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The present Special Issue aimed to present relevant and innovative research works in the field
of numerical analysis. The problem of solving complex engineering problems has been always a
major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of
numerical methods increased exponentially in the last few years due to modern computers in the field
of structural mechanics. Moreover, a wide-range of numerical methods has been presented in the
literature for solving such problems. Structural mechanics problems are dealt with by using partial
differential systems of equations that might be solved by using the two main classes of methods:
Domain-decomposition methods, or the so-called finite element methods, and mesh-free methods
where no decomposition is carried out. Both methodologies discretize a partial differential system
into a set of algebraic equations that can be easily solved by computer implementation. The aim of the
present Special Issue was to present a collection of recent works on these themes and a comparison of
the novel advancements of both worlds in structural mechanics applications.

This Special Issue collects 10 (ten) contributions from several countries and topics all within the
field of numerical analysis. This Special Issue is devoted to scientists, mathematicians and engineers
who are investigating recent developments in analysis and state-of-the-art techniques on mathematical
applications in numerical analysis.

Mota et al. [1] presented an assessment on porous functionally graded plates. In particular,
this work aimed to assess the influence of different porosity distribution approaches on the shear
correction factor, used in the context of the first-order shear deformation theory, which in turn may
introduce significant effects in a structure’s behavior. To this purpose, porous functionally graded
plates with varying composition through their thickness were carried out. The bending behavior of
these plates was studied using the finite element method with two quadrilateral plate element models.

Bellora and Vescovini [2] discussed the implementation of a continuation technique for the
analysis of nonlinear structural problems, which is capable of accounting for geometric and
dissipative requirements. The present strategy can be applied for solving quasi-static problems,
where nonlinearities can be due to geometric or material response. The present procedure has been
demonstrated to be robust and able to trace the equilibrium path in structures characterized by
complex responses. Several examples are presented and discussed for a combination of material and
geometry nonlinearities.

The noise emitted by ships is one of the most important noises in the ocean, and propeller noise is
one of the major components of ship noise. Ebrahimi et al. [3] carried out a calculation of propeller
noise using numerical methods because evaluation of propeller noise in the laboratory, despite the
high accuracy and good reliability, has high costs and is very time-consuming. Software for numerical
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calculation of propeller noise, based on FW-H equations, was developed and the results were validated
by experimental results.

Bacciocchi and Tarantino [4] presented a work on the study of natural frequencies of functionally
graded orthotropic laminated plates using a finite element formulation. The main novelty of the
research was the modeling of the reinforcing fibers of the orthotropic layers assuming a nonuniform
distribution in the thickness direction. The Halpin–Tsai approach was employed to define the overall
mechanical properties of the composite layers starting from the features of the two constituents
(fiber and epoxy resin). The analyses were carried out in the theoretical framework provided by
the first-order shear deformation theory (FSDT) for laminated thick plates. Nevertheless, the same
approach was used to deal with the vibration analysis of thin plates, neglecting the shear stiffness of
the structure. This objective was achieved by properly choosing the value of the shear correction factor,
without any modification in the formulation.

Patel et al. [5] presented a trans-disciplinary, integrated approach that used computational
mechanics experiments with a flow network strategy to gain fundamental insights into the stress flow
of high-performance, lightweight, structured composites by investigating the rostrum of paddlefish.
The evolution of the stress in the rostrum was formulated as a network flow problem, which was
generated by extracting the node and connectivity information from the numerical model of the
rostrum. The changing kinematics of the system was provided as input to the mathematical algorithm
that computes the minimum cut of the flow network. The flow network approach was verified using
two simple classical problems.

Uzun and Civalek [6] presented the free vibration behaviors of various embedded nanowires
made of different materials. The investigation was carried out by using Eringen’s nonlocal elasticity
theory. Silicon carbide nanowire (SiCNW), silver nanowire (AgNW) and gold nanowire (AuNW)
were modeled as Euler–Bernoulli nanobeams with various boundary conditions such as simply
supported (S-S), clamped simply supported (C-S), clamped–clamped (C-C) and clamped-free (C-F).
The interactions between nanowires and medium were simulated by the Winkler elastic foundation
model. The Galerkin weighted residual method was applied to the governing equations to gain
stiffness and mass matrices. In addition, the influence of temperature change on the vibrational
responses of the nanowires were also pursued as a case study.

As required by regulations, finite element analysis can be used to investigate the behavior of
joints that might be complex to design due to the presence of geometrical and material discontinuities.
The static behavior of such problems is mesh dependent; therefore, these results must be calibrated by
using laboratory tests or reference data. Once the finite element model is correctly setup, the same
settings can be used to study joints for which no reference is available. The work by Ouakka and
Fantuzzi [7] analyzed the static strength of reinforced T-joints and sheds light on the following aspects:
shell elements are a valid alternative to solid modeling; the best combination of element type and
mesh density for several configurations is shown; the ultimate static strength of joints can be predicted,
as well as when mechanical properties are roughly introduced for some FE topologies.

Li and Chen [8] presented a new complex variable method for stress and displacement problems
in a noncircular deep tunnel with certain given boundary conditions at infinity. In order to overcome
the complex problems caused by noncircular geometric configurations and the multiply-connected
region, a complex variable method and continuity boundary conditions were used to determine stress
and displacement within the tunnel lining and within the surrounding rock. The coefficients in the
conformal mapping function and stress functions werre determined by the optimal design and complex
variable method, respectively. The new method was validated by FLAC3D finite difference software
through an example.

A Space-Time Finite Element Method (STFEM) is proposed by Dumont et al. [9] for the resolution
of mechanical problems involving three dimensions in space and one in time. Special attention was paid
to the nonseparation of the space and time variables because this kind of interpolation is well suited
to mesh adaptation. For that purpose, a 4D mesh generation was adopted for space-time remeshing.
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This original technique does not require coarse-to-fine and fine-to-coarse mesh-to-mesh transfer
operators and does not increase the size of the linear systems to be solved, compared to traditional
finite element methods. Computations were carried out in the context of the continuous Galerkin
method. The present method was tested on linearized elastodynamics problems. The convergence and
stability of the method were studied and compared with existing methods.

Finally, Moldenhauer [10] investigated two-dimensional differential equations of the kind y′ = f (x, y)
that can be interpreted as a direction fields. Commercial finite element programs can be used for this
integration task without additional programming, provided that these programs have options for
the calculation of orthotropic heat conduction problems. The differential equation to be integrated
with arbitrary boundaries was idealized as an finite element model with thermal 2D elements.
Possibilities for application in the construction of fiber-reinforced plastics (FRP) arise, since fiber
courses, which follow the local principal stress directions, make use of the superior stiffness and
strength of the fibers.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: The known multifunctional characteristic of porous graded materials makes them very
attractive in a number of diversified application fields, which simultaneously poses the need to deepen
research efforts in this broad field. The study of functionally graded porous materials is a research
topic of interest, particularly concerning the modeling of porosity distributions and the corresponding
estimations of their material properties—in both real situations and from a material modeling
perspective. This work aims to assess the influence of different porosity distribution approaches on
the shear correction factor, used in the context of the first-order shear deformation theory, which in
turn may introduce significant effects in a structure’s behavior. To this purpose, we evaluated porous
functionally graded plates with varying composition through their thickness. The bending behavior
of these plates was studied using the finite element method with two quadrilateral plate element
models. Verification studies were performed to assess the representativeness of the developed and
implemented models, namely, considering an alternative higher-order model also employed for
this specific purpose. Comparative analyses were developed to assess how porosity distributions
influence the shear correction factor, and ultimately the static behavior, of the plates.

Keywords: functionally graded materials; porosity distributions; first-order shear deformation theory;
shear correction factor; higher-order shear deformation theory; equivalent single-layer approach

1. Introduction

Material science has undergone great evolution in recent years, representing an extremely
important field for the development of many technological areas for several reasons, such as those
related to a sustainable economic and environmental nature. The introduction of the functional
gradient concept in the context of composite particulate materials has contributed to the design of
advanced materials able to meet specific objectives, through spatial variation in composition and/or
microstructure [1,2].

Functional gradient materials (FGMs) were developed in Japan in the late 1980s for thermal
insulation coatings [2]. With more than three decades of history, and being a part of a wide variety
of composite materials, materials with functional gradients continue to be the object of attention.
This is due to their tailorability, arising from a gradual and continuous microstructure evolution and,
consequently, of locally varying material properties in one or more spatial directions. Therefore, FGMs
can be appropriately idealized to meet certain specifications [3,4].

Composite materials can generally be described as systems composed of a matrix and a
reinforcement, the material properties of which surpass those presented by each constituent
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individually [5]. The gradual and continuous evolution of their material properties provide FGMs
with better mechanical behavior than traditional composite materials [6]. Among other characteristics
possessed by some FGMs, such as low thermal conductivity and low residual stresses, these materials
also make it possible to minimize the stress discontinuities of conventional laminated composites [5,7,8].
FGMs’ high resistance to temperature and the absence of interface problems gives them great importance
in several engineering applications, which is why these composite materials have been extensively
studied and used in the past two decades in a wide range of science fields requiring improved
mechanical and thermal performances [5–7]. This broad range of applications justifies the need to study
and predict the responses of FGMs’ components [9]. In the past year, Li et al. developed several studies
involving, among other topics, a stability and buckling analysis of functionally graded structures such
as cylinders and arches [10–14].

Considering the continuous mixture concept behind their composition, FGMs can be constituted
of two or more material phases. Hence, the resulting local material properties depend on this mixture
evolution, allowing for a design according to the desired functions and specifications [15]. From the
literature, the most common FGMs are constituted of two material phases, often one ceramic and one
metal [6,11].

The manufacturing process of sintering, which is common in the production of FGMs, is responsible
for the formation of micro voids or porosities within the materials, making important the introduction of
porosity effects at the structures’ design stage [9]. The literature contains various studies which include
dynamic and static analyses of functionally graded porous plates and beams [16–21]. In addition, there
are several studies considering ring and arch structures, especially those developed by Li et al. in the
past year [13,22–27].

Functionally graded porous materials (FGPs) combine both porosity and functional gradient
characteristics, where the porosity may have a graded evolution across the volume, providing desirable
properties for some applications (as in biomedical implants), and undesirable in others where voids
may cause serious problems (as in the aeronautical sector). The change in porosity in one or more
directions can be caused by local density effects or pore size alteration. Functionally graded porous
materials possess a cell-based structure, which can be classified as open or closed (i.e., containing
interconnected or isolated pores, respectively) [15].

Porous gradient materials also present a multifunctional character, where, among other aspects,
one may highlight a high performance-to-weight ratio and resistance to shock; nevertheless, it is
important to note that pores imply a local loss of stiffness. The latest advances in manufacturing
processes allow the consideration of the development of porous materials with a functional gradient,
using methods such as additive 3D printing. Thus, it becomes possible to design porous structures with
designed variable stiffness, which can be customized for specific engineering applications, optimizing
performance and minimizing weight [28]. Due to the relevant role that such materials have in a range
of applications, it is important to have a wider perspective of the contexts where one can find them.

Mechanical or more generically structural components made of porous materials, bioinspired
materials, can be designed for sensitive and very precise operating conditions—for example, robotic,
prosthetic, and aeronautical components, among others [28]. Most of the materials used in engineering
are dense; however, porous materials are also of great interest and applicability in fields such as in
membranes [3]. Bioinspired materials thus have great potential for current technologies, as their unique
characteristics allow them to meet various design requirements [28]. Natural or man-made, porous
compacts or foams—the types of porous materials are many and diverse. Bones, wood, ceramics,
and aluminum foams are just a few examples [29]. In the field of biomaterials, the inclusion of porosities
allows diversification of their applicability, with ceramic and polymeric scaffolds being examples of
this [3].

In the biomedical field, a bone implant must guarantee a functional gradient that mimics real bone
stiffness variations. With functionally graded porous scaffolds it is possible to obtain the variations
in mechanical and biological properties required for bone implants, as the presence of a porosity
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gradient is imperative for bone regeneration. Thus, functionally graded porous scaffolds for bone
implants are designed to achieve the ideal balance between porosity and mechanical properties [30].
Since bone implants have various requirements, it is important to have ceramic porous materials with a
wide and diversified range of pore sizes and morphologies in order to accomplish these requirements.
Therefore, different porous hydroxyapatite structures have been developed to mimic natural bone’s
bimodal structure [31]. Since implants with no porosity show weak tissue regeneration and implant
fixation capability, the introduction of a pore distribution in these alloys’ structures leads to bone-like
mechanical properties, allowing cellular activity [32].

In another field [33], membranes produced according to the Fuji process present a structure with
relatively wide pore surface, followed by a gradually tightening pore size and a clearing of pores,
finishing with an isotropic structure. Thus, these membranes can be mentioned as an example of
an asymmetric structure from the porosity perspective, being implemented in several applications,
with filtration and medical diagnosis being some examples. Porous membranes are the object of
research related to materials and structure optimization [34].

Membranes can also be used for gas separation applications, typically possessing a microporous
substrate, a mesoporous intermediate layer (or more), and a microporous top layer (or more).
Regarding materials, α-Al2O3 is the most frequent, but TiO2, ZrO2, SiC, and their combinations are
also very common [35]. For industrial wastewater treatment applications, ceramic microfiltration
membranes made of Al2O3, SiO2, ZrO2, TiO2, and their composites present excellent behavior.
These specific membranes possess multi-layered asymmetric structures, with a macroporous support
followed by intermediate layers of graded porosity [36]. The use of ceramic membranes extends to
catalytic membrane reactors due to the huge resistance to high temperatures and aggressive chemical
environments. In this case, the membranes usually present disk-like, planar, tubular, and hollow fiber
designs [37]. According to Sopyan et al., the material properties of porous ceramics (e.g., Young’s
modulus and flexural strength) depend exponentially on the ceramics’ total porosity [31].

Secondary batteries technology uses porous membranes to isolate cathode and anode from each
other, preventing a short circuit, and to allow the charge transport. Therefore, these membranes should
be simultaneously excellent electric insulators and good ion conductors, presenting a great safety
level. In this field of action there are microporous, ultrafiltration. and nanofiltration membranes, with
organic polymers being the most used materials [34].

Metallic foams are another example of materials whose mechanical properties depend on the
porosity characteristics. Recently, they have been gaining use among applications of aluminum and
other alloys since the combination of properties intrinsic to metal alloys with the effects of porosity are
of great interest, highlighting the low density and high energy absorption. The change in the porosity
characteristics of these materials (e.g., pore size) makes it possible to obtain properties suitable for
specific applications. Aluminum foams find use in structural applications, as well as automotive and
aeronautics industries, as examples [38].

A well-defined spatial porosity gradient is a requirement of solid foams for some specific
applications like filtration, energy adsorption, and tissue engineering. Therefore, control over
porosity in terms of morphology, pore size, and pores’ connectivity is a challenge in the development
of fabrication processes, since these parameters have a great influence on the porous materials’
performance [39]. In their work, Costantini et al. mentioned that a pore size gradient confers an
increased strength and energy absorption to a material, and that this kind of material needs a more
precise characterization of the porosity gradient concerning the mechanical properties [39].

Since pores can have different dimensions and distributions, porous materials can appear
with different porosity gradients. In a typical rectangular plate, there are several possible porosity
gradient configurations. Regardless of the specific distribution, the relevance should be placed on the
correspondence to the design requirements [3], knowing that the heterogeneity and spatial gradient
characteristic of porous materials will play an extremely important role in the resulting mechanical
properties [40].
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The Young modulus and shear modulus are strongly influenced by several factors, from the
manufacturing process, to the size, shape, and distribution of the pores. Consequently, the analytical
prediction of porous materials’ properties is not simple because of the randomness present in their
structures, and the need of a knowledge of the microstructure that is as accurate as possible in order to
obtain a significant numerical prediction [29].

Concerning porosity distributions, Nguyen et al. [41] studied the mechanical behavior of porous
FGPs. To this purpose they took into account two different porosity distributions, varying both through
the thickness direction (namely, the so-called even and uneven distributions). Zhang and Wang [15]
produced eight different porous material structures with different pore distributions, including gradient
distributions, and subjected them to some mechanical tests in order to evaluate important materials
properties like Young’s modulus. With this work they developed techniques to estimate the effective
Young’s modulus of functionally gradient porous materials. Having verified that there is an obvious
relation between this material property and porosity, the relationship between both is not necessarily
linear. However, the experimental results constitute a good basis for validating material properties
obtained through theoretical models.

With this introductory section, the importance of porous materials becomes clear, particularly
regarding the development of porosity distribution models that best represent the effects on the
respective effective material properties.

Hence, the present work presents three porosity distribution models, two of which are based on
the reference literature, and respective estimates of material properties. For these cases, we performed
a set of parametric studies focused on the static behavior of porous plates with a functional gradient
in order to characterize the influence of the shear correction factor, associated with the use of the
first-order shear deformation theory. These studies were performed via the finite element method
considering an equivalent single layer approach. To the best of our knowledge, there are no previously
published works focusing on the assessment of the influence of the shear correction factor in the static
bending behavior of porous plates. Hence, this study addresses this, considering the characterization of
the neutral surface deviation from the mid-plane surface, which also provides an illustrative measure
of the medium’s heterogeneity, typical of graded mixture and porous materials.

2. Materials and Methods

Considering the wide and varied number of applications of porous materials briefly discussed
in the introductory section, the prediction of their mechanical properties is very relevant. Several
models to predict the Young modulus of porous materials have recently been proposed, including
linear, quadratic, and exponential models, although these are not suitable for porosities which are
too low or too high [29]. Carranza et al. evaluated the Young modulus of metallic foams with fractal
porosity distribution, and the respective estimates were close to the experimental results. In this way,
they proved the expected effect, and verified that the appropriate choice of the porosity distribution
model is an important factor [38].

2.1. Functionally Graded Materials

The flexibility in tailoring material properties makes FGMs very interesting for many applications
in diverse engineering and science fields like bioengineering, mechanics, and aerospace.

The procedures for manufacturing FGMs are designed in order to obtain a specific spatial
distribution of the constitutive phases. The continuous and gradual spatial distribution is responsible
for the unique morphology and properties of these materials that make them stand out from others [1].
The gradual evolution of the phases can be varied, and there may even be different variations in more
than one direction in the same FGM [2]. Figure 1 illustrates one example of material distribution
though one direction of a dual-phase FGM.
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 Eb 

Et 

Bottom surface 

Top surface 

Figure 1. Example of dual-phase functional gradient material (FGM) mixture, with variation in
one direction.

As a consequence of the gradual evolution of the bulk fractions and microstructure of FGMs,
the respective macroscopic properties also present gradual changes. The gradual evolution of the
material properties characteristic of FGMs makes it possible to design them in order to achieve specific
mechanical, physical, or biological properties [1]. Since the volume fraction of the constituent phases
can vary gradually in one or more directions, the present work considers the particular case of a
dual-phase FGM plate in which this variation occurs in one only direction—specifically the thickness
direction, as in [42]. In this case, the evolution of the volume fraction according to the direction of the z
axis occurs according to the following power law:

V f =
( z

h
+

1
2

)p
, (1)

where h and z represent, respectively, the plate’s thickness and the thickness coordinate, where the origin
corresponds to the FGM plate’s middle surface, thus z ∈ [−h/2, h/2]. Representing this material distribution,
Figure 2 presents the volume fraction evolution through the thickness for some power law exponent
values. As can be seen, the exponent p dictates the volume fraction behavior along the plate’s thickness.

Figure 2. Evolution of the volume fraction through the thickness direction.
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As the volume fraction of the phases of the constituents of FGMs is a function of the z coordinate,
so too are the corresponding material properties. The effective material properties of an FGM can be
estimated by the Voigt rule of mixtures, according to:

PFGM = (Pt − Pb)V ft + Pb (2)

where PFGM is the FGM property, and Pt and Pb represent the corresponding property at top and
bottom surfaces, respectively. This approach is suitable for FGMs whose phases are not very different
from each other [43].

2.2. Porosity Distributions

Functionally graded porous materials combine characteristics of both FGMs and porous materials.
Beyond the great rigidity–weight ratio, the incomparable mechanical properties they present explains
why these distinctive materials are widely used in a wide range of diverse fields [44].

Despite great developments in manufacturing processes, the formation of micro-voids or porosities
is still a fact [4], and in some specific applications this can be even desirable and designed for. Regardless
of the specific case, as a consequence of these pores, the material’s strength will become lower, and this
should be included in mechanical behavior studies [44].

The present work considers three types of porosity distributions through the thickness, the first
one being proposed by Kim et al. [45] and applied in several studies, such as those developed by
Coskun et al. [46] and by Li and Zheng [22]. The last two were inspired in the uniform distribution
mentioned by Du et al. [47], whose studies focus on open-cell metal foams rectangular plates considering
different porosity distributions through the thickness.

• Porosity Model M1:

Concerning porous FGMs, Kim et al. [45] considered, among other things, a porosity distribution
through the thickness given by:

Φ(z) = φcos
[
π
2

( z
h
− 1

2

)]
, (3)

where z represents the thickness coordinate, h represents the plate’s thickness, and φ is the maximum
porosity value.

Thus, the rule of mixtures is affected by this distribution and the effective Young modulus (E) and
Poisson’s ratio (υ) can be estimated as follows:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1−Φ(z)), (4)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1−Φ(z)). (5)

In both Equations (4) and (5), the indexes t and b indicate the top and bottom surfaces, respectively.
Figure 3 illustrates, in a normalized form, the porosity distribution through the thickness, showing

an evolution from an absence of pores in the bottom surface to a maximum porosity in the top surface,
and the normalized Young’s modulus evolution through the thickness for different maximum porosity
values and power law exponents, elucidating how this model of porosity distribution affects this
material property.

The next two porosity distribution models were based on the uniform distribution referred to in [47].
In both models, the porosity coefficient (e0) is given by Equation (6), and parameter β can be

calculated through the relation in Equation (7).

e0 = 1− Eb
Et

, (6)
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β =
1
e0
− 1

e0

( 2
π

√
1− e0 − 2

π
+ 1

)2
, (7)

 
(a) (b) 

Figure 3. Normalized: (a) porosity model M1 and (b) Young’s modulus (E(z)) through the
thickness direction.

• Porosity Model M2:

In this model, the material properties, namely Young’s modulus and Poisson’s ratio, are estimated
by Equations (8) and (9), and the graph of the evolution of the normalized Young modulus through the
thickness is presented in Figure 4.

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

]
(1− e0β), (8)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

]
(1− e0β). (9)

Figure 4. Variation of the normalized Young’s modulus (E(z)) through the thickness for porosity model M2.
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• Porosity Model M3:

This model introduces to the previous one a porosity gradient through the thickness, with the
respective effective materials properties being given by:

E(z) =
[
(Et − Eb)

( z
h
+

1
2

)p
+ Eb

][
1− e0βcos2

(
2π

z
h

)]
, (10)

υ(z) =
[
(υt − υb)

( z
h
+

1
2

)p
+ υb

][
1− e0βcos2

(
2π

z
h

)]
. (11)

Figure 5 shows the variation of the normalized Young’s modulus through the thickness. Note that
the porosity distribution fluctuates between maxima and minima along the thickness.

Figure 5. Porosity model M3: normalized Young’s modulus (E(z)) through the thickness.

Note that on the upper surface the normalized Young’s modulus takes the same value for all
power law exponents evaluated once the equality E(z) = Et(1− e0β) is verified. On the opposite
surface, Young’s modulus is given by E(z) = Eb(1− e0β), which justifies the fact that the corresponding
p = 0 curve constitutes an exception from the others, since this particular case corresponds to a plate
made up of a single phase whose Young’s modulus is given by Et, while in the remaining cases the
bottom face corresponds to the phase with Young’s modulus given by Eb.

In all three porosity distribution models, the shear modulus is estimated by:

G(z) =
E(z)

2(1 + υ(z))
. (12)

In Figures 3b, 4 and 5, the curve corresponding to the case of null power law exponent without
porosity is also presented. In this case the represented material property is given by Equation (2),
taking the value of Et. Thus, the corresponding normalized form takes the value 1 through the entire
plate thickness.

2.3. Constitutive Relation and Finite Element Models

The static behavior of porous plates with functional classification was evaluated for a set of
studies through finite element analysis based on the first-order shear deformation theory (FSDT) and
on third-order shear deformation theory (HSDT). According to FSDT the displacement field can be
described by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y),

12
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v(x, y, z) = v0(x, y) + z·θ0
y(x, y), (13)

w(x, y, z) = w0(x, y),

where u(x,y,z), v(x,y,z), and w(x,y,z) are the displacements of a certain plate coordinate point, and u0(x,y),
v0(x,y) and w0(x,y) represent the displacements of a mid-plane point associated to them. The normals to
the mid-plane rotations are represented by θ0

x and θ0
y, respectively. Thus, this model considers a total of

five degrees of freedom per node, q =
[
u0, v0, w0,θ0

x,θ0
y

]
. Considering small deformations, the elasticity

kinematic relation leads to the following strain field, omitting dependencies for simplicity reasons:

εx = ε0
x + z·k0

x
εy = ε0

y + z·k0
y

γxy = γ0
xy + z·k0

xy

γxz = γ0
xz

γyz = γ0
yz

(14)
ε0

x = ∂u0

∂x
ε0

y = ∂v0

∂y

γ0
xy = ∂u0

∂y + ∂v0

∂x

k0
x =

∂θ0
x
∂x

k0
y =

∂θ0
y

∂y

k0
xy =

∂θ0
y

∂x +
∂θ0

x
∂y

γ0
xz = θ

0
x +

∂w0

∂x
γ0

yz = θ
0
y +

∂w0

∂y

where εx, εy, and γxy correspond to the two in-plane normal strains and to the in-plane total shear strain,
respectively. The interlaminar transverse shear strains are represented by γyz and γxz. This strain
field is characterized by a null normal transverse strain (εz = 0), denoting thickness inextensibility.
Since the FGM considered in the studies carried out can be considered as an isotropic material, the
constitutive law governing the relationship between the stress and strain fields is given by:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx

σy

σxy

σyz

σxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 k·Q44 0
0 0 0 0 k·Q55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
εx

εy

γxy

γyz

γxz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The coefficients Qij, provided by [48], stand for the elastic coefficients, which in the present work
depend on the z coordinate due to the variation in material properties through the thickness direction:

Q11 = Q22 =
EFGM(z)

1−υ2
FGM(z)

Q12 =
υFGM(z)·EFGM(z)

1−υ2
FGM(z)

,

Q44 = Q55 = Q66 = GFGM(z).

(16)

The HSDT displacement field also considered in this work for comparison purposes was proposed
by Kant et al. [49], and is given by:

u(x, y, z) = u0(x, y) + z·θ0
x(x, y) + z3·θ∗x(x, y),

v(x, y, z) = v0(x, y) + z·θ0
y(x, y) + z3·θ∗y(x, y), (17)

w(x, y, z) = w0(x, y) + z2·w∗(x, y).

As can be observed, this higher-order displacement field not only allows for in-plane displacements
that vary as cubic functions of the thickness coordinate, but it also allows for thickness extensibility.
This higher-order theory was implemented for comparison purposes, but was not the main focus of
the present work.

The finite element method was used for the study presented in this work. This method is widely
used due to its great versatility, able to solve a wide range of physical problems ruled by differential
equations. In this numerical method, the domain of a certain problem is discretized into elementary
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subdomains, which obey continuity and equilibrium requirements between adjacent subdomains. The
resolution of a problem by the finite element method can generically be described by three steps [49,50],
as follows. After the pre-processing stage, where all aspects related to the domain discretization and
topology, material and geometrical characteristics, loading and boundary conditions are accomplished,
one proceeds to the analysis phase where the intended analysis is performed and primary variables
are obtained. The results of this analysis can then be post-processed in order to obtain other derived
physical quantities of interest in the third and final phase of this method. The plates analyzed in the
present work had a rectangular geometry configuration (Figure 6) with a graded material distribution,
as already mentioned.

 
Figure 6. Plate geometry.

Taking into consideration their geometry, the plates were discretized into quadrilateral finite
elements. To enable a more comprehensive study, we considered bilinear and biquadratic quadrilateral
plate finite elements from the Lagrange family, as illustrated in Figure 7. The bilinear element (a)
contained one node at each vertex (four nodes in total), while the biquadratic element (b) additionally
contained a center node and one node at the midpoint of each side, resulting in a total of nine nodes.
Each node possessed five degrees of freedom—three translations and two rotations associated to the
plate mid-plane, as previously mentioned.

 

(a) (b) 

Figure 7. Plate elements from Lagrange family: (a) bilinear element; (b) biquadratic element.

As the main aim of the present work is related to the assessment of the influence of the shear
correction factor on the static bending of FGP plates, the procedure considered to achieve the global
equilibrium equations to be solved was based on the minimization of the plates’ potential energy. This
mathematical formulation yields for each element a set of equilibrium equations. Considering the
whole discretized domain where continuity and equilibrium aspects ensure the discretized model will
be representative, we finally obtain the global equilibrium equation:{

f
}global = [K]global·{u}global, (18)

where {u}global denotes the problem solution (i.e., the generalized nodal displacements),
{
f
}global

represents the generalized forces applied to the plates, and [K]global is the global stiffness matrix. The
solution of the problem is obtained after the imposition of the plates’ boundary conditions.
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2.4. Shear Correction Factor

The studies developed in this work are based on FSDT, which requires the introduction of a shear
correction factor on the transverse shear components of the elastic stiffness coefficients matrix in order
to redress the uniform transverse shear stresses/strains arising from the deformation kinematics based
on the displacement field. Despite this need, FSDT-based models continue to be widely used in the
modeling of structures, due to their lower computational cost when compared to other theories and
also due to their applicability domain. It is possible to conclude that, even considering a bilinear
element, results were very good when compared to other authors’ alternative solutions and with
biquadratic elements, while also having a lower computational cost. Regarding the homogeneous
plates, the shear correction value considered was 5/6. However, the overall heterogeneity of FGMs due
to the gradual evolution of their properties makes it desirable to calculate the correction factor for each
specific case [6,43,51].

Shear correction factors determined through predictor–corrector procedures that use iteration
processes depend on plate geometry, as well as boundary and load conditions. Therefore, the factors
thus determined are limited to a given system and cannot be applied to different configurations. The
use of energy considerations for the calculation of shear correction coefficients is quite common in
studies involving laminated composite materials and FGMs [51]. Nguyen et al. [51] worked on this
subject concerning FGMs, comparing the strain energies obtained from the average shear stresses and
from the equilibrium to calculate the shear correction factors. Efraim and Eisenberg developed a shear
correction factor depending on Poisson’s ratio and the volume fractions of both material phases present
in a functionally graded plate [52]. Working on FGPs, Li et al. [53] calculated the shear correction
factor as a function of the power law exponent, thickness-to-length ratio (a/h), and of some constant
coefficients that depend on the material phases involved.

The shear correction factor used in the present work (here represented by k) was estimated using a
formulation similar to the one used by Singha et al. [54]. Accordingly, the reference surface used for the
shear correction factor calculation was the neutral one and not the mid-surface as usual. To this purpose
we considered an FGP with thickness h as illustrated in Figure 8, where zms and zns are the coordinates
of a point in the thickness direction relative to the medium and neutral surfaces, respectively.

Figure 8. Medium and neutral surfaces.

According to this formulation, the shift of the neutral surface (d) is given by:

d =

∫ h/2
−h/2 E(zms)·zms dzms∫ h/2
−h/2 E(zms) dzms

. (19)

The shear correction factor is then derived from the equivalent energy principle, and can be
determined by Equation (20) [54]:
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k =

(∫ h
2−d

− h
2−d

(∫ zns

− h
2−d E(ξ)· ξdξ

)
dzns

)2

∫ zns

− h
2−d Q55 dzns·

∫ h
2−d

− h
2−d

(∫ zns
− h

2−d
E(ξ)· ξdξ

)2

G(zns)

. (20)

As applied to determine shear correction factor, all calculations carried out a posteriori were
simply affected by a referential translation according to the coordinate vector (0, 0, −d).

3. Results

The present section, dedicated to the presentation of results and their preliminary discussion,
comprises a first verification study, after which a set of case studies considering different porosity
distributions models are presented and analyzed concerning their influence on neutral surface shift,
shear correction factor, and maximum transverse displacement.

3.1. Verification Studies

3.1.1. Shear Correction Factor

In the course of the literature review, no studies were found on the correction factor in the context
of FGMs considering porosity distributions. For this reason, this first verification study regarding the
approach applied to the correction factor determination was carried out considering a metal/ceramic
functionally graded plate where the volume fraction of the ceramic phase is given by Equation (1).
To this purpose, a square plate with unitary length and aspect ratio of 100 was considered, according
to [43]. The results obtained for different power law exponents and Young’s modulus ratios between
both ceramic and metallic phases are presented in Table 1, showing an excellent agreement with the
reference results for all parameter values considered.

Table 1. Shear correction factor for different material parameters.

p
Ec/Em

1 2 4 6

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 5/6 0.8333 0.8320 0.8320 0.8305 0.8305 0.8305 0.8305
2 5/6 0.8333 0.8095 0.8095 0.7804 0.7804 0.7662 0.7662
5 5/6 0.8333 0.7891 0.7891 0.7175 0.7175 0.6643 0.6641
10 5/6 0.8333 0.7989 0.7989 0.7316 0.7318 0.6743 0.6746

p
Ec/Em

8 10 15 20

k [43] k k [43] k k [43] k k [43] k

0 5/6 0.8333 5/6 0.8333 5/6 0.8333 5/6 0.8333
1 0.8308 0.8308 0.8312 0.8312 0.8319 0.8319 0.8323 0.8323
2 0.7593 0.7594 0.7563 0.7563 0.7555 0.7556 0.758 0.7580
5 0.6238 0.6235 0.5923 0.5919 0.5381 0.5377 0.5046 0.5043
10 0.6262 0.6266 0.5856 0.5860 0.5073 0.5080 0.4513 0.4521

3.1.2. Porosity Distribution Model 1 (M1)

The first porosity model (M1) was submitted to verification studies. For this, and according to
reference [6], an FGM square plate with 17.6 μm thickness and an aspect ratio of 20 was considered.
Regarding the constituent materials, the Young moduli of the top and bottom surfaces were assumed
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to be Et = 14.4 GPa and Eb = 1.44 GPa respectively, and in this particular study, the Poisson ratio was
considered constant, assuming the value of 0.38. The plate, simply supported, was considered under a
uniformly distributed load with 100 kPa magnitude and was discretized in a 10 × 10 mesh of four
node finite elements (Q4).

The normalized transverse displacement and the respective relative deviation to the reference,
presented in Table 2, were obtained by Equations (21) and (22), respectively.

w =
Eb·h3

q0·a4
w
(

a
2

,
b
2

, 0
)
, (21)

δ(%) =
wpresent −wre f erence

wre f erence
·100(%). (22)

Table 2. Results of the porosity distribution model 1 (M1) verification study.

p φ w δ (%)

0
0 4.220 × 10−3 1.49

0.2 4.798 × 10−3 0.43
0.5 6.242 × 10−3 −0.57

1 0.5 1.452 × 10−2 0.26
5 0.5 2.685 × 10−2 −0.18

The small relative deviations observed make it possible to conclude that there is very good
agreement between the present model and the reference results, although a different approach was
applied. In particular, the higher relative deviation occurs when considering an isotropic homogeneous
material without porosities (p = 0, φ = 0).

3.2. Case Studies

In order to perform a set of parametric studies relevant for this work’s objectives, we carried out
simulations on a set of case studies, in which FGM square plates with 25 mm thickness and aspect
ratio 20 were considered. The material properties involved in the studies presented in this section are
given in Table 3, and the volume fraction of TiO2 is given by Equation (1). The plates were considered
simply supported and submitted to a uniform load with 100 kPa of magnitude.

Table 3. Material properties.

Material Young’s Modulus (GPa) Poisson’s Ratio

Aluminum (Al) 70 0.33
Titanium Oxide (TiO2) 230 0.27

The case studies show the influence of the different porosity distribution models in the neutral
surface shift, shear correction factor, and maximum transverse displacement for a range of power law
exponents. The influence of finite element type used was also studied.

3.2.1. Influence on Neutral Surface Shift and Shear Correction Factor

In this subsection we present the studies performed to explore the effects of the porosity distribution
on the neutral surface shift and shear correction factor.

• Porosity Distribution Model 1 (M1):

When considering porosities distributed according to model M1, it is important to evaluate how the
maximum porosity value combined with the power law exponent affects the neutral surface shift and the

17



Math. Comput. Appl. 2020, 25, 25

shear correction factor. For this purpose, the following sets of values were respectively considered for
the maximum porosity value and for the exponent of the power law: φ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}
and p = {0, 1, 2, 5, 10}. The results obtained are presented in Table 4, Figures 9 and 10.

Table 4. Porosities distribution M1: neutral surface’ shift and shear correction factor.

φ p d (m) d/h k

0

0 0 0 5/6
1 2.2222 × 10−3 0.0889 0.8279
2 2.7027 × 10−3 0.1081 0.7828
5 2.4631 × 10−3 0.0985 0.7344

10 1.7921 × 10−3 0.0717 0.7499

0.1

0 −2.3222 × 10−4 −0.0093 0.8316
1 2.0233 × 10−3 0.0809 0.8289
2 2.4955 × 10−3 0.0998 0.7843
5 2.2257 × 10−3 0.0890 0.7359

10 1.5422 × 10−3 0.0617 0.7505

0.2

0 −4.9832 × 10−4 −0.0199 0.8297
1 1.7903 × 10−3 0.0716 0.8304
2 2.2520 × 10−3 0.0901 0.7865
5 1.9481 × 10−3 0.0779 0.7378

10 1.2519 × 10−3 0.0501 0.7513

0.3

0 −8.0630 × 10−4 −0.0323 0.8275
1 1.5138 × 10−3 0.0606 0.8325
2 1.9620 × 10−3 0.0785 0.7894
5 1.6190 × 10−3 0.0648 0.7403

10 9.1039 × 10−4 0.0364 0.7522

0.4

0 −1.1669 × 10−3 −0.0467 0.8248
1 1.1805 × 10−3 0.0472 0.8353
2 1.6107 × 10−3 0.0644 0.7934
5 1.2227 × 10−3 0.0489 0.7436

10 5.0299 × 10−4 0.0201 0.7534

0.5

0 −1.5948 × 10−3 −0.0638 0.8217
1 7.7050 × 10−4 0.0308 0.8390
2 1.1761 × 10−3 0.0470 0.7988
5 7.3631 × 10−4 0.0295 0.7477

10 8.5279 × 10−6 0.0003 0.7546

0.6

0 2.1109 × 10−3 0.0844 0.8177
1 2.5421 × 10−4 0.0102 0.8439
2 6.2495 × 10−4 0.0250 0.8059
5 1.2505 × 10−4 0.0050 0.7529

10 −6.0425 × 10−4 −0.0242 0.7560

Independent of the φ value, the neutral surface shift increased from p = 0 to p = 2, where it had its
maximum value, then decreasing from p = 2 to p = 10. Additionally, for all maximum porosity values
considered, except for the case where φ = 0.6, the shear correction factor decreased for power law
exponents between 0 and 5, increasing for the last transition from p = 5 to p = 10. This is explained by
the fact that, for higher values of the power law exponent, the functionally graded plate approaches a
homogeneous isotropic composition, and at the limit where p tends to infinity, the plate will consist of
a single phase (aluminum in this case), so the value of the shear correction factor tends to the typical
value 5/6.

When the maximum porosities took the values 0 or 0.1, the shear correction factor decreased
from p = 0 to p = 5, increasing for higher values of power law exponent. For the remaining values of
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maximum porosities this factor increased in the transition from p = 0 to p = 1, decreased from p = 1 to
p = 5, and increased again until p = 10.

φ

Figure 9. Porosity distribution model M1: evolution of neutral surface shift.

Figure 10. Porosity distribution model M1: evolution of shear correction factor.

In the case of an isotropic homogeneous plate (p = 0), the shear correction factor decreased when
the maximum porosity values increased. This was also true for the neutral surface shift, excepting for
the abrupt increase in the transition between φ = 0.5 and φ = 0.6. For other power law exponents, as
the maximum porosity values increased the neutral surface shift decreased and the shear correction
factor increased.

• Porosity Distribution Models 2 and 3 (M2 and M3):

Concerning these models, we evaluated the influence of the power law exponent, taking the
set of integers from 0 to 10. Figures 11 and 12 show the evolution of neutral surface shift and shear
correction factor, respectively, for both distribution models M2 and M3. The curves show a neutral
surface shift behavior similar to the one observed in the previous study and a shear correction factor
with a decreasing behavior up to p = 5, after which it increased with the exponent of the power law.
This behavior was similar in both models. The porosity distribution M3 led to smaller neutral surface
shifts, and the difference between both models increased with increasing power law exponent.

The porosity distribution model M3 generated lower values for the shear correction factor, with
the difference between the two models decreasing with the increase in the power law exponent, as
opposed to what was observed for the neutral surface shift.
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Figure 11. Porosity distribution models M2 and M3: evolution of neutral surface shift.

Figure 12. Porosity distribution models M2 and M3: evolution of the shear correction factor.

3.2.2. Influence on Absolute Maximum Transverse Displacement

In the studies presented in this section, the absolute maximum transverse displacement corresponds
to the magnitude of the plate’s center displacement given the considered boundary and load conditions.
The results include both 4-node (Q4) and 9-node (Q9) plate finite element results, using the calculated
shear correction factor (Section 2.4) here denoted by kcalc and the often used value of 5/6. The relative
deviations presented were determined by the following equations:

δQ4(%) =

wQ4

(k= 5
6 )
−wQ4

(kcalc)

wQ4
(kcalc)

·100(%), (23)

δQ9(%) =

wQ9

(k= 5
6 )
−wQ9

(kcalc)

wQ9
(kcalc)

·100(%). (24)

In the convergence study presented for porosity distribution model 1, the relative deviations
were determined by Equation (25), where the index i denotes the order of the data in the respective
results table.

δmesh(%) =
wi −wi−1

wi−1
·100(%), i ≥ 2 (25)
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• Porosity Distribution Model 1 (M1):

We developed convergence studies in order to evidence the reason for the discretization selection.
To illustrate them, we present the results obtained for two sets of distinct parameterizations of maximum
porosities and power law exponent values, considering Q4 finite elements and FSDT. The results
achieved and presented in Table 5 show that the mesh refinement from 10 × 10 elements presents a
deviation of less than 0.2%. Based on this evidence, the following studies were performed considering
a mesh of 10 × 10 elements.

Table 5. Porosity distribution model M1: convergence study.

φ p Mesh w( a
2 , b

2 ,0) (m) δmesh (%)

0.1 1

4 × 4 −1.3855 × 10−4 -
6 × 6 −1.4035 × 10−4 1.30
8 × 8 −1.4091 × 10−4 0.39

10 × 10 −1.4116 × 10−4 0.18
12 × 12 −1.4129 × 10−4 0.10
14 × 14 −1.4137 × 10−4 0.06
16 × 16 −1.4142 × 10−4 0.04
18 × 18 −1.4146 × 10−4 0.03
20 × 20 −1.4149 × 10−4 0.02

0.5 5

4 × 4 −2.5263 × 10−4 -
6 × 6 −2.5597 × 10−4 1.32
8 × 8 −2.5701 × 10−4 0.40

10 × 10 −2.5747 × 10−4 0.18
12 × 12 −2.5773 × 10−4 0.10
14 × 14 −2.5788 × 10−4 0.06
16 × 16 −2.5798 × 10−4 0.04
18 × 18 −2.5804 × 10−4 0.03
20 × 20 −2.5809 × 10−4 0.02

The results obtained regarding transverse displacement at the plate’s center are presented in
Table 6. In this study, the displacement increased with increasing maximum porosity for all power law
exponents considered, as expected.

Table 6. Porosity distribution model M1: plates center transverse displacement for different finite
models and shear correction factor approaches.

φ p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0

0 −7.9330 × 10−5 0.00 −7.9625 × 10−5 0.00
1 −1.3168 × 10−4 −5.14 −1.3215 × 10−4 −4.96
2 −1.5267 × 10−4 −7.17 −1.5321 × 10−4 −6.94
5 −1.7054 × 10−4 −5.51 −1.7114 × 10−4 −5.33
10 −1.8510 × 10−4 −2.95 −1.8574 × 10−4 −2.85

0.3

0 −9.9540 × 10−5 −0.94 −9.9930 × 10−5 −0.93
1 −1.6493 × 10−4 −1.81 −1.6556 × 10−4 −1.70
2 −1.9003 × 10−4 −3.06 −1.9075 × 10−4 −2.91
5 −2.1256 × 10−4 −1.83 −2.1335 × 10−4 −1.73
10 −2.3281 × 10−4 −0.50 −2.3367 × 10−4 −0.46

0.6

0 −1.3788 × 10−4 −5.65 −1.3845 × 10−4 −5.55
1 −2.2603 × 10−4 0.13 −2.2695 × 10−4 0.14
2 −2.5832 × 10−4 0.03 −2.5936 × 10−4 0.07
5 −2.9115 × 10−4 −0.07 −2.9231 × 10−4 −0.06
10 −3.2350 × 10−4 −0.91 −3.2479 × 10−4 −0.91
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Comparing the results with 4-node elements and different shear correction factor approaches,
the relative deviation increased from p = 0 to p = 2, decreasing with increasing power law exponents.
Moreover, the increase in maximum porosity value resulted in a relative deviation increase for p =
0—the opposite behavior to that verified for the intermediate power law exponents. When considering
p = 10, the relative deviations showed an oscillating behavior with increasing maximum porosity value.
However, for maximum porosity values of 0.5 and 0.6 and intermediate power law exponents these
deviations were nearly zero, except for the case of null power law exponent. The same behavior was
verified when doing the same comparative study with 9-node elements, except for the specific case
considering a maximum porosity value of 0.6.

Additionally, we verified that when considering the common value of 5/6 for the shear correction
factor, the relative deviation between the results observed for Q4 and Q9 elements was very low,
presenting a decreasing behavior with increasing maximum porosity value, except for p = 0, where
the opposite was verified. With the other approach, this relative deviation also presented very low
values, although the increase of maximum porosity value resulted in higher deviations for all power
law exponents considered.

Figure 13 shows the plate’s center displacement for different power law exponents and maximum
porosity values, obtained considering Q4 finite elements. In the figure, it is clear that higher
maximum porosity values corresponded to higher maximum transverse displacement magnitudes for
all exponents, with the effect being more pronounced when considering larger exponents.

φ

Figure 13. Porosity distribution model M1: evolution of plate’s center transverse displacement.

In order to compare the results obtained by applying different shear deformation theories, keeping
the configurations considered above, the plate’s center displacement was determined by applying the
third-order shear deformation theory (HSDT) proposed by [49], and also implemented by the authors for
this purpose. The results obtained are presented in Table 7, with the relative deviations determined by:

δHSDT(%) =
wHSDT −wFSDT

wFSDT
·100(%). (26)

When considering a homogeneous isotropic material (p = 0), the deviation between the results
obtained was very small for low maximum porosity values, increasing with the increase in porosity.
Fixing the power law exponent, the increase of maximum porosities values led to a decrease in the
relative deviations, except for the exponent p = 10 where the transition between φ = 0.4 and φ = 0.5
led to an increase in the relative deviation. For all the maximum porosity values presented, there were
slighter relative deviations in cases where the evolution of the material’s constitution through the
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thickness was smoother (i.e., for lower and higher power law exponents), except for the case where
φ = 0.6, for which the highest power law exponent presented a relative deviation higher than the
other non-nulls.

Table 7. Porosity distribution model M1: plate’s center transverse displacement for different shear
deformation theories.

φ p wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0

0 −7.9330 × 10−5 −7.9359 × 10−5 0.04
1 −1.3168 × 10−4 −1.2363 × 10−4 −6.11
2 −1.5267 × 10−4 −1.3980 × 10−4 −8.43
5 −1.7054 × 10−4 −1.5964 × 10−4 −6.39
10 −1.8510 × 10−4 −1.7875 × 10−4 −3.43

0.1

0 −8.5029 × 10−5 −8.4957 × 10−5 −0.08
1 −1.4116 × 10−4 −1.3402 × 10−4 −5.05
2 −1.6335 × 10−4 −1.5175 × 10−4 −7.10
5 −1.8250 × 10−4 −1.7308 × 10−4 −5.16
10 −1.9861 × 10−4 −1.9351 × 10−4 −2.57

0.2

0 −9.1656 × 10−5 −9.1228 × 10−5 −0.47
1 −1.5208 × 10−4 −1.4588 × 10−4 −4.08
2 −1.7562 × 10−4 −1.6538 × 10−4 −5.83
5 −1.9628 × 10−4 −1.8833 × 10−4 −4.05
10 −2.1425 × 10−4 −2.1017 × 10−4 −1.91

0.3

0 −9.9540 × 10−5 −9.8380 × 10−5 −1.17
1 −1.6493 × 10−4 −1.5965 × 10−4 −3.20
2 −1.9003 × 10−4 −1.8120 × 10−4 −4.64
5 −2.1256 × 10−4 −2.0596 × 10−4 −3.10
10 −2.3281 × 10−4 −2.2936 × 10−4 −1.48

0.4

0 −1.0919 × 10−4 −1.0672 × 10−4 −2.27
1 −1.8050 × 10−4 −1.7601 × 10−4 −2.49
2 −2.0744 × 10−4 −2.0002 × 10−4 −3.58
5 −2.3237 × 10−4 −2.2687 × 10−4 −2.36
10 −2.5551 × 10−4 −2.5202 × 10−4 −1.37

0.5

0 −1.2147 × 10−4 −1.1671 × 10−4 −3.92
1 −2.0008 × 10−4 −1.9602 × 10−4 −2.03
2 −2.2932 × 10−4 −2.2304 × 10−4 −2.74
5 −2.5747 × 10−4 −2.5241 × 10−4 −1.97
10 −2.8446 × 10−4 −2.7959 × 10−4 −1.71

0.6

0 −1.3788 × 10−4 −1.2913 × 10−4 −6.35
1 −2.2603 × 10−4 −2.2146 × 10−4 −2.02
2 −2.5832 × 10−4 −2.5238 × 10−4 −2.30
5 −2.9115 × 10−4 −2.8491 × 10−4 −2.14
10 −3.2350 × 10−4 −3.1455 × 10−4 −2.77

• Porosity Distribution Models M2 and M3:

The results presented in Tables 8 and 9 were obtained considering porosity distribution models
M2 and M3, for Q4 and Q9 finite element discretizations and different shear correction factor
approaches, respectively.

23



Math. Comput. Appl. 2020, 25, 25

Table 8. Porosity distribution model M2: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.6403 × 10−4 0.00 −1.6472 × 10−4 0.00
1 −2.7631 × 10−4 −5.20 −2.7747 × 10−4 −5.01
2 −3.2144 × 10−4 −7.21 −3.2278 × 10−4 −6.95
3 −3.4037 × 10−4 −7.01 −3.4178 × 10−4 −6.76
4 −3.5137 × 10−4 −6.28 −3.5282 × 10−4 −6.05
5 −3.5972 × 10−4 −5.50 −3.6120 × 10−4 −5.31
6 −3.6697 × 10−4 −4.81 −3.6848 × 10−4 −4.64
7 −3.7359 × 10−4 −4.22 −3.7512 × 10−4 −4.06
8 −3.7975 × 10−4 −3.72 −3.8131 × 10−4 −3.58
9 −3.8552 × 10−4 −3.29 −3.8710 × 10−4 −3.17

10 −3.9093 × 10−4 −2.94 −3.9254 × 10−4 −2.83

Table 9. Porosity distribution model M3: plate’s center transverse displacement for different finite
elements and shear correction factor approaches.

p
Q4 Q9

kcalc k= 5/6 kcalc k= 5/6

w( a
2 , b

2 ,0) (m) δQ4 (%) w( a
2 , b

2 ,0) (m) δQ9 (%)

0 −1.1377 × 10−4 −0.10 −1.1422 × 10−4 −0.10
1 −1.8911 × 10−4 −4.98 −1.8984 × 10−4 −4.80
2 −2.2387 × 10−4 −7.09 −2.2473 × 10−4 −6.85
3 −2.3900 × 10−4 −6.79 −2.3991 × 10−4 −6.56
4 −2.4781 × 10−4 −5.91 −2.4875 × 10−4 −5.71
5 −2.5454 × 10−4 −5.01 −2.5551 × 10−4 −4.84
6 −2.6041 × 10−4 −4.24 −2.6140 × 10−4 −4.09
7 −2.6576 × 10−4 −3.59 −2.6677 × 10−4 −3.46
8 −2.7070 × 10−4 −3.07 −2.7173 × 10−4 −2.96
9 −2.7529 × 10−4 −2.64 −2.7633 × 10−4 −2.54

10 −2.7953 × 10−4 −2.29 −2.8059 × 10−4 −2.21

In general, both porosity distribution models led to the same verifications about relative deviations.
Like in the previous study, the relative deviations δQ4 and δQ9 increased for increasing power law
exponents between p = 0 and p = 2, after which these deviations presented a decreasing behavior.
Additionally, comparing Q4 and Q9 results denoted by kcal we verified that the relative deviation was
maximal when p = 0, and presented a decreasing behavior with increasing power law exponent. When
k = 5/6, the relative deviation of Q4 and Q9 to Q4 with kcalc also increased from p = 0 to p = 2, then
decreased with increasing power law exponent in both comparative analyses.

Figure 14 depicts the behavior of the plate’s center transverse displacement, using Q4 finite
elements, for the power law exponents considered, evidencing the fact that porosity distribution model
M3 provided smaller displacements than model M2, and the increase in the exponent of the power law
induced a greater difference between the results obtained with each model.
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φ

Figure 14. Evolution of the plate’s center transverse displacement with the power law exponent.

Similar to the M1 porosity distribution model, the plate’s center displacements for models M2
and M3 were also obtained, considering the same third-order shear deformation theory. The results
obtained for both porosity distribution models with the different shear deformation theories are shown
in Table 10, where the relative deviations presented were determined by Equation (26). The results
show a behavior similar to the one observed and described for model M1 about the effect of the power
law exponent on the relative deviation.

Table 10. Porosity distribution models M2 and M3: plate’s center transverse displacement for different
shear deformation theories.

p M2 M3

wFSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%) wHSDT( a
2 , b

2 ,0) (m) wHSDT( a
2 , b

2 ,0) (m) δHSDT (%)

0 −1.6403 × 10−4 −1.6407 × 10−4 0.03 −1.1377 × 10−4 −1.1308 × 10−4 −0.60
1 −2.7631 × 10−4 −2.6157 × 10−4 −5.34 −1.8911 × 10−4 −1.7729 × 10−4 −6.25
2 −3.2144 × 10−4 −2.9782 × 10−4 −7.35 −2.2387 × 10−4 −2.0457 × 10−4 −8.62
3 −3.4037 × 10−4 −3.1621 × 10−4 −7.10 −2.3900 × 10−4 −2.1909 × 10−4 −8.33
4 −3.5137 × 10−4 −3.2917 × 10−4 −6.32 −2.4781 × 10−4 −2.2945 × 10−4 −7.41
5 −3.5972 × 10−4 −3.3992 × 10−4 −5.50 −2.5454 × 10−4 −2.3807 × 10−4 −6.47
6 −3.6697 × 10−4 −3.4941 × 10−4 −4.79 −2.6041 × 10−4 −2.4565 × 10−4 −5.67
7 −3.7359 × 10−4 −3.5798 × 10−4 −4.18 −2.6576 × 10−4 −2.5247 × 10−4 −5.00
8 −3.7975 × 10−4 −3.6582 × 10−4 −3.67 −2.7070 × 10−4 −2.5862 × 10−4 −4.46
9 −3.8552 × 10−4 −3.7302 × 10−4 −3.24 −2.7529 × 10−4 −2.6421 × 10−4 −4.02
10 −3.9093 × 10−4 −3.7967 × 10−4 −2.88 −2.7953 × 10−4 −2.6928 × 10−4 −3.67

In the present work, the three porosity distributions analyzed showed some similarities regarding
the estimation of effective material properties. Noting that for the materials considered, the product
e0β assumed an approximate value of 0.49, we can then compare this case for models 2 and 3 (M2 and
M3) to the case where in model 1 (M1) the maximum porosity value took the value 0.5. In this sense,
Table 11 presents the results obtained under these conditions, considering a Q4 plate model and a shear
correction factor determined with Equation (20), with respect to neutral surface shift, shear correction
factor, and plate’s center displacement.
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Table 11. Results obtained with the three porosity distribution models considered.

p Model 1 (φ = 0.5) Model 2 Model 3

d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m) d/h k w( a
2 , b

2 ,0) (m)

0 −0.0638 0.8217 −1.215 × 10−4 0 5/6 −1.640 × 10−4 2.6 × 10−25 0.7632 −1.138 × 10−4

1 0.0308 0.8390 −2.001 × 10−4 0.0889 0.8291 −2.763 × 10−4 0.0845 0.7590 −1.891 × 10−4

2 0.0470 0.7988 −2.293 × 10−4 0.1081 0.7853 −3.214 × 10−4 0.1033 0.7199 −2.239 × 10−4

5 0.0295 0.7477 −2.575 × 10−4 0.0985 0.7371 −3.597 × 10−4 0.0899 0.6791 −2.545 × 10−4

10 0.0003 0.7546 −2.845 × 10−4 0.0717 0.7519 −3.909 × 10−4 0.0604 0.7074 −2.795 × 10−4

These results indicate that porosity distribution M2 promoted greater displacement of the plate’s
center, whereas model M3 led to smaller displacements. Regarding the neutral surface shift, in the case
of model M1, it started to assume a negative value when p = 0 (the highest shift for the exponents
evaluated). Then, the neutral surface approached the medium surface and moved away, presenting
this behavior from p = 0 to p = 2, after which the neutral surface shift assumed smaller and smaller
values in the sense of a new approximation between the neutral and medium surfaces as the exponent
of the power law increased. In models M2 and M3 the neutral surface shift presented a monotonic
increasing behavior from p = 0 to p = 2, starting with coincident neutral and medium surfaces when p
= 0, then decreasing with increasing power law exponents, presenting higher neutral surface shifts
than those verified with model 3.

Regarding the shear correction factor, there was an oscillating behavior observed in model M1,
with an increasing trend between p = 0 and p = 1, a decreasing one between p = 2 and p = 5, and
finishing with an increasing trend again from p = 5 to p = 10. In models M2 and M3, this factor
presented a decreasing behavior with increasing power law exponents until p = 5, and then increases
from p = 5 to p = 10. It is important to note that in the results presented in Table 11 the null power
law exponent corresponds to a material constituted only by titanium oxide, but with the presence of a
porosity distribution.

In the particular case of model M3 considering p = 0, the neutral surface presented a shift from the
medium surface that can numerically be considered as zero. However, it is important to highlight that
this result does not lead to the expected shear correction factor value of 5/6, as verified with model M2.
For this reason, the authors decided to maintain the value of 2.6 × 10−25 for the respective normalized
neutral surface shift, d/h.

4. Discussion and Conclusions

The analyses carried out on the various case studies led to the following conclusions:

• In all porosity distributions models studied, the neutral surface shift increased for power law
exponents between 0 and 2, and for larger exponents it showed a decreasing behavior.

• The studies of the influence of porosity distribution model M1 on the shear correction factor
showed that for a certain power law exponent the shear correction factor increased with increasing
maximum porosity values, except for the case in which p = 0 which corresponds to a plate
constituted only by TiO2. The increasing behavior was more pronounced when the power law
exponent took the value 2, and was less pronounced for the higher power law exponents considered.

• Concerning the influence of the porosity distribution models on the deviation from the neutral
surface, models M2 and M3 resulted in behaviors similar to each other and similar to those verified
in the corresponding analysis carried out on model M1, with model M2 leading to lower neutral
surface shifts. The difference between the models increased with increasing power law exponents.

• With respect to the shear correction factor, porosity distribution models M2 and M3 showed
a similar behavior, with M3 presenting lower values (i.e., leading to higher corrections of the
transverse shear stiffness coefficients). In this case, the difference between both models decreased
with increasing power law exponents.
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• Regarding the maximum transverse displacement, and in correspondence to the expected trend,
all case studies showed an increasing behavior with the increase in maximum porosity values and
power law exponents. In the case of model M1, for a certain power law exponent the increase
in the plate’s center displacement became more pronounced as the maximum porosity value
increased. The increase in the magnitude of the maximum transverse displacement with the
increase of power law exponent is explained by the fact that higher exponents correspond to a
smaller volume fraction of the stiffer phase, TiO2.

• The last study carried out to promote a comparison between the three porosity distributions
demonstrated that model M2 led to higher displacements of the plate’s center, while model M3 led
to lower ones. Except for the case of null power law exponent, in which model M2 presented the
higher shear correction factor and model M3 the lower one, in the remaining power law exponents
considered model M1 and model M3 presented the higher and the lower shear correction factors,
respectively. Moreover, the shear correction factor presented a similar behavior with the increase
of power law exponent in both models M2 and M3, decreasing from p = 0 to p = 5, and increasing
in the last transition between p = 5 and p = 10. The first model had a different behavior concerning
the shear correction factor and power law exponent relation, first presenting an increase in the
transition between p = 0 and p = 1, decreasing for the intermediate exponents, and increasing in
the transition between the two largest exponents presented.

• The results regarding the maximum absolute plate displacement obtained with the plate elements
Q4 and Q9 were quite close to each other in most of the studied configurations. Therefore,
depending on the application, in order to obtain a shorter computing time the Q4 model may be a
good choice, resulting in an accuracy similar to the one obtained with the Q9 model.

• When comparing the relative deviations between the results obtained with the present FSDT and
HSDT, model M1 showed an increasing relative deviation with increasing maximum porosity
values when considering a null power law exponent. For all three porosity distribution models,
the lower relative deviations obtained, corresponded to the lower and to the highest power law
exponents (i.e., to smoother material evolutions through the thickness).

• In the future, it is important to give continuity to the development of theoretical models to
describe the real porosity distributions and how they influence the resulting material properties
and, consequently, the constitutive relations. Obtaining more accurate predictions of porous
functionally graded material properties and/or designed ones, will continue to be an important
research topic in order to allow for higher-quality predictions of structures’ behavior.

• Another important aspect and a limitation of the present work is related to the behavior prediction
of thicker plate structures with different porosity models, wherein higher-order models are
expected to behave better. However, it will be important to compare the response achieved via
higher-order models with the present results under comparable situations.
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Abstract: Discussed is the implementation of a continuation technique for the analysis of nonlinear
structural problems, which is capable of accounting for geometric and dissipative requirements.
The strategy can be applied for solving quasi-static problems, where nonlinearities can be due to
geometric or material response. The main advantage of the proposed approach relies in its robustness,
which can be exploited for tracing the equilibrium paths for problems characterized by complex
responses involving the onset and propagation of cracks. A set of examples is presented and discussed.
For problems involving combined material and geometric nonlinearties, the results illustrate the
advantages of the proposed hybrid continuation technique in terms of efficiency and robustness.
Specifically, less iterations are usually required with respect to similar procedures based on purely
geometric constraints. Furthermore, bifurcation plots can be easily traced, furnishing the analyst
a powerful tool for investigating the nonlinear response of the structure at hand.

Keywords: continuation methods; bifurcations; limit points; cohesive elements

1. Introduction

Nonlinear analyses are commonly performed during the design phases of advanced, modern
constructions. An example can be found in the design process of lightweight aerospace structures,
where the capability of accurately predicting the behaviour in the post-buckling range is a task
of paramount importance. The problem can often be studied by considering just nonlinearties
of geometrical nature, where analytical and semi-analytical approaches can be successfully
employed [1–5]. However, a proper assessment of damage tolerance demands for numerical
simulations capable of predicting also the propagation of cracks, thus including nonlinear effects related
to the material response. Meaningful examples illustrating the relevance of nonlinear phenomena
in structural problems can be found, e.g., in the works of Refs. [6,7], while qualitative aspects on
branching of cracks are reported in Ref. [8]. Due to the inherent complexity of responses involving both
geometrical and material nonlinearities, the finite element approach is often the most straightforward
one for performing the analysis. In this context, many numerical techniques were developed in the
years for handling the peculiar aspects that characterize the response of structures in the nonlinear
field. Arc-length strategies have been widely used for solving problems characterized by the presence
of limit points. The presence of the load parameter as additional unknown of the problem allows
the load to be increased or decreased throughout the iterative process. Pioneering work in this field
is due to Riks [9] and Wemper [10]. Noteworthy are the successive efforts to develop the updated
normal path method by Ramm and the spherical arc-length by Crisfield [11]. Despite the efficiency
in capturing the elastic response of the structure, classical arc-length approaches can be inadequate
in the presence of delamination phenomena, as the constraint equation is based on global quantities,
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while the failure process tends to involve few degrees of freedom. To overcome these limitations,
different strategies were proposed based on the modification of the constraint equation to consider
the local nodes involved in the delamination process [12–14] or by enriching the constraint equation
with information regarding the energy dissipated during the process [15–17]. An example is found
in Ref. [18], where path following techniques were discussed in the framework of Embedded Finite
Element Method (E-FEM).

Another class of numerical solution techniques refers to the so-called continuation approach.
These path-following techniques were originally introduced by Davidenko [19,20] in the early fifties.
They rely on the idea of transforming a nonlinear system of equations into a differential one. The system
is parametrized with respect to a solution parameter, and is solved as an initial value problem [21–23].
The application of continuation methods to nonlinear structural analyses offers several interesting
features. It allows to trace the primary equilibrium path of the structure, also in presence of snaps [24],
to detect and compute the critical points [24–26] and to trace the bifurcation branches [27,28]. As a result,
continuation methods enable to trace the complete bifurcation diagram of the structure, which is of
particular interest for gathering deeper insight into the behavior of the structure.

While a consistent number of examples concerning the use of continuation methods for the
nonlinear analysis of elastic structures are available in the literature, relatively few applications can be
found for handling problems characterized by the presence of crack propagation phenomena. To the
best of the authors’ knowledge, no continuation methods were specifically developed for problems
involving strain-softening responses.

In this article a novel continuation approach is proposed, offering the capability of
handling structural responses characterized by geometrically and materially nonlinear problems.
The continuation is performed referring to a modified version of the the Riks’ method [24] in
conjunction with a constraint regarding the dissipated energy [15,16]. The approach tries to combine
the efficiency of geometric-based procedures in the elastic field, with that of the dissipative ones in the
presence of damage. The resulting approach can accurately trace the equilibrium paths and shows
excellent robustness on bifurcation branches dominated by dissipative phenomena.

The performance of the approach is demonstrated by means of five numerical examples.
The first two ones illustrate the ability of the methods to compute the bifurcation diagram of
simple elastic problems. Then, test cases characterized by mixed geometric-material nonlinearities are
assessed. Finally, the application of the methods as quasi-static solution strategies is demonstrated in
a challenging example dominated by material nonlinearities.

The paper is organized as follows. Introductory aspects on continuation methods are presented
in Section 2, where the formulation of the nonlinear finite element approximation is briefly presented.
The detection of critical points is discussed in Section 3 by introducing algorithmic aspects for
classifying bifurcations and limit points, while the technique for implementing branch-switching
is the subject of Section 4. Geometric and dissipative constraint equations are introduced in Section 5,
and an overview of the method is provided in Section 6. The application of the method to a set of
nonlinear problems is illustrated in Section 7, where test cases involving geometrically and materially
nonlinear responses are presented.

2. Preliminaries

Continuation methods are a class of numerical techniques for computing the approximate solution
of a system of parametrized nonlinear equations [19,20]. Denoting with λ̃ the quantity adopted for the
parametrization, the procedure consists in constructing an approximation xi of x(λ̃i) for a sequence of
parameter values λ̃1, . . . , λ̃N in the interval of definition of the parameter itself.

Within the context of the finite element approach, the nonlinear equilibrium equations of
a structure can be represented, in their general form, as:

fint(a)− λf̂ = 0 (1)
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where fint defines the vector of the internal forces, and f̂ provides the shape of the external forces.
Nodal displacements are denoted as a, while λ is the load parameter.

The system of Equation (1) can be seen in terms of continuation techniques after noticing that the
set of equations defines implicitly a curve c of solution points that can be continuously parametrized
by means of the parameter λ̃. Starting from an initial equilibrium solution condition defined by
[a0, λ0]—which, in turn, corresponds to an initial value λ̃0 of the parameter λ̃—the continuation
problem consists in calculating the locus of solutions given by the branch c(λ̃). The process is
terminated when a target point is reached.

The choice of the parametrization is a focal aspect in the development of a continuation technique.
This choice is, in general, not unique and, according to its definition, different methods can be
obtained. One possibility is given by the adoption of the load factor λ, leading to a force-control
approach. Another choice consists in considering the displacements of a subset of nodes, which leads
to a displacement-based control. These two kinds of parametrization are inadequate for handling
turning points, where the surfaces λ = const and ai = const are tangent to the equilibrium path,
and no intersections can be found. On the contrary, a more suitable approach consists in adopting
a parametrization that is always nearly orthogonal to the equilibrium path, so that an intersection
between the surface and the path is always ensured. This is the case of a parametrization based
on the arc-length of the curve s [24]. By introducing a parametrization based on s, the load factor
λ becomes an additional unknown and a scalar constraint equation must be added to Equation (1).
The augmented system is then obtained as:

H =

{
fint(a)− λf̂ = 0

g(a, λ, s) = 0
(2)

where g(a, λ, s) is the general expression of the additional constraint equation.
Starting from the initial solution [a0, λ0], the equilibrium path c(s) can be regarded as the solution

of the initial value problem obtained by differentiating the augmented system in Equation (2) with
respect to s:

dH(c)

dc
c′ = 0, ‖ c′ ‖= 1, c(0) = [a0, λ0] (3)

where (·)′ denotes the derivative with respect to the path parameter s.
The solution of Equation (3) can be achieved by using predictor-corrector techniques:

the differential problem is initially integrated coarsely, then an iterative method is used as a stabilizer
for solving locally H(c(s)) = 0.

It is worth observing that predictor-corrector continuation methods are considerably different if
compared to the predictor-corrector techniques for the numerical integration of initial value problems.
In fact, despite the similarity between the two strategies, the corrector process in the continuation methods
thrives on the powerful contractive properties of the solution set H−1(0) for iterative methods such as Newton’s
method [21]. This property is not valid for the solution curves of general initial value problems, where
the corrector process converges, in the limit, to an approximating point, whose quality depends on the
size of the step.

One can observe that the system of Equation (3) involves the presence of derivatives with respect
to the parameter s, which is one of the main differences between arc-length and continuation methods.
This is an essential feature of continuation methods and allows to easily detect critical points along
the equilibrium path and to trace bifurcation branches. The main drawback is given by the need for
solving a linear system for computing the derivatives, and to perform an eigenvalue decomposition
for detecting critical points.

With this regard, the development of a continuation algorithm capable of tracing the complete
bifurcation diagram relies on the definition of:
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• a method for detecting and computing critical points, and capable of distinguishing between limit
and bifurcation points

• a method for moving from the primary path to a bifurcational branch
• a strategy to follow the equilibrium path along the solution branches

Different continuation methods can be realized by referring to different parametrizations and
constraint equations. The performance of the method can be modified by adopting different strategies
to perform the prediction or the correction. In addition, a consistent number of procedures can be
adopted to perform branch-switching or detect critical points. As result, it is possible to create a wide
range of methods characterized by different performance.

In the implementation proposed here, critical points are detected looking at the positive
eigenvalues of the stiffness matrix, while their classification is based on the analysis of the stiffness
parameter; the eigenvector injection method is adopted for switching from the primary to the
bifurcational path, while a novel energy-based path-following technique is proposed for performing
the continuation.

3. Critical Points

In this section, the procedure for detecting and approximating the critical points is described.
Critical points are equilibrium points corresponding to the singularity of the tangent stiffness matrix K.
According to the theory of stability of conservative systems, the stability of an equilibrium configuration
is ensured by the positive definiteness of the quadratic form Q, defined as:

Q(a) =
1
2

aTKa (4)

where K is the tangent stiffness matrix. The transition state between a stable and an unstable
equilibrium configuration is characterized by the appearance of a singularity in the matrix K. It follows
that critical points define the limits of stability of the equilibrium path. The k-th critical point can be
defined by means of the following generalized eigenvalue problem:

(K − ωkI)vk = 0 (5)

where ωk and vk are the k-th eigenvalue and eigenvector of the stiffness matrix, respectively, whereas I

is the identity matrix.
The eigenvalues ωk are supposed to be arranged according to the sequence

ω1 ≤ ω2 ≤ · · · ≤ ωN (6)

where N is the dimension of the stiffness matrix. When the critical state is reached, one or more
eigenvalues ωk in the sequence of Equation (6) are zero.

Critical points can be divided into limit and bifurcation points. In particular the following two
conditions are considered: {

λ′ = 0, Limit Point

f̂Tvk = 0, Bifurcation Point
(7)

The first condition of Equation (7) states that the load does not vary with respect to the path
parameter in the neighborhood of a limit point. This also means that limit points are equilibrium
configurations associated with a local maximum or minimum of the applied load. In most cases, limit
points separate stable and unstable equilibrium paths, although this is not a rule. The presence of
a limit point is commonly associated with snap-through phenomena, causing sudden snaps to a stable
configuration and not adjacent to the original one. In the neighborhood of limit points there exists one
unique branch, thus no further equilibrium branches need to be traced.
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On the contrary, multiple equilibrium configurations exist in the neighbourhood of a bifurcation
point, each of these solutions belonging to a different equilibrium branch and characterized by a
different tangent. During the solution process, it is then necessary to distinguish between limit and
bifurcation points to establish whether the continuation should be carried out along the emanating
branches or not. For this purpose, a procedure based on the evaluation of the stiffness parameter Sp

is adopted.

3.1. Stiffness Parameter

The stiffness parameter is a scalar quantity defined as [26]:

Sp =
da
dλ |T0 f̂

da
dλ

T
f̂

(8)

where the subscript 0 defines the initial state.
The value of Sp provides a relative measure of the incremental stiffness along the direction in

which the solution is moving. During the incremental solution process, this parameter is computed
through substitution of the increments into the derivatives, leading to the incremental expression:

Sp =
1

Δλ0
ΔaT

0 f̂

1
Δλj

ΔaT
j f̂

=
Δλj

Δλ0

ΔaT
0 f̂

ΔaT
j f̂

(9)

where Δa0 and Δλ0 are the increments computed in the first load step, and Δaj and Δλj are the total
increments computed at the current load step. As seen from Equation (9), the initial value of Sp is equal
to one. Whenever the structure loses stiffness with respect to the initial value, viz. ΔaT

j f̂ > ΔaT
0 f̂ and

Δλj < Δλ0, the parameter Sp becomes smaller than one. On the other hand, if the structure undergoes
a stiffening response, i.e., ΔaT

j f̂ < ΔaT
0 f̂ and Δλj > Δλ0, Sp is greater than the unity. Furthermore, the

stiffness parameter is positive on stable equilibrium branches and negative on unstable branches. As a
matter of fact, Sp turns out to be negative for unstable branches because, in such cases, the increment
of the load parameter is negative.

An important feature of the stiffness parameter is that, in correspondence of the limit points,
it satisfies the condition:

Sp = 0 (10)

as implicit in the definition of limit point itself. On the other hand, the relative stiffness is different from
zero in the presence of a bifurcation point and, after crossing the point, the sign of Sp does not change.

It is worth observing that the condition of Equation (10) is hardly met during the numerical
solution of the problem, as the solution is computed for a discrete set of points only. For this reason,
the detection of the limit point is performed referring to a numerical approach, described in the next
section, for checking the condition given by Equation (10).

3.2. Detection and Classification

Among the various strategies for the computation of critical points [23,25], the approach proposed
here is based on the analysis of the sign of the eigenvalues of the tangent stiffness matrix. This approach
is simple and robust, and is associated with a relatively small computational effort. It is preliminarly
assumed that the eigenvalues of K are well separated, which implies that multiple or clustered
bifurcations cannot be handled.

The tangent stiffness matrix K of a structure, evaluated in its initial, undeformed state, is a positive
definite quantity. When a critical point is reached, one eigenvalue, at least, becomes null and, just after
crossing the point, the eigenvalue becomes negative. Based on this consideration, it is straightforward
to implement the condition:

sign(ωk(si)) �= sign(ωk(si−1)) (11)
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The critical points subsequent to the first one are captured by monitoring the sign of the lowest
positive eigenvalue. In particular, the following condition is employed:

Npos(si) < Npos(si−1) (12)

where Npos is the number of positive eigenvalues of the tangent stiffness matrix K.
This strategy is particularly simple as the counting of the positive eigenvalues of K is just needed.
Once a critical point is detected, the classification between limit and bifurcation points relies upon

the valuation of the stiffness parameter (see Equation (10) as outlined in the pseudo-code reported
in Algorithm 1.

Algorithm 1 Classification of critical points.
if sign(Sp(si)) �= sign(Sp(si−1)) then

Critical point = Limit
else if sign(Sp(si)) = sign(Sp(si−1)) then

Critical point = Bifurcation
end if

Note, si−1 and si are the values of the path parameter s just before and just after the critical point,
respectively. The criterion summarized in Algorithm 1 is based on the fact that the stiffness parameter
undergoes a change of sign whenever a limit point is crossed. Hence, the critical point is a limit point
if a change of sign is detected in Sp, otherwise it is a bifurcation point.

3.3. Approximation

Once critical points are identified and classified, an approximation of the critical state is needed.
In continuation methods, bifurcation points are used as initial solutions for tracing bifurcation branches.
It follows that the quality of the prediction affects the convergence of the solution along the bifurcation
branches. An accurate prediction is then sought. On the other hand, the requirements on the accuracy
of the limit point predictions are less strict, as no equilibrium branches emanate from them.

Based on these observations, limit points are determined by means of a linear approximation
seeking for the zero of Sp(s). Given the quantities Sp(si−1), Sp(si), the linear approximation reads:

Sp(s) = Sp(si−1) +
Sp(si)− Sp(si−1)

Δλ
[λ(s)− λ(si−1)]

a(s) = a(si−1) +
Δa

Δλ
[λ(s)− λ(si−1)]

(13)

where si−1 and si are the values of the path parameter in the converged equilibrium points before and
after the critical point, respectively, and:

Δλ = λ(si)− λ(si−1)

Δa = a(si)− a(si−1)
(14)

Setting Sp(s) = 0 in Equation (13), and denoting with an asterisk the critical state, the critical load
λ(s∗) = λ∗ is obtained as:

λ∗ = λ(si−1)− Δλ

Sp(si)− Sp(si−1)
Sp(si−1) (15)
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while the deformed configuration a(s∗) = a∗ is obtained after substituting Equation (15) into the
second of Equation (13), and is obtained as:

a∗ = a(si−1) +
Δa

Δλ
(λ∗ − λ(si−1)) (16)

This strategy is fast and tends to guarantee satisfactory precision for obtaining an estimate of the
limit points.

Regarding the approximation of the bifurcation points, an iterative procedure is implemented to
achieve improved accuracy. It is based on the polynomial approximation of the critical point x̃(s∗),
and seeks the zero of ωk(s). In turn, the polynomial approximation is obtained through a Taylor
expansion of ωk(s) as:

ωk(s) = ωk(si) + ω′
k(si)(s − si) (17)

where si corresponds to the value of the path parameter at the converged equilibrium solution before
the critical point.

A first estimate of the critical state x̃∗ = x̃(s∗), relative to the point x̃(si), is given by:

x̃∗ = x̃(si) + x̃′(si)Δs∗ (18)

where the vector of the unknowns x̃ and its derivative x̃′ are defined as:

x̃ =
{

aT λ
}T

x̃′ =
{

a
′T λ′

}T
(19)

and:

Δs∗ = s∗ − si = −ωk(si)

ω′
k(si)

(20)

and:

ω′(si) ∼= ω(si)− ω(si−1)

si − si−1
(21)

Improved robustness can be achieved by modifying Equation (18) as:

x̃(si+1) = x̃(si) + ηΔs∗x̃′(si) (22)

where η is a scale factor, chosen while keeping in mind that small values are associated with high
accuracy, but high costs, while the opposite holds for high values of η. In the present study, a proper
tradeoff between quality and computational costs was found by taking η equal to 0.1.

A new value of ωk, corresponding to the point x̃(si+1), can be computed and, according to
Equations (18) and (20), a new estimate of x̃∗ and Δs∗ is also available. The procedure is repeated until
convergence is met according to the criterion:∣∣∣∣Δs∗

Δs0

∣∣∣∣ ≤ tolΔs (23)

where Δs0 is the step length adopted to start the analysis, where tolΔs is the tolerance defined by the
user. Based on an extensive set of preliminary investigations, a value of tolΔs = 5 × 10−3 is set by
default in the algorithms proposed in this work. To prevent excessively long loops, the criterion of
Equation (23) is accompanied by a check on the maximum number of iterations.

4. Branch-Switching Method

After detecting the critical points, a numerical strategy is needed to compute the initial solution,
which is then used to start the continuation procedure along the bifurcation branches. An extensive
review of branch-switching methods is available in [25]. In the present method, the eigenvector
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injection method is adopted. It relies on the idea of perturbing the configuration at the critical state by
using the eigenvector vk associated with the eigenvalue ωk(s∗) = 0 [27].

The perturbation is introduced according to:

a0 = a∗ + ξ
vk

‖ vk ‖ (24)

where ξ is a scale factor defined as:

ξ = ±‖ a∗ ‖
τ̃

(25)

and τ̃ is a scalar variable prescribed by the user and referred to as buckling mode scale factor, while
the sign of ξ determines the side of the bifurcation branch to be traced.

The initial solution is completed by:
λ0 = λ∗ (26)

The tangent vector in [a0, λ0] is approximated as:

a′0 = sign(ξ)
vk

‖ vk ‖ (27)

λ′
0 = 0 (28)

After computing the initial solution, it is possible to start the continuation process, and the
equilibrium points along the branch are so identified.

It is highlighted that a proper choice of τ̃ is needed for guaranteeing convergence on the desired
branch. If this value is too small, the eigenvector injection method is likely to diverge, whereas a too
large value may determine a perturbation size incapable of deviating the solution on the bifurcation
branch, and the continuation process is likely to converge on the primary path again [27].

Usually, suitable values of τ̃ are in the range between 10 and 100. However, no general rules exist
for properly selecting the value of τ̃, and a trial and error strategy is, generally, the only viable solution.

To deal with this problem, it is necessary that the branch-switching algorithm allows the restart of
the analysis of the bifurcation branch with a different value of τ̃.

5. Path-Following Continuation Technique

In most cases, continuation techniques are developed by adopting a geometric constraint in
Equation (2), an example of which is given by the Riks continuation technique [24]. This kind
of constraint is well-suited for those problems dominated by nonlinearities of geometric type.
On the contrary, the adoption of a geometric constraint can be source of convergence difficulties
whenever the nonlinearities are mainly due to the material response that would lead to localized
failure [16]. For instance, this is the case of delamination phenomena, where the strain field is localized
in the surroundings of the crack tip. It follows that geometric constraints based on global quantities
can be inadequate to capture the deformation process.

Starting from a recent arc-length technique proposed by the authors [17], the continuation
technique proposed here tries to overcome the above mentioned difficulties by adopting a modified
version of the Riks technique in conjunction with an approach based on the evaluation of the dissipated
energy, as outlined in the next sections.

5.1. Modified Riks Method

The modified Riks continuation method is a modified version of the technique described in [24]
and relies on a constraint equation involving the displacement vector a and its derivative a′.

As opposed to original implementation proposed by Riks, the equation is adopted here in a
modified form, where the contribution due to the load parameter is prevented from entering the
equation. In particular, the constraint equation is formulated as:
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g(a, s) = a
′T
1 (a − a1)− (s − s1) = 0 (29)

where a1 denotes an equilibrium point on the path, while s1 is the value of the arc-length at this point;
the terms a defines an arbitrary point on the surface defined by the constraint equation.

An extensive set of preliminary analyses revealed that Equation (29) offers the main advantage of
preventing the doubling back of the solution, a problem often encountered when adopting the classical
Riks formulation.

The continuation procedure is performed referring to a predictor-corrector technique, where the
increments Δa and Δλ are decomposed as:

Δa = Δaj + da , Δλ = Δλj + dλ (30)

where Δa and Δλ are the total increments at the current step, Δaj and Δλj are the iterative increments
at the last iteration j, and da and dλ are the iterative increments referred to the current (j + 1)iteration.

The predictor solution is computed according to:

Δa0 = a1 + a′1Δs Δλ0 = λ1 + λ′
1Δs (31)

The corrector phase is performed referring to the Newton’s method, which is applied to solve the
augmented system of Equation (2) using Equation (29) as constraint, so:{

Kda − f̂dλ = r

a′1Δa = Δs
(32)

where r is the residual at the end of the j-th iteration, defined as:

r = Δλj f̂ − fint(Δaj, Δλj) (33)

Substituting Equation (30) in Equation (32), the iterative increments da and dλ are obtained as:

da = aIdλ + aI I (34a)

dλ = −a
′T
1 aI I

a
′T
1 aI

(34b)

having assumed that Δs ≈ a
′T
1 Δaj, and

aI = K−1f̂ aI I = K−1r (35)

It is worth noting that Equation (34)b resembles the expression of dλ of the Riks arc-length
method [24]. However, the two equations differ in the term a′1 of Equation (34)b, viz., the derivative of
the displacement vector in the last converged equilibrium point, which is replaced by the displacement
increment of the predictor step Δa1 in the Riks formulation.

To gather insight into the constraint equation developed here, it is possible to compare
Equations (34)b and (29), and re-write the constraint as:

a′1
Tda = 0 (36)

The expression of Equation (36) defines a hyperplane in the subspace of displacements, which
is normal to the vector a′1. In addition, Equation (36) can be thought as the projection of the Riks
constraint equation onto the subspace of displacements.
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After reaching convergence, the tangent vector x̃′ = [a′, λ′] is computed by solving the linear
system obtained from the differentiation of Equation (32) with respect to s. The linear system is
derived as: {

Ka′ − f̂λ′ = 0

a
′T
1 a′ − 1 = 0

(37)

The vector [a′, λ′] defines the direction of the tangent vector, but not its orientation [22]. To this
aim the scalar β is introduced as:

β =
ΔaTa′

‖ ΔaTa′ ‖ (38)

On the basis of the sign assumed by β, the orientation is defined by reversing x̃′ when β < 0 .
This criterion imposes that the tangent vector points towards the direction that forms an angle smaller
than 90◦ with respect to the last computed displacement increment Δa.

5.2. Dissipated Energy Method

The adoption of a purely geometric constraint equation can be inadequate for analyzing those
probelms characterized by material nonlinearities, especially in the presence of strain-softening
responses. To overcome these difficulties, a second constraint, to be used in conjunction with the
previous geometric one, is introduced.

The method makes use of the energy release rate G. In the context of the finite element
approximation, it is obtained as [16]:

G =
1
2
(
λȧT − λ̇aT)f̂ (39)

where the symbol ˙( ) denotes differentation with respect to time.
Applying a forward Euler approximation of Equation (39), the expression of the energy dissipated

in the current step, Δτ, is obtained as:

Δτ = (τ − τ1) =
1
2
(
λ1ΔaT − ΔλaT

1
)
f̂ (40)

where τ is the total dissipated energy and τ1 the amount of energy dissipated up to the last converged
equilibrium condition. From inspection of Equation (40), a constraint equation for the continuation
method can be derived as:

g(Δa, Δλ) =
1
2
(
λ1ΔaT − ΔλaT

1
)
f̂ − (τ − τ1) = 0 (41)

where the parametrization is now performed with respect to the parameter τ, i.e., the dissipated energy,
instead of the arc-length s. More specifically, the constraint specified by Equation (41) imposes that the
energy dissipated in the current load step is equal to the amount (τ − τ1).

As done for the modified Riks continuation, a predictor-corrector method is employed for solving
the governing equations. However, derivatives are now taken with respect to the parameter τ.
The predictor step is then:

Δa0 = a1 + a′1Δτ Δλ0 = λ1 + τλ′
1Δτ (42)

while the corrector phase is based upon the Newton solution of Equation (2) together with Equation (41),
leading to the linearized system: {

Kda − f̂dλ = r
1
2 λ1Δa − 1

2 aT
1 Δλ = Δτ

(43)
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By substituting Equation (30) into Equation (43), the system can be represented in matrix form as:[
K −f̂

hT w

]{
da

dλ

}
=

{
r

−g1

}
(44)

where:
hT =

∂g
∂a

w =
∂g
∂λ

(45)

and:
g1 = g (Δa1, Δλ1) (46)

The iterative increments da and dλ are computed from Equation (44) applying the
Sherman–Morrison formula [16]):{

da

dλ

}
=

{
dI
−g1

}
− 1

hTdI I − w

{
(hTdI + g1)dI I

−hTdI − g1(1 + hTdI I − w)

}
(47)

where the terms dI and dI I are the solutions of the following linear systems:

KdI = r, KdI I = −f̂ (48)

After reaching convergence, the tangent vector [a′, λ′] is computed through the solution of the
linear system obtained by taking the derivative with respect to τ of Equation (43):{

Ka′ − f̂λ′ = 0
1
2 λ1a′Tf̂ − 1

2 λ′aTf̂ − 1 = 0
(49)

As observed in the previous section, the orientation of the tangent vector is not available from the
solution of Equation (49), and the evaluation of the parameter β of Equation (38) is thus performed.

5.3. Switching from Geometric to Dissipation-Based Constraints

Aiming at combining the advantages (and ranges of employment) of the techniques previously
outlined, a single continuation approach is developed based on the geometric and dissipation strategies.
As a matter of fact, the strategy based on the dissipated energy cannot be adopted in the context
of purely elastic conditions, as it would fail to converge to the equilibrium solution. Similarly,
convergence issues could arise when the modified Riks approach is adopted in the presence of
damage phenomena. For this reason, the two approaches are combined referring to amount of energy
dissipated. In particular, two threshold values are defined, namely Δτswitch and Δτsback.

The analysis is started by adopting the modified Riks continuation method to trace the first load
steps, which are always elastic, provided their size is chosen to be sufficiently small. When the energy
dissipated in the current step exceeds Δτswitch, the dissipative continuation technique is activated.
Then, as soon as the energy dissipated during the current step falls below Δτsback, the solution strategy
is switched back to the modified Riks continuation. In absence of specific motivations, the two
thresholds can be generally be taken equal each other. The approach is summarized in Algorithm 2.

Algorithm 2 Switch between two continuation techniques.

if Δτ ≥ Δτswitch then

Dissipative Method
else if Δτ < Δτsback then

Modified Riks Continuation Method
end if
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It is remarked that the adoption of the two mentioned strategies determines the presence of a
double parametrization, as the modified Riks continuation method is parametrized with respect to the
arc-length s, and the dissipated energy constraint equation relies on the parameter τ. This peculiarity
may be source of difficulties whenever a critical point is detected between two equilibrium points
computed by means of different strategies (e.g., one adopting the modified Riks continuation method
and the other adopting the dissipative procedure). This aspect has to be carefully monitored during
the solution process, and possible critical points so obtained should be recomputed.

6. Implementation

To clarify the various steps involved in the solution process, an overview of the method is
provided in the flowchart of Figure 1. The relevant equations adopted at each steps are reported by
observing that they vary according to the continuation strategy currently active – this can be either the
modified Riks or the dissipation-based method.

Continuation

Predictor

Corrector

Compute DE

Tangent computation
- Compute tangent vector
- Define tangent orientation

Critical point detection
- Compute eigs of K
- Compute Npos
- Compute Sp
- Extimate critical point

Critical point
approximation

Method = DE update Δs Method = Riks update Δτ

Check convergence Branch continuation

Terminate

while err<tol

if Npos < Npos,old

if method = Riks if method = DE

if Δτ > Δτswitch else if Δτ < Δτsback else

if conditions are met

Figure 1. Flowchart of the continuation procedure.

At the beginning of the procedure, the modified Riks method is set by default, so all the equations
reported henceforth are those relative to the Riks approach during the first loop. The initial predictor
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step is performed on the basis of Equation (31) or (31), while Newton-Raphson iterations are repeated
during the corrector phase referring to Equation (37) or (43). The procedure is arrested when the error
is below the threshold defined by the tolerance. The successive step consists in the evaluation of the
dissipated energy, which is used subsequently to define the continuation algorithm. The evaluation of
the tangent vector requires the solution of the linear systems according to Equation (37) or (49), while
the parameter β of Equation (38) is adopted for defining the orientation.

The successive phase consists in detecting the critical points, which is performed by evaluating
the eigenvalues of the stiffness matrix K. Depending on the number of positive eigenvectors and the
value of the stiffness parameter, it can be established whether a critical point is obtained, and its nature,
i.e., bifurcation or limit. After detecting a critical point, the approximation procedure is activated
following the procedure outlined in Section 3.3.

The method to be used in the subsequent step is defined by comparing the dissipated energy
Δτ with the threshold values defined by the user. In the presence of dissipation phenomena, the
method is set as DE, otherwise the Riks continuation is maintained. Note that the switch between the
two strategies is controlled by the algorithm outlined in Algorithm 2.

The step length is finally updated following the approach presented in Ref. [17], and convergence
is finally checked. Whenever one or more bifurcation points are detected throughout the iteration
process, the continuation along the secondary equilibrium path is performed.

7. Results

In this section, the continuation strategy is applied to the analysis of problems involving both
geometric or material nonlinearities. These kind of nonlinearities can be present independently or in
combination. All the simulations are performed using the open source finite element code PyFem [29],
that was used as underlying framework for implementing the numerical procedure. The elements used
for the analyses are nonlinear four-node, plane-strain continuum elements. To model delamination
phenomena, the cohesive element proposed by Camanho et al. [30] was implemented in PyFem. Mesh
sizes were defined on the basis of preliminary convergence studies. In those analyses involving the
use of cohesive elements, the mesh size was chosen to guarantee a proper description of the process
zone, referring to the length lp defined by [31,32]:

lp = γ
EGc

N2 (50)

where γ is a scalar nondimensional parameter, here taken as 0.884, E denotes the Young’s modulus,
Gc is the fracture toughness in mode I, and N is the interfacial strength.

It is noted that the ability of the method to converge to the correct solution and to successfully trace
the bifurcation diagrams is strongly affected by the choice of the parameter τ̃. To this aim, preliminary
tests were carried out to properly choose the value of the parameter.
The section of results is organized as follows. Two preliminary test cases, an axially compressed
column and a simple one-degree-of-freedom (one-DOF) problem, are discussed in Sections 7.1 and 7.2
to illustrate the application of the method to geometrically nonlinear problems. The application of
the continuation approach is then presented for two problems, a beam and an arch embedding initial
cracks, in Sections 7.3 and 7.4, where materially nonlinear responses are of concern. Bifurcation
plots are presented for these two cases, and the robustness of the approach is illustrated against an
alternative formulation based on a purely geometric constraint equation. Finally, the procedure is
presented as a mean for solving quasi-static problems for a relatively complex nonlinear example,
a perforated beam loaded in mode I, which is discussed in Section 7.5.

7.1. Subcritical Bifurcation (One-DOF Problem)

This first example deals with the nonlinear response of a simple 1-DOF problem characterized
by the presence of a sub-critical bifurcation point. It follows that equilibrium branches emanating
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from the bifurcation are, in this case, unstable. The structure is composed by a rigid truss and a linear
spring, as illustrated in Figure 2. The length l is equal to 10 mm, while the stiffness of the spring is
kg = 100 N/mm. An horizontal load of intensity P is applied at the free end of the rigid bar.

Figure 2. Sketch of the truss-spring system.

The numerical model is obtained by using a linear spring element and truss with a very high
stiffness value to simulate the ideal infinite value.

The numerical predictions obtained with the proposed continuation method are compared with
the analytical solution of the problem, which is given by:

P(θ) = kgl cos (θ) (51)

where θ is the rotation angle and P the applied load. The results are summarized in Figure 3.

Figure 3. Bifurcation plot for the spring-truss example.

As observed, perfect matching is achieved when comparing the analytical and the numerical
solution. The continuation procedure correctly identifies the overall bifurcation plot, and provides an
accurate description of the three equilibrium paths emanating from the bifurcation point. Note that
the solution process is carried out without activation of the dissipative continuation technique as the
response is purely elastic.

7.2. Supercritical Bifurcation (Axially Compressed Column)

The second assessment regards the analysis of a column subjected to a compressive end load.
The bifurcation is defined as supercritical as both sides of the bifurcation branch are locally stable
equilibrium paths characterized by increasing values of the load factor [23]. A sketch of the structure is
provided in Figure 4. The column is fixed at one end and free at the second one, while a concentrated
force is applied at the free end. The overall length l is equal to 10 mm and the thickness h is 1 mm.
An isotropic homogeneous material of modulus E = 230 GPa and ν = 0.25 is assumed. Ten finite
elements are used for discretization.
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Figure 4. Cantilever beam with end compressive load.

The problem does not involve any kind of dissipative phenomena, so the modified Riks
continuation approach is maintained throughout the solution process. The results are compared
against those obtained by using the Crisfield arc-length approach, whose implementation in the PyFem
code was already assessed in Ref. [17]. It is worth noting that the Crisfield method is not developed for
tracing bifuraction diagrams in one single run. For this reason, two distinct nonlinear analyses were
performed by assuming initial imperfections with opposite sign and shape equal to the first buckling
mode. On the contrary, the continuation method allows to plot the bifuraction diagram in one single
run, with no need for introducing initial imperfections.

The results are summarized in Figure 5, where the axial displacement of the bottom-most corner
of the column is reported against the axial load.
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Figure 5. Bifurcation plot for axially compressed column.

The close matching with the results obtained using the Crisfield method demonstrates the ability
of the continuation method to deal with the solution of equilibrium branches arising from supercritical
bifurcation points.

In addition, the quality of the prediction can be noted by inspection of the region in the
neighborhood of the bifurcation. As seen from the zoom of the plot, the continuation approach
provides a precise description of the equilibrium branches departing from the critical point. In contrast,
the Crisfield approach undergoes small oscillations, and convergence to spurious equilibrium
configurations is observed in proximity of the bifurcation. Again, it is remarked that no initial
imperfections are needed within the context of the continuation approach, so the bifurcation is
precisely detected.

7.3. Beam Containing an Initial Crack

Previous test cases are restricted to geometrically nonlinear phenomena, and material
nonlinearities are not accounted for. In the example presented here, a beam containing an initial
delamination is considered and the propagation of the crack is accounted for by making use of cohesive
elements characterized by a bilinear cohesive law. Further details regarding the implementation of
these elements in the PyFem code are available in [33]. A sketch of the structure is reported in Figure 6.
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Figure 6. Beam with initial crack.

The beam’s length and thickness are denoted with l and h, respectively. The central portion of the
beam is characterized by the presence of an initial crack, whose length is equal to a. The material is
isotropic with modulus E = 230 GPa and Poisson’s ratio 0.25, and a plane strain constitutive law is
assumed.

The structure is hinged at the bottom left vertex, while the translation along the direction normal
to the beam axis is constrained at the bottom right end. The load is introduced in the form of
a compressive force per unit length of magnitude p.

As seen from Figure 6, the structure is divided into two equal parts with respect to the midline
running parallel to the beam axis. The two outer portions are connected by means of two layers
of cohesive elements. The fracture toughnesses in mode I and II are taken as 0.5 N/mm, while
the interfacial strengths are fixed at 1.0 N/mm2. The penalty stiffness of the cohesive elements is
5000 N/mm3.

The centrally located pre-damaged area is simulated by means of cohesive elements with reduced
properties, whose aim is to avoid interpenetration between the upper and lower parts of the structure
during the deformation process [32].

The finite element model is composed of 200 nonlinear shell elements and 20 cohesive elements.
Note, the mesh size is chosen in order to guarantee the presence of 4/5 elements in the process zone,
whose size is estimated referring to Equation (50).

In the first part of the procedure, the primary equilibrium path is computed. Starting from the
undeformed configuration, the load is progressively increased, and the corresponding equilibrium
points are found. During this first phase, the eigenvalues of the stiffness matrix are determined at each
step of the iterative process, and the presence of critical points is verified. Whenever a critical point is
detected, it is approximated referring to the procedure outlined in Section 3, depending on whether
it is a limit or a bifurcation point. As an example, the initial part of the primary path is reported in
Figure 7a, just after the detection of the first bifurcation point. The procedure is then switched to the
continuation procedure, and the tracing of the equilibrium path restarts from the last equilibrium point
available. The complete primary path up to a load of 300 N is presented in Figure 7b together with the
four bifurcation points detected.
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Figure 7. Primary equilibrium path: (a) detection of the first critical point, (b) full equilibrium path.

46



Math. Comput. Appl. 2019, 24, 94

As reported in Figure 7b, the primary path is characterized by an almost linear behaviour,
consisting of a progressive shortening of the beam with no bending deflections. After the first
bifurcation point, the primary equilibrium path becomes unstable. However, the absence of initial
imperfections and the symmetry of the problem make its computation possible. It is also noted that no
damage phenomena are associated with this primary equilibrium configurations.

In the second phase of the solution process, the equilibrium branches departing from the
bifurcation points are computed. The branch associated with a positive sign of the first buckling
mode is plotted in Figure 8a, while the branch obtained by assuming a negative sign is reported in
Figure 8c. The two corresponding deformed shapes are presented in in Figure 8b,d, respectively.
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Figure 8. Computation of the first bifurcation branch: (a) positive side of the branch, (b) corresponding
deformed shape, (c) negative side of the branch, (d) corresponding deformed shape.

In a similar fashion, the procedure is repeated for all the bifurcations points. The results of Figure 9
illustrate the force-displacement curves and the corresponding deformed shapes during the evaluation
of the fourth equilibrium branch.

The curve of Figure 9c corresponds also with the complete bifurcation diagram, comprehensive
of all the equilibrium paths departing from the bifurcation points detected.

47



Math. Comput. Appl. 2019, 24, 94

�
(3
�

u

�

�	

	�

�	

���

��	

�	�

��	

���

��	

�	�

��	

���

������(3��u

� �!	 � �!	 � �!	

(a) (b)

�
(3
�

u

�

�	

	�

�	

���

��	

�	�

��	

���

��	

�	�

��	

���

������(3��u

� �!	 � �!	 � �!	

(c) (d)

Figure 9. Computation of the fourth bifurcation branch: (a) positive side of the branch, (b) corresponding
deformed shape, (c) negative side of the branch, (d) corresponding deformed shape.

A summary of the deformed configurations obtained at the end of the loading process along the
four equilibrium branches is reported in Figure 10.

From Figure 10 it can be noted that all the deformed shapes but the third one exhibit the typical
buckled pattern of pristine beams. In this case, the deformed configurations are characterized by one to
three half-waves, and a partial damaging of the cohesive elements is observed due to the shear transfer
mechanism between the upper and lower portion of the beam. As result, the fracture is dominated
by a mode II mechanism. As observed from Figure 9c, the corresponding load-deflection curves are
associated with a slight drop of load just after the bifurcation point, motivated by the contemporary
onset of the buckling half-waves and damage mechanism in mode II. Afterwards, no additional load is
carried by the structure, and the shortening happens at a constant load level.

A different response is observed for the third equilibrium branch, whose post-buckled pattern is
reported in Figure 10c. In this case, the damage mechanism is governed by mode I component, with a
clear opening between the upper and lower portions of the structure. The propagation is unstable and
sudden, and is responsible for a drastic drop of load, not clearly visible from the complete bifurcation
diagram. For clarity purposes, the force-displacement curve is reported in Figure 11 by restricting
the plot to the third equilibrium branch, where the collapse induced by the onset of the buckling
phenomenon can be fully appreciated.
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(a) (b)

(c) (d)

Figure 10. Post-critical deformed shapes along the equilibrium paths 1 to 4: (a) path 1, (b) path 2,
(c) path 3, (d) path 4.

�
(1
�

u

�

��

��


�

��

���

���

���

�
�

���

���

����5�(1��u

� �7�	 �7	 �7�	 � �7�	 �7	 �7�	

Figure 11. Detail of the force-displacment curve for the equilibrium branch 3.

The unloading phase happens in a steep manner, along a path which is close, but distinct, from
loading one. After the drop of load, all the cohesive elements are completely damaged, thus the
solution is arrested.

It is interesting to investigate the performance of the method in terms of number of iterations
along the equilibrium branches previously considered. The results are summarized in Table 1 with
regard to two different solution procedures. In one case, denoted with hybrid, the procedure refers
to the combined geometric-dissipative approach summarized in Figure 1; in the other case, denoted
with geometric, the dissipative constraint is removed, and the procedure is forced to adopt the purely
geometric Riks constraint. As far as the number of iterations is a function of the parameter τ̃ of
Equation (25), a preliminary assessment was performed to obtain the values of τ̃—reported in the
brackets—guaranteeing the smallest number of iterations.

49



Math. Comput. Appl. 2019, 24, 94

Table 1. Number of increments using different constraint equations. (τ̃ in the parenthesis).

Constraint N. of Incr. N. of Iter.

Primary Branch 1 Branch 2 Branch 3 Branch 4 Tot Tot
Hybrid 10 18 (10) 90 (10) 35 (50) 40 (20) 193 332

Geometric 15 40 (10) 22 (10) 38 (20) 31 (30) 146 150

As summarized in Table 1, the adoption of the dissipative constraint determines an increase
of the total number of iterations with respect to the modified Riks case. The increase is motivated
by the mainly geometric nature of the post-critical configurations associated with the equilibrium
branches 1, 2 and 4. In these cases, the sources of nonlinearity can be mostly attributed to the deflected
patterns, as seen from Figure 10, thus the advantages offered by a dissipation based-criterion cannot
be fully appreciated. On the contrary, the number of iterations is slightly smaller when the combined
dissipative-geometric constraint is adopted for tracing the third equilibrium branch, i.e., the one
characterized by the opening of the initial crack. While the comparison in terms of iterations seems to
suggest the adoption of a purely geometric constraint, it is important to notice that the quality of the
predictions in the two cases is not equal. In particular, the adoption of a geometric constraint tends
to determine relatively large increments, and the step size can be hardly controlled. It follows that
the equilibrium path is not accurately described. On the other hand, the adoption of a dissipative
constraint provides an excellent control of the step size, so enabling to trace the equilibrium branches
with improved degree of refinement.

7.4. Fixed-Fixed Arch

An additional example is discussed regarding the configuration illustrated in Figure 12.

Figure 12. Arch subjected to distributed pressure.

The structure is an arch characterized by a radius R equal to 10 mm, an arc-length angle θ of π/4
radians, and a radius-to-thickness ratio of 100. The material elastic properties are those considered
in the previous example. The two ends of the beam are fixed, while a uniformly distributed force
per unit length p is applied along the radial direction at the upper and lower surface of the arch,
as illustrated in Figure 6. In order to account for material nonlinear responses, a layer of cohesive
elements is introduced along the midline of the arch. In this case the fracture toughnesses in mode I
and II are 0.5 N/mm, while the interfacial strengths are equal to 15 N/mm2. The mesh is made of 100
nonlinear shell elements and 50 cohesive elements.

The bifurcation plot is presented in Figure 13 by reporting the nodal displacement of the central
upper node versus the nodal force applied at the same node.
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Figure 13. Bifurcation plot of the arch subjected to distributed pressure.

In this case, two critical points are detected along the primary path. The first one is a bifurcation
point, as seen from the equilibrium path emanating from it. The second one is a limit point, and
corresponds to a local maximum of the load carried by the structure. The primary path is now
characterized by a nonlinear behaviour, where a progressive reduction of the linear stiffness is observed.
No damage phenomena are observed along the major part of this path, as cohesive elements display
the initiation of damage mechanisms just in the surroundings of the limit point.

The secondary equilibrium branch is characterized by an unloading phase, associated with a
progressive failure of all the cohesive elements in mode II. From the curve of Figure 13, it can be
observed the step-wise shape of the secondary equilibrium path, which is related to the failure of
the interface elements. In any case, the layer of cohesive elements is distributed along all the overall
structure, thus the role played by dissipative phenomena is significant.

To further address the relevance of dissipative phenomena, a comparison is presented between
the performances achieved by considering the geometric-dissipative constraint, and those obtained
with a run based on the adoption of a purely geometric constraint. The number of increments and
iterations to complete the analysis are summarized in Table 2, where the optimal value of the parameter
τ̃ is reported in the brackets.

Table 2. Number of increments using different constraint equations. (τ̃ in the parenthesis).

Constraint N. of Incr. N. of Iter.

Primary Branch 1 Total
Hybrid 47 160 (20) 207 276

Geometric 47 160 (30) 207 445

In this test, the advantages offered by the use of the hybrid constraint are clearer. While the number
of increments along the two paths is, by chance, identical, the total number of iterations is much smaller
when the energy control is active. The reduction of iterations determines a gain of approximately 15%
in terms of computational time. In fact, the post-bifurcational response is dominated by the material
nonlinearities, so the control over the dissipated energy is the more efficient approach.

7.5. Perforated Beam

This final example illustrates the use of the continuation approach as a mean for solving
a nonlinear problem characterized by a complex response, where nonlinearites are due to geometric
and material behaviour. The numerical solution strategy is not used here for tracing the bifurcation
plot, but for obtaining the primary equilibrium path, as commonly done when solving a nonlinear
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quasi-static problem. The problem was analyzed using arc-length hybrid strategies in a previous work
form the authors [17].

The analysis regards the mode I opening of a cantilever beam characterized by the presence of five
equally spaced, square holes. The beam is loaded at the tip by means of two concentrated forces, as
indicated in Figure 14, where all the relevant geometric dimensions are reported. An isotropic material
is considered, with modulus equal to 1000 MPa and Poisson’s ratio 0.3.

Figure 14. Cantilever perforated beam: geometry and dimensions.

To capture the onset and the propagation of the crack, a layer of cohesive elements is introduced
along the horizontal line of symmetry of the structure. The fracture toughnesses in mode I and
II are equal to 0.01 N/mm, while the interfacial tensile and shear strength are taken as 1 N/mm2.
A penalty stiffness of 100 N/mm3 is assumed. The resulting finite element model is composed of 288
two-dimensional, plane-strain continuum elements, and 24 cohesive elements.

The curves reporting to the vertical displacement of the loaded nodes are plotted against the
applied load in Figure 15. The comparison is presented for two different strategies. In one case
the continuation method is applied as implemented, thus allowing the automatic switch between
geometric and dissipative constraint. In the second case the constraint is forced to be of purely
geometric, with the scope of illustrating the advantages due to the hybrid continuation approach
presented here.
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Figure 15. Force-displacement curve using different constraints.

As seen from the figure, the adoption of a purely geometric constraint leads to a premature failure
of the analysis, which terminates along the first descending branch of the curve. On the contrary, the
hybrid implementation is capable of capturing the subsequent portions of the equilibrium path. Note
that each sudden drop is due to the opening of the holes. After the first peak, a snap-back behaviour can
be observed, where a secondary snap characterizing the unloading phase. Indeed, a partial recovery of
the load-carrying capability is observed in the post-peak region, followed by another snap-back.
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The deformed shapes at the end of the analysis are reported in Figure 16.

(a) (b)

Figure 16. Deformed configuration at the end of the analysis by using: (a) geometric constraint,
(b) hybrid constraint.

While the initiation of the opening of the first crack coincides with the failure of the purely
geometric approach (Figure 16a), the improved robustness properties of the hybrid method are clearly
visible from Figure 16b.

It is useful to illustrate the comparison between the two strategies in terms of numerical
performance of the solution procedure, as done in Table 3.

Table 3. Summary of numerical performance for the perforated cantilever beam.

Constraint N. of Incr. N. of Iter. Step Cuts N. of Fully Damaged Coh. Els

Geometric 17 59 3 2
Hybrid 35 85 1 12

The results provide a clear picture of what highlighted by inspection of the force-displacement
response. In particular, the geometric continuation is capable of obtaining the solution in the initial
part of the curve, where 17 increments are performed. At the onset of the first crack, the step length
is reduced 3 times, demonstrating the difficulties experienced by the method to obtain the solution.
Then, after reaching the complete damaging of two cohesive elements, the analysis is terminated.

On the other hand, the hybrid strategy is capable of reaching the condition characterized by
a number of 12 completely damaged cohesive elements. No step length reductions are observed.
Clearly, the total time for the analysis and the number of increments are higher.

8. Conclusions

This work discussed the development and implementation of a numerical continuation
technique for analyzing structural problems characterized by geometric and material nonlinearities.
The continuation strategy can be successfully applied for detecting bifurcation and limit points as well
as tracing the equilibrium paths, which is a useful mean for gathering insight into the response of
the structure. For instance, the complete post-buckling behaviour can be assessed by performing one
single quasi-static analysis, with no needs to introduce initial imperfections in the finite element model.

The effectiveness of the current implementation was checked by means of illustrative examples,
where cohesive elements were employed for capturing the onset and propagation of cracks.
Main advantage of the approach is the robustness of the numerical solution strategy, which is
based upon a hybrid constraint equation that includes both geometric and dissipative considerations.
Thus crack propagation phenomena can be accurately predicted, whilst standard geometric-based
approaches tend to undergo converge issues. In addition, the method can be used as a technique
for solving quasi-static nonlinear problems, when the analysis of secondary equilibrium paths is not
of concern. The effectiveness of the approach was illustrated with a test case characterized by the
presence of sharp snap-backs, and secondary snap-backs. The analyst can benefit for the adoption of
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a unique, integrated solution scheme, which can be used for solving the structural boundary value
problem, as well as exploring multiple equilibrium paths with improved robustness.
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Abstract: The noise emitted by ships is one of the most important noises in the ocean, and the propeller
noise is one of the major components of the ship noise. Measuring the propeller noise in a laboratory,
despite the high accuracy and good reliability, has high costs and is very time-consuming. For this
reason, the calculation of propeller noise using numerical methods has been considered in recent years.
In this study, the noise of a propeller in non-cavitating conditions is calculated by the combination of
the panel method (boundary element method) and solving the Ffowcs Williams-Hawkings (FW-H)
equations. In this study, a panel method code is developed, and the results are validated by the
experimental results of the model tests carried out in the cavitation tunnel of the Sharif University of
Technology. Software for numerical calculation of propeller noise, based on FW-H equations, is also
developed and the results are validated by experimental results. This study shows that the results of
the panel method code have good agreement with experimental results, and that the maximum error
of this code for the thrust and torque coefficients is 4% and 7%, respectively. The results of the FW-H
noise code are also in good agreement with the experimental data.

Keywords: panel method; marine propeller; noise; FW-H equations; experimental test

1. Introduction

In recent years, the use of numerical methods has become very common in modeling the flow
around marine propellers. Although the experimental methods have a higher accuracy and reliability
than numerical methods, the higher costs and the need for special equipment has caused numerical
methods to be preferred.

The boundary element method (BEM) is one of the methods used to solve the governing equations
of fluid mechanics, acoustics, electromagnetics, etc. In this method, using mathematical theorems,
the equations from the interior of the solution domain are transferred to the boundaries of the domain.
Therefore, compared to other numerical methods such as finite element or finite volume method which
interior of domain should be considered, BEM exhibits less solution time and computation cost and
therefore it is preferred to other methods.

The panel method is one of boundary element methods. In this method, the surface of the body
is divided into small panels and a combination of source and doublets is distributed to each panel.
After calculating the strength of sources and doublets, velocity and pressure distribution on surface
panels can be obtained. For lifting bodies, a wake surface should be assumed at the trailing edge of
body, and the effect of panels of this surface on body panels should be considered.

In recent decades, the panel method has been widely used to solve the flow around the bodies,
especially marine propellers. A literature review shows that a lot of research has been done on the
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use of the panel method for the hydrodynamic analysis of objects. For instance, Hess and Smith [1],
in 1962, invented the panel method for analyzing the motion of three dimensional bodies in fluid.
The formulation of these researchers was presented for the arbitrary three dimensional bodies and
could not be used for lifting bodies. In 1972, Hess [2] developed this method for lifting bodies and
calculated the pressure distribution around an aircraft model and lift force. The panel method was
first used in 1985 by Hess and Valarezo [3] to model the flow around the ship propeller. In this study,
they obtained the pressure distribution around a propeller using quadrilateral panels and calculated
the thrust and torque coefficients. In 2010, Baltazar et al. [4] modeled cavitation around a propeller
using the panel method. The results of this study show that the panel method can model cavitation on
propeller blades with good accuracy. Also, several papers have been published between the years 1985
to 2010, but most have done similar work.

In 2010, Gaggero et al. [5] modeled the flow around the propeller using the panel method and
computational fluid dynamics. The results of the panel method show that this method has a good and
acceptable accuracy compared to the CFD method.

According to the importance of propeller noise, various methods have been proposed to reduce it.
Methods used to reduce the noise of marine propellers can be divided into two main methods, namely:

- Using equipment
- Modification of the geometry

Each of these methods is fully described in a review paper published by Ebrahimi et al. [6].
In recent years, calculating the noise of marine propellers using numerical methods has also been
developed by researchers. For numerical calculation of noise, a numerical method such as panel
method is required to obtain flow quantities and then these quantities are used as input for calculation
of noise for a receiver at the desired location. Seol and Park [7] carried out several experiments on a
propeller model in MOERI cavitation tunnel and measured the noise of propeller in cavitating and
non-cavitating condition. Also, they used combination of time domain acoustic analogy and panel
method for the numerical investigation of the propeller noise.

In another study by Kellett et al. [8] in 2013, the noise generated by the propeller of a LNG carrier
ship was measured numerically and experimentally. Bagheri et al. [9] conducted a research on a three
bladed propeller of the Gawn series and used the ANSYS Fluent commercial software for calculation of
the propeller noise. Testa et al. [10] calculated the noise of E779A propeller model by using the FW-H
equations in presence of unsteady sheet cavitation. They also used potential-based panel method for
modelling flow around propeller. Gorji et al. [11] performed a research on calculation of noise of a
marine propeller using a RANS solver in the low frequencies band.

Bagheri et al. [12] carried out some numerical and experimental tests on the noise of marine
propellers and the effects of cavitation on the sound pressure level of propeller. They used viscous
flow with FW-H solver for noise calculation.

In present research, a boundary element method is used for hydrodynamic analysis of marine
propellers. Also, the FW-H equations are used for acoustic performance analysis of these propellers.
For this purpose, two codes have been developed by authors and their results validated using
experimental tests carried out in cavitation tunnel of Sharif University of Technology. The most
significant novelty of our paper is that we used experimental noise measurements to validate the
results of the FW-H equations code.

2. Formulation of the Panel Method

For development of the panel method formulation for marine propeller, the flow around
propeller in computational domain of Ω is assumed to be irrotational, incompressible and inviscid.
By these assumptions, the flow governing equations (Navier-Stokes equation) are simplified into

58



Math. Comput. Appl. 2019, 24, 81

the three-dimensional Laplace equation where is ∇2φ. By using Green’s second identity, the general
solution of this equation is as follows [13]:∫

Ω

(
φ1∇2φ2 −φ2∇2φ1

)
dV =

∫
S

(φ1∇φ2 −φ2∇φ1) · →ndS (1)

On the right-hand side of the Equation (1), integrating is done on the surface S, which includes
the body surface, Kutta strip and wake surfaces of the object (Figure 1). If the points P, Q and O are
defined as the control point, source point and the origin of the coordinates, respectively, the distance

vector
→
R is defined as follows: →

R =
→

OQ− →OP r =
∣∣∣∣∣→R∣∣∣∣∣ (2)

Figure 1. Body surface, Kutta strip and wake surface.

Now, if we suppose φ1 = 1/r and φ2 = φ, where φ is potential of flow, Equation (1) becomes:∫
Ω

(1
r
∇2φ

)
dV −

∫
Ω

(
φ∇2 1

r

)
dV =

∫
S

(
1
r
∇φ−φ∇1

r
) · →ndS (3)

In the case where P is outside of the domain Ω, then φ1 and φ2 satisfy Laplace’s equation [13].
Therefore, the first and second terms on the left-hand side of Equation (3) will be zero. Then:∫

S

(
1
r
∇φ−φ∇1

r
) · →ndS = 0 (4)

In the case of flow around the propeller, the point P is located on the body surface. When point P
approaches to point Q and r → 0, the above integral is singular (1/r→∞). Therefore, the point P
should be excluded from S using a small hemisphere of radius ε. Therefore, the integration region will
change to S + Sε: ∫

S

(
1
r
∇φ−φ∇1

r
) · →ndS +

∫
Sε

(
1
r
∇φ−φ∇1

r
) · →ndS = 0 (5)
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Using mathematical methods, the value of second integral is −2πφ(P). Then Equation (5) becomes:

φ(P) =
1

2π

∫
S

(
1
r
∇φ−φ∇1

r
) · →ndS (6)

This equation gives the potential of flow (φ) at any point of body surface in terms of ∇φ and
φ on the boundaries of domain. In Equation (6), the first and second terms of the integral can be
interpreted as a dipole with strength of φ and a source with strength of ∇φ, respectively. To expand
the above equation, as shown in Figure 1, the integration surface S is divided to body surface (SB),
Kutta strip (SK), and wake surface (SW). Also, NB, NK and NW are number of panels on body surface,
Kutta strip, and wake surface, respectively.

Therefore, Equation (6) can written as below:

φ(P) =
1

2π

∫
SB

(
1
r
∇φ−φ∇1

r
) · →ndS +

1
2π

∫
SK+SW

(
1
r
∇φ−φ∇1

r
) · →ndS (7)

The thickness of Kutta and wake surfaces are assumed to be zero. Then, ∇φ · →n for these surfaces
becomes zero. So:

φ(P) =
1

2π

∫
SB

(
1
r
∇φ−φ∇1

r
) · →ndS− 1

2π

∫
SK+SW

φ∇1
r
· →ndS (8)

This formulation is equivalent to distributing a source with strength of ∂φ/∂n on each panel of
the body surface and a doublet with strength of φ on each panel of the body surface, Kutta strip and
wake surface. For greater simplicity, the strength of doublets on the Kutta strip and wake surface are
displayed by μ. The final form of Equation (8) is as follows:

φ(P) = − 1
2π

∫
SB

→
n · ∇φ

r
dS +

1
2π

∫
SB

φ
→
n · →r

r3 dS +
1

2π

∫
SK

μ
→
n · →r

r3 dS +
1

2π

∫
SW

μ
→
n · →r

r3 dS (9)

2.1. Boundary Conditions

Applying boundary conditions is one of the most important steps in solving problems by numerical
methods. The first boundary condition that is applied is the non-entrance condition. If the propeller
assumed to be rigid, the fluid particles cannot enter into the surface and the normal velocity will be
zero on the surface of the propeller. If the propeller is operating in a uniform axial flow with velocity

of
→
V∞ and rotates with angular velocity of

→
ω, as shown in Figure 1, the total velocity of point A on

propeller blade is:
→
v A =

→
V∞ +

→
r ×→ω (10)

Then, the non-entrance condition for all panels of body surface is [14]:(
∇φ · →n

)
i
=
(→

v A · →n
)
i
i = 1, . . . , NB (11)

Then, Equation (9) becomes:

φ(P) = − 1
2π

∫
SB

→
v A · →n

r
dS +

1
2π

∫
SB

φ
→
n · →r

r3 dS +
1

2π

∫
SK

μ
→
n · →r

r3 dS +
1

2π

∫
SW

μ
→
n · →r

r3 dS (12)
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We can rewrite the above equation in series form as follows:

φi +
NB∑

j = 1
i � j

Aijφ j +
NK∑
j=1

Aijμ j =
NB∑
j=1

Bij
( →

v A · →n
)

j
−

NW∑
j=1

Aijμ j i = 1, . . . , NB

Aij = − 1
2π

∫
panel j

→
n · →PQ∣∣∣∣∣ →PQ

∣∣∣∣∣3 ds

Bij = − 1
2π

∫
panel j

1∣∣∣∣∣ →PQ
∣∣∣∣∣ds

(13)

where the points P and Q are assumed to be the center of panel i and j, respectively. Aij and Bij
are known as influence coefficients and can be calculated according to Delhommeau [15]. The first
and second terms in right-hand side of Equation (13) are obtained from non-entrance boundary
condition and from previous time step, respectively. Therefore, the unknowns of the above equation
are the strength of doublets on body panels and doublets on Kutta strip, hence NB + NK unknowns.
Another boundary condition that is used to solve this problem is the Kutta condition. This condition
for lifting bodies states that the flow should leave trailing edge smoothly and the velocity of flow there
be finite [13]. One of the best ways to apply this condition is presented by Morino [16]:

μi = (φi)
u − (φi)

l i = 1, . . . , NK (14)

This means that strength of Kutta strip doublets is equal to difference of strength of upper (φ)u

and lower (φ)l doublets. Equation (13) will give NB equations and NK equations will be added to
system of equations by applying Kutta condition. Finally, by solving this set of NB + NK equations,
all NB + NK unknowns will be obtained.

2.2. Hydrodynamic Forces

After the calculation of velocity potential, the total velocity on each panel can be calculated using
numerical differentiation methods. Then, the unsteady Bernoulli’s equation was used for calculation
of total pressure [17]:

p− p∞
ρ

= −1
2

∣∣∣∣∣ →∇φ−→v A

∣∣∣∣∣2 + 1
2

∣∣∣∣→v A

∣∣∣∣2 − ∂φ∂t (15)

where
→∇φ and ∂φ/∂t denote the surface gradient and time derivate of velocity potential. Propeller

thrust can be calculated by integration of pressure forces on panels of propeller surface. Also, viscous
forces should be obtained by using empirical formulas for surface friction coefficient (CD) of each
panel [18]:

CD =
0.0986(

log10 Rel − 1.22
)2 (16)

where Rel is local Reynolds number based on radial location of panel (xr) and is Uxr/v. The viscous
drag of each panel is calculated as below [17]:

→
FD =

1
2
ρ ·CD ·

∣∣∣∣→v tot

∣∣∣∣→v tot (17)
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where
→
v tot =

→
v +

→
v re f and

→
v re f = −→v A. Also,

→
v is blade surface perturbation velocity and can be

obtained by taking surface gradient of velocity potential on blade panels. Then, total force and torque
of propeller are obtained as [19]:

→
F =

∫
(p · →n +

→
FD)dS

→
M =

∫ →
r × (p · →n +

→
FD)dS

(18)

Flowchart of panel method for calculation of hydrodynamic coefficient of propeller is shown in
Figure 2. Initially, geometry of propeller and panels are generated by a function. A Kutta strip is
also created due to geometric considerations, propeller rotation and flow velocity. In the next step,
a function calculates the influence coefficients for the sources and doublets. Then, the systems of
linear equations of Equation (13) is formed and then solved using iterative methods. By solving the
equations, the velocity potential is obtained on the panels of body surface. With numerical derivation
of potentials, velocity and pressure and on each panel are calculated and hydrodynamic coefficients of
propeller are obtained. This process repeated until the solution converges. In this flowchart,

→
v m is

the mean perturbation velocity of the points located on wake and Kutta surface. If these points are
located in Xold position in time t, new position (Xnew) of points in time t + dt can be obtained using the
following equation:

Xnew = Xold +
→
v m · dt (19)

where
→
v m is calculated as below [19]:

→
v m =

1
4π

∑
SB

(
→
n · →v A)

→
r
r3 dS +

1
4π

∑
SB

φ

→
dl×→r

r3 +
1

4π

∑
SW+SK

μ

→
dl×→r

r3 (20)

Figure 2. Flowchart of panel method.
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3. Validation of Results of Panel Method

One of the most common propellers that has been used for the validation of numerical methods is
the DTMB 4119 propeller. This propeller is shown in Figure 3. Also, the main particulars and details of
geometry are given in Tables 1 and 2, respectively.

 

Figure 3. DTMB 4119 propeller.

Table 1. Main Particulars of DTMB 4119 Propeller [20].

Number of Blades 3
Diameter 0.20 m

Blade Sections Profile NACA 66 modified (a = 0.8)
Design Advance Ratio (J) 0.833

Table 2. Geometry of DTMB 4119 Propeller [20].

r/R c/D P/D Skew Rake tmax/c fmax/c

0.2 0.3200 1.1050 0 0 0.2055 0.0143
0.3 0.3635 1.1022 0 0 0.1553 0.0232
0.4 0.4048 1.0983 0 0 0.1180 0.023
0.5 0.4392 1.0932 0 0 0.0916 0.0218
0.6 0.4610 1.0879 0 0 0.0696 0.0207
0.7 0.4622 1.0839 0 0 0.0542 0.0200
0.8 0.4347 1.0811 0 0 0.0421 0.0197
0.9 0.3613 1.0785 0 0 0.0332 0.0182
0.95 0.2775 1.0770 0 0 0.0323 0.0163

1 0.0800 1.0750 0 0 0.0316 0.0118

P is propeller pitch, r is radius of each section, R is propeller radius, c is chord of each section,
D is propeller diameter, tmax is Maximum thickness of each section and fmax is maximum camber.
For the validation of the results of numerical modeling for hydrodynamics and noise of DTMB 4119
propeller, some experiments were carried out with a model propeller in a cavitation tunnel of the
Marine Engineering Laboratory of Sharif University of Technology (Figure 4). For measuring the thrust
and torque of propeller model, a H29 dynamometer has been used in this tunnel.
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Figure 4. Cavitation Tunnel of Sharif University of Technology.

The developed code can also create the geometry of the propeller and generate mesh for it. For this
purpose, the profile of propeller blades, the number of blades, the rake and skew angle and the
desired grid size should be specified as input. In the panel method, it is not common to specify mesh
dimensions. Because of the cosine spacing of panels in chordwise and spanwise directions, the exact
size of panels cannot be specified. Grid size is shown as m × n which m and n are number of elements
in chordwise and spanwise, respectively. For optimization of the grid size, thrust coefficient for design
advance ratio (J = 0.833) is calculated for some different grids, and error of numerical results compared
with experimental results for each grid size are presented in Table 3 and Figure 5. All simulations are
carried out using Intel Core i7 2.6 GHz and 8 GB of RAM. Also, the CPU times for the panel method
are given in Table 3.

Table 3. CPU Time and error for different grids (J = 0.833).

Grid Numerical Result Experimental Result Error (%) CPU Time (sec.)

10 × 10 0.128

0.15

14.6 242
10 × 15 0.132 12 521
20 × 20 0.144 4 1224
30 × 30 0.146 2.6 2545

Figure 5. CPU Time and error for different grids (J = 0.833).

It can be seen from Figure 5 that the grid size of 20 × 20 compared to other grids has more
appropriate CPU time and error, and then the grid is used to simulate propeller. After simulation of
flow around DTMB 4119 propeller, wake surface and hydrodynamic coefficients of propeller (Thrust,
torque and efficiency) are obtained. In Figure 6, the wake surface of the propeller is shown for different
advance ratios.
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( 0.833)J  ( 0.7)J  ( 0.5)J  

Figure 6. Wake surface of propeller for different advance ratios.

As shown in Figure 6, in low advance ratios which ship speed is low and propeller load is high
(heavy duty conditions of propeller), disks of wake surface are closer together and wake rollup is
intense but in higher advance ratios, disks of wake surface are more spacious and rollup is very low.
Numerical simulation of propeller is performed by developed code for various advance ratios and
Figure 7 compares the hydrodynamic coefficients of the propeller obtained by the panel method with
experimental data.

 

Figure 7. Hydrodynamic coefficients of DTMB 4119 propeller.

The pressure distribution in the advance ratio of J = 0.833 for different radial sections of the
propeller blade is compared with experimental measurements [21] in Figure 8.
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(a) (b) 

Figure 8. Experimental and panel method results for pressure distribution at (a) r/R = 0.3 and (b) r/R = 0.7.

According to Figure 7, there is satisfactory agreement between the hydrodynamic coefficients
obtained from the panel method and experimental results. The maximum error of the trust coefficient
calculated by the panel method is about 4% and for torque coefficient is about 7%. As can be seen
in Figure 8, pressure distribution obtained from the panel method is in good agreement with the
experimental data. This shows that the accuracy of the panel method results is acceptable. One reason
for the greater error of the torque coefficient is the use of empirical formulas in the calculation of the
friction resistance of each panel. According to the above results, the panel method can be used for
hydrodynamic performance analysis of marine propellers.

4. Acoustic Formulations

In most acoustic problems, rigid bodies located in the fluid flow have very important effects on
the generated noise. For this reason, Williams and Hawkings [22] in 1969 developed the Lighthill
equations [23] with the assumption of rigid bodies. The equations presented by these researchers in
acoustic science are known as the FW-H model. For solving the FW-H equation, Farassat et al. [24]
presented a method that can predict the generated noise of moving object with arbitrary geometry.
According to this formulation, total sound pressure can (p′) expressed as below [24]:

p′
(→

x , t
)
= p′T

(→
x , t

)
+ p′L

(→
x , t

)
(21)

where p′T and p′L denote the thickness and loading pressure, respectively. Thickness pressure is due to
the fluid displacement caused by movement of the body within the fluid and classified as monopole
noise source. Another phenomenon caused by the motion of the non-symmetric body in fluid is the
distribution of positive and negative pressure on the face and back of the body. In fact, this pressure
distribution is the main source of trust force in propellers. Pressure difference on both sides of the
body create a dipole noise source which is referred as loading pressure. This solution is obtained with
assumption of low Mach number, and hence the quadrupole noise can be neglected. These components
are calculated through the following relations [24]:

4πp′T
(→

x , t
)
=
∫
S

[
ρ(

.
vn+v .

n)

r(1−Mr)
2

]
ret

dS +
∫
S

[
ρvn

(
r

.
Mr+cMr−cM2

)
r2(1−Mr)

3

]
ret

dS

4πp′L
(→

x , t
)
= 1

c

∫
S

[ .
Lr

r(1−Mr)
2

]
ret

dS + 1
c

∫
S

[
Lr−LM

r2(1−Mr)
2

]
ret

dS

+ 1
c

∫
S

[
Lr
(
r

.
Mr+cMr−cM2

)
r2(1−Mr)

3

]
ret

dS

(22)
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where ρ is fluid density in kg/m3, c is sound speed in m/s,
→
v is the noise source velocity in m/s,

→
r is

distance vector from noise source to receiver in m, r is magnitude of
→
r in m, Mach number is

→
M =

→
v /c,

L = p · →n is pressure force in N and p is hydrodynamic pressure in Pa. The dot over variables means
time derivate of the variable. The ret subscript in this equation means that the calculations must be
done using values at the retarded time.

In the first step of noise calculation, the flow around the body is simulated using the panel
method and flow quantities such as pressure and velocity are obtained for panels on the body surface.
Then, for receiver in position of

→
x and time of ti, retarded time (τi, j) is obtained for panel j. After this

step, all quantities required in Equation (20) must be calculated for each panel at the retarded time,
numerical integrals of the equation are solved for each panel, and the acoustic pressure of each element
is obtained. By summing up the acoustic pressures of all the elements, a total acoustic pressure is
obtained for the specified receiver. Flowchart of noise calculation using FW-H equations is shown in
Figure 9.

Figure 9. Flowchart of noise calculation using FW-H equations.

5. Noise of DTMB 4119 Propeller

The noise generated by the propeller is one of the most important components of the vessels
noise [6]. Therefore, measuring and calculating the propeller noise is one of the interesting research
subjects in naval engineering. In the first step, the results of the developed FW-H code for noise
calculation should validated using experimental results obtained in cavitation tunnel. For measuring
the noise of propeller, a TC4042 hydrophone has been used in cavitation tunnel of Sharif University of
Technology. The arrangement of this validation hydrophone is shown in Figure 10. Also, the location
of this hydrophone is given in Figure 11.
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Figure 10. Arrangement of TC4042 hydrophone on cavitation tunnel.

. 

Figure 11. Location of validation hydrophone.

For validation of results of FW-H code, noise measurements done in cavitation tunnel under
below conditions:

- Flow velocity: 2.2 m/s
- Propeller RPM: 792
- Advance ratio (J): 0.833

The time history of acoustic pressure as measured by validation hydrophone is shown in Figure 12.
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Figure 12. Time history of acoustic pressure measured by validation hydrophone.

In the post-processing stage, acoustic pressure from time domain in transferred to frequency
domain by using the fast Fourier transform (FFT) and the sound pressure level is calculated using the
following formula [25]:

SPL
(→

x , t
)
= 20 log10

(
p′/pre f

)
(23)

where pre f is the reference pressure and related to threshold of a normal human hearing for frequency
of 1 kHz which for water is 1 μPa [26]. The numerical results of noise obtained by own developed
code compared by experimental results in Figure 13. Propeller and flow conditions are the same as the
experimental setup.

 
Figure 13. Validation of FW-H code results.

It can be seen that there is good agreement between the numerical and experimental results of
propeller noise, especially in frequencies under 250 Hz. It seems that main sources of error of numerical
results are:

- Error of panel method code for calculation of pressure and flow velocity: As mentioned in the
previous sections, the results of the thrust and torque of the panel method have 4% and 7%
error in comparison with the experimental results. Since the FW-H equations use panel method
outputs, the above error causes an error in calculating the noise of the impeller.

- The error of FW-H code for noise calculation: FW-H equations include some integrals that are
calculated numerically on the source of noise. Therefore, the numerical calculation error of these
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equations can cause error in the value of noise. Also, in the solution presented in this study,
the quadrupole sources of noise are neglected, which could cause a slight error in the value of
propeller noise.

- The reflection of sound inside the cavitation tunnel is another reason for the difference between
the experimental and numerical results. The restricted space of the cavitation tunnel causes the
reverberation of sound emitted by the propeller, which results in an error in the measured noise
values. For investigating the effects of sound reverberation on noise data, special equipment is
needed which is not available in our laboratory.

Seol et al. [27] and Yang et al. [28] carried out some numerical studies on DTMB 4119 propeller,
but since the specifications of the propeller used are not the same as the propeller model in our
laboratory, the results cannot be compared.

By looking more precisely into results, it founds that both experimental and numerical results
have peaks in some frequencies. It seems that these are Blade Passing Frequencies (BPF) of propeller.
For the propeller, the rate at which the blades pass by a fixed position is called the BPF. This frequency
is known as the blade passing frequency (BPF) of the blade. As regards the propeller, the BPF and its
higher harmonics can be calculated as:

BPF = Z× rps× h (Hz) (24)

where Z is number of propeller blades, rps is the frequency of propeller rotation in Hz and h is no of
harmonic. When receiver is located in an asymmetric location relative to blades, the noise of propeller
in BPFs will have local peaks in comparison to other frequencies. For the receiver, which is located in
the hub plane of the propeller, at an equal and constant distance from the blades at all times, BPF could
not be seen in the SPL diagram. For noise diagrams in Figure 13, rps is 13.2 and Z is 3. Therefore, BPF
for three first harmonics of propeller is about 39.6, 79.2 and 118.8 Hz and noise results have peaks in
the first two frequencies.

After the validation of FW-H code, propeller noise calculations were made for four hydrophones
(receivers). Two hydrophones located in the propeller rotation plane and two hydrophones located
in front of propeller hub. The location of hydrophones and their coordinates are given in Figure 14
and Table 4.

Figure 14. Location of hydrophones.
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Table 4. Coordinates of hydrophones.

X(m) Y(m) Z(m)

H1 1 0 0
H2 2 0 0
H3 0 1 0
H4 0 2 0

The noise of the propeller as calculated by the FW-H code for hydrophones H1 and H2 are
presented in Figure 15. Noise predictions were made at a flow speed of 2.2 m/s and RPM of 792 where
J = 0.833.

Figure 15. Sound pressure level of propeller in hydrophones H1 and H2.

Results shown in Figure 15 reveals that by increasing the distance of hydrophone from propeller,
noise of H2 decreased significantly in comparison with H1. Also, in Figure 16, the propeller noise in
hydrophones H3 and H4 are presented.
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Figure 16. Sound pressure level of propeller in hydrophones H3 and H4.

As can be seen in Figure 16, with an increase of distance from the propeller, noise decreased
significantly. Also, in both hydrophones, at a blade passing frequency of 18.22 Hz, the noise has a peak
value which is also indicated in the Figure 16. By comparing Figures 15 and 16, it can be seen that the
SPL in front of the propeller hub is higher than the SPL in the propeller rotational plane.

6. Conclusions

Measuring and calculating the noise of marine propellers is very important. In this research,
the combination of the panel method and FW-H equations has been used to calculate the non-cavitating
noise of marine propellers. In the first step, a numerical panel method code is developed to solve the
flow around the propeller and calculate the propeller hydrodynamic coefficients. The results of this
code in comparison with the experimental results had maximum error of 4% and 7% for thrust and
torque coefficients, respectively.

Then, a noise calculation code based on FW-H acoustic equations was developed, which uses the
outputs of the panel method code as inputs and calculates the noise of the propeller for the desired
receiver. The results of this code are in good agreement with the noise of the propeller obtained using
results from a test carried out in cavitation tunnel of Sharif University. Using this code, the propeller
noise is measured for four hydrophones with different distances and orientations. With increasing
distance from the propeller, the noise of the propeller has been significantly reduced. For the
hydrophones located on the rotation plane of the propeller, as predicted by theory and experiments on
propeller noise, the maximum noise has occurred at the blade passing frequency. The results show that
the SPL in front of the propeller hub is higher than SPL in the propeller rotational plane.

According to the above results, the combination of the panel method and FW-H equations can be
used for hydrodynamic and acoustic analysis of marine propellers.
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Abstract: This paper aims to present a finite element (FE) formulation for the study of the natural
frequencies of functionally graded orthotropic laminated plates characterized by cross-ply layups.
A nine-node Lagrange element is considered for this purpose. The main novelty of the research is the
modelling of the reinforcing fibers of the orthotropic layers assuming a non-uniform distribution
in the thickness direction. The Halpin–Tsai approach is employed to define the overall mechanical
properties of the composite layers starting from the features of the two constituents (fiber and epoxy
resin). Several functions are introduced to describe the dependency on the thickness coordinate
of their volume fraction. The analyses are carried out in the theoretical framework provided by
the first-order shear deformation theory (FSDT) for laminated thick plates. Nevertheless, the same
approach is used to deal with the vibration analysis of thin plates, neglecting the shear stiffness of the
structure. This objective is achieved by properly choosing the value of the shear correction factor,
without any modification in the formulation. The results prove that the dynamic response of thin
and thick plates, in terms of natural frequencies and mode shapes, is affected by the non-uniform
placement of the fibers along the thickness direction.

Keywords: finite element modelling; laminated composite plates; non-uniform mechanical properties

1. Introduction

The finite element (FE) method currently represents the most-utilized computational approach
to solve several engineering problems and in applications whose solutions cannot be obtained
analytically [1]. The technological advancements in computer sciences have allowed a fast and easy
diffusion of this technique, especially in terms of structural mechanics problems. The key to the success
of the FE method lies in the reduction of complex problems into simpler ones in which the reference
domain is made of several discrete elements, and in its easy computational implementation. This idea
was first highlighted by Duncan and Collar [2,3], and successively emphasized by Hrennikoff [4],
Courant [5], Clough [6], and Melosh [7].

The approximate solutions that can be obtained by means of the FE approach are accurate and
representative of the physical problem under consideration [8,9]. To the best of the authors’ knowledge,
the progression and development of this technique are well-described in many pertinent books, such
as the ones by Oden [10], Oden and Reddy [11], Hinton [12], Zienkiewicz [13], Reddy [14], Onate [15],
Hughes [16], and Ferreira [17]. These books should be used as references for the theoretical background
of the numerical approach at issue. For completeness purposes, it should be recalled that various and
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alternative approaches have been developed in past decades to obtain approximated but accurate
solutions to several complex structural problems, not only based on the FE method [18–21].

An intriguing application that is efficiently solved by means of the FE methodology is about
the structural response of plates and panels made of composite materials [22–24]. With respect to an
isotropic and conventional medium, a composite material can reach superior performance by combining
two (or more) constituents. A typical example of this category are fiber-reinforced composites, in
which the high-strength fibers are the main load-carrying elements, whereas the matrix has the task of
keeping them together and protecting the reinforcing phase from the environment [25–28]. In general,
a micromechanical approach should be employed to evaluate the overall mechanical properties of
these materials, starting from the features of the single constituents. The review paper by Chamis
and Sendeckyj represents a fundamental contribution is this direction [29]. One of the most effective
approaches that can be used toward this aim is the one proposed by Halpin [30] and Tsai [31,32], who
developed a semi-empirical method and expressed the mechanical properties of the constituents in
terms of Hill’s elastic moduli [33,34]. Further details concerning the micromechanics of fiber-reinforced
composite materials can be found in [35].

The use of a versatile numerical method also allows us to investigate the structural response of
composite structures with non-uniform mechanical properties. In particular, in the present paper the
reinforcing fibers are characterized by a gradual variation of their volume fraction along the plate
thickness, following the same idea of functionally graded materials [36–52]. With respect to this
class of materials, in which the composites turn out to be isotropic, the layers of the plate assume
orthotropic features and can also be oriented. This topic clearly falls within the aim of the optimal
design of composite structures [53–58]. It should be mentioned that a similar approach is followed in
the design of functionally graded carbon-nanotube-reinforced composites, due to the advancements in
nanostructures and nanotechnologies [59–68].

In this paper, the research is organized in two main sections. After this brief introduction, the
FE formulation for laminated thick and thin plates is presented in Section 2. Here, the theoretical
framework is based on the well-known first-order shear deformation theory (FSDT) for laminated
composite structures [69,70]. The effect of the shear correction factor is also discussed in order to
deal with thin plates [71]. In addition, the micromechanics approach based on the Halpin–Tsai model
is described in detail, by also introducing the topic of variable mechanical properties. Section 3
presents the results of the numerical applications. As a preliminary test, the accuracy and convergence
features of the numerical approach are discussed by means of the comparison with the semi-analytical
solutions available in the literature for thin and thick laminated composite plates. Then, the natural
frequencies of functionally graded orthotropic cross-ply plates are presented for several mechanical
configurations. Finally, Appendix A is added to define the terms of the fundamental operators of the
proposed FE formulation.

2. Finite Element (FE) Formulation for Laminated Thick and Thin Plates

The theoretical framework of the current research is based on the first-order shear deformation
theory (FSDT). The governing equations are presented in this section by developing the corresponding
FE formulation. The following kinematic model is assumed within each discrete element of the
plate [69]:

U(e)
x (x, y, z, t) = u(e)

x (x, y, t) + zφ(e)x (x, y, t)

U(e)
y (x, y, z, t) = u(e)

y (x, y, t) + zφ(e)y (x, y, t)

U(e)
z (x, y, z, t) = u(e)

z (x, y, t)

, (1)

where U(e)
x , U(e)

y , U(e)
z are the three-dimensional displacements of the structure, whereas the degrees of

freedom of the problem are given by three translations u(e)
x , u(e)

y , u(e)
z and two rotations φ(e)x ,φ(e)y defined
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on the plate middle surface. These quantities can be conveniently collected in the corresponding vector
u(e), defined below

u(e) =
[

u(e)
x u(e)

y u(e)
z φ

(e)
x φ

(e)
y

]T
. (2)

The coordinates x, y, z specify the local reference system of the plate and t is the time variable.
The superscript (e) clearly specifies that this model is valid for each element. The geometry of the plate
is fully described once the lengths Lx, Ly of its sides and its overall thickness h are defined. It should be
recalled that for a laminate structure one gets

h =

NL∑
k=1

(zk+1 − zk), (3)

in which zk+1, zk stand for the upper and lower coordinates of the k-th layer, respectively. The degrees
of the freedom (2) are approximated in each element by means of quadratic Lagrange interpolation
functions. As can be noted from Figure 1, nine nodes are introduced in each subdomain. As a
consequence, the degrees of freedom assume the following aspect:

u(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
x,i (t) = Nu

(e)
x

u(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
y,i (t) = Nu

(e)
y

u(e)
z (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
z,i (t) = Nu

(e)
z

φ
(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)x,i (t) = Nφ
(e)
x

φ
(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)y,i (t) = Nφ
(e)
y

, (4)

where Ni represents the i-th shape function, whereas u(e)
x,i , u(e)

y,i , u(e)
z,i ,φ(e)x,i ,φ(e)y,i denote the nodal

displacements, which can be included in the corresponding vectors

u
(e)
x =

[
u(e)

x,1 · · · u(e)
x,9

]T
, u

(e)
y =

[
u(e)

y,1 · · · u(e)
y,9

]T
, u

(e)
z =

[
u(e)

z,1 · · · u(e)
z,9

]T
φ

(e)
x =

[
φ
(e)
x,1 · · · φ(e)x,9

]T
,φ(e)

y =
[
φ
(e)
y,1 · · · φ(e)y,9

]T . (5)

On the other hand, the shape functions linked to the nine nodes of the finite element are included
in the vector N, defined below:

N =
[

N1 · · · N9
]
. (6)

For the sake of clarity, it should be recalled that the nodes are identified in each element by
following the numbering specified in Figure 1.

At this point, the nodal degrees of freedom can be collected in a sole vector u(e) to simplify
the nomenclature:

u(e) =
[

u
(e)
x u

(e)
y u

(e)
z φ

(e)
x φ

(e)
y

]T
=
[

u(e)
x,1 · · · u(e)

x,9 u(e)
y,1 · · · u(e)

y,9 u(e)
z,1 · · · u(e)

z,9 φ
(e)
x,1 · · · φ(e)x,9 φ

(e)
y,1 · · · φ(e)y,9

]T , (7)

and to write the definitions (4) by using the following matrix notation:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
N 0 0 0 0
0 N 0 0 0
0 0 N 0 0
0 0 0 N 0
0 0 0 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔ u(e)

5×1
= N

5×(9×5)
u(e)

(9×5)×1
. (8)

The size of each matrix is indicated under the corresponding symbol. It is important to
specify that the same approximation is employed for all degrees of freedom (both translational
and rotational displacements).

φ

φ

 

Figure 1. Nine-node quadratic Lagrange rectangular element.

As mentioned in the books by Reddy [14] and Ferreira [17], it is convenient to introduce the
natural coordinates ξ, η within the reference finite element, which is called the master element (or
parent element). In this reference system, which is also depicted in Figure 1, the shape functions
Ni = Ni(ξ, η) assume the following definitions:

N1 = 1
4

(
ξ2 − ξ

)(
η2 − η

)
N2 = 1

4

(
ξ2 + ξ

)(
η2 − η

)
N3 = 1

4

(
ξ2 + ξ

)(
η2 + η

)
N4 = 1

4

(
ξ2 − ξ

)(
η2 + η

)
N5 = 1

2

(
1− ξ2

)(
η2 − η

)
N6 = 1

2

(
ξ2 + ξ

)(
1− η2

)
N7 = 1

2

(
1− ξ2

)(
η2 + η

)
N8 = 1

2

(
ξ2 − ξ

)(
1− η2

)
N9 =

(
1− ξ2

)(
1− η2

) , (9)

for ξ, η ∈ [−1, 1]. The same functions are also used to describe the geometry of each discrete element
according to the principles of the isoparametric FE formulation. The coordinate change between the
physical domain and the parent element is accomplished through the relations shown below

x(e) =
9∑

i=1

Ni(ξ, η)x
(e)
i , y(e) =

9∑
i=1

Ni(ξ, η)y(e)i , (10)

where the couple x(e)i , y(e)i defines the coordinates of the i-th node of the generic element. For the sake
of conciseness, these quantities can be collected in the corresponding vectors x(e), y(e):

xe =
[

x(e)1 · · · x(e)9

]T
, ye =

[
y(e)1 · · · y(e)9

]T
. (11)

The Jacobian matrix J related to the coordinate change (10) can be now introduced in order to
evaluate the derivatives with respect to the natural coordinates of the parent element:
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∂x
(e)

∂ξ
∂y(e)

∂ξ
∂x(e)
∂η

∂y(e)

∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9∑
i=1

x(e)i
∂Ni
∂ξ

9∑
i=1

y(e)i
∂Ni
∂ξ

9∑
i=1

x(e)i
∂Ni
∂η

9∑
i=1

y(e)i
∂Ni
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
[

Bξ
Bη

][
x(e) y(e)

]
=

[
Bξx

(e) Bξy
(e)

Bηx
(e) Bηy

(e)

]
, (12)

where the vectors Bξ, Bη collect the derivatives of the shape functions (9) with respect to ξ, η

Bξ =
[
∂N1
∂ξ · · · N9

∂ξ

]
, Bη =

[
∂N1
∂η · · · N9

∂η

]
. (13)

At this point, the compatibility equations can be presented to define the strain components in
each element. In particular, the membrane strains are given by

ε
(e)
x =

∂u(e)
x
∂x

= Bxu
(e)
x , ε(e)y =

∂u(e)
y

∂y
= Byu

(e)
y ,γ(e)xy =

∂u(e)
y

∂x
+
∂u(e)

x
∂y

= Bxu
(e)
y + Byu

(e)
x . (14)

On the other hand, the bending and twisting curvatures can be defined as follows:

k(e)x =
∂φ

(e)
x

∂x
= Bxφ

(e)
x , k(e)y =

∂φ
(e)
y

∂y
= Byφ

(e)
y , k(e)xy =

∂φ
(e)
y

∂x
+
∂φ

(e)
x

∂y
= Bxφ

(e)
y + Byφ

(e)
x . (15)

Finally, the shear strains assume the following definitions:

γ
(e)
xz =

∂u(e)
z
∂x

+ φ
(e)
x = Bxu

(e)
z + Nφ

(e)
x ,γ(e)yz =

∂u(e)
z
∂y

+ φ
(e)
y = Byu

(e)
z + Nφ

(e)
y . (16)

Note that the derivatives of the shape functions with respect to the physical coordinates x, y are
introduced and collected in the corresponding vectors Bx, By. They can be computed as follows by
inverting the Jacobian matrix (this procedure is admissible if its determinant is greater than zero):[

Bx

By

]
= J−1

[
Bξ
Bη

]
. (17)

The following matrix notation can be used to collect and define the strains previously introduced
in (14)–(16): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bx 0 0 0 0
0 By 0 0 0

By Bx 0 0 0
0 0 0 Bx 0
0 0 0 0 By

0 0 0 By Bx

0 0 Bx N 0
0 0 By 0 N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⇔ η(e)

8×1
= B

8×(9×5)
u(e)

(9×5)×1
. (18)

The vector η(e) collects the aforementioned strain components. Such terms are needed to compute
the stress resultants in each element by means of the constitutive relation shown below in matrix form:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 κA44 κA45

0 0 0 0 0 0 κA45 κA55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

in which N(e)
x , N(e)

y , N(e)
xy are the membrane forces, M(e)

x , M(e)
y , M(e)

xy the bending and twisting moments,

and T(e)
x , T(e)

y the shear stresses. On the other hand, κ stands for the shear correction factor.
For moderately thick and thick plates, which are commonly studied through the FSDT, the shear
correction factor is generally assumed equal to 5/6. Nevertheless, the same structural model can be
employed to accurately investigate the mechanical behavior of thin plates, which are usually analyzed
in the theoretical framework provided by the classical laminated plate theory (CLPT), taking the
Kirchhoff hypothesis into account. This theory neglects the shear stresses, and the same circumstance
can be obtained from the FSDT by setting 106 as the shear correction factor. In other words, the effect
of shear stresses is negligible if the shear stiffness is extremely large [71].

The stress resultants can be also expressed as follows in extended matrix form in terms of nodal
displacements, having in mind the definitions (18)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11Bx + A16By A12By + A16Bx 0 B11Bx + B16By B12By + B16Bx

A12Bx + A26By A22By + A26Bx 0 B12Bx + B26By B22By + B26Bx

A16Bx + A66By A26By + A66Bx 0 B16Bx + B66By B26By + B66Bx

B11Bx + B16By B12By + B16Bx 0 D11Bx + D16By D12By + D16Bx

B12Bx + B26By B22By + B26Bx 0 D12Bx + D26By D22By + D26Bx

B16Bx + B66By B26By + B66Bx 0 D16Bx + D66By D26By + D66Bx

0 0 κA44Bx + κA45By κA44N κA45N

0 0 κA45Bx + κA55By κA45N κA55N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
(e)
x

u
(e)
y

u
(e)
z

φ
(e)
x

φ
(e)
y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

or in compact matrix form
S(e)
8×1

= C
8×8

B
8×(9×5)

u(e)

(9×5)×1
, (21)

where the meaning of the constitutive operator C can be deduced from Equation (19). It should
be observed that the mechanical properties are the same in each element, and the corresponding
coefficients are defined as (

Aij, Bij, Dij
)
=

NL∑
k=1

zk+1∫
zk

Q
(k)
i j

(
1, z, z2

)
dz, (22)

where Q
(k)
i j represents the stiffnesses of the k-th orthotropic layer, which can be oriented as θ(k).

Once the orientation of the fibers is defined, the following relations are employed to compute the

coefficients Q
(k)
i j :
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Q
(k)
11 = Q(k)

11 cos4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 sin4 θ(k)

Q
(k)
12 =

(
Q(k)

11 + Q(k)
22 − 4Q(k)

66

)
sin2 θ(k) cos2 θ(k) + Q(k)

12

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
22 = Q(k)

11 sin4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 cos4 θ(k)

Q
(k)
16 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sinθ(k) cos3 θ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sin3 θ(k) cosθ(k)

Q
(k)
26 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sin3 θ(k) cosθ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sinθ(k) cos3 θ(k)

Q
(k)
66 =

(
Q(k)

11 + Q(k)
22 − 2Q(k)

12 − 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

66

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
44 = Q(k)

44 cos2 θ(k) + Q(k)
55 sin2 θ(k)

Q
(k)
45 =

(
Q(k)

44 −Q(k)
55

)
sinθ(k) cosθ(k)

Q
(k)
55 = Q(k)

55 cos2 θ(k) + Q(k)
44 sin2 θ(k)

, (23)

where the quantities Q(k)
i j are defined below in terms of the engineering constants of the corresponding

layer, which are the Young’s moduli E(k)
11 , E(k)

22 , the shear moduli G(k)
12 , G(k)

13 , G(k)
23 , and the Poisson’s

ratio ν(k)12 :

Q(k)
11 =

E(k)
11

1− ν(k)12 ν
(k)
21

, Q(k)
22 =

E(k)
22

1− ν(k)12 ν
(k)
21

, Q(k)
12 =

ν
(k)
12 E(k)

22

1− ν(k)12 ν
(k)
21

, Q(k)
66 = G(k)

12 , Q(k)
44 = G(k)

13 , Q(k)
55 = G(k)

23 . (24)

It should be recalled that the Poisson’s ratio ν(k)21 can be evaluated by using the well-known relation

for orthotropic materials ν(k)21 = E(k)
22 ν

(k)
12 /E(k)

11 .
The engineering constants are computed by means of the Halpin–Tsai approach, once the

mechanical features of the reinforcing fibers and the epoxy resin of the orthotropic fiber-reinforced
layers are known. As highlighted in [35], this methodology can be applied by using Hill’s elastic
moduli and a semi-empirical approach. The reinforcing fibers are modeled as a transversely isotropic
material, and the following engineering constants are required to characterize them: the Young’s
moduli EF

11, EF
22, the shear modulus GF

12, and the Poisson’s ratios νF
12, νF

23. The Hills’s elastic moduli of
the fibers kF, lF, mF, nF, pF are given by:

kF =
EF

22

2
(
1− νF

23 − 2νF
21ν

F
12

) , lF = 2νF
12kF, mF =

1− νF
23 − 2νF

21ν
F
12

1 + νF
23

kF,

nF = 2
(
1− νF

23

)EF
11

EF
22

kF, pF = GF
12

. (25)

On the other hand, the epoxy resin is modeled as an isotropic medium characterized by its Young’s
modulus EM and its Poisson’s ratio νM. The Hill’s elastic moduli of the matrix kM, lM, mM, nM, pM are
defined below:

kM =
EM

2(1 + νM)(1− 2νM)
, lM = 2νMkM, mM =

(
1− 2νM

)
kM,

nM = 2
(
1− νM

)
kM, pM =

(
1− 2νM

)
kM

. (26)

At this point, the overall mechanical properties of the composite material can be computed in
terms of the Hill’s elastic moduli k, l, m, n, p:
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k =
kM(kF + mM)VM + kF(kM + mM)VF

(kF + mM)VM + (kM + mM)VF

l = VFlF + VMlM +
lF − lM
kF − kM

(k−VFkF −VMkM)

m = mM
2VFmF(kM + mM) + 2VMmFmM + VMkM(mF + mM)

2VFmM(kM + mM) + 2VMmFmM + VMkM(mF + mM)

n = VFnF + VMnM +

(
lF − lM
kF − kM

)2

(k−VFkF −VMkM)

p =
(pF + pM)pMVM + 2pFpMVF

(pF + pM)VM + 2pMVF

, (27)

where VF, VM are the volume fractions of the fibers and of the matrix, respectively. They are related by
the following relation: VM = 1−VF. In the current research, a non-uniform distribution of the fibers is
defined along the plate thickness. Therefore, the volume fraction of the reinforcing fibers turns out to
be a function of the thickness coordinate VF = VF(z) = ṼF f (k)(z), in which ṼF represents a constant
value. This idea is representative of functionally graded materials. Several distributions f (k)(z) can be
introduced toward this aim, and can be applied in each layer separately. The following functions are
used in this paper:

f (k)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (k)UD(z) = 1

f (k)O (z) = 1− 1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
− 2(zk+1 − z)

zk+1 − zk

∣∣∣∣∣∣
f (k)X (z) =

1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
− 2(zk+1 − z)

zk+1 − zk

∣∣∣∣∣∣
f (k)V (z) =

z− zk
zk+1 − zk

f (k)A (z) =
zk+1 − z
zk+1 − zk

. (28)

For the sake of completeness, these functions are depicted in Figure 2.

(a) (b) (c) (d) 

Figure 2. Through-the-thickness variation of f (k): (a) f (k)O ; (b) f (k)X ; (c) f (k)V ; (d) f (k)A .

Once the Hill’s elastic moduli (27) are computed, the engineering constants of the k-th fiber
reinforced composite layer can be evaluated as well. The definitions shown below are required for
this purpose:

E(k)
11 = n− l2

k
, E(k)

22 =
4m

(
kn− l2

)
kn− l2 + mn

, ν(k)12 =
l

2k
, G(k)

12 = G(k)
13 = p, G(k)

23 = m. (29)

It should be noted that these quantities are all functions of the thickness coordinate z due to

the relations (28). As a consequence, the material properties Q
(k)
i j defined in (23) depend also on the

coordinate z, and the integrals in (22) have to be computed numerically. The function “trapz” embedded
in MATLAB was employed toward this aim.
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At this point, the Hamilton’s variational principle can be applied to obtain the equations of motion
and the corresponding weak form [23]. As a result, it is possible to write the dynamic fundamental
system in each element as follows:

K(e)
(9×5)×(9×5)

u(e)

(9×5)×1
+ M(e)

(9×5)×(9×5)

¨

u

(e)

(9×5)×1
= 0, (30)

where the stiffness matrix of the element is denoted by K(e), whereas the mass matrix is identified

by M(e). On the other hand, the vector
¨

u

(e)

collects the second-order derivatives with respect to the
time variable t of the nodal displacements (7). By definition, the stiffness matrix K(e) assumes the
following aspect:

K(e) =

∫
x

∫
y

BT
(9×5)×8

C
8×8

B
8×(9×5)

dxdy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (31)

where the operators Ki j of size 9 × 9 are illustrated in Appendix A. Analogously, the mass matrix M(e)

can be written as follows:

M(e) =

∫
x

∫
y

NT
(9×5)×5

m
5×5

N
5×(9×5)

dxdy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0
M41 0 0 M44 0

0 M52 0 0 M55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

where the operators Mi j of size 9 × 9 are also illustrated in Appendix A. The matrix m instead collects
the inertia terms and assumes the definition shown below:

m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

in which

Ii =

NL∑
k=1

zk+1∫
zk

ρ(k)zidz, (34)

where ρ(k) is the density of the k-th layer. Its value can be obtained by means of the rule of mixture,
combining the densities of the reinforcing fibers ρ(k)F and of the matrix ρ(k)M :

ρ(k) = VFρ
(k)
F + VMρ

(k)
M . (35)

Note that the density is also a function of the thickness coordinate z due to the through-the-thickness
variation of the volume fraction of the fibers. Therefore, the integrals in (34) have to be computed
numerically as well.
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2.1. Numerical Evaluation of the Fundamental Operators

It is well-known that the integrals in definitions (31) and (32) require a tool to be computed
numerically. In the current research, the Gauss–Legendre rule is used. According to this approach, the
infinitesimal area dxdy is evaluated in the master element as follows, through the determinant of the
Jacobian matrix: dxdy = detJdξdη. Consequently, the integral of a generic two-dimensional function
F(x, y) can be written as ∫

x

∫
y

F(x, y)dxdy =

1∫
−1

1∫
−1

F(ξ, η)detJdξdη. (36)

At this point, the integral is converted into a weighted linear sum by introducing the roots of
Legendre polynomials ξI, ηJ and the corresponding weighting coefficients WI, WJ:

1∫
−1

1∫
−1

F(ξ, η)detJdξdη ≈
M∑

I=1

N∑
J=1

F
(
ξI, ηJ

)
detJ|ξI ,ηJ

WIWJ. (37)

The values of the roots of Legendre polynomials and the corresponding weighting coefficients
used in the numerical integration are listed in Table 1. Recall that the full integration is performed by
setting N = M = 3. On the other hand, the reduced integration is accomplished for N = M = 2 as far
as the shear terms are concerned. In other words, the elements of the stiffness matrix which involve the
mechanical properties A44, A45, A55 are computed by means of the reduced integration. This procedure
aims to avoid the shear locking problem as highlighted in the book by Reddy [14]. For the sake of
completeness, the roots of Legendre polynomials are also depicted in Figure 1, for both the full and
reduced integrations.

Table 1. Roots of Legendre polynomials and weighting coefficients for the numerical integration.

N, M ξI, ηJ WI, WJ

2 ±1/
√

3 1

3 ±√3/5 5/9

0 8/9

Finally, the assembly procedure is performed to enforce the C0 compatibility conditions among
the elements in which the reference domain is divided. In other words, the model is characterized by
continuous displacements at the interfaces of the elements. The global discrete system of governing
equations assumes the following aspect:

K
Ndo f s×Ndo f s

u
Ndo f s×1

+ M
Ndo f s×Ndo f s

¨
u

Ndo f s×1
= 0, (38)

where the number of degrees of freedom is given by Ndo f s = 5×NP, NP being the number of nodes of
the discrete domain. With reference to Equation (38), K, M clearly stand for the global stiffness and
mass matrices, whereas u is the vector of the nodal displacements of the global system defined below:

u =
[

ux,1 · · · ux,NP uy,1 · · · uy,NP uz,1 · · · uz,NP φx,1 · · · φx,NP φy,1 · · · φy,NP

]T
, (39)

in which the numbering is performed following the scheme in Figure 3. Finally,
¨
u is the vector that

collects the second-order time derivatives of the nodal displacements.
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Figure 3. Example of a discrete domain and node numbering.

2.2. Natural Frequency Analysis

Once the discrete fundamental system (38) is defined and the proper boundary conditions are
enforced, the separation of variables provide the following relation:(

K−ω2M
)
d = 0, (40)

in which ω represents the circular frequencies of the structural system, whereas the vector d collects the
corresponding modal amplitudes. The natural frequencies of the plate can be evaluated as fn = ω/2π.
It can be observed that the expression (40) is a generalized eigenvalue problem. In the present research,
the function “eigs” embedded in MATLAB was employed to obtain the natural frequencies and the
mode shapes of the laminated composite plates.

3. Numerical Applications

The formulation illustrated in the previous section was implemented in a MATLAB code.
The current approach was first validated by means of the comparison with the semi-analytical
solutions provided by Reddy in his book [23], for both thin and thick simply-supported plates with an
antisymmetric cross-ply layup. In these circumstances, a uniform distribution of the fiber was assumed
along the plate thickness.

The convergence analysis was also performed for the sake of completeness. Subsequently, the
natural frequencies of functionally graded orthotropic laminated plates are discussed. The geometry
of the plates considered in the numerical applications was defined by Lx = Ly = 1 m, whereas their
lamination scheme was given by

(
0
◦
/90

◦
/0
◦
/90

◦)
. The four layers were characterized by the same

value of ṼF = 0.6, whereas their thickness was assumed as 2.5 × 10−3 m for thin plates and as 2.5 ×
10−2 m for the thick ones. The mechanical properties of the constituents (Carbon fibers and epoxy
resin) are listed in Table 2.

Table 2. Mechanical properties of the layer constituents.

Constituent Young’s Moduli Shear Moduli Poisson’s Ratios Density

Carbon fibers
EF

11 = 230 GPa GF
12 = 50 GPa νF

12 = 0.20
ρF = 1800 kg/m3

EF
22 = 15 GPa νF

23 = 0.25

Epoxy resin EM = 3.27 GPa - νM = 0.38 ρM = 1200 kg/m3
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3.1. Convergence and Accuracy

The convergence analysis was performed by increasing the number of discrete elements up to
256, which means 16 elements along each principal direction. The results of this test are presented in
Table 3 for a thin plate and in Table 4 for the thicker ones, in terms of the first ten natural frequencies.
A very good accuracy was obtained by using only eight finite elements per side, for both cases under
consideration. In particular, the percentage error for the first mode shapes was lower than 0.4%
if 64 elements were used. Therefore, the formulation and the numerical approach were validated.
Only the bending mode shapes were considered in the analyses.

Table 3. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thin plate with a through-the-thickness uniform distribution of the reinforcing fibers. CLPT: classical
laminated plate theory.

Mode CLPT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 43.9262 44.4153 43.9592 43.9284 43.9265
2 123.1041 135.1515 124.3804 123.1900 123.1096
3 123.1041 135.1515 124.3804 123.1901 123.1096
4 175.6547 192.6267 177.6096 175.7865 175.6632
5 265.0021 505.8042 278.5590 265.9668 265.0653
6 265.0021 505.8084 278.5590 265.9668 265.0653
7 300.0618 533.0928 313.2389 300.9965 300.1230
8 300.0618 533.0928 313.2389 300.9965 300.1230
9 395.0350 751.5685 415.3231 396.4841 395.1299
10 465.3946 838.4999 515.4317 470.6168 465.7466

Table 4. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thick plate with a through-the-thickness uniform distribution of the reinforcing fibers. FSDT: first-order
shear deformation theory.

Mode FSDT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 397.3772 400.9285 397.6161 397.3928 397.3782
2 939.4637 987.3930 946.0547 939.9116 939.4924
3 939.4637 987.3930 946.0547 939.9116 939.4924
4 1285.7309 1295.8113 1293.1889 1286.2465 1285.7646
5 1640.7304 2202.4349 1687.2607 1644.1525 1640.9552
6 1640.7304 2219.9298 1687.2607 1644.1525 1640.9552
7 1869.3853 2219.9298 1905.9136 1872.1146 1869.5668
8 1869.3853 2224.7306 1905.9136 1872.1146 1869.5668
9 2313.9852 2486.7150 2349.5762 2316.8723 2314.1827
10 2372.3369 3354.9399 2442.9101 2385.5578 2373.2355

For completeness, the convergence features of the proposed approach are presented in graphical
form in Figure 4, where the relative error er = fn/ fn,exact − 1 was computed for increasing values of the
degrees of freedom (Ndo f s). The graphs are presented in logarithmic scale. It can be observed that a
good convergence was reached for both thin and thick plates.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 4. Convergence graphs for thin (CLPT) and thick (FSDT) laminated plates in terms of natural
frequencies: (a) first frequency; (b) second frequency; (c) third frequency; (d) fourth frequency; (e) fifth
frequency; (f) sixth frequency.

3.2. Natural Frequency Analysis of Functionally Graded Orthotropic Plates

In this section, four different through-the-thickness fiber distributions are analyzed. These four
schemes, as well as the functions f (k) employed in each layer, are summarized in Table 5. The layers
were numbered from the bottom to the top surface of the plate. As far as the mechanical and geometric
features of the plates are concerned, the same values of the previous section were used. Due to
the results of the convergence analyses, the plates were discretized by using ten finite elements
per side. The first fourteen natural frequencies of a simply-supported thin plate for the various
through-the-thickness distributions of the reinforcing fibers specified in Table 5 are presented in Table 6,
whereas Table 7 collects the same results for a simply-supported thick plate. Finally, the first six mode
shapes are also depicted in graphical form. In particular, Figure 5 presents the mode shapes related to
the thin plates, whereas the same results for the thick plates are shown in Figure 6. Note that the mode
shapes assumed different aspects by varying the through-the-thickness distributions of the fibers in the
four layers, keeping their orientation constant. Analogously, the values of natural frequencies were
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affected by the non-uniform distribution of the fibers along the thickness of the structures, for both
thin and thick configurations.

Table 5. Definition of the through-the-thickness distribution of the reinforcing fibers.

Scheme Layer 1 Layer 2 Layer 3 Layer 4

Scheme 1 f (1)UD f (2)UD f (3)UD f (4)UD
Scheme 2 f (1)O f (2)O f (3)O f (4)O
Scheme 3 f (1)X f (2)X f (3)X f (4)X
Scheme 4 f (1)V f (2)UD f (3)UD f (4)A

Table 6. First fourteen natural frequencies (Hz) of a simply-supported thin plate for several
through-the-thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 43.9271 33.5339 35.0923 34.5204
2 123.1397 93.9281 97.6817 96.4943
3 123.1397 93.9281 97.6817 96.4994
4 175.7093 134.1367 140.3692 138.0894
5 265.4059 202.3576 209.7406 207.6677
6 265.4059 202.3576 209.7406 207.6780
7 300.4527 229.2791 239.2330 235.8151
8 300.4527 229.2791 239.2330 235.8250
9 395.6415 302.0350 316.0631 310.9587
10 467.6067 356.4637 368.9774 365.6794
11 467.6067 356.4637 368.9774 365.6944
12 494.2235 376.9847 392.0326 387.3268
13 494.2235 376.9847 392.0326 387.3477
14 565.8001 431.8446 451.1608 444.3823

Table 7. First fourteen natural frequencies (Hz) of a simply-supported thick plate for several through-the-
thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 397.3836 306.5341 318.4900 319.8942
2 939.6493 734.9017 753.9989 780.5089
3 939.6493 734.9017 753.9989 780.5337
4 1285.9465 1008.8635 1036.0206 1077.1948
5 1642.1651 1300.8952 1322.6235 1405.6371
6 1642.1651 1300.8952 1322.6235 1405.6638
7 1870.5349 1480.8980 1510.3561 1600.6668
8 1870.5349 1480.8980 1510.3561 1600.6865
9 2315.2138 1839.1055 1872.3302 1997.7076
10 2377.9654 1899.9655 1921.4452 2077.7168
11 2377.9654 1899.9655 1921.4452 2077.7322
12 2545.0693 2031.1334 2059.3510 2219.4198
13 2545.0693 2031.1334 2059.3510 2219.4394
14 2888.3228 2306.5360 2339.2521 2523.7454
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(a) (b) (c) (d) 

Figure 5. First six mode shapes for a simply-supported laminated thin plate with different fiber
distributions: (a) Scheme 1 (uniform); (b) Scheme 2; (c) Scheme 3; (d) Scheme 4.
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Figure 6. First six mode shapes for a simply-supported laminated thick plate with different fiber
distributions: (a) Scheme 1 (uniform); (b) Scheme 2; (c) Scheme 3; (d) Scheme 4.
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4. Conclusions

A FE formulation was presented and implemented to investigate the natural frequencies of
functionally graded orthotropic thin and thick plates with cross-ply layups. The layers of the structures
were modeled as fiber-reinforced materials with orthotropic features. The fibers were characterized
by a gradual variation of their volume fraction along the thickness of the plates. Toward this aim,
several functions depending on the thickness coordinate were introduced. Their effects on the
free vibrations were discussed. The research proved that the natural frequencies, as well as the
corresponding mode shapes, were affected by the non-uniform placement of the fibers in the thickness
direction. In particular, the dynamic response of laminated plates could be changed by varying the
through-the-thickness distributions of the volume fraction of the reinforcing fibers, keeping the fiber
orientation and the thickness of the various layers constant. The same considerations were deduced
for thin and thick plates.
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Appendix A

The following definitions are required to compute the terms of the element stiffness matrix K(e)

introduced in Equation (31). Recall that the operator at issue is symmetrical. The submatrices K
(e)
i j for

i, j = 1, 2, . . . , 5 assume the following aspects:

K11 =
∫
x

∫
y

(
BT

x

(
A11Bx + A16By

)
+ BT

y

(
A16Bx + A66By

))
dxdy

K12 =
∫
x

∫
y

(
BT

x

(
A12By + A16Bx

)
+ BT

y

(
A26By + A66Bx

))
dxdy

K13 = 0
K14 =

∫
x

∫
y

(
BT

x

(
B11Bx + B16By

)
+ BT

y

(
B16Bx + B66By

))
dxdy

K15 =
∫
x

∫
y

(
BT

x

(
B12By + B16Bx

)
+ BT

y

(
B26By + B66Bx

))
dxdy

(A1)

K21 = KT
12

K22 =
∫
x

∫
y

(
BT

y

(
A22By + A26Bx

)
+ BT

x

(
A26By + A66Bx

))
dxdy

K23 = 0
K24 =

∫
x

∫
y

(
BT

y

(
B12Bx + B26By

)
+ BT

x

(
B16Bx + B66By

))
dxdy

K25 =
∫
x

∫
y

(
BT

y

(
B22By + B26Bx

)
+ BT

x

(
B26By + B66Bx

))
dxdy

(A2)

K31 = KT
13

K32 = KT
23

K33 =
∫
x

∫
y

(
BT

x

(
κA44Bx + κA45By

)
+ BT

y

(
κA45Bx + κA55By

))
dxdy

K34 =
∫
x

∫
y

(
BT

x

(
κA44N

)
+ BT

y

(
κA45N

))
dxdy

K35 =
∫
x

∫
y

(
BT

x

(
κA45N

)
+ BT

y

(
κA55N

))
dxdy

(A3)

91



Math. Comput. Appl. 2019, 24, 52

K41 = KT
14

K42 = KT
24

K43 = KT
34

K44 =
∫
x

∫
y

(
BT

x

(
D11Be

x + D16By
)
+ BT

y

(
D16Bx + D66By

))
dxdy +

∫
x

∫
y

N
T
κA44Ndxdy

K45 =
∫
x

∫
y

(
BT

x

(
D12By + D16Bx

)
+ BT

y

(
D26By + D66Bx

))
dxdy +

∫
x

∫
y

N
T
κA45Ndxdy

(A4)

K51 = KT
15

K52 = KT
25

K53 = KT
35

K54 = KT
45

K55 =
∫
x

∫
y

(
BT

y

(
D22By + D26Bx

)
+ BT

x

(
D26By + D66Bx

))
dxdy +

∫
x

∫
y

N
T
κA55Ndxdy

(A5)

Analogously, the following definitions are needed to evaluate the terms of the element mass
matrix M(e) introduced in Equation (32), which also turns out to be symmetrical. The submatrices
M

(e)
i j , for i, j = 1, 2, . . . , 5 assume the following aspects:

M11 =
∫
x

∫
y

N
T

I0Ndxdy

M14 =
∫
x

∫
y

N
T

I1Ndxdy
(A6)

M22 =
∫
x

∫
y

N
T

I0Ndxdy

M25 =
∫
x

∫
y

N
T

I1Ndxdy
(A7)

M33 =

∫
x

∫
y

N
T

I0Ndxdy (A8)

M41 = MT
14

M44 =
∫
x

∫
y

N
T

I2Ndxdy (A9)

M52 = MT
25

M55 =
∫
x

∫
y

N
T

I2Ndxdy (A10)
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