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Preface to ”Wood Properties and Processing”

Wood is one of the most important building materials, and its importance has been increasing

in recent decades. This trend is also likely to continue in the future. This book addresses relevant

problems in wood science and technology. These problems are not limited to a certain country or

territory but are generally experienced all over the world. In the first part, contributions addressing

the question of how to assess wood quality in forests. Novel non-destructive techniques offer

cost- and time-effective solutions. In the second part, contributions are dedicated to primary

wood processing, wood drying, machining, and the development and performance of advanced

wood-based composites. The third section is dedicated to the performance of wood in outdoor

applications. Special emphasis is given to esthetic performance. The fourth section is devoted to

the development of final products (furniture) and market analysis. The last section examines the use

of bamboo-based materials in the harsh conditions of cooling towers. Thus, this book brings good

insight into the recent developments within wood science and technology.

Miha Humar

Special Issue Editor
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Abstract: Douglas-fir, the most important timber species in the Pacific Northwest, US (PNW), has high
stiffness and strength. Growing it in plantations on short rotations since the 1980s has led to concerns
about the impact of juvenile/mature wood proportion on wood properties. Lumber recovered from
four sites in a thinning trial in the PNW was analyzed for relationships between thinning regime and
lumber grade yield. Linear mixed-effects models were developed for understanding how rotation age
and thinning affect the lumber grade yield. Log small-end diameter was overall the most important
for describing the presence of an appearance grade, generally exhibiting an indirect relationship with
the lower quality grades. Stand Quadratic Mean Diameter (QMD) was found to be the next most
uniformly important predictor, its influence (positive or negative) depending on the lumber grade.
For quantity within a grade, as log small-end diameter increased, the quantity of the highest grade
increased, while decreasing the quantity of the lower grades differentially. Other tree and stand
attributes were of varying importance among grades, including stand density, tree height, and stand
slope, but logically depicted the tradeoffs or rebalancing among the grades as the tree and stand
characteristics change. Structural lumber grade presence was described best by acoustic wave flight
time, log position (decreasing presence in upper logs), and an increasing presence with rotation age.
A smaller set of variables proved useful for describing quantity within a structural grade. Forest
managers can use these results in planning to best capture value in harvesting, allowing them to
direct raw materials (logs) to appropriate manufacturing facilities given market demand.

Keywords: Douglas-fir; lumber; non-destructive testing; modulus of elasticity (MOE); stiffness;
thinning; silviculture

1. Introduction

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), the most important commercial timber species
in the Pacific Northwest (PNW), is predominantly recognized for its stiffness and strength [1]. About
70% of the harvested Douglas-fir is for lumber products, which includes less than 5% machine
graded lumber (machine-stress-rated (MSR) and machine-evaluated-lumber (MEL)). Due to its value,
intensively managed stands in the PNW are primarily Douglas-fir [2]. Intensive management and an
improved genetic stock have increased the growth and yield amounts and tree size in young Douglas-fir
plantations. Geneticists are also studying the heritability of the stiffness trait [3,4]. What has not been
addressed fully are the effects of this management choice on wood quality. In the 1980s, an emphasis on

Forests 2018, 9, 576; doi:10.3390/f9090576 www.mdpi.com/journal/forests1
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volume production and short rotations in plantations led to concerns about the proportion of juvenile
wood to mature wood [5,6] and its impact on stiffness and strength. Properties of juvenile wood,
such as a lower wood density and a higher microfibril angle [7], can make it unsuitable for higher
value, structural products. Megraw [8] reported that there was a broader juvenile wood zone than
that found in other species. Increasing the complexity of determining the impact of juvenile wood on
wood quality are the findings of Abdel-Gadir and Krahmer [9] who wrote that variation in the age of
wood density maturation for Douglas-fir ranged from 15–38 years old. Aubry [10] found that wood
density significantly influenced economic value using MSR grading rules. A symposium held in 1985,
“Douglas-fir Stand Management for the Future”, spoke to these concerns as did a report prepared by
Forintek Canada Corp. for the British Columbia (BC) Ministry of Forests Douglas-fir Task Force [11].

Faster grown trees have a higher proportion of juvenile wood in the core. Barrett and Kellogg [12,13]
found a decline in strength and stiffness properties of second-growth Douglas-fir 5.1 × 10.2 cm
(2 × 4 in) lumber relative to established standards for young-growth Douglas-fir and related it to the
proportion of juvenile wood. They examined changes in the Modulus of Elasticity (MOE, or stiffness)
and Modulus of Rupture (MOR, or strength) based on visual grade, log position, and percent of
juvenile wood and found that MOE and MOR decreased with increasing height in the tree and with an
increased overall percentage of juvenile wood.

In examining the product potential of Douglas-fir from young-growth, managed stands, Fahey [14]
conducted a lumber recovery study in western Oregon, USA (OR) and Washington, USA (WA).
They found that knot size and the amount of juvenile wood had a significant impact on the yields
of visually and machine-stress-rated lumber and visually graded veneer. This study demonstrated
that there can be a wide range of wood quality within the young-growth resource as a result of
the management strategies employed and confirmed the results from other studies [11,13,15] that
examined the structural properties of lumber manufactured from juvenile wood.

Knots are another wood quality concern, as noted in several research studies [14,16]. Silvicultural
regimes that promote fast grown trees, such as wide initial spacing, also impact crown length, rate of
crown recession [17], and branch longevity thus attainable branch size [18]. Weiskettel [19] found
the maximum branch size to be very responsive to silvicultural treatment and Brix [20] saw thinning
effects predominately in the bottom half of the crown. Predicting branch size has been the focus of
several studies including those by Maguire [21,22] and Briggs [23]. The timing of thinning is also
influential. Pre-commercial thinning in younger stands will have more of an impact on branch size in
the lower bole [24] than a thinning conducted later (e.g., 40 years or more) [25].

Branches translate to knots in products and are considered defects that impact both the visual
grades and structural properties. Visual lumber grading rules [26] have criteria for knot size, location
(center or edge), number, and condition (sound or unsound) for a given width board in assigning a
grade. In a study by Middleton and Munro [27], knots prevented lumber from being assigned to the
highest grade Select Structural about 30% of the time. Grain deviation around knots has a strength-
and stiffness-reducing effect [5].

Barratt and Kellogg [13] found that it was hard to recognize lumber from second-growth trees
with high stiffness and strength by visual grades. A continued reliance on visual grades for Douglas-fir
lumber grading may be due, in part, to its intrinsic microfibril angle (MFA) patterns. When compared
to other species, the volume of low MFA or low shrinkage wood in a Douglas-fir log is large,
which renders a stable lumber product [14]. Therefore, the lumber value of a Douglas-fir tree is
mainly driven by the size (volume) of the log. The volume of logs in a tree is principally affected by
tree diameter, height, and taper/form, all of which can be impacted by silviculture. These findings
have led to additional research on the ability to predict lumber quality from a standing tree or bucked
log attributes. Briggs [28] found that measuring the largest branch in the breast height region or
calculating the branch index (the average of the largest four branches in each quadrant) could be used
to predict product (lumber or veneer) quality in the first 4.9 m (16 ft) log (butt log) and was easy to
measure. The use of non-destructive testing (NDT) tools (acoustic velocity) for predicting the potential
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of a log or a tree to produce stress-rated lumber is also becoming more common [23,29–35]. Branches
can influence acoustic readings as Amishev and Murphy [36] found a negative correlation between
branches size and acoustic velocity. They also noted that branches accounted for some of the variation
noted in the acoustic measurements.

The impacts of the increased mix of juvenile wood and branch size on the performance of lumber
products are of concern to the wood products industry. A diverse structural-grade yield among
different plantation stands is not uncommon. The range of MOEs found among logs of the same
morphology or grade is very large and with the increasing amount of juvenile wood in the log market,
it is becoming more challenging to find high stiffness logs for mills producing structural and engineered
wood products (EWP) in the PNW [6].

The effects of rotation age and cultural treatments on lumber grade recovery and the effects
of MOE on different lumber products is presented first, followed by findings from exploratory
modeling efforts to further understand and explain more rigorously how rotation age and other
factors (site, silviculture, tree characteristics) act together to determine the presence and amount of
lumber in particular grade classes. These results will assist land managers (a) in assessing if stands and
stand treatments are within desired specifications and (b) in making improved marketing decisions.
The acoustic data related to first-log lumber MOE results were previously summarized [37]. Here we
quantify the distribution of lumber grades by silviculture and rotation age for all logs produced.

2. Materials and Methods

2.1. Study Sites

The Stand Management Cooperative (SMC), based at the University of Washington, established
long-term research installations designed to address the effects of forest management regimes and
silvicultural treatments on stand and tree growth and development. The SMC Type II installations
were designed to provide data representative of plantations reaching a commercial thinning stage
of development at the time of study establishment [38]. In 2006, these installations had reached
the end of their designed measurement cycle and land owners were free to harvest them. Four of
these installations (numbered 803, 805, 807, and 808) representing a wide geographic range and two
rotation age levels (third and fifth decades) were selected for this study (Figure 1) in order to assess the
relationship between lumber quality and stand/tree/log variables and to assess the effects of thinning
on lumber stiffness at rotation (final harvest).

Each installation contained five plots (0.4 ha) representing different thinning regimes (Table 1)
all harvested in the same calendar year (2006) to provide the material for this study. Thinnings were
triggered (implemented) when the stand attained a particular value of Curtis’ [39] stand relative density
(RD). Curtis’ relative density measures the extent that trees have captured available growing space.
In the case of Douglas-fir, stands that have a measured RD lower than ~15 are essentially open-grown.
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Figure 1. Locations of the Stand Management Cooperative (SMC) installations selected for this study.
The numbers in red are the rotation ages of the stands when harvested.

Table 1. Thinning regime, Relative Density triggers, and thinning dates (with corresponding stand
ages) with the last row containing the rotation ages (final harvest ages in years since planting) for each
installation. Study trees came from the final harvest.

Treatment
Code

Thinning
Regime

RD a

Trigger Sequence
Installation Thinning Dates

(Age at Thinning)

803 805 807 808

A No thinning
(Control) none none none none

B Thin heavy once RD55-RD30; 1987 1990 1989 1991
no further thinning (33) (21) (15) (31)

C Delayed thinning RD65-RD35;
no further thinning none none 1993

(19)
1993
(33)

D Repeated,
heavy thinning

RD55-RD30;
subsequent thinnings

RD50-RD30

1987
(33)

1990
(21)
2004
(34)

1989
(15)
2001
(30)

1993
(33)

E
Repeated, RD55-RD35; 1987(33) 1996(27) 1989(15) 1991(31)

light thinning RD55-RD40; subsequent
thinnings RD60-RD40

Rotation age (Final harvest age) 51 36 45 32
a RD = relative density [39].
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Stands in which the RD is between ~15 to 30 are growing large individual trees rapidly,
but generally at the expense of per hectare production. Stands that have a measured RD between
30 and 55 may have slower individual tree growth rates but are still increasing the per hectare
production with increases in RD. Whereas stands beyond an RD of 55 are beginning to lose stems due
to competition-induced mortality though the individual tree size continues to increase as does the
per hectare yield. Generally speaking, for the objective of producing wood volume, one strategy is to
commercially thin either once or several times to earn income during a rotation, which serves at the
same time to maintain or enhance tree and stand growth rates after thinning. If multiple thinnings
are contemplated, a general strategy is to thin less frequently and more lightly as the stand ages.
For example, the thinning regime behind treatment code D allows a stand to just reach the imminent
competition-induced mortality boundary and thins back nearly to a condition where the per hectare
production may be sacrificed; subsequent thinnings maintain an overall lower density stand condition
by keeping the RD no higher than 50.

Site, stand, and average tree characteristics by treated plot at the age when harvested appear in
Table 2. The delayed thinning plot (C) of installation 808 was lost due to a windstorm, so no data were
available for this treatment from that site.

Table 2. Selected site, stand and tree characteristics for the four installations by plot.

Inst.
(elev, m)

Plot SI a Density BA b QMD c Ht
Avg Stem

Taper
LCR d LLAD

Butt Log e

(slope, %) m@50y trees/ha m2/ha cm m cm/m % cm
803 A 36 791 56 30.0 36.6 1.05 30 2.54

(585) B 37 306 45 43.4 39.0 1.12 37 2.54
(1) C 35 899 52 26.9 35.1 0.97 29 1.78

D 35 336 45 41.4 35.4 1.17 33 3.30
E 34 459 47 36.1 33.8 1.05 30 1.78

805 A 38 860 52 27.7 30.8 0.94 36 4.57
(168) B 40 454 40 33.5 31.4 1.03 37 3.05
(15) C 39 366 33 34.0 32.3 1.00 41 4.32

D 41 420 42 35.6 32.0 1.24 39 2.79
E 39 405 36 33.8 32.3 1.12 39 5.33

807 A 33 1398 49 21.1 24.1 1.13 27 1.27
(152) B 33 741 39 25.9 24.7 1.12 34 2.03

(1) C 30 825 36 23.4 23.2 1.12 37 2.54
D 35 395 27 29.2 25.9 1.17 43 3.05
E 37 929 40 23.4 27.1 1.05 33 0.76

808 A 34 731 62 32.8 31.1 1.28 37 2.03
(762) B 33 296 44 43.4 30.9 1.42 47 2.79

(5) C - - - - - - - -
D 31 247 42 46.7 28.7 1.57 51 2.29
E 33 351 50 42.4 30.8 1.46 39 3.05

a SI = site index; b BA = basal area; c QMD = quadratic mean diameter; d LCR = live crown ratio; e LLAD = largest
limb average diameter in first 4.9 m (16 ft).

2.2. Tree, Log, and Lumber Measurements

As there is a relationship among the NDT values of trees, logs, and lumber [34], TreeSonic velocity
(TSV) was measured on the standing tree at breast-height as time-of-flight (nanoseconds) of an acoustic
wave over a 1 m distance using the Fakopp TreeSonic instrument on 50 plot-centered trees on each
of the plots. Mill trial trees were selected based on the distribution of the TSV. Twelve trees were
selected from each plot. Two, four, four, and two trees from each plot were randomly selected from
the following four TSV categories: The lowest 10%, medium-low 11–50%, medium-high 51–90%,
and the top 10%, respectively for processing into lumber and veneer. Six trees were randomly chosen
using the above TSV distribution and allocated to the lumber recovery study. The lumber recovery
trees were bucked into 10 m (33 ft) logs in the woods, delivered to the South Union Sawmill in Elma,
WA, and cut into 4.9 m (16 ft) logs in the log yard. From each tree, the resonant acoustic velocity of
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the merchantable bole and the 10 m (33 ft) length logs was measured in the woods, and the 4.9 m
(16 ft) logs were measured at the sawmill using the Director HM200 [34]. Logs were processed into
predominantly 5.1 × 10.2 cm (2 × 4 in) and 5.1 × 15.2 cm (2 × 6 in) lumber. Most of the MSR and
MEL lumber produced were of these sizes. In addition, the location and size of the largest knot in
each quadrant of the 4.9 m (16 ft) log segments were measured to calculate the large limb average
diameter (LLAD) also known as branch index (BIX). The location and size of any ramicorn branches
were also recorded.

Logs were sawn using a Mighty Mite circular saw (7.1 mm or 0.28 in saw kerf) with horizontal
edger blades. Each piece of lumber was labeled to identify the tree and log it came from as well as the
log position within the tree. The lumber was kiln-dried and surfaced. Finished lumber was visually
graded by a certified lumber grader from the Western Wood Products Association and grade-limiting
defects were recorded for each piece. All lumber was shipped to the USDA Forest Products Laboratory
(FPL), Madison, WI for MOE determination using the MetriGuard e-computer. All data were collected
from fall 2006 through spring 2007.

The MOE was adjusted to 15% moisture content [40] to calculate the volume-weighted log MOE.
The percentage of lumber that met the MSR/MEL grade requirements was calculated based on the
moisture content adjusted MOE.

2.3. Data Analysis

First, the branch index, grade-limiting defect, and lumber stiffness were summarized by the stand
and silviculture regime. Next, the lumber grade distributions among the silviculture regimes and
MOE distributions by lumber grade were examined more rigorously through an explanatory modeling
effort. One set of equations was developed to assess the effects of site, stand, tree and log attributes
on the proportion of log volume by visual lumber grade and another set of equations generated to
assess how the same attributes affect the proportion of lumber volume that meets the structural design
specifications for each grade. Each set of equations was developed using a two-step process.

The proportion of log volume in a visual grade was modeled first. In the first step, a model was
developed to predict the presence of a grade within a log. The presence was indicated with a one
(1), absence with a zero (0). In the second step, the abundance of the grade was estimated given that
the grade was present. Although on the surface our data contained what appeared to be a very large
number of observed zeroes, which indicate the absence of a grade within a log, methods to account
for such a condition [41] showed no improvement to the fit when the model was recast as a fractional
regression. Therefore, a generalized linear mixed-effects model was chosen to describe the presence of
a grade, linked to a logistic error distribution, which maximized the likelihood of the parameters when
the response is Bernoulli. The model appears in Equation (1).

p =
1(

1 + e−(β0+b0i+β1X1+β2X2+...)
) + δi (1)

where p denotes presence (p = 1) or absence (p = 0) of a grade within a log, e denotes the base of the
natural logarithm, Xs denote the set of predictor variables examined, βs are the fixed model coefficients,
b0i are random deviations due to the plot from the fixed component of the model coefficient, β0, and δi
are random error terms describing the residual variation unexplained by the predictor variables and
random plot effects.

In the second step, an abundance model to predict the proportion of log volume in a particular
visual grade given its presence was developed using a linear mixed-effects regression model. Since the
proportion of a particular grade within a log is, by definition, any number between zero (0) and one
(1), the log odds-ratio transformation (logit) was applied to the observed response values to normalize
their distribution. The model form appears in Equation (2).

logit(θ) = β0 + b0i + β1X1 + β2X2 + . . . ei (2)
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where θ denotes the proportion of log volume in one of the grades, logit(θ) denotes the natural
logarithm of the ratio of the proportion in the grade to the proportion that is not, or “log odds-ratio”,
Xis denote the set of predictor variables examined, βis are fixed model coefficients, b0i is the random
deviation due to the plot from the fixed component of the model coefficient, β0, and ei are the random
error terms describing the residual variation unexplained by the predictor variables and random
plot effects.

The design values were assigned [42] to meet the engineering requirements of the intended
end use of the lumber (structural capability). They differ not only by end use but also by species
and are influenced by such features as knots and slope of grain. The size of lumber was also a
consideration in assigning design value. Structural lumber (including dimension lumber) can be
visually and/or mechanically (MSR) graded for its strength and physical working properties. The set
of models, derived to estimate the proportion of lumber volume meeting the structural design values
for Douglas-fir, were derived similarly to the visual grade models.

In the first step, a model was derived to predict the presence of lumber meeting the structural
value within a grade using the same model as Equation (1), while the second step model estimated
the proportion of volume meeting the structural design value given that it was present using the
same model as Equation (2). A two-step modeling process, such as used here, has previously been
used quite successfully in other contexts where the conceptual framework is analogous (see for
example Reference [43]).

Installation, or geographic location, effects were accounted for as fixed effects in the models in
the form of site attributes, such as slope, aspect, elevation, among others. The effects of the plot were
considered random in all fitted models, to assess and characterize the magnitude of uncontrollable
noise, i.e., variation that is unaccounted for by the treatments applied. The only exceptions to this were
the Economy visual grade and No. 3 structural grade abundance models, each of which lacked
a sufficiently large sample size to assess the plot variation adequately. Thinning methods were
expected to express their influences in the form of differing stand density, basal area, and average
stand diameter that were attained over the course of time through stand dynamics processes as
moderated by silvicultural thinning. Tree variables (Diameter at Breast Height [DBH] total height,
taper, height-diameter ratio) were considered to be fixed, measurable effects. Each model set was
developed using a forward selection of variables, with a chosen significance level of 0.1 for all models.
Given the high level of variation observed among plots and trees, this less conservative significance
level was chosen in order to capture all important variables influencing the presence and abundance of
the grades. Twenty candidate predictor variables were evaluated for each model including treatment
(silviculture regime and harvest age), site (latitude, longitude, slope, aspect, and elevation), plot
(Trees Per Hectare [TPH], Quadratic Mean Diameter [QMD], basal area, relative density, site index),
tree (DBH, height, height-DBH ratio, taper, and acoustic velocity), and log (small-end diameter, position
along the stem, and LLAD) attributes. Only main effects were considered. The lme4 R package was
used for fitting the models [44].

For binary presence/absence models, methods to assess the fit in a meaningful way are not well
defined, which also holds true for logit models, or models where proportions represent the response.
We chose the following method for evaluating the overall combined fit for the two-model sets. After
fitting the models, the mean predicted abundance for each grade was determined using a Monte Carlo
simulation. In this process, a random number between zero and one was generated 500 times per
grade for each log in the dataset and compared to the modeled probability of presence. The abundance
was then tallied as either the predicted abundance when the random number did not exceed the
modeled presence probability or zero otherwise. The results were averaged to calculate the mean
response per grade for each log. Finally, the predicted abundance for all grades within a log was
scaled proportionally to sum to one. The set of equations were evaluated as a system by comparing
these predictions to the observed values by calculating the following set of fit statistics: The adjusted
R-squared, root mean squared error, mean absolute deviation, mean bias, and mean percent error.
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3. Results

3.1. Initial Data Summary

A total of 1758 pieces of lumber were sawn from 317 logs out of 97 trees. The reduced number of
trees from the 112 trees originally selected was primarily due to weather conditions on installation
807 (13 trees were not transported to the mill) and the inability to saw the remaining four trees due to
defects (sweep) and size (log small-end scaling diameter). About 25% of the lumber produced was
5.1 × 10.2 cm (2 × 4 in) and the remaining 75% was 5.1 × 15.2 cm (2 × 6 in). A very small amount
of 2.5 cm (1 in) lumber was sawn. Restricting the lumber sizes allowed for a better assessment of the
impact of knots on the lumber grade. The yield of No. 2 and better (a grade grouping often found in
marketing Douglas-fir) lumber ranged from 91 to 95%. Table 3 shows the lumber data and grade yield
from the study.

Table 3. Sample data and percent volume yield by lumber grade of the sampled installations.

Inst. Age Tree DBH Height
Logs

Processed
Lumber
Pieces

Lumber Grade

yr n cm m n n pct

Sel Str a No. 1 No. 2 No. 3 Econ b

803 51 29 39.11 35.97 119 718 29 40 26 4 1
805 36 27 35.05 31.70 77 368 23 44 29 3 2
807 32 17 28.70 24.69 33 119 7 35 49 6 3
808 45 24 43.43 30.18 88 553 23 37 31 7 2

Total 97 317 1758
a Sel Str = select structural lumber grade; b Econ = economy lumber grade.

3.1.1. Branch Index

Another of the main factors directly affecting the lumber grade is the size of knots, which start as
branches on the tree. The branch index (LLAD) on the bottom 4.9 m (16 ft) log ranged from a low of
1.8 cm (0.7 in) to a high of 5.3 cm (2.1 in). Douglas-fir is not prone to self-pruning dead branches below
the live crown [22]. Thus, thinning that impacts the crown structure can impact knot type and size.
The butt log typically contains the highest value lumber.

3.1.2. Grade-Limiting Defect

Wane (85%) and knots (6%) were the dominant reasons for trimming lumber (about 190 pieces or
11%) to increase the grade (Figure 2a). These were also the two factors that were the grade-limiting
defects, causing the lumber to be downgraded (Figure 2b). Intensive management can increase taper
in a tree, especially in the upper stem, that leads to the presence of wane in lumber. Forty-two percent
of the lumber was downgraded for wane. Face knots (the primary grade-limiting knot type) accounted
for 37% of the downgrade. Spike and edge knots accounted for an additional 16% of the downgrade.
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Figure 2. Percent of end-trim of lumber (a) and visual grade downgrade factors (b) for all
lumber combined.

3.1.3. Lumber Stiffness

The volume-weighted MOE by log position of the tested installations is shown in Figure 3.
The MOE exhibits gradients from the tree base to the tree top, being more variable in the younger
stands (805 and 808). The log lumber MOE is related to other variables besides log diameter and log
position, including juvenile wood proportion and wood density. Upper segments near the top of the
tree (e.g., segment 4) generally have a higher proportion of juvenile wood and a lower wood density.

The percentage of Douglas-fir visual grade lumber that meets the design value is related to the
amount of juvenile wood [13]. In this study, about 50% of the visually graded lumber met or exceeded
the design value [26] (Figure 4). Of note is the small sample size of No. 3 grade lumber and the number
of 5.1 × 10.2 cm (2 × 4 in) lumber that met the Select Structural grade.

Except for installation 803, the higher grades of the tested plantation lumber had average MOE
values that fell below the published MOE design values (Table 4).

Table 4. Average density (weighted by lumber volume) and lumber MOE by site and visual grade
(number in parentheses is MOE design value of the grade).

Site Density MOE
Sel Str
(13,100)

No. 1
(11,721)

No. 2
(11,032)

No. 3
(9653)

Econ

(kg/m3) MPa

803 569 13,334 14,162 ˆ 12,473 * 12,638 * 12,555 ** 12,052
805 551 11,625 12,114 11,438 11,052 ˆ 10,587 ** 11,101
807 521 10,004 11,749 9694 9894 11,018 * 10,949
808 580 11,521 13,017 11,321 10,839 9218 10,018

ˆ MOE average meets the specification but its distribution does not; * MOE average meets MEL; ** MSR meets MOE
specifications (the amount of below-grade MOE pieces is more lenient for MEL grading rules).
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Figure 3. Log lumber MOE by segment (log position within the tree with the butt log being segment 1)
and thinning type by installation. Note: Segments are 4.9 m logs (16 ft logs).

Figure 4. Distribution of lumber MOE by lumber size and visual grades. The dotted vertical line is the
published MOE value for the specific grade. Economy lumber does not have a structural design value
assigned to it.
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The calculations used to derive the proportions meeting the design values relied only on the
MOE limit, so if additional design limits were incorporated in those calculations, the amounts of
below-grade lumber will probably be larger. One interesting observation of the test results is that when
compared to pine species, the MOE of the lower visual grade Douglas-fir lumber was relatively high,
which may be explained by the intrinsic stiffness property of Douglas-fir. There were many high MOE
pieces within the visual grade plantation-grown lumber that keep the average MOE of the grade on
par, but the amount of low MOE lumber in the distribution can fail the grading rules. The cause of
the additional low MOE pieces could most likely be due to the increased proportion of juvenile wood
within the log.

3.2. Modeling Summary

3.2.1. Lumber Grade Distribution

In the first step, the presence/absence of each grade within a log was modeled. This resulted in
the selected predictor variables listed in Table 5 showing the coefficient estimates and significance.
Intercepts were kept in all models, even if not significant, so that models remain unbiased and would
at minimum be capable of predicting a mean presence value, in cases where there may be no significant
tree or stand variables.

Table 5. Selected parameters and level of significance for lumber visual grade presence/absence models.

Variable Sel Str No. 1 No. 2 No. 3 Econ

Intercept −3.4227 ** 0.1283 1.4725 −4.6907 *** −5.9568 ***
Plot QMD 0.0926 * −0.0539 *
Tree DBH 0.0943 ***

Tree height −0.1158 **
Tree taper −4.3120 ***
Log SED 0.2006 *** 0.0707 * 0.1554 *** 0.1007 **

Log LLAD 0.1194 **
Log position −1.6142 *

σ2
b0

0.4847 0.0789 0.0097 0.0958 0.9674

Significance level symbols ***, **, and * indicate p-value ranges of p < 0.001, 0.001 < p < 0.01, and 0.01 < p < 0.05,
respectively. Intercept terms were always included regardless of significance to maintain unbiasedness.

In the second step, the abundance of each grade within a log, given that it was present,
was modeled. This resulted in the selected predictor variables listed in Table 6, showing the coefficient
estimates and level of significance. Here as well, intercepts were kept in all models, even if not
significant, so that models remain unbiased and will at minimum be capable of predicting a mean
abundance value, in cases where there may be no significant tree or stand variables.
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Table 6. Selected parameters and level of significance for the lumber visual grade abundance models.

Variable Sel Str No. 1 No. 2 No. 3 Econ

Intercept 5.7471 ** 1.9021 −1.1781 + −0.1635 1.620
Installation slope 0.0985 +

Plot TPA 0.0009 *

Plot QMD 0.0491 +

Plot site index −0.1135 * −0.1440 **
Tree DBH −0.0481 *

Tree height 0.0994 ***
Tree taper −1.6227 + 1.3858 **

Tree velocity 7.7888 *
Log SED −0.1264 *** −0.0593 *** −0.0384 * −0.2373 +

Log LLAD 0.0773 *
σ2

b0
0.0661 0.0097 0.0132 0.0058 NA

σ2
e 1.4872 1.6036 1.3930 0.4116 1.8578

Significance level symbols ***, **, *, and + indicate p-value ranges of p < 0.001, 0.001 < p < 0.01, 0.01 < p < 0.05,
and 0.05 < p < 0.1, respectively. Intercept terms were always included regardless of significance to
maintain unbiasedness.

As stated in the methods section, each set of equations was evaluated as a system by comparing
the Monte Carlo predicted values to the observed values. Summary statistics were calculated based on
1575 data points (315 logs × 5 lumber grades) and 34 parameters (Table 7).

Table 7. Summary of the fit statistics for the final lumber visual grade model system.

Statistic Value

Adjusted R-squared 0.4279
Root Mean Squared Error 0.2015
Mean Absolute Deviation 0.1409

Mean Bias 2.4939 × 10−18

Mean Percent Error 0.7045

The behaviors of the visual grade models as a system were explored by comparing the effects of
log small-end diameter (SED), harvest age, and treatment regime on the predicted grade proportions.
To accomplish this, linear regression models were first developed to predict model input parameters,
including TPH, QMD, tree height, and LLAD, from harvest age and treatment regime. Harvest ages
were chosen to range from 30 to 55 years by 5-year steps. The log SED values were chosen to range
from 10.2 to 45.7 cm (6 to 18 in) by 7.6 cm (3 in) steps. The log position parameter was chosen to be
0.25, representing the butt log of the tree. The remaining parameters were set to median values for the
data set. The results are illustrated in Figure 5.

Log SED and harvest age have the largest effects on the model. As the small-end diameter of a
log increases, the proportion of the Select Structural grade increases at the expense of the No. 1 grade,
while No. 2 and the remaining grades stay relatively flat. For a given harvest age, grade No. 2 has a
positive relationship with the log SED at its low end but turns negative for larger SEDs. Increasing
the harvest age results in proportionally larger amounts of Select Structural in the lower SED range,
but proportionally smaller amounts in the larger SEDs. Proportionally more No. 1 grade was produced
over all SEDs as the harvest age increased. The No. 2 grade decreases proportionally over the range of
the SED with harvest age, while No. 3 and Economy (E) were predicted in very small proportions in
all scenarios.

The thinning regime appears to have a much smaller effect on the distribution of grade, for reasons
stated previously. Grades Select Structural and No. 1 occurred in slightly larger proportions in a
smaller diameter, denser stands for a given harvest age and small end diameter. These results may
differ for absolute abundance, as logs with larger small-end diameters would be expected to occur
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more frequently in stands with a lower density (fewer trees per hectare that are larger in diameter
for a given harvest age). This system of models provides a methodology to better understand the
influences of silvicultural thinning on the tree and stand attributes that can be used directly to predict
the proportion of lumber grades to expect under the different regimes. This will lead to greater
accuracy and precision when appraising/valuing the resultant products produced.

 

Figure 5. Expected proportion of log volume by lumber visual grade by harvest age, treatment regime,
and log small end diameter. Trees per hectare (TPH) and quadratic mean diameter (QMD) for each
rotation age by treatment panel are shown in the upper right corner.

3.2.2. Lumber Structural Grade

The proportion of lumber volume for a visual grade that met the MOE standard was calculated for
each log. For presence/absence modeling purposes, presence was defined as any proportion greater
than zero that met the MOE standard for a particular grade. Economy grade does not have a structural
design standard. The selected variables and estimates of the coefficients are reported in Tables 8 and 9
for the presence/absence and abundance models, respectively.
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Table 8. Selected parameters and level of significance for lumber structural grade
presence/absence models.

Variable Sel Str No. 1 No. 2 No. 3

Intercept −10.2863 ** −3.5808 *** −4.1380 ** −29.5200 *
Harvest age 0.0997 ** 0.0642 **
Tree height 0.2028 ***

Tree velocity 21.5060 * 83.0200 *
Log position −3.0699 ** −2.1948 **

Log SED 0.0642 **
σ2

b0
0.0629 0.0770 0.1012 3.5360

Significance level symbols ***, **, *, and + indicate p-value ranges of p < 0.001, 0.001 < p < 0.01, 0.01 < p < 0.05,
and 0.05 < p < 0.1, respectively. Intercept terms were always included regardless of significance to
maintain unbiasedness.

Table 9. Selected parameters and level of significance for lumber structural grade abundance models.

Variable Sel Str No. 1 No. 2 No. 3

Intercept −6.4760 + −4.9053 + 7.7580 *** 9.495 ***
Tree velocity 22.7280 ** 16.6633 *

Tree taper −3.6568 *** −4.2934 ***
Log LLAD −0.1663 *

σ2
b0

0.2970 9.142 × 10−16 4.113 × 10−16 NA
σ2

e 4.4090 4.7690 4.3180 1.9061

Significance level symbols ***, **, *, and + indicate p-value ranges of p < 0.001, 0.001 < p < 0.01, 0.01 < p < 0.05,
and 0.05 < p < 0.1, respectively. Intercept terms were always included regardless of significance to
maintain unbiasedness.

Overall, the structural grade models explained a very low amount of variation in the response
variables. Summary statistics are reported in Table 10.

Table 10. Summary of the fit statistics for the two-equation structural grade model sets by visual grade.

Statistic Sel Str No. 1 No. 2 No. 3

Adjusted R-squared 0.1533 0.0407 0.1405 0.3649
Root Mean Squared Error 0.3714 0.3804 0.3821 0.3092
Mean Absolute Deviation 0.3269 0.3320 0.3403 0.2153

Mean Bias −1.601 × 10−17 2.0497 × 10−17 −5.7301 × 10−19 −4.8720 × 10−18

Mean Percent Error 0.4631 0.5559 0.4952 0.2539

4. Discussion

The data themselves are highly variable, leading to somewhat low R-squared values in all models,
but the main objective, again, was assessing the significance of factor effects to explain the responses,
not necessarily creating a model with a high precision for predictive use; though that remains an
outcome to be desired and eventually achieved. It should be noted that although treatment regime
variables were actually tested throughout in all the models, they were always supplanted by the
actual stand and tree attributes at final harvest. This does not mean that treatments were ineffective
in producing differences in log and lumber grades, only that treatment affects themselves appear
indirectly through their accumulated impact over the rotation on the responses by way of their
influence on stand dynamics processes [19,45].

Considering first the lumber visual grade presence model (Table 5), it is seen that the greatest
single impact on a single grade is tree taper. Logically, as taper increases, the presence of the Sel Str
grade is less likely. The single predictor that had influence over most of the grades was the small-end
diameter of the log (log SED) variable. This is completely expected since this is the main driving
variable in the visual log grading system that is used in the Pacific Northwest [46]. Log small-end
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diameter was most influential in the select structural lumber grade (largest coefficient), but it will be
seen that a large diameter log benefits the presence of all grades (positive signs). The average diameter
of the stand (plot QMD) positively influenced the presence of the Select Structural grade, as expected,
further enhancing the positive effect of the log SED. For the Select Structural grade, a greater degree of
taper negatively influenced its presence, likely due to less solid central wood in the log that is capable
of producing higher grade lumber, i.e., a larger proportion of wood in jacket boards (lumber sawn
from the outer portion of a log), slabs and edgings. The presence of the No. 2 grade was negatively
impacted by stands with an overall larger plot QMD, and especially so if the tree was among the taller
component. Though a large Tree DBH will help the probability that the No. 3 grade is present, it will
be less likely in the upper logs. The Economy grade presence seems insensitive to all other stand and
tree attributes, perhaps because it captures all the lumber not in the other grades.

When considering the abundance of visual grades, given their presence, we see again that log
small-end diameter was the most important variable overall (Table 6), because it remained significant
in four of the five grade models, which no other predictor variable did. Though the coefficients were
all negative, we can interpret the magnitudes of the coefficients as indicating tradeoffs in lumber
volume between grades. For example, a log with a large SED may produce all grades of lumber,
but will produce the most Select Structural lumber (coefficient is zero, i.e., no negative impact from the
SED), followed by No. 3 (smallest magnitude negative coefficient), then, No. 2 (next larger magnitude
coefficient), No. 1 (even larger negative coefficient), and finally Economy (largest negative coefficient),
respectively. The next overall most important variable might be considered to be either the plot
site index or tree taper. A higher site index decreases the Select Structural and No. 1 grades, likely
due to fewer rings per inch in the logs produced since the site index has been shown to be reflected
visibly in rings per inch, the two variables being essentially interchangeable [47]. A greater tree taper
negatively impacts the Select Structural grade, which seems to be offset by more No. 2 grade, another
tradeoff. The slope of the ground at the site (installation slope) positively impacted the abundance
of No. 1 grade lumber. This result was somewhat unexpected, and while further exploration of why
this might be important is beyond the scope of this study, it is interesting to speculate how this and
other environmental attributes or climatic variables may influence tree growth, wood production and
subsequent lumber grade turnout; currently under investigation elsewhere [48]. Overall, stands with a
larger average diameter produced relatively more Select Structural lumber, though it was tempered by
individual tree DBH; its abundance was decreased to a greater degree if the tree had a DBH larger
than QMD. As expected, grade No. 2 tolerates larger knots (LLAD) [26]. The net effect of high-density
stands is to produce trees with less taper and seems to positively influence the abundance of No. 2
grade lumber. The magnitude of between-plot variation for the visual grade abundance models was
quite small compared to residual error.

For the structural grade models (Tables 8 and 9), log position (inversely related to log diameter)
or log SED were chosen for the Select Structural, No. 1, and No. 2 grades. Log diameter has been
correlated to lumber grade recovery and thus value [27]. Harvest age and TSV (Tree Velocity) were
each selected for multiple models. The presence of the Select Structural and No. 1 grades showed
positive relationships with harvest age. This might be expected since as trees age, annual ring widths
tend to become narrower, even if the growth rate doesn’t slow because the annual wood layer would
be laid down on an ever increasing diameter. This, in turn, would lead to an increased density in the
outer rings (higher proportion of LW), leading to a greater stiffness. The tree velocity (TSV) showed a
positive relationship with the response variables, also as expected, because the speed of an acoustic
wave through wood is directly and positively correlated with wood stiffness; an important structural
attribute [34]. The Select Structural and No. 1 grades of lumber were more likely to be present in larger
diameter logs (occurring lower in the tree) harvested from older stands, as expected. The presence of
No. 2 grade was more likely in logs from taller trees located lower in the bole. No. 3 grade presence
was predicted by only the Tree velocity. The Economy grade is known not to yield any structural
lumber, so there is no design value assigned to it.

15



Forests 2018, 9, 576

The structural abundance models (Table 9), largely exhibited variables with signs that were easily
interpreted. As expected, the greater the TSV, the greater the abundance of the Select Structural and
No. 1 grades, given that they were present. Given the presence of the No. 2 and 3 grades, a greater tree
taper reduced abundance. The abundance of the No. 2 grade was further negatively impacted when
the LLAD was large, likely due to grain distortion around the knots. Fahey [14] also found that the
LLAD influenced lumber grade recovery in Douglas-fir. The magnitude of plot-to-plot variation for
the structural grade abundance models was relatively small compared to residual error.

Both sets of models for both the visual grade presence and abundance and presence and
abundance of structural lumber within a grade clearly demonstrated that visual lumber grade alone
is insufficient for predicting the actual quantity of lumber produced that meets the structural design
values for each grade. The incorporation of other tree and stand variables, resulting from stand
treatment, into the models helped the prediction of visual lumber grades more so than for structural
lumber, as judged by the fit statistics evaluated (Tables 7 and 10).

5. Conclusions

Decision support tools need to be integrated at every step in the value chain, from stand
management to log marketing. For a lumber mill, the amount of high MOE material is enough
to satisfy the current small MSR/MEL market and the visual grade lumber is the main product.
Therefore, the effects of low MOE wood on Douglas-fir lumber mills are relatively small as long as the
majority of the lumber meets the visual specifications. On the other hand, the MOE is directly related
to the value of engineered wood products (EWP), so for manufacturers producing EWP, the additional
low MOE materials directly reduce mill profit. Not only does having surplus low MOE material cause
waste in an EWP facility, but additional high MOE materials need to be purchased on the open market
to fill customer orders. Unlike visually graded lumber, the internal strength and stiffness are the key
value factors of EWP. Balancing the MOE in a log mix for EWP mills is getting more complicated with
the increasing amount of low MOE juvenile wood in the wood basket.

The use of non-destructive, in-woods testing equipment to measure acoustic velocity was found to
be the most important variable for predicting the presence of structural grades in the lumber produced.

The MOE is but one factor among other considerations in making various types of timberland
investment and forest management decisions. Plantation forests are a long-term investment and
knowledge gained from operational research, such as a mill trial, enables tree growers to tailor their
prescriptions to meet customer needs and allocate logs for maximum profit. A clear understanding of
the internal quality of standing timber provides flexibility for landowners to capture established and
emerging markets and for manufacturers to meet product specifications, adapt to changing grading
rules, and develop new products. Such knowledge is necessary to gain a market share and price
advantage. Internal wood quality sorting technologies are necessary for log suppliers to deliver the
right log to the right mill; however, the vendors may not have a sufficient understanding in operation
constraints for developing cost-effective tools for the timberlands and the mills. Logs account for
50–70% of the operational cost of a mill, and a consistent and reliable supply of log mix is a necessity
for mill managers. For some reason, communication barriers are frequently found between mills and
log suppliers. The disappearance of vertically integrated forest companies makes the information
sharing even more difficult.
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Abstract: This study presents an acoustic-based predictive modeling framework for estimating
a suite of wood fiber attributes within jack pine (Pinus banksiana Lamb.) logs for informing
in-forest log-segregation decision-making. Specifically, the relationships between acoustic velocity
(longitudinal stress wave velocity; vl) and the dynamic modulus of elasticity (me), wood density
(wd), microfibril angle (ma), tracheid wall thickness (wt), tracheid radial and tangential diameters
(dr and dt, respectively), fiber coarseness (co), and specific surface area (sa), were parameterized
deploying hierarchical mixed-effects model specifications and subsequently evaluated on their
resultant goodness-of-fit, lack-of-fit, and predictive precision. Procedurally, the data acquisition
phase involved: (1) randomly selecting 61 semi-mature sample trees within ten variable-sized
plots established in unthinned and thinned compartments of four natural-origin stands situated
in the central portion the Canadian Boreal Forest Region; (2) felling and sectioning each sample
tree into four equal-length logs and obtaining twice-replicate vl measurements at the bottom and
top cross-sectional faces of each log (n = 4) from which a log-specific mean vl value was calculated;
and (3) sectioning each log at its midpoint and obtaining a cross-sectional sample disk from
which a 2 × 2 cm bark-to-pith radial xylem sample was extracted and subsequently processed
via SilviScan-3 to derive annual-ring-specific attribute values. The analytical phase involved:
(1) stratifying the resultant attribute—acoustic velocity observational pairs for the 243 sample logs
into approximately equal-sized calibration and validation data subsets; (2) parameterizing the
attribute—acoustic relationships employing mixed-effects hierarchical linear regression specifications
using the calibration data subset; and (3) evaluating the resultant models using the validation data
subset via the deployment of suite of statistical-based metrics pertinent to the evaluation of the
underlying assumptions and predictive performance. The results indicated that apart from tracheid
diameters (dr and dt), the regression models were significant (p ≤ 0.05) and unbiased predictors
which adhered to the underlying parameterization assumptions. However, the relationships varied
widely in terms of explanatory power (index-of-fit ranking: wt (0.53) > me > sa > co > wd >> ma (0.08))
and predictive ability (sa > wt > wd > co >> me >>> ma). Likewise, based on simulations where an
acoustic-based wd estimate is used as a surrogate measure for a Silviscan-equivalent value for a
newly sampled log, predictive ability also varied by attribute: 95% of all future predictions for sa,
wt, co, me, and ma would be within ±12%, ±14%, ±15%, ±27%, and ±55% and of the true values,
respectively. Both the limitations and potential utility of these predictive relationships for use in
log-segregation decision-making, are discussed. Future research initiatives, consisting of identifying
and controlling extraneous sources of variation on acoustic velocity and establishing attribute-specific
end-product-based design specifications, would be conducive to advancing the acoustic approach in
boreal forest management.

Forests 2018, 9, 749; doi:10.3390/f9120749 www.mdpi.com/journal/forests21
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1. Introduction

The Canadian forest sector has been increasingly embracing an aspirational trivariate management
proposition for which the goal is to maximize end-product value while simultaneously realizing
volumetric yield and ecological sustainability objectives (sensu [1,2]). Tangential to this transformative
shift is the increased apprehension regarding the quality and associated end-product potential of
the increasing wood volumes harvested from more intensely managed second-growth forests [3].
Among the many prerequisites required for realizing this goal and addressing knowledge gaps in
second-growth fiber quality, is the provision of enhanced in-forest intelligence in regards to the
forecasting of end-product potential at the time of harvest or immediately afterwards (n., in-forest
generically refers to all forest operations conducted or decisions made before mill-processing
commences inclusive of operational felling areas, landings and log sorting yards).

End-product forecasts can be used to inform and optimize log-segregation, allocation and
merchandizing decision-making thus contributing to the potential realization of the value maximization
objective [4–6]. More precisely, the end-product potential of the logs extracted from the main stem of
individual coniferous trees is a function of (1) external morphological stem features (e.g., diameter,
height, taper, sweep, crook, and eccentricity), and (2) internal anatomical characteristics (e.g., microfibril
angle, tracheid wall thickness, tracheid radial and tangential diameters) and associated physical
properties (e.g., modulus of elasticity, wood density, fiber coarseness and specific surface area) of the
xylem tissue. Various performance measures which are used to define and classify the overall type and
grade of derived products have been shown to be explicitly linked to these internal fiber-based
attributes. Although only stiffness and wood density measures are currently used in machine
stress grading systems for solid wood products (e.g., dimensional lumber [7]), microfibril angle,
tracheid cell wall thickness, radial and tangential tracheid diameters, fiber coarseness and specific
surface area, are also important determinates of end-product quantity and quality [8] (sensu Table 1).
Thus, as the fiber supply increases in diversity with the arrival of wood from density manipulated
forests (e.g., pre-commercially and/or commercially thinned natural-origin stands, and plantations)
combined with increasing pressures to find economic efficiencies within the upper portion of the
forest products supply chain, provision of explicit information on these additional attributes may
become consequential.

Table 1. Product-based performance measures and their relationship with fiber attributes for
boreal conifers.

Product Category Performance Measure Relationship with Fiber Attribute a

Biomass (e.g., pellets) Calorific value ∝ xylem density

Pulp and paper (e.g., paperboards, newsprint,
facial tissues, and specialized coated papers)

Tensile strength ∝ (tracheid wall thickness)−1, specific surface area
Tear strength ∝ fiber coarseness

Stretch microfibril angle
Bulk ∝ tracheid wall thickness, (tracheid diameter)−1

Light scattering ∝ (tracheid wall thickness)−1

Collapsibility ∝ tracheid wall thickness
Yield ∝ xylem density

Solid wood and composites (e.g., dimensional
lumber; glulam-based beams)

Strength ∝ xylem density, (microfibril angle)−1

Stiffness ∝ xylem density, modulus of elasticity, (microfibril angle)−1

Poles and squared timbers (e.g., utility poles
and solid wood beams)

Strength ∝ xylem density, (microfibril angle)−1

Stiffness ∝ xylem density, modulus of elasticity, (microfibril angle)−1

a Generic-based inferences derived from generalized end-product-specific performance metric—attribute
relationships for boreal conifers (sensu [8]).
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Attribute determination for use in forecasting end-product potential deploying destructive
sampling approaches can be logistically challenging, time consuming and expensive (e.g., in-forest
extracting of 12 mm diameter xylem cores followed by Silviscan-based laboratory processing and
testing). Conversely, non-destructive sampling methods in which attributes can be estimated indirectly
through their relationship with acoustic velocity has been shown to be viable alternative [9–12].
More specifically, in-forest acoustic-based sampling tools provide forest practitioners with an ability to
estimate the dynamic modulus of elasticity within harvested logs and standing trees. The dynamic
modulus of elasticity is a wood stiffness measure that is used as a surrogate measure of its static
counterpart (static modulus of elasticity). This latter static measure is commonly employed along
with maximum knot size, sweep and physical dimensions, to categorize solid wood products into
specific grade classes [7,9,13]. Thus, the ability to forecast one of the key underlying determinates of
end-product potential within the forest at the time of harvest or soon after, has important utility in
terms of informing segregation, allocation and merchandizing decision-making [6].

Mathematically, as derived from engineering principles, the dynamic modulus of elasticity
(MOEdyn denoted me in this study; GPa) of a log can be expressed as a function of the density-weighted
velocity of a longitudinal stress wave (vl; km/s) that propagates through the xylem tissue upon its
generation arising from a mechanically induced impact on one of the open cross-sectional log faces
(Equation (1) and denoted the primary relationship herewith; [12]).

me = f
(

w′
dv2

l

)
(1)

where w′
d is the green (fresh) wood density (kg/m3) of the log’s xylem tissue. The dynamic modulus

of elasticity has also been shown to be correlated with other attributes underlying end-product
potential [14–16].

More specifically, based on extracted clear xylem samples obtained from black spruce
(Picea mariana (Mill) B.S.P.), red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb.) trees
growing in the central North America, Silviscan-derived estimates of wood density (oven-dried wood
density denoted wd in this study; kg/m3), microfibril angle (MFA denoted ma in this study; ◦), tracheid
cell wall thickness (wt; μm), radial (dr; μm) and tangential (dt; μm) tracheid diameters, fiber coarseness
(co; μg/m) and specific surface area (sa; m2/kg), have been shown to be correlated with the dynamic
modulus of elasticity (Table 2). Statistically significant (p ≤ 0.05) (1) directly proportional relationships
between me and wd, wt and co (me ∝ wd, wt, co), and (2) indirectly proportional relationships between
me and ma, dr, dt and sa

(
me ∝ m−1

a , d−1
r , d−1

t , s−1
a

)
, have been established for these species (Table 2).

Supporting correlative evidence has also been reported for non-boreal conifers. For example, a directly
proportional correlative relationship between me and wood density (r = 0.75) and an inversely
proportional relationship between me and ma (r = −0.83) has been reported for Silviscan-derived
attribute estimates obtained from clear wood samples extracted from 76 radiata pine (Pinus radiata
D. Don.) boards [13]. Based on this collective correlative evidence, an empirical-based expansion of
the acoustic-based inferential framework was proposed for boreal conifer logs [15], as summarized in
Table 2. Since wood density is also one of the principal end-product determinates (sensu Table 1) and
analytically required for acoustic-based attribute predictions (e.g., Equation (1); Table 2), a simplified
directly proportional relationship between acoustic velocity and wood density was included within
this framework (i.e., wd ∝ v2

l ). Collectively, this expanded acoustic inferential framework represents a
more encompassing analytical platform for forecasting commercially relevant wood quality attributes
than previous univariate approaches solely based on the primary relationship (Equation (1)).
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Although these statistical-based secondary relationships lack the causal underpinnings of the
primary relationship (sensu [17]), the empirical results to date have been supportive. Specifically,
applying this analytical framework to red pine logs, revealed that statistically viable acoustic-based
relationships could be established for five of the eight attributes examined (me, wd, wt, co and sa) [15].
However, the applicability of this expanded framework of acoustic-based wood attribute relationships
to other intensely managed softwood species is largely unknown. Furthermore, even the most
fundamental acoustic velocity—attribute relationship (Equation (1)) has yet to be parameterized for
most of the commercially important Canadian boreal conifers (e.g., an “acoustic velocity” keyword
search for articles published within Canada’s primary applied journal (Forestry Chronicle) was
unsuccessful in identifying previous research in this field). Conversely, other forest regions, such as
New Zealand, United States of America, Australia, Europe, and Asia, have adapted this acoustic-based
innovation pathway in order improve segregation decision-making (e.g., [18,19]). Hence, the evaluation
of the acoustic approach and the provision of prediction equations for the estimating a suite of
key attributes underlying end-product potential for jack pine, could contribute to addressing this
innovation void. Principally, by providing the forest practitioner with the prerequisite prediction
equations, in-forest segregation decision-making could be improved and potentially yield overall
efficiency gains within the upper portion of the jack pine forest products supply chain. Consequently,
the objective of this study was to investigate the empirical applicability of the expanded acoustic-based
inferential framework by examining the nature, strength and predictability of the relationships between
acoustic velocity and the dynamic modulus of elasticity, wood density, microfibril angle, tracheid cell
wall thickness, radial and tangential tracheid diameters, fiber coarseness and specific surface area,
specifically for jack pine.

2. Materials and Methods

2.1. Sample Stands, Plot Establishment and Sample Tree Selection

Two geographically separated jack pine thinning experiments that were previously established in
northeastern (denoted the Sewell site) and northcentral (denoted the Tyrol site) regions of Ontario,
were selected for sampling. The experimental treatments were representative of the crop planning
strategy historically followed in Ontario for this species. Specifically, allowing jack pine to naturally
regenerate following a stand-replacing disturbance and if sufficiently successful in terms of stocking
levels and free-to-grow status, (1) implementing precommercial thinning in order to moderate overall
site occupancy and encourage individual tree growth thereby reducing the time-to-operability status
in order to mitigate the effects of projected wood supply deficits, or (2) implementing a temporal
sequence of thinning treatments (precommercial and commercial thinning) in order to optimize site
occupancy and maximize end-product potentials throughout the rotation [20].

At the Sewell site, sample trees were selected within 6 sample plots that were established in
3 fire-origin jack pine stands (2 plots/stand). These approximately 53-year-old stands were situated
on sites of medium-to-good quality (mean site index of 18 m at a breast-height age of 50 [21]) and
geographically located within Forest Section B.7—Missinaibi-Cabonga of the Canadian Boreal Forest
Region [22]. The soils and topography were characterized as deep (>1 m) coarse-to-medium textured
sandy types situated on gently undulating terrain. Silviculturally, the stands were subjected to 1 of 3
density manipulation treatments yielding 3 unique crop plans: (1) natural stand development with no
density management (unthinned); (2) precommercial thinned (PCT) at age 11 (1971); and (3) PCT at
age 11 followed by a light pseudo-commercial thinning (CT) at age 43 (2003). Procedurally, for the first
stand, sample trees were selected within 2 previously established 0.06 ha circular monitoring plots.
For these 2 plots, a stratified random sample protocol was used to select sample trees: the observed
diameter frequency distribution at the time of sampling was stratified into 3 size classes from which 1 or
2 trees per class were selected. However, to preserve the original sample design within the remaining
stands, temporary prism-based variable-size plots where established adjacent to 2 of the existing
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long-term monitoring plots within the second and third stands. Deploying the observed diameter
frequency distribution derived from the prism sweeps, 3 size classes were similarly formulated from
which 1 or 2 trees per class were selected. In total, 31 jack pine sample trees were selected at the Sewell
site: 3 stands × 2 plots/stand × 3 size classes/plot × 1–2 trees/size class.

At the Tyrol site, sample trees were selected within 4 0.07 ha circular sample plots that were
established in 2 fire-origin jack pine stands. These stands were situated on sites of good-to-excellent
quality (mean site index of 21 m at a breast-height age of 50 [21]), geographically located within Forest
Section B9 (Superior) of the Canadian Boreal Forest Region [22], and approximately 73 years of age
when sampled. The soils and topography were characterized as deep (>1 m) finely textured sandy
types on gently undulating terrain. Silviculturally, the stands were subjected to 2 density manipulation
treatments: PCT at an age of approximately 20 (1962) followed by a light pseudo-CT treatment at an
age of approximately 56 (1998). A size-based stratified random sample protocol was used to select
trees resulting in approximately 2–3 trees being chosen from each of the 3 size (diameter) classes.
In total 30 jack pine sample trees were selected from the Tyrol site: 2 stands × 2 plots/stand × 3 size
classes/plot × 2–3 sample trees/size class. In summary, a total of 61 sample trees were selected from
the 2 experimental areas which were grown under a range of density management regimes reflective
of past and current forest management practices for this species and region (e.g., unthinned, PCT,
PCT+CT).

2.2. Sample Tree Measurements, Stem Analysis Procedures, Log-Based Acoustic Measurements and
Disk Sampling

Prior to felling and sectioning each sample tree using destructive stem analysis, diameter at
breast-height (1.3 m) outside-bark diameter (Db; cm), total height (Ht; m) and height-to-live crown (Hc;
m) measurements were obtained. Note, all measurements and destructive sampling were completed on
the trees at Sewell and Tyrol sites at the conclusion of the 2013 and 2015 growing seasons, respectively.
The destructive stem analysis protocol consisted of felling each sample tree at stump height (0.3 m),
delimbing the stem and then topping the stem at an 80% relative height position. The stem was
then sectioned into 0%–20%, 20%–40%, 40%–60% and 60%–80% percentile-based log-length intervals
employing a percent height sampling protocol. Immediately thereafter, the velocity of a mechanically
induced longitudinal stress wave propagating throughout each log was measured using a Director
HM200 acoustic velocity resonance tool (Fibre-gen Inc., Christchurch, New Zealand; www.fibre-gen.
com). Specifically, a twice-replicated set of vl (km/s) measurements were obtained at the bottom and
top of each log from which an arithmetic mean value was calculated. Log lengths, ambient air, and
xylem temperatures were also taken at the time of each acoustic velocity measurement.

For each tree, cross-sectional samples were then extracted from the center of each log,
corresponding to the relative height positions of 10%, 30%, 50% and 70%. The samples were
placed in temporary cold storage within 8 h of sectioning and then transported to a permanent
cold storage (<0 ◦C) facility until further processing. Overall, the deployed sampling design
yielded 124 cross-sectional disks from the Sewell site (1 disk/log × 4 logs/tree × 31 trees) and
120 cross-sectional disks from the Tyrol site (1 disk/log × 4 logs/tree × 30 trees). Due to logistical
challenges during field sampling at the Sewell site, however, one of the cross-sectional samples had to
be disregarded. Hence a final total of 243 cross-sectional disk samples obtained from the midpoint
position on each of the 243 sample logs were available for analysis. Table 3 summarizes the mensuration
characteristics of the standing sample trees prior to felling. The trees from both sites exhibited a similar
degree of variation for each measured characteristic as quantified by the coefficient of variation.
Diameter and live crown ratio ((Ht−Hc)/Ht) exhibited the greatest amount of variation given that a
size-based stratified random sampling protocol was used to select the sample trees (e.g., trees from all 3
diameter size-groups (small, medium, and large) where included). The minimal degree of age variation
is largely due to the even- aged nature of the sampled stands. Table 4 provides a descriptive summary
of the derived logs in terms of their dimensions and associated acoustic velocity measurements.
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Table 3. Descriptive statistical summary of the mensuration characteristics of the 61 sample trees by
site (n = 31 and 30 for Sewell and Tyrol, respectively).

Variable Site Mean Standard Error Minimum Maximum CV a (%)

Diameter at
breast-height (cm)

Sewell 18.8 2.11 14.7 22.6 11.2
Tyrol 24.4 2.17 19.8 29.1 8.9

Breast-height age (year) Sewell 50 0.96 47 51 1.9
Tyrol 69 1.27 66 71 1.9

Total height (m) Sewell 21.1 1.26 18.3 22.9 6.0
Tyrol 22.2 1.57 19.5 24.6 7.1

Live crown ratio (%)
Sewell 26.1 4.50 15.0 35.3 17.3
Tyrol 28.2 7.20 14.1 41.5 25.5

a Coefficient of variation.

Table 4. Descriptive statistical summary of the dimensions of the 243 sample logs and associated
acoustic velocity measurements by log position (n = 243 of which 61, 61, 61 and 60 were first, second,
third and fourth positioned logs, respectively).

Variable Log a Mean Median Standard Error Minimum Maximum CV b (%)

Log length (m)

1st 4.30 4.36 0.04 3.48 5.00 7.7
2nd 4.28 4.35 0.04 3.47 4.91 7.8
3rd 4.28 4.37 0.04 3.18 4.91 7.9
4th 4.25 4.37 0.06 2.27 4.89 10.8

Mean log diameter
(inside-bark; cm)

1st 19.49 19.39 0.35 13.70 26.92 14.1
2nd 16.97 17.03 0.31 10.89 21.76 14.4
3rd 14.38 14.56 0.28 9.41 19.25 15.4
4th 11.30 10.99 0.26 7.54 15.71 17.5

Longitudinal stress
wave velocity

(vl; km/s)

1st 3.59 3.58 0.02 3.20 4.29 5.2
2nd 3.59 3.62 0.03 3.15 4.32 5.5
3rd 3.39 3.42 0.02 2.86 4.12 6.0
4th 3.08 3.08 0.02 2.69 3.72 6.0

a Proceeding upwards from the stump to the stem apex, 1st, 2nd, 3rd and 4th denotes the ordinal position of the first,
second, third and fourth log extracted from the main stem of the 61 jack pine sample trees. b Coefficient of variation.

2.3. Silviscan-3 Estimation of Fiber Attributes and Preliminary Computations

A transverse 2 cm × 2 cm bark-to-pith-to-bark sample was extracted along the geometric mean
diameter of each of the frozen cross-sectional disks. Annual area-weighted ring measures of me, wd, ma,
wt, dr, dt, co and sa were determined along one of the transverse pith- to-bark radii using the SilviScan-3
system. SilviScan-3 analyses yields a set of commercially relevant fiber attribute estimates through
the deployment of an integrated hardware-software processing system involving automatic image
acquisition and analysis (cell scanner), X-ray densitometry, and X-ray diffractometry technologies.
In this study, the following attribute estimates were used from the Silviscan-3 analysis: (1) wood
density as measured at a 25 μm resolution and 8% moisture content (dry basis) and determined
following the removal of resins using X-ray densitometry (i.e., wd = f (intensity of incident and
transmitted X-ray beams; sample thickness; and X-ray travel distance); [23,24]); (2) microfibril angle as
determined via X-ray diffraction patterns (i.e., ma = f (variance of the cellulose-I 002 azimuthal X-ray
diffraction pattern; and dispersion of the microfibril orientation distribution); [25]); (3) dynamic
modulus of elasticity as determined from a combination of X-ray densitometry and diffraction
measurements (i.e., me = f (X-ray densitometry density estimate; and coefficient of variation of
the normalized intensity profile); [26]); and (4) fiber dimensions and derived metrics consisting of
tracheid wall thickness, radial and tangential tracheid diameters, fiber coarseness and specific surface
area as determined using the results from the image analyses (radial and tangential diameters) in
combination with the wood density estimate (sensu [27]).
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Computationally, deploying the annual area-weighted ring estimates for me, wd, ma, wt, dr, dt,
co and sa and proceeding in a pith-to-bark direction, an attribute-specific cumulative area-weighted
moving average value was calculated for each of the 243 radial sequences (Equation (2)).

F =

I
∑

i=1
fiai

I
∑

i=1
ai

(2)

where F is the cumulative moving area-weighted fiber attribute average for each sequence, ai is the
Silviscan-3-determined area of the ith annual ring (mm2; i = 1, . . . ,I; I = total cambial age), and fi is
the mean Silviscan-3-determined fiber attribute value within the ith annual ring. Table 5 provides
an attribute-specific descriptive statistical summary by log position, inclusive of measures of central
tendency (arithmetic means and medians), ranges (minimums and maximums) and relative variation
measures (coefficients of variation).

Table 5. Descriptive statistical summary of the fiber attributes of by log position (n = 243 of which 61,
61, 61 and 60 were first, second, third and fourth positioned logs, respectively).

Variable Log a Mean Median Minimum Maximum CV b (%)

Modulus of elasticity
(me; GPa)

1st 12.72 12.68 8.59 16.73 15.0
2nd 12.81 12.95 8.24 16.16 14.2
3rd 12.38 12.82 7.93 15.89 13.7
4th 11.33 11.57 7.14 14.57 12.7

Wood density
(wd; kg/m3)

1st 430.38 421.66 372.88 489.67 6.5
2nd 416.48 418.68 337.88 482.02 6.6
3rd 407.47 405.99 359.76 467.79 6.0
4th 394.23 391.66 356.95 442.25 5.1

Microfibril angle
(ma; ◦)

1st 12.98 12.79 7.49 19.71 21.1
2nd 11.47 10.95 6.33 19.23 22.7
3rd 11.25 10.92 6.24 17.84 22.6
4th 12.52 12.21 6.84 20.23 22.8

Tracheid wall
thickness
(wt; μm)

1st 2.70 2.67 2.35 3.16 7.6
2nd 2.60 2.60 2.08 3.01 7.8
3rd 2.52 2.49 2.22 2.92 7.3
4th 2.39 2.37 2.17 2.77 5.9

Tracheid radial
diameter
(dr; μm)

1st 30.80 30.90 28.51 33.00 3.7
2nd 30.75 30.95 28.69 32.74 3.5
3rd 30.52 30.68 27.99 32.79 3.7
4th 30.03 30.18 26.44 31.97 4.1

Tracheid tangential
diameter
(dt; μm)

1st 27.87 27.93 26.41 29.88 2.4
2nd 28.13 28.13 26.89 30.25 2.5
3rd 28.10 28.16 26.53 29.72 2.5
4th 27.97 27.99 26.38 29.63 2.6

Fiber coarseness
(co; μg/m)

1st 406.02 406.67 360.44 471.20 6.8
2nd 395.23 394.97 339.39 447.85 7.1
3rd 383.33 383.76 328.30 455.34 7.2
4th 364.51 365.10 311.38 420.68 6.3

Specific surface area
(sa; m2/kg)

1st 314.32 315.76 275.59 351.46 6.4
2nd 322.71 321.31 284.37 372.46 6.4
3rd 328.16 327.71 287.81 366.30 6.4
4th 338.15 341.99 297.17 369.33 5.0

a Proceeding upwards from the stump to the stem apex, 1st, 2nd, 3rd and 4th denotes the ordinal position of the first,
second, third and fourth log extracted from the main stem of the 61 jack pine sample trees. b Coefficient of variation.
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2.4. Preliminary Data Stratification for Cross-Validation Assessment

To minimize the potential effects of spatial correlation arising from the selection of the multiple
logs from the same sample tree while at the same time providing a validation data subset, the full
data set consisting of 243 me, wd, ma, wt, dr, dt, co, sa—vl observational pairs was systematically
subdivided into calibration and validation data subsets of approximately equal size. This involved
randomly selecting from each sample tree a sequential set of measurements consisting of either those
associated with the 1st and 3th positioned logs or those associated with the 2nd and 4th positioned
logs. The resultant pairs were then allocated to either the calibration or validation subsets. At the
conclusion of this stratification process, the calibration and validation data subsets were comprised of
122 and 121 me, wd, ma, wt, dr, dt, co, sa—vl observational pairs, respectively. As presented in Table 6,
the acoustic velocity measurements and attribute values within the subsets were very similar in terms
of measures of central tendency, magnitudes, and relative variation. A further similarly structured
comparative assessment of the data subsets by log position and location (not shown) also confirmed
the equivalency between the data subsets.

Table 6. Descriptive statistical summary of the calibration (n = 122 logs) and validation (n = 121 logs)
data subsets.

Variable Data Subset Mean Minimum Maximum CV a (%)

Longitudinal stress wave velocity
(vl; km/s)

Calibration 3.42 2.74 4.32 7.8
Validation 3.41 2.69 4.29 8.8

Modulus of elasticity (me; GPa) Calibration 12.28 7.14 16.57 14.8
Validation 12.34 7.93 16.73 14.7

Wood density (wd; kg/m3)
Calibration 412.41 343.02 489.67 6.9
Validation 412.02 337.88 482.02 6.8

Microfibril angle (ma; ◦) Calibration 12.10 6.84 19.23 21.7
Validation 12.01 6.24 20.23 24.3

Tracheid wall thickness (wt; μm)
Calibration 2.56 2.14 3.13 8.6
Validation 2.55 2.08 3.16 8.3

Tracheid radial diameter (dr; μm)
Calibration 30.59 27.99 33.00 3.8
Validation 30.47 26.44 32.74 3.9

Tracheid tangential diameter
(dt; μm)

Calibration 28.01 26.41 29.88 2.5
Validation 28.02 26.38 30.25 2.5

Coarseness (co; μg/m) Calibration 388.35 318.32 459.90 8.1
Validation 386.38 311.38 471.20 7.7

Specific surface area (sa; m2/kg)
Calibration 325.22 278.70 369.90 6.8
Validation 326.36 275.59 372.46 6.4

a Coefficient of variation.

2.5. Specifying Functional Forms and Parameterization Methods Utilized

Deploying the expanded acoustic-based inferential framework, the Silviscan-derived (1) me, ma,
wt, dr, dt, co and sa estimates were expressed as a function of the Silviscan-derived wood density
estimates and HM200-based acoustic velocity measures (me, ma, wt, dr, dt, co, sa = f

(
wdv2

l
)
), and (2) wd

estimates were expressed solely as a function of HM200-based acoustic velocity measures (wd = f
(
v2

l
)
).

Statistically, the model specification procedure consisted of assessing the results from extensive
graphical and correlation analyses to determine the most appropriate functional form for each of these
8 relationships. Employing the full data set, bivariate scatterplots were used to determine the degree
of linearity between the each dependent and independent variable (i.e., me, ma, wt, dr, dt, co, and sa

versus wdv2
l , and wd versus v2

l ). A visual interpretation of the graphics for me, wd, ma, wt, co, and sa

indicated mostly linear trends whereas there were no detectable trends for dr and dt. Consequently,
log-linear, log-log and power-based transformed relationships were also examined for dr and dt using
both scatterplots and statistical measures of association. However, the graphical trends and related
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measures of linear association (Pearson moment correlation coefficient) from this supplementary
analysis did not reveal the presence of viable linear relationships.

Similar to the approach used for quantifying acoustic—attribute relationships for red pine logs
(i.e., [15]), a two-level hierarchical mixed-effects linear model specification consisting of fixed and
random effects was used (sensu [28]). Specifically, at the first level, log-specific mean attribute values
were expressed as a linear function of the density-weighted or density-unweighted acoustic velocity
(Equation (3)).

F(k′)l
= β0l(k′) + β1(k′)

(
wdl

v2
li

)
+ ε(k′)l

(3a)

F(wd)l
= β0l(wd)

+ β1(wd)

(
v2

ll

)
+ ε(wd) l (3b)

where F(k′)l
is the cumulative area-weighted moving average value for the k’th attribute where k′ =

me, ma, wt, dr, dt, co or sa for the lth log, F(wd) l is the cumulative area-weighted moving average wood
density value for the lth log, vll is the mean acoustic velocity value for the lth log, β0l(k) is a first-level
random effects intercept parameter specific to the kth attribute (k = k′ attributes and wd inclusive) that
is allowed to vary across the L logs, β1(k) are first-level fixed effects slope parameter specific to the
kth attribute, and ε(k)l

is a random error term specific to the kth attribute for the lth log. The random
errors (ε(k)l

) are assumed to be independent, uncorrelated and have constant variance. The second
level expressed the first-level intercept parameter as a function of a grand mean plus a random error
term whereas the slope parameter was considered a fixed effect (Equations (4a) and (4b), respectively).

β0(k)l
= γ0(k) + u0(k)l

(4a)

β1(k) = γ1(k) (4b)

where γ0(k) and γ1(k) are attribute-specific grand mean values and u0(k)l
is an attribute-specific random

error term specific to the lth log. The final mixed-effects model specifications were derived by
combining the level one- and two-level expressions into a single model (i.e., Equation (5)).

F(k′)l
= γ0(k′) + γ1(k′)

(
wdl

v2
ll

)
+ u0(k′)l

+ ε(k′)l
(5a)

F(wd)l
= γ0(wd)

+ γ1(wd)

(
v2

ll

)
+ u0(wd)l

+ ε(wd)l
(5b)

Given the complex error structures, the parameter estimates and model statistics were obtained
via the deployment of the hierarchical linear and nonlinear modeling software program HLM7 [29].
Statistically, the program provides empirical-Bayes first-level parameter estimates for each randomly
varying coefficient (intercept term), generalized least squares-based estimates for second-level terms,
and maximum likelihood estimates for the variance and covariance components. Procedurally,
employing the observational pairs from the calibration data subset, the models were parameterized
and subsequently assessed on their compliance with the underlying statistical assumptions. Based on
the protocol developed by Raudenbush and Bryk [28], this evaluation included testing the (1) constant
variance assumption among first stage residuals, and (2) presence of significant random effects as
determined via testing the null hypothesis (u0 �= 0) versus the alternative hypothesis (u0 = 0). Park’s
homogeneity test was used to evaluate the constant variance assumption for each of the significant
regression relationships (sensu [30]). This involved regressing the first stage Bayes residual values
(logarithmic square values; dependent variable) against the predictive variable values (logarithmic
values; independent variable) using a simple linear regression model specification, and then testing
the null hypothesis that the resultant slope parameter estimate was not significantly different from
zero at the 0.01 probability level. Resultant slope values not significantly different from zero were
supportive of the homoscedasticity assumption. Conversely, slope values significantly different from
zero are suggestive of the presence of heteroscedasticity (non-constant variance).
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Additionally, given the potential effect of spatial correlation on statistical inference in terms
of producing inefficient estimators without the minimum variance best linear unbiased estimator
property when present, the spatial correlation among the empirical-Bayes residuals derived from the
first-level models was assessed. The approach consisted of employing residual regressions in order
to detect the presence of a first-order spatial correlation scheme among adjacent residuals for logs
sampled from the same tree (i.e., either the 1st and 3rd log pair or the 2nd and 4th log pair): i.e., fitting
the relationship el+2 = ρ̂el + va where el and el+2 are the residual values for the lth and lth + 2 ordinal
positioned log, respectively (1st and 3rd ordinal log, or 2nd and 4th ordinal log, respectively), p̂ is the
first-order spatial correlation coefficient estimate (−1 ≤ p̂ ≤ +1), and va is a random error term [30].
For significant (p ≤ 0.01) regression relationships, the resultant p̂ estimate reflected the magnitude
of the first-order spatial correlation. Otherwise, for regressions that were not significant, spatial
correlation was assumed to be absent and the hence the independence assumption was not rejected.
The presence of potential outliers or influential observations, systematic lack-of-fits, and non-constant
variance was also assessed through the examination of predictor—residual error bivariate scatterplots.

These selected specifications acknowledge the potential log-to-log variation in relationships that
may be present and hence the intercept term was allowed to vary randomly. However, the slope
term was treated as fixed. This latter constraint was established during the preliminary model
specification phase by initially treating both the intercept and slope terms as random. In cases were
convergence could not be achieved, the model specification was changed by defining the intercept
as fixed and the slope as random and vice versa. Overall, the results indicated that (1) convergence
could not be achieved when both terms were treated as random irrespective of the relationship,
(2) convergence could not be achieved when the intercept term was treated as fixed and the slope
was treated as random for all relationships but that for wood density, and (3) convergence for all
relationships was only achieved when the slope was treated as fixed and the intercept term was
treated as random. These statistical results were used to inform the selection of the final model
specifications (i.e., Equations (5a) and (5b)) and hence were considered the most applicable for the
sample population used.

2.6. Goodness-of-fit, Lack-of-fit, and Predictive Ability of Fitted Models

The parameterized models were evaluated based on goodness-of-fit, lack-of-fit, and predictive
ability employing the validation data subset. More specifically, the proportion of variability in
the dependent variable (kth attribute) explained by the parameterized model as measured by the
index-of-fit squared statistic (I2

(k)), was used as a goodness-of-fit metric (Equation (6)). Parameterized

relationships which had mean absolute bias (Ba(k); Equation (7)) or mean relative bias (Br(k);
Equation (8)) that were significantly (p ≤ 0.05) different from zero as determined through the use of the
95% confidence intervals (Equation (9)), where considered as demonstrating a consequential lack-of-fit.
The linear regression relationship between the observed and predicted values was employed as a
secondary lack-of-fit measure in terms of detecting systematic bias (sensu [31]). Based on Reynolds [32]
statistical framework in combination with Gribko and Waint [33] SAS macro program extension,
prediction and tolerance intervals for absolute and relative error where used to quantify the predictive
accuracy of the parameterized relationships (Equations (10) and (11), respectively).

I2
(k) = 1 −

n(k)

∑
l=1

(
V(k)l

− V̂(k)l

)2

n(k)

∑
l=1

(
V(k)l

− V(k).

)2
(6)
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Ba(k) =

n(k)

∑
l=1

(
V(k)l

− V̂(k)l

)
n(k)

∑
l=1

l
(7)

Br(k) =

n(k)

∑
l=1

100

(
V(k)l

−V̂(k)l

)
V(k)l

n(k)

∑
l=1

l
(8)

Ba,r(k) ±
Sa,r(k) · t(n(k)−1,0.975)√n(k)

(9)

Ba,r(k) ±
√

1/n(k) + 1/np · Sa,r(k) · t(n(k)−1,0.975) (10)

Ba,r(k) ± g(λ, n(k), P′) · Sa,r(k) (11)

where V(k)l
and V̂(k)l

are the observed and predicted values, respectively, for the kth attribute within
the lth sample log belonging to the validation data subset, n(k) is the number of predicted-observed
pairs specific to the kth attribute within the validation data subset, Sa,r(k) is the standard deviation of
the absolute (Sa(k)) or relative (Sr(k)) biases specific to the kth attribute, respectively, t(n(k)−1,0.975)
is the 0.975 quantile of the t-distribution with n(k) − 1 degrees of freedom specific to the kth
attribute, np is the number of future predictions under evaluation (np = 1; individual log level),
and g is a normal distribution tolerance factor specifying the probability (λ; i.e., 0.05) that a specified
minimum proportion (i.e., 95%) of the distribution of errors (P′) will be contained within the stated
tolerance interval.

2.7. Predictive Performance when Deploying Acoustic-Derived Wood Density Estimates

Given the practical reality of not having access to Silviscan-equivalent wood density estimates
when acoustic sampling, necessitated the evaluation of the density-weighted acoustic relationships
when a surrogate acoustic-derived wd estimate is used. Procedurally, this involved (1) generating a
density estimate for each log within the validation data subset utilizing the parameterized wood density
prediction model in combination with the acoustic velocity measurement, (2) given (1), deploying the
resultant density estimate along with its acoustic velocity measurement to generate attribute predictions
for each of the successfully parameterized models, and (3) using the observed and predicted values
to calculate (i) mean absolute and relative biases along with associated 95% confidence intervals,
and (ii) prediction and tolerance error intervals. The computations used to generate the mean absolute
and relative biases and associated confidence intervals, and the prediction and tolerance error intervals,
are similar to those described above (i.e., Section 2.6; Equations (7)–(11)).

3. Results

3.1. Attribute—Acoustic Velocity Relationships: Parameter Estimates, Regression Statistics and Tenability of
Associated Assumptions

The resultant parameter estimates, regression statistics and validation metrics for assessing
compliance with underlying assumptions for the attribute-specific acoustic velocity relationships,
as described by the mixed-effects model specifications (Equation (5)), are given in Table 7.
The successful parameterization of 6 out of the 8 relationships assessed (me, wt, ma, co, sa =
f
(
γ̂0,1, wdv2

l
)

and wd = f
(
γ̂0,1, v2

l
)
) in terms of the (1) statistical significance of the parameter estimates

and random effect term, (2) proportion of variability in the dependent variables explained (I2),
and (3) compliance with the independence and constant variance assumptions underlying the
parameterization approach used, as assessed by the degree of spatial correlation among adjacent level
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one residuals employing regression analysis and Park’s homogeneity of variance test [30], respectively,
confirmed the applicability of the chosen mixed-effects regression specification in quantifying the
attribute—acoustic velocity relationships for jack pine.

Table 7. Attribute-specific regression results for the mixed-effects model specification (Equation (5)):
parameter estimates, regression statistics and compliance indicators.

Relationship Parameter Estimates a Regression Statistics and Compliance Indices

γ̂0 γ̂1

Degrees of
Freedom b

(nreg, nres)
I2 c Random

Effects d
Homogeneity
of Variance e

Spatial
Correlation f

me − wdv2
l 6.5439 0.001194 1, 120 0.466 * H0 H0

wd − v2
l 321.6483 7.7201 1, 120 0.315 * H0 H0

ma − wdv2
l 15.0699 −0.00063 1, 120 0.079 * H0 H0

wt − wdv2
l 1.8190 0.000150 1, 120 0.603 * H0 H0

dr − wdv2
l 30.6445 −0.000037ns 1, 120 - - - -

dt − wdv2
l 28.2502 −0.000048ns 1, 120 - - - -

co − wdv2
l 300.0200 0.017790 1, 120 0.456 * H0 H0

sa − wdv2
l 388.1280 −0.012724 1, 120 0.497 * H0 H0

a γ̂0 is a random effect intercept parameter estimate specific to the kth attribute and γ̂1 is fixed effect slope parameter
estimate specific to the kth attribute. Note, parameter estimates not significantly (p > 0.05) different from zero
are superscripted by ns. b Degrees of freedom for regression (nreg) and residual error (nres). c I2 is the index-of-fit
squared (Equation (6)). d Non-significant (p > 0.05) and significant (p ≤ 0.05) random effects are denoted ns and *,
respectively (i.e., testing the null hypothesis that u0 = 0 versus the alternative hypothesis u0 �= 0 in Equation (5)).
e Non-rejection and rejection of the constant variance assumption at the 0.01 probability level are denoted H0 and
H1, respectively, as determined from Park’s test for homoscedasticity (see text for details). f Non-rejection and
rejection of the independence assumption (spatially uncorrelated residuals) at the 0.01 probability level are denoted
H0 and H1, respectively, as determined from the residual regression approach ([30]; see text for details).

Specifically, for these fitted relationships, the intercept and slope parameter estimates and
the random effect terms were significantly (p ≤ 0.05) different from zero, and the percentage of
variation explained varied from a relatively low minimum value of 8% for ma to a relatively moderate
maximum value of 60% for wt. The values for the remaining relationships ordered by magnitude
of I2, were as follows: 32% for wd, 46% for co, 47% for me and 50% for sa. The lack of significant
(p ≤ 0.01) regression relationships among adjacent residuals for the log pairs derived from the same
sample trees were indicative of the absence of spatial correlation effects (sensu [29]). Furthermore,
the constant variance assumption was not rejected given the results of Park’s test for homoscedasticity
along with the interpretation of the Bayes residual error—predictor bivariate scatterplots. Note,
during the initial parameterizations, examination of the circular-shape data point clusters within the
residual error—predictor scatterplots, did reveal the presence of 2 potential outliers or influential
observations (i.e., these observational pairs were visually apart from the concentrated residual cloud
within the scatterplots for attributes me, wd, ma, wt, co, and sa). Thus a review of the field records
and laboratory procedures in terms of identifying possible data recording errors, compiling errors
or incorrect processing procedures for these suspect data pairs was implemented. Additionally,
the attribute values for the other logs sampled from the suspect trees were also examined. Although
this inquiry revealed the absence of recording or processing errors, the measurements for the suspect
log within the calibration data subset and another one from the same sample tree but within the
validation data subset, were substantially different from the measurements for the other logs within
their respective data subsets. Based on the acknowledgment that these attributes may be occasionally
influenced by uncontrollable and largely undetectable sources of variation such as complex internal
knot distributions within logs, it was concluded that these suspect observations should be removed.
Consequently, the calibration and validation data subsets were reduced by one observational pair each
yielding a final total of 121 and 120 attribute-specific—acoustic velocity observational pairs within
calibration and validation data subsets, respectively.
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The attribute—acoustic velocity observational pairs within the calibration data subset for each of
the 8 relationships evaluated are presented in Figure 1A,B. The successfully parameterized models are
also superimposed on the observational pairs where applicable. Examination of the subgraphs for the
attributes that were not successfully parameterized by the mixed-effects model specification (i.e., dr

and dt; Table 7), reinforced the lack of a functional relationship between each of these attributes and
density-weighted acoustic velocity: i.e., random cloud of the dr–wdv2

l and dt–wdv2
l observational pairs

that were devoid of any obvious linear or nonlinear relationship. Conversely, for the attributes that
were successfully parameterized by the mixed-effects model specification (i.e., me, ma, wd, wt, co, and
sa; Table 7) which are superimposed on their respective subgraphs confirmed the statistical findings
(i.e., relationships were unbiased and in accord with the me–wdv2

l , wd–v2
l , ma–wdv2

l , wt–wdv2
l , co–wdv2

l
and sa–wdv2

l linear trends).
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Figure 1. Cont.
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Figure 1. Scatterplots illustrating the relationship between each attribute and density-weighted and
density-unweighted acoustic velocity (vl) for the jack pine logs within the calibration data subset:
(A) me = f (wdv2

l ), wd = f (v2
l ), ma = f (wdv2

l ), and wt = f (wdv2
l ) relationships; and (B) dr = f (wdv2

l ),
dt = f (wdv2

l ), and co = f (wdv2
l
)

and sa = f (wdv2
l
)

relationships. The parameterized model is denoted
by solid line (Table 7).

3.2. Goodness-of-fit and Lack-of-fit Assessment

The goodness-of-fit evaluation consisted of assessing the magnitude of the variability explained
by the parameterized models when applied to the validation data subset. Specifically, the I2 statistic
was calculated for the acoustic-based me, wd, ma, wt, co and sa mixed-effects models (Table 8). Results
indicated that the models explained a relatively low to moderate level variation (ordered by magnitude):
8% for ma, 30% for wd, 43% for co, 44% for sa, 53% for me and 58% for wt. In agreement with expectation,
the values for 5 of 6 attributes were slightly less than those observed for the relationships parameterized
using the calibration data subset (cf. Table 7 versus Table 8). The exception being that of the result
for me which was slightly greater than that derived from the calibration data subset. Based on the
regression results for the linear relationship between the observed and predicted values, there was
insufficient evidence to indicate systematic lack-of-fit for any of the 6 parameterized relationships:
i.e., intercept and slope values were not significant (p > 0.01) different from zero and unity, respectively
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(sensu [31]). Similarly, based on the mean absolute biases and their associated 95% confidence intervals,
there was no evidence of lack-of-fit for any of the 6 relationships (Table 8): mean absolute biases were
not significantly (p ≤ 0.05) different from zero as inferred from the 95% confidence intervals. Although
approximately equivalent results were obtained when assessing lack-of-fit using mean relative biases,
the mean relative bias generated for the ma relationship was significantly (p ≤ 0.05) different from zero
(Table 8).

The density-weighed and density-unweighted acoustic velocity—attribute observational pairs
within the validation data subset for each of the relationships including those that did not
exhibit a significant relationship with acoustic velocity, are graphically presented in Figure 2A,B.
The parameterized mixed-effects regression relationships derived using the calibration data subset
were also superimposed on the me, wd, ma, wt, co and sa subgraphs. It was visually evident that the
parameterized relationships were representative of the linear trends between the me–wdv2

l , wd–v2
l ,

ma–wdv2
l , wt–wdv2

l , co–wdv2
l and sa–wdv2

l observational pairs. The general concordance between
the linear trends exhibited by the observational pairs and that established by the regressions,
were also suggestive of the absence of systematic bias. For the attributes that were not successfully
described by the mixed-effects model specification (i.e., dr and dt; Table 7), an examination of the
subgraphs reconfirmed the statistical result, that is, there was a random scatter of dr–wdv2

l and dt–wdv2
l

observational pairs devoid of discernable linear or nonlinear trends.
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Figure 2. Cont.
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Figure 2. Scatterplots illustrating the relationship between each attribute and density-weighted and
density-unweighted acoustic velocity (vl) for the jack pine logs within the validation data subset:
(A) me = f (wdv2

l ), wd = f (v2
l ), ma = f (wdv2

l ), and wt = f (wdv2
l ) relationships; and (B) dr =

f (wdv2
l ), dt = f (wdv2

l ), and co = f (wdv2
l
)

and sa = f (wdv2
l ) relationships. Note, where applicable, the

superimposed parameterized model is denoted by solid line (Table 7) and superimposed contextual
95% prediction error limits are denoted by the parallel dashed lines.
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3.3. Predictive Ability

The predictive ability of the successfully parameterized mixed-effects models was quantified
via the use of prediction and tolerance error intervals (Equations (9) and (10), respectively): mean
bias ± 95% confidence limit. The intervals were generated from the absolute and relative bias values
generated from the validation data subset. Statistically, these error intervals attempt to quantify the
performance of the models when they are actually deployed [32]. Specifically, the prediction intervals
quantify the boundaries of the expected range of absolute and relative errors when applying the models
for a newly sampled jack pine log (e.g., there is 95% probability that the future error will be within
the stated prediction interval). The tolerance intervals quantify the boundaries of the range of the
expected population of absolute and relative errors which would be generated from the models when
repeatedly deploying them to newly sampled jack pine log populations (e.g., there is 95% probability
that 95% of all future errors will fall within the stated tolerance interval).

Accordingly, there is a 95% probability that a future error associated with a me, wd, ma, wt, co or sa

prediction for a newly sampled jack pine log would be expected to fall within the following absolute
and relative intervals (Table 8): (1) −2.5 ≤ me error (GPa) ≤ 2.5; −46.7 ≤ wd error (kg/m3) ≤ 46.4;
−5.5 ≤ ma error (◦) ≤ 5.6; −0.3 ≤ wt error (μm) ≤ 0.3; −45.3 ≤ co error (μg/m) ≤ 44.5; and −30.7 ≤
sa error (m2/kg) ≤ 31.2; and (2) −21.6 ≤ me error (%) ≤ 23.5; −11.0 ≤ wd error (%) ≤ 11.6; −44.1 ≤
ma error (%) ≤ 56.1; −10.5 ≤ wt error (%) ≤ 10.8; −11.5 ≤ co error (%) ≤ 12.0; and −9.2 ≤ sa error
(%) ≤ 9.8. Similarly, based on the tolerance error intervals as presented in Table 8, there is a 95%
probability that 95% of all future errors generated from the me, wd, ma, wt, co and sa models would
fall within the following absolute and relative intervals: (1) −2.8 ≤ me error (GPa) ≤ 2.7; −51.7 ≤
wd error (kg/m3) ≤ 51.5; −6.1 ≤ ma error (◦) ≤ 6.2; −0.3 ≤ wt error (μm) ≤ 0.3; −50.2 ≤ co error
(μg/m) ≤ 49.4; and −34.1 ≤ sa error (m2/kg) ≤ 34.5; and (2) −24.0 ≤ me error (%) ≤ 26.0; −12.2 ≤
wd error (%) ≤ 12.8; −49.5 ≤ ma error (%) ≤ 61.5; 11.7 ≤ wt error (%) ≤ 12.0; −12.8 ≤ co error (%) ≤
13.3; and −10.2 ≤ sa error (%) ≤ 10.8. Although these intervals also reveal that the parameterized
equations would generate unbiased predictions, the level of predictive accuracy attained would vary
widely among the attributes (e.g., sa > wt > wd > co >> me >>> ma based on the width of relative error
tolerance intervals).

3.4. Predictive Performance of Parameterized Models When Deploying Acoustic Generated Wood
Density Estimates

Employing the validation data subset, the empirical performance of the density-weighted models
in cases where an acoustic-based wood density estimate was used as a surrogate for a Silviscan-based
density estimate, was also evaluated. Specifically, based on the functional expressions, me, ma, wt,
co, sa = f

(
γ̂0,1, ŵdv2

l
)

where ŵd is derived from the wd = f
(
γ̂0,1, v2

l
)

relationship, the following set of
computations were carried out: (1) inputting the acoustic velocity measurement value for each log
in the validation data subset into the parameterized wd model (Table 7) and generating associated
estimates for each attribute; and (2) given (1), treating these resultant attribute estimates as predicted
values and the corresponding Silviscan-determined estimates as observed values, absolute and relative
biases and associated 95% confidence, and 95% prediction and tolerance intervals, were calculated via
the deployment of the computational structure given by Equations (7)–(11).

Upon review of the resulting predictive performance metrics as provided in Table 9, lack-of-fit
issues were non-concerning for either of the error measures: 95% confidence intervals indicated that
the mean absolute and relative biases were not significantly (p ≤ 0.05) different from zero. Numerically,
the magnitude of error generated when estimating me, ma, wt, co and sa for a newly sampled jack pine
log deploying the acoustic-based density estimate, would be captured within the following absolute
and relative prediction error intervals: (1) −2.8 ≤ me error (GPa) ≤ 2.7; −5.5 ≤ ma error (◦) ≤ 5.6;
−0.3 ≤ wt error (μm) ≤ 0.3; −51.8 ≤ co error (μg/m) ≤ 50.9; and −36.5 ≤ sa error (m2/kg) ≤ 37.0;
and (2) −23.5 ≤ me error (%) ≤ 25.8; −43.7 ≤ ma error (%) ≤ 55.7; −10.5 ≤ wt error (%) ≤ 10.8;
−13.1 ≤ co error (%) ≤ 13.7; and −10.9 ≤ sa error (%) ≤ 11.7. Similarly, the corresponding 95%
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tolerance intervals for which 95% of all future errors would be expected to be captured are delineated
as follows: (1) −3.1 ≤ me error (GPa) ≤ 3.0; −6.1 ≤ ma error (◦) ≤ 6.2; −0.3 ≤ wt error (μm) ≤ 0.3;
−57.4 ≤ co error (μg/m) ≤ 56.5; and −40.5 ≤ sa error (m2/kg) ≤ 41.0; and (2) −26.2 ≤ me error
(%) ≤ 28.4; −49.1 ≤ ma error (%) ≤ 61.1; −11.7 ≤ wt error (%) ≤ 12.0; −14.6 ≤ co error (%) ≤ 15.2; and
−12.2 ≤ sa error (%) ≤ 12.9. In summary, these results suggest that the attribute prediction models in
which an acoustic-based wood density estimate is deployed, would yield unbiased predictions which
would be slightly less precise than that attained when using a Silviscan-derived or equivalent density
estimate, and would exhibit a similar among-attribute performance ranking (cf. Table 8 versus Table 9).

4. Discussion

4.1. Hierarchical Mixed-Effects Acoustic-Based Attribute Prediction Models for Jack Pine

The mixed-effects linear model for the primary relationship between the dynamic modulus of
elasticity and density-weighted acoustic velocity (me = f

(
γ̂0,1, wdv2

l
)
) explained 47% of the variation

in the me for the logs within the calibration data subset (Table 7) and 53% of the variation in the me

for the logs within the validation data subset (Table 8). Based on the logs within the validation
data subset, the model generated unbiased predictions when assessed using both absolute and
relative error measures. The tolerance intervals indicated that 95% of the absolute and relative errors
generated from repeatedly applying the parameterized model to a new sample population of jack
pine logs would be expected (95% probability level) not to exceed ±2.8 GPa and ±25.0% respectively,
when using Silviscan-equivalent wd estimate (Table 8). For the deployment scenario in which an
acoustic-based wood density estimate is employed as a surrogate measure for its Silviscan-based
counterpart, the model’s predictions would be similarly unbiased (Table 9). However, the predictions
would be less precise as evident from the wider tolerance intervals for absolute and relative error that
were generated when using the acoustic-based density estimate (i.e., 95% tolerance limits for error of
±3.1 GPa and ±27.3%, respectively; Table 9). Newton [15] reported slightly better results in a similarly
structured analysis of red pine logs in terms of explanatory power (e.g., explaining 71% of variation
in me for red pine logs versus 50% of variation in me for jack pine logs) and precision of predictions
when deploying either a Silviscan-equivalent estimate of wood density (e.g., relative tolerance error
intervals of ±19% for red pine versus ± 25% for jack pine) or acoustic-based estimate (e.g., relative
tolerance error intervals of ±19% for red pine versus ± 27% for jack pine).

The results for the mixed-effects linear regression model for the relationship between wood
density and acoustic velocity (wd = f

(
γ̂0,1, v2

l
)
), revealed that the parameterized model generated

unbiased predictions (Tables 7 and 8). Overall, however, the model performed moderately in terms
of (1) explanatory power given that only 32% and 31% of the wd variation for the logs within the
calibration and validation data subsets, respectively, was explained (Tables 7 and 8), and (2) predictive
performance given that 95% of absolute and relative errors generated from repeatedly applying the
equation to a new sample population of logs would be expected (95% probability level) not to exceed
±51.6 kg/m3 or ±12.5%, respectively (Table 8). Considerably better results were reported previously
for red pine logs [15] in terms of explanatory power (e.g., explaining 80% of variation in wd for red
pine logs versus 31% of variation in wd for jack pine logs). However, differences in the precision of the
predictions were only marginally better (e.g., relative tolerance error intervals of ±10% for red pine
versus ± 13% for jack pine).
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Table 9. Predictive performance of parameterized models when deploying acoustic-based wood
density estimates.

Relationship
Lack-of-fit Measures a Predictive Ability: 95% Error Intervals b

Absolute Relative (%) Prediction (Stand-Level) Tolerance

Mean 95% CL e Mean 95% CL Absolute Relative (%) Absolute b Relative (%)

bias bias 95% CL 95% CL 95% CL 95% CL

me − wdv2
l −0.033 ±0.251 1.118 ±2.240 ±2.756 ±24.640 ±3.055 ±27.318

(±0.562) (±5.028)
ma − wdv2

l 0.051 ±0.505 6.000 * ±4.522 ±5.554 ±49.738 ±6.158 ±55.144
(±1.129) (±10.111)

wt − wdv2
l −0.004 ±0.025 0.151 ±0.971 ±0.272 ±10.679 ±0.301 ±11.840

(±0.055) (±2.171)
co − wdv2

l −0.440 ±4.671 0.300 ±1.219 ±51.383 ±13.406 ±56.968 ±14.863
(±10.445) (±2.725)

sa − wdv2
l 0.253 ±3.340 0.369 ±1.027 ±36.734 ±11.291 ±40.727 ±12.519

(±7.467) (±2.295)
a Mean absolute (Equation (7)) and relative (Equation (8)) bias and the limits (CL) of the associated 95% confidence
interval (Equation (9)) where mean values not significantly (p > 0.05) different from zero were indicative of an
unbiased relationship; note, underlined CL values denote approximations given the presence of significant (p ≤ 0.05)
non-normality within the underlying error distribution; absolute error units are attribute-specific: GPa, ◦, μm,
μg/m and m2/kg for me, ma, wt, co and sa, respectively; and * denotes significant bias. b Confidence limits for the
95% prediction and tolerance error intervals for absolute and relative errors (Equations (10) and (11), respectively):
mean bias ± 95% CL; specifically, there is a 95% probability that a future error will be within the stated prediction
interval and that there is a 95% probability that 95% of all future errors will be within the stated tolerance interval
(sensu [32]); notes, (1) absolute error units are attribute-specific as stated above, (2) underlined CL values denote
approximations given the presence of significant (p ≤ 0.05) non-normality within the underlying error distribution,
and (3) stand-level CL intervals denote the 95% prediction limits for the mean error generated when group sampling
(e.g., assigning a mean attribute estimate to 30-log sample (pile) derived from a single stand).

Although the results for the relationship where microfibril angle is expressed as a function
of density-weighted acoustic velocity (ma = f

(
γ̂0,1, wdv2

l
)
) generated unbiased predictions

(Tables 7 and 8), the parameterized model exhibited a low level of explanatory power and a relatively
high degree of imprecision. Specifically, the model only explained 8% of the variation in ma for the logs
within both the calibration and validation data subsets, respectively (Tables 7 and 8). The predictive
intervals indicated that 95% of absolute and relative errors generated from repeatedly applying
the equation to a new sample population of logs would be expected (95% probability level) not to
exceed (1) ±6.2 ◦ and ±55.5%, respectively, when using Silviscan-equivalent wd estimates (Table 8),
and (2) ±6.2 ◦ and ±55.1%, respectively, when deploying acoustic-based wood density estimates.
Although these weak results are superior to those obtained previously for red pine logs in which no
viable acoustic-based relationship was found for microfibril angle [15], the results are inferior to the
level of variation described by the acoustic-based relationship reported in other studies (e.g., 86% for
radiata pine logs [6]).

The relationship for cell wall thickness (wt = f
(
γ̂0,1, wdv2

l
)
) exhibited the highest levels of

explanatory power as evident from the level of variation explained: 60% and 58% for the calibration
and validation data subsets, respectively (Tables 7 and 8). Furthermore, the parameterized model
exhibited no lack-of-fit issues and produced unbiased predictions at a relatively high level of precision.
Specifically, 95% of absolute and relative errors generated from repeatedly applying the equation to
a new sample population of jack pine logs would be expected (95% probability level) to not exceed
±0.3 μm and ±11.8%, respectively, when using Silviscan-equivalent or acoustic generated wd estimates
(Tables 8 and 9). Newton [15] reported a superior result for red pine logs in terms of explanatory power
(e.g., explaining 90% of variation in wt for red pine logs versus 59% of variation in wt for jack pine logs),
but much less so in terms of predictive precision. For example, relative tolerance error intervals of
±9% for red pine versus ±12% for jack pine when deploying a Silviscan-equivalent estimate of wood
density, and ±12% for red pine versus ±12% for jack pine when using an acoustic-based estimate.
The graphical and statistical results for the relationships in which radial and tangential diameters were
expressed as functions of density-weighted acoustic velocity, did not support the existence of viable
relationships for these attributes. This result is similar to that obtained for red pine logs (i.e., [15]).
Combining these regression results with the observed lack of linear associations exhibited in the
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scatterplots (Figures 1 and 2 for jack pine logs; and Figures 1 and 2 for red pine logs in [15]), suggest
that these attributes may be intrinsically unrelated to acoustic velocity for these species.

The regression relationships for fiber coarseness and specific surface area (co, sa = f
(
γ̂0,1, wdv2

l
)
)

exhibited moderate levels of explanatory power (Tables 7 and 8): (1) 46% and 43% of the variation
in fiber coarseness was explained for the logs within the calibration and validation data subsets,
respectively; and (2) 50% and 44% of the variation in specific surface area was explained for the logs
within the calibration and validation data subsets, respectively. These parameterized models produced
unbiased and relative precise predictions when compared with the other attribute models. For the
fiber coarseness model, 95% of absolute and relative errors generated from repeatedly applying the
parameterized equation to a new sample population of logs would be expected (95% probability
level) not to exceed (1) ±49.8 μg/m and ±13.0%, respectively, when using Silviscan-equivalent
wood density estimates (Table 8), and (2) ±57.0 μg/m and ±14.9%, respectively, when deploying
acoustic-based wood density estimates (Table 9). Similarly, for the model developed for specific
surface area, the corresponding precision limits for absolute and relative error were (1) ±34.3 m2/kg
and ±10.5%, respectively, when using Silviscan-equivalent wood density estimates (Table 8), and
(2) ±40.7 m2/kg and ±12.5%, respectively, when deploying acoustic-derived wood density estimates
(Table 9).

In relation to acoustic-based prediction of fiber coarseness, Newton [15] reported much improved
results for red pine logs in terms of explanatory power (e.g., explaining 81% of variation in co for red
pine logs versus 44% of variation in co for jack pine logs) but again much less so in terms of predictive
precision (e.g., relative tolerance error intervals of ±12% for red pine versus ±13% for jack pine when
deploying a Silviscan-equivalent estimate of wood density, and ±14% for red pine versus ±15% for
jack pine when using an acoustic-based estimate). In comparison of the model developed for predicting
specific surface area for red pine logs, the result was considerably superior in terms of explanatory
power (e.g., 84% of the variation in sa explained for red pine logs versus 47% of the variation in
sa explained for jack pine logs). However, similar to the interspecies comparison of the coarseness
model, the difference in predictive ability was minimal between the species: (1) relative tolerance
error intervals of ±8% for red pine versus ±11% for jack pine when deploying a Silviscan-equivalent
estimate of wood density, and (2) ±10% for red pine versus ±13% for jack pine when using an
acoustic-based estimate.

4.2. Potential Utility of the Expanded Acoustic-Based Inferential Framework for Jack Pine

Estimation of the modulus of elasticity is of primary importance in log-segregation operations
where the objective is to forecast the potential type and grade of extracted solid wood products
(e.g., dimension lumber). However, other wood attributes (e.g., wood density, microfibril angle,
tracheid dimensions) and derived composite metrics (e.g., fiber coarseness and specific surface area),
are also prime determinates of end-product potential (sensu Table 1). Consequently, the expanded
acoustic inferential framework presented in this study along with its empirical validation for six of
the eight jack pine attributes examined (dynamic modulus of elasticity, wood density, microfibril
angle, cell wall thickness, fiber coarseness and specific surface area), yields a more comprehensive
system for non-destructive forecasting of end-product potential than systems based solely on wood
stiffness (modulus of elasticity). Operationally, however, the in-forest deployment of the parameterized
relationships will be largely dependent on the objectives and precision requirements of the end-user.
For example, the relative error intervals were quite large for me and ma as exemplified by the resultant
tolerance errors of ±25% and ±56%, respectively, when using a Silviscan-equivalent wood density
estimate (Table 8), and ±27% and ±55%, respectively, when using an acoustic-based wood density
estimate (Table 9). Thus, the ability to stratify individual jack pine logs into narrow-grade class-based
acoustic estimates of me and ma would be difficult if not impossible. However, in situations for which
the objective is to segregate groups of logs into end-product categories according to their average
attribute values, then the magnitude of estimation error associated with the acoustic-based population
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mean estimates may be more operationally acceptable. For example, the mean absolute and relative
error to be expected when collectively sampling 30 new jack pine logs deploying an acoustic-based
wood density estimate would be, respectively, 0.6 GPa and 5% for me, and 1◦ and 10% for ma (Table 9).

Comparably, the relative tolerance error intervals for wd, wt, co and sa were considerably less
(i.e., errors in the order of ±10 to ±15% (Table 8)). Thus, depending on the specified width of
the wd, wt, co and sa intervals the end-user employs to designate logs into specific end-product
categories or a binary grade class, differentiating logs according to these attribute predictions may be
feasible. Similarly, at the stand-level where the objective is to classify a population of logs in a specific
end-product category based on their mean wd, wt, co or sa values, the precision of the estimates would
be improved considerably. For example, the mean absolute and relative error to be expected when
collectively sampling 30 new jack pine logs deploying an acoustic-based wood density estimate would
be respectively, 0.1 μm and 2% for wt, 10.4 μg/m and 3% for co, and 7.5 m2/kg and 2% for sa (Table 9).

More generally however, based on the explanatory power and precision of acoustic-based attribute
prediction models developed to date, increasing the precision of the point-estimates derived from
acoustic-based models will be required if they are to be used to stratify individual logs into grade
categories given the relatively narrow range of static modulus of elasticity values that currently
delineate product grade classes. For example, the mean difference between the 14 machine stress-rated
(MSR) lumber grade categories established for Canadian softwood species [34] is approximately
0.7 GPa and hence the explicit stratification of individual logs into such narrow-width grade classes
would not be possible given the empirical results to date. Even if it is assumed that the dynamic
estimate is equivalent to its static counterpart which in turn is reflective of the actual end-product-based
value, the precision of most acoustic-based estimates would be inadequate for stratifying logs into
MSR-based classes (e.g., ±3 GPa expected error for individual jack pine logs; Table 9). Thus reducing
the number of grade categories from 14 to a smaller number of discrete quality classes based on the
expected prediction error range(s) through clustering, and (or) using multiple individual log estimates
to generate a mean site, landing or log pile value, may represent a viable alternative when using the
acoustic approach in log-segregation operations for jack pine.

Further research into analytical advancements that increase the amount of variability explained
and decrease the standard error of estimate, possibly by including covariates within the
acoustic-attribute model specification as suggested by Bérubé-Deschênes et al. [35] and Butler et al. [36],
may be warranted. Acoustic velocity is known to be affected by a multitude of internal and external
factors which includes knot distributions, embedded voids, environmental conditions during acoustic
sampling (temperature and moisture conditions), tree size, local competition, and overall site conditions
(e.g., [35,37,38]). Provision of operational solutions for minimizing these effects could improve the
predictive accuracy of acoustic-based attribute estimation. Recent results examining the effect of xylem
temperature and moisture on acoustic velocity within standing semi-mature jack pine trees during the
vegetative growing season indicated that acoustic velocity declined in linear fashion with increasing
temperature; however, moisture had no appreciable influence [39]. However, the temperature effect
was not of consequential significance except when temperatures approached their seasonal extremities.
Assuming similar inferences apply to jack pine logs, suggest that acoustic log samplers could treat
such variation as a source of random error of minimal importance providing xylem temperatures did
not approach their seasonal minimums (<5 ◦C) or maximums (>30 ◦C). In cases were temperature
effects were of concern, the standardization equation for adjusting acoustic velocities to a reference
xylem temperature of 20 ◦C could be deployed [39].

4.3. Similarities and Differences between Tree and Log Acoustic-Based Attribute Relationships

The time-of-flight acoustic approach to estimating the internal attributes within standing trees
employs the dilatational stress wave velocity (vd) which transverses the breast-height (1.3 m) region
of the main stem [40]. This acoustic velocity measurement when weighted by wood density is also
related to the modulus of elasticity as described by a functional specification, similar to that given by
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Equation (1) (i.e., replacing vl by vd). This primary relationship for standing trees can be also potentially
expanded to include a similarly structured suite of secondary relationships as that presented in this
study for logs (e.g., [16]).

Conceptually, the resonance-based acoustic velocity approach is considered to yield a more
representative estimate of the fiber attributes within the xylem tissue than those estimates derived from
the time-of-flight approach. This is principally because the mean velocity estimate is derived from
many acoustic pulses resonating longitudinally throughout the log rather than the velocity of a single
wave front moving between two points within the main stem of a standing tree [41]. The empirical
validity of this inference can be partially tested by assessing the differences between the tree and log
acoustic-based attribute prediction models parameterized using the same sample tree population.
Contrasting the results derived from a companion analysis which assessed the time-of-flight acoustic
relationships deploying the same suite of attributes and sample tree population which were measured
at the same time [42], revealed that the time-of-flight-based relationships were mostly superior in terms
of explanatory power. Specifically, the percentage of attribute variation explained by the dilatational
(tree) and longitudinal (log) acoustic relationships were respectively: 71% versus 50% for me; 30%
versus 31% for wd; 19% versus 8% for ma; 66% versus 59% for wt; 42% versus 44% for co; and 61%
versus 47% for sa. However, conversely, in terms of predictive precision, the comparison between
the log and tree models revealed minimal differences. The error arising from using a newly sampled
acoustic velocity measurement used to estimate me, wd, ma, wt, co and sa for standing trees and derived
logs would be expected at the 95% confidence level to fall within the respective relative error limits of
±25% versus ±21% for me, ±13% versus ±14% for wd, ±56% versus ±47% for ma, ±12% versus ±11%
for wt, ±13% versus ±12% for co, and ±10% versus ±10% for sa. These similarities in terms of the
predictive performance between the tree and log-based acoustic approaches for estimating attributes
within the same species (jack pine) while attaining contrasting results between species (jack pine
versus red pine for a given time-of-flight- or resonance-based relationship), suggest that acoustic-based
attribute relationships may be intrinsic to a given species irrespective of either of these wave types.

4.4. Advancing Acoustic-Based Attribute Estimation

The resonance-based acoustic approach to estimating internal fiber attributes within logs and
associated demonstrations of its utility in segregation, allocation and merchandizing operations have
been presented to the forest management community through various case studies (e.g., [41,43,44]
and comprehensive literature reviews (e.g., [11,17]). These contributions have mostly focused on the
merits of estimating the modulus of elasticity and using it, or its surrogates, to forecast end-product
potential. These include (1) treating wood density as a constant and inferring wood stiffness indirectly
from acoustic velocity (e.g., implicitly based on the underlying theoretical relationship expressed
by Equation (1)), (2) estimating wood stiffness using parameterized regression models in which the
dynamic modulus of elasticity is expressed as a function of acoustic velocity and wood density
(e.g., explicitly based on the conceptual formulation (Equation (1)), and (3) directly forecasting
wood stiffness using relationships that explicitly relate the static modulus of elasticity of a given
end-product (e.g., measured using static bending tests of sawn boards) to acoustic velocity. This last
approach while the most informative is also the least developed. Consequentially, the full potential of
in-forest acoustic-based forecasting of end-product potential has not been fully realized. Determination
and quantification of the explicit relationship between log-based acoustic velocity measures and
actual performance-based metrics within the derived manufactured end-product are also required.
Preliminary results from several studies in which the static modulus of elasticity within dimensional
lumber products have been explicitly related to log-based acoustic velocity measures have been
positive. These include statistically viable relationships reported for balsam fir (Abies balsamea (L.) Mill.)
and white spruce (Picea glauca (Moench) Voss.) [45], radiata pine [46], Douglas fir ((Pseudotsuga menziesii
(Mirb.) Franco) [47], and loblolly pine (Pinus taeda L.) [48].
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Similarly, previous research has shown that several important performance metrics associated
with pulp and paper end-products are also empirically related to acoustic velocity measurements taken
on logs. Clark et al. [48] found that fiber length, pulp strength and various handsheet properties derived
from radiate pine logs varied systematically with acoustic velocity. Bradley et al. [49] demonstrated
that the variation in the pulp quality (freeness) for radiata pine logs could be considerably reduced by
stratifying the logs according to their acoustic velocity values before processing. Although beyond the
scope of this study, establishment of a broader range of more explicit relationships between log-based
acoustic velocity measures and attribute-derived performance metrics within actual manufactured
end-products, would be an area worthy of further investigation. As these past studies have shown,
in-forest acoustic velocity stratification of log populations not only improves segregation efficiency
at the time of harvest but also assists in reducing the variation in end-product quality during the
manufacturing and merchandizing stages.

In-forest acoustic log grading has been increasingly used to compliment visual-based approaches
in the pursuit of deriving economically efficient sorting networks. This remains an iterative and
ongoing process in wood allocation decision-making where the objective is to increase operational
efficiency within the upstream portion of the forest products supply chain (sensu [50]). Mechanized
acoustic sampling has also advanced to the point where onboard resonance tools have been installed
directly on harvesting machines where logs are immediately sorted upon bucking according to
their end-product potential (e.g., [51]). Although these innovations have advanced the in-forest
non-destructive approach to log grading and sorting, the acoustic approach has been largely limited to
providing a single measure of internal wood quality, that being wood stiffness. Thus, the confirmatory
empirical results presented in this study for jack pine and previous for red pine logs [15] are collectively
supportive of an expanded acoustic-based inferential framework in which estimates for a multitude
of end-product-based attribute determinates can be attained: e.g., wood density, microfibril angle,
tracheid wall thickness, fiber coarseness, and specific surface area, in addition to the dynamic modulus
of elasticity (wood stiffness). Although further research is required to fully realize the benefits of this
empirical-based framework, the ability to non-destructively forecast a wide array of commercially
relevant attributes could have consequential potential utility in advancing the acoustic approach in
forest operations.

5. Conclusions

Given the wide spread occurrence of jack pine across the boreal landscape combined with
the vast array of potential end-products it can produce, inclusive of solid wood products
(e.g., dimensional lumber) and associated mill-work derivatives (window frames, doors, shelving,
moldings, and paneling, and composite lumber products such as glulam-based beams, headers and
heavy trusses and finger-jointed joists and rafters), and pulp-derived products such as paperboards,
newsprint, facial tissues and specialized coated papers [52], the species has become the dominant
feedstock species for numerous industrial conversion facilities. However, this diversity of end-products
complicates in-forest segregation, allocation, and merchandizing decision-making. Hence the
provision of enhanced operational intelligence arising from in-forest forecasts of end-product
potential of harvested logs through non-destructive acoustic-based methods, may yield increased
efficiencies within the upper portion of the jack pine forest products supply chain. Consequentially,
the development and evaluation of a suite of acoustic-based models for predicting the principal
attributes governing end-product potential for jack pine as presented in this study, represents
an incremental contribution towards more informed decision-making. Specifically, deploying a
mixed-effects linear modeling approach combined with cross-validation techniques, viable forecasting
models for predicting the dynamic modulus of elasticity, wood density, microfibril angle, cell wall
thickness, fiber coarseness and specific surface area were developed. Although these positive
results confer additional empirical support for the proposed acoustic-based inferential framework,
further research in the areas of accounting for environmentally induced wave variation, specifying
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end-product-based design thresholds, and explicitly establishing linkages between log-based attribute
estimates and those within recoverable end-products, would be beneficial. Collectively, the results
presented here for jack pine not only provides the prerequisite parameterized relationships for
improving in-forest segregation and allocation decision-making but also contributes to solidifying the
empirical foundation of the expanded acoustic-based inferential framework.

Funding: Canadian Wood Fiber Centre, Canadian Forest Service, Natural Resources Canada.

Acknowledgments: The author expresses his appreciation to: (1) Mike Laporte (retired) of the Canadian Wood
Fiber Centre, Canadian Forest Service (CFS), Natural Resources Canada (NRCan), and Gordon Brand of the Great
Lakes Forestry Centre, CFS, NRCan for field and laboratory data acquisition support; (2) Dr. Tong and Ny Nelson
at FPInnovations Inc., Vancouver, British Columbia, Canada, for completing the SilviScan-3 analysis, (3) Canadian
Wood Fiber Centre, CFS, NRCan for fiscal support; and (4) anonymous journal reviewers for constructive and
insightful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Emmett, B. Increasing the value of our forest. For. Chron. 2006, 82, 3–4. [CrossRef]
2. Emmett, B. Perspectives on sustainable development and sustainability in the Canadian forest sector.

For. Chron. 2006, 82, 40–43. [CrossRef]
3. Zhang, S.Y.; Chauret, G.; Ren, H.Q.; Desjardins, R. Impact of plantation black spruce initial spacing on

lumber grade yield, bending properties and MSR yield. Wood Fibre Sci. 2002, 34, 460–475.
4. Tsehaye, A.; Buchanan, A.H.; Walker, J.C.F. Sorting of logs using acoustics. Wood Sci. Technol. 2000, 34,

337–344. [CrossRef]
5. Carter, P.; Briggs, D.; Ross, R.J.; Wang, X. Acoustic testing to enhance western forest values and meet

customer wood quality needs. In Productivity of Western Forests: A Forest Products Focus; Harrington, C.A.,
Schoenholtz, S.H., Eds.; Gen. Tech. Rep. PNW-GTR-642; USDA, Forest Service, Pacific Northwest Research
Station: Portland, OR, USA, 2005; pp. 121–129.

6. Wang, X.; Carter, P.; Ross, R.J.; Brashaw, B.K. Acoustic assessment of wood quality of raw materials: A path
to increased profitability. For. Prod. J. 2007, 57, 6–14.

7. National Lumber Grades Authority (NLGA). Standard Grading Rules for Canadian Lumber; NLGA: Surrey, BC,
Canada, 2014.

8. Defo, M. SilviScan-3—A Revolutionary Technology for High-Speed Wood Microstructure and Properties
Analysis. Midis de al Foresterie. UQAT. Available online: http://chaireafd.uqat.ca/midiForesterie/pdf/
20080422PresentationMauriceDefo.pdf (accessed on 1 October 2018).

9. Wang, X.; Ross, R.J.; Mattson, J.A.; Erickson, J.R. Nondestructive evaluation techniques for assessing modulus
of elasticity and stiffness of small-diameter logs. For. Prod. J. 2002, 52, 79–85.

10. Dickson, R.L.; Raymond, C.A.; Joe, B.; Wilkinson, C.A. Segregation of Eucalyptus dunnii logs using acoustics.
For. Ecol. Manag. 2003, 179, 243–251. [CrossRef]

11. Ross, R.J. Nondestructive Evaluation of Wood, 2nd ed.; General Technical Report FPL-GTR-238; USDA, Forest
Service, Forest Products Laboratory: Madison, WI, USA, 2015; p. 169.

12. Legg, M.; Bradley, S. Measurement of stiffness of standing trees and felled logs using acoustics: A review.
J. Acoust. Soc. Am. 2016, 139, 588–604. [CrossRef] [PubMed]

13. Raymond, C.A.; Joe, B.; Evans, R.; Dickson, R.L. Relationship between timber grade, static and dynamic
modulus of elasticity, and Silviscan properties for Pinus radiata in New SouthWales. N. Z. J. For. Sci. 2007, 37,
186–196.

14. Newton, P.F. Development trends of black spruce fibre attributes in maturing plantations. Int. J. For. Res.
2016, 1–12. [CrossRef]

15. Newton, P.F. Predictive relationships between acoustic velocity and wood quality attributes for red pine logs.
For. Sci. 2017, 63, 504–517. [CrossRef]

16. Newton, P.F. Acoustic-based non-destructive estimation of wood quality attributes within standing red pine
trees. Forests 2017, 8, 380. [CrossRef]

17. Wang, X. Acoustic measurements on trees and logs: A review and analysis. Wood Sci. Technol. 2013, 475,
965–975. [CrossRef]

46



Forests 2018, 9, 749

18. Brashaw, B.K.; Bucur, V.; Divos, F.; Goncalves, R.; Lu, J.; Meder, R.; Yin, Y. Nondestructive testing and
evaluation of wood: A worldwide research update. For. Prod. J. 2009, 59, 7–14.

19. Wang, X.; Senalik, C.A.; Ross, R.J. (Eds.) 20th International Nondestructive Testing and Evaluation of Wood
Symposium; General Technical Report FPL-GTR-249; USDA, Forest Service, Forest Products Laboratory:
Madison, WI, USA, 2017; p. 539.

20. McKinnon, L.M.; Kayahara, G.J.; White, R.G. Biological Framework for Commercial Thinning Evenaged
Single-Species Stands of Jack Pine, White Spruce, and Black Spruce in Ontario; Report TR-046; Ontario Ministry of
Natural Resources, Northeast Science and Information Section: Timmins, ON, Canada, 2006; p. 130.

21. Carmean, W.H.; Niznowski, G.P.; Hazenberg, G. Polymorphic site index curves for jack pine in Northern
Ontario. For. Chron. 2001, 77, 141–150. [CrossRef]

22. Rowe, J.S. Forest Regions of Canada; Publication No. 1300; Government of Canada, Department of
Environment, Canadian Forestry Service: Ottawa, ON, Canada, 1972.

23. Evans, R. Rapid measurement of the transverse dimensions of tracheids in radial wood sections from
Pinus radiata. Holzforschung 1994, 48, 168–172. [CrossRef]

24. Siau, J.F. Wood: Influence of Moisture on Physical Properties; Virginia Polytechnic Institute and State University,
Department of Wood Science and Forest Products: Blacksburg, VA, USA, 1995.

25. Evans, R.; Hughes, M.; Menz, D. Microfibril angle variation by scanning X-ray diffractometry. Appita 1999,
52, 363–367.

26. Evans, R. Wood stiffness by X-ray diffractometry. In Characterization of the Cellulosic Cell Wall; Stokke, D.D.,
Groom, L.H., Eds.; Wiley: Hoboken, NJ, USA, 2006; pp. 138–146.

27. Evans, R.; Downes, G.; Menz, D.; Stringer, S. Rapid measurement of variation in tracheid transverse
dimensions in a radiata pine tree. Appita 1995, 48, 134–138.

28. Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed.; Sage:
Newbury Park, CA, USA, 2002; p. 485.

29. Raudenbush, S.W.; Bryk, A.S.; Cheong, Y.F.; Congdon, R.T.; Toit, M., Jr. HLM 7—Hierarchical Linear and
Nonlinear Modeling; Scientific Software International Inc.: Lincolnwood, IL, USA, 2011; p. 360.

30. Gujarati, D.N. Essentials of Econometrics, 3rd ed.; McGraw-Hill/Irwin Inc.: New York, NY, USA, 2006; p. 553.
31. Ek, A.R.; Monserud, R.A. Performance and comparison of stand growth models based on individual tree

and diameter-class growth. Can. J. For. Res. 1979, 9, 231–244. [CrossRef]
32. Reynolds, M.R., Jr. Estimating the error in model predictions. For. Sci. 1984, 30, 454–469.
33. Gribko, L.S.; Wiant, H.V., Jr. A SAS template program for the accuracy test. Compiler 1992, 10, 48–51.
34. National Lumber Grades Authority (NLGA). Special Products Standard for Machine Graded Lumber; NLGA:

Surrey, BC, Canada, 2013.
35. Bérubé-Deschênes, A.; Franceschini, T.; Schneider, R. Factors affecting plantation grown white spruce

(Picea glauca) acoustic velocity. J. For. 2016, 114, 629–637. [CrossRef]
36. Butler, M.A.; Dahlen, J.; Eberhardt, T.L.; Montes, C.; Antony, F.; Daniels, R.F. Acoustic evaluation of loblolly

pine tree-and lumber-length logs allows for segregation of lumber modulus of elasticity, not for modulus of
rupture. Ann. For. Sci. 2017, 74, 1–15. [CrossRef]

37. Kang, H.; Booker, R.E. Variation of stress wave velocity with MC and temperature. Wood Sci. Technol. 2002,
36, 41–54. [CrossRef]

38. Chauhan, S.S.; Walker, J.C.F. Variations in acoustic velocity and density with age, and their interrelationships
in radiata pine. For. Ecol. Manag. 2006, 229, 388–394. [CrossRef]

39. Newton, P.F. Quantifying the effects of wood moisture and temperature variation on time-of-flight acoustic
velocity measures within standing red pine and jack pine trees. Forests 2018, 9, 527. [CrossRef]

40. Wessels, C.B.; Malan, F.S.; Rypstra, T. A review of measurement methods used on standing trees for the
prediction of some mechanical properties of timber. Eur. J. For. Res. 2011, 130, 881–893. [CrossRef]

41. Wang, X.; Carter, P. Acoustic assessment of wood quality in trees and logs. In Nondestructive Evaluation
of Wood; Ross, R.J., Ed.; General Technical Report FPL-GTR-238; USDA, Forest Service, Forest Products
Laboratory: Madison, WI, USA, 2015; pp. 87–101.

42. Newton, P.F. In-forest acoustic-based prediction of commercially-relevant wood quality attributes within
standing jack pine trees. Forests 2018, in preparation.

43. Walker, J.C.F.; Nakada, R. Understanding corewood in some softwoods: A selective review on stiffness and
acoustics. Int. For. Rev. 1999, 1, 251–259.

47



Forests 2018, 9, 749

44. Harris, P.; Petherick, R.; Andrews, M. Acoustic resonance tools. In Proceedings of the 13th International
Symposium on Nondestructive Testing of Wood; Forest Products Society: Berkeley, CA, USA, 2003; pp. 195–201.

45. Ross, R.J.; McDonald, K.A.; Green, D.W.; Schad, K.C. Relationship between log and lumber modulus of
elasticity. For. Prod. J. 1997, 47, 89–92.

46. Dickson, R.L.; Matheson, A.C.; Joe, B.; Ilic, J.; Owen, J.V. Acoustic segregation of Pinus radiata logs for
sawmilling. N. Z. J. For. Sci. 2004, 34, 175–189.

47. Vikram, V.; Cherry, M.L.; Briggs, D.; Cress, D.W.; Evans, R.; Howe, G.T. Stiffness of Douglas-fir lumber:
Effects of wood properties and genetics. Can. J. For. Res. 2011, 41, 1160–1173. [CrossRef]

48. Clark, T.A.; Hartmann, J.; Lausberg, M.; Walker, J.C.F. Fibre characterisation of pulp logs using acoustics.
In Proceedings of the 56th Appita Annual Conference, Rotorua, New Zealand, 18–20 March 2002; pp. 17–24.

49. Bradley, A.; Chauhan, S.S.; Walker, J.C.F.; Banham, P. Using acoustics in log segregation to optimise energy
use in thermomechanical pulping. Appita 2005, 58, 306–311.

50. Murphy, G.; Cown, D. Stand, stem and log segregation based on wood properties: A review. Scand. J. For.
Res. 2015, 30, 757–770. [CrossRef]

51. Walsh, D.; Strandgard, M.; Carter, P. Evaluation of the Hitman PH330 acoustic assessment system for
harvesters. Scand. J. For. Res. 2014, 29, 593–602. [CrossRef]

52. Zhang, S.Y.; Koubaa, A. Softwoods of Eastern Canada: Their Silvics, Characteristics, Manufacturing and End-Uses;
Special Publication SP-526E; FPInnovations: Quebec City, QC, Canada, 2008.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

48



Article

Variations in Orthotropic Elastic Constants of Green
Chinese Larch from Pith to Sapwood

Fenglu Liu 1,2, Houjiang Zhang 1,2,*, Fang Jiang 1, Xiping Wang 3 and Cheng Guan 1,2

1 School of Technology, Beijing Forestry University, Beijing 10083, China; liufenglu3339@bjfu.edu.cn (F.L.);
jf0620@bjfu.edu.cn (F.J.); cguan6@bjfu.edu.cn (C.G.)

2 Joint International Research Institute of Wood Nondestructive Testing and Evaluation,
Beijing Forestry University, Beijing 100083, China

3 USDA Forest Products Laboratory, Madison, WI 53726, USA; xiping.wang@usda.gov
* Correspondence: hjzhang6@bjfu.edu.cn; Tel.: +86-010-62336925 (ext. 401)

Received: 26 April 2019; Accepted: 23 May 2019; Published: 25 May 2019

Abstract: Full sets of elastic constants of green Chinese larch (Larix principis-rupprechtii Mayr) with
95% moisture content at four different cross-section sampling positions (from pith to sapwood)
were determined in this work using three-point bending and compression tests. Variations in the
material constants of green Chinese larch from pith to sapwood were investigated and analyzed.
The results showed that the sensitivity of each elastic constant to the sampling position was different,
and the coefficient of variation ranged from 4.3% to 48.7%. The Poisson’s ratios νRT measured at
four different sampling positions were similar and the differences between them were not significant.
The coefficient of variation for Poisson’s ratio νRT was only 4.3%. The four sampling positions had
similar Poisson’s ratios νTL, though the coefficient of variation was 11.7%. The Poisson’s ratio νLT

had the greatest variation in all elastic constants with a 48.7% coefficient of variation. A good linear
relationship was observed between the longitudinal modulus of elastic EL, shear modulus of elasticity
GRT, Poisson’s ratio νRT, and sampling distance. EL, GRT, and νRT all increased with sampling
distance R. However, a quadratic relationship existed with the tangential modulus of elasticity ET,
radial modulus of elasticity ER, shear modulus of elasticity GLT, and shear modulus of elasticity
GLR. A discrete relationship was found in the other five Poisson’s ratios. The results of this study
provide the factual changes in the elastic constants of green wood from pith to sapwood for numerical
modelling of stress wave propagation in trees or logs.

Keywords: orthotropic; elastic constants; green larch; compression; three-point bending

1. Introduction

Elastic constants, especially the modulus of elasticity (MOE), which indicate the elastic behavior of
wood, are critical parameters for furniture, musical instruments, or wood products, such as plywood,
laminated veneer lumber, and cross laminated timber. Numerical simulation is being increasingly used
to investigate the propagation of stress wave in standing trees or logs [1–4]. Material elastic constants
are required for numerical simulation, especially when defining material properties. Wood, as a complex
and anisotropic material, has considerable variations in its mechanical properties from bottom to top,
pith to sapwood within a tree. In many studies, wood has been considered an orthotropic material,
given its unique and independent material performance in the three principal or orthotropic directions
(radial R, tangential T, and longitudinal L) [5–11]. Nine independent elastic constants (reduced from
twelve elastic constants according to the symmetry of the stress and strain sensor in orthotropic
materials), including three elastic moduli, three shear moduli, and three Poisson’s ratios, are required
to characterize the elastic behavior of orthotropic materials for mechanical analysis. Wood is also a
hygroscopic material, and its mechanical behavior is therefore impacted by variations in moisture
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content (MC) [12–16]. Hering et al. determined all the independent elastic properties of European
beech wood at different moisture conditions (MC ranged from 8.7% to 18.6%), and results indicated
that all elastic parameters, except for Poisson’s ratios νTR and νRT, show a decrease in stiffness with
increasing moisture content [13]. Similarly, Jiang et al. examined the influence of moisture content on
the elastic and strength anisotropy of Chinese fir (Cunninghamia lanceolate Lamb.) wood and found that,
except for Poisson’s ratios, all investigated elastic and strength parameters decreased with increasing
MC (varied from 10.3% to 16.7%), whereby individual moduli and strength values were affected by the
MC to different degrees [14].

Resistance strain gauges and ultrasonic are the two of most commonly used methods determining
the elastic constants of wood. As a destructive method, resistance strain gauges are usually used to
evaluate the material constants of wood. Sliker first proposed the use of compression and bending tests
using strain gauges in wood to determine the elastic constants of materials [6–8]. Many studies had
been conducted to verify the feasibility and validity of this method. Li successfully measured the full
set of elastic constants for Fraxinus mandshurica with 13.4% moisture content via the compression test
using strain gauges [9]. Gong estimated the elastic moduli parallel to the grain of Pinus Massoniana with
15% MC through strain gauges [10]. Wang et al. determined the full set of material constants for White
Birch (Betula platyphylla Suk.) with 12% MC using the compression and three-point bending tests [17].
Shao et al. measured the seven elastic constants of Cunninghamia lanceolata with 12% MC using electric
resistance strain gauges [18]. Aira et al. performed compression tests on dry specimens (around 12%
MC) to determine the elastic constants of Scots pine (Pinus sylvestris L.) and found the MOE values
obtained were greater than the average values for softwoods, and Poisson’s ratios obtained parallel to
the grain were similar to the values in the literature [19].

Ultrasonic, a rapid and efficient non-destructive method for determining material properties,
has drawn increasing attention in wood characteristic measurement. Preziosa et al. first determined
the stiffness matrix of wood using the ultrasonic technique [20,21]. Then, Bucur measured the elastic
constants of six species (pine, spruce, Douglas-fir, oak, beech, and tulip-tree) in the dry condition,
applying ultrasonic to different cubic specimens [22]. Francois proposed the use of a polyhedral
specimen with 26 faces for the determination of all the elements in the stiffness matrix from a single
specimen to measure the elastic constants of dry wood [23]. Many studies have demonstrated the
feasibility of using ultrasonic to measure all the elastic constants from a single specimen of dry wood (MC
ranged from 7.5% to 12.3%) from different species, such as Castanea sativa Mill., ash (Fraxinus excelsior L),
beech, Eucalyptus saligna, Apuleia leiocarpa, and Goupia glabra [24–27].

Although the full material constants of wood can be measured by both resistance strain gauges and
ultrasonic, the full sets of elastic constants for green wood have rarely been reported in the literature.
As wood is often used in a dry state, the elastic constants reported in most published papers for wood
are in these conditions [28–31]. This would lead to a poor representation when the elastic constants of
dry wood are used for modelling standing trees or green logs. Only Davies et al. investigated and
obtained the elastic constants of green Pinus radiata wood using compression and tension tests [32].
Davies et al. stated that the mathematical modelling would be more realistic with the material constants
of green wood rather than those of dry wood. The variation in elastic constants in cross-sections of
green wood from pith to sapwood have not been reported in the literature. Davies et al. only measured
the material constants of the corewood and outerwood of Pinus radiata instead of elastic constants
across whole transverse sections of wood. Although Xavier et al. reported that the two stiffness values
(Q22 and Q66) of P. pinaster varied across three or four different radial positions using the unnotched
Iosipescu test, the moisture content of the specimens was 10.4% and only two stiffness values were
investigated [33]. Therefore, to the best of our knowledge, no full sets of elastic constants varying from
pith to sapwood have been published for green wood. The variations in the mechanical properties of
green wood from pith to sapwood have not yet been studied.

The main purpose of this research was to determine the elastic constants of green Chinese larch
from pith to sapwood using compression and three-point bending tests, as well as to investigate and
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analyze the variations in the mechanical characteristics of green Chinese larch from pith to sapwood.
We aimed to obtain basic knowledge about the mechanical properties of wood from pith to sapwood,
and to describe standing trees or logs as an orthotropic material in numerical modelling. Use of wood
could be optimized in various applications, such as papermaking, furniture, musical instruments,
or wood products, according to the measured material performance in different parts of the wood.
Standing trees or logs could be modelled more realistically in numerical simulation with the acquired
data. The results of this study provide factual elastic constants of green wood from pith to sapwood
for numerical modelling of stress wave propagation in trees or logs.

2. Materials and Methods

2.1. Materials

Two Chinese larches (Larix principis-rupprechtii Mayr), a common plantation species in Northern
China, were harvested from Maojingba National Plantation Farm, located in Longhua County,
Chengde City, Hebei Province, China (118◦06’05” E, 41◦28’46” N at approximately 750 m elevation).
The trees (coded A and B) aged 40 years were felled and branches were subsequently removed.
The diameter at breast height (DBH) values of tree A and tree B were 32 cm and 36 cm, respectively.
Then, two 60-cm-long logs were cut from each selected tree at a height of 0.5 m and 1.25 m above the
ground. A 15-cm-thick disc for density and moisture content measurements was cut from each tree at
a height of 1.1 m above the ground. A total of four 60-cm-long logs and two 15-cm-thick discs were
obtained and immediately sealed in plastic wrap. After, these logs and discs were directly transported
to the mechanics laboratory in Beijing Forestry University and kept in a condition room at 15 ◦C and
95% relative humidity.

2.2. Static Testing Method

2.2.1. Specimen Sampling

A schematic of the sawing pattern used to obtain green larch specimens for static testing is
presented in Figure 1. Four different sampling positions from pith to sapwood (numbered 1, 2, 3, and
4 in Figure 1 referred to sampling position, defined as P1, P2, P3, and P4 hereinafter, respectively)
were chosen to determine the elastic constants at different positions from pith to sapwood in the
cross-sections of standing trees and investigate the distribution of elastic constants in the cross-sections
of standing trees. As shown in Figure 1, sampling positions P1, P2, and P4 were located at the
pith, heartwood, and sapwood, respectively, whereas P3 was located between the heartwood and
sapwood. The initial transverse dimension of specimens for static testing in each sampling location
was 53 × 53 mm.

Parameter R was used to define the distance between the center of pith and the center of sampling
position. Thus, the designed distance R for sampling position P1, P2, P3 and P4 was 13 mm, 56 mm,
76 mm and 132 mm, respectively. It should be noticed that the sampling distance R for P1, P2, P3 and P4
shown in Figure 1 was designed for a log with a DBH ranging from 300 mm to 360 mm. The sampling
distance would be different as the DBH of log over 360 mm and need to be changed.
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Figure 1. Schematic of sawing pattern for testing specimens. Dashed lines represent the sawing line
and the units are millimeters. The extra 3 mm width was the machining allowance. The number 1, 2, 3,
and 4 in the yellow, gray, green, and blue area, respectively represent four different sampling positions.

One P1 lumber (53 × 53 × 600 mm), two P2 lumbers (53 × 53 × 600 mm), two P3 lumbers
(53 × 53 × 600 mm), and two P4 lumbers (53 × 53 × 600 mm) were obtained from each log according to
sampling pattern shown in Figure 1. A total of 4 P1- lumbers, 8 P2- lumbers, 8 P3- lumbers, and 8 P4-
lumbers were acquired from four 600-mm-long logs. Then, these were used to prepare the specimens
for static testing, including the compression test and three-point bending test, performed according
to American Society for Testing Materials (ASTM) D5536-94 [34]. Specimens for static testing were
instantly sealed with plastic wrap and stored in the condition room (15 ◦C and 95% relative humidity)
before mechanical testing. The dimensions of the specimens used for static testing are provided in
Table 1. Each sampling location (referred to as P1, P2, P3, and P4) all used the same size specimens for
static testing. Therefore, the elastic constants of these four different positions (from pith to sapwood) in
the cross-section of standing trees could be determined.

Table 1. Dimensions of specimens for static testing.

Static Test Orientation
Size (mm) (Length ×
Width × Thickness)

Number of Specimens for
One Sampling Position

Compression test

Parallel to grain Longitudinal (L) 25 × 25 × 100 8

Perpendicular to grain
Radial (R)

50 × 50 × 150 8 × 3Tangential (T)
With a 45◦ to tangential

Three-point
bending test

Parallel to grain Longitudinal (L)

25 × 25 × 150 8
25 × 25 × 200 8
25 × 25 × 250 8
25 × 25 × 300 8
25 × 25 × 350 8

2.2.2. Compression Test

The four types of test specimens used for the compression test, with wood grain oriented relative
to the orthotropic directions and the distribution of strain gauges in specimen, are displayed in
Figure 2. Eight clear test specimens of the required shape and orientation were machined from the
cut lumber. A total of 128 test specimens (8 replicates × 4 orientations × 4 sampling positions) were
used for compression testing. Eight 25 × 25 × 100 mm specimens parallel to the grain (Figure 2a)
were used to measure the elastic constants of EL, νLR, and νLT. Eight 50 × 50 × 150 mm specimens
perpendicular to the grain radially (Figure 2b) were used to test ER, νRL, and νRT. Eight 50 × 50 × 150 mm
specimens perpendicular to the grain tangentially (Figure 2c) were used to evaluate ET, νTR, and νTL.
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Eight 50 × 50 × 150 mm specimens inclined at a 45◦ to the grain (Figure 2d) were used to obtain the
shear modulus of elasticity GRT.

      
(a) (b) (c) (d) 

Figure 2. Types of specimens and strain gauges placement for compression test: (a) parallel to the grain,
(b) perpendicular to the grain radially, (c) perpendicular to the grain tangentially, and (d) inclined at 45◦.

Resistance strain gauges were directly bonded to the surfaces of the specimen prior to compression
testing. Figure 2a–c show that four strain gauges were placed on each specimen. Two resistance
strain gauges were glued perpendicularly to a surface of testing sample, and the other two resistance
strain gauges were perpendicularly bonded to the adjacent surface. As shown in Figure 2d, only two
strain gauges perpendicularly glued to a surface of specimen were used for compression testing.
Strain gauges should be placed close to each other so that measurements record the strain state of the
same point with no variability in their elastic properties due to the heterogeneity of wood. The adhesive
used has a lower longitudinal stiffness than wood to avoid restricting its free deformation when
receiving the external load. The adhesive must simultaneously have a high shear stiffness so that
the deformation of strain gauge is not damped by the thickness of the adhesive [19]. RGM-4050-100
(made by Reger Instrument Corporation Limited, Shenzhen City, China), a microcomputer-controlled
electronic universal testing machine, was used to conduct the compression test according to ASTM
D143-09 [35]. Specimens were loaded at a rate of 0.2 mm/min for compression testing. Modulus of
elasticity (EL, ER, and ET), Poisson’s ratios (νLR, νLT, νRL, νRT, νTR, and νTL) and shear modulus of
elasticity (GRT) were calculated from Equations (1)–(3), respectively.

E =
Pn − P0

A0(εn − ε0)
(1)

where E is the modulus of elasticity (MPa), Pn is the final load (N), P0 is the initial load (N), A0 is the
cross-section area of specimen (mm2), εn is the final strain, and ε0 is the initial strain.

v = −Δε′
Δε

(2)

where ν is the Poisson’s ratio of specimen, Δε
′

is the lateral strain increase, and Δε is the axial strain
increase.

GRT =
ΔP45◦

2A0
(
Δεx − Δεy

) (3)

where GRT is the shear modulus of elasticity in the RT plane (MPa), A0 is the cross-section area of
the specimen (mm2), ΔP45◦ is the load increase of the elastic deformation phase on the load-strain
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curve (N), Δεx is the strain increase along the axis of the specimen, and Δεy is the strain increase
perpendicular to the axis of specimen.

Since the moisture content has a significant effect on the mechanical properties of wood, the
specimens were taken from the condition room and tested in sequence to ensure less variation in the
moisture content of specimens. Measurements for each specimen were performed as soon as possible
to reduce the impact of the moisture content on the testing results.

2.2.3. Three-Point Bending Test

In the light of ASTM D5536-94, specimens with five different ratios of span to depth were prepared
to conduct three-point bending test. We obtained a total of 160 test specimens in total (8 replicates × 5
spans × 4 sampling positions) for the bending tests. The specific size of the specimens, especially the
length, are shown in Table 1. The span for each length of specimen was 132 mm, 176 mm, 220 mm,
264 mm, and 308 mm, respectively. Three-point bending tests were conducted using an RGM-4050-100
universal testing machine on the basis of ASTM D143-09. The loading speed of specimens for three-point
bending test was 5 mm/min. As above, the specimens for the bending test were successively measured
and tested as quickly as possible to reduce the variation in the moisture content of the measured
samples. Bending moduli of elasticity (MOE) were calculated using Equation (4), and then shear
modulus of elasticity (G) can be obtained using Equation (5).

MOE =
ΔPl3

4Δ f bh3 (4)

where MOE is the bending modulus of elasticity (MPa), ΔP is loading increase (N), Δf is the deflection
increase (mm), b is the width of the specimen (mm), h is the thickness of the specimen (mm), and l is
the span of the specimen (mm).

G =
1.2Δ(h/l)2

Δ(1/MOE)
(5)

where Δ(h/l)2 is the increase in the square of ratio between the thickness and span and Δ(1/MOE) is the
increase in the reciprocal of the bending modulus of elasticity (mm2/N). The shear modulus of elasticity
GLR was obtained by measuring specimen loaded from radial direction, and the shear modulus of
elasticity GLT was obtained by measuring the specimen loaded from tangential direction. Both of them
can be calculated using Equations (4) and (5).

3. Results and Discussion

3.1. Twelve Elastic Constants of Green Chinese Larch at Different Sampling Positions

The moisture content (MC) of green Chinese larch was measured in the laboratory using the
kiln-dry method, and the average MC of the sample trees was 95%. The average green density of
Chinese larch was 625 kg/m3. Twelve elastic constants of green Chinese larch were calculated using
Equations (1)–(4) using the experimental data obtained from three-point bending and compression tests.
The elastic constants of the four different sampling positions (P1, P2, P3, and P4) are shown in Table 2.
The average values of the elastic moduli in the longitudinal, radial, and tangential directions were
7,629 MPa, 773 MPa, and 362 MPa, respectively. Davies et al. reported that the longitudinal, radial, and
tangential elastic moduli of the outerwood in green Pinus radiata were 4,360 MPa, 490 MPa, and 250 MPa,
respectively. The values for the corewood of green Pinus radiata were 3,500 MPa, 260 MPa, and 240 MPa,
respectively. The average values of the three elastic moduli obtained from this work were higher
than those derived from Davies’s research due to the differences in the tested species and tree ages.
The longitudinal modulus of elasticity (EL) increased from 5016 MPa to 10,137 MPa as the sampling
distance (R) varied from 13 mm (P1) to 132 mm (P4), respectively. This means that the longitudinal
mechanical properties of green Chinese larch increased from pith to sapwood. However, the radial
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modulus of elasticity (ER) initially increased from 628 MPa to 1,154 MPa as the sampling distance
changed from 13 mm (P1) to 76 mm (P3) and then decreased to 342 MPa as sampling distance increased
to 132 mm (P4). This may indicate a lower radial modulus of elasticity in sapwood. No significant
relationship was found between tangential modulus of elasticity (ET) and sampling distance (R).

The average values of shear moduli in the LR, LT, and RT plane were 428 MPa, 393 MPa, and
450 MPa, respectively. Davies et al. presented the lower values for these three shear moduli, 60 MPa,
110 MPa, 50 MPa in LR, LT, and RT plane for outerwood and 40 MPa, 110 MPa, 20 MPa in LR, LT, and
RT plane for corewood, respectively. The average values of νLT, νLR, νTL, νTR, νRL, and νRT Poisson’s
ratios were 0.30, 0.22, 0.04, 0.60, 0.05, and 0.77, respectively. The corresponding values of these six
Poisson’s ratios in Davies’s paper were 0.60, 0.29, 0.03, 0.33, 0.03, and 0.64 for outerwood and 0.16,
0.46, 0.01, 0.33, 0.05, and 0.54 for corewood, respectively. However, no significant relationship with
sampling distance was found for either shear modulus of elasticity or Poisson’s ratio.

Table 2. Twelve elastic constants at different sampling locations in cross-sections of green Chinese larch.

Sampling
Position

EL

(MPa)
νLT νLR

ET

(MPa)
νTL νTR

ER

(MPa)
νRL νRT

GRT

(MPa)
GLR

(MPa)
GLT

(MPa)

1 5016 0.15 0.13 339 0.04 0.55 628 0.04 0.74 326 538 403
2 5996 0.47 0.34 423 0.05 0.66 967 0.03 0.75 535 339 352
3 9365 0.21 0.15 402 0.04 0.53 1154 0.06 0.79 383 404 371
4 10137 0.36 0.26 282 0.04 0.66 342 0.05 0.81 556 430 446

Mean 7629 0.30 0.22 362 0.04 0.60 773 0.05 0.77 450 428 393
SD 1 2503 0.15 0.10 64 0.01 0.07 360 0.01 0.03 113 83 41
SE 2 1252 0.07 0.05 32 0.01 0.04 180 0.01 0.02 57 41 21

COV 3 (%) 32.8 48.7 44.7 17.7 11.7 11.6 46.6 28.7 4.3 25.1 19.4 10.5
1 SD, standard deviation; 2 SE, standard error; 3 COV, coefficient of variation.

Table 2 shows that the longitudinal modulus of elasticity (EL) was higher than the radial modulus
of elasticity (ER), and the radial modulus of elasticity (ER) was greater than the tangential modulus
of elasticity (ET), i.e., EL > ER > ET, for all four sampling positions. Similarly, Poisson’s ratio νRT

was higher than Poisson’s ratio νLT, and Poisson’s ratio νLT was greater than Poisson’s ratio νLR,
i.e., νRT > νLT > νLR at these four sampling locations. These results align with the findings in dry
wood [17,18]. Wood is a highly anisotropic material. Thus, different values would be obtained for
the same elastic constant due to different sampling positions. Table 2 also shows that the sensitivity
of each elastic constant to the sampling position was different, and the corresponding coefficient of
variation ranged from 4.3% to 48.7%. Table 3 provides the results of the analysis of variance (ANOVA)
for each elastic constant at different sampling positions. Table 3 shows that sampling position had a
significant impact both on EL, GRT, νLT, and νLR (p < 0.05), whereas no significant effect was found in
the other elastic constants (p > 0.05). For three MOE, only EL showed significant differences (p < 0.05)
in sampling positions with a 32.8% coefficient of variation. Poisson’s ratios νRT measured at four
different sampling positions were similar and the coefficient of variation for Poisson’s ratio νRT was
only 4.3%, which is in agreement with the insignificant differences between them (p > 0.05). The four
sampling positions had similar Poisson’s ratios νTL and showed an insignificant difference (p > 0.05),
though the coefficient of variation was 11.7%. Poisson’s ratio νLT had the greatest variation in all elastic
constants with a 48.7% coefficient of variation and showed a significant difference in sampling position
(p < 0.05). For shear moduli, only GRT showed significant differences (p < 0.05) in sampling positions
with a 25.1% coefficient of variation.
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Table 3. Analysis of variance of elastic constants at different sampling positions.

Source Sum of Squares Degrees of Freedom Mean Square F-Value p-Value

EL

Between groups 1 9.92 × 107 3 3.31 × 107 8.31 0.001
Within groups 9.55 × 107 24 3.98 × 106

Total 1.95 × 108 27

ER

Between groups 1.99 × 106 3 6.65 × 105 1.62 0.21
Within groups 9.84 × 106 24 4.09 × 105

Total 1.18 × 107 27

ET

Between groups 1.55 × 106 3 5.17 × 105 1.07 0.38
Within groups 1.16 × 107 24 4.82 × 105

Total 1.31 × 107 27

GLR

Between groups 8.27 × 104 3 2.76 × 104 1.29 0.322
Within groups 2.56 × 105 12 2.13 × 104

Total 3.38 × 106 15

GLT

Between groups 2.04 × 104 3 6.79 × 104 0.49 0.694
Within groups 1.65 × 105 12 1.38 × 104

Total 1.86 × 105 15

GRT

Between groups 2.23 × 105 3 7.43 × 104 25.57 3.25 × 10−4

Within groups 5.52 × 104 19 2.91 × 103

Total 2.78 × 105 22

νLT

Between groups 0.439 3 0.146 12.14 1.54 × 10−3

Within groups 0.290 24 0.012
Total 0.729 27

νLR

Between groups 0.221 3 0.074 12.82 1.12 × 10−3

Within groups 0.138 24 0.006
Total 0.358 27

νTL

Between groups 0.006 3 0.002 0.644 0.594
Within groups 0.072 24 0.003

Total 0.078 27

νTR

Between groups 0.105 3 0.035 1.505 0.239
Within groups 0.558 24 0.023

Total 0.663 27

νRL

Between groups 0.005 3 0.002 0.974 0.421
Within groups 0.045 24 0.002

Total 0.050 27

νRT

Between groups 0.024 3 0.008 0.187 0.904
Within groups 1.040 24 0.043

Total 1.065 27
1 Groups: there are four groups, i.e., four different sampling positions P1, P2, P3, and P4.

3.2. Vadility of Measured Data

Although the elastic constants of green Chinese larch at the four different sampling positions
were obtained through experiments and data processing, the validity of testing data needed further
verification. According to the mechanics of composite materials, the elastic constants of orthotropic
materials should satisfy the limitations of Maxwell’s theorem, as shown in Equations (6) and (7).
As mentioned, in many studies, wood is considered an orthotropic material in the three main orthotropic
directions. Therefore, the modulus of elasticity and the Poisson’s ratio of green larch measured in this
research should be satisfied the limitations of Maxwell’s theorem.

vij

Ei
=

vji

Ej
(i, j = L, R, T) (6)

∣∣∣vij
∣∣∣ <
∣∣∣∣∣∣
Ei
Ej

∣∣∣∣∣∣

1
2

(7)
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The modulus of elasticity and the Poisson’s ratio obtained from P1 sampling position were taken
into Equations (6) and (7), and the results showed that these elastic constants from P1 satisfy the
limitation of Maxwell’s theorem. Similar results were found in the P2, P3, and P4 sampling locations.
Table 4 provides the results of Equation (7) at the P1, P2, P3, and P4 sampling locations. These results
indicate that acquired data and calculated elastic constants from compression test were both valid
and accurate.

Table 4. Results of the limitations of Maxwell’s theorem at the four different sampling locations.

Sampling Position |vLT| | EL

ET
|

1
2 |vLR| | EL

ER
|

1
2 |vTL| |ET

EL
|

1
2 |vTR| | ET

ER
|

1
2 |vRL| |ER

EL
|

1
2 |vRT| |ER

ET
|

1
2

1 0.15 3.85 0.13 2.83 0.04 0.26 0.55 0.73 0.04 0.35 0.74 1.36
2 0.47 3.76 0.34 2.49 0.05 0.27 0.66 0.66 0.03 0.40 0.75 1.51
3 0.21 4.83 0.15 2.85 0.04 0.21 0.53 0.59 0.06 0.35 0.79 1.69
4 0.36 6.00 0.26 5.44 0.04 0.17 0.66 0.91 0.05 0.18 0.81 1.10

However, Maxwell’s theorem was only used to verify the validity of the modulus of elasticity
and Poisson’s ratio and could not be used to confirm the validity of the shear modulus of elasticity.
Correlation analysis, consequently, was conducted on experimental data from the three-point bending
tests to verify the validity of calculated shear modulus of elasticity. The relationship between the square
of ratio between thickness and span (h/l)2 and the reciprocal of bending modulus of elasticity (1/MOE)
was analyzed both for radial-loaded and tangential-loaded bending tests. The results of correlation
analysis for the P1, P2, P3, and P4 sampling positions are presented in Figures 3–6, respectively.

 
(a) (b) 

Figure 3. Relationship between the reciprocal of bending elastic modulus and the square of the ratio
between depth and length (Sampling position 1) for: (a) tangential loading and (b) radial loading.

 
(a) (b) 

Figure 4. Relationship between the reciprocal of bending elastic modulus and the square of the ratio
between depth and length (Sampling position 2) for: (a) tangential loading and (b) radial loading.
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(a) (b) 

Figure 5. Relationship between the reciprocal of bending elastic modulus and the square of the ratio
between depth and length (Sampling position 3) for: (a) tangential loading and (b) radial loading.

 
(a) (b) 

Figure 6. Relationship between the reciprocal of bending elastic modulus and the square of the ratio
between depth and length (Sampling position 4) for: (a) tangential loading and (b) radial loading.

Figures 3–6 show that a linear relationship between the square of ratio in span and depth and
the reciprocal of bending modulus of elasticity was found in the four sampling positions both for
tangential-loaded and radial-loaded bending tests. The correlation coefficients between the square
of the ratio in span and depth and the reciprocal of bending modulus of elasticity for the P1, P2, P3,
and P4 sampling positions were all over 0.9 in the tangential-loaded and radial-loaded bending tests.
These results indicate that the three-point bending test data and calculated shear modulus of elasticity
were both effective and reasonable.

3.3. Variation in Elastic Constants of Wood Cross-Sections

3.3.1. Modulus of Elasticity

Wood is a highly anisotropic material with different mechanical properties throughout its
interior. Wood properties change from pith to bark within a tree and differ between trees. Therefore,
the mechanical properties, especially the elasticity constants, of wood vary along the cross-section.
To investigate the difference and variation in the elastic constants along the cross-section of wood,
the relationships between the modulus of elasticity, shear modulus of elasticity, Poisson’s ratios, and
sampling distance R were analyzed by regression analysis to obtain the variation patterns of the elastic
constants along the cross-section of green Chinese larch using the experimental data derived from
compression and three-point bending tests.
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The results of regression analysis for modulus of elasticity and sampling position are provided
in Figure 7 and Table 5. Relationships between sampling distance and the modulus of elasticity for
the three principal axes of wood are illustrated in Figure 7. Table 5 displays the corresponding fitting
equations and correlation coefficients came from regression analysis.

 
                (a)                      (b)                              (c) 

Figure 7. Relationships between the distance from pith and elastic moduli in the (a) longitudinal, (b)
radial, and (c) tangential directions.

Table 5. Mathematical model of elastic moduli in three principle directions and distance from pith.

Modulus of Elasticity Fitted Equation Coefficient of Determination (R2)

EL EL = 4436.36 + 46.12R 0.91
ER ER = 343.25 + 22.27R − 0.17R2 0.95
ET ET = 297.55 + 3.68R − 0.03R2 0.98

Figure 7 shows the variation patterns of the three principal moduli of elasticity along the
cross-section of the wood. Figure 7a shows that the longitudinal modulus of elasticity (EL) of green
Chinese larch linearly increased with sampling distance. However, a quadratic relationship was
observed between the radial modulus of elasticity (ER) and the sampling distance, as well as for the
tangential modulus of elasticity (ET) and the sampling distance. ER and ET both first increased with
sampling distance, and then decreased with sampling distances over 70 mm, as shown in Figure 7b,c.
ER and ET near the bark were significantly lower than in other sampling positions, and even lower
than the measured values near the pith. Table 5 shows the linear relationship between the longitudinal
modulus of elasticity and sampling distance (R2 = 0.91). Even though a quadratic relationship was
found in the tangential and radial moduli of elasticity, both coefficients of determination were higher
than 0.95. Little research has been conducted to investigate the variation in elastic constants of wood
from pith to sapwood. Only Xavier et al. studied the variation in two stiffness values (Q22 and Q66)
of dry Maritime pine across the radial position using the unnotched Iosipescu test. They found the
transverse stiffness (Q22 = ER/(1 − νLR·νRL)) of dry Maritime pine decreased between the radial position
r1 (thirteenth ring, 29% of the radius) and r2 (nineteenth ring, 46% of the radius), and a progressive
increase was observed up to r4 (forty-third ring, 81% of the radius) [33]. This means that the transverse
stiffness decreased from the center to about the middle radius of stem and increased afterward to the
outermost positions. The variation pattern of elastic moduli ER of green Chinese larch measured in
this work was different from that of the transverse stiffness Q22. This may be because the transverse
stiffness was not only affected by the radial elastic moduli but also by Poisson’s ratios νLR and νRL.
Different moisture contents and tree species may also produce these differences. More data from the
same or different species should be acquired to investigate the variation in these three elastic constants
in dry or green wood.

3.3.2. Shear Modulus of Elasticity

The results of regression analysis for the shear modulus of elasticity and sampling position are
provided in Figure 8 and Table 6. The relationships between sampling distance and the shear modulus
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of elasticity are illustrated in Figure 8. Table 6 provides the corresponding fitting equations and
correlation coefficients.

 
(a)                            (b)                              (c) 

Figure 8. Relationships between distance from pith and shear moduli in: (a) Longitudinal-radial (LR)
plane, (b) Longitudinal-tangential (LT) plane, and (c) Radial-tangential (RT) plane.

Table 6. Mathematical model of shear moduli and distance from pith.

Shear Modulus of Elasticity Fitted Equation Coefficient of Determination (R2)

GLR GLR = 597.134 + 64.293R + 0.034R2 0.80
GLT GLT = 426.009 − 2.155R + 0.018R2 0.98
GRT GRT = 335.912 + 1.645R 0.72

Figure 8 shows the variation patterns of the three shear moduli of elasticity (GLR, GLT, and GRT)
along the cross-section of wood. Figure 8a,b demonstrate a quadratic relationship between shear
modulus of elasticity GLR and sampling distance, as well as for shear modulus of elasticity GLT and
sampling distance. Both GLR and GLT first decreased with increasing sampling distance, and then
increased at a sampling distance over 70 mm. GLR and GLT near the bark increased compared to
the minimum values. However, the shear modulus of elasticity GRT of green Chinese larch linearly
increased with sampling distance. Table 6 shows the coefficient of determination for the shear modulus
of elasticity GRT and the sampling distance was 0.72, indicating a robust linear relationship between
them. Even though a quadratic relationship was found in the shear modulus of elasticity GLR and GLT,
their coefficients of determination were 0.80 and 0.98, respectively. The possible interpretation for the
relatively lower coefficient of determination (R2) for GRT could be attributed to the large variability in
wood performance especially in the cross-sections. Xavier et al. reported the shear stiffness (Q66 = GLR)
of dry Maritime pine decreased from the center (radial position r1, 29% of the radius) to around the
middle radius of stem (radial position r2, 46% of the radius), and progressively increased afterward
to the outermost positions (r4, 81% of the radius) [33]. Despite the different moisture content and
tree species, the variation in shear moduli GLR along the whole cross-section derived in this research
was basically in compliance with the results reported in Xavier’s study. No study has reported the
variation in the shear moduli GLT and GRT along the whole cross-section of wood, whether dry or
green. Therefore, the variation patterns of shear moduli GLT and GRT presented in this paper could be
used to describe the shear properties of green wood in LT and RT plane. More data from identical or
different species need to be obtained to determine the variation in shear properties of dry or green
wood, especially for shear moduli GLT and GRT.

3.3.3. Poisson’s Ratio

The results from experimental data (Table 2) showed that the relationship between the values of
the Poisson’s ratios at the four sampling positions and sampling distance R was relatively discrete,
except for Poisson’s ratio νRT. To determine the quantitative relationship between Poisson’s ratios and
sampling distance R, three extra data points were inserted using interpolation for each Poisson’s ratio,
apart from νRT. Thus, the relationships between the Poisson’s ratios and sampling distance R were
obtained as shown in Figure 9a–f. The corresponding fitting equations are provided in Table 7.
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(a)                         (b)                            (c) 

 
                (d)                        (e)                            (f) 

Figure 9. Relationships between distance from pith and Poisson’s ratio of: (a) νLR, (b) νLT, (c) νRL, (d)
νRT, (e) νTL, and (f) νTR.

Figure 9 shows the variation patterns of the six Poisson’s ratios along the cross-section of the
green wood. Figure 9d depicts the linear relationship between the Poisson’s ratio νRT and sampling
distance. Poisson’s ratio νRT gradually increased with sampling distance. However, for the other five
Poisson’s ratios, there was a discrete relationship between the Poisson’s ratio and sampling distance
R. For Poisson’s ratios νLR, νLT, and νTR, the values first increased at sampling distances lower than
50 mm and then significantly decreased as sampling distance varied from 50 mm to about 80 mm.
When the sampling distance was over 80 mm, the values of Poisson’s ratio increased with sampling
distance again. However, similar results were not found for Poisson’s ratios νRL and νTL. The values of
the Poisson’s ratios determined in this study irregularly changed with sampling distance probably
due to the variation in moisture content, density, or microfibril angle in different parts of the wood.
In general, no significant variation patterns were found in these five Poisson’s ratios. Davies et al.
estimated six Poisson’s ratios both in outerwood and corewood from green Pinus radiata and no
significant difference between outerwood and corewood was found [32]. Therefore, we still do not
understand the variation patterns of the Poisson’s ratios along wood cross-sections, and few researchers
have evaluated the variation in the Poisson’s ratios along the whole cross-section of dry or green
wood. Therefore, more efforts are required to investigate the variation patterns of Poisson’s ratio in the
entire cross-section of dry or green wood.

Table 7. Mathematical model of Poisson’s ratios and distance from pith.

Poisson’s Ratio Fitted Equation

νLR νLR = −0.0078 + 0.0138R − 2.112 × 10−4R2 + 8.8643×10−7R3 − 3.155 × 10−8R4

νLT νLT = −0.0124 + 0.0172R − 2.2671 × 10−4R2 + 5.2757 × 10−7R3 + 2.8007 × 10−9R4

νRL νRL = 0.0044 + 0.00276R − 7.1388×10−5R2 + 7.7972 × 10−7R3 + 2.8887 × 10−9R4

νRT νRT = 0.7312 + 6.2191R
νTL νTL = −0.0023 + 0.0046R − 6.7872 × 10−5R2 + 1.9557×10−3R3 + 5.4162 × 10−10R4

νTR νTR = 0.028 + 0.0471R − 0.0011R2 + 1.0274 × 10−5R3 − 3.155 × 10−8R4

4. Conclusions

The objective of this study was to investigate the variation in the mechanical properties, especially
elastic constants, of green Chinese larch from pith to sapwood. The conclusions are as follows:
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(1) The relationships between longitudinal modulus of elasticity (EL), radial modulus of elasticity
(ER), and tangential modulus of elasticity (ET) were EL > ER > ET for all four sampling positions.
Similarly, νRT > νLT > νLR were found for Poisson’s ratios νRT, νLT, and νLR at the four sampling
locations. These results align with the reported findings in dry wood.

(2) The sensitivity of each elastic constant to the sampling position was different, and the coefficient
of variation ranged from 4.3% to 48.7%. The Poisson’s ratios νRT measured at the four different sampling
positions were similar and the differences between them were not significant. The coefficient of variation
for Poisson’s ratio νRT was only 4.3%. The four sampling positions had similar Poisson’s ratios νTL,
though the coefficient of variation was 11.7%. The Poisson’s ratio νLT had the greatest variation in all
elastic constants with a 48.7% in coefficient of variation.

(3) We found a good linear relationship between the longitudinal modulus of elastic EL,
shear modulus of elasticity GRT, Poisson’s ratio νRT and the distance from pith. EL, GRT, and νRT

all increased with sampling distance R. However, a quadratic relationship existed in the tangential
modulus of elasticity ET, radial modulus of elasticity ER, shear modulus of elasticity GLT, shear
modulus of elasticity GLR, and the distance from pith. A discrete relationship was found in the other
five Poisson’s ratios.
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Abstract: Currently, ultrasonic measurement is a widely used nondestructive approach to determine
wood elastic properties, including the dynamic modulus of elasticity (DMOE). DMOE is determined
based on wood density and ultrasonic wave velocity measurement. The use of wood average density
to estimate DMOE introduces significant imprecision: Density varies due to intra-tree and intra-ring
differences and differing silvicultural treatments. To ensure accurate DMOE assessment, we developed
a prototype device to measure ultrasonic wave velocity with the same resolution as that provided
by the X-ray densitometer for measuring wood density. A nondestructive method based on X-ray
densitometry and the developed prototype was applied to determine radial and intra-ring wood
DMOE profiles. This method provides accurate information on wood mechanical properties and their
sources of variation. High-order polynomials were used to model intra-ring wood density and DMOE
profiles in black spruce and jack pine wood. The transition from earlywood to latewood was defined
as the inflection point. High and highly significant correlations were obtained between predicted and
measured wood density and DMOE. An examination of the correlations between wood radial growth,
density, and DMOE revealed close correlations between density and DMOE in rings, earlywood,
and latewood

Keywords: ultrasonic wave velocity measurement; nondestructive assessment; wood mechanical
properties; intra-ring variation; dynamic modulus of elasticity

1. Introduction

“Wood quality is the resultant of physical and chemical characteristics possessed by a tree or
a part of a tree that enable it to meet the property requirements for different end products” [1].
Wood density is considered to be the most important wood quality attribute. It is one of the most
widely used parameters to predict the mechanical and other physical properties of wood, such as
dimensional stability [2]. However, wood density and all its related wood quality attributes are
highly variable, with multiple sources of variation, including differences within and between trees,
between sites, and between genetic origins. This high variability is due to genetic, environmental, and
physiological factors [3,4]. In a same species, variations in wood density also result from variations
in anatomical characteristics such as earlywood and latewood width. Wood density is generally
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defined as the ratio of the wood mass to volume, and is expressed in kilograms per cubic meter
(kg/m3). However, this definition does not consider variations in wood density due to biological
processes such as earlywood and latewood formation, juvenile wood formation, or environmental
conditions. Modern nondestructive measurement methods such as X-ray densitometry are widely used
to assess wood quality variations due to biological processes (intra-ring and inter-ring variation), genetic
sources, and environmental conditions (e.g., tree-to-tree, site-to-site, and silvicultural treatments).

Intra-ring wood density profiles obtained with X-ray densitometry are generally used to calculate
ring density (RD), earlywood density (EWD), latewood density (LWD), ring width (RW), earlywood
width (EWW), and latewood width (LWW). These parameters have been determined for many wood
species, such as European oak [5], black spruce [2], and Thuja occidentalis [6]. Intra-ring wood density
profiles are used to determine the use-specific suitability of wood, especially for high value-added
applications [5,7]. Intra-ring wood density variation can also indicate wood uniformity and provide
information about the wood growth process and the wood fiber yield [7,8].

Earlywood and latewood properties depend on the earlywood–latewood transition point (E/L).
Several methods have been reported in the literature to determine the E/L, notably Mork’s index [9].
There are at least two interpretations of Mork’s index [10]. According to the first, the E/L is obtained
when the double wall thickness becomes greater than or equal to the width of the cell lumen. Under the
second interpretation, the E/L is obtained when the double cell wall thickness multiplied by two becomes
greater than or equal to the lumen width. While this index, using either interpretation, is arbitrary and
time-consuming to measure, it allows consistent determination of earlywood and latewood features.

Because Mork’s index is based on the double wall thickness and the lumen diameter, these
anatomical wood features must be measured in individual growth rings on microscopic slides or
using indirect microscopic procedures [11]. In addition, this method is difficult to integrate into X-ray
computations. Good agreement was found between earlywood and latewood features determined by
three methods: Mork’s index, threshold density, and the maximum derivative [12]. However, use of
Mork’s index and the maximum derivative produced better estimates of physiological variations
compared to threshold density. Intra-ring wood density profiles are generally modelled to define
the earlywood–latewood transition. Pernestål et al. [8] and Ivkovic et al. [13] used modified spline
functions to model intra-ring wood density profiles. The E/L transition was defined using a numerical
derivative method. Koubaa et al. [2] demonstrated that high-order polynomial functions consider both
profile and intra-ring density variation for E/L estimation. These functions gave consistent estimates of
the E/L transition point, with correlation coefficients between measured and predicted density well
above 0.90 for the six order polynomial. These results are significant, because modelled intra-ring
wood density profiles can simplify the modelling of final wood product properties [13].

While wood density is considered to be the most important wood quality attribute, elastic
properties are also important, especially for engineering design purposes [14]. The wood dynamic
modulus of elasticity (DMOE), being an elastic constant that describes wood mechanical behavior,
is computed from the wood density and the ultrasonic wave velocity [15]. Ultrasonic wave velocity
measurement is one of the most widely used nondestructive methods to assess the strength properties
of living trees, logs, sawn timbers, and wood-based materials, due to its rapidity, flexibility, portability,
cost-effectiveness, and ease of use [16–19]. Wood DMOE has been determined using ultrasonic wave
velocity parallel to the grain direction and wood density based on the mass-to-volume ratio of
specimens [15,18–21]. However, no study to date has investigated intra-ring wood DMOE profiles to
determine variations between earlywood and latewood DMOE. A nondestructive method based on
X-ray densitometry and ultrasonic wave velocity measurement was proposed to determine intra-ring
wood DMOE profiles.

The objectives of this study were therefore to (1) develop a nondestructive method to determine
intra-ring wood DMOE profiles; (2) model intra-ring wood density and DMOE profiles in black spruce
and jack pine wood using high-order polynomial functions [2]; (3) determine radial variations in ring
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wood density and ring DMOE; and (4) analyze correlations between wood radial growth, density,
and DMOE.

2. Materials and Methods

X-ray densitometry provides intra-ring wood density profiles and determines both annual ring
width and wood density components. Intra-ring wood ultrasonic velocity profiles were determined
using the developed prototype and a Sonatest Masterscan ultrasonic flaw detector. The superposition
of these two profiles is a nondestructive method to obtain the intra-ring wood DMOE profile.

2.1. Study Materials

The experimental material used in this study consisted of subsamples from previous studies on
the wood quality of jack pine [22] and black spruce [23] sampled from even-aged stands in the Abitibi
region of Québec, Canada. Eight black spruce and eight jack pine trees were used. Discs taken at breast
height were used in this study. Bark-to-bark samples passing through the pith were extracted from each
disc. Thin strips (15 to 20 mm wide and 1.57 to 1.9 mm thick) were sawn from each sample. The sawn
strips were extracted with cyclohexane/ethanol (2:1) solution for 24 h and then with distilled water for
another 24 h to remove extraneous compounds [24]. After extraction, the strips were air-dried under
restraint to prevent warping. Samples were then conditioned to 8% equilibrium moisture content
before measurement. The same samples were used to determine wood density and ultrasonic wave
propagation time. In this study, a nondestructive method based on X-ray densitometry and ultrasonic
wave velocity measurement was used to determine intra-ring wood density and DMOE variation.

2.2. Wood Ring Density and Width Measurement

Ring density (RD) and ring width (RW) were measured for each ring using a QTRS-01X Tree-Ring
Scanner (Quintek Measurement Systems, Knoxville, TN, USA). The QTRS passes thin strips from
increment cores through an accurately collimated soft X-ray beam using a precisely controlled stepping
system and linear bearing carriage. Video images of both the wood sample surface and the X-ray
density graph are displayed at the same scale on the screen. A linear resolution step size of 40 μm was
used for the X-ray densitometry. Rings from pith to bark were scanned in air-dry condition to estimate
the basic wood density (ovendry weight/green volume) for each ring. Ring density (RD) and ring
width (RW) for each ring were determined based on intra-ring microdensitometer profiles. Incomplete
or false rings and rings with compression wood or branch tracers were eliminated from the analysis.
Matlab software (R2016a, the MathWorks, Inc., Natick, MA, USA) was used to determine the intra-ring
wood density profiles at 40 μm resolution.

2.3. Wood Ultrasonic Wave Velocity Measurement

An in-house prototype device was developed for measuring the ultrasonic wave propagation
time with the same resolution as that used for the wood density measurement by X-ray densitometry
(40 μm). The prototype (Figure 1) consists of a motorized linear translation stage that holds the sample
and is controlled by a microcontroller. The ultrasonic wave propagation time in the wood sample is
measured between the ultrasonic transmitter (Spot Weld Transducer) and the receiver transducers
(Fingertip Contact Transducer CF) at 40 μm resolution. The ultrasonic transducers are mounted in
parallel to two mini motorized actuators to ensure constant pressure during measurement.

Following the X-ray densitometry density measurement, nondestructive ultrasonic wave
propagation measurement was applied to the same samples using a Masterscan 380 (Sonatest Inc.,
San Antonio, TX, USA) equipped with 10 MHz frequency transducers. Ultrasonic waves were applied to
the samples through two transducers (transmitting and receiving). A coupling agent (Vaseline original
petroleum jelly) was used to aid the transmission of the transducer pulses into the test specimens.

A correction factor (Cf; s) was applied to calculate the ultrasonic wave velocity in the wood
samples to take into consideration the transport time of the electric waves within the measuring circuit.

67



Forests 2019, 10, 569

A Plexiglas sample having the same thickness as the wood samples (2 mm) was used as a reference
to determine the correction factor (Equation (1)) [20,25]. The ultrasonic velocity (V; m/s) was then
calculated using Equation (2):

Cf = tr − (dr/vr) (1)

V = d/(T−Cf) (2)

where d is the thickness of the wood sample (m), T is the ultrasonic wave propagation time (s), tr is
the wave propagation time through the reference Plexiglas core (s), dr is the thickness of the reference
Plexiglas core (m), and vr is the wave velocity in the reference Plexiglas core (2670 m/s).

The dynamic modulus of elasticity (DMOE; MPa) based on the ultrasonic method was determined
using the following one-dimensional wave equation:

DMOE = ρ×V2 × 10−6. (3)

where ρ is the wood density measured by X-ray densitometry (kg/m3) and V is the ultrasonic wave
velocity calculated using Equation (1).

 

Figure 1. Prototype device for measuring the ultrasonic wave propagation time.

2.4. Modelling Intra-Ring Wood Density and Dynamic Modulus of Elasticity Profiles

In this study, we used 6th order polynomial functions to model intra-ring wood density and
DMOE profiles for black spruce and jack pine wood (Equation (4)).

R = a0 + a1RW + a2RW2 + a3RW3 + a4RW4 + a5RW5 + a6RW6 (4)

where R is the ring density or ring DMOE, RW is the ring width in proportion, and ai are the parameters
to be estimated.

The E/L transition was defined as the inflection point obtained from the within-ring density and
DMOE profiles. The E/L transition is obtained by equalling the second derivative of the polynomial
function to zero (Equation (5)). For a 6th order polynomial function, the second derivative gives
4 solutions, but only one solution is of interest. Certain restrictions were specified in the Matlab
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program to obtain this unique solution. These restrictions specify that the solution should be included
in a positive slope and in the range of 40 to 90% of the ring width proportion. If more than one solution
is obtained, the highest value among the solutions is chosen.

d2R/dRW2 = 2a2 + 6a3RW + 12a4RW2 + 20a5RW3 + 30a6RW4 (5)

2.5. Statistical Analysis

For both softwood species (black spruce and jack pine), the correlations between the wood
radial growth, density, and DMOE components were determined using R software (Version 2.15.0 R,
R Development Core Team, 2012, Vienna, Austria).

3. Results and Discussion

Typical X-ray density and DMOE profiles for jack pine wood are shown in Figure 2. Both the
within-ring and radial pattern variation in these properties are shown.

3.1. Intra-Ring Wood Density and Dynamic Modulus of Elasticity Profiles

Figure 3 shows the within-ring variation in wood density and DMOE for black spruce and
jack pine, revealing similar within-ring density patterns between the two species. Wood density and
DMOE increase slowly in earlywood to reach a maximum in latewood. Both properties decrease
thereafter at about mid-latewood width to reach a minimum at the boundary between two growth
rings. The similarity between intra-ring density and DMOE profiles confirms the close relationship
between wood density and wood stiffness, even at the intra-ring level. Some slight differences between
the intra-ring density and DMOE profiles appear in earlywood. Thus, the intra-ring wood density
profiles increase more slowly in earlywood compared to the DMOE profiles, which show a relatively
sharp increase. Similar patterns of within-ring density variation were obtained by Koubaa et al. [2] for
black spruce and by Ivkovic et al. [13] for Norway spruce and Douglas fir.

(a)

(b)

Figure 2. Examples of jack pine profiles showing radial variation in: (a) Wood density and (b) DMOE
in (from ring 2 to 19).

69



Forests 2019, 10, 569

  

(d)(c)

(a) (b)

Figure 3. Examples of within-ring profiles and the fits obtained with the 6th order polynomials for:
(a) Ring density in black spruce; (b) ring density in jack pine; (c) DMOE in Black spruce; and (d) DMOE
in Jack pine.

The same 6th polynomial function modeling approach suggested by Koubaa et al. [2] was used
to model within-ring density and DMOE profiles for the black spruce and jack pine samples in this
study. Figure 3 illustrates the fitness of the 6th order polynomials for the intra-ring density and DMOE
profiles for both softwoods species: (a) Black spruce and (b) jack pine. Table 1 confirms the fitness.
The correlation coefficients obtained between the measured and predicted ring density data range
from 0.88 to 1.00, with an average well above 0.95. These results indicate that these models can well
describe intra-ring wood density profiles obtained from black spruce and jack pine, and probably other
softwood species, as the coefficients are in good agreement with those obtained by Koubaa et al. [2] for
black spruce.

Table 1 also indicates that high-order polynomials fit well the intra-ring DMOE profiles for black
spruce and jack pine. The correlation coefficients obtained between measured and predicted DMOE
data using the 6th order polynomial models range from 0.80 to 0.99, with an average well above 0.90
(Table 1). These results indicate that high-order polynomials can describe DMOE profiles well for these
two softwoods.

The measured elastic properties of wood material yield essential information for the understanding
of bonding at a very fine structural level [14]. As the elastic properties describe the mechanical behavior
of wood, it is mandatory to determine intra-ring wood DMOE profiles. Moreover, modelled intra-ring
wood DMOE profiles can serve as effective prediction tools for wood mechanical behavior.

3.2. The Earlywood–Latewood Transition

Table 2 shows that wood density at the E/L transition point (Figure 3b) (E/L transition density) as
defined by the inflexion point method presents large variation for black spruce (Figure 4a) and jack
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pine (Figure 4b). The radial variation pattern for the E/L transition density in black spruce (Figure 4a)
is similar to that reported by Koubaa et al. [2], and is characterized by large variation with no specific
trend. In contrast, the radial variation for the E/L transition in jack pine (Figure 4b) is characterized by
a steady increase in juvenile wood and a tendency to level off in mature wood. Similar radial variation
patterns for the E/L wood transition were observed by Park et al. [22].

Table 1. Average, standard variation (between parenthesis) and range of Pearson’s coefficient of
determination between measured and predicted within-ring density and DMOE values from the 6th
order polynomial models for different rings for black spruce and jack pine.

Ring from Pith

5 10 15 20

Wood density profiles
Black spruce

Average profiles 0.96 (0.02) 0.97 (0.02) 0.96 (0.02) 0.97(0.02)
Range 0.88–0.99 0.91–0.99 0.91–0.99 0.92–1.00

Jack pine
Average profiles 0.96 (0.02) 0.95 (0.02) 0.97 (0.02) 0.98 (0.01)

Range 0.92–0.98 0.90–1.00 0.89–0.99 0.96–0.99
Dynamic modulus of elasticity profiles

Black spruce
Average profiles 0.92 (0.03) 0.94 (0.04) 0.95 (0.03) 0.95 (0.02)

Range 0.82–0.99 0.88–0.99 0.86–0.99 0.91–0.99
Jack pine

Average profiles 0.89 (0.04) 0.93 (0.02) 0.93 (0.03) 0.94 (0.02)
Range 0.80–0.97 0.88–0.98 0.82–0.99 0.91–0.99

Within a same ring, the E/L transition also shows substantial variation in the true measures, as
indicated by the relatively large standard errors (Figure 4a,b, Table 2). For example, the E/L transition
density for the 10th annual ring from the pith varies from 541 to 655 kg/m3 and from 548 to 672 kg/m3

in black spruce and jack pine, respectively (Table 2). These results concur with the findings by
Koubaa et al. [26] for black spruce and by Park et al. [22] for jack pine. Earlywood and latewood density
defined by this method also show large variation. Thus, for a same annual ring, earlywood density
ranges from 383 to 432 kg/m3 for black spruce and from 318 to 367 kg/m3 for jack pine.

  

(a) (b) 

Figure 4. Radial variation in E/L transition density (bars indicate the standard error) for (a) black spruce
and (b) jack pine.

As shown in Table 2, wood density is variable at the E/L transition point for black spruce and jack
pine. For black spruce, the average wood density at the E/L transition point is variable and higher
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than the 590 kg/m3 reported by Koubaa et al. [2], as well as the threshold wood density of 540 kg/m3

used for black spruce in X-ray densitometry programs. The results for jack pine are similar: The E/L
transition density is variable and higher than the threshold density typically used for jack pine in X-ray
densitometry programs. As the wood density at the E/L transition point, as defined by the inflexion
point method, is variable and higher than the threshold wood density, the average earlywood and
latewood width and density as defined by the inflexion point method will differ from those defined by
the threshold method, for both black spruce and jack pine. Earlywood width defined by the inflexion
point method will be greater, whereas latewood width will be smaller. Consequently, the latewood
proportion defined by the inflexion point method will be lower. These results confirm the findings by
Koubaa et al. [2] that the E/L transition point varied greatly among individual growth rings and that
the use of a predetermined fixed threshold wood density does not reflect the variation in intra-ring
wood density profiles across growth rings in a species.

Table 2. Average (Av), range (Ra), and standard variation for ring width, wood density, and wood
DMOE at the earlywood–latewood transition and in earlywood and latewood, as defined by the
inflexion method for different rings.

Black Spruce Jack Pine

Ring Number from the Pith

5 10 20 5 10 20

Earlywood width
Av (mm) 1.32 (0.37) 1.26 (0.35) 1.02 (0.20) 2.65 (0.27) 2.05 (0.31) 1.23 (0.32)
Ra (mm) 0.69–1.95 0.81–1.88 0.72–1.37 2.05–3.17 1.40–2.74 0.87–2.09

Latewood width
Av (mm) 0.39 (0.12) 0.30 (0.08) 0.23 (0.06) 0.58 (0.06) 0.50 (0.06) 0.38 (0.10)
Ra (mm) 0.22–0.61 0.15–0.48 0.16–0.31 0.47–0.67 0.44–0.58 0.25–0.63

Earlywood density
Av (kg/m3) 415 (27) 403 (14) 385 (17) 316 (16) 340 (13) 331 (22)
Ra (kg/m3) 376–491 383–432 344–418 296–348 318–367 295–359

Latewood density
Av (kg/m3) 637 (47) 673 (20) 692 (36) 612 (58) 734 (89) 726 (62)
Ra (kg/m3) 578–729 568–796 591–746 502–769 605–856 581–798

Density at the earlywood latewood transition
Av (kg/m3) 580 (33) 596 (20) 600 (29) 520 (49) 612 (49) 614 (48)
Ra (kg/m3) 536–653 541–655 547–649 433–623 548–672 482–674

Earlywood dynamic modulus of elasticity
Av (GPa) 11.2 (2.5) 11.1 (1.6) 11.8 (2.6) 6.4 (0.8) 9.9 (1.2) 10.7 (1.9)
Ra (GPa) 8.3–17.6 6.5–13.7 8.2–15.3 5.2–8.1 7.9–1.2 8.0–1.4

Latewood dynamic modulus of elasticity
Av (GPa) 14.8 (2.4) 15.2 (2.5) 17.9 (2.4) 10.6 (1.6) 14.6 (1.0) 16.3 (3.6)
Ra (GPa) 11.9–21.7 10.3–18.8 14.0–22.1 8.1–12.1 12.9–16.9 11.9–21.0

Dynamic modulus of elasticity at the earlywood latewood transition
Av (GPa) 13.4 (2.1) 13.6 (1.9) 15.4 (1.9) 9.8 (1.4) 12.9 (1.2) 14.9 (1.9)
Ra (GPa) 10.4–17.7 9.3–15.8 13.1–18.4 6.4–12.2 11.2–15.9 11.2–17.1

The same method was used to determine earlywood DMOE (EWDMOE), latewood DMOE
(LWDMOE), and DMOE at the earlywood–latewood transition (Figure 5a,b). Thus, the wood DMOE
at the E/L transition for the 10th annual ring varied from 9261 to 15,798 MPa for black spruce and
from 11,162 to 15,950 MPa for jack pine. For the same annual ring, EWDMOE ranged from 6500 to
13,652 MPa for black spruce and from 7946 to 11,613 MPa for jack pine. LWDMOE also showed large
variation: From 10,327 to 18,792 MPa for black spruce and from 12,873 to 16,916 MPa for jack pine
(Table 2). The radial DMOE patterns at the E/L transition for black spruce (Figure 5a) and jack pine
(Figure 5b) are shown. As shown in Figure 4a, the radial variation pattern for the E/L transition density
in black spruce is characterized by large variation with no specific trend. Similar radial variation
patterns for the E/L transition density were observed by Koubaa et al. [2]. In contrast, for jack pine,
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the radial variation pattern for the E/L transition density is characterized by a steady increase in
juvenile wood and a tendency to level off in mature wood (Figure 4b). The radial variation pattern for
the E/L transition DMOE in black spruce (Figure 5a) is similar to jack pine (Figure 5b) characterized
by a linear increase. These results confirm the importance of measuring ring density and RDMOE
separately in order to obtain a more detailed characterization of wood mechanical behavior.

(a) (b) 

Figure 5. Radial variation in E/L transition DMOE (bars indicate the standard error) for (a) black spruce
ad (b) jack pine.

Figure 6 illustrates the close relationship between the transition DMOE measured for the
earlywood–latewood transition density and the transition DMOE, as defined by the inflexion point
method for all tested samples (black spruce and jack pine). A linear regression curve (y = 1.06x) was
obtained. Student’s t test was applied and results indicated no significant differences between the
transition DMOE calculated for the earlywood–latewood transition density and the transition DMOE
as defined by the inflexion point method calculated from DMOE data. These results reaffirm the close
relationship between wood density and wood mechanical properties, and particularly wood DMOE.

Figure 6. Relationship between transition DMOE calculated at the earlywood–latewood (E/L) transition
density and transition DMOE, as defined by the inflexion point method for black spruce and jack pine.

3.3. Radial Variation in Ring Wood Density and Ring Dynamic Modulus of Elasticity

The mean values for intra-ring density over all samples for both black spruce (a) and jack pine (b)
are shown in Figure 7a,b, respectively. The radial variation pattern for wood density is similar to that
reported by Park et al. [22] for jack pine, Koubaa et al. [26] for black spruce, and Grabner et al. [24]

73



Forests 2019, 10, 569

for European larch. The ring density is relatively high near the pith and decreases thereafter to reach
a minimum in the transition zone leading into the mature wood, where a slow and steady increase is
observed. Earlywood density (Figure 7a) decreases rapidly from a maximum near the pith to a low
value in the transition zone. The density decreases slowly thereafter with age [26]. Latewood density
(Figure 7a) increases almost linearly to a maximum at about ring 13, then levels off in the transition
zone and the mature wood [22]. Similar typical variation patterns are seen for DMOE (Figure 8a,b).
Ring DMOE increases with tree age, then levels off beyond the 13th ring. A similar radial variation
pattern for DMOE was previously reported for hybrid poplar [25]. However, no study to date has
investigated radial variation in earlywood and latewood DMOE (EWDMOE and LWDMOE). RDMOE
and LWDMOE increase almost linearly in juvenile wood to a maximum at about ring 15, then decrease
slowly thereafter through the outer rings in mature wood (Figure 8a,b).

(a) (b) 

Figure 7. Radial variation in ring density (RD), earlywood density (EWD), and latewood density (LWD)
for (a) black spruce and (b) jack pine.

(a) (b) 

Figure 8. Radial variation in ring dynamic modulus of elasticity (RDMOE), earlywood dynamic
modulus of elasticity (EWDMOE), and latewood dynamic modulus of elasticity (LWDMOE) for
(a) black spruce and (b) jack pine.

3.4. Relationships between Growth, Density, and Elastic Properties

The developed prototype enabled determining relationships between ultrasonic velocity and
wood density in rings, earlywood, and latewood (Figures 9 and 10). The coefficient of determination
for the linear correlation between RD measured with X-ray densitometry and ring ultrasonic velocity
obtained from the developed prototype was R2 = 0.66 using black spruce and jack pine data (Figure 9).
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Moderate linear correlations were also obtained between ring, earlywood, and latewood density and
ultrasound speed of propagation for Jack pine (Figure 10) and black spruce (not shown).

 

Figure 9. Relationship between ring density and ring ultrasonic velocity for black spruce and jack pine.

 

Figure 10. Relationships between wood density and ultrasonic velocity in rings (R), earlywood (EW),
and latewood (LW) for jack pine.

Table 3 indicates that ring density is positively correlated with earlywood and latewood density.
However, for both softwood species, the correlations between ring density and earlywood density are
higher than between ring density and latewood density. These results concur with previous studies
of black spruce [27]. Ring DMOE shows similar results. Thus, for both black spruce and jack pine,
the correlations between ring DMOE and earlywood DMOE are higher than those between ring DMOE
and latewood DMOE. The close correlations between DMOE and density shown in Table 3 are due
to the fact that the DMOE is obtained from density (Equation (3)). Table 3 also shows a negative and
statistically significant correlation between RDMOE and RW. Similar results were found for both
earlywood and latewood. In contrast, high positive relationships were found between RDMOE and
both earlywood and latewood DMOE, for both softwood species (Table 3). These results have practical
implications for a considerably accurate, nondestructive determination of wood density, growth, and
stiffness from small samples.
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Table 3. Pearson’s coefficient of correlations between the different traits for black spruce (upper row)
and jack pine (lower row).

RW EWW LWW RD EWD LWD RDMOE EWDMOE LWDMOE

RW 0.98 *** 0.81 *** −0.21 * 0.00 ns −0.36 * −0.37 * −0.29 * −0.49 **
EWW 0.99 *** 0.73 *** −0.25 * −0.03 ns −0.32 * −0.38 * −0.30 * −0.49 **
LWW 0.82 *** 0.77 *** −0.02 ns 0.08 ns −0.49 ** −0.31 * −0.25 * −0.50 **

RD −0.69 ** −0.72 *** −0.42 ** 0.91 *** 0.37 * 0.45 ** 0.44 ** 0.33 *
EWD −0.58 ** −0.58 ** −0.39 * 0.85 *** 0.11 ns 0.40 ** 0.46 ** 0.18 ns
LWD −0.50 ** −0.49 ** −0.52 ** 0.75 *** 0.48 ** 0.18 ns 0.09 ns 0.49 **

RDMOE −0.65 ** −0.66 *** −0.48 ** 0.79 *** 0.65 ** 0.66 *** 0.98 *** 0.85 ***
EWDMOE −0.60 ** −0.61 ** −0.44 ** 0.73 *** 0.65 ** 0.57 ** 0.98 *** 0.75 ***
LWDMOE −0.61 ** −0.60 ** −0.55 ** 0.74 ** 0.54 ** 0.80 *** 0.89 *** 0.78 ***

* Significant at α = 0.05; ** Significant at α = 0.01; *** Significant at α = 0.001; ns not significant. RW: ring width,
EWW: earlywood width, LWW: latewood width, RD: ring density, EWD: earlywood density, LWD: latewood density,
RDMOE: ring dynamic modulus of elasticity, EWDMOE: earlywood dynamic modulus of elasticity, LWDMOE:
latewood dynamic modulus of elasticity.

4. Practical Implications

For this study, we developed a rapid nondestructive method to determine wood density and the
dynamic modulus of elasticity (DMOE) based on X-ray densitometry and ultrasonic wave velocity
measurement. This method was used to determine earlywood and latewood properties in order to obtain
a more detailed characterization of wood mechanical behavior. Only a few studies have investigated
earlywood and latewood elastic properties [28–32]. Roszyk et al. [29] reported that latewood modulus
of elasticity (MOE) is higher than earlywood MOE for scots pine at low moisture content (8%). Similar
results were obtained for Spruce wood [Picea abies (L.) Karst] [31] and loblolly pine [28–32] with
an important increase in MOE values with the growth of annual rings. However, the preparation of
initial and final wood samples was quite complicated and required perfectly parallel annual rings.
Different methods have been used to retrieve two adjacent earlywood and latewood bands of 1 mm thick
for loblolly pine [28–32]. Moliński et al. [31] reported that two adjacent wood samples were cut out from
the region in which the borders of annual rings were straight lines parallel to the longer axis of the plank
to obtain two earlywood and latewood samples of 200 μm in thickness for Spruce wood. Thus, it is
important to use a rapid nondestructive method with easily prepared samples to determine wood
intra-ring mechanical properties, which have direct impacts on wood processing performance. In fact,
understanding mechanical properties variations at the earlywood-latewood scale will eventually allow
a better knowledge of wood's areas of weakness in order to optimize the performance of wood products.
At the wood processing industry scale, this information would be important for mechanical pulping
processes where the pulping and refining energies and wood fractioning are closely related to the
fiber characteristics including earlywood and latewood mechanical properties [33]. Similarly, oriented
strand board (OSB) manufacturing and properties are directly related to earlywood and latewood
mechanical properties [28,34]. The results of this study further confirm that ultrasonic measurement
can be used to determine the elastic constants of wood with considerable accuracy (0.04 mm). Indeed,
the relationships found between ultrasonic wave velocity, density, and wood stiffness demonstrate the
experimental efficiency of ultrasonic measurement [35]. Whereas several studies have investigated
relationships between static and dynamic MOE in wood [15,19,20,36] and have found significant linear
correlations between them, only a few studies have investigated relationships between wood DMOE
and wood density [37,38]. For example, linear correlations (r = 0.70) were found between DMOE and
wood density for Eucalyptus delegatensis [39].

The relationships between tree growth and wood properties, especially in terms of mechanical
properties, are critical for effective forest management strategies [19,39]. Russo et al. [39] reported
that the effects of silvicultural practices (different intensities of thinning) on wood quality can be
identified using acoustic measurement to assess the MOED of standing trees with non-destructive
method in Calabrian pine. The authors demonstrated that using a low intensity of thinning induced
better tree wood quality. In boreal species, enhanced growth through tree improvement programs or
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intensive forest management strategies can significantly diminish the wood mechanical properties
due to several biological factors, including increased earlywood proportion and the production of
larger cells with thinner walls. Several anatomical and physical characterization studies have clearly
demonstrated the impact of intensive forest management strategies on earlywood, latewood, and overall
wood properties [40]. Nevertheless, the impact of intensive forest management on wood mechanical
properties has received relatively little attention due to sample size constraints, the destructive nature
of characterization tests, and the lack of effective tools for rapid, nondestructive characterization of
these properties at the ring level. Nondestructive assessment is essential for understanding the impact
of intensive forest management practices on wood mechanical properties as well as the physiological
and biological processes involved in wood strength development [39]. The method developed here
allows nondestructive measurement of intra-ring wood DMOE and provides deeper insights into
wood strength development and its relationships to growth and wood density. As shown in Table 3,
radial profiles enable investigating relationships between wood radial growth, density, and elastic
properties in rings, earlywood, and latewood.

5. Conclusions

Based on the results of this study, the following conclusions can be drawn:
(1) Intra-ring wood dynamic modulus of elasticity (DMOE) profiles can be determined using

a nondestructive method based on X ray densitometry and ultrasonic wave velocity measurement.
(2) Sixth order polynomials can well describe intra-ring wood density and dynamic modulus of

elasticity profiles in black spruce and jack pine.
(3) The inflexion point method can be used to determine with considerable accuracy the

earlywood–latewood transition density and DMOE in black spruce and jack pine.
(4) For black spruce and jack pine, the correlation coefficients between wood density and wood

DMOE were positive and statistically significant in rings, earlywood, and latewood. Furthermore,
high positive correlations were obtained between ring DMOE and both earlywood and latewood DMOE.
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Abstract: In this study, 145 poplar (Populus × euramericana cv.’74/76’) seedlings, a common plantation
tree species in China, were selected and their ultrasonic velocities were measured at four timepoints
during the first growth year. After that, 60 poplar seedlings were randomly selected and cut down to
determine their acoustic velocity, using the acoustic resonance method. The effects of influencing
factors such as wood green density, microfibril angle, growth days, and root-collar diameter on
acoustic speed in seedlings and the relationship between ultrasonic speed and acoustic resonance
speed were investigated and analyzed in this work. The number of specimens used for investigating
growth days and root-collar diameter was 145 in both cases, while 60 and two specimens were used
for investigating wood density and the microfibril angle, respectively. The results of this study
showed that the ultrasonic speed of poplar seedlings significantly and linearly increased with growth
days, within 209 growing days. The ultrasonic velocity of poplar seedlings has a high and positive
correlation with growth days, and the correlation was 0.99. However, no significant relationship was
found between the ultrasonic velocity and root-collar diameter of poplar seedlings. Furthermore, a
low and negative relationship was found between wood density and ultrasonic speed (R2 = 0.26).
However, ultrasonic velocity significantly decreased with increasing microfibril angle (MFA) in two
seedlings, and thus MFA may have an impact on ultrasonic speed in poplar seedlings. In addition,
ultrasonic velocity was found to have a strong correlation with acoustic resonance velocity (R2 = 0.81)
and a good correlation, R2 = 0.75, was also found between the dynamic moduli of elasticity from
ultrasonic and acoustic resonance tests. The results of this study indicate that the ultrasonic technique
can possibly be used to measure the ultrasound speed of young seedlings, and thus early screen
seedlings for their stiffness properties in the future.

Keywords: ultrasonic speed; poplar seedlings; acoustic resonance; density; microfibril angle;
root-collar diameter

1. Introduction

Trees grown in plantation forests are expected to have a high average value of stiffness (i.e., a
high modulus of elasticity (MOE)), a low microfibril angle (MFA), and a low shrinkage propensity to
distort, thus yielding lumber or other wood products with a high quality, as well as resulting in a high
average grade out-turn [1]. The genetics have a significant impact on whether the tree can produce an
acceptable yield of wood products, such as lumbers. Therefore, it is extremely desirable to be able
to select young seedlings that are more likely to produce better wood products and, hence, can be
grown to maturity in the knowledge that they will be more valuable [1]. Many studies show that for
juvenile wood, MFA decreases with age [2,3]. There are many studies showing that it is possible to
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enable an early selection of trees that yield better wood quality. For example, Donaldson and Burdon
found that it may be possible to effectively select for desirable MFA, starting from ring 1 [4]. Similarly,
Dungey et al. found that it was possible to early select for high stiffness (MOE) in Pinus radiata D. Don,
around rings 4 to 8 at breast height [5]. In addition, Nakada studied Cryptomeria japonica D. Don and
found an effective selection method and improvement in average log stiffness at an early age (5 years
old). He also suggested that it was worth developing an early selection for tree quality [6]. Moreover,
Watt et al. (2010) suggested that P. radiata clones with high average stiffness can be selected from trees
aged 5 years [7]. Emms et al. stated that the early screening of tree quality has benefits to the forestry
industry, potentially yielding better wood quality [1,8].

Acoustic techniques such as longitudinal stress waves, acoustic resonance, and ultrasound have
been used to determine the mechanical properties of wood materials for many years [9,10]. Since the
acoustic speed of wood materials is related to their stiffness, the measurement of acoustic speed in
wood still receives much attention from researchers [11–13]. For instance, the acoustic speeds measured
by longitudinal stress waves, acoustic resonance or ultrasound are widely used to evaluate the quality
of standing trees and to assess the mechanical performance of logs and lumbers and further sort their
grades in terms of measured MOE [14–19]. Therefore, acoustic technologies including longitudinal
stress waves, acoustic resonance, and ultrasound have been well developed for standing trees, logs,
lumbers, and other wood products. For seedlings, however, few acoustic techniques are applied to
evaluate their wood quality. There is a lack of interest in the mechanical properties of seedlings and
methods for quality evaluation; hence, there are few studies on acoustic speed measurement and
wood quality assessment for seedlings. Only Emms et al. measured the acoustic speeds in 2-year-old
Pinus radiata seedlings, using a longitudinal-wave time-of-flight prototype that they built and an
acoustic resonance technique [1,8]. They found that this longitudinal-wave time-of-flight acoustic
technique may be able to become a novel technique for non-damaging measurement of acoustic speed
in seedlings, and that the technique shows good promise as a rapid and cost-effective tool for early
screening of wood quality. Furthermore, they suggest that the measurement of acoustic speed in
seedlings has benefits to the forestry industry, potentially enabling the early selection of trees that
yield better quality wood. Huang et al. used the stress-wave technique to measure the stiffness
properties of seedlings, and Divos et al. conducted seedling segregation by acoustic velocity using
stress-wave devices [20,21]. Therefore, more efforts are still needed to find a proper acoustic technique
for non-destructive measurement of sound speed, and to establish a comprehensive evaluation method
for the quality of seedlings.

It is well-known that acoustic speed is related to the important quality properties of wood, such
as stiffness, referred to as MOE, grain angle and the MFA of the S2 layer in the cell wall. Therefore,
it is necessary to accurately measure acoustic speed in seedlings and to investigate the influencing
factors on acoustic speed, since this will help to improve the reliability and accuracy of assessment for
the quality of seedlings via acoustic techniques. However, there are few reports about acoustic speed
measurement in seedlings using acoustic technology, especially for ultrasound, and no reports were
found for studying the influencing factors on acoustic speed in seedlings. As mentioned previously,
only Emms et al. conducted acoustic speed measurement on Pinus radiata seedlings, using longitudinal
waves and an acoustic resonance technique [1,8]. Huang et al. used the stress-wave method to test
the mechanical properties of seedlings, and Divos et al. performed seedling segregation according to
stress-wave acoustic velocity [20,21]. Therefore, to the best of our knowledge, no research on acoustic
speed measurement for seedlings using ultrasound was found, and no paper investigating influencing
factors, such as wood density, MFA, growth days, and root-collar diameter (commonly used to visually
evaluate the physical and mechanical properties of seedlings, and subsequently to grade the quality
of seedlings), on acoustic speed has been published for seedlings. It is, hence, highly desirable to
measure sound speed in seedlings with the application of an ultrasonic technique and to investigate
the influencing factors on ultrasonic propagation speed in seedlings.
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The poplar is a common plantation tree species in China, and poplar plantations provide an
important raw material for papermaking, plywood, fiberboard, paper matches, sanitary chopsticks,
and the packaging industry. The research work presented in this paper aimed to measure the ultrasonic
propagation velocity in poplar (Populus × euramericana cv.’74/76’) seedlings, and to analyze the effect
of various influencing factors such as wood density, MFA, growth days, and root-collar diameter on
acoustic speed in seedlings. The results of this paper will provide some basic insights for the early
screening of seedlings for their stiffness properties, using ultrasonic technology, and for developing a
rapid evaluation method of poplar seedling wood quality in the future.

2. Materials and Methods

2.1. Materials

A total of 22 rows of poplar seedlings (Populus × euramericana cv.’74/76’) growing in the nursery
base of Beijing Forestry University were planted at an initial spacing of 80 cm (row interval) × 30 cm
(column interval), on April 10th. Then, 105 days later, 145 poplar seedlings numbered in sequence from
P-001 to P-145 were randomly selected from the nursery base to conduct ultrasonic speed testing for
the first time. After that, poplar seedlings were cut down, and a l (mm)-long specimen was cut from
each green seedling using a portable electric saw. The extracted stem length, l is given by the equation

L = 15 × d + 100 (1)

where d (mm) is the root-collar diameter of the poplar seedling, and 100 mm is a reserved length
of the specimen for density measurement. A total of 60 l (mm)-long specimens were obtained to
perform acoustic resonance tests and density determination. These 60 specimens were immediately
sealed by plastic wraps and directly transported to the wood nondestructive evaluation and testing
laboratory in Beijing Forestry University, where they were kept in a condition room to maintain the
green condition for poplar seedlings prior to acoustic resonance testing. A 15 × d (mm)-long specimen
and two 50-mm-long specimens (one from the top and the other one from the bottom) were cut from
one l (mm)-long poplar seedling specimen. A total of 60 15 × d (mm)-long specimen were obtained to
conduct acoustic resonance tests. It was found that 15 × d (mm) is the optimal length for specimen to
perform acoustic resonance tests, therefore, the ratio of length to diameter of specimen for acoustic
resonance tests was 15 in this paper. Moreover, 60 50-mm-long specimens from the top of l (mm)-long
poplar seedling specimen and 60 50-mm-long specimens from bottom, in total, were acquired and
used to determine the green density of poplar seedlings by the water immersion method [22,23].

Additionally, two poplar seedlings, numbered P-146 and P-147, in the nursery were randomly
chosen to determine the microfibril angle of seedlings. Five 30-mm-thick lines, named as A, B, C, D,
and E, were marked on the poplar seedlings at the heights of 10, 50, 90, 130, and 170 cm above the base
of seedling, respectively, as shown in Figure 1a. The ultrasonic speed between two discs, such as AB,
BC, CD, or DE, was tested and recorded prior to being felled using a Fakopp Ultrasonic Timer (Sopron,
Hungary) with a frequency of 90 kHz. After that, these two poplar seedlings were felled down and
five discs, i.e., A, B, C, D, and E, were cut from each seedling. In order to obtain the specimens used
for MFA measurement, at first, a 2-cm-wide strip was symmetrically taken from one disc along the
pith from north to south direction. Then, a 2-cm-wide strip was symmetrically cut along the pith from
east to west direction to obtain a specimen with a thickness of 0.2 cm (see Figure 1b). Finally, a total
of 42 specimens measuring 2 (longitudinal) × 1.5 (tangential) × 0.15 (radial) cm obtained from the
P-146 poplar seedling, and 28 specimens from the P-147 poplar seedling, were used to conduct the
determination of the MFA of seedlings. These specimens were numbered as, e.g., P-146-A-1, where
P-146 is the number of the poplar seedling, the letter A represents the number of the disc, and 1 means
the number of the sampling position, as shown in Figure 1b. Specimens obtained from discs A, B, C,
and D of P-146 poplar seedlings are shown in Figure 1c. Bruker D8 ADVANCE (Stuttgart, Germany),
an X-ray diffractometer, was used in this paper to measure the MFA of specimens.
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(a) (b) (c) 

Figure 1. Schematic diagram of specimen preparation for MFA measurement: (a) disc sample
position; (b) specimen sampling from cross-section; (c) specimens from discs A, B, C, and D of P-146
poplar seedlings.

2.2. Methods

2.2.1. Ultrasonic Method

A Fakopp ultrasonic timer, an ultrasonic instrument made in Hungary, was utilized to implement
ultrasonic testing on poplar seedlings in situ. This ultrasonic tool is composed of two piezoelectric
sensors with cables and one electronic box, as shown in Figure 2. These two sensors, a starter sensor
and a receiver sensor, are placed on the same side of the seedling stem. The starter sensor, in field
ultrasonic testing, was placed at a height of 200 mm above the ground. The receiver sensor was aligned
with the starter sensor, and the distance between them was L (mm), namely measuring distance, seen
in Figure 3a. Then, the ultrasonic propagation time for detection distance (L) from the starter sensor
to the receiver sensor was displayed on the hand-held box. Three readings were recorded for each
seedling, and then the average propagation time was used to calculate the corresponding ultrasonic
velocity. Figure 3b shows the factual tests in situ using the Fakopp ultrasonic timer.

It should be noted that testing distance, L, was still uncertain due to the attenuation of ultrasound
propagating in the seedling stems. Generally, a long distance between the starter and receiver sensors
was necessary to fully reflect the wood properties of seedlings. However, if the test distance was too
large, the ultrasonic pulse signal became weakened as the propagation distance increased. As a result,
the receiver sensor did not trigger the timer, and thus no reading was recorded. Therefore, before
ultrasonic testing, a pre-experiment was conducted to determine the proper detection distance between
the two sensors when measuring ultrasonic velocity in poplar seedling stems. Six poplar seedlings
with root-collar diameters ranging from 5 mm to 9 mm were selected to perform the pre-experiment
using ultrasonic tools. In the pre-experiment, the detection distance, L, was set to a series of values,
i.e., 65, 165, 265, 365, 465, 565, 665, 765, 865, and 965 mm. Then, the ultrasonic propagation time was
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measured for these 10 various testing distances. Moreover, the ultrasonic velocity in the seedling stems
was calculated according to Equation (2).

vu =
L

T − t0
× 1000 (2)

where vu is the ultrasonic velocity (m/s), L is the detection distance (mm), T is the transit time appearing
on the ultrasonic instrument (s), and t0 = 6.1 s is the time correction, which is the transit time inside the
two sensors [24]. T − t0 represents the true ultrasonic wave traveling time at the detection distance L in
the seedling stems. Ultimately, the proper detection distance for ultrasonic testing was determined
based on wave velocities at different measuring distances.

Figure 2. Fakopp ultrasonic timer.

 

(a) 

 

(b) 

L

Receiving
Sensor

20
0

Ground

Starter
sensor

Seedling
stem

Figure 3. Ultrasonic propagation time measuring method: (a) Schematic diagram, (b) Field tests.

Once the proper detection distance (L) was identified, the ultrasonic propagation times of 145
seedling samples were measured, and then the ultrasonic propagation velocity of each seedling was
calculated using Equation (2). To reduce the effect of environmental factors, the ultrasonic tests for the
measurement of 145 seedlings were all completed on the same day. Simultaneously, the root-collar
diameters of the seedlings were measured and recorded. A Vernier caliper was used in this step. Two
diameters, perpendicular to each other such as east-west and north-south, at the starting point were
measured and averaged. Then, the average was denoted as the final root-collar diameter. A total
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of four timepoints of ultrasonic testing were performed on July 24, September 2, September 20, and
November 5 in 2018, respectively—i.e., 105, 145, 165, and 209 days after the seedlings were planted.

2.2.2. Acoustic Resonance Method

Acoustic resonance techniques have been used to determine the stiffness of construction materials
for a long time. In many respects, acoustic resonance techniques may obtain more useful results, as
is evident by the correlations between time-of-flight measurement results on stems and resonance
results on logs [25]. Acoustic resonance techniques are more accurate and repeatable than time-of-flight
techniques [26], and generally do not require calibration and do not greatly depend on how the operator
performs the measurements. The acoustic resonance test, a kind of stress-wave method, was performed
in this part to be compared with the ultrasonic experiment described previously.

An acoustic resonance testing system (as shown in Figure 4), comprised of a hammer, two strings,
a microphone (Type 2671, Brüel & Kjær, Copenhagen, Denmark), a signal amplifier (Type 1704, Brüel
& Kjær, Copenhagen, Denmark) and a data acquisition card (Type USB-6218, National Instruments
Corporation, Austin, TN, USA), was used to carry out acoustic resonance tests. As can be seen in
Figure 3, the seedling specimens were hung with two strings, and the resonance signal generated by the
hammer acted on one end of specimens, with a parallel direction. Then, the acoustic resonance signal
was collected by the microphone, and afterwards transmitted to the amplifier and the data acquisition
(DAQ) card. Finally, the signal was input to a computer for signal processing and analyzing. 60 15 ×
d (mm)-long specimens cut from the seedling samples used for the ultrasonic tests were applied for
the acoustic resonance tests to measure the periodic frequency of acoustic propagation in seedling
specimens. Consequently, the acoustic velocity was determined through Equation (3).

Va = 2laf = 30df (3)

where va is acoustic velocity, la is the length of specimen, d is the root-collar diameter of poplar seedlings
and f is the frequency of resonance signal traveling between two ends of specimen. Furthermore, to
compare with the modulus of elasticity (MOE) from the ultrasonic and acoustic resonance method, the
dynamic MOE of these 60 seedling specimens derived from ultrasonic tests and acoustic resonance
tests were calculated according to the determined density and measured transmitting velocity using
the following equation.

Ed = ρv2 (4)

where Ed is the dynamic MOE of the seedling sample (Pa), v is the wave velocity measured by either
the ultrasonic test or the acoustic resonance test (m/s), and ρ is the green density of the sample (kg/m3).
It should be noticed that the acoustic test was conducted on only one occasion, on 24 July in 2018, i.e.,
105 days after the seedlings were planted.

Figure 4. Test setup of the acoustic resonance method.
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2.2.3. Density Measurement

A water immersion method was used to determine the green density of poplar seedlings. A
total of 60 100-mm-long specimens were applied for the determination of their density. Firstly, two
50-mm-long specimens used for density measurement were cut from the top and bottom of each
l-mm-long specimen, and then these two specimens were marked as top and bottom, respectively.
After that, the mass of the top 50-mm-long specimen, marked as m (g), was scaled and recorded using
an electronic balance (see Figure 5a). A beaker with water inside was placed on the scale, and then a
slim pin was vertically immersed in the water until the marked position, as shown in Figure 5b. Thus,
the total mass of the beaker with the water and the immersed slim pin, marked as m0 (g), was scaled
and recorded by the electronic balance. Finally, the slim pin was inserted into the top 50-mm-long
specimen at a depth of about 1 cm, and then this top specimen was immersed in the beaker until the
same position marked on the slim pin, as seen in Figure 5c. Afterwards, the total mass of the beaker
with the water, top specimen and immersed slim pin was scaled and recorded, and marked as m1 (g).

   
(a) (b) (c) 

Figure 5. Density measurement for a 50-mm-long specimen: (a) the mass of m, (b) the mass of m0, (c)
the mass of m1.

Since the density of water is 1 g/cm3, the density of the top specimen can be calculated from the
Equation (5). Similarly, the density of the bottom specimen can be determined by the above steps and
calculated using Equation (5). Therefore, the average density value of the top and bottom specimens
was the green density of a poplar seedling specimen. It should be noted that the density measurement
method described in this paper only works for wood which has a lower density than water. Another
denser liquid, such as mercury, can be used for certain sapwood specimens that have greater densities
than water.

ρ =
m

(m1 −m0)·1 g/cm3 (5)

3. Results and Discussion

3.1. Proper Detection Distance for Ultrasonic Tests

Figure 6 shows the relationship between detection distance and ultrasonic velocity for six different
seedling samples, i.e., P002, P004, P005, P006, P007, and P008. The root-collar diameters of these six
seedling samples, in sequence, were 8.1, 5.9, 6.8, 9.0, 7.1, and 7.2 mm. It can be obviously observed
from Figure 6 that no ultrasonic velocity values were obtained when the detection distance was over
765 mm for the P004 seedling. A similar result was also found in the P005 seedling when the detection
distance was greater than 865 mm. This may be due to smaller root-collar diameters in the P004 and
P005 seedlings (5.9 mm and 6.8 mm, respectively) compared with the other four seedling samples.
Ultrasonic propagation time could not be measured as the root-collar diameter was too small.
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Figure 6. Relationship between detection distance and ultrasonic velocity.

It can be seen from Figure 6 that the ultrasonic velocities of the six seedlings all significantly
increased when the detection distance changed from 65 mm to 265 mm. For the P004 and P007
seedlings, the ultrasonic velocities both remained basically stable when the detection distance increased
from 265 mm to 665 mm, and then linearly decreased once the test distance went beyond 665 mm. For
the P002 and P008 seedlings, the ultrasonic velocity generally remained steady when the detection
distance was larger than 265 mm. However, for P005 and P006, the ultrasonic velocity slightly increased
when the detection distance was larger than 265 mm. Therefore, the proper detection distance for the
ultrasonic test should be chosen from 265 mm to 665 mm. Considering the convenience and feasibility
of experimental tests, the detection distance used in this paper was ultimately set to 365 mm. The
ultrasonic wave speeds shown in the following were all measured at a test distance of 365 mm.

3.2. Ultrasonic Velocity and Root-Collar Diameters of Poplar Seedlings

The measured ultrasonic velocities and root-collar diameters of poplar seedlings from tests
conducted on July 24, September 2, September 20, and November 5 in the same year, 2018, respectively,
are given in Table 1. The values in brackets besides average root-collar diameter and velocity are
standard deviations. The average root-collar diameter of 145 seedling samples obtained from four
different test dates was 15.98 mm, 20.88 mm, 22.06 mm, and 22.60 mm, respectively. A fast growth rate
was observed in average root-collar diameter from July 24 to September 2. In contrast, a lower growth
rate was found from September 20 to November 5. This means that poplar seedlings may have a fast
growth rate from July to September, and a low growth rate from September to November. Moreover, a
low growth rate was also found from September 2 to September 20 due to the shorter growth days.

Ultrasonic velocity, apparently, was increased with growth days. Moreover, in the first (July 24),
second (September 2), third (September 20), and fourth (November 5) ultrasonic tests, the maximum
values of average ultrasonic velocity—i.e., 1995, 2518, 2703, and 2953 m/s, respectively—were all found
in poplar seedlings with a root-collar diameter between 10 mm and 20 mm. The minimum values of
average velocity from the first ultrasonic test were found in poplar seedlings with a root-collar diameter
between 20 mm and 30 mm. However, for the second and third tests, the minimum values of average
velocity were presented in poplar seedlings with a root-collar diameter over 30 mm. Meanwhile, the
poplar seedlings with a root-collar diameter of less than 10 mm had the minimum values of average
ultrasonic velocity.
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Figure 7 shows the results of the statistical analysis for ultrasonic velocities measured on July 24
and November 5. It can be clearly found from Figure 7 that the ultrasonic velocities of poplar seedlings
measured on November 5 were significantly greater than those tested on July 24, maybe due to the
longer growth days or the changes in wood density throughout the growing season. In addition, as
shown in Figure 7a, the majority of ultrasonic velocities in the first test (July 24) were concentrated
near the average velocity (1974 m/s) and ranged from 1825 m/s to 2025 m/s. Moreover, for the fourth
test (November 5), the majority of ultrasonic velocities were likewise concentrated near the average
ultrasonic velocity (2881 m/s), but ranged from 2680 m/s to 3160 m/s.
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Figure 7. Results of statistical analysis for ultrasonic velocities: (a) test on July 24; (b) test on November 5.

3.3. Relationships Between Ultrasonic Velocity and Influencing Factors

3.3.1. Growth Days

The effect of growth days on ultrasonic speed in poplar seedlings was analyzed, and the
relationships between ultrasonic velocity and growth days are illustrated in Table 2 and Figure 8. The
results of the statistical analysis for ultrasonic velocity and growth days are summarized in Table 2. The
upper limit of velocity is the wave speed value at the position of positive 3σ in the ultrasonic velocity
probability distribution histogram. Conversely, the lower limit of velocity is the value at the position of
negative 3σ in the ultrasonic velocity probability distribution histogram. As can be seen in Table 2, the
average ultrasonic velocities of poplar seedlings were 1972, 2365, 2540, and 2879 m/s, corresponding to
105, 145, 165, and 209 growth days. The ultrasonic speed of poplar seedlings increased with growth
days, within 209 growing days. This result means that the growth days may play a positive role in the
ultrasonic velocity of poplar seedlings. Similarly, the growth days have a positive influence on the
upper limit of velocity and the lower limit of velocity. The upper limit wave speed increased from
2368 to 3323 m/s, and the lower limit wave speed increased from 1576 to 2434 m/s, when growth days
increased from 105 to 209 days.

Table 2. Results of statistical analysis for ultrasonic velocity and growth days.

Date Number of Trees Growth Days
Average Velocity Standard

Deviation

Upper Limit
of Velocity

Lower Limit
of Velocity

(m/s) (m/s) (m/s)

24 July 145 105 1972 132 2368 1576
2 September 145 145 2365 166 2865 1866

20 September 145 165 2540 183 3087 1992
5 November 145 209 2879 148 3323 2434
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Figure 8. Relationship between ultrasonic velocity and growth days.

Figure 8 shows the results of the correlation analysis between the ultrasonic velocities and seedling
growth days. It can be seen from Figure 8 that the average velocity, upper limit of velocity and
lower limit of velocity were all linearly increased with growth days, within 209 growing days. There
are good correlations between these three kinds of ultrasonic velocities and growth days, and the
correlations (R2) between the average velocity, upper limit of velocity, lower limit of velocity, and the
growth days were 0.99, 0.95, and 0.99, respectively. There was a dramatic difference in the ultrasonic
velocities of seedlings at different growth days. This is may be due to the fact that the mechanical
properties of poplar seedlings gradually become better as growth days increase, resulting in an increase
in ultrasonic wave velocity. Therefore, it could be predicted that the ultrasonic velocity of seedlings
would continually increase with growth days due to the underlying changes in density or other wood
properties. Growth days, thus, may play an important role in the ultrasonic speed of early stage poplar
seedlings, especially within 209 growth days. However, it should be noted that the ultrasonic velocity
is likely changing due to the underlying changes in density or other wood properties, and not directly
due to more growing days. Underlying factors such as moisture content, MFA, wood density, and
other wood properties are also likely to have a role in the development of mechanical properties that
affect the ultrasonic velocity.

3.3.2. Root-Collar Diameter

It is necessary to investigate the effect of root-collar diameter on ultrasonic velocity and then
to determine the relationship between root-collar diameter and ultrasonic speed. In general, the
root-collar diameter of seedlings increased with growth days (i.e., the age of seedlings). As showed in
Figure 8, the ultrasonic velocity in seedlings linearly increased with increasing growth days. Thereby, it
could be speculated that ultrasonic speed may increase with increasing root-collar dimeter of seedlings.
However, from the relationships between the ultrasonic velocity and root-collar diameter of poplar
seedlings provided in Figure 9, it can be observed that for the four different test dates, the ultrasonic
velocity kept relatively stable as the root-collar diameter of poplar seedlings increased. There was
no significant correlation between ultrasonic velocity and root-collar diameter in this paper. In other
words, it seems that ultrasonic speed does not increase with root-collar diameter.
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Figure 9. Relationship between the ultrasonic velocity and root-collar diameter of seedlings.

In addition, it was found that the overall ultrasonic velocities measured on November 5 were the
highest among the four timepoints of ultrasonic tests, while the test on July 24 obtained the lowest
velocity. Ultrasonic velocity was overall increased with growth days, which is consistent with the
results shown in Figure 8. Therefore, the root-collar diameter of seedlings did not show a significant
effect on ultrasonic velocity in this work. More data from the same or diverse seedlings species,
however, still need to be acquired to further verify the effect of root-collar diameter on ultrasonic speed
and the relationship between them.

3.3.3. Density

Wood density is also often utilized to assess the mechanical and physical performance of seedlings,
and then to classify the quality of seedlings. Accordingly, it is essential to learn the impact of density on
ultrasonic velocity in poplar seedlings and the correlation between wood density and ultrasonic speed.

Figure 10 shows the relationship between the density of seedlings and ultrasonic velocity. It can
be seen from Figure 10 that ultrasonic velocity overall tends to decrease with increasing density of
seedlings. However, a low value of correlation (R2 = 0.26) was found between ultrasonic velocity
and density. Therefore, the relation between ultrasonic speed and the density of seedlings was not
significant. This poor relation may be contributed to by the fact that ultrasound speed not only depends
on density, but also on other factors such as MFA, grain angle, and the age of seedlings.
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Figure 10. Relationship between the ultrasonic velocity and density of poplar seedlings.

The effect of wood density on acoustic speed has been investigated and reported in many studies.
However, two contrasting results were found in the relationship between density and acoustic speed.
Some studies reported a negative relationship between wood density and acoustic velocity. Isik et al.,
for instance, found a low but negative correlation for air-dry density and acoustic velocity in Pinus taeda,
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and the corresponding correlation coefficient was −0.2 [27]. Hasegawa et al. showed that the ultrasonic
wave velocities of Japanese cedar and Japanese cypress both linearly decreased with air-dry density, and
the correlation coefficients were −0.83 and −0.74, respectively [28]. However, other studies indicated
a positive relation between wood density and acoustic speed. Krauss et al., for example, reported a
low but positive relation for density and ultrasonic velocity in Scots pine, and the correlation was
0.15 [29]. Chen et al. and Lachenbruch et al. both found a moderate and positive relationship for green
density and ultrasonic speed, and the correlations were 0.46 in Norway spruce and 0.33 in Douglas fir,
respectively [12,30]. Moreover, Blackburn et al. and Ribeiro et al. found that acoustic speed greatly
increased with wood basic density, and the correlations were 0.75 for Eucalyptus nitens and 0.84 for
Pinus taeda [31,32]. The results of the present paper were basically in accordance with those reported in
Isik et al.’s work. Therefore, density may have an influence on ultrasonic speed. More efforts definitely
need to be put into the investigation of the impact of density on ultrasonic speed and the correlations
between ultrasonic velocity and density in identical or different seedling species. It may help to early
select the better-quality seedlings with high average values of stiffness, if the effect of wood density on
ultrasonic velocity were comprehensively understood.

3.3.4. Microfibril Angle

The microfibril angle of the S2 cell wall layer is an important parameter of wood. Many studies
have showed that the microfibril angle was highly related to the mechanical properties of wood and
acoustic speed, for logs and lumbers [33]. The stiffness—i.e., modulus of elasticity—and the acoustic
velocity of wood decreased as the microfibril angle increased. Therefore, it is necessary to figure out
the effect of microfibril angle on ultrasonic velocity in poplar seedlings and the relationship between
MFA and ultrasonic speed.

Microfibril angles measured at different positions (1, 2, 3, 4, . . . as shown in Figure 1b) of one
disc were averaged and used as the microfibril angle of this disc. Then, the average of the microfibril
angle of discs A and B is taken as the microfibril angle between disc A and B. Similarly, the microfibril
angles between B and C, C and D, and D and E can be obtained. Thus, the ultrasonic speeds for
sections AB, BC, CD, and DE and their corresponding microfibril angles were used to analyze the
correlations between them. Figure 11 shows the relationship between the microfibril angle of seedlings
and ultrasonic velocity. It can be seen from Figure 11 that ultrasonic velocity significantly decreased
with increasing microfibril angle of seedlings. The correlation (R2) between ultrasonic velocity and
MFA for poplar seedling P-146 was 0.69, which is lower than that for poplar seedling P-147 (R2 = 0.89).
Therefore, the relation between ultrasonic speed and MFA is of great interest for these two seedlings,
and MFA may have an impact on ultrasonic speed in poplar seedlings. More seedling specimens are
definitely needed to verify this relationship and confirm the effect of MFA on ultrasonic velocity.

Figure 11. Relationship between the ultrasonic velocity and microfibril angle of poplar seedlings.
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MFA has been reported to have a significant and negative relation with acoustic velocity for wood
materials such as logs and lumbers in many studies. Krauss et al., for example, found a negative
relationship (R2 = 0.71) between the ultrasonic wave velocity and MFA of Scots pine [29]. Chen et al.
reported a very high but negative relationship (R2 = 0.98) between acoustic velocity and MFA in
Norway spruce [30]. Isik et al. and Lachenbruch et al. both observed that acoustic velocity greatly
decreased with increasing MFA, and the correlations were 0.70 and 0.69 for Pinus taeda and Douglas
fir, respectively [12,27]. Moreover, Hasegawa et al. showed that for Japanese cedar, the correlation
between ultrasonic wave velocity and MFA was 0.90, and 0.82 for Japanese cypress. They suggested
that MFA greatly affects the ultrasonic wave velocity in softwood [28]. The results of the present paper
are consistent with their reported results.

3.4. Comparison with the Results of Acoustic and Ultrasonic Tests

Figure 12 shows the relationship between ultrasonic velocity and acoustic resonance velocity
in the 60 poplar seedlings. The average ultrasonic velocity and acoustic velocity for these 60 poplar
seedlings were 3114.8 m/s and 2856.7 m/s, respectively. The standard deviations of ultrasonic velocity
and acoustic velocity were 159.53 and 164.68, respectively. The average ultrasonic velocity was
approximately 9.1% (i.e., 260 m/s) higher than the average acoustic velocity. In addition, it can be
seen from Figure 12 that there was a significant relationship between ultrasonic velocity and acoustic
velocity, and the correlation (R2) was 0.81. Similar results have been reported by other researchers as
well [1,23]. The acoustic resonance method is generally recognized as a reliable and accurate method
for measuring the sound speed of wood material, such as logs and lumbers. Therefore, the prominent
relationship between ultrasonic and acoustic velocity may indicate that the ultrasonic method can be
used to measure the ultrasonic sound speed of poplar seedlings.
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Figure 12. Relationship between ultrasonic velocity and acoustic resonance velocity.

Figure 13 presents the relationship between the dynamic MOE results obtained from ultrasonic
and acoustic tests carried out in 60 seedlings. The average dynamic MOE values derived from the
ultrasonic and acoustic tests for these 60 poplar seedlings were 5.92 and 4.98 GPa, respectively. The
standard deviations of dynamic MOE derived from the ultrasonic and acoustic methods were 0.48
and 0.36, respectively. The average dynamic MOE from the ultrasonic test was approximately 18.87%
(i.e., 0.94 GPa) higher than that from the acoustic test. Additionally, it can be observed from Figure 13
that there was a good relationship between dynamic MOE from the ultrasonic test and the acoustic
test, and the correlation (R2) was 0.75. It is well known that the dynamic elastic modulus measured
by the acoustic method can be well used to predict the static elastic modulus of wood. Therefore,
this means that the dynamic elastic modulus measured by the ultrasonic method may be able to be
used for predicting the static elastic modulus of wood, especially for young seedlings, due to the
noticeable relationship between dynamic MOE results from ultrasonic and acoustic tests. However,

94



Forests 2019, 10, 682

there is still a lot of work that needs to be done to investigate whether the ultrasonic method could
be potentially utilized to evaluate the quality of young seedlings. Moreover, if ultrasound could be
applied to the early selection of seedlings, the quality of standing trees and wood-based products
may be improved because of the good quality of the young seedlings. Although good quality young
seedlings do not guarantee good quality standing trees, they are a good start to cultivate the high
properties of plantation trees.
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Figure 13. Relationship between dynamic MOE values from ultrasonic and acoustic resonance tests.

4. Conclusions

The aim of this study was to investigate the application of ultrasonic speed measurement to
poplar (Populus × euramericana cv.’74/76’) seedlings, a common plantation species in China, and to gain
some basic insights for the future early selection of poplar seedlings with high wood quality. The
conclusions are as follows:

• The proper detection distance for the ultrasonic method to be applied to poplar seedlings is ranged
from 265 mm to 665 mm, and 365 mm was used in this study.

• There were good correlations (R2 = 0.99) between the average ultrasonic velocities and growth
days. Ultrasonic speed increased with growth days, within 209 growing days. However, almost
no relationship was found between the ultrasonic velocities and the root-collar diameters of
seedlings, i.e., ultrasonic speed does not seem to increase with increasing root-collar diameter.

• Even though ultrasonic velocity, in general, decreases with increasing density, the density of
seedlings showed a weak influence on ultrasonic speed due to the low correlation between them
(R2 = 0.26). However, ultrasonic velocity significantly decreased with the increasing microfibril
angle of seedlings. The relations between ultrasonic speed and MFA are of great interest for the
two sample seedlings, and MFA may have an impact on ultrasonic speed in poplar seedlings.
More seedling specimens are definitely needed to verify this relationship and confirm the effect of
MFA on ultrasonic velocity.

• There was a significant relationship between ultrasonic velocity and acoustic velocity, and a
similar result was also found in the dynamic MOE values derived from the acoustic resonance
test and the ultrasonic test, respectively.

• Other influencing factors that were excluded in this paper—such as MFA, temperature, and
moisture content—need to be studied in future research to investigate their effect on ultrasonic
velocity in seedlings.
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Abstract: This study tested the machinability of three major timber species grown in Tasmania,
Australia, under different resource management schemes: plantation fiber-managed hardwood
(Eucalyptus globulus Labill. and Eucalyptus nitens Maiden) and plantation sawlog-managed softwood
(Pinus radiata D. Don). P. radiata was used as a control to identify significant differences in machining
fibre-managed plantation timber against sawlog-managed plantation timber with numerically
controlled computer technology and manually fed timber production techniques. The potential to
fabricate architectural interior products such as moldings with plantation fiber-managed hardwood
timber that is high in natural features was the focus of this study. Correlations between wood species,
variation in moisture content, and density of individual machinability characteristics were analyzed
to determine factors impacting the overall quality of plantation wood machinability. Correlations
between species and within species groups from the resulting machinability tests are highlighted
and discussed. The results indicate that the machinability of sawlog-managed softwood P. radiata
is superior in some circumstances to fiber-managed hardwood E. globulus and E. nitens specimens,
according to the American Society for Testing and Materials D1666-11.

Keywords: machinability; Eucalyptus; plantation timber; fiber-managed hardwoods

1. Introduction

Australia has close to one million hectares of plantation hardwood eucalypt species managed
for pulplog production. The two major hardwood species grown under this management scheme
are Eucalyptus globulus Labill., of which 52.7% is predominately grown in Western Australia and the
Green Triangle region, followed by Eucalyptus nitens Maiden, of which 25.2% is predominately grown
in Tasmania (a smaller proportion of the Tasmanian plantation estate for both species is also managed
for sawlogs). In addition, there are over one million hectares of planation softwood species managed
for sawlog production throughout Australia. Pinus radiata D. Don accounts for 74.5% of this estate,
which is grown predominately in the Green Triangle region and the Murray Valley (Tasmania also has
an established estate of this resource [1]).

In this study, different machinability characteristics of the three major plantation timber species
in Australia (E. globulus, E. nitens, and P. radiata) have been evaluated and statistically compared to
determine new applications for hardwood plantation resources in machine-manufactured products.
With the current supply of planation hardwoods in Australia en masse, and a rise in demand for
timber products in the built environment driven by state wood encouragement policies, there is
an opportunity to utilize hardwood pulplogs to produce value-added architectural products with
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advanced manufacturing technologies such as computer numerically controlled (CNC) machinery.
The key driver for this research is refocusing hardwood plantation resources into higher-value sawn
board applications for furniture and architectural products. To design and manufacture such products,
the suitability of processing pulplog with CNC or manually operator-controlled technologies is needed
to determine: (i) the machinability of timber derived from pulplogs according to the American Society
for Testing and Materials (ASTM) D1666-11 (Standard Test Methods for Conducting Machining Tests
on Wood and Wood-Based Materials, 2011) [2] and (ii) the timber properties that most affect the quality
of finish for each species.

Utilizing low-quality and low-value plantation logs has been a global topic for a long time [3].
In recent times, Eucalypts have attracted much attention for improving the genetics for solidwood
production [4] and utilization in value-added materials and product research [5], particularly
mass-timber product development such as nail-laminated beams [6] and cross-laminated timber
paneling [7]. Traditional wood products (board and veneer), engineered wood products (glulam) and
wood-based panels (particleboard and medium-density fiberboard) have revolutionized the way wood
is used in the built environment. Wood used in an appearance application relies on a high-quality
surface finish to accommodate its final use [8], as well as the application of paints or lamella overlays.
The literature consists of various machinability studies that investigate the quality of wood product
surface finishes. Not surprisingly, a vast majority of the literature focus on homogeneous wood
products such as medium density fiberboard and chipboards due to controllable conditions and
less-variable moisture content (MC) and densities [9–11]. Considering these factors, it is of interest to
determine the machinability properties of highly variable processed plantation solidwood. How wood
specimens are assessed is also a widely presented topic in the literature [12]. Visual assessment has
been the standardized procedure for some time now, and new technologies are increasingly being
employed to validate quality and compare results [13]. Some researchers go beyond the parameters
of ASTM D1666-11, adapting and capturing more data than specified such as the temperature of test
specimen after sanding [14] to validate or conclude their findings. Other researchers focus entirely on
specific machinability tests such as drilling [15] to advance knowledge. There has also been research
conducted in the literature to determine the effects of wood modifications such as thermal treatments
on wood machinability [16].

Key variables with any wood machining are cutting speed, feed direction, depth of cut, cutting
tool (type and its sharpness) and quality of treatments applied to wood specimens (such as heat or
chemical treatment). In addition, the literature states that anatomical characteristics such as species, MC,
grain direction, sapwood/hardwood, and density affect the quality of surface machinability [17–19].
New manufacturing knowledge is needed to determine appropriate techniques and commercial
processors for the incorporation and potential use of pulplog resources in high-value architectural
products, as well as applications to encourage their use in current markets to fulfil demand.

2. Materials and Methods

2.1. Plantation Timber

The studied timber species included E. nitens and E. globulus obtained from unthinned and
unpruned fiber-managed hardwood plantation resources (from Nook and Trowutta, Tasmania,
respectively) for pulplog production in northern Tasmania. These two hardwood pulplog timber
species were compared to softwood sawn-board timber obtained from a plantation P. radiata resource
in Tasmania, Australia. A summary of the three species management schemes, ages and densities is
given in Table 1.
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Table 1. Species sample data.

Specie
Management

Scheme
Age (years)

Average Small
End Diameter

(mm)

Sample
Density Range

(kg/m3)

Number of
Specimens

E. nitens Maiden Pulplog 16 345 395–741 (523 *) 54

E. globulus Labill. Pulplog 26 403 409–763 (544 *) 54

P. radiata D. Don Sawlog 30 N/A 444–604 (521 *) 53

* Average specimen density.

The variation in species heterogeneity such as density, presented in Table 1, highlights key
characteristics of hardwood species managed under pulplog management schemes. Both hardwood
species’ density ranges were much wider than P. radiata. Specimens prepared for E. nitens and E. globulus
were plainsawn for best recovery. A total of 54 specimens were prepared randomly from ungraded
boards for both eucalypt species and varied in origin from each log, deriving from 140-, 120- and
90-mm dressed boards. A maximum of six specimens were machined from individual boards for all
species (Figure 1).

 
Figure 1. Six samples machined from individual boards.

For the varying board widths in the hardwood specimens, three sets of six samples were machined
from 140-, 120- and 90-mm dressed boards. A total of 53 specimens were prepared for P. radiata, all of
which derived from utility grade 90-mm dressed boards. All boards designated for sample machining
were randomly selected during final processing as run of the mill production to reflect market supply.
Prior to testing, boards were stored in a joinery workshop environment at 10 ◦C (± 4 ◦C) and 40%
(± 5%) relative humidity. This range of environmental conditions (in Tasmania, Australia) was set to
test typical joinery workshop environments in which secondary manufacturing commonly takes place,
thus allowing a true representation of timber MC in local manufacturing and in service.

2.2. Machinability Tests

The machining tests conducted in this study complied with ASTM D1666-11 (2011), with the
exception of choice in tooling for CNC operations. All CNC tests were conducted at the Discipline of
Architecture and Design, University of Tasmania. The tests conducted included boring, routing, shaping,
mortising, and an additional test to determine biscuit boring (doweling) for a more contemporary
reference in timber joinery. Each specimen was subjected to boring, routing, and shaping tests. Only a
selected number of specimens for each species were subjected to mortising and biscuit boring, as initial
results were consistent in machinability quality.
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2.3. Tooling and Speed/Feed Rates

All boring and routing tests were conducted with a solid carbide, 9.5-mm, 3-flute roughing spiral
cutter and finished with a solid carbide, 8-mm, 2-flute compression cutter. A spindle speed of 15,000
revolutions per minute (RPM) and feed rate of 6350 mm/min were used (the standard spindle speed for
boring tests is 3600 RPM). The choice in tooling and spindle speeds represented a typical entry-level
combination of available tooling in timber joinery workshops for CNC machining. Boring and routing
profiles were cut in two passes: first, full depth conventional milling was performed with the roughing
tool, leaving 1.6-mm clearance from the finish surface before climb milling with the compression cutter
to remove the 1.6 mm overcut. New tools were used for each species. The intention of this change in
the standard method was to determine the resilience in timber machinability quality in contemporary
industry practice. This was further substantiated and compared with the use of sawlog-managed
softwood as a control to determine significant discrepancies between fibre-managed hardwood test
results. Mortising tooling complied with the standard (13-mm hollow chisel drill), as did the spindle
speed (3600 RPM), which was hand fed by peck drilling on a pedestal drill. Specimen-shaping was
conducted on a table router with a no-load spindle speed of 27,000 RPM. The shaping with the
table router was done with a 2-flute face-molding carbide tip with a ball bearing guide for profiling.
The specimens on the side grain were shaped via hand feeding in two passes due to the depth of the
profile. The equipment used to machine biscuit dowels was a Festool DF 500 DOMINO, which cuts
the timber stock in a pendulum motion and therefore no spindle speed was recorded. Chip thickness
was not measured in any tests. The mortising, shaping, and biscuit-boring introduced a variable
of unreliable human-controlled feed rates in comparison with CNC machining. To minimize this
variable, one operator conducted each human feed test to maintain consistency in test conditions.
This research acknowledges the differences between numerically controlled feed rates and human
feed rates, although the intention of this research is still an investigation of the machinability of
hardwood plantation resources in commercially mass-produced repetitive machining versus niche
one-off productions.

2.4. Scoring and Results Analysis

All specimens were graded according to the visual examination classification in ASTM D1666-11
(2011) on the bases of six grades, namely, G0 (defect-free), G1 (excellent), G2 (good), G3 (fair), G4 (poor),
and G5 (very poor). While this method of machinability grading is qualitative and context-specific,
depending on the product’s intended use, two industry-experienced wood machinists with years of
sawing, machining, and grading Tasmanian hardwoods were used to visually grade the specimens for
each species according to ASTM D1666-11 (2011) and Australian Standard (AS) 2796.3. Grading was
conducted using a photo studio lighting kit (Figure 2).

  
Figure 2. Photo studio lighting kit used to grade specimens.
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No mechanical or scanning techniques were employed to measure the precision of the visual
grading evaluation. A combination of visual and tactile evaluations was employed to determine
specimen surface quality as indicated by the existing literature [12,20]. Most of the machining
quality was notable by eye and touch, as visual grading provides a rapid and complete analysis of
surface quality [21]. The micro-level assessment of surface quality was deemed irrelevant, as products’
appearances would normally be graded for Australian markets according to AS 2796. The grade
given to each specimen was based on commercially acceptable appearance parameters for high-value
architectural products. Commercially acceptable parameters were determined by referencing AS
2796.3 Appendix D, Table D1: “Limits of the machining imperfections and surface finish imperfection
on exposed surfaces of hardwood timber for furniture components” [21]. Where specimen tests
resulted in surface imperfections, a grade of G2 (good) to G5 (very poor) was given. Specimens
with no imperfections were graded as G0 (defect-free) to G1 (excellent). These parameters were also
determined by the consistency of surface finish and visually graded using the examples in ASTM D166
and the literature [22]. This process was used to justify allocated grades and to identify significant
discrepancies between the resulting specimens within each species and against each species.

2.5. Statistical Analyses

The significance of differences between the machinability characteristics of the three wood species
in this study were statistically analyzed via Chi-Square testing using IBM SPSS Statistics software
(version 23, IBM Corporation, New York, USA). The Analysis of Variance (ANOVA) and Duncan’s
multiple range test were used for determining the differences between the three species with respect to
density and MC. The correlations between machinability characteristics with the variations in density
and MC were determined using Pearson’s correlation test (interval by interval). All the statistical
analyses were conducted at 0.05 significance level.

3. Results

3.1. Statistical Analyses of Density and MC between Species

The ANOVA results indicated no significant difference between the densities of the three
species in this study (p > 0.05), which enabled a statistical comparison between the machinability
characteristics. The difference between MC values in the three species, however, was significant
(p < 0.05). The difference between the density and MC of E. nitens and P. radiata was less than 0.4%
and 2.3%, respectively. The average density and MC of E. globulus samples were respectively 4.2%
and 3.9% higher than that of E. nitens, and 4.6% and 1.5% higher than P. radiata. The variations in the
density and MC values of the test samples within each species can be seen in Figures 3–5.
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Figure 3. Variation in moisture content and density of E. nitens samples.

103



Forests 2019, 10, 805

Figure 4. Variation in moisture content and density of E. globulus samples.

Figure 5. Variation in moisture content and density of P. radiata samples.

3.2. Statistical Analyses of Machinability Results between Species

The test results obtained with respect to routing end grain (fuzzy and raised) and boring (crushing,
fuzzy, and smoothness) indicated that the test samples from the three species were all defect-free with
consistent quality (having a grade of G0). These test results are therefore not presented in this study.
The results of the statistical analyses for the remaining machinability characteristics are presented.
No statistically significant difference was found between the three species with respect to raised routing
side grain, chipped routing end grain, chipped shaping side grain, boring tear-out and biscuit bore
(crushed and chipped) (p > 0.05). Statistically significant differences were found between the three
species for routing side grain (fuzzy and chipped), shaping side grain (raised and fuzzy), mortising
(crushing, tearing and smoothness) and fuzzy biscuit-bore grain (p < 0.05).

The grading results of the machinability characteristics for each species sample are shown in
Tables 2–7. The values with the most important contributions to the statistical significance for each
characteristic are highlighted in grey where applicable (indicating the differences within species and
between species). All the E. nitens and P. radiata samples received a G0 grade (defect-free) for routing
side grain (Table 2). The fuzzy routing side grain (Figure 6), was more variable within the E. globulus
samples, with more than 37% of the samples having a grade between G1 to G4. There was no significant
difference between the E. nitens and P. radiata samples with respect to the chipped routing side grain.
The number of samples with a grade worse than G0 were significantly higher in E. globulus compared
to E. nitens and P. radiata.
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(a) (b) (c) 

Figure 6. Examples of E. globulus (a) with a grade of G4 (poor) and P. radiata (b) and E. nitens (c) with a
grade of G0 (excellent) for fuzzy routing side grain.

Routing end grain (Figure 7) divided the E. nitens samples into grades of G0 and G2; however,
no statistically significant difference was found between the three species with respect to the chipped
routing end grain (Table 3). This machinability characteristic was less sensitive among the species.

  
(a) (b) 

Figure 7. Examples of E. nitens with grades of G0 (excellent) (a) and G2 (good) (b) for routing end grain.

The grading results of the samples with respect to shaping side grain are shown in Table 4.
For both shaping side grains (raised or chipped), P. radiata displayed a better finish quality than E. nitens
and E. globulus, with 100% defect-free results. The E. nitens samples, however, had the highest fuzzy
shaping side grain quality compared to P. radiata and E. globulus, with 100% of the samples being
graded as G0. None of the test samples from the three species had any grade worse than G3 with
respect to shaping side grain (raised or fuzzy) (Figure 8).

  
(a) (b) 

Figure 8. Examples of E. globulus with a grade of G2 (good) for fuzzy shaping side grain (a) and E. nitens
with a grade of G5 (very poor) for chipped shaping side grain (b).
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All the E. nitens and P. radiata samples were graded as G0 with respect to boring tear-out (Table 5).
Only two samples from E. globulus had a grade worse than G0, a difference that was not statistically
significant (Figure 9).

  
(a) (b) 

Figure 9. Examples of E. nitens with a grade of G0 (excellent) (a) and E. globulus with a grade of G2
(good) (b) for boring tear-out.

The results indicated that mortising quality is significantly correlated to the wood species
(Table 6), with P. radiata, E. nitens, and E. globulus having the best to the worst overall mortising
qualities, respectively (Figure 10). There was no statistically significant difference between E. nitens
and E. globulus in respect to mortising smoothness, whereas P. radiata had significantly better mortising
smoothness than both eucalypt species. All E. nitens and E. globulus samples had a G5 grade for
mortising smoothness.

   
(a) (b) (c) 

Figure 10. Examples of E. nitens (a) and E. globulus (b) with grades of G5 (very poor), and P. radiata (c)
with a grade of G2 (good) for mortising (tearing).

The E. nitens samples had the worst quality when graded based on biscuit bore (Table 7), with 100%
of the samples being graded as G3 (Figure 11). More than 30% of the E. globulus samples were
defect-free (G0), which made a high contribution to the statistical significance between the three species.
The three species had almost the same quality when the biscuit bore (crushed and chipped) was used
as the grade-determining parameter. The E. globulus samples showed more variations in the fuzzy
biscuit-bore grain compared to the other two species.
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(a) (b) (c) 

Figure 11. Examples of E. nitens (a) with a grade of G3 (fair) for fuzzy biscuit-bore grain and E. globulus
(b) and P. radiata (c) with a grade of G2 (good).

4. Discussion

The findings in this research intend to demonstrate appropriate new applications for hardwood
plantation resources in machine-manufactured products. The following sections validate opportunities
where hardwood plantation resources could serve as appropriate materials of choice.

4.1. Statistical Analyses of Density and MC Within Species

The results indicate a higher variability in the machinability of the E. nitens and E. globulus
specimens compared to that of P. radiata. Part of this is because of the variation in the density of the
samples and its influence on the results obtained. A possible physical phenomenon that explains
the variation in machinability results—due to the degree of changes in densities—could relate to the
management of the resource that was initially intended for pulplog production. The variations in
MC for E. nitens specimens showed no significant correlation with any of the studied machinability
characteristics (p > 0.05). The variations in specimen densities, however, had significant correlations
with chipped routing end grain, raised shaping side grain and mortising (crushing and tearing)
(p < 0.05). For E. globulus, the variation in MC values had significant correlations with fuzzy routing
side grain and fuzzy shaping side grain (p < 0.05). In addition, the variations in specimen densities
also had significant correlations with fuzzy routing side grain, fuzzy shaping side grain and mortising
(tearing) (p < 0.05). For P. radiata, the variations in MC values had significant correlations with mortising
(crushing, tearing, and smoothness) (p < 0.05) and the variations in specimen densities showed no
statistically significant correlation with the studied machinability characteristics.

4.2. Routing End Grain and Boring

Despite being managed for pulplog production, machinability tests of E. nitens and E. globulus—as
well as sawlog P. radiata—for routing end grain (fuzzy and raised), boring (crushing, fuzzy,
and smoothness), resulted in defect-free specimens. Both pulplog resources were out-graded in
quality of finish by P. radiata due to chipping in the end grain (E. nitens) and tear-out from boring
(E. globulus). Expectedly, chipping and tear-out were present in the fiber-managed plantation species
given that the nature of the resource to break apart is a direct reason for its use in pulp production.
The chipping observation could be due to the long fiber lengths when machined perpendicular to the
grain, and the tear-out evident in boring (also perpendicular to the grain) may be caused by pulling
fibers. Regardless, the results suggest that either species would be an acceptable choice for products
such as cabinetry or acoustic panels that require end-grain routing or a degree of good and better
surface boring for fixtures or perforations, particularly where high-quality surface finishes are essential.
Extra care in machining could mitigate chipping or tear-out from the pulplog resources. As suggested
in ASTM D1666-11 (2011), a roughing cut offset by 1.6 mm then finished in a final pass can ensure that
any edge damaged in roughing is removed for a better surface finish. As previously highlighted in this
study, two solid carbide tools—one for roughing and the other for finishing—were used to ensure that
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the best surface quality could be achieved. In addition, the roughing cut was conventional milling and
the finishing cut was climb milling. Generally, optimal surface qualities were achieved directly parallel
and perpendicular to the wood grain, and most raised grain, fuzzing, and chipping were at tangent
angles following a parabola specimen shape as set out in ASTM D-1666.

4.3. Routing Side Grain and Shaping

E. nitens and P. radiata samples showed better routing qualities on the side grain than E. globulus.
Once again, P. radiata out-graded both pulplog resources, and E. nitens out-graded E. globulus. In line
with routing end grain, chipping appears to have been dominant for both hardwood species, particularly
towards the edge of a specimen. This could have been caused by the length of wood fiber in plantation
Eucalyptus, which typically results in pulling out or tearing more stock material than intended
by machining. Similarly, fuzzy routing side grain for E. globulus was the greatest reason for the
downgrading of these specimens. The results of shaping on the side grain also suggest that E. globulus
and P. radiata are less desirable for architectural applications such as moldings where high-quality
surface finishes are necessary. In comparison, shaping on the side grain of E. nitens resulted in
raised grain.

4.4. Mortising and Biscuit Boring

P. radiata out performed E. nitens and E. globulus, however the results for all species were far from
perfect, with no tests resulting in a defect-free grade (G0). This may suggest that following the defined
test method set out in ASTM D1666-11 (2011) for mortising is not an ideal form of joinery. The results
also suggest that the surface hardness of the tested species could have been low, and therefore the
observed crushing by compression and tearing could have been mitigated by a change in choice of
tooling. Consideration should be made, however, of the fact that grading of the mortise refers to
an internal surface that is not seen in final products such as assembled furniture. As an alternative
to mortise and tenon joinery, boring via CNC fabrication would be an acceptable alternative, as
substantiated in the boring tests. In keeping with the grading standards set out in ASTM D1666-11
(2011), this study considered the quality in surface finish from biscuit boring, a more contemporary
approach to joinery with dowels. All species performed exceptionally well against crushing and
chipping. In this test, it was fuzzy grain that was the dominate grade-reducing feature. This may have
been due to the pendulum motion of the biscuit dowel cutter. Regardless, the extrusion generated in
this test—like a mortise—is internal, and not seen in a product’s finally assembly. Moreover, the fuzzy
grain caused by the biscuit borer could advantageously improve the retention of the biscuit dowel and
glue for furniture or table tops.

4.5. Other Considerations

Another reason for the higher variability in the machinability of the E. nitens and E. globulus
specimens compared to that of P. radiata could be that the pulplog specimens were selected randomly
from ungraded timber boards high in natural features. Considering this, there could be a high potential
to improve the machinability of these plantation species by making use of an appropriate timber
grading system that would allow proper resources to be selected for appropriate higher-value products.
Although E. nitens and E. globulus specimens were derived from pulplog resources, the results suggest
that in some applications these species are appropriate alternatives for products where hardwood
species are desirable or in demand.

The physical phenomena observed in E. globulus and E. nitens, such as the tearing, fuzzing,
and chipping throughout the test specimens, could be related to fiber length, elasticity, hardness,
and ductility of the pulp resources [23]. E. globulus is known for its high density, high coarseness,
and high fiber-length [23], which contribute to its use in pulp production; however, these properties
also render the resource useful for raw forest products as well as other composite and engineering
forest products [23]. Carefully considered machining processes to mitigate chipping and tearing
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parallel and perpendicular to wood grains may improve and reduce the quantity of machining defects
in these hardwood species. This could be as simple as including lead-ins and -outs, making helical
cuts, and programming multiple steps to mitigate visible fibre damage to value-added timber products.
Future research could investigate these multiple variables to identify processes or techniques to avoid
when machining plantation Eucalyptus species.

All species demonstrated both a high-quality and less-than-favorable surface finished with both
CNC and manual machining techniques. Where possible, any automated system that is replicable and
controllable is ideal for consistency in quality. This research suggests that both forms of machining can
produce acceptable finishes for architectural value-added products.

Further research on the machinability of Eucalyptus pulplogs could consider the origin of specimens
from log and tree positions, as well as the orientations of cuts. The impact of surface and internal
checking could also be investigated to determine if these characteristics impact chipping and tear-out
from various machinability tests conducted on fiber-managed hardwood resources. Furthermore,
the impact of live and dead knots on machinability properties could be investigated to determine the
acceptable presence of different types of knots on the appearance of products that are routed, shaped,
or bored.

5. Conclusions

The aim of this study was to determine the machinability of Tasmanian plantation fibre-managed
hardwood Eucalyptus globulus and Eucalyptus nitens and to evaluate their potential use in architectural
interior products such as moldings, as well as other timber products such as furniture. Plantation
sawlog-managed softwood Pinus radiata was used as a control reference given its acceptable quality
and use in a wide range of architectural and product applications.

• The results in this study suggest that fibre-managed plantation hardwood E. nitens and
E. globulus have the same machinability qualities (with no statistically significant difference)
as sawlog-managed P. radiata for routing end grain (fuzzy, raised, and chipped), boring (crushing,
fuzzy, smoothness, and tear-out), raised routing side grain, chipped shaping side grain, and biscuit
bore (crushed and chipped). In products and applications where secondary manufacturing
involves routing (end grain and side grain), boring, shaping, and biscuit boring, producers can
expect acceptable machinability qualities that would allow the use of fibre-managed plantation
hardwoods as an alternative to sawlog-managed plantations softwoods.

• No statistically significant difference was observed between E. nitens and E. globulus except when
routing side grain (fuzzy and chipped), shaping side grain (raised and fuzzy), mortising (crushing
and tearing), and fuzzy biscuit-bore grain were used as the grade-determining parameters.

• The correlations between the variations in density and machinability characteristics of E. nitens
and E. globulus were statistically significant, whereas no significant correlations existed between
the variations in density and machinability of P. radiata.

5.1. E. nitens

• The machinability characteristics of E. nitens were statistically comparable to P. radiata in all cases
except for shaping side grain (raised and fuzzy), mortising (crushing, tearing, and smoothness)
and fuzzy biscuit-bore grain.

• The studied E. nitens samples received the worst grades among the studied timber
species when graded against raised shaping side grain and fuzzy biscuit-bore grain as the
grade-determining parameters.

• The machinability of the E. nitens samples was significantly better than both E. globulus and
P. radiata in respect to fuzzy shaping side grain.

• The E. nitens had better quality than E. globulus in respect to routing side grain (fuzzy and chipped),
fuzzy shaping side grain, mortising (crushing and tearing), and fuzzy biscuit-bore grain.
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• Unlike P. radiata and E. globulus, the variations in the MC of the samples had no important
correlation with the machinability characteristics of E. nitens.

5.2. E. globulus

• The machinability characteristics of E. globulus were statistically comparable to P. radiata in all
cases except for routing side grain (fuzzy and chipped), fuzzy shaping side grain, mortising
(crushing, tearing, and smoothness) and fuzzy biscuit-bore grain.

• The only cases in which the E. globulus samples showed significantly better qualities than P. radiata
were fuzzy shaping side grain and fuzzy biscuit-bore grain.
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Abstract: The moisture content (MC) control is vital in the wood drying process. The study was
based on BP (Back Propagation) neural network algorithm to predict the change of wood MC during
the drying process of a high frequency vacuum. The data of real-time online measurement were
used to construct the model, the drying time, position of measuring point, and internal temperature
and pressure of wood as inputs of BP neural network model. The model structure was 4-6-1 and the
decision coefficient R2 and Mean squared error (Mse) of the training sample were 0.974 and 0.07355,
respectively, indicating that the neural network model had superb generalization ability. Compared
with the experimental measurements, the predicted values conformed to the variation law and size of
experimental values, and the error was about 2% and the MC prediction error of measurement points
along thickness direction was within 2%. Hence, the BP neural network model could successfully
simulate and predict the change of wood MC during the high frequency drying process.

Keywords: neural network; high frequency drying; moisture content; wood

1. Introduction

Wood MC (moisture content) is one of the crucial indicators in the drying process as it has a direct
impact on the stability of wood drying quality, and a reasonable control of MC can help in meeting
the various quality requirements of actual wood products [1]. High frequency vacuum drying is a
joint drying technology with a fast drying rate, low energy consumption, and low environmental
pollution [2], and is in widespread use throughout the wood drying industry [3]. However, due to the
interference of high frequency electromagnetic fields, the traditional MC online monitoring device
cannot be used normally, which makes the online prediction and effective detection of wood MC
problematic [4]. Therefore, the research on the prediction model of wood MC is of great significance in
the high frequency drying process.

The wood structure is complex and it is difficult to establish a precise mathematical model
through mathematical mechanism. An accurate control of MC requires precise mathematical models.
The high frequency vacuum drying of wood is a non-linear, complex drying process, which is
difficult to accurately express, control, or implement by using general mathematical methods [5].
The concept of BP (Back Propagation) neural network comes from the biological system of brain,
which is composed of numerous neurons that are connected to each other through synapses that
process information. The neural network has decent characteristics for predicting nonlinear complex
systems [6,7], and the model reflects the intrinsic connection of experimental data after a finite
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number of iterative calculations. It is not only strong at processing nonlinearity, self-organizing
adjustment, adaptive learning, and fault-tolerant anti-noise [8–10] but also can effectively deal with
nonlinear and complex fuzzy processes. An effective network prediction model can be established
without any assumption or theoretical relationship analysis, based on the historical data and powerful
self-organization integration capabilities [11,12].

Artificial neural networks are increasingly being used for modeling in the field of wood science.
For instance, in the field of wood drying, Avramidis (2006) [13] predicted the drying rate of wood based
on neural network construction model; Zhang Dongyan (2008) [14] constructed a neural network model
for predicting wood MC during conventional drying; İlhan Ceylan (2008) [15] used neural network
models to study wood drying characteristics; Watanabe (2013, 2014) [16,17] employed artificial neural
network model to predict the final moisture content of Sugi (Cryptomeria japonica) during drying and
evaluate the drying stress on the wood surface. Ozsahin (2017) [18] utilized artificial neural networks
to successfully predict the equilibrium moisture content and specific gravity of heat-treated wood. The
artificial neural networks are widely used in the study of conventional drying characteristics, stress
monitoring, and MC prediction of wood [19]; however, the use of neural networks to predict changes
in the wood MC during high frequency drying has been rarely studied.

Hence, in order to provide a predictive model for the control of wood MC during high frequency
drying, based on the BP neural network algorithm and using the real-time online measurement data,
drying time, location of measuring point, and internal temperature and pressure of wood as the input
to neural network model, the changes in the wood MC can be predicted. Also, the feasibility and
prediction accuracy of the model was analyzed.

2. Materials and Methods

2.1. On-Line Monitoring of Wood Internal Temperature and Pressure

Some uniform and defect-free Mongolian pine (Pinus sylvestris var. mongholica Litv.) were
selected. The 200 mm ends were removed at both ends of the test piece, and the specifications were
120 × 120 × 500 mm specimens after sawing and planning, and the initial moisture content was 50%.
As shown in Figure 1, five temperature pressure measuring points were uniformly preset at the center
of the sample in the thickness direction. Drilling holes on the side of specimen with a 4 mm drill bit to
depth of 60 mm (seeing Figure 1 for specific locations). Each measuring point was embedded with
one of the pressure and temperature fiber sensors, and the locations where the sensors were in contact
with the surface of wood were coated with silica gel to ensure good sealing. The data was recorded
online through the optical fiber sensors.

As shown in Figure 2, 1 is drying tank of high frequency vacuum with the diameter of 650 mm
and length of 1350 mm; 2 and 4 are upper and lower plates respectively; and 3 is test material. The high
frequency generator oscillates at the frequency of 27.12 MHz and outputs the effective power of 1 kW,
which is powered by the center of electrode plate length.

During the drying process, the wood control temperature was set to 55 ◦C, the ambient pressure
was set to 8 kPa, and the control of high frequency output time was set to stop for 2 min after a
continuous oscillation for 7 min. In the early stage of drying, wood was quickly taken out and weighed
after every 4 h, the real-time MC of wood was calculated, and the pressure and temperature values of
five measuring points before the sample was taken out were recorded. In the middle stage of drying,
the data were recorded once every 8 h; while, in the later stage of drying, the data were recorded once
every 12 h.

The drying was carried out for 204 h until wood MC was dried to 11.56%. The experiment was
stopped and a total of 135 data were recorded.
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Figure 1. Diagram of the wood tested sample and location of the sensors. (1 is the upper layer
measuring point; 2 is the upper middle layer measuring point; 3 is the core layer measuring point; 4 is
the lower middle layer measuring point; and 5 is the lower layer measuring point).

 

Figure 2. Drying tank of high frequency vacuum.

2.2. BP Neural Network Model

The BP (Back Propagation) model is currently the most studied and widely used artificial neural
network model [20]. It has a powerful nonlinear mapping ability and the qualities of human intelligence
such as self-learning, adaptive, associative memory, and parallel information processing. It can imitate
the human brain nervous system to store, retrieve, and process the information with an excellent fault
tolerance, and is extremely suitable for modeling and control of complex systems [21]. The Python
language has a rich and powerful class library. It is an interpreted, interactive, and pure object-oriented
scripting programming language that combines the best design principles and ideas of several different
languages and is widely used in various fields of software development and application programming.
Therefore, this paper built the BP neural network model using Python language programming.

2.2.1. Determination of Neuron Number

The neural network prediction model in this paper uses a three-layer feedforward network
structure, which includes an input layer, a hidden layer, and an output layer [22]. The hidden
layer can be further divided into a single hidden layer and multiple hidden layer according to the
layer number. The multiple hidden layer is composed of multiple single hidden layers. Compared
with a single hidden layer, a multiple hidden layer has a stronger generalization ability and higher
prediction accuracy, but the training time is longer. The selection of hidden layers should be considered
comprehensively based on the network accuracy and training time. For a simple mapping relationship,
in case the network accuracy meets the requirements, the single hidden layer can be selected to speed
up the process. For a complex mapping relationship, the multiple hidden layer can be selected to
enhance the network prediction accuracy. Therefore, according to the research requirements, the study
chose a single hidden layer.

The number of hidden neurons also has a certain impact on the network [23]. The neuron number
in the hidden layer is directly related to the predictive power of network model. If the number is
too high, it will not only increase the network training time but also the network will not converge
to the target error, resulting in an over-fitting. If the number is too small, the model training will be
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insufficient and would not be able to completely express the relationship between the input variables
and output parameters, thus affecting the predictive ability of the model. Therefore, the determination
of neuron number in hidden layer is particularly critical [24].

The optimal neurons number was determined via trial and error method [5]. The neuron number
in hidden layer was set to 4~10, and the learning error and epoch of different nodes were tested by
network training. The optimal node was obtained by comparison analysis.

2.2.2. Data Normalization

The data obtained during the experiment were randomly divided into two data sets: a training
group and a test group. The 101 test data of the training group accounted for 75% of the total data,
while 34 data of the test group accounted for 25% of the total data.

Each input sample usually has different physical meanings and dimensions; hence, in order to
make each input sample have an equally important position and also to prevent the adjustment of
the weight into the flat area of error, the input sample needs to be normalized [5]. In addition, as the
neurons of the BP neural network adopt the Sigmoid transfer function and the output is between [0, 1],
it is also necessary to normalize the output samples (Equation (1)).

X′ = X − Xmin

Xmax − Xmin
(1)

where X′ is the X normalization value; Xmax and Xmin are the maximum and minimum values of
X, respectively.

The neurons in each layer are only connected to the neurons in the adjacent layer and there is
no connection between the neurons in each layer. Also, there is no feedback connection between
the neurons in each layer. The input signal first propagates forward to the hidden node and then
through the transformation function. The output information of the hidden node is propagated to the
output node and the output result is given after processing. In general, the Sigmoid transfer function
(Equation (2)) is used on all nodes of hidden layer. In the output layer, all nodes use the linear transfer
function Pureline.

f =
1

1 + e−x (2)

where f represents the neuron output value and x represents the neuron input value.

2.2.3. Model Performance Analysis

In the model correlation test, the model was evaluated by using the determination coefficient R2

and Mse (Mean squared error) of the training sample [25].
The determination coefficient R2 is defined as:

R2 =
∑n

i=1 (ti − pi)
2

∑n
i=1 t2

i ∑n
i=1 p2

i
. (3)

The Mean square error (Mse) is calculated as [12]:

Mse =
1
n

n

∑
n=1

(ti − pi)
2 (4)

where ti (i = 1, 2, . . . , n) is the predicted value of the ith sample, pi (i = 1, 2, . . . , n) is the true value
of the ith sample, and n is the total number of all samples. The decision coefficient is in [0, 1], and
the closer the value to 1, the better the model performance, and the closer to 0, the worse the model
performance. The smaller the sample Mean square error, the better the prediction performance and the
better the model performance. The learning efficiency is set to 0.01.
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3. Results and Discussion

3.1. Determination of Neuron Number

The corresponding relationship between the neuron number of hidden layer and the training
error and epoch of neural network is shown in Figure 3. When the node number of hidden layer is 6,
the training error is the smallest at 0.07355, and the epoch is 17, the network training is faster. These
results show that the neural network model has superb generalization ability at this time [26]; hence,
the node number of hidden layer is determined to be 6. According to the node number of hidden layer,
the structure of neural network is shown in Figure 4.

Figure 3. Correspondence between the network error and the number of hidden layer neurons.

Figure 4. BP (Back Propagation) neural network structure diagram (X1: drying time; X2: measuring
point position; X3: temperature; X4: pressure; Y1: MC (moisture content)).

3.2. Model Performance Analysis

The training regression map for the BP neural network is shown in Figure 5. The linear regression
equation between experimental and the predicted value is y = 0.948x + 1.24 while the determination
coefficient R2 is 0.974. These results indicate that the experimental and predicted values fit well. The
BP neural network model has a good performance and can explain 97% of the above experimental
values [24].

The predicted fitted curve for the neural network is shown in Figure 6. The remaining 25% of the
samples are predicted and compared with the experimental values. The predicted values are consistent
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with the variation and size of the experimental values. Initially, the BP neural network model can
simulate and predict the change of wood MC during high frequency drying.

Figure 5. Training regression graph of BP neural network.

Figure 6. Prediction fitting curve of BP neural network.

3.3. Prediction of Moisture Content Change

During the drying process of wood, the free water is primarily discharged along the large capillary
system above the fiber saturation point. The bound water in cell wall is mainly discharged along the
microcapillary system below the fiber saturation point. The bound water is affected by the hydroxyl
interaction force in the amorphous region of cell wall [27]. In the early stage of drying, there is a
short accelerated drying section. The energy of high frequency radiation is basically used to raise the
temperature of wood, and the drying rate is gradually increased from zero. The middle stage of drying
is constant-speed drying section. The energy of high frequency radiation is basically used to evaporate
the moisture in wood. The MC decreases rapidly and exhibits constant-speed drying tendency. This
stage basically completes the evaporation process of moisture in wood. In the later stage of drying,
there is less water in wood, and the evaporation rate of moisture and the drying rate of wood gradually
decrease [28].

The experimental data is input into the trained model for simulation verification. Figure 7 presents
the curve of predicted and experimental values with time. In the early stage of drying, the predicted
values are slightly lower than the experimental values; in the middle stage of drying, the predicted
values are slightly higher than the experimental values; and in the later stage of drying, the predicted
values have a slight wave motion, but overall the value is basically the same as the experimental values.
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Figure 7. Simulation results of BP neural network.

Figure 8 displays the predicted error curve for the neural network (error = experimental value −
predicted value [29]). The overall error range is −4%~6% and most of the data is concentrated between
−2%~2%, which can basically meet the requirements of prediction accuracy in wood drying.

Figure 8. Prediction error of BP neural network.

Overall, the predicted data could basically reflect the change trend of MC during the high
frequency drying process. The prediction error is about 2%, which proves the feasibility of BP
neural network model in MC prediction. Moreover, if the external environmental parameters in the
high frequency drying process and the relevant parameters of wood itself are known, the trained
neural network model can be used to predict the MC change, thereby eliminating the complicated
experimental detection process and saving time and cost [30].

3.4. Analysis of Stratified Moisture Content Prediction Error

Figure 9 shows the MC prediction error of measurement points along thickness direction. In the
early and later stage of drying, the error is positive and the predicted values are slightly less than the
experimental values. In the middle stage of drying, the error is negative and the predicted values are
slightly larger than the experimental values. Among these, the error in the middle stage of drying is the
largest, followed by the early and later stage of drying. In the early and middle stage of drying, along
the thickness direction of test material, from top to bottom, the error increases firstly, then decreases,
then increases, and then decreases. The results show M-type trend with no clear law, and the error of
the upper surface measurement point is the smallest. In the later stage of drying, along the thickness
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direction of the test material, from top to bottom, the error is firstly reduced, then increased, and then
decreased, while the error at the upper intermediate layer is the smallest.

Figure 9. Error analysis of stratified moisture content prediction.

Due to the difference in material properties at different locations of the wood and the degree of
electromagnetic radiation, the prediction accuracy of each measurement point is different. But overall,
the prediction error of MC of each layer is less than 2%, indicating that the prediction accuracy of each
measurement point is good and can meet the demand for stratified moisture content prediction.

4. Conclusions

The BP neural network was used to simulate the wood MC during the high frequency drying
process. The drying time, the location of measuring point, and the internal temperature and pressure
of the wood were taken as input variables, while the wood MC was the output variable, 101 test data
of the training group accounted for 75% of the total data, while 34 data of the test group accounted for
25% of the total data. The results showed that when the number of hidden layer of neurons was six,
the neural network training error was the smallest and the BP neural networks had better stability.
The error between the predicted and the experimental values was about 2% and the stratified moisture
content prediction error was within 2%, which the model could well simulate the change trend of
wood MC during the drying process. In general, although the performance of wood varies greatly and
the complex relationship has not been completely elucidated, the proposed neural network model is
reliable and has a good predictive power.
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Abstract: The local chemistry and mechanics of the control and phenol formaldehyde (PF) resin
modified wood cell walls were analyzed to illustrate the modification mechanism of wood. Masson
pine (Pinus massoniana Lamb.) is most widely distributed in the subtropical regions of China.
However, the dimensional instability and low strength of the wood limits its use. Thus, the wood
was modified by PF resin at concentrations of 15%, 20%, 25%, and 30%, respectively. The density,
surface morphology, chemical structure, cell wall mechanics, shrinking and swelling properties,
and macro-mechanical properties of Masson pine wood were analyzed to evaluate the modification
effectiveness. The morphology and Raman spectra changes indicated that PF resin not only filled in
the cell lumens, but also penetrated into cell walls and interacted with cell wall polymers. The filling
and diffusing of resin in wood resulted in improved dimensional stability, such as lower swelling and
shrinking coefficients, an increase in the elastic modulus (Er) and hardness (H) of wood cell walls,
the hardness of the transverse section and compressive strength of the wood. Both the dimensional
stability and mechanical properties improved as the PF concentration increased to 20%; that is, a PF
concentration of 20% may be preferred to modify Masson pine wood.

Keywords: Pinus massoniana Lamb.; phenol formaldehyde resin; wood impregnation; wood properties;
cell-wall mechanics

1. Introduction

Pinus massoniana Lamb., commonly known as Masson pine, is one of the most widely distributed
tree species in the subtropical regions of China [1]. The wood from Masson pine planted forests has
become an important industrial raw material for wide commercial use such as wood construction,
wood-based panels, and polymer composites due to the beautiful wood grain, good adaptability to
the environment, and shorter growth cycle [2,3]. However, as one of the common fast-growing tree
species, Masson pine wood also presents drawbacks which limit its practical application, such as low
dimensional stability, softness, and low bio-durability [4,5]. In the past few decades, a number of
modification methods have been proposed to enhance the quality and high value-added utilization
of plantation wood, including thermal or densification treatment, surface coating, and chemical
impregnation [6–10]. Above all, chemical impregnation under vacuum or pressure has been proven
to be an effective method to improve the properties of the wood. Among the existing chemical
modification methods, impregnating and curing the wood with resins appears to especially promote
the industrial utilization of wood [11,12].

Phenol formaldehyde (PF) resin is a popular thermosetting agent that forms a three dimensional
structure via cross-linking reactions after curing, which are extensively used in exterior grade
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wood-based panels for its excellent performance, including water resistance and chemical
stability [13–15]. It has therefore been widely used to improve dimensional stability and strength and
prolong the service life of wood for indoor and outdoor use [16–18]. To date, changes in physical,
mechanical, and chemical properties of chemically modified wood have been intensively analyzed at the
macro scale [19,20]. The modified wood achieved high dimensional and stiffness stability and biological
resistance. Monomers such as methyl methacrylate, styrene-methyl methacrylate and styrene-glycidyl
methacrylate have been utilized for wood modification and have proven that the monomers not only
filled in the cell lumens, but also penetrated into the cell walls [21,22]. However, for a pre-polymer
like PF resin with a higher molecular weight, it is still unclear whether it can penetrate into cell wall
or not, or what the accompanied influence on the cell wall would be. In particular, only limited
attempts have been made to find out the correlations between chemical, physical, and mechanical
performance between the cell wall- and macro-level to indicate the contribution of cell wall modification.
Nanoindentation (NI) has been successfully applied for measuring the mechanics of wood cell walls
including modulus of elasticity, hardness, etc. [23–25] and the Raman spectra technique can detect the
local chemical structure of wood cell walls [26], which facilitates in situ characterization of the effects
of PF resin impregnation on wood cell walls.

The purpose of this study was to characterize the properties of PF resin modified Masson pine
wood for enriching the fundamental theory of wood chemical modification, which may benefit the
modification process. For this purpose, the changes in morphology, local chemical structure and
mechanics at the cell wall level and the density, dimensional stability, and mechanical properties at the
macro-scale of Masson pine wood after PF resin impregnation were analyzed using scanning electron
microscopy (SEM), Raman, NI, and conventional physical and mechanical test instruments, respectively.

2. Materials and Methods

2.1. Materials

Wood samples were obtained from 40-year-old Masson pine (Pinus massoniana Lamb.) wood
harvested from plantation forestry located in Fujian Province, China. Wood blocks with the dimensions
20 mm3 × 20 mm3 × 160 mm3 and 50 mm3 × 50 mm3 × 70 mm3 (longitudinal × tangential × radial)
were cut from the sapwood around the 21st growth ring. The initial moisture content was about 11%.
A commercial phenol formaldehyde (PF) resin (Dynea Co., Ltd., Guangdong, China) with a solid
content of 48% and a viscosity of 150 mPa·s at 25 ◦C was used in this experiment.

2.2. Impregnation Treatment

The wood samples were oven-dried at 103 ± 2 ◦C until a constant weight was achieved, and the
weight was determined before impregnation. The PF resin was diluted with distilled water into resin
concentrations of 15%, 20%, 25%, and 30% for separate treatments. Twenty replicate samples in each
treatment group were conducted in a stainless-steel chamber under a vacuum of 0.09 MPa for 30 min
and then at 0.8 MPa for 2 h. After impregnation, the samples were air-dried at room temperature for
48 h after removing the excess resin on the surface, and then were cured at a temperature of 130 ◦C for
2 h in an oven.

2.3. Determination of Weight Percent Gain and Density

The oven-dried weight and volume of the 20 replicate samples with the dimensions 20 mm3 × 20
mm3 × 20 mm3 (L × T × R) cut from the PF resin modified wood were determined to calculate the
oven-dried density and weight percent gain (WPG) of the samples. The WPG was calculated according
to Equation (1):

WPG (%) =
W1 −W0

W0
× 100% (1)
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where W1 is the oven-dried weight of the modified wood and W0 is the oven-dried weight of the
control wood.

2.4. Morphology Observation

Both the cross-section and tangential section of the surfaces of the control and modified wood
samples were observed using scanning electron microscopy (SEM, JSM-7600F, JEOL Japan Electronics
Co., Ltd., Japan) at an accelerating voltage of 20 kV.

2.5. Raman Measurement

The local chemical distribution analysis in the transversal section of the control and modified
wood samples was analyzed by a laser Raman spectrometer (DXR532, Thermo Fisher Scientific Inc.,
USA) equipped with a linear-polarized 780 nm laser. The cross-sections of the wood samples were
sliced by an ultra-microtome (Leica MZ6, Germany) with a thickness of 20 μm and then placed on glass
slides covered with glass coverslips. All spectra were collected in the range of 1800 cm−1 to 600 cm−1.

2.6. Dimensional Stability Analysis

The dimensions (L × T × R) of the control and modified wood samples were measured under
three different moisture contents (> fiber satruated point, air-dried, and oven-dried) to analyze the
dimensional stability according to the testing procedure of Chinese National Standards (GB/T 1932-2009
and GB/T 1934.2-2009). For determination of shrinkage, samples were soaked in distilled water at
20 ◦C until the dimension was constant, and then the wet samples were conditioned at 20 ◦C and
relative humidity (RH) of 65%, and finally the air-dried samples were dried in an oven at 103 ◦C
until a constant weight was achieved. In contrast, the determination of swelling was processed in
reverse order. The swelling coefficient (α), shrinkage coefficient (β), anti-swelling efficiency (ASE),
and anti-shrinking efficiency (ASE’) can be calculated by Equations (2)–(13):

αw (%) =
lw − l0

l0
× 100% (2)

αmax (%) =
lmax − l0

l0
× 100% (3)

αVw (%) =
Vw −V0

V0
× 100% (4)

αVmax (%) =
Vmax −V0

V0
× 100% (5)

ASEw (%) =
αVw(c) − αVw(m)

αVw(c)
× 100% (6)

ASEmax (%) =
αVmax(c) − αVmax(m)

αVmax(c)
× 100% (7)

where αw and αmax are the linear swelling coefficient from oven-dried to air-dried and from oven-dried
to wet, respectively; lmax, lw, and l0 are the length in the tangential and radial directions of wet, air-dried,
and oven-dried samples, respectively; similarly, αVw and αVmax are the volumetric swelling coefficients;
Vmax, Vw, and V0 are the volume of samples at different moisture conditions; αVw(c) and αVmax(m) are
the volumetric swelling coefficient of the control and modified wood samples, respectively.

βmax (%) =
lmax − l0

lmax
× 100% (8)

βw (%) =
lmax − lw

lmax
× 100% (9)
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βVmax (%) =
Vmax −V0

Vmax
× 100% (10)

βVw (%) =
Vmax −Vw

Vmax
× 100% (11)

ASE′max (%) =
βVmax(c) − βVmax(m)

βVmax(c)
× 100% (12)

ASE′w (%) =
βVw(c) − βVw(m)

βVw(c)
× 100% (13)

where βmax and βw are the linear shrinking coefficient from oven-dried to air-dried and from oven-dried
to wet, respectively; lmax, lw, and l0 are the length in the tangential and radial directions of oven-dried,
air-dried, and wet samples, respectively; similarly, βVmax and βVw are the volumetric shrinking
coefficients; Vmax, Vw, and V0 are the volume of samples at different moisture conditions; βVmax(m) and
βVw(c) are the volumetric shrinking coefficients of the control and modified wood samples, respectively.

2.7. Mechanical Property Testing

Wood samples with the dimensions 5 mm3 × 5 mm3 × 10 mm3 (T × R × L) were obtained for
nanoindentation (NI) to evaluate the effect of modification on the wood cell wall. The transverse
section of the samples was polished by an ultra-microtome with a diamond knife (Micro Star Tech Inc.,
Huntsville, AL, USA). As shown in Figure 1, the cell wall mechanics of both the control and modified
wood, which had been equilibrated at 20 ◦C and 65% RH for 48 h, were measured by using a Hysitron
TriboIndenter system (Hysitron Inc., USA) equipped with scanning probe microscopy (SPM). Testing
was operated with the load function: loading, holding at the peak load of 400 μN, and unloading for
5 s, respectively. About 30 valid indents were obtained to calculate the reduced elastic modulus (Er)
and hardness (H) based on Equations (14) and (15) introduced by Oliver and Pharr [27]:

H =
Pmax

A
(14)

where Pmax is the peak load, and A is the projected contact area of the tips at peak load.

Er =

√
π

2β
S√
A

(15)

where Er is the combined elastic modulus; S is initial unloading stiffness; and β is a correction factor
correlated to indenter geometry (β = 1.034).

 
Figure 1. Microscope images showing the positioning of indents: (a) and (c) optical micrograph of the
transverse section of wood samples; (b) and (d) scanning probe microscopy (SPM) images of wood cell
walls after nanoindentation (NI).

The Janka hardness of a transverse section and the compressive strength parallel to the grain of the
wood was determined in accordance with GB/T 1941-2009 and GB/T 1935-2009 standards, respectively.
The dimensions of the samples were 30 mm3 × 20 mm3 × 20 mm3 (L × T × R). A total of 20 replicate
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samples for each treatment were conditioned until they reached a moisture content of approximately
12% before testing.

3. Results and Discussion

3.1. Weight Percent Gain and Density

Figure 2 shows the weight percent gain (WPG) and density of the control and modified wood
samples. It can be observed that the WPG and density increase with increasing PF concentration.
Density was positively correlated with WPG, which gradually increased by 34.7% and 39.6% as
compared to the control when the PF concentration was 30%, respectively. The increased density of the
samples was mainly attributed to the filling of the cell lumens with PF resin. Meanwhile, the lower
increased rate of density than that of WPG may due to the swelling of cell wall filled with PF resin.
However, both the WPG and density increased slowly when the PF concentration was above 20%. In a
previous study, the viscosity of the solution has been found to affect the penetration in wood [28,29].
That is, higher concentration PF resin could decrease the permeability of the resin in wood.

Figure 2. Weight percent gain (WPG) and density of the control and modified wood. PF =
phenol formaldehyde.

3.2. Morphological Analysis

The scanning electron microscopy images of the cross-sectional and tangential-sectional surfaces
of the wood samples are shown in Figure 3. The presence of the polymeric structure of PF resin can be
easily noted in many cell lumens and pits (Figure 3d,f). During impregnation in Masson pine wood,
the chemicals entered the interior of the wood primarily through the wood tracheids and then circulated
through the pits in an axial and transverse direction [10,26]. Under the action of exterior pressure,
the PF molecules freely diffused into the intercellular spaces of the wood. It also can be observed
that there is no obvious boundary between the wood cell wall and the filled PF resin, which may
indicate that some PF resin has penetrated into the cell wall and that they interact with each other well.
Furthermore, some cracks appear on the cell walls that are not filled with resin; however, the surface of
the cell walls filled with resin was smoother and more compact after drying. This finding illustrates
that the penetration of resin into the cell wall can enlarge the differences in shrinkage properties of the
filled and unfilled cell walls and might be responsible for the cracks between them (Figure 3e).
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Figure 3. Micrographs of the cross-sections of (a,b) the control wood, (d,e) the wood modified by PF
resin, and tangential-section of (c) the control wood, (f) the modified wood.

3.3. Local Chemical Analysis by Raman

Raman was used to detect the local chemical groups to confirm the possible interactions between
the wood cell wall materials and the resin. Figure 4 shows the typical spectra for the control wood
cell wall, PF resin within the lumen, and cell wall filled with resin. The spectra with black and blue
color in Figure 4 indicate that the chemical nature of the native cell wall material is clearly different
from the cured PF resin. Wood cell walls are mainly composed of cellulose, hemicelluloses, and lignin.
The bands at 1091 cm−1 , 1336 cm−1 , and 1376 cm−1 on the black IR spectra corresponded to the C-O
stretching and flexural vibrations in cellulose and hemicellulose, and the absorption at 1595 cm−1 and
1656 cm−1 arises from the non-conjugated and conjugated C=C stretching vibrations in the aromatic
ring of the phenol in lignin [30–32]. For phenol formaldehyde resin, the intensive band at 1607 cm−1

originates from the C=C stretching vibration in the aromatic ring of the phenol, while the bands at
1287 cm−1 and 778 cm−1 are attributable to the biphenyl C-C bridge stretching vibration and C-H
flexural vibration in the aromatic ring. It is intriguing that a number of spectral modifications appeared
on the spectra with red color for the modified cell wall, although the general aspect of the spectra
remained unchanged. The intensity of the C=C stretching and C-O stretching at 1656 cm−1 , 1376 cm−1,
and 1336 cm−1 decreased significantly, while some new bands at 1287 cm−1 and 778 cm−1 appeared as
compared to the control cell wall, which can be attributed to the penetration of PF resin into the cell
wall [33,34]. Moreover, a relatively broader band between 1150 cm−1 and 1100 cm−1 appeared in the
spectra of modified wood, corresponding to the asymmetric stretching vibration of C-O-C aliphatic
ether, which is in agreement with the literature that the chemical reactions of the -OH groups of wood
and PF resin occurred at the cell wall level [35,36].
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Figure 4. Raman spectra of the control and modified wood.

3.4. Dimensional Stability

The swelling and shrinking coefficients (α and β) of the control and chemically modified wood
samples under different moisture conditions are presented in Figure 5. The swelling and shrinking
coefficients of wood with the changing moisture content (MC) between oven-dried and air-dried
conditions (αw and βw) were primarily measured to evaluate the dimensional stability of wood applied
on locations with low equilibrium moisture content. Both the αw and βw in the radial direction
were about half of that in the tangential direction, resulting from the anatomical structures such
as the limitation of xylem ray, the difference of lignin content in the radial and tangential cell wall,
etc. [10]. The αw and βw decreased significantly at first and then kept stable with an increase in PF
resin concentration in comparison with the control, indicating that chemical treatment could effectively
improve wood dimensional stability [19]. The radial, tangential, and volumetric αws of wood modified
by PF resin with 20% concentration were about 45%, 58%, and 54% lower than that of the control,
respectively. However, the βw became stable when the PF concentration was beyond 15%, indicating
that PF resin concentrations ranging from 15% to 20% are better for wood impregnation.

As applied in areas with a larger moisture content range, such as outdoors, the swelling and
shrinking coefficients of wood with the changing MC between oven-dried and wet conditions (αmax

and βmax) need to be analyzed too. It can be observed from Figure 5c and 5d that the effect of PF resin
impregnation on the αmax and βmax is similar to that of αw and βw; that is, the dimensional stability of
wood can be modified effectively by the PF resin at concentrations below 20%. The radial, tangential,
and volumetric βmaxs of wood modified by PF resin at 20% concentration decreased by about 49%,
50%, and 51%, respectively. Moreover, both the αmax and βmax were almost twice as high as the αw and
βw, respectively, which can be attributed to the different moisture content. The MC of air-dried wood
is approximately 12–15%, which is half of the fiber saturation point (FSP). Generally, the hygroscopic
water located within the cell wall plays the most important role on the dimension stability rather than
the free water occupied in the cell lumen or other macro-voids.
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Figure 5. The swelling and shrinking coefficients of the control and modified wood: (a) and (b) swelling
and shrinking coefficients from oven-dried to wet; (c) and (d) swelling and shrinking coefficients from
oven-dried to air-dried.

The anti-swelling efficiency (ASE) and anti-shrinking efficiency (ASE’) were positively affected by
the PF resin concentration (Figure 6). The ASEw and ASE’w initially increased at a concentration of 20%
and then kept stable or only increased slightly with a further increase in concentration. The ASEw and
ASE’w of the wood treated with 20% PF resin reached 54% and 50%, respectively. The deposition of PF
in the cell walls reduced the space within the cell walls, which could be occupied by water in untreated
wood. In addition, the reduction in swelling and shrinking of the modified wood could be partly
attributed to cross-linking of particle cell wall polymers [37,38]. However, the ASEmax and ASE’max of
the wood kept increasing with the increased concentration and reached the maximum of 59% and 62%
as PF resin concentration increased to 30%. As the MC of wood exceeded the FSP, the free voids in the
wood provided space for free water, which also affected the swelling and shrinking. Thus, the higher
WPG attributed to the higher PF resin concentration could occupy more free space and finally increase
the ASEmax and ASE’max. The ASEw and ASE’w of the wood treated with 20% PF resin is close to the
maximum ASEmax and ASE’max, indicating that the lower concentration PF resin is suitable for treating
the wood utilized in areas with small MC range.
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Figure 6. The anti-swelling and anti-shrinking efficiency of the modified wood: (a) anti-swelling
efficiency; (b) anti-shrinking efficiency.

3.5. Micro-Mechanics of Wood Cell Walls

The longitudinal reduced elastic modulus (Er) and hardness (H) of the control and modified wood
cell walls are presented in Figure 7, respectively. It is remarkable that the Er and H values increased
after impregnation by PF resin. For instance, the Er and H values of the wood cell walls modified
with PF resin at 15% concentration increased by about 24.9% and 47.3%, which further confirmed the
results of the Raman measurements that some PF molecules penetrated into the cell wall successfully.
The filling of the voids and the cross-linking of -OH groups of the wood polymer with the resins may
reinforce the cell wall [39,40]. However, the cell wall mechanics increased slowly and even decreased
accompanying the increase in PF resin concentration. The Er and H of the wood cell walls modified by
30% PF resin were 8.7% and 11.6% lower than that of the cell wall modified by 20% PF, which can be
easily interpreted as a result of the increasing bulking effects attributed to the deposition of resin in the
cell walls at higher WPG.

Figure 7. The reduced elastic modulus and hardness of the control and modified wood cell walls.

3.6. Macro-Mechanics of Wood

Figure 8 shows the hardness of the transverse section and the compressive strength parallel to
grain of the control and modified wood at the macro-level. The initial hardness and compressive
strengths of the control wood are 39.5 N·mm−2 and 49.1 N·mm−2 , respectively. Both the hardness
and compressive strength gradually increased with an increase in PF resin concentration, reaching the
maximum of 54.9 N·mm−2 and 59.7 N·mm−2 with a concentration of 30%. The higher filling degree
of the wood voids led to a higher density, which mainly contributed to the improved hardness and
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compressive strength after curing of the PF resin [41]. In addition, the increased mechanics of wood
cell walls induced by the chemical modification also played an important role to achieve the desired
modification effect. However, as the PF concentration was above 20%, the hardness and compressive
strength kept stable, which was in agreement with the results of dimensional stability and cell wall
mechanics. That is, the PF concentration of 20% may be preferred to modify Masson pine wood.

Figure 8. The compressive strength and hardness of the control and modified wood.

4. Conclusions

The effects of PF resin impregnation on the density, dimensional stability, mechanical strength,
and microscopic chemical and mechanical properties of Masson pine wood were determined in this
paper. PF resin was impregnated into the wood cell lumen and diffused into the cell walls, as verified
by scanning electron microscopy and Raman spectrum. Swelling and shrinking coefficients were
significantly reduced while the anti-swelling and anti-shrinking efficiency of wood were improved
accompanying the increase in PF resin concentration. The inter-reaction between the resin and cell
walls made a positive contribution to the cell wall mechanics of wood cell walls. The elastic modulus
(Er) and hardness (H) of the wood cell walls modified by 15% PF resin increased by about 24.9% and
47.3% as compared to the control. Both the increased density attributed to the filling of resin in cell
lumens and cell walls and the improved cell wall mechanics resulted in the remarkable increase in
hardness and the compress strength of wood. However, both the dimensional stability and mechanical
properties improved slowly as the PF concentration was above 20%; that is, the PF concentration of
20% may be preferred to modify Masson pine wood.
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Abstract: The structural integrity of wood is closely related to its brittleness and thus to its suitability
for numerous applications where dynamic loads, wear and abrasion occur. The structural integrity of
wood is only vaguely correlated with its density, but affected by different chemical, physico-structural
and anatomical characteristics, which are difficult to encompass as a whole. This study aimed to
analyze the results from High-Energy Multiple Impact (HEMI) tests of a wide range of softwood and
hardwood species with an average oven-dry wood density in a range between 0.25 and 0.99 g/cm3

and multifaceted anatomical features. Therefore, small clear specimens from a total of 40 different
soft- and hardwood species were crushed in a heavy vibratory ball mill. The obtained particles were
fractionated and used to calculate the ‘Resistance to Impact Milling (RIM)’ as a measure of the wood
structural integrity. The differences in structural integrity and thus in brittleness were predominantly
affected by anatomical characteristics. The size, density and distribution of vessels as well as the ray
density of wood were found to have a significant impact on the structural integrity of hardwoods.
The structural integrity of softwood was rather affected by the number of growth ring borders and
the occurrence of resin canals. The density affected the Resistance to Impact Milling (RIM) of neither
the softwoods nor the hardwoods.

Keywords: brittleness; density; dynamic strength; High-Energy Multiple Impact (HEMI)–test;
Resistance to Impact Milling (RIM)

1. Introduction

Most elasto-mechanical and rheological properties of wood are closely related to wood density
and are therefore rather easily predictable. However, the anatomical features of wood, which can
be wood species-specific, further affect especially dynamic strength properties such as the impact
bending strength and shock resistance [1–3]. For instance, the large earlywood pores in ring-porous
hardwoods such as English oak (Quercus robur L.), Sweet chestnut (Castanea sativa L.), Black locust
(Robinia pseudoacacia L.) or Wych elm (Ulmus glabra Huds.) can serve as predetermined breaking points.
Further deviations from an ideal homogeneous xylem structure such as large rays in European beech
(Fagus sylvatica L.) or Alder (here: false rays, Alnus spp.), distinct parenchyma bands in Bongossi
(Lophira alata Banks ex C. F. Gaertn.) or agglomerates of resin canals in Red Meranti (Shorea spp.), also
have the potential to either strengthen or reduce the structural integrity of wood.

Similarly, wood cell wall modification affects different mechanical properties including the wood
hardness and abrasion resistance, but also its brittleness and consequently its structural integrity.
This has been shown previously with the help of High-Energy Multiple Impact (HEMI)-tests, where
small wood specimens are subjected to thousands of dynamic impacts by steel balls in the bowl of a
heavy vibratory mill. The fragments obtained are analyzed afterwards [4]. For instance, the weakening
of cell walls by heat during thermal modification processes, especially in the middle lamella region,
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leads to a steady decrease in the structural integrity of wood with increasing treatment intensity.
The HEMI-test has further been used to detect fungal decay by soft rot, brown rot and white rot fungi
(even in very early stages), the effect of gamma radiation, wood densification, wood preservative
impregnation, wax and oil treatments, and different chemical wood modification processes [5].

It has previously been shown that the Resistance to Impact Milling (RIM), which serves as a
measure of wood’s structural integrity is very insensitive to varying densities, natural ageing, and
the occurrence of larger cracks [5]. Furthermore, the RIM varies only little within one wood species,
as shown for Scots pine sapwood (Pinus sylvestris L.) samples from trees in six Northern European
countries [6]. However, the results from previous studies indicated that the structural integrity
determined in HEMI-tests is not well correlated with wood density, since further variables such
as wood species-specific anatomical characteristics of the xylem tissue interfere with the effect of
density [7].

Objective

The aim of this study was to analyze the results from HEMI-tests of a wide range of softwood and
hardwood species with an average oven-dry wood density in a range between 0.25 and 0.99 g/cm3

and with multifaceted anatomical features.

2. Materials and Methods

One hundred replicate specimens of 10 (ax.) × 5 × 20 mm3 were prepared from a total of 40
different wood species and separated between sapwood and heartwood, as listed in Tables 1 and 2.

To determine the oven-dry density (ODD), n = 10 replicate specimens of 10 (ax.) × 5 × 20 mm3

per wood species were oven dried at 103 ◦C until a constant mass, weighed to the nearest 0.0001 g;
the dimensions were then measured to the nearest 0.001 mm. The oven dry density was calculated
according to the following equation:

ρ0 =
m0

V0
[g cm−3] (1)

where:

ρ0 is the oven-dry density, in g·cm−3;
m0 is the oven-dry mass, in g;
V0 is the oven-dry volume, in cm3.

Table 1. The oven-dry density (ODD), Resistance to Impact Milling (RIM), degree of integrity (I),
and fine percentage (F) of different softwood species. The standard deviation (SD) is in parentheses.

Name 1 Botanical Name
ODD RIM I F

[g cm−3] [%] [%] [%]

Scots pine sw Pinus sylvestris 0.41 (0.02) 88.2 (0.9) 67.4 (1.1) 13.5 (1.1)
Scots pine hw 0.58 (0.04) 84.5 (0.8) 41.9 (3.1) 1.3 (0.4)

Radiata pine sw Pinus radiata 0.43 (0.02) 88.8 (0.5) 55.4 (2.1) 0.0 (0.0)
Carribean pine hw Pinus carribaea 0.39 (0.04) 87.3 (0.4) 52.4 (1.8) 1.1 (0.3)
European Larch sw

Larix decidua
0.56 (0.02) 85.2 (0.4) 44.5 (2.2) 1.2 (0.3)

European Larch hw 0.51 (0.02) 80.8 (1.5) 35.5 (4.8) 4.1 (0.4)
Douglas fir sw Pseudotsuga menziesii 0.63 (0.02) 86.3 (0.4) 45.6 (1.8) 0.2 (0.2)
Douglas fir hw 0.51 (0.02) 82.2 (0.5) 34.8 (1.3) 1.9 (0.3)
Norway spruce Picea abies 0.43 (0.03) 82.9 (1.7) 35.9 (6.1) 1.5 (0.4)

Coastal fir Abies grandis 0.40 (0.06) 80.6 (0.5) 26.5 (1.3) 1.4 (0.4)
Western hemlock Tsuga heterophylla 0.42 (0.03) 83.8 (0.7) 40.0 (2.1) 1.6 (0.3)

Yew Taxus baccata 0.60 (0.03) 84.5 (0.9) 43.9 (3.2) 1.9 (0.3)
1 sw = sapwood, hw = heartwood; heartwood if not otherwise indicated.
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Table 2. The oven-dry density (ODD), Resistance to Impact Milling (RIM), degree of integrity (I), and
fine percentage (F) of different hardwood species. The standard deviation (SD) is in parentheses.

Name 1 Botanical Name
ODD RIM I F

[g cm−3] [%] [%] [%]

English oak sw Quercus robur 0.49 (0.02) 83.3 (0.5) 44.2 (1.7) 3.7 (0.4)
English oak hw 0.59 (0.01) 87.3 (1.2) 59.0 (4.3) 3.3 (0.4)

Black locust Robinia pseudoacacia 0.68 (0.05) 83.5 (1.2) 41.0 (3.9) 2.3 (0.2)
Sweet chestnut Castanea sativa 0.50 (0.03) 78.1 (2.3) 36.0 (4.2) 7.9 (1.8)

Ash Fraxinus excelsior 0.62 (0.02) 83.1 (0.8) 40.4 (2.6) 2.7 (0.3)
Locust Gleditsia sp. 0.66 (0.02) 86.7 (1.1) 52.6 (3.4) 1.9 (0.4)

Common walnut Juglans regia 0.63 (0.02) 85.2 (0.5) 49.8 (2.1) 2.9 (0.3)
Wild cherry Prunus avium 0.55 (0.01) 86.7 (0.7) 53.0 (2.2) 2.0 (0.3)
Black cherry Prunus serotina 0.64 (0.04) 87.7 (0.6) 54.9 (2.1) 1.4 (0.2)

Beech Fagus sylvatica 0.66 (0.02) 88.0 (0.4) 55.9 (2.2) 1.4 (0.3)
Maple Acer sp. 0.61 (0.01) 89.1 (0.6) 58.0 (2.3) 0.5 (0.1)
Lime Tilia sp. 0.44 (0.01) 90.1 (0.8) 61.1 (2.6) 0.2 (0.3)
Birch Betula pendula 0.57 (0.02) 87.9 (0.4) 54.2 (1.6) 0.8 (0.1)
Hazel Corylus avellana 0.68 (0.02) 86.9 (1.0) 52.8 (3.9) 1.8 (0.2)

Boxwood Buxus sempervirens 0.96 (0.01) 90.3 (0.9) 64.1 (3.7) 0.9 (0.0)
Poplar Populus nigra 0.39 (0.02) 86.3 (0.3) 50.5 (0.9) 1.8 (0.3)
Alder Alnus glutinosa 0.48 (0.01) 86.9 (0.9) 54.6 (3.3) 2.3 (0.5)
Kiri Paulownia tomentosa 0.25 (0.02) 80.9 (1.5) 40.0 (4.0) 5.5 (0.9)

Shining gum Eucalyptus nitens 0.74 (0.11) 83.2 (1.5) 46.7 (4.5) 4.6 (0.9)
Teak Tectona grandis 0.63 (0.09) 84.1 (0.7) 48.0 (2.1) 3.9 (0.8)
Ipe Handroanthus sp. 0.93 (0.02) 86.0 (0.5) 51.8 (1.2) 2.6 (0.7)

Merbau Intsia spp. 0.74 (0.03) 68.1 (2.4) 27.9 (1.8) 18.6 (2.7)
Bangkirai Shorea laevis 0.79 (0.05) 87.7 (0.7) 54.9 (1.9) 1.4 (0.4)

Balau Shorea spp. 0.92 (0.03) 84.3 (1.1) 51.7 (2.8) 4.8 (1.0)
Bongossi Lophira alata 0.97 (0.03) 85.9 (1.0) 51.9 (2.7) 2.8 (0.7)

Amaranth Peltogyne sp. 0.88 (0.01) 88.6 (0.7) 57.9 (2.7) 1.1 (0.0)
Basralocus Dicorynia sp. 0.81 (0.02) 84.8 (0.6) 50.9 (1.9) 4.0 (0.4)

Garapa Apuleia sp. 0.76 (0.04) 86.7 (1.1) 53.0 (3.3) 2.1 (0.5)
Limba Terminalia superba 0.50 (0.03) 83.2 (1.2) 45.1 (2.7) 4.1 (0.9)

Kambala Milicia sp. 0.62 (0.03) 79.7 (0.7) 45.2 (2.7) 8.8 (0.4)
Massaranduba Manilkara bidentata 0.99 (0.04) 85.9 (0.6) 53.2 (2.5) 3.2 (0.2)

Greenheart Chlorocardium rodiei 0.96 (0.02) 85.9 (1.5) 49.9 (5.3) 2.1 (0.8)
1 sw = sapwood, hw = heartwood.

Afterwards, selected density specimens were cut with a traversing microtome and used for digital
reflected-light microscopy with a Keyence Digital microscope VHX 5000 (Keyence Corporation, Osaka,
Japan). Cross section photographs were taken at a magnification of 30×, and the diameter of the
earlywood vessels, the vessel density, and the wood ray density were determined at a magnification of
200× for both the soft- and hardwoods. For the tropical species, the listed anatomical features were
determined at a magnification of 100×. Therefore, n = 10 replicate measurements were conducted per
wood species to determine the ray density and vessel density. The earlywood vessel diameter was
determined on n = 30 vessels.

Five times 20 specimens of 10 (ax.) × 5 × 20 mm3 were submitted to High-Energy Multiple
Impact (HEMI)–tests. The development and optimization of the HEMI-test have been described by [4]
and [8]. In the present study, the following procedure was applied: 20 oven-dried specimens were
placed in the bowl (140 mm in diameter) of a heavy-impact ball mill (Herzog HSM 100-H; Herzog
Maschinenfabrik, Osnabrück, Germany), together with one steel ball of 35 mm diameter for crushing
the specimens. Three balls of 12 mm diameter and three of 6 mm diameter were added to avoid small
fragments from hiding in the angles of the bowl, thus ensuring impact with smaller wood fragments.
The bowl was shaken for 60 s at a rotary frequency of 23.3 s−1 and a stroke of 12 mm. The fragments of
the 20 specimens were fractionated on a slit sieve according to [9], with a slit width of 1 mm, using an
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orbital shaker at an amplitude of 25 mm and a rotary frequency of 200 min−1 for 2 min. The following
values were calculated:

I =
m20

mall
× 100 [%] (2)

where:

I is the degree of integrity, in %;
m20 is the oven-dry mass of the 20 biggest fragments, in g;
mall is the oven-dry mass of all the fragments, in g.

F =
mfragments<1mm

mall
× 100 [%] (3)

where:

F is the fine percentage, in %;
mfragments<1mm is the oven-dry mass of fragments smaller than 1 mm, in g;

mall is the oven-dry mass of all the fragments, in g.

RIM =
(I − 3 × F) + 300

400
[%] (4)

where:

RIM is the Resistance to Impact Milling, in %;
I is the degree of integrity, in %;
F is the fine percentage, in %.

3. Results and Discussion

3.1. Structural Integrity

The Resistance to Impact Milling (RIM) varied between 68.1% (Merbau) and 90.3% (Boxwood).
In contrast, the degree of integrity (I) varied significantly more, i.e., between 26.5% (Coastal fir) and
67.4% (Scots pine sapwood), as did the fine percentage (F): i.e., between 0.0% (Radiata pine) and 18.6%
(Merbau). The data for the RIM, I, and F are summarized in Table 1 for the tested softwood species
and in Table 2 for the hardwood species. Besides differences between the wood species, the three
indicators showed differences in the variation within one species, here expressed as the standard
deviation (SD). The highest variation was obtained for F, followed by I and RIM. This supports previous
findings pointing out the benefit of using the combined measure RIM, which is of higher sensitivity
to differences in the structural integrity paired with less scattering of data compared to I and F [4,7].
In total, the SD of the RIM was between 0.3% (Poplar) and 2.4% (Merbau), corresponding to coefficients
of variation (COV) between 0.4% and 3.5%, which is very low compared to mechanical properties such
as the bending or impact bending strength (e.g., [7]).

3.2. Impact of Oven-Dry Density on Structural Integrity

A clear relationship between the ODD and structural integrity did not become evident, as shown
for all the examined wood species and separately for the softwoods, ring- and semi-ring-porous
hardwoods and diffuse-porous hardwoods in Figure 1. The RIM seemed to be at least superposed by
further parameters such as structural features and anatomical characteristics. This coincides with the
data for the Ash, Scots pine and Beech previously reported by [8], who showed that the density and
RIM were not even correlated within one wood species. More recently, [7] reported that the density and
RIM were also poorly correlated when considering ten different wood species representing a range of
ODD between 0.37 and 0.77 g/cm3. However, according to [7] the RIM was fairly well correlated with
the impact bending strength (IBS, R2 = 0.67) and modulus of rupture (MOR, R2 = 0.56), as determined
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on axially matched specimens, which indicates that these strength properties are also at least partly
affected by similar anatomical characteristics as the RIM is.
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Figure 1. The relationship between the average oven-dry density and Resistance to Impact
Milling (RIM): (a) all wood species (y = 3.1629x + 82.887); (b) softwoods (y = 1.1035x + 83.791);
(c) ring- and semi-ring-porous hardwoods (y = 19.634x + 72.545); and (d) diffuse-porous hardwoods
(y = 1.8475x + 84.086).

3.3. Impact of Anatomical Characteristics on Structural Integrity

The tested softwood species had a rather homogeneous and uniform anatomical appearance
compared to the different hardwood species. However, even within this group the RIM varied
between 80.6% and 88.8%. As summarized in Table 3, the softwood species differed also in the average
tracheid diameter and in wood ray density. Nevertheless, the fracture patterns observed during the
HEMI-tests were rather uniform, and fractures occurred predominantly along the growth ring borders
in a tangential direction and along the wood rays and resin canals in a radial direction. The wood
species showing an abrupt transition between the earlywood and latewood, such as the Larch and
Scots pines, did not show a lower structural integrity compared to the species with a more gradual
transition, such as the Norway spruce and Douglas fir, as one might expect due to a more sudden
change of density within the tracheid tissue of one annual ring. Consequently, no fractures were
observed along the transition line between the earlywood and latewood. In contrast to other softwood
species, the Carribean and Radiata pines showed fractures in a tangential direction not only at the
growth ring borders, but also where the resin canals ran in an axial direction.

As exemplarily shown for the heartwood of the Scots pine and Douglas fir in Figure 2, the major
weak points, where fractures predominantly occurred, were the following: (a) the growth ring borders,
where the less dense earlywood follows the dense latewood, and (b) the wood rays, which (1) consist
of parenchyma cells, and (2) are running orthogonal to the main cell orientation in the tracheid tissue.
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Table 3. The anatomical characteristics (tracheid diameter, ray density) and description of fractures
during the HEMI-tests of different softwood species (standard deviation in parentheses).

Wood Species
Tracheid Ø

Wood Ray
Density

Fracture
Behaviour Remarks

[μm] [mm−1] tang. rad.

Scots pine sw 29 (6) 4.6 (1.2) GR RC wider rings compared to hw
Scots pine hw 25 (5) 3.7 (1.5) GR RC -

Radiata pine sw 22 (4) 4.4 (1.3) GR R, RC -
Carribean pine hw 28 (4) 5.2 (1.2) GR R, RC -
European larch sw 35 (7) 5.9 (1.7) GR R wider rings compared to hw
European larch hw 35 (6) 4.4 (1.1) GR R -

Douglas fir sw 25 (6) 4.3 (1.2) GR R, RC -
Douglas fir hw 23 (5) 3.9 (1.2) GR R -
Norway spruce 25 (5) 4.5 (1.0) GR R -

Coastal fir 28 (5) 5.7 (1.3) GR R -
Western hemlock 25 (5) 5.0 (1.3) GR R -

Yew 10 (3) 7.1 (1.4) (GR) (R) Irregular fracture pattern

GR = along growth rings, R = along rays; RC = along resin canals; tang. = tangential growth direction; rad. = radial
growth direction.

Figure 2. The fracture pattern in the softwoods: (a) Cross section of the Scots pine heartwood, fracture
along a growth ring border; (b) The radial fracture section of the Douglas fir heartwood, fracture along
the rays.

The fractures in the ring-porous hardwood species often followed the wide-luminous earlywood
vessels, such as in the English oak, Sweet chestnut, Ash, Locust, and Black locust (Table 4).
The specimens consequently broke apart in a tangential direction. In addition, the fractures occurred
along the latewood vessel fields where high portions of paratracheal parenchyma were present
(Figure 3). The ring-porous hardwoods with broad wood rays, such as the English oak, also showed
fractures running parallel to the latter. Finally, the average diameters of the earlywood vessels were not
correlated with the structural integrity, although, in the earlywood of all the ring-porous hardwoods,
the fractures occurred preferentially in a tangential direction following the vessel rings.
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Table 4. The anatomical characteristics (earlywood vessel diameter, vessel density, ray density) and
description of fractures during the HEMI-tests of different hardwood species (standard deviation
in parentheses).

Wood Species
Earlywood
Vessel Ø

Vessel
Density

Wood Ray
Density

Fracture Behaviour 1

[μm] [mm−2] [mm−1] tang. rad.

English oak sw 2 247 (51) 7.7 (1.6) 8.4 (2.0) EW P
English oak hw 202 (49) 10.1 (2.0) 10.7 (1.8) EW P

Black locust 190 (40) 11.5 (1.0) 6.9 (1.1) EW R *
Sweet chestnut 209 (30) 7.7 (1.5) 11.8 (1.5) EW V-V

Ash 3 169 (21) 13.8 (1.7) 6.6 (0.8) EW n.a.
Locust 165 (25) 16.1 (2.0) 4.4 (1.2) EW R, P *

Common walnut 134 (32) 7.7 (2.0) 5.7 (1.3) V-V V-V
Wild cherry 33 (8) 171.6 (31.3) 6.1 (1.4) GR R

Black cherry 4 33 (9) 67.9 (22.9) 5.6 (1.3) n.a. R
European beech 40 (8) 131.9 (15.4) 3.0 (1.3) GR * n.a.

Maple 5 46 (7) 54.5 (3.4) 7.9 (1.7) GR R *
Lime 6 39 (9) 104.7 (14.0) 4.8 (1.1) n.a. n.a.
Birch 54 (13) 45.2 (8.5) 8.3 (2.4) n.a. R
Hazel 28 (6) 98.9 (20.2) 11.6 (2.5) GR n.a.

Boxwood 6 10 (4) 213.9 (14.0) 11.0 (2.5) n.a. R *
Poplar 7 58 (13) 33.7 (6.4) 11.0 (1.5) n.a. R

Alder 41 (10) 108.0 (16.7) 11.7 (2.0) GR * R
Kiri 164 (55) 5.2 (2.0) 2.4 (0.8) V-V V-V, R *

Shining gum 2 144 (25) 7.6 (3.2) 11.3 (1.1) V-V V-V
Teak 8 184 (57) 6.3 (1.7) 4.1 (0.7) V-V R *
Ipé 2 103 (9) 23.2 (2.7) 7.8 (0.9) P * V-V

Merbau 250 (40) 4.0 (1.4) 4.2 (0.9) V-V, P * V-V, P *
Bangkirai 207 (32) 7.3 (1.7) 3.7 (1.3) P V-V, R *

Balau 137 (13) 11.9 (2.9) 9.1 (1.2) P V-V, R *
Bongossi 232 (41) 2.9 (1.1) 9.9 (1.2) P V-V, P *

Amaranth 109 (16) 4.4 (1.7) 6.9 (1.7) P, V * R
Basralocus 2 190 (33) 2.8 (1.0) 7.9 (1.0) P * V-V

Garapa 121 (19) 15.2 (3.0) 8.3 (1.3) P V-V
Limba 139 (28) 4.4 (1.7) 10.2 (1.0) n.a. R

Kambala 193 (41) 2.8 (0.8) 4.4 (1.0) (P) R
Massaranduba 113 (18) 13.1 (3.3) 10.5 (1.5) (P) R
Greenheart 2 90 (16) 14.0 (2.0) 7.5 (0.9) n.a. V-V

1 n.a. = not available (no clear pattern evident), GR = along growth rings, R = along rays, RC = along resin canals,
EW = along earlywood vessels, P = in parenchyma tissue, V-V = vessel to vessel, V = at vessels, * = characteristic
plays minor role; remarks related to fracture patterns: 2 radial, parallel to rays; 3 no clear radial pattern; 4 very often
parallel to rays; 5 parallel to growth rings; 6 irregular fracture pattern; 7 samples often compressed; 8 often at growth
ring border.

This stands to some extent in contrast to findings by [2], who studied the perpendicular-to-grain
properties of eight North-American hardwood species and found that the earlywood vessel area
fraction negatively influenced the radial maximum stress and strain, whereas the ray width and area
fraction were positively related to the maximum radial properties. The rays also affected the transverse
stiffness significantly.

Studies conducted by [10] showed that wood rays have a positive effect on the tensile strength of
English oak and European ash wood. However, as shown for the fragments obtained in the HEMI-tests,
the latewood vessel fields turned out to be weak spots when it comes to dynamic loads in different
anatomical directions. Therefore, the potentially positive effect of the wood rays on the structural
integrity might be superposed by other anatomical features.

Finally, the RIM of the heartwood of the English oak (87.3%) was significantly higher than that
of its sapwood (83.3%), which is to some extent surprising since sapwood is often considered to be
less brittle than heartwood [11]. While the fine percentage (F) of both English oak materials was
almost equal, the degree of integrity (I) of the heartwood was remarkably higher than that of the
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sapwood, which might be related to the potential ‘gluing’ effects of the tylosis which were present in
the earlywood vessels in the heartwood (Figure 3b), but were absent in the sapwood. Whether and
to what extent the formation of tylosis has a positive effect on structural integrity would need to be
further investigated using different generally tylosis-forming wood species.

  

Figure 3. The fracture pattern in the ring-porous hardwoods: (a) Cross section of the Ash, fracture
within a ring of the earlywood vessels; (b) Cross section of the English oak heartwood, fracture along
the field of the latewood pores and the adjacent parenchyma cells.

By far, the Sweet chestnut showed the lowest RIM among the ring-porous hardwoods, which
might be related to its high wood ray density (Table 4), but no clear correlation between the ray density
and structural integrity became evident (Figure 4). Furthermore, the radial fractures in the Sweet
chestnut were also running from one vessel to the next. More likely, the higher percentage of vessels
and axial parenchyma leads to a higher number of weak points within the xylem of the Sweet chestnut
compared to the other ring-porous species within this study.

The group of semi-ring-porous hardwood species, which was represented by the Teak, Wild cherry
and Walnut in this study, takes an intermediate position between the ring- and the diffuse-porous
species. This also became evident when analyzing the fracture patterns obtained through the HEMI-test.
As shown in Figure 5a for the Wild cherry, the fractures occurred along the growth ring borders but
did not run through the earlywood vessel rings.

In the diffuse-porous hardwoods, the RIM varied most, i.e., between 80.9% (Kiri) and 90.3%
(Boxwood), respectively. Although these two species also represent the extremes in ODD, the latter
was not correlated with the structural integrity, as shown in Figure 1. Nevertheless, in contrast to the
ring-porous hardwood species, the average earlywood vessel diameter of the diffuse-porous hardwood
species was correlated with the RIM (R2 = 0.4704), as shown in Figure 6. [12] studied angiosperm wood
species and concluded that the tissue density outside the vessel lumens must predominantly influence
wood density. Furthermore, they suggest that both the density and the vessel lumen fraction affect the
mechanical strength properties.

It became also obvious that in different wood species such as the Kiri, Walnut, Shining gum and
further tropical species, the fractures occurred between the vessels, both in the radial and tangential
directions (Table 4). Consequently, the vessels turned out to be general weak points in the fiber
tissue of the hardwoods, where the weakness increases with an increasing vessel diameter. Figure 7a
shows, as an example for the Bongossi, that the vessels served as a starting point for the fractures
independently from its anatomical orientation. Tropical species with comparatively small vessels
such as the Amaranth, Bangkirai, Garapa, and Ipé showed a rather high RIM. On the extreme end of
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the scale, the Merbau showed the lowest RIM and also the largest vessel diameters of all the species.
Furthermore, distinct parenchyma bands and wood rays appeared to be weak (and therefore starting
points for fractures) in tropical species as well, as also shown in Figure 7. The fractures cutting the wood
rays appeared only where the rays were deflected by the vessels from their straight radial orientation.
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Figure 4. The relationship between the average ray density and the Resistance to Impact Milling
(RIM): (a) all wood species (y = 0.2354x + 83.247); (b) softwoods (y = −0.0252x + 84.454); (c) ring-
and semi-ring-porous hardwoods (y = −0.5083x + 87.875); (d) and diffuse-porous hardwoods
(y = 0.4365x + 81.997).

Figure 5. The fracture pattern in semi-ring-porous and diffuse-porous hardwoods: (a) the cross section
of the Wild cherry, the fracture along a growth ring border; (b) the radial fracture section of the Alder,
the fracture along the rays.
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Figure 6. The relationship between the average earlywood vessel diameters and the resistance to impact
milling (RIM): (a) all wood species (y = −0.0213x + 86.982); (b) softwoods (y = −0.0814x + 86.425);
(c) ring- and semi-ring-porous hardwoods (y = −0.0213x + 87.857); and (d) diffuse-porous hardwoods
(y = −0.0445x + 90.309).

  

Figure 7. The fracture pattern in the diffuse-porous hardwoods: (a) the cross section of the Bongossi,
the tangential fractures; (b) the cross section of the Amaranth—the radial fractures along the rays.
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4. Conclusions

In this study, we showed that the differences in the structural integrity of wood and thus in the
brittleness are predominantly affected by anatomical characteristics. The size, density and distribution
of the vessels as well as the ray density of the wood were found to have a significant impact on the
structural integrity of the hardwoods. The structural integrity of the softwoods was, on the other hand,
affected by the number of growth ring borders and the occurrence of resin canals. The density affected
the Resistance to Impact Milling (RIM) of neither the softwoods nor the hardwoods.

Consequently, for applications where the brittleness of wood is more relevant than
its elasto-mechanical properties, which are generally strongly correlated with wood density,
other anatomical characteristics need to be considered for assessing wood quality. In particular,
where dynamic loads impact on wooden components, the brittleness of wood becomes a critical issue.
Dynamic loads paired with long-term wear and abrasion can be expected, for instance, on outdoor
flooring. Furthermore, during wood processing, machining and handling during industrial processes,
numerous dynamic impacts occur and affect the structural integrity of wood.

Wood quality is consequently strongly purpose-specific and cannot be simply derived from
wood density data. Anatomical features showed a high potential to serve as better indicators for the
structural integrity of wood. Additional influences such as the occurrence of reaction wood, alternating
rotational growth and other types of fiber deviations likely affect the structural integrity of wood to
a similarly extent. In summary, the findings from this study confirmed the need for test methods
other than standard strength tests. As long as the common knowledge about wood anatomy and its
effects on mechanical wood properties is incomplete, methods are needed that are sensitive, reliable,
and accurate enough to characterize the structures of wood in a comprehensive manner. As shown
with the HEMI-method applied in this study, indicators can be delivered for instance of the structural
integrity of wood. However, further tests are needed, paired with more detailed analyses of the
anatomical and chemical constitution of the wood samples being tested, to achieve a fully satisfactory
insight on the relationship between wood anatomy and its structural integrity.
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