantities such as those in Eq. (7.9).

(3) Recently, Landauer’s thought experiment has been realized by using a colloidal particle,
which is trapped in a double-well potential that has been produced by two strongly focused
laser beams. This could be regarded as an extension of the previous model above, but it is
closer to realization experimentally. Such a system has two distinct states, that is, the particle
may be in the right or left well of the double-well system. The particle is confined with equal
probability to one of two optical potential wells and constitutes one bit of information. It may
thus be thought to store one bit of information. The bit can be erased by means of the following
procedure. First, the potential barrier between the two wells is lowered by varying or modu‐
lating the laser intensity. Next, the particle is pushed to the right by, in effect, inclining or tilting
the trapping potential. Finally, the potential is restored to its original shape. The barrier places
the particle in the right well, regardless of which well it started off in. Moreover, it will end up
in the right well with probability close to one irrespective of the particle’s initial position. The
final configuration corresponds to zero bits of information. For a full erasure cycle, the average
heat dissipated into the environment is equal to the average work needed to modulate the form
of the double well potential. In the limit of long erasure cycles, the heat dissipated during the
erasure process approaches, but does not drop below kbTln(2), in accord with Landauer’s
principle.

It is worth mentioning that such a system could be modeled by a potential well model. The
inclining of the potential could be modeled at a more sophisticated level by raising the level
of the potential on the left half. A primitive version could be modeled as follows. The Schrö‐
dinger equation can be solved in each of the three potential regions of the well. The corre‐
sponding solutions are as follows:

1 2 1 2( ) = sin( ), ( ) = , < < ,-+ +x xx A kx x B e B e a x a bw wy y

3( ) = sin( (2 )), < < 2 ,+ - + +x C k a b x a b x a by (7.10)
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It is required that the wave function and derivative remain continuous at x = a and x = a + b.
Manipulating this system of equations, it can be realized in the following form:

( tan( ) 1) ( tan( ) 1) = 0, ( tan( ) 1) ( tan( ) 1) = 0.-+ - - - - +b bA ka e C ka A ka e C ka
k k k k

w ww w w w
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From the condition that the determinant of the coefficients of system Eq. (7.12) vanishes, it is
found that

tan( )(1 ) = .- --m mb bk kka e ew w

w w
(7.13)

By solving Eq. (7.13) in the form

1tan( ) = ( ),
1

-

-

- m
m

b

b

k eka
e

w

ww
(7.14)

from which the corresponding energies can be obtained at least numerically as in Eq. (7.6).

It has been observed that much progress has been made in this area. Similar to setup (3),
Piechocinska verified Landauer’s principle within the domains of both classical and quantum
mechanics [21]. It is assumed that the particle is in a bistable potential well. Piechocinska
assumes that the bit to be erased is in contact with a constant temperature reservoir. It is also
assumed the reservoir begins in energy eigenstate |n res. The external field is turned on and
splits the degeneracy until the probability of the higher energy state being occupied is very
small, so the lower energy state |1  is occupied with high probability. This accomplishes
erasure. The external field is removed, with the final reservoir and bit states being |m res and
|1 .

Further work remains to be done, as the story is likely not finished. Armen Allahverdyan and
Theo Nieuwenhuizen recently reported [22, 23] violations of Landauer’s principle for two
model systems. It concerns a Brownian particle in contact with a constant-temperature
reservoir. Landauer’s principle seems to break down in the extreme quantum domain. This is
when the particle and reservoir are in an entangled quantum state. The total entropy cannot
be written as a sum of system and reservoir entropies. The Clausius inequality and Landauer’s
principle both seem to be violated. Consequently, their work suggests that Landauer’s
principle is not a universal law. But this would be a subject for future work [24–27].
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