
Chapter 19
Thermodynamic Modelling in the Frames
of the TRIP-Matrix-Composite
Development

Ivan Saenko and Olga Fabrichnaya

Abstract The present chapter is focused on thermodynamic modelling as a part of a
complex development of metal-ceramic composite materials. Within this chapter the
main examples of successful application of thermodynamic calculation for a solving
of technological problems are highlighted, basic theory and methods of thermody-
namic investigations and modelling are described in details and the most important
results are briefly given. The purpose of this chapter is to give a deep understanding
of thermodynamic modelling from basic experiments to modern methods of simula-
tion. There is a set of recommendations for performing thermodynamic assessment
and creation of multicomponent thermodynamic databases.

19.1 Introduction

Knowledge of phase equilibria and the underlying thermodynamics play a crucial
role in the understanding of development and application of materials. Thereby,
phase diagrams represent a kind of roadmaps for materials development and pro-
vide important information for understanding of technological aspects of design and
usage of materials. However, the most of the modern materials consist of more than
two or three components, what makes the graphical representation of these systems
challenging and complex. Moreover, there is only limited information for many mul-
ticomponent systems. Method of computational thermodynamics is very powerful
tool for prediction and extrapolation helping to fill these gaps of the areas without
experimental information [1].

In the frame of a development of an innovative composite material, thermody-
namic simulation using the CALPHAD method (Calculation of Phase Diagrams) can
be used in order to support an optimization of chemical composition of the alloy and
to develop a production process.

I. Saenko · O. Fabrichnaya (B)
Institute of Materials Science, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Str.
5, 09599 Freiberg, Germany
e-mail: fabrich@ww.tu-freiberg.de

© The Author(s) 2020
H. Biermann and C. G. Aneziris (eds.), Austenitic TRIP/TWIP Steels
and Steel-Zirconia Composites, Springer Series in Materials Science 298,
https://doi.org/10.1007/978-3-030-42603-3_19

621

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42603-3_19&domain=pdf
mailto:fabrich@ww.tu-freiberg.de
https://doi.org/10.1007/978-3-030-42603-3_19
https://www.dbooks.org/


622 I. Saenko and O. Fabrichnaya

The TRIP-Matrix-Composite is an example of innovative material, which is based
on high-alloyed austenitic TRIP-steel and reinforcing ceramic particles of zirconia
partially stabilized by MgO (Mg-PSZ). Thereby, thermodynamic calculations can
provide information about the stable and metastable phase formation in the material
as well as the accompanying energetic effects and basic information of the physico-
chemical parameters of the manufacturing processes.

Metal Matrix Composites containing highly alloyed TRIP-steel as metallic com-
ponent and MgO partially stabilized ZrO2 as ceramic component are considered as
promising new construction materials with high energy absorption. Under deforma-
tion metastable austenite transforms into martensite, which results in an increasing
strength. It should be mentioned that MgO stabilized ZrO2 also shows stress-induced
martensitic transformation from tetragonal into monoclinic phase [2]. The increased
toughness of this ceramic phase is attributed to a stress-induced transformation. For a
good performance of the composite material a strong adhesion between the metallic
and the ceramic components is required in order to transmit stresses between the dif-
ferent phases. The infiltration and powder metallurgy/sintering processes selected in
the Collaborative Research Center 799 (CRC799) to produce Fe–ZrO2 based TRIP
matrix composites may cause heterogeneous reactions in the matrix materials, in the
ceramic particles and at the interfaces that can significantly influence on the mechan-
ical properties of final composite materials. This information can be used to derive
the structure development in the constituent materials and their compatibility and
long-term stability. Therefore, the CALPHAD method was applied in the CRC 799
for many years as a valuable tool for materials design as knowledge of the phases
that are present in a material and their compositions is essential for modelling the
behavior and properties. It was widely applied for optimization of chemical compo-
sition of steel matrix with following annealing improving of its microstructure [3],
for prediction and understanding of the local deformation mechanisms [4], for mod-
elling of interfacial reaction between steel matrix and ceramic particles [5], as well as
for understanding of phase transformations of the metastable austenite into marten-
site in the Fe–CrMnNi–N–C model alloy [6]. Additionally, the CALPHAD method
provided a basement for further modelling method concerning the development of
the TRIP-Matrix-Composite i.e. thermo-mechanical modelling [7], simulation of
electron beam welding [8] and phase field modelling.

This Chapter will consider a basement of computational thermodynamics, reveal
experimental side of thermodynamic modelling and present the latest results
concerning the TRIP-Matrix-Composite development.

19.2 Experimental Techniques

Since the CALPHAD approach is a phenomenological method, its parametric func-
tions must be assessed using experimental data before any prediction and/or extrapo-
lation can be made. In order to get a maximum of information, all types of experimen-
tal measurements that are related to thermodynamic properties must be considered
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and assessed. Collected experimental data are applied for adjusting of optimized
parameters of the Gibbs energy functions.

Thereby, the reliability and accuracy of the experimental data have to be critically
evaluated taking into account, which one of the various experimental techniques was
used. Measured experimental data can be roughly classified into a few principal types:
“thermodynamic data” and “phase-diagram data” [9]. The most of thermodynamic
data can be directly applied to describe Gibbs energy functions of individual phases,
while experimental data on the phase relations can be used for optimization of those
functions for reproducing of phase diagrams of the system and thermodynamic data
within their uncertainty. Since the phase diagram is representing equilibrium states
of the system corresponding to minimum of its Gibbs energy being the sum of the
properties of the individual phases multiplied to their mole amount respectively [10]
at various conditions the phase relations are dependent on thermodynamic properties
of the individual phases. Optimization of the Gibbs energy functions is a complex
procedure, which will be described further (Sect. 19.3.2).

19.2.1 Sample Preparation

Development of the TRIP-Matrix-Composite requires a multicomponent thermody-
namic description, which would include all alloying elements of the matrix, as well
as components of ceramics such as ZrO2 and MgO as well as oxides appearing due
to steel oxidation and impurities. Consequently, both type of materials had to be
investigated, not only steel matrix but also components of ceramics. Therefore, two
different techniques of specimen preparation were applied for investigations of steel
and ceramic systems.

In the case of steel systems, two or three components alloys were prepared by
arc-melting method in Ar-atmosphere. Chemically pure metals were used as raw
materials. Precursors have been weighed in accordance to the nominal compositions
using laboratory scale ABJ 120-4M (KERN & Sohn GmbH). In order to achieve good
homogeneity of the chemical composition in the bulks, the samples were turned-over
and re-melted three times during acr-melting. The melting chamber was evacuated to
~10−5 atm and refilled with argon three times. An ingot of Ti (ca. 3 g) was placed in
one of the molds and was melted before the melting of the samples in order to adsorb
rests of oxygen and prevent possible oxidation. The weight losses due to vaporization
should be generally less than 1 mass%. Next, samples obtained by arc melting were
encapsulated in quartz tubes with reduced Ar atmosphere. The pressure of Ar was
chosen in order to reach 1 atm. at the homogenization temperature. The encapsulated
samples were heat treated for a long time afterwards they were quenched into ice-cold
water.

For ceramic systems, the co–precipitation method was used for sample prepara-
tion. Chemically pure salts of desired metals have been used as the initial materials. In
the first step, the salts were diluted and dissolved by distilled water in order to obtain
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more suitable consistence for the co-precipitation process (solutions around of 0.4–
1.2 mol/l in dependence on precursors). The concentration of obtained initial solu-
tions was determined by Inductively Coupled Plasma-Optical Emission Spectrom-
etry (ICP-OES) spectrometry. Calculated volumes of initial solutions were mixed
together in order to get ~2 g of oxide powder of desired molar ratio. The obtained
solution was dropped from a burette at a low speed (around 1 ml per minute) into a
beaker containing about 500 ml of the aqueous solution of NH4OH with pH value
above 9.0. In order to increase particles in the obtained suspension, it was heated
up and held at 333 K for 1–2 h before filtration. In order to control the chemical
composition, co-precipitated suspension and filtrates were analyzed by ICP-OES.
Since the composition of the samples obtained by ICP deviated significantly from
nominal composition, an evaporation process was applied instead of filtration. Then,
the substance obtained after filtration/evaporation was dried at 353 K for 2–3 days.
Finally, pyrolysis of the dried precipitate powder was performed at 1073–1273 K for
3 h in air. The obtained oxide powder was pressed into cylindrical pellets at 250 MPa
and sintered in air atmosphere in Pt-crucibles using NABERTHERM furnace in order
to reach equilibrium state. Annealing duration was chosen depending on sintering
temperature and on development of microstructures.

19.2.2 Phase-Diagram Data

The quantities measured in phase diagrams are either temperatures of phase bound-
aries at fixed composition and invariant equilibria determined by thermal analysis or
phase compositions at fixed temperatures determined by sample equilibration. There
are several experimental methods for measuring the phase-diagram data. They are
described in details by Lukas et al. [9]. In the frames of current investigation, X–ray
powder diffraction (XRD), scanning electron microscopy combined with an energy
dispersive X–ray spectrometry (SEM/EDX) and differential thermal analysis (DTA)
were applied in order to get essential information about phase relations, required for
thermodynamic assessment of two and three component system. Experimental data
for multicomponent systems are usually not used directly in an assessment, but, if
the extrapolation from the lower-order systems gives wrong results, one may use
these data for modification of parameters describing the lower-order systems or by
introducing high-order parameters and new phases. Additionally, if phases are not
stable in a binary system the parameters of metastable phases can be assessed from
a higher order system.

19.2.2.1 Structural Investigation

After long time annealing, the important step is to determine the phase assemblage
of heat-treated samples. The most powerful analytical techniques for identifying the
phases is X-ray or neutron diffraction. Moreover, these techniques are also important
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for the determination of crystal structures. Lattice parameters and site occupancies
as functions of composition and temperature can be obtained to provide detailed
information about the internal lattice of crystalline substances, including cite occu-
pancies, unit cell dimensions, bond–lengths and bond–angles. This information is
necessary to find right models for thermodynamic description.

In the frames of current investigation, X-ray powder diffraction (XRD) was
applied using URD63 diffractometer (Seifert, FPM, Freiberg, Germany) equipped
with graphite monochromator and CuKα radiation (λ = 1.5418 Å). The goniome-
ter of the diffractometer has the Bragg-Brentano geometry. Powder samples were
measured placed on monocrystalline silicon substrate with (510) orientation. In this
case, the orientation of the substrate does not show any peak on the XRD patter in
the range of 15°–110° of 2θ. The Rietveld refinement was applied for the character-
ization of all measured diffraction patterns in order to obtain the volume fractions of
present phases as well as lattice parameters. This method allows determining the site-
occupancy parameters by analyzing the polycrystalline samples. Each solid phase
has its own characteristic diffraction pattern, as a function of intensity in dependence
on the diffraction angle 2θ. The program Maud [11] was used for Rietveld refinement.

19.2.2.2 Microstructural Investigation

A very useful tool in phase-diagram determination is micrography at higher mag-
nification using a scanning electron microscope (SEM), or a transmission electron
microscope (TEM). Equipped with an energy dispersive spectrometer (EDS), these
devices allow measuring the chemical composition of the microstructural features.
For example, boundaries in phase diagrams, which are often deduced from results of
characterization of sample series with different compositions after equilibration at
fixed temperatures, can be plotted as composition versus a temperature. Afterword,
these results can be applied for modelling of homogeneity ranges of solid phases etc.

The microstructures of the samples were analyzed using Scanning Electron
Microscopy (SEM). The investigations were carried out on the LEO 1530 Gem-
ini (Zeiss, Germany). The microscope was equipped with a field emission cathode,
used at the acceleration voltage of 20 kV with working distance of 8–10.5 mm. In
addition, energy–dispersive X–ray spectroscopy (EDX) was used in order to verify
chemical compositions of samples, to determine phase compositions which are also
used for identification of phases, as well as to estimate composition of liquid in
eutectic reactions. An uncertainty range for EDX measurement is around 2–4 at.%.

For imaging in the SEM, samples must be electrically conductive, at least at their
surface, and electrically grounded in order to prevent the accumulation of electrostatic
charge at the surface at the interaction with the electron beam. Therefore, samples
composed of oxides were grinded and polished and then coated with an ultrathin
graphite layer.
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19.2.2.3 Thermal Analysis

Differential thermal analysis (DTA) was applied in order to detect temperatures of
phase transitions and reactions occurring in the sample as well as melting tempera-
tures. The technique of thermal analysis is based on the measuring of the temperature
difference between the sample versus a reference as a function of time and tempera-
ture during programmed heating and cooling cycles. Any exothermic or endothermic
changes occurring in the sample is registered by comparison with the reference as
the temperature difference of the thermocouple signals in μV (thermal voltage). The
inert material, which does not react with crucible and does not have phase transfor-
mations in the investigated temperature range can be used as a reference. However,
it should be noted that empty crucibles are mostly used as reference at present.

In the frame of this work, DTA was performed using SETARAM SETSYS EVO-
LUTION 1750 (SE 1750) and SETARAM SETSYS EVOLUTION 2400 (SE 2400).
The SE 1750 device equipped with a type B thermocouple (Pt/Rh 70%/30%—Pt/Rh
94%/6%, by weight) works in an inert atmosphere of argon or helium in the interval
of temperatures up to 2023 K. The SE 2400 device equipped with a type C thermo-
couple (W/Re 95%/5%—W/Re 74%/26%, by weight) works in an inert atmosphere
of helium up to 2673 K. As the crucible’s materials Pt/Rh10% was used for SE 1750
and pure W was used for SE 2400 in the case of ceramic materials. For metallic
samples, ceramic crucibles should be used. Thereby, corundum is the most common
ceramic material.

Both if these devices have an opportunity for thermogravimetric analysis (TGA),
which is very useful tool for measuring the mass change of a material as a function
of temperature and time during heating and cooling program.

Calibration procedure of the apparatuses was systematically carried out by using
pure reference elements with known melting temperatures. Measured temperatures
were recounted according to a correction function acquired at the last correction
procedure. Temperature calibration of SE 1750 was performed using melting points
of Al, Ag, Au, Cu and Ni. The correction procedure for SE 2400 was carried out
using melting points of Al, Al2O3 from literature and temperature of solid phase
transformation in LaYO3 measured in SE 1750. These materials were chosen because
of their passivity concerning to crucible’s materials. Correction polynomials were
obtained by fitting derived points using the least–squares method. The temperatures
of transformations were determined as on–set point i.e. intersection of the tangent line
constructed in the point of highest slope and baseline. Since correction procedures
were carried out using on–set point, temperatures of transformations should be also
determined by on–set points.

19.2.3 Thermodynamic Data

There are many different techniques for determining thermodynamic properties of
individual phases directly. They are described in the book of Lukas et al. [9]. In
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this chapter, only two types of measurements will be discussed further, namely drop
solution and differential scanning calorimetry that were used in the frames of current
work.

19.2.3.1 Differential Scanning Calorimetry

In the present work, differential scanning calorimetry (DSC) measurements were
carried out in order to obtain the heat capacity of single phases in the investigated
systems. This information is important for the thermodynamic assessments and mod-
elling of multicomponent systems. The heat capacity measurements in the tempera-
ture range from 235 to 675 K were carried out using the device DSC 8000 (Perkin
Elmer, Pt/Rh crucible, Ar or He flow, heating rate 10 K/min). The measurements in the
temperature range from 235 to 675 K were divided into small intervals of 100–150 K.
The DSC measurements in the temperature range from 623 to 1220 K were performed
in one temperature range using the device DSC Pegasus 404C (NETZSCH, Pt/Rh
crucible, Ar flow, heating rate 10 K/min).

The classical three-step continuous method [12] with a constant heating rate was
used to measure specific heat capacity:

• The determination of the heat flow rate of the zero–line (with empty sample and
reference sides). This step takes into account the heat capacity of inner parts of
the device.

• The calibration step—a sample of the material, whose heat capacity is precisely
defined (synthetic sapphire), is measured in the sample crucible.

• Calorimetrical measurement of an unknown sample.

Calibration was performed using a certified sapphire standard in the case of
ceramic materials. For metallic systems, calibration was performed using certified
standard materials depending on the reliable temperature range of their heat capacity:
copper standard was used in the temperature range from 100 to 320 K; molybdenum
from 300 to 673 K and platinum from 573 to 1473 K. The mass and radius of sample
pellets were kept the same as for standard materials. The measurements of two dif-
ferent samples were repeated two times with maximal uncertainty 3%. It should be
mentioned that the CP measurements at high temperatures using DSC equipment are
becoming less reliable due to increase of heat radiation which decreased registered
signal. This effect was considered during fitting of the experimental data. Fitting
of the obtained results was performed using the Maier-Kelley equation. In order to
exclude any phase transformation during the heat capacity measurement, XRD anal-
yses of the obtained samples were performed before the heat capacity measurements
and afterward.
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19.2.3.2 Drop Solution Calorimetry

The principle of this method is that two (or more) different well-defined samples
are combined in the calorimeter and react to give a single sample, which again
must be well defined. Well defined means that all the variables upon which the
enthalpy depends must be known: each sample must be in internal equilibrium; its
temperature and composition must be known. Drop solution calorimetry method
was applied in order to determine the enthalpy of formation of oxide compounds.
These measurements were performed using an Alexis 800 heat-flux micro calorimeter
(SETARAM, France). The samples pressed into pellets (Ø 1 mm, mass 3–9 mg) were
dropped directly from room temperature into the calorimeter with a solvent at T =
973 K and the enthalpy increments of dropping and solution of a set of 9 pellets
were measured. The sodium molybdate 3Na2O · 4MoO3 was used as the solvent.
The calorimeter was calibrated by using the molar enthalpy increment of dropping
standard sapphire spheres. Error of the measurement was stated to be twice the
standard deviation of the mean value.

19.3 CALPHAD Method

Computational thermodynamics is powerful tool for solution of various problems in
materials science, particularly used in the construction of phase diagrams [10]. At the
beginning of the previous century, a thermodynamic modelling a phase diagrams of
a metal-based system was firstly performed by Johannes van Laar using regular solu-
tions models, what has evolved in more recent years to the CALPHAD (Calculation
of Phase Diagrams) [13]. The CALPHAD method has been pioneered by American
metallurgist Larry Kaufman since the 1970s [9, 14, 15]. Calculation of phase equilib-
rium is based on minimization of the Gibbs energy of the system which is the sum of
the Gibbs energies of individual phases multiplied respectively to their mole amount
or from equality of chemical potential for components in the equilibrated phases. The
Gibbs energy of individual phase is described by thermodynamic model represent-
ing its dependence on temperature, pressure and composition [14]. Therefore, phase
diagrams are related to the thermodynamic properties of individual phases which can
be also determined experimentally using calorimetry, vapor pressure measurements
and electrochemical data. These different kinds of data are used for optimization of
thermodynamic parameters simultaneously to reproduce both phase diagrams and
experimental thermodynamic data. The obtained set of thermodynamic descriptions
of individual phases can be used to calculate different kinds of phase diagrams.

It should be noted that thermodynamic data of some components are very well
determined and they are not optimized, the other parameters such as mixing param-
eters of solution phases and metastable end-members of solid solutions should
be optimized. The thermodynamic properties of intermediate phases usually also
need to be optimized. The aim of the CALPHAD method is to obtain a consistent
description of all phases in the system reproducing the thermodynamic properties
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and phase diagrams within uncertainty of measurements. The self-consistent ther-
modynamic database allows predicting of the phase relations and thermodynamic
properties in regions where experimental information is not available as well as cal-
culation of metastable phase diagrams, calculation of diffusion-less transformation
and simulations of non-equilibrium processes assuming local equilibration.

Methodology of the CALPHAD method and main principles of thermodynamic
databases development are described in many fundamental books [9, 14–16] and
basics research [1, 17]. In this chapter, the main information about CALPHAD will
be described very shortly.

19.3.1 Methodology

The Gibbs energy is described as a function of temperature, pressure and composition.
The thermodynamic descriptions of this function of the pure phases of end members
of solid solutions at a certain P and T referred to the enthalpy of its phase at room
temperature 298 K are in the following form:

G(P, T ) = � f H 0
298 +

T∫

298

CP dT − T

⎛
⎝S0

298 +
T∫

298

(CP/T )dT

⎞
⎠ +

P∫

1

V dP (19.1)

where S0
298 is the standard entropy, � f H 0

298 is the enthalpy of formation and CP is
the heat capacity given by

CP = a + bT + cT −2 + dT 2 + eT −3 + · · · (19.2)

The magnetic contribution Gmag can be taken into account according to Inden–
Hillert–Jarl [18] formalism (19.3).

Gmag = T R ln(β0 + 1)g(τ ) (19.3)

where τ = T/T ∗, T ∗ is the critical temperature (the Curie temperature TC for
ferromagnetic materials or the Neel temperature TN for antiferromagnetic materials),
β0 the average magnetic moment per atom and g(τ ) is a function depending on τ

[19].
The molar volume in (19.1) is calculated as a function of pressure and temperature

using the Murnaghan equation,

V (P, T ) = V (1, T )

(
1 + K ′

P · P

KT

)−1/K ′
P

(19.4)

where KT is isothermal bulk modulus, which can be expressed as
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KT = 1/
(
β0 + β1T + β2T 2 + β3T 3

)
(19.5)

and K ′
P is the pressure derivative of bulk modulus which in some cases has a

temperature dependency:

K ′
P = K ′

P298 + K ′
PT (T − 298) ln

(
T

298

)
(19.6)

K ′
P298 is the pressure derivative of bulk modulus at 298 K, K ′

PT is its temperature
derivative.

The molar volume at 1 bar is expressed as a function of temperature

V (1, T ) = V 0
1,298 exp

⎛
⎝

T∫

298

α(T )dT

⎞
⎠ (19.7)

where V 0
1,298 is the molar volume at 1 bar and 289 K. α(T ) is the temperature

dependent thermal expansion

α(T ) = α0 + α1T + α2T −1 + α3T −2 (19.8)

The Gibbs energy G Aa Bb(T ) of a stoichiometric phase Aa Bb in case of absence
of heat capacity data was modeled using Neumann-Kopp rule as:

G Aa Bb = aGHSERA + bGHSERB + α + βT (19.9)

where GHSERi is the Gibbs energy of the pure element i referred to the enthalpy of
pure element i at 298 K in its standard element reference (SER) state, α and β are
parameters to be optimized.

Solution phases and stoichiometric phases with homogeneity ranges can be
described by compound energy formalism [16].

The simplest non-ideal solution model is the substitutional model with the Gibbs
energy of expressed as follows:

G =
n∑
i

xi Gi + RT
n∑
i

xi ln xi + �GEx (19.10)

where xi are the mole fractions, Gi is the Gibbs energy of an end-member i,
∑n

i xi Gi

is the surface of reference terms, RT
∑n

i xi ln xi is the contribution to the Gibbs
energy resulting from the configurational entropy of mixing for disordered solution,
and �GEx is the excess Gibbs energy of mixing.

The excess Gibbs energy of mixing was modelled using Redlich–Kister polyno-
mials [20], expressed as:
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�GEx =
∑

i �= j,i< j

xi x j

n∑
v=0

Lv
i, j

(
xi − x j

)v
(19.11)

where Lv
i, j is the mixing parameter between end-members i and j, while ν is integer

number.
The sublattice model in the form of compound energy formalism is used for solid

phases having several crystallographic sites. The Gibbs energy of solution described
by the sublattice model with three sublattices is given by

�Gmix =
∑

i

∑
j

∑
k

Y s
i Y t

j Y
u
k Gi jk + RT

∑
s

αs

∑
i

Y s
i ln(Y s

i ) + �GEx (19.12)

where Y s
i is the mole fraction of constituent i on sublattice s, αs is the number of

sites on sublattice s per mole of formula unit of phase and �GEx is the excess Gibbs
energy of mixing expressed as

�G E =
∑

t

yt
j

∑
u

yu
k

∑
s

ys
i ys

l Ls
i,l +

∑
s

ys
i

∑
t

yt
j

∑
u

yu
k yu

m Lu
k,m

+
∑

s

ys
i

∑
u

yu
k

∑
t

yt
j yt

n Lt
j,n (19.13)

Ls
i,l =

∑
n

(
Y s

i − Y s
l

)
n Li,l (19.14)

where Ls
i,l are binary interaction parameters between species i and l on sublattice s.

Higher-order interaction parameters could also be included giving more complicated
excess Gibbs energy terms.

19.3.2 Optimization

The optimization process is the most important step of a creation of a thermodynamic
database, which gives the best fit of experimental data taking into account the error
of every data point. Each individual phase is described by thermodynamic model
presenting an analytical function of the Gibbs energy dependence on temperature and
composition (pressure is usually fixed at 1 bar) with adjustable parameters. These
parameters are optimized using the least-squares method to obtain a description
which reproduces experimental data with minimal deviation. However, the least-
squares method can work well only if the scatter of experimental data is completely
random. Non-randomly distributed deviations of some data may completely destroy
the utility of the least-squares method. They must be classified as systematic errors
and excluded from the optimization. Therefore subjective judgments are required
and decisions have to be taken on the selection of data during the optimization. From
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that point of view, the technique can also be called an assessment [9]. Unfortunately,
including all available data in optimization does not necessarily lead to satisfactory
results. Some experimental data could be in conflict to each other or can show large
systematic errors. Thereby, setting different weights for these data points can help
to recognize the influence of different experiments on the result of optimization.
This procedure helps to identify which data are contradictory. However, it is usually
impossible to optimize all parameters simultaneously. There are too many parameters
and they have different influence on phase diagrams [17].

The optimization methodology of CALPHAD method can be subdivided into
following stages:

1. Collection of diverse experimental information available in literature (crystal-
lographic data for phases, phase equilibria, calorimetry, electrochemical data,
vapor pressure measurements).

2. The selection of thermodynamic models based on crystallographic information
for phases in the system under investigation. This implies selection of sublattices
and their occupancies by constituents in agreement with crystal structure.

3. The consideration of temperature dependence of end-member parameters and
introducing of mixing parameters for the Gibbs energy description of phase.

4. The optimization of the thermodynamic parameters using all available experi-
mental as well as theoretical data.

5. The storage of the optimized parameters in computer–readable thermodynamic
datasets.

6. The calculation of phase diagrams and various phase equilibria using the
thermodynamic datasets.

The principle of the CALPHAD approach is schematically presented in Fig. 19.1.

19.4 The Latest Results Concerning
the TRIP-Matrix-Composite Development

In the beginning of the development of the new composite, an extensive thermody-
namic database for steel-based materials (Fe, Mn, Cr, Ni, Ti, Mo, W, V, Si, C and
N) was created in the frames of CALPHAD method. Therefore the main research
point was focused on an optimization of the alloy for the matrix. Afterwards, focus
of thermodynamic modelling was shifted to the development of a database for the
ceramic materials (ZrO2, MgO, Al2O3, FeO, Fe2O3, MnO, Mn2O3).

In the beginning of the project, there were currently several thermodynamic
databases for Fe-based multicomponent systems that were developed for the mod-
elling of specific processes in the respective steels. They were based on critical
assessments of binary and ternary systems available in the literature. For example, the
TCFE7 commercial database included 25 elements and many binary and ternary sys-
tems (http://www.thermocalc.com/Products/Database). Moreover, this database con-
tains descriptions of some solid oxide phases such as spinel, wustite and corundum in
order to predict the tendency of different steels to oxidize. Additionally, there was the

http://www.thermocalc.com/Products/Database
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Fig. 19.1 A schematic diagram of the CALPHAD assessment

commercially available database TCOX, which contained 12 elements and descrip-
tions of many oxide phases as well as the ionic melt, which describes both metallic
and oxide melting behavior (http://www.thermocalc.com/Products/Database). How-
ever, all commercial databases have reproduced most of important binary system
such as Fe–Mn, Fe–Ni, Zr–Mn, Zr–Fe very poorly, what could not be accepted for
deep process of materials design.

www.dbooks.org
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A non-commercial steel database, which was under development in group of B.
Hallstedt, contained 8 elements Fe, Al, Mn, Nb, Si, V, C and N and was aimed
for modelling phase equilibria in Mn-rich steels [21]. However, this database did
not include Cr and Ni, which were very important for highly alloyed TRIP-steels.
Therefore, the CRC 799 project required to develop a unique multicomponent steel
database, which would fit all specific needs of design process in the fames of the
TRIP-Matrix-Composite development.

A new thermodynamic database for steels containing eleven elements (Fe, Mn,
Mo, Cr, Ni, Ti, Si, V, W, N, C), has been developed by P. Franke within the first period
of the CRC project [22]. Thermodynamic description of one of the most important
systems Fe–Cr–Ni was developed based on advanced thermodynamic modelling.
Obtained thermodynamic description considered magnetic contribution and chemical
ordering in the Fe–Cr–Ni system [22]. This thermodynamic dataset for the ternary
system Cr–Fe–Ni which has been reported in the literature for the range from medium
to high temperatures has been supplemented with datasets from the binary subsystems
at lower temperatures. The magnetic and the chemical ordering transitions which are
known from the binary Fe–Ni system were extrapolated into the ternary system
Cr–Fe–Ni. The phase diagram of Cr–Fe–Ni alloys at temperatures below 773 K
was predicted (Fig. 19.2). The magnetic contribution to the Gibbs energy of Ni-rich
alloys induces a miscibility gap which appears in the binary phase diagram of Fe–
Ni as a small triangle-like field ending in a tricritical point. In the ternary system,
Cr–Fe–Ni the miscibility gap is present as a broad two-phase field in the vicinity of
the composition FeNi3. At lower temperatures, this miscibility gap participates in a
sequence of changing equilibria when it interferes with the chemically ordered L12

phase.
Several ternary systems in the Fe–Mn–Cr–Ni–Ti–Si–C–N system were accepted

from literature data, checked for the consistency and published in LB series [23].

Fig. 19.2 a Calculated isothermal section of the Fe–Cr–Ni system at 773 K; b Enlarged part of
calculated isothermal section at 773 K [22]
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With this element selection calculations of the phase equilibria and modelling of the
crystallization process using Scheil simulation for austenitic TRIP-steels became
possible and reliable. Among the systems published in LB were Fe–Cr–Mn, Fe–Cr–
Ni, Fe–Cr–C, Fe–Mn–C, Fe–Ni–C and others. The developed database covers a wide
range of evaluated systems in comparison with other available databases. Thus, it
also covers non-iron systems.

The second milestone was the interfacial interaction between Mg-PSZ and steel,
which was experimentally studied by Franke et al. [5]. Experimental details (SPS
pre-sintering, annealing in Ar etc.) were reported in [5]. SEM/EDX investigations
demonstrated the formation of Mg2SiO4 at the interface between the ceramic com-
ponent and steel. It was determined that Mg-PSZ contained SiO2 impurities around
of 2.4 mass%. It was stated, that another possible source for the SiO2 could be the Si
content within the TRIP-steel (~0.5 mass%). Thermodynamic calculations were per-
formed to explain destabilization of Mg-PSZ and formation of Mg2SiO4 forsterite.
The activity of MgO at the investigated temperature and the composition was cal-
culated using the ZrO2–MgO thermodynamic database available in literature [24].
The SiO2 activity necessary for formations of silicates Mg2SiO4 and MgSiO3 was
calculated using the thermodynamic data from literature [25]. Experimental studies
of an interaction between steel and pure ZrO2 and between steel and CaO stabilized
ZrO2 showed that silicates did not form at the investigated conditions [5]. Thermody-
namic calculations were also performed for the ZrO2–SiO2 and ZrO2–CaO systems
and ranges of the SiO2 activity were determined at which silicates should form. The
oxygen partial pressure was calculated at which the SiO2 starts to form from Si dis-
solved in the steel. The corresponding limiting activity of Si in the TRIP-steel and
the concentration of Si in the steel were calculated.

The ceramic material used in the present project is ZrO2 stabilized by 3.4 mass%
of MgO. A comprehensive thermodynamic assessment of the ZrO2–MgO system
was available in literature. However, all of the data were based on a substitutional
model for the solid and liquid phases. Consequently, re-assessment based on the more
advanced modelling using the compound energy formalism had to be performed.
Additionally, it was experimentally found that an addition of Titanium can improve
bonding between ZrO2 ceramic particles and austenitic steel containing Mn, Cr and
Ni [26]. Therefore, ceramic systems containing TiO2 became one of the important
tasks as well. Moreover, during the investigation of the interfacial interaction between
Mg-PSZ and steel [5] it was found that the C–ZrO2 (fluorite) was destabilized due to
reaction between MgO and impurities in ceramic material such as Al2O3 and SiO2.
Therefore, systems with Al2O3 and SiO2 became one of the main points.

Thermodynamic descriptions of the systems MgO–Al2O3 and MnO–Al2O3 based
on the compound energy formalism for solid phases and partially ionic liquid model
were available in literature [27, 28]. However, the model of the spinel phase in the
MnO–Al2O3 system had to be extended by introducing an interstitial sublattice to
be compatible with the model used for the MgO–Al2O3 system.

Many thermodynamic assessments for the systems containing TiO2, Ti2O3, MgO,
FeO, MnO and other oxides were performed in the group of A. D. Pelton (http://www.
sgte.org/fact/documentation/FToxide). Solid phases were modelled by the compound
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energy formalism, while the liquid phase was described by a modified quasi-chemical
model [29]. The database for ZrO2-based systems was set up with the help of very
limited experimental literature data. However, the ZrO2 containing phases do not con-
tain the chemical element Ti, which makes it impossible to calculate the interaction
with titanium oxides, which are very important for the planned work. Commercial
steel and oxide databases have been developed by the FactSage group (http://www.
sgte.org/factsage/fact/factsage/FactSage). Although these databases contain descrip-
tions for the TiO2–Ti2O3–MO systems (M = Mg, Fe, Mn), only very limited data are
available for ZrO2-based systems. Model for liquid is not compatible with models
used in the present study.

Therefore, the thermodynamic database of the ZrO2–MgO–MnO–Al2O3 system
had to be developed for modelling of the interactions between Al2O3 impurities,
Mg-PSZ and Fe–CrMnNi-TRIP-steels. In a similar way the SiO2 containing binary
descriptions of the MgO–SiO2, MnO–SiO2, ZrO2–SiO2 systems had to be com-
bined with databases of the ZrO2–MgO, ZrO2–MnO systems and the thermodynamic
database of the ZrO2–MgO–MnO–SiO2 system had to be developed to model phase
relations between SiO2 impurities, Mg-PSZ and the steel phases.

The thermodynamic description for the quasibinary system ZrO2–MgO (Fig. 19.3)
was based on own experimental investigations with XRD, SEM/EDX and DTA as
well as existing literature data [30]. The industrial Mg-PSZ ceramic was also tested
in the initial state and after heat treatments at 1523 K with DTA. Differences between

Fig. 19.3 The calculated ZrO2–MgO phase diagram together with experimental data [30]

http://www.sgte.org/factsage/fact/factsage/FactSage
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the calculations in the ZrO2–MgO and the experimental data could be attributed to
the presence of Al2O3 additives in the industrially produced samples. The additives
cause the formation of the MgAl2O4 phase with spinel structure.

As the ZrO2–MgO–Al2O3 quasi-ternary system had only a very limited amount
of experimental data available in literature, the phase equilibria were investigated
in more detail in the work of Pavlyuchkov et al. [31]. Throughout the composition
range, the solid phase equilibria in the ZrO2–MgO–Al2O3 system were investigated
using DTA, XRD, and SEM/EDX. Thereby, the isothermal sections at 1523, 1873 and
2023 K have been constructed. Furthermore, the stability of ternary X-phase at 2073 K
found by Tassot et al. [32] was confirmed. The temperature limits of the X-phase sta-
bility limits were determined in the range between 1894 and 2094 K. In addition, two
ternary eutectic reactions and one eutectic maximum could be determined experi-
mentally. The experimental data thus obtained were used to develop a thermodynamic
description for this system. Thus, the liquidus and solidus surface projections and
the isopleth section ZrO2–MgAl2O4 were calculated [31]. The calculations showed
that much more complicated phase relations exist in this system in comparison to
the literature data [33, 34]. The calculated liquidus and solidus surface’s projections
of the ZrO2–MgO–Al2O3 phase diagram are presented in Fig. 19.4.

As part of a separate work of Fabrichnaya and Pavlyuchkov [35], a thermody-
namic description for the ternary Zr–Fe–O system using the CalPhaD approach was
developed based on experimental data from literature. Thermodynamic parameters
of ZrO2–FeO and ZrO2–Fe3O4 systems were assessed using literature data [36–38].
The solubility of FeO and Fe2O3 in the ZrO2 and of ZrO2 in the Fe2O3 and Fe3O4

phases were taken into account and described with the compound-energy formalism.
The two sublattice model of partially ionic liquid was used for the description of the
melt phase. The descriptions obtained for the ZrO2–FeO and ZrO2–Fe3O4 systems
were combined into the description of the ZrO2–FeO–Fe2O3 system. The isother-
mal section at 1473 K and the liquidus surface projection have been calculated for

(a) (b)

Fig. 19.4 Liquidus a and solidus b surface’s projections of the ZrO2–MgO–Al2O3 phase diagram
[31]
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the system using the complex data set. The calculated isopleth sections ZrO2–FeO
and ZrO2–Fe3O4 are shown in Fig. 19.5a, b together with the experimental data.
Figure 19.6 shows the liquidus surface projection of the ZrO2–FeO–Fe2O3 system.
The equilibria between the metallic melt and the solid ZrO2 phase were calculated and
compared with the literature values [39, 40]. Similar to other calculations [41], sig-
nificant differences between the calculated oxygen solubilities in the Fe–Zr melt and
the experimental results were found. New experimental study should be performed
to resolve this contradiction.

The phase equilibria in the systems ZrO2–MnO and ZrO2–MnO–Mn2O3 were
investigated experimentally with DTA in Ar atmosphere and by heat treatment in air
in the temperature range between 1523 and 1873 K [42]. The reaction temperatures
were determined with DTA-TG, the phase compositions in the samples with XRD and

Fig. 19.5 a Calculated isopleth section of ZrO2–FeO; b calculated isopleth section of ZrO2–Fe3O4
[35]

Fig. 19.6 Liquidus surface
of the ZrO2–FeO–Fe2O3
system calculated using
advanced thermodynamic
description of the Zr–Fe–O
system [35]
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the chemical compositions of the phases with SEM/EDX. Based on the experimental
data, the thermodynamic parameters were optimized and phase diagrams at oxygen
partial pressures of 10−4 bar and in air were calculated. The phase diagrams are
shown in Fig. 19.7a, b along with the experimental data.

Phase equilibria in the ZrO2–MgO–MnO–Mn2O3 system were investigated exper-
imentally in air and in Ar atmosphere in the work of Pavlyuchkov et al. [43]. The sam-
ples were characterized with XRD and SEM/EDX. The reactions occurring in these
systems were determined by DTA-TG experiments under He atmosphere. Isothermal
sections constructed at low partial pressure of O2 are presented in Fig. 19.8.

At the last stage of the TRIP-Matrix-Composite development, the main objec-
tive was the further development of the thermodynamic database for ZrO2-based

Fig. 19.7 Calculated phase diagrams of the ZrO2–MnOx systems at a pO2 = 0.21 bar and
b pO2 = 1 × 10−4 bar, along with the experimental data [42]

(a) (b)

Fig. 19.8 Isothermal section of ZrO2–MgO–MnOx under helium atmosphere (PO2 = 10−4 bar)
a at 1913 K and b at 1523 K [43]
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ceramic materials and their implementation in the existing steel database. The com-
bined database will make complete simulation of interfacial reactions between steel
and ceramics in the TRIP metal matrix composite material possible. Therefore, the
following partial goals result:

1. Further development of the thermodynamic database for the ZrO2–MgO–FeO–
MnO–Fe2O3–Mn2O3–TiO2–Al2O3 system is to be promoted.

2. The next task is to assemble the thermodynamic databases for ceramic mate-
rials with the steel database. The main goal of this work is the creation of a
thermodynamic database, which allows the calculation of the chemical reactions
taking place at the interface between steel and ceramic. This task requires the
integration of binary and ternary descriptions from the literature into the newly
generated database as well as the adaptation of the thermodynamic parameters.
The incorporation of oxygen into the data set requires the implementation of sys-
tem descriptions such as Fe–O, Mn–O, Cr–O, Ni–O and the associated ternary
systems Fe–Ni–O, Fe–Mn–O, Fe–Cr–O, Ni–Cr–O, etc. The integration of Zr
requires the thermodynamic modelling of Zr–Fe, Zr–Mn, Zr–Ni systems as well
as other Zr-containing systems. Therefore, the expansion of the steel database
with Zr was planned. The binary descriptions Zr–O and Ti–O are implemented
in the complex steel ceramics database.

First, high-temperature phase transformations in strongly metastable austenitic-
martensitic Fe–CrMnNi–N–C cast steels were studied using SEM/EXD and DTA
based on preliminary CALPHAD calculations. Our studies of the Fe–15Cr–3Mn–
3Ni–0.1N cast stainless steels with five different carbon contents, in particular
the SEM imaging and EDX elemental mapping of the segregation of Cr and Ni,
have shown that the solidification mode changes from primary ferritic to primary
austenitic with increasing carbon content. This is in contradiction to thermodynamic
calculations (Fig. 19.9) of a primary ferritic solidification of all alloys, but can be
explained by the experimental conditions, e.g. by the solidification rate, which creates
a nonequilibrium state and facilitates therefore the austenitic solidification. Melting
temperatures determined by DTA measurements showed no clear trend with respect
to the carbon content in the investigated steel compositions, probably due to the
influence of local chemical inhomogeneities. The experimental temperature range
for melting is narrow and lies above the calculated melting range, probably due to an
overheating effect. The transformation temperature for the solid-solid phase transfor-
mation fcc(γ) → fcc(γ) + bcc(δ) was also measured by DTA. In agreement with the
calculations, it increases with increasing carbon content for steels NC05 to NC15,
but above 0.155 wt% C it remains approximately constant regardless of the further
increasing carbon content. Again, several effects can explain the deviation from the
calculation in alloys with a higher carbon content: local fluctuations of the chemical
composition, but also a reduced overheating due to an increased transformation rate
at higher temperatures. The transformation fcc(γ) → fcc(γ) + bcc(δ) was found to
be fully reversible, that means it occurs during heating and cooling at almost the
same temperature, thus the undercooling is very small.
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Fig. 19.9 Vertical section of
the phase diagram of the
steel Fe–15Cr–3Mn–3Ni–
0.1N–xC in dependence on
the carbon content [6]

Furthermore, the reversion transformation of a thermal martensite α′ → γ was
shown for the steels NC05 and NC10, which contain a significant fraction of marten-
site formed during quenching. For the other alloys, the effect was below the detection
limit of DTA because of the low volume fractions (<5 vol%) of martensite present.
The onset temperature of the transformation decreased with the carbon content.

Concerning further thermodynamic modelling of the ceramic systems, thermo-
dynamics of the Mg–Mn–O system has been modeled based on new heat capacity
measurements of the MgMn2O4 and Mg6MnO8 phases [44]. Phase diagram data,
structural information, and thermochemical data were used in the assessment. All
solid solution phases were modeled using the compound energy formalism. Mg-
solubility in the cubic spinel has been modeled according to the findings in a previ-
ous study of Pavlyuchkov et al. [43], which suggests that Mg solubility reported by
earlier studies was too low. Thus, the older reports on the Mg solubility in the cubic
spinel were not considered. In general experimental data found in the literature was
well reproduced. The results presented were significant for further thermodynamic
modelling of the Mg–Mn–Zr–O system.

Phase relations in the ZrO2–TiO2 system were investigated in the temperature
range from 1303 to 1903 K using XRD and SEM/EDX. Melting reactions in this
system were studied using DTA followed by microstructure investigation [45]. The
Liq = β-(ZrxTi1−x)2O4 + TiO2 eutectic and the Liq + T-ZrO2 = β-(ZrxTi1−x)2O4

peritectic reactions were determined at 2029 K and 2117 K respectively. Composi-
tion of eutectic was determined by SEM/EDX to be 83.2 ± 1.0 mol%. First, the drop
solution calorimetry method was applied using AlexSys 800 (SETARAM Instrumen-
tation) in order to measure enthalpy of formation of the β-ZrTiO4 compound from
oxides (−18.3 ± 5.3 kJ mol−1). Molar heat capacities of the β-(ZrxTi1−x)2O4 com-
pound was measured in the range 233–1223 K. Experimental thermodynamic values
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Fig. 19.10 Calculated phase
diagram of the ZrO2–TiO2
system along with
experimental data [45]

(i.e. heat capacity and enthalpy of formation of β-ZrTiO4 compound) determined
in [45] were used in order to optimize the description of heat capacity of α-ZrTiO4

and β-(ZrxTi1−x)2O4, as well as the contribution of the formation enthalpy of the
β-ZrxTi1−xO4 phase, respectively. Using the obtained experimental results together
with literature data, the thermodynamic parameters in the ZrO2–TiO2 system were
derived. Calculated phase diagram is presented in the Fig. 19.10.

Later on, based on the newly obtained results for the ZrO2–TiO2 system, the ZrO2–
TiO2–MgO ternary system was experimentally investigated in the temperature range
from 1533 K up to melting temperatures using XRD, SEM/EDX and DTA [46].
Isothermal sections of the system were constructed based on experimental data at
1533, 1683 and 1883 K. It has been determined that TiO2 doping did not stabilized
T-ZrO2 phase in this system which transformed to monoclinic structure on cooling.
Ternary compound described by formula Zr4TiMg2O12 has been discovered. Homo-
geneity range of the compound was not established. However, based on experimental
results, it was stated that the homogeneity range was insignificant and this compound
was practically stoichiometric. The ternary compound has a trigonal structure of the
Pr7O12-structure type. Nevertheless, further crystallographic investigations are nec-
essary to establish the cations occupancies in the crystal structure of the phase. High
temperature limit of the phase stability of the ternary compound has been determined
to be 1664 K. Using results obtained by DTA and SEM/EDX, liquidus projection
for the ZrO2–TiO2–MgO system has been constructed. The eutectic reactions Liq =
C-ZrO2 + β-(ZrxTi1−x)2O4 + MgTi2O5, Liq = TiO2 + β-(ZrxTi1−x)2O4 + MgTi2O5

and Liq = MgTi2O5 + C-ZrO2 + MgTiO3 have been determined at 1800 K, 1851 K
and 1872 K respectively. Based on the obtained experimental results, thermodynamic
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description of the ZrO2–TiO2–MgO system was developed. Comparison of calcu-
lated and experimental results shows a good mutual agreement. Experimental and
calculated liquidus projection of the system is shown in the Fig. 19.11.

As it was said above, the integration of Zr into steel database was required for
combining of thermodynamic databases for ceramic materials with the steel database.
Therefore, experimental differential scanning calorimetry measurements and ab ini-
tio simulations were carried out to define the heat capacities of Zr3Fe and C15–ZrFe2

compounds from 0 K up to their maximum stability temperatures [47]. Experimen-
tal measurements of heat capacity of each compound were performed for the first

Fig. 19.11 a Constructed
liquidus projection of the
ZrO2–TiO2–MgO system
[46] and b current results of
CALPHAD calculation
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time in wide range of temperatures. Density functional theory and quasi-harmonic
approximation (QHA) were employed to calculate the Gibbs energy of the stud-
ied systems as a function of volume and temperature. Using the combination of
DFT + QHA approach and experimental DSC analysis the main thermodynamic
functions CP(T ) and parameters S298 and �H0 for Zr3Fe and ZrFe2 intermetallic
phases were obtained form 0 K up to temperatures of their stability. In addition,
experimental measurements of thermal expansion coefficient were performed for
verification of DFT calculations. Analysis of theoretical and experimental data on
αV and CP shows that QHA remarkably underestimates the anharmonic and mag-
netic effects starting from temperatures ~200 to 300 K. However, for low-temperature
regions we observed very good agreement between theory and experiment.

Experimental measurements of heat capacity of Zr2Fe were performed using
DSC in the temperature range from 220 to 450 K for the first time [48]. Obtained
results were compared with theoretical calculations of CP(T ) presented by Ali et al.
[49]. Using the combination of calculated [49] and experimental results, temperature
dependence of heat capacity CP(T ) for Zr2Fe was described in the temperature range
of 0–450 K as well. The standard entropy S298 of Zr2Fe was evaluated using obtained
heat capacity data. Taking into account recent experimental data on heat capacity and
ab initio calculations of enthalpy of formation for intermetallic compounds and most
reliable data for phase diagram [50, 51] thermodynamic re-assessment of the Fe–
Zr system has been performed [48]. Liquid and solid solution phases such as bcc,
fcc, and hcp have been described using substitutional model. Compound energy
formalism has been used in order to describe homogeneity ranges of the C15- and
C36–ZrFe2 Laves phases. In the results, it has been demonstrated that the set of
obtained thermodynamic parameters describes experimental data better than ther-
modynamic descriptions published earlier. Calculated phase diagram of the Fe–Zr
system is presented in Fig. 19.12 along with experimental data.

Afterwards, the Zr–Mn system was studied using XRD, SEM/EDX, DSC and
DTA by Flandorfer et al. [53] and in the present study. The heat capacity of the
C14–ZrMn2 phase was measured in the temperature range of 770 to 1320 K. Based
on the obtained results, thermodynamic description was developed. The calculated
phase diagram is presented in Fig. 19.13.

Newly obtained thermodynamic parameters of the Zr–Mn and Fe–Zr systems
were combined together with Fe–Mn parameters [53] into description of Fe–Zr–Mn
system based on binary extrapolation. This database was created for calculations
of the ternary diagram which was further used for selection of sample compo-
sitions. Experimental investigation of Zr–Fe–Mn system included study of quasi-
binary C14–ZrMn2–C15–ZrFe2 system and ternary phase equilibria. Quasi-binary
section of the ternary system was studied by diffusion couple (DC) method. DC was
prepared from single phase C14–ZrMn2 and C15–ZrFe2 samples by spark plasma
sintering (SPS) plating. Obtained samples were heat-treated at 1173 and 1373 K in
order to examine phase relation at different temperatures. Microstructure of the DCs
was then studied using SEM/EDX with engaging of line-scan for analysis of com-
position gradient. Samples for ternary phase relations investigation, corresponding
to three phase regions, were prepared by arc melting. Samples were heat-treated at
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Fig. 19.12 Calculated
Fe–Zr phase diagram [50]
along with experimental data
from the works of Stein et al.
[51] and Servant et al. [52]

Fig. 19.13 Calculated Zr–Mn phase diagrams along with experimental data of Flandorfer et al.
[53]

1073 K and quenched into water. They were then studied using XRD and SEM/EDX
for phase identification and phase relation and chemical composition analysis.

There was contradiction in literature data for this system connected with the area
on the phase diagram corresponding to the two-phase region C15–C14. In the work
[54] a two-phase region was reported, while in the work [55] an anomaly change of
magnetic moment was observed and XRD results indicated formation of C36 Laves
phase structure in the composition range between C15 and C14 Laves phases. In

www.dbooks.org

https://www.dbooks.org/


646 I. Saenko and O. Fabrichnaya

Fig. 19.14 Constructed isothermal section of the Fe–Zr–Mn system at 1073 K

the present work results from SEM/EDX investigation indicated absence of a phase
with an intermediate composition. Therefore, it was concluded that two solid solution
phases C15 and C14 were present in the system coexisting with each other in the
range between 60 and 80 mol% ZrFe2. Measured solubility ranges of the boundaries
of the phases are in good agreement with the literature data [54].

It should be mentioned, that ternary Fe–Zr–Mn system was studied the first time.
It was partially constructed based on the results obtained on ternary system and
thermodynamic assessments of the composing binary systems. Obtained results are
presented in the Fig. 19.14.

19.5 Conclusions

Within the present work, substantial amount of results were obtained for thermody-
namic modelling of the system related to the TRIP-Matrix-Composite development.
Advanced methods of thermodynamic simulations were applied for optimization of
chemical composition of steel matrix and ceramic particles, for prediction and under-
standing of mechanisms occurring in the material, for finding new solutions of tech-
nological issues. Additionally, the methods of thermodynamic modelling provided
a basement for further development of the TRIP-Matrix-Composite.
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Thermodynamic database was developed for 11 elements Fe, Mn, Cr, Ni, Ti,
Si, N, C, Mo, W, V. Obtained thermodynamic description reproduces most of the
available experimental results. Thereby, it gives more reliable extrapolations in com-
parison to other commercial or noncommercial thermodynamic descriptions. Con-
cerning development of thermodynamic oxide description, 3 binary, 7 ternary and a
quaternary systems were investigated and modeled in cooperation with other projects.

However, the main uncompleted task is the integration of Zr, what requires the
thermodynamic modelling of binary systems such as Zr–Ni, Zr–Cr and ternary sys-
tem of iron, zirconium and main alloying elements of steel matrix. Moreover, the
incorporation of oxygen into the data set of the steel database requires the implemen-
tation of system descriptions such as Fe–O, Mn–O, Cr–O, Ni–O and the associated
ternary systems Fe–Ni–O, Fe–Mn–O, Fe–Cr–O, Ni–Cr–O, etc.
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Chapter 20
Thermodynamic-Mechanical Modeling
of Metastable High Alloy Austenitic
CrMnNi Steels

Michael Hauser, Marco Wendler, Javad Mola, Olga Fabrichnaya,
Olena Volkova and Andreas Weiß

Abstract The deformation-induced formation of α′-martensite was investigated by
tensile testing of a X5CrNi18-10 wrought austenitic steel and X3CrMnNi16-7-3/6/9
(Ni contents of 3, 6, and 9 mass%) as well as X15CrNiMnN19-4-3 cast austenitic
steels at temperatures between −80 and 400 °C. The results were presented in the
form of Stress-Temperature-Transformation (STT) and Deformation-Temperature-
Transformation (DTT) diagrams. The diagrams laid foundations for the development
of a method for the quantitative determination of strength and elongation contri-
butions by means of induced and often overlapping deformation processes in the
austenite. The summation of such contributions yielded the tensile strength and the
uniform elongation of the steel. In order to determine the critical Gibbs free energy
for the formation of martensite at temperatures between Ms and Md, the chemi-
cal and mechanical contributions to deformation-induced martensite formation were
determined by CALPHAD method using Thermo-Calc software. The mechanical
contribution was estimated by determining the triggering stress for the formation of
martensite using an in situ magnetic measurement device. This was done using the
model proposed by Patel and Cohen. The magnitudes of shear strain (γ0) and dilata-
tional strain (ε0), required for the calculations, were obtained based on the marten-
site crystallography theory of Wechsler-Lieberman-Read. The sum of the chemical
and mechanical contributions yielded the critical driving force for the martensitic
transformation.
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20.1 Introduction

Depending on the chemical composition and deformation temperature, deformation
mechanisms such as dislocations cell formation, mechanical twinning, and marten-
sitic transformation may occur in the austenite phase of austenitic high-alloy steels
[1–12]. The martensite commonly forms at intersections of glide bands in the austen-
ite. At low temperatures where martensite formation is enabled, glide bands may
consist of stacking fault bundles, ε martensite, and mechanical twins [13, 14].

In austenitic steels exhibiting the transformation-induced plasticity (TRIP) effect,
the knowledge of the minimum driving force necessary for the martensite formation
is of primary importance. The concept of defining a critical driving force for the
martensite nucleation was first put forward by Cohen and coworkers [15, 16] and
has been extended by Ghosh and Olson to include the effect of alloying elements
[17]. This concept enables the thermodynamic modeling of metastable austenitic
steels and can be used as a powerful tool to design new engineering materials
[18–23]. The accuracy of such calculations will then depend on the reliability of
the thermodynamic data. The thermodynamic database is particularly trustworthy in
the chemical composition range where it has been calibrated by experimental data
[24, 25].

The focus of the present work is the thermodynamic-mechanical modeling of
metastable high alloy austenitic CrMnNi steels. To collect the experimental results
needed for modeling, several steels were investigated. With the aid of thermodynamic
data and flow curve analysis, it is possible to describe the dependence of mechanical
properties on deformation mechanisms and phase transformation.

20.2 Experimental Methods

The chemical composition of the investigated steels are shown in Table 20.1. The
steel X5CrNi18-10 was produced from BGH Edelstahl Freital GmbH, Germany.
The steel X3CrMnNi16-7-6 was molten in an induction furnace and cast into a sand
mould by ACTech GmbH, Freiberg, Germany. The steels X3CrMnNi16-7-3/9 were
melted in a vacuum induction furnace and cast into a water-cooled copper mould.
The steel X15CrNiMnN19-4-3 was melted in the vacuum induction furnace under a

Table 20.1 Chemical composition of the investigated cast steels in mass%

Alloy C N Cr Mn Ni Si Fe

X5CrNi18-10 0.045 0.018 17.2 1.82 8.8 0.5 bal.

X3CrMnNi16-7-3 0.028 0.009 16.4 7.0 3.1 1.0 bal.

X3CrMnNi16-7-6 0.034 0.033 15.5 6.1 6.1 1.0 bal.

X3CrMnNi16-7-9 0.031 0.013 16.4 6.9 9.0 1.1 bal.

X15CrNiMnN19-4-3 0.154 0.167 18.7 2.9 4.2 0.5 bal.
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nitrogen partial pressure of 450 mbar followed by casting into a water-cooled copper
mould with a dimension of 230 × 35 × 95 mm3. To avoid pore formation in the
ingot, the nitrogen partial pressure was raised to 1500 mbar during casting.

To ensure the absence of machining-induced martensite near the surface of tensile
specimens, solution heat treatments were performed after machining of tensile spec-
imens. The solution heat treatment aimed at the dissolution of carbides and nitrides
likely existing in the as-cast microstructure The solution heat treatment consisted
of holding the X5CrNi18-10 steel at 1050 °C for 60 min, the X3CrMnNi16-7-3/6/9
steels at 1050 °C for 30 min and the X15CrNiMnN19-4-3 steel at 1150 °C for 30 min
under an argon atmosphere.

Using a Zwick 1476-type universal testing machine, tensile specimens were tested
at a constant crosshead displacement speed with an initial strain rate of 4 × 10−4

s−1. With the aid of a thermal chamber which surrounded the tensile specimen and
the specimen fixtures, different temperatures in the range of −40 and 200 °C were
adjusted. The tensile tests below −40 °C were performed with the aid of an Instron
S5982 universal testing machine.

An in situ magnetic measurement system was devised to determine the
α′-martensite content formed during tensile tests [21]. The experimental setup is
shown in Fig. 20.1. The magnetic measurement system consisted of two coils. The

Fig. 20.1 Experimental setup showing tensile specimen and in situ magnetic measurement system
with a tensile specimen, b first coil and c second coil
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first coil served to generate an electromagnetic field which magnetized the martensite
phase as it formed during tensile loading. The magnetization of martensite phase in
tensile specimens induced an electrical potential difference (voltage) in the second
coil which was recorded. To avoid interactions between the magnetic field and the
surrounding components in the thermal chamber, a relatively small current (0.35 A)
was used. This led to a magnetic field strength of 15 kA/m in the gauge section of
tensile specimens. To avoid thermal degradation of the polymer components of the
magnetic coil, in situ magnetic measurements were only conducted in the temperature
range −80 to 40 °C.

The conversion of the voltage induced in the second coil to martensite fraction was
done by a correlation procedure. The correlation procedure consisted of performing
interrupted tensile tests followed by magnetic saturation measurements with an ex
situ unit in order to quantify the α′-martensite fractions at the point of interruption.
The procedure is described in more detail by Hauser et al. [21].

For the ex situ quantification of the ferromagnetic phase fraction in tensile spec-
imens, a Metis MSAT-type magnetic saturation device equipped with a Lakeshore
480 fluxmeter was used. This equipment enabled the measurement of magnetic flux
density after saturation magnetization of specimens cut from tensile specimens. The
ferromagnetic phase fraction was calculated after an internal correction for the chem-
ical composition. The correction took the influence of alloying elements on the mag-
netic moment of pure iron into account. The measurement accuracy with this method
is within ±1%. Magnetic saturation measurements prior to tensile tests enabled the
quantification of delta ferrite fractions retained after solution annealing. The delta fer-
rite fraction in solution annealed tensile specimens was also determined by quantita-
tive metallography. These measurements closely reproduced the delta ferrite fraction
based on ex situ magnetic saturation measurements. The microstructure was studied
by means of electron channeling contrast imaging (ECCI) and electron backscatter
diffraction (EBSD) techniques in a Zeiss LEO-1530 GEMINI-type field emission
scanning electron microscope (FESEM). To calculate Gibbs free energies for the
austenite (fcc) and ferrite (bcc) phases, the thermodynamic database developed by
Franke et al. with the Thermo-Calc Software was used [26].

20.3 Theoretical Background

In metastable austenitic steels, martensite formation can occur spontaneously at tem-
peratures below the martensite start (Ms) temperature and completes at the martensite
finish (Mf) temperature. Martensite formation can also be triggered by deformation
at temperatures up to Md temperature, which leads to the so-called Transformation-
Induced Plasticity (TRIP)-effect. The austenite stability can be described as the sum
of energy contributions which are beneficial to the martensitic phase transformation
and those which hinder it. Whereas the mechanical energy (Wmech), and at sufficiently
low temperatures, the chemical driving force (�Gγ→α′

chem ) have a positive effect on the
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phase transformation, the non-chemical contribution (�Gγ→α′
nc ) as defined in the fol-

lowing and the adiabatic heating (Qad) of the sample delay the phase transformation.
When the total Gibbs free energy change (�G total) is negative, thermodynamic driv-
ing force is available for the austenite to martensite transformation. Different energy
contributions are included in (20.1) [18, 25, 27].

�G total = �Gγ→α′
chem + �Gγ→α′

nc + Wmech + Qad (20.1)

While the adiabatic heating of the sample can be avoided by applying a low strain
rate, the non-chemical energy contributions still need to be taken into account. The
non-chemical energy contributions include the energy due to the lattice shear (�Gsh),
surface and interface energies (�Gsur) and elastic strain energy (E str), see in (20.2).
All these energy contributions can be summed up to the critical driving force for the
martensite formation (�Gγ→α′

crit ) [17, 22, 23, 28].

�Gnc = �Gsur + �Gsh + E str � �Gγ→α′
crit (20.2)

In Fig. 20.2, the Gibbs free energy for martensite formation is shown as a function
of temperature. The martensitic phase transformation can only occur at temperatures

Fig. 20.2 Schematic representation of the temperature dependence of the chemical driving force

for α′-martensite formation (�Gγ→α′
chem ), minimum external mechanical work required to trigger the

transformation (Wmin), maximum applicable mechanical work (Wmax), and critical driving forces

for the formation of various martensite fractions (�Gγ→α′
crit ), and non-chemical contributions �Gnc
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below T γ→α′
0 , where the Gibbs free energies for austenite and ferrite of the same

chemical composition are equal. Nevertheless, an additional energy contribution is
needed to reach the critical driving force. At the Ms temperature and below, the
chemical energy alone is high enough to trigger the martensitic phase transforma-
tion spontaneously. In the temperature range between Ms and Md temperatures, on
the other hand, the critical driving force can be reached by an additional energy
contribution supplied by mechanical deformation. Therefore, the Md temperature is
the highest temperature where deformation-induced martensite formation can occur
and thus the upper temperature limit to achieve the TRIP-effect with the maximum
mechanical energy applicable to the material (Wmax). During uniaxial tensile test,
Wmax denotes the maximum mechanical work applicable to austenite until the onset
of localized deformation (necking). The applicable work determines the capacity
of material to absorb external energy, thereby the amount of martensite that can
be induced by deformation. Below the Md temperature, one can define a minimal
mechanical energy (Wmin) which is needed to trigger the martensitic phase trans-
formation. Wmin reaches zero at Ms temperature. The larger the applied mechanical
work with respect to Wmin, the larger the induced martensite fraction [18, 22, 23].

Looking at the spontaneous martensitic transformation from a thermodynamic
point of view, three possible cases can arise at low temperatures (Fig. 20.3). Case

Fig. 20.3 Schematic representation of the temperature dependence of the chemical driving force

for α′-martensite formation (�Gγ→α′
chem ), showing cases associated with the absence of sponta-

neous martensite (a), partial formation of spontaneous martensite (b), and full transformation to
spontaneous martensite (c)
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(a) describes a metastable austenite without phase transformation. This case arises
when the chemical driving force does not reach the critical driving force. Never-
theless, an additional mechanical energy might still enable the deformation-induced
martensite formation. In case (b), as-quenched martensite formation occurs. Due to
the increasing austenite stability at lower temperatures, caused by magnetic transi-
tion of austenite from paramagnetic to antiferromagnetic, the martensite formation
might come to a standstill below the Néel temperature. In case (c), the martensitic
phase transformation proceeds until completion because the chemical driving force
is large enough to supply the critical driving force for the full transformation, namely
�Gγ→α′

crit;99% [11, 22, 28].
The procedure proposed by Patel and Cohen for the calculation of the minimum

and maximum mechanical work needed to induce martensite is discussed in detail
in the following [29]. When loading metastable austenite, the applied stress leads to
unequal resolved shear stresses on glide systems in the austenite, thereby favoring
the selective formation of martensite variants [11]. For transformations associated
with pure shear, the habit plane for the transformation will make an angle of 45°
with respect to the external loading direction. However, due to the dilatational com-
ponent associated with martensitic transformation [29, 30], the habit plane for the
deformation-induced martensite formation does not necessarily make an angle of
45° with the tensile loading direction [23].

The mechanical work Wmech which can trigger the martensite formation during the
tensile test depends on the molar volume (Vm) of the deformed tensile test specimen,
the orientation of the habit plane, and the magnitude of the external stress (σa).
According to (20.3), the mechanical work consists of two terms: the first term is
the shear stress (τr ) responsible for the shear strain (γ0) parallel to the habit plane
and the second term is the normal stress (σN) responsible for the volume expansion
normal to the habit plane (ε0) [23]. Experimental values of the investigated steels are
shown in (Table 20.2).

Wmech = Vm
[
τr ∗ γ0 + σN ∗ ε0

]
(20.3)

Assuming that the tensile load is applied at an angle (θ ) to a potential habit plane
normal, the normal and shear components of stress can be deduced from the Mohr’s
circle construction for tension as shown in Fig. 20.4.

Equation (20.4) can be derived by inserting the stress components from Fig. 20.4
in (20.3).

Wmech = Vm
[
σa/2 ∗ γ0 sin(2θ) + σa/2 ∗ ε0(1 + cos(2θ))

]
(20.4)

The term Wmin in Fig. 20.2 can be estimated by inserting the triggering stress for
martensite formation at temperatures between Ms and Md in (20.4). The summation
of this term with the chemical driving force for α′-martensite formation (�Gγ→α′

chem )
gives an estimate of the critical driving force for martensite formation. The maximum
applicable mechanical work contributing to the formation of martensite (Wmax), on
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Fig. 20.4 Mohr’s circle for tension showing shear (τr ) and normal (σN) components of stress as
functions of the applied stress (σa) and the angle between the potential habit plane normal and
loading direction (θ ) [23]

Table 20.2 Lattice parameters of austenite and martensite and the corresponding shear strain (γ0),
volume expansion (ε0), and the angle θmax

Alloy aγ (Å) aα′ (Å) cα′ (Å) γ0 (–) ε0 (–) θmax (°)

X5CrNi18-10 3.589 2.873 2.873 0.2260 0.0253 41.81

X3CrMnNi16-7-3 3.596 2.878 2.878 0.2263 0.0230 42.10

X3CrMnNi16-7-6 3.594 2.875 2.875 0.2266 0.0225 42.16

X3CrMnNi16-7-9 3.593 2.873 2.873 0.2318 0.0267 41.72

X15CrNiMnN19-4-3 3.591 2.884 2.858 0.2258 0.0259 41.73

the other hand, can be calculated by inserting the true stress at the onset of necking
in (20.4). To calculate the angle θ associated with the maximum value of Wmech,
the differential of (20.4) with respect to θ must be set to zero. This condition is
represented in (20.5) [23].

dWmech

dθ
= 0 ⇒ tan 2θmax = γ0

ε0
(20.5)

The ε0, γ0, and θmax values are influenced by the lattice parameters of austenite
and martensite, which in turn depend on the chemical composition. To determine
these quantities for the investigated steel, the martensite crystallography theory due
to Wechsler-Lieberman-Read was used [31–33]. The following equations enable to
calculate the shear and dilatational components of the invariant-plane strain based
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on the lattice parameters of austenite (aγ ) and martensite (aα) [31]:

γ0 =
[(

2 ∗ a2
α

a2
γ

− 1

)

∗
(

1 − 2 ∗ a4
α

a4
γ

)] 1
2

(20.6)

ε0 = Vα

Vγ

− 1 = 2 ∗ a3
α

a3
γ

− 1. (20.7)

20.4 Model Development Based on an Austenitic
X5CrNi18-10 Steel

Figure 20.5 shows the flow curves (dashed lines) of the X5CrNi18-10 steel (AISI 304)
at various temperatures. With decreasing temperature, the flow curves shift to higher
stresses. The uniform tensile elongation values, in contrast, pass through a maximum
at intermediate tensile testing temperatures. In the temperature range of 140–23 °C,
the elongation increases as the temperature decreases. The highest elongation was
reached at room temperature and decreased again at lower deformation temperatures.
Three solid lines are superimposed on the flow curves in Fig. 20.5. Two of these
lines indicate the inflection points on the flow curves, namely where the sign of

Fig. 20.5 Temperature dependent flow curves for the X5CrNi18-10 steel. Superimposed on the

flow curves are the trigger stress σ
γ→α′
A , the tensile strength of the austenite Rγ

m and tensile strength

of the steel Rγ+α′
m with neglected strengthening contributions other than the deformation-induced

martensite formation [18]
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the second derivative of the flow curves reverses. The inflection points only occur
for the stress-strain curves obtained at temperatures below 23 °C. The first inflection
point, marked σ

γ→α′
A in Fig. 20.5, represents the triggering stress for the deformation-

induced martensite formation. According to Weiß et al., the second inflection point,
marked Rγ

m , corresponds to the tensile strength of the austenite [18, 28]. The first
and second inflection points are associated with a minimum and a maximum in
the strain-hardening rate, respectively. The third line, marked Rγ+α′

m in Fig. 20.5,
indicates the tensile strength level expected if the strengthening contributions other
than the deformation-induced martensite formation are neglected [18, 28].

The point marked with “S” in Fig. 20.5 almost lies on the 23 °C curve and may be
identified with the approximate stress and strain coordinates of 705 MPa and 0.28,
respectively. The point S denotes where the first (σγ→α′

A ) and second (Rγ
m) inflection

points of the flow curve coincide. This means that the triggering stress σ
γ→α′
A and the

tensile strength Rγ
m of the austenite are equal, which defines the Mγ→α′

d temperature.
The formation of martensite primarily occurs via γ → ε → α′ formation. However,
the martensitic phase transformation via γ → α′ martensite formation is possible
too [18, 28].

Figure 20.6 shows the measured fractions of ε- and α′-martensite in tensile speci-
mens tested at various temperatures until the onset of necking. As the testing temper-
ature decreased from 140 to 40 °C, the ε-martensite fraction increased continuously
to a maximum level of approximately 17%. At temperatures between 40 and 23 °C,
the fraction of ε-martensite decreased, reaching zero at room temperature. In the

Fig. 20.6 Temperature dependence of ε- and α′-martensite contents in tensile specimens strained
in uniaxial tension until the onset of necking [18]
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Fig. 20.7 Stress-temperature-transformation diagram (STT) for the X5CrNi18 10 steel [18]

temperature range between 40 °C and room temperature, the decrease in the fraction
of ε-martensite was almost equal to the increase in the α′-martensite fraction [18, 28].

Figure 20.7 shows the Stress-Temperature-Transformation (STT) diagram for the
X5CrNi18-10 steel. The yield stress σ f , the triggering stresses σ

γ→ε

A , σ ε→α′
A and

σ
γ→α′
A and on the other hand the corresponding tensile strengths Rγ+ε

m , Rγ+ε+α′
m and

Rγ+α′
m are shown in the diagram. The triggering stress σ

γ→α′
A was estimated from

the first inflection point of the flow curve. The triggering stresses for the γ → ε

and ε → α′ martensitic transformations were obtained experimentally through
microstructural analyses of interrupted tensile test specimens. The tensile strength of
austenite Rγ

m was estimated by the extrapolation of the tensile strength values above
Mγ→ε

d to lower temperatures. The tensile strength Rγ+ε
m below Mε→α′

d temperature is
a linear extrapolation of the course between Mε→α′

d and Mγ→ε

d temperature. The inter-

section of triggering stress with specific tensile strengths
(

Rγ+ε
m ; Rγ+ε+α′

m ; Rγ+α′
m

)

for a given strain-induced transformation defines the Md temperature corresponding
to that transformation, shown in Fig. 20.7. The Mγ→ε

d , Mε→α′
d and Mγ→α′

d tem-
peratures are approximately 413 K (140 °C), 313 K (40 °C), and 296 K (23 °C),
respectively. The Mγ→ε

sσ temperature is located at the intersection point of yield
stress σ f and the triggering stress σ

γ→ε

A near 213 K (−60 °C). The stress region,
bounded by the triggering stress and the corresponding tensile strength for each
martensitic transformation, marks the stress interval in which the relevant transfor-
mation occurs (γ → ε/ε → α′/γ → α′). The wider the transformation interval, the
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higher are the formed fractions of ε und α′ martensite and, hence, the tensile strength
of the steel. Below Mγ→α′

d temperature, the ε-martensite only formed before the

α′-martensite formation was triggered. As soon as the triggering stress σ
γ→α′
A was

reached, ε-martensite was replaced by the α′-martensite [18, 28].
The strength contributions due to the induced deformation mechanisms in the

austenite could be derived from the STT diagram in the following form. The sum-
mation of all strength contributions yields the true stress corresponding to the tensile
strength Rsteel

m of the steel. At temperatures above the Mγ→ε

d temperature, the strain
hardening of austenite occurred only via dislocation glide and increase of dislocation
density. Under these circumstances, the tensile strength Rsteel

m is equal to the tensile
strength Rγ

m of austenite, as shown in (20.8) [18, 28].

Rsteel
m = Rγ

m (20.8)

In the temperature range between the Mγ→ε

d and Mε→α′
d temperatures, two defor-

mation processes are superimposed in the austenite. These were the strain-induced
ε-martensite formation and dislocation glide. As (20.9) indicates, the tensile strength
of the steel in this temperature range is the sum of the tensile strength of austenite
and the strengthening due to the γ → ε transformation �σγ→ε [18, 28].

Rsteel
m = Rγ+ε

m = Rγ
m + �σγ→ε (20.9)

In the temperature range between the Mε→α′
d and Mγ→α′

d temperatures, the disloca-
tion glide, the strain-induced ε martensite formation, and the strain-induced ε → α

′

martensite formation processes are superimposed. The tensile strength Rsteel
m can be

calculated in this temperature range by using (20.10) [18, 28].

Rsteel
m = Rγ+ε+α′

m = Rγ
m + �σγ→ε + �σε→α′

(20.10)

Below Mγ→α′
d temperature, the strain-induced γ → α′ martensite is increasing

the tensile strength Rsteel
m of the steel by an amount equal to �σγ→α′

, shown in (20.11)
[18, 28].

Rsteel
m = Rγ+ε+α′

m = Rγ
m + �σγ→ε + �σε→α′ + �σγ→α′

(20.11)

The behavior described in Fig. 20.7 and (20.8)–(20.11) arises from the interplay
between the strain-induced ε or α′ martensite formation and the dislocation glide in
the austenite. Referring to the STT diagram, the stress increments achieved by various
deformation-induced mechanisms can be obtained according to Weiß et al. [18, 28]
by a procedure involving mirroring of the triggering stress values with respect to the
tensile strength of the austenite (Rγ

m).
The strain contributions due to deformation-induced mechanisms can be summa-

rized using the so-called deformation-temperature-transformation (DTT) diagrams.
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Fig. 20.8 Deformation-temperature-transformation diagram (DTT) of the X5CrNi18-10 steel [18]

Figure 20.8 shows the DTT diagram for the X5CrNi18-10 steel where the plastic elon-
gations associated with the strain-induced γ → ε → α′ and γ → α′ deformation
processes are indicated [18, 28].

The uniform elongation of the steel (uppermost curve in Fig. 20.8), uniform elon-
gation of the austenite εγ , and the elongations ε

γ→ε

A and ε
γ→α′
A corresponding to the

tensile trigger stress values σ
γ→ε

A and σ
γ→α′
A , respectively, are shown in Fig. 20.8.

In addition, the plastic elongations �εγ→ε and �εγ→α′
contributed by the strain-

induced ε-martensite and α′-martensite formation, respectively, as well as the values
�ε

γ→ε
∗ and �ε

γ→α′
∗ contributed by the glide in the austenite, are shown in Fig. 20.8.

It is also shown that the elongation values �εγ→ε and ε
γ→ε
∗ as well as �εγ→α′

and �ε
γ→α′
∗ are equal [28]. The measured plastic elongations are a consequence of

deformation-induced martensite formation as well as the plastic elongation pertain-
ing to the induced glide processes in the austenite in the transformation range. Equa-
tions (20.12)–(20.14) describe the plastic elongation behavior of the X5CrNi18 10
steel in various temperature intervals with different deformation mechanisms. Equa-
tion (20.12) applies above the Mγ→ε

d temperature, in which the uniform elongation
of the steel (εsteel) is equal to the uniform elongation of the austenite (εγ ) [18, 28].

εsteel = εγ (20.12)

Between Mγ→ε

d and Mγ→α′
d temperatures (20.13) applies.
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εsteel = εγ+ε = εγ + �εγ→ε (20.13)

Below the Mγ→α′
d temperature (20.14) applies.

εsteel = εγ+ε+α′ = εγ + �εγ→ε + �εγ→α′
(20.14)

At the Mγ→ε

d temperature, the plastic elongation value ε
γ→ε

A coincides with the
uniform elongation of the austenite (εγ ). Below that temperature, the anomalous
temperature dependence of the uniform elongation (εsteel), associated with notice-
able ductility enhancement at lower temperatures, begins. At the Mγ→α′

d temperature,
the uniform elongation of the steel reaches a maximum. Below the Mγ→ε

sσ temper-
ature, the stress-induced ε martensite formation begins, which does not lead to a
plastic elongation. In the γ → ε → α′ transformation range, the plastic elongation
�εγ→ε contributed by the strain-induced ε-martensite formation equaled the plastic
elongation value �ε

γ→ε
∗ contributed by the glide in the austenite. The X5CrNi18-10

steel serves as an example for a method to describe the shear and glide processes
occurring in the austenite. It is assumed that no glide processes were activated in
the strain-induced ε and α′ martensite phases. Strength and ductility contributions
by the induced glide processes in the martensitic phases must be taken into account
when spontaneous ε- or α′-martensite, which raise the yield strength of the steel, are
present in the starting microstructure [18, 28].

20.5 Effect of Nickel on the Deformation Mechanisms
of Metastable CrMnNi Cast Steels

To describe the influence of chemical composition on the deformation mechanisms,
the X3CrMnNi16-7-3, X3CrMnNi16-7-6 and X3CrMnNi16-7-9 cast steels with pri-
marily austenitic microstructures have been developed [5, 34]. The true-stress versus
true-strain curves of the investigated steels are shown in Fig. 20.9. These flow curves,
obtained at various temperatures, are the basis for the development of STT and DTT
diagrams [19]. The yield strength, tensile strength, and uniform elongation can be
determined directly from the flow curves. To determine the triggering stress (σ

γ→α′
A )

for the deformation-induced α′-martensite formation, the first derivatives of the flow
curves, namely the work hardening rate, has to be calculated. A typical steel with
deformation-induced α′-martensite formation shows two inflection points. The first
inflection point corresponds to the triggering stress for the austenite to martensite
formation. The second inflection point, on the other hand, can be correlated with
the maximum of deformation-induced α′-martensite formation rate [21]. In the case
of deformation-induced twinning or ε-martensite formation, no inflection point is
observed. Therefore, the triggering stress for twinning or ε-martensite formation has
to be determined by microstructural investigations after interrupted tensile tests [19].
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Fig. 20.9 True stress-strain curves for tensile specimens of a X3CrMnNi16-7-3, b X3CrMnNi16-
7-6 and c X3CrMnNi16-7-9 steel in the temperature range of −196 to 250 °C [19, 34]

The STT and DTT diagrams for the steel X3CrMnNi16-7-3 are shown in
Fig. 20.10. The triggering stresses and the tensile strength of the phases determine
the stress-temperature fields for the deformation-induced processes (martensite for-
mation, twinning, dislocations glide, etc.). The location of these fields depends on the
chemical composition of the investigated steel [20]. All solid lines in the diagrams
are experimentally determined. The dashed lines are predicted or approximated. In
contrast to the X3CrMnNi16-7-6 and X3CrMnNi16-7-9 steels, the microstructure of
the X3CrMnNi16-7-3 steel prior to tensile tests was not fully austenitic and the low
austenite stability, the critical temperatures for deformation-induced twinning T γ→Tw

d

(300 °C) and deformation-induced α′-martensite formation Mγ+ε,(Tw)→α′
d (140 °C)

were higher compared to the other two steels [5, 20, 34]. According to microstructural
investigations, it is assumed that the ε martensite formation occurs in the approxi-
mate temperature range 40–300 °C. With increasing temperature and thus increasing
stacking fault energy, deformation twinning replaces the ε martensite formation [4].
Due to the low triggering stresses for the strain-induced α′-martensitic transforma-
tion at low temperatures, the ε-martensite formation is practically suppressed below
room temperature. The maximum true strain of about 0.4 is reached at a temperature
of approximately 120 °C. The temperature anomaly of elongation (broad maximum
in Fig. 20.11) in the steel X3CrMnNi16-7-3 is mainly caused by the strain-induced
ε-TRIP [20]. The elongation contribution caused by the α′-martensite formation is
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Fig. 20.10 STT and DTT diagrams for the X3CrMnNi16-7-3 steel [19]

negligible, because the α′-martensite after tensile tests is either deformation-induced
or formed spontaneously.

Figure 20.11 shows the STT and DTT diagrams for the steel X3CrMnNi16-7-6.
Compared to the X3CrMnNi16-7-3 steel, the critical transformation temperatures
and the transformation fields are shifted to lower temperatures [35]. The T γ→Tw

d

temperature and the Mγ+ε,(Tw)→α′
d temperature are 250 °C and 100 °C, respectively.

In the temperature range between 0 and 50 °C, the triggering stress for α′-martensite
formation is very low. Therefore, the austenite transforms into martensite practically
without twinning or ε-martensite formation. At a deformation temperature of 60 °C,
ε-martensite was found in the microstructure [19, 36]. Additionally, the kinetics of
the α′-martensite formation is shown in the STT diagram. Therefore, compared to the
STT diagram of the X3CrMnNi16-7-3 steel, the STT diagram for the X3CrMnNi16-
7-6 steel additionally includes the isolines for α′-martensite fraction as marked in
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Fig. 20.11 STT and DTT diagrams for the X3CrMnNi16-7-6 steel [19]

the γ → α′ transformation field. Moreover, the X3CrMnNi16-7-6 steel is capable of
forming isothermal martensite, which is not taken into account in the STT diagram
[20]. Accordingly, the stress values measured at the second inflection point are higher
than the Rγ

m . This measurable stress Rγ+α′(isotherm)
m enables an approximation of Rγ

m .
The uniform elongation ASteel

g of the X3CrMnNi16-7-6 steel, the uniform elonga-
tion of the austenite Aγ

g and corresponding deformation mechanisms are shown in the
DTT diagram in Fig. 20.11. Additionally, the elongation contributions due to the dis-
locations glide in the austenite �εγ , deformation twinning �εTw, and strain-induced
martensite transformation �εα′

are included in the DTT diagram. The temperature
anomaly starting at 250 °C is a result of the stacking fault formation and twin-
ning, which leads to an enhanced elongation with decreasing temperature [19, 20].
Below the Mγ+Tw→α′

d temperature (80 °C), the gradual replacement of stacking fault
formation and twinning by α′-martensite formation leads a decrease in elongation.
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The STT and DTT diagrams for the steel X3CrMnNi16-7-9 are shown in
Fig. 20.12. Compared to the steels X3CrMnNi16-7-3 and X3CrMnNi16-7-6, the sta-
bility of austenite is increased due to the higher Ni content. Accordingly, the critical
temperatures are shifted to lower temperatures. The T γ→Tw

d temperature is around

200 °C. Austenite, which is deformed by twinning, transforms below Mγ+Tw→α′
d

(50 °C) into martensite. In the temperature range between −50 and −70 °C, the
triggering stress for α′-martensite formation is very low, and austenite transforms
directly into martensite almost without twinning. The maximum true strain of about
0.5 is reached at a temperature of 30 °C. A superposition of three deformation mech-
anisms—glide deformation of the austenite, TWIP effect, and TRIP effect—takes
place at this temperature and causes the highest elongation.

The various austenite stabilities of the dendritic cast structure caused by the seg-
regation of the alloying elements Cr, Mn, Ni during solidification of the austenitic

Fig. 20.12 STT and DTT diagrams for the X3CrMnNi 16-7-9 steel [19]
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steels X3CrMnNi 16-7-3/6/9 leads to a shift of critical temperatures. Accordingly,
the center of dendrites are more metastable than interdendritic regions of austenite.

For further information the reader is revered to read the publication of Martin
et al. [37] and Mola et al. [10].

20.6 Thermodynamic-Mechanical Modeling Based
on Austenitic CrMnNi–C–N Cast Steel

Figure 20.13 shows the true stress-strain curves for the interstitially-alloyed
X15CrNiMnN19-4-3 cast steel deformed until fracture at temperatures between −
80 and 400 °C. Carbon and nitrogen were alloyed to the steel to increase the strength
by solid solution solidification. The highest elongation of 53% was reached at 60 °C,
which is almost equal to the Md-temperature (70 °C). The formation of α′-martensite
at lower temperatures resulted in a pronounced strengthening and a steady decrease
in elongation. Reduction of tensile elongation at temperatures below the Md tem-
perature is a common observation in austenitic stainless steels, including the steels
discussed above [22]. The noticeable work hardening at −80 °C resulted in the high-
est (engineering) tensile strength of 1500 MPa, which correlates to a true tensile
strength of 2000 MPa.

The phase fractions of martensite and austenite after tensile deformation until
fracture at different temperatures is shown in Fig. 20.14. The steel does not form as-
quenched martensite at temperatures as low as −196 °C. Therefore, the martensite
contents in Fig. 20.14 represent the deformation-induced martensite only. The highest
martensite content of about 81 vol% was formed during deformation at −80 °C.

To determine the deformation mechanisms activated during tensile tests, SEM
investigations were carried out on tensile specimens deformed until fracture at
−80, 70 and 200 °C (Fig. 20.15). The tensile direction is horizontal aligned to the
plane of view. ECCI image of Fig. 20.15a shows the presence of various operating

Fig. 20.13 True stress-strain
curves of tensile specimens
of the X15CrNiMnN19-4-3
cast steel in the temperature
range of −80 to 400 °C



670 M. Hauser et al.

Fig. 20.14 Phase fractions in the microstructure of tensile specimens of the X15CrNiMnN19-4-3
steel tested at various temperatures

Fig. 20.15 Microstructures obtained after tensile deformation at different temperatures: ECCI
micrographs of specimens deformed at −80 °C (a), 70 °C (b) and 200 °C (c) of the X15CrNiMnN19-
4-3 steel

straight deformation bands with α′-martensite in the microstructure of the specimen
deformed at −80 °C. This indicates the dominance of planar glide due to the high
activity of Shockley partial dislocations at −80 °C [9]. According to the MSAT
measurement results (Fig. 20.15) a large volume fraction of austenite transformed to
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α′-martensite. The ECCI image of the specimen tensile tested at 70 °C (Fig. 20.15b)
shows two austenite grains with different microstructural characteristics. Whereas the
microstructure of the austenite grain on the left resembles the microstructure shown
in Fig. 20.15a, diffuse contrast changes in the austenite grain to the right imply the
dominance of wavy glide [8, 38]. Abrupt transition in the glide mode across a grain
boundary is more consistent with the differences in the crystallographic orientation of
the neighboring grains than with the possible segregation of alloying elements in the
cast steel. After all, the forces exerted on the leading and trailing partial dislocations
of the primary slip system depend on the crystal orientation [9, 39]. The ECCI image
of the specimen deformed at 200 °C in Fig. 20.15c on the other hand shows only
a diffuse contrast changes in the austenite grain what a dominance of wavy glide
means. This sequence has been similarly observed in the X3CrMnNi16-7-6 steel
[4, 5, 40, 41].

To describe the occurring deformation mechanisms during tensile loading, inter-
rupted tensile tests with subsequent microstructure investigations have been per-
formed. ECCI image and EBSD phase map of a tensile sample deformed at 0 °C to
800 MPa are shown in Fig. 20.16. It is well established that the type of deformation-
induced processes in austenitic steels depends on the stacking fault energy; as the
stacking fault energy decreases, the deformation mechanism changes from perfect
dislocation glide to deformation twinning, ε-martensite formation, and α′-martensite
formation in that sequence [42]. Due to the coexistence of a small ε-martensite
fraction in the deformation bands, the martensitic transformation according to the
sequence γ → ε → α′ (Fig. 20.16b) is very likely. The mechanism of formation of
deformation-induced twins and ε-martensite is very similar and only differs in the
stacking sequence of {111}γ close-packed planes; thus stacking faults on successive
{111}γ planes generate deformation twins, whereas their overlap on every second
{111}γ plane results in the formation of ε-martensite [4]. Accordingly, these two
byproducts of stacking faults have been observed to coexist in the microstructure of
deformed austenitic steels [43].

Fig. 20.16 Microstructures obtained after tensile testing at different temperatures: ECCI image
and EBSD phase map of a specimen deformed at 0 °C to 800 MPa. In the EBSD phase map, red,
yellow, and blue denote phases with fcc, hcp, and bcc crystal structures, respectively
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Fig. 20.17 Evolution of deformation-induced α′-martensite fraction during tensile deformation at
−80 °C of the X15CrNiMnN19-4-3 steel superimposed on the stress-strain curve

In order to correlate the stress-strain curve with the deformation-induced
α′-martensite fraction, the evolution of martensite fraction during tensile test at
−80 °C, obtained from in situ magnetic measurements, is superimposed on the
stress-strain curve (Fig. 20.17). The evolution of α′-martensite fraction with strain
resembles the available literature data on the kinetics of deformation-induced marten-
site formation in metastable austenitic alloys. The increase in the work hardening
rate caused by the deformation-induced formation of α′-martensite is known to cause
a first inflection point in the stress-strain curve of metastable austenitic steels [36].
Taking the stress at which almost 1 vol% α′-martensite has formed by deformation
as the triggering stress for the deformation-induced α′-martensite formation (σ A), it
does not match the first inflection point (IP) of the stress-strain curve. As marked in
Fig. 20.17, the first inflection point during tensile deformation at −40 °C occurs after
the formation of almost 3–5 vol% martensite in the microstructure. In other words,
the first inflection point gives a slightly overestimated approximation of the trigger-
ing stress. Between the first and second inflection points, the martensite formation
rate remains almost constant [21].

The STT and DTT diagrams of the X15CrNiMnN19-4-3 are shown in Fig. 20.18.
The area between the triggering stress and the tensile strength, marked γ → α′
in Fig. 20.18, denotes the stress-temperature field favorable for the deformation-
induced martensitic transformation. In different temperature ranges, different defor-
mation mechanisms are activated. The dominant mechanisms are deformation-
induced martensite formation below Md, deformation twinning between Md and Td,
and glide of perfect dislocations above Td temperature. The temperature range where
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Fig. 20.18 STT and DTT diagrams for the X15CrNiMnN19-4-3 steel

these processes occur depends on the chemical composition. Deformation-induced
martensite formation is absent at temperatures above approximately 70 °C, leading
to a weak temperature dependence of tensile strength. Upon deformation-induced
martensite formation at lower temperatures, the tensile strength increases at a much
faster rate. The martensite tends to form within the slip bands in the austenite, thereby
restricting dislocations glide within the existing bands. As a result, additional slip
bands must be activated to sustain plastic deformation. This explains the high rate
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of strain hardening. In the temperature range between 70 and −80 °C, the trigger-
ing stress for deformation-induced martensite was determined by in situ magnetic
measurements to be in the range 600–1180 MPa.

The DTT diagram enables the separation of strain contributions owing to the
glide of dislocations in the austenite as well as those due to the deformation-induced
twinning and martensitic transformation. The summation of these strain contributions
yields the experimental elongation (ASteel

G ) of the steel, which reaches a maximum at
53% in the studied temperature range of −80 to 400 °C. Since the strain contributions
of twinning, ε-martensite formation and dislocation glide are difficult to separate,
the DTT diagram in Fig. 20.18 shows only the summation of these contributions.

Due to the high amount of interstitial elements, the X15CrNiMnN19-4-3 has
a higher yield strength than the X3CrMnNi16-7-3/6/9 steels at equal deforma-
tion temperatures. Although the martensite content of the X15CrNiMnN19-4-3 at
room temperature is significantly lower (30.3 vol%) than the martensite content
of the X3CrMnNi16-7-3 (82 vol%), is the yield strength (342–298 MPa) and the
ultimate tensile strength (1663–1198 MPa) is higher. The Md temperature of the
X15CrNiMnN19-4-3 steel (70 °C) is located between the X3CrMnNi16-7-6 (100 °C)
and X3CrMnNi16-7-9 (50 °C).

In Fig. 20.19, the Gibbs energy changes for the martensite formation based on
the thermodynamic database are compared with the values calculated using the pro-
cedure explained in the following and discussed in more detail by Hauser et al.
[22]. Whereas the dash-dotted line predicts a continuous increase in the chemical
driving force at lower temperatures (down to −196 °C), the chemical driving force

Fig. 20.19 Gibbs energy changes for γ → ε and γ → α′ phase transformations calculated by
Thermo-Calc and corrected Gibbs energy γ → α′ with the aid of tensile tests with in situ magnetic
measurements for the X15CrNiMnN19-4-3 steel [22]
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based on the revised values remains almost constant below −80 °C. The observed
deviation is most likely caused by changes in the mechanical and physical prop-
erties of austenite near the Néel temperature. The critical Gibbs free energies for
the formation of martensite at different temperatures were determined by the addi-
tion of the chemical and mechanical contributions. The chemical term was obtained
from thermodynamic calculations. The mechanical term, on the other hand, was
obtained by calculating the mechanical energy supplied to tensile specimens up to
the onset of martensitic transformation. The critical driving force for the formation
of α′ (−2496 J/mol) was obtained by determining the mechanical energy neces-
sary to trigger the deformation-induced α′-martensite formation at 0 °C. Driving
forces for the formation of α′-martensite at other tensile test temperatures were then
obtained by subtracting the mechanical energies applied to trigger the martensitic
transformation from the critical driving force. Additionally, the calculated Gibbs
free energy for ε-martensite formation is shown in Fig. 20.19. Due to the low critical
driving force of ε-martensite, the ε-martensite formation starts immediately below
the T γ→ε

0 . Since the α′-martensite is more stable, the ε → α′ phase transformation
starts at the moment where the critical driving force for α′ martensite is reached.

20.7 Conclusions

The focus of the subproject C3 was the thermodynamic-mechanical modeling of
metastable high alloy austenitic CrMnNi steels. To achieve this, several steels were
investigated in cooperation with different subprojects of the Collaborative Research
Center 799. With the aid of thermodynamic data and flow curve analysis, it is possible
to describe the mechanical properties based on the deformation mechanisms and
phase transformations. The investigated metastable austenitic steels exhibited the
transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP)
effects.

First, a new method was developed for the quantitative determination of strength
and plastic elongation contributions due to deformation-induced processes during
uniaxial tensile loading of austenitic steels. The method was demonstrated using a
commercial X5CrNi18-10 steel. For this purpose, the dependence of the overlapping
deformation processes in the austenite on the temperature and applied tensile stress
was studied in the temperature range of −196 to 40 °C. It was shown that every
deformation process leads to a strength and plasticity contribution commensurate
with its dominance. The sum of all contributions yielded the tensile strength and
the uniform elongation of the steels. Stress-temperature-transformation (STT) and
deformation-temperature-transformation (DTT) diagrams were constructed with the
aid of flow curve analysis and microstructural examinations. Plastic deformation of
martensite was excluded in the developed method. Therefore, the method is only valid
for metastable austenitic steels whose initial microstructure is free of as-quenched
ε- or α′-martensite.
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The influence of the chemical composition on the deformation mechanisms
of metastable CrMnNi cast steels was investigated using three high alloy steels,
namely X3CrMnNi16-7-3, X3CrMnNi16-7-6 and X3CrMnNi16-7-9. The influence
of martensite formation on the mechanical properties of the three steels was studied
by tensile tests between −196 and 300 °C. With increasing nickel content, the crit-
ical temperatures shifted to lower temperatures. For instance, the Md-temperature
decreased from 140 °C at 3% Ni to 50 °C at 9% Ni. Furthermore, the increase in
the Ni content was associated with a change in the deformation mechanism at room
temperature from a pronounced TRIP effect to a mixture of TRIP and TWIP effects.

A mathematical model was applied to describe the mechanical work due to uniax-
ial tensile loading. This enabled to determine the critical driving force for the marten-
sitic phase transformation. The deformation-induced formation of α′-martensite was
investigated by tensile testing of X15CrNiMnN19-4-3 cast austenitic steel between
−80 and 400 °C. The steel did not exhibit spontaneous α′-martensite formation
at temperatures as low as −196 °C. The triggering mechanical energies for the
deformation-induced α′-martensite formation were calculated after determining the
onset of α′-martensite formation by in situ magnetic measurements during tensile
tests. The results enabled to calculate modified driving forces for the occurrence of
the γ → α′ phase transformation.
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Chapter 21
Multi-scale Modeling of Partially
Stabilized Zirconia with Applications
to TRIP-Matrix Composites

Mohan Kumar Rajendran, Michael Budnitzki and Meinhard Kuna

Abstract The understanding of how the microstructure influences the mechani-
cal response is an essential pre-requisite for materials tailored to match specific
requirements. The aim of this chapter is to further this understanding in the context
of Mg-PSZ-TRIP-steel composites on three different scales using a set of meth-
ods ranging from phase-field simulations over micromechanics to continuum con-
stitutive modeling. On the microscale, using a Ginzburg-Landau type phase-field
model the effects of cooling- and stress-induced martensitic phase transformation in
MgO-PSZ is clearly distinguished. Additionally with this method the role of energy
barrier in variant selection and the effect of residual stress contributing to the stability
of the tetragonal phase are also investigated. On the mesomechanical scale, an analyt-
ical 2D model for the martensitic phase transformation and self-accommodation of
inclusions within linear elastic materials has been successfully developed. The influ-
ences of particle size and geometry, chemical driving force, temperature and surface
energy on the t → m transformation are investigated in a thermostatic approach.
On the continuum scale, a continuum material model for transformation plasticity
in partially stabilized zirconia ceramics has been developed. Nonlinear hardening
behavior, hysteresis and monoclinic phase fraction during a temperature cycle are
analyzed. Finally, The mechanical properties of a TRIP steel matrix reinforced by
ZrO2 particles are analyzed on representative volume elements. Here the mechanical
properties of the composite as function of volume fraction of both constituents and
the strength of the interface are studied.
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21.1 Introduction

21.1.1 Aims and Scopes of the Present Work

One central aim of the Collaborative Research Center SFB799 “TRIP-matrix com-
posites” was the development of a particle reinforced composite, composed of a
TRIP-steel metallic matrix and ceramic particles of partially stabilized zirconia PSZ.
The underlying idea was to exploit the phase transformation capability of both con-
stituents in order to enhance and to optimize the mechanical properties by making
such a composite.

In particular, the combination of the strain-induced phase transformation in the
TRIP steel and the stress-induced transformation in PSZ offers the opportunity to
compensate local stress concentrations at considerably high plastic deformations.
This reinforcing effect has been verified by several experiments with these metal-
matrix-composites MMC under monotonous [1] loading.

In complementation to the fabrication and characterization of these MMC, a thor-
ough theoretical-numerical modeling of the composite material was necessary to
understand and to simulate the phase transformation and the deformation behavior
of both constituents.

This work was devoted to the simulation of the phase transformation processes
in the PSZ ceramics and the MMC, whereas in another work the behavior of the
TRIP-steel was investigated. The aim was to provide proper constitutive equations
for stress and temperature controlled tetragonal-to-monoclinic phase transformation
of PSZ ceramics, based on physical assumptions accounting for the responsible
micromechanical mechanisms. The problem has been approached at various length
scales, see Fig. 21.1:

• At the microscale level it was needed to simulate the actual kinetics of the trans-
formation process inside of single tetragonal phase particles in PSZ. This task
could be best accomplished by using the phase-field method.

• To study the transformation conditions of an ensemble of tetragonal lentils in
polycrystalline PSZ ceramics, a semi-analytical thermostatic approach was applied
at the mesoscale.

• In order to enable quantitative strength analysis of structures made of PSZ and
MMC, a phenomenological constitutive law at the macroscale was further devel-
oped and implemented in a FEM-environment.

• To support the development of tailored particle MMC TRIP-matrix composites,
representative volume elements on the composite level were simulated, which
allow to predict the mechanical properties of the composite as function of volume
fraction of both constituents and the strength of the interface.
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microscale

ZrO2 TRIP-steel

TRIP-steel

cubic
ZrO2

tetragonal
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ZrO2

tetragonal
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monoclinic
ZrO2

mesoscale macroscale

Fig. 21.1 Different scales of modeling partially stabilized zirconia

21.1.2 Introduction to Partially Stabilized Zirconia

Partially stabilized zirconia (PSZ) is widely used because of its enhanced fracture
toughness and nonlinear stress-strain behavior. These favorable mechanical proper-
ties of PSZ result from a solid state phase transformation at regions of high stress
concentration (e.g. crack tips). This effect, known as transformation toughening,
was first reported by Garvie et al. [2] and was extensively investigated by [3–5].
Generally, some conditions have to be fulfilled for transformation toughening. The
existence of a metastable phase in the material is required, which can be achieved
either by microstructural parameters such as grain size or by changing the chemi-
cal composition. The martensitic (instantaneous) transformation from the metastable
parent phase to the stable resultant phase has to be stress-induced.

The PSZ ceramic material under consideration is stabilized by MgO, resulting in
finely dispersed lenticular precipitates of tetragonal (t-phase) embedded coherently in
the grains of a polycrystalline cubic matrix material (see Fig. 21.2). These precipitates
can transform into the monoclinic (m-phase) [7] triggered either by temperature or
stress, resulting in the formation of multiple, partially self-accommodating variants.
The t → m phase transformation, if unconstrained, is accompanied by a volume
dilatation of about 4% and a shear strain of about 8%. The increase in volume
induces (residual) compressive stresses in the cubic (c-phase) matrix leading to a
shielding effect at stress concentrations, which contributes to the toughness of the
material.
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Fig. 21.2 Typical
microstructure of a
TRIP-PSZ composite
produced in the CRC 799 by
spark plasma sintering. The
image shows a PSZ particle
surrounded by TRIP steel
together with a zoom into the
particle showing the typical
PSZ microstructure
(reprinted from [6])

1 mμ←⎯⎯→

21.2 Micromechanical Phase-Field Approach

Phase-field is considered to be a powerful mathematical computational tool in sim-
ulations involving interface kinetics. In the past decades PF approach has been suc-
cessfully established in various fields for materials science understanding such as:
solidification, solid-state phase transformation, precipitate evolution and coarsening
kinetics, grain growth, martensitic phase transformation (MPT) and also in damage
and crack growth phenomena.

For past few decades there has been active research towards the direction of mod-
elling partially stabilized zirconia (PSZ) materials. Wang et al. [8] was one of the
early study on PSZ for c → t phase transformation involving Ginzburg-Landau (GL)
phenomenological theory based PF model. Later in [9] the authors simulated alternat-
ing band structure formed by self-organized orientation variants of t-phase particles.
In [10] the first three-dimensional model for generic c → t MPT was presented.
Mamivand et al. [11] reported the first work on anisotropic and inhomogeneous
PF modeling for t → m phase transformation in zirconia ceramics. The work dis-
cussed the simulation results based on different initial and boundary conditions in
comparison to experimental observations. Further the authors [12] incorporated the
effect of stress and temperature to capture the forward t → m and reverse m → t
transformation to model pseudo-elastic behavior in polycrystalline zirconia.

A comprehensive work on non-conserved type GL-based phase-field models for
generic martensitic phase transformation was developed in a series of three papers
from Levitas et al. [13–15]. Levitas et al. used a 2 − 3 − 4 or higher order polynomial
for approximating the Gibbs energy and effective strain transition from austenite to
any martensitic variant. This work principally relies on the phenomenological GL
phase-field model developed by Levitas et al. with 2 − 4 − 6 type Landau potential.
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21.2.1 Phase-Field Method

The temporal and spatial evolution of non-conserved phase-field variables is described
by the phenomenological Ginzburg-Landau kinetic equation

∂φ

∂t
= −L

(
−β∇2φ + ∂ψgl

∂φ

)
. (21.1)

Here L is the positive kinetic coefficient, and β is a positive gradient energy
coefficient. The interface energy contribution provided by Levitas and Preston [13]
was used.

Here the total enthalpy ψgl is described by additive contributions from an elastic
ψel and a stress-independent chemical part of free enthalpy ψch. The individual
contributions are based on the work of Levitas and Preston [13, 14].

ψgl = ψel(ε, εtr, φ) + ψch(θ, φ). (21.2)

The order parameter considered here ranges from −1 � φ � 1, where φ = ±1
are the two possible product variants of m-phase and φ = 0 represents the parent
t-phase in two dimensions, see Fig. 21.3b. The values ±1 correspond to the variants
having opposite shear (self accommodating variants) in order to form twins during
t → m transformation. So, a single order parameter φ represents a group of phases
consisting of variant m+, its counter self accommodating variant m− and the parent
phase t in t → m transformation. As discussed in the work of Levitas et al. [15] the
most opted 2 − 4 − 6 polynomial for such a crystal set is used further to describe

Fig. 21.3 Order parameter and lattice transformation representation of parent and product phases
during martensitic phase transformation in zirconia ceramics. a c → t lattice transformation, b
t → m lattice transformation schematic in two dimensions
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the potential in this work and to model the phase transformation. A similar method
is considered in representing parent c-phase and product variants of t-phase during
c → t transformation.

In mechanics total strain tensor is decomposed into an elastic and an inelas-
tic/transformation term, such as,

ε = εel + εtr(φ̃). (21.3)

Here εtr(φ̃) provides resultant transformation strain weighted with fraction of
product phase ϕ(φ̃). The modified order parameter φ̃ is used instead of φ to avoid
any unbounded solution which may lead to unphysical mechanical properties. This
implies εtr(0) = 0 and εtr(±1) = εm±

tr respectively. In same way fourth-rank effective
elastic constants Eeff can be written as fraction weighted with respect to product
phase. The transformation/Bain strains and elastic constants are listed in Tables 21.1
and 21.2. For more detailed explanation on the PF method applied especially to
simulation of zirconia material we refer to our previous work [16].

The Ginzburg-Landau equations are coupled to the basic equations of contin-
uum mechanics by applying the week form of equilibrium of momentum in a FEM
framework.

∇ · σ = 0. (21.4)

The resulting second order partial differential equations for phase-field variable φ

and displacement vector ui are solved concurrently using the finite element method
framework implemented in COMSOL multiphysics.

21.2.2 Model Setup

Since both the transformations c → t and t → m are martensitic, the aforemen-
tioned PF approach is used to describe both phase transformation scenarios in zir-
conia ceramics. It is known that, t-phase and m-phase crystal during t → m trans-
formation share same crystal lattice points in a symmetrical manner leading to 12
possible orientation relations of parent lattice to product lattice in three dimensions
(3 correspondences based on choice of lattice axis direction, two variants for each
correspondence and two orientations for each variant). This is also similar to the
case of c-phase and t-phase crystal during c → t transformation. In two dimensions
the problem reduces to a simple set of two product crystal variants (see Fig. 21.3).
The other cases of crystal transformation belong on the third dimension, so for sim-
plification, they could be neglected from modeling. In t → m transformation this
simple crystal lattice transformation set (see Fig. 21.3b) is enough to describe twin
formation during transformation in two dimensions and thus could reproduce the
effect of self accommodation in order to reduce the total strain energy of the system.

Since the specific domain setup differs in some cases of our simulations pro-
vided in the following subsections, they are discussed in detail in the corresponding
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Table 21.1 Variant transformation strains involved in c → t and t → m transformation [8, 17, 18]

Lattice transformation Transformation strain εi j

c → t1 εt1
tr =

[
−0.0007 0

0 0.0197

]

c → t2 εt2
tr =

[
0.0197 0

0 −0.0007

]

t → m+ εm+
tr =

[
0.012479 0.079614

0.079614 0.019139

]

t → m− εm−
tr =

[
0.012479 −0.079614

−0.079614 0.019139

]

Table 21.2 Elastic stiffness (in GPa) of c-phase , t-phase and m-phase [19]

Phases E11 E22 E33 E44 E55 E66 E12 E13 E16 E23 E26 E36 E45

c-phase 390 390 390 60 60 60 162 162 0 162 0 0 0

t-phase 327 327 264 59 59 59 100 62 0 62 0 0 0

m-phase 361 408 258 100 81 126 142 55 −21 196 31 −18 −23

subsections of selected results. Overall in common, we assume anisotropic elastic
behaviour in both elastic and phase transformation domain in our simulations. The
effective transformation strain and elastic constants at a material point inside the
phase transformation domain are evaluated as a function of φ [16]. The description
of anisotropy is necessary to capture variant orientation relationship and the effects
of various external loading directions on MPT. The material parameters used in the
model are listed in Tables 21.1 and 21.2.

21.2.3 Selected Results and Discussion

21.2.3.1 Phase Stability and Energy Barriers

Using CALPHAD [20] method an unambiguous representation of the temperature
dependent Gibbs free energy values of individual phases from the thermodynamical
aspect could be evaluated [21]. But the form of energy landscape for intermediate
phase transition from parent to product phase is still ambiguous and is a missing
piece of puzzle. Most of the phase-field methods rely on these energy landscape to
reproduce a more relevant and accurate material behavior. There are two major meth-
ods used by phase-field to approximate the transformation path a common tangent
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method [20] which expresses a linear behavior between parent and product phase
minima. On other hand potential function methods [13, 22] utilize an non-linear
analytical representation of path between parent and product phase minima. Both of
these methods confide in phenomenological modeling of free energy based on the
phase stability conditions. In this work a generic model for martensitic phase trans-
formation developed by Levitas and Preston [14] is used and adapted for simulating
zirconia ceramics material. We use 2 − 4 − 6 potential function [16] method which
is utilized to represent a non-linear behavior and exhibit a transition barrier based on
thermo-mechanical conditions.

On the thermodynamic perspective of zirconia at ambient temperature, it is clear
that the global minimum is at m-phase and the global maximum is at t-phase . So
theoretically the metastable t-phase always tends to transform to stable m-phase . But
in almost all commercial PSZ ceramics (refer MgO-ZrO2micrographs from the book
of Hannink et al. [18]) the t-phase is observed to be stable at ambient temperature.
Multiple factors may cause such a stabilization, which include: stabilizer doping
such as MgO, presence of residual stresses from prior c → t transformation, but also
defects like dislocations and grain boundaries. Later in this work, the effect of residual
stress is investigated. Here in this section we compare the potential functions from
Mamivand et al. [11] and Levitas and Preston [14] commonly used in literature for
modelling t → m transformations. We investigate the capabilities of these functions
for such a stabilization.

The 2 − 4 − 6 potential used by Mamivand et al. [11] for approximating the
Gibbs energy contribution defines energy barrier just by the analytical function.
The barrier is then levered by the enthalpy difference between the parent and prod-
uct phase irrespective of temperature, see Fig. 21.4a. Even at ambient temperature
the approximated Gibbs energy landscape provides an energy barrier considering
only thermodynamic contribution by pure zirconia, which is in contradiction to true
physical behaviour. In the case of Levitas and Preston [14] based formulation for
temperatures below Ms the function doesn’t exhibit any barrier for transformation.

At high temperature just above Ms (see Fig. 21.4d) the energy landscape calculated
based on Mamivand’s potential formulation shows local minima at the parent and
product phase. For the same, a global maximum or energy barrier is visible at order
parameter φ ≈ 0.1 (see T < Ms). But as the temperature increases this decreases the
barrier, and after crossing the T0 there remains an intermediate local minimum which
is neither parent nor product phase, the local minimum is close to order parameter
φ ≈ 0.1, see Fig. 21.4b, c. In contrast, Levitas type potential used in this work has
no intermediate minimum rather provides a barrier between the parent and product
phase for temperatures above Ms .

Based on Levitas et al. formulation, utilized in this work for zirconia ceramics
at any temperature, a global/local minima is retained at the product phase. And for
T > Ms a local minimum is also retained in parent phase, see Fig. 21.4b, d. Thus
the potential function used in this work results in a proper representation of zirconia
ceramics material behaviour from a pure thermodynamic stand point.
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Fig. 21.4 Comparison of estimated 2 − 4 − 6 potential based thermodynamic Gibbs enthalpy
ψch(θ, φ) as a function of order parameter during t → m transformation at various temperatures
for Levitas and Preston [14] based model used for zirconia ceramics [16] to Mamivand et al. [11]
model

21.2.3.2 Variant Selection by Energy Barriers

In this section we would like present distinctive differences in microstructure and
evolution path between cooling induced and stress induced t → m transformations.
We show that the different behaviour can be explained by the presence of an energy
barrier in the Gibbs free enthalpy. In the latter case, sequential growth of monoclinic
lamellae is observed because of possible variant selection based on energy barriers,
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Fig. 21.5 a Representation of simulation domain with boundary conditions. Material coordinate
system (abc) and geometrical coordinate system (xyz). Axis c and z are outward normal to the
paper. b Comparison of stress-independent chemical free enthalpy

whereas cooling induced microstructure evolution is characterized by an almost
homogeneous nucleation of the monoclinic phase.

For simulating different microstructure evolution, such a domain setup is cho-
sen, where the t-phase lentils are stabilized in the cubic matrix after annealing. A
single crystal setup with a square c-phase elastic domain (ED) of 0.5 µm × 0.5
µm with an embedded circular phase transformation domain (PTD) of radius 0.125
µm (see Fig. 21.5a) is created. As initial condition in PTD the tetragonal phase is
superimposed with random noise on order parameter φ within a given range. The
elastic domain here represents a cubic matrix surrounding a single t-phase particle.
A circular form of embedded phase transformation domain is chosen in order to avoid
any geometrical influence on the microstructure formation. The initial displacement
is set zero in the whole domain. Additionally, a displacement periodic boundary con-
dition is imposed at the boundaries. In order to mimic a rotated crystal around the
b-axis (normal to the paper) (see Fig. 21.5a) the material parameters, transformation
strain and elastic constants are transformed accordingly. Other common simulation
and material parameters used are already discussed above and listed in Table 21.3.

For simulating stress induced transformation, we choose homogeneous isothermal
conditions at 1310 K, above Ms = 1305 K. On the other hand, for cooling induced
transformation we choose homogeneous isothermal condition at 1250 K below Ms .
The Gibbs enthalpy landscapes based on pure thermodynamic contribution for both
temperatures are compared in Fig. 21.5b.

Figure 21.6a–c show a cooling induced martensitic transformation in a single
crystal, rotated by 45◦ around ‘b’-axis (see Fig. 21.5a) with isothermal condition
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Table 21.3 Input parameters used in t → m simulation

Description Symbol Value Unit

m-phase start temperature Mt→m
s 1305 K

m-phase equilibrium temperature T t→m
0 1367 K

Gradient energy coefficient β 5 × 10−11 J/m

Kinetic coefficient L 2 m3/Js

Material parameter a 6 –

(a) (b) (c)

(d) (e) (f)

Fig. 21.6 A comparison between cooling induced case (top row (a–c)) and stress induced case
(bottom row (d–f)). The color legend represents the order parameter φ. A sequential growth of
lamella, observed during stress induced case due to variant selection based on external loading.
Microstructure evolution snapshots at various stages of pseudo-time

below Ms at 1250 K. A surface plot inside the PTD shows the evolution of order
parameter φ where the color legend represents, red being m+, blue as m− and green
as t .

In cooling induced case there is no intermediate energy barrier between par-
ent and product phase for transformation (see Fig. 21.5b) since the temperature
is below Ms and here product m-phase is stable. So after initialization an almost
homogeneous nucleation process takes place where all possible nucleation sites
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of all possible variants are preferred to grow because of the adequate thermody-
namic driving force (see Fig. 21.6a–d). In the numerical simulation, such condi-
tion will lead to different microstructure arrangements for different initialization.
The evolved microstructures would be of mixed patterns where junction planes
are parallel or orthogonal to ‘c’-axis, which could be observed within a single
grain (both orientation scenarios specified by Hannink et al. [18]). In Fig. 21.6c
a large quantity of junction plane between two m-phase variants are orthogonal to
‘c’-axis direction and there are small amount of junction planes (upper right, lower
left and lower right) oriented parallel to ‘c’-axis. Figures of both such lamella direc-
tions of twin formation have already been presented in the work of Hannink et al.
[18] within a single t-phase lentil.

Simulation parameters here remain the same as cooling induced microstructure
formation case, except the operating temperature being 1310 K above Ms and with
σapp = 1 GPa compression along ‘b’-axis (see Fig. 21.5a). An initial superimposed
noise with a range confined within the barrier of the Gibbs enthalpy landscape (see
Fig. 21.5b) is applied.

Since the pure thermodynamic driving force is not adequate to trigger the trans-
formation, there would not be martensitic evolution at all. As the compressive stress
is superimposed additionally to the thermodynamic contribution, depending on the
orientation of crystal relative to the applied stress some variants are preferred to grow
by decreasing the energy barrier and some are obstructed by increasing the barrier.
In other words, the energy landscape is skewed such that some variants have energy
barrier and others don’t, see Fig. 21.9a. This becomes clear by comparison between
solid blue curve where no external stress is applied, and dashed red curve after appli-
cation of external stress. Here in dashed red curve one variant experiences a barrier
and the other doesn’t. In this example (Fig. 21.6d–f) the m+—red nucleation sites are
preferred. At the initial stage, m+ red variant nucleates and grows and meanwhile m−
blue variant vanishes because of the energy barrier. Additionally, by superimposing
normal stress σapp the driving force exceeds the minimum driving force required for
transformation above Ms and triggers the transformation. Initially only m+ variant
lamellae grow such that they increase the strain energy. As the lamellae reach the
grain boundary or imperfections, this piles up stress and triggers the m− blue self
accommodating variant thus reducing a part of the strain energy gained.

According to the investigation on MgO-ZrO2by Kelly and Ball [17] the potential
twinning plane/junction plane for twin related variants is either [100]m /‘a’-axis or
[001]m /‘c’-axis, based on our model base axis orientation in Fig. 21.3. The resulting
junction plane [001]m /‘c’-axis (see Fig. 21.6) is consistent with the experimental
observations of [17, 18, 23, 24]. It is clear that among the two possible orientation
scenarios specified by Hannink et al. [18] between m-phase and t-phase , junction
plane parallel to ‘c’-axis, twin-related variants retain some untransformed t-phase ,
which is also consistent with our observations. But the reason for possible conditions
under which such oriented structure could be reproduced has not been discussed yet
before.
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21.2.3.3 Origin and Effect of Residual Stresses

The probable initial existence of residual stresses [25, 26] in the t-phase matrix as a
result of the c → t transformation and their effect on t → m transformation is also
not well understood yet. Such a residual stress is not yet considered in modeling for
t → m . In almost all commercial ceramics t-phase is stable at ambient temperature.
Multiple factors may cause such a stabilization, here we look into the possibility and
the effects of residual stress present prior to t → m transformation. In order to eval-
uate the peak residual stress which could be expected during c → t transformation,
we simulate c → t transformation inside a c-phase matrix. The evolution of average
pressure inside the t-phase lentil during transformation is tracked. This pressure is
later used as an initial condition to mimic presence of residual stress during t → m
transformation.

A simple model for single lentil setup within a square phase transformation domain
is chosen with a size such that an average size of tetragonal lentil could be accom-
modated. This phase transformation domain is placed within an large elastic domain
with c-phase . The transformation domain is initialized with c-phase and a circular
seed of t-phase is placed at the centre of the phase transformation domain. The ini-
tialization and boundary conditions are set similar to those of model for t → m . The
domain is allowed to transform from cubic to tetragonal (c → t ) by undercooling
at 1300 K without any external mechanical loading. The thermodynamic functions
for evaluating Gibbs enthalpy values are taken from [11, 21]. We assume anisotropic
elastic behavior for the whole domain. The elastic constants of respective phases are
provided in Table 21.2. Based on the lattice constants from [8] one can evaluate the
transformation strain (see Table 21.1), the critical temperature Mc→t

s = 1423 K and
equilibrium temperature T c→t

0 = 584 K acquired from [27]. All other parameters are
similar to those of previously explained model setup and listed in Tables 21.2 and
21.3.

Figure 21.7 shows single and multi-variant t-phase lentils evolving inside a
c-phase matrix. As the initial tetragonal inclusion grows to lentil shape, its interior is
under compression. On left half, the mean in-plane pressure σ p̄ = −(σxx + σyy)/2
is plotted. The legend red represents material under compression and blue represents
material under tension. On the right half, the surface plot of order parameter φ is
presented. Therein, green color represents c-phase and red color represents t-phase
. In commercial ceramics, stable tetragonal lentils are observed at ambient tempera-
ture. So the peak mean in-plane pressure experienced by these t-phase lentils during
their formation is considered to be the initial condition for t → m transformation.
Figure 21.8 shows an evolution of the mean in-plane pressure versus the area fraction
of a single t-phase lentil in an infinite domain. The numerical fluctuations during
the initial stages are of no interest, but a strong saturation trend in the later stages is
considerd resulting in a 0.21GPa mean in-plane pressure inside a lentil. Although a
single lentil is considered here, in reality the cubic matrix is populated with multiple
lentils so a superimposed stress state of multiple lentils will lead to higher value than
the one estimated here.
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(a) Single lentil simulation (b) Multi lentil simulation

Fig. 21.7 Evolution of single-variant and multi-variant lentils during c → t transformation

Fig. 21.8 Evolution of mean inplane pressure σ p̄ inside t-phase lentil versus fraction of t-phase

In order to evaluate the mean in-plane pressure on a multi lentil setup, a similar
setup like a single lentil setup is choose. This setup represents a periodically placed
RVE. The placement of the initial seeds are arranged such that they represent a
proper microstructure. The seed at the center is replaced with a noise where an equal
possibility is given to both variants to nucleate and grow. Because of the stress state
of the neighboring t-phase lentils a selective nucleation of red variant takes place
which is more favorable. The peak average pressure experienced by these t-phase
lentils are tracked and plotted in Fig. 21.8. In this multi lentil setup the resulting mean
in-plane pressure inside the lentils is 0.35 GPa which is larger than that of the single
lentil simulation case. This gives a clear evidence of residual stress from prior c → t
transformation.

As consequence of result from single and multi lentil simulations we choose
≈0.3 GPa as the initial pressure inside the lentil which is also consistent with the
FEM based investigation on tetragonal inclusion in a cubic matrix by [26].
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By applying a hydrostatic residual stress to the system an energy barrier is intro-
duced thus allowing t-phase stability below Ms . This is visible in Fig. 21.9a on the
solid blue line showing a local maximum near to the t-phase . The dotted green line
shows the pure stress free chemical contribution of Gibbs enthalpy where the m-phase
is stable and there is no energy barrier for t → m transformation. By superimposing
an externally applied compressive stress one could skew the energy landscape, thus
favouring a single variant so that stress induced transformation is possible below Ms

temperature. A similar simulation setup for t → m transformation as described in
the previous section is used. Additionally, for introducing a residual stress an equibi-
axial type loading of σ p̄ =−0.3 GPa is applied. The temperature is T = 1250 K < Ms .
Figure 21.9b shows the microstructure formed by stress induced transformation at
1250 K. It is clear that the residual stress from the c → t transformation contributed
to the stability of t-phase . As the operating temperature decreases the residual stress
required to introduce a barrier for transformation increases (see Fig. 21.10). By this it
becomes clear that residual stress is not the only contribution involved in the t-phase
stability.

(a) (b)

Fig. 21.9 Possibility of t-phase stability and stress induced transformation below Ms temperature
at 1250 K, influence of residual stress and asymmetry in energy barrier by superimposing externally
applied compression. On left, effect of residual stress and applied uniaxial compression on Gibbs
enthalpy landscape below Ms at 1250 K. On right, surface plot of order parameter φ inside PTD. a
Enthalpy landscape with various energy contributions, b surface plot of φ
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(a) (b)

Fig. 21.10 Impact of residual stress on energy barrier at various temperatures. The intermediate
local maxima showing presence of a energy barrier are represented with unique marker. A trend of
increasing energy barrier with increasing residual stress is visible. a T = 1250 K, b T = 100 K

21.3 Mesomechanical Model

The understanding of how the microstructure influences the mechanical response is an
essential pre-requisite for materials tailored to match specific requirements. The aim
of the present work is to develop a transformation criterion for lenticular inclusions
embedded into an elastic matrix based on the work of Hensl et al. [6] that accounts for
the experimentally observed tension-compression asymmetry. This criterion is then
used in order to investigate the influence of the microstructural features, such as size
and shape of the inclusions, on the mechanical response. A homogenization approach,
schematically depicted in Fig. 21.11, provides first insights into the response of a
grain.

21.3.1 Transformation Criterion for a Single Precipitate
Embedded in an Infinite Matrix

In this section we extend the transformation criterion developed in [6] in order to
account for the pressure sensitivity of the material. This is done in a plane-strain
setting based on a number of assumptions.
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Fig. 21.11 Illustration of homogenization techniques used to model the effective material behavior
of a polycrystal, influenced by the microstructure of each grain

21.3.1.1 Working Hypotheses

1. The elastic tensors of the cubic matrix and tetragonal precipitate (inclusion) are
assumed to be isotropic and identical.

2. The inclusion is modeled as having a rectangular cross-section with width B,
height H and aspect ratio α = H/B in its untransformed state.

3. The pseudo-twin structure after t → m transformation is modeled as a stack
of equal-thickness lamellae, each of which carries a strain of ˜̃ε11 = ˜̃ε22 = 2%
resulting in a relative volume change of ˜̃εvol = 4% and shear transformation
strain ˜̃ε12 = ±8% (specified in the crystallographic coordinate system1). Note
that, while all lamellae are assumed to have the same thickness, the actual value
of this thickness as well as the number of lamellae 2k are part of the solution and

the corresponding effective shear strain of the inclusion is denoted by ε̃(k) :=
〈 ˜̃ε〉

I
,

where 〈·〉I is the averaging operator over the domain of the inclusion. Specifically,

ε̃
(k)
11 = ˜̃ε11, ε̃

(k)
22 = ˜̃ε22 resulting in ε̃

(k)
vol = ˜̃εvol =: ε̃vol and ε̃

(k)
12 =

〈 ˜̃ε12

〉
I
.

4. As the specific lamellae arrangement is not part of the solution, we estimate the
elastic energy contribution resulting from the “zig-zag” at the inclusion boundary
by assuming strictly alternating configuration (see Fig. 21.12).

5. We assume that phase transformation occurs when the Gibbs-enthalpy is equal in
the transformed (Gm) and untransformed

(
G t

)
states, i.e.,

�G = Gm − G t = �Eel + �Ech + �Esur
!= 0, (21.5)

1If nothing else is specified, all tensor components in this work are referred to a coordinate system
with orthonormal basis (O, {e1, e2}), where e1 is aligned along the tetragonal c-axis.
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Fig. 21.12 Schematic illustration of the superposition scheme used to estimate the elastic energy
of a “twinned” inclusion

where �Eel is the difference in the elastic strain energy, �Ech is the difference
in the chemical part of the bulk enthalpy and �Esur is the difference in surface
energy.

21.3.1.2 Energetic Contributions

The difference in surface energies is readily obtained as

�Esur = 2(B + H)�βI/M + (2k − 1)B βI/I, (21.6)

where the first term is the contribution of the interface between inclusion and matrix
and the second term corresponds to the newly formed interfaces between differ-
ent monoclinic variants. Here βI/M is the difference in surface energies between a
tetragonal-cubic and a monoclinic-cubic interface and βI/I is the surface energy for an
interface between two different monoclinic variants. The difference in the chemical
bulk enthalpy is given by

�Ech = −B H�H t→m T0 − T

T0
, (21.7)

where �H t→m is the specific transformation heat and T0 is the equilibrium temper-
ature between the tetragonal and monoclinic phases.

In general, the elastic strain energy is given by

Eel = 1

2

∫



σ : εel dA. (21.8)

In the untransformed case only the homogeneous far-field stress σ∞ and the cor-
responding elastic strain ε∞

el = C
−1 : σ∞ with elastic stiffness tensor C are present,

i.e.,
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E t
el = 1

2

∫



σ∞ : ε∞
el dA = 1

2
σ∞ : ε∞

el

∫



dA. (21.9)

This energy is unbounded if the domain 
 is infinite. After t → m transformation
and self-accommodation, additional elastic strains due to transformation εt→m

el and
the formation of the lamellar structure εtw

el are introduced, i.e.,

εel = ε∞
el + εt→m

el + εtw
el . (21.10)

The corresponding stress is

σ = σ∞ + σ t→m + σ tw (21.11)

and the energy difference between the transformed and untransformed states is imme-
diately found to be

�Eel = Em
el − E t

el = 1

2

∫



[(
σ∞ + σ t→m + σ tw

) : (
ε∞

el + εt→m
el + εtw

el

)

−σ∞ : ε∞
el

]
dA. (21.12)

Note that this difference is bounded, since the contribution of the homogeneous
far-field stress cancels out and we find

�Eel = σ∞ :
∫



εt→m
el dA

︸ ︷︷ ︸
�E t→m,1

el

+ σ∞ :
∫



εtw
el dA

︸ ︷︷ ︸
�E tw,1

el

+ 1

2

∫



σ t→m : εt→m
el dA

︸ ︷︷ ︸
�E t→m,2

el

+

+
∫



σ t→m : εtw
el dA

︸ ︷︷ ︸
�E t→tw

el

+ 1

2

∫



σ tw : εtw
el dA

︸ ︷︷ ︸
�E tw,2

el

. (21.13)

The evalution of the individual integrals is closely related to the procedure pre-
sented in [6], which in turn is based on the closed form solution for rectangular
inclusions with eigenstrains [28].

It can be shown [6] that as a particular result of assuming equal-size monoclinic
lamellae, �E tw,1

el = �E t→tw
el = 0, while �E tw,2

el can be obtained in the form

�E tw,2
el = −B2 E ˜̃ε2

12

4πk2(1 − ν2)

k∑
ζ=1

k∑
η=1

11∑
i=1

gi (ζ, η, α, k)

︸ ︷︷ ︸
F(α,k)

, (21.14)
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where the gi (ζ, η) are functions of the geometry of the inclusion and number of
lamellae, which are listed in the appendix of [6]. In order to evaluate �E t→m,1

el we
make use of the fact that in the domain of the inclusion 
I the elastic strain due to
phase transformation can be computed as

εt→m
el = εt→m − ε̃(k) (21.15)

and can write

�Et→m,1
el = σ∞ :

∫



εt→m dA − σ∞ : ε̃(k)

∫

I

dA (21.16)

= σ∞ :
∫



εt→m dA − σ∞ : ε̃(k) B H. (21.17)

Introducing the usual split into volumetric and deviatoric parts

σ∞ = s∞ − p∞ I, εt→m = et→m + 1

3
εt→m

vol I, ε̃(k) = ẽ(k) + 1

3
ε̃

(k)
vol I, (21.18)

where I is the unit-tensor, and making use of working Assumption 3 we find

�Et→m,1
el = s∞ :

∫



et→m dA − p∞ :
∫



εt→m
vol dA +

(
p∞ ε̃

(k)
vol − s∞ : ẽ(k)

)
B H

(21.19)

= s∞ :
∫



et→m dA − p∞ :
∫



εt→m
vol dA +

(
p∞ ε̃

(k)
vol − 2σ∞

12 ε̃
(k)
12

)
B H.

(21.20)

The evaluation of the above integrals is more involved than may appear at the first
glance, since the integrands are singular at every kink at the boundary of the inclusion,
therefore integration is carried out using the same procedure that was applied in [6]
by a transformation into equivalent line integrals

�Et→m,1
el = σ∞

12 lim
r→∞

2π∫
0

[u1r sin(ϕ) + u2r cos(ϕ)] dϕ

− p∞ lim
r→∞

2π∫
0

[u1r cos(ϕ) + u2r sin(ϕ)] dϕ +
(

p∞ ε̃
(k)
vol − 2σ∞

12 ε̃
(k)
12

)
B H,

(21.21)
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resulting in the relatively simple expression

�Et→m,1
el = B H

2 (1 − ν)

[
(1 − 2ν) p∞ε̃

(k)
vol − σ∞

12 ε̃
(k)
12

]
, (21.22)

where ν is Poisson’s ratio. For further details on the integration procedure, cf. [6].
The remaining energy difference �Et→m,2

el is calculated using a very similar proce-
dure, resulting in

�Et→m,2
el = μ

1 − ν
B H

[
P1

(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2

1 − 2ν

(
ε̃

(k)
vol

)2
]

, (21.23)

with

P1 = 1

π

[
1

α
ln

(
1 + α2

) + α ln

(
1 + 1

α2

)]
, (21.24a)

P2 = 1

π

[
arctan

(
1

α

)
− arctan(α)

]
. (21.24b)

Using a basis-free representation of the stress tensor we finally find

�Eel = B H

2 (1 − ν)

[
(1 − 2ν) p∞ε̃

(k)
vol − (

e1 · σ∞ · e2
)

ε̃
(k)
12

]
+

+ μ

1 − ν
B H

[
P1

(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2

1 − 2ν

(
ε̃

(k)
vol

)2
]

. (21.25)

21.3.1.3 The Transformation Criterion

Substituting the energy differences computed in the previous section into the trans-
formation criterion (21.5) we find

1 − ν

αB2μ
�G

(
σ∞, T, k

) = 1

2μ

[
(1 − 2ν) p∞ε̃vol − (

e1 · σ∞ · e2
)

ε̃
(k)
12

]
+

+ P1

(
ε̃

(k)
12

)2 + 2

9

1 − ν + P2

1 − 2ν
ε̃2

vol − 1

2πk2α
˜̃ε2

12 F(α, k)

− �H t→m T0 − T

T0

+ 1 − ν

μα

[
2

B
(α + 1)�βI/M + 1

B
(2k − 1) βI/I

]
!= 0,

(21.26)

Note that (21.26) is not an equation that can be solved directly for the stress (at
fixed temperature) or temperature (at fixed stress level) required to initiate the phase
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transformation, since nearly all terms depend on the number of lamellae 2k. This
ambiguity is resolved by choosing the number of lamellae such that it minimizes the
Gibbs free enthalpy in the transformed state, i.e.,

k̂ = arg mink∈N+ �G
(
σ∞, T, k

)
. (21.27)

Having thus determined a value for k, (21.26) can be rewritten e.g. as a criterion
for the applied far-field stress at fixed temperature,

∣∣e1 · σ∞ · e2

∣∣ − (1 − 2ν)
ε̃vol∣∣∣∣∣ε̃
(

k̂
)

12

∣∣∣∣∣
p∞ != C1, (21.28)

with

C1 := 1∣∣∣∣∣ε̃
(

k̂
)

12

∣∣∣∣∣

(
2μP1

(
ε̃

(k)
12

)2 + 4μ

9

1 − ν + P2

1 − 2ν
ε̃2

vol − μ

πk2α
ε̃2

12 F(α, k)

−2μ�H t→m T0 − T

T0
+ 2(1 − ν)

αB

[
2 (α + 1) �βI/M + (2k − 1) βI/I

])
.

(21.29)

For future reference we note that in the present scenario the far-field stress is at
the same time the average stress over the whole domain 〈σ 〉 and the average matrix
stress 〈σ 〉
M . Since in a general setting the inclusion will transform depending on the
stress in the surrounding matrix, we can reinterpret the criterion (21.28) and write

|e1 · 〈σ 〉
M · e2| − (1 − 2ν)
ε̃vol∣∣∣∣∣ε̃
(

k̂
)

12

∣∣∣∣∣
〈p〉
M

!= C1. (21.30)

21.3.2 Uniaxial Loading

In this section we apply the transformation criterion to uniaxial loading conditions
in order to investigate the tension-compression asymmetry predicted by the model
as well as geometric effects.

www.dbooks.org

https://www.dbooks.org/


21 Multi-scale Modeling of Partially Stabilized Zirconia with Applications … 701

21.3.2.1 Orientation Dependence of the Transformation Stress

In the case of uniaxial loading, i.e., σ∞ = σ̄∞
11 ē1 ⊗ ē1, we find

e1 · σ∞ · e2 = σ̄∞
11 (e1 · ē1)(ē1 · e2) = 1

2
σ̄11 sin(2ϕ) and p∞ = −1

3
σ̄11,

(21.31)

where ϕ is the angle enclosed between the crystallographic a-axis and the direction
of loading. The transformation criterion (21.28) reduces to

∣∣σ̄∞
11

∣∣ = C1

1
2 sin(2ϕ) ± 1

3
(1 − 2ν)

ε̃vol∣∣∣∣∣ε̃
(

k̂
)

12

∣∣∣∣∣︸ ︷︷ ︸
=:C2

=: σtr, (21.32)

where the positive sign holds for tensile and the negative for compressive loading.
Es expected, the stress required to initiate phase transformation strongly depends
on the orientation of the inclusion relative to the applied load and is minimal if the
tetragonal c-axis is aligned along the direction of maximum shear (see Fig. 21.13).
Due to the increase in volume during the phase transition an asymmetry between
tensile and compressive loading is observed. Further, it is clear from Fig. 21.13 that,
while under sufficiently large tensile loading all inclusions will transform, this is
not true in compression. In that case no transformation will occur if the misalign-
ment between the tetragonal a-axis and the loading direction is less than ϕlim ≈ 8◦.
As a consequence, the maximal achievable transformation strain in a texture-free
polycrystal is larger under tensile loading.

21.3.2.2 Sensitivity with Respect to the Inclusion Size, Aspect Ratio and
Interfacial Energy

Is is clear that the critical stress to initiate phase transformation depends not only
on the orientation of the inclusion relative to the applied load as discussed above,
but among other parameters also on its geometry and assumptions concerning the
interface energy between monoclinic lamellae. The effect of these parameters is
investigated here under unaxial compression for a fixed orientation ϕ = 45◦ by vary-
ing the values given in Table 21.4 in the range of ±10%. The results are shown in
Figs. 21.14, 21.15 and 21.16 and concur to the expectations: The transformation
stress decreases with increasing size B and aspect ratio α of the inclusions and
increases with increasing surface energy βI/I.

The sensitivity to the inclusion size and shape is particularly pronounced; for
α = 5 a change in B from 29 to 24 nm results in a change in transformation stress
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of 250% in relative terms (see Fig. 21.14). A similar effect is achieved by changing
the aspect ratio from 6 to 4 (see Fig. 21.15). Further, it should be noted that the
transformation stress abruptly changes at certain values of B. This effect is due to

0 10 20 30 40
Orientation relative to loading direction θ

1

2

3

4

5

6

7

T
ra

ns
fo

rm
at

io
n

st
re

ss
|σ̄

1
1
|(

in
G

P
a) uniaxial compression

uniaxial tension

Fig. 21.13 Absolute value of the uniaxial stress necessary to induce phase transformation in depen-
dence on the grain orientation ϕ with respect to the direction of external loading

Table 21.4 Baseline for the material parameters

B α E v βI/I �βI/M �Ht→m T0 T

36 nm 5.0 181 GPa 0.3 0.39 J/m2 [25] 0.79 J/m2 [25] 282 J/m3 [29] 1150 K [30, 31] 22 K
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Fig. 21.14 Influence of the inclusion size B on the transformation stress under uniaxial compression
for inclusions oriented under θ = 45◦ with respect to the direction of external loading
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Fig. 21.15 Influence of the inclusion aspect ratio α on the transformation stress under uniaxial
tension and compression for inclusions oriented under θ = 45◦ with respect to the direction of
external loading
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Fig. 21.16 Influence of the surface energy βI/I between different monoclinic variants on the trans-
formation stress under uniaxial tension and compression for inclusions oriented under θ = 45◦ with
respect to the direction of external loading

the discrete nature of the optimization problem (21.27) and a direct consequence
of our assumptions concerning the post-transformation microstructure; every jump
of the transformation stress corresponds to a change in number of lamellae k and
therefore to a change in microstructure.
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21.4 Homogenization Within an Infinite Grain

The transformation criterion developed in the previous section can be used to describe
the effective mechanical response of a PSZ grain with a volume fraction ft of tetrag-
onal inclusions, i.e. to relate the average stress 〈σ 〉 = σ∞ and the average strain 〈ε〉
via an effective elastic stiffness tensor 〈C〉 (〈σ 〉BM

, T
)

in the form

˙〈σ 〉 = 〈C〉 (〈σ 〉BM
, T

) : ˙〈ε〉, (21.33)

where 〈σ 〉BM
is the average matrix stress, which accounts for the interaction between

the inclusions in accordance with Mori-Tanaka’s method. In the case of mono-
dispersed inclusions of size B̂ the average matrix stress is given directly by [32]

〈σ 〉BM
= σ∞ − fm

(〈σ 〉BM
, T

)
C

M : (S − I) : ε̃(k)
(
〈σ 〉BM

, T, B̂
)

, (21.34)

with monoclinic volume fraction fm
(〈σ 〉BM

, T
)
, elastic stiffness of the matrix C

M =
C and Eshelby tensor S. Together with the transformation criterion (21.30) this
equation can be used to determine the transformation strain in the inclusions, the
average matrix stress and the monoclinic phase content. As the volume expansion
during t → m transformation increases the tensile stresses in the matrix, which in
turn facilitate the transformation, fm

(〈σ 〉BM
, T

) = ft immediately after the onset
of the transformation and the process is autocatalytic. The corresponding effective
elastic stiffness tensor is [33]

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C
M + fm

(〈σ 〉BM
, T

) [
C

I
(
ε̃(k)

(
〈σ 〉BM

, T, B̂
))

− C
M

]
:

: {T} : [(
1 − fm

(〈σ 〉BM
, T

) )
I + fm

(〈σ 〉BM
, T

) {T}]−1
,

(21.35)

where I is the 4th-order identity, C
I
(
ε̃(k)

(
〈σ 〉BM

, T, B̂
))

the elastic (tangent) stiff-

ness of the inclusions,

T

(
ε̃(k)

(〈σ 〉BM
, T, B

))
:=

[
I + S : (

C
M

)−1

:
[
C

I
(
ε̃(k)

(〈σ 〉BM
, T, B

))
− C

M
] ]−1

(21.36)

and {·} denotes the orientation average. It is well known [18] that there exists an
orientation relationship between the tetragonal inclusions and the cubic parent lattice
such that the principal directions of the unit cells coincide, i.e., in a two dimensional
scenario two families of inclusions (denoted by subscripts → and ↑) with mutually
orthogonal c-axes exist in each grain. As a consequence, we find
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{T} = 1

2

(
T

→ + T
↑)

. (21.37)

Choosing an orthonormal basis such that e1 is aligned along the c-axis of inclusion
family →, we find the following non-vanishing components of the Eshelby tensors
S

→ and S
↑

S→
1111 = 1

2
[P1 − (2P2 + P3)] , S→

1122 = −1

2
[P1 + (2P2 + P3)] , (21.38a)

S→
2211 = −1

2
[P1 − (2P2 + P3)] , S→

2222 = 1

2
[P1 + (2P2 + P3)] , (21.38b)

S→
1212 = 1

2
P1, S↑

1111 = 1

2
[P1 + (2P2 + P3)] , (21.38c)

S↑
1122 = −1

2
[P1 − (2P2 + P3)] , S↑

2211 = −1

2
[P1 + (2P2 + P3)] , (21.38d)

S↑
2222 = 1

2
[P1 − (2P2 + P3)] , S↑

1212 = 1

2
P1, (21.38e)

with P1, P2 defined in (21.24) and

P3 = 1

π

[
1

α
ln

(
1 + α2

) − α ln

(
1 + 1

α2

)]
. (21.39)

Prior to the t → m transformation C
I = C with bulk modulus K and shear mod-

ulus μ. To complete the formulation, assumptions concerning post-transformation
behavior of C

I are required, specifically

1. the elastic properties of the monoclinic and tetragonal phase are identical,

2. as long as
∣∣∣ε̃(k)

12

∣∣∣ < ˜̃ε12, the inclusions have no resistance to shear parallel to the

c-axis, i.e. in the e1 ⊗ e2-direction.

As a consequence we can write the (tangent) elastic stiffness of the inclusion in Voigt
notation referring to the usual crystallographic coordinate system as

C
I =

⎡
⎢⎣

C I
1111 C I

1122 0
C I

1122 C I
1111 0

0 0 C I
1212

(
ε̃(k)

( 〈σ 〉BM
, T, B

))
⎤
⎥⎦

ei ⊗e j ⊗ek⊗el

(21.40)

with

C I
1111 = K + 4

3
μ, C I

1122 = K − 2

3
μ,

and
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C I
1212

(
ε̃(k)

( 〈σ 〉BM
, T, B

))
=

{
μ

∣∣∣ε̃(k)
12

( 〈σ 〉BM
, T, B

)∣∣∣ = ˜̃ε12,

0 else.
(21.41)

Under these assumptions we obtain from (21.35)

1. before the onset of transformation ( fm
(〈σ 〉BM

, T
) = 0)

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C, (21.42)

2. after the onset of transformation ( fm
(〈σ 〉BM

, T
) = ft)

〈C〉
(
〈σ 〉BM

, T, B̂
)

=⎡
⎣K + [

4
3 − Z1 (ϕ, ft)

]
μ K − [

2
3 − Z1 (ϕ, ft)

]
μ 0

K − [
2
3 − Z1 (ϕ, ft)

]
μ K + [

4
3 − Z1 (ϕ, ft)

]
μ 0

0 0 [1 − Z2 (ϕ, ft)] μ

⎤
⎦ ,

(21.43)

where

Z1 (ϕ, ft) := Z ( ft) sin2(2ϕ), Z ( ft) cos2(2ϕ), (21.44)

Z2 (ϕ, ft) := Z ( ft) = ft

1 − [1 − ft] P1
, cos ϕ = e1 · ē1 (21.45)

3. after the transformation shear reaches its maximum value ˜̃ε12,

〈C〉
(
〈σ 〉BM

, T, B̂
)

= C. (21.46)

21.5 Continuum Mechanics Approach

A pragmatic engineering approach to phase transition is a phenomenological model-
ing based on non-linear constitutive laws in the framework of continuum mechanics.
The fundamentals are outlined e.g. in [34]. In particular for partially stabilized zir-
conia (PSZ), such a model was developed by Sun et al. [29]. Based on the concept
of representative volume element (RVE) and the Hill-Rice internal variable theory
[35], this model provides a set of constitutive equations for the inelastic deforma-
tions caused by tetragonal-monoclinic t → m phase transformation as function of
monoclinic volume fraction. The model is restricted to a material point only. The
authors of [29] did not realize an implementation of their model into a numerical
tool to solve a boundary value problem for applications to real structures of PSZ.
Therefore, in the present work, the Sun model was implemented into the finite ele-
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ment code ABAQUS [36] to allow simulations of the TRIP-matrix composite as will
be reported in Chap. 22.

Due to missing quantitative data for the model parameters Sun et al. [29] intro-
duced instead of this an additional hardening term in the transformation condition,
which is limited to the special case of proportional mechanical loading under isother-
mal conditions. Another weakness of this model is the assumption and averaging
of homogeneously distributed microscopic quantities over the RVE. Therefore, in
Mehlhorn et al. [37] the basic concept of the Sun model has been extended to capture
not only the mechanical but as well the thermally induced phase transformation and
thermal expansion to simulate thermomechanical processes. Moreover, the influence
of the size of transformable tetragonal particles in the cubic matrix has been incor-
porated. The basic assumptions and the specific formulation of the model within a
thermodynamic framework will be presented in the following.

21.5.1 Constitutive Model for Phase Transformation in PSZ

21.5.1.1 Homogenization of PSZ Material

To find the effective material behavior, a RVE is considered with two spatially discrete
components, see Fig. 21.17. The first component, called matrix, contains two crystal-
lographic phases: the untransformable cubic zirconia and transformable, tetragonal
particles embedded in the cubic phase. The second component, denoted as inclusions,
contains monoclinic zirconia particles, which are generated by phase transformation
from their metastable tetragonal parents when the RVE is sufficiently high loaded.

The micro-scale field quantities inside the RVE are denoted with lower case letters,
such as the stress σ and the strain ε. By calculating the volume average of these
microscopic quantities (denoted by the operator 〈 · 〉), the respective macroscopic
quantities are found, which are referred to with upper case letters � and E. The

Fig. 21.17 Representative
volume element of PSZ:
matrix of cubic and
tetragonal phase, inclusions
of monoclinic particles

pl, , ,Tσ ε ε

, , Tσ ε
ΣΣ,Ε,Τ

http://dx.doi.org/10.1007/978-3-030-42603-3_22
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temperature T is assumed to be homogeneously distributed in the RVE. We denote
the RVE domain withBR , the matrix and inclusion subdomains withBM andBI , and
their volumes with VR , VM and VI , respectively. Thus, the relative volume fraction
of transformed material is the basic internal variable calculated by

fm = VI /VR . (21.47)

The macroscopic stress tensor is obtained by volume averaging as

� = 〈σ 〉BR
= 1

VR

∫
BR

σ dV = fm 〈σ 〉BI
+ (1 − fm) 〈σ 〉BM

. (21.48)

The strain tensors can be decomposed into an elastic and plastic part E = Eel +
Epl and ε = εel + εpl, respectively. Using Hooke’s law, the stress-strain relation for
the RVE is determined by the elastic stiffness tensor C

Eel = C
−1 :� = C

−1 : 〈σ 〉BR
= 〈

C
−1 :σ 〉

BR
= 〈ε〉BR

. (21.49)

The transformation strains exist only in the monoclinic inclusions and consist
of a volumetric (dilatational) and a shear (deviatoric) component. This results in a
macroscopic strain tensor

Epl = Epd + Eps = fm
〈
εpd

〉
BI

+ fm
〈
εps

〉
BI

. (21.50)

The microscopic volume dilatation εpd is assumed to be stress independent and
constant (I denotes the rank-two unit tensor).

εpd = 〈
εpd〉

BI
= 1

3
tr(εpl)I, (21.51)

The shear component of the transformation strain εps, when averaged over a mon-
oclinic volume element dBI , is proportionally related to the deviatoric stress sM

acting in the matrix material as follows

εps = 〈
εps

〉
dBI

= A
sM

σ M
eq

(21.52)

with the equivalent v.-Mises matrix stress σ M
eq . The constant material parameter A

describes the strength of the constraint imposed on the transformed monoclinic inclu-
sions by the surrounding elastic matrix. The matrix stress σ M is related to the macro-
scopic stress � acting on the RVE, via the elastic stiffness C and the amount fm of
transformed phase, and can be calculated by an Eshelby approach (see e.g. [38]) and
the Mori-Tanaka homogenization scheme.
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In addition, we consider a thermal expansion strain Eth of the RVE, whereby
�T = T − T0 denotes the difference between the temperature T at a specific process
time and the initial or reference temperature T0. The thermal expansion tensor α is
taken as constant.

Eth = α�T . (21.53)

21.5.1.2 Thermodynamic State Potentials

According to the thermodynamical framework of material modeling (see e.g. [39]),
the constitutive equations of an elastic-plastic material can be derived from energy
potential functions. The thermodynamical state of the RVE can be defined by the
specific Helmholtz free energy ϕR , which is a function of the strain E, the temperature
T and the actual state of inelastic deformation represented by the monoclinic volume
fraction fm and the transformation strain 〈εps〉BI

.

ϕR = ϕR

(
E, T, fm,

〈
εps

〉
BI

)
. (21.54)

The Helmholtz free energy ϕR of PSZ consists of three components: the stored
elastic energy ϕel

R , the change in chemical free energy �ϕch
R and the surface free

energy �ϕsur
R

ϕR = ϕel
R + �ϕch

R + �ϕsur
R . (21.55)

The stored elastic energy ϕel
R is composed of two contributions: (i) the energy

stored due to the elastic deformation, which is the total strain minus transformation
and thermal strain terms Eel = E − Epl − Eth, and (ii) the elastic energy stored due
to the internal stresses which are induced by the transformational eigenstrains ε pl .
Substituting the according expressions from (21.50) and (21.53), we get

ϕel
R

(
E, T, fm,

〈
εpl

〉
BI

)
= 1

2

(
E − fm

〈
εpl

〉
BI

− α�T

)
:C :

(
E − fm

〈
εpl

〉
BI

− α�T

)

− fm
2VR

∫
BR

σ :ε pl dV . (21.56)

A detailed derivation of the last term in the above equation is given in [40].
Given the difference of volume specific chemical free energy �ϕch(t→m) between

tetragonal and monoclinic phases of zirconia, the chemical free energy of the RVE
�ϕch

R is changed during phase transformation by

�ϕch
R (T, fm) = fm �ϕch (T ) = fm q

(
T

T ∗ − 1

)
. (21.57)
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In the present extension of the Sun model a temperature dependence of the phase
transformation is incorporated by specifying �ϕch(T ) as a function of the tempera-
ture, where q is the volume specific heat of transformation of zirconia and T ∗ is the
tetragonal-monoclinic equilibrium temperature of zirconia.

Due to phase transformation the interface between particles and matrix exhibits a
surface free energy �ϕsur

R . This energy term per volume of the RVE is calculated from
the change of specific surface free energy �ϕsur(t→m) of zirconia and the monoclinic
volume fraction fm as follows

�ϕsur
R ( fm) = 3 fm

r( fm)
�ϕsur(t→m). (21.58)

In the original work [29] all transformable inclusions are assumed as spheres
of equal size of radius r( fm) = const. However, the phase stability of a particle
depends on its size as shown by Garvie [25], i.e. that smaller crystallites require a
higher thermodynamical driving force to transform than larger particles. Therefore,
Mehlhorn et al. [37] introduced a more realistic approach by assuming a continuous
size distribution of transformable particles in the model. As a first approximation,
this distribution function h(r) may be chosen as constant in the

h(r) =
{ 1

rmax−rmin
for rmin ≤ r ≤ rmax

0 for r < rmin or r > rmax.
(21.59)

During loading, the phase transformation starts at largest particles with radius
rmax. A further increase in loading will trigger smaller particles to transform until all
particles down to the radius rmin have become monoclinic. In the intermediate stage,
the volume of all transformed particles, whose size is in the interval [r, rmax], is

V (r) = 4

3
π

rmax∫
r

h(r̄)r̄3 dr̄ , fm(r) = V (r)

VR
. (21.60)

constituting a corresponding volume fraction fm(r) in the RVE. The maximum vol-
ume fraction is attained when all particles are monoclinic f max

m = fm(rmin). Inserting
(21.59) in (21.60) leads to

fm(r) = 1 − (r/rmax)
4

1 − (rmin/rmax)4
f max
m . (21.61)

The inverse f −1
m (r) = r( fm) can be calculated analytically as follows

r ( fm) = rmax

[
1 − (

1 − (rmin/rmax)
4
) fm

f max
m

] 1
4

, (21.62)

which marks the particle size dependent change in surface energy in (21.58).
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By introducing a second thermodynamic dissipation function, an energetic trans-
formation criterion was derived [29], which represents a combination of an isotropic
expanding and kinematic shifting limit surface in the macroscopic stress space

F
(
�, fm,

〈
εpl

〉
BI

)
=

(
� − fm C :(� − I) : 〈εpl

〉
BI

)
: 〈εpl

〉
dBI

− C( fm) = 0.

(21.63)

Hereby, the average matrix eigenstress − fm C :(� − I) : 〈εpl
〉
BI

acts as backstress.
(� is the so-called Eshelby tensor and I denotes the rank-four unity tensor.) The term
C( fm) represents the energetic barrier, which must be overcome for phase transfor-
mation. It contains energy constants as well as a phenomenological hardening func-
tion depending linearly on fm. Finally, the macroscopic constitutive law is obtained
as relationship between the rates of strain and stress

Ė = C
−1 :�̇ + ḟm

(
εpd I + A

sM

σ M
eq

)
, (21.64)

wherein the first term represents the elastic behavior and the second the inelastic
deformation due to phase transformation. The general form resembles to a rate-
independent associated flow. The rate of phase change ḟm is obtained from the con-
sistency condition Ḟ = 0.

This constitutive relationship is conformal with the second law of thermody-
namics, demanding that the dissipation rate D is always positive. Obviously, the
dissipation rate is proportional to the change in volume fraction of the monoclinic
phase

D =
{

D0 ḟm ḟm > 0 (tetragonal-to-monoclinic)

−D0 ḟm ḟm < 0 (monoclinic-to-tetragonal)
(21.65)

The proportionality factor D0 is a phenomenological model parameter. The
model accounts for both forward and reverse phase transformation by distinguish-
ing between positive and negative rates of change. Also, the expression of C differs
depending on whether forward or reverse transformation occurs.

21.5.2 Numerical Results

21.5.2.1 Particle Size Dependent Surface Energy Change

In order to understand, how the radius r of the currently active transforming particles
varies with the monoclinic volume fraction fm during the process of phase transfor-
mation, (21.62) is studied for three different size distribution functions hi (rmin,i, rmax)

with i = 1, 2, 3. For the upper limit of the particle size range a typical PSZ particle
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Fig. 21.18 Graphical
representation of the
function r( fm) in (21.62) for
different particle size ratios
and f max

m = 0.25 [37]

Fig. 21.19 Graphical
representation of surface
energy �ϕsur

R in (21.58) for
different particle size ratios
[37]

radius of rmax = 1 · 10−7 m is chosen. The values of rmin are taken as following frac-
tions: rmin,1/rmax = 0.95, rmin,2/rmax = 0.5, and rmin,3/rmax = 0.25. Figure 21.18
gives a graphical representation of (21.62), using these values. It is obvious that
a narrow size distribution (as rmin/rmax = 0.95) is very close to a constant particle
size of the original Sun model, resulting in a slight dependence of the radius r on the
transformed volume fraction fm. The wider the distribution function h( fm) is (i.e.
with smaller particle size ratios rmin/rmax), the stronger is the nonlinear dependence
of r on fm.

The influence of r( f ) on the volume specific surface energy change �ϕsur
R

(21.58) is illustrated in Fig. 21.19. For a narrow particle size distribution with ratio
rmin/rmax = 0.95, the surface energy change �ϕsur

R grows almost linear with fm sim-
ilar as in the original Sun model. For smaller ratios rmin/rmax, the extended material
model shows a strong nonlinear increase of �ϕsur

R , especially if fm → f max
m , as it

can be seen for rmin/rmax = 0.25 in Fig. 21.19. This means, �ϕsur
R acts as a transfor-

mation barrier, preventing very small particles from transforming even under high
thermal or mechanical loading.
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Fig. 21.20 Calculated strain-temperature curves and corresponding phase development for differ-
ent particle size ratios. The sequence of the cooling-heating cycle is visualized by the numbers
1, …, 6 [37]
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21.5.2.2 Temperature-Induced Phase Transformation

In order to demonstrate the ability of the extended material model to reproduce
the hysteresis strain-temperature behavior of PSZ ceramics, a cooling-heating cycle
1373 K – 293 K – 1373 K is numerically simulated. The required model parame-
ters associated with the changes in chemical energy (q and T ∗, see (21.57)), are
taken from literature: heat of transformation q = 2.82 J/m3 and the phase equilib-
rium temperature T ∗ = 1447 K. The difference in specific surface energies between
the tetragonal and monoclinic phase was set to �ϕsur(t→m) = 0.36 J/m2, see [37].
Since no values for the dissipation parameter D0 and the amount of transformable
tetragonal material f max

m were available, they were estimated in order to obtain phys-
ically meaningful results. Moreover, a variation of these parameters is performed to
study their influence on the material model behavior. D0 was specified to the val-
ues 10, 20, and 30 MPa. f max

m was set to 0.15, 0.25 and 0.35, respectively. For all
remaining model parameters the values published by Sun et al. [29] are used.

Figure 21.20 shows the numerically obtained strain-temperature curves E11 − T
and the corresponding phase evolution fm–T during the cooling-heating cycle for
different sets of model parameters. As it can be seen, the typical strain hysteresis
loops of PSZ ceramics are predicted by the material model, caused by a tetragonal-
to-monoclinic transformation on cooling and a reverse transformation on heating.
In each diagram, the influence of particle size distribution is included by vary-
ing the ratio (rmin,i, rmax). It can be seen in all diagrams, that smaller size ratios
lead to a considerably nonlinear strain-temperature behavior and rounded transition
curves. The influence of D0 on the strain-temperature curves can be observed in
Fig. 21.20a–d. D0 governs the size of the strain hysteresis between cooling and heat-
ing. In contrast, f max

m influences the total transformation strain and hence the length
of the temperature interval in which transformation occurs, see Fig. 21.20e–h.

These results demonstrate the feasibility of the extended material model, which
forms a solid basis for simulations of structures and composites made of PSZ. Unfor-
tunately, it was not possible to identify the required parameters for the type of MgO-
stabilized ZrO2 manufactured in the CRC799.

21.6 Simulations of ZrO2-Particle Reinforced TRIP-Steel
Composite

In order to assist the development of particle reinforced composites manufactured
by a powder metallurgical process route from TRIP-steel and partially stabilized
ZrO2 ceramics particles, accompanying numerical simulations have been carried out.
The mechanical properties of such a composite material are quite complex as they
arise from the properties of its individual components, their volume content, and the
properties of the interface between them. As explained in the previous sections, PSZ
can undergo a stress-triggered phase transformation. This can lead to an additional
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toughening effect compared to non-transformable ceramics as observed in [41]. The
TRIP-steel exhibits a deformation induced phase transformation from the austenitic
parent phase to martensite. By combining the two materials using TRIP steel as
matrix and PSZ as strengthening particles, an elasto-viscoplastic particle-reinforced
composite is created with the capability of phase transformation in each component.

21.6.1 Unit Cell Model of the Composite

A well established method to investigate the mechanical response of composites is
a parameter study using a suitable mechanical cell model of the composite, which is
simulated by means of the finite element method, see for example Mishnaevsky [42].

In this work, this approach has been applied to study the effective stress-strain
behavior of this particulate TRIP steel-ZrO2 composite. Details can be found in
the publications of Mehlhorn, Prüger et al. [43–45]. The influence of the volume
content of ZrO2 particles and the interface properties on the overall response of the
composite is investigated. Three different interface types are considered: (i) perfectly
bonded, (ii) not bonded, and (iii) cohesive law, respectively, The calculations of the
material responses are performed using a finite element analysis of unit cells of the
composites under tensile, compressive and biaxial loading. Here, selected results
will be reported.

Numerical simulations of composites require proper constitutive equations for
both constituents. Here, the Sun model [29] as explained above is employed for
the PSZ ceramics. For modeling the viscoplastic deformation and martensitic phase
transformation of the TRIP steel, the constitutive law developed by Prüger [46]
is applied. It describes the strain-induced transformation from a fully austenitic
microstructure (γ ) to martensite (α′) under thermal and/or mechanical loading. Both
material models were available as Fortran routines implemented via UMAT inter-
face into the finite element software ABAQUS [47]. More information about the
used material parameters for the PSZ and the specific TRIP-steel can be found in
[43–45], and in Chap. 22.

In case of the particular composite, sintered together from steel and ceramic parti-
cles, one can assume a representative unit cell consisting of a large number of approx-
imately equally sized and uniformly distributed ceramic particles in a TRIP steel
matrix. For simplicity, the embedded ceramic particles are assumed to be spheres.
This leads to the unit cell model shown in Fig. 21.21, which is a cube of edge length 2a
with a single spherical ZrO2 particle placed in its center.

The mechanical model exhibits a triple symmetry with respect to geometry and
loading. Therefore the use of one-eighth of the RVE is admissible, and a corre-
sponding FEM discretization is elaborated. Although the unit cell was numerically
simulated under various stress triaxialities, only the results for uniaxial loading are
reported here. Regarding the interface between the components, two limiting cases
are discussed here: the perfectly bonded connection and the non-bonded, frictionless
movable contact. An optimal composite possesses a high energy absorption capacity

http://dx.doi.org/10.1007/978-3-030-42603-3_22
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Fig. 21.21 Sketch of unit cell (one-eighth volume) for the TRIP-ZrO2 composite. Symmetry bound-
ary conditions are set on the coordinate planes x = 0, y = 0 and z = 0. Appropriate displacement
and stress boundary conditions are prescribed on opposite planes ∂ Bx , ∂ By and ∂ Bz for the different
load cases.
The radius r of the particle is adjusted to the volume fraction f of zirconia content by f (r) =
Vsphere
Vcube

= πr3

6a3

and exhibits pronounced phase transformation in the ZrO2 ceramic and the TRIP
steel. The macroscopic true stress and true strain tensors � and E are used in order

to evaluate the mechanical work according to W = ∫ Ē
0 � : dE, where Ē denotes

the considered deformation stage. Because the elastic strains are small, W equals
approximately the energy absorption for sufficiently large total strains. In order to
quantify the relative change in energy absorption capacity, this energy is related to
those values Whom obtained for a unit cell made only of TRIP steel.

During deformation an inhomogeneous distribution of the volume fractions of the
monoclinic zirconia and the martensite develop in the ceramic and the TRIP steel,
respectively. Therefore the averages of fα′ and fm over the corresponding volumes
are used. The simulation is stopped, when the maximum principle stress in the PSZ
reaches its ultimate tensile strength σ t

cr = 1600 MPa.

21.6.2 Results and Discussion

The macroscopic true stress and true strain curves are calculated for different variants.
The following diagrams show the second invariants �eq and Eeq of both variables
(to allow comparison with different stress states). The macroscopic strain invariant
acts as a loading parameter, whereas the stress and the phase transformation in both
components of the composite represent the material response. Table 21.5 summarizes
the relative change in energy absorption capability for uniaxial tension.
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Table 21.5 Energy absorption capacity for the composite with perfectly bonded and non-cohesive
interface in uniaxial loading

f 0.05 0.05 0.10 0.10 0.20 0.20

Interface Bonded Non-cohesive Bonded Non-cohesive Bonded Non-cohesive

W/Whom 1.06 0.92 1.16 0.85 1.37 0.72

(a) (b)

Fig. 21.22 Numerical results for the RVE with perfectly bonded interface in uniaxial loading: a
stress-strain diagram and b phase development curves [43]

In case of the perfectly bonded interface, the stress-strain curves show a distinct
dependence on the volume fraction of ZrO2 ceramic f , as depicted in Fig. 21.22a.
It can be observed that an increasing f leads to higher yield stresses and strain
hardening rates compared to the unreinforced TRIP steel ( f = 0). As consequence,
a pronounced increase in the energy absorption W of the composite is obtained.
Comparing the values given in Table 21.5, the ratio W/W hom increases up to more
than 35% (for same macroscopic equivalent strain). Due to the strong interface, load
is transferred from the matrix to the reinforcement during deformation of the com-
posite. Therefore high stresses occur in the ceramic, which reduces the maximal
attainable strain with increasing zirconia content f . Regarding the phase transfor-
mation behavior, a higher volume fraction of zirconia f enhances the tendency to
phase transformation in zirconia as well as in TRIP steel (Fig. 21.22b). The phase
transformation capacity in the PSZ component is saturated to the maximum of 35%
in a smaller strain interval. The tendency to phase transformation in the TRIP steel
f ′
α increases at higher zirconia content, but is limited due to failure of the ceramic.

In case of a non-cohesive interface, both the initial yield stress and the strain
hardening rate tend to decrease with higher zirconia content f , see Fig. 21.23a.
Figure 21.23b shows that the development of martensite is considerably higher than
in the case of the perfectly bonded interface. At the end of deformation nearly 30%
of martensite has evolved. Because of the non-cohesive interface, no tensile stresses
are transferred from the TRIP steel matrix to the zirconia inclusion. Thus, no phase
transformation is seen in zirconia. Moreover, the area of the load bearing cross-
section consists of TRIP steel only and is the smaller the higher the zirconia content
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(a) (b)

Fig. 21.23 Numerical results for the RVE with non-cohesive interface in uniaxial loading: a stress-
strain diagram and b phase development curves [43]

becomes, which reduces macroscopic yield stress. After debonding, the particle acts
partially like a void. However, no softening is observed in the macroscopic stress-
strain response because of the hardening behavior of the TRIP steel and the locking
effect caused by the particle.

One can conclude that the behavior of the real composite material lies between
the two extreme cases considered here, since the interface between ceramic and steel
has a finite strength. Moreover, the impact of particle reinforcement is stronger under
compressive loading [45].

21.7 Conclusions

Based on the work of Levitas and Preston [13] for generic martensitic transfor-
mation, a phase-field model for MgO-ZrO2 material was implemented [16]. The
potential function used in this work results in a proper representation of transfor-
mation behavior of zirconia ceramics from a pure thermodynamic stand point. In
the simulations different patterns of microstructures were found for cooling induced
and stress induced transformation. These patterns are consistent with experimental
observations by Hannink et al. [18]. It is evident that the presence of an energy barrier
plays a key role in variant selection and the transformation path taken. By which,
in stress induced case a sequential growth of lamellae was visible. In contrast, the
cooling induced case is categorized with an almost homogeneous nucleation where
all variants are preferred to evolve. Additionally on a single crystal level the simu-
lations showed that, in the stress induced case, microstructure with junction planes
parallel to the ‘c’-axis is formed because of variant selection. It was shown that
residual stresses inside t-phase lentils from c → t transformation have a magnitude
of ≈0.3 GPa and contribute to the stability of the t-phase. Also the magnitude of
stress required for introducing energy barrier increases with decreasing temperature
below Ms .
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A mesomechanical, two-dimensional model for Mg-PSZ with an energetic trans-
formation criterion based on the analytical solution for a rectangular inclusion in an
infinite matrix has been successfully developed. Using this model the influence of
individual parameters such as size, geometry and surface energies on the transforma-
tion initiation and resulting microstructure can be efficiently studied. It predicts that
the stability of the tetragonal inclusions deteriorates as the inclusions grow in size
and aspect-ratio. Further, the tension-compression asymmetry of the transformation
behavior known from experiments is captured correctly. A homogenization approach
based on the Mori-Tanaka method predicts the transformation to be auto-catalytic
within a grain.

A continuum material model for transformation plasticity in partially stabilized
zirconia ceramics has been further developed to account for (i) particle size dependent
phase transformation behavior, (ii) temperature dependent phase transformation, and
(iii) thermoelastic deformation. These more physically based features lead to a non-
linear hardening behavior and smoothly rounded hysteresis curves for the strain and
the generated monoclinic phase fraction during a temperature cycle. The influence of
the tetragonal particle size distribution on phase transformation could be predicted
qualitatively quite well.

Finally, the mechanical properties of a TRIP steel matrix reinforced by ZrO2 par-
ticles are analyzed, taking the phase transformation in both constituents into account.
The influence of the volume content and the interface properties of ZrO2 particles
on the overall response of the composite is investigated. Material variants with three
different zirconia contents and two different interface types, perfectly bonded and
non-cohesive, respectively, are considered. The calculations of the material responses
are performed using a finite element analysis of representative volume elements of
the composites under tensile, compressive and biaxial loading. The results indicate
that the enrichment of the TRIP steel with zirconia particles leads to a significant
strengthening effect provided the interface has cohesive properties.
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Chapter 22
Modeling of the Thermomechanical
Behavior, Damage, and Fracture of High
Alloy TRIP-Steel

Andreas Seupel, Andreas Burgold, Stefan Prüger, Michael Budnitzki
and Meinhard Kuna

Abstract The aim of this chapter is to give insight into the continuum mechanics
based modeling of high alloy TRIP-steels. A powerful thermomechanical framework
is presented, which incorporates finite viscoplasticity, the TRIP-effect, complete ther-
momechanical coupling, and non-local damage. Based on this, different variants of
material models are developed. Thereby, selected topics concerning the material
behavior of TRIP-steels are examined: Firstly, the mechanical behavior at different
temperatures and strain rates is modeled including tension-compression-asymmetry
and curve crossing effects. Secondly, the influence of phase transformation on frac-
ture is investigated. Because of the TRIP-effect, higher stresses occur during crack
tip blunting. Furthermore, a transformation induced shielding effect is revealed by
the evaluation of material forces. Thirdly, damage evolution and crack extension
are simulated with a cohesive zone model and with the non-local damage model,
respectively. The damage related parameters of these models are determined using
available experimental data. The developed numerical models enable quantitative
assessments of failure in components made of TRIP-steels.

22.1 Introduction

In order to optimize design and functionality of components and structures made of
TRIP-steels, appropriate macroscopic models for simulation purposes are required.
Furthermore, micromechanically informed models can be used in numerical studies
to improve the material design itself, e.g., the constitution of composite materials
like the particle-reinforced TRIP-matrix composites considered in CRC 799 [1–5].

The particular challenges of modeling the deformation behavior of high alloy
TRIP-steels are manifold: Firstly, a considerable variation of mechanical response
with changing temperature is observed due to the high influence of temperature on
the underlying deformation mechanisms (TRIP-effect: transformation induced plas-
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ticity, TWIP-effect: twinning induced plasticity, dislocation glide, [6–8]). A ther-
momechanical coupling has to be taken into account in order to explain and model
loading rate effects basically caused by the temperature dependency, e.g., the curve
crossing effect [9, 10]. Another modeling aspect is given by the observed load-
ing state dependent strain hardening of TWIP and TRIP-steels often recognized as
tension-compression asymmetry or strength differential effect [11–14]. Moreover,
the question arises, how the TRIP-effect influences the damage and fracture behavior
of austenitic steels. This becomes of interest in safety applications, metal forming, and
lightweight design. Taking damage and material degradation into account, concep-
tional problems arise: So-called local damage models imply an ill-posed boundary
value problem in the classical continuum mechanics framework. A regularization
method is necessary to circumvent pathological effects during numerical treatment,
e.g., the mesh dependency well known from numerical analyses utilizing the Finite-
Element-Method (FEM).

In this paper, two types of material models for high alloy TRIP-steels are presented
– each developed to meet different requirements according to the CRC’s state-of-the-
art: Firstly, a micromechanically motivated model is considered and enhanced which
is based on an advanced homogenization scheme [15]. Thereby, information on the
state and micromechanical features of both phases, austenite and martensite, can be
included. In addition, the model exhibits a higher predictive character than purely
phenomenological approaches. For example, the model is successfully applied in
micromechanical simulations conducted to assess and to improve the properties of
particle reinforced TRIP-matrix-composites [16–18]. Furthermore, the model is used
in fundamental investigations on fracture mechanics aspects of high alloy TRIP-steel,
which reveal the role of martensitic phase transformation on ductility and fracture
resistance [19–21]. Moreover, essential enhancements of the micromechanical model
are proposed elsewhere, especially to incorporate thermomechanical coupling and
stress state dependent hardening behavior of high alloy TRIP-steels [9, 22].

However, due to the high complexity and sophisticated numerical treatment of
the micromechanical model, a robust phenomenological alternative is developed as
basis for advanced damage modeling. The main aim is to set up a regularized damage
model, which does not suffer from pathological localization effects. Simultaneously,
a thermomechanically coupled variant of the model is proposed, which includes
asymmetric strain hardening.

The paper is organized as follows: In the next section, a thermomechanical-
micromorphic framework for finite deformations is briefly introduced, which is espe-
cially used as basis for the regularized damage model and to discuss thermodynamical
aspects.

In the third section, the distinct material models are presented. As common starting
point, a multiplicative viscoplasticity and martensite kinetics models for the strain
induced regime are used.

In the fourth section, modeling results on thermomechanical material response,
damage, and fracture are presented. The thermomechanically enhanced phenomeno-
logical model is calibrated to experimental results of a cast X3CrMnNi 16-6-6
TRIP-steel developed within the CRC 799. Afterwards, the model is assessed by
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comparing the model predictions of thermomechanical loading and inhomogeneous
deformation scenarios to available experiments. Using the micromechanical material
model, numerical investigations on influence of the TRIP-effect on crack tip fields
and fracture mechanics properties are discussed. Fracture of high alloy TRIP-steels
is modeled by a cohesive zone approach, and finally by the micromorphic model of
ductile damage.

22.2 Thermomechanical Framework

The thermomechanically coupled modeling as well as the regularized damage for-
mulation are set up within the micromorphic framework proposed by Forest [23].
The thermomechanical DOF are the displacement vector �u and the absolute tempera-
ture ϑ . The degrees of freedom (DOF) are enriched by a scalar valued micromorphic
variable εnl:

DOF = {�u, ϑ, εnl} . (22.1)

The micromorphic variable has a local counterpart, which should be enhanced by
gradient effects.

The local material behavior depends on the evolution of state variables (SV).
Inelastic, loading history dependent processes are treated by the thermodynamics of
internal variables principle. The chosen state variables read

SV =
{
εel

log, ϑ, κα, εnl, gradxεnl

}
, (22.2)

where εel
log and κα denote the elastic logarithmic strain and an arbitrary set of scalar

internal variables, respectively. Additionally, the material’s state is influenced by the
micromorphic variable εnl and its spatial gradient.

22.2.1 Balance Equations

The necessary mechanical and micromorphic balance equations can be deduced with
help of the principle of virtual power [23, 24]. The continuity equation (conservation
of mass, mass density ρ) is assumed:

ρ̇ + ρ divx�v = 0, (22.3)

where �v denotes the substantial velocity. In what follows, virtual quantities are high-
lighted by an asterisk ()∗. The internal virtual power P∗

i yields
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P∗
i = −

∫

B

pi dv, p∗
i = σ : D∗ + mnlε̇

∗
nl + �Mnl · gradxε̇

∗
nl, (22.4)

with the prescribed virtual power density p∗
i . The spatial domain currently occupied

by the material body is given by B. The boundary of the material body and the
infinitesimal volume element are denoted as ∂B and dv, respectively. The symmetric
Cauchy-stress tensor and the rate of deformation tensor are denoted as σ and D,
respectively. The virtual power is enriched by the micromorphic variable and its
gradient as well as by their conjugated generalized stresses mnl and �Mnl.

The external virtual power is formulated by volume specific and contact terms

P∗
e =

∫

B

ρ �f · �v∗ dv +
∫

∂Bt

�t · �v∗ da +
∫

∂Bm

mcε̇
∗
nl da, (22.5)

where �f is a mass specific force and �t as well as mc denote tractions acting on the
infinitesimal surface element da.

Furthermore, a classical D’Alembert inertia term is considered

P∗
a = −

∫

B

ρ �̇v · �v∗ dv. (22.6)

Evaluating the principle of virtual power,

P∗
i + P∗

e + P∗
a = 0, (22.7)

yields the following balance equations: Firstly, the balance of linear momentum is
obtained, which is complemented by boundary and initial conditions:

divxσ + ρ �f = ρ �̇v ∀�x ∈ B, (22.8)

�t = σ · �n ∀�x ∈ ∂Bt (22.9)

�u = �̄u ∀�x ∈ ∂Bu, (22.10)

�v (�x, t0) = �v0 ∀�x ∈ B. (22.11)

The outward unit normal is introduced as �n.
Secondly, the micromorphic balance and related boundary conditions are obtained

divx �Mnl = mnl ∀�x ∈ B, (22.12)

mc = �Mnl · �n ∀�x ∈ ∂Bm, (22.13)

εnl = ε̄nl ∀�x ∈ ∂Be. (22.14)

Furthermore, the local forms of the thermodynamical principles read
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ρψ̇ + ϑ ṡ + sϑ̇ = pi − divx �qth + ρ pth (energy balance). (22.15)

and

−ρsϑ̇ − ρψ̇ + pi − 1

ϑ
�qth · gradxϑ ≥ 0. (dissipation inequality). (22.16)

Herein, the Helmholtz free energy ψ is chosen as state potential. The specific
entropy, the heat flux, and the mass specific heat source are denoted as s, �qth, and
pth, respectively. The term pi denotes the physical counterpart of the virtual power
given in (22.4).

22.2.2 Constitutive Assumptions and Equations

The high formability and ductile damage mechanisms of TRIP-steels imply a finite
deformation framework as basis of constitutive modeling. As constitutive assump-
tion, an additive split of the rate of deformation tensor D into an elastic, viscoplastic,
and transformation induced part is considered:

D = Del + Dvpl + Dtrip. (22.17)

A state potential based on the logarithmic strain is proposed:

ψ = ψ
(
εel

log, ϑ, κα, εnl, gradxεnl

)
. (22.18)

The constitutive-dependent quantities
{
σ , s, Kα, mnl, �Mnl

}
have the same depen-

dencies as ψ (principle of equi-presence). Utilizing the Coleman-Noll-procedure
[25], constitutive relations can be deduced from the dissipation inequality (22.16)
plugging in the state potential (22.18):

σ = ρ
∂ψ

∂εel
log

, s = −∂ψ

∂ϑ
, �Mnl = ρ

∂ψ

∂gradxεnl
, mnl = ρ

∂ψ

∂εnl
. (22.19)

The conjugated thermodynamic forces to the internal variables are defined as

Kα = ρ
∂ψ

∂κα

. (22.20)

Furthermore, expressions for the thermal and mechanical dissipation remain, which
have to be fulfilled independently:
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γth = − 1

ϑ
�qth · gradxϑ ≥ 0, (22.21)

γm = σ : (Dvpl + Dtrip
) − Kακ̇α ≥ 0. (22.22)

The thermal and mechanical dissipation inequalities set restrictions on the definitions
of the heat flux vector �qth, the evolution equations of the inelastic deformation rates{

Dvpl, Dtrip
}
, and the internal variables κα to be proposed.

22.2.2.1 State Potential

To specify the state potential (22.18), the set of state variables is complimented by
the choice of scalar internal variables κα = {r, fsb, z, D}:
• r : strain hardening variable (isotropic)
• fsb: volume fraction of shear bands
• z: volume fraction of α′-martensite
• D: damage variable (isotropic)

Subsequently, a multiplicative viscoplasticity approach is introduced, as classified
by Lemaître and Chaboche [26, Sect. 6.4.2]. Therefore, the state potential must not
contain the hardening variable r to ensure non negative mechanical dissipation, see
[26, Sect. 6.4.2]. Moreover, the stored energy in shear bands is neglected. Thus, the

Helmholtz free energy is given as ψ
(
εel

log, ϑ, z, D, εnl, gradxεnl

)
:

ρψ = ρψel

(
εel

log, ϑ, D
)

+ ρψchem (ϑ, z) + ρψϑ (ϑ) + ρψnl
(
εnl, gradxεnl

)
.

(22.23)

The thermoelastic part reads

ψel = (1 − D)
1

ρ

1

2

(
εel

log − αth (ϑ − ϑ0) δ
)

: C :
(
εel

log − αth (ϑ − ϑ0) δ
)

.

(22.24)

Isotropic thermoelastic properties are assumed for the cast TRIP-steel, defined by
the fourth order tensor of elastic stiffness C and the thermal expansion coefficient
αth. Moreover, the elastic and thermal expansion properties are assumed to be similar
for the austenitic and martensitic phase [27]. Damage D degrades the elastic energy
leading to material softening.

The chemical part describes the difference in Gibbs-energy of the two phases
given by a rule of mixture:

ψchem = (1 − z) ψa (ϑ) + zψm (ϑ) . (22.25)
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The purely temperature dependent term

ψϑ = c0
ε

(
ϑ − ϑ ln

(
ϑ

ϑ∗

))
, (22.26)

defines a constant part c0
ε of the specific heat similar for both phases with a reference

temperature ϑ∗.
The last term in (22.23) comprises the micromorphic contributions. A conven-

tional quadratic structure is prescribed, see [23]:

ρψnl = 1

2
Hnl

⎛
⎝

t∫

t0

ε̇l
(

Dvpl
)

dτ − εnl

⎞
⎠

2

+ 1

2
Anl gradxεnl · gradxεnl. (22.27)

The first part penalizes the difference of the local strain like value, defined by the
integral, and the micromorphic variable εnl. The penalty stiffness is prescribed by
the parameter Hnl. The integral defines a scalar value, which is extracted from the
viscoplastic deformation rate Dvpl serving as driving force for damage. The second
term states the micromorphic gradient contribution weighted by the parameter Anl.

22.2.2.2 Consistent Rate Formulation

The Cauchy-stress defined in (22.19) can be evaluated using (22.23) and (22.24):

σ = ρ
∂ψ

∂εel
log

= (1 − D)C :
(
εel

log − αth (ϑ − ϑ0) δ
)

. (22.28)

Applying the effective stress concept [28], the constitutive equation reads

σ̂ = σ

1 − D
= C :

(
εel

log − αth (ϑ − ϑ0) δ
)

, (22.29)

where σ̂ designates the effective stress acting on an undamaged cross section of the
material; σ is then interpreted as the net stress. In what follows, a hat ˆ(·) highlights
quantities which are computed from the effective stress tensor σ̂ .

The stress-strain relation has to be given in an objective rate form in order to imple-
ment the model into the user subroutine UMAT of the FEM-software ABAQUS.

As objective time derivative, the logarithmic rate
�
(·) introduced by Xiao et al.

[29, 30] is applied to both sides of (22.29). Hence, the rate formulation
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�
σ̂ = C : (Del − αinstδϑ̇

)
, (22.30)

is consistent with the notion of elasticity [31], where αinst denotes the instantaneous
coefficient of thermal expansion. The logarithmic rate of the logarithmic strain tensor
εel

log yields the rate of deformation tensor Del as shown in [30]. The logarithmic rate
of the effective Cauchy-stress reads

�
σ̂ = dσ̂

dt
− �log · σ̂ − σ̂ · �T

log. (22.31)

The skew logarithmic spin �log can be found in [29].

22.2.2.3 Generalized Stresses

The Coleman-relations for generalized stresses in (22.19) are specified as

�Mnl = Anl gradxεnl, (22.32)

mnl = Hnl

⎛
⎝εnl −

t∫

t0

ε̇l
(

Dvpl
)

dτ

⎞
⎠ = Hnl (εnl − εl) , (22.33)

where the integral is substituted for reasons of clarity by εl. With (22.32) and (22.33)
at hand, the micromorphic balance (22.12) can be rewritten in the established manner
[23, 32]

L2
nl�xεnl = εnl − εl ∀�x ∈ B, (22.34)

where the internal length Lnl is defined as

L2
nl = Anl

Hnl
≥ 0. (22.35)

The spatial Laplacian is denoted as �x. Thereby, the micromorphic balance (22.34)
is identical to the partial differential equation of implicit gradient enhancement pro-
posed by Peerlings et al. [33], which has been used in own preliminary studies [34,
35]. Following the suggestion in [33], trivial natural boundary conditions are pre-
scribed on all free boundaries

gradxεnl · �n = 0 ∀�x ∈ ∂Bm = ∂B. (22.36)

As result of this choice, the overall mean values of the micromorphic variable and
its local counterpart are equal [34].
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22.2.2.4 Thermodynamic Forces

The conjugated thermodynamic forces Kα = {R, Fsb, Z , Y } associated with the set
of internal variables are specified by (22.20) as

R = ρ
∂ψ

∂r
= 0, (22.37)

Fsb = ρ
∂ψ

∂ fsb
= 0, (22.38)

Z = ρ
∂ψ

∂z
= ρψm (ϑ) − ρψa (ϑ) = 	ga→m

chem (ϑ) , (22.39)

Y = ρ
∂ψ

∂ D
= −1

2

(
εel

log − αth (ϑ − ϑ0) δ
)

: C :
(
εel

log − αth (ϑ − ϑ0) δ
)

.

(22.40)

The driving force for martensitic phase transition Z consists of the energy difference
	ga→m

chem (ϑ), which is negative once the temperature is below the thermodynamic
equilibrium temperature [36], i.e., in the region of interest. The energy release rate
Y is always negative or zero, Y ≤ 0.

22.2.3 Dissipation and Heat Equation

The mechanical dissipation (22.22) can be intermediately specified as

γm = σ : (Dvpl + Dtrip
) − Z ż − Y Ḋ. (22.41)

The requirement γm ≥ 0 is discussed in detail after introducing the evolution laws
for the martensite volume fraction ż and the damage variable Ḋ for the different
modeling approaches.

The heat equation can be obtained from the energy balance (22.15), see [9].
Neglecting coupling terms and assuming Fouriers law, a rudimentary format can
be obtained typically used for computation purposes [9]:

ρc0
ε ϑ̇ = λth�xϑ + p̃ ∀�x ∈ B (22.42)

with the heat source

p̃ = γm + ρ pth. (22.43)

The specific heat c0
ε and the conductivity λth are assumed as constants.
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22.3 Material Models

22.3.1 Preliminaries for both Models

Both considered material models are based on the previously introduced thermome-
chanical framework and a multiplicative viscoplasticity formulation discussed within
the next subsection. In order to describe the α′-martensite formation, two modifica-
tions of the Olson-Cohen model [37] (OC-model) for strain induced martensite
evolution are developed for thermomechanical loading conditions: A micromechan-
ically extended approach and a simplified empirical model allowing for a fast param-
eter calibration. The macroscopic TRIP-kinematics are introduced to conclude the
section.

22.3.1.1 Multiplicative Viscoplasticity

In order to take characteristic strain rate effects of high alloy TRIP-steels into account,
a multiplicative viscoplasticity framework is utilized. A dissipation potential of
Norton-type is proposed:

φ (σ ) = (1 − D) ε̇0σy

m + 1

(
σ̂eq

σy

)(m+1)

. (22.44)

The model parameters m and ε̇0 control the strain rate sensitivity. Isotropic strain
hardening can be taken into account by the yield stress σy (r, z). Within the next
sections, the potential (22.44) is extended by contributions of all invariants of the
effective stress tensor:

Î1 = tr
(
σ̂
)
, Ĵ2 = 1

2
Ŝ : Ŝ, Ĵ3 = 1

3
tr
(

Ŝ · Ŝ · Ŝ
)

, (22.45)

where the stress deviator is introduced as

Ŝ = σ̂ − 1

3
Î1δ. (22.46)

The unit tensor of second order is denoted as δ. The original Norton-potential
(22.44) is only influenced by the von Mises equivalent stress

σ̂eq =
√

3 Ĵ2. (22.47)
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22.3.1.2 Strain Induced Martensite

The well established OC-model [37] is based on the observation that nuclei of α′-
martensite are predominantly formed at intersections of shear bands. The evolution
of shear band volume fraction fsb is modeled as

ḟsb = αoc (1 − fsb) ε̇eq, (22.48)

where the parameter αoc is a function of temperature and stress state [38–40]. As
scalar measure of plastic deformation, the rate of equivalent (visco-)plastic deforma-
tion ε̇eq is utilized. The original evolution equation of α′-martensite volume fraction
z proposed by Olson and Cohen [37] reads

ż = (1 − z) βoc noc f (noc−1)
sb ḟsb. (22.49)

The probability to form a martensite embryo at a shear band intersection is cast into
the parameter βoc. The specific geometric setting of the shear bands is taken into
account by the parameter noc. Modifications of (22.48) and (22.49) are discussed in
the separate section of the different material models.

22.3.1.3 TRIP Kinematics

During martensitic phase transformation, inelastic strains occur which become vis-
ible on the macroscopic scale of polycrystalline material [41, 42]. These so-called
TRIP-strains comprise a volumetric part and a deviatoric part. Two effects lead to
these inelastic strains: A formation of favorable oriented martensite variants accord-
ing to the applied stress state (Magee-effect) and additional plastic deformation of
the austentite during accommodation of newly formed martensite (Greenwood-
Johnson-effect), see [43] and [44, p. 69ff]. An empirical evolution law of the TRIP-
deformation rate reads

Dtrip =
(

kgj σ̂eq
dϕ (z)

dz
+ ks

)
N ż + 1

3
	vδż (22.50)

with the flow normal

N = 3

2σ̂eq
Ŝ. (22.51)

From (22.50), many modifications proposed in literature can be deduced [9, 12, 38,
39, 41, 45–50]. The first part shows that the magnitude of the TRIP-strain depends
on the applied stress level as measured by Nagayama et al. [42]; the parameter kgj is
called Greenwood- Johnson-constant. The additional constant contribution ks is
used by Stringfellow et al. [38].

www.dbooks.org

https://www.dbooks.org/


734 A. Seupel et al.

The volumetric strain is prescribed by the parameter 	v, which typically ranges
from 2 to 4% depending on the carbon content of the considered alloy.

Nagayama et al. [42] and Ahrens [41] conducted experiments on temperature
induced martensitic transformation and simultaneously applied external stresses.
From these experiments, a magnitude for the stress dependent, deviatoric uni-axial
TRIP-strain of about 1.5–2.0 % can be found. This is in accordance to the statement of
Martin [51, Sect. 2.1.6] that the TRIP-contribution to the whole inelastic deformation
is comparatively small. The high ductility of high alloy TRIP-steels is attributed to
the excellent strain hardening, which postpones localization effects.

22.3.2 Micromechanically Motivated Model

Starting with the assumption that formed α′-martensite nuclei and domains act
as inclusions, homogenization schemes can be developed to predict the effective
macroscopic material response. Thereby, the modeling gains a microstructural well-
founded character. The utilized analytic homogenization approach is well docu-
mented in literature. Therefore, only a brief summary is given, which is needed to
understand the results on crack tip loading in Sect. 22.4.3. For details, the reader is
referred to the numerous available publications devoted to the model development
within CRC 799 [9, 22, 47, 52, 53]. Damage effects are neglected for this approach,
i.e., D = 0 and σ̂ = σ .

22.3.2.1 Homogenization Method

It is assumed that the viscoplastic properties of austenite and martensite differ widely.
Therefore, independent dissipation potentials according to (22.44) are introduced for
each phase. The rate of viscoplastic equivalent strain follows for each phase l as

ε̇(l)
eq =

∂φ(l)
(
σ (l)

eq

)

∂σ
(l)
eq

= ε̇0

(
σ (l)

eq

σ
(l)
y

)
, (22.52)

where l = a and l = m denote austenite and martensite, respectively. The macro-
scopically effective properties are determined as described in [15, 22]. A variational
principle is utilized, which is established by Ponte Castañeda and Suquet [54]. The
necessary condition for an optimally chosen linear comparison composite is deduced
in the case of statistically isotropic and uniformly distributed phases with isotropic
behavior as

σ (l)
eq = σeq

√
1

v(l)

∂�hom

∂�(l)
, (22.53)
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where the effective compliance �hom is computed using a lower Hashin-Shtrikman
bound

�hom = vm
(

2
�a + 3

�

) + va
(

2
�m + 3

�

)
vm

�m

(
2

�a + 3
�

) + va

�a

(
2

�m + 3
�

) . (22.54)

Therein, v(l) denotes the volume fraction of phase l, i.e., vm = z and va = 1 − z. The
value of � is chosen as � = max (�a,�m), where the compliance of a single phase
is defined as

�(l) = 3

σ
(l)
eq

ε̇(l)
eq . (22.55)

The strain hardening functions of each phase σ (l)
y are chosen as power laws.

A stress state dependent yielding and strain hardening can be introduced by taking
the third invariant of stress deviator J3 into account. This leads to major modifications
of the homogenization scheme. The reader is referred to the work of Prüger [22]
dealing with this topic.

22.3.2.2 Martensite Kinetics and
TRIP-kinematics: Stringfellow-Model

An established modification of the OC-model has been proposed by Stringfellow
et al. [38]. Further enhancements have been incorporated, e.g., in [9, 39, 40]. Due to
the homogenizations approach, plastic deformations of the single phases are acces-
sible. Thus, the dependencies of the martensite kinetics on equivalent plastic strain
are substituted as functions of the viscoplastic strain in austenite ε̇a

eq. The modified
OC-kinetics of strain induced martensite, following [9], read as

ż = (1 − z)
(

A ḟsb + B
(
ġ − ˙̄g)) (22.56)

with prefactors

A = βoc noc f (noc−1)
sb P, (22.57)

B = βoc f noc
sb

dP

dg
H
(
Ṗ
)
, (22.58)

and the normal distribution

P = 1√
2πsg

g∫

−∞
exp

[
−1

2

(
g∗ − ḡ

sg

)2
]

dg∗. (22.59)
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Therein, g denotes the driving force for martensite formation and ḡ a barrier function
[55]:

ḡ = ḡ0 + ḡ1ε
a
eq. (22.60)

The driving force g is formulated as the sum of the chemical contribution Z (ϑ) and
a mechanical part motivated from the energy term σ : Dtrip [22, Sect. 5.4]:

g = −Z +
((

kgj σeq
dϕ (z)

dz
+ ks

)
σeq + 	vσh

)
. (22.61)

The chemical driving force Z is typically determined by thermodynamical calcula-
tions, see [47]. Moreover, sg is a fitting parameter of the model.

As mentioned above, the parameter of shear band formation αoc is a function of
temperature and stress state. Prüger [22] proposes the approach

αoc (h, ϑ) = 〈
α1 + α2ϑ + α3ϑ

2 − α4 arctan (h)
〉
, (22.62)

where the stress triaxiality is introduced as

h = σh

σeq
(22.63)

with the hydrostatic stress

σh = 1

3
I1. (22.64)

The Macauly-brackets

〈x〉 =
{

0 x < 0

x x ≥ 0
(22.65)

in (22.62) ensure a monotonically increasing shear band volume fraction.
For the micromechanical approach, the generally introduced TRIP-deformation

rate Dtrip defined in (22.50) is utilized.

22.3.3 Phenomenological Model

The phenomenological modeling strategy is developed as a robust engineering tool
comprising characteristic aspects of the thermomechanical, stress state dependent
and damage behavior of high alloy TRIP-steel. Finally, two variants of the model
are implemented into a FE-code: The first variant contains all thermomechanical
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features, the second includes ductile damage within the micromorphic framework at
isothermal conditions. A combination of both is subject of current work.

22.3.3.1 Viscoplastic Flow Rules

As already introduced in the state potential (22.24), damage degrades the elastic
properties and thus the bearable stress, see (22.28). Ductile damage is microscopi-
cally caused by the nucleation, growth, and coalescence of microvoids. At high stress
triaxialities, growth of voids is the dominant damage mechanism, which influences
the plastic yielding and flow behavior [56, 57]. In this regime, the impact of hydro-
static stresses on plastic flow needs to be taken into account. A heuristic modification
of the Norton-potential (22.44) through a contribution of the hydrostatic stress is
proposed

φ (σ ) = (1 − D) ε̇0σy

m + 1

(
σ̂ 2

eq + q1 D
〈
σ̂h
〉2

σ 2
y

)( m+1
2 )

. (22.66)

A similar elliptic yield function in the rate independent framework is utilized in the
gradient-enhanced damage model of Seupel and Kuna [35]. Dissipation potentials
of similar structure are likewise proposed in creep damage mechanics [58].

An associated viscoplastic flow is assumed

Dvpl = ∂φ

∂σ
= ε̇eq N + ε̇hδ, (22.67)

which leads to deviatoric and volumetric viscoplastic strains. The prefactors in
(22.67) are identified as equivalent and volumetric viscoplastic strain rates

ε̇eq = ε̇0
σ̂eq

σy

(
σ̂ 2

eq + q1 D
〈
σ̂h
〉2

σ 2
y

)( m−1
2 )

, (22.68)

ε̇h = ε̇0

〈
σ̂h
〉
q1 D

3σy

(
σ̂ 2

eq + q1 D
〈
σ̂h
〉2

σ 2
y

)( m−1
2 )

, (22.69)

respectively. The model parameter q1 controls the hydrostatic stress dependency. As
long as q1 is set to zero or no damage occurs D = 0, the original volume preserving
Norton-type flow is obtained. A relation between (22.68) and (22.69) can be found
[59]:

ε̇h = q1 D 〈h〉
3

ε̇eq. (22.70)
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In presence of damage, the hydrostatic plastic flow linearly depends on stress tri-
axiality h. This is in accordance to micromechanical findings within creep dam-
age mechanics [60], but contrary to the known exponential influence deduced in
[56, 57], cf. [61]. In contrast to the Gurson-model, the volumetric plastic strain
of the present model can just increase, because a volumetric flow occurs only for
positive hydrostatic stresses.

An additional influence of the third stress invariant Ĵ3 on plastic flow is neglected,
which is in accordance with investigations on initial yielding of the considered TRIP-
steel conducted by Kulawinski et al. [62]. The asymmetric strain hardening is fully
captured by the definition of the evolution equation for the hardening variable r .

22.3.3.2 Isotropic Strain Hardening

An empirical mixture rule is adopted in order to take the influence of formed α′-
martensite on strain hardening into account, which has been successfully applied in
other studies [12, 27, 50]. Thus, the yield stress reads

σy (r, z, ϑ) = σ0 (ϑ) + Z1mz (z) + H (r) . (22.71)

Furthermore, only the initial yield stress σ0 is considered as function of temperature as
employed for an AISI 304 steel elsewhere [27]. The additional hardening contribution
of martensite is captured by the second term, where mz (z) is introduced to modify
the shape of the flow curve during martensite evolution. The choice of the hardening
function ensures that no strain softening can occur during martensite formation for
ϑ = const. Material degradation arises only due to the evolution of the damage
variable D.

Because of the direct influence of the stress state dependent martensitic phase
transition, asymmetric strain hardening in uni-axial tension and compression is nat-
urally predicted by the model. Hence, a higher strain hardening would be predicted
in tension than in compression due to the enhanced phase transformation in tension,
whereas the inverse trend is experimentally observed [12], [63, Sect. 5.3.2]. To take
the realistic asymmetric strain hardening into account, Seupel and Kuna [12] propose
an evolution of the hardening variable r depending on the orientation in stress space,
which is described by the Lode-angle

cos 3φ = 3
√

3

2

Ĵ3

Ĵ
3
2

2

. (22.72)

The evolution of the hardening variable reads

ṙ =
(

1 + b

2
(1 − cos 3φ)

)
ε̇eq ≥ 0, (22.73)
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where the parameter b > −1 controls the influence of stress state. For b = 0, the
hardening variable coincides with the equivalent viscoplastic strain. For b > 0, the
hardening rate is increased in case of uni-axial compression (cos 3φ = −1) compared
to uni-axial tension (cos 3φ = 1), which is in accordance with the experimentally
revealed behavior.

The same tendencies in strain hardening are observed, if the TWIP-mechanism is
active [11, 63]. The tension-compression asymmetry vanishes, if planar dislocation
glide is the dominant deformation mechanism, see [63, Sect. 5.3.2]. For the con-
sidered steel, the transition of deformation mechanisms is explained as function of
temperature [6, 51]. Accordingly, the hardening asymmetry should depend on defor-
mation mechanism and/or temperature, respectively. Therefore, the parameter b is
assumed as function of martensite volume fraction and temperature in the following
manner:

b (z, ϑ) =

⎧
⎪⎪⎨
⎪⎪⎩

b0 exp

(
−
(

ϑ−T0
T1

)2
)

exp

(
−
(

z−z0
z1

)2
)

ϑ ≥ T0

b0 exp

(
−
(

z−z0
z1

)2
)

ϑ < T0

(22.74)

Thereby, the asymmetric hardening asymptotically vanishes for temperatures above
T0. When martensite transformation is active, the asymmetry can additionally vary
during loading at constant temperature due to the second exponential function, which
contains the fitting parameters z0 and z1.

22.3.3.3 Martensite Kinetics and TRIP-Kinematics: Empirical Model

Motivated by the sound investigations on stress state dependency of strain induced
martensite formation and the suggested empirical kinetics approach of Beese and
Mohr [64], a less sophisticated, empirical extension of the OC-kinetics can be pro-
posed. The original evolution equation introduced by Olson and Cohen [37] is con-
sidered, see (22.49). In βoc, the probability that a shear band intersection becomes
a martensite embryo is included. As shown in [37], the parameters αoc and βoc are
functions of temperature. Similar to the proposal in (22.62) for the parameter of shear
band formation, Seupel and Kuna [12] use

αoc (h, ϑ) = αt (ϑ)

[
α0 + α1

(
2

π
arctan (α2h) + 1

)]
. (22.75)

As discussed in [9], the non-linear function of stress triaxiality should saturate to
a certain level. As long as α1 ≥ 0, no negative shear band rate can be caused by
the stress state. Regarding α1 < 0, a non-negative rate of shear bands is obtained, if
the parameters fulfill α0 ≥ 0 and α1 ≥ −α0

2 . As temperature influence, probability
functions are chosen [37]:
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αt (ϑ) =
⎧⎨
⎩

exp

(
−
(

ϑ−α3
α4

)2
)

ϑ ≥ α3

1 ϑ < α3.

(22.76)

For βoc, a similar structure given by (22.75) and (22.76) is assumed with parameters
β0 − β4. Despite the empirical character of the extended kinetics law, less parameters
are needed compared to the enhanced Stringfellow-approach (Sect. 22.3.2.2).

The generally introduced TRIP-deformation rate (22.50) is utilized with the fol-
lowing parameters:

kgj = 8.1 × 10−5 MPa−1, ϕ (z) = (2 − z) z, ks = 0, 	v = 0.02. (22.77)

This set of parameters leads to a comparatively small contribution of transformation
induced plasticity to the whole deformation.

22.3.3.4 Ductile Damage

Damage models devoted to high alloy TRIP-steels have been mainly developed for
applications at cryogenic temperatures employing concepts of continuum damage
mechanics [65–67]. A ductile damage mechanism is assumed as common feature
of the mentioned approaches. Regularized damage models for TRIP-steels are less
investigated, except first studies [12].

The evolution of ductile damage is known to be dependent on plastic deformation
and stress state. Seupel and Kuna [35] propose an empirical, regularized model for
ductile damage, which is able to predict failure due to void based mechanisms at high
stress triaxialities and shear dominated failure. The mentioned model is a gradient-
enhanced version of local engineering approaches, e.g., [68]. In the present section,
the approach of Seupel and Kuna [35] is adopted for the micromorphic-viscoplastic
framework.

The empirical approach to ductile failure is based on the hypothesis, that damage
can be neglected in a certain deformation range, but evolves rather fast after initiation
[68]. The initiation of damage is captured by a loading history dependent indicator
function ω

(
εeq, σ

)
, which is not directly coupled to the constitutive equations similar

to well known failure criteria. Exceeding a critical value ω ≥ ωc determines the
initiation of damage, i.e., the onset of evolution of the local damage driving force
ε̇l
(

Dvpl
)
. Its evolution is proposed as

ε̇l =
{

0, ω
(
σ , εeq, z

)
< ωc

q2ε̇eq + q3ε̇h
(22.70)=

(
q2 + q1q3 D〈h〉

3

)
ε̇eq, ω

(
σ , εeq, z

) ≥ ωc.
(22.78)

The model parameters q2 and q3 can be adjusted to weight between shear (ε̇eq) and
void growth dominated damage (ε̇h), respectively. It should be mentioned, that the
local damage driving strain εl is associated to the dissipation potential and viscoplas-
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tic flow. Mediavilla et al. [69] propose a non-local damage model using a comparable
driving strain, but therein the plastic yielding stays purely deviatoric.

The micromorphic counterpart εnl of the damage driving strain is given by solving
the micromorphic balance (22.34). To reach at a regularized damage model, the
damage evolution is formulated with help of the micromorphic (non-local) variable
εnl. Following [69], an auxiliary variable κ is defined to avoid pathological healing
effects, cf. [34, 35],

κ̇ ≥ 0, κ̇ (εnl − κ) = 0, εnl − κ ≤ 0. (22.79)

An exponential dependency of damage evolution on κ is assumed:

Ḋ =
{

3 (1 − D) κ̇
εc

D < Dc

Dmaxa∗ exp (−a∗ (κ − κ∗)) κ̇ D ≥ Dc
(22.80)

or in integrated form

D =
{

1 − (1 − D0) exp
(
−3 κ

εc

)
D < Dc

Dmax (1 − exp (−a∗ (κ − κ∗))) D ≥ Dc

(22.81)

with

a∗ = 3

εc

(1 − Dc)

(Dmax − Dc)
, (22.82)

κ∗ = −εc

3
ln

(
1 − Dc

1 − D0

)
+ 1

a∗ ln

(
1 − Dc

Dmax

)
. (22.83)

Because κ is a monotonically increasing variable without upper limit, a totally dam-
aged state (D ≈ 1) can be reached asymptotically. In order to ensure the robustness
of the model near to total failure, the numerical value of damage is limited by a
prescribed saturation of D towards Dmax < 1 as proposed by Seupel and Kuna [35]
(second case in (22.80) and (22.81), respectively).

The exponential damage law is motivated by the evolution of porosity assuming
a nearly volume preserving matrix material, c.f. [57]. The purely void growth based
damage mechanism is included in the current formulation by imposing εc = 1, q2 = 0
and q3 = 1 with D0 > 0. The additional parameter εc can be used to adjust the slope of
the damage law. The saturation value of damage is prescribed as Dmax = 0.999 ≈ 1
and the transition value is set to Dc = 0.995, i.e., near the state of total material
failure.

To avoid a spurious widening of the total damaged zone, Seupel and Kuna [35]
suggest to fix the local contribution ε̇l = 0 in case the totally damaged state D ≥ Dc

is reached. This patch solution damps the widening of the totally damaged domain,
but other sophisticated methods, cf. [70], should be taken into account in ongoing
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works. The zone of totally damaged integration points or finite elements mimics the
actually discontinuous crack.

22.3.3.5 Thermodynamic Consistency

The mechanical dissipation introduced in (22.41) can be specified for the phenomeno-
logical model as

γm = σeq

(
ε̇eq + σ̂eqkgj

dϕ (z)

dz
ż

)
+ σh (ε̇h + 	v ż) − 	ga→m

chem ż − Y Ḋ. (22.84)

The rates of the introduced internal variables are constructed to yield κ̇α ≥ 0. The
first part of γm (σeq (...)) is always larger or equal to zero. The damage contribution
is likewise non-negative, because Y ≤ 0. The chemical contribution is positive as
long as the temperature is below the thermodynamic equilibrium temperature. For
temperatures above, this restriction is not fulfilled automatically and this part has
to be controlled. For experimentally calibrated models, ż should vanish in this tem-
perature region, i.e., the chemical part is typically thermodynamically consistent.
The dissipation contribution of volumetric plastic strain is always non-negative, see
(22.69), whereas the volumetric TRIP-strains can cause a negative dissipation in
compression states [9], i.e., if σh < 0. To ensure positive dissipation, the hydrostatic
TRIP-part is neglected in the mechanical dissipation as proposed by Mahnken and
Schneidt [46]. Nonetheless, it should be mentioned that the damage model without
martensite evolution is thermodynamically consistent in a strict sense.

22.3.4 Numerical Implementation

In order to analyze complex boundary value problems numerically, the material
models are implemented into the FE-code ABAQUS via the user-defined subrou-
tine UMAT. Implementation aspects of the micromechanically motivated and phe-
nomenological model within the thermomechanical framework are discussed in lit-
erature [22, 34, 35]. One particular aspect should be emphasized: The implemen-
tation of the micromorphic damage model is simplified due to the similarity of the
helmholtz-type equation (22.34) and the steady state case of the heat equation
(22.42) as pointed out in [34]. A simple renaming of variables (εnl ↔ ϑ), a mod-
ification of the heat source ( p̃ ↔ −εnl + εl), and the interpretation of the conduc-
tivity λth ↔ L2

nl allow a fast implementation into the commercial FE-code. A major
advantage is the usage of the available thermomechanical finite element library and
post-processing tools, which becomes interesting for engineering applications.
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22.4 Results

In this section the introduced models are applied. A detailed study on the phenomeno-
logical modeling approach from Sect. 22.3.3 is conducted to demonstrate its ability to
comprise the influence of stress state and temperature on martensite kinetics as well
as strain hardening behavior. Furthermore, the micromechanically motivated model
from Sect. 22.3.2 is used in order to study the stress field in front of a crack. Addi-
tionally, the crack driving force is formulated in consideration of plastic deformation
and phase transformation. Finally, a cohesive zone approach and the micromorphic
damage model (Sect. 22.3.3) are utilized to simulate ductile fracture in a particular
TRIP-steel.

22.4.1 Material

Consistent experimental investigations on a cast TRIP-steel X3CrMnNi 16-6-6 (see
[53, 63]) are used as reference for calibration and validation purposes. The exact
chemical composition is given in Table 22.1. A detailed characterization of the mate-
rial can be found in [63]. The material used to manufacture the CT-specimen for
fracture mechanics test exhibits a slightly deviating composition, see Table 22.1.

22.4.2 Deformation and Phase Transition Behavior

For the phenomenological model from Sect. 22.3.3, a step-by-step calibration strat-
egy is pursued: Firstly, the model parameters of the martensite kinetics law are esti-
mated with help of experimental data. Afterwards, the temperature and stress state
dependent isotropic strain hardening law is fitted to a characteristic subset of tests.
Following Prüger et al. [9], a simultaneous calibration to uni-axial tests at quasi-static
loading, but different temperatures can be used as starting point. Damage effects are
neglected at this stage of modeling. The validity of the model is assessed by pre-
dictions of the material behavior at other temperature conditions, strain rates, and
inhomogeneous loading states. A comparable assessment for the micromechanically
motivated model discussed in Sect. 22.3.2 can be found in recent literature [9, 22].

Table 22.1 Chemical composition of considered cast TRIP-steels in mass %

Alloy Fe C N Cr Mn Ni Si

X2CrMnNi 15-5-7 Bal. 0.03 0.03 15.5 6.1 6.1 0.9

X2CrNiMn 15-7-5 Bal. 0.023 0.086 14.5 5.36 6.85 0.88
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Fig. 22.1 Martensite
volume fraction z versus true
strain ε curves for uni-axial
tension-compression
loadings at different
temperatures and constant
strain rate
ε̇t = 4 × 10−4 s−1: symbols
correspond to experimental
data of cast
X3CrMnNi 16-6-6, solid
lines correspond to the fitted
empirical model
(Sect. 22.3.3.3)
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22.4.2.1 Martensite Kinetics

The empirical model of strain induced martensite kinetics (Sect. 22.3.3.3) is cali-
brated using experimental data from uni-axial, quasi-static tensile and compression
tests at different temperatures ranging from −60 to 60 ◦C [6, 10, 63, 71]. The cali-
bration result is shown in Fig. 22.1 in terms of evolving martensite volume fraction
during straining. A good match of the martensite evolutions is obtained with the
a priori estimation of the model parameters given in Table 22.2 and the exponent
noc = 1.868. For calibration purposes, the approximate coincidence of true strain ε

and the equivalent plastic strain εeq is assumed. Due to the occurrence of additional
TRIP-strains depending on stress, a small deviation is to be expected finally.

22.4.2.2 Asymmetric Strain Hardening

The isotropic strain hardening contributions in (22.71) are chosen as functions of the
hardening variable r , the temperature ϑ , and the martensite volume fraction z in the
following manner [34]:

Table 22.2 Model parameters of empirical martensite kinetics (22.76)

α0 α1 α2 α3 α4 β0 β1 β2 β3 β4

– – – K K – – – K K

2.77 1.14 −100 233.15 63.26 2.27 2.88 100 313.15 27.36
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Table 22.3 Model parameters of isotropic strain hardening (22.85)–(22.87)

σ0 H0 q Hinf rc Z1 Z2 c1 c2

MPa MPa – MPa – MPa – – K

174.2 1305.6 0.927 269.0 0.277 510.1 1.193 -0.0014 373.15

Table 22.4 Model parameters of asymmetric strain hardening (22.74)

b0 T0 T1 z0 z1

– K K – –

2.259 228.431 90.441 0.276 0.314

H (r) =
{

H0rq r ≤ rc

H0rq
c + Hinf

(
1 − exp

(
− H0qrq−1

c

Hinf
(r − rc)

))
else

, (22.85)

σ0 (ϑ) = exp (c1 (ϑ − c2)) σ0, (22.86)

mz (z) = 1 − exp (−Z2z) . (22.87)

Thermoelastic properties for the considered steel are taken from literature [9]. Appro-
priate values for the parameters of strain rate sensitivity m and ε̇0 are also proposed
in literature [9, 48]: m = 40 and ε̇0 = 4 × 10−4 s−1. Nine model parameters for
isotropic strain hardening are to be identified and calibrated (22.85)–(22.87). Addi-
tionally, five parameters for stress state dependent evolution of the hardening variable
have to be estimated, see (22.74). The final sets of estimated parameters are summa-
rized in Tables 22.3 and 22.4.

As reference test data, force versus elongation curves of uni-axial, quasi-static
tension and compression tests at −60, 20 and 100 ◦C [6, 10, 63, 71] are chosen.
At these temperatures, different amounts of martensite are reached, from nearly
100% down to 0%, see Fig. 22.1. The reasonable calibration results are illustrated in
Fig. 22.2.

The stress state dependent strain hardening becomes clearly visible in terms of
the true stress versus strain curves, see Fig. 22.3. In addition to the calibrated tem-
peratures, predictions are made for 60 and 200 ◦C. The corresponding experimental
data is published in [6, 10, 63, 71]. From −60 to 60 ◦C, substantial higher stress
levels are attained in uni-axial compression compared to tension. The asymmetry
vanishes at about 200 ◦C, because neither martensite nor shear bands are formed,
which is predicted by the model. Moreover, the qualitative change in strain harden-
ing with temperature is reflected. The prediction at 60 ◦C in the compression regime
deviates slightly. This indicates that other effects, especially the TWIP-effect, and
their influence on strain hardening have to be considered in ongoing works.
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Fig. 22.2 Force F versus elongation �l/ l0 curves at different temperatures and constant engi-
neering strain rate ε̇t = 4 × 10−4 s−1, symbols correspond to experimental data of cast X3CrMnNi
16-6-6, solid lines correspond to the fitted phenomenological model, a Uni-axial tension, b Uni-axial
compression
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Fig. 22.3 True stress σ versus true strain ε curves for different temperatures and stress states
at ε̇t = 4 × 10−4 s−1, solid lines correspond to tensile and dashed lines to compressive loadings,
respectively; a Model predictions, b Experimental data of cast X3CrMnNi 16-6-6

22.4.2.3 Strain Rate Dependency

A characteristic strain rate effect of high alloy TRIP-steels is the so-called curve cross-
ing observed in tensile tests [9]: The temperature increase during plastic deforma-
tion inhibits the formation of α′-martensite and thereby restricts the strain hardening
capability. The temperature increases with increasing strain rates, because adiabatic
conditions are asymptotically reached. The typical experimental observation based
on data from [10, 63, 71, 72] is shown in Fig. 22.4: After a higher stress level at low
strains, the curves of higher strain rates drop below the quasi-static reference curve.
In order to reproduce this behavior, a thermomechanical coupling is mandatory [9].

For the numerical simulations via FEM, a FE-implementation of the whole
experimental setup becomes necessary in order to consider the heat transfer from
the specimen to clamps and environment. A detailed description of the utilized
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Fig. 22.4 Stress σ and
martensite volume fraction z
versus true strain ε curves at
different technical strain
rates ε̇t during uni-axial
tension test: symbols
correspond to experimental
data of cast
X3CrMnNi 16-6-6, solid
lines denote the model
prediction
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FE-model is given in [9]. For the micromechanically motivated model introduced
in Sect. 22.3.2, the ability to cover the curve crossing effect is shown in [9]. The
same analysis is conducted for the phenomenological model with the results summa-
rized in Fig. 22.4: Qualitatively, the curve crossing in strain hardening and the lower
α′-martensite content at higher strain rates can be reproduced. A good match of the
experimental stress versus strain curves is visible for strains ε < 0.18 for all consid-
ered strain rates. The predictions cannot fit for higher strain rates exactly, because
there is an initial deviation of the quasi-static case at strains larger than 0.18. Addi-
tionally, due to the full dissipative formulation of the model, a temperature increase
(�ϑ ≈ 70 K) is predicted which is considerably higher than measured in experi-
ments (�ϑ ≈ 45 K, [63]). As result, the strain hardening and martensite formation
are weakened too much. This can be adjusted by introducing an empirical Taylor-
Quinney-coefficient controlling the amount of dissipated power, see [73]. Despite
the discussed need of improvements, the predictions of the models are physically
reasonable.

22.4.2.4 Inhomogeneous Loading States

In addition to the uni-axial tests from [63], a series of round notched tensile tests
has been conducted [53]. As test conditions, room temperature (20 ◦C) and quasi-
static loading has been applied. A detailed description of the test setup and the
evaluation procedure are given in [53]. The predictions of the calibrated material
model are assessed by a comparison with the experimental results in Fig. 22.5. Good
predictions of the force response are nearly made up to the onset of failure indicated
by a rather sudden load drop for all differently notched specimens. Due to neglected
damage, clear overestimations in the post-failure regime are visible. The indicated
softening within the simulated curves is purely due to necking. Material softening
caused by damage is taken into account in Sect. 22.4.4.2.
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Fig. 22.5 Force F versus
elongation �l/ l0 curves for
differently notched tensile
tests, numbers highlight the
notch radius in mm
(RS—smooth test); solid
lines correspond to the
model prediction, dashed
lines denote experiments of
cast X3CrMnNi 16-6-6
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22.4.3 Stress Analysis and Material Forces for Cracks in
TRIP-steels

In this section, the micromechanically motivated material model from Sect. 22.3.2
is applied for fracture mechanics investigations. The material parameters are based
on experimental data of cast steel X3CrMnNi 16-6-6, see Table 22.1 and references
[20, 21, 53].

22.4.3.1 Crack Tip Fields in Front of a Blunting Crack Tip

In ductile materials, cracks tend to blunt during opening. Thereby, finite strains
occur in front of the tip leading to characteristic shapes of the stress and strain fields.
The phase transformation influences these crack tip fields and leads to some new
characteristics, which are shown within this section.

From linear elastic fracture mechanics it is known, that the stresses become sin-
gular at the crack tip. The same holds for elastic-plastic fracture mechanics at small
strains, compare the well established HRR-field [74, 75]. If plasticity and finite strains
are considered, the situation is different. In this case crack tip blunting is incorpo-
rated, which means that an initially sharp crack deforms to a notch like shape. The
stress fields are not singular any more. The stress component perpendicular to the
surface of the blunted notch vanishes (σ11 in the ligament), because of the free sur-
face. The crack opening stress (σ22) reaches a maximum value at a distance in front
of the crack and a finite value at the surface of the notch, see McMeeking [76]. If the
considered material has a very high work hardening capacity, it is possible that the
distinctive σ22 maximum does not occur. Instead the stress monotonically increases
towards the crack tip and reaches high values there. This is reported by Yuan et al.
[77] for an austenitic steel with pronounced strain hardening.
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KI
plastic zone

transformation zone rpl

RBL

(a) (b)

Fig. 22.6 a Sketch of the boundary-layer approach, b Detailed view of the initial crack tip and
the finite element mesh together with the utilized coordinate system, reprinted from [20], with
permission from Elsevier

In order to study the fields at a blunting crack without influence of a specific
specimen geometry, small scale yielding under plain strain conditions is assumed.
This is realized by a boundary-layer model, which is a circular region surround-
ing the crack tip, compare Fig. 22.6. Displacements known from the linear elastic
K-field are prescribed on the boundary. In order to ensure small scale yielding, zones
of inelastic deformation have to be small compared to the radius RBL. In the case
of strain induced phase transformation the transformation zone is always embedded
inside the plastic zone, and thus rpl � RBL is sufficient.

The boundary value problem is solved numerically employing finite elements.
The boundary-layer model is discretized by quadrilateral elements with quadratic
shape functions and reduced integration (ABAQUS: CPE8R). A zoomed view of the
mesh near the crack is given in Fig. 22.6. It is typical to use a small initial radius
at the crack tip in blunting studies, which is also shown in the figure. If the radius
blunts to several times of its initial size, the resulting stress fields will be the same
as for an initially sharp crack. The advantage of this initial radius is that distorted
elements will show up later compared to the sharp crack tip. Further information can
be found in [20].

The simulations yield steady state solutions for the mechanical fields. Thus, for
example the distributions of stresses at different load levels KI are self similar. They
coincide in a single curve, if the distance to the initial crack tip in the reference
configuration X1 (Fig. 22.6) is normalized by J/σ0, which is proportional to the
crack tip opening displacement. Hereby, J is the J-integral and σ0 is the initial yield
stress of the material. Under small scale yielding and plane strain J is related to the
prescribed K-factor and the elastic constants via

J = K 2
I (1 − ν2)

E
. (22.88)

In order to point out the effect of the transformation hardening and the transfor-
mation strains, different model materials are considered, see Table 22.5. Figure 22.7
shows the corresponding true stress-strain curves and the evolution of martensite
volume fraction. The variants are realized by an appropriate choice of the material
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Table 22.5 Investigated
model materials—Overview

Variant Description, influence

TRIP TRIP-steel

⇑ Volumetric transformation strain

	v = 0 TRIP-steel without volumetric transformation
strain

⇑ Deviatoric transformation strain

εtrip = 0 TRIP-steel without any transformation strain,

⇑ Transformation induced hardening

Aust. Austenite (without phase transformation)
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Fig. 22.7 Uniaxial behavior of the different model materials, a True stress-strain curves (σ vs. ε),
b Evolution of martensite volume fraction z versus true strain ε

parameters, compare [20]. On the one hand, there is the TRIP-steel showing the full
phase transformation with corresponding hardening and straining. On the other hand,
there is a non-transforming austenite as reference. In between, there are two variants
of TRIP-steel to study the role of deviatoric and volumetric transformation strain:
one without volumetric transformation strain (	v = 0), and the other one without
any transformation strain (εtrip = 0).

At first, results for the TRIP-steel are discussed. The course of the stress compo-
nents in the ligament is depicted in Fig. 22.8. Towards the crack tip (from right to
left) an increase of the stress components is visible. The component σ11 reaches a
maximum at X1 = 0.23J/σ0 and goes down to zero with smaller distance X1. The
stress component σ22 increases continuously towards the tip and does not show a
maximum at some distance in front of the tip. This is consistent with [77] for mate-
rial exhibiting high strain hardening. Furthermore, the crack opening stress σ22 shows
a characteristic curvature, which is highlighted by the inflection points in Fig. 22.8.
These characteristics are triggered by phase transformation. They occur in or near
to the region with considerable martensite volume fraction, see Fig. 22.9. The stress
triaxiality h, which is also depicted in Fig. 22.9, has a maximum in front of the tip
and goes down to a finite non-zero value towards the crack.
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In the next step the different model materials are taken into account. Comparing
austenite to TRIP-steel, it becomes clear that phase transformation leads to higher
stresses and stress triaxiality in the region near to the transformation zone. This
is consistent with findings of Stringfellow [78]: By comparing TRIP-steel to non-
transforming austenite, an increase of equivalent stress due to phase transforma-
tion was found. Considering the other two TRIP-variants one can conclude that the
main effect comes from transformation induced hardening. The TRIP-steel without
transformation strain already shows all the characteristic features (inflection points,
increased stresses). The transformation strains reduce the stress components because
of strain softening and affect the stress fields considerably near the tip, where the
highest martensite volume fraction is present.
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Interestingly, there is a region very near to the crack tip, where the stresses are
highest in the austenite. This is explained with the different hardening behavior of
the model materials. It can already be seen in Fig. 22.7, that the TRIP-steel variants
reach higher stresses, but the austenite has the higher hardening modulus at strains
larger than 0.3. Asymptotically, the stress-strain curve of pure austenite leads to the
highest stresses, which is observed in the crack tip fields.

The implications of these observations on fracture in TRIP-steels were discussed
in detail by Burgold et al. [20]. In the case of cleavage, phase transformation could
have a negative effect, because of the higher principal stresses. But there is an open
question, how martensite affects the critical fracture strength. In the case of ductile
fracture, the transformation has a positive impact on toughness, because the trans-
formation induced hardening hinders the growth of micro voids. This is supported
by the work of Hütter et al. [79], who studied the effect of hardening on the ductile
fracture mechanism by micromechanical simulations. In both cases (ductile frac-
ture and cleavage) a shielding effect due to phase transformation can occur, because
martensite evolution dissipates mechanical work, which is not available for crack
growth anymore.

22.4.3.2 Material Forces in Consideration of Phase Transformation

In this section the influence of phase transformation on the crack driving force in
TRIP-steels and a possible shielding effect are investigated. Therefore, the theory of
material forces (also called configurational forces) is applied, which are generalized
thermodynamic forces acting on defects, see e.g. [80–82]. A great advantage of the
approach is that it distinguishes between the material force acting on the crack tip
and those occuring in zones of inelastic deformation, see e.g. [83–86]. Generally, a
material force �GD acting on defects in a domain surrounded by the contour Γ reads

�GD =
∫

Γ

Q · �n dS (22.89)

with the unit normal vector �n and the energy-momentum tensor of elasto-statics Q
according to Eshelby, see [81]. The tensor Q is calculated by

Q = ψδ − (grad �u)
T · σ (22.90)

with the unit tensor of second order δ.
In this section we assume small strains, isothermal and static conditions, and the

absence of body forces. The small strain tensor can be additively decomposed into
elastic and inelastic strains.

ε = εel + εtrip + εvpl (22.91)
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Fig. 22.10 a Cracked body with different contours and regular subpart Ar , b Different material
forces near a crack tip in TRIP-steel acting on different defects

The application of material forces to TRIP-steel has been discussed in detail by
Kuna et al. [21]. Thereafter, a local balance of material forces is established by taking
the divergence of Q, which after some rearrangements leads to

div Q + σ : grad εvpl + σ : grad εtrip + ∣∣	ga→m
chem

∣∣ grad z = �0. (22.92)

The term 	ga→m
chem describes the difference in the chemical energy of austenite and

martensite and is known from Sect. 22.2.2.4. Following (22.92) the divergence of Q
is balanced by material body forces resulting from gradients of the internal variables
εtrip, εvpl and z. The gradient terms enter the derivation, because the gradient of the
Helmholtz potential ψ is evaluated, see [21].

Furthermore, the global balance of material forces is achieved by integrating the
local balance (22.92) over a regular subpart Ar of the body. Figure 22.10 depicts the
case of a cracked body with its regular subpart (domain Ar) and an enclosing contour
C = Γ + Γ+ + Γ− − Γω. Applying the divergence theorem to the integrated local
balance and some rearrangements enable the formulation of the material force acting
on the crack tip:

�G tip = lim
ω→0

∫

Γω

Q · �n dS = �J − �G trip − �Gvpl (22.93)

�J =
∫

Γ

Q · �n dS (22.94)

�G trip = lim
ω→0

∫

Ar

− (
σ : grad εtrip + ∣∣	ga→m

chem

∣∣ grad z
)

dA (22.95)

�Gvpl = lim
ω→0

∫

Ar

−σ : grad εvpl dA (22.96)
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The crack driving force �G tip is a J-integral evaluated over a vanishingly small contour
Γω surrounding the crack tip. It is computed by subtracting material forces �G trip and
�Gvpl, which result from inelastic processes in the domain Ar , from the usual J-integral
vector �J . �G tip turns out to be a modified J-integral, which is path independent in the
case of plastic deformations and phase transformations.

The different material forces relevant for the considered TRIP-steel are illustrated
in Fig. 22.10. There is the usual J-integral describing the sum of material forces for
all defects inside the contour Γ . The crack driving force �G tip acts directly on the tip.
The material forces due to inelastic processes �G trip and �Gvpl act on the transformation
zone and the plastic zone, respectively. In the case, that Γ only includes a part of
these zones, the terms �G trip and �Gvpl are material forces acting on this part of the
zones. As long as the inelastic material forces are positive, they decrease the available
crack driving force, see (22.93), which indicates a shielding effect.

The material forces are computed numerically by finite elements within the soft-
ware package ABAQUS. Therefore, postprocessing of the FE results is performed.
With the help of the equivalent domain integral method, nodal material forces are
formulated, compare [19, 21, 83]. The global material forces (22.93)–(22.96) are
then achieved by a weighted summation of the nodal material forces.

In the following, material forces are evaluated for the example of small scale
yielding under plain strain conditions. Again the boundary-layer model, Fig. 22.6, is
used, this time without an initial radius at the tip. Material parameters and additional
information concerning the numerical model can be found in [21].

A cohesive zone (ABAQUS built-in) is placed at the ligament in order to incor-
porate crack initiation and propagation. One reason is that the path independence of
the crack driving force can be elaborated under non-proportional loading. The other
reason is that the cohesive zone model (CZM) contains a parameter G0 called work
of separation, which is exactly the dissipated work per area of crack extension. It is
therefore the critical value of the crack driving force during crack extension, which
has to be calculated correctly by the proposed material force method.

A bilinear traction separation relation is applied, which includes reversible open-
ing of the cohesive zone until the cohesive strength t0 is reached. The corresponding
value of the separation is s0. Loading beyond this point is connected to damage evolu-
tion and a descending load carrying capacity of the cohesive zone. At the separation
st the cohesive zone is totally damaged and cannot carry tractions anymore. During
the complete separation process until st , the work of separation G0 is consumed.

The mesh consists of fully integrated quadrilateral elements with quadratic shape
functions (ABAQUS: CPE8). The mesh design in the region of crack extension can
be seen in the following figures.

A detailed view of different nodal material forces (notation: node (K )) is shown in
Fig. 22.11. The upper crack face is depicted with the initial crack tip approximately
in the center. A close scrutiny of these figures reveals, that there are substantial
material forces at the nodes connected to the cohesive zone (nodes on the crack
face right to the initial tip). Since the CZM incorporates the fracture process, these
are nodal material forces acting on the smeared crack tip. Furthermore, there are
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Fig. 22.11 Distribution of the different nodal material forces (node (K )), which are nodal contri-
butions to the material forces of (22.93)–(22.96), the region near the initial crack tip (center of the
crack flank) is shown during fracture initiation, cohesive elements are not shown here, reprinted
from [21], with permission from Springer Nature

considerable nodal material forces in the bulk resulting from viscoplastic deformation
and phase transformation. In contrast to the nodal contributions to the usual J-integral
�J (K ), the nodal contributions to the material force acting on the tip �G(K )

tip nearly
vanish in the volume, because of the subtraction of the inelastic nodal material forces
�G(K )

trip and �G(K )
vpl . Small remaining vectors can be explained with numerical errors in

the computation of the gradients of the internal variables. They have actually no
influence on the material forces after summation of the nodal contributions, see the
next paragraph.

The nodal material forces are summed up to get material forces acting on the crack,
the plastic zone and the transformation zone. In the case of crack propagation under
mode I only the x1-components are non-zero. These components of the different
material forces are plotted in Fig. 22.12. Firstly, plausibility is checked: The regular
J-integral J1 equals the J-integral J SSY

1 , which is prescribed at the boundary layer,
see again (22.88). Furthermore, once the cohesive zone is fully initiated, the crack
driving force G tip

1 equals the work of separation G0 of the CZM. The symbols in the
diagram mark start and end of the fracture initiation process. At s tip = s0, the first
cohesive element reaches the cohesive strength and starts to damage. At s tip = st ,
the first cohesive element reaches total damage and for the first time G tip

1 = G0 is
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Fig. 22.12 Evolution of the
nonzero component of the
material forces for the
boundary-layer model, J SSY

1
is the prescribed J-integral
(external loading), G0 is the
work of separation of the
CZM, start and end of
fracture initiation is marked
by symbols, reprinted from
[21], with permission from
Springer Nature
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fulfilled. Thus, the proposed material force method is verified to give reasonable
results.

Secondly, the contributions of the inelastic processes can be viewed in detail,
Fig. 22.12. In contrast to the local distribution of the nodal material forces, the plastic-
ity induced material force Gvpl

1 is dominant compared to the transformation induced
G trip

1 . This is because the plastic zone is much larger than the transformation zone in
the example. Both contributions are positive, which underlines the shielding effect
of viscoplasticity and martensitic phase transformation.

In Fig. 22.13, the path independence of the formulated crack driving force is
demonstrated by evaluating G tip

1 for different domains and comparing it to the usual
J-integral J1. Until the start of fracture initiation in the CZM, both values are
equal. For the case of monotonically and proportionally loaded cracks, the classical
J-integral is known to be approximately path independent even if inelastic material
behavior is present. This changes during crack initiation: J1 becomes path depen-
dent whereas the material force acting directly on the crack tip G tip

1 remains path
independent.

22.4.4 Damage and Fracture of High Alloy TRIP-steel

Now, the simulation of damage and crack extension in high alloy TRIP-steel is elab-
orated in more detail. On the one hand, a cohesive zone model (CZM) is applied and
appropriate cohesive parameters are estimated. On the other hand, damage evolution
and crack growth is modeled by the phenomenological model, Sect. 22.3.3, including
the developed non-local ductile damage formulation.
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Fig. 22.13 Demonstration of the path independence of the crack driving force G tip
1 , a Evaluation

of the J-integral J1 and G tip
1 for different domains, J SSY

1 is the prescribed J-integral, G0 is the work
of separation of the CZM, b Definition of the different domains used in the diagram, adapted from
[21], with permission from Springer Nature

22.4.4.1 Simulation of Crack Growth Using a Cohesive Zone Model

In the last section, the versatility of the cohesive zone model for the simulation
of crack extension was shown. In particular, the material parameter G0 (work of
separation) is the critical value of the material force acting on the crack tip. To apply
this fracture criterion, it is important to identify G0 for the given material.

In this section, the cohesive zone parameters are identified for the cast TRIP-steel
X2CrNiMn 15-7-5. The chemical composition of the investigated steel is given in
Table 22.1. The corresponding experiments are carried out on CT-specimens with
chevron notch, see Fig. 22.14 and the paper by Burgold et al. [87] for further details.
Fracture mechanical experiments on austenitic steels are a difficult task, because
of the high work hardening capability and ductility. Excessive large scale yielding,
which is shown in Fig. 22.14, impose challenges to the experiments and standard
methods for measuring the crack length since compliance method or potential drop
method do not work [87]. Therefore, special optical techniques (see Henkel et al. [88])
are used in order to measure crack extension �a and crack tip opening displacement
CTOD δ at the surface of the specimen. From the experiments, force-displacement
curves and crack growth resistance curves in terms of CTOD versus crack extension
are obtained.

Because of large necking and thickness reduction during the tests three dimen-
sional finite element calculations at finite strains are carried out, see [87, 89],
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Fig. 22.14 a Deformed CT-specimen made of austenitic cast steel, b Finite element model with
boundary conditions, displacement u is prescribed on the bolt, reprinted from [87], with permission
from Carl Hanser Verlag GmbH & Co. KG, München

employing the commercial FE software ABAQUS. A quarter of the CT-specimen
is modeled, compare Fig. 22.14. A vertical displacement u is prescribed on the bolt,
that is connected to the deformable body by a contact algorithm.

The utilized CZM was deveploped by Roth et al. [90, 91]. Hereby, a smooth
exponential traction separation relation is applied, which has an adjustable shape
due to two shape parameters ε̂ and ω̂. One finding of the study is, that the choice
ε̂ = ω̂ = 1 facilitates a good fit of the experimental data. Therewith, the well known
traction separation relation from Xu and Needleman [92] is obtained.

The body is discretized by fully integrated continuum elements with linear shape
functions (ABAQUS: C3D8). One layer of cohesive elements, which are user defined
elements (UEL) [90, 91], is placed in the ligament. In contrast to ABAQUS built-in
cohesive elements, the user elements work correctly on symmetry planes under large
deformations.

It turned out to be sufficient to model the material behavior of the applied steel
by a simplified constitutive law, in which transformation strains are not considered.
The yield function of the rate independent model for isothermal conditions is given
by

ypl(σ , σy) = σeq(σ ) − σy ≤ 0 (22.97)

with the von Mises equivalent stress σeq and the yield stress σy. An associated flow
rule is considered and the evolution equation for the plastic rate of deformation takes
the form

Dpl = �̇pl
∂ypl

∂σ
= ε̇eq N. (22.98)
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Fig. 22.15 Engineering
stress-strain curves and
evolution of martensite
volume fraction z under
uniaxial tension, comparison
between experimental data
and simulation with the
material model
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Hereby, the plastic multiplier �̇pl is equal to the rate of equivalent plastic strain ε̇eq.
The tensor N is the flow normal known from (22.51).

The evolution of the yield stress σy is defined by the hardening law (22.71).
This relation is simplified because the isothermal case is considered and Lode-angle
dependence is not taken into account (r = εeq because b = 0 in (22.73))

σy
(
εeq, z

) = σ0 + Z1mz (z) + H
(
εeq

)
. (22.99)

Thus, in addition to Z1 the initial yield stress σ0 becomes a material parameter. The
work hardening term H

(
εeq

)
, see (22.85), is modified by rc → ∞ and reads

H
(
εeq

) = H0 εq
eq (22.100)

with the parameters H0 and q. The martensite influence term mz (z) is given by
(22.87) with the parameter Z2.

The martensite kinetics is based on the empirical approach of Sect. 22.3.3.3. There-
fore, the volume fraction of shear bands evolves as described by (22.48), in which
αoc is directly taken as material parameter. The rate of martensite volume fraction is
computed by (22.49) with βoc and noc as additional material parameters.

The parameters of the material model are adequately calibrated to data from
tensile tests of the cast TRIP-steel X2CrNiMn 15-7-5, see Fig. 22.15. In addition to
the mechanical data, the martensite volume fraction z is measured in situ by a novel
magnetic device developed by Hauser et al. [93] and is applied in the calibration
procedure. The identified parameters are given in Table 22.6.

Table 22.6 Parameters of the rate independent TRIP-steel model

σ0 H0 q Z1 Z2 αoc βoc noc

MPa MPa – MPa – – – –

153.8 434.2 0.401 370.9 2.06 5.66 0.988 3.805
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Fig. 22.16 Comparison of experiments and simulation, a Crack growth resistance curves in terms
of CTOD δ and crack extension �a, b Force-displacement curves (F vs. u)

Table 22.7 Identified set of cohesive zone parameters

t0 G0 ε̂ ω̂

MPa kJ/m2 – –

700 425 1 1

z

0.00
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0.20
0.25
0.30
0.35

Fig. 22.17 Plot of the distribution of martensite volume fraction z during crack extension, note the
cohesive elements (white) in the ligament

Ultimately, the remaining independent cohesive parameters G0 and t0 have been
chosen in a way, that the simulated force-displacement curve and crack growth resis-
tance curve fit the experimental ones. The results are depicted in Fig. 22.16. Data
from two realizations of the experiment are compared to the simulation with the final
parameter set, which is given in Table 22.7. The two tests show only small differ-
ences and the simulation fits both tests very well. This supports the identified set
of parameters and the whole modeling approach. Thus, the fracture process in the
investigated CT-specimens is characterized by the given cohesive parameters. This
concept was also successfully applied to a non-transforming austenitic steel in [87].

Finally, the martensite distribution around the crack is illustrated in Fig. 22.17. The
highest amount (0.3–0.35) of martensite is formed during crack tip blunting near the
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initial crack tip. During crack extension a zone of martensite volume fraction between
0.2 and 0.25 is moved through the ligament.

22.4.4.2 Simulations Using the Micromorphic Model of Ductile
Damage

Here, the micromorphic damage extensions of the phenomenological model from
Sect. 22.3.3 will be used for simulation of ductile crack growth at isothermal condi-
tions. Test results of the cast TRIP-steel X3CrMnNi 16-6-6 are utilized for calibration
and validation. As described in [35], the calibration strategy for the considered class
of damage models consists of three steps:

1. Choosing and fitting an isotropic strain hardening law to data of smooth and
slightly notched tensile tests

2. Estimating an appropriate damage indicator function using FE-analysis and exper-
imental results, e.g., of notched tensile tests

3. Fitting the damage parameters (q1–q3, εc and Lnl) to match results of a fracture
mechanics test

For the first calibration step, the parameters of the strain hardening model for
cast X3CrMnNi 16-6-6 (Sect. 22.4.2) are slightly modified. This is done in order to
improve the fit to the notched tensile tests discussed in Sect. 22.4.2.4.

For the second calibration step, undamaged FE-simulations of the notched tensile
tests are performed to extract the loading history which leads to initiation of damage in
critical regions, see [35]. As critical region, the center of the specimen at the symmetry
plane is defined, since here the highest stress triaxiality occurs. The history until the
rather sudden deviation of simulated and experimental force versus elongation curves
is taken into account. The equivalent strain to damage initiation is plotted versus the
stress triaxiality in Fig. 22.18. For all considered notch radii, a drop of triaxiality
during deformation is observed, which is in contrast to recent results of a pressure
vessel steel [35]. This behavior can be attributed to the strain hardening of the TRIP-
steel: The high hardening capability delays a localization of deformation and the
blunting of the notch decreases the triaxiality of the loading state. As indicator of
damage initiation, the integral formulation

ω
(
h, εeq

) =
εeq(t)∫

0

�(h) dεeq, (22.101)

�(h) = �1 + �2 exp (�3h) (22.102)

is used, which constitutes a modified Rice-Tracey-approach, see illustration in
Fig. 22.18. The identified parameters read �1 = 0.094, �2 = 0.666, and �3 =
2.721.
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Fig. 22.18 Damage
initiation locus (equivalent
plastic strain εeq vs. stress
triaxiality h): Loading
history at the critical
locations for the differently
notched tensile tests, circles
mark damage initiation; the
damage initiation locus for
constant triaxiality during
loading is added as solid blue
line

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2

ε e
q

h

R2

R4R8

R1

h=const.

In addition to the notched tensile tests, fracture mechanics experiments are nec-
essary in order to perform the third step of the proposed parameter calibration. Due
to missing experimental results on fracture parameters of cast X3CrMnNi 16-6-6,
a numerical prediction serves as fracture mechanics reference. Appropriate param-
eters of a cohesive zone model are available for a similar steel in Sect. 22.4.4.1.
These results are utilized to make a realistic guess for the fracture behavior of
X3CrMnNi 16-6-6. A simulation of the 3D-CT-specimen is performed using the cal-
ibrated cohesive zone model from Sect. 22.4.4.1 and the calibrated material model
for X3CrMnNi 16-6-6. Because fracture is completely described by the cohesive
zone, damage of the bulk material is neglected. The obtained reference force versus
displacement curve and the crack growth resistance curve in terms of CTOD versus
crack length are shown in Figs. 22.19 and 22.21. The crack extension �a is evaluated
using the maximum stress criterion with respect to the undeformed configuration at
the surface of the specimen as explained in [94]. This criterion can be similarly
evaluated for the cohesive zone model and the ductile damage approach.

The CT-specimen, see Fig. 22.14 and reference [87], is implemented as FE-model
in ABAQUS. To avoid highly distorted elements, a small radius rt = 0.05 mm is
applied at the crack tip as suggested in literature (see Fig. 22.20, [35, 76, 94]), which
is permissible for the expected blunting prior to crack propagation. A 3D-finite ele-
ment formulation employing reduced integration with quadratic shape functions for
the displacement and linear shape functions for the micromorphic DOF are used
(ABAQUS: C3D20RT). Along the ligament, a mesh size of be/Lnl = 0.25 is pre-
scribed, where be is the edge length of the element, see Fig. 22.20. This recom-
mendation can be found in literature to obtain converged results [34, 35, 95]. The
axi-symmetric models of notched tensile tests are also meshed with the mentioned
restrictions in regions of interest (ABAQUS elements: CAX8RT).

During the calibration process, the parameters q1 and q3 are fixed to the value
3. Only the internal length Lnl, the influence of equivalent strain q2 (void nucle-
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Fig. 22.19 Influence of different parameters of the damage evolution law on structural response
of the CT-specimen (force F vs. displacement u curves, crack growth resistance CTOD δ vs.
�a), Top row (a, b): εc = {0.2, 0.3, 0.5}, Middle row (c, d): Lnl = {0.5, 0.75, 1} mm, Bottom row
(e, f): q2 = {0.01, 0.025, 0.1}

ation), and the acceleration parameter εc are varied. Considerable small values are
prescribed for q2, because void growth is assumed as the main damage mechanism
in the considered domain of moderate to high stress triaxialities.

In order to assess the influence of the free parameters, a sensitivity study is per-
formed. The reference set of parameters is prescribed as: εc = 0.3, Lnl = 0.5 mm,
and q2 = 0.1. The results are summarized in Fig. 22.19 and compared to the refer-
ence cohesive zone simulation as well as the pure blunting solution: With varying εc,
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Fig. 22.20 Simulation of the CT-specimen, a Initial FE-mesh with crack tip rounding, b Deformed
structure with damage distribution D at a crack extension of ≈15 mm, c Highlighted elements
undergoing total damage

the slope of the crack growth resistance curve and the decreasing branch can be
controlled. Simultaneously, the force level is changed. The internal length Lnl can be
used to calibrate the maximum force and the crack initiation value, here the critical
crack tip opening δi. Changing q2 determines the deviation of the force response
from the undamaged solution.

Motivated by the sensitivity study, a rough accordance is obtained with the man-
ual calibration of the damage parameters: εc = 0.2, Lnl = 1.0 mm, and q2 = 0.01.
The response of the calibrated model is illustrated in Fig. 22.21. The location and
amount of the maximum force need further improvement and the crack tip opening
is underestimated. But the softening branch of the force versus displacement curve
and the slope of the crack growth resistance curve are in acceptable accordance.
It should be mentioned that a considerably large crack propagation can be mod-
eled in a robust manner (�a = 30 mm); the simulations are interrupted externally
after reaching the prescribed crack length. The contour plots in Fig. 22.20 show that
damage is distributed over some layers of elements indicating the regularized char-
acter of the proposed damage model. The crack is represented by a layer of total
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damaged, highly distorted elements. Hence, the applied patch solution for damping
pathological widening of the damage zone works well in this special case.

With the estimated damage initiation and evolution parameters at hand, the
notched tensile tests are simulated until failure. A comparison of predicted and
experimental force versus elongation response reveals a reasonable agreement, see
Fig. 22.22. The elongation at failure is slightly overestimated by the simulation for
the small notch radii, but the load carrying capability is fully captured.

In conclusion, the proposed and calibrated micromorphic approach of ductile
damage for high alloy TRIP-steel is able to reproduce the deformation, damage, and
failure behavior including stable crack propagation.
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22.5 Conclusions

Based on a profound thermomechanical framework, a micromechanically based
material model and a phenomenological approach are developed, which account for
typical phenomena attributed to high alloy TRIP-steel: stress state dependent strain
hardening, loading rate sensitivity and temperature dependency. In addition, a reg-
ularized ductile damage model, which is formulated with help of the micromorphic
approach, is included.

For the phenomenological modeling approach, the applicability is demonstrated
by calibration and validation with experiments of a cast X3CrMnNi 16-6-6 steel
exhibiting strain induced α′-martensite formation. After calibrating the model to a
subset of experiments (quasi-static loaded, uni-axial tension and compression tests
at different temperatures), some predictive simulations are conducted. Firstly, pre-
dictions of stress-strain response at temperatures, which are not considered during
calibration, are of reasonable quality. Especially, the disappearance of the tensions-
compression asymmetry of strain hardening with increasing temperature is correctly
reflected. Secondly, acceptable results are obtained for tensile tests at increased strain
rates, where the thermomechanical coupling becomes important: The characteristic
curve crossing of strain hardening curves is clearly captured by the model. Finally,
simulations of notched tensile tests yield good agreement to available experiments.
Hence, the model is also validated for inhomogeneous deformation.

With the help of the micromechanically motivated model, the effect of martensitic
phase transformation on the loading situation at crack tips is investigated. The course
of the stresses in front of a blunting crack shows characteristic curvature attributed
to phase transformation. The most important influence is an increase in the stress
components due to transformation induced hardening. Additional hardening affects
ductile fracture in a positive manner, because the growth of microvoids is postponed.
Another study examined the crack driving force for TRIP-steels under consideration
of plastic deformation and phase transformation. By applying the theory of material
forces a modified J-integral was formulated, which is path independent under these
circumstances. Resulting from this, a shielding effect due to both inelastic strains
was observed for small scale yielding.

Taking fracture process into account, a pragmatic cohesive zone model is success-
fully calibrated to reproduce crack propagation during loading of a CT-specimen. In
combination with the cohesive zone, a simplified material model for isothermal and
quasi-static conditions turned out to be sufficient to enable a good fit of the CT-tests.
Finally, the micromorphic ductile damage model is applied to predict damage, crack
propagation and failure of different structures made of a cast X3CrMnNi 16-6-6
steel (CT-specimen, notched tensile tests). A reasonable agreement to experimental
and numerical reference data is obtained after performing a developed calibration
strategy.

Hence, versatile modeling tools for TRIP-steels are available, which are ready to
be applied in simulations of future engineering applications.
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Chapter 23
Properties of Phase Microstructures
and Their Interaction with Dislocations
in the Context of TRIP Steel Systems

Rachel Strobl, Michael Budnitzki and Stefan Sandfeld

Abstract Transformation Induced Plasticity (TRIP) steels undergo a diffusionless
phase transformation from austenite to martensite, resulting in a material exhibiting
desireable material properties such as exceptional balance of strength and ductility
as well as good fatigue behavior. Computational modeling at the mesoscale is poten-
tially a suitable tool for studying how plastic deformation interacts with phase trans-
formations and ultimately affects the bulk properties of these steels. We introduce
models that represent the phase microstructure in a continuum approach and couple a
time-dependent Ginzburg-Landau equation with discrete dislocation via their elastic
strain energy densities. With this, the influence of several dislocation configurations
are examined, namely a single dislocation, a “penny-shaped crack”, and a “dislo-
cation cascade”. It is shown that the strain due to the presence of dislocations has
a significant influence on the resultant martensitic microstructure. Furthermore, the
importance of using a non-local elasticity approach for the dislocation stress fields
is demonstrated.

23.1 Introduction

The solid-solid phase transformation in transformation induced plasticity (TRIP)
steels leads to desirable properties for engineering applications. In the case of a Cr-
Mn-Ni steel matrix, a high fault austinite phase is converted to α-martensite, and a
high number of dislocations are active during the process of phase transformation,
as also seen via in situ experiments, e.g., as in [1].
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Computer simulations and numerical modeling of TRIP-steels can be very bene-
ficial for understanding the interaction of different microstructural phenomena, such
as planar defects (e.g., phase transformations) and linear defects (dislocations), all
of which may have significant influence on the mechanical properties of the bulk
material. Dislocations are responsible for plastic deformation of metals; they may
interact among themselves and can also be nucleated, e.g., during martensitic phase
transformations. The combination of martensitic phase transformations and disloca-
tion activity results in lattice distortions and may ultimately lead to increased work
hardening.

Predictive modeling requires to spatially resolve the relevant physical phenomena
and to describe their evolution in time. E.g., molecular dynamics (MD) simulations
are inherently able to model both phase transformations and dislocations [2–4]. How-
ever, the computational cost for solving Newton’s equation of motion together with
the interaction of all atoms for volumes and strain rates that are comparable to exper-
imentally used ones is very high. As a consequence, typical MD simulations operate
with strain rates that are several orders of magnitudes higher than the experimentally
used strain rates and, at the same time, are also restricted to relatively small systems
with typical sizes ranging from several nanometers to a few hundreds of nanometers.

Phenomenological continuum models of plasticity can reach relevant timescales
and length scales, however, details regarding phase transformations or dislocations
can only be incorporated indirectly and are generally not directly based on the under-
lying mechanisms. A macroscopic continuum model also cannot resolve the inter-
face of two phases properly due to a highly coarsened resolution. Phase field models
(PFMs) are based on the minimization of total energy and are “mesoscopic” meth-
ods in which individual atoms or their interactions are not explicitly represented, but
in which microscopic effects are still able to be considered. However, this requires
either input from lower scale methods or parameterization with experimental data.

The general phase field approach is based on a set of order parameters, φ1, . . . , φn ,
continuous functions in space, which represent the different phases in the system.
The time evolution of the order parameters is governed by the minimization of total
energy. Based on this, the relevant physical properties are described as functions of
the order parameters. The governing PFM equation is the time dependent Ginsburg-
Landau (TDGL) evolution equation [5], first implemented for martensitic phase trans-
formations by Khachaturyan [6].

In the following we will introduce a coupled phase field—dislocation frame-
work that shows how dislocations or idealized cracks interact with phase boundaries
between a martensitic and an austenitic phase. A second focus is then on a general
approach in the context of non-local elasticity for representing the stress field of
discrete dislocations.

The following nomenclature is employed throughout this chapter: We denote
vectors by bold lower case latin a and greek α letters, and the dot operator “·”
denotes the scalar product a · b ∈ R. We will, however, abuse this notation and use
the dot “·” as well for inner products, whenever appropriate.

Second order tensors are denoted by bold uppercase latin letters A. We introduce
a scalar product between second order tensors denoted by “:” as A : B := trA · B�,
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where B� is the transpose of B and tr(·) denotes the trace operator. In an inner product
space this product implies the norm ‖A‖ := √

A : A. Given an orthogonal tensor R
and an arbitrary order tensor �, R ∗ � denotes the Rayleigh product of R and �;
for a second order tensor A, we have R ∗ A = R · A · R�.

Third order tensors are denoted by bold calligraphic letters A and “
... ” is the

corresponding full contraction operator. Fourth order tensors are denoted by black
board upper case letters A.

23.2 Interaction Between Martensitic Phase
Transformations and Dislocations

23.2.1 Phase Field Equations

The high strain induced via a phase transformation between face centered cubic
(FCC) austenite and body centered cubic (BCC) martensite may trigger the nucle-
ation of a large number of dislocations inside the material. Both dislocations and
martensitic phase transformations affect the bulk properties of steels, and therefore,
representing the interaction between dislocations and interfaces, and how this affects
the phase transformation are essential for micromechanical modeling.

Thus, our computational model consists of two parts: the evolution of the phase
microstructure is governed by the TDGL equation which minimizes the total energy
in the system. The second part of the model considers discrete edge dislocations
in a two-dimensional domain, for which an analytical solution of stress is avail-
able [7]. Such methods of coupling PFM and dislocations have been successfully
applied for materials such as nickel-based superalloys [8, 9]. The modeling of the
phase transformation will not consider any intermediate phases, and therefore only
one order parameter, φ, is needed. It will also be assumed in the model that inside
the martensitic phase, the dislocation mobility will approach zero, resulting in no
movement of the dislocations inside the martensite phase. The TDGL requires the
gradient energy at the phase boundary, the elastic strain energy, and a transformation
potential. Here, contributions to the free energy arise from the elastic energy, W , the
separation potential, f , and gradient energy. The time-dependent evolution of the
order parameter is then given by

∂φ

∂t
= −M

(
∂W

∂φ
+ G

(
κs

Lchar

∂ f

∂φ
+ κg Lchar�φ

))
, (23.1)

where φ is the order parameter describing the current phase at each point in space.
The material specific parameters are mobility, M , interfacial energy density, G, char-
acteristic length scale, Lchar, and the calibration constants, κs and κg , which control
the width of the interface between the two phases [10].
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Fig. 23.1 Potential of phase
transition. The two wells
signify martensite variants 1
and 2. The local maximum
signifies a metastable
austenite phase
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W is the elastic strain energy density which takes the form

W (ε, φ) = Eel : S (23.2)

where Eel is the elastic strain tensor and S is the stress tensor.
The second term describes the potential of phase transformation. In our model,

we use a so-called “2-4-6 potential” (see Fig. 23.1), given as

f (φ) = (3A2 − 1 − 2φ2)(1 − φ2)2

(3A2 − 1)
, (23.3)

where A is a fit parameter which can be obtained from lower scale simulation meth-
ods. The final term accounts for the gradient of the interface between the two phases
[11].

23.2.2 Dislocations and Mechanical Equilibrium Conditions

The stress field around a dislocation follows—outside the core region—linear elastic-
ity. Any solid body in static equilibrium obeys the mechanical equilibrium equation,
i.e., the divergence of the stress tensor, S, must be zero,

∇ · S = 0 . (23.4)

While this follows from the conservation of linear momentum, the conservation
of angular momentum is responsible for the symmetry of the stress tensor, S = ST ⇔
Si j = S j i . Assuming linear elastic material, the stresses and strains are related by the
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stiffness tensor, C, as
S = C : Ee (E, φ) , (23.5)

where, in a phase field ansatz, the elastic strain tensor, Ee (E, φ), is a function of the
order parameter as well as of the total strain, E. We assume a small strain context in
our model, and therefore strains may be additively decomposed into their elastic and
inelastic parts:

Ee (E, φ) = E − Einel . (23.6)

The tensor of inelastic strains, Einel, consists of the transformation strain Etr and
the dislocation eigenstrain Edis. In the following we will only consider a horizontal
slip system in a plane strain model. The plane components of the stress tensor for
a single dislocation in an infinite, linear elastic medium then follow the following
analytical solution [7]:

S11 = −μ b

2π (1 − ν)

y (3x2 + y2)

(x2 + y2)2
, (23.7)

S22 = −μ b

2π (1 − ν)

y (x2 − y2)

(x2 + y2)2
, (23.8)

S12 = μ b

2π (1 − ν)

x (x2 − y2)

(x2 + y2)2
, (23.9)

where b is the absolute value of the Burgers vector, μ is the shear modulus, and
ν is Poisson’s ratio. In order to avoid the unphysical diverging behavior close to
the dislocation core, a numerical regularization approach as proposed in [12] is
used; a physically more rigorous approach is presented in the subsequent section.
The resulting stress components are shown in Fig. 23.2. The strain tensor, which
governs the dislocation eigenstrain, can then be straightforwardly obtained from
Edis = C

−1 : S. Equation (23.2) couples the phase field model and the dislocation
model through the eigenstrain of dislocations and the eigenstrain contribution due to
the phase transformation. While in this work we only consider stationary dislocation
configurations, in general, the equation of motion for the dislocations would be a
second equation where the two models are coupled.

23.2.3 Simulation Setup and Boundary Conditions

In order to observe the interaction between the dislocation and the phase field inter-
face, a martensitic phase transformation needs to be triggered first. In our first sim-
ulation setup this is done via a martensitic “seed”, which is an artificial inclusion
of the martensite phase. The first simulation setup consists of a circular martensitic
seed surrounded by an austenite matrix, as shown in Fig. 23.3a, with one dislocation
placed inside the austenite phase. The entire domain measures 200 nm by 200 nm.
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Fig. 23.2 Individual components to the stress tensor for a single dislocation, according to (23.7)–
(23.9)

In our second simulation setup we use a penny-shaped crack, as shown in
Fig. 23.3b, to initiate a phase transformation. The introduction of several station-
ary positive and negative dislocations on either ends of a crack mode II crack tip
effectively mimics a small crack inside of a material. The equivalent dislocation
distribution function of the crack is given by Weertman [13].

In both setups, free boundaries were considered. To avoid a rigid body motion, the
domains were fixed in one corner, and in an adjacent corner, a zero displacement was
prescribed in vertical direction only to avoid over-constraining the system. The two
martensite variants are considered by one order parameter which is φ = 1 for variant
1 and φ = −1 for variant 2. The simulations progress by time integrating the TDGL,
and we let them evolve until a quasi-static configuration is reached. The numerical
implementation was done using the finite element method. We used quadratic shape
functions and a rectangular mesh with 100 elements into each direction.
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Fig. 23.3 Schematic of initial setups of the simulations showing a a martensitic seed surrounded
by an austenite matrix, and b a penny-shaped crack in an austenite matrix

23.2.4 Simulation Results

23.2.4.1 Martensitic Seed and Edge Dislocation

Our first simulation set up considers the geometry and initial values shown in
Fig. 23.3a. Figure 23.4 shows the order parameter, the S12 component of the stress
tensor, and the elastic energy density at three distinct points in time. The initial con-
figuration with the circular seed is an artificial and energetically highly unfavorable
microstructural state. This is why immediately at the beginning of the simulation the
horizontal and vertical martensitic bands originating from the location of the seed
were created, as shown in the first snapshot. However, due to the spatially hetero-
geneous structure with changing transformation strains across the interfaces stresses
and elastic strain energy are still high (Fig. 23.4 bottom and middle row) which show
that equilibrium has not yet reached.

The TDGL minimizes total energy in the system, so as time progresses, the system
will attempt to transform into a state where energy decreases. If there was no disloca-
tion present, the system would be perfectly symmetric in the vertical and horizontal
direction, and there would be no physical reason for one band to be preferred. The
preferred band direction would only be decided based on numerical errors or other
artifacts. However, the introduction of the dislocation breaks the symmetry (compare
the right red region of the stress in Fig. 23.4 at t = ts) and thereby determines the
growth direction of the band. At the intermediate time step tm , the horizontal band
has already shrinked to nearly 50% of its original thickness, and the energy as well
as the stress level have strongly decreased.
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Fig. 23.4 Temporal evolution of order parameter, elastic energy density, and S12 with one disloca-
tion. ts is an early point in time, tm is an intermediate time, and at te the quasi-static state is reached

At the quasi-stationary time, a fully formed, vertical martensitic band structure
is observed, and a minimized energy and stress is reached. The band structure is
at equilibrium because of the total strain is exactly the eigenstrain (except for the
dislocation contribution), resulting in a deformed but stress-free state. However, the
stress around the dislocation will not change because the dislocation is fixed in place.
The “try” to relax this further causes a slight distortion from the original straight
interface, as seen in Fig. 23.4. The shear stress at te still shows very slight remnants
of the vertical phase microstructure; the reason is that the interface of the martensite
band is not perfectly straight but has small fluctuations due to the used finite element
approximation. Reducing the element size would remedy this effect.
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23.2.4.2 Penny Shaped Crack in Austenitic Matrix

The introduction of a penny shaped crack induces enough eigenstrain in the system
to trigger a phase transformation and is therefore an interesting way to get rid of
the artificial initial seed. Similar as in the previous example, at the first snapshot
in time, two perpendicular martensite bands can be observed (Fig. 23.5, left). Here,
the stress field of the crack is responsible for the symmetry breaking. Again, the
heterogenous microstructure causes a high stress and high strain energy density,
which also decreases during the time integration of the TDGL equation. At the
intermediate time step, one can additionally observe that the interfaces of the vertical
band are pinned into place by the stress field of the crack, compare the slightly wavy
structure of the band in Fig. 23.5. This “bump” is then progressing towards the top and
the bottom such that at the stationary state the band stretches into vertical direction
and has a thickness that is dictated by the crack length as shown in the right column
in Fig. 23.5. At this point on time, a relaxed state with a minimum energy and a
minimized stress is reached.

Fig. 23.5 Evolution in time of order parameter, elastic energy density, and S12 with a penny-shaped
crack
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23.3 On the Interaction of Planar Defects with Dislocations
Within the Phase-Field Approach

23.3.1 Introduction

Phase field approaches have proven to be a very powerful tool for the investigation of
the formation and evolution of microstructures due to solid-solid phase transforma-
tions and twinning. This appears to be the natural framework for the investigation of
the interaction of planar crystal defects such as phase- or twin-boundaries with line
defects (dislocations, disclinations). A typical phase field model for diffusionless
(martensitic) transformations comprises of an evolution equations of Allen-Cahn-
type for the order parameters φβ

Mβ φ̇β = α�φβ − ρ∂φβ
ψ, (23.10)

where Mβ and α are constants, ρ denotes the mass density, and ψ is a bulk free
energy density. Assuming a small perturbation setting, the linear strain tensor E
can be additively decomposed into elastic Ee and inelastic (i.e., eigenstrain) Etr

contributions, such that Ee
(
E, φβ

) = E − Etr
(
φβ

)
. Assuming linear elasticity, the

stress S is given by S = C : Ee
(
E, φβ

)
, and the free energy density takes the form

ψ
(
E, φβ, θ

) = 1

2
Ee (E, φ) : C : Ee (E, φ) + ψb

(
φβ, θ

)
. (23.11)

As a consequence, the evolution equation (23.10) can be rewritten as

Mβ φ̇β = α�φβ + S : ∂φβ
Etr − ρ∂φβ

ψb . (23.12)

In classical elasticity theory the stresses diverge as the defect line is approached. In
particular for dislocations the singularity is of 1/r -type. As per (23.12), this results in
singular driving forces for the evolution of the order parameters, effectively negating
the concepts such as a nucleation barrier or a pile-up stress. Different approaches to
regularize the stress in the core region exist in literature based either on the concept
of a distributed Burger’s vector [12, 14–16] or generalized continuum theories
[17–20]. However, the first strain gradient approach advocated by Po et al. [20] has
the advantage that the obtained regularization is independent of the type of defect
in question and therefore does not require any defect-specific information for the
determination of model parameters. In principle, these parameters can directly be
obtained from atomistic interaction potentials [21].

The purpose of this work is to follow a micromorphic approach and to derive
a framework which consistently couples first strain gradient elasticity to Allen-
Cahn-type microstructure evolution ensuring non-singular driving forces on the
order parameters in the presence of line defects.
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23.3.2 Balance Equations and Boundary Conditions

The principle of virtual power (PVP) provides a systematic way of deriving field
equations and boundary conditions for arbitrary mechanical and coupled problems
(cf. [22–24]). In the present work it is used in the following form: The virtual power
of the inertia forces P∗

a balances the virtual power P∗
int of the internal and P∗

ext
of the external forces acting on any sub-domain S of the material body B for any
admissible virtual velocity field v∗ and virtual rate of order parameter field φ̇∗, i.e.,

P∗
a = P∗

int + P∗
ext . (23.13)

For the sake of simplicity we disregard any higher order inertia terms [25] as well
as inertial forces acting on the order parameter, resulting in

P∗
a =

∫
S

ρv̇ · v∗ dV . (23.14)

The power of internal forces is given by

P∗
int = −

∫
S

(
S� : L∗ + T

... grad L∗ − π φ̇∗ + ξ · grad φ̇∗
)

dV, (23.15)

with L∗ := grad v∗. Here S and T are the Cauchy and higher order stresses, respec-
tively, while π and ξ are thermodynamic forces that directly correspond to the internal
microforce and microstress introduced by Gurtin [26]. We note that the invariance
requirement of P∗

int with respect to superimposed rigid body motions results in
S = S�. For the power of external forces we consider the very simple case of no
body or contact forces acting on L∗ and grad φ̇∗, and only a contact (micro)force ζ

acting φ̇∗

P∗
ext =

∫
S

f · v∗ρ dV +
∫

∂S

(
t · v∗ + ζ φ̇∗) da . (23.16)

In order to obtain the consequences of the PVP, the integrals in (23.15) are trans-
formed using the following identities

div(S · v∗) = (div S) · v∗ + S : L∗, (23.17)

div(T : L∗) = (divT) : L∗ + T
... grad L∗, (23.18)

div
(
(divT) · v∗) = (div divT) · v∗ + (divT) : L∗, (23.19)

div(ξ φ̇∗) = (div ξ) φ̇∗ + ξ · grad φ̇∗, (23.20)

and the divergence theorem, resulting in
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P∗
int =

∫
S

(
div S − div divT

) · v∗ dV −
∫

∂S

n · (
S� − divT

) · v∗ da

−
∫

∂S

n · T : L∗ da +
∫
S

(
π + div ξ

)
φ̇∗ dV −

∫
∂S

n · ξ φ̇∗ da . (23.21)

Introducing the surface gradient operator

gradS(·) = grad (·) − ∂n(·) ⊗ n, (23.22)

where ∂n is the directional derivative in the direction of the outward normal n, the
third integral in expression (23.21) can be rewritten as

∫
∂S

n · T : L∗ da =
∫

∂S

n · T : gradSv∗ da +
∫

∂S

n · T : ∂nv∗ ⊗ n da (23.23)

=
∫

∂S

divS
(
n · T · v∗) da −

∫
∂S

divS
(
n · T) · v da +

+
∫

∂S

n · T : ∂nv∗ ⊗ n da. (23.24)

Finally, applying the surface divergence theorem and, for the sake of simplicity,
neglecting any wedge line and corner contributions, we find

∫
∂S

divS
(
n · T · v∗) da =

∫
∂S

(
divSn

)
n ⊗ n : T · v∗ da. (23.25)

Enforcing (23.13) we arrive after a number of straightforward algebraic manipu-
lations at the following field equations on B

ρv̇ = div(S − divT) + ρf, (23.26a)

0 = div ξ + π, (23.26b)

and boundary conditions on ∂B

t = (S − divT) · n − divS(n · T), (23.26c)

ζ = ξ · n . (23.26d)

We note that, introducing the total stress

St := S − divT, (23.27)
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the balance of linear momentum (23.26a) regains its standard form for simple mate-
rials

ρv̇ = div St + ρf, (23.28)

which is convenient for the numerical implementation.

23.3.3 Constitutive Equations

The following equations are formulated assuming the small perturbation hypothesis,
i.e., both the displacement u as well as the displacement gradient can be considered
small, u 
 L and ||grad u|| 
 1. In this case the deformation is characterized by the
linear strain tensor E = 1

2

(
grad u + (grad u)�

)
. Its gradient will be denoted Y :=

grad E.

23.3.3.1 Laws of State

We choose the following ansatz for the free energy density and thermodynamic forces

ψ = ψ (E, Y, φ, grad φ, θ) , ξ = ξ (E, Y, φ, grad φ, θ) ,

S = S (E, Y, φ, grad φ, θ) , π = π
(
E, Y, φ, grad φ, θ, φ̇

)
.

T = T (E, Y, φ, grad φ, θ) ,

The second law of thermodynamics in the form of the Clausius-Duhem inequal-
ity is given for the isothermal case by

(S − ρ∂Eψ) : Ė + (
T − ρ∂Yψ

) ... Ẏ − (
π + ρ∂φψ

)
φ̇+

+ (
ξ − ρ∂grad φψ

) · grad φ̇ � 0 (23.29)

an can be exploited using the classical Coleman-Noll procedure to arrive at the
laws of state

S = ρ∂Eψ, T = ρ∂Yψ, ξ = ρ∂grad φψ (23.30)

and the residual dissipation inequality

−πd φ̇ � 0, with πd := π + ρ∂φψ . (23.31)
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23.3.3.2 Free Energy and Dissipation Potential

As customary in phase field models for solid-solid transformations, the free energy
density can be split into an elastic-, a bulk chemical- and an interface-contribution

ψ = ψe (E, Y, φ, θ) + ψb (φ, θ) + ψi (φ, grad φ, θ) . (23.32)

In our formulation, the elastic free energy is of Helmholtz-type, i.e.,

ρψe (E, Y, φ, θ) = 1

2
Ee (E, φ) : C(φ) : Ee (E, φ)

+ 1

2

(
C(φ) : Y · �(φ)

) ...Y, (23.33)

where Etr(φ) is the inelastic strain, Ee (E, φ) := E − Etr(φ) is the elastic strain, C

the stiffness tensor and �(φ) a gradient length scale tensor (cf. [20]). The specific
choice of functional dependence of Etr(φ), ψb (φ, θ) and ψi (φ, grad φ, θ) on the
order parameter φ is of no relevance at this point, we will assume that the interface
energy is of the form

ρψi (φ, grad φ, θ) := α

2
||grad φ||2 + g(φ, θ) . (23.34)

Using the laws of state (23.30) we immediately find

S = C(φ) : Ee (E, φ) = C(φ) : (
E − Etr(φ)

)
, (23.35a)

T = C(φ) : Y · �(φ), (23.35b)

ξ = α grad φ, (23.35c)

and combining the first two equations

T = C(φ) : grad
(
C

−1(φ) : S
) · �(φ) + C(φ) : grad Etr(φ) · �(φ) . (23.36)

Equation (23.27) can now be used in two ways: In conjunction with the laws of
state (23.35a) and (23.35b) it is a constitutive equation for the total stress St, which
enters the balance of linear momentum (23.28)

St
(
E, Y, φ

) = C(φ) : Ee (E, φ) − div
[
C(φ) : Y · �(φ)

]
. (23.37)

When combined with (23.36), (23.27) can be used to determine the true stress S
from the total stress St
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S − div
[
C(φ) : grad

(
C

−1(φ) : S
) · �(φ)

]
= St + div

(
C(φ) : grad Etr(φ) · �(φ)

)
. (23.38)

In order to complete the phase field formulation we require a constitutive equation
for πd, which is obtained in the spirit of classical irreversible thermodynamics as

φ̇ = −∂πd�(πd) (23.39)

from a dissipation potential �(πd) that is homogeneous of degree two

�(πd) := 1

2
M−1π2

d , (23.40)

where M is the so called mobility constant. Combining (23.26b), (23.31), (23.35c),
(23.39) and (23.40) we find the classical Allen-Cahn equation

M φ̇ = α�φ − ρ∂φψ, (23.41)

or, specifically,

M φ̇ = α�φ + S : ∂φEtr − 1

2
Ee (E, φ) : ∂φC(φ) : Ee (E, φ)

− 1

2

(
C(φ) : Y · ∂φ�(φ)

) − 1

2

(
∂φC(φ) : Y · �(φ)

) ...Y

− ρ∂φψb(φ, θ) − ∂φg(φ, θ) . (23.42)

Note that all terms that appear in the driving force, and as per [17] the Cauchy
stress S in particular, are non-singular even in the presence of dislocations.

23.3.4 Special Cases

For phase transformations the crystal lattice on both sides of the interface will, in
general, be different leading to different elastic properties and a different dislocation
core structure. In this case the (23.28), (23.37), (23.38) and (23.42) retain their full
complexity. In the following, we consider a number of scenarios for which this is
not the case.

23.3.4.1 Homogeneous Bulk Material

In the bulk phase the order parameter does not vary in space, i.e., grad φ = 0, C(φ) =
C, �(φ) = �, Etr(φ) = 0. The Allen-Cahn equation is fulfilled automatically and
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(23.38), (23.37) recover the form derived by Po et al. [20]

S − div
(
(grad S) · �

) = St, with

St
(
E, Y

) = C : [
E − div

(
Y · �

)]
. (23.43a)

For materials with cubic symmetry the gradient length scale tensor � is isotropic,
i.e., � = l2I, and the above expressions can be further simplified to the form derived
by Lazar et al. [17]

S − l2�S = St, with

St
(
E, Y

) = C : (
E − l2divY

) = C : (
E − l2�E

)
. (23.43b)

23.3.4.2 Grain Boundaries as Planar Defects

The crystal lattices on both sides of a grain boundary differ only by a rotation Q(φ).
Hence, we assume that the chemical bulk energy is independent of the order param-
eter, i.e., ψb (φ, θ) = ψb (θ). Then the elastic stiffness C(φ) and the gradient length
scale tensor �(φ) can be expressed as C(φ) = Q(φ) ∗ C and �(φ) = Q(φ) ∗ �,
respectively. Furthermore, without loss of generality, Etr(φ) = 0. For this case
(23.38), (23.37) and (23.42) take the form

S − div
[(

Q(φ) ∗ C
) : grad

((
Q(φ) ∗ C

−1
) : S

)
· (

Q(φ) ∗ �
)] = St, (23.44a)

with

St
(
E, Y, φ

) = C(φ) : E − div
[(

Q(φ) ∗ C
) : Y · (Q(φ) ∗ �

)]
, (23.44b)

and

M φ̇ = α�φ − 1

2
E : (

∂φQ(φ) ∗ C
) : E − 1

2

((
Q(φ) ∗ C

) : Y · (
∂φQ ∗ �

)) −

− 1

2

((
∂φQ(φ) ∗ C

) : Y · (
Q(φ) ∗ �

)) ...Y − ∂φg(φ, θ) . (23.44c)

The isotropy of the gradient length scale tensor � for cubic crystals implies that
Q(φ) ∗ � = � = l2I, which simplifies (23.44) to the following form

S − l2div
[(

Q(φ) ∗ C
) : grad

((
Q(φ) ∗ C

−1
) : S

)]
= St, (23.45a)

with
St

(
E, Y, φ

) = C(φ) : E − l2div
[(

Q(φ) ∗ C
) : Y]

, (23.45b)
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and

M φ̇ = α�φ − 1

2
E : (

∂φQ(φ) ∗ C
) : E − 1

2
l2 ((

∂φQ(φ) ∗ C
) : Y) ...Y

− ∂φg(φ, θ) . (23.45c)

23.3.4.3 Twin Boundaries as Planar Defects

Since the twin variants on both sides of the boundary are related by mirror and/or
rotational symmetry transformations between the unit cells, we can—as in the case
of grain boundaries—assume that the bulk chemical energy remains unchanged, i.e.,
ψb (φ, θ) = ψb (θ), and the elastic stiffness C(φ) and the gradient length scale tensor
�(φ) can be expressed using an orthogonal tensor Q(φ) as C(φ) = Q(φ) ∗ C and
�(φ) = Q(φ) ∗ �, respectively. Under these assumptions we find

S − div
[(

Q(φ) ∗ C
) : grad

((
Q(φ) ∗ C

−1
) : S

)
· (

Q(φ) ∗ �
)]

= St + div
[
C(φ) : grad

(
Etr(φ)

) · �(φ)
]
, (23.46a)

with

St
(
E, Y, φ

) = C(φ) : Ee(E) − div
[(

Q(φ) ∗ C
) : Y · (Q(φ) ∗ �

)]
, (23.46b)

and

M φ̇ = α�φ + S : ∂φEtr − 1

2
Ee (E, φ) : (

∂φQ(φ) ∗ C
) : Ee (E, φ)

− 1

2

((
Q(φ) ∗ C

) : Y · (
∂φQ ∗ �

))

− 1

2

((
∂φQ(φ) ∗ C

) : Y · (
Q(φ) ∗ �

)) ...Y − ∂φg(φ, θ) . (23.46c)

For cubic lattices these expressions simplify to

S − l2div
[(

Q(φ) ∗ C
) : grad

((
Q(φ) ∗ C

−1
) : S

)]
(23.47a)

= St + l2div
[
C(φ) : grad Etr(φ)

]
, (23.47b)

with

St
(
E, Y, φ

) = C(φ) : Ee (E, φ) − l2div
[(

Q(φ) ∗ C
) : Y]

, (23.47c)

and

M φ̇ = α�φ + S : ∂φEtr − 1

2
Ee (E, φ) : (

∂φQ(φ) ∗ C
) : Ee (E, φ)−

− 1

2
l2

((
∂φQ(φ) ∗ C

) : Y) ...Y − ∂φg(φ, θ) . (23.47d)
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23.3.4.4 Phase Boundaries Between Cubic Phases

In the case of phase boundaries between different cubic phases the gradient length
scale tensor � is isotropic on both sides of the interface, even though not necessarily
constant across the interface, i.e., � = l(φ)2I. This allows us to reduce (23.38),
(23.37) and (23.42) to the following form

S − div
[
l(φ)2

C(φ) : grad
(
C

−1(φ) : S
)]

= St + div
(
l(φ)2

C(φ) : grad Etr(φ)
)
, (23.48a)

with

St
(
E, Y, φ

) = C(φ) : Ee (E, φ) − div
(
l(φ)2

C(φ) : Y)
, (23.48b)

and

M φ̇ = α�φ + S : ∂φEtr + 1

2
Ee (E, φ) : ∂φC(φ) : Ee (E, φ)

− l(φ)∂φl(φ) (C(φ) : Y)
...Y − l(φ)2

2

(
∂φC(φ) : Y) ...Y

− ρ∂φψb(φ, θ) − ∂φg(φ, θ) . (23.48c)

23.3.5 Examples

This section contains a number of examples that demonstrate basic properties of the
proposed model.

23.3.5.1 Regularization in the Dislocation Core

As shown in Sect. 23.3.4.1, the present model reduces to the set of equations proposed
by Po et al. [20] in the homogeneous bulk phase. Figure 23.6 shows the shear stress
component S12 in the glide plane of a single edge dislocation with and without
regularization (l = 2 nm). In the classical case, the stress in the dislocation core is
singular, whereas it is well defined for the regularized solution.

23.3.5.2 Effect of the Regularization on the Interaction of Dislocations
with a Phase Boundary

The following scenario considers a two-phase material with an initially flat interface
between the austenite (A) and martensite (M) phases (see Fig. 23.7, left figure) and
an immobile dislocation structure within the austenite. The material is cooled below
the martensite start temperature, i.e., the interface will move to the right, interacting
with the dislocation structure. This interaction significantly varies depending on the
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Fig. 23.6 Shear stress component S12 in the glide plane of a single edge dislocation

M A

Fig. 23.7 Phase evolution for l = 2 nm

choice of the regularization. For a large regularization length (l = 2 nm) the stress
in the dislocation core is relatively low, which enables the chemical driving force
to pull the interface across the dislocation structure, resulting in a fully martensitic
material (Fig. 23.7). With decreasing regularization length (l = 1 nm) the stress in
the dislocation core increases, which leads to a stronger interaction with the interface,
which, as a consequence, is arrested at the rightmost dislocation (Fig. 23.8). After
the interface is immobile, the second martensitic variant is formed, which consumes
the austenite. For an even smaller regularization length (l = 0.5 nm) the interface is
arrested earlier in its progress (Fig. 23.9).

If, however, no regularization is present, this trend does not continue. The stress
singularity in the dislocation core triggers the formation of martensite well ahead
of the initial interface, enabling it to “overrun” the immobile dislocation structure

Fig. 23.8 Phase evolution for l = 1 nm
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Fig. 23.9 Phase evolution for l = 0.5 nm

Fig. 23.10 Phase evolution without regularization

(Fig. 23.10). The result in this case is mesh sensitive, since the computed stress
magnitude depends on the choice of discretization and therefore is unsuitable for
quantitative investigations of the interaction of planar defects with dislocations.

23.4 Conclusions

In order to model the interaction of phase transformations and dislocations, we have
coupled a time-dependent Ginzburg-Landau equation with the stress/strain fields of
stationary configurations of discrete dislocations. This allowed us to study the effect
that dislocations have on the resulting evolution of the microstructure. Coupling two
simulation models for different deformation mechanisms is usually more involved
than just the simulation of one phenomenon. However, the present work also showed
that such a “multiphysical” approach might show a particular promise since, e.g., the
artificial initial seed for the phase microstructure becomes superfluous, which makes
our simulations more realistic.

However, only using stationary dislocation configurations is clearly not realistic:
these dislocations would usually move and interact among themselves. Thus, future
work will consider such behavior where the evolution of the phase microstructure is
governed by the TDGL and the dislocation dynamics is governed by an equation of
motion, both of which are coupled.
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Chapter 24
Towards the Crystal Plasticity Based
Modeling of TRIP-Steels—From
Material Point to Structural Simulations

Stefan Prüger and Björn Kiefer

Abstract With the complex multi-scale behavior of high-alloyed TRIP steels in
mind, this contribution aims to complement recently established continuum mechani-
cal modeling approaches for such materials, by considering their anisotropic inelastic
response at the single crystal level. This approach generally enables the consideration
of initial textures and their deformation-induced evolutions. It also represents the key
theoretical and algorithmic foundation for future extensions to include phase transfor-
mation and twinning effects. Several rate-independent and rate-dependent formula-
tions are investigated. The former are naturally associated with Karush-Kuhn-Tucker
type inequality constraints in the sense of a multi-surface plasticity problem, whereas
in the latter, these constraints are handled by penalty-type approaches. More specif-
ically, the primary octahedral slip systems of face-centered cubic crystal symmetry
are explicitly taken into account in our model application of the general framework
and hardening models of increasing complexity are incorporated. To test the effi-
ciency and robustness of the different formulations, material point simulations are
carried out under proportional and non-proportional deformation histories. A rate-
independent augmented Lagrangian formulation is identified as most suitable in the
considered context and its finite element implementation as a User-defined MATerial
subroutine (UMAT) is consequently studied in depth. To this end, the loading orienta-
tion dependence of the deformation and localization behaviors are analyzed through
simulation of a mildly notched tensile specimen as a representative inhomogeneous
boundary value problem.
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24.1 Introduction

During the past decades, new steel grades with improved mechanical properties, such
as high strength and pronounced ductility, have been developed, mainly motivated
by light-weight applications in the automotive industry, cf. [1–3]. The initially fully-
austenitic steel, X3CrMnNi16-6-6, developed in the DFG Collaborative Research
Center 799, clearly belongs to this group of advanced high-strength steels. Exten-
sive mechanical and microstructural characterization, see [4–9] revealed that the
mechanical properties can be attributed to the evolution of the microstructure during
deformation, i.e. depending on temperature, stacking-fault energy and strain-rate, the
face-centered cubic (fcc) austenite (γ ) forms twins or stacking-faults with hexagonal
close-packed structure (ε) or transforms to body-centered cubic (bcc) martensite (α′).
In particular, the different deformation mechanisms can occur concurrently, as shown
in Fig. 24.1, which renders the formulation of constitutive models at the macroscopic
scale a challenging task, cf. [10–12]. Although such models are already quite com-
plex, they rarely incorporate the effect of evolving anisotropy due to texture evolution,
which is of great importance in forming simulations. Furthermore, the application
of such models in structural simulations is naturally associated with a length scale,
at which the characteristic sizes of the microstructure are small compared to other
dimensions of the problem. Therefore, employing such models to predict the behav-
ior of devices at the micrometer scale seems to be questionable. In contrast, crystal
plasticity based modeling approaches can in principle account for these effects, how-
ever, an appropriate scale-transition law has to be incorporated to give reasonable
predictions at macroscopic scale. Keeping in mind that the deformation behavior of
the TRIP-steel under consideration is mainly influenced by interaction of the defor-
mation mechanisms at multiple scales—ranging from interactions between grains to
interactions of stacking-faults with martensitic inclusions within a single grain—a
crystal plasticity based multi-scale modeling approach seems to be even more appro-
priate. Although the kinematic aspects of the different deformation mechanisms are
reasonable well understood, their incorporation into conventional crystal plasticity
models is a challenging subject of ongoing research, especially for TRIP-steels.

Aiming for a comprehensive description of the transformation behavior in low-
alloyed TRIP-steels, a material model that incorporates the stress-assisted trans-
formation from fcc austenite to body-centered tetragonal (bct) martensite under
thermomechanical loading is proposed in [13], which also takes into account the
twinned martensite microstructure. The influence of the initial crystal orientation on
the mechanical and the transformation behavior under homogeneous deformation is
studied in [14] for the two cases of a single austenitic grain and an austenitic grain
embedded in a ferritic, elastic-plastic matrix, which is described by a phenomenologi-
cal, isotropic J2-plasticity model. In [15] the material model is extended to account for
anisotropic plastic slip by means of a crystal plasticity model, which is employed both
within the austenitic grains and in the ferritic matrix. A significant influence of the
initial orientation of the austenitic grains—embedded in a single or oligocrystalline
ferritic matrix—is found for macroscopically homogeneous deformation states.
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Fig. 24.1 Deformation mechanisms observed in the TRIP-steel X3CrMnNi16-6-6 as functions of
temperature T or equivalently stacking-fault energy γSF. Data taken from [6]

Furthermore, in [16] this model is applied to the simulation of a representative volume
element of a low-alloyed TRIP-steel with an idealized microstructure containing mul-
tiple austenite grains embedded in discretely resolved polycrystalline ferrite matrix
under macroscopically homogeneous thermomechanical loading. Here the influence
of the sequence of thermal and mechanical loading on the mechanical response and
transformation behavior is investigated. The multi-scale character of the deforma-
tion and transformation behavior of low-alloyed TRIP-steels is accounted for in [17]
by assuming an idealized lath martensite microstructure and combining the elastic-
plastic material response of the two phases, austenite and martensite, with a criterion
for the stress-assisted transformation and explicitly enforcing the compatibility and
the stress equilibrium at their interfaces. In contrast to the models mentioned above, a
single crystal material model for an initially fully-austenitic steel that shows a strain-
induced transformation from fcc austenite to bcc martensite is considered in [18] and
the transformation kinetics of Stringfellow [19] is applied at the single crystal scale
and the evolution of deformation bands/bands of stacking-faults that act as nucleation
sites for martensite is explicitly taken into account. Good agreement between numer-
ical simulations and experimental results from uniaxial tensile tests for a wide range
of strain rates is observed. A gradient extended crystal plasticity model that includes
both stress-assisted and strain-induced austenite to martensite phase transformation
is proposed in [20, 21] and is employed to study size effects in nanoindentation
and in three-point bending tests and to investigate the influence of grain boundaries
and twins in austenite grain on the transformation behavior. Consistent with ther-
modynamical considerations in [13, 14], a single crystal model that accounts for
the stress-assisted austenite to martensite transformation is discussed in [22] and
extended to include twinning [23]. Here again, the influence of the initial crystal
orientation on the mechanical behavior under homogeneous deformations is consid-
ered. Increasing research activity in the field of high-manganese TWIP steels has led
to the development of two single crystal material models [24, 25] that account for
three different deformation mechanisms, namely slip, twinning and stacking-fault
formation/ε-martensite formation. The latter model includes a dislocation density
based hardening law, which is successfully calibrated based on quasi-static tensile
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tests of a polycrystaline TWIP-steel together with the corresponding microstructure
evolution in terms of ε-martensite and twin volume [26]. Rather recently, a single
crystal plasticity model that incorporates the stress-assisted austenite to martensite
transformation is applied to the prediction of polycrystalline response of two and three
phase low-alloyed TRIP-steels and the corresponding forming limit diagrams [27].
Furthermore, the well-known transformation kinetics model of Olson-Cohen [28]
is extended in [29] to account for the crystallographic nature of the formation of
deformation bands/bands of stacking-faults. The kinetics law is then coupled to a
crystal plasticity model to describe the strain-induced transformation from austen-
ite to martensite. The comparison between numerical simulations and the results of
polycrystalline experiments shows that the temperature and stress-state dependency
of the mechanical response and the transformation behavior is well captured. For fur-
ther information on the application of crystal plasticity models, the reader is referred
to the comprehensive reviews [30–32].

Although the above literature review shows that numerous models have been pro-
posed, which account for the coupling of two or three deformation mechanisms or
the different nature of stress-assisted and strain-induced martensitic transformation,
a material model that thoroughly captures all the deformation mechanisms men-
tioned in Fig. 24.1 and their transition over a wide range of temperatures still seems
to be missing. In order to develop such a model—possessing a modular structure
and being robust at the same time—a numerical framework has to be identified that
allows for a robust and efficient implementation. While the above mentioned models
are almost exclusively based on rate-dependent formulations, it is argued in [33]
that such an approach may introduce an artificial rate-dependence into the model’s
response, if such a formulation is chosen only for numerical convenience and not
due to experimental results. Hence, a systematic study regarding different numerical
implementations has to be carried out to assess the efficiency and the robustness of the
corresponding stress-update algorithms also considering different model complexity.
The contribution at hand aims for such a study and will provide recommendations for
appropriate algorithms both for rate-dependent and rate-independent formulations.
Therefore, the choice of rate-dependence in the constitutive description of the differ-
ent deformation mechanisms can solely be made based on experimental observations
rather than numerics. The current study employs a single crystal plasticity model that
is able to capture the deformation behavior of stable austenitic stainless steels as illus-
trated in [34]. Thus, an adequate description of the TRIP-steel X3CrMnNi16-6-6 at
temperatures T > 220 ◦C is considered, where dislocation glide is the main defor-
mation mechanism, see Fig. 24.1. This model will also form the basis for further
model developments, eventually providing a modular constitutive description of the
TRIP-steel under consideration. In order to enlighten the effect of rate-dependence
on the constitutive response and the robustness of the corresponding stress update
algorithms, the study comprises four different formulations and hardening laws of
different complexity.

This contribution is structured as follows. The single crystal plasticity model is
discussed in Sect. 24.2, while the comparison of the different formulations under
homogeneous proportional and non-proportional loading histories is considered in
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Sect. 24.3. In Sect. 24.4, a rate-independent formulation is employed to study the
orientation dependence of the deformation and localization behavior of a mildly
notched single crystal tensile specimen. Section 24.5 summarizes the main findings
and outlines current and future research efforts on this topic.

24.2 Material Model

The constitutive behavior of face-centered cubic single crystals at finite deformations
is described by a material model that builds on the approach proposed by Schmidt-
Baldassari [35] in the rate-independent case and the formulation employed in [36–38]
for the rate-dependent case. It is based on the multiplicative split of the deformation
gradient into an elastic and a plastic part according to the proposal of Kröner [39]
and Lee [40]

F = Fe · Fp. (24.1)

In addition to this kinematic assumption, the intermediate configuration defined by
such a split is taken as isoclinic as suggested in [41].

The elastic behavior, defined with respect to that intermediate configuration, is
assumed to be governed by the isotropic, volumetric-isochorically decoupled free
energy function of compressible Neo-Hooke type

�e = 1

2
κ

[
ln (J e)

]2 + 1

2
μ

[
Ce : I − 3

]
. (24.2)

Herein, J e and Ce denote the determinant of the elastic part of the deformation
gradient Fe and the unimodular part of the elastic right Cauchy-Green tensor. The
latter is obtained from the elastic Cauchy-Green tensor

Ce = FeT · Fe (24.3)

via Ce = J e−2/3Ce, while κ and μ are the bulk and shear moduli, respectively. The
second Piola-Kirchhoff stress in the intermediate configuration Ŝ is defined as

Ŝ = 2
∂�e

∂Ce
(24.4)

and specifically reads as

Ŝ = J e ∂�e
vol

∂ J e
Ce−1 + 2

∂�e
iso

∂Ce
= κ ln (J e) Ce−1 + J e−2/3μ

[
I − 1

3
tr (Ce) Ce−1

]

(24.5)
for the elastic free energy density given in (24.2), cf. [42] for a detailed derivation.
Furthermore, the Mandel stress tensor M, which is also defined with respect to the
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intermediate configuration, can be expressed as

M = Ce · Ŝ =
[
κ ln (J e) − 1

3
μ tr (Ce)

]
I + μ Ce. (24.6)

The assumption of elastic isotropy is a reasonable approximation only for a few cubic
metals, e.g. α-Tungsten, aluminum and vanadium [43], which are characterized by a
Zener anisotropy index close to one [44]. This assumption is considered acceptable
for the current contribution due to its simplicity. However, an extension of the material
model to incorporate elastic anisotropy can be carried out by replacing the free energy
density in (24.2) by the quadratic anisotropic free energy function discussed in [45],
which is more suitable for moderately large elastic deformations. In contrast to the
elastic behavior, the inelastic deformation of a single crystal is inherently anisotropic
because it is governed by a finite number of distinct slip systems associated with the
crystal lattice. For most face-centered cubic crystals it is reasonable to consider only
the primary octahedral slip systems, consisting of {111} slip planes and 〈110〉 slip
directions, see Table 24.1. The inelastic slip on the different slip systems, γα , is linked
to the plastic part of the deformation gradient and the plastic velocity gradient Lp

via the evolution equation

Lp = Ḟp · Fp−1 =
n∑

α=1

γ̇α sα⊗ nα, (24.7)

in which sα and nα denote the slip direction and the slip plane normal of the system
α. In addition, these vectors are of unit length |sα| = |nα| = 1 and are mutually
orthogonal sα · nα = 0, where the latter property results in the inelastic part of the
deformation gradient being isochoric. The onset of inelastic deformation on each
slip system is described by limit surfaces of the form

�α := τα − [
Y0 + Yα(εβ)

]
. (24.8)

Herein, τα denotes the resolved shear stress on the slip system α and is computed as

τα = M : [ sα⊗ nα] , (24.9)

while Y0 and Yα respectively correspond to the initial yield stress and the driving
force thermodynamically conjugate to the hardening variable εα . The driving force
is consequently defined as

Yα := ∂�p

∂εα

, (24.10)

where an additional split of the free energy due to elastic and inelastic effects has
been assumed. In the current contribution, two different hardening functions are
considered.
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Table 24.1 Primary slip systems of a face-centered cubic single crystal

Miller indices Schmid/Boas
notation [46]

Slip plane normal Slip direction

(1, 1, 1)[1, 1̄, 0] B5 n1 = n13 = [1, 1, 1]/√3 s1 = −s13 = [1,−1, 0]/√2

(1, 1, 1)[1, 0, 1̄] B4 n2 = n14 = [1, 1, 1]/√3 s2 = −s14 = [1, 0,−1]/√2

(1, 1, 1)[0, 1, 1̄] B2 n3 = n15 = [1, 1, 1]/√3 s3 = −s15 = [0, 1,−1]/√2

(1, 1, 1̄)[1, 1̄, 0] C5 n4 = n16 = [1, 1,−1]/√3 s4 = −s16 = [1,−1, 0]/√2

(1, 1, 1̄)[1, 0, 1] C3 n5 = n17 = [1, 1,−1]/√3 s5 = −s17 = [1, 0, 1]/√2

(1, 1, 1̄)[0, 1, 1] C1 n6 = n18 = [1, 1,−1]/√3 s6 = −s18 = [0, 1, 1]/√2

(1, 1̄, 1)[1, 1, 0] D6 n7 = n19 = [1,−1, 1]/√3 s7 = −s19 = [1, 1, 0]/√2

(1, 1̄, 1)[1, 0, 1̄] D4 n8 = n20 = [1,−1, 1]/√3 s8 = −s20 = [1, 0,−1]/√2

(1, 1̄, 1)[0, 1, 1] D1 n9 = n21 = [1,−1, 1]/√3 s9 = −s21 = [0, 1, 1]/√2

(1̄, 1, 1)[1, 1, 0] A6 n10 = n22 = [−1, 1, 1]/√3 s10 = −s22 = [1, 1, 0]/√2

(1̄, 1, 1)[1, 0, 1] A3 n11 = n23 = [−1, 1, 1]/√3 s11 = −s23 = [1, 0, 1]/√2

(1̄, 1, 1)[0, 1, 1̄] A2 n12 = n24 = [−1, 1, 1]/√3 s12 = −s24 = [0, 1,−1]/√2

Firstly, a purely phenomenological, Taylor-type hardening formulation of the form

Yα = �Y
[
1 − exp (−hA)

]
(24.11)

is introduced, which incorporates the cumulative inelastic slip A = ∑
α εα and is

parameterized by the asymptotic increase in the yield stress �Y as well as the dimen-
sionless shape parameter h. It can be deduced from the inelastic part of the free energy
function, i.e.

�p,Taylor = �Y

[
A + 1

h
exp (−hA)

]
, (24.12)

by means of (24.10). The application of the cumulative inelastic slip A in the harden-
ing function (24.11) idealizes the interaction between different slip systems, but due
to its simplicity, it has been extensively used to develop robust algorithmic frame-
works for single crystal plasticity models [47–49].

Secondly, the alternative anisotropic hardening function

Yα = �Y
∑

β
hαβ

[
1 − exp

(−hεβ

)]
, (24.13)

proposed in [50], is considered, which introduces the symmetric interaction matrix
hαβ in a phenomenological manner. It allows for a more complex interaction of
different slip systems and contains up to 6 material constants [46]. In the current
contribution the structure of the interaction matrix is adopted from [51]. The energy
corresponding to this type of hardening function is formulated as a quadratic form

�p,GC = 1

2
�Yh

∑

α
sα

∑

β
hαβsβ (24.14)



800 S. Prüger and B. Kiefer

in terms of the auxiliary variable sα . The exponential type hardening is obtained from
a non-associated evolution equation for sα , which eventually leads to

sα = 1

h

[
1 − exp (−hεα)

]
. (24.15)

The driving force Yα , introduced in (24.13), is obtained by taking the derivative of
(24.14) with respect to sα and the subsequent substitution of (24.15) to eliminate sα

from the resulting expression. Note that the hardening function (24.13) is exactly
the one employed in the “GC model” in [36], which emanates from the small strain
formulation presented in [50]. In order to close the system of equations evolution
laws for the internal state variables have to be defined.

In the rate-independent formulation one obtains

ε̇α = −λ̇α

∂�α

∂Yα

(24.16)

for the hardening variables and for the inelastic velocity gradient

Lp =
n∑

α=1

λ̇α

∂�α

∂M
(24.17)

from an associated formulation, which introduces the Lagrange multipliers λ̇α , that
are subject to the Karush-Kuhn-Tucker (KKT) conditions

�α ≤ 0 λ̇α ≥ 0 λ̇α�α = 0. (24.18)

Considering the limit surface (24.8) and comparing the inelastic velocity gradient
given in (24.17) with the evolution equation for the plastic part of the deformation
gradient (24.7), one can readily identify

γ̇α = λ̇α (24.19)

ε̇α = λ̇α (24.20)

in the rate-independent case. In contrast to the commonly adopted, computational
expensive active-set search algorithms to handle the inequalities in the KKT con-
ditions, two different formulations of the rate-independent problem are considered
here, which employ equality constraints only.

Firstly, the augmented Lagrangian formulation, initially proposed in connection
with crystal plasticity in [35], is employed, which takes the principle of maximum
plastic dissipation as starting point and reformulates the inequality constrained opti-
mization problem into an equality constrained optimization problem by means of
so-called slack variables [52, pp. 72, 158–164]. The Lagrange multipliers are then
obtained from
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λ̇α = max
(
0, η∗�α

)
, (24.21)

in which the viscosity-like parameter η∗ is introduced for purely numerical reasons,
as it regularizes the problem, while the constraints are exactly enforced by means of
the Lagrange multipliers.

Secondly, a formulation based on nonlinear complementary functions (NCP-
functions) is considered. These functions have originally been proposed for con-
strained optimization problems, cf. [53]. A slightly more general form of NCP-
functions is introduced by Kanzow and Kleinmichel in [54] and employed in the
current contribution, which reads as

√[
�α + λ̇α

]2 − ��αλ̇α + �α − λ̇α = 0. (24.22)

In particular, the parameter � = 0 is chosen here and the Lagrange multipliers are
obtained from (24.22) rather than from (24.18).

In the rate-dependent formulation, the KKT conditions in (24.18) are no longer
applicable and the corresponding Lagrange multipliers are replaced by a potentially
stress-dependent viscosity law v. This yields

ε̇α = −vα(τα, Yα)
∂�α

∂Yα

(24.23)

and

Lvp =
n∑

α=1

vα(τα, Yα)
∂�α

∂M
. (24.24)

Assuming that an equation analogous to (24.7) holds for the viscoplastic part of the
deformation gradient Fvp in the context of a rate-dependent formulation, one may
identify the general format for the evolution equations as

γ̇α = vα(τα, Yα) (24.25)

ε̇α = vα(τα, Yα). (24.26)

To study the influence of the type of viscosity law on the deformation behavior
of single crystals — in particular in the rate-independent limit — this contribution
considers two specific cases:

Firstly, the approach initially proposed by Perzyna [55] and extensively used in
the groups of Cailletaud and Forest, cf. [36–38, 50, 51, 56–60], is considered, in
which the viscosity law takes the form

vPCF
α = 1

η

〈
�α

K

〉n

. (24.27)
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The positive material parameters K, n and η denote a stress-like scaling factor, the
rate sensitivity exponent and a time-like parameter, respectively, where the inverse
of the latter can be interpreted as a reference strain rate. The Macaulay brackets are
defined as

〈x〉 =
{

x if x > 0

0 else
(24.28)

and are identical to the max-function, m(x) = max(0, x), and the ramp function,
r(x) = 1

2 (x + |x |).
Secondly, the viscosity law introduced by Cuitiño and Ortiz in [61] and employed

for instance in Miehe’s group, cf. [47–49], which specifically reads

vOM
α = 1

η

[[ 〈�α〉
τ

y
α (εβ)

+ 1

]n

− 1

]
(24.29)

is also employed in the studies presented here. Note that the current slip resistance
of the particular slip system α is denoted by τ

y
α and possesses the same functional

dependency on the hardening variable εβ as the quantity Y0 + Yα(εβ), but in (24.29)
only �α is explicitly dependent on both τα and Yα . Therefore, the slip resistance τ

y
α is

treated as history dependent normalization quantity, rather than an additional function
of Yα . This allows one to automatically guarantee thermodynamic consistency and
enforce that the slip γα evolves identically to the hardening variables εα .

In order to carry out material point calculations and structural simulations, the
different formulations of the rate-dependent and the rate-independent material mod-
els have been implemented into the scientific computing environment MATLAB and
subsequently into the finite element program ABAQUS via the User-defined MATe-
rial interface (UMAT). The evolution equations for the internal state variables are
integrated by means of an implicit Euler backward scheme and a projection tech-
nique is employed to enforce the incompressibility constraint for the inelastic part of
the deformation gradient. Details of the corresponding algorithms and the associated
tangent operator can be found in [62].

24.3 Material Response Under Homogeneous Deformation

In this chapter, the material model described in Sect. 24.2 is employed in the simula-
tion of a fully deformation-controlled simple shear test as well as a non-proportional
tension/compression-shear cycle. The results obtained with the different formula-
tions are illustrated in the subsequent sections.
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24.3.1 Simple Shear Loading

Due to its simplicity, the fully deformation-controlled simple shear test is extensively
used in the literature to assess the robustness of various stress-update algorithms for
single crystal plastictiy, cf. [35, 47, 63–69]. For comparison, this test is also employed
here, where the coefficients of the associated deformation gradient are prescribed as

[F] =
⎡

⎣
1 γ (t) 0
0 1 0
0 0 1

⎤

⎦ . (24.30)

In particular, the simple shear motion, introduced in [63] is considered, in which
the crystal lattice is misaligned with respect to the global coordinate axes and is
characterized by the following orientation in terms of Euler angles {ϕ1,�, ϕ2} =
{0◦, 18.4349◦, 0◦} in Bunge notation [70], i.e. a sequential rotation about the z-, x-
and z-axes is considered. The material parameters employed in the simulation cor-
respond to an ideal plastic behavior at the scale of the slip system and are specified
in Table 24.2. Therefore, any effective hardening or softening observed in the subse-
quently shown stress-strain diagrams is attributed to the reorientation of the crystal
lattice, which approaches a stable orientation for large shearγ , asymptotically leading
to a constant shear stress. Additionally, the rate-dependent material response is char-
acterized by the rate exponent n = 20 for the OM-viscosity function (24.29), while
for the PCF-viscosity function (24.27) parameters are set to n = 10 and K = 10−3

GPa, consistent with the experimentally observed range of rate-sensitivity expo-
nents [71]. The influence of the chosen increment size �γ on the stress-strain curve is
depicted in Fig. 24.2. In the rate-independent formulation, the augmented Lagrangian
algorithm takes 15, 60 and 600 steps to reach the final shear amplitude γ = 6, while
the Kanzow NCP-function respectively requires 100, 600, 1200 and 1800 steps.
It can be seen that both formulations converge to the same material response for
the smallest increment size. The augmented Lagrangian formulation reproduces the
characteristic features of the stress-strain curve even for very large shear increments
and the stress response converges monotonically as the shear increment is refined. In
contrast, the formulation based on the Kanzow NCP-function requires significantly
smaller shear increments to ensure the numerical convergence of the Newton-type
algorithm. But even though the numerical convergence is achieved, the simulated
stress-strain curve is very sensitive to the chosen increment size, in particular in the
strain range 2 ≤ γ ≤ 6. Herein, the constitutive response converges to the results
of the augmented Lagrangian formulation with decreasing shear increment size in
a non-monotonic manner. Although not shown in Fig. 24.2a, the same observations

Table 24.2 Material parameters for finite strain, simple shear loading

κ in GPa μ in GPa Y0 in GPa �Y in GPa h η in s

49.98 21.1 0.06 0.0 0.0 50.0
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Fig. 24.2 Influence of the
shear increment size �γ on
simulated stress-strain curves
for finite strain, simple shear
loading, a rate-independent
and b rate-dependent
formulations. Gray lines
with symbols indicate the
stress response for different
shear increment sizes, while
colored lines correspond to
the stress response obtained
with the smallest shear
increment size
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Fig. 24.3 Normalized
viscosity functions for
viscous parameters adopted
in the simple shear test
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have been made for the original Fischer-Burmeister NCP-function, which is recov-
ered by the choice � = 2 in (24.22).

In the rate-dependent formulation, the stress-strain curve under quasi-static
loading condition, γ̇ = 10−5s−1, is determined in 60, 180 and 600 steps for the
OM-viscosity function and in 420, 600 and 1800 steps for the PCF-viscosity function.
Figure 24.2b shows that apart from small deviations, which are due to the different
viscosity functions and viscous parameters employed, the stress-strain curves feature
the same behavior up to γ ≈ 2.3. For larger shear strains however, a significant differ-
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ence in the computed stress response is observed. While the OM-formulation leads
to a stress-strain curve possessing the same characteristics as the rate-independent
case, the PCF-formulation yields a stress response for which the transition to higher
stress levels is significantly delayed. The working hypothesis explaining this obser-
vation is that small differences in the evolution of the plastic slip γα determined
from the PCF- and OM-viscosity functions accumulate and that such an accumu-
lation eventually leads to sudden deviation in the stress response at γ ≈ 2.3. The
presence of small differences between the different rate-dependent formulations is
clearly visible from the comparison of the normalized viscosity functions (24.27)
and (24.29), as illustrated in Fig. 24.3. In order to check the hypothesis, a sensitiv-
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X

Y[100]
[010]
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Fig. 24.4 Influence of an initial misorientation on: a the normalized stress-strain curve, b the
evolution of the hardening variables and c the reorientation of the 〈100〉 directions in the pole
figure employing a stereographic projection for finite strain, simple shear loading. The gray lines
in a denote different realizations of perturbed initial orientations possessing a misorientation of 2◦,
while the arrow indicates the specific orientation for which the evolution of εα and the reorientation
behavior are shown in (b) and (c), respectively.The labels of the different slip systems employed in
b is consistent with Table 24.1. Note that, in c colored and gray solid lines represent the response
of the augmented Lagrangian formulation for a perfectly oriented and a misaligned crystal, while
the dotted lines correspond to the results of the rate-dependent PCF-formulation for a perfectly
oriented crystal. Additionally, small black circles indicate the orientation at γ = 2.0, while the
triangles denote a stable crystallographic orientation
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ity analysis is performed, in which the influence of a small initial misorientation
(2◦) on the stress-strain curve is investigated. The simulations are carried out by
means of the augmented Lagrangian formulation of the rate-independent material
model and the shear component γ is incremented in 600 equidistant steps. The cor-
responding results are shown in Fig. 24.4a. It can be seen that the initial part of the
stress-strain curve is rather nonsensitive to the perturbation of the initial orienta-
tion and that the initial misorientation strongly affects the stress-strain curve only
in the range 2 ≤ γ ≤ 4.5, which is consistent with the scatter observed in Fig. 24.2
for the different step sizes and formulations. Observing that small differences in the
initial conditions lead to considerable deviations in the stress response indicates a
stability problem, in particular a bifurcation. However, it is not caused by the Tay-
lor ambiguity problem [72], where several combinations of plastic slip variables
exist that lead to the same stress state. This is because, as shown in the literature,
both the rate-independent augmented Lagrangian formulation as well as the rate-
dependent formulations yield unique solutions for the slip system selection and the
corresponding rates [67, 72] and thus the Taylor ambiguity problem is avoided. Con-
ducting a systematic variation of the initial orientation according to φ1 = φ2 = 0◦
and � ∈ [0◦, 45◦] reveals that the stability issue mentioned above is related to the
discrete nature of the plastic flow of the single crystal. In fact choosing initial ori-
entations in the range � ∈ [22.5◦, 45◦] asymptotically leads the reorientation of the
crystal towards the stable orientation indicated by triangles in Fig. 24.4c. In the nar-
row range � ∈ [17◦, 22◦] the crystal approaches a different stable orientation, while
for � ∈ [0◦, 16◦] a constant rotation of the crystal lattice is predicted by the material
model. As the initial orientation {ϕ1,�, ϕ2} = {0◦, 18.4349◦, 0◦} and the perturbed
initial orientations considered are very close to the boundary of the two ranges of
�, the sensitivity of the stress response to small perturbations is not surprising. It is
therefore concluded that small initial misorientations or the accumulation of small
differences in the evolution of the plastic slip variables in the rate-dependent case are
responsible for selection of slip systems made by the corresponding algorithms. In
addition to the stress-strain response, Fig. 24.4b illustrates the evolution of the hard-
ening variables for three different cases. In particular, a rate-independent, perfectly
oriented crystal as well as a rate-independent crystal with a specific misorientation
of 2◦, indicated by an arrow in Fig. 24.4a and a rate-dependent, perfectly oriented
crystal based on the PCF-formulation is considered. Note that the slip systems, which
are active only in the range 0 ≤ γ ≤ 1 and overall show a low activity, i.e. εα < 0.35,
are not shown for the sake of clarity. Comparing the pattern of activation and deac-
tivation of the slip systems of the perfectly oriented and the misaligned crystal, it
is obvious that the initial misorientation delays the deactivation of the slip systems
D4 and D6 as well as the activation of the systems C3, C5, A2 and B2(15), where
the latter corresponds to slip system 15 in Table 24.1. This delay is responsible for
the postponed transition to the orientation {ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}, for which a
constant yield stress and no rotation of the crystal is observed [63]. Furthermore, it is
observed that the pattern of activation and deactivation of the slip systems computed
for the perfectly oriented, rate-dependent crystal is similar to the pattern obtained
for the misaligned, rate-independent crystal. This indicates that the slip γα deter-
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mined via the rate-dependent formulation causes a small misalignment of the crystal
compared to the results of the rate-independent response of the perfectly oriented
crystal employing the augmented Lagrangian formulation, as shown in Fig. 24.4c.
This leads to a different reorientation of the 〈100〉 directions and a delayed transition
towards the orientation {ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}. These observations therefore
support the hypothesis introduced above and give an explanation for the differences
in the stress response presented in Fig. 24.2.

Technically, the misorientation �R is incorporated by means of the Euler-
Rodrigues formula

�R = I + [1 − cos (α)] + sin (α) A with A = −ε · a, (24.31)

where ε is the Levi-Civita tensor, while a denotes the rotation axis and α the corre-
sponding angle. The misorientations employed in this section are generated by taking
the rotation axis according to the 42 equally spaced points on the unit sphere [73]
and the rotation angle α = 2◦. The initial orientation of the crystal with a predefined
misorientation R∗ is then obtained, according to [74, p. 68] from

�R = R∗ · R−1, (24.32)

in which R is the unperturbed initial orientation.

24.3.2 Non-proportional Tension/compression-Shear
Loading

While the fully deformation-controlled simple shear test provided valuable insight
into the robustness of the different formulations in the ideal plastic case, the capa-
bilities of the different formulations in the hardening case are assessed now under
complex loading conditions employing a non-proportional load cycle, similar to
the one proposed in [38]. It corresponds to a uniaxial tension/compression loading
combined with a simple shear loading and approximately mimics the deformation
path observed in the dual actuator loading system described in [75] or a thin-walled
tubular specimen in a tension-torsion testing device [76]. The temporal change of the
coefficients of the deformation gradient tensor associated with this so-called butterfly
test are prescribed according to

[F] =
⎡

⎣
∗ F12(t) ∗
0 F22(t) ∗
∗ ∗ ∗

⎤

⎦ (24.33)

and are illustrated in Fig. 24.5a. The remaining coefficients, indicated by ∗, are deter-
mined by an iterative procedure, the constitutive driver, described in [77, 78] that
enforces the associated components of the first Piola-Kirchhoff stress to vanish, see
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Fig. 24.5 a Biaxial,
non-proportional
deformation path in the
butterfly test and b
stress-strain curve for simple
shear loading considering
different interaction
matrices, indicated by case
(i),(ii) and (iii), see
Table 24.3
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also [79, p. 562f] for a spatial formulation. Furthermore, this procedure is enhanced
by an adaptive time-stepping algorithm to allow for a step size adjustment of the
prescribed components F12 and F22 based on the convergence behavior.

Recall that the degree of anisotropy in the hardening behavior of the single crys-
tal material model depends on the choice of the interaction matrix in the hardening
law, given in (24.13). Since its coefficients can be estimated from non-proportional
tests involving strain path changes, cf. [80], it is interesting to study the influence
of the interaction matrix on the performance of the different formulations in case
of the butterfly test. Therefore, the initial orientation of the crystal is taken as
{ϕ1,�, ϕ2} = {0◦, 0◦, 0◦}, i.e. the crystal axes are aligned with the axes of the global
coordinate system and the hardening parameters are chosen according to Table 24.3,
while the remaining parameters are taken from Table 24.2. The coefficients of the
interaction matrix are adopted from the literature without modifications, while the
hardening parameters �Y are rescaled in the cases (ii) and (iii). This rescaling is nec-
essary in order to solely study the effect of the deviation of the interaction matrix from
the Taylor-type hardening case, because according to (24.13) keeping the parame-
ter �Y constant would result in considerably different hardening rates. Therefore,
the hardening parameters �Y are adjusted in such a manner that the stress-strain
curves coincide under simple shear loading for the arbitrarily chosen orientation
{ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}, see Fig. 24.5b.
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Table 24.3 Hardening parameters employed in the comparative study under finite deformation
tension/compression-shear loading

case Y0 in GPa �Y in GPa h h0 h1 h2 h3 h4 h5 References

(i) 0.06 0.049 10 1.0 1.0 1.0 1.0 1.0 1.0 –

(ii) 0.06 0.04083 10 1.0 1.4 1.4 1.4 1.4 1.4 [58]

(iii) 0.06 0.01704 10 1.0 4.4 4.75 4.75 4.75 5.0 [37]

Fig. 24.6 Influence of the
interaction matrix on: a the
stress path in the butterfly
test for different numbers of
increments and b the norm
of the prescribed
deformation increment for
the rate-independent,
augmented Lagrangian
formulation. The three
different interaction matrices
are indicated by case (i), (ii)
and (iii), in agreement with
Table 24.3. The filled
symbols denote changes in
the deformation path
consistent with Fig. 24.5a
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The calibrated material model is used to simulate the stress response to the
non-proportional deformation path illustrated in Fig. 24.5a employing the rate-
independent, augmented Lagrangian formulation and the rate-dependent formula-
tion based on the OM-viscosity function, because both formulations proved robust
and yielded consistent results in the fully deformation-controlled test conducted in
Sect. 24.3.1. For the rate-independent formulation, the computed stress path is illus-
trated in Fig. 24.6a, in which the reference simulations, depicted with colored lines,
required 1000, 2000 and 4500 increments for the different interaction matrices in
cases (i), (ii) and (iii), respectively. Furthermore, white circles denote simulation
results obtained with coarser increment sizes in the cases (i) and (ii), in which 50 and
1500 increments were employed, still yielding sufficiently accurate predictions of
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the stress path. It is clearly visible from Fig. 24.6a that the interaction matrix signifi-
cantly influences the stress response, especially at the latter stages of the deformation
path, suggesting that the material parameters entering the interaction matrix could
in principle be identified from such a non-proportional test.

Besides this observation, the choice of interaction matrix also significantly influ-
ences the performance of the augmented Lagrangian formulation in conjunction with
the constitutive driver. In particular, while a rather coarse incrementation can be cho-
sen in case (i), i.e. an interaction matrix corresponding to Taylor-type hardening is
employed, the beneficial robustness of the formulation is diminished in case of the
two-parameter interaction matrix (ii) and especially in case of the four-parameter
interaction matrix (iii), at least if the same accuracy as in the reference simulation is
sought. This aspect is also illustrated in Fig. 24.6b, which shows the evolution of the
norm of prescribed deformation gradient components for the reference simulations.
While no adaptive adjustment of the increment size is necessary in cases (i) and (ii),
it is worth noting that at least one and a half times the number of increments are
required in case (ii) compared to the reference simulation with Taylor-type harden-
ing (i) to obtain a stress response independent of the chosen step size. In case (iii),
an adaptive adjustment of the increment size is even necessary, particularly at the
change in the deformation path from the combined tension/compression-shear load-
ing to only shear loading in order to ensure convergence of the constitutive driver,
yielding increment sizes below 10−6. Thus, although the augmented Lagrangian for-
mulation proved very robust in a fully deformation-controlled test in the absence of
hardening, similar results cannot be obtained in situations where the hardening is
anisotropic. This is due to the inclusion of interaction matrices other than the one
corresponding to Taylor-type hardening and in particular in situations that involve
iterative procedures to ensure stress-free conditions in certain directions. This is not
surprising, because interaction matrices not associated with Taylor-type hardening
allow for a change of the shape of the elastic domain and not only its size, which con-
fronts the corresponding stress-update algorithm with a significantly more difficult
task.

Furthermore, the rate-dependent formulation based on the OM-viscosity function
is now employed in the simulation of the non-proportional tension/compression-shear
cycle, where the deformation gradient coefficients are prescribed at Ḟ22 = 10−2 s−1

and Ḟ12 = 5 × 10−3 s−1, respectively. The computed stress path is illustrated in
Fig. 24.7a. Again, reference solutions are indicated by colored lines. Here, they were
respectively obtained with 1000, 2000 and 3300 increments for the three differ-
ent interaction matrices. In the cases (i) and (ii), additional simulations have been
carried out with a coarser incrementation, employing 800 and 1000 increments. The
corresponding results are again depicted with white circles. For these two cases, only
minor differences are observed compared to the rate-independent results and the devi-
ations can be attributed to the chosen viscosity parameters and the moderate loading
rate. Note that the stress-update algorithm corresponding to the rate-dependent OM-
formulation allows for a further reduction of the number of increments in case (i)
and (ii), but this results in a significant loss of accuracy in the predicted stress path.
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Fig. 24.7 Influence of the
interaction matrix on: a the
stress path in the butterfly
test for different numbers of
increments and b the norm of
the prescribed deformation
increment for the
rate-dependent formulation
based on the OM-viscosity
function. The three different
interaction matrices are
indicated by case (i), (ii) and
(iii), in agreement with
Table 24.3. The filled
symbols denote changes in
the deformation path
consistent with Fig. 24.5a
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In case (iii), associated with the four-parameter interaction matrix, the stress path
predicted by the rate-dependent formulation differs significantly from the results
of the rate-independent formulation. A noticeable difference is already observed in
the first part of the loading cycle, corresponding to a constrained uniaxial tensile
loading, in which F12 = F21 = 0. Here, non-zero shear stresses σ12 of considerably
different magnitude develop for both the rate-dependent and rate-independent for-
mulation, as depicted in Fig. 24.8b. These stresses can be attributed to the above
mentioned constraint in combination with the activation of the slip systems given in
Table 24.4. While the four-parameter interaction matrix provokes the activation of
five slip systems in the rate-independent formulation, eight slip systems are active
in the rate-dependent formulation, as shown in Fig. 24.8a. Note that for the latter the
eight hardening variables εα do not evolve identically. On the contrary, the simu-
lations conducted with the interaction matrices (i) and (ii), identical slip along the
same set of active systems is determined. Thus, the high-symmetry of the initial
orientation is preserved during the first part of the loading cycle and the constraint
is automatically fulfilled.

Comparing the complete stress paths obtained for the rate-dependent and the rate-
independent formulations in case of the interaction matrix (iii) once again, it becomes
apparent that the different slip activity during the initial stage of the non-proportional
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Fig. 24.8 a Evolution of the
hardening variables under
constrained uniaxial tension,
b influence of initial
misorientation on stress path
under constrained uniaxial
tension during the initial
stage of the non-proportional
deformation path
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Table 24.4 Hardening variables εα at F22 = 1.1 in constrained uniaxial tension during the initial
stage of the non-proportional loading

B2 C1 A6 A2 B5 C5 D6 D1

augm.-Lagr. – 0.04587 – – 0.04160 0.06728 9.8 × 10−6 0.06205

OM-viscoplast. 0.00155 0.00797 0.00154 0.02586 0.17239 0.00369 0.00285 0.00419

test results in a more complex stress path for the rate-dependent formulation. This
observation is also reflected in a different history of the prescribed deformation incre-
ments shown in Fig. 24.7b, which is obtained by the adaptive procedure mentioned
above. However, the sudden decrease in the increment size, indicated by a black cross
in Fig. 24.7a, b, is not linked to any sharp change in the stress path. It is rather caused
by rapidly changing shear components of the deformation gradient, determined from
corresponding zero stress condition, to allow for a constant slip activity.

Similar to the approach employed in Sect. 24.3.1, a sensitivity analysis is con-
ducted to investigate the deviation of the stress paths during the initial constrained
uniaxial tensile loading. To this end, the initial orientation is perturbed employ-
ing (24.31) and (24.32) and choosing α = 0.5◦. A wide range of stress paths is
obtained for selected perturbed initial orientations employing the rate-independent
augmented Lagrangian formulation. The corresponding results are illustrated in
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Fig. 24.8b together with the uniaxial stress path of the perfectly oriented single crystal
simulated employing the rate-dependent OM-viscosity function. The striking simi-
larity in the results of the two formulations is the sudden change of the shear stress σ12,
which is observed immediately at the initiation of plastic flow in the rate-independent
formulation for some perturbed initial orientations. In the rate-dependent result how-
ever this sudden deviation from uniaxial tension is shifted to higher stresses.

Due to the fact, that the loading axis is aligned with a direction of high symme-
try for the perfect cube orientation {ϕ1,�, ϕ2} = {0◦, 0◦, 0◦}—yielding up to eight
potentially active slip systems—the stress response obtained either experimentally
or from numerical simulations is rather sensitive to small misorientations [61, 68].
As mentioned above the interaction matrix in case (iii) initially provokes the activa-
tion of this set of eight slip systems associated with the high symmetry orientation
in the rate-dependent formulation (see Fig. 24.8a and Table 24.4). However, at an
uniaxial stretch F22 ≈ 1.02, several slip systems are deactivated and concentrated
slip on system B5 is observed, which accompanies the sudden change in the shear
stress σ12 in the response of the rate-dependent model.

The strong sensitivity of the actual stress path to small initial misorientations,
illustrated in Fig. 24.8b, indicates an unstable orientation, which is also supported by
two results found in the literature. Firstly, the combinatorial search conducted in [67]
for a single crystal—with an anisotropic hardening law (based on a six-parameter
interaction matrix)—under incompressible, uniaxial tension loading in cube orien-
tation revealed that there exist three different slip system solutions. One corresponds
to the activation of eight systems, while the other two only activate four systems.
This is consistent with the results presented in [72], where it was also found that the
Taylor ambiguity problem occurs if anisotropic hardening is included in the model
for fcc single crystals. Secondly, it has been reported in [72] that the value of the
rate-sensitivity exponent influences the stability of a crystallographic orientation. In
particular, crystallographic orientations which are stable in simulations carried out
by rate-independent formulations can become unstable in the corresponding rate-
dependent formulation, if the viscous parameters are not chosen such that they are
able to recover the rate-independent limit. The choice of viscous parameters and the
Taylor ambiguity problem are therefore regarded as the key factors for the significant
deviations in the stress path and slip activity obtained by the rate-independent and
rate-dependent formulations. The large difference in the plastic slip activity may also
be amplified due to application of the iterative procedure to determine the non-zero
shear components of deformation gradient, which eventually leads to an unsym-
metric plastic slip. The initial variation in stress path clearly has an influence on the
subsequent evolution of the stress along the remaining non-proportional deformation
path. Thus, it cannot be expected that the stress path obtained by the rate-dependent
formulation in Fig. 24.7 returns to the one of the augmented Lagrangian formulation
in Fig. 24.6 for the interaction matrix employed in case (iii).
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24.4 Constrained Tension Test

To further illustrate the robustness of the rate-independent, augmented Lagrangian
formulation, it is tested within the finite element solution of a spatially inhomoge-
neous finite deformation boundary value problem. In particular, a constrained tension
test is simulated employing a tensile specimen with a geometrical imperfection. The
corresponding dimensions are given in Fig. 24.9, where the imperfection is intro-
duced in terms of two symmetrical notches reducing the width of the specimen at its
center to 90% of the original width. Along the lower edge of the specimen the dis-
placement in 2-direction is fixed, while at the upper edge a proportionally increasing
displacement is homogeneously prescribed. Additionally, the influence of two dif-
ferent types of boundary conditions is studied. Firstly, a clamped condition, in which
the displacement in 1-direction u1 = 0 is prescribed at both edges and secondly, a
free lateral contraction condition, for which the displacement in 1-direction u1 = 0
is only enforced at points A and B in Fig. 24.9, is considered. In either case, the
displacement in 3-direction is also fixed for the entire specimen. The geometry of
the specimen is discretized with 400 three-dimensional linear hexahedral elements,
denoted as C3D8 according to ABAQUS conventions. The material model outlined
in Sect. 24.2 with Taylor-type hardening, (24.11), is employed in the simulation.
The corresponding material parameters are given in Table 24.5. With this model at
hand, the influence of the initial orientation of the crystal on the force displace-
ment curve is studied first. Therefore, four different initial orientations with respect
to loading axis, namely {ϕ1,�, ϕ2} = {30◦, 45◦, 0◦}; {0◦, 0◦, 0◦}; {0◦, 45◦, 30◦} and
{289◦, 163.6◦, 42.5◦} are chosen, where the Schmid factor m of the most favor-

(a) (b) (c) (d)

Fig. 24.9 a Geometry of a mildly notched tensile specimen of unit thickness with a notch radius
of 125 mm and an initial reduction the of specimen width to 90%, b clamped and c free contraction
boundary conditions, d finite element mesh
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Table 24.5 Material parameters employed in the constrained tension test

κ in GPa μ in GPa Y0 in GPa �Y in GPa h

49.98 21.1 0.06 0.049 10

Fig. 24.10 Influence of the
initial orientation on the
overall force-displacement
curve (a) and the minimal
width wmin of the specimen
measured in 1-direction (b).
Symbols indicate the
deformation at which field
distributions of the
logarithmic strain LE22 are
shown in Fig. 24.12
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ably orientated slip systems take the values of m = 0.3291; m = 0.4082; m =
0.4183; m = 0.5, respectively, if the crystal is deformed under homogeneous uniax-
ial tension. Consistent with the Schmid factors, the orientation {30◦, 45◦, 0◦} requires
the highest force to activate the plastic flow, as shown in Fig. 24.10a. For the orien-
tation {289◦, 163.6◦, 42.5◦}, a considerably lower force is required at initial yield,
but the plastic flow is accompanied by strong initial hardening, leading to almost the
same force level as the former orientation (Fig. 24.10a).

Besides the influence of the initial orientation on the initial yield and the hardening
behavior, the onset of necking and localization of the deformation is also strongly
affected by the choice of initial orientation. While the force-displacement curves for
the orientations {0◦, 0◦, 0◦} and {0◦, 45◦, 30◦} show a rather smooth transition to the
geometrically-induced softening, more rapid drops in the applied force are observed
for the other two orientations. A similar trend is observed for the respective minimal
width of the specimen wmin measured in 1-direction, shown in Fig. 24.10b, where
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Fig. 24.11 Influence of the
boundary conditions on the
overall force-displacement
curve (a) and the minimal
width wmin of the specimen
measured in 1-direction (b).
Symbols indicate the
deformation at which field
distributions of the
logarithmic strain LE22 are
shown in Fig. 24.13
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the former two orientations continuously deviate from the initially linear relation
between wmin and u2, while especially the orientation {30◦, 45◦, 0◦} is characterized
by a sudden change in the specimen width. In each case, the deformation at which
the deviation from this linear relation occurs, does not coincide with the maximum
applied force, but happens, as expected, at considerably smaller deformations. The
deformed specimen geometry and the spatial distribution of the logarithmic strain
in longitudinal direction, i.e. (LE22) are illustrated in Fig. 24.12, where the latter is
computed from

LE = 1

2
ln

(
F · FT)

. (24.34)

The evolution of the strain fields further confirms the important influence of the
initial orientation on the mode of localization (symmetric/unsymmetric). In case of
the highly symmetric crystal orientation, {0◦, 0◦, 0◦}, the strain field is symmetric
even during necking. The location, at which the highest strain is observed, is shifted
rapidly from the notch surface, for the elastic solution, shown on the left in the
top row of Fig. 24.12, to the center of the specimen during elastic-plastic loading. In
contrast, the strain field of the initial orientation {289◦, 163.6◦, 42.5◦} shows a smooth
transition at the initiation of plastic deformation. While during the initial stages of
elastic-plastic loading a rather large volume experiences pronounced deformation,
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Fig. 24.12 Influence of the initial crystal orientation on the evolution of the logarithmic strain
LE22, a {ϕ1,�, ϕ2} = {0◦, 0◦, 0◦} and b {ϕ1,�, ϕ2} = {289◦, 163.6◦, 42.5◦}
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the deformation eventually localizes within a band. Interestingly, the inclination of
the deformation band changes during the loading history due to the reorientation of
the crystal.

Motivated by similar studies presented in [81], the influence of the boundary con-
ditions indicated in Fig. 24.9 shall now be analyzed. Inspecting the respective force-
displacement curves, depicted in Fig. 24.11a, only minor differences are observed for
these two scenarios. In particular, the clamped condition leads to a slight increase of
the required force at moderate elongations (u2 ≤ 5 mm) and to an earlier localization,
compared to the free lateral contraction condition. Especially, the latter observation
is also clearly visible in the evolution of the minimal specimen width, see Fig. 24.11b.
Although the influence of the boundary condition is not as pronounced as reported
in [81], the main characteristic, namely the earlier localization for the clamped con-
dition is consistent with the results from the literature. The reason why the current
simulation only shows a small sensitivity with respect to the boundary condition is
that the reference case employed a double slip formulation, while the current model
includes all primary slip systems of the fcc material. Moreover, inspecting the strain
fields in Fig. 24.13 reveals that the clamped condition has significant influence only
in the initial loading stages, where it leads to the development of a localization band
immediately after plastic yielding—an effect that is absent in the free lateral con-
traction case. However, as the prescribed deformation is increased the strain fields
become increasingly similar, although they differ in absolute values of LE22.

Finally, it is worth emphasizing two aspects that pertain to all of the numerical
tensile test studies. Firstly, although significant deformation increments can occur
at the Gauss point level for elements within a developing deformation band, the
material routine, in fact, did not require a reduction in the global time step. This
again emphasizes the robustness of the augmented Lagrangian formulation, also in
the context of inhomogeneous deformation states. Secondly, it is well-known that
the formation of localization bands in the geometrically-induced softening regime
leads to spurious mesh-dependencies of numerical results. The reason is that in local
formulations—which lack the notion of an intrinsic length scale — localization zones
degenerate to discontinuities surfaces, whose predicted widths solely depend on the
spatial resolution of the finite element mesh. Generalized continuum formulations
have been proposed in the literature that circumvent this problem and also naturally
incorporate size effects, cf. [82–85] for gradient extended formulations and [86–89]
for micromorphic formulations. However, the application of the proposed material
model within the framework of a generalized continuum formulation is beyond the
scope of the current contribution.
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Fig. 24.13 Influence of the boundary conditions on the evolution of the logarithmic strain LE22
for an initial orientation {ϕ1,�, ϕ2} = {0◦, 45◦, 30◦}. a free lateral contraction and b clamped
condition



820 S. Prüger and B. Kiefer

24.5 Conclusions

In the current contribution, a material model for face-centered cubic single crystals,
suitable for finite deformations, was discussed. Four different formulations were
considered accounting for both rate-dependent and rate-independent flow behavior.
Furthermore, a nonlinear anisotropic hardening law based on an interaction matrix
has been incorporated, which accounts for the interaction of different slip systems
in a phenomenological manner. The robustness of the corresponding stress update
algorithms was assessed under homogeneous deformation states employing pro-
portional and non-proportional loading histories. In the rate-independent case the
augmented Lagrangian based formulation, originally proposed in [35], proved to be
very robust, while the rate-dependent model adopted from [61] provided convincing
results. However, increasing the complexity of the hardening law by choosing the
parameters in the interaction matrix increasingly different from Taylor-type hard-
ening, had a strong impact on the performance of the corresponding algorithms,
resulting in a strong reduction of the prescribed deformation increment size. But this
observation can readily be explained by the fact that such anisotropic interaction
matrices induce an evolution of the shape of the elastic domain and not only its size,
complicating the stress update considerably. Thus, the successful application of these
two stress-update algorithms even in the case of anisotropic hardening emphasized
their robustness.

In order to assess the performance of the rate-independent, augmented Lagrangian
formulation under inhomogeneous deformations, an implementation of this model as
a user-defined material subroutine (UMAT) into the finite element program ABAQUS
has been employed in the simulation of a single crystalline, mildly notched tensile
specimen. Herein, a strong influence of the initial orientation on the deformation
and localization behavior was observed. Even during the formation of localization
bands in the specimen—resulting in substantial deformation increments at the Gauss
point level—an adjustment of the global time step was not necessary, confirming the
robustness of the augmented Lagrangian formulation in connection with a Taylor-
type hardening law also under inhomogeneous deformation states.

Having identified robust numerical frameworks for both the rate-dependent and
the rate-independent case, current research efforts are focused on model extensions
towards the inclusion of martensitic phase transformation and twinning by means of
analytical homogenization approaches. Furthermore, a comparison with experimen-
tal results at the single crystal scale is sought, from which the constitutive parameters
will be identified.
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