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Preface

The word “microscopy” has its origins in the Greek language where the term “mikro”
means “small” or “little”, while “skopein” means “to look at,”, so literally “microscope”
means an instrument for looking at small things. So why the interest in such instruments?
That’s because humans have a deeply curious nature, and an infinity of questions that cross
their minds cannot be answered without looking at small objects and scenes that are impos‐
sible to be seen with the naked eye. Although the underlying mechanisms of curiosity are
not yet well understood, no one can argue that curiosity is equivalent to the desire to learn
and to gain knowledge. This desire made Zacharias Jansen and his father, Hans, two Dutch
spectacle makers, to be thrilled to see in the 1590s that by placing several lenses in a tube, an
enlarged view of an object near its end could be observed, much larger than it was possible
with any simple magnifying glass. Not much later, in the seventeenth century, the English‐
man Robert Hooke was constructing the first microscope and using it to see and describe
biological organisms. His book Micrographia , published in 1665, was the first illustrated vol‐
ume on microscopy containing detailed accounts of 60 “observations” of objects examined
microscopically. Micrographia’s illustrations of a world were not accessible to the human
eyes before created sensation, taking its readers by storm. For example, Samuel Pepys, a Fel‐
low of the Royal Society, was writing in his diary: “Before I went to bed, I sat up till 2’o
clock in my chamber, reading of Mr. Hookes Microscopical Observations, the most ingeni‐
ous book that I ever read in my life.” It is in Micrographia where the term “cell” was first
introduced, a term that is currently used to describe the basic structural and functional bio‐
logical unit of living organisms, the smallest unit of life that can replicate independently.
Looking at thin cork slices, Hooke remarked structures resembling to pores, which to him
looked similar to the small room in which a monk inhabited, the cellula, thus deriving the
name: “. . . I could exceedingly plainly perceive it to be all perforated and porous, much like
a Honey-comb, but that the pores of it were not regular. . . . these pores, or cells, . . . were
indeed the first microscopical pores I ever saw, and perhaps, that were ever seen, for I had
not met with any Writer or Person, that had made any mention of them before this. . ..”
These structures that puzzled Hooke were the dead cells of cork; although Hooke himself
was going to observe as well living cells later, it was someone else who was to witness for
the first time a live cell under a microscope, Antonie van Leeuwenhoek. The Royal Society
in London was releasing a first letter from this self-educated Dutch scientific explorer 8
years later after Micrographia had been published. This letter, entitled “A specimen of some
Observations made by a Microscope”, contrived by M. Leewenhoeck in Holland, lately com‐
municated by Dr. Regnerus de Graaf”, presented microscopic observations on mold, bees,
and lice. Further letters followed in which he provided his findings on different subjects us‐
ing microscopes developed by him, the details of most of which he refused to reveal, prefer‐
ring instead to provide his interpretations of the imaged scenes. Many of his letters dealt



with the description of specific forms of microorganisms, which he referred to as “animal‐
cules.” These included protozoa and other unicellular organisms, like bacteria. Some of
Leeuwenhoek’s initial findings were met with both skepticism and open ridicule, but this
was until Hooke was to return to his microscopes, which he had given up because of eye
strain, and verify Leeuwenhoek’s observations and confirm his findings. Leeuwenhoek was
also the first to find and describe in his letters the sperm cells of animals and humans and to
see that the fertilization process requires the sperm cell to enter the egg cell, which put an
end to previous theories of spontaneous generation that revolved around the idea that cer‐
tain forms of life such as fleas could arise from inanimate matter. Antonie van Leeuwenhoek
was elected to the Royal Society in February 1680, and although he considered this to be a
high honor, he did not attend the induction ceremony in London and never attended the
meetings of the Royal Society. By the time of his death in 1723, Leeuwenhoek had written
more than 550 letters to different scientific institutions, of which around 200 letters had been
published by the Royal Society. Ever since those times, microscopes represent tools of the
utmost importance for a wide range of disciplines. Without them, it would have been im‐
possible to stand where we stand today in terms of understanding the structure and func‐
tions of organelles and cells, tissue composition and metabolism, or the causes behind
various pathologies and their progression. Our knowledge on basic and advanced materials
is also intimately intertwined to the realm of microscopy, and progress in key fields of mi‐
cro- and nanotechnologies critically depends on high-resolution imaging systems. While
Hooke and Leeuwenhoek were placing efforts on looking at small things with microscopes
that relied on optical magnification, at this time a wide variety of imaging systems are avail‐
able, relying on various contrast mechanisms. Light and optical magnification remain fun‐
damental for the microscopy realm, but “looking” at small things is now possible also by
using nanostructured probes that are scanned across a sample’s surface to assess its topogra‐
phy or sense various other properties, by using beams of accelerated electrons to interact
with a sample of interest and provide information on its structure, by exploiting sound in‐
teraction with matter, and by many other approaches. This volume includes 16 chapters that
address highly significant scientific subjects from diverse areas of microscopy and analysis.
Nine of these chapters deal with optical microscopy topics, while the remaining seven refer
to nonoptical microscopy subjects. The authors present in this volume their work or review
recent trends, concepts, and applications, in a manner that is accessible to quite a broad
readership audience from both within and outside their specialist area. I am confident that
this volume will be of great value not only to those actively involved in the addressed fields
but also to those with passive but constant interest in these scientific areas and to those who
will have their first encounter with microscopy and analysis when reading the contained
chapters. In the end, I would like to express my deepest thanks to each of the authors for his
or her fine contributions to this project.

Stefan G. Stanciu, PhD
Center for Microscopy-Microanalysis and Information Processing

University Politehnica of Bucharest
Romania
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Chapter 1

Quantum Image-Forming Theory for Calculation of
Resolution Limit in Laser Microscopy

Naoki Fukutake

Additional information is available at the end of the chapter

http://dx.doi.org/ 10.5772/63494

Abstract

Here we show what determines the optical resolution in laser microscopy. We define
the expanded resolution limit (spatial frequency cutoff ) that includes the classic Abbe
definition as 2 NA/λ, where λ is the wavelength. The resolution limit can approximate‐
ly be redefined as the frequency cutoff αNA/λ, where α is the constant that depends on
the optical process occurring in the sample. In the case of the optical process originat‐
ing from the linear susceptibility χ(1), the resolution limit is well known as the Abbe
definition, namely, α = 2. However, when other optical processes are harnessed to form
the image through laser microscopy, the resolution limit can differ. We formulate a
theoretical framework that can calculate the expanded resolution limits of all kinds of
laser microscopy utilizing coherent, incoherent, linear, and nonlinear optical processes.

Keywords: image-forming theory, nonlinear optical microscopy, optical transfer func‐
tion, optical resolution limit, light-matter interaction

1. Introduction

The resolution limit (spatial frequency cutoff) of optical microscopy is usually described as
2 NA/λ, where λ is the wavelength [1]. For example, bright field microscopy indicates the
resolution limit of 2 NA/λ at a maximum. However, this resolution limit is restricted to optical
microscopy that utilizes the optical process derived from the linear susceptibility χ(1), such as
bright field microscopy. Since fluorescence is a χ(3)-derived optical process, the resolution limit
of  optical  microscopy with fluorescence can differ  from that  of  bright  field microscopy.
Although conventional  fluorescence  microscopy exhibits  the  resolution limit  of  2  NA/λ,
microscopy that achieves the full potential of fluorescence, such as structured illumination

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



microscopy (SIM), can reach 4 NA/λ [2]. In general, the resolution limit in optical microsco‐
py becomes different according to the kind of optical process.

Laser microscopy is composed of an excitation optical system and a signal-collection optical
system, and the signals are acquired point by point to reconstruct an image. One of the typical
examples of laser microscopy is confocal fluorescence microscopy, which has been widely used
as an optical imaging technique. Confocal fluorescence microscopy can acquire high-resolu‐
tion optical images with depth sectioning by means of focused laser excitation and a pinhole
in front of a detector, which eliminates out-of-focus signals. Confocal fluorescence microscopy
harnesses fluorescence as an optical process to increase the optical resolution, compared with
microscopy with a χ(1)-derived optical process. Confocal microscopy that utilizes a χ(1)-derived
optical process has a resolution limit (frequency cutoff) of NAex/λex + NAcol/λex, where λex is the
wavelength of the excitation beam, NAex is the numerical aperture of the objective in the
excitation system, and NAcol is the numerical aperture of the objective in the signal-collection
system [3, 4], while confocal fluorescence microscopy theoretically indicates the resolution
limit of 2NAex/λex + 2 NAcol/λfl, where λfl is the wavelength of the fluorescence. Note that in
conventional (wide field) fluorescence microscopy, since the entire specimen is excited evenly,
which corresponds to the condition NAex = 0, the resolution limit becomes 2 NAcol/λfl.

In addition to confocal fluorescence microscopy, various laser microscopy techniques have
recently been used to visualize biological specimens in three dimensions by harnessing many
kinds of optical processes, such as two-photon excited fluorescence (TPEF), second-order
harmonic generation (SHG), third-order harmonic generation (THG), coherent anti-Stokes
Raman scattering (CARS), and stimulated Raman scattering (SRS) [5–11]. Depending on the
optical process, each microscopy exhibits its own feature of image formation. In incoherent
optical processes, such as fluorescence and TPEF, since the vacuum field is involved in the
phenomena along with the excitation beam, the signals emitted from different molecules in
the specimen do not interfere. In contrast, in coherent optical processes, such as χ(1)-derived
phenomenon, SHG, THG, CARS, and SRS, because the processes are caused only by coherent
excitation laser beams, the signals emitted from different molecules interfere. Although the
coherence of the optical process influences the image-forming properties of laser microscopy,
the basic concept is that the image of the linear or nonlinear susceptibility distribution χ(i) (x,
y, z) in the specimen is formed by microscopy regardless of coherence. From a perspective
other than coherence, laser microscopy can be categorized into two types. In the first type, as
the wavelength of the signal is different from that of the excitation beam, the signal can be
separated from the excitation beam, resulting in the image being formed only by the signal. In
the second type, since the signal has the same wavelength as the excitation beam, interference
between the signal and the excitation beam is observed. It will be shown that the image-
forming properties and resolution limits of both types can be dealt with in the identical
framework.

Although the image-forming properties of each microscopy technique are well known, the
unified theory does not exist that can deal with the image-forming properties and the resolu‐
tion limits of all kinds of laser microscopy in the identical framework. If the unified image-
forming theory is developed, it enables one to overview all microscopy techniques with any
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optical processes, such as linear, nonlinear, coherent, and incoherent processes, which can lead
to the invention of a new microscopy technique. In this chapter, we formulate a unified
framework that utilizes double-sided Feynman diagrams to discuss all microscopy applica‐
tions by use of a unique technique. With our framework, the resolution limits of laser micro‐
scopy techniques will be able to be redefined with respect to each optical process. Moreover,
we will lead to some important conclusions about laser microscopy. Although only laser
microscopy is discussed here, our theory can be applied to any type of optical microscopy.

2. Theoretical framework

2.1. Model description

We begin by defining the imaging system (laser microscopy) in our model. Laser microscopy
is composed of an excitation system to focus the laser beam onto a sample and a signal-
collection system to gather the signal generated from the sample. A schematic of laser
microscopy is shown in Figure 1, in which the coordinate systems are given. We assume in
what follows that three-dimensional (3-D) sample-stage scanning is conducted instead of laser
scanning, but it does not influence the optical resolution. In laser microscopy, usually one or
two excitation beams are employed to generate the signal. The electric field of the signal is
emitted from the molecule excited by the electric fields of excitation beams, and the signal field
propagates through the signal-collection system. The signals are acquired point by point with
a photodetector to reconstruct the 3-D image.

Figure 1. Schematic of laser microscopy (transmission type).

Quantum Image-Forming Theory for Calculation of Resolution Limit in Laser Microscopy
http://dx.doi.org/ 10.5772/63494

5



For simplicity, the first Born approximation is applied to understand the true nature of the
optical resolution. In this approximation, the multiple scattering and depletion of the beam
are neglected, which usually holds true for nearly transparent samples, such as a biological
specimen. If the multiple scattering and depletion were intense, the image acquired would
become deformed to some degree. We assume that both the excitation and signal-collection
systems are 1× magnification systems with no aberration, which does not change the essence
of their image-forming properties. In our model, the scalar diffraction theory is employed. The
linear or nonlinear susceptibility distribution χ(i) (x, y, z) in the sample plays a role as the object
in the imaging system. The polarization P (x, y, z) is induced by the excitation electric field,
and the induced polarization emits the signal electric field. Hereafter, we express the electric
field as a complex function.

2.2. Transmission linear confocal microscopy

We start with transmission linear confocal microscopy, in which a χ(1)-derived optical process
occurs in the sample. Figure 2 shows the double-sided Feynman diagram and the energy-level
diagram describing theχ(1)-derived optical process. The polarization is induced by the excita‐
tion beam focused onto the sample, and the signal emitted by the polarization is gathered and
delivered into the photodetector through the signal-collection system. We express the electric
field distribution in the sample formed by the focused excitation beam as Eex (x, y, z). The
Fourier transform of Eex (x, y, z) is shaped like a portion of a spherical shell, as shown in Figure
3, which represents the distribution of the wavenumber vector. When the sample-stage
displacement (x′, y′, z′) is zero, the polarization distribution becomes

( )1
ex( , , ) ( , , ) ( , , ),P x y z x y z E x y zc= (1)

Figure 2. Double-sided Feynman diagram and energy-level diagram for the χ(1)-derived optical process. λ is the wave‐
length. The frequency cutoff (x-y direction) can be calculated by using the diagrams, which will be discussed in more
detail in a later section.

Microscopy and Analysis6
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2.2. Transmission linear confocal microscopy

We start with transmission linear confocal microscopy, in which a χ(1)-derived optical process
occurs in the sample. Figure 2 shows the double-sided Feynman diagram and the energy-level
diagram describing theχ(1)-derived optical process. The polarization is induced by the excita‐
tion beam focused onto the sample, and the signal emitted by the polarization is gathered and
delivered into the photodetector through the signal-collection system. We express the electric
field distribution in the sample formed by the focused excitation beam as Eex (x, y, z). The
Fourier transform of Eex (x, y, z) is shaped like a portion of a spherical shell, as shown in Figure
3, which represents the distribution of the wavenumber vector. When the sample-stage
displacement (x′, y′, z′) is zero, the polarization distribution becomes

( )1
ex( , , ) ( , , ) ( , , ),P x y z x y z E x y zc= (1)

Figure 2. Double-sided Feynman diagram and energy-level diagram for the χ(1)-derived optical process. λ is the wave‐
length. The frequency cutoff (x-y direction) can be calculated by using the diagrams, which will be discussed in more
detail in a later section.
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Figure 3. Distribution of the wavenumber vector for the beam focused by the objective. This is referred to as the “3-D
pupil function”.

where χ(1) (x, y, z) is the linear susceptibility distribution in the sample and we presume that
the electric permittivity ∈0 of free space is unity: ∈0 = 1. We assume that the signal emitted
from a single point in the sample located at the origin ((x, y, z) = (0, 0, 0)) of the object coordinate
forms the electric field distribution Ecol (xa, ya, za) in the detection space through the signal-
collection system. The Fourier transform of Ecol (xa, ya, za) is also shaped like a portion of a
spherical shell located on the + kz side. Using Ecol (xa, ya, za) and P (x, y, z), the electric field
distribution ET (xa, ya, za) in the detection space in the case of arbitrary χ(1) (x, y, z) is given by

( ) a a a, , ( , , ) ( , , ) ,T a a a colE x y z P x y z E x x y y z z dxdydz= - - -òòò (2)

when (x′, y′, z′) = (0, 0, 0). Taking into account the sample-stage displacement (x′, y′, z′), we
recast Eq. (2) as

(3)

In addition to the signal, we need to consider the electric field distribution formed in the
detection space by the excitation beam itself through the excitation system and signal-
collection system, which functions as the local oscillator.

For simplicity, we consider the case of the condition NAex = NAcol. The image intensity
It (x′, y′, z′) acquired by our imaging system can be written as

( ) ( )t 2
T a a a a a a a a a( , , ) | , , , , ; , , | ( , ){ } ( ) ,ex a a aI x y z iE x y z E x y z x y z a x y z dx dy dzd¢ ¢ ¢ ¢ ¢ ¢= - +òòò (4)
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where a(xa, ya)is the two-dimensional function representing the detector size, δ(za) stands for
the Dirac delta function, the excitation beam Eex (xa, ya, za) acts as the local oscillator, and −i
before Eex (xa, ya, za) stems from the Gouy phase shift. To obtain the image intensity Ic

t(x ', y ', z ')

for confocal microscopy, we can substitute δ(xa) δ(ya) into a(xa, ya) in Eq. (4). From Eqs. (3) and
(4), we obtain

(5)

Although Eex (x, y, z) and Ecol (x, y, z) are complex functions,
Eex (x, y, z) Ecol (−x, −y, −z) ≡ ASFt (x, y, z) approaches a real function under the condition NAex

= NAcol. Regarding ASFt (x, y, z) as the real function, Eq. (5) reduces to

( )2 1t ' ' '
c ex ex, , 0,0,0 2 0,0,0 Im( ) ( ) ( ) { ( ), , }ASF , ) .( ,tI x y z E E x x y y z z x y z dxdydzc¢ ¢ ¢ » - + + +òòò (6)

This equation shows that only absorbing objects can be observed and phase objects cannot be
visualized. The first term in Eq. (6) leads to low-contrast images. The function ASFt (x, y, z) is
referred to as the amplitude spread function (ASF), and the coherent transfer function (CTF)
is calculated by Fourier transforming the ASF.

2.3. Reflection linear confocal microscopy

Next, we deal with reflection linear confocal microscopy (see Figure 4), in which a χ(1)-derived
optical process is harnessed. The excitation beam focused onto the sample by the excitation
objective induces the polarization, and the signal generated from the polarization is gathered
and delivered into a photodetector with the same objective. The excitation and signal-collection
systems share a common objective. Unlike in transmission linear confocal microscopy, the
excitation beam does not interfere with the signal. For reflection microscopy, the electric field
distribution of the signal emitted from a single-point object in the sample Ecol (xa, ya, za) formed
in the detection space through the signal-collection system is replaced by E ′

col(xa, ya, za), where

the Fourier transform of E ′
col(xa, ya, za) is located on the −kz side (see Figure 5). With the arbitrary

sample-stage displacement (x′, y′ z′), the electric field distribution ER(x′, y′ z′; xa, ya za) in the
detection space is given by
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( ) ( ) ( )1
R a a a ex col a a a, , ; , , , , , , ( , , )( ) .E x y z x y z x x y y z z E x y z E x x y y z z dxdydzc¢ ¢ ¢ ¢ ¢ ¢ ¢= + + + - - -òòò (7)

Figure 4. Schematic of reflection microscopy.

Figure 5. Distribution of the wavenumber vector (3-D pupil function) for the signal focused by the signal-collection
objective.

As only the signal with no local oscillator forms the image, the image intensity Ic
r(x ', y ', z ')

acquired by reflection linear confocal microscopy is written as

(8)
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The function Eex(x, y, z)E ′
col(− x, − y, − z)≡ASFr(x, y, z) is defined as the ASF for reflection

linear confocal microscopy. Since we have the relation Ecol(x, y, z)= E ′
col(− x, − y, − z), the ASF

in reflection linear confocal microscopy ASFr (x, y, z) becomes equal to Eex(x, y, z)Ecol(x, y, z).
While the ASF in transmission linear confocal microscopy ASFt (x, y, z) approaches a real
function, that in reflection linear confocal microscopy ASFr (x, y, z) is inevitably a complex
function. In reflection linear confocal microscopy, the mixture image of the real and imaginary
parts of the linear susceptibility is visualized.

2.4. Coherent nonlinear microscopy

We expand the image-forming formulas for χ(1)-derived optical processes to the general
formulas for χ(i)-derived optical processes. In this subsection, we deal with coherent micro‐
scopy, which utilizes coherent optical processes. As an example, we first consider coherent
anti-Stokes Raman scattering (CARS) microscopy, in which the two excitation beams (pump
and Stokes) are used to generate the CARS signal (see Figure 6). In CARS microscopy, the
pump and Stokes beams are temporally and spatially overlapped to generate the CARS signal
such that the frequency difference between the pump and Stokes is tuned to match a particular
Raman-active vibration frequency. The resonant CARS emission is several orders of magni‐
tude greater than that from spontaneous Raman scattering. CARS microscopy provides
chemically selective image contrast based on the intrinsic vibrational modes of molecular
species, avoiding the need for labels. In addition, CARS imaging systems also employ near-
infrared lasers to maximize imaging depth and minimize photodamage to cells. When the
sample-stage displacement is zero, (x ′ , y ′ , z ′ )= (0 , 0 , 0), the polarization distribution
becomes

( ) { }*3
CARS CARS p S p( , , ) ( , , ) ( , , ) ( , , ) ( , , ),P x y z x y z E x y z E x y z E x y zc= (9)

where χCARS
(3) (x, y, z) denotes the nonlinear susceptibility for CARS and Ep(x, y, z) and Es(x, y,

z) stand for the electric field distributions in the sample formed by the pump and Stokes beams
focused through the excitation system, respectively. In the same manner as in the previous
subsection, taking into account the sample-stage displacement (x′, y′, z′), in transmission
microscopy, the electric field distribution ECARS(x′, y′, z′; xa, ya, za) in the detection space can be
written as

(10)

where Ecol(x, y, z) is calculated by using the wavelength of the CARS signal. Note that for
reflection microscopy, Ecol(x, y, z) is replaced by E′col(x, y, z). As the wavelength of the CARS
signal is different from those of the pump and Stokes beams, only the CARS signal can be
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detected by using a filter. The image intensity ICARS(x′, y′, z′) acquired by CARS microscopy is
given by

( )2
CARS CARS a a a a a a a a a, , , , ; , , ( ,( ) |{ ( )} | .)I x y z E x y z x y z a x y z dx dy dzd¢ ¢ ¢ ¢ ¢ ¢= òòò (11)

Figure 6. Double-sided Feynman diagram and energy-level diagram for CARS. λpu is the wavelength of the pump
beam, λS is the wavelength of the Stokes beam, and λCARS is the wavelength of the CARS signal. The relation 2/λpu−1/λS

= 1/λCARS is satisfied.

In confocal CARS microscopy, the image intensity ICARS
c (x ′ , y ′ , z ′ ) reduces to

2
CARS CARS

(3) * 2
CARS col

(3) 2
CARS CARS

( , , ) |{ ( , , ;0,0,0)} |

| ( , , ) ( , , ){ ( , , )} ( , , ) ( , , ) |

| ( , , )ASF ( , , ) | .

c

p S p

I x y z E x y z

x x y y z z E x y z E x y z E x y z E x y z dxdydz

x x y y z z x y z dxdydz

c

c

¢ ¢ ¢ = ¢ ¢ ¢

= + ¢ + ¢ + ¢ - - -

= ò ò ò + ¢ + ¢ + ¢

òòò (12)

where ASFCARS(x, y, z)≡ Ep(x, y, z){ES(x, y, z)}*Ep(x, y, z)Ecol(− x, − y, − z). The CTF of CARS
microscopy is calculated by Fourier transforming ASFCARS(x, y, z). The maximum value of the
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frequency cutoff, which means the grating with the largest grating vector that can be resolved,
is determined by the CTF. It is proven that the frequency cutoff of nonconfocal CARS micro‐
scopy does not change compared with that of confocal CARS microscopy [4]. In general, in
coherent microscopy, the theoretical resolution limits (frequency cutoffs) are identical between
confocal and nonconfocal systems.

Figure 7. Double-sided Feynman diagram and energy-level diagram for SRG. λsig is the wavelength of the SRG signal.
Note that λS = λsig.

As the next example, we consider stimulated Raman gain (SRG) microscopy, in which the
pump and Stokes beams are employed as the excitation beams in common with CARS
microscopy. As the wavelength of the SRG signal is identical with that of the Stokes beam (see
Figure 7), the SRG signal interferes with the Stokes beam, which acts as the local oscillator in
transmission microscopy. The pump beam is modulated and the SRG signal with the same
wavelength as the Stokes beam can be extracted by demodulating the Stokes beam with the
lock-in amplifier. In the signal-collection system, the pump beam is blocked by the filter. When
(x′, y′, z′) = (0, 0, 0), the polarization distribution is given by

(3) *
SRG SRG( , , ) ( , , ){ ( , , )} ( , , ) ( , , ),p S pP x y z x y z E x y z E x y z E x y zc= (13)

where χSRG
(3) (x, y, z) represents the nonlinear susceptibility for SRG. With the sample-stage

displacement (x′, y′, z′), in transmission microscopy, the electric field distribution of the SRG
signal ESRG (x′, y′, z′; xa, ya, za) in the detection space is written as
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(14)

where Ecol(x, y, z) in this case must be calculated by using the wavelength of the SRG signal.
With the filter that blocks the pump beam, the total intensity ISRG

t (x ′ , y ′ , z ′ ) identified by the
detector of transmission SRG microscopy is given by

2
SRG SRG( , , ) | ( , , ) ( , , ; , , ) | ( , ) ( ) ,t

S a a a a a a a a a a a aI x y z iE x y z E x y z x y z a x y z dx dy dzd¢ ¢ ¢ = - + ¢ ¢ ¢òòò (15)

where the Stoke beam − iES(xa, ya, za) with the Gouy phase shift (−i) functions as the local
oscillator. In confocal transmission SRG microscopy, substituting δ(xa) δ(ya) into a(xa, ya),
ISRG

t (x ′ , y ′ , z ′ ) reduces to

(16)

where we used the fact that ASFSRG(x, y, z)≡ | Ep(x, y, z)| 2ES(x, y, z)Ecol(− x, − y, − z) ap‐
proaches a real function under the condition NAex = NAcol. Note that the sign of Im{χSRG

(3) } is
negative in SRG. The first term in Eq. (16) can be eliminated with lock-in detection. The CTF
is calculated by Fourier transforming ASFSRG(x, y, z).

We also consider “nonconfocal” transmission SRG microscopy, which is normally used to
achieve a high signal intensity. Although the detector is normally placed at the plane conjugate
to the pupil of the collection objective in nonconfocal microscopy, we deal with microscopy in
which the detector is placed at the image plane conjugate to the sample plane to discuss
confocal microscopy and nonconfocal microscopy in the same theoretical framework. Note
that in nonconfocal microscopy, the image does not change regardless of detector position.
Therefore, to simplify the equation, we calculate the intensity value at a certain sample-stage
displacement (x′, y′, z′) by three-dimensionally integrating the signal intensity in the detection
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space. The image intensity is proportional to the above-mentioned calculation result. The
image intensity ISRG

nct (x ′ , y ′ , z ′ ) acquired by the detector of nonconfocal transmission SRG
microscopy is given by

(17)

Figure 8. Double-sided Feynman diagram and energy-level diagram for stimulated emission. λex is the wavelength of
the excitation beam, λsti is the wavelength of the stimulation beam, and λsig is the wavelength of the SE signal. A two-
level system is assumed.
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Here we used the relations Ecol(−x, −y, −z) = {Ecol(x, y, z)}* and
ES(xa, ya, za) ⊗ Ecol(xa, ya, za)= ES(xa, ya, za) under the condition NAex = NAcol,, where ⊗ repre‐
sents the convolution. The first term in Eq. (17) can be eliminated with lock-in detection. The
ASF for nonconfocal SRG microscopy is |Ep(x, y, z)|2|ES(x, y, z)|2, which is nearly equal to the
ASF for confocal microscopy.

We then consider nonconfocal reflection SRG microscopy. Interestingly, in nonconfocal
reflection SRG microscopy, the reflection light ER(x′, y′, z′; xa, ya za) generated by the χ(1)-derived
optical process plays a role as the local oscillator. The image intensity ISRG

ncr (x ′ , y ′ , z ′ ) acquired
by the detector of nonconfocal reflection SRG microscopy is given by

(18)

As the local oscillator in this case does not have a Gouy phase shift, the real part of χSRG
(3) (x, y, z)

is mainly observed. To see this, we consider a single-point object: χ (1)(x, y, z)=δ(x, y, z) and
χSRG

(3) (x, y, z)=εrδ(x, y, z) + iεiδ(x, y, z), where εr, εi ≪1. Eq. (18) reduces to

(19)
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The third term in Eq. (19) becomes zero, and the first term can be eliminated with lock-in
detection. Eventually, only the real part εr remains.

The last example for coherent nonlinear microscopy is stimulated emission (SE) microscopy,
in which the pump beam (electric field distribution: Ep(x, y, z)) and the stimulation beam
(electric field distribution: Esti(x, y, z)) are employed to generate the signal (see Figure 8). In
SE microscopy, the SE signal has the same wavelength as that of the stimulation beam, and
the SE signal interferes with the stimulation beam, which functions as the local oscillator in
transmission microscopy. The pump beam is modulated and the SE signal can be extracted by
demodulating the stimulation beam interfering with the SE signal. In analogy with SRG
microscopy, replacing ES(xa, ya, za) with Esti(xa, ya, za) and ESRG(x ′ , y ′ , z ′ ; xa, ya, za) by
ESE (x ′ , y ′ , z ′ ; xa, ya, za)≡∭χSE

(3)(x + x ′ , y + y ′ , z + z ′ )| Ep(x, y, z)|2
Esti(x, y, z) Ecol(xa-x, ya-y, za-

z)dxdydz, the image intensity ISE
nct(x ′, y ′, z ′) acquired by the detector in nonconfocal transmission

SE microscopy is written as

(20)

where χSE
(3)(x, y, z) represents the nonlinear susceptibility for SE. In Eq. (20), we used the

relations Ecol(− x, − y, − z)= {Ecol(x, y, z)}* and Esti(xa, ya, za)⊗ Ecol(xa, ya, za)= Esti(xa, ya, za) under
the condition NAex = NAcol. The first term can be eliminated with lock-in detection. The ASF
for nonconfocal SE microscopy is | Ep(x, y, z)| 2 | Esti(x, y, z)| 2, which is nearly equal to the
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ASF for confocal microscopy. Although this equation for SE microscopy is described by the
same notation as SRG microscopy, the Feynman diagram differs.

2.5. Incoherent microscopy

To deal with incoherent optical processes, the vacuum field around the sample needs to be

reckoned in our calculation. We assume that  denotes the amplitude of the quantum
vacuum zero-point effect at the (x,y,z) position in the sample. For spontaneous Raman

scattering, the Stokes beam ES (xa, ya, za) is replaced by the vacuum field :

(21)

We then consider the Fourier expansion of  into the plane wave basis :

(22)

(23)

where (kx, ky, kz) is the wavenumber vector,  stands for the Fourier component of the
vacuum field, and C(kx, ky, kz) is the cone-shaped function representing the wave vectors of
the Fourier components of the vacuum field that can pass through the signal-collection
objective with NAcol and reach the detector. In the case of the fixed angular frequency of the
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pump, the nonlinear susceptibility of SRG is a function of the angular frequency of the Stokes

beam: ωS = c kx
2 + ky

2 + kz
2, where c is the light speed in vacuum. Therefore, we can replace

χSRG
(3) (x, y, z) in Eq. (21) with χSRG

(3) (x, y, z)L (kx, ky, kz), where L (kx, ky, kz) is a spherically
symmetrical function (typically a complex Lorentzian function of ωS). We then obtain

2
Ra Ra( , , ) | ( , , ; , , ) | ( , ) ( ) ,t

a a a a a a a a aI x y z A x y z x y z a x y z dx dy dzd¢ ¢ ¢ = ¢ ¢ ¢òòò (24)

with

(25)

In common with SRG, the fourth term in the above equation is negligible also in spontane‐
ous Raman scattering. Thus, we omitted the fourth term. Carrying on the calculation, we obtain
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(26)

Here we used the following equations:

(27)

(28)

The first term in Eq. (26) corresponds to the vacuum field that cannot be observed. As only
the difference from the vacuum state can be measured, the detected signal becomes

(29)
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Note that Im{χSRG
(3) (x, y, z)} is a negative value. This equation is well known as the image-

forming formula of confocal microscopy with a finite detector size for incoherent optical
processes [12]. In incoherent microscopy, the size of the detector influences the optical
resolution, according to Eq. (29). In nonconfocal incoherent microscopy, only the pump beam
| Ep(x, y, z)| 2 determines the optical resolution, while in confocal incoherent microscopy, both
the pump beam | Ep(x, y, z)| 2 and the signal | Ecol(− x, − y, − z)| 2 affect the resolution limit,
resulting in better resolution.

Figure 9. Double-sided Feynman diagram and energy-level diagram for (a) spontaneous Raman scattering and (b) flu‐
orescence.
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To discuss the maximum value of the frequency cutoff, we concentrate on confocal microscopy.
Substituting δ(xa) δ(ya) into a(xa, ya), we obtain the image-forming formula of confocal Raman
microscopy as follows:

(3) 2 2
Ra SRG col( , , ) Im{ 2 ( , , )} | ( , , ) | | ( , , ) | .c¢ ¢ ¢ = - + ¢ + ¢ + ¢ - - -òòòc

pI x y z x x y y z z E x y z E x y z dxdydz (30)

Another example of an incoherent optical process is fluorescence. For the image-forming
formula of confocal fluorescence microscopy, we only replace χSRG

(3) (x, y, z) with χSE
(3)(x, y, z),

namely,

(3) 2 2
flu SE col( , , ) Im{ 2 ( , , )} | ( , , ) | | ( , , ) | .c¢ ¢ ¢ = - + ¢ + ¢ + ¢ - - -òòòc

pI x y z x x y y z z E x y z E x y z dxdydz (31)

Although the ASF of spontaneous Raman scattering and that of fluorescence microscopy are
represented by the same notation, it is notable that the double-sided Feynman diagrams or
energy-level diagrams for these two processes are different, as described in Figure 9.

3. Optical resolution limit

In Section 2, we covered all types of laser microscopy, which include (i) coherent microscopy
with the signal wavelength different from the excitation wavelength, (ii) coherent microscopy
with the signal wavelength identical with the excitation wavelength, and (iii) incoherent
microscopy.

In type (i), the signal can be measured by blocking the excitation beam with the filter. In type
(ii), the signal can be extracted by lock-in detection, except linear microscopy that utilizes a χ(1)-
derived optical process. Type (ii) has the local oscillator interfering with the signal, while type
(i) does not have the local oscillator. Type (iii) is described in the same fashion as type (ii).
Interestingly, in type (iii), the vacuum field plays a role as the local oscillator.

In this section, we form the framework that can discuss the resolution limit for all types of laser
microscopy by using double-sided Feynman diagrams and energy-level diagrams. It is well
known that the image of the object is formed in three dimensions by laser microscopy with a
finite optical resolution, determined by the NA of the excitation and signal-collection systems
and the wavelengths of the excitation beams and signal. In addition, we show that the type of
optical process occurring in the sample also influences the optical resolution. In our model,
the distribution of the linear or nonlinear susceptibility χ(i) (x, y, z) corresponds to the object
we would like to visualize. While the double-sided Feynman diagram was developed to
calculate the quantity of susceptibility, which depends on the type of optical process involved,
we provide the calculation method for the optical resolution of laser microscopy, which is also
linked to the double-sided Feynman diagram.
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Our model includes coherent microscopy and incoherent microscopy. Regardless of the
coherence, we deal with all types of laser microscopy in the identical framework. In coherent
microscopy, the coherent interaction between the excitation laser beam and the molecule
occurs, and the corresponding susceptibility distribution is visualized in the image. In
incoherent microscopy, an incoherent optical process, which is caused by the excitation beam
and the vacuum field lying in the object space, takes place, and the image of the corresponding
susceptibility distribution is created. Incoherent microscopy exhibits the incoherent property
inherited from the vacuum field. For incoherent microscopy, the equation is formulated by
partially using quantum optical notation.

In incoherent microscopy, the definition of the optical resolution becomes straightforward by
utilizing the optical transfer function (OTF), while in coherent microscopy, because the OTF
does not exist, some definitions are conceivable. In this section, for both coherent microscopy
and incoherent microscopy, we define the resolution limit as the largest grating vector that can
be resolved, when the three-dimensional grating of the susceptibility is observed as the object.
By using our theoretical framework described below, the frequency cutoffs (resolution limits)
of coherent microscopy and incoherent microscopy can be compared.

3.1. Diagram technique

We introduce the double-sided Feynman diagram to discuss the frequency cutoff. Originally,
this diagram was developed to count and categorize the optical processes and calculate the
nonlinear susceptibility of each one. Here we connect the diagram to the frequency cutoffs of
linear, nonlinear, coherent, and incoherent microscopy. The diagram can deal with all optical
processes, including incoherent processes, such as fluorescence and spontaneous Raman
scattering. In coherent microscopy, the resolution limits of confocal and nonconfocal systems
are identical, while in incoherent microscopy, the confocal system exhibits the better optical
resolution than the nonconfocal system. Note that in coherent microscopy, the images of the
confocal and nonconfocal systems indicate the different contrasts. To discuss the theoretical
maximum value of the frequency cutoff, we deal with the confocal system for both coherent
microscopy and incoherent microscopy. We consider the ASF and its Fourier transform: CTF.
For incoherent microscopy, although the point spread function (PSF) is ordinarily used instead
of ASF, in this section we refer to PSF for incoherent microscopy as ASF, to integrate coherent
microscopy and incoherent microscopy into the identical framework.

The essential part of the image-forming formula for all types of microscopy can be written as

( )( , , ) ( , , ')ASF( , , ) ,iI x y z O x x y y z z x y z dxdydz¢ ¢ ¢ = + ¢ + ¢ +òòò (32)

or the square of its modulus. Here O(i) (x, y, z) corresponds to the object originating from
χ(i) (x, y, z). To discuss the largest grating vector that can be resolved, we consider 3-D
grating as the object. In this case, we can just concentrate on Eq. (32), because the resolu‐
tion limit does not change regardless of whether Eq. (32) is squared or not. The Fourier
transform of Eq. (32) is given by
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(33)

where Ã means the Fourier transform of A and ( f x, f y, f z)= (kx / 2π, ky / 2π, kz / 2π), which
corresponds to the grating vector. For convenience, we use the definition that the Fourier
transform of {ASF(x, y, z)}* is {CTF( f x, f y, f z)}*. The CTF expresses the existence range of the
grating vector that can be resolved. In transmission linear confocal microscopy, for example,
ASF(x, y, z) is equal to Eex(x, y, z)Ecol(− x, − y, − z), and Fourier transforming it leads to
CTF( f x, f y, f z)=Uex(− f x, − f y, − f z) ⊗ Ucol( f x, f y, f z), where Ucol( f x, f y, f z) and Uex( f x, f y, f z)
stand for the Fourier transforms of Ecol(x, y, z) and Eex(x, y, z), respectively. Considering the
Ewald sphere helps in understanding the CTF. The Ewald sphere in this case has the same
radii as Ucol( f x, f y, f z) and Uex( f x, f y, f z), which are partial spheres (3-D pupil functions) as
mentioned above. The phase-matching condition (momentum conservation law),

, is satisfied with the Ewald sphere, where kex and ksig are the wavenumber vectors
of the excitation light and the signal, respectively, and K is the grating vector in the sample.
Unless the phase-matching condition is satisfied as shown in Figure 10, the signal cannot be
generated. Consequently, the resolvable grating vector is restricted to the range determined
by the CTF.

In analogy with the above formulation, also for any laser microscopy, the phase-matching
condition is taken into account. Since the focused excitation beam is composed of numerous
plane waves, all combinations of the excitation plane wave need to be considered. In coherent
microscopy, only if the sum of the wavenumber vector of each excitation plane wave and the
grating vector of the susceptibility is equal to the wavenumber vector of the signal that can be
collected by the signal-collection system, the signal can be generated and detected by the
signal-collection system. The phase-matching condition (e.g., ) can
be connected to the double-sided Feynman diagram and energy-level diagram as follows:

1. For the right-pointing arrow in the Feynman diagram or the up-pointing arrow in the
energy-level diagram, the wavenumber vector of the excitation light corresponds to +kex.

2. For the left-pointing arrow in the Feynman diagram or the down-pointing arrow in the
energy-level diagram, the wavenumber vector of the excitation light corresponds to −kex.

The focused excitation beams and the signal contain many plane waves whose wave‐
number vectors lie on the 3-D pupil functions. The ASF (e.g.,

) obeys the following rule.

3. For the right-pointing arrow in the Feynman diagram or the up-pointing arrow in the
energy-level diagram, the electric field distribution formed by the excitation beam
corresponds to Eex(x).

4. For the left-pointing arrow in the Feynman diagram or the down-pointing arrow in the
energy-level diagram, the electric field distribution formed by the excitation beam
corresponds to .
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5. For the wavy-line arrow, the electric field distribution Ecol (−x) formed by the signal
through the signal-collection system is applied.

The CTF (e.g., ) satisfies the following rule.

6. For the right-pointing arrow in the Feynman diagram or the up-pointing arrow in the
energy-level diagram, the 3-D pupil function for the excitation beam corresponds to Uex

(−f).

7. For the left-pointing arrow in the Feynman diagram or the down-pointing arrow in the
energy-level diagram, the 3-D pupil function for the excitation beam corresponds to

.

8. For the wavy-line arrow, the 3-D pupil function for the signal Ucol (f) is applied.

As an example of coherent microscopy, Figure 10 describes the relation between the CTF
and the phase-matching condition represented by the 3-D pupil function. The figure
shows the case of linear confocal microscopy, but in the case of nonlinear coherent
microscopy, the nonzero region of the CTF becomes larger and the missing cone in the z
direction disappears. While the CTF can be calculated by the above rule, the frequency
cutoff in the x-y direction can be evaluated more easily with the following rule.

9. Each arrow for the excitation is connected to NAex/λ′, where λ′ is the wavelength of the
corresponding beam, such as pump or Stokes.

10. The arrow for the signal is connected to NAcol/λsig.

11. The maximum possible value of the frequency cutoff in the x-y direction is given by the
sum of all the above-mentioned values: Σ{NA/λ}.

In incoherent microscopy, the vacuum field, which contains the virtual photons with the
wavenumber vectors in all directions, plays a role as one of the excitation light. The
vacuum field is described by the right-pointing dashed arrow in the double-sided
Feynman diagram and up-pointing dashed arrow in the energy-level diagram. The
vacuum field has its own rule as follows.

12. The wavenumber vector for the vacuum field corresponds to +kvac.

13. For the ASF, the electric field distribution for the vacuum field corresponds to .

14. For the CTF, the 3-D pupil function for the vacuum field corresponds to .

15. For the frequency cutoff in the x-y direction, the corresponding value for the vacuum field
is NAcol/λsig, which is the same value as that of the signal.

Note that in incoherent microscopy, the CTF is referred to as the OTF and the ASF becomes
the PSF. The vacuum field around the sample includes the Fourier components that have the
wavenumber vectors also on the side opposite to the excitation beam. As a result, for reflection
microscopy, | Ecol(xa − x, ya − y, za − z)| 2 in Eq. (29) can be replaced by
| Ecol

' (xa − x, ya − y, za − z)| 2, but both become the same function if the NAs are identical. Thus,
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unlike in coherent microscopy, it turns out that the OTF of transmission microscopy is identical
with that of reflection microscopy in incoherent microscopy. As an example of incoherent
microscopy, we take the transmission fluorescence confocal microscopy shown in Figure 11,
where the relation between the CTF and the phase-matching condition is described with the
3-D pupil function.

Figure 11. The relation between the phase-matching condition and the CTF for the transmission fluorescence confocal

microscopy. Note that 

Figure 10. The relation between the phase-matching condition and the CTF for transmission linear confocal microsco‐
py.
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4. Discussion

As stated above, the maximum possible resolution limit is determined by the kind of optical
process in force. For illustration, Figure 12 shows the calculation results of the CTF for CARS,
stimulated Raman loss (SRL), SRG, and third-order harmonic generation (THG) microscopy
[4]. For reference, the double-sided Feynman diagram and the energy-level diagram describing
SRL and THG are shown in Figure 13. SRL microscopy and SRG microscopy have the same
resolution limit, while CARS microscopy shows better optical resolution than the two former
techniques. The CTF of THG microscopy exhibits peculiar properties in which the value of the
origin in the spatial frequency domain is zero.

Figure 12. Calculation samples of the CTF for (a) CARS, (b) SRG, (c) SRL, and (d) THG microscopy.

From our theory, some interesting results are also obtained. In reflection coherent microscopy,
the uniform region of the susceptibility disappears in the image, as does the interface whose
normal is perpendicular to the optical axis. As an example to see the difference between
reflection and transmission microscopy, the CTF of transmission and reflection CARS micro‐
scopy are shown in Figure 14 [13]. In transmission THG microscopy, the dot and interface of
the susceptibility are emphasized in the image and the uniform region vanishes. In reflection
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CARS microscopy and transmission THG microscopy, the grating of susceptibility cannot be
resolved, but by assembling the interference microscopy where the signal interferes with the
local oscillator generated separately, the grating becomes resolved and then the optical
resolution can be defined.

In incoherent microscopy such as fluorescence and spontaneous Raman scattering microscopy,
the vacuum field as well as the excitation beam are involved in the optical process and
contribute to the increase in the frequency cutoff. It is noteworthy about incoherent microscopy
that the OTFs of the transmission and reflection microscopy becomes equal. On the other hand,
in coherent microscopy such as SHG, THG, CARS, SRG, and SRL microscopy, the CTFs of
transmission and reflection microscopy differ from each other.

Figure 13. Double-sided Feynman diagram and energy-level diagram for (a) SRL and (b) THG.

Without restricting laser scanning (stage-scanning) microscopy, we can conjecture the
following theorem of the resolution limit for all types of microscopy, which visualize χ(i)(x, y,
z) through a variety of optical processes.
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4.1. Theorem

• If there is no a priori information on the object (sample), the resolution limit (the maximum
value of frequency cutoff) is determined by the diagram describing the optical process. As
long as the optical process described by a certain diagram is used to visualize χ(i)(x, y, z), the
resolution limit calculated from the diagram cannot be surpassed regardless of how well
the optical apparatus is devised.

The typical exception to the above theorem is localization microscopy, such as photo-activated
localization microscopy (PALM) [14] and stochastic optical reconstruction microscopy
(STORM) [15], which have a priori information on the object (isolated single-point object). Any
microscopy application, including SIM and stimulated emission depletion (STED) microscopy
[16], that does not have a priori information on the object should follow this theorem.

Figure 14. The CTF of transmission and reflection CARS microscopy.

5. Conclusions

We have constructed a theoretical framework to deal with the image formation of all kinds of
microscopy by using the double-sided Feynman diagrams and energy-level diagrams
describing optical processes. We discovered some rules to evaluate the resolution limit by
using these diagrams. Our diagram technique can overview laser microscopy with any optical
processes regardless of coherence or linearity. In our framework, the susceptibility distribu‐
tion is visualized in the image, which blurs based on the optical resolution of each type of
microscopy calculated from the diagram technique. Interestingly, in microscopy with an
incoherent process, the vacuum field plays a role as part of the excitation light and contrib‐
utes to the improvement of the optical resolution. In nonconfocal systems, which is common‐
ly used to acquire a high-intensity signal particularly in nonlinear microscopy, the resolution
limit of incoherent microscopy is determined by the excitation system only, whereas that of
coherent microscopy is determined by both the excitation and signal-collection systems. In
SRS microscopy, the transmission type mainly observes the imaginary part of the nonlinear
susceptibility, while the reflection type can detect the real part.
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Abstract

Artificial human skin is available commercially or can be grown in the laboratory from
established cell lines. Standard microscopy techniques show that artificial human skin
has a fully developed basement membrane that separates an epidermis with the corneal,
granular,  spinosal,  and  basal  layers  from a  dermis  consisting  of  fibroblasts  in  an
extracellular matrix. In this chapter, we show how modeling can integrate microscopy
data to obtain a better understanding of the development and aging of artificial human
skin. We use the time-dependent structural information predicted by our model to show
how irradiation with an electron beam at different times in the life of artificial human
skin affects the amount of energy deposited in different layers of the tissue. Experi‐
mental studies of this type will enable a better understanding of how different cell types
in human skin contribute to overall tissue response to ionizing radiation.

Keywords: artificial human skin, kinetic model, radiation exposure, protection by cor‐
neal layer, selective irradiation of epidermis

1. Introduction

Engineered human tissues provide a bridge between in vivo and in vitro studies by enabling
the investigation of fundamental cellular mechanisms at a level of detail that is not possible with
whole-animal  models,  while  providing  a  tissue-like  context  specific  to  the  organ  under
investigation (reviewed in reference [1]). Such models are routinely used for toxicology and
radiation studies [2–6].
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Artificial human skin, a well-known example of engineered human tissue, is available
commercially but can also be developed from human cell lines in the laboratory [7, 8].
EpiDermFTTM (MatTek, Ashland, VA) is a widely used commercial product that exhibits a fully
developed basement membrane that separates the epidermis, with keratinocytes in the corneal,
granular, spinosal, and basal layers, from the dermis consisting of fibroblasts in an extracellular
matrix.

Microbeam irradiation of EpiDermFTTM and similar skin-tissue models showed that skin
exhibits a “radiation-induced bystander effect” (reviewed in reference [9]); cells that are not
directly damaged by ionizing particles in the beam nevertheless exhibit biological responses
similar to cell that receive direct damage. Hence, it appears that Interactionslayers and cell
types plays a role among different layers and cell types play a role in the response of skin to
ionizing radiation. Experiments that vary the dose delivered to different layers of artificial skin
will contribute to our understand of these interactions.

Cole and coworker [10] showed that, due to its limited penetration in biological materials, the
sensitivity of different components of a biological system can be investigated by low-voltage
electron-beam irradiation. Recognizing that this technique could be useful in a layered system
such as the skin, we calculated the penetration of electron beams of various energies into
artificial skin [11] as a basis for the design of experimental studies.

We immediately realized that a detailed analysis of microscopic images of artificial skin was
required to ensure accurate calculation of penetration depths. In this chapter, we trace the
evolution of our analysis of microscopy data for the purpose of modeling the interaction of
artificial skin with electron-beam irradiation. Initially, our focus was on irradiation at a fixed
time dictated by experimental procedures coupled with the purchase of EpiDermFTTM from
MatTek. Later, we realized that earlier delivery by MatTek and in-house production of artificial
skin enabled irradiation studies at different stages in the development of the tissue model. This
realization encouraged us to develop a kinetic model of artificial-skin growth and aging that
would support simulations of electron-beam exposure at any time during its life cycle.

2. Morphology of the fully developed epidermis of artificial skin

Radiation biology experiments on EpiDermFTTM [6, 12, 14] are usually preformed approxi‐
mately 3 weeks postseeding of the keratinocytes onto the dermal substrate. At this time, images
such as those shown in Figure 1 reveal the morphology of the mature skin model.

Image A in Figure 1 (kindly provided by MatTek [13]) uses hematoxylin and eosin (H&E)
staining to show the structure of EpiDermFTTM at the time of shipping, about 17 days post‐
seeding of keratinocytes onto the dermal substrate. Horizontal lines added by us approxi‐
mately delineate layers of the epidermis and suggest that, on average, the spinosal layer is
about twice as thick as the basal layer, and granular layers have about the same thickness as
the basal layer. Using the scale mark shown in Figure 1A, we estimate that the basal, spinosal,
and granular layers are about 17, 37, and 17 μm thick, respectively. In this chapter, we refer to
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the combined basal, spinosal, and granular layers as the “viable” epidermis to contrast it from
the corneal layer of dead cells.

Cells in the stratum corneum have lost most of their intercellular adhesion so that even careful
sample handling is likely to induce small air gaps such as those seen in the lower part of the
corneal layer in Figure 1A. Experimental procedures involved in microscope slide preparation
can destabilize the stratum corneum and are, most likely, responsible for large air gaps, such
as those seen in the upper part of the corneal layer in Figure 1A. Consequently, these images
are not a reliable source of data on corneal thickness.

MatTek also provided valuable information about the production of their human skin model.
A nutrient layer is seeded with neonatal foreskin basal cells. It is unlikely that this population
contains stem cells; hence, the basal layer has finite replication capacity due to transiently
amplifying (TA) cell, about 80% of which are in a resting state at any one time. Ca+ ions in the
nutrient layer diffuse into the epidermis but are trapped beneath the corneal layer, which
creates a Ca+ gradient since water can diffuse into the liquid-air interface. As in normal skin,
this Ca+ gradient is most likely responsible for the differentiation of keratinocytes as they are
pushed toward the stratum corneum by cell replication in the basal layer.

Images B and C in Figure 1 are prepared in Dr. Sowa’s laboratory approximately 3 weeks
postseeding of keratinocytes onto the dermal substrate [14]. When EpiDermFTTM skin samples
were received from MatTek, they were placed in 2 ml of maintenance media and incubated at

Figure 1. Representative histological sections showing morphology and differentiation in the EpiDermFTTM skin model
17–20 days after the seeding of keratinocytes onto the dermal substrate. Samples A, B, and C were stained for eosin,
filaggrin, and keratin10, respectively. For filaggrin and keratin10, positive DAB staining appears dark in the image. All
tissues were counterstained with hematoxylin. The scale bar in A applies to B and C as well.
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37°C and 5% CO2 as the manufacturer instructed. After 2 days, tissues were fixed in 4%
paraformaldehyde, dehydrated, and embedded in paraffin wax using standard methods [15].

Five-micrometer sections were prepared using a Leica microtome and mounted onto coated
slides (IMEB, Inc., San Marcos, CA). Sections were deparaffinized in xylene and rehydrated
via a series of alcohol rinses. Sections were processed for antigen retrieval by immersion in a
citrate acid solution (pH 6.0, 99°C) for 30 min, followed by immersion in 3% H2O2 for 10 min
to block endogenous peroxidase activity. Slides were then washed three times in phosphate-
buffered saline (PBS) for 10 min, blocked with 0.3% bovine serum albumin (BSA) for 1 h, and
incubated in the primary antibody overnight at 4°C.

Immunofluorescence staining was performed in triplicate to ensure consistent results.
Individual tissue sections were imaged using a Nikon Eclipse TE300 microscope with a Nikon
Plan APO VC 60x/1.20 water immersion objective. A Retiga 1300 cooled charge-coupled device
(CCD) camera (Qimaging) controlled by QCapture software was used to acquire the image.
Image processing was performed in Image J (NIH; Bethesda, MD).

Images B and C in Figure 1 show differentiation profiles for nonirradiated EpiDermFTTM skin-
model samples using filaggrin and Keratin10, respectively. Filaggrin-positive staining defines
the granular layer only. Keratin10-positive staining defines the combined spinosum and
granular layers but is excluded from the basal layer. Image B seems to indicate that the granular
layer contains cells both with and without a nucleus. Furthermore, granular cells with nuclei
appear to be adjacent to the stratum corneum. Image C shows that cells in the spinosal layer
vary in size with smaller cells nearer to the basal layer. We interpret this as evidence for cell
growth as keratinocytes traverse the spinosal layer.

Thicknesses of the basal, spinosal, and granular layers revealed by images B and C in Figure
1 are roughly in the same proportions as that suggested by the horizontal lines in Figure 1A.
However, absolute thicknesses cannot be compared due to both sample variability and
differences in ages of the sample when the images were acquired. Due to the time spent in
shipping and equilibration, images B and C are for samples approximately 4 days older than
the sample shown in Figure 1A. A significant shrinkage of the viable epidermis (basal, spinosal,
and granular layers) during this time was reported in reference [14].

The thickness of the viable epidermis at any given point is stochastic, depending on the
particular arrangement of cells in the basal, spinosal, and granular layers. One way to average
over this intrinsic variability is to measure area over a fixed width, also called “field of view.”
This technique was used in reference [14] to measure the thickness of the viable epidermis in
samples stained using a standard H&E protocol [15]. As stated above, MatTek normally ships
EpiDermFTTM 17 days postseeding of keratinocytes onto the dermal substrate; however, they
will ship samples at earlier time points in sample production if requested. Early shipment was
desirable for some of the radiation biology studies conducted by Sowa and coworkers [9, 14],
which allowed them to measure the thickness viable layers of the epidermis starting on day
17 postseeding. Results of these measurements are shown in Table 1.
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Day Relative thickness
17 1.00 ± 0.04

18 1.14 ± 0.06

19 0.93 ± 0.05

20 0.93 ± 0.06

21 0.76 ± 0.04

22 0.90 ± 0.16

23 0.64 ± 0.08

24 0.42 ± 0.06

Table 1. Relative thickness of the viable epidermis as a function of sample age.

In Table 1, the data have been normalized by the mean of areas observed on day 17 and
uncertainties are ±1 standard deviation. Shrinkage starts between days 18 and 19 after an
increase in thickness between days 17 and 18. With the exception of day 21, shrinkage of the
viable epidermis is relatively minor between days 19 and 22. After day 22, shrinkage is linear
with the thickness decreasing about 25% each day.

The biological reason for these changes in the thickness of the combined basal, spinosal, and
granular layers is not clear. This is particularly true between days 17 and 22 when the variation
is not systemic. The severe shrinkage after day 22 suggests that a dramatic change has occurred
in the viable epidermis, possibly due to the exhaustion of replication capacity in the basal layer.
If we assume that shrinkage is uniform across the basal, spinosal, and granular layers, we can
easily include this shrinkage when we convert cell count from our kinetic model into layer
thickness.

3. Properties of artificial skin epidermis revealed by confocal microscopy

The microscope images described in the previous section provide the quantitative information
needed to model the viable layers of EpiDermFTTM skin-tissue samples at about 20 days after
keratinocytes were seeded onto the dermal substrate. These images of stained vertical slices
through the epidermis frequently display large air gaps in the corneal layer, such as those
shown in Figure 1A, which we attribute to sample preparation. Hence, these images cannot
provide reliable quantitative information about the thickness of the corneal layer. To obtain
this type of information, we analyzed three-dimensional (3D) confocal microscopy of live
samples [6].

Samples were stained overnight with SYTO13 and SYTO59 fluorescent nucleic acid stains
(Invitrogen). Two colors (red and green) were chosen because of their high contrast and strong
overlap with the excitation lasers of the confocal microscope. Both dyes were used at a final
concentration of 10 μM in 3 ml of media. Stained samples were washed with PBS and placed
in a 35-mm culture plate containing sufficient PBS to cover the tissue. To minimize sample
movement during imaging, samples were placed on a thin coating of autoclaved petroleum
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jelly prior to the addition of the PBS. Images were acquired in 1-μm z-steps on a Zeiss laser
scanning microscope (LSM) 710 scanning head confocal microscope with a Zeiss plan apo 40×/
1.1 objective. Excitation lasers were 488 and 633 nm for the green and red emission channels,
respectively. Laser dwell times were 1.27 μs for both channels. Two-dimensional (2D) and 3D
image analyses were carried out using Volocity (Perkin Elmer, Waltham, MA).

Confocal microscopy of EpiDermFTTM skin-model samples treated with fluorescent nucleic
acid stains, as described above, revealed the location of nuclei in the samples. Figure 2
illustrates a detailed analysis of a confocal microscopy image designed to measure the
thicknesses of the corneal layer and the viable epidermis at 20 days after seeding of keratino‐
cytes onto the dermal substrate.

Figure 2. Side view of a 3D image of EpiDermFTTM epidermis obtained by confocal microscopy following treatment
with fluorescent nucleic acid stains at 20 days after seeding of keratinocytes onto the dermal substrate. Vertical lines
illustrate repeated measurements of the thickness of regions that did (B) and did not (A) take up the stain.

Vertical lines in panel B of Figure 2, which span the thickness of the epidermis where stained
nuclei were observed by confocal microscopy, have an average length of 45.2 ± 0.7 μm. This
distance agrees with the thickness of the combined basal and spinosal layers from Figure 1A
after we allow for shrinkage between days 17 and 20, shown in Table 1 (0.93 ± 0.06 × 54 μm =
50.2 ± 3.2 μm). For this association between information derived by two different types of
microscopy to be valid, we must assume that granular cells do not take up the DNA stains,
even though, as mentioned above, H&E-stained tissue sections seem to show nuclei in some
granular cells.
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Vertical lines in panel A of Figure 2, which span the thickness of the epidermis where DNA
staining is not observed, have an average length of 55.0 ± 0.41 μm. Based on the assumption
that granular cells do not take up the DNA stain, the combined granular and corneal layers
have a thickness of 55.0 ± 0.41 μm on day 20. Assuming further that the shrinkage observed
on day 20 is uniform across the viable epidermis, we calculate the thickness of 16 ± 1 μm (17
× 0.93 ± 0.06) for the granular layer on day 20, which allows us to estimate the corneal-layer
thickness as 39 ± 1.41 μm (55 ± 0.41 – 16 ± 1) on day 20.

By itself, this estimate of the corneal-layer thickness on day 20 is not extremely useful; however,
in conjunction with a kinetic model for the number of cells in the stratum corneum, it can be
used to estimate the thickness of the corneal layer at all times after its first appearance 7–10
days postseeding of keratinocytes onto the dermal substrate. If we assume that the thickness
of corneal cells is constant, then the ratio of cell number to layer thickness on day 20 is the same
at all times. Our kinetic model, described in Section 5, was developed to predict corneal cell
populations, which can be converted into corneal thickness.

Figure 3 shows the distribution of nuclei in the region of the epidermis that took up the DNA
stains. To determine the number of nuclei in a specific volume at a specific depth, Z-stacks of
optical sections were reconstructed in 10-μm sections starting at the bottom of the basal layer.
Individual nuclei were identified by a threshold on the florescence intensity and the number
in each 10-μm section was counted. The 2D image area was approximately 60,000 μm2.

Figure 3. Number of nuclei (vertical axis) in successive 10-mm thick slices numbered 1-6 on the horizontal axis of a 3D
confocal microscope image of EpiDermFTTM skin model starting on the basement membrane and ending in the granu‐
lar layer.

The first two bars of the histogram in Figure 3 are counts of nuclei in the basal layer and the
start of the spinosal layer. Between 20 and 50 μm above the basal membrane, the number of
nuclei counted in 10-μm sections decreases linearly. We interpret this decrease in nuclei per
unit area as evidence for increasing cell volume as keratinocytes pass through the spinosal
layer. A significant departure from this linear behavior occurs in the count of nuclei between
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50 and 60 μm above the basal membrane. We associate the small number of nuclei in this 10-
μm section as a small number of cells at the base of the granular layer that took up the DNA
stain. The deviation from the linearity of nuclei counts between 50 and 60 μm is interpreted
as a decrease in the number of cell susceptible to DNA staining, not to an increase in cell
volume. Our kinetic model assumes that keratinocytes in the granular layer have the same
volume as those cells at the top of the spinosal layer.

4. Simulation of electron-beam penetration into skin

PITS [16] is a radiation transport code that performs an event-by-event simulation of charged
particles transferring their kinetic energy to electronic excitations of a medium. Simulated
tracks are data objects containing, among other things, the Cartesian coordinates of energy
deposition events. Properties of elastic collisions are not retained in the track object except as
they influence the position of inelastic interactions in the stopping medium. Condensed phase
effects [17] are included as described by Wilson et al. [18]. Primary electrons and all generations
of secondary electrons are followed until their energy falls below 10 eV, the lowest ionization
threshold in Dingfelder’s model [17], after which residual kinetic energy is assigned to a final
transfer point cast in an isotopically random direction and at an exponentially random
distance.

For each electron-beam energy considered, 105 independent primary electrons were simulated
as they transferred their energy to a liquid-water medium. For layers of the epidermis
containing live cells, liquid-water provides a reasonable approximation due to their high water
content; however, this approximation may not be valid for the corneal layer due to the low
water content and small air gaps.

The density of the cellular material in the stratum corneum is slightly greater than water [19]
but the presence of air gaps makes the average corneal density less than that of its cellular
material. To allow for these competing factors in determining a water thickness with equivalent
mass per unit area as the corneal layer, we used microscope images such as in Figure 4, to
quantify the relative area of small air gaps. We consider these small air gaps as intrinsic to the
corneal layer under normal sample handling during experiments.

Microscope slides of Vertical slices through EpiDermFTTM were prepared by methods descri‐
bed in Section 2 and stained with H&E (IMEB, Inc.). A Nikon Eclipse TE300 inverted micro‐
scope with a Nikon Plan APO 20/0.75 objective was used to image individual tissue slices. A
Retiga 1300 cooled CCD camera (Qimaging) controlled by Volocity Acquisition (Improvision)
software was used to acquire images and to take area measurements. A 12-bit gray scale of
intensity determined the relative proportions of high- and low-density materials in the image.
High-density material was associated with pixels with normalized gray scale intensity
between 0.5 and 15%. The air pockets in the stratum corneum layer were associated with pixels
in the 23–100% gray level intensity range.
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distance.

For each electron-beam energy considered, 105 independent primary electrons were simulated
as they transferred their energy to a liquid-water medium. For layers of the epidermis
containing live cells, liquid-water provides a reasonable approximation due to their high water
content; however, this approximation may not be valid for the corneal layer due to the low
water content and small air gaps.

The density of the cellular material in the stratum corneum is slightly greater than water [19]
but the presence of air gaps makes the average corneal density less than that of its cellular
material. To allow for these competing factors in determining a water thickness with equivalent
mass per unit area as the corneal layer, we used microscope images such as in Figure 4, to
quantify the relative area of small air gaps. We consider these small air gaps as intrinsic to the
corneal layer under normal sample handling during experiments.

Microscope slides of Vertical slices through EpiDermFTTM were prepared by methods descri‐
bed in Section 2 and stained with H&E (IMEB, Inc.). A Nikon Eclipse TE300 inverted micro‐
scope with a Nikon Plan APO 20/0.75 objective was used to image individual tissue slices. A
Retiga 1300 cooled CCD camera (Qimaging) controlled by Volocity Acquisition (Improvision)
software was used to acquire images and to take area measurements. A 12-bit gray scale of
intensity determined the relative proportions of high- and low-density materials in the image.
High-density material was associated with pixels with normalized gray scale intensity
between 0.5 and 15%. The air pockets in the stratum corneum layer were associated with pixels
in the 23–100% gray level intensity range.
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Figure 4. Microscope image of a vertical slice through the EpiDermFTTM skin-tissue model showing small air gaps in
the corneal layer.

Area measurements of high and low intensity performed on 14 distinct regions of the stratum
corneum gave a mean relative area of low-density material of 9.53% with a standard deviation
of the mean 0.81%. Given the large number of cross-sections sampled, it is reasonable to assume
that the relative volume of air in the stratum corneum is about 10%.

Weigand et al. [19] measured the buoyant density of the stratum corneum cellular material
from Caucasian and Black subjects by several techniques. They concluded that the sucrose
density gradient method gave values closest to that of the natural state. Averages of repeated
experiments with Caucasian samples, which should apply to the EpiDermFTTM skin model,
ranged from 1.075 to 1.145 g/ml. Consequently, the increase in equivalent water thickness to
account for the higher density of cellular material in the stratum corneum is approximately
equal to the decrease in the thickness of water to account for air pockets. We conclude from
these results that calculations of electron-beam penetration in a uniform water medium
provide a reasonable approximation to the penetration of the EpiDermFTTM skin model,
including the corneal layer.

Figure 5 shows the cumulative probability distribution of samples of the largest z-coordinate
of energy transfer points in simulated tracks of 90-keV electrons stopping in a uniform liquid-
water medium. Percentile points of this distribution give the thickness of water required to
stop a specified fraction of electrons injected into the medium. For example, about 40 μm of
water is required to stop about half of the electrons in a 90-keV beam. The dashed curve in
Figure 5 shows the fraction of beam energy deposited by events not exceeding a specified
depth. The point a zero depth shows that about 12% of the beam energy is backscattered. By
interpolation between calculations at 60 and 70 μm, we estimate that 4% of the beam energy
is deposited at depths that exceed the 90th percentile of penetration.
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Figure 5. Penetration and energy deposited by a 90-keV electron beam in water. Solid curve is the cumulative probabil‐
ity of maximum z-coordinate of energy transfer points. Intersecting horizontal and vertical dashed lines show 10th,
50th, and 90th percentiles of penetration. Dashed curve shows the fraction of beam energy deposited by events not
exceeding a specified depth, with the point a zero depth showing the fraction of beam energy backscattered. Reprinted
with permission from Radiation Research.

Figure 6. Microscope image of a vertical slice through the EpiDermFTTM skin-tissue model overlay showing calculated
penetration of 25-, 50-, and 90-keV electron beams. Bars cover the 10–90th percentile of penetration with the 50th per‐
centile at the center. Reprinted with permission from Radiation Research.

The overlay in Figure 6 shows the penetration of 25-, 50-, and 90-keV electron beams super‐
imposed on a microscope image of a vertical slice through the EpiDermFTTM skin model. The
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Figure 6. Microscope image of a vertical slice through the EpiDermFTTM skin-tissue model overlay showing calculated
penetration of 25-, 50-, and 90-keV electron beams. Bars cover the 10–90th percentile of penetration with the 50th per‐
centile at the center. Reprinted with permission from Radiation Research.

The overlay in Figure 6 shows the penetration of 25-, 50-, and 90-keV electron beams super‐
imposed on a microscope image of a vertical slice through the EpiDermFTTM skin model. The
uncertainty bar is centered on Zp50 and the upper and lower extremes are Zp10 and Zp90,
respectively, where ZpX is the depth to which X% of the electron beam is expected to penetrate.
It is clear from the overlay in Figure 6 that beam energies near 90 keV are required to irradiate
keratinocytes in the epidermis that are undergoing active cell division, which is usually the
population of greatest interest in radiation biology.
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5. Kinetic model of epidermis formation and aging

In this section, we present a kinetic model for the development of the basal, spinosal, granular,
and corneal layers of the EpiDermFTTM skin-tissue model. The main purpose for developing
this model is to estimate the corneal layer thickness from the start of its formation 7–10 days
after seeding of keratinocytes onto the dermal substrate to the end of the useful life of the
sample for radiation biology studies due to shrinkage. Our model predicts the kinetics of the
number cells in the corneal layer. If we assume that the thickness of a corneal cell is constant,
then the measure of corneal layer thickness at 20 days (see Section 3) can be used to convert
cell count into layer thickness at any time.

A kinetic model of artificial-skin development was reported in reference [9] that focused on
the viable epidermis for comparison with experimental studies of skin homeostasis after
exposure to ionizing radiation [9, 14]. The model in reference [9] starts with a rapid expansion
of TA basal cells, with the population increasing sixfold in about 12 days. By contrast, the
kinetic model described here starts with a confluent monolayer of the basal cells and the total
basal-cell population, consisting of cycling TAs, noncycling TAs with replication potential,
and the basal cells that have exhausted their replication capacity, is constant throughout the
simulation.

As in reference [9], we assume that TA cells exhaust their replication capacity after five to three
cycles, but the current model includes the information from MatTek that only about 20% of
TA cells are cycling at any given time. This means that as individual TA cells exhaust their
replication capacity, they are replaced by a TA cell with full replication capacity that has been
held in reserve. The biological mechanism for delayed cycling of TA cells with replication
capacity is unclear; however, as Figure 7 shows, this modeling assumption allows the cycling
TA population to be constant throughout most of our kinetic simulation. Replication in the
basal layer goes to zero after about day 23 when reserve replication capacity is no longer
available.

In the current model, the differentiation of keratinocytes is determined by their height above
the basement membrane. We think this more correctly models differentiation driven by a Ca
+ gradient than the purely time-dependent transitions of the kinetic model in reference [9].
Height-dependent differentiation means that a spinosal cell is the consequence of each TA-cell
replication. TA cycling produces two daughter TA cells, but some basal cells must move to the
spinosal layer because the basal-cell layer is confluent

As can be seen in Figure 7, the spinosal-cell population is non-zero after the first TA-cell
replication, which occurs at TA cycle time chosen randomly from a lognormal distribution
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5. Kinetic model of epidermis formation and aging

In this section, we present a kinetic model for the development of the basal, spinosal, granular,
and corneal layers of the EpiDermFTTM skin-tissue model. The main purpose for developing
this model is to estimate the corneal layer thickness from the start of its formation 7–10 days
after seeding of keratinocytes onto the dermal substrate to the end of the useful life of the
sample for radiation biology studies due to shrinkage. Our model predicts the kinetics of the
number cells in the corneal layer. If we assume that the thickness of a corneal cell is constant,
then the measure of corneal layer thickness at 20 days (see Section 3) can be used to convert
cell count into layer thickness at any time.

A kinetic model of artificial-skin development was reported in reference [9] that focused on
the viable epidermis for comparison with experimental studies of skin homeostasis after
exposure to ionizing radiation [9, 14]. The model in reference [9] starts with a rapid expansion
of TA basal cells, with the population increasing sixfold in about 12 days. By contrast, the
kinetic model described here starts with a confluent monolayer of the basal cells and the total
basal-cell population, consisting of cycling TAs, noncycling TAs with replication potential,
and the basal cells that have exhausted their replication capacity, is constant throughout the
simulation.

As in reference [9], we assume that TA cells exhaust their replication capacity after five to three
cycles, but the current model includes the information from MatTek that only about 20% of
TA cells are cycling at any given time. This means that as individual TA cells exhaust their
replication capacity, they are replaced by a TA cell with full replication capacity that has been
held in reserve. The biological mechanism for delayed cycling of TA cells with replication
capacity is unclear; however, as Figure 7 shows, this modeling assumption allows the cycling
TA population to be constant throughout most of our kinetic simulation. Replication in the

Figure 7. Predicted kinetics of cell count in the basal (orange), spinosal (blue), granular (black), and corneal (red) layers
of the epidermis of an artificial-skin tissue, starting from the time with the basal layer is confluent.
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with a mean TA cycle time of 31.2 h. The lognormal distribution of TA cycle times and its
variance are the same as in reference [9] but the mean TA cycle time in the current model is
significantly shorter. A shorter mean cycling time for TA cells in the current model is a direct
consequence of our assumption, based on information from MatTek [15] that only about 20%
of TA cell with replication potential are cycling at any given time. Consequently, a shorter
mean cycling time is required to generate complete spinosal and granular layers 7–10 days
postseeding of keratinocytes than is the case when all TAs with replication potential are
cycling.

In our kinetic model, the corneal layer begins to form as soon as the granular layer reaches its
full thickness. Exposure to air is crucial to the formation of a corneal layer but this requirement
is not explicitly included in our model. Figure 7 also shows that the rates of increase of spinosal,
granular and corneal cell populations are all nearly equal, aside from random fluctuations, to
a constant value determined by the rate of TA-cell replication in the basal layer. The rates of
increase in the thickness of the spinosal, granular, and corneal layers are not the same because
the volumes of individual cells in those layers are different. In addition, the volume of a
spinosal cells is increasing with time since it entered the stratum spinosum.

Sharp transitions between increasing and constant cell populations in the spinosal and
granular layers are an artifact of our model in which cell type is determined by a specified
height of the cell above the basement membrane. If a TA cycle, which adds a cell to the stratum
spinosum, makes the upper boundary of the spinosal layer exceed the height above the
basement membrane allowed for spinosal cells, the oldest cell in the current stratum spinosum
becomes a granular cell. A similar modeling assumption governs the transition of granular to
corneal cells.

The transition between linearly increasing to constant corneal cell population is not sharp. This
transition mirrors the loss of replication capacity in the basal layer, which occurs over about a
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basal layer goes to zero after about day 23 when reserve replication capacity is no longer
available.

In the current model, the differentiation of keratinocytes is determined by their height above
the basement membrane. We think this more correctly models differentiation driven by a Ca
+ gradient than the purely time-dependent transitions of the kinetic model in reference [9].
Height-dependent differentiation means that a spinosal cell is the consequence of each TA-cell
replication. TA cycling produces two daughter TA cells, but some basal cells must move to the
spinosal layer because the basal-cell layer is confluent

As can be seen in Figure 7, the spinosal-cell population is non-zero after the first TA-cell
replication, which occurs at TA cycle time chosen randomly from a lognormal distribution
with a mean TA cycle time of 31.2 h. The lognormal distribution of TA cycle times and its
variance are the same as in reference [9] but the mean TA cycle time in the current model is
significantly shorter. A shorter mean cycling time for TA cells in the current model is a direct
consequence of our assumption, based on information from MatTek [15] that only about 20%
of TA cell with replication potential are cycling at any given time. Consequently, a shorter
mean cycling time is required to generate complete spinosal and granular layers 7–10 days
postseeding of keratinocytes than is the case when all TAs with replication potential are
cycling.

In our kinetic model, the corneal layer begins to form as soon as the granular layer reaches its
full thickness. Exposure to air is crucial to the formation of a corneal layer but this requirement
is not explicitly included in our model. Figure 7 also shows that the rates of increase of spinosal,
granular and corneal cell populations are all nearly equal, aside from random fluctuations, to
a constant value determined by the rate of TA-cell replication in the basal layer. The rates of
increase in the thickness of the spinosal, granular, and corneal layers are not the same because
the volumes of individual cells in those layers are different. In addition, the volume of a
spinosal cells is increasing with time since it entered the stratum spinosum.

Sharp transitions between increasing and constant cell populations in the spinosal and
granular layers are an artifact of our model in which cell type is determined by a specified
height of the cell above the basement membrane. If a TA cycle, which adds a cell to the stratum
spinosum, makes the upper boundary of the spinosal layer exceed the height above the
basement membrane allowed for spinosal cells, the oldest cell in the current stratum spinosum
becomes a granular cell. A similar modeling assumption governs the transition of granular to
corneal cells.

The transition between linearly increasing to constant corneal cell population is not sharp. This
transition mirrors the loss of replication capacity in the basal layer, which occurs over about a
4-day time period. In Figure 7, this loss of replication capacity occurs between days 23 and 29.
Various model parameters, including the mean TA cycle time and the fraction of cycling TA
cells, determine the duration of replication capacity in the basal layer. parameters affect the
time when replication capacity is exhausted relative seeding of keratinocytes onto the dermal
substrate. We think that the decay of replication seen in Figure 7 is reasonable because it
correlates roughly with the onset of significant shrinkage of the viable epidermis observed
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basal layer goes to zero after about day 23 when reserve replication capacity is no longer
available.

In the current model, the differentiation of keratinocytes is determined by their height above
the basement membrane. We think this more correctly models differentiation driven by a Ca
+ gradient than the purely time-dependent transitions of the kinetic model in reference [9].
Height-dependent differentiation means that a spinosal cell is the consequence of each TA-cell
replication. TA cycling produces two daughter TA cells, but some basal cells must move to the
spinosal layer because the basal-cell layer is confluent

As can be seen in Figure 7, the spinosal-cell population is non-zero after the first TA-cell
replication, which occurs at TA cycle time chosen randomly from a lognormal distribution
with a mean TA cycle time of 31.2 h. The lognormal distribution of TA cycle times and its
variance are the same as in reference [9] but the mean TA cycle time in the current model is
significantly shorter. A shorter mean cycling time for TA cells in the current model is a direct
consequence of our assumption, based on information from MatTek [15] that only about 20%
of TA cell with replication potential are cycling at any given time. Consequently, a shorter
mean cycling time is required to generate complete spinosal and granular layers 7–10 days
postseeding of keratinocytes than is the case when all TAs with replication potential are
cycling.

In our kinetic model, the corneal layer begins to form as soon as the granular layer reaches its
full thickness. Exposure to air is crucial to the formation of a corneal layer but this requirement
is not explicitly included in our model. Figure 7 also shows that the rates of increase of spinosal,
granular and corneal cell populations are all nearly equal, aside from random fluctuations, to
a constant value determined by the rate of TA-cell replication in the basal layer. The rates of
increase in the thickness of the spinosal, granular, and corneal layers are not the same because
the volumes of individual cells in those layers are different. In addition, the volume of a
spinosal cells is increasing with time since it entered the stratum spinosum.

Sharp transitions between increasing and constant cell populations in the spinosal and
granular layers are an artifact of our model in which cell type is determined by a specified
height of the cell above the basement membrane. If a TA cycle, which adds a cell to the stratum
spinosum, makes the upper boundary of the spinosal layer exceed the height above the
basement membrane allowed for spinosal cells, the oldest cell in the current stratum spinosum
becomes a granular cell. A similar modeling assumption governs the transition of granular to
corneal cells.

The transition between linearly increasing to constant corneal cell population is not sharp. This
transition mirrors the loss of replication capacity in the basal layer, which occurs over about a
4-day time period. In Figure 7, this loss of replication capacity occurs between days 23 and 29.
Various model parameters, including the mean TA cycle time and the fraction of cycling TA
cells, determine the duration of replication capacity in the basal layer. parameters affect the
time when replication capacity is exhausted relative seeding of keratinocytes onto the dermal
substrate. We think that the decay of replication seen in Figure 7 is reasonable because it
correlates roughly with the onset of significant shrinkage of the viable epidermis observed
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4-day time period. In Figure 7, this loss of replication capacity occurs between days 23 and 29.
Various model parameters, including the mean TA cycle time and the fraction of cycling TA
cells, determine the duration of replication capacity in the basal layer. parameters affect the
time when replication capacity is exhausted relative seeding of keratinocytes onto the dermal
substrate. We think that the decay of replication seen in Figure 7 is reasonable because it
correlates roughly with the onset of significant shrinkage of the viable epidermis observed
experimentally [14] (see Table 1). After replication capacity is exhausted, cell count in all layers
is constant. Cell count in the basal layer is always constant but transitions between cycling,
resting with replication potential, and sterile TA cells occur throughout the kinetic simulation.

Even though cell count in the viable epidermis remains constant after complete formation of
spinosal and granular layers, its thickness is not constant due to shrinkage. On converting cell
count to layer thickness after shrinkage begins, we assume that its effect is uniform across all
three layers, basal, spinosal, and granular, of the viable epidermis. After day 18, we assume
that the volume of all cells in the viable epidermis decreases in accordance with the shrinkage
fractions in Table 1. Although no data are available, it seems reasonable that corneal cells do
not shrink since they are dead and have lost most of their water content. Hence, we can use
the corneal thickness of 39 ± 1.41 μm deduced from confocal microscopy on day 20 to convert
corneal cell count to corneal thickness at any time after its appearance, about day 8.5 shown
in Figure 7.

A typical simulation begins by assigning a maximum of 3, 4, or 5 replications randomly to 100
basal cells, 20 of which are chosen randomly to be expressing this replication potential at the
beginning of the simulation. The 20 active TA cells are assigned cycle times randomly drawn
from a lognormal distribution with a variance of 0.2 and a mean cycling time chosen to generate
complete spinosal and granular layers 7–10 days postseeding of keratinocytes, as reported by
MatTek [15].

The active TA cell with the shortest cycling time is selected for replication, which forces a
randomly selected TA cell off the basement membrane to become a spinosal cell and leaves a
TA cell on the basement membrane that is capable of one less replication. The current simu‐
lation time is upgraded and a new random cycle time is assigned to the TA cell that just
replicated, if it still has replication capability. If not, the TA cell that just replicated becomes a
permanently resting TA cell and is replaced by a TA cell that can replicate, if the pool of TA
cells with replication capacity is not empty.

If we knew the growth rate of spinosal cells, we would assign the spinosal cell generated by
TA-cell replication a birth time equal to the current simulation time and volume equal to that
of a basal cell. The age of any preexisting spinosal cells would increase by the TA cycle time
and their volume would increase to reflect growth during that cycle time. The growth rate of
spinosal cells cannot be determined from the available data; however, as discussed below, the
difference in the volume of spinosal cells at different heights in the spinosal layer can be
estimated from the data in Figure 3. This allows us to calculate the average volume of a spinosal
cell, which we assign to all cells in the spinosal population.
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experimentally [14] (see Table 1). After replication capacity is exhausted, cell count in all layers
is constant. Cell count in the basal layer is always constant but transitions between cycling,
resting with replication potential, and sterile TA cells occur throughout the kinetic simulation.

Even though cell count in the viable epidermis remains constant after complete formation of
spinosal and granular layers, its thickness is not constant due to shrinkage. On converting cell
count to layer thickness after shrinkage begins, we assume that its effect is uniform across all
three layers, basal, spinosal, and granular, of the viable epidermis. After day 18, we assume
that the volume of all cells in the viable epidermis decreases in accordance with the shrinkage
fractions in Table 1. Although no data are available, it seems reasonable that corneal cells do
not shrink since they are dead and have lost most of their water content. Hence, we can use
the corneal thickness of 39 ± 1.41 μm deduced from confocal microscopy on day 20 to convert
corneal cell count to corneal thickness at any time after its appearance, about day 8.5 shown
in Figure 7.

A typical simulation begins by assigning a maximum of 3, 4, or 5 replications randomly to 100
basal cells, 20 of which are chosen randomly to be expressing this replication potential at the
beginning of the simulation. The 20 active TA cells are assigned cycle times randomly drawn
from a lognormal distribution with a variance of 0.2 and a mean cycling time chosen to generate
complete spinosal and granular layers 7–10 days postseeding of keratinocytes, as reported by
MatTek [15].

The active TA cell with the shortest cycling time is selected for replication, which forces a
randomly selected TA cell off the basement membrane to become a spinosal cell and leaves a
TA cell on the basement membrane that is capable of one less replication. The current simu‐
lation time is upgraded and a new random cycle time is assigned to the TA cell that just
replicated, if it still has replication capability. If not, the TA cell that just replicated becomes a
permanently resting TA cell and is replaced by a TA cell that can replicate, if the pool of TA
cells with replication capacity is not empty.

If we knew the growth rate of spinosal cells, we would assign the spinosal cell generated by
TA-cell replication a birth time equal to the current simulation time and volume equal to that
of a basal cell. The age of any preexisting spinosal cells would increase by the TA cycle time
and their volume would increase to reflect growth during that cycle time. The growth rate of
spinosal cells cannot be determined from the available data; however, as discussed below, the
difference in the volume of spinosal cells at different heights in the spinosal layer can be
estimated from the data in Figure 3. This allows us to calculate the average volume of a spinosal
cell, which we assign to all cells in the spinosal population.

After each TA-cell replication, we find the active TA cells with the shortest cycling time, which
determine the size of the next time step in the simulation. However, before that time step can
be taken, we must determine if a spinosal cell needs to transition to a granular cell, based on
the current thickness of the spinosal layer. From the microscopy images in Figure 1, it is clear
that the spinosal and granular layers are confluent; hence, the volume of the spinosal and
granular layers at any time in the simulation is the sum of the volumes of the cells in those
layers. The current thickness of the spinosal and granular layers is their current total volume
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After each TA-cell replication, we find the active TA cells with the shortest cycling time, which
determine the size of the next time step in the simulation. However, before that time step can
be taken, we must determine if a spinosal cell needs to transition to a granular cell, based on
the current thickness of the spinosal layer. From the microscopy images in Figure 1, it is clear
that the spinosal and granular layers are confluent; hence, the volume of the spinosal and
granular layers at any time in the simulation is the sum of the volumes of the cells in those
layers. The current thickness of the spinosal and granular layers is their current total volume
divided by the area of skin being simulated, which is 100 times the cross-sectional area of a
basal cell. If the current thickness of the spinosal layer exceeds the observed thickness of a fully
formed spinosal layer, a spinosal cell transitions to a granular cell with an appropriate average
volume change.

We assume that all granular cells have the same volume that does not change with time. As
with the spinosal layer, we estimate the current thickness of the granular layer as its population
volume divided by the simulation area. If this total thickness exceeds that observed for a fully
developed granular layer, a granular cell transitions to a corneal cell. Updating the count of
corneal cells, if needed, completes a simulation time step.

To conduct the series of steps in the simulation described above requires parameters derived
from the analysis of microcopy data. A vertical slice through the skin-tissue model imaged by
H&E staining 17 days postseeding of keratinocytes allowed us to estimate values of 17, 37, and
17 μm for the thickness of the basal, spinosal, and granular layers, respectively, after they are
fully developed and before shrinkage begins. We compare these thicknesses to layer thick‐
nesses after each time step of the simulation to determine if changes in cellular populations
are needed. To conduct this test, we need the area of artificial skin being modeled. In our
simulation, the basal-cell layer is always a confluent monolayer; hence, the mean separation
of basal-cell nuclei, observed to be 14.9 μm by confocal microscopy after DNA staining [6], is
an estimate of the mean lateral thickness of the basal cells. By this method, we estimate the
cross-sectional area of the basal cells to be 14.9 μm2, so a typical area of skin in our simulations
is 100 ×(14.9 μm)2 = 2.22 × 104 μm2.

The analysis of microcopy data discussed in this chapter does not yield a direct measure of
spinosal-cell growth rate. However, the analysis of confocal microcopy data for the distribution
of nuclei as a function of height above the basement membrane, shown in Figure 3, can be used
to estimate the change in spinosal-cell volume as a function of height above the basement
membrane. As discussed in Section 3, the number of nuclei at various heights above the
basement membrane was estimated by counting the number of stained object in a 10-μm slice
with an image area of 60,000 μm2. Dividing the volume of the slice, 600,000 μm3, by the
observed count, we get an estimate of the volume per cell, assuming that each cell has a single
nucleus. The counts of nuclei in slices 10 and 20 μm above the basement membrane mainly
reflect the volume of the basal cells. The average of calculated volume per cell at 10 and 20 μm
was used to normalize the data; hence, the data shown in Figure 8 are the relative change in
cell volume versus height above the basement membrane.
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divided by the area of skin being simulated, which is 100 times the cross-sectional area of a
basal cell. If the current thickness of the spinosal layer exceeds the observed thickness of a fully
formed spinosal layer, a spinosal cell transitions to a granular cell with an appropriate average
volume change.

We assume that all granular cells have the same volume that does not change with time. As
with the spinosal layer, we estimate the current thickness of the granular layer as its population
volume divided by the simulation area. If this total thickness exceeds that observed for a fully
developed granular layer, a granular cell transitions to a corneal cell. Updating the count of
corneal cells, if needed, completes a simulation time step.

To conduct the series of steps in the simulation described above requires parameters derived
from the analysis of microcopy data. A vertical slice through the skin-tissue model imaged by
H&E staining 17 days postseeding of keratinocytes allowed us to estimate values of 17, 37, and
17 μm for the thickness of the basal, spinosal, and granular layers, respectively, after they are
fully developed and before shrinkage begins. We compare these thicknesses to layer thick‐
nesses after each time step of the simulation to determine if changes in cellular populations
are needed. To conduct this test, we need the area of artificial skin being modeled. In our
simulation, the basal-cell layer is always a confluent monolayer; hence, the mean separation
of basal-cell nuclei, observed to be 14.9 μm by confocal microscopy after DNA staining [6], is
an estimate of the mean lateral thickness of the basal cells. By this method, we estimate the
cross-sectional area of the basal cells to be 14.9 μm2, so a typical area of skin in our simulations
is 100 ×(14.9 μm)2 = 2.22 × 104 μm2.

Figure 8. Change in the volume per cell as a function of distance above the basement membrane. Data were normal‐
ized to the volume of the basal cells by averaging the results for slices of 3D confocal microscopy data 0–10 and 10–20
μm above the basement membrane. The line fit to data at heights greater than 20 μm mainly reflects the changing vol‐
ume of spinosal cells.

The analysis of microcopy data discussed in this chapter does not yield a direct measure of
spinosal-cell growth rate. However, the analysis of confocal microcopy data for the distribution
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of basal-cell nuclei, observed to be 14.9 μm by confocal microscopy after DNA staining [6], is
an estimate of the mean lateral thickness of the basal cells. By this method, we estimate the
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is 100 ×(14.9 μm)2 = 2.22 × 104 μm2.

The analysis of microcopy data discussed in this chapter does not yield a direct measure of
spinosal-cell growth rate. However, the analysis of confocal microcopy data for the distribution
of nuclei as a function of height above the basement membrane, shown in Figure 3, can be used
to estimate the change in spinosal-cell volume as a function of height above the basement
membrane. As discussed in Section 3, the number of nuclei at various heights above the
basement membrane was estimated by counting the number of stained object in a 10-μm slice
with an image area of 60,000 μm2. Dividing the volume of the slice, 600,000 μm3, by the
observed count, we get an estimate of the volume per cell, assuming that each cell has a single
nucleus. The counts of nuclei in slices 10 and 20 μm above the basement membrane mainly
reflect the volume of the basal cells. The average of calculated volume per cell at 10 and 20 μm
was used to normalize the data; hence, the data shown in Figure 8 are the relative change in
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Figure 8. Change in the volume per cell as a function of distance above the basement membrane. Data were normal‐
ized to the volume of the basal cells by averaging the results for slices of 3D confocal microscopy data 0–10 and 10–20
μm above the basement membrane. The line fit to data at heights greater than 20 μm mainly reflects the changing vol‐
ume of spinosal cells.

The linear trend in the relative volume per cell between 20 and 50 μm above the basement
membrane is not reflected in the data at 60 μm. Based on Figure 1A and allowing for shrinkage
on day 20 (see Table 1), we estimate that the combined thickness of the basal and spinosal
layers on day 20, when the confocal data were obtained, is 50.2 μm. Hence, the data shown in
Figure 8 at 60 μm are mainly due to nuclear staining in the granular layer and reflect the uptake
of the DNA stains more than the size of cells in the granular layer.

As the results in Figure 8 show, a linear model is reasonable for the change of spinosal-cell
volume as a function of their height in that layer. We express this model as

( ) (1 ( 1)( ) /s b b sv h v g h= + - - D D (1)

where vb is the volume of a basal cell, vs(h) is the volume of a spinosal cell at height h above
the basement membrane, Δb is the thickness of the basal layer, and Δs is the total thickness of
the spinosal layer. The parameter g is the ratio of the volume of a granular cell to a basal cell,
which can be verified by applying Eq. (1) at the maximum height of the spinosal layer. This
parameter can be estimated by setting (g-1)/Δs to the slope of the linear fit shown in Figure 8,
which gives a value of g = 3.32.

Equation (1) is not directly useful in our kinetic simulation because we do not know the height
above the basement membrane of individual cells in the spinosal layer; however, since vs(h) is
linear, we can easily calculate the average volume of a spinosal cell:

( ) / 2 (1 ) / 2 2.16s b g b bv v v v g v< >= + = + = (2)
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of nuclei as a function of height above the basement membrane, shown in Figure 3, can be used
to estimate the change in spinosal-cell volume as a function of height above the basement
membrane. As discussed in Section 3, the number of nuclei at various heights above the
basement membrane was estimated by counting the number of stained object in a 10-μm slice
with an image area of 60,000 μm2. Dividing the volume of the slice, 600,000 μm3, by the
observed count, we get an estimate of the volume per cell, assuming that each cell has a single
nucleus. The counts of nuclei in slices 10 and 20 μm above the basement membrane mainly
reflect the volume of the basal cells. The average of calculated volume per cell at 10 and 20 μm
was used to normalize the data; hence, the data shown in Figure 8 are the relative change in
cell volume versus height above the basement membrane.

The linear trend in the relative volume per cell between 20 and 50 μm above the basement
membrane is not reflected in the data at 60 μm. Based on Figure 1A and allowing for shrinkage
on day 20 (see Table 1), we estimate that the combined thickness of the basal and spinosal
layers on day 20, when the confocal data were obtained, is 50.2 μm. Hence, the data shown in
Figure 8 at 60 μm are mainly due to nuclear staining in the granular layer and reflect the uptake
of the DNA stains more than the size of cells in the granular layer.

As the results in Figure 8 show, a linear model is reasonable for the change of spinosal-cell
volume as a function of their height in that layer. We express this model as

( ) (1 ( 1)( ) /s b b sv h v g h= + - - D D (1)

where vb is the volume of a basal cell, vs(h) is the volume of a spinosal cell at height h above
the basement membrane, Δb is the thickness of the basal layer, and Δs is the total thickness of
the spinosal layer. The parameter g is the ratio of the volume of a granular cell to a basal cell,
which can be verified by applying Eq. (1) at the maximum height of the spinosal layer. This
parameter can be estimated by setting (g-1)/Δs to the slope of the linear fit shown in Figure 8,
which gives a value of g = 3.32.

Equation (1) is not directly useful in our kinetic simulation because we do not know the height
above the basement membrane of individual cells in the spinosal layer; however, since vs(h) is
linear, we can easily calculate the average volume of a spinosal cell:

( ) / 2 (1 ) / 2 2.16s b g b bv v v v g v< >= + = + = (2)

We assign this average volume to every spinosal cell, which allows us to calculate the thickness
of the spinosal layer at any time from the number of spinosal cells at that time. As explained
above, knowing the thickness of the spinosal layer at any time is sufficient to determine when
a spinosal cell makes a transition to a granular cell.

Using an average volume of spinosal cells also simplifies the relationship between the mean
TA-cell cycling time and the mean time t0 required in our kinetic simulation to produce a fully
developed via epidermis, which marks the beginning of a corneal layer by exposed to the
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We assign this average volume to every spinosal cell, which allows us to calculate the thickness
of the spinosal layer at any time from the number of spinosal cells at that time. As explained
above, knowing the thickness of the spinosal layer at any time is sufficient to determine when
a spinosal cell makes a transition to a granular cell.

Using an average volume of spinosal cells also simplifies the relationship between the mean
TA-cell cycling time and the mean time t0 required in our kinetic simulation to produce a fully
developed via epidermis, which marks the beginning of a corneal layer by exposed to the
liquid-air interface. If the confluent basal-cell population is N and a fraction p of basal cells is
cycling with a mean time Tc, then

0 ( / ( /) / )s gct N N N NT p += (3)

where Ns and Ng are the number of spinosal and granular cells, respectively, in the fully
developed spinosal and granular layers. Since N = AΔb/vb, where A is the area of epidermis
being simulated, Ns = AΔs/<vs>, and Ng = AΔg/vg, where Δg is the thickness of the granular layer,
Eq. (3) becomes

0 ( )[( )( / ( )( / )/ ]/ /c s b b s g b b gt T p v v v vD D < > + D D= (4)

Taking the average of 7 and 10 days as the typical time when the corneal layer begins [15], Eq.
(4) predicts the mean TA cycling time of 31.2 h. This completes the parameter estimates for our
kinetic simulation.

6. Effect of corneal screening on irradiation of the viable epidermis

The results of our kinetic simulation of epidermis development shown in Figure 7 together
with the estimate of 39 ± 1.41 μm for corneal layer thickness at 20 days postseeding of kerati‐
nocytes onto the dermal substrate enable the calculation of the protection that the corneal layer
provides to live cells in the viable epidermis. We only model radiation exposure delivered after
day 8.5, model radiation exposures delivered after day 8.5, the day selected in our model for
first appearance of the corneal layer based on information from MatTek [15] that viable
epidermis (basal, spinosal, and granular layers) is completed 7–10 days postseeding of
keratinocytes onto the dermal substrate.

The thickness of the corneal layer on the day of irradiation was obtained from the results for
cell count in the corneal layer, shown in Figure 7, after combining several simulations to reduce
random fluctuations and normalizing to a thickness of 39 μm on day 20. From day 8.5 to about
day 25, the increase in corneal thickness is linear. Beyond day 30, its thickness is constant since
the replication capacity of the basal layer has been exhausted.
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Taking the average of 7 and 10 days as the typical time when the corneal layer begins [15], Eq.
(4) predicts the mean TA cycling time of 31.2 h. This completes the parameter estimates for our
kinetic simulation.

6. Effect of corneal screening on irradiation of the viable epidermis

The results of our kinetic simulation of epidermis development shown in Figure 7 together
with the estimate of 39 ± 1.41 μm for corneal layer thickness at 20 days postseeding of kerati‐
nocytes onto the dermal substrate enable the calculation of the protection that the corneal layer
provides to live cells in the viable epidermis. We only model radiation exposure delivered after
day 8.5, model radiation exposures delivered after day 8.5, the day selected in our model for
first appearance of the corneal layer based on information from MatTek [15] that viable
epidermis (basal, spinosal, and granular layers) is completed 7–10 days postseeding of
keratinocytes onto the dermal substrate.

The thickness of the corneal layer on the day of irradiation was obtained from the results for
cell count in the corneal layer, shown in Figure 7, after combining several simulations to reduce
random fluctuations and normalizing to a thickness of 39 μm on day 20. From day 8.5 to about
day 25, the increase in corneal thickness is linear. Beyond day 30, its thickness is constant since
the replication capacity of the basal layer has been exhausted.

Based on results from simulations of a 90-keV electron beam stopping in a liquid-water
medium [11], we developed an interpolation procedure for the amount of energy deposited
in a layer of a given thickness at a given depth in the medium. As shown in Section 4, a liquid-
water medium is a reasonable approximation to the epidermis of skin, including the corneal
layer. Hence, our interpolation procedure allows the accurate prediction of radiation exposure
to specified regions of the epidermis without the computationally intense, event-by-event
simulation of 90-keV electrons penetrating an aqueous medium. The dermal substrate, which
is composed of human fibroblast in a collagen matrix, is thick enough to stop a 90-keV electron
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We assign this average volume to every spinosal cell, which allows us to calculate the thickness
of the spinosal layer at any time from the number of spinosal cells at that time. As explained
above, knowing the thickness of the spinosal layer at any time is sufficient to determine when
a spinosal cell makes a transition to a granular cell.

Using an average volume of spinosal cells also simplifies the relationship between the mean
TA-cell cycling time and the mean time t0 required in our kinetic simulation to produce a fully
developed via epidermis, which marks the beginning of a corneal layer by exposed to the
liquid-air interface. If the confluent basal-cell population is N and a fraction p of basal cells is
cycling with a mean time Tc, then
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where Ns and Ng are the number of spinosal and granular cells, respectively, in the fully
developed spinosal and granular layers. Since N = AΔb/vb, where A is the area of epidermis
being simulated, Ns = AΔs/<vs>, and Ng = AΔg/vg, where Δg is the thickness of the granular layer,
Eq. (3) becomes
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Taking the average of 7 and 10 days as the typical time when the corneal layer begins [15], Eq.
(4) predicts the mean TA cycling time of 31.2 h. This completes the parameter estimates for our
kinetic simulation.

6. Effect of corneal screening on irradiation of the viable epidermis

The results of our kinetic simulation of epidermis development shown in Figure 7 together
with the estimate of 39 ± 1.41 μm for corneal layer thickness at 20 days postseeding of kerati‐
nocytes onto the dermal substrate enable the calculation of the protection that the corneal layer
provides to live cells in the viable epidermis. We only model radiation exposure delivered after
day 8.5, model radiation exposures delivered after day 8.5, the day selected in our model for
first appearance of the corneal layer based on information from MatTek [15] that viable
epidermis (basal, spinosal, and granular layers) is completed 7–10 days postseeding of
keratinocytes onto the dermal substrate.

The thickness of the corneal layer on the day of irradiation was obtained from the results for
cell count in the corneal layer, shown in Figure 7, after combining several simulations to reduce
random fluctuations and normalizing to a thickness of 39 μm on day 20. From day 8.5 to about
day 25, the increase in corneal thickness is linear. Beyond day 30, its thickness is constant since
the replication capacity of the basal layer has been exhausted.
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Taking the average of 7 and 10 days as the typical time when the corneal layer begins [15], Eq.
(4) predicts the mean TA cycling time of 31.2 h. This completes the parameter estimates for our
kinetic simulation.

6. Effect of corneal screening on irradiation of the viable epidermis

The results of our kinetic simulation of epidermis development shown in Figure 7 together
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provides to live cells in the viable epidermis. We only model radiation exposure delivered after
day 8.5, model radiation exposures delivered after day 8.5, the day selected in our model for
first appearance of the corneal layer based on information from MatTek [15] that viable
epidermis (basal, spinosal, and granular layers) is completed 7–10 days postseeding of
keratinocytes onto the dermal substrate.

The thickness of the corneal layer on the day of irradiation was obtained from the results for
cell count in the corneal layer, shown in Figure 7, after combining several simulations to reduce
random fluctuations and normalizing to a thickness of 39 μm on day 20. From day 8.5 to about
day 25, the increase in corneal thickness is linear. Beyond day 30, its thickness is constant since
the replication capacity of the basal layer has been exhausted.

Based on results from simulations of a 90-keV electron beam stopping in a liquid-water
medium [11], we developed an interpolation procedure for the amount of energy deposited
in a layer of a given thickness at a given depth in the medium. As shown in Section 4, a liquid-
water medium is a reasonable approximation to the epidermis of skin, including the corneal
layer. Hence, our interpolation procedure allows the accurate prediction of radiation exposure
to specified regions of the epidermis without the computationally intense, event-by-event
simulation of 90-keV electrons penetrating an aqueous medium. The dermal substrate, which
is composed of human fibroblast in a collagen matrix, is thick enough to stop a 90-keV electron
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Based on results from simulations of a 90-keV electron beam stopping in a liquid-water
medium [11], we developed an interpolation procedure for the amount of energy deposited
in a layer of a given thickness at a given depth in the medium. As shown in Section 4, a liquid-
water medium is a reasonable approximation to the epidermis of skin, including the corneal
layer. Hence, our interpolation procedure allows the accurate prediction of radiation exposure
to specified regions of the epidermis without the computationally intense, event-by-event
simulation of 90-keV electrons penetrating an aqueous medium. The dermal substrate, which
is composed of human fibroblast in a collagen matrix, is thick enough to stop a 90-keV electron
beam; hence, we estimate the energy deposited in the dermal substrate as the residual energy
of electrons if they are not stopped in the epidermis.

The curve in Figure 9 referred to the left-hand vertical axis shows our prediction for the energy
deposited in the combined spinosal and basal layers depending on the day when the tissue
was treated relative to the seeding of keratinocytes onto the dermal substrate. Spinosal and
basal layers contain most of the cells with nuclei and that are undergoing growth and repli‐
cation; consequently, they are the most sensitive to radiation exposure.

The results shown in Figure 9 allow for the shrinkage of the viable epidermis observed to start
on day 19 but with little significance until day 23, with the exception of day 21 where shrinkage
is greater than on days 20 or 22 (see Table 1). The energy deposited in layers that contain
nucleated cells decreases from a value about 50 keV per incident electron for irradiation on
day 8.5, when the corneum is just beginning to form, to a value about 1 keV for irradiation on
day 25. The lack of smoothness in these calculations after day 18 is due to observed shrinkage
of the viable epidermis that begins on day 19.

Figure 9. Effects of increasing corneum thickness on energy deposition in the combined basal and spinosum layers
where keratinocytes are undergoing cell division and growth (left-hand vertical axis). The curve referred to the right-
hand vertical axis is the energy deposited in the dermal substrate relative to that deposited in the combined basal and
spinosal layers.
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beam; hence, we estimate the energy deposited in the dermal substrate as the residual energy
of electrons if they are not stopped in the epidermis.

The curve in Figure 9 referred to the left-hand vertical axis shows our prediction for the energy
deposited in the combined spinosal and basal layers depending on the day when the tissue
was treated relative to the seeding of keratinocytes onto the dermal substrate. Spinosal and
basal layers contain most of the cells with nuclei and that are undergoing growth and repli‐
cation; consequently, they are the most sensitive to radiation exposure.

The results shown in Figure 9 allow for the shrinkage of the viable epidermis observed to start
on day 19 but with little significance until day 23, with the exception of day 21 where shrinkage
is greater than on days 20 or 22 (see Table 1). The energy deposited in layers that contain
nucleated cells decreases from a value about 50 keV per incident electron for irradiation on
day 8.5, when the corneum is just beginning to form, to a value about 1 keV for irradiation on
day 25. The lack of smoothness in these calculations after day 18 is due to observed shrinkage
of the viable epidermis that begins on day 19.

Figure 9. Effects of increasing corneum thickness on energy deposition in the combined basal and spinosum layers
where keratinocytes are undergoing cell division and growth (left-hand vertical axis). The curve referred to the right-
hand vertical axis is the energy deposited in the dermal substrate relative to that deposited in the combined basal and
spinosal layers.

The curve in Figure 9 referred to the right-hand vertical axis shows the energy deposited in
the dermal substrate relative to that deposited in nucleated cells of the epidermis. When the
corneal layer is thin, a significant fraction of the energy deposited reaches the fibroblast in the
dermal substrate but this exposure is near zero for irradiation on day 21 when the corneal
thickness has increased to about 40 μm. Comparing tissue responses at these different exposure
times will not only show how screening by the corneal layer protects viable skin cells but may
also reveal interactions between dermis and epidermis that are present when both components
are exposed and absent when essentially all the radiation exposure is to epidermis alone.
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The curve in Figure 9 referred to the right-hand vertical axis shows the energy deposited in
the dermal substrate relative to that deposited in nucleated cells of the epidermis. When the
corneal layer is thin, a significant fraction of the energy deposited reaches the fibroblast in the
dermal substrate but this exposure is near zero for irradiation on day 21 when the corneal
thickness has increased to about 40 μm. Comparing tissue responses at these different exposure
times will not only show how screening by the corneal layer protects viable skin cells but may
also reveal interactions between dermis and epidermis that are present when both components
are exposed and absent when essentially all the radiation exposure is to epidermis alone.
Figure 9 suggests that irradiations performed around day 20 would deposit significant energy
in the basal and spinosal layers with minimal exposure to the dermal substrate.

7. Conclusions

As artificial organotypic cell cultures become more widely used in research, their characteri‐
zation becomes increasingly important. Morphology is a fundamental part of this characteri‐
zation that can be accomplished through quantifiable microscopy techniques with sample
preparation that preserves organ structure. The research described in this chapter concerned
a part of artificial skin, the corneal layer, which is particularly prone to distortion in standard
microtome-based slide preparation. To circumvent this difficulty, we correlated data from
histologic staining methods [14] with data from 3D images of artificial-skin samples acquired
by confocal microscopy [6]. However, this correlation of different types of microscope data
required assumptions about the uptake of DNA stains by granular cells and a kinetic model
to amplify the usefulness of confocal microscope data obtained at only one time point. In future
work, direct measurements of corneal thickness can be obtained by new non-destructive
techniques [20]. Despite these limitations on the available data, we achieved our objective of
modeling the decrease in radiation exposure to live cells in the epidermis with increasing
corneal thickness as the age of artificial skin samples increases.
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Figure 9 suggests that irradiations performed around day 20 would deposit significant energy
in the basal and spinosal layers with minimal exposure to the dermal substrate.

7. Conclusions

As artificial organotypic cell cultures become more widely used in research, their characteri‐
zation becomes increasingly important. Morphology is a fundamental part of this characteri‐
zation that can be accomplished through quantifiable microscopy techniques with sample
preparation that preserves organ structure. The research described in this chapter concerned
a part of artificial skin, the corneal layer, which is particularly prone to distortion in standard
microtome-based slide preparation. To circumvent this difficulty, we correlated data from
histologic staining methods [14] with data from 3D images of artificial-skin samples acquired
by confocal microscopy [6]. However, this correlation of different types of microscope data
required assumptions about the uptake of DNA stains by granular cells and a kinetic model
to amplify the usefulness of confocal microscope data obtained at only one time point. In future
work, direct measurements of corneal thickness can be obtained by new non-destructive
techniques [20]. Despite these limitations on the available data, we achieved our objective of
modeling the decrease in radiation exposure to live cells in the epidermis with increasing
corneal thickness as the age of artificial skin samples increases.
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Automatic Interpretation of Melanocytic Images in
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Abstract

The frequency of melanoma doubles every 20 years. The early detection of malignant
changes augments the therapy success. Confocal laser scanning microscopy (CLSM)
enables the noninvasive examination of skin tissue. To diminish the need for training
and to improve diagnostic accuracy, computer-aided diagnostic systems are required.
Two approaches are presented: a multiresolution analysis and an approach based on
deep  layer  convolutional  neural  networks.  For  the  diagnosis  of  the  CLSM views,
architectural structures such as micro-anatomic structures and cell nests are used as
guidelines by the dermatologists. Features based on the wavelet transform enable an
exploration  of  architectural  structures  at  different  spatial  scales.  The  subjective
diagnostic  criteria are objectively reproduced.  A tree-based machine-learning algo‐
rithm captures the decision structure explicitly and the decision steps are used as
diagnostic rules. Deep layer neural networks require no a priori domain knowledge.
They are capable of  learning their  own discriminatory features through the direct
analysis of image data. However, deep layer neural networks require large amounts of
processing power to learn. Therefore, modern neural network training is performed
using  graphics  cards,  which  typically  possess  many  hundreds  of  small,  modestly
powerful cores that calculate massively in parallel. Readers will learn how to apply
multiresolution  analysis  and  modern  deep  learning  neural  network  techniques  to
medical image analysis problems.

Keywords: confocal laser scanning microscopy, skin lesions, multiresolution image
analysis, convolutional neural networks, machine learning, computer-aided diagnosis
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1. Introduction

The skin is the largest organ of the body. Its surface comprises up to two square meters. It is
the organ that is in direct contact to the environment and is therefore exposed to several
environmental influences such as sun radiation, temperature, infections. The skin consists of
three main layers: the epidermis, the dermis and the hypodermis (subcutis), whereby each
layer is subdivided into several sublayers (strata) [1]. As the outermost layer, the epidermis
provides a protective barrier of the body’s surface which keeps water in the body, protects
against heat and ultraviolet  radiation and prevents infections (caused by bacteria,  fungi,
parasites,  etc.)  [2,  3].  The  horny layer  (stratum corneum),  which is  the  top layer  of  the
epidermis, undergoes a continuous process of renovation (every 4 weeks). Keratinocytes,
which represents 90% of the cell types in the epidermis, protect the body against ultraviolet
radiation. Keratinocytes are derived from epidermal stem cells residing in the lower part of
the epidermis (stratum basalis). During their lifetime, they migrate through the different strata
of the epidermis. Via this process, they are pressed to the epidermis surface by the continu‐
ously succeeding cells. During the migration through the different strata, the keratinocytes
cells undergo multiple stages of differentiation, whereby they change shape and composi‐
tion and are filled with keratin. Different stages and corresponding strata are represented in
Figure 1. Keratin, a structural protein, is the key structural material making up the outer layer
of the epidermis and protects the cells from damage or stress. On their way to the outermost
strata, the keratinocytes lose liquid and become hornier. Corneocytes are keratinocytes that
have completed their differentiation program. They are dead cells in the stratum corneum and
are shed off (by desquamation) as new ones come in. Keratinocytes protect against ultravio‐
let radiation by taking up melanosomes from epidermal melanocytes. The melanosomes are
vesicles which contain the endogenous photo protectant molecule melanin. Melanocytes are
melanin producing cells which comprise between 5 and 10% of the cells in the basal layer
(stratum basalis) of the epidermis. The production of the skin pigment melanin is stimulat‐
ed by ultraviolet radiation (melanogenesis). Melanocytes have several arm-like structures
(dendrites)  that stretch out to connect them with many keratinocytes.  Once synthesized,
melanin  is  contained  in  the  melanosomes  and  moved along  the  dendrites  to  reach  the
keratinocytes. The melanin molecules are stored within keratinocytes (and melanocytes) in
the perinuclear area, around the nucleus, where they protect the DNA against ultraviolet
radiation. Thereby, a melanin molecule transforms nearly all the radiation energy in to heat.
This is done by ultrafast internal conversation of the energy from the excited electronic states
into vibrational modes. The ultrafast conversion shortens the lifetime of the excitation states
and therefore prevents the formation of harmful free radicals.

The dermis is connected to the epidermis through a basement membrane (a thin sheet of fibres)
and provides anchoring and nourishment for the epidermis. The dermis contains collagen
(stability), elastic fibres (elasticity) and an extrafibrillar matrix as structural components. The
papillary region (stratum papillae) in the dermis is composed of connective tissue which
extends towards the epidermis. These finger-like projections are called papillae and strengthen
the connection between the dermis and the epidermis. In addition to the structural compo‐
nents, blood vessels are present in the dermis providing nourishment for the dermal and
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epidermal cells. Furthermore, the dermis contains hair follicles, sweat glands and lymphatic
vessels. (In addition to the presented components, the dermis also contains mechanoreceptors
that enable the sense of touch and thermoreceptors that provide the sense of heat). The
hypodermis is beneath the dermis. Its tasks comprise energy storage, heat insulation and the
connection of the skin with inner structures like muscles and bones. The hypodermis consists
primarily of loose connective tissue and adipocytes (fat cells), which are grouped together in
lobules (subcutaneous fat). Furthermore, the hypodermis contains larger blood vessels and
nerves than those found in the dermis.

Figure 1. The layer architecture of the epidermis.

2. Malignant melanoma and benign nevi

The primary cause for the increasing number of melanomas is the extreme sun exposure during
sun-bathing (especially for people with low levels of skin pigment). The malignant melanoma
is a type of cancer that develops from the pigment containing melanocytes [4]. Melanomas are
mainly caused by DNA damage resulting from the ultraviolet radiation [5]. It is observed that
strongly pigmented people are less susceptible to (sun induced) melanomas, which demon‐
strates the protection function of melanin. At the early stage, melanocytes begin an out-of-
control growth [5]. In a posterior stage (invasive melanoma), the melanoma may grow into the
surrounding tissue and can spread out around the body through lymph or blood vessels
deeper in the skin. People with melanomas at the early stage are treated by surgical removal
of the skin lesion. In cases where the melanoma has spread out, patients are treated by
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immunotherapy or chemotherapy. Most people are cured if spreading has not occurred.
Therefore, the early and reliable recognition of melanomas at the early stage is of special
importance [6]. The difference between a benign or malignant tumour is its invasive potential.
If a tumour lacks the ability to invade adjacent tissues and to metastasize then it is benign,
whereas a malignant tumour is invasive or metastatic. A nevus (birthmark) is a sharply
circumscribed and benign chronic lesion of the skin. The melanocytic nevus results from
benign proliferation of the dendritic melanocytes. Due to the pigment melanin, they are mostly
brown. Nevus cells are related to the melanocytes, but they show a lack of the dendrites and
are oval in shape. They are typically arranged in cell nests. The majority of acquired nevi appear
during the childhood up to young adults (the first two decades of life). A melanocytic nevus
present at birth is called a congenital nevus. They are rarely about one in every 100 newborns.
Nevi are harmless. However, 25% of malignant melanomas arise from pre-existing nevi.

3. Confocal laser scanning microscopy

In conventional microscopy, the entire field of a tissue sample is simultaneously illuminated
by light and displayed. Although the brightest light intensity results from the focal point of
the objective lens, other parts of the tissue are still illuminated, resulting in a large unfocused
background section. This background noise diminishes the image quality. Both conventional
and confocal laser scanning microscopy (CLSM) can use reflected light to image a tissue
sample. The reflected light from the illuminated spot is then re-collected by the objective lens.
In addition to the reflected light from the focal point, the scattered light from sample points
outside the focus light (coming from places above or below the focus) is projected by the optical
system of the microscope and therefore contributes to the image assembly. This causes a
blurring and obscuring of the resulting image. Confocal microscopy overcomes this problem
by placing a pinhole in the conjugate focal plane (hence the designation confocal) that allows
only the light emitting from the desired focal spot to pass through [7]. Any light outside of the
focal plane (the scattered light) is blocked. Figure 2 shows the principle: the out of focus light
(red), coming from places above the selected focal plane, is blocked by the pinhole in the
conjugate focal plane. The (in focus) light from focal plane (blue) can pass through the pinhole
and is detected. Therefore, a blurring is avoided and sharp and detailed images are produced
(in other words: the image information from multiple depths in the sample is not superim‐
posed). In confocal microscopy, a light beam is directed by a dichroic mirror to the objective
lens where it is focused into a small focal volume at a layer within the tissue sample (Figure
3). A laser, with a near-infrared wavelength, is used as a coherent monochromatic light source.
The same microscope objective gathers the reflected light from the illuminated spot in the
sample. The dichroic mirror separates the reflected light from the incident light and deflects
it to the detector. Before the light reaches the detector, the out of focus sections are blocked by
the pinhole in the conjugate focal plane. The in focus light that passes through the pinhole is
measured.
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by light and displayed. Although the brightest light intensity results from the focal point of
the objective lens, other parts of the tissue are still illuminated, resulting in a large unfocused
background section. This background noise diminishes the image quality. Both conventional
and confocal laser scanning microscopy (CLSM) can use reflected light to image a tissue
sample. The reflected light from the illuminated spot is then re-collected by the objective lens.
In addition to the reflected light from the focal point, the scattered light from sample points
outside the focus light (coming from places above or below the focus) is projected by the optical
system of the microscope and therefore contributes to the image assembly. This causes a
blurring and obscuring of the resulting image. Confocal microscopy overcomes this problem
by placing a pinhole in the conjugate focal plane (hence the designation confocal) that allows
only the light emitting from the desired focal spot to pass through [7]. Any light outside of the
focal plane (the scattered light) is blocked. Figure 2 shows the principle: the out of focus light
(red), coming from places above the selected focal plane, is blocked by the pinhole in the
conjugate focal plane. The (in focus) light from focal plane (blue) can pass through the pinhole
and is detected. Therefore, a blurring is avoided and sharp and detailed images are produced
(in other words: the image information from multiple depths in the sample is not superim‐
posed). In confocal microscopy, a light beam is directed by a dichroic mirror to the objective
lens where it is focused into a small focal volume at a layer within the tissue sample (Figure
3). A laser, with a near-infrared wavelength, is used as a coherent monochromatic light source.
The same microscope objective gathers the reflected light from the illuminated spot in the
sample. The dichroic mirror separates the reflected light from the incident light and deflects
it to the detector. Before the light reaches the detector, the out of focus sections are blocked by
the pinhole in the conjugate focal plane. The in focus light that passes through the pinhole is
measured.
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Figure 2. Principle of the confocal (left) and laser scanning (right) microscopy.

The detector, which is usually a photomultiplier tube or avalanche photodiode, amplifies and
transforms the intensity of the reflected light signal into an electrical one that is recorded by a
computer. In contrast to conventional microscopy, there is never a complete image of the
sample at any given instant; rather only one point in the selected plane of the sample is
observed. In order to create an image, light from every point in the plane (x-axis, y-axis) must
be recorded. This can be done by a raster scanning mechanism which uses two motor driven
high-speed oscillating mirrors, which pivot on mutually perpendicular axes. Coordination of
the two mirrors, one scanning along the x-axis and the other on the y-axis, produces the
rectilinear raster scan (Figure 2). During the scanning process, the detected signal is transferred
to a computer that collects all the ‘point images’ of the sample and serially constructs the image
pixel by pixel. The brightness of a resulting image pixel corresponds to the relative intensity
of the reflected light. The contrast in the images results from variations in the refractive index
of microstructures within the tissue. Information can be collected from different focal planes
by raising or lowering the objective lens. Then successive planes make up a ‘z-stack’. A stack

Figure 3. Principle of the confocal laser scanning microscope.
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is a sequence of images captured at the same horizontal position (x- and y-axes) at different
depths (z-axis). The images are taken enface (horizontally). The confocal laser scanning
microscopy is performed with a Vivascope 1000 (Lucid Inc., USA) which uses a diode laser at
830 nm wavelength and a power of <35 mW at tissue level. A ×30 water-immersion objective
lens with a numerical aperture of 0.9 is used with water as an immersion medium. The spatial
resolution is 0.5–1.0 μm in the lateral and 3–5 μm in the axial dimension.

The images contain a field-of-view of 0.5 × 0.5 mm. Up to 16 layers per lesion can be scanned.
All images, stored in BMP file format, are monochrome images with a spatial resolution of 640
× 480 pixels and a grey level resolution of 8 bits.

4. Interpretation of confocal laser scanning microscopic images

The reflectivity of the tissue depends on chemical structures. Melanin and melanosomes have
a high refractive index which contributes strongly to the contrast of the resulting image [8–
10]. Due to such dominating variations of the refractive index, only a certain part of the in
falling light is reflected. This makes the appearance of the tissue in a CLSM image so different
from conventional histological views. The power of the 830 nm laser limits the imaging depth
to a maximum of 350 μm, corresponding to the papillary dermis (higher power could damage
the skin). Figure 4 shows the views of different skin layers [11]. The stratum corneum shows
large polygonal anucleated corneocytes (A). Skin folds and marks appear as dark structures.
The next layer is the stratus granulosum (B). The stratum spinosum (C) contains keratinocytes
in a honeycomb pattern. In the stratum basalis (D), the basal cells are uniform in size and show
higher reflections than spinous keratinocytes and appear very intensively. The dermatological
guidelines for the interpretation of melanocytic skin lesions in CLSM views are as follows.

Figure 4. CLSM views of normal skin.

For the diagnosis of CLSM views of benign common nevi and malignant melanoma, architec‐
tural structures such as micro-anatomic structures; cell nests, etc., play an important role [12].
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Monomorphic melanocytic cells, melanocytic cell nests and readily detected keratinocyte cell
boarders are suggestive of benign nevi, whereas polymorphic melanocytic cells, disarray of
melanocytic architecture and poorly defined keratinocyte cell borders are suggestive of
melanoma (Figure 5). The images are taken from the centre of the tumours.

Figure 5. CLSM images of malignant melanoma (left) and common benign nevi (right).

Layers from the plane of the spinous keratinocytes (polygonal cells) to the plane of the basal
cells (dermo-epidermal junction) are used for diagnosis.

5. Analysis of tissue structures at different scales

As shown in the previous section, the information at different scales (from coarse structures
to details) plays a crucial role in the diagnosis of CLSM images of skin lesions. Wavelet analysis
is a method to analyse visual data by taking into account scale information [13].

Figure 6. Scale-space sequence of a successively Laplacian of Gaussian-filtered image.

The multiple resolutions enable a scale invariant interpretation of an image. Figure 6 illustrates
the principle of scale space analysis for four levels of scale (clockwise direction). In the top left
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image (scale 1), the feature detection responds to fine texture. The images at higher scales are
generated by a Laplacian of Gaussian filter (LoG(x, y)), which is also known as Marr-Hildreth
operator or Marr wavelet (Figure 7), whereby the kernel size (σ) of the Gaussian increases step
by step.
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The blue and red colours indicate positive and negative values. The images become increas‐
ingly blurred and smaller details (or regions) progressively disappear. The detected features
are then associated with a larger scale scene structure. The multiresolution analysis is closely
analogous to the human vision system which seems to prefer methods of analysis that run
from coarse to fine and, repeating the same process, obtain new information at the end of each
cycle [14] (Figure 6 counter clockwise direction). The wavelet decomposition can be realized
as a convolution of the image with a filter bank, consisting of high pass and low pass filters [15].
Whereby, for example a first-order derivative can be used as a convolution kernel for the high-
pass filter and a moving average as a kernel for the low-pass filter. In our study, the filter
coefficients are defined by the Daubechies 4 wavelet transform.

Figure 7. Shape of the Laplacian of Gaussian convolutional filter kernel.

The wavelet decomposition performs a multi resolution analysis, whereby the image is
successively decomposed by the filter operations followed by sub-sampling. The (pyramidal)
algorithm consists of several steps and operates as follows: at the beginning, the image rows
are filtered by the high-pass filter and in parallel by the low-pass filter (Figure 8). From both
operations result two images (which are called sub-bands), one shows details (high pass) and
the other is smoothed out (low pass). The sub-sampling is done by removing every second
column in both sub-bands. Subsequently, the columns of both sub-bands are high-pass and
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independently low-pass filtered. This results in four sub-bands, which differ by the kind of
filtering. Again a sub-sampling is done by removing every second row in each sub-band. This
is the end of the first step. The mixed filtered (high-low pass, etc.) sub-bands are stored. Only
the double low-passed sub-band is processed in the second step (Figure 8). The second step
repeats the operations of the first step. Again this results in four sub-bands and the fourth
smoothed sub-band is used as entry for the following step. At every step, the resulting sub-
bands are reduced to half the resolution. The sub-bands with higher spatial resolution contain
the detailed information (high pass), whereas the sub-bands with the low-resolution represent
the large scale coarse information (low pass). The output of the wavelet decomposition consists
of the remaining ‘smooth-…-smooth’ components and all the accumulated ‘detail’ compo‐
nents. In other words, via the wavelet decomposition, the image array is decomposed into
several sub-bands representing information at different scales. The output of the last low-pass
filtering is the mean gray level of the image.

After the dissection of the quadratic sub-bands, they are usually arranged in a quadratic
configuration, whereby the three sub-bands of the first step fill 3/4 of the square, the three sub-
bands of the second step fill 3/16 of the square, etc. The sub-bands representing successively
decreasing scales are labelled with increasing indices (Figure 9). Then, the architectural
structure information is accumulated along the way of the sub-bands (from coarse to fine). In
image processing, it is convenient to display the smoothed image as lowest sub-band in the
upper left corner of the quadratic sub-band configuration. The coefficients values in the
different sub-bands reflect architectural and cell structures at different scales.

Figure 8. The multiresolution filter bank of the wavelet decomposition.
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Figure 9. The sub-bands resulting from the successive high and low pass filter operations.

The tissue features are derived from statistical properties of the sub-band coefficients. For the
ith sub-band of size N × N, the coefficients are given by:

{ }= =i id d (k,l) k,l ,N1

The texture features are based on the variations of the coefficients within each sub-band and
the weighted sum of all the coefficients into each sub-band. The standard deviations of the
coefficients inside the single sub-bands and the energy and entropy of the different sub-bands
are calculated and used as features (for details see: [16]). The standard deviation of the
coefficients represents how exposed the tissue structures in the considered sub-band at the
given scale are. The total energy of the coefficients in a given sub-band shows to what degree
the structures at the corresponding scale contribute to the image. The distribution of the energy
of the sub-bands is represented in a power spectrum, enabling an evaluation of their relative
contributions.

The next task in automated image analysis is the use of machine-learning algorithms for
classification purposes on hand of the feature values [17]. The algorithm learns, by use of a
training set, how to assign the tissue images to given classes. Then, in future, the algorithm
can apply the gained knowledge to predict the class of unknown tissue. By means of the
classification procedure, the primary inhomogeneous set of CLSM samples, consisting of a mix
of malignant melanoma and benign common nevi cases, is split into homogeneous subsets,
which are assigned to one of the two tumour classes: common benign nevi or malignant
melanoma. A homogeneous subset means that it contains only CLSM images with similar
feature values, representing one specific kind of tissue. For the discrimination of the CLSM
images, the CART (Classification and Regression Trees) algorithm is used [18].

The tree representation consists of different nodes and branches. There is a root node, several
leaf (terminal) nodes and inner nodes (Figure 10). The first node in the tree is the root node. It
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contains the feature values of the whole set of CLSM image samples. A leaf node is a homo‐
geneous node which contains only samples belonging to the same class of tissue. The inner
nodes contain more or less inhomogeneous sample sets. A branch in the decision tree involves
the testing of one particular texture feature (binary tree). Then, the considered node, which is
the parent node, is split into two child nodes (Figure 10).

Figure 10. Generation of a decision tree.

The feature is tested by comparing its numerical value with a threshold value that divides the
value range. The threshold value is selected automatically by the algorithm in such a way that
the subsets of samples in the child nodes are purer than the set in the parent node. To this
purpose, an information measure is used which indicates the degree of homogeneity; the value
in the leaf nodes is zero and the higher the value of an inner node, the higher is its inhomo‐
geneity. At every branch in the tree, subsets with smaller values of the information measure
are generated. The decision tree is generated recursively (details are shown in: [16]). Whereby
the algorithm consists in principal of three parts: the determination of the optimal splitting at
every node; the decision whether the node is a leaf node or an inner node; the assignment of
a leaf node to a specific class (Figure 10). To classify an unknown sample, it is routed down
the tree according to the values of the different features. When a leaf node is reached, the
sample is classified according to the class assigned to the leaf. The tree-based machine-learning
algorithm captures the decision structure explicitly. That means the generated decision rules
are ‘Modus Ponens’, with a precondition and conclusion part, and are intelligible in such a
manner that they can be understood, discussed and used as diagnostic rules.

( ) ( )IF ...and .Condition1.and .Condition2 THEN Class : A=
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In total, 39 different features are calculated for 16 frequency bands (labelled from 0 to 15). The
mean value is calculated from the first four frequency bands; therefore, 13 values result for
each feature. The highest frequency bands contain only information about very fine grey level
variations, such as noise, and are therefore not considered for the image analysis. The proce‐
dure for image analysis (including feature extraction and calculation) was developed with the
‘Interactive Data Language’ software tool IDL (IDL 7.1, ITT Visual Information Solutions). The
tree classification is done by the CART analysis software from Salford Systems, San Diego,
USA.

6. Biological motivation for neural networks

A neuron is an electrically excitable cell that receives, processes and transmits information as
electrochemical signals. It consists of several dendrites, the soma and an axon (Figure 11). The
soma is the cell body which contains the nucleus and all the necessary cytoplasmic cell
structures. The dendrites are cytoplasmic extensions of the cell body with many branches
allowing the cell to receive signals from other neurons. The axon is a special extension which
carries signals away from the soma. At its terminal, the axon undergoes extensive branching,
enabling communication with many target cells. The neurons maintain voltage gradients
across their membranes. Ion channels, embedded in the membrane, enable the generation of
intracellular-extracellular ion migrations. The resulting changes in the cross-membrane
polarization generate an electrochemical pulse, known as the action potential. These changes
in the cross-membrane potential are transferred as a wave of successive depolarization and
repolarisation processes along the cell’s axon. The axon terminal contains synapses, specialized
connections to target neurons, where neurotransmitter chemicals are released. Synaptic signals
may be excitatory or inhibitory. Once the pulse from the soma along the axon reaches the
synapses, a neurotransmitter is released at the synaptic cleft. The neurotransmitter molecules
bound at the receptors in the post-synaptic membrane (of the target neuron) and opens ion
channels. Then, the electrochemical pulse is transmitted to the target neuron.

Figure 11. Microanatomy of a natural neuron (left), principle of an artificial neuron (right).

An artificial neuron is a mathematical model of a biological neuron. Artificial neurons mimic
the behaviour of the biological neurons. The input of the artificial neuron is represented by a
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vector:x= (x1, x2, ..., xn), whereby its dimension reflects the number of contributing dendrites
(Figure 11). In the mathematical model, each ‘dendrite’ contributes individually through a
weighted signal to the input signal. The weight factor wj = (wj1, wj2, ..., wjn) simulates the ratio
of synaptic neurotransmitters, whereby positive values represent excitatory and negative
values inhibitory behaviour (a weight value zero means that there is no connection between
the involved neurons). The summation function represents the soma of the neuron j. The
exciting and inhibiting signals are added in the function:

j i ji
i

z x w=å

The firing behaviour of the neuron is represented by the activation function. Its activation
depends on the output of the summation function zj and a threshold value Θ. If the summation
function exceeds the threshold, the neuron is firing and transmits an output signal yj:

( )j jy z= f - q

The biological motivation of the activation function is the threshold potential in natural
neurons. Step and sigmoid functions are often used as transfer functions.

7. Artificial neural networks

Artificial neural networks consist of a number of artificial neurons, the computational units,
which are interconnected. Each unit performs some small calculation based on inputs it
receives from other units, whereby the associated weight factors can be tuned. This tuning
occurs by allowing the network to analyse many examples of previously observed data. The
most common type of neural network is the feed forward neural network (containing no loops),
and in such networks, the computational units are organised into layers from an input layer,
where data are fed into the network, to an output layer, where the result of the network’s
computation is outputted in the form of a classification result or regression result (Figure 12).
Traditionally, each neuron in a layer is connected to all other neurons in the previous or
subsequent layers (fully connected network). Between the output and input layers are hidden
layers, and networks that consist of more than one hidden layer are known as deep learning
algorithms. Such feed forward neural networks have been shown to be universal approxima‐
tors, that is to say they can learn to approximate any continuous function to arbitrary precision,
given enough hidden neurons [19]. Neural networks must be trained. The training data are
previous observations that have been collected, and the task of the network is to learn a
function which should map new input data to a classification label.
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Figure 12. Structure of a feed forward artificial neural network.

In general, feed forward neural networks are supervised machine-learning algorithms. Figure
12 shows a network with three layers: (1) an input layer, where data are fed in, (2) a hidden
layer consisting of neurons that each contain an activation function that reads in data from the
input neurons, performs some calculation, and outputs a value, and (3) an output layer that
reads data from the hidden layer and makes a prediction based on this input. All connections
between neurons have independently adjustable weights (Section 6). All layers are fully
connected meaning that each neuron in the input layer is connected to every neuron in the
hidden layer. The network learns by adjusting the weights between each of the connected
neurons until the network makes good predictions by minimising an error function (backpro‐
pagation algorithm).

Fully connected neural networks are useful where individual features of a dataset are not very
informative. In image data, where an individual pixel is not likely to be very informative taken
on its own, a local combination of pixels may very well be informative and represent an object
of interest. However, neural networks are also far more computationally intensive than many
other machine-learning algorithms, with the number of tuneable parameters quickly growing
into the millions as the network increases in depth or size. Also, neural networks typically
work on image data directly, without feature reduction, meaning the dimensionality of the
data being analysed by neural networks is much higher than that of other algorithms, which
often work on extracted features. One could therefore summarise that neural networks are
most useful for high m high n problems—problems where there exist many observations (n)
of high dimensional data (m). Of late, neural networks algorithms have re-emerged as a
popular technique in machine learning, especially in the field of image analysis. This re-
emergence has come due to a number of recent developments in neural network design as well
as independent hardware developments. In real-world applications, their usage has grown
beyond image analysis and has also been shown to be useful for other tasks, such as natural
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language processing and artificial intelligence [20, 21]. Nevertheless, a number of advance‐
ments in recent years resulted in an upsurge in the usage of neural networks.

First, hardware advancements have made it feasible for larger neural networks to be trained
in reasonable amounts of time. As mentioned previously, neural networks that learn on very
high-dimensional data require many neurons and layers, meaning networks can consist of
many millions of parameters that need to be tuned. This results in large network architectures
that have, for a long time, been unfeasibly difficult to train on standard desktop workstations.
However, computational enhancements have meant this is no longer the case. These compu‐
tational advancements are the result of rapid developments in graphics processing unit (GPU)
technology due to the ever increasing requirements of the gaming industry, resulting in great
improvements in the parallel processing power of GPUs. In 3D gaming, the vast majority of
processing power is spent on matrix multiplications, such as transforms and perspective
calculations, in order to depict the 3D worlds of games in 2D to the user. Such calculations are,
for the most part, performed using matrix and vector multiplications. Such matrix calculations
can be performed in parallel, and hence gaming GPUs have evolved to be particularly suited
to such parallel processing tasks. To this end, GPUs typically consist of boards with many
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Traditional feed forward neural networks consist of layers, where each neuron is connected
to every other neuron in the layers above and below it. These are known as fully connected,
or affine, layers. Fully connected neural networks do not consider the spatial relation between
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pixels in an image. Pixels which are close together are treated exactly like pixels which are far
apart when being processed by the network. For the learning of high-level features, this is
suboptimal. In terms of image analysis, one particular type of neural network algorithm has
stood out as being especially adept at image classification and object recognition. This is the
convolutional neural network. The idea behind convolutional neural networks is to restrict the
network to take inputs only from spatially nearby neurons. In other words, the layers are not
fully connected, as in the example in Figure 12.

8. Convolutional neural networks

In the fields of image analysis, object detection and pattern recognition, convolutional neural
networks are the state of the art algorithm for practical applications. Following on from our
previous work, where we applied multiresolution analysis and CART as tree-based machine-
learning method (Section 5), we decided to test the applicability of convolutional neural
networks at a similar classification task. Because neural networks learn their own discrimina‐
tory, high-level features, the dataset requires no pre-processing or feature extraction, with the
exception of image resizing and pixel value normalisation. This is in direct contrast to our
previous efforts, where a dedicated feature extraction phase was necessary. Convolutional
neural networks (CNN), in effect, emulate the way in which classical pattern recognition
works, where local features (edges, corners, etc.) are extracted and combined to generate higher
level representations that can be used for object recognition. Convolutional neural networks
are locally connected, where each neuron is connected only to those that are spatially close
(local receptive fields) in the previous layer, mimicking the visual cortex of some animals.
Pixels that are closer to each other are more strongly correlated than those which are further
away from each other, and this is something which the convolutional neural network has been
designed to be able to account for through its architecture [26].

Network architectures with fully connected layers do not take into account the spatial structure
of the images. Instead of using a network architecture which is tabula rasa, convolution neural
networks (CNN) try to take advantage of spatial structures in images. They use three basic
ideas: local receptive fields, shared weights and pooling. It is helpful to represent the input
image as a square of neurons, whose values correspond to the pixel intensities. Then, only
small, localized regions of the input image are connected to a neuron in the first hidden layer.
Such a region in the input image is called the local receptive field for the corresponding hidden
neuron. In other words, the hidden neuron learns to analyse its particular local receptive field.
If the receptive field has a size of 5 × 5 pixels, then the hidden neuron is connected by 5 × 5
weights, which are adjusted during learning. The input of the hidden neuron is given by the
summation function:
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The value bx,y denotes the input activation at position (x, y). The output of the hidden neuron
is given by the activation function, for example the sigmoid function. The convolutional
operation can be considered as a sliding window, which travels over the image, with the
window centre moving one or more pixel a time. This is defined by the stride length. If the
window is moved by one pixel, the stride length is 1. For each position of the local receptive
field, there is a different hidden neuron in the first hidden layer. The map from the input layer
to the hidden layer (convolutional layer) is called a feature map. The weights wl,m defining the
feature map are the shared weights. The shared weights define the convolution kernel
(convolution is generally the workhorse of image processing). The pixels in the local receptive
field are multiplied element-wise with the kernel. Features maps are generated using only
neurons which are spatially close to each other, known as spatial connectivity. Each feature
map is defined by a specific set of shared weights enabling the network to detect different
kinds of features (edges, corners, etc.). The CNN therefore learns objects related to their spatial
structure. For image analysis purposes, more than one feature map are required. Therefore, a
complete convolutional layer consists of several different feature maps. In addition to the
convolutional layers, CNNs also contain pooling layers which usually follow immediately
after the convolutional layers. Pooling layers simplify the information in the output from the
convolutional layer by generating a condensed feature map (this removes the positional
information of the features learned, meaning the learned features are position invariant). For
example, each unit in the pooling layer may summarize a region of 2 × 2 neurons in the previous
convolutional layer. Pooling is done for each feature map separately. The final layer in the
convolutional network is a fully connected layer. This layer connects every neuron from the
last pooling layer to every one of the output neurons.

A depiction of a typical 7-layer convolutional neural network can be seen in Figure 13. Images
are read into the network in the input layer. From this input, a number of feature maps (4) are
generated, which are subsampled in a max-pooling phase. Then, both phases are repeated once
more, before connecting to a conventional fully connected layer which is finally connected to
the output layer. CNNs often contain multiple fully connected layers before the final output
layer, and modern CNNs can contain many convolution/max-pooling pairs.

Figure 13. The structure of a typical seven-layer convolutional neural network.
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Figure 14 describes the convolutional layer and max-pooling layer in more detail. The input
into the convolutional neural network is a vector x∈R1×m, and the input layer has one neuron
per feature. However, the layers can be thought as having their neurons arranged as depicted
in Figures 11 and 12. In the case above, a 5 × 5 kernel is used, with a stride of 1, which results
in a feature map of size 32 – 5 + 1 = 28 × 28. Typically, a convolutional layer is followed by a
max-pooling layer, which acts as a type of sub-sampling, in this case halving the size of the
previous feature map (Figure 13).

Figure 14. Principle of the convolutional layers and max-pooling layers [27].

Convolutional neural networks possess several characteristics that make them very suitable
for the analysis of histological images. First, convolutional neural networks are capable of
building models which are translation invariant and robust to transformations in the images,
such as rotation, and they can learn features which are robust to scaling. They also generate
models which are position invariant. This is especially important for microscopy imagery,
where a lesion, for example, has no ‘right way up’, and cannot even be rotationally normalised.

9. Deep learning analysis of a CLSM image dataset

As stated previously, the goal was to train a model which would classify newly seen images
as either malignant or benign. The neural network that was designed was based on the
structure of the LeNet-5 convolutional neural network structure and was developed using
the Keras deep learning library for Python [26]. The network consisted of a total of eight
layers: the input layer, two pairs of convolutional and max-pooling pairs, two fully connect‐
ed layers, and the output layer. The rectified linear unit (ReLU) was used throughout as the
neuron nonlinearity. The ReLU is a computational unit which uses a ramp function [the
rectifier f(x)=max(0, x)] and is currently the most popular activation function for deep neural
networks. Because of the depth of network, a graphics processing unit (GPU) was used, which
greatly increases the speed at which the network can train. In terms of hardware, a mid-
range NVidia gaming GPU with 2 GB of dedicated video memory and 640 cores was used
for training the network. The card is capable of 1306 GFLOP/s and has a memory band‐
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width of 86.4 GB/s. At the time of writing, the card can be purchased for under $150. The
card was installed in a Linux workstation with 32 GB of RAM and a 3.5 GHz 6-core AMD
processor running the Xubuntu 14.04 operating system. To illustrate the differences in
computational power between a GPU and CPU, and to demonstrate the enormous impact
using a GPU can have on training times, we benchmarked our code. Training the network
over 20 epochs required 2 min 4 s of time, averaged over three runs, when using the GPU.
When using the CPU, this time was 57 min 59 s for 20 epochs (also averaged over three runs),
nearly 30 times slower. Experimenting with different parameters, or testing new network
structures, can become very tedious when hours of computational power are required per
run or experiment. The GPU reduces this time to minutes.

Dropout was used to control overfitting at two points in the network’s structure: once after
the convolutional and max-pooling pairs, and once again after the first fully connected layer.
Dropout helps to control overfitting by randomly setting a certain set percentage of the
neurons’ weights to zero, effectively forcing the network to relearn those weights, with the
intention of mitigating the learning of noise. The output of the network is finally determined
by a sigmoid logistic function, squashing the results of the entire network to a value between
0 and 1. Values closer to 1 are therefore classified as being malignant, while values closer to 0
refer to a benign prediction. Such an output can also be used examine the network’s confidence
at a classification, with a value of 0.99 meaning a highly confident malignant prediction and a
value of 0.51 representing an unconfident malignant prediction.

9.1. Input into the neural network

Images are read directly by the neural network. The only pre-processing which was performed
was to resize the images from 640 × 480 to 64 × 64 pixels. Images are read by the neural network
as a series of pixel values stored in a vector. Therefore, a single image is stored as a vector x,

so that one instance of an image  The dataset consisted of n = 6897 images,
each 64 × 64 pixels in size, representing a dimensionality m = 4096. The entire dataset is therefore
stored in an n × m matrix:

To reduce the memory footprint, neural networks are typically trained using mini-batches,
which are randomly selected subsets of X. Targets, or labels, are stored in an n-dimensional
column vector:
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Therefore, to input an image into a neural network, it must first be converted into a vector of
pixel values. Each image vector’s label is stored numerically in a separate target vector, y. Once
these have been prepared, a training matrix X train, a test matrix X test, and their corresponding
target vectors ytrain and ytest must also be generated.

9.2. Keras

Recently, a number of frameworks have been developed for deep learning, ranging from low-
level, general purpose math expression compilers, such as Theano, to higher level frameworks
such as Torch. For this analysis, the Keras framework was used. Keras is written in Python
and is based on the Theano framework. It offers a high level control over network construction,
abstracting the low-level Theano code, making it possible to design neural network structures
in a layer-wise, modular fashion. Layers and functionality are added to the network piece by
piece and are finally compiled into a complete network once the desired structure has been
built. Users of Python can install Keras using pip, by typing pip install keras at the comment
prompt. Keras has a number of requirements, including Theano (which can also be installed
using pip install Theano at the command prompt). Briefly, once Keras has been correctly
installed and successfully imported into the environment, a convolutional neural network is
created by instantiating an object of the Sequential class, and then by adding layers to this
object until the desired network is complete. For example, a convolutional layer can be added
to the network using the add function: model.add(Convolution2D(…)). Configuring network
properties, such as when to use dropout or specifying which activation function should be
used, is also performed using the add function of the model object. The network is built in this
way until the desired structure has been defined, and is then compiled using the model object’s
compile function. As Keras is based on Theano, the model is generated into Theano code, which
itself is compiled into CUDA C++ code, and subsequently run on the GPU. Upon successful
compilation the model, it can be trained on a dataset using the fit function, which takes the
training data set as one of its parameters. A trained model can then be tested using the held
back test data, using the trained model’s evaluate function. Full Python source code for the
generation of the model can be found in this book chapter’s GitHub repository under https://
github.com/mdbloice/CLSM-classification. This source file contains a complete implementa‐
tion of the network, including the generation of all the plots and figures shown in the Section
10.

10. Results

10.1. Multiresolution analysis

Overall, 857 images of benign common nevi (408 images) and malignant melanoma (449
images) were used as study set [29]. To get more insights into the classification performance,
a percentage split was performed by using 66% of the dataset for training and the remaining
instances (34%) as the test set (Table 1). The classification results of 572 cases (276 benign
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common nevi, 296 malignant melanomas) in the training set and 285 cases (132 benign common
nevi, 153 malignant melanomas) in the test set.

CART Training set Test set

% Correct Benign Malignant % Correct Benign Malignant

Benign 96.6 267 9 78.0 103 29

Malignant 98.0 6 290 84.1 24 129

Table 1. Classification results for features based on multiresolution analysis.

The CART classification shows a correct mean classification of 97.3% samples in the training
set and a correct mean classification rate of 81.1% in the test set. In this study, the images were
resized to 512 × 512 pixels. To illustrate the differences in the wavelet sub-bands of both tissues,
the spectra of the wavelet coefficient standard deviations are shown for typical views of benign
common nevi and malignant melanoma (Figure 15). The image of benign common nevi show
pronounced architectural structures (so called tumour nests), whereas the image of malign
melanoma show melanoma cells and connective tissue with few or no architectural structures.
These visual findings are reflected by the wavelet coefficients inside the different sub-bands.
The standard deviations of the wavelet coefficients in the lower and medium frequency bands
(4–10) show higher values for the benign common nevi than for malignant melanoma tissue,
indicating more pronounced structures at different orders of magnitude. The tissue of
malignant melanoma appears more homogeneous (due to a loss of structure), and the cells are
larger as in the case of benign common nevi. The standard deviations in the sub-bands with
higher indices (representing finer and more pronounced structures) are lower than in the case
of benign common nevi.

Figure 15. Sub-band spectra for benign common nevi (right) and malignant melanoma (left).
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The analysis of the classification tree shows that seven classification nodes indicate benign
common nevi and six nodes malignant melanoma. The visual examination of the selected
nodes demonstrates characteristic monomorphic melanocytic cells and melanocytic cell nests
for benign common nevi [28, 29]. Contrary polymorphic melanocytic cells, a disarray of
melanocytic architecture and poorly defined or absent keratinocytic cell borders are charac‐
teristic for malignant melanomas.

10.2. Convolutional deep learning neural network

For this study, a dataset consisting of 6897 CLSM images of skin lesions was obtained from
our university hospital. The dataset consisted of images of skin lesions in layers of various
depths. Before training, the images were randomised and placed into a training set and test
set, with the training set consisting of 5000 images and the test set consisting of 1897 images
(Table 2). It is important to note that, in the case of this project, each image was treated
individually, and not treated as belonging to one particular patient or even lesion. The test set,
therefore, contained different layers or lesions from potentially the same patient as the training
set, as a single patient may have had several scans or may have been examined on multiple
occasions.

Full Dataset Training Set Test Set

Total 6,897 5,000 1,897

Benign 3,607 2,655 952

Malignant 3,290 2,345 945

Table 2. The distribution of the classes in the whole dataset and in the training and test set.

Class imbalance occurs when a training set has far more samples of one particular class than
another. For example, a small class imbalance existed in the dataset analysed in this chapter,
with the samples of benign nevi slightly outnumbering the samples of malignant melanoma
(there existed 317 more samples of the former compared to the latter). There are a number of
techniques which can be employed to address class imbalance, such as data augmentation
(generating synthetic data from your original dataset) or simply by discarding samples to
better balance the dataset. In the case of our dataset, class imbalance was not at the degree as
to make it problematic. When the training set and test sets were split, however, we ensured
that the test set was largely balanced. Class imbalance can also affect how results, such as
accuracy and precision/recall, should be perceived when analyzing a trained model on a highly
imbalanced test set.

The network, after training for 20 epochs, achieved 93% accuracy on the unseen test set. The
model’s accuracy on the test set during training, as well as the model’s error rate on the training
set through each of the 20 epochs is shown in Figure 16.
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Figure 16. The model’s accuracy on the test set and its logistic loss against the training set.

Loss on the training set eventually reduces to almost 0 (meaning it is at this point overfitting
heavily), while the accuracy of the model on the unseen test set fluctuates but is tending
towards an accuracy of approximately 90%. The accuracy of the final model after epoch 20,
when training was terminated, was 93%. A confusion matrix, shown in Figure 17, describes
the model’s accuracy on the test set, in terms of absolute numbers of predicted and actual labels
for both the benign and malignant classes.

Figure 17. Confusion matrix.

Here, all true/false positives and true/false negatives can be seen. From these values, the
precision, recall (sensitivity), and F1 score (a weighted average of the precision and recall, given

by F1 =2⋅ precision ⋅ recall
precision + recall ) were calculated, as shown in Table 3.
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Precision Recall (Sensitivity) F1 score Support

Benign 0.94 0.91 0.93 952

Malignant 0.91 0.94 0.93 945

Avg/total 0.93 0.93 0.93 1897

Table 3. The generated model’s precision, recall and F1 score measured against the test set.

Table 4 describes the results of the model in absolute terms, with results for the model’s
predicted labels for both classes versus the actual labels for each class. As well as this, the total
number of actual and predicted labels is shown.

Actual

Predicted Benign Malignant Total

Benign 868 84 952

Malignant 52 893 945

All 920 977 1897

Table 4. The generated model’s predicted labels versus the actual labels, measured on the test set.

10.3. Transfer learning

Transfer learning is a term that can be applied to several aspects of machine learning. In the
case of neural network-based machine-learning approaches, transfer learning often refers to
the act of using a pre-trained network as the starting point for a learning procedure, rather
than starting with a network which has been initialized with random weights. This is often
performed as a time-saving measure, but can also be done when the new data to be classified
is scarce. Also, it can be performed only when the data used for pre-training is similar to the
new data which should be classified. Furthermore, it constrains the practitioner into using a
network which has the same architecture of the pre-trained model. Therefore, it is not useable
in all situations, and it does not make sense to use, say, a network pre-trained on the ImageNet
dataset (a commonly used benchmarking dataset, containing millions of samples of 1000
classes of images) in the context of CLSM lesion classification.

However, there exist several types of laser scanner-based approaches to skin lesion analysis,
where the use of transfer learning may be beneficial. Other methods in the field include two
photon excitation fluorescence microscopy, second harmonic imaging microscopy, fluores‐
cence-lifetime imaging microscopy and coherent anti-stokes Raman microscopy. Whether or
not transfer learning could indeed be implemented in this context would depend entirely on
how well the features learned during pre-training match the features that exist in the new data
(in other words, whether the learned features transfer well from one domain to the other). For
example, several new methods produce colour images, which would mean the features learned
in the analysis described here would likely not transfer well to this new domain (of course,
colour images could be converted to greyscale). However, it is conceivable that other technol‐
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Precision Recall (Sensitivity) F1 score Support
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Actual
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dataset (a commonly used benchmarking dataset, containing millions of samples of 1000
classes of images) in the context of CLSM lesion classification.
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ogies, that also produce greyscale images, could make use of a pre-trained network, and thus
benefit from pre-trained weight initialisation and therefore transfer learning.

The machine-learning community often makes available pre-trained networks for others to
use, such as in the Model Zoo (https://github.com/BVLC/caffe/wiki/Model-Zoo). Some of the
networks available on the Model Zoo took many weeks to train on powerful hardware, and is
considered a very useful resource by many who do not have the time or the computational
resources available to them for such an involved learning task. Of course, a pre-trained network
could be made available for the CLSM or skin lesion analysis community, if the network was
trained on a sufficiently large dataset and if indeed the learned features would transfer well
to other domains.

11. Discussion

Confocal laser scanning microscopy is a technique for obtaining high-resolution optical images
with depth selectivity. It enables the noninvasive examination of skin cancer in real-time. This
makes CLSM very suitable for screening and early recognition of skin tumours, which augment
the success of the therapy. The training of pathologists to acquire and refine their visual
diagnostic skills is very time-consuming. To implement diagnostic capabilities on a computer,
it is of considerable interest to understand how the diagnostic process unfolds and which
texture features are critical for a successful diagnosis. For medical diagnosis, it is important to
duplicate the automated diagnostic process.

The multiresolution approach with wavelets features mimics the diagnostic guidelines of the
dermatopathologist, as they use multiscale features for the examination of CLSM views. The
decision rules generated by machine-learning algorithms, such as CART, represent explicit
knowledge that can be used to analyse and refine the diagnostic process. The generated rules
can be implemented in viewer software which enables a visual evaluation of the diagnostic
performance by the dermatologist. This can be used as a training aid for ongoing dermatolo‐
gists in education. As shown in the Section 10, the algorithm performance allows a correct
classification of 78.0% of the benign common nevi cases and 84.1% of the malignant melanoma
in the test set. In contrast, sensitivity and specificity of 85.5 and 80.1% are reached by the human
observer (overall performance 82.8%).

Although the CART algorithm discriminates the training set automatically (unsupervised),
the feature extraction algorithm is predefined. Algorithms based on artificial neural networks
do not perform or require hand-defined analyses of the image features with predefined
(filtering) methods. Instead, they use neural computation inspired by the visual system of
mammals. Neural networks process an image by use of a hierarchical processing architecture
which mimics the way the visual cortex processes visual stimuli from the primary cortex (V1)
to different layers (V2–V8) which are selective for different components of the visual stimuli
such as orientation, colour, size, depth and motion. Neural networks are well suited for
detecting similarities in images. However, the distributed representation of the acquired
knowledge complicates the extraction of the diagnostic information. They deliver nothing
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about the inference mechanism leading to a classification in a form that is easy readable for
the human observer. Nevertheless, we can demonstrate a real example as to why artificial
neural networks will play an ever more important role in automated medical diagnostic
systems. A recent work reported that pigeons (columba livia) proved to have a remarkable
ability at discriminating benign from malignant human breast histopathology images and at
detecting cancer relevant micro calcifications in mammogram images after differential training
with food reinforcement [30]. The discrimination was done by the pigeons via two distinctively
coloured response buttons. For a correct discrimination, food was immediately provided by a
dispenser. The pigeons proved not only to be capable of image memorization but were able
to extend the learned skills to novel tissue images. It results that their diagnostic skills are like
that of trained humans. It should be noted that the capabilities were acquired without the
benefit of verbal instructions as in the case with human education. The low-level vision
capabilities of pigeons appear to be equivalent to those in humans; feedforward and hierarch‐
ical processing seem to dominate. It can be assumed that pigeons do not explicitly analyse the
images with predefined criteria and explicit instructions as humans do. The reinforcement
training of the pigeons resembles the training of artificial neural networks. Given the high
diagnostic accuracy of the pigeons they may serve as a model for the development and
amelioration of artificial networks (or vice versa). We still do not know in detail how pigeons
differentiate such complex visual stimuli but colour, size, shape, texture, and configurational
cues seem to participate. Their visual discrimination performance may guide the basic research
in artificial neural networks in order to develop computer-assisted image diagnostic systems.
Experienced dermatopathologists reported that a beginner (a person in education) examines
the CLSM views strictly according to the dermatological guidelines (Section 4), as the com‐
puters do by multiresolution analysis. Based on the large amount of previously viewed
specimens, an experienced person reports the CLSM views more by its visual appearance
(personal communication). This is similar to the image analysis performed by a trained neural
network. The receptive field of a sensory neuron is a particular region in the visual system in
which a stimulus will trigger the firing of that neuron. In vision research, it is known that a
cat’s visual cortex only develops its receptive fields if it receives visual stimuli in the first
months of life [31]. The receptive fields in the primary visual cortex can be thought as ‘feature
detectors’ or ‘flexible categorizers’. This means that they learn the structure of the input
patterns and become sensitive to combinations that are frequently repeated [14]. This also
demonstrates the importance of convolutional neural networks in image processing and
analysis.

In this work, and given the relatively small dataset size, the performance of the trained neural
network model is encouraging. However, the results must be considered as a proof of concept,
and not a model that could be used in a clinical setting, despite the good accuracy of the trained
model. For example, the images were collected from a single department, at one hospital in a
single region in Austria. To judge the potential real-world accuracy of a trained model would
require a far larger dataset, collected from several regions worldwide, and carefully curated
to ensure no unintentional bias is introduced (by only collecting data from patients of a certain
age range, for example). By training a model on a far larger dataset such a model could be used
in real-world clinical settings as a diagnosis aid.
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The work here shows that deep layer neural networks have the capacity to learn the high-level
discriminatory features required to classify malignant and benign skin lesions. This can be
achieved without any dedicated feature engineering phase, data pre-processing or a priori
domain knowledge. In the case of the CLSM image classification task presented here, all that
was required was a labelled dataset of previous observations. However, what is also true is
that neural networks require far more training data than traditional machine vision methods
that work on extracted features. This is due to the very high dimensionality of the data, which
in our case was ℝ4096, in contrast to the analysis of the extracted features where the dimen‐
sionality was ℝ39. To compensate for a far higher dimensionality, a much larger dataset is,
therefore, a necessity. In other words, deep learning neural networks are most suitable for
situations where you encounter data with ‘high m, high n’ properties—high dimensional data,
like images, of which many samples exist—such datasets are common in the medical domain,
meaning deep learning should be of especial interest to researchers in the area of healthcare
informatics.

As parallelized hardware advances, Moore’s law begins to plateau, and the amounts of data
being stored increases, algorithms that take advantage of this perfect storm will become more
and more relevant. We have shown in this chapter that classical approaches to image classifi‐
cation can indeed be emulated by deep neural networks fed with large amounts of observed
data. In fields such as medicine, where data are in such abundance, highly parallelized
algorithms may be the only approach that can deal with such large data sources in a meaningful
way. Fortunately, this is no longer the domain of specialized research institutes with access to
cluster computing: such algorithms are trainable without large investments in hardware and
can be performed on a standard desktop workstation equipped with a modestly priced GPU.
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Abstract

Confocal  microscopy  has  gained  great  popularity  in  the  observation  of  biological
microstructures  and  dynamic  processes.  Its  resolution  enhancement  comes  from
shrinking the pinhole size, which, however, degrades imaging signal‐to‐noise ratio (SNR)
severely. Recently developed super‐resolution method based on the pixel reassignment
technique is capable of achieving a factor of 2 resolution improvement and further
reaching twofold improvement by deconvolution, compared with the optical diffrac‐
tion limit. More importantly, the approach allows better imaging SNR when its lateral
resolution is similar to the standard confocal microscopy. Pixel reassignment can be
realized both computationally and optically, but the optical realization demonstrates
much faster acquisition of super‐resolution imaging. In this chapter, the development
and advancement of super‐resolution confocal microscopy through the pixel realign‐
ment method are summarized, and its capabilities of imaging biological structures and
interactions are represented.

Keywords: super resolution, confocal microscopy, pixel reassignment, computational
realization, optical realization

1. Introduction

Better understanding of biological processes at the cellular and subcellular level is closely
dependent on the direct visualization of the cellular microstructures. Among the various
microscopic techniques, fluorescence microscopy takes advantage of the abilities to observe in
real‐time the molecular specificities in living biological samples down to the cellular and/or
subcellular scale, and thus has found broad applications in the investigations of cell biology and
neuroscience. However, the spatial resolution of conventional microscopy is optically diffrac‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



tion‐limited, restricting its lateral resolution to be ∼250 nm and axial resolution to be ∼600 nm
(primarily determined by the numerical aperture of microscopic objective), respectively. As a
result, it is very challenging to resolve the subcellular structures by the conventional micro‐
scopic technologies because their microstructures are comparable to (even finer than) the
diffraction‐limited resolution.

Fortunately, a number of novel fluorescence microscopic techniques with super‐resolution
capability have been established to break down the optical diffraction limitation in recent
years, allowing the observation of many cellular and subcellular structures that are always not
resolvable by the conventional fluorescence microscopy. For example, by sharpening the point‐
spread function of the microscope with the suppression of the fluorescence emission on the
rim of a focused laser spot, stimulated emission depletion (STED) microscopy breaks the
optical diffraction limitation and achieves resolution as high as ∼30 nm [1]. Localization‐based
techniques, such as stochastic optical reconstruction microscopy (STORM) and photoactivated
localization microscopy (PALM), enable imaging at a resolution of ∼20 nm [2, 3]. Structured
illumination microscopy (SIM) applies spatially structured light illumination for shifting the
high spatial frequency to the low‐frequency range, which thus can be collected by microscopy
[4]. These methods achieve an order of magnitude improvement in spatial resolution over the
conventional fluorescence microscopy. Therefore, the super‐resolution microscopic technolo‐
gy opens up new windows for observing the previously unresolved cellular structures and
provides great potentials for elucidating biological processes at the subcellular and molecular
scale [4].

Among these high‐resolution fluorescence microscopic techniques, confocal microscopy, the
first super‐resolution imaging technique, is one of the most widely used imaging approaches
with moderately enhanced spatial resolution. Utilizing a focused laser as an excitation source
in combination with a pinhole in front of the detector for blocking out out‐of‐focus signals,
confocal microscopy is able to improve the spatial resolution by a factor of 2 in principle.
However, instead of its super‐resolution capability, the sectioning capability is more impressed
because the spatial resolution with a factor of 2 improvement is hardly accessible in the
standard confocal microscopy. The resolution of confocal microscopy relies on the pinhole
diameter, that is, higher resolution comes from the smaller sized pinhole filter. Such a small
pinhole rejects the unwanted out‐of‐focus light, while parts of the desired in‐focus emission
are filtered out simultaneously. As a result, the signal‐to‐noise ratio (SNR) is drastically
decreased as the pinhole size shrinks, which, in turn, practically deteriorates the spatial
resolution. Instead, the fluorescence efficiency within the biological samples is often weak, so
a relatively large pinhole diameter is typically chosen concerning the imaging SNR. Therefore,
the standard confocal microscopy is practically unable to provide super‐resolution imaging.

In order to achieve spatial resolution improvement and better imaging SNR simultaneously
in confocal microscopy, light/fluorescence signals should be detected with a nearly closed
pinhole array instead of a single pinhole [5]. The images acquired by each pinhole within the
array have the same resolution but different SNR levels [6]. To overcome this limitation, a
method applying the pixel reassignment technique is proposed by reasonably summing the
signals from each nearly closed pinhole together, which enables simultaneous improvement
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of resolution and SNR. In this chapter, we present the state‐of‐the‐art super‐resolution
techniques based on the pixel reassignment. Section 2 gives the principle of pixel reassignment
firstly, and then two different operations realizing the pixel reassignment. Also, some repre‐
sentative super‐resolution images in biological specimens are summarized in this section. At
last, some advances in super‐resolution confocal microscopy through the pixel reassignment
will be discussed.

2. Super resolution by pixel reassignment

The concept of pixel reassignment is firstly proposed more than two decades ago to solve the
drawbacks in standard confocal microscopy [5]. As we know, the reduction of the pinhole
diameter down to zero allows the finest lateral resolution in confocal microscopy in theory,
which, however, generates fluorescent images with a very low SNR due to the dramatically

Figure 1. Schematic diagram illustrating the principles of pixel reassignment. (a) One‐dimensional representation of
pixel reassignment. Two pinholes (left and right) within an array displaces by a distance of ‘a’ from the excitation fo‐
cus, which detect light signals mostly originated from the location of the peak of the product of PSFdet (x-a) and PSFex

(x). In the case that PSFdet and PSFex are identical (i.e. neglecting the Stokes shift), the maximum in PSFeff occurs at the
position with a distance of a/2 from the excitation focus. Thus, the detected light signals from the displaced pinholes
are reassigned to the well‐aligned pinhole that is at the center of the excitation focus and the original detection spot. (b)
Pixel realignment operation. Top panel shows the excitation foci (blue circles) created by scanning illuminating laser
across the sample, where four excitation foci are with the distance of D and diameter of a. Bottom: Two pixel realign‐
ment operations for increasing the image resolution. Lower left panel represents twofold reduction of the foci without
altering their distance. Lower right panel displays the increase of the foci distance to 2D, while maintaining all foci
sizes. These two implementations produce an equivalent imaging reconstruction, with only different global scaling fac‐
tor.
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degraded light collection efficiency. Although the pinhole size can be adjusted to one Airy unit
for better imaging SNR, the lateral resolution is sacrificed. Instead of a single pinhole, a pinhole
array is used for the light detection, followed by a reconstruction algorithm for the image
formation. As a result, the standard confocal microscopy with the pixel reassignment operation
is capable of enhancing its lateral resolution simultaneously with higher imaging SNR.

2.1. Principle of pixel reassignment

Pixel reassignment demonstrates great potentials for improving both lateral resolution and
imaging SNR. Instead of summing the signals directly as the conventional imaging technolo‐
gies, each signal is reassigned to a particular location where the signal most probably comes.
Figure 1(a) gives the principle of the pixel reassignment in terms of excitation and detection
point‐spread function (PSF) [7]. The excitation PSF (PSFex, labeled by blue line) represents the
distribution of the corresponding excitation focus. At a displaced pinhole, detection PSF
(PSFdet, labeled by green line) is centered on the detection axis with a distributed probability
of signal detection around that pinhole. The effective PSF (PSFeff, labeled by red line) is
contributed from the overlap (multiplication) of PSFdet and PSFex. The well‐aligned pinhole is
coaxial with the excitation focus, realizing the maximal signal detection probability. As the
pinhole detector is far away from the axis of the excitation focus, the signal acquisition
probability decreases because of their less overlying; consequently, these nearly closed pinhole
detectors induce lower‐SNR image.

In the pixel reassignment implementation, a camera (similar with a pinhole array), rather than
a point detector, is commonly employed because its individual pixels are considered as
infinitely narrow pinhole. Neglecting Stocks shift in single‐photon fluorescence and assuming
identical PSFdet and PSFex, a maximal probability of signal acquisition (i.e. PSFeff) is at the
midway of the peaks of PSFdet and PSFex. Figure 1(b) gives two methods for the pixel reas‐
signment operation, either twofold local contraction of the excitation focus without altering
the distance between them (panel in lower left of Figure 1(b)), or twofold increasing the
distance between the foci while maintaining their original size (panel in lower left of Fig‐
ure 1(b)) [8]. By reassigning the signals from all pixels within the detector array (i.e. all
displaced pinholes as shown in Figure 1(a)) to the particular location, a sharper and higher‐
SNR image is eventually achieved.

Pixel reassignment technique is able to improve the resolution to a factor of 2 without
sacrificing SNR, and the resolution can be further improved by deconvolution algorithm up
to a factor of 2 [9, 10]. Although the spatial resolution of the pixel reassignment technique is
still lower compared with other super‐resolution methods, such as STED and STORM [1–3],
it overcomes some of their shortcomings. This technique inherits all advantages of the standard
confocal microscopy, including high‐speed imaging rate, acceptable excitation intensity,
optical sectioning capability, and a broad choice of fluorescent dyes and/or proteins, making
it a readily accessible technology in a variety of biological investigations.

The pixel reassignment can be considered as an alternative method of SIM, theoretically
achieving the same spatial resolution improvement compare with standard SIM through
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point‐like illumination feature. In contrast, the technique demonstrates better feasibility over
the standard SIM, that is, the pixel reassignment operation can be easily implemented both
computationally and experimentally (optical system adaptation). Unlike computational mode
that is always time‐consuming in raw data processing, the pixel reassignment realized with
optical means is capable of obtaining super‐resolution images with fast imaging acquisition.
More details on these two different methods for realizing the pixel reassignment are repre‐
sented as below.

2.2. Computational realization of pixel reassignment

2.2.1. Image scanning microscopy

Image scanning microscopy (ISM), proposed by C. Müller and J. Enderlein in 2009, is a super‐
resolution microscopic technique based on the pixel reassignment [11]. This system is modified
from a standard confocal microscopy that replaces the point detector (normally a photomul‐
tiplier tube) with an Electron multiplying CCD (EMCCD) camera (labeled 9) as shown in
Figure 2(a). The camera takes an image of each spatial position of the scanning focus, and then
an algorithm of the pixel reassignment processing is utilized by summing the raw images to
reconstruct an ISM image, which improves the resolution from 244 nm to 198 nm laterally.

Figure 2. Super‐resolution image scanning microscopy (ISM) with computational pixel reassignment. (a) The schemat‐
ic diagram of ISM system. Fluorescence excitation (1); a super‐continuum white light laser equipped with an acousto‐
optic tunable filter; nonpolarizing beam splitter cube (2); dichroic mirror (3); piezo scanning mirror (4); 4f telescope
configuration (5); microscope objective (6); beam diagnostic camera (7); confocal aperture with 200 μm diameter (8);
EMCCD camera for fluorescence detection (9). (b) Super‐resolution imaging fluorescent beads with 100‐nm diameter.
Left panel: Confocal microscopy image; middle panel: ISM image; right panel: Fourier‐weighted ISM image. Scale bar:
1 μm. (c) Linear cross‐sectional distribution along the horizontal axis of an individual bead image in (b). Adapted with
permission from reference [11].
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Further, deconvolution function is used to improve its lateral resolution up to 150 nm, 1.63‐
fold better than the image from raw data, as shown in Figure 2(b) and (c), respectively. Note
that the pinhole in ISM (labeled 8) filters the out‐of‐focus light signals, maintaining the optical
sectioning capability as the standard confocal microscopy. In this work, the realization of the
lateral resolution improvement up to 198 nm does not entirely rely on the pinhole because of
its relatively large diameter, which, however, gives a high imaging SNR. Therefore, with the
computational pixel realignment ISM is able to provide images with optimization of both
spatial resolution and imaging SNR.

2.2.2. Multifocal structured illumination microscopy

ISM demonstrates multiple advantages, including the optical sectioning capability as the
standard confocal microscopy, the enhanced lateral resolution, and the high fluorescence
collection efficiency [11]. However, it is subjected to slow frame rate due to the EMCCD camera
(imaging acquisition of 10 ms with each scanning position), and is time‐consuming for
visualizing the three‐dimensional (3D) microstructures.

In order to speed up the imaging acquisition, Shroff et al. developed multifocal structured
illumination microscopy (MSIM) by using a sparse lattice of excitation foci (similar to swept‐
field or spinning disk confocal microscopy) in 2011 [9]. As shown in Figure 3, MSIM applies
a digital micromirror device (DMD) for generating the sparse lattice illumination patterns.

Figure 3. The schematic of multifocal structured illumination microscopy (MSIM). Lasers with 561 and 488 nm serve as
illumination sources. Both laser outputs are combined with a dichroic (DC). After beam expanding, both lasers are di‐
rected onto a digital micromirror device (DMD). The resulting pattern is de‐expanded by a pair of lenses, and is subse‐
quently delivered by the tube lens and microscopic objective inside the microscope (not shown) into the samples.
Mechanical shutters (SH) placed in front of the laser output are used for switching illumination on or off. Adapted
with permission from reference [9].
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After a series of reconstruction steps (open‐source software), MSIM enables 3D subdiffractive
imaging with resolution doubling, indicating a lateral resolution at 145 nm and an axial
resolution at 400 nm. Moreover, it provides the capability of significantly fast imaging
acquisition at one 2D image per second.

For super‐resolution MSIM, the data acquisition and processing are implemented as below
(please refer to Figure 4 for detailed procedures). First, the sample is excited with a sparse,
multifocal excitation pattern. Second, the resulting fluorescence image is recorded with a
camera, and then the digital pinholes around each fluorescent focus are applied for rejecting
the out‐of‐focus emission. Afterwards, the pixel reassignment with 2× scaling is used to process
the resulting image. Repeat the above procedures for the entire imaging region fully illumi‐
nated. Eventually, a super‐resolution image with 2‐fold resolution improvement is obtained
through the digital summation of all such pinholed and scaled images. Twofold resolution
improvement is further achieved with deconvolution.

Figure 4. Super‐resolution MSIM realization. Top left figure represents a wide‐field image produced with a uniformly
illuminated pattern onto sample. Right panel provides the reconstructed procedure for the first, tenth, and final raw
images of a 120‐frame sequence. Lower left figure displays the super‐resolution MSIM image by deconvolving the
summed image. Adapted with permission from Ref [9].

The resolution improvement of MSIM is demonstrated by imaging antibody‐labeled micro‐
tubules in human osteosarcoma (U2OS) cells embedded in Fluoromount as shown in Fig‐
ure 5. Compared to the wide‐field images, the multifocal‐excited, pinholed, scaled, and

Super‐Resolution Confocal Microscopy Through Pixel Reassignment
http://dx.doi.org/10.5772/63192

87



summed (MPSS) images have both higher resolution and better contrast (Figure 5(b)). In
Figure 5(d), the full‐width at half maximum (FWHM) of light intensity of microtubules is
estimated at about 145 nm in MSIM images, giving a twofold resolution enhancement
compared with the image from wide‐field microscopy (∼299 nm). Moreover, the frame rate of
acquiring an image with field of view at 48 × 49 μm is up to 1 Hz in MSIM, indicating more
than 6500‐fold faster acquisition over the ISM technology [11].

Figure 5. Resolution doubling of MSIM by imaging antibody‐labeled microtubules in human osteosarcoma (U2OS)
cells. (a) MSIM imaging microtubules labeled with Alexa Fluor 488 in a fixed cell. MSIM image is formed from 224 raw
images taking ∼1 s total acquisition time with 4.5 ms for each image. Scale bar: 5 μm. (b) Magnified images from the
boxed region in (a). Top panel showing a wide‐field image, middle panel showing an MPSS image, and bottom panel
showing an MPSS and deconvolved (MSIM) image. Scale bars: 5 μm. (c) Close‐up images of the boxed regions in (b).
Scale bars: 1 μm. (d) Intensity profiles along the colored lines in (b), giving FWHM values at 299 nm in wide‐field mi‐
croscopy, 224 nm in MPSS, and 145 nm in MSIM, respectively. Adapted with permission from reference [9].

2.3. Optical realization of pixel reassignment

The pixel reassignment implemented by the computational means is capable of doubling the
resolution than wide‐field imaging [9, 11]. The limitation, however, is that the methods are
fundamentally time‐consuming compared to the standard conventional microscopy because
a large number of raw images are essentially acquired and processed. Recently, optically
realized pixel reassignment has been developed to overcome the limitations by adapting the
optical imaging system instead of digital data‐processing operations, which produces images
with comparable improvement in the spatial resolution [8, 10, 12].
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2.3.1. Instant structured illumination microscopy

Instant structured illumination microscopy (ISIM) is developed by Shroff et al. in 2013 that is
analogous to MSIM, while its pixel reassignment process operates optically instead of the
digital computation procedures [10]. As shown in Figure 6, the DMD used in MSIM is replaced
with a converging microlens array. As a result, a multifocal excitation pattern is generated in
ISIM. Correspondingly, a matched pinhole array is added to physically reject the out‐of‐focus
emissions. With this modification, the optical pixel reassignment is realized based on the
matched microlens array for twofold local contraction of each fluorescent focus. The fluores‐
cence emission pattern is imaged onto a camera by galvanometer scanning. Eventually, the
pinholed and scaled images are optically summed, enabling 2‐fold resolution enhancement.

Figure 6. Principles of implementing instant structured illumination for super‐resolution realization. A multifocal exci‐
tation pattern is produced with a converging microlens array. For fluorescence detection, a pinhole array that matches
the microlens array rejects the out‐of‐focus fluorescence signals. Afterwards, a second, matched microlens array allows
a twofold local contraction of each pinholed fluorescence emission. A galvanometer serves as raster scanning of multi‐
focal excitation and summation of multifocal emission, which thus produces a super‐resolution image during each
camera exposure. Adapted with permission from reference [10].
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ISIM demonstrates 3D super‐resolution imaging with a lateral resolution of 145 nm and an
axial resolution of 350 nm, nearly comparable with MSIM. Moreover, the 100 Hz frame rate
comes from the optical operation of pixel realignment in ISIM, allowing super‐resolution real‐
time imaging (almost 100‐fold faster than MSIM). Taking into account the data processing
duration, the speed‐up factor exceeds 10000. In addition, the low illumination power in ISIM
(∼5–50 W/cm2) mitigates photobleaching. As a result, ISIM can perform imaging over tens of
time points without obvious photobleaching or photodamage. In Figure 7, the rapid growth
(∼3.5 μm/s) of endoplasmic reticulum (ER) is monitored by ISIM even though less than 140
ms in the formation and growth of new ER tubules. The biological processes blur in previously
developed technologies, such as MSIM and ISM [9, 11]. The capabilities make ISIM a powerful
tool for time‐lapse super‐resolution imaging in living biological samples.

Figure 7. ISIM demonstrates high frame rate of imaging endoplasmic reticulum (ER) at 100 Hz. (a) The first image
from 200 time points. ER labeled with GFP‐Sec61A within MRL‐TR‐transformed human lung fibroblasts. Scale bar: 10
μm. (b) Magnification of image with the large white box in (a). White arrows point out the growth process of an ER
tubule; blue arrows represent the remodeling of an ER tubule. Scale bar: 5 μm. (c) Magnification of the image with the
small white box in (a), displaying the dynamic formation of a new tubule within 140 ms. Scale bar: 200 nm. Adapted
with permission from reference [10].

2.3.2. Re‐scan confocal microscopy

Rescan confocal microscopy (RCM) is another optical realization of the pixel reassignment
technique, proposed by Luca et al. in 2013 [12].Compared with ISIM, it is more easily accessible
to build an RCM because this system can be readily modified from a standard confocal
microscopy as shown in Figure 8. The optical pixel reassignment in RCM is realized as below.
The focal length of the lenses L2 and L3 is adapted for twofold local contraction of the
fluorescent focus spot. Alternatively, the final fluorescence image is twofold magnified while
maintaining the original fluorescence foci size.
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Figure 8. The schematic of rescan confocal microscopy (RCM). Unit 1: A standard confocal microscopy with a set of
scanning mirrors for scanning the excitation light and de‐scanning the emission light. Unit 2: A re‐scanning configura‐
tion for ‘writing’ the light that passes the pinhole onto the CCD‐camera. Although the pinhole is in a relatively large

diameter, the resolution is 2 times improved, which thus gives much more photo‐efficient advantage compared to
conventional confocal microscopes with the similar resolution. Adapted with permission from reference [12].

This process is accomplished by reasonably changing the angular amplitude of the rescanner.
The ratio of angular amplitude of the two scanners, expressed by the sweep factor M, changes
the properties of the rescan microscope. For M = 1 the microscope has the same lateral
resolution with a wide‐field microscope, defined by the well‐known optical diffraction limit;
it achieves the super resolution for M = 2. The rescanner is used to deliver the fluorescence
emission onto the camera pixels. The camera is in the exposure status for optical summation
of the fluorescent focus during rescanning.

The lateral resolution improvement of RCM is quantified by imaging 100‐nm fluorescent
beads. FWHM is found to reduce from 245 nm (15 nm) in wide‐field imaging to 170 nm (±10
nm) in RCM imaging, indicating an improvement by a factor of 2 without deconvolution.
Also, the resolution improvement is concluded by visualizing fluorescently labeled microtu‐
bules of HUVEC cell in Figure 9(a)–(f). To demonstrate the capability of RCM for monitoring
dynamics, the time‐lapse imaging of living HeLa cells expressing EB3‐GFP with the growing
end of microtubules is observed by RCM. As shown in Figure 9(g), RCM is able to track the
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fast dynamics (0.5 μm/s) with multiple advantages of improved resolution, high sensitivity,
and sufficient imaging rate (1 fps).

Figure 9. Fluorescently labeled microtubules in HUVEC cells imaged by RCM with sweep‐factor M=1 (a), which gives
an image with resolution of a wide‐field fluorescence microscope determined by the diffraction limit. In double‐sweep

mode (sweep‐factor M=2) (b) RCM gives resolution improvement by a factor of 2. Junctions of microtubules (c, e)
and parallel microtubules (d, f) are unresolved with wide‐field resolution (c, d), but distinguished by RCM in double
sweep mode (e, f). (g) Screenshots from an RCM time lapse series of living HeLa cells at M=2 demonstrate the monitor‐
ing of fast dynamic structures (0.5 μm/s). Scale bars: 1 μm. Adapted with permission from reference [12].

2.3.3. Two‐photon instant structured illumination microscopy

RCM improves resolution by a factor of 2 compared with wide‐field imaging while possessing
optical sectioning capabilities as the traditional confocal microscope [8]. Two‐photon excitation
offers better optical sectioning capability based on the nonlinear effect. Infrared excitation light
minimizes the optical scattering in the tissue, and the fluorescent signals come only from two‐
photon absorption. These advantages effectively increase the penetration depth and simulta‐
neously suppress the background signal, making the two‐photon excitation technique an ideal
imaging tool for the thick samples.

Two‐photon instant structured illumination microscopy (2P ISIM) is a combination of RCM
and two‐photon excitation technique, presented by Shroff et al. in 2014, as shown in Fig‐
ure 10(a) [8]. Similarly, an additional scanning component is introduced in 2P ISIM for the
optical realization of pixel reassignment. In Figure 10(b)–(d), 2P ISIM provides better resolu‐
tion than the diffraction‐limited two‐photon excitation mode by imaging the microtubules.
Applying the deconvolution, the lateral resolution is further improved in Figure 10(c). 2P ISIM
is quantified by ∼150 nm in the lateral resolution and by ∼400 nm in the axial resolution,
respectively, with 100‐nm diameter fluorescent beads as imaging targets. A factor of 2 (with
deconvolution) resolution enhancement is obtained compared with the conventional two‐
photon wide‐field imaging (∼311 nm).
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Figure 10. Schematic diagram of two‐photon instant structured illumination microscopy (2P ISIM) and its imaging ca‐
pabilities. (a) Pulsed femtosecond laser (2PE) serves as a two‐photon excitation source (labeled by red line). Fluores‐
cence (labeled with green line) is collected and delivered onto a camera. HWP: half‐wave plate; POL: polarizer; EXC
2D GALVO: galvanometric mirror for scanning the excitation laser; DC: dichroic mirror; IX‐70: microscope part hous‐
ing objective and sample (not shown); EM 2D GALVO: galvanometric mirror for rescanning the fluorescence emission.
(b)–(d) Resolution enhancement of 2P ISIM. (b) 2P ISIM image of immunolabeled microtubules in a fixed U2OS human
osteosarcoma cell after deconvolution processing. (c) Magnified view of the yellow rectangular region in (b), indicating
the resolution improvement in deconvolved 2P ISIM compared with both 2P wide‐field microscopy (2P WF) and 2P
ISIM. (d) Fluorescence intensity profiles of microtubules highlighted with green, red, and blue lines in (c). Scale bar: 10
μm in (b) and 3 μm in (c). Adapted with permission from reference [8].

To demonstrate the enhanced penetration ability of 2P ISIM in living thick samples, embryos
of transgenic Caenorhabditis elegans expressing GFP‐H2B are imaged in Figure 11. Both imaging
resolution and contrast severely degrade at depths of more than ∼15 μm from the coverslip
surface in 1P illumination due to strong scattering in deep tissue (Figure 11(a), (b)). The
degradation is not compensated by increasing of the exposure time, which, however, mainly
leads to high background noise. Two‐photon excitation of 2P ISIM effectively suppresses the
out‐of‐focus emission. Thus, the subnuclear chromatin structures are clearly observed up to
the depth of ∼30 μm in Figure 11(c), (d), where the fluorescence signals slightly reduce as the
depth increases.
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Figure 11. Enhanced penetration ability in 2P ISIM. (a, b) 1P ISIM images of a nematode embryo expressing GFP‐H2B
in nuclei. (a) Cross sections of the worm embryo at different axial positions. Scale bar: 10 μm. (b) Magnifications of the
yellow rectangular regions in (a). Scale bar: 3 μm. The degradation in imaging contrast is observed as the depths in‐
crease. (c, d) 2P ISIM visualizes the subnuclear chromatin structure throughout nematode embryos. (c) Cross sections
at the representative axial position. Scale bar: 10 μm. (d) Magnifications of yellow rectangular regions in (c), indicating
better resolution, higher contrast, and larger imaging depth compared with 1P ISIM. Scale bar: 2 μm. Adapted with
permission from reference [8]

3. Conclusion

In this chapter, we represent the super‐resolution confocal microscopy (and two‐photon
microscopy) realized through the pixel reassignment methods computationally and optically.
These demonstrate multiple advantages of resolution improvement, high fluorescence
collection efficiency, optical sectioning capability, and fast imaging acquisition, which thus is
able to investigate biological structures and processes at the cellular and even macromolecular
level with 3D spatial scale. Additionally, because the method is directly established based on
the standard confocal microscopy and/or two‐photon microscopy, it mitigates the require‐
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ments in fluorescent probes and/or labeling methods that are always indispensable in some
super‐resolution fluorescence microscopic technologies, such as STORM and PALM [2, 3].

More importantly, the development of these techniques is not limited in the laboratorial stage.
In 2015, the first commercial setup, LSM 800, is established by Carl Zeiss [13], which, in
principle, is based on ISM but replaces the EMCCD camera with a 32‐channel linear GaAsP‐
PMT array (i.e. Airyscan detector as shown in Figure 12). The highest imaging speed of LSM
800 with 512×512 pixels is up to 8 Hz, tremendous faster than ISM. Therefore, we expect that
the super‐resolution microscopy based on the pixel reassignment technique has great poten‐
tials for boosting imaging acquisition speed, and therefore further provides better under‐
standing in intracellular molecular interactions and dynamic processes within living biological
specimens.

Figure 12. Schematic diagram of Airyscan detector in LSM 800. In brief, a hexagonal microlens array (a) collects inci‐
dent light, which is in direct connection with the ends (b) of a fiber bundle (c). The other ends (d) of the fibers are in
contact with a linear GaAsP‐PMT array (e) serving as a detector. Thus, an area detector is created, onto which the Airy
disk is imaged via a zoom optic configuration. Note that the single detector element, replacing the classical pinhole,
acts as the separate pinholes in Airyscan detection. Adapted with permission from reference [13].

In addition to the issue of imaging acquisition speed, multicolor fluorescence microscopy is
desired for investigating the interactions between different structures or biomolecules via
labeling them with distinct colors. The possible interactions can be revealed by the co‐
localization of the different dyes and/or proteins. The standard fluorescence microscopy,
however, might give inaccurate co‐localization due to the diffraction‐limited resolution. In
combination with the pixel reassignment, the multicolor imaging technique is anticipated to
provide a high‐resolution imaging of the biological interaction within live cells.

In MSIM and ISIM based on the pixel reassignment approach [9, 10], both super‐resolution
imaging capability and color differentiation have been demonstrated, which have the advan‐
tages of easily configured optical system and weak cross‐talk effect between the different
colors. Switching laser lines for the excitation of different fluorophores might induce spatial
mismatch in the images. Therefore, it is more preferable for simultaneously exciting all
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fluorophores and synchronously collecting their fluorescence signals. Multiple detectors with
appropriate dichroic mirrors and emission filters can be used to collect the different fluores‐
cence signals with different detection channels. Alternatively, an imaging spectrometer can be
applied to record the spectral feature of these fluorophores.

Synchronous imaging decreases the fluorescence photobleaching probability due to low light
exposure, benefiting to long‐term monitoring of living samples. However, cross‐talk of the
different fluorophores always occurs because of the broad and overlapping excitation and
emission bands of fluorophores. Although the cross‐talk effects can be removed by selecting
dyes with appropriately wide and non‐overlapping emission spectra, the dyes are often
inaccessible, which thus restricts its application in multicolor imaging. Linear spectral
unmixing analysis is a solution to eliminate the cross‐talk effect in spectral imaging [14]. The
spectrum of the mixed fluorescent signal is expressed as a linear integration of the component
dye spectra [15], and therefore the concentration or intensity of the fluorescence from each dye
can be precisely analyzed. Based on the data analysis, both spatial mismatch and cross‐talk
effect are mitigated in multicolor imaging of live cells.

Figure 13. Multicolor RCM reveals the cellular microstructures labeled with different dyes. (a) Simultaneous RCM
imaging of nucleus and lysosomes labeled with SYTO 82 and LysoTracker Red in a live bEnd.3 cell, respectively. Based
on the linear spectral unmixing analysis, nucleus (c) and lysosomes (d) are differentiated according to their corre‐
sponding spectral features (e), respectively. (b) Overlaid image of the RCM images from (c) and (d). Scale bar: 5 μm.

In Figure 13, we establish a multicolor RCM with simultaneous excitation of different fluoro‐
phores and synchronous collection of their fluorescence. Linear spectral unmixing analysis is
implemented for the spectral differentiation of the live cells stained with different dyes. SYTO
82‐labeled nucleus and LysoTracker Red‐stained lysosomes within live bEnd.3 cells are
imaged by RCM with a spectrometer as the spectral detector. The nucleus and lysosomes are
captured simultaneously, followed by the linear spectral unmixing analysis based on the
known spectral features of these two dyes (severely overlapping as shown in Figure 13(e)).
Figure 13(b)–(d) gives a clear separation of the two kinds of subcellular organelles. This
approach is very powerful in investigation of the dynamic interactions of the subcellular
structures.
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Abstract

Second  harmonic  generation  (SHG)  is  a  second‐order  non‐linear  optical  process
produced in birefringent crystals or in biological tissues with non‐centrosymmetric
structure such as collagen or microtubules structures. SHG signal originates from two
excitation photons which interact with the material and are “reconverted” to form a
new emitted photon with half of wavelength. Although theoretically predicted by Maria
Göpert‐Mayer  in  1930s,  the  experimental  SHG  demonstration  arrived  with  the
invention of the laser in the 1960s. SHG was first obtained in ruby by using a high
excitation oscillator.  After  that  starting point,  the harmonic  generation reached an
increasing interest and importance, based on its applications to characterize biological
tissues using multiphoton microscopes. In particular, collagen has been one of the most
often analyzed structures since it provides an efficient SHG signal. In late 1970s, it was
discovered that SHG signal took place in three‐dimensional optical interaction at the
focal point of a microscope objective with high numerical aperture. This finding allowed
researchers to develop microscopes with 3D submicron resolution and an in depth
analysis of biological specimens. Since SHG is a polarization‐sensitive non‐linear optical
process, the implementation of polarization into multiphoton microscopes has allowed
the study of both molecular architecture and fibrilar distribution of type‐I collagen
fibers. The analysis of collagen‐based structures is particularly interesting since they
represent 80% of the connective tissue of the human body. On the other hand, more
recent techniques such as pulse compression of laser pulses or adaptive optics have been
applied to SHG microscopy in order to improve the visualization of features.  The
combination of these techniques permit the reduction of the laser power required to
produce  efficient  SHG  signal  and  therefore  photo‐toxicity  and  photo‐damage  are
avoided (critical  parameters in biomedical  applications).  Some pathologies such as
cancer or fibrosis are related to collagen disorders. These are thought to appear at
molecular scale before the micrometric structure is affected. In this sense, SHG imaging
has emerged as a powerful tool in biomedicine and it might serve as a non‐invasive
early diagnosis technique.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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1. Principles of second harmonic generation

Non‐linear optical microscopy refers to all microscopy techniques based on non‐linear optics,
in which light‐matter interactions violate the linear superposition principle. These techniques
can be divided in two main categories: incoherent and coherent. Although in the former, the
phase of the emitted optical signal is random, in coherent techniques it depends on a wide variety
of  factors,  including those related to  the  exciting light  or  associated with the geometric
distribution of the radiating molecules. One of these phenomena is the so called Second Harmonic
Generation (SHG).

SHG is a coherent non‐linear process where two incident photons at their fundamental
frequency interacting with a medium are directly converted into a single photon of exactly the
same total energy at double of frequency, without absorption or reemission of photons [1].
This process is carried out via an intermediate virtual state in a single quantum event. Figure 1
compares this SHG process with the typical linear fluorescence phenomenon.

Figure 1. Diagrams of linear fluorescence (a) and SHG (b).

According to the non‐linear optics theory, an incident electric field Eω
→

 with a frequency ω
induces a second‐order polarization P

→
2ω,i at 2ω in the ith direction given by [1]:

(1) (2) (3)
2 , 0[ ...]iP E EE EEEw e c c c= + + +
r r r r r r r

(1)
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where ε0 is the vacuum permittivity and χ (n) is the nth‐order non‐linear susceptibility tensor.
The first term of Equation (1) describes the normal absorption and reflection of light, and the
second the SHG. Since the term χ(2) depends on the polarization of the excitation source, the
SHG emission is sensitive to polarization [2]. In a medium with hexagonal symmetry, the non‐

null coefficients dij = 1
2 ε0χij (2) are d31, d33, d15 and d14 [3].

These coefficients contain the non‐linear optical properties of the material and sum zero for
inversion symmetry [4]. Moreover, if Kleinman and cylindrical symmetries are assumed, d14=0
and d15 = d31 [5].

SHG was demonstrated in crystalline quartz in 1962 by Kleinman, and since then this has been
commonly used to frequency‐double pulsed lasers to obtain shorter wavelengths [5]. More‐
over, SHG signal is sensitive to bulk non‐centrosymmetric spatial arrangements such as
collagen structures or birefringent crystals [6]. The lack of a center of symmetry in an organized
material strongly affects the second‐order susceptibility and therefore the efficiency of SHG
signals [7].

Unlike two‐photon excitation fluorescence, SHG is energy conserving (it does not involve
an excited state), strongly directional and preserves the coherence of the laser light [8]. Then,
a medium is able to provide efficient SHG signal when its structure is organized at the scale
of the laser wavelength and lacks a center of symmetry. Further details on the advantages
of using SHG imaging (especially for biological applications) will be presented along this
chapter.

2. SHG microscopy of biological samples

In 1971, Fine and Hansen proposed that SHG signal could also be produced by biological
tissues [9]. In 1974, Hellwarth and Christensen implemented SHG into an optical microscope
to visualize the microscopic crystal structure of polycrystalline ZnSe [10]. Later, Gannaway
and Sheppard presented SHG images of a lithium niobate crystal by using a laser scanning
microscope [11]. These images showed features and contrast levels not seen in regular (linear)
microscopy.

However, to our knowledge, the first biological SHG image was reported by Freund in 1986.
He imaged a rat tail tendon with high resolution SHG scanning microscopy [12]. More than a
decade was necessary to consistently apply SHG microscopy to visualize biological specimens.
In particular, a laser scanning microscope was combined with a Ti‐Saphire femtosecond laser
to acquire live cell images based on SHG [13].

Other biological specimens imaged using SHG microscopy include membranes [7], proteins
[13] and collagen‐based structures [14] among others. Figure 2 shows a sample containing
starch grains imaged with SHG microscopy.
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Figure 2. SHG image of starch grains. These are plant polysaccharides with a convenient radial structure. It can be
found in both a non‐organized (dry) and an organized (hydrated) form. Scale bar: 50 μm.

According to the non‐linear nature of harmonic generation, the intensity of the SHG signal
depends on the square of the excitation laser intensity, and occurs intrinsically confining the
focus of the microscope objective. Since this event takes place in both transversal and axial
directions, SHG imaging microscopy provides intrinsic 3D sectioning capabilities with
excellent Z‐resolution. This property allows optical sectioning of biological samples with
reduced out‐of‐plane photo‐toxicity (see Figure 3).

Figure 3. SHG images of an eagle cornea acquired at three different depth locations. Scale bar: 50 μm.

Apart from this inherent property, during the last ten years SHG microscopy has gained
increasing popularity in biomedicine mainly due to the provided possibilities for endogenous
contrast imaging (staining procedures are not required), reduced tissue damage, sensitivity to
molecular architecture organization, preservation of phase information and polarization
dependence [15].
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SHG is restricted to molecules with non‐centrosymmetric organization and is emitted by
different biological tissues containing collagen [1], myosin [16] or tubulin (which polymerizes
into microtubules) [17]. Type‐I collagen is the most abundant structural protein of the human
body [18], and due to its presence in connective tissue, SHG signal can be effectively obtained
from the cornea, the skin, bones or tendons [19–27]. Collagen plays an important role within
the human body and has been studied under many different experimental conditions. Its
presence in connective tissues constitutes 6% of the dry weight of the body [28].

The basic structural unit of collagen is the molecule of tropocollagen, presenting a helical
structure, formed by three polypeptide chains coiled around each other to form a spiral (see
Figure 4). These molecules are cross‐linked to form collagen fibrils.

Figure 4. Schematic representation of the collagen structure and SHG images of two human corneas with different col‐
lagen distributions. Bar length: 50 μm.

These fibrils are assembled into parallel beams to form collagen fibers [18]. The origin of the
SHG signal in collagen arises from its molecular chirality, where the molecules possess
permanent dipole moments with high order alignment, ensuring the generation of harmonic
signal as a consequence of the non‐symmetrical oscillation of the electrons [15]. On the other
hand, the intrinsic chirality of the triple‐helix of molecular collagen increases the asymmetry
of the assembly increasing the non‐linear response.
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As above explained, the SHG signal can be characterized by the non‐linear susceptibility tensor
[4]. This depends on the induced dipole moment of the molecules and therefore on the
organization of the collagen tissue. If a collagen triple‐helix is excited along its main axis, each
bond contribution is summed coherently to the SHG signal [29]. When the molecules with the
same orientation—or polarity—are assembled to form fibrils, the SHG signal is amplified
significantly [30]. Then, the total intensity is the coherent sum of the signal from individual
collagen fibrils.

However, in some collagen‐based tissues the polarity of the fibrils within the fiber varies
randomly [31]. In those cases the organization presents contributions to the axial momentum
altering the coherent process of the SHG. Theoretically, the phase matching condition for which
the non‐linear process is strictly coherent is given by [15]:

2 2 0k k kw wD = - =
uur uuur uuur

(2)

where k2ω
→

 is the wave vector for the SHG emission and 2kω
→

 is the wave vector of the incident
light. Then, a second harmonic conversion is maximum if Δk

→
=0. Experimentally, only bire‐

fringent crystals have been found to verify this condition [32]. In biological samples, and
particularly in collagen‐based tissues, the SHG signal is a quasi‐coherent process which SHG
efficiency conversion depends on how aligned within the fiber the fibrils are.

SHG images at the bottom of Figure 4 compare the collagen distribution in a normal healthy
human cornea and another affected by a pathology called keratoconus. This is a real example
on how the coherence of SHG signal is an efficient detector of collagen organization within a
sample. Although the control tissue displays a fairly regular distribution of collagen fibers
along a preferential direction, these are randomly distributed in the pathologic case. The
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control tissue provides a more efficient SHG conversion because Δk
→
 is significantly lower than

in the pathologic case. Changes in collagen morphology are firstly produced at molecular level
(tropocollagen), which number of aligned dipoles coherently sum, affecting the fibril organi‐
zation and therefore the distribution of the fibers finally imaged with SHG microscopy.

On the other hand, the emission directionality has an effect in both SHG signal conversion
efficiency and observed morphology. This is easy observed in the starch grains presented in
Figure 5.

In collagen‐based tissues, this effect is due to the size and the organization of the collagen
fibers, since both affect the phase mismatch and the amplification of the SHG intensity [15]. In
general, SHG directionality depends on the distribution of the induced dipoles in the focal
volume where the non‐linear process takes place [33]. In this sense, the directionality effects
of the SHG signal can be appreciated in the visualization of continuous structures (fibers) in
the backward channel (i.e. backscattered emission), and a higher segmentation or discrete
distribution in the forward directed emission [34]. This implies that the choice of the detection
direction in the experimental device will depend on the desired scale of observation. However,
since changes in collagen fibers can be observed in the backward configuration [1], this
configuration has become suitable for biomedical imaging.

3. Imaging ocular tissues with SHG microscopy

As stated above, the human body is plenty of tissues composed of collagen. These tissues are
often the main component of different organs. In particular, the eye is one of them. Although
this is not a vital organ (such as the heart or the liver, for instance), it is necessary to have a
regular way of living (both humans and animals). Since the middle of nineteenth century, there
have been a number of instruments to visualize ocular structures in order to improve the
diagnosis and treatment of eye's diseases. Since most ocular elements are transparent, staining
procedures are usually required and, under certain experimental conditions, the existing
clinical techniques are sometimes not totally appropriate. In that sense, SHG microscopy might
be used as a new tool to improve the imaging of some ocular tissues.

The sclera and the cornea are the two structures are the eye's outer tunic, mainly composed of
type‐I collagen. The former is an opaque connective tissue acting as protective element that
gives stability to the ocular globe. Unlike the sclera, the cornea presents high transparency
which originates from particular arrangements of the collagen fibers (localized within the
stroma, which occupies about 90% of whole corneal thickness). Corneal collagen assembles to
form long fibrils with a diameter of approximately 25 nm (in humans) [35]. These are uniformly
spaced forming larger bundles or fibers termed “corneal lamellae” (tens of microns in size). In
contrast, scleral fibrils have various diameters ranging between 25 and 230 nm [35]. These
collagen fibrils also form bundles, however these are not parallel arranged but entangled in
individual bundles.

Since type‐I collagen is an effective second harmonic generator, both ocular elements can be
visualized with SHG imaging microscopy without using labeling techniques. However, the
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sclera does not have any contribution to the vision function and this is probably the reason
because SHG studies on the sclera are scarce. To our knowledge, Han and colleagues were the
first to show SHG images of the sclera [36]. The sclera collagen distribution was analyzed
through these images in forward and backward directions. They concluded that the sclera
presents inhomogeneous, tube‐like structures with thin hard shells, maintaining the high
stiffness and elasticity of the tissue. SHG imaging was used by Teng and co‐authors to resolve
the difference in structural orientations between the collagen fibers of the cornea and the sclera:
the corneal collagen is organized in a depth‐dependent fashion, whereas the sclera collagen is
randomly packed [37]. As an example, Figure 6 shows SHG images of healthy tissues corre‐
sponding to a human cornea and a sclera. A simple visual inspection reveals the evident
difference in collagen distribution.

Figure 6. Comparison of collagen distributions in SHG images of a human cornea (a) and a piece of human sclera (b).
Although the fibers in the sclera present always a non‐organized pattern, in the cornea the arrangement depends on a
number of factors as explained below. Scale bar: 50 μm.

SHG images of the sclera as a function depth have also been analyzed. At shallow planes
collagen bundles were roughly aligned parallel to the limbus. At deeper locations the fibers
did not have a specific orientation of alignment [38]. At the posterior pole this arrangement
differed. On the external surface undulating thick bundles without a notable major orientation
were found. These also had interwoven structures with various orientations. On the internal
surface of the sclera fine collagen bundles were observed. These bundles were frequently
branched and intermingled. As already mentioned, the sclera has not a direct implication in
visual function, however its structures are related to ocular biomechanics and the changes with
intraocular pressure or surgery might be interesting in clinical applications.

Unlike the sclera, the cornea has been analyzed with SHG microscopy by many different
authors. Since Yeh et al. obtained SHG images in rabbit corneas without exogenous dyes [19]
the corneal structure has been studied in a number of animal models (including humans) under
several experimental conditions (see for instance [39] and references therein). SHG images of
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the cornea have been compared in both forward and backward scattering directions [36].
Although images showed different information, collagen fibers always showed a regular
packaging [36, 37]. However, this regular pattern has been shown to change with pathologies
[40, 41] or after surgical procedures [42–44]. The corneal stroma also suffers alterations due to
scars [45] or changes in the intraocular pressure [46] that have been explored through SHG
imaging.

Although SHG microscopy has been used to image the cornea under different experimental
conditions, two aspects are really important: (1) the response of the SHG signal to polarized
light and (2) the measurement of the stroma organization. Moreover, an objective characteri‐
zation of structural abnormalities is of great interest to distinguish normal from pathological
corneas and the key for possible clinical applications. The next section deals with this topic.

4. Measurement of collagen organization in ocular tissues

As previously mentioned, the collagen arrangement could be compromised due to patholog‐
ical processes, mechanical trauma or denaturation (aging). Due to this, both classification and
quantification of collagen arrangement might be a powerful tool in biomedicine as well as in
medical diagnosis, in particular for those pathologies associated with collagen disorders
occurring at early stages of the disease.

The analysis of the collagen organization has usually been carried out in a qualitative manner.
A quantitative analysis would lead to understand changes in corneal stroma caused by
intraocular pressure [46], pathological processes [47, 48] or surgery [49] among others.
Although there are several techniques to analyze the spatial distribution of collagen, the bi‐
dimensional fast Fourier transform (2D‐FFT) has often been used for this goal [50].

In particular, the 2D‐FFT method has been used with SHG images to compute the degree of
organization in corneal collagen in the presence of pathologies [26] or after physical damage

Figure 7. (a) SHG images of an eagle cornea with two preferential directions of the collagen fibers (crosshatched pat‐
tern) and (b) the associated 2D‐FFT image. As expected, the 2D‐FFT presents a cross shape as a result of the distribu‐
tion of the fibers within the imaged corneal layer. Scale bar: 50 μm.
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[51]. If the SHG image shows a structure with a preferential orientation, the spatial frequencies
of the 2D‐FFT spectrum are aligned along the direction orthogonal to that preferential
orientation [52]. Nevertheless, the resolution of the 2D‐FFT is limited by the noise of the SHG
image and an image filtering is often required. The distribution of the spatial frequencies on
the 2D‐FFT is also generally fitted by an ellipse, and the ratio between its axes is used as a
parameter to quantify the collagen organization. However, when a collagen distribution is
arranged in a more complex and heterogeneous pattern (interwoven, crosshatched, …), the
best fit is a circle and this operation may lead to erroneous conclusions that require a complicate
post‐processing [53]. Figure 7 shows a SHG image with a crosshatched appearance of collagen
fibers, together with the corresponding 2D‐FFT.

In this sense an alternative procedure based on the structure tensor has recently been presented
by these authors as a useful tool to classify the spatial distribution of collagen‐based tissues
through SHG images [54]. The technique has the advantage of differentiate areas with
maximum organization from those locations where the orientation of the collagen fibers is not
significant. The structure tensor provides relevant parameters such as the spatially‐resolved
degree of isotropy (DoI) and the histogram of orientation distribution. The former ranges
between 0 and 1 and its value increases with the order of the structure (i.e. the more aligned
the fibers the higher the DoI). In the latter, it is verified that the narrower the data, the higher
the presence of a dominant orientation. Apart from their quantitative information, a visual
inspection of both the DoI map and the orientation histogram permits to discriminate between
quasi‐aligned and non‐organized collagen distributions. For a better understanding of this
tool, Figure 8 shows two SHG images with different spatial distributions and the correspond‐

Figure 8. SHG images of a human cornea (upper row) and bovine sclera (bottom row) and their respective spatially‐
resolved DoI and orientation histogram computed through the structure tensor. Detailed information on how these pa‐
rameters were computed can be found in [54]. Scale bar: 50 μm.
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ing structure tensor parameters. At this point, it is important to notice that the combination of
SHG microscopy and the structure tensor could help in the diagnosis of abnormal structures
and in the tracking of pathologies related to corneal stroma disorders.

5. Adaptive optics SHG imaging

Despite optical sectioning capabilities and inherent confocality of SHG microscopy, the
imaging of thick samples (3D imaging) is limited by the specimen‐induced aberrations. When
a femtosecond laser beam is focused into a specimen, the deeper the layer to be imaged, the
larger the focal spot size. This leads to a reduction in the effectiveness of the SHG process (i.e.
lower SHG signal) and a decrease in the quality of the acquired images, both contrast and
resolution (Figure 9).

To overpass this, adaptive optics (AO) techniques combining a wavefront sensor and an
adaptive device (deformable mirror or spatial light modulator) have been used [55–58]. Most
authors have been interested in improving two‐photon excitation fluorescence images through
AO and experiments dealing with AO‐SHG imaging are scarce in the literature [59–62].

Although the ideal situation is to compute and correct for the plane‐by‐plane aberrations, this
is experimentally difficult [63]. In that sense, wavefront sensor‐less techniques combined with
multiphoton microscopy have been reported [58, 59, 61, 62]. With this approach, at a certain
plane within the sample the AO element pre‐compensates for the “unknown” aberrations
without measuring them, but finding the best image according to a pre‐defined image quality
metric. Although these are time‐consuming procedures due to the use of iterative algorithms
such as genetic learning, hill‐climbing or stochastic, they have provided significantly improved
images with more visible details.

Moreover, the dominant aberration term at deeper layers is the spherical aberration [55, 58,
64]. In order to correct for (or minimize) this unwanted spherical aberration, objective correc‐

Figure 9. SHG images of a rabbit cornea at different depth locations (10, 100 and 100 μm). The reduction in SHG signal
is readily visible. This decrease in SHG effectiveness is mainly due to specimen‐induced aberrations and scattering.
Scale bar: 50 μm.
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tion collars [64, 65] and wavefront sensor‐less AO devices [55, 58, 62] have been used. The
former is a manual method only valid for a defined set of cover thickness values. The latter is
faster than usual since only the spherical aberration term has to be corrected. An alternative
technique has recently been reported to improve 3D multiphoton imaging [66]. This is based
on the manipulation of the spherical aberration pattern of the incident beam while performing
fast tomographic SHG imaging. As expected, when inducing spherical aberration the image
quality is reduced at best focus, however at deeper planes a better image quality is obtained.
This increases the penetration depth and enables improved 3D SHG images even with non‐
immersion objectives.

Although these AO techniques can be applied to both non‐biological and biological samples,
there is a special interest when imaging ocular tissues, the cornea in particular. For this ocular
structure the features of interest (especially when analyzing pathologies) might be close to the
surface or located deep into it. For shallow planes, SHG images are usually of high quality.
However when the plane to be imaged is located at a deeper position AO‐SHG can be used as
a powerful technique to noticeably enhance SHG images corresponding to those deep corneal
layers (see Figure 10 as an example). Those images will have enough contrast and resolution
to observe the collagen bundles [66], and any possible abnormal distribution of them across

Figure 10. Comparison of SHG images before (upper panels) and after (bottom panels) using AO for two different lo‐
cations within the sample (porcine cornea). It can be observed how AO improves the quality of the images at both loca‐
tions. However this is more noticeable for deeper locations within the sample. Scale bar: 50 μm.
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the imaged area. Future clinical instruments can also benefit from this implementation which
leads to a better visualization of the layered ocular structures.

6. Polarization‐sensitive SHG microscopy

The dependence between polarization and SHG signals in collagen is well recognized [67–69].
The combination of non‐linear microscopy and polarization allowed detecting changes in
collagen arrangement [70] and has been proposed to characterize collagen‐based tissues [71,
72]. Type‐I collagen fibers exhibit structural anisotropy that can be characterized by the ratio
of hyperpolarizabilities or polarization anisotropy ρ = βxxx/βxyy, which provides information
about the internal collagen structure [33, 73].

The polarization anisotropy depends on the orientation of the collagen triple‐helix and the
orientation of the induced dipoles along the peptide bonds and the values have been reported
to be in the range [‐3, 3] [33]. Low values of ρ are associated with immature collagen [67], aging
[69] or loss of arrangement in the collagen distribution [1]. Therefore, polarization‐sensitive
SHG microscopy provides information about the dipolar distribution within the collagen
fibers.

SHG intensity has been reported to vary with the angle between the optical axis of the polarizer
and the main orientation of the collagen fibers [33, 69]. Moreover, depending on the spatial
distribution of collagen fibers the SHG signal will be differently affected by the incoming
polarization state [72, 74, 75] (see Figure 11 as an example). This fact might be of great
importance in SHG imaging not only because the total signal varies (for instance) when
changing from linear to circular polarization, but also because more details and extra features
might be visible for certain polarization states (see Figure 12) [72].

Figure 11. SHG intensity as function of the incident linear polarization for three values of ρ and parallel‐arranged col‐
lagen fibers (a), and for three different values of structural dispersion, Δx, and ρ=+1.5 (b). Further details on this can be
found in [72].
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Figure 12. SHG images of a bovine sclera recorded for three different incident polarization states. LH, linear horizontal;
CR, right circular and Eχ,ψ, right elliptical. The location of these polarization states over the Poincaré sphere are shown
on the right. Scale bar: 50 μm.

The combination of polarization and SHG signal allows obtaining information about the
hierarchical architecture of collagen at molecular scale [76, 77]. This has been used in biopsies
to discriminate normal breast from malignant tissue [78], and analyze cancerous ovarian
tissues [79].

Figure 13. Polar diagram representing the normalized SHG intensity distribution as function of incoming polarization
of a control (red) and a keratoconus (blue) cornea. The dependence of SHG intensity with incident polarization is
stronger in the former probably due to the presence of a dominant direction of the collagen fibers. This does not exist
in the latter and the SHG signal hardly depends on the polarization state.

Pathological alterations of the cornea could seriously compromise vision. In this sense
polarization‐sensitive SHG microscopy has been proved to be effective to detect structural
alterations in keratoconus [40]. It has also been employed to analyze the molecular changes
produced by high levels of intraocular pressure and to investigate how these modifications
produced within the lamellae affect the stroma thickness [80]. As a possible clinical application,
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Figure 13 compares the response to incident linear polarization of a human control and a
keratoconus cornea (those presented in Figure 4). It can be observed how the SHG signal from
the pathological case presents lower dependence with polarization.

7. Conclusions

Along this chapter, the principles of SHG processes and the application to biological imaging
have been reviewed. SHG microscopy is a non‐linear modality with inherent confocality that
allows visualizing non‐stained tissues composed of collagen and shows features not seen with
regular microscopy. SHG intensity depends on both the size and organization of the collagen
fibers. Since SHG directionality depends on the distribution of the induced dipoles within the
fibers, the registration of the signal in a backscattered direction can be used to observe the
collagen architecture within the specimens (Figure 13).

In particular, this is a useful tool to image connective ocular tissues such as the sclera and the
cornea with high resolution as function of depth. These tissues can be characterized attending
the organization of their collagen fibers. Unlike the sclera that usually presents a non‐organized
distribution, the arrangement of the corneal fibers depends on numerous factors. These
collagen organizations have been discussed and a novel method based on the structure tensor
to perform quantitative analyses has been proposed. This permits to classify the spatial
distribution of the fibers from the SHG images, and can be used for diagnoses of pathologies
related to collagen disorders.

However, the efficiency of SHG imaging of thick samples reduces with depth, as the specimen
itself induces aberrations and scattering. To overcome this limitation, AO procedures have
been implemented into SHG microscopes. The manipulation of the aberration pattern of the
incident laser beam has allowed increasing the image quality of SHG images especially at
deeper locations.

On the other hand, SHG signal from collagen structures is polarization dependent. This
modulation depends on both collagen internal structure (parameter ρ) and the arrangement
of the fibers (external organization). The combination of polarization and SHG microscopy has
been reported to be effective in detecting structural changes in collagen‐related pathological
processes. The technique could then be a powerful tool in biomedicine and/or in clinical
diagnoses.
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Abstract

Nonlinear optical microscopy techniques have emerged as a set of successful tools
within the biomedical research field. These techniques have been successfully used to
study autofluorescence signals in living tissues, structural protein arrays, and to reveal
the presence of lipid bodies inside the tissular volume. In the first section, the nonlin‐
ear contrast technique foundations is described, and also, a practical approach about
how to build and combine this setup on a single confocal system platform shall be
provided. In the next section, examples of the usefulness of these approaches to detect
early changes associated with the progression of different epithelial and connective
tissular diseases are presented.

Finally, in the last section, we attempt to review the present‐day most relevant analysis
methods used to improve the accuracy of multimodal nonlinear images in the detection
of epithelial cancer and the supporting stroma. These methods are presented as a set of
potential valuable diagnostic tools for early cancer detection and to differentiate clinical
subtypes of osteogenesis imperfecta disorders, being highly advantageous over present
classical clinical diagnostic procedures.

In this chapter, it is proposed that the combination of nonlinear optical microscopy and
informatics‐based image analysis approaches may represent a powerful tool to
investigate collagen organization in skin diseases and tumor cell morphology.

Keywords: nonlinear microscopy, second harmonic generation, third harmonic gener‐
ation, image analysis, early diagnosis
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1. Principles of nonlinear microscopy techniques

The notable advances in cell and molecular biology science have induced the need to imagine
cells in an intact‐live whole organism. Therefore, the need for real‐time observation of cell (and
their subcellular components) behavior in whole tissues has become crucial to understanding
cellular physiology. During the past decades, imaging techniques have been improved to
pursue this goal. One of these techniques is fluorescence imaging. The use of confocal micro‐
scopy allows the examination of subcellular material with three‐dimensional resolution but is
restricted by the effective imaging depth (usually less than 200 μm) and phototoxicity, which
is caused by using a short wavelength laser (principally continuous wave (CW) laser) [1].
Recent advances in nonlinear optical processes of multiphoton microscopy overcome single‐
photon linear microscopy technologies, such as confocal microscopy, by their capacity of
tissular penetration, clean images production, minimal invasiveness, and chemical selectivity
[2]. Therefore, multiphoton fluorescence (MPF) and nonlinear optical (NLO) microscopy in
recent year has become one of the key imaging modes and evolved as an alternative to
conventional single‐photon confocal microscopy. The best‐known nonlinear microscopy
techniques are two‐photon excited fluorescence (TPEF) microscopy, second harmonic gener‐
ation (SHG) and third harmonic generation (THG) microscopy, and coherent anti‐Stokes
Raman scattering (CARS) microscopy.

These nonlinear technologies provide several advantages, namely high depth penetration by
using a near infrared (pulsed) laser as excitation source, intrinsic tridimensional sectioning
and resolution, due to the spatial confinement of the signal to the laser focus, multiple
nonlinear processes, and the possibility to use numerous endogenous molecular markers and
low phototoxicity that allows the investigation of living processes, without significant
perturbation [3]. Together, these advantages allow analyzing the complex relations between
tissue and organ function and its structure in complex diseases [4].

To understand this new microscopy instruments, it is advisable to think in classical optical
tool. In conventional optical imaging, contrast mechanisms consist of interactions such as
absorption, reflection, scattering, and fluorescence, and the response recorded is linearly
dependent on the intensity of the incident light. Thereby, there is a linear relationship between
the strength of electric field of the light and the induced object polarization. At moderately low
incident intensity, the optical response can be approximated to the first‐order response as P =
χ(1) ⊗ E, where χ(1) is the linear susceptibility, P is the polarization of a material, and E is the
strength of an applied optical field. By contrast, nonlinear optical effects occur when a
biological tissue interacts with an intense laser beam exhibiting a nonlinear response to the
applied field strength. In this situation, the induced polarization vector P of the material subject
to the vectorial electric field E can be expressed as P = χ(1) ⊗ E + χ(2) ⊗ E ⊗ E + χ(3) ⊗ E ⊗ E ⊗ E
+…, where χ(i) is the i(th) order nonlinear susceptibility tensor and ⊗ represents a combined
tensor product and integral over frequencies [5]. The bulk nonlinear optical susceptibilities χ(2)

and χ(3) are obtained from the corresponding high‐order molecular nonlinear optical coeffi‐
cients (hyperpolarizability) β and γ by using a sum of the molecular coefficients over all
molecule sites. Typically, materials with conjugated π‐electron structures exhibit large optical
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nonlinearities. The usual linear susceptibility χ(1) contributes to the single‐photon absorption
and reflection of the light in tissues. The χ(3) corresponds to third‐order processes such as two‐
photon absorption, THG, and CARS, while SHG results from χ(2) [6].

Another way is to think nonlinear optical processes in terms of particles called photons
discovered by Einstein, such as processes involving more than one photon. All these processes
have some characteristics in common. First, it only occurs if multiple photons coincide in time
and space or, in chemical terms, at high concentration of photons. The speed V of a chemical
reaction of n elements f + f + f + f +…→ fn depends on the concentration f elevated to the nth

degree, that is, V ∝ [f]n where [f] is the concentration of f. In optics, the concentration is
proportional to the laser beam intensity, I = power/area = (energy/time) / area. Thus, the
efficiency of a one‐ photon process is I, and for two‐photon would be I2, and generalizing for
n photons In. Therefore, it is not surprising that the first nonlinear optical empirical results
were materialized only after the advent of pulsed lasers. The NLO microscopes come with the
advent of Ti:Sa lasers which produce pulses typically in the range of 100 femtoseconds [fs =
10-15 sec], with an average power of 2 watts and repetition time of 12 nanoseconds [ns = 10-9

sec]. In this case, the peak power will be 240 kilowatts, although the pulse energy is just 24
nanoJoule. The pulsed laser, therefore, increased the peak power of 2 watts for a CW laser to
240 kilowatts, while keeping the same average power and low energy per pulse. In other
words, the very high potencies are obtained by decreasing the pulse duration instead of
increasing the pulse energy. Thus, nonlinear effects occur avoiding the potential sample
damage. The smaller the temporal pulse duration, greater the efficiency of nonlinear processes,
so femtosecond lasers are preferable to picosecond lasers.

The pulsed laser ensures the coincidence of photons in time, but not in the space. The concen‐
tration of photons but will be greater the smaller the area of the laser beam, i.e., is maximum
in the laser focus. The total generation of events caused by one photon processes is constant,
independent of the laser focusing position, because if the process is linear with I, the total
number of events is proportional to I multiplied by the area, i.e., N events ∝ (power/area) ×
area = power. As power is constant along the beam, the number of events does not depend on
the axial position [along the lens axis—defined as the z‐axis]. The processes with more than
one photon are proportional to In and therefore are inherently confocal. In this case, the amount
of events depends very strongly on the beam area, because now N events ∝ In × area =
(powern/arean-1). Two‐photon processes decay inversely with the area, whereas a three‐photon
does so with the square of the area. This means that events can occur only in the vicinity of the
lower area, i.e., the laser focus, that is, the light generated by the nonlinear optical process are
generated at the focus of the laser, which becomes intrinsically a confocal microscope. The
laser focus is on the operator microscope control and can be used for 3D image reconstruction.

One way to visualize the various nonlinear optical processes is by arrows with length pro‐
portional to the photon energy. Figure 1 schematically depicts a number of nonlinear optical
effects, produced for the specimen if the energy density at the focal spot of an objective lens is
sufficiently large and also are compared with lineal process produced for a CW laser. Principal
contrast mechanisms and characteristics of TPEF, SHG, THG, and CARS modalities are
described below.
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Figure 1. Energy diagrams of linear and nonlinear optical process. Solid lines represent electronic and vibrational
states of molecules, while dashed lines denote virtual states. The straight arrows are excitation beams, whereas wavy
arrows are the output signal beams. The black arrow represents relaxation in electronically excited states, and red
hourglass represents the excitation volume. ω1 and ω2 symbolize the two beams available in CARS microscope. ωp =
ω1 and ωs = ω2 in CARS. v = 0: vibrational ground state, v = 1: vibrational excited state, and Ω is a frequency of vibra‐
tional transition between v = 0 and v = 1. ω1 = pump beams and ω2 = Stokes beam from the laser sources. ω3 is a long
wavelength beam for THG obtainable on OPO systems for CARS microscope. Abbreviations: CW: continuous wave,
OPEF: one‐photon excited fluorescence, OPO: optical parametric oscillator.

TPEF microscopy is a third‐order nonlinear optical resonant process where two photons excite
an electron from the ground state. It is an inelastic process where photon energy is released at
the sample. Two‐photon absorption happens only when the energy of the incident photons
falls into the two‐photon excitation band which is specific for each fluorescent marker. The
two‐photon excitation band is not exactly half of the one photon excitation band because the
selection rules are different. The fact that TPE depends on the square of the incident light
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provides its confocal features, that is, a process happening only at a focal point volume.
Photobleaching is smaller in two‐photon excited fluorescence (TPEF) compared to single
photon excitation because the excited volume is smaller. Multicolor imaging is allowed to
excite different fluorophores simultaneously through different order processes with a single
wavelength, in which emissions are spectrally shifted by hundreds of nanometers and
uninterrupted for collection. Consequently, multiphoton microscopy is especially appropriate
for physiological and pathophysiological studies since it is able to excite endogenous auto‐
fluorescent components and thus to obtain specific signals such as nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FAD) [6].

On the contrary, SHG and THG are coherent second/third‐order elastic nonlinear optical
processes, respectively. Because two/three photons generate another photon with two/three
times the energy of the incident photons, there is no energy released to the medium, meaning
out of focus cell photodamages are not expected from these processes. Both SHG/THG can be
segregated from fluorescence signals by the wavelength or even by time gating, because the
coherent processes are practically instantaneous. The fact that SHG signal is proportional to
I2, while THG signal is proportional to I3, where I, is the incident light intensity, provides
confocality for both techniques. For the same wavelength of the incident light, THG has better
optical sectioning resolution than SHG or TPEF but is also more sensitive to changes in the
intensity of the light in the focused spot, such as those caused by laser instability or by
scattering or defocusing the illumination [7]. The first images of high‐resolution SHG were
reported in 1998 by Sheppard’s group [8], and shortly afterward in 2001, Chu and co‐workers
showed a multimodal imaging study, including TPEF+SHG+THG [9]. Usually, the third‐order
nonlinear susceptibility (χ3), responsible for THG, is much smaller than the second‐order one
(χ2), responsible for SHG. In principle, this would mean that THG should be much harder to
observe. However, χ2, as well as any other even susceptibility coefficients, must be null in the
presence of inversion symmetry. Therefore, SHG shall be zero in the presence of centro‐
symmetric molecules, unless an external parameter, such as electric fields or interfaces, breaks
the symmetry.

By contrast, all materials have non‐zero third‐order susceptibility χ3. Moreover, χ3 can be
several orders of magnitude larger or smaller for different materials. However, THG is null in
a homogeneous material, no matter how high χ3 could be, because the Gouy‐phase shift of π
across the focus of a Gaussian excitation beam creates a destructive interference between
signals generated before and after the focus [10]. Nevertheless, for a nonhomogeneous focal
volume, a measurable amount of third harmonic is generated [11]. Since in biological samples,
heterogeneity is more common than homogeneity, THG provides an important tool for
bioimaging, with the warning that it tends to be brighter at the interface of large granules, lipid
droplets, or similar biostructures, compared to the internal signal [6]. SHG imaging modality
can probe molecular organization, molecular symmetry, orientation, molecular alignments,
and ultrastructure on the micro, as well as the nanoscale. Natural structures are mostly
unarranged (optically isotropic) and do not generate any SHG signal. Hardly, some few
biological assemblies are ordered and can produce harmonic signal. One of the best known
SHG structures in biology is collagen, the major protein of the extracellular matrix. Collagen
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fibrils often aggregate into larger, cable‐like bundles, several micrometers in diameter. This
regularly staggered packing order provides the needed structural conditions for efficient SHG
[12]. Other examples are acto‐myosin assemblies in muscle and microtubule structures in
living cells [13, 14]. Discontinuities in refraction index of the optical dispersion properties of
biological tissues are able to generate THG signals [15, 16]. The THG can be used to study
optical cell interfaces such as those at cell membranes or organelle surfaces. For example, the
surface of the erythrocyte can generate significant THG [17]. In contrast to the chemical
specificity that characterizes fluorescence images, harmonic generation (SHG and THG)
provides an imaging modality specific for structural configuration. In the study of cancer
tumors, our experience with both techniques is that SHG is an excellent tool to observe collagen
network of extracellular matrix, while THG allows to clearly display the nuclei, which are two
key parameters for pathologists [4, 18–20].

Characteristics TPEF SHG THG CARS

Application in
bioscience

1990 1986 1997 1982

Number of
photons

2 2 3 3

Susceptibility χ3 χ2 χ3 χ3

Advantages Deeper imaging with
less phototoxicity
Spatial localization
forfluorescence
excitation 

Coherent process,
symmetry selection
Probing well‐ordered
structures, functions of
membranes,
nonfluorescence tissues
No absorption of light 

Coherent process, no
symmetry requirement
No absorption of light
Imaging both in bulk
and at surfaces for
extended conjugation of
pi electrons 

Coherent process
Inherent vibrational
contrast for the
cellular species,
requires no
endogenous or
exogenous
fluorophores
Vibrational and
chemical
sensitivities 

Contrast
mechanics

Electronics levels of
the molecules 

Nonlinear properties of
the medium

Nonlinear properties of
the medium

Vibrational levels of
the molecules

Information Autofluorescence of
some biological
substances (NADH,
FAD, etc.)

Noncentrosymmetric
molecules with spatial
organization (collagen,
elastin, etc.)

Interfaces, optical
inhomogeneities, (cell
edges,
lipids, membranes)

Chemical
information (lipids,
DNA, proteins)

Table 1. Characteristics of nonlinear optical microscopy.

In addition to harmonic generation microscopy, CARS microscopy is another 3D high‐
resolution imaging approach that circumvents exogenous probes. CARS is a four‐wave mixing
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process in which a pump beam at frequency wp, a Stokes beam at frequency ws, and a probe
beam at frequency w’p are interacted with a sample to result in an anti‐Stokes signal at was =
2wp - ws. In nearly all experiments, the pump and the probe beams are derived from the
resonant oscillation when the beat frequency (wp - ws) matches the frequency of a particular
Raman active molecular vibration mode. Furthermore, due to its coherent nature, CARS signal
production only occurs when the field‐sample interaction length is less than the coherence
length. The generated CARS signal is proportional to (χ(3))2 I2

p Is, having a quadratic depend‐
ence on the pump field intensity and a linear dependence on the Stokes field intensity. These
properties provide it a 3D‐sectioning capability [6]. First CARS microscopy setup was descri‐
bed at the nineties [21] and has now matured into a powerful method for biological imaging.
CARS microscopy is more informative than SHG and THG microscopy since it contains rich
spectroscopic information about specific molecular species.

To summarize the first section, a description of the physical properties, characteristics, and
principal contrast mechanisms of each nonlinear optical imaging method described are
summarized in Table 1.

2. Nonlinear optical technique implementation

Today, there are multiples ways to assemble a nonlinear microscopy platform. The engineering
challenge is to integrate the different modalities on a single platform. In response to this
challenge, manufacturers have designed microscopes with multiple input and output ports
and increased infinity space for the introduction of customized optics. Coming up next, some
laser sources, detectors, and confocal body microscopies routinely used in this technology are
enumerated, and a setup configuration by our group is described in some detail.

As was described in the introductory section, for high harmonic generation and multiphoton
fluorescence microscopies, short femtoseconds pulses of high peak power are required. While
ultrashort few cycle pulses are spectrally very broad, they allow for simultaneous excitation
of different chromospheres with spectrally separated absorption bands. Available lasers that
conjugate these features are the titanium:sapphire (Ti:Sa) (wavelength range 700–980 nm, pulse
width 100 fs, and 76–100 MHz repetition rate), the Cr:forsterite laser (wavelength range 1230–
1270 nm, pulse width 65 fs, and 76–120 MHz repetition rate), the Nd:glass laser (wavelength
range 1053–1064 nm, pulse width 150 fs, and 70–150 MHz repetition rate), and the femtosecond
ytterbium laser (wavelength range 1030 nm, pulse width 200 fs, and 50 MHz repetition rate).

The SHG wavelength excited by a Ti:Sa femtosecond laser operating at 940 nm will be in the
blue at 470 nm, and the TPEF will be in the region above 470 nm. While that THG signal
generated by a 940 nm principal beam, will be in the UV region at 330 nm. As a result, the THG
signal will suffer from the high UV absorption of the principal biological specimens making
signal detection difficult. In contrast, using the Cr:forsterite laser operating in the range of 1230
nm allows SHG (615 nm), THG (410 nm), and TPEF (>615 nm), all to fall within the visible
spectrum. Additionally, the lowest light attenuation in biological material is generally found
in the 1000–1300 nm. In recent years other ultrafast laser systems appeared, such as InSight
TM DeepSee TM (wavelength range 680–1300 nm, pulse width <120 fs, and repetition rate 80
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MHz), which also can be an excellent light source for multi‐modality microscopy. Moving the
excitation wavelength to 1200 nm, not only the visible but also the NIR spectrum is open for
signal recording.

Nonlinear microscopes share many common features with confocal laser scanning micro‐
scopes. In fact, many research groups have implemented multimodal nonlinear platform by
coupling source lasers described previously into a confocal scanning microscope. Practically,
many scan head models of different manufactures have been used with this proposal, such as
Olympus FV300 [22], Olympus FV1000 [23], Zeiss LSM Meta 510 [24], Zeiss LSM 710 [25],
Nikon C1 [26], Leica TCS‐SP5 [27], and Zeiss LSM 780 [28]. In general, the generated nonlinear
signals can be collected with the same microscope objective, separated by a dichroic mirror,
which is expressly selected for the given fundamental and fluorescence or harmonic emission
wavelengths and focused with a lens through the filter onto detector. If Ti:Sa laser is used, the
wavelengths fall within the sensitivity range of high quantum efficiency (QE) silicon‐based
detectors and photomultiplier tube (PMT) photocathodes that are the currently used detectors.
If the source laser used are Nd:glass or Cr:forsterite, special NIR detectors (i.e., indium gallium
arsenide (InGaAs) photodiode) are needed. For more data about the optical characteristics of
the different detectors, readers can find excellent information in [7].

In our setup (Figure 2), we used an inverted Zeiss Axio Observer.Z1 and confocal LSM 780.
Briefly, this device is equipped with a UV‐lamp, for classical epi‐fluorescence operation mode;
five lines of CW laser, for confocal studies; and femtosecond (fs) and picosecond (ps) pulsed
laser, for nonlinear microscope modalities. The fs laser source is a tunable, Ti:sapphire laser
emitting around 690–1040 nm both for efficient TPEF and higher SHG/THG spatial resolution.
The picosecond (ps) source is obtained from a synchronously pumped optical parametric
oscillator (OPO) system to obtain THG signal in the visible range and high spectral resolution
CARS microscopy. The OPO can be easily and continuously tuned over a wide spectral range
from 690 to 990 nm for the signal and between 1150 and 2450 nm for the idler output. The fs
laser is combined with the scan head through an acousto‐optic modulator (AOM) and a
collimating telescope (T1) to regulate the beam diameter in the objective back‐aperture and
the focus position on the microscope focal point. The five wavelengths (signal and idler for
each OPO plus the fundamental 1064 nm) are controlled independently with dedicated
telescopes (T2, T3, T4, T5, and T6). Delay lines on the five beam paths ensure temporal overlap
between the beams. These beams necessary for CARS microscopy are temporally
synchronized, recombined (P), and sent onto the backward excitation port of the scan head.
The scan head of the LSM780 has a spectral gallium arsenide phosphide (GaAsP) detector with
32 in‐line elements and 2 adjacent PMTs. The motorized collimators, the scanners, and the
pinhole precisely positionable and the highly sensitive detectors are arranged to provide
optimum specimen illumination and efficient collection of the emitted light. The Raman line
width is comparable to the spectral width of a picosecond pulse, so that the excitation energy
is fully used to take full advantage of the vibrational resonant CARS signal. Working with 1∼3
ps spectral pulse widths is possible to obtain the optimal signal‐to‐background ratio for typical
Raman band [29]. A pulse width of a few picoseconds provides a good compromise between
the spectral resolution and the peak power and improves the signal‐to‐background ratio. The
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OPO light source for CARS that we used has already been reported to perform time resolved
CARS [30] to improve the sensitivity or to cover the full vibrational Raman spectrum. In our
setup, the frequency doubled Nd:YVO generates 8 W of green light (532 nm) and pumps two
OPOs with 4 W each. Although the full system can provide up to five wavelengths
simultaneously (signal and idler for each OPO plus the fundamental 1064 nm), we normally
use three colors. The two signals coming from each OPO are recombined with the fundamental
1064 nm beam from the Nd:YVO oscillator. The power, polarization state, and divergence of
each beam are controlled independently with dedicated polarization optics and telescopes.
Delay lines on two of the beam paths (signal and 1064 nm) assure temporal overlap between
the three beams. The backward detection is achieved with internal GaAsP detector of scan
head. A set of dedicated filters is placed before the detectors to select the relevant spectral
domains.

The generated signals can be collected with the same microscope objective (reflected or epi‐
detected), splitted by dichroic mirrors, which were specifically chosen for the given funda‐

Figure 2. Schematic setup of a multimodal NLO microscope using a femtosecond laser source (Mai‐Tai) and picosec‐
onds (OPOs system) pulsed laser. Lasers are coupled to a commercial confocal system platform (inverted Zeiss Axio
Observer.Z1 and confocal LSM 780). Principal optics elements are shown with blue letterings (telescope, delay lines,
and recombination) and detectors with red letterings. Solid and dashed lines represent excitation and emission paths,
respectively. AOM, acousto‐optic modulator; T, telescope lens; P, recombine; NDD T, nondescanned detector (trans‐
mitted way); NDD R, nondescanned detector (reflective way); PMT, photomultiplier tube.

Nonlinear Microscopy Techniques: Principles and Biomedical Applications
http://dx.doi.org/10.5772/63451

129



mental and fluorescence or harmonic emission wavelengths and focused onto specific
detectors. Interference or band pass filters are used in front of the detector for filtering scattered
fundamental light and spurious signals outside the desired bandwidth. For epidetection, the
system has two internal PMT plus GaAsP avalanche photodiodes inside the scan head (PMT
1‐2, Figure 2). Also, three non‐descanned detectors (NDDs) are available for epi‐detection of
nonlinear signals (NDD R1/R2/R3). It is also possible to detect the signals in the forward
direction. Either one detector with appropriate filters or several detectors recording different
signals separated by dichroic mirrors can be used. The system shown here has three NDD
detectors (NDD T1/T2/T3). T3 detector was placed right after the sample, holding it as close
to the sample as possible. With this system, many configurations can be used and different,
linear, and/or nonlinear signals can be simultaneously detected. For example, we can observe
CARS signal with internal GaAsP detector of scan head, forward THG, SHG and TPEF with
NDD T1/T2/T3, and reflected SHG and TPEF with NDD R1/R2.

3. Biomedical applications

Over the past years, life science interdisciplinary research has routinely used nonlinear
microscopy techniques. The combination of SHG, THG, and CARS is used in the production
of chemical maps of complex tissues. NLO techniques allow inspecting the assembly of single
cells, tissues, and organs as well as monitoring structural and chemical changes related to
diverse diseases. Here a few examples of the use of our setup in two applications are shown,
epithelial cancer detection and diagnosis of osteogenesis imperfecta.

3.1. Cancer detection

Cancer is still a threat to human life [31]. Modern clinically used imaging methods for cancer
diagnosis comprise x‐ray, CT, MRI, and OCT [32, 33]. The facilities of these technologies are
restricted by either low spatial resolution or a lack of chemical specificity, making it difficult
to identify the edges of the tumor. Today, new image‐based instruments are necessary as
diagnostic tool to evaluate structural features with subcellular resolution that are closely linked
with tumor malignancy. The combination of different image approaches described in this
chapter may represent a powerful combination of tools to study both malignant cells and
stromal environment. One of the main examples of such an objective is the collagen organi‐
zation changes analysis, the remodeling matrix and alterations in epithelial/stromal interface.
Highly valuable, structural information revealed by each nonlinear contrast approach can be
isolated and analyzed separately, while their superposition allows a better comparison and
understanding of the spatial tissue organization. Thus, TPEF and THG can be used to image
a variety of well‐documented morphologic and architectural alterations, moreover, combined
TPEF‐SHG can be applied to analyze alterations in epithelial cells and the supporting stroma,
and CARS microscopy can be used to understand lipid and proteins composition in tumor
tissues.

Microscopy and Analysis130



mental and fluorescence or harmonic emission wavelengths and focused onto specific
detectors. Interference or band pass filters are used in front of the detector for filtering scattered
fundamental light and spurious signals outside the desired bandwidth. For epidetection, the
system has two internal PMT plus GaAsP avalanche photodiodes inside the scan head (PMT
1‐2, Figure 2). Also, three non‐descanned detectors (NDDs) are available for epi‐detection of
nonlinear signals (NDD R1/R2/R3). It is also possible to detect the signals in the forward
direction. Either one detector with appropriate filters or several detectors recording different
signals separated by dichroic mirrors can be used. The system shown here has three NDD
detectors (NDD T1/T2/T3). T3 detector was placed right after the sample, holding it as close
to the sample as possible. With this system, many configurations can be used and different,
linear, and/or nonlinear signals can be simultaneously detected. For example, we can observe
CARS signal with internal GaAsP detector of scan head, forward THG, SHG and TPEF with
NDD T1/T2/T3, and reflected SHG and TPEF with NDD R1/R2.

3. Biomedical applications

Over the past years, life science interdisciplinary research has routinely used nonlinear
microscopy techniques. The combination of SHG, THG, and CARS is used in the production
of chemical maps of complex tissues. NLO techniques allow inspecting the assembly of single
cells, tissues, and organs as well as monitoring structural and chemical changes related to
diverse diseases. Here a few examples of the use of our setup in two applications are shown,
epithelial cancer detection and diagnosis of osteogenesis imperfecta.

3.1. Cancer detection

Cancer is still a threat to human life [31]. Modern clinically used imaging methods for cancer
diagnosis comprise x‐ray, CT, MRI, and OCT [32, 33]. The facilities of these technologies are
restricted by either low spatial resolution or a lack of chemical specificity, making it difficult
to identify the edges of the tumor. Today, new image‐based instruments are necessary as
diagnostic tool to evaluate structural features with subcellular resolution that are closely linked
with tumor malignancy. The combination of different image approaches described in this
chapter may represent a powerful combination of tools to study both malignant cells and
stromal environment. One of the main examples of such an objective is the collagen organi‐
zation changes analysis, the remodeling matrix and alterations in epithelial/stromal interface.
Highly valuable, structural information revealed by each nonlinear contrast approach can be
isolated and analyzed separately, while their superposition allows a better comparison and
understanding of the spatial tissue organization. Thus, TPEF and THG can be used to image
a variety of well‐documented morphologic and architectural alterations, moreover, combined
TPEF‐SHG can be applied to analyze alterations in epithelial cells and the supporting stroma,
and CARS microscopy can be used to understand lipid and proteins composition in tumor
tissues.

Microscopy and Analysis130

Figure 3A exemplifies this combination, where NLO techniques were applied to differentiate
between normal and malignant (fibroadenoma and invasive lobular carcinoma (ILC)) human
breast tissue. The characteristic microscopic appearance of each type of tissue and relationship
between cells and stromal compartment can be identified in the SHG/THG combination. The
differential orientation and distribution of collagen fibers can be clearly identified in stromal
region with SHG image. Figure 3B shows a comparative analysis of CARS images of breast
tissue. Adipose and fibrous structures of normal tissue possess strong CARS signals. Fibroa‐
denoma exhibits the compressed duct with linear branching pattern, whereas ILC presents
single or rows of cells invading into the stroma. Based on examples such as this and our
previous work [19], we have established that it is possible to have both qualitative parameters
of differences between each kind of breast tumor and to demonstrate the advantage of the
integration of as many NLO approaches as possible to analyze breast cancer.

Figure 3. Multimodal NLO approach applied to human breast tumor. (A) Representative H&E‐stained and SHG, and
SHG+THG cross‐sectional images of breast tissues diagnosed as normal (first row), fibroadenoma (second row), and
invasive lobular carcinoma (third row). Scale bar = 20 μm. (B) Representative CARS cross‐sectional images of breast
tissues. Scale bar = 20 μm. D, duct; Ep, epithelium; St, stroma; Fibroad, fibroadenoma; Lob. Carc., lobular carcinoma;
I.Lob.Carc, invasive lobular carcinoma. Figure 3A from Adur et al., [19].

Human ovarian tumors are shown in Figure 4. TPEF signal (green) represents stromal
connective tissues. The SHG signal (red) shows collagen fibers, while THG (cyan) enhances
the nuclei. The information revealed by each mode can be directly compared, providing a
better understanding of the tissue. For example, SHG/THG‐merged signals can be used to
distinguish the epithelial/stromal interface. It is worth mentioning that these differences and
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contrasts could be automatically and digitally done for quantification (see next section). These
data confirm the fact that normal ovaries are more organized tissues than the adenocarcinoma
samples. Finally, using THG signal, it was possible to evaluate the differences in the surface
epithelium of each tumor type. In normal ovary, cells were arranged in one cell layer. Serous
adenoma samples display elevated ciliated and non‐ciliated cuboidal epithelial cells with
lengthened nuclei, also in one regularly single cell layer. Besides, the serous borderline tumor
and serous adenocarcinoma samples are absolutely different from the previous ones, showing
epithelial surface with cells of altered sizes lying in multiple layers, including cellular atypia
and proliferation. Mucinous tumor samples are similar to borderline/adenocarcinoma, with
different size cells forming up multiple layers, but having rich cytoplasmic mucin and basal
nuclei.

Figure 5 summarizes the combined uses of these techniques in the analysis of human colon
cancer. NLO images clearly demonstrate the circular arrangement pattern of control colonic
crypts registered from crypt‐cross sections, characterized by epithelial columnar cells and
interspersed goblet cells. TPEF (green) revealed the typical foveolar pattern of colon mucosa
glands, displaying crypts with rounded luminal openings. SHG (red) specifically traces the
collagen scaffold within lamina propria. The evaluation of colonic tissue by SHG microscopies

Figure 4. Multimodal NLO approach applied to human ovarian tumor. Representative merges of TPEF (green) and
SHG (red) cross‐sectional images of ovarian tumor tissues diagnosed as serous‐type tumor and mucinous‐type tumor;
and representative merges of SHG (red) and THG (cyan) cross‐sectional images. All scale bar = 20 μm. Ep, epithelium;
St, stroma; n, nucleus; c, collagen; Ade, adenoma; Bord, borderline; Adenocar, adenocarcinoma. Reproduced figures
from Adur et al. [34] (open access).
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rapidly and clearly allows differentiating between adenocarcinoma and normal tissue states.
Whereas individual crypts were easily identified with TPEF, the interspersed connective tissue
was detected via SHG of collagen (Figure 5A). As was previously stated, in tumoral tissues,
SHG images highlight changes in the surrounding fibrous stroma. Another key aspect of NLO
techniques in relation to the classical H&E ones is that they have high potential to produce 3D
reconstructions and stereological studies. Figure 5B shows three‐dimensional representations
that allow the visualization of indistinguishable features in classical two‐dimensional proce‐
dures. Using 3D SHG representation, it was possible to detect the tilt and invasiveness of
collagen fibers of adenocarcinomas compared to normal colon. Those features are not easily
visible in standard two‐dimensional H&E‐stained sections. In others works, NLO microscopy
approaches, especially when combined, can reveal information not distinguishable in H&E
stained sections. Different changes in collagen fibers are parameters that can be consistently
quantified, which allows to predict an enormous clinical potential in colon cancer. These results
show important changes of collagen fiber morphology, alignment, and density in colon tumor
tissue, suggesting that collagen fiber inclination angles are a key factor in tumor progression.
In agreement with these results, previous reports on human colon and other tissues suggest
that the epithelial cells preferentially invade tissues where the collagen fibers became perpen‐
dicularly aligned, instead of arbitrarily organized ones [35, 36].

3.2. Osteogenesis imperfecta

Osteogenesis imperfecta (OI) is a heterogeneous disorder of connective tissues (see Table 2 for
types of OI) with an incidence of 1/15000 [38, 39] and disease severity spanning from subclinical

Figure 5. Multimodal NLO approach applied to human colon tumor. (A) Representative TPEF+SHG and SHG cross‐
sectional images of normal and tumor colon tissues. Scale bars = 20 μm. (B) Maximum projection of 60 images separat‐
ed 0.5 μm each of normal and adenorcarcinomas colonic tissues. Epithelial‐stromal interface is indicated (white
outline). Scale bars = 50 μm. L, luminal crypt orifice; Adenocar, adenocarcinoma. Reproduced figures from Adur et al.
[37] (open access).
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osteoporosis to intrauterine lethality. Dominant mutation in collagen type I is the most
common cause (>90%). Type I collagen is the most abundant extracellular matrix (ECM) protein
in humans and the major structural protein in many organs, for example in skin. It is a
heterotrimer consisting of two α1‐chains and one α2‐chain, encoded by COL1A1 and COL1A2,
respectively. Mutations in the genes encoding type I procollagen produce a range of disorders,
which include autosomal dominant (AD) OI. Currently, more than 1000 heterozygous
COL1A1/2 mutations have been identified (https://oi.gene.le.ac.uk) [40, 41]. Mutation type and
position influence the phenotype and as such genotype‐phenotype relations exist to some
extent. Mainly, two types of mutations in collagen I cause classical dominant OI: quantitative
and qualitative collagen defects. These collagen I mutations are reflected in some way on fibril
collagen assembly that can be finally observed in an organ, such as the skin. For example, in
patients suffering from OI, skin collagen fibers could be smaller and more randomly packed.
These disorders in collagen fibrils could be quantified using SHG microscopy.

Type
Characteristic

I II III IV V VI

Severity Mild Perinatal lethal Severe Moderate Moderate Moderate

Congenital fractures NO YES Usually Rarely NO NO

Bone deformity Rarely Very severe Severe Mildly moderate Moderate Moderate

Stature Normal Severely short Very short Variable short Variable Mildly short

Hearing loss 60% of cases NA Common 42% of cases NO NO

Respiratory complications NO YES YES NO NO NO

NA: not available

Table 2. Clinical characteristics of osteogenesis imperfecta.

Figure 6 depicts representative images acquired using previous setup, displaying represen‐
tative TPEF (green) and SHG (red) images. TPEF signals are generated fundamentally by the
eosin fluorescence and, in every case, this signal was used to detect just the skin epithelium
(dashed white line). The non‐contamination confirmation of the SHG signal was established
by the wavelength range, half of the excitation, of the signal, by using the avalanche photodi‐
odes (APD) array of the LSM‐780 Zeiss scan head CCD. Besides the difference found in the
collagen extent, a visual examination of the SHG images of Figure 6 reveals that the normal
skin has thinner collagen fibers that weave in all directions round the hair follicles. The skin
from OI patients exhibits changes in collagen fiber thickness when compared to the normal
skin. Skin images from the more severe forms of OI result in thicker, broken, and wavy collagen
fibers that are firmly packed following the same direction. Moreover, using fresh skin, one can
identify a marked reduction in the density of the collagen fibers network in the 3D illustration
of SHG images from severe OI patient's samples (Figure 6B and 6C), when compared with 3D
SHG images from normal skin fresh biopsies (Figure 6A). These skin images are just a basic
representative example about how the SHG tool can be used for optical evaluation of OI.
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However, to offer a more accurate diagnostic method, it is necessary to develop reliable
quantitative tools that allow discriminating between different OI types. The following section
aims to demonstrate that the texture analysis (one of the analyses method presented below),
which is the first step to provide SHG image quantitation tool, providing important informa‐
tion about collagen fiber organization.

4. Analysis methods used as diagnostic tools

As was previously mentioned, different processing methods can be used to obtain the
relationship between signals of epithelial cells and the collagen matrix obtained with NLO
microscopy techniques [4, 42]. Some of the methods that are currently used and others
potentially implementable with free software, such as ImageJ (NIH, Bethesda, Maryland,
USA), are described below.

Figure 6. Representative cross‐sectional images for TPEF (green) and SHG (red) analyses of normal (A), OI type IV (B),
and OI type III (C) skin human tissues. Epidermis/dermis interface is signposted by white outline. Insets highlight vis‐
ual differences of fiber collagen. Ep, epidermis; D, dermis; and representative 3D maximum projection (40 images at
intervals of 1 μm) of SHG images from fresh skin biopsies. Scale bars = 20 μm. Reproduced figures with permission
from Journal of Biomedical Optics, 2012 [19].
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4.1. Ratio between collagen and elastic tissue (SAAID)

The second harmonic to autofluorescence aging index of dermis (SAAID) value is a measure
of the ratio between collagen and elastic fiber network [4, 43]. As the stroma is composed
primarily of collagen and elastic fibers allows the use of nonlinear optical signals to discrimi‐
nate between altered connective tissue regions near tumor area [44–46]. Specifically, collagen
fibers are strong second harmonic signal generators, whereas elastic fibers are only autofluor‐
escent emitters. This parameter can be applied when TPEF and SHG microscopy are simulta‐
neously used [47, 48]. The SAAID index is defined as SAAID = (ISGH - ITPEF)/(ISHG + ITPEF), where
I equals the intensity of each signal, SHG/TPEF are above preselected threshold intensities [43].
For example, to obtain this index, we have used the collagen‐elastic tissue ratio map in the
whole image of ovarian tissue (Figure 7A, B). The whole stroma region was selected as one
ROI for each image. It has been demonstrated that collagen content was increased within the
tumor stroma. The quantification of these observations is showed by the SAAID bar graph
(Figure 7C). The corresponding SAAID of adenocarcinoma type exhibits statistically signifi‐
cant (p<0.05, t‐test) higher values (-0.38 ± 0.03) compared to normal stroma (-0.63 ± 0.06) due
to the high SHG (collagen) signal and low TPEF signal in this region. To demonstrate the utility
of this index, it was applied to images of ovarian cancer showed in Figure 4 and represented
by bar graph in the Figure 7D. The corresponding SAAID of both adenocarcinoma types
presented statistically significant (p<0.05, t‐test) higher values compared to normal stroma due
to both the high SHG (collagen) and low TPEF signals in this region [34].

4.2. Tumor‐associated collagen signatures (TACS)

This parameter is frequently used to determine the collagen fiber orientation at the tumor
stroma boundary [4]. At present, there are three well‐characterized TACS. They are reprodu‐
cible during defined stages of tumor progression: TACS‐1 (presence of dense collagen localized
around small tumors during early disease), TACS‐2 (collagen fibers arranged parallel to the
tumor boundary—around 0°), and TACS‐3 (collagen fibers disposed perpendicularly to the
tumor boundary—around 90°, when the disease becomes invasive) [49]. The collagen‐fiber
angle calculation (relative to the tumor boundary) is required to know the epithelial zone
having abnormal appearance. After this manual selection, fiber angle could be measured using
the angle tool option from ImageJ toolbar. This tool measures the angle demarcated by three
points. The first is an arbitrary point‐guide along the fibril; the second one is the fibril extreme,
closer to edge of the tumor; and the third one is any point that connects to the first draws with
a path parallel to the epithelium [20]. Using this parameter, for example, to analyze collagen
transformation in ovarian cancer, the fiber angle relative to the epithelium has been quantified.
SHG images have been used along with collagen orientation, instead of the SHG signal
(Figure 7E, F). The TACS‐2, straightened (taut) collagen fibers, stretched around the epithelium
(Figure 7E), and TACS‐3, identifying radially aligned collagen fibers, that may provide the
scaffolding of local invasion (Figure 7F), has been found. In normal ovary tissue, collagen fibers
were mainly distributed around 0° (see white arrows). Approximately 75% of these fibers are
parallel to the epithelium (angle ≤ 20°). In contrast, serous adenocarcinoma exhibits incipient
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regions of local invasion (TACS‐3) with a set of realigned fibers, most of which are disposed
around 90° (see white arrows) with respect to epithelium (Figure 7G) [4, 20].

Figure 7. Depicting several applications of different methods to analyze NLO signals. The panel shows representative
TPEF (green) and SHG (red) images of (A, E, H, L) normal and (B, F, I, M) cancer ovary. From the TPEF+SHG combina‐
tion (first column), it is possible to calculate (C) the SAAID ratio. From the SGH image (remaining columns) and using
regions near the epithelial/stromal interface (yellow line), it is possible to calculate: (G) TACS (measuring the collagen
fiber angle relative to the epithelium); (J) FFT transforms (and fit to ellipse to estimate the anisotropy); and (N) GLCM
(correlation value). (D) Bar graphs represent SAAID index quantitative analysis of ovarian tissues. Asterisks indicate a
significant increase as compared to the nontumor tissues (p<0.05, t‐test). (K) Bar graphs represent anisotropy (aspect
ratio) quantitative analysis of ovarian tissues. Comparisons with normal tissues are indicated with +. +,* indicates a
statistically significant (p<0.05) difference and ++, ** indicates a statistically very significant (p<0.01) difference follow‐
ing ANOVA. Ep, epithelium; St, stroma; white arrows, collagen fibers; white squares, regions of interest (ROI). Repro‐
duced figures from Adur et al. [4] (open access).

4.3. Fast Fourier transform (FFT) analysis

The FFT has proven to be a good method to assign the degree of image organization [42, 50].
Thereby, the FFT of a set of aligned fibers will have higher values along the orthogonal path
to the direction track of the fibers, and its intensity plot seems to have an ellipsoidal shape. If
the fibers are perfectly aligned, the ellipse will collapse into a line. For randomly oriented fibers,
the intensity plot of the corresponding FFT image looks like a circle. Therefore, the anisotropy
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of the image can be calculated by performing an elliptic fit on the thresholded FFT images, and
then calculating the ratio between its short and long axes, i.e., its aspect ratio (AR) [51]. One
sample will be more anisotropic as the AR goes to zero, whereas it will be more isotropic when
the AR is closer to one.

To perform anisotropy calculations, squared ROI in the SHG images are usually selected, with
the only requirement that they must be placed upon the collagen network around the epithe‐
lium, since this is the region responsible for the stroma invasion. The square ROI is required
by the FFT procedure of ImageJ, based on an implementation of the 2D Fast Hartley Transform
[52]. The FFT can be carried out with the homonymous command of the ImageJ menu [4]. The
anisotropy on the ovary SHG image of stromal region has been estimated using this method‐
ology (Figure 7H, I). Three ROIs of 150×150 pixels side squared have been used to ensure that
the collagen network in the vicinity of the epithelium is registered. Figure 7J shows the AR
value averaged on all the examined samples. In serous‐type tumors, it was found that the AR
index turned out to be significantly increased (p<0.05, t‐test) from normal (0.62 ± 0.04) to
adenocarcinoma samples (0.78 ± 0.03).

Using this method, serous and mucinous ovarian cancer samples were analyzed (Figure 4). In
serous‐type tumors, AR increased progressively and significantly (p<0.05, ANOVA) from
normal to adenocarcinoma, and in mucinous‐type tumors (by contrast), AR showed statisti‐
cally very significant differences only for adenocarcinomas (p<0.01, ANOVA) (Figure 7K).
These results confirm the fact that normal ovaries are more organized tissues as compared to
adenocarcinoma. By using this tool, it was possible to discriminate between serous adenoma
from mucinous adenoma and serous borderline from mucinous borderline subtypes [48].
Unlike ovarian serous tumors, which are relatively homogeneous in their cellular composition
and differentiation degree, mucinous tumors are frequently heterogeneous, with mixtures of
benign, borderline, and malignant elements often found within the same neoplasm. The
heterogeneity in these mucinous tumors suggests that malignant transformation is sequential
and slow, progressing from cystoadenoma to borderline tumor and, finally, to invasive
carcinoma [46]. This slow behavior is probably reflected in a more organized stroma [53].

4.4. Gray level co‐occurrence matrix (GLCM) analysis

The GLCM analysis method allows the classification of different tissues based on the evalua‐
tion of geometrical collagen arrangement [4, 42]. It provides information on the spatial
relationships between pixel brightness values in a given image. The GLCM is constructed by
counting the number of occurrences of a gray level adjacent to another gray level, at a specified
pixel distance “d” and dividing each counting by the total counting number to obtain a
probability. The result is a matrix with rows and columns representing gray levels and
elements containing the probability Pd[i,j] of the gray‐level co‐occurrence between pixels. The
matrix is usually averaged in opposite and different orientations (0–180°, 45–225°, 90–270°,
and 135–315°) unless one‐dimensional feature dominates overall possible ones, in which case,
the 0–180 average is sufficient. A detailed explanation on how this matrix is created from the
original image can be found in [54].
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The GLCM analysis can be carried out by different methods; they are commonly classified as
contrast methods, orderliness methods, and statistical methods. Contrast methods can be used
in order to give quantitative information on the intensity fluctuations in the image [4, 34, 42].
Among the contrast methods, homogeneity is the weighted sum of the GLCM pixel values.
The weights are values nonlinearly decreasing according to the distance from the GLCM
matrix diagonal increases. The homogeneity parameter gives information about the similitude
of two neighboring pixel values, against all the other pair of pixels of the image. Orderliness
methods are particularly suitable to images with fibrous structures, such as SHG images of
collagen. This approach can be used in order to give a quantitative measurement on the mutual
orientation of collagen fiber bundles. The energy parameter, for example, is the root‐squared
sum of the GLCM pixel values. Considering that it gives higher weight to the hot spots of the
GLCM matrix, that parameter can be considered as a measure of the sample orderliness.
Statistical methods are based on the statistical analysis of pixel value dependence and can be
used for determining repetition of a certain pattern within a tissular image. Among them, the
correlation method probably represents the most powerful approach to be applied to SHG
images of collagen. Mathematically the parameters are defined in Table 3.

Parameters Interpretation Mathematical expression

Correlation  Linear dependency of gray levels on those of neighboring pixels − ∑
i, j=0

N −1
Pi , j

(i − μ)( j − μ)
σ 2

Contrast  Representation of pixels entirely similar to their neighbor ∑
i, j=0

N −1
(i − j)2Pi , j

Energy  Degree of image’s texture directions according to the perception of human
eyes

Σi , j=0
N −1Pi , j

2

Homogeneity Measure of the amount of local uniformity present in the image
∑

i, j=0

N −1 Pi , j
2

1 + (i − j)2

Table 3. GLCM parameters and its mathematical expressions.

The texture analyses can be performed with Image‐J GLCM Texture plugin, which was
described by Walker and collaborators [55]. Also other parameters such Contrast, Entropy,
Inertia, and Variance could be estimated from the GLCM approach [42]. Here a characteriza‐
tion of tissues by estimating the typical dimensions in which collagen maintains its organiza‐
tion is showed. For example, the correlation of the image itself with a pixel separation
translated from 1 to 12 or 18 pixels (Figure 7L–N) was used. The feature was averaged at angles
θ = 0, 90, 180, and 270 degrees to take into account the fact that these images do not have a
specific spatial orientation. The distance where correlation falls to 1/2 expressed in microns
was measured [4]. To perform the calculations, three ROIs (100×100 pixel side squared) in the
SHG images near the epithelium were selected. Correlation and entropy were measured using
GLCM‐Texture plugin from ImageJ, which was previously described by Walker and collabo‐
rators [55]. Figure 7N shows that the correlation of normal fibrils fall off sharply with distance,
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indicating distinct, linear fibrils, whereas correlation for the fibrils in adenocarcinomas
remained elevated for larger distances, implying less‐defined fibrillar structure. Consistent
with qualitative appearances, the correlation was found to remain higher in malignant tissues
with the Corr50, the pixel distance where the correlation dropped below 50% of the initial
value, significantly greater in adenocarcinomas (3.4 pixels) compared with normal ovarian (1.7
pixels) (Figure 7N; p<0.05, t‐test). In the same ROI, the entropy values were 6.26 ± 0.31 and 7.40
± 0.58 from normal and adenocarcinoma, respectively. This means that normal tissues exhibit
a lesser complexity or higher organization than malignant ones [34].

Following the impact of GLCM analysis, the method in the evaluation of patients with OI is
showed. Skin samples from healthy and from patients with OI were obtained from the
Laboratory of Pediatric Endocrinology, Campinas, SP, Brazil. Biopsies were analyzed and
classified as normal (4 cases) or OI (5 cases). OI patients were classified according to clinical
observations in mild OI (Type I—1 case), moderately affected and severe OI (Type III or Type
IV—4 cases). Normal samples were obtained from eyelid plastic surgery discarded tissue, and
patient biopsies were obtained from growing skin. Fresh skin samples in Phosphate Buffer
Solution (PBS) were analyzed by 3D SHG representations within 6 hours of the excision. From
the mounted SHG pictures, images located in the dermis were taken. Nonsymmetric GLCMs
were computed using 256 gray levels. Because collagen fiber orientation changed from sample
to sample, four orientations average were used. This scoring method was competent to
satisfactorily discriminate the different OI patients according to their clinical severity [56].
Using fresh biopsies, one could detect a marked density decrease of the collagen fibers network
in the 3D representations of SHG images from severe OI patient's samples (Figure 8B (Type
III) and Figure 8C (Type IV)), when compared with the 3D representation of SHG images taken
from normal skin fresh biopsies (Figure 8A). Furthermore, energy value of GLCM texture
analysis could not only discriminate type I and type III OI samples from normal skin
(Figure 8D), but it could also differentiate (with statistical significance) between patients with
varying degrees of OI, including Type IV OI (Figure 8E). It is well known that dermis collagen
fibers have diameter ranges around 0.5 to 3 μm. Therefore, it is expected that GLCM analysis
would show a repeating structure with distances of about 1.5–8 pixels corresponding to the
0.5–3 μm range. Considering that OI patients exhibit thicker fibers than normal skin samples,
GLCM correlation signals could be to drop on a longer scale. The values of decay length are
obtained by fitting the correlation data with a double exponential decay function. The decay
length values using the Corr50 (the pixel distance where the correlation dropped below 50%
of the initial value) obtained are between 1.3 and 2.5 μm (3.8–7 pixels), confirming that patient
D had thicker collagen fiber ≈ 2.5 μm (7 pixels). Using this pixel distance as comparison, the
energy parameter shows values of 0.15 ± 0.02 (normal), 0.13 ± 0.04 (Patient (Pat.) A), 0.20 ± 0.03
(Pat. B), 0.24 ± 0.04 (Pat. C), 0.29 ± 0.03 (Pat. D), and 0.33 ± 0.04 (Pat. E), with significant
differences (p<0.05) when normal skin was compared with OI patient’s (B, C, D, and E) skin.
This means that this texture parameter clearly allows the identification of each patient pattern.
Interestingly, by using this method, it was possible to discriminate one case of type IV patient,
exhibiting a more severe phenotype (Patient D) than the others. SHG images of these patient
skins display a more compacted collagen pattern (thicker collagen fiber), intermediate between
type III, and the two remaining type IV patients. The preliminary results allow auguring that
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these nonlinear microscopy techniques in association with specific scoring method (energy‐
GLCM) will be an excellent diagnostic tool to clinically distinguish different types of OI in
human skin [56].

Figure 8. Representative 3D maximum projection (40 images at 1μm interval) of SHG images from fresh skin biopsies,
(A) normal skin, (B) OI type III (Patient E), and (C) OI type IV (Patient D). Texture analysis (D, E) using GLCM. Energy
values were calculated in dermis tissues versus distance pixels; ranging from 1 to 50 pixels (0.35 μm–17.30 μm) in 0, 45,
90, and 135° directions of image (d): n = 12 normal, n = 3 mild OI, and n = 12 severe OI; and (e) n = 12 normal, n = 3 OI
type I, n = 9 OI type IV, n = 3 OI type III). Pat: patients. Reproduced figures from Adur et al. [56] (open access).

5. Conclusions

This chapter summarizes several nonlinear microscopy techniques that can be combined and
the images acquired analyzed by a set of quantitative tools. This may allow the implementation
of new diagnostic procedures for early detection of various diseases. The integration of a set
of microscopy techniques is one of the evolving areas in bioimaging that promises to have a
strong impact on the understanding and early detection of diverse pathologies. As has been
described and exemplified in the sections of this chapter, the advantages of the techniques are
numerous, namely high depth penetration (due to Near Infrared (NIR) laser), intrinsic 3D
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sectioning and 3D resolution (due to the spatial confinement of the signal to the laser focus),
multiple nonlinear processes summed to the possibility to detect several endogenous molec‐
ular markers, and low phototoxicity. Additionally, these techniques allow the investigation of
living processes in the native environment without major perturbations. All these advantages
allow us to postulate that in the near future the NLO techniques together with nonlinear signal
processing methods can be very useful in the field of medical diagnosis. In combination with
sophisticated animal models and computer‐assisted data analysis, NLO microscopy techni‐
ques and image processing methods are opening new doors to the study of tumor biology,
facilitating the development of new strategies for early tumor diagnosis and other diseases.

As is shown in this chapter, by integrating the strengths of each NLO imaging modality,
different structures, and their interactions in a complex biological system can be simultane‐
ously visualized. Additionally, the possibility of obtaining images at high speed and with
chemical specificity makes NLO microscopy a powerful tool to evaluate the dynamic behavior
of in vivo disease progression [57]. CARS microscopy should allow longitudinal studies of lipid
metabolism in the same living model organisms over time. Other auspicious application is the
label‐free imaging of organogenesis and drug delivery. Also, CARS can provide structural
information and it has been useful in analyzing molecular orientations in myelin [58], single
lipid bilayer [59], cellulose fiber [60], and crystal of clean fourth‐order symmetry [61].

In translational research, NLO microscopy has demonstrated the ability of diagnosing diseases
of live organisms [62]. Recently, it has been found that changes occurring in collagen deposit
and arrangement, in early tumor development and during their progression, can be used as
predictable tools of the disease status. The ovary examples in this work demonstrate that AR
and correlation analysis have the ability to predict the disease degree in human patients.
Therefore, if more experiments are successful, SHG may eventually provide a more rapid, real‐
time substitute for traditional histopathological processing and analyses. For this disease,
mortality rates are elevated because an efficient screening test does not exist presently.
Approximately, 15% of ovarian cancers are found before metastasis has occurred. If ovarian
cancer is found and treated before this process is triggered, the 5‐year survival rate will be
around 94%. Thus, an early diagnostic test to detect premalignant changes would save many
lives. In this sense, the unique attributes of NLO microscopy described here render these
methods as a promising imaging modality for disease diagnostics in the clinic. Also, the
medical utility of these optical methods could be improved by the continuous development
and refinement of methods to obtain objective, quantitative information. These will be in the
form of analysis algorithms such as Helmholtz analysis, wavelet analysis, and with numerical
parameters relating to image frequency content and second‐order gray‐level statistics. Further,
a classification scheme could be developed by using a support vector machine.

The effort to develop new diagnosing methods that could better identify early lesions and
consequently lead to an early diagnosis is a challenge and a stimulus for research in this area.
The outcomes of different works indicate that the combination of diverse image analysis
approaches summarized here represent a combination of powerful tools to investigate
epithelial cells transformation, collagen organization, and extracellular matrix remodeling in
epithelial tumors and osteogenesis imperfecta in skin. About OI, it was demonstrated in this
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chapter that nonlinear microscopy techniques, in combination with image analysis ap‐
proaches, represent a powerful tool to investigate the collagen organization in skin dermis in
patients with OI and having the potentiality to distinguish the different types of OI. The
procedure used here requires a skin biopsy, which is almost painless as compared to the bone
biopsy commonly used in conventional methods. The data presented here are complementary
of existing clinical diagnostic approaches and can be used as a procedure to confirm the disease
and evaluate its severity and treatment efficacy.

In cancer diagnosis, there is a growing need for the development of a multimodal imaging‐
based diagnostic tool to objectively evaluate morphological features with subcellular resolu‐
tion and molecular compositions that are closely associated with tumor malignancy. With this
perspective, NLO microscopy has proven to be useful in cancer research. These techniques
have recently emerged as a valuable tool for high‐resolution, nondestructive, chronic imaging
of living tumors. Moreover, multimodal microscopy can provide a powerful tool for investi‐
gating the dynamics of structure‐function relationships both at the subcellular and molecular
levels.

Today, the application of multimodal nonlinear imaging is recognized in basic research in the
biological and biomedical sciences; however, regular applications in clinics are still rare,
mainly because of their high cost. Multimodal platforms are still complex and require speci‐
alized personnel for its operation. So, mainly technological progresses are required for
miniaturization, enhancement of the ease of control, automated data processing, and extraction
of significant information. To achieve this goal, the modification of typical clinical endoscopes
for in vivo multimodal nonlinear imaging is necessary. The development of nonlinear optical
endoscopy, which allows imaging under conditions in which a conventional nonlinear optical
microscope cannot be used, will be the primary goal to extend applications of nonlinear optical
microscopy toward clinical ones. There are several key challenges involved in the pursuit of
in vivo nonlinear optical endoscopy. A few of them are the necessity of obtaining efficient
ultrashort pulse laser liberations into a remote place, the need to enhance scan rates for
monitoring biological processes, and the miniaturization of the laser‐scanning mechanisms to
the millimeter scale. Finally, the design of a nonlinear optical endoscope based on micro‐optics
with great flexibility, and compact enough to be incorporated into endoscopes, will become
an evolution of these microscopy platforms. With the continuous advancement in this
endoscopic techniques and new laser sources, we have reason to believe that these particularly
promising techniques in conjunction with efficient image analysis algorithm will open up
many new possibilities for the diagnosis and treatment of different diseases in the near future.
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Abstract

Skin is the largest organ of our body serving as the first line defense against patho‐
gens and toxicity. The skin can heal itself if any damage in it occur. Wounds, if not taken
care properly, can become chronic and can even cause death. In the field of cosmetics
and plastic reconstructive surgery, wounds, are major cause of trauma and costs, which
demand proper  diagnosis  that  can help  in  appropriate  treatment.  In  conventional
medicine, wound diagnosis mostly relied on the expertise and experience of physi‐
cians  on  the  basis  of  non-quantitative  observation  of  clinical  signs,  or  invasive
histochemical assessment of biopsies.

Methodologies based on light-matter interaction can provide quantitative, noninva‐
sive and real time assessment of a tissue section based on imaging. Depending on the
nature of interaction, various contrasts can be achieved by either absorption, scatter‐
ing, or fluorescence, enabling observation of structural or molecular components of
tissue sections. Development of multiphoton nonlinear optical detection techniques
provide better resolution and tissue penetration depth with optical sectioning ability by
using molecular and structural contrasts simultaneously. This chapter discuses and
evaluates various optical approaches with special emphasis on multimodal multipho‐
ton imaging of skin tissue components in correlation to physiological processes that
affects the wound healing.

Keywords: skin, wound healing, optical microscopy, NADH, collagen, fluorescence,
second harmonic generations
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1. Introduction

Skin wounds and their treatment lead to major medical expenses in cosmetic surgery. Chronic
wounds, including diabetic ulcers and pressure ulcers, present a significant health and
economic concern for individual patients as well as the healthcare system. The diabetic ulcer
is a major complication of diabetes mellitus, a disease which afflicts more than 350 million
people worldwide. Among them foot ulceration is the leading cause for hospitalization [1].
Acute cutaneous burn wounds are also a serious health‐related issue in the global community.
Nearly 11 million flame burns occur annually and burn deaths rank in the top 15 causes of
death for individuals 5–29 years of age. Around 60% of these burn patients heal with debili‐
tating hypertrophic or keloid scarring [2]. Additionally, the cutaneous burn wound can left
deep and large scar in comparison to normal wound after healing. All these scars are formed
due to over deposition of collagen fibers to fill up the wound gaps, which are structurally and
molecularly different to each other and need different approaches for their diagnosis and
management. Improper management of wound may cause serious tissue disfigurement that
may cause serious physical and psychological problems in patients.

Wound healing is a widely studied biomedical problem regarding tissue systems. To address
the situation of wounds and their assessment of healing potential requires insight of what
occurs to the components of skin at cellular and molecular level. Specifically, epithelial cell
migration and collagen regeneration by fibroblast cells in the skin were found to have great
effects on accelerated wound healing [3]. The entire wound healing process is a complex series
of events that starts at the moment of injury and can continue for months even years in a few
sequential yet overlapping phases. The characterization of wounds, their healing, and also the
timeline of these sequential phases have major clinical significance in assessing severity,
healing potential, and determining the correct treatment for all wound types. Traditionally,
wound assessment has relied on visual evaluation by trained clinicians, with techniques based
on laboratory biopsies providing objective assessment modalities [4, 5]. Currently, histological
analysis of the tissue remains the gold standard for precise quantitative and qualitative
assessment of wound depth and status. However, the biopsy process is invasive, can be
painful, and in some cases can cause additional trauma and worsen scarring [4, 5]. Addition‐
ally, the processing required for histochemical observation usually distorts the structural
integrity of the tissue.

In contrast to the abovementioned traditional wound assessment procedures, noninvasive
imaging by optical means does not require destructive tissue sectioning; it preserves all layers
of the skin. By collecting the information through light and tissue interaction, optical imaging
assesses wound severity, healing potential, and progress in a rapid, objective, and noninvasive
manner. Optical microscopic techniques use various biomolecules as marker to observe skin
and its physiology. Various imaging modalities detect scattering and absorption of light by
these markers, aiding the qualitative and quantitative evaluation of cell regeneration, meta‐
bolic activity, collagen remodeling, blood flow, inflammation, vascular structure, and water
content. For example, absorption by hemoglobin provides contrast of veins in technique such
as laser Doppler imaging (LDI); reflection and scattering by extracellular matrix provide
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structural contrast achieved by optical coherence tomography (OCT) and reflectance confocal
laser scanning microscopy (RCLM) and fluorescence from molecules such as NADH, FAD [6],
and tryptophan [7] provide molecular contrasts for fluorescence imaging of cells that constitute
the epidermal layers of the skin. Some molecules, such as collagen and elastin found in the
skin dermis, are also known to have autofluorescence [8, 9]. Along with fluorescence, collagen
is better known as a strong SH generator that can provide structural contrast while imaging
the dermis [9].

In clinical setting, optical imaging with these contrast mechanisms has been or has the potential
to study skin wound healing noninvasively. Spectrally resolved tissue imaging with confocal
or multiphoton microscopy enables 3D imaging of tissues through depth sectioning and can
be used to study skin wound healing [10]. In comparison to other conventional optical
microscopies, multiphoton microscopy offers a number of advantages. Nonlinear excitation
limits the sample excitation to the focal volume and optical scanning with very small excitation
volume results in high‐contrast images. Lower scattering of IR light enables deeper penetration
in tissue. Large spectral separation between the multiphoton excitation and emission provides
easier discrimination of entire emission spectrum [11]. Among the modalities of multiphoton
microscopy, two‐photon fluorescence (2PF) and SHG present as the most effective ones in
tissue imaging for diagnosis and prognosis in skin wound healing.

In this chapter we will discuss recent advancements in optical microscopic techniques for
imaging skin tissue and its regeneration during wound healing. We will put forward a
comparative idea of various techniques in their specific objectives of skin observations. In
doing so we will briefly discuss the wound healing processes at various phases and the
corresponding molecular components involved that can be used as biomarkers. Our main
emphasis of the chapter is on the analysis of wound healing enabled by multiphoton micro‐
scopy (MPM), mainly 2PF and SHG imaging, and their prospects in clinical settings. However,
we will also cover other popular methodologies for optical imaging of skin, highlighting their
potentials in wound healing study.

2. Skin and wound healing phases

Skin is the largest organ of our body which protects us from excessive water loss and invasion
of outside pathogens, senses changes in environment, etc. Before discussing the diagnostic
methodologies of skin wound healing, it is very important to understand the anatomy and the
molecular basis of skin and how the healing processes are related. In this section we will
introduce the skin's anatomic layers and the molecules present in these layers that are potential
markers for optical imaging. Various phases of wound healing and the molecular components
involve in the process are also discussed in the later part of the section.

From an anatomic point of view, skin is a multilayered tissue as represented in Figure 1(b). It
weighs about 10% of our total body weight and thickness is approximately ranged from .5 to
2 mm [12]. The thickness of skin varies in deferent region of the body. Skin is composed of
three primary layers:
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(1) The epidermis, which preserves body fluid and serves as a barrier to infection, is mainly a
stratified squamous epithelium composed of proliferating basal and differentiated keratino‐
cytes. Keratinocytes are the major cells in epidermis constituting 95% of it. It is composed of
five stratified layers, namely, stratum corneum, stratum granulosum, stratum spinosum, and
stratum germinativum, ranging from 0.05 to 1.5 mm thick [13]. As cells possess autofluorescing
chromophores, such as NADH, FAD, and tryptophan, the epidermal physiology can be
observed through fluoresce microscopy.

(2) The dermis is the layer beneath the epidermis separated by the basement membrane and
consists of connective tissues deposited in a space of 0.3–3.0 mm thickness that cushions the
body from stress and strain. The connective tissues in dermis are composed mainly of
extracellular matrix fibers such as elastin and collagens, ground substances, and specialized
cells such as fibroblasts and adipocytes. The main components of extracellular matrix (ECM),
collagen, and elastin have autofluorescence, which makes them very useful markers for wound
diagnosis. However, collagen being a noncentrosymmetric molecule, SHG is the more popular
way of collagen imaging. Additionally, the fibroblasts in dermis play an important role in the
wound healing process, which can also be monitored with fluorescence imaging techniques
[13].

Figure 1. (a) Representative image of the key players in the healing of a skin wound [3]. The wound gap is temporarily
plugged with fibrin clot that protects the wound from outside environment along with providing provisions for a
dense capillary plexus of new granulation tissue and inflammatory as well as fibroblast cell migration. Reconstructing
epidermal cells migrates under the fibrin clot to construct the wound bed that helps in granulation tissue formation to
fill the wound gap. (b) Schematic representation of skin anatomy with its different layers [25].

(3) Hypodermis: Hypodermis is the layer that lies below the dermis. However, it is not consid‐
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Fibroblasts, macrophages, and adipocytes are the main cells that comprise the hypodermis.
Body fat that serves as the insulator of the body also lies in this layer [13].

In normal skin, the epidermis and dermis exist in steady‐state equilibrium, forming a protec‐
tive barrier against the external environment. Once the protective barrier is broken, the normal
process of wound healing starts immediately. Wound healing involves sequential phases of
cellular initiation and secretion of molecules triggered by specific growth factors and signaling
molecules [3]. Initially, a fibrin clot is formed that plugs the defects, which provides a provi‐
sional platform for cell migration as depicted in Figure 1(a). In subsequent days, the wound
heals completely by forming a dynamic scar tissue rich in collagen [3]. Classical model of
wound healing divides the processes into several vital sequential yet overlapping stages, such
as (1) hemostasis, (2) inflammation, (3) proliferation, and (4) remodeling.

Hemostasis starts immediately after the wound formation. At this stage, blood changes from
liquid state to solid state to stop excessive blood loss, which is termed as blood clotting [14,
15], followed by bacteria and cell debris at the wound site being phagocytosed and removed
by macrophages and white blood cells. During this phase the wound site appears red and
hotter than the adjacent area marking the onset of inflammation [16–18]. Additionally, at this
stage tissue matrix metalloproteinase enzymes start to degrade surrounding ECM proteins
such as collagen and necrotic cellular macromolecules to provide a platform for epithelial cells
migration [3]. The proliferative phase begins only when the wound is covered by re‐epithelium
which will migrate to central region of the wound to cover the wound defect. Angiogenesis,
collagen deposition, granulation tissue formation, epithelialization, and wound contraction
are the signatures of the proliferative phase [19]. The final phase of wound healing is remod‐
eling. It is characterized by the maturation of collagen by rearrangement, intermolecular cross‐
linking, and alignment along the wound tension line [16]. The remodeling phase may last for
a year or even longer with respect to wound size and type [20]. As the wound maturation
progresses, the tensile strength of the wound increases, ultimately becoming as strong as 80%
of normal tissue [20]. The wound scar gradually flattens and becomes less prominent and more
pale and supple. Since activity at the wound site is reduced, consequently blood vessels that
are no longer needed are removed by apoptosis and the scar loses its red appearance [21]. The
wound healing normally progresses in a predictable, timely manner if not interrupted by any
means; otherwise healing may progress inappropriately to transform into a chronic wound or
pathological scarring such as a keloid [22, 23]. These scars consist mainly of poorly recon‐
structed thick parallel bundles of collagens [24]. There are mainly three different kinds of scar
tissues depending upon the deposition of ECM [24]: (a) Keloids, (b) hypertrophic scar, and (c)
normal scar.

Clinically, keloids are defined as scars growing beyond the confines of original wounds, which
rarely regress over time. Hypertrophic scars, on the other hand, are raised scars that remain
within the boundaries of the wound and frequently regress spontaneously. Histologically,
collagen bundles in the dermis of normal scar tissues appear relatively relaxed and arranged
in random arrays, but keloids and hypertrophic scars have collagen bundles that appear much
stretched and aligned on the same plane as the epidermis.
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3. Current methodologies of wound diagnosis

In clinical practice wound diagnosis is carried out by clinical signs based on the practice and
expertise of the physician. For more quantitative and qualitative assessment, histochemical
biopsies are employed. Some methodologies commonly used by the clinicians for wound
diagnoses are as follows:

(a) Use of clinical signs: The clinical signs of infection are erythema, edema, heat, pain, foul odor,
and wound breakdown [4]. A physician has to make a firm decision of a wound status on the
basis of his or her experience. However, there are several intrinsic limitations to diagnosing a
wound through these techniques as all of them are non‐quantitative.

(b) Clinical biopsies: A biopsy is a medical examination commonly performed by a pathologist
involving slice of tissue sections from a diseased or inflamed body part for insights into
possible cancerous and inflammatory conditions. It is the medical removal of tissue from a
living subject, which is processed into thin slices stained for observation under a microscope
or analyzed by biochemical means. This kind of diagnosis has the disadvantage that the
method can enlarge the wound. Moreover the time required from biopsy collection to analysis
can influence the data and interfere with the wound [5, 26].

(c) Needle aspiration: It is a diagnostic procedure used to investigate superficial inflammation,
lumps, or masses. In this technique, a thin, hollow needle is inserted into the mass and a portion
of the tissue is recovered. The recovered tissue with the cells is stained and examined under a
microscope. Needle aspiration biopsies are minor surgical procedures and safe. In spite of
being considered as the next best method for microbiological culturing of abscesses and closed
wounds, there is a risk, because the biopsy is very small (only a few cells), that the problematic
cells may be missed, resulting in a false‐negative result [5, 27] that prohibits a definitive
diagnosis.

Recently noninvasive approaches have been brought in for assessing skin lesions that include
magnetic resonance, ultrasound, and photoacoustic and optical techniques with which
intravital imaging of the alterations or aberrations in the skin below the surface has been
materialized [28]. Among them optical microscopic techniques provide cost effective and
wider range of applications of skin tissue imaging.

4. Optical techniques used in skin observations

Optical imaging techniques are based on the principles of light and tissue interaction for
collecting information that is further analyzed to reconstruct an image of the respective tissue
section. Depending on the nature of interactions, such as scattering, absorption, or fluores‐
cence, various information can be extracted to reveal anomalies in the tissue sections. The
physiological events associated with such structural anomalies also determine the choice of
optical modality needed to address the problem noninvasively. In a few excellent reviews,
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various optical approaches in skin imaging are listed and discussed depending on the skin
conditions [28–31].

Optical modalities are comparatively advantageous for their low‐cost, easy to use, non‐
ionizing, mostly noninvasive, and non‐contacting attributes. Some of the optical
methodologies can provide 3D imaging capability by optical sectioning with high resolution
[32–35]. Optical techniques may also be useful in real‐time functional imaging regarding skin
physiology [36]. Additionally, most of the skin optical imaging techniques use near‐infrared
(NIR) or infrared (IR) wavelengths, which are less absorbed in tissue, hence penetrating
deeper, enabling the imaging of the whole skin layer [37–39]. Most common optical imaging
modalities include LDI, tissue spectral imaging (TSI), and OCT, which are useful in imaging
macro‐masses in skin (macro‐imaging modalities). Optical techniques that are useful in
imaging at molecular domain or micro contrasts (micro‐optical modalities) are RCLM, Raman
spectro‐microscopy, and laser scanning fluorescence and SHG microscopy. In this section, we
are going to discuss the recent advancements in optical techniques that have been applied to
evaluate skin wound‐related problems noninvasively or hold potential in this regard. The
following is separated into two subsections: the macro‐optical modalities and micro‐optical
modalities.

4.1. Macro‐optical imaging modalities

4.1.1. Dermoscopy

Dermoscopy or dermatoscopy, also known as epiluminescence microscopy, is the most
common basic handheld magnifying tool that aids in first‐line optical observation of morpho‐
logical abnormalities. Recent dermoscopes use polarized light to illuminate the tissue section
to visualize horizontal morphological features that are not visible to naked eye [40]. Dermo‐
scopy has been useful in qualitative visualization of skin‐related abnormalities such as rosacea
[41], diagnosis of hair and scalp diseases [41–43], diagnosis of warts caused by human
papillomavirus [44], and determination of the surgical margin of hard to define skin cancers
[41].

This method has been widely used in observing skin lesions based on the presence of certain
architectural characteristics of the lesion, which provide promising possibilities in skin wound
healing study, mainly in collagen regeneration during wound remodeling phase [45]. A
dermoscope is easy to use and represents a relatively low‐cost first‐line diagnostic tool for skin‐
related issues; however it is not quantitative and requires expertise and experience to have fair
diagnostic judgment [46]. Its resolution is only enough to see small lumps and lesions in the
skin. Additionally, no functional information can be gathered with this technique. Commercial
dermoscopes are available in the market for quite a few time. Companies such as Optilia,
WelchAllyn, CALIBER, HYMED, and FotoFinder are manufacturing dermoscopy products of
various specifications and models with attached digital cameras to it that are capable of
videography also.
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4.1.2. Laser Doppler imaging

In LDI, laser light is used to illuminate the tissue section and the backscattered as well as
reflected light is collected to image any moving object within the tissue section. With this
technique blood flow through superficial skin layer can be calculated based on the Doppler
shift introduced by moving blood cells [47, 48]. It is useful in measuring blood perfusion unit
[48], which can be applied in extracting useful functional information to assess angiogenesis
and endothelial functioning during wound healing [49].

Figure 2. (a1) Visible color image of fingertips and (a2) color‐coded blood perfusion map [51]. (b1) Visible and (b2)
hyperspectral image of a healing diabetic foot ulcer taken with the HTOM system. HTOM values are 60, 53, and 53%
for oxy, deoxy, and StO2, respectively [57]. (c) OCT signals using a super luminescent NIR diode [25] and (d) reflec‐
tance confocal microscopy image at wavelength 830 nm of a human nevus detected by VivaScope [25].

LDI is a low‐cost, easy to use noninvasive imaging modality compatible with classical medical
instrumentation, where discomfort and risk to patients are minimal. A typical LDI system has
a resolution of about 2 mm × 2 mm with an average imaging depth of 200–240 μm [50, 51].
Figure 2(a1) and (a2) depicts a representative comparison of visible (a1) and color‐coded blood
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perfusion map (a2) [51]. LDI has been reported to be used in imaging microcirculation in
burned skin and monitoring blood flow recovery in a skin flap during reconstructive surgery
demonstrating its potential for clinical wound assessment applications [47]. There are several
other reports of burn wound depth and healing assessment with LDIs in clinical and research
settings both on human and animals [50, 52, 53].

Commercial instruments based on the principle of LDI are made available by company such
as Moor Instruments for skin perfusion assessments. The moorLDI2‐IR laser Doppler blood
flow imager can image an area up to 50 cm × 50 cm in one scan in less than 5 minutes. Due to
the large area scanning possibility, this method has been very useful in burn wound depth and
healing assessment based on angiogenesis.

The main disadvantage of this technique is its limited application only in observation of blood
flow, similar to that of laser spackle imaging. It is unable to provide any other functional as
well as structural information of skin integrities. The poor resolution in millimeter range is
another major limitation of this technique in comparison with other optical techniques.
Additionally, the use of visible light illumination in LDI limits its applicability in deep dermal
wound assessments.

4.1.3. Tissue spectral imaging

Tissue spectral imaging (TSI) is a technique where a tissue of interest is illuminated by a
broadband light and collects the reflected or diffused light through selective narrowband filters
in front of the detection unit. This technique thus yields several images of specific wavelengths
on the same area, providing quantitative measures of the absorbers or scatterers present [54].
Skin has several chromophores such as hemoglobin, melanin, collagen, and other biomolecules
which absorb or scatter light and are responsible for skin physiology.

Diffused multispectral imaging (DMSI) is a type of TSI in which the diffused light through a tissue
section was collected with a narrow band‐pass filter in front of the detection unit. Based on
peak absorption, specific wavelengths were chosen to reconstruct an image that can provide
physiological information. It is a widely used technique in imaging hemoglobin as it can
discriminate oxygenated and deoxygenated hemoglobin by their spectral signature [28]. Most
of the DMSI uses NRI wavelength (700–1,100 nm) for quantitative spectroscopic analysis of
structural and chemical integrity of cutaneous tissue, especially oxygen saturation, hemoglo‐
bin content, and water content. Careful assessment of the absorption spectra can be applied to
monitor the wound severity and healing. Reports at preclinical setting have demonstrated the
potential of this technique in differentiating superficial‐, intermediate‐, deep‐, and full‐
thickness burn wounds based on measurement of water content, oxygen saturation, and total
hemoglobin concentration [55, 56]. It has also been found useful in diabetic ulcer assessment
and predicting diabetic wound healing as well as differentiating diabetic wounds from
nondiabetic wounds [37, 38].

Hyperspectral imaging (HSI) is an effective technique that can capture and map detailed
spectroscopic information for every pixel in an image. A single pixel in a hyperspectral image
provides information in two‐special dimension and one spectral dimension creating a 3D data
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cube [30]. HSI has been reported to be used in diagnosing diabetic foot ulcers [57, 58] and burn
wound edemas [59] where cutaneous tissue oxygenation is observed by assessing oxy‐ and
deoxy‐hemoglobin as spectroscopic contrasts. Based on HSI of hemoglobin oxygenation in
wound site and areas adjacent to ulcer, wound healing index has been developed [58]. HSI
using broadband visible light‐emitting diodes has been reported to generate tissue anatomical
oxygen map that predicts the risk of diabetic foot ulceration in pre‐ulceration tissue [60].
Figure 2(b1) and (b2) depicts a representative comparison of visible and hyperspectral image
of a healing diabetic foot ulcer taken with the hyperspectral tissue oxygenation mapping
(HTOM) system [57].

Spectrophotometric intracutaneousanalysis (SIAscope) is a kind of TSI technique based on back‐
reflected light of wavelength within the range of 400–1000 nm. It is a portable, fast device that
predicts burn wound depth by creating a quantitative map of specific chromophores [61]. TSI
based on reflectance has also found to have potential in assessing hematomas on the basis of
hemoglobin destruction quantification that can determine the age of hematomas in vivo [62].
This information can also be crucial in identifying the layer of skin that sustains the hematoma
[63].

Orthogonal polarization spectral imaging (OPSI) uses linearly polarized light to illuminate the
skin tissue and collect the emergent depolarized light scattered by the skin components
through an analyzer positioned orthogonal to the plane of illumination light polarization [64].
By analyzing the depolarized light, hemoglobin in microcirculation can be visualized to
quantify the microvasculature during cutaneous wound healing [65–68].

Thermographic spectroscopy is a spectroscopic imaging technique based on the principle that all
the objects including the skin have a heat signature that radiates in IR wavelength. This
emission can be detected by using appropriate detector and construct color‐coded images that
correlate the relative temperature of the specific skin area [69–71]. Usually superficial burn
wounds are warmer than uninjured skin due to increased inflammatory processes while
deeper burns are cooler than uninjured skin due to structural damage to the vasculature. By
using this basic principle, burn wound depth and healing progress over time can be predicted
[71, 72].

A number of modalities of TSI have been commercialized by companies such as HySpex and
Specim's AisaFENIX. The TSI technique can provide better resolution than LDI, typically up
to 0.4–1 μm. Being a wide‐field imaging technique, TSI is unable to provide a detailed 2D
sectioned image with better resolution; rather it only can provide a molecular map in a certain
area. It also suffers from scattering blur and diffraction limitations and has low penetration
depth. Additionally, to gather a meaningful spectral information, it requires enough photon
information which makes it a relatively slow method. Even with these limitations, this
technique holds potential for functional imaging of blood clotting, blood flow during wound
inflammation phase, and angiogenesis during superficial skin wounds. Recent advancements
in computational methodologies have shown great promises in real‐time quantitative func‐
tional imaging with improved resolution [54].
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4.1.4. Optical coherence tomography (OCT)

OCT is a technique that captures 3D images of a tissue. OCT uses reflected light from tissue to
construct cross‐sectional images from deeper part of the skin. Most common OCTs use IR
illumination, which after scattering from tissue is superimposed with a reference light to
generate an interferometric pattern that provides high‐resolution 3D depth information by
scanning the tissue section in all directions [73–76].

OCT has been an established imaging modality in medical diagnosis and research field.
Although it is most popularly used in ophthalmology [77], it has also gripped its root in
dermatology [78] study such as keratosis [79], skin cancers [80], skin fibrosis [81], and wound
healing. Other than that, it has also been reported to be used in other dermatological problems
such as inflammatory diseases and parasitic infection and those of the nails [75, 76]. Recent
advancement in OCT allows use of polarized light to image extracellular matrix and other
connective tissues in the skin layer that are polarization sensitive [82, 83]. Reports also suggest
use of phase‐resolved OCT for imaging blood flow in the skin [84]. There are a few excellent
reviews that have listed and discussed various applicable possibilities for OCT in dermatology
[83, 85, 86].

In diagnosis of wound healing, there are reports of comparing healing assessment of acute
wound [87] and superficial wound caused by bacterial infection on mice by OCT to histological
findings [88]. A study had reported quantitative evaluation of healing kinetics at real time after
fractional laser therapy by OCT demonstrating excellent correlation with findings from
histopathological observations [89]. In an in vivo study, OCT has effectively evaluated the
various stages of wound healing in 12‐day long healing process recognized by re‐epitheliali‐
zation in the early stage, followed by thickening of the epithelial layer around 10th day and
formation of scar tissue composed of extracellular matrix along with thickening of epidermal
layer in the final stage [90].

OCT's most promising advantage is its ability of axial sectioning and 3D imaging of a tissue
mass. OCT techniques using IR light sources are suitable imaging modalities for deep tissue
topographical imaging of skin disfigurement. Although the resolution of OCT is lower
compared to CLSM or 2PFM or SHG microscopy, the associated resolution degradation with
depth is much smaller. OCT cannot produce images at cellular or fibrous molecular resolution;
hence it is incapable of imaging a single‐cell structure or fibrous collagen structure in the skin
dermis [30]. However, in comparison to other macro‐optical methodologies, OCT exhibits
better resolution. In fact, with sophisticated design, OCT can also achieve a resolution of few
tens of micrometer. OCT was also reported to provide even more detailed structural informa‐
tion of a larger mass of tissue than 2PFM at depth of 2–3 mm while imaging thermally injured
wounds [91]. OCT is a useful noninvasive technique that has huge potential for wound healing
research and assessment. Figure 2(c) represents a typical OCT image [25].

OCT has been commercialized by companies such as Optovue, NinePoint Medical, and
Thorlabs; two such models from Thorlabs are Ganymede II IR‐OCT system and Telesto series
spectral domain OCT systems. These systems are mainly operated in IR domain with line scan
rate within the range of 5.5–76 KHz.
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4.2. Micro‐optical modalities

4.2.1. Raman spectro‐microscopy

Microscopic imaging based on Raman vibrational spectroscopic contrast provides a useful
noninvasive approach for visualizing skin tissues and the corresponding architecture with
molecular specificity. A typical Raman microscope detects vibrational scattering changes
introduced by the Raman‐active molecules in tissue. Molecules rich in CH2 bonds, such as
protein and lipid, are good Raman contrast agents and can be interpreted to visualize structural
changes occurring in different skin strata [92–94]. An automated Raman micro‐spectrometer
in confocal settings was reported to be used to determine water concentrations in hydrated
and non‐hydrated stratum corneum, showing the capacity of this method [95]. However,
spontaneous Raman signal is very weak. The Raman detection can be significantly enhanced
by CARS. It can visualize structural fibers such as collagen and elastin that constitutes the
human dermis along with subcutaneous layer rich in lipids, due to the high density of CH2

bonds [96–98]. CARS microscopy is the method of choice for studies that require visualization
of fat in tissues, which can very effectively characterize obesity in murine skin in vivo [99].
While imaging superficial tissue layers, CARS can provide strong signal from the fat compo‐
nent of the skin that allow video‐rate imaging.

Video‐rate CARS imaging can be used for imaging lipid lamellae of the stratum corneum,
sebaceous glands, and dermal adipocytes, and the fat‐containing cells of the subcutaneous
layer with imaging depths of up to several hundred micrometers, promising a potential
methodology for noninvasive molecular imaging [97]. Recently CARS has also been used in
studying transdermal delivery of retinol in mouse ear, a drug with strong CARS signal that
stimulates collagen growth in skin and was located in corneocytes of stratum corneum [100].

König and his group have reported a CARS tomography system for skin imaging suitable for
clinical environments that is capable of in vivo histology with subcellular resolution and
chemical contrast toward patients suffering from psoriasis and squamous cell carcinoma [101].
Their system also has the potential to be used in studying skin wound healing. Although
Raman imaging in the form of CARS can provide high‐contrast functional imaging with
subcellular resolution, it is, however, mostly limited to Raman‐active molecules only. In
comparison, the Raman scattering cross section is very small which translates to very weak
signal intensities, thus requiring very high density of molecules or very long acquisition times
in order to acquire a meaningful image.

4.2.2. Laser scanning microscopy techniques:

A commonly used wide‐field microscope provides a two‐dimensional image, typically in
histological observations of biopsies. However it has several drawbacks, including low
resolution, low penetration depth, slow imaging rate, and inability to have functional imaging.
It delivers poorer image contrast and lacks optical sectioning capability. In contrasts, a laser
scanning microscope (LSM) provides a few numbers of platforms for imaging that are
improved with respect to all aspects mentioned above. Among them confocal microscopy in
linear domain and two‐photon fluorescence microscopy (2PFM) and SHG in nonlinear domain
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of fat in tissues, which can very effectively characterize obesity in murine skin in vivo [99].
While imaging superficial tissue layers, CARS can provide strong signal from the fat compo‐
nent of the skin that allow video‐rate imaging.

Video‐rate CARS imaging can be used for imaging lipid lamellae of the stratum corneum,
sebaceous glands, and dermal adipocytes, and the fat‐containing cells of the subcutaneous
layer with imaging depths of up to several hundred micrometers, promising a potential
methodology for noninvasive molecular imaging [97]. Recently CARS has also been used in
studying transdermal delivery of retinol in mouse ear, a drug with strong CARS signal that
stimulates collagen growth in skin and was located in corneocytes of stratum corneum [100].

König and his group have reported a CARS tomography system for skin imaging suitable for
clinical environments that is capable of in vivo histology with subcellular resolution and
chemical contrast toward patients suffering from psoriasis and squamous cell carcinoma [101].
Their system also has the potential to be used in studying skin wound healing. Although
Raman imaging in the form of CARS can provide high‐contrast functional imaging with
subcellular resolution, it is, however, mostly limited to Raman‐active molecules only. In
comparison, the Raman scattering cross section is very small which translates to very weak
signal intensities, thus requiring very high density of molecules or very long acquisition times
in order to acquire a meaningful image.

4.2.2. Laser scanning microscopy techniques:

A commonly used wide‐field microscope provides a two‐dimensional image, typically in
histological observations of biopsies. However it has several drawbacks, including low
resolution, low penetration depth, slow imaging rate, and inability to have functional imaging.
It delivers poorer image contrast and lacks optical sectioning capability. In contrasts, a laser
scanning microscope (LSM) provides a few numbers of platforms for imaging that are
improved with respect to all aspects mentioned above. Among them confocal microscopy in
linear domain and two‐photon fluorescence microscopy (2PFM) and SHG in nonlinear domain
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are most prominent. Confocal laser scanning microscopy (CLSM) has several advantages over
traditional microscopy, including faster data acquisition, optical sectioning of cells and tissues
for 3D imaging, and significantly improved spatial resolution [39, 102, 103]. The pioneering
work of Minsky, in the year 1957, initiated the development and the first commercialized
CLSM was realized in 1987 [104]. However, CLSM has a relatively lower penetration depth
compared to MPM, due to the shorter wavelength used. Single‐photon confocal microscopy
obtains an image section at the expense of photon efficiency, attributing to the spatial filtering
pinhole [39, 105, 106]. The overexposure would cause photo bleaching of the sample. As a
result, only highly photostable fluorophores work well with this technique. In comparison,
MPM uses IR excitation which reduces photo bleaching in a confined way and allows imaging
depths of up to ∼2 mm. The nonlinear effect forms a virtual pinhole and saves the trouble of
precision alignment needed for a physical pinhole [39, 106].

4.2.2.1. Reflectance confocal laser scanning microscopy (RCLSM)

In RCLSM, a pinhole at the confocal image plane eliminates out‐of‐focus signal to realize
optical sectioning for 3D imaging. It uses a focused laser beam for excitation and forms the
image by point to point scanning, usually by a pair of computer‐controlled galvano mirrors
[32, 33]. The reflected light signal is collected by a photo detector after the pinhole. The reflected
signal is de‐scanned by the same pair of galvano mirrors so the alignment of pinhole is
straightforward [107]. The configuration is widely used in commercially available confocal
microscopes for skin imaging [33, 107]. It has also been used for assessing and monitoring
cutaneous wound healing by evaluating the cellular and morphological parameters of wound
bed and wound margins noninvasively over the course of healing [102]. In the reported study,
patients with chronic leg ulcers and skin cancers receiving split skin graft were evaluated
against healthy individuals, in which various physiological signatures of wound healings at
different phases were documented. For example, appearance of inflammatory cells in the
epidermis during the early stage of wound healing, proliferative keratinocytes and their
migration during granulation and re‐epithelialization phases, and the networks of connective
tissues during remodeling phases were observed with reflectance CLSM [102].

A commercially available CLSM in reflectance mode is VivaScope®1500 that has planar and
axial resolution of 1.25 and 5.0μm, respectively, with an imaging depth up to 200 μm. Its image
acquisition speed of 9 frames per second allows real‐time videography of wound healing.
Figure 2(d) represents a reflectance confocal microscopy image by detecting backscattered 830
nm light from a human nevus with the system [25].

Although these instruments are widely used, they are limited to surface imaging only.
Therefore, they are not suitable for evaluating deep dermal wounds. Nevertheless, they can
image wound margins, which may provide crucial semiquantitative information regarding
wound healing with a resolution comparable to that of histological analysis [30]. The reflection
contrast‐based CLSM is frequently used for structural imaging but is incapable of molecular
functional imaging. A typical CLSM has much improved resolution and faster scanning rate
than OCT. However, it may be limited by photo bleaching and diffraction blurring when
compared to multiphoton techniques.
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4.2.2.2. Confocal fluorescence microscopy

Confocal fluorescence microscopy is a technique that allows imaging of living tissue by
collecting fluorescence emission from the chromophores present in the tissue. In single‐photon
fluorescence imaging, a fluorophore absorbs a single photon to be excited into a higher energy
state before emitting the fluorescence, and comes down to original lower energy state. The
simplest fluorescence imaging instrumentation uses a laser to illuminate the skin at a specific
excitation wavelength and collects the filtered fluorescence emission with a detector bearing
an optical filter in front of it.

Fluorescence imaging can be done with either staining the tissue by exogenous fluorescent
materials or imaging endogenous fluorescence from skin's natural fluorophores. Indocyanine
green (ICG) is one commonly used exogenous fluorescence dye that can be located in systemic
circulation, which allows the imaging of vascularization and the determination of imaging
depth [108]. This technique has been shown to quantitatively measure blood flow in the
cutaneous wound that is well correlated with the histological assessment of burn depth [108].
As mentioned in Section 2, endogenous fluorophores, NADH, FAD, and collagen are all
important markers in wound healing processes that can be used for wound diagnosis [36, 109].

Along with NADH and FAD, collagen is another abundant molecule present in the skin dermis
that is autofluorescing. It can serve as a marker upon exposure to the 325 nm He‐Cd laser
treatment (∼2 J/cm2) during skin tissue regeneration, as shown in mouse model by detecting
the collagen autofluorescence intensity [110]. In another comparative ex vivo and in vivo study
of wound granulation by the same group, normalized NADH/collagen autofluorescence
intensity was used to assess collagen deposition during healing [111].

Confocal fluorescence microscopy can provide real‐time functional imaging of cells and tissues
with improved resolutions. However single‐photon imaging may be limited by photo
bleaching and low penetration depth. Alternatively, MPF imaging would improve photo
stability with deeper penetration.

4.2.2.3. Multiphoton microscopy (MPM)

In multiphoton imaging a simple confocal laser scanning microscope is used with an ultrafast
NIR laser source. The pinhole is usually removed and the detection unit is modified with
specialized filters. Multiphoton laser technique greatly improves resolution and penetration
depth than macro‐optical modalities. Its optical sectioning ability does not require a pinhole,
which reduces alignment difficulty and the volume of photo bleaching. Additionally, the NIR
excitation wavelengths are shown to extend the limit of deep tissue imaging up to 2 mm.

In tissue imaging, commonly used multiphoton techniques are 2PFM and SHG imaging. In
2PFM, the fluorophores absorb two photons simultaneously to be excited to a higher energy
real state before emitting the fluorescence, while in SHG, the two photons of the same energy
would combine to form a new photon of twice the energy of the incident photon. Biomolecules
such as collagen and muscle myosin with noncentrosymmetric molecular structures have the
ability to generate SHG signal [8, 112–114]. Skin can be imaged with both fluorescence and
SHG contrasts simultaneously with the help of a laser scanning MPM [36, 115]. Zoumie et al.
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in their study of a tissue model have described spectrally resolved imaging of different parts
of the skin layers by a combined 2PFM and SHG setup [115]. They detected fluorescence from
cellular NADH and SHG from collagen. The study of wound healing with fluorescence and
SHG is discussed in the following paragraphs.

Cellular NADH autofluorescence in two‐photon modality has been used as marker for
morphological characterization of epithelia both in vivo [116–118] and ex vivo [119] for animal
and human tissues as well as fresh biopsies [120]. It enables optical microscopic imaging being
equivalent to histochemical analysis. With the help of 2PFM imaging, various epidermal layers
of in vivo skin were discriminated at subcellular spatial resolution based on cellular morpho‐
logical features [31]. Additionally, the time‐correlated single‐photon counting technique in
conjunction with 2PFM has made functional imaging possible by measuring the lifetime of
fluorophores. This technique, termed as fluorescence lifetime imaging (FLIM), is very effective
in determining real‐time cellular metabolic activity in vivo by measuring the fluorescence
lifetime decay of NADH. Cells located in the basal layer exhibit the strongest metabolic
activities, while epidermal surface layered cells are found to have lower metabolic activities.
FLIM has demonstrated its capacity in characterizing epithelial tissue involved in wound
healing and other pathological conditions [31].

NADH, being a metabolic coenzyme, is associated with the cellular metabolic activities
through the electron transport chain (ETC) of oxidative phosphorylation. NADH has two
functional forms, free and bound. During the process of energy generation, free NADH is
bound to mitochondrial membrane proteins [36]. Although the fluorescence emission spectra
of both free and bound forms of NADH fall in a very narrow band, their fluorescence lifetimes
are well separated. When NADH binds to a protein, its lifetime increases from ~0.4 to ~2.5 ns
[121–123]. Therefore by evaluating the contribution of free and bound states to the combined
double exponential lifetime, the relative concentrations of individual states can be predicted.
In simple words, a cell with higher metabolic activity has a higher concentration of bound
NADH than a cell with lower metabolic activity. In addition to that the ratio of bound form
NADH to bound form of FAD, termed as cellular redox ratio, can also be a marker for relative
metabolic activity determination [124].

The cellular metabolic parameters are viable markers for evaluating wound healing. We have
demonstrated on live rat models that the cellular metabolic rate correlates well with wound
healing phases [36]. In the study, artificially created incisional wound by punch biopsy was
used to evaluate the wound healing from the day of wound formation to scar formation in a
20‐day healing course with 2PFM and SHG microscopy. The relative metabolic activities of
cells involved in the process of wound healing as time progresses were evaluated by the NADH
bound to free ratio, while the changes in collagen concentration are correlated with SHG
intensity. These findings suggest the metabolic activities at the wounded sites increase during
inflammatory and granulation phases and gradually decrease as wound heals (Figure 3(b)).
Interestingly, in the beginning of healing, SHG intensity decreases (or collagen concentration),
indicating the degradation of collagen in the dermal layer during cell migration. Once new
collagens were formed, SHG signal started to increase gradually (Figure 3(c)). In general,
wounds heal gradually from the edge toward the center; hence the metabolic activities are
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Figure 3. (a) Representative color‐coded NADH free/bound (a1/a2) lifetime ratio images (left column) and gray‐scale
SHG intensity images (right column) of collagen regeneration during wound healing [132]. (b) Scatter plot of NADH
a1 /a2 distribution peak value with healing progress both at the center and edge, averaged over 15 wounds at each day
of wound observation. The ratio NADH a1/a2 is inversely proportional to metabolic activity of cells. Two‐side Student's
t‐test evaluated significant differences of NADH a1/a2 values at the center from normal skin that are indicated by *, P >
0.05; **, 0.05 > P > 0.001; and ***, P < 0.001. The significant differences of a1/a2 values at the edge from the normal skin
are designated as #, P > 0.05; ##, 0.05 > P > 0.001; and ###, P < 0.001 [132]. (c) Scatter plot of normalized SHG intensity
with respect to the maximum intensity observed at the edge on day 20. The changes in SHG intensity elucidate the
relative degradation and regeneration of collagen at the center and the edge in the course of wound healing. Two‐side
Student's t‐test evaluated significant differences of SHG intensity at center from normal skin that are indicated by *, P >
0.05; **, 0.05 > P > 0.001; and ***, P < 0.001 for center. The significant differences of SHG intensity values at edge from
normal skin are designated as #, P > 0.05; ##, 0.05 > P > 0.001; and ###, P < 0.001. P value less than 0.05 was considered
significant [132].
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higher at the edge in the early stages of wound healing, marked by the higher bound to free
NADH ratio in lifetime measurement. However, in the proliferative phase the center has
higher metabolic activity than the edge since the edge has entered the remodeling phase, in
which cell activity decreases and collagen is deposited to fill the wound gap, marked by the
increase of SHG intensity. Following the proliferative phase, the whole wound is filled with
granulation tissues, mainly collagen, and the cellular metabolism decreases gradually. The
wound then heals into a scar, composed of connective tissues marked with higher SHG signal
intensity than that from a normal tissue. The lack of cells in scar tissue reduces the need for
blood influx, which results in removal of blood vessels by apoptosis and leaves a scar tissue
characterized by lower metabolic activity and higher collagen deposition.

The changes of the NADH free to bound ratio (Figure 3(b)) and the collagen SHG intensity
(Figure 3(c)) exhibit as the signature of the various phases in wound healing, which can be
used for crucial diagnosis and proper treatment. With the simultaneous measurements of
2PFM and SHG, a correlation between cellular metabolic activities and collagen regeneration
can be observed. In Figure 3(a), the morphological features of cells and their gradual appear‐
ance in wound region and structural evolution of collagen in a healing wound, acquired by
2PFM and SHG, respectively, are demonstrated. The disordered collagen in normal skin is
degraded and more structured collagens are deposited in the process of scar formation as
shown in Figure 3(a).

Similar results have also been reproduced by other researchers using combined SHG and 2PFM
imaging, where disorganized collagen in fibrin clots and inflammatory cells involved during
the early stage of wound healing are distinguished from more organized and aligned collagens
in regenerated new skin [125].

SHG is also used in showing the orientation of collagen fibers and their structural changes in
the healthy tissues of human dermis [126–129] as well as in in vivo tissue constructs [130]. The
efficiency of SHG signal is highly sensitive to the collagen orientation when the incident light
is polarized. Along with intensity measurements, polarization‐resolved SHG provides
information on collagen alignment and orientation during regeneration, which is correlated
to wound closure and the way scar tissue forms [131].

Polarization‐resolved SHG indicates that collagens are more organized and fibrillary during
the proliferative phase, to aid in wound closure when the margins are pulled together by them
[132]. In this way, the anisotropic variation of collagen during wound healing can be monitored
by collecting the parallel (Ipar) and the perpendicular (Iperp) components of the polarized SHG
signals with respect to the incident polarization. Figure 4 demonstrates representative Ipar (first
row) and Ipar (second row) polarization‐resolved SHG intensity images from biopsy samples
taken after discrete days of wound formation along with corresponding anisotropy images
(third row) defined by (Ipar‐Iperp)/(Ipar+2Iperp). Anisotropy value equal to 0 corresponds to complete
random arrangement of the scatterers, and if it is equal to 1, it corresponds to having a well‐
aligned, well‐structured scattered system [132, 133]. Anisotropic observation of ex vivo rat skin
biopsies has revealed maximum anisotropy value of collagen during wound contraction and
closure. When the wound gap is filled with matured collagen, the anisotropy decreases
gradually [132].
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Figure 4. Representative polarization‐resolved SHG intensity images of wound biopsy samples taken at different heal‐
ing stages. The first row depicts the images with the parallel (Ipar) component. The second row depicts the images with
the perpendicular (Ipar) component. The third row depicts the corresponding anisotropy images defined by (Ipar‐Iperp)/(Ipar

+2Iperp) [132].

In clinical setting, multiphoton imaging of human epidermis and upper dermis has been
achived by commercial system such as DermaInspectTM that is able to scan an area of 350
μm×350 μm with special resolution of 1 μm in lateral and 2 μm in axial directions [25]. The
system provide non-invasive in vivo optical biopsies of skin at subcellular resolution by
detecting autofluorescence from biomolecules such as NADH, flavins, porphyrins, elastin and
melanin and SHG signals from collagens.

5. Conclusion

Wound healing is an important physiological process that follows a certain sequential order.
Migration of various cells and the involvement of certain molecules at the wound site charac‐
terize the various phases during healing progression. Detailed quantitative and qualitative
information of these components at a specific time provides critical insights on wound healing.
Optical methodologies are versatile and include techniques that can gather a wide variety of
information on multiple components noninvasively, which presents tremendous future
prospects in terms of clinical implications. The available modalities present enormous
potentials to supplement clinical assessment and to aid research in the field of cutaneous
healing and skin tissue regeneration.

The versatile optical modalities discussed in this chapter have their own significance in
assessing specific wound‐related problems. Some modalities are simple and easy to operate,
which provide relatively low‐cost first‐line diagnosis. More complex techniques can provide
better resolution and sophisticated structural information. By judicially combining various
contrasts from the skin components, these optical techniques can address a wide variety of
skin wound‐related issues. These can include observations of subsurface morphological
features using dermascope, blood flow using LDI, molecular and functional signatures using
TSI, structural revelation using OCT, RCLM and SHG microscopy, or molecular identification
with Raman and fluorescence imaging. Each technique would provide unique yet compli‐
mentary information.
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Multimodal MPM presents the most sophisticated approach for quick, qualitative, and
quantitative skin wound healing study as it integrates multiple contrast mechanisms for
imaging the skin. Specifically, 2PFM and SHG are favorable in wound assessment for their
high‐resolution, better penetration depth, optically sectioned 3D imaging with the provision
of structural and real‐time molecular functional signature.

Emerging super resolution imaging based on saturation excitation (SAX) of scattering from
metallic nanoparticles may extend the possibilities of super resolving the skin abnormalities
[134]. Ointments and sunscreen lotion could effectively carry the nanoparticles into skin
epidermis to facilitate the new optical techniques. With the ongoing rapid advancements in
photonics and imaging, one can expect new and novel techniques will find unprecedented and
enlightening applications in dermatology in the coming future.
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Abstract

Image analysis and quantification of Haematopoietic stem cells (HSCs) position within
their surrounding microenvironment in the bone marrow is a fast growing area of
research, as it holds the key to understanding the dynamics of HSC-niche interactions
and their multiple implications in normal tissue development and in response to various
stress events. However, this area of research is very challenging due to the complex
cellular  structure  of  such  images.  Therefore,  automated  image  analysis  tools  are
required to simplify the biological interpretation of 3D HSC microenvironment images.
In this chapter, we describe how 3D intravital microscopy data can be visualised and
analysed using a computational method that allows the automated quantification of
HSC position relative to surrounding niche components.

Keywords: intravital microscopy, 3D image analysis, bone marrow visualisation, hae‐
matopoietic stem cell niche, object segmentation and classification

1. Introduction

Somatic stem cells have the extraordinary ability to maintain their own pool, while replenish‐
ing dead cells and regenerating tissues after injuries throughout our lifetime. Dividing stem
cells have the potential to differentiate into other cell types such as blood cells, skin cells or brain
cells, or maintain themselves through a process called “self-renewal”. The stem cells that form
blood and immune cells are called haematopoietic stem cells (HSCs). These stem cells are
responsible for turnover and maintenance of red blood cells, platelets and immune cells. During

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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differentiation, HSCs generate multi-potent and lineage-committed progenitor cells prior to
attaining maturity, which results in the generation of billions of new blood cells every day [1].

The bone marrow (BM) is the main site, where HSCs and their immediate progeny reside,
precisely contained in a regulated and a very complex environment called the niche. The niche
microenvironment has a direct impact on the function of HSCs, determined by the interaction
of the HSCs themselves with particular cellular and molecular components in their surround‐
ings [1, 2].

To observe and understand such interactions, single-cell resolution intravital microscopy of
fluorescent HSCs and niche components is a vital tool, allowing the study of stem cells, their
behaviour and interactions during steady state, aging and disease [3, 4]. This method has been
successfully utilised to directly observe the HSCs with their niche in mouse bone marrow.
Fluorescent dyes were used to label HSCs prior to transplantation into transgenic reporter
mice that expressed GFP under the control of an osteoblast-specific promoter. Osteoblast cells
reside on the bone marrow endosteal surface and contribute to the formation of bone [5]. This
kind of fluorescent niche component served as a fundamental tool for the visualisation of the
HSC endosteal niche and resulted in multiple observations indicating that functional HSCs
localise near osteoblastic cells [5–7]. Intravital microscopy of HSCs injected into wild type and
other bone marrow stroma/haematopoietic reporters indicated the importance of GalphaS
receptor subunit on homing HSCs [8], of interactions with nestin-positive mesenchymal stem
and progenitor cells [9] and with regulatory T cells [10]. Time-lapse imaging has revealed that
infection-exposed HSCs interact with larger endosteal niches [7, 11] and that aged HSCs
interact with the bone marrow differently than young ones [12]. However, a clear understand‐
ing of how the coordinated action of multiple niche components regulates HSC fate is not clear,
and considering the localization of HSCs relative to multiple surrounding cellular and
structural constituents of the bone marrow microenvironment is the first step towards
unravelling HSCs dynamics and signal exchanges.

Even though manual distance measurement of HSCs to other niche components is possible [1,
6, 13], it suffers from various limitations including the extensive time spent on conducting such
manual analysis as well as intra- and inter-researcher inconsistencies and human error.
Therefore, a specialised image analysis tool capable of completing such tasks will add the great
benefits of producing consistent unbiased results, and will simplify the interpretation of the
biological microenvironment events of the bone marrow niche.

During the last decade, several attempts have been made to develop image analysis approaches
to automate the quantification of medical and biological images, from cell segmentation and
detection to tumour diagnosis and classification [14–16]. However, the direct application of
such methods to three-dimensional (3D) intravital microscopy images of the bone marrow is
not possible. This is due to the complex structure of the tissue, decreased signal with increased
depths, unpredictable scattering of both the excitation and emission photons and the irregular
encasing bone structure, which restricts the resolution of intravital microscopy images when
compared to ex vivo and soft tissue imaging.
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Consequently, we developed an image analysis pipeline, to specifically tackle all the main
challenges associated with intravital microscopy 3D images of bone marrow. The approach
starts by detecting and segmenting HSCs and surrounding niche components, for instance,
the bone and osteoblast. Then it classifies each segmented HSCs and assigns them into one of
three classes, and finally it quantifies them based on their location to surrounding niche
components. This analysis will allow the extraction of variable quantitative features, which
could potentially reveal novel aspects of HSC biology, and especially their relation to the bone
marrow microenvironment [11].

This chapter is organised as follows: first an introduction of the bone marrow and haemato‐
poietic stem cells niche highlighting the importance of intravital microscopy and automated
image analysis is provided (Section 2), followed by a detailed description of intravital micro‐
scopy of the bone marrow and the main challenges faced during the image analysis stage
(Section 3). The automated image analysis tool is then described (Section 4), detailing how the
three main segmentation parameters can be optimised for a particular cell or niche component
(Section 5). Finally, a description of how a supervised machine learning classifier can be used
to classify both HSCs and vasculature is presented (Section 6), followed by a brief description
of how to obtain 3D positional measurements of HSCs to other niche components (Section 7).

2. Intravital microscopy of mouse bone marrow

In vivo imaging of stem cells is a growing field, providing unique insights of their behaviour
and especially of their interaction with their surrounding microenvironment. This approach
has been instrumental in producing new hypotheses and revealed a number of novel findings
concerning the regulation of fate decision of multiple somatic stem cells [17, 18], including
HSCs [1, 3, 4].

Nevertheless, how multiple niche components affect and regulate HSCs fate is still a significant
question that scientists are attempting to answer. Recording the localization of HSCs relative
to multiple surrounding cellular and structural constituents of the bone marrow microenvir‐
onment is the first step towards understanding such phenomena.

Confocal fluorescence and second harmonic generation microscopy of HSCs and their niche
components in the mouse calvarium (top of the skull) bone marrow provides a powerful tool
to observe cellular interactions and has been successfully used to detect and study fluores‐
cently labelled HSCs and GFP expressing osteoblasts and other niche components in transgenic
reporter mice [7, 11].

Confocal microscopy provides a better 3D optical resolution than epifluorescence microscopy
because it restricts the light that reaches the photomultiplier through a pinhole. While in
epifluorescence microscopy in-focus image objects are mixed with out-of-focus image infor‐
mation arising from regions outside the focal plane, in confocal microscopy the pinhole blocks
out-of-focus signal. This technology has allowed major advances in the field of biological
imaging, due to its cost-effective solution and ease of use. In addition, confocal microscopes
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have improved sensitivity, resolution and intensity compared to epifluorescent microscopes.
Confocal microscopy is also less phototoxic and can therefore be used to generate not only
static but also dynamic data of living cells within their tissues, through time-lapse acquisition.
All these qualities make confocal microscopes an ideal instrument for in vivo studies.

Figure 1. Maximum intensity projection of a 3D stack example of raw bone marrow in vivo images including DiD sig‐
nal (red), GFP signal from osteoblastic cells (green) and bone collagen SHG signal (blue). Confocal microscopy was
used to generate the signal for both DiD-labelled HSCs and osteoblasts using 633 and 488 nm lasers, respectively. Sec‐
ond harmonic generation (SHG) signal was obtained using 840-nm excitation of collagen to resolve bone structures.

Two-photon excitation of a fluorophore provides 3D optical sectioning similar to confocal
imaging. However, it uses a wavelength roughly twice the length of the absorption peak of
the specimen being imaged. In this chapter, we describe a particular application of two-photon
excitation, named second harmonic generation (SHG). This takes advantage of a characteristic
specific to certain molecules, such as collagen, which is the emission of photons at half of the
wavelength of the exciting photons. Because collagen is one of the main components of bone,
SHG signal allows detection of calvarium bone without the need to use specific transgenic
fluorescent reporter mouse strains. An example of raw bone marrow in vivo images containing
HSCs, osteoblast and SHG bone signal is presented in Figure 1. Two-photon excitation is also
widely used to detect signal from multiple fluorophores, including GFP and tomato fluores‐
cent protein [17], and signal obtained from two-photon excitation fluorescence microscopy can
be analysed with the same computational algorithm we describe below.

Microscopy and Analysis184



have improved sensitivity, resolution and intensity compared to epifluorescent microscopes.
Confocal microscopy is also less phototoxic and can therefore be used to generate not only
static but also dynamic data of living cells within their tissues, through time-lapse acquisition.
All these qualities make confocal microscopes an ideal instrument for in vivo studies.

Figure 1. Maximum intensity projection of a 3D stack example of raw bone marrow in vivo images including DiD sig‐
nal (red), GFP signal from osteoblastic cells (green) and bone collagen SHG signal (blue). Confocal microscopy was
used to generate the signal for both DiD-labelled HSCs and osteoblasts using 633 and 488 nm lasers, respectively. Sec‐
ond harmonic generation (SHG) signal was obtained using 840-nm excitation of collagen to resolve bone structures.

Two-photon excitation of a fluorophore provides 3D optical sectioning similar to confocal
imaging. However, it uses a wavelength roughly twice the length of the absorption peak of
the specimen being imaged. In this chapter, we describe a particular application of two-photon
excitation, named second harmonic generation (SHG). This takes advantage of a characteristic
specific to certain molecules, such as collagen, which is the emission of photons at half of the
wavelength of the exciting photons. Because collagen is one of the main components of bone,
SHG signal allows detection of calvarium bone without the need to use specific transgenic
fluorescent reporter mouse strains. An example of raw bone marrow in vivo images containing
HSCs, osteoblast and SHG bone signal is presented in Figure 1. Two-photon excitation is also
widely used to detect signal from multiple fluorophores, including GFP and tomato fluores‐
cent protein [17], and signal obtained from two-photon excitation fluorescence microscopy can
be analysed with the same computational algorithm we describe below.
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3. Application and challenges of bone marrow intravital microscopy image
analysis

The combination of confocal and SHG microscopy has greatly simplified high-resolution
fluorescence imaging of animal tissues and organs. In Section 2, we have briefly described the
advantages of the combination of confocal/SHG microscopy. Here, we describe the experi‐
mental set-up used and the challenges posed by the intravital images when they have to be
further analysed. In the following sections, we describe in details how HSCs and bone marrow
components can be automatically segmented, classified and measured.

To visualise HSCs, they were first labelled ex vivo using lipophilic membrane dyes such as 1,1′-
Dioctadeciyl-3,3,30,30-Tetramethylindodicarbocyanine (DiD) to generate a bright fluorescent
signal [1, 5]. DiD-labelled HSCs were then injected into Col2.3GFP recipient mice, which allow
the visualisation of osteoblasts as GFP-positive cells. Confocal microscopy was used to
generate the signal for both DiD-labelled HSCs and osteoblasts using 633 and 488 nm lasers,
respectively. Second harmonic generation (SHG) signal was obtained from 840-nm excitation
of collagen to resolve bone structures. Acquisition setting (e.g. gain, laser powers, step and
stack size) can vary between multiple users, leading to overall brighter/dimmer images and a
range of field of view sizes and depths. Such variance imposes a challenge for automated image
analysis. Therefore, developing an image analysis tool that can deal with the variability of
setting preferences is a crucial point.

Another challenge imposed on image analysis from in vivo microscopy data is the decreased
signal at increased depths. This results in non-uniform intensity and brightness of objects. In
addition, light scattering caused by the surrounding tissue and bone restricts the resolution of
in vivo microscopy of bone marrow compared to that of other soft tissues or ex vivo techniques.

To address these issues, we developed a local heterogeneity-based image segmentation (LH-
SEG) approach [11] that employs multi-resolution segmentation [19] and mean intensity
difference to neighbour thresholding. The approach works by comparing local morphological
and intensity characteristics of objects, which most often are smaller than the cells and
structures recorded. These detected objects are then grouped based on their homogeneity with
other neighbouring objects within a defined distance. Because the method is applied to each
2D slide, it ensures reliable edge detection and segmentation across cells and structures with
high intensity heterogeneity, despite the decreased signal (intensity) at increasing depths.

DiD labelling produces a bright fluorescent signal of HSCs [1, 5]. However, this and other
related dyes have a number of limitations when associated with intravital microscopy:

1. The dye often diffuses from the labelled cells into the surroundings, and is diluted upon
cell division, resulting in a loss of brightness and intensity of signal.

2. Labelling HSCs does not always provide a homogenous staining, which can result in some
HSCs being brighter than others.

3. The dye often leads to background noise as result of cell debris and aggregate signal.
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Figure 2. Maximum intensity projection of a 3D stack example representing the challenges for automated analysis of
raw bone marrow in vivo images. DiD signal is in red. Arrows point at single DiD-labelled HSCs with varying intensity
levels and sizes; the remaining red signal represents debris and background noise. Osteoblast cells (green) show non-
uniform intensity levels too.

Figure 2 shows examples of the points listed above.

To overcome these issues, LH-SEG detects cells with variable intensities and signal brightness.
Moreover, a machine learning classification protocol based on morphological and textural
features recognises and classifies all segmented DiD signal, to differentiate real HSCs from cell
debris and aggregate.

4. Image analysis

Image analysis is the process of extracting meaningful information from images, using manual
or automated methods (the latter known as computer vision techniques) [20, 21]. The selection
of the appropriate image analysis method for a certain type of images determines the success
rate of the analysis. Therefore, understanding the challenges associated with the images
acquired is the first step towards developing an effective image analysis solution.

Automated image analysis has a number of advantages over the human manual analysis.
Human vision can easily be biased by pre-conceived concepts, affecting the output results and
the rigorous testing of hypothesis. Manual analysis can also be time-consuming compared to
automated analysis tasks, in which large datasets can be batch processed without the need of
human monitoring, allowing users to perform other tasks while the analysis is being carried
out.

Microscopy images are often complex, with a range of artefacts and background noise, which
require variable image processing steps before any meaningful quantification can be extracted
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from objects and region of interests. An overall image analysis protocol, including image
processing, analysis and data output, needs to be designed and tailored according to the
targeted image datasets. A general outline of the image analysis pipeline described in this
chapter is provided in Figure 3.

Figure 3. Outline of our image analysis protocol, starting from raw data and applying image processing and segmenta‐
tion, feature extraction and classification, and finally distance measurements.

4.1. Image acquisition and processing

Image acquisition is the process of obtaining the raw image data using a microscope. Such data
usually contain a number of imperfections, for example, due to oversaturation, out of focus
signal and uneven excitation due to the irregular structure of the tissue itself.

To overcome these issues, filtering techniques are usually introduced to the image analysis as
a pre-processing step. Smoothing and de-nosing filters such as the median filter and Gaussian
filter are applied to enhance image quality and reduces the noise introduced by the image
acquisition process.

In the case of our in vivo bone marrow images, we applied Gaussian blur [22] to handle
fluorescence intensity heterogeneity. The blur is typically used to smooth images detail and
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reduce noise from uneven signal intensity. A small kernel size of (3 × 3) was used to reduce
noise while avoiding over-smoothing of image objects.

4.2. Image segmentation

Object detection is a crucial step, as it determines the objects of interest in an image. This step
ultimately governs the quality of quantifications extracted from each object. A very effective
method of object detection is image segmentation. Segmentation is the process of dividing an
image into smaller meaningful segments, by selecting a group of pixels to represent a region,
or an object, contained within a border. Objects are segmented such that the pixels enclosed
within one border share certain characteristics that define them as an object.

Successful segmentation is dependent on the method used, which critically needs to be tailored
for each particular set of images. Images with a high level of contrast between objects of
interests and background and with uniform intensities can be segmented using simple
thresholding and edge detection approaches. More complex images with high intensity
heterogeneity and intricate structures such as in vivo single cell resolution images require a
more sophisticated segmentation approach.

The main challenges imposed upon segmentation of bone marrow in vivo images are the
heterogeneity of fluorescent intensity as represented in GFP and DiD signal in Figure 2, the
loss of signal with increasing depths and the unpredictable shape of stroma components. To
overcome these issues, we have developed a two-step method of segmentation (LH-SEG). This
method combines two powerful approaches: the multi-resolution segmentation and mean
intensity difference to neighbourhood thresholding (MDN).

This segmentation approach was mainly developed to minimise artefacts due to loss of signal
with increased depths. The first step of LH-SEG, multi-resolution segmentation, starts by
dividing each 2D slice of the 3D stack into smaller segments grouped by their homogeneity in
shape and texture. Homogeneity for each pixel is then calculated by selecting a scale parameter
α. The parameter α is optimised for each object type (HSC, osteoblast and bone), taking into
consideration their morphological and textural characteristics. Optimisation of this parameter
for each object type is described in detail in Sections 4.3 and 5.

Adjacent homogeneous image segments are then merged based on their mean intensity
difference to neighbourhood (MDN) threshold. MDN threshold calculates the difference
between an image segment and its neighbouring image segments using the mean intensity
values described in [11] as follows:
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wherew is the image channel weight. Images are weighted by the distance between the
segmented image objects, defined as follows:
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wherev and u are two segmented image objects, Nv is the direct neighbour to the segmented
image objectv. u is defined as a direct neighbour tov if the minimum distance between them
is less than or equal tod. d is the distance between neighbouring segments and defined as the
radius of the segmented image object perimeter in pixel. wu is the weight of the segmented
image object defined by the difference of the mean intensity value betweenv and u in a given
distance d. c̄k  is the mean intensity value of channelk. The appropriate MDN threshold for T Δ̄ k

and distance featured need to be selected for effective segmentation of each image object
category (HSC, osteoblast and bone) (from [11]).

Figure 4 shows how, at the end of this process, segmented images on each z plane are then
linked together to generate a 3D rendering of the whole stack.

Figure 4. (A–D) segmented regions of osteoblast 2D slices using the LH_SEG method before they are merged (E) for
the 3D rendering (F).

4.3. Parameter optimisation

Image segmentation is a fundamental step of image analysis, which ultimately determines the
level of success of the overall quantification. Automated image analysis approaches can only
perform sufficiently well when their parameters are optimally set for a certain type of images
or dataset. In this section, we describe how the optimal settings can be selected for datasets
containing intravital microscopy bone marrow 3D stacks. Three fundamental parameters are
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targeted: (1) the multi-resolution segmentation scale parameterα; (2) MDN threshold T Δ̄ k
; and

(3) the MDN distance between neighbouring image segments d. The optimisation of parame‐
ters will be discussed in detail for each image object category (HSCs, osteoblast and bone) in
Section 5.

The selection of the scale parameterα depends on the physical and textural structure of the
objects. Different values of parameter α for the multi-resolution segmentation influence the
output of the segmentation process. Selecting high scale parameters results in fewer, larger
segments that can be bigger than the object observed, while lower scale parameter values result
in smaller objects. To illustrate the consequences of using a range of parameter values for α on
the resulting segmentation, we will present parameter values that would represent excessive
cases of error when increasing or decreasing the scale parameter, as shown in Figure 5.

Figure 5. Optimisation of the multi-resolution segmentation parameter α for each image object category. Column (A–I)
represent the data of each object category after smoothing with the convolution filter. Column (B–J) represent region
segmentation error when decreasing the α parameter. Column (C–K) represent correct region segmentation with the
optimal parameter α. Column (D–L) represent region segmentation error when increasing the α parameter.
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MDN threshold has two parameters: MDN threshold value T Δ̄ k
 and the distance to neigh‐

bouring image segmentsd. Results of all three parameters optimisation for each component
type (HSCs, osteoblast and bone), together with examples of the consequences of using
excessively high or low parameter values, are described in Section 5 and presented in Figures 6
and 7.

5. Parameter optimisation

In this section, we present examples of the results obtained when different parameter values
for α, T Δ̄ k

 andd are selected, to help the reader apply the same decision process to his/her own
image dataset.

5.1. Multi-resolution parameter α

5.1.1. α for HSCs

Selecting a small value such as α = 3 results in the region of the image corresponding to an
HSC being divided in small segments (irregular boxes delimited by white lines, Figure 5) and
increases the running time of the overall process. On the other hand, a scale parameter of α = 8
leads to larger and fewer segments, covering the area occupied by the HSC and, once com‐
bined, describing its edges, therefore, serves as the optimal parameter for HSCs. Increasing
the scale parameter α will result in even fewer, larger segments comprising areas of hetero‐
geneous intensity and causing some background signal to be included in the HSC segment
region (Figure 5A–D).

5.1.2. α for osteoblasts

Selecting a small value such as α = 3 results in the osteoblastic cell region being divided in very
small segments (irregular boxes delimited by white lines) and increases the running time of
the overall process. A scale parameter ofα = 10 leads to fewer, larger segments, which cover
the area occupied by the osteoblastic cells and combined describe their edges. Having fewer
segments reduces the processing time. Therefore, α = 10 serves as the optimal parameter for
osteoblasts. Increasing the scale parameter α marginally did not have a major change in the
segments produces, however, increasing the parameter extensively to e.g. α = 400 results in
larger segments comprising areas of heterogeneous intensity and causing some background
signal to be included in the osteoblastic segment region (Figure 5E–H).

5.1.3. α for bone

Selecting a small value such asα = 3 results in the bone region being divided into small segments
(irregular boxes delimited by white lines) and increases the running time of the overall process.
Similarly to osteoblasts, a scale parameter α = 8 leads to fewer, larger segments covering the
area occupied by the bone and bone cavities and, once combined, describing its edges. Again,
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dealing with fewer segments reduces the processing time. Therefore, α = 8 serves as the optimal
parameter for bone. Increasing the scale parameterα marginally did not have a major impact
on the segments produced, however, increasing the parameter extensively to e.g.α = 400 results
in larger segments comprising areas of heterogeneous intensity and causing some background
signal to be included in the bone segment region Figure 5I–L.

5.2. MDN threshold value T Δ̄k

5.2.1. T Δ̄ k
 for HSCs

The optimisation of the MDN threshold value depends on the correct detection of HSC edges.
To observe the effects of changing the MDN threshold on HSC segmentation, we set α = 8
andd = 30, then change the parameter T Δ̄ k

. Selecting T Δ̄ k
 ≥ 10 resulted in some background

signal being included in the HSC segment region, while T Δ̄ k
 ≥ 68 resulted in correct segmen‐

tation of the HSC region. On the other hand, selecting a threshold value of T Δ̄ k
 ≥ 200 resulted

in restricting the selection of segments to only those which have T Δ̄ k
 ≥ 200 mean intensity

difference value to their neighbouring segments and excluded HSC segments of lower
intensity from the final HSC object. Hence selection of low threshold values for the MDN will
result in increased segment region sizes, while selecting higher MDN threshold values will
restrict the selection of segments to regions of smaller size (Figure 6A–C).

5.2.2. T Δ̄ k
 for osteoblasts

To observe the effects of changing the MDN threshold on osteoblastic cell segmentation, we
setα = 8 and d = 30, then change the MDN threshold parameter T Δ̄ k

. T Δ̄ k
 ≥ 0 resulted in some

background signal being included in the osteoblastic cell segment regions, while T Δ̄ k
 ≥ 8

resulted in correct segmentation of the osteoblastic cell regions. T Δ̄ k
 ≥ 100 resulted in restricting

the selection of segments to only those which have T Δ̄ k
 ≥ 100 mean intensity difference to their

neighbouring segments and excluded osteoblast segments of lower intensity from the final
osteoblastic cell objects. Hence selection of low threshold values for the MDN will result in
increased segment regions, while selecting higher MDN threshold values will restrict the
selection of segments (Figure 6D–F).

5.2.3. T Δ̄ k
 for bone

To observe the effects of changing the MDN threshold on bone segmentation, we setα = 8
andd = 70, then change the MDN threshold parameter T Δ̄ k

, while T Δ̄ k
 ≥ 0 resulted in some

background signal being included in the bone segment region. T Δ̄ k
 ≥ 4 resulted in correct

segmentation of the bone region, T Δ̄ k
 ≥ 80 resulted in restricting the selection of segments to

only those which have ≥80 mean intensity difference to their neighbouring segments and
excluded bone segments of lower intensity from the final bone object. Hence selection of low
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threshold values for the MDN will result in increased bone segment regions, while selecting
higher MDN threshold values will restrict the selection of segments (Figure 6G–I).

Figure 6. Optimisation of the MDN threshold parameter T Δ̄  for each image object category. Column (A–G) represent

object segmentation error when decreasing the T Δ̄  parameter. Column (B–H) represent correct object segmentation

with the optimal parameter T Δ̄ .Column (C–I) represent object segmentation error when increasing the T Δ̄  parameter.

5.3. Distance to neighbour d parameter

5.3.1. d for HSCs

To illustrate the process of selecting the optimal distance to neighbour d parameter, we use
varying distance d between neighbouring segments as follows:

We set the optimal multi-resolution scale parameter α = 8 and MDN T Δ̄ k
 ≥ 68, then select the

neighbourhood size. Small neighbourhood size such asd = 2 restricts the selection to fewer
segments, specifically to those within a two pixels radius from the centre of the HSC region.
As a result, the edges of the HSC are excluded from the final object. On the other hand,
increasing the neighbouring distance tod = 30 resulted in correct selection of segments
belonging to the HSC and elimination of segments containing background signal. Increasing
the neighbouring distance further to aboutd = 120 resulted in some background signal being
included in the final HSC region (Figure 7A–C).
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5.3.2. d for osteoblasts

To show the effects of changing the neighbourhood sized on osteoblast segmentation, we use
the optimal multi-resolution scale parameter α = 8 and MDN threshold to T Δ̄ k

 ≥ 8, then select
the neighbourhood sized. Selection of small neighbourhood size such asd = 2 restricted the
selection of segments, resulting in fragmented segments scattered across the osteoblastic cell
regions and failed to detect actual osteoblast regions. On the other hand, d = 2 resulted in correct
selection of segments belonging to the osteoblasts and elimination of segments containing
background signal. Increasing the neighbouring distance tod = 120 resulted in some back‐
ground signal being included in the final osteoblast region (Figure 7D–F).

To demonstrate the effect of the selection of the value of parameterd on low intensity osteoblast
regions, we selected images from lower slices of the same 3D stack of images (Figure 7G–I).

Figure 7. Optimisation of Distance to neighbour d parameter for each image object category. Column (A–J) represent
object segmentation error when decreasing the d parameter. Column (B–K) represent correct object segmentation with
the optimal parameter d. Column (C–L) represent object segmentation error when increasing the d parameter. Row (G–
I) represent images from lower slices of the same 3D stack of images (D–F).

5.3.3. d for bone

To show the effect of changing the neighbourhood size d on bone segmentation, we use the
optimal multi-resolution scale parameterα = 8 and MDN threshold to T Δ̄ k

 ≥ 4, then select the
neighbourhood sized. Selection of small neighbourhood size such asd = 2 restricted the
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To show the effect of changing the neighbourhood size d on bone segmentation, we use the
optimal multi-resolution scale parameterα = 8 and MDN threshold to T Δ̄ k

 ≥ 4, then select the
neighbourhood sized. Selection of small neighbourhood size such asd = 2 restricted the
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selection of segments, resulting in fragmented segments scattered across the bone regions and
failed to detect actual bone regions. As a result, the edges of the bone are excluded from the
final object. On the other hand,d = 70 resulted in correct selection of segments belonging to the
bone and elimination of segments containing background signal. Increasing the distance
tod = 120 resulted in some background signal being included in the final bone region and
missing small detail of bone cavities (Figure 7J–L).

Note: Parameter selection can be further observed on the YZ and XZ dimensions to ensure
accurate selection of the optimal parameters (Figure 8). To optimise the parameters for further
niche components and cell types (e.g. vasculature), the same steps can be followed as described
for the HSCs, osteoblasts and bone.

Figure 8. Examples of different dimensions view to observe the segmentation results following selecting different pa‐
rameter values for α, T Δ̄ k

 and d.

6. Machine learning

Machine learning (ML) has become a valuable artificial intelligence tool, increasingly used for
analysis of complex image data [23, 24]. ML serves two main objectives: classification and
regression. Classification approaches are performed when a computer is given a set of options
and is expected to divide them into a subset of categorise. Regression is the process of selecting
the appropriate response to a particular situation from a set of possible responses. Further‐
more, ML classifiers can be categorised into two main models: supervised and unsupervised
classifiers. Unsupervised approaches utilise a clustering technique, where ML looks for
resemblances across data, and then splits the same data into clusters. Clusters are then used
to define the classes. Conversely, supervised approaches require a training set, where the ML
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learns information by extracting a set of features from that particular set, and the ML classifier
is then expected to classify a new set of data and categorise it into a k number of classed based
on the discriminative features extracted from the training set. Supervised classifiers are capable
of identifying a set of complex features, suitable for classifying heterogeneous imaging data
such as HSCs and vasculature from in vivo bone marrow 3D images, and then use them to
perform such classification.

6.1. Decision tree classifier

The decision tree (DT) classifier is a structured approach that builds classification models from
an input dataset to predict the output of an unknown dataset. The DT classifier starts the
classification procedure structurally from the top node and uses the feature vectors to split it
into further nodes [25, 26]. The selection of the feature vectors is measured by the purity of a
particular subset, such that if a pure subset is produced, the splitting stops, otherwise splitting
continues until a pure subset is allocated. Impurity of a specific subset is calculated by the
entropy and is defined in [27] as follows:

2( ) ( ) log ( )
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whereS is the dataset for which the entropy is calculated,c the set of classes in setS, p(c) the
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6.2. Training and testing the classifier

6.2.1. HSCs

LH-SEG provides a sufficient level of DiD objects detection. However, not all the DiD objects
are HSCs. This is due to cell debris and the diffusion of the dye, which could lead to aggregates
producing signal similar in shape and intensity to that of the HSCs.

In order to identify HSCs, we propose the use of DT classifier. We first trained our classifier
to distinguish three classes of DiD objects: Class-1 represents HSCs distinguished by their
smoother, round surface and high intensity as observed for quiescent HSCs; Class-2 comprises
HSCs that have less rounded shapes and present small uropod-like protrusions [27], as
previously observed in time-lapse images of migratory HSCs [7]; and Class-3 contains DiD
objects that are not HSCs and characterised by their exceedingly uneven morphology. A
selection of objects was manually selected for each category and fed into the classifier as
training set. The exact number of objects needed for training each class depends on the
variability of the structures contained, such that objects with regular, predictable characteris‐
tics such as Class-1 HSCs would require fewer objects for training, while irregular objects
containing high variability such as class-3 would require a higher number of objects for training
to ensure the classifier collects sufficient numbers of characteristics to handle the complexity
and inconsistency of objects. After training, the classifier is tested on different datasets from
those used for training with a 3-fold cross-validation approach. Classification results provided
a high accuracy for all classes and successfully classified the DiD object to the three proposed
classes as described in [11] and Figure 9A and B.

Figure 9. (A) Classification results of DiD objects using our proposed approach: two DiD-labelled HSCs were classified
as HSC class 1 (red) and 2 (moccasin). (B) 3D rendering of DiD HSCs represented in (A) inside their microenviron‐
ment. (C) Classification results of vasculature using our proposed approach, showing small sinusoids (magenta) and
large sinusoids (yellow). (D) 3D rendering of the 3D stack containing the slice shown in (C).

Automated Identification and Measurement of Haematopoietic Stem Cells in 3D Intravital Microscopy Data
http://dx.doi.org/10.5772/64089
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6.2.2. Vasculature

Blood vessels inside the bone marrow are another component that plays a vital role in the
maintenance of HSCs. Interactions between vasculature and HSCs have become one of the
main headlines for many recent studies [29, 30]. As demonstrated in our pervious study,
segmentation of vasculature of in vivo images was possible using the LH-SEG [11]. However,
the automated identification of the variable components of the BM vascular network is a
challenging task due to the complex and interlinked structure of blood vessels. Therefore, the
selection of effective thresholds for classifying the vasculature into different regions based on
their appearance and morphology is a challenging task. To overcome these issues, we propose
a DT Classifier to define distinct features of the different types of vasculature and classify them
into four categories based on their morphological and topological characteristics inside the BM
space [28]. Blood vessels share mutual features in relation of their complexity and interlinking
physical structure. Consequently, we manually select different 2D segmented from the
vasculature region to create the training sets for four classes of blood vessels: (1) large
sinusoids: larger blood vessels in comparison to other sinusoids and positioned mostly
towards the periphery of the BM space; (2) small sinusoids: blood vessels smaller in section
when compared to the large sinusoids, spread across bone marrow space; (3) the central sinus:
a large venous vessel situated in the centre of the bone marrow space; and (4) the bifurcation
of the central sinus, which results from the central sinus branching out towards either sides of
the BM space in its frontal area. The number of samples was optimised for each class to avoid
under-fitting and over-fitting the classifier. Three-fold cross validation was used in this
experiment. Morphological and topological features were fed to the classifier for extraction of
discriminative values. Classification results provided a high accuracy for all classes and
successfully classified all vessels into one of the four classes as described in [23] and presented
in Figure 9C and D. This demonstrates the applicability of ML classification approaches to 3D
in vivo images of the bone marrow, which escalates the throughput of intravital imaging and
our understanding of the complexity of the HSC and their interaction with multiple niche
components.

7. 3D positional measurements

Following segmentation and classification of DiD-labelled HSCs, HSCs position relative to
their nearest osteoblast and bone is measured as described in [11], and could be measured to
their nearest vessel or other segmented bone marrow components. The overall automated
distance measurements from HSCs to osteoblast and bone were equivalent to previously
published data obtained using manual distance measurements and described in [5, 6]. Fur‐
ther quantitative measures such as the morphological and textural characteristics of each
segmented and classified object can also be obtained using this tool.
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