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Preface

What This Book Is About

The most visible use of computers and software is processing information for human
consumption. We use them to write books (like this one), search for information on
the web, communicate via email, and keep track of financial data. The vast majority of
computers in use, however, are much less visible. They run the engine, brakes, seatbelts,
airbag, and audio system in your car. They digitally encode your voice and construct a
radio signal to send it from your cell phone to a base station. They control your microwave
oven, refrigerator, and dishwasher. They run printers ranging from desktop inkjet printers
to large industrial high-volume printers. They command robots on a factory floor, power
generation in a power plant, processes in a chemical plant, and traffic lights in a city. They
search for microbes in biological samples, construct images of the inside of a human body,
and measure vital signs. They process radio signals from space looking for supernovae
and for extraterrestrial intelligence. They bring toys to life, enabling them to react to
human touch and to sounds. They control aircraft and trains. These less visible computers
are called embedded systems, and the software they run is called embedded software.

Despite this widespread prevalence of embedded systems, computer science has, through-
out its relatively short history, focused primarily on information processing. Only recently
have embedded systems received much attention from researchers. And only recently has
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the community recognized that the engineering techniques required to design and ana-
lyze these systems are distinct. Although embedded systems have been in use since the
1970s, for most of their history they were seen simply as small computers. The principal
engineering problem was understood to be one of coping with limited resources (limited
processing power, limited energy sources, small memories, etc.). As such, the engineer-
ing challenge was to optimize the designs. Since all designs benefit from optimization,
the discipline was not distinct from anything else in computer science. It just had to be
more aggressive about applying the same optimization techniques.

Recently, the community has come to understand that the principal challenges in em-
bedded systems stem from their interaction with physical processes, and not from their
limited resources. The term cyber-physical systems (CPS) was coined by Helen Gill at the
National Science Foundation in the U.S. to refer to the integration of computation with
physical processes. In CPS, embedded computers and networks monitor and control the
physical processes, usually with feedback loops where physical processes affect compu-
tations and vice versa. The design of such systems, therefore, requires understanding the
joint dynamics of computers, software, networks, and physical processes. It is this study
of joint dynamics that sets this discipline apart.

When studying CPS, certain key problems emerge that are rare in so-called general-
purpose computing. For example, in general-purpose software, the time it takes to per-
form a task is an issue of performance, not correctness. It is not incorrect to take longer
to perform a task. It is merely less convenient and therefore less valuable. In CPS, the
time it takes to perform a task may be critical to correct functioning of the system. In the
physical world, as opposed to the cyber world, the passage of time is inexorable.

In CPS, moreover, many things happen at once. Physical processes are compositions
of many things going on at once, unlike software processes, which are deeply rooted
in sequential steps. Abelson and Sussman (1996) describe computer science as “proce-
dural epistemology,” knowledge through procedure. In the physical world, by contrast,
processes are rarely procedural. Physical processes are compositions of many parallel
processes. Measuring and controlling the dynamics of these processes by orchestrating
actions that influence the processes are the main tasks of embedded systems. Conse-
quently, concurrency is intrinsic in CPS. Many of the technical challenges in designing
and analyzing embedded software stem from the need to bridge an inherently sequential
semantics with an intrinsically concurrent physical world.
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PREFACE

Why We Wrote This Book

The mechanisms by which software interacts with the physical world are changing rapidly.
Today, the trend is towards “smart” sensors and actuators, which carry microprocessors,
network interfaces, and software that enables remote access to the sensor data and remote
activation of the actuator. Called variously the Internet of Things (IoT), Industry 4.0, the
Industrial Internet, Machine-to-Machine (M2M), the Internet of Everything, the Smarter
Planet, TSensors (Trillion Sensors), or The Fog (like The Cloud, but closer to the ground),
the vision is of a technology that deeply connects our physical world with our information
world. In the IoT world, the interfaces between these worlds are inspired by and derived
from information technology, particularly web technology.

IoT interfaces are convenient, but not yet suitable for tight interactions between the two
worlds, particularly for real-time control and safety-critical systems. Tight interactions
still require technically intricate, low-level design. Embedded software designers are
forced to struggle with interrupt controllers, memory architectures, assembly-level pro-
gramming (to exploit specialized instructions or to precisely control timing), device driver
design, network interfaces, and scheduling strategies, rather than focusing on specifying
desired behavior.

The sheer mass and complexity of these technologies (at both the high level and the low
level) tempts us to focus an introductory course on mastering them. But a better intro-
ductory course would focus on how to model and design the joint dynamics of software,
networks, and physical processes. Such a course would present the technologies only as
today’s (rather primitive) means of accomplishing those joint dynamics. This book is our
attempt at a textbook for such a course.

Most texts on embedded systems focus on the collection of technologies needed to get
computers to interact with physical systems (Barr and Massa, 2006; Berger, 2002; Burns
and Wellings, 2001; Kamal, 2008; Noergaard, 2005; Parab et al., 2007; Simon, 2006; Val-
vano, 2007; Wolf, 2000). Others focus on adaptations of computer-science techniques
(like programming languages, operating systems, networking, etc.) to deal with techni-
cal problems in embedded systems (Buttazzo, 2005a; Edwards, 2000; Pottie and Kaiser,
2005). While these implementation technologies are (today) necessary for system de-
signers to get embedded systems working, they do not form the intellectual core of the
discipline. The intellectual core is instead in models and abstractions that conjoin com-
putation and physical dynamics.
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A few textbooks offer efforts in this direction. Jantsch (2003) focuses on concurrent mod-
els of computation, Marwedel (2011) focuses on models of software and hardware behav-
ior, and Sriram and Bhattacharyya (2009) focus on dataflow models of signal processing
behavior and their mapping onto programmable DSPs. Alur (2015) focuses on formal
modeling, specification, and verification of cyber-physical systems. These are excellent
textbooks that cover certain topics in depth. Models of concurrency (such as dataflow)
and abstract models of software (such as Statecharts) provide a better starting point than
imperative programming languages (like C), interrupts and threads, and architectural an-
noyances that a designer must work around (like caches). These texts, however, do not
address all the needs of an introductory course. They are either too specialized or too
advanced or both. This book is our attempt to provide an introductory text that follows
the spirit of focusing on models and their relationship to realizations of systems.

The major theme of this book is on models and their relationship to realizations of sys-
tems. The models we study are primarily about dynamics, the evolution of a system state
in time. We do not address structural models, which represent static information about the
construction of a system, although these too are important to embedded system design.

Working with models has a major advantage. Models can have formal properties. We can
say definitive things about models. For example, we can assert that a model is determinate,
meaning that given the same inputs it will always produce the same outputs. No such
absolute assertion is possible with any physical realization of a system. If our model is
a good abstraction of the physical system (here, “good abstraction” means that it omits
only inessential details), then the definitive assertion about the model gives us confidence
in the physical realization of the system. Such confidence is hugely valuable, particularly
for embedded systems where malfunctions can threaten human lives. Studying models of
systems gives us insight into how those systems will behave in the physical world.

Our focus is on the interplay of software and hardware with the physical environment in
which they operate. This requires explicit modeling of the temporal dynamics of soft-
ware and networks and explicit specification of concurrency properties intrinsic to the
application. The fact that the implementation technologies have not yet caught up with
this perspective should not cause us to teach the wrong engineering approach. We should
teach design and modeling as it should be, and enrich this with a critical presentation
of how it is. Embedded systems technologies today, therefore, should not be presented
dispassionately as a collection of facts and tricks, as they are in many of the above cited
books, but rather as stepping stones towards a sound design practice. The focus should be
on what that sound design practice is, and on how today’s technologies both impede and
achieve it.
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Stankovic et al. (2005) support this view, stating that “existing technology for RTES [real-
time embedded systems] design does not effectively support the development of reliable
and robust embedded systems.” They cite a need to “raise the level of programming
abstraction.” We argue that raising the level of abstraction is insufficient. We also have
to fundamentally change the abstractions that are used. Timing properties of software,
for example, cannot be effectively introduced at higher levels of abstraction if they are
entirely absent from the lower levels of abstraction on which these are built.

We require robust and predictable designs with repeatable temporal dynamics (Lee, 2009a).
We must do this by building abstractions that appropriately reflect the realities of cyber-
physical systems. The result will be CPS designs that can be much more sophisticated,
including more adaptive control logic, evolvability over time, and improved safety and re-
liability, all without suffering from the brittleness of today’s designs, where small changes
have big consequences.

In addition to dealing with temporal dynamics, CPS designs invariably face challenging
concurrency issues. Because software is so deeply rooted in sequential abstractions, con-
currency mechanisms such as interrupts and multitasking, using semaphores and mutual
exclusion, loom large. We therefore devote considerable effort in this book to developing
a critical understanding of threads, message passing, deadlock avoidance, race conditions,
and data determinism.

Note about This Edition

This is the second edition of the textbook. In addition to several bug fixes and improve-
ments to presentation and wording, it includes two new chapters. Chapter 7 covers sensors
and actuators with an emphasis on modeling. Chapter 17 covers the basics of security and
privacy for embedded systems.

What Is Missing

Even with the new additions, this version of the book is not complete. It is arguable, in
fact, that complete coverage of embedded systems in the context of CPS is impossible.
Specific topics that we cover in the undergraduate Embedded Systems course at Berkeley
(see http://LeeSeshia.org) and hope to include in future versions of this book include
networking, fault tolerance, simulation techniques, control theory, and hardware/software
codesign.
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Figure 1: Map of the book with strong and weak dependencies between chapters.
Strong dependencies between chapters are shown with arrows in black. Weak
dependencies are shown in grey. When there is a weak dependency from chapter
i to chapter j, then j may mostly be read without reading i, at most requiring
skipping some examples or specialized analysis techniques.
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How to Use This Book

This book is divided into three major parts, focused on modeling, design, and analysis, as
shown in Figure 1. The three parts of the book are relatively independent of one another
and are largely meant to be read concurrently. A systematic reading of the text can be
accomplished in eight segments, shown with dashed outlines. Most segments include two
chapters, so complete coverage of the text is possible in a 15 week semester, allowing two
weeks for most modules.

The appendices provide background material that is well covered in other textbooks, but
which can be quite helpful in reading this text. Appendix A reviews the notation of
sets and functions. This notation enables a higher level of precision than is common
in the study of embedded systems. Appendix B reviews basic results in the theory of
computability and complexity. This facilitates a deeper understanding of the challenges
in modeling and analysis of systems. Note that Appendix B relies on the formalism of
state machines covered in Chapter 3, and hence should be read after reading Chapter 3.

In recognition of recent advances in technology that are fundamentally changing the tech-
nical publishing industry, this book is published in a non-traditional way. At least the
present version is available free in the form of PDF file designed specifically for reading
on tablet computers. It can be obtained from the website http://LeeSeshia.org. The layout
is optimized for medium-sized screens, particularly laptop computers and the iPad and
other tablets. Extensive use of hyperlinks and color enhance the online reading experi-
ence.

We attempted to adapt the book to e-book formats, which, in theory, enable reading on
various sized screens, attempting to take best advantage of the available screen. However,
like HTML documents, e-book formats use a reflow technology, where page layout is
recomputed on the fly. The results are highly dependent on the screen size and prove
ludicrous on many screens and suboptimal on all. As a consequence, we have opted
for controlling the layout, and we do not recommend attempting to read the book on an
smartphone.

Although the electronic form is convenient, we recognize that there is real value in a
tangible manifestation on paper, something you can thumb through, something that can
live on a bookshelf to remind you of its existence. This edition is published by MIT Press,
who has assured us that they will keep the book affordable.
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Two disadvantages of print media compared to electronic media are the lack of hyperlinks
and the lack of text search. We have attempted to compensate for those limitations by
providing page number references in the margins whenever a term is used that is defined
elsewhere. The term that is defined elsewhere is underlined with a discrete light gray line.
In addition, we have provided an extensive index, with more than 2,000 entries.

There are typographic conventions worth noting. When a term is being defined, it will ap-
pear in bold face, and the corresponding index entry will also be in bold face. Hyperlinks
are shown in blue in the electronic version. The notation used in diagrams, such as those
for finite-state machines, is intended to be familiar, but not to conform with any particular
programming or modeling language.

Intended Audience

This book is intended for students at the advanced undergraduate level or introductory
graduate level, and for practicing engineers and computer scientists who wish to under-
stand the engineering principles of embedded systems. We assume that the reader has
some exposure to machine structures (e.g., should know what an ALU is), computer pro-
gramming (we use C throughout the text), basic discrete mathematics and algorithms, and
at least an appreciation for signals and systems (what it means to sample a continuous-
time signal, for example).

Reporting Errors

If you find errors or typos in this book, or if you have suggestions for improvements or
other comments, please send email to:

authors@leeseshia.org

Please include the version number of the book, whether it is the electronic or the hard-
copy distribution, and the relevant page numbers. Thank you!

Lee & Seshia, Introduction to Embedded Systems xvii

mailto:authors@leeseshia.org
http://LeeSeshia.org


PREFACE

Acknowledgments

The authors gratefully acknowledge contributions and helpful suggestions from Murat
Arcak, Dai Bui, Janette Cardoso, Gage Eads, Stephen Edwards, Suhaib Fahmy, Shanna-
Shaye Forbes, Daniel Holcomb, Jeff C. Jensen, Garvit Juniwal, Hokeun Kim, Jonathan
Kotker, Wenchao Li, Isaac Liu, Slobodan Matic, Mayeul Marcadella, Le Ngoc Minh,
Christian Motika, Chris Myers, Steve Neuendorffer, David Olsen, Minxue Pan, Hiren Pa-
tel, Jan Reineke, Rhonda Righter, Alberto Sangiovanni-Vincentelli, Chris Shaver, Shih-
Kai Su (together with students in CSE 522, lectured by Dr. Georgios E. Fainekos at
Arizona State University), Stavros Tripakis, Pravin Varaiya, Reinhard von Hanxleden,
Armin Wasicek, Kevin Weekly, Maarten Wiggers, Qi Zhu, and the students in UC Berke-
ley’s EECS 149 class over the past years, particularly Ned Bass and Dan Lynch. The
authors are especially grateful to Elaine Cheong, who carefully read most chapters and
offered helpful editorial suggestions. We also acknowledge the bug fixes and suggestions
sent in by several readers which has helped us improve the book since its initial publica-
tion. We give special thanks to our families for their patience and support, particularly
to Helen, Katalina, and Rhonda (from Edward), and Amma, Appa, Ashwin, Bharathi,
Shriya, and Viraj (from Sanjit).

This book is almost entirely constructed using open-source software. The typesetting is
done using LaTeX, and many of the figures are created using Ptolemy II. See:

http://ptolemy.org

xviii Lee & Seshia, Introduction to Embedded Systems

http://ptolemy.org
http://LeeSeshia.org


PREFACE

Further Reading

Many textbooks on embedded systems have appeared in recent years. These books
approach the subject in surprisingly diverse ways, often reflecting the perspective of
a more established discipline that has migrated into embedded systems, such as VLSI
design, control systems, signal processing, robotics, real-time systems, or software
engineering. Some of these books complement the present one nicely. We strongly
recommend them to the reader who wishes to broaden his or her understanding of the
subject.

Specifically, Patterson and Hennessy (1996), although not focused on embedded pro-
cessors, is the canonical reference for computer architecture, and a must-read for any-
one interested embedded processor architectures. Sriram and Bhattacharyya (2009) fo-
cus on signal processing applications, such as wireless communications and digital me-
dia, and give particularly thorough coverage to dataflow programming methodologies.
Wolf (2000) gives an excellent overview of hardware design techniques and micropro-
cessor architectures and their implications for embedded software design. Mishra and
Dutt (2005) give a view of embedded architectures based on architecture description
languages (ADLs). Oshana (2006) specializes in DSP processors from Texas Instru-
ments, giving an overview of architectural approaches and a sense of assembly-level
programming.

Focused more on software, Buttazzo (2005a) is an excellent overview of schedul-
ing techniques for real-time software. Liu (2000) gives one of the best treatments
yet of techniques for handling sporadic real-time events in software. Edwards (2000)
gives a good overview of domain-specific higher-level programming languages used
in some embedded system designs. Pottie and Kaiser (2005) give a good overview
of networking technologies, particularly wireless, for embedded systems. Koopman
(2010) focuses on design process for embedded software, including requirements man-
agement, project management, testing plans, and security plans. Alur (2015) provides
an excellent, in-depth treatment of formal modeling and verification of cyber-physical
systems.

No single textbook can comprehensively cover the breadth of technologies available
to the embedded systems engineer. We have found useful information in many of the
books that focus primarily on today’s design techniques (Barr and Massa, 2006; Berger,
2002; Burns and Wellings, 2001; Gajski et al., 2009; Kamal, 2008; Noergaard, 2005;
Parab et al., 2007; Simon, 2006; Schaumont, 2010; Vahid and Givargis, 2010).
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Notes for Instructors

At Berkeley, we use this text for an advanced undergraduate course called Introduction
to Embedded Systems. A great deal of material for lectures and labs can be found via
the main web page for this text:

http://leeseshia.org

In addition, a solutions manual and other instructional material are available to qualified
instructors at bona fide teaching institutions. See

http://chess.eecs.berkeley.edu/instructors/

or contact authors@leeseshia.org.
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A cyber-physical system (CPS) is an integration of computation with physical processes
whose behavior is defined by both cyber and physical parts of the system. Embedded com-
puters and networks monitor and control the physical processes, usually with feedback
loops where physical processes affect computations and vice versa. As an intellectual
challenge, CPS is about the intersection, not the union, of the physical and the cyber. It
is not sufficient to separately understand the physical components and the computational
components. We must instead understand their interaction.

In this chapter, we use a few CPS applications to outline the engineering principles of
such systems and the processes by which they are designed.



1.1. APPLICATIONS

1.1 Applications

CPS applications arguably have the potential to eclipse the 20th century information tech-
nology (IT) revolution. Consider the following examples.

Example 1.1: Heart surgery often requires stopping the heart, performing the
surgery, and then restarting the heart. Such surgery is extremely risky and carries
many detrimental side effects. A number of research teams have been working on
an alternative where a surgeon can operate on a beating heart rather than stopping
the heart. There are two key ideas that make this possible. First, surgical tools
can be robotically controlled so that they move with the motion of the heart (Kre-
men, 2008). A surgeon can therefore use a tool to apply constant pressure to a
point on the heart while the heart continues to beat. Second, a stereoscopic video
system can present to the surgeon a video illusion of a still heart (Rice, 2008). To
the surgeon, it looks as if the heart has been stopped, while in reality, the heart
continues to beat. To realize such a surgical system requires extensive modeling
of the heart, the tools, the computational hardware, and the software. It requires
careful design of the software that ensures precise timing and safe fallback be-
haviors to handle malfunctions. And it requires detailed analysis of the models
and the designs to provide high confidence.

Example 1.2: Consider a city where traffic lights and cars cooperate to ensure
efficient flow of traffic. In particular, imagine never having to stop at a red light
unless there is actual cross traffic. Such a system could be realized with expensive
infrastructure that detects cars on the road. But a better approach might be to
have the cars themselves cooperate. They track their position and communicate
to cooperatively use shared resources such as intersections. Making such a system
reliable, of course, is essential to its viability. Failures could be disastrous.
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Example 1.3: Imagine an airplane that refuses to crash. While preventing all
possible causes of a crash is not possible, a well-designed flight control system
can prevent certain causes. The systems that do this are good examples of cyber-
physical systems.

In traditional aircraft, a pilot controls the aircraft through mechanical and hy-
draulic linkages between controls in the cockpit and movable surfaces on the
wings and tail of the aircraft. In a fly-by-wire aircraft, the pilot commands are
mediated by a flight computer and sent electronically over a network to actuators
in the wings and tail. Fly-by-wire aircraft are much lighter than traditional air-
craft, and therefore more fuel efficient. They have also proven to be more reliable.
Virtually all new aircraft designs are fly-by-wire systems.

In a fly-by-wire aircraft, since a computer mediates the commands from the pilot,
the computer can modify the commands. Many modern flight control systems
modify pilot commands in certain circumstances. For example, commercial air-
planes made by Airbus use a technique called flight envelope protection to pre-
vent an airplane from going outside its safe operating range. They can prevent a
pilot from causing a stall, for example.

The concept of flight envelope protection could be extended to help prevent cer-
tain other causes of crashes. For example, the soft walls system proposed by Lee
(2001), if implemented, would track the location of the aircraft on which it is
installed and prevent it from flying into obstacles such as mountains and build-
ings. In Lee’s proposal, as an aircraft approaches the boundary of an obstacle,
the fly-by-wire flight control system creates a virtual pushing force that forces the
aircraft away. The pilot feels as if the aircraft has hit a soft wall that diverts it.
There are many challenges, both technical and non-technical, to designing and
deploying such a system. See Lee (2003) for a discussion of some of these issues.

Although the soft walls system of the previous example is rather futuristic, there are mod-
est versions in automotive safety that have been deployed or are in advanced stages of
research and development. For example, many cars today detect inadvertent lane changes
and warn the driver. Consider the much more challenging problem of automatically cor-
recting the driver’s actions. This is clearly much harder than just warning the driver.

Lee & Seshia, Introduction to Embedded Systems 3

http://LeeSeshia.org


1.1. APPLICATIONS

How can you ensure that the system will react and take over only when needed, and only
exactly to the extent to which intervention is needed?

It is easy to imagine many other applications, such as systems that assist the elderly;
telesurgery systems that allow a surgeon to perform an operation at a remote location;
and home appliances that cooperate to smooth demand for electricity on the power grid.
Moreover, it is easy to envision using CPS to improve many existing systems, such as
robotic manufacturing systems; electric power generation and distribution; process con-
trol in chemical factories; distributed computer games; transportation of manufactured
goods; heating, cooling, and lighting in buildings; people movers such as elevators; and
bridges that monitor their own state of health. The impact of such improvements on safety,
energy consumption, and the economy is potentially enormous.

Many of the above examples will be deployed using a structure like that sketched in
Figure 1.1. There are three main parts in this sketch. First, the physical plant is the
“physical” part of a cyber-physical system. It is simply that part of the system that is not
realized with computers or digital networks. It can include mechanical parts, biological
or chemical processes, or human operators. Second, there are one or more computational
platforms, which consist of sensors, actuators, one or more computers, and (possibly)
one or more operating systems. Third, there is a network fabric, which provides the
mechanisms for the computers to communicate. Together, the platforms and the network
fabric form the “cyber” part of the cyber-physical system.

Figure 1.1 shows two networked platforms each with its own sensors and/or actuators.
The action taken by the actuators affects the data provided by the sensors through the
physical plant. In the figure, Platform 2 controls the physical plant via Actuator 1. It mea-
sures the processes in the physical plant using Sensor 2. The box labeled Computation 2
implements a control law, which determines based on the sensor data what commands to
issue to the actuator. Such a loop is called a feedback control loop. Platform 1 makes
additional measurements using Sensor 1, and sends messages to Platform 2 via the net-
work fabric. Computation 3 realizes an additional control law, which is merged with that
of Computation 2, possibly preempting it.

Example 1.4: Consider a high-speed printing press for a print-on-demand ser-
vice. This might be structured similarly to Figure 1.1, but with many more plat-
forms, sensors, and actuators. The actuators may control motors that drive paper
through the press and ink onto the paper. The control laws may include a strategy
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About the Term “Cyber-Physical Systems”
The term “cyber-physical systems” emerged in 2006, coined by Helen Gill at the
National Science Foundation in the US. We may be tempted to associate the term
“cyberspace” with CPS, but the roots of the term CPS are older and deeper. It would be
more accurate to view the terms “cyberspace” and “cyber-physical systems” as stem-
ming from the same root, “cybernetics,” rather than viewing one as being derived from
the other.

The term “cybernetics” was coined by Norbert Wiener (Wiener, 1948), an Amer-
ican mathematician who had a huge impact on the development of control systems
theory. During World War II, Wiener pioneered technology for the automatic aim-
ing and firing of anti-aircraft guns. Although the mechanisms he used did not involve
digital computers, the principles involved are similar to those used today in a huge
variety of computer-based feedback control systems. Wiener derived the term from
the Greek κυβερνητης (kybernetes), meaning helmsman, governor, pilot, or rudder.
The metaphor is apt for control systems. Wiener described his vision of cybernetics
as the conjunction of control and communication. His notion of control was deeply
rooted in closed-loop feedback, where the control logic is driven by measurements of
physical processes, and in turn drives the physical processes. Even though Wiener did
not use digital computers, the control logic is effectively a computation, and therefore
cybernetics is the conjunction of physical processes, computation, and communica-
tion. Wiener could not have anticipated the powerful effects of digital computation
and networks. The fact that the term “cyber-physical systems” may be ambiguously
interpreted as the conjunction of cyberspace with physical processes, therefore, helps
to underscore the enormous impact that CPS will have. CPS leverages an information
technology that far outstrips even the wildest dreams of Wiener’s era.

The term CPS relates to the currently popular terms Internet of Things (IoT), Indus-
try 4.0, the Industrial Internet, Machine-to-Machine (M2M), the Internet of Everything,
TSensors (trillion sensors), and the Fog (like the Cloud, but closer to the ground). All of
these reflect a vision of a technology that deeply connects our physical world with our
information world. In our view, the term CPS is more foundational and durable than all
of these, because it does not directly reference either implementation approaches (e.g.,
the “Internet” in IoT) nor particular applications (e.g., “Industry” in Industry 4.0). It
focuses instead on the fundamental intellectual problem of conjoining the engineering
traditions of the cyber and the physical worlds.
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Figure 1.1: Example structure of a cyber-physical system.

for compensating for paper stretch, which will typically depend on the type of pa-
per, the temperature, and the humidity. A networked structure like that in Figure
1.1 might be used to induce rapid shutdown to prevent damage to the equipment
in case of paper jams. Such shutdowns need to be tightly orchestrated across the
entire system to prevent disasters. Similar situations are found in high-end in-
strumentation systems and in energy production and distribution (Eidson et al.,
2009).

1.2 Motivating Example

In this section, we describe a motivating example of a cyber-physical system. Our goal is
to use this example to illustrate the importance of the breadth of topics covered in this text.
The specific application is the Stanford testbed of autonomous rotorcraft for multi agent
control (STARMAC), developed by Claire Tomlin and colleagues as a cooperative effort
at Stanford and Berkeley (Hoffmann et al., 2004). The STARMAC is a small quadrotor
aircraft; it is shown in flight in Figure 1.2. Its primary purpose is to serve as a testbed for
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Figure 1.2: The STARMAC quadrotor aircraft in flight (reproduced with permis-
sion).

experimenting with multi-vehicle autonomous control techniques. The objective is to be
able to have multiple vehicles cooperate on a common task.

There are considerable challenges in making such a system work. First, controlling the
vehicle is not trivial. The main actuators are the four rotors, which produce a variable
amount of downward thrust. By balancing the thrust from the four rotors, the vehicle can
take off, land, turn, and even flip in the air. How do we determine what thrust to apply?
Sophisticated control algorithms are required.

Second, the weight of the vehicle is a major consideration. The heavier it is, the more
stored energy it needs to carry, which of course makes it even heavier. The heavier it
is, the more thrust it needs to fly, which implies bigger and more powerful motors and
rotors. The design crosses a major threshold when the vehicle is heavy enough that the
rotors become dangerous to humans. Even with a relatively light vehicle, safety is a
considerable concern, and the system needs to be designed with fault handling.

Third, the vehicle needs to operate in a context, interacting with its environment. It might,
for example, be under the continuous control of a watchful human who operates it by re-
mote control. Or it might be expected to operate autonomously, to take off, perform some
mission, return, and land. Autonomous operation is enormously complex and challeng-
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ing because it cannot benefit from the watchful human. Autonomous operation demands
more sophisticated sensors. The vehicle needs to keep track of where it is (it needs to
perform localization). It needs to sense obstacles, and it needs to know where the ground
is. With good design, it is even possible for such vehicles to autonomously land on the
pitching deck of a ship. The vehicle also needs to continuously monitor its own health, to
detect malfunctions and react to them so as to contain the damage.

It is not hard to imagine many other applications that share features with the quadrotor
problem. The problem of landing a quadrotor vehicle on the deck of a pitching ship is sim-
ilar to the problem of operating on a beating heart (see Example 1.1). It requires detailed
modeling of the dynamics of the environment (the ship, the heart), and a clear understand-
ing of the interaction between the dynamics of the embedded system (the quadrotor, the
robot) and its environment.

The rest of this chapter will explain the various parts of this book, using the quadrotor
example to illustrate how the various parts contribute to the design of such a system.

Figure 1.3: Creating embedded systems requires an iterative process of model-
ing, design, and analysis.
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1.3 The Design Process

The goal of this book is to understand how to go about designing and implementing
cyber-physical systems. Figure 1.3 shows the three major parts of the process, modeling,
design, and analysis. Modeling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and reflect properties of the system.
Models specify what a system does. Design is the structured creation of artifacts. It
specifies how a system does what it does. Analysis is the process of gaining a deeper
understanding of a system through dissection. It specifies why a system does what it does
(or fails to do what a model says it should do).

As suggested in Figure 1.3, these three parts of the process overlap, and the design process
iteratively moves among the three parts. Normally, the process will begin with modeling,
where the goal is to understand the problem and to develop solution strategies.

Example 1.5: For the quadrotor problem of Section 1.2, we might begin by
constructing models that translate commands from a human to move vertically or
laterally into commands to the four motors to produce thrust. A model will reveal
that if the thrust is not the same on the four rotors, then the vehicle will tilt and
move laterally.

Such a model might use techniques like those in Chapter 2 (Continuous Dynam-
ics), constructing differential equations to describe the dynamics of the vehicle.
It would then use techniques like those in Chapter 3 (Discrete Dynamics) to build
state machines that model the modes of operation such as takeoff, landing, hov-
ering, and lateral flight. It could then use the techniques of Chapter 4 (Hybrid
Systems) to blend these two types of models, creating hybrid system models of
the system to study the transitions between modes of operation. The techniques
of Chapters 5 (Composition of State Machines) and 6 (Concurrent Models of
Computation) would then provide mechanisms for composing models of multi-
ple vehicles, models of the interactions between a vehicle and its environment,
and models of the interactions of components within a vehicle.

The process may progress quickly to the design phase, where we begin selecting com-
ponents and putting them together (motors, batteries, sensors, microprocessors, memory
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Figure 1.4: The STARMAC architecture (reproduced with permission).

systems, operating systems, wireless networks, etc.). An initial prototype may reveal
flaws in the models, causing a return to the modeling phase and revision of the models.

Example 1.6: The hardware architecture of the first generation STARMAC
quadrotor is shown in Figure 1.4. At the left and bottom of the figure are a number
of sensors used by the vehicle to determine where it is (localization) and what is
around it. In the middle are three boxes showing three distinct microprocessors.
The Robostix is an Atmel AVR 8-bit microcontroller that runs with no operat-
ing system and performs the low-level control algorithms to keep the craft flying.
The other two processors perform higher-level tasks with the help of an operating
system. Both processors include wireless links that can be used by cooperating
vehicles and ground controllers.

10 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


1. INTRODUCTION

Chapter 7 (Sensors and Actuators) considers sensors and actuators, including the IMU and
rangers shown in Figure 1.4. Chapter 8 (Embedded Processors) considers processor ar-
chitectures, offering some basis for comparing the relative advantages of one architecture
or another. Chapter 9 (Memory Architectures) considers the design of memory systems,
emphasizing the impact that they can have on overall system behavior. Chapter 10 (Input
and Output) considers the interfacing of processors with sensors and actuators. Chap-
ters 11 (Multitasking) and 12 (Scheduling) focus on software architecture, with particular
emphasis on how to orchestrate multiple real-time tasks.

In a healthy design process, analysis figures prominently early in the process. Analysis
will be applied to the models and to the designs. The models may be analyzed for safety
conditions, for example to ensure an invariant that asserts that if the vehicle is within one
meter of the ground, then its vertical speed is no greater than 0.1 meter/sec. The designs
may be analyzed for the timing behavior of software, for example to determine how long
it takes the system to respond to an emergency shutdown command. Certain analysis
problems will involve details of both models and designs. For the quadrotor example, it
is important to understand how the system will behave if network connectivity is lost and
it becomes impossible to communicate with the vehicle. How can the vehicle detect that
communication has been lost? This will require accurate modeling of the network and the
software.

Example 1.7: For the quadrotor problem, we use the techniques of Chapter 13
(Invariants and Temporal Logic) to specify key safety requirements for operation
of the vehicles. We would then use the techniques of Chapters 14 (Equivalence
and Refinement) and 15 (Reachability Analysis and Model Checking) to verify
that these safety properties are satisfied by implementations of the software. The
techniques of Chapter 16 (Quantitative Analysis) would be used to determine
whether real-time constraints are met by the software. Finally, the techniques of
Chapter 17 would be used to ensure that malicious parties cannot take control of
the quadrotor and that any confidential data it may be gathering is not leaked to
an adversary.

Corresponding to a design process structured as in Figure 1.3, this book is divided into
three major parts, focused on modeling, design, and analysis (see Figure 1 on page xv).
We now describe the approach taken in the three parts.
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1.3.1 Modeling

The modeling part of the book, which is the first part, focuses on models of dynamic
behavior. It begins with a light coverage of the big subject of modeling of physical dy-
namics in Chapter 2, specifically focusing on continuous dynamics in time. It then talks
about discrete dynamics in Chapter 3, using state machines as the principal formalism.
It then combines the two, continuous and discrete dynamics, with a discussion of hybrid
systems in Chapter 4. Chapter 5 (Composition of State Machines) focuses on concurrent
composition of state machines, emphasizing that the semantics of composition is a critical
issue with which designers must grapple. Chapter 6 (Concurrent Models of Computation)
gives an overview of concurrent models of computation, including many of those used in
design tools that practitioners frequently leverage, such as Simulink and LabVIEW.

In the modeling part of the book, we define a system to be simply a combination of parts
that is considered as a whole. A physical system is one realized in matter, in contrast
to a conceptual or logical system such as software and algorithms. The dynamics of a
system is its evolution in time: how its state changes. A model of a physical system is a
description of certain aspects of the system that is intended to yield insight into properties
of the system. In this text, models have mathematical properties that enable systematic
analysis. The model imitates properties of the system, and hence yields insight into that
system.

A model is itself a system. It is important to avoid confusing a model and the system that it
models. These are two distinct artifacts. A model of a system is said to have high fidelity
if it accurately describes properties of the system. It is said to abstract the system if it
omits details. Models of physical systems inevitably do omit details, so they are always
abstractions of the system. A major goal of this text is to develop an understanding of
how to use models, of how to leverage their strengths and respect their weaknesses.

A cyber-physical system (CPS) is a system composed of physical subsystems together
with computing and networking. Models of cyber-physical systems normally include
all three parts. The models will typically need to represent both dynamics and static
properties (those that do not change during the operation of the system). It is important
to note that a model of a cyber-physical system need not have both discrete and continuous
parts. It is possible for a purely discrete (or purely continuous) model to have high fidelity
for the properties of interest.

Each of the modeling techniques described in this part of the book is an enormous subject,
much bigger than one chapter, or even one book. In fact, such models are the focus of
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many branches of engineering, physics, chemistry, and biology. Our approach is aimed at
engineers. We assume some background in mathematical modeling of dynamics (calculus
courses that give some examples from physics are sufficient), and then focus on how to
compose diverse models. This will form the core of the cyber-physical system problem,
since joint modeling of the cyber side, which is logical and conceptual, with the physical
side, which is embodied in matter, is the core of the problem. We therefore make no
attempt to be comprehensive, but rather pick a few modeling techniques that are widely
used by engineers and well understood, review them, and then compose them to form a
cyber-physical whole.

1.3.2 Design

The second part of the book has a very different flavor, reflecting the intrinsic heterogene-
ity of the subject. This part focuses on the design of embedded systems, with emphasis
on the role they play within a CPS. Chapter 7 (Sensors and Actuators) considers sensors
and actuators, with emphasis on how to model them so that their role in overall system
dynamics is understood. Chapter 8 (Embedded Processors) discusses processor architec-
tures, with emphasis on specialized properties most suited to embedded systems. Chapter
9 (Memory Architectures) describes memory architectures, including abstractions such
as memory models in programming languages, physical properties such as memory tech-
nologies, and architectural properties such as memory hierarchy (caches, scratchpads,
etc.). The emphasis is on how memory architecture affects dynamics. Chapter 10 (Input
and Output) is about the interface between the software world and the physical world. It
discusses input/output mechanisms in software and computer architectures, and the digi-
tal/analog interface, including sampling. Chapter 11 (Multitasking) introduces the notions
that underlie operating systems, with particular emphasis on multitasking. The emphasis
is on the pitfalls of using low-level mechanisms such as threads, with a hope of convinc-
ing the reader that there is real value in using the modeling techniques covered in the first
part of the book. Those modeling techniques help designers build confidence in system
designs. Chapter 12 (Scheduling) introduces real-time scheduling, covering many of the
classic results in the area.

In all chapters in the design part, we particularly focus on the mechanisms that provide
concurrency and control over timing, because these issues loom large in the design of
cyber-physical systems. When deployed in a product, embedded processors typically
have a dedicated function. They control an automotive engine or measure ice thickness
in the Arctic. They are not asked to perform arbitrary functions with user-defined soft-
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ware. Consequently, the processors, memory architectures, I/O mechanisms, and operat-
ing systems can be more specialized. Making them more specialized can bring enormous
benefits. For example, they may consume far less energy, and consequently be usable
with small batteries for long periods of time. Or they may include specialized hardware
to perform operations that would be costly to perform on general-purpose hardware, such
as image analysis. Our goal in this part is to enable the reader to critically evaluate the
numerous available technology offerings.

One of the goals in this part of the book is to teach students to implement systems while
thinking across traditional abstraction layers — e.g., hardware and software, computa-
tion and physical processes. While such cross-layer thinking is valuable in implementing
systems in general, it is particularly essential in embedded systems given their heteroge-
neous nature. For example, a programmer implementing a control algorithm expressed
in terms of real-valued quantities must have a solid understanding of computer arithmetic
(e.g., of fixed-point numbers) in order to create a reliable implementation. Similarly, an
implementor of automotive software that must satisfy real-time constraints must be aware
of processor features – such as pipelines and caches – that can affect the execution time
of tasks and hence the real-time behavior of the system. Likewise, an implementor of
interrupt-driven or multi-threaded software must understand the atomic operations pro-
vided by the underlying software-hardware platform and use appropriate synchronization
constructs to ensure correctness. Rather than doing an exhaustive survey of different im-
plementation methods and platforms, this part of the book seeks to give the reader an ap-
preciation for such cross-layer topics, and uses homework exercises to facilitate a deeper
understanding of them.

1.3.3 Analysis

Every system must be designed to meet certain requirements. For embedded systems,
which are often intended for use in safety-critical, everyday applications, it is essential
to certify that the system meets its requirements. Such system requirements are also
called properties or specifications. The need for specifications is aptly captured by the
following quotation, paraphrased from Young et al. (1985):

“A design without specifications cannot be right or wrong, it can only be
surprising!”
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The analysis part of the book focuses on precise specifications of properties, on tech-
niques for comparing specifications, and on techniques for analyzing specifications and
the resulting designs. Reflecting the emphasis on dynamics in the text, Chapter 13 (Invari-
ants and Temporal Logic) focuses on temporal logics, which provide precise descriptions
of dynamic properties of systems. These descriptions are treated as models. Chapter 14
(Equivalence and Refinement) focuses on the relationships between models. Is one model
an abstraction of another? Is it equivalent in some sense? Specifically, that chapter intro-
duces type systems as a way of comparing static properties of models, and language con-
tainment and simulation relations as a way of comparing dynamic properties of models.
Chapter 15 (Reachability Analysis and Model Checking) focuses on techniques for ana-
lyzing the large number of possible dynamic behaviors that a model may exhibit, with par-
ticular emphasis on model checking as a technique for exploring such behaviors. Chapter
16 (Quantitative Analysis) is about analyzing quantitative properties of embedded soft-
ware, such as finding bounds on resources consumed by programs. It focuses particularly
on execution time analysis, with some introduction to other quantitative properties such
as energy and memory usage. Chapter 17 (Security and Privacy) introduces the basics
of security and privacy for embedded systems design, including cryptographic primitives,
protocol security, software security, secure information flow, side channels, and sensor
security.

In present engineering practice, it is common to have system requirements stated in a
natural language such as English. It is important to precisely state requirements to avoid
ambiguities inherent in natural languages. The goal of this part of the book is to help
replace descriptive techniques with formal ones, which we believe are less error prone.

Importantly, formal specifications also enable the use of automatic techniques for formal
verification of both models and implementations. The analysis part of the book introduces
readers to the basics of formal verification, including notions of equivalence and refine-
ment checking, as well as reachability analysis and model checking. In discussing these
verification methods, we attempt to give users of verification tools an appreciation of what
is “under the hood” so that they may derive the most benefit from them. This user’s view
is supported by examples discussing, for example, how model checking can be applied
to find subtle errors in concurrent software, or how reachability analysis can be used in
computing a control strategy for a robot to achieve a particular task.
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1.4 Summary

Cyber-physical systems are heterogeneous blends by nature. They combine computation,
communication, and physical dynamics. They are harder to model, harder to design,
and harder to analyze than homogeneous systems. This chapter gives an overview of the
engineering principles addressed in this book for modeling, designing, and analyzing such
systems.
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Modeling Dynamic Behaviors

This part of this text studies modeling of embedded systems, with emphasis on joint
modeling of software and physical dynamics. We begin in Chapter 2 with a discussion
of established techniques for modeling the dynamics of physical systems, with emphasis
on their continuous behaviors. In Chapter 3, we discuss techniques for modeling discrete
behaviors, which reflect better the behavior of software. In Chapter 4, we bring these two
classes of models together and show how discrete and continuous behaviors are jointly
modeled by hybrid systems. Chapters 5 and 6 are devoted to reconciling the inherently
concurrent nature of the physical world with the inherently sequential world of software.
Chapter 5 shows how state machine models, which are fundamentally sequential, can be
composed concurrently. That chapter specifically introduces the notion of synchronous
composition. Chapter 6 shows that synchronous composition is but one of the ways to
achieve concurrent composition.
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This chapter reviews a few of the many modeling techniques for studying dynamics of
a physical system. We begin by studying mechanical parts that move (this problem is
known as classical mechanics). The techniques used to study the dynamics of such parts
extend broadly to many other physical systems, including circuits, chemical processes,
and biological processes. But mechanical parts are easiest for most people to visualize, so
they make our example concrete. Motion of mechanical parts can often be modeled us-
ing differential equations, or equivalently, integral equations. Such models really only
work well for “smooth” motion (a concept that we can make more precise using notions
of linearity, time invariance, and continuity). For motions that are not smooth, such as
those modeling collisions of mechanical parts, we can use modal models that represent
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distinct modes of operation with abrupt (conceptually instantaneous) transitions between
modes. Collisions of mechanical objects can be usefully modeled as discrete, instanta-
neous events. The problem of jointly modeling smooth motion and such discrete events
is known as hybrid systems modeling and is studied in Chapter 4. Such combinations of
discrete and continuous behaviors bring us one step closer to joint modeling of cyber and
physical processes.

We begin with simple equations of motion, which provide a model of a system in the
form of ordinary differential equations (ODEs). We then show how these ODEs can
be represented in actor models, which include the class of models in popular model-
ing languages such as LabVIEW (from National Instruments) and Simulink (from The
MathWorks, Inc.). We then consider properties of such models such as linearity, time in-
variance, and stability, and consider consequences of these properties when manipulating
models. We develop a simple example of a feedback control system that stabilizes an
unstable system. Controllers for such systems are often realized using software, so such
systems can serve as a canonical example of a cyber-physical system. The properties of
the overall system emerge from properties of the cyber and physical parts.

2.1 Newtonian Mechanics

In this section, we give a brief working review of some principles of classical mechanics.
This is intended to be just enough to be able to construct interesting models, but is by
no means comprehensive. The interested reader is referred to many excellent texts on
classical mechanics, including Goldstein (1980); Landau and Lifshitz (1976); Marion and
Thornton (1995).

Motion in space of physical objects can be represented with six degrees of freedom,
illustrated in Figure 2.1. Three of these represent position in three dimensional space,
and three represent orientation in space. We assume three axes, x, y, and z, where by
convention x is drawn increasing to the right, y is drawn increasing upwards, and z is
drawn increasing out of the page. Roll θx is an angle of rotation around the x axis, where
by convention an angle of 0 radians represents horizontally flat along the z axis (i.e., the
angle is given relative to the z axis). Yaw θy is the rotation around the y axis, where
by convention 0 radians represents pointing directly to the right (i.e., the angle is given
relative to the x axis). Pitch θz is rotation around the z axis, where by convention 0
radians represents pointing horizontally (i.e., the angle is given relative to the x axis).
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z y

x

Roll

Yaw
Pitch

Figure 2.1: Modeling position with six degrees of freedom requires including pitch,
roll, and yaw, in addition to position.

The position of an object in space, therefore, is represented by six functions of the form
f : R → R, where the domain represents time and the codomain represents either dis-
tance along an axis or angle relative to an axis.1 Functions of this form are known
as continuous-time signals.2 These are often collected into vector-valued functions
x : R→ R3 and θ : R→ R3, where x represents position, and θ represents orientation.

Changes in position or orientation are governed by Newton’s second law, relating force
with acceleration. Acceleration is the second derivative of position. Our first equation
handles the position information,

F(t) = M ẍ(t), (2.1)

where F is the force vector in three directions, M is the mass of the object, and ẍ is the
second derivative of x with respect to time (i.e., the acceleration). Velocity is the integral

1If the notation is unfamiliar, see Appendix A.
2The domain of a continuous-time signal may be restricted to a connected subset of R, such as R+, the

non-negative reals, or [0, 1], the interval between zero and one, inclusive. The codomain may be an arbitrary
set, though when representing physical quantities, real numbers are most useful.
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of acceleration, given by

∀ t > 0, ẋ(t) = ẋ(0) +

t∫
0

ẍ(τ)dτ

where ẋ(0) is the initial velocity in three directions. Using (2.1), this becomes

∀ t > 0, ẋ(t) = ẋ(0) +
1

M

t∫
0

F(τ)dτ,

Position is the integral of velocity,

x(t) = x(0) +

t∫
0

ẋ(τ)dτ

= x(0) + tẋ(0) +
1

M

t∫
0

τ∫
0

F(α)dαdτ,

where x(0) is the initial position. Using these equations, if you know the initial position
and initial velocity of an object and the forces on the object in all three directions as a
function of time, you can determine the acceleration, velocity, and position of the object
at any time.

The versions of these equations of motion that affect orientation use torque, the rotational
version of force. It is again a three-element vector as a function of time, representing the
net rotational force on an object. It can be related to angular velocity in a manner similar
to equation (2.1),

T(t) =
d

dt

(
I(t)θ̇(t)

)
, (2.2)

where T is the torque vector in three axes and I(t) is the moment of inertia tensor of
the object. The moment of inertia is a 3 × 3 matrix that depends on the geometry and
orientation of the object. Intuitively, it represents the reluctance that an object has to
spin around any axis as a function of its orientation along the three axes. If the object
is spherical, for example, this reluctance is the same around all axes, so it reduces to a
constant scalar I (or equivalently, to a diagonal matrix I with equal diagonal elements I).
The equation then looks much more like (2.1),

T(t) = Iθ̈(t). (2.3)
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To be explicit about the three dimensions, we might write (2.2) as Tx(t)
Ty(t)
Tz(t)

 =
d

dt

 Ixx(t) Ixy(t) Ixz(t)
Iyx(t) Iyy(t) Iyz(t)
Izx(t) Izy(t) Izz(t)

 θ̇x(t)

θ̇y(t)

θ̇z(t)

 .

Here, for example, Ty(t) is the net torque around the y axis (which would cause changes
in yaw), Iyx(t) is the inertia that determines how acceleration around the x axis is related
to torque around the y axis.

Rotational velocity is the integral of acceleration,

θ̇(t) = θ̇(0) +

t∫
0

θ̈(τ)dτ,

where θ̇(0) is the initial rotational velocity in three axes. For a spherical object, using
(2.3), this becomes

θ̇(t) = θ̇(0) +
1

I

t∫
0

T(τ)dτ.

Orientation is the integral of rotational velocity,

θ(t) = θ(0) +

∫ t

0
θ̇(τ)dτ

= θ(0) + tθ̇(0) +
1

I

t∫
0

τ∫
0

T(α)dαdτ

where θ(0) is the initial orientation. Using these equations, if you know the initial orien-
tation and initial rotational velocity of an object and the torques on the object in all three
axes as a function of time, you can determine the rotational acceleration, velocity, and
orientation of the object at any time.

Often, as we have done for a spherical object, we can simplify by reducing the number of
dimensions that are considered. In general, such a simplification is called a model-order
reduction. For example, if an object is a moving vehicle on a flat surface, there may be
little reason to consider the y axis movement or the pitch or roll of the object.
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M
body

tail

main rotor shaft

Figure 2.2: Simplified model of a helicopter.

Example 2.1: Consider a simple control problem that admits such reduction of
dimensionality. A helicopter has two rotors, one above, which provides lift, and
one on the tail. Without the rotor on the tail, the body of the helicopter would spin.
The rotor on the tail counteracts that spin. Specifically, the force produced by the
tail rotor must counter the torque produced by the main rotor. Here we consider
this role of the tail rotor independently from all other motion of the helicopter.

A simplified model of the helicopter is shown in Figure 2.2. Here, we assume
that the helicopter position is fixed at the origin, so there is no need to consider
equations describing position. Moreover, we assume that the helicopter remains
vertical, so pitch and roll are fixed at zero. These assumptions are not as unrealis-
tic as they may seem since we can define the coordinate system to be fixed to the
helicopter.

With these assumptions, the moment of inertia reduces to a scalar that represents
a torque that resists changes in yaw. The changes in yaw will be due to Newton’s
third law, the action-reaction law, which states that every action has an equal
and opposite reaction. This will tend to cause the helicopter to rotate in the oppo-
site direction from the rotor rotation. The tail rotor has the job of countering that
torque to keep the body of the helicopter from spinning.

We model the simplified helicopter by a system that takes as input a continuous-
time signal Ty, the torque around the y axis (which causes changes in yaw). This
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torque is the sum of the torque caused by the main rotor and that caused by the
tail rotor. When these are perfectly balanced, that sum is zero. The output of
our system will be the angular velocity θ̇y around the y axis. The dimensionally-
reduced version of (2.2) can be written as

θ̈y(t) = Ty(t)/Iyy.

Integrating both sides, we get the output θ̇ as a function of the input Ty,

θ̇y(t) = θ̇y(0) +
1

Iyy

t∫
0

Ty(τ)dτ. (2.4)

The critical observation about this example is that if we were to choose to model the
helicopter by, say, letting x : R → R3 represent the absolute position in space of the tail
of the helicopter, we would end up with a far more complicated model. Designing the
control system would also be much more difficult.

2.2 Actor Models

In the previous section, a model of a physical system is given by a differential or an
integral equation that relates input signals (force or torque) to output signals (position,
orientation, velocity, or rotational velocity). Such a physical system can be viewed as a
component in a larger system. In particular, a continuous-time system (one that operates
on continuous-time signals) may be modeled by a box with an input port and an output
port as follows:

parameters:

where the input signal x and the output signal y are functions of the form

x : R→ R, y : R→ R.
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Here the domain represents time and the codomain represents the value of the signal at a
particular time. The domain R may be replaced by R+, the non-negative reals, if we wish
to explicitly model a system that comes into existence and starts operating at a particular
point in time.

The model of the system is a function of the form

S : X → Y, (2.5)

where X = Y = RR, the set of functions that map the reals into the reals, like x and
y above.3 The function S may depend on parameters of the system, in which case the
parameters may be optionally shown in the box, and may be optionally included in the
function notation. For example, in the above figure, if there are parameters p and q,
we might write the system function as Sp,q or even S(p, q), keeping in mind that both
notations represent functions of the form in 2.5. A box like that above, where the inputs
are functions and the outputs are functions, is called an actor.

Example 2.2: The actor model for the helicopter of example 2.1 can be depicted
as follows:

The input and output are both continuous-time functions. The parameters of the
actor are the initial angular velocity θ̇y(0) and the moment of inertia Iyy. The
function of the actor is defined by (2.4).

Actor models are composable. In particular, given two actors S1 and S2, we can form a
cascade composition as follows:

3As explained in Appendix A, the notation RR (which can also be written (R→ R)) represents the set of
all functions with domain R and codomain R.
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In the diagram, the “wire” between the output of S1 and the input of S2 means precisely
that y1 = x2, or more pedantically,

∀ t ∈ R, y1(t) = x2(t).

Example 2.3: The actor model for the helicopter can be represented as a cascade
composition of two actors as follows:

The left actor represents a Scale actor parameterized by the constant a defined by

∀ t ∈ R, y1(t) = ax1(t). (2.6)

More compactly, we can write y1 = ax1, where it is understood that the product
of a scalar a and a function x1 is interpreted as in (2.6). The right actor represents
an integrator parameterized by the initial value i defined by

∀ t ∈ R, y2(t) = i+

t∫
0

x2(τ)dτ.

If we give the parameter values a = 1/Iyy and i = θ̇y(0), we see that this system
represents (2.4) where the input x1 = Ty is torque and the output y2 = θ̇y is
angular velocity.
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In the above figure, we have customized the icons, which are the boxes representing
the actors. These particular actors (scaler and integrator) are particularly useful build-
ing blocks for building up models of physical dynamics, so assigning them recognizable
visual notations is useful.

We can have actors that have multiple input signals and/or multiple output signals. These
are represented similarly, as in the following example, which has two input signals and
one output signal:

A particularly useful building block with this form is a signal adder, defined by

∀ t ∈ R, y(t) = x1(t) + x2(t).

This will often be represented by a custom icon as follows:

Sometimes, one of the inputs will be subtracted rather than added, in which case the icon
is further customized with minus sign near that input, as below:

This actor represents a function S : (R→ R)2 → (R→ R) given by

∀ t ∈ R, ∀ x1, x2 ∈ (R→ R), (S(x1, x2))(t) = y(t) = x1(t)− x2(t).

Notice the careful notation. S(x1, x2) is a function in RR. Hence, it can be evaluated at a
t ∈ R.
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In the rest of this chapter, we will not make a distinction between a system and its actor
model, unless the distinction is essential to the argument. We will assume that the actor
model captures everything of interest about the system. This is an admittedly bold as-
sumption. Generally the properties of the actor model are only approximate descriptions
of the actual system.

2.3 Properties of Systems

In this section, we consider a number of properties that actors and the systems they com-
pose may have, including causality, memorylessness, linearity, time invariance, and sta-
bility.

2.3.1 Causal Systems

Intuitively, a system is causal if its output depends only on current and past inputs. Mak-
ing this notion precise is a bit tricky, however. We do this by first giving a notation for
“current and past inputs.” Consider a continuous-time signal x : R→ A, for some set A.
Let x|t≤τ represent a function called the restriction in time that is only defined for times
t ≤ τ , and where it is defined, x|t≤τ (t) = x(t). Hence if x is an input to a system, then
x|t≤τ is the “current and past inputs” at time τ .

Consider a continuous-time system S : X → Y , where X = AR and Y = BR for some
sets A and B. This system is causal if for all x1, x2 ∈ X and τ ∈ R,

x1|t≤τ = x2|t≤τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is causal if for two possible inputs x1 and x2 that are identical up to
(and including) time τ , the outputs are identical up to (and including) time τ . All systems
we have considered so far are causal.

A system is strictly causal if for all x1, x2 ∈ X and τ ∈ R,

x1|t<τ = x2|t<τ ⇒ S(x1)|t≤τ = S(x2)|t≤τ

That is, the system is strictly causal if for two possible inputs x1 and x2 that are identical
up to (and not including) time τ , the outputs are identical up to (and including) time τ .
The output at time t of a strictly causal system does not depend on its input at time t.
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It only depends on past inputs. A strictly causal system, of course, is also causal. The
Integrator actor is strictly causal. The adder is not strictly causal, but it is causal. Strictly
causal actors are useful for constructing feedback systems.

2.3.2 Memoryless Systems

Intuitively, a system has memory if the output depends not only on the current inputs, but
also on past inputs (or future inputs, if the system is not causal). Consider a continuous-
time system S : X → Y , where X = AR and Y = BR for some sets A and B. Formally,
this system is memoryless if there exists a function f : A→ B such that for all x ∈ X ,

(S(x))(t) = f(x(t))

for all t ∈ R. That is, the output (S(x))(t) at time t depends only on the input x(t) at
time t.

The Integrator considered above is not memoryless, but the adder is. Exercise 2 shows
that if a system is strictly causal and memoryless then its output is constant for all inputs.

2.3.3 Linearity and Time Invariance

Systems that are linear and time invariant (LTI) have particularly nice mathematical prop-
erties. Much of the theory of control systems depends on these properties. These proper-
ties form the main body of courses on signals and systems, and are beyond the scope of
this text. But we will occasionally exploit simple versions of the properties, so it is useful
to determine when a system is LTI.

A system S : X → Y , where X and Y are sets of signals, is linear if it satisfies the
superposition property:

∀ x1, x2 ∈ X and ∀ a, b ∈ R, S(ax1 + bx2) = aS(x1) + bS(x2).

It is easy to see that the helicopter system defined in Example 2.1 is linear if and only if
the initial angular velocity θ̇y(0) = 0 (see Exercise 3).

More generally, it is easy to see that an integrator as defined in Example 2.3 is linear if and
only if the initial value i = 0, that the Scale actor is always linear, and that the cascade of
any two linear actors is linear. We can trivially extend the definition of linearity to actors
with more than one input or output signal and then determine that the adder is also linear.
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To define time invariance, we first define a specialized continuous-time actor called a
delay. Let Dτ : X → Y , where X and Y are sets of continuous-time signals, be defined
by

∀ x ∈ X and ∀ t ∈ R, (Dτ (x))(t) = x(t− τ). (2.7)

Here, τ is a parameter of the delay actor. A system S : X → Y is time invariant if

∀ x ∈ X and ∀ τ ∈ R, S(Dτ (x)) = Dτ (S(x)).

The helicopter system defined in Example 2.1 and (2.4) is not time invariant. A minor
variant, however, is time invariant:

θ̇y(t) =
1

Iyy

t∫
−∞

Ty(τ)dτ.

This version does not allow for an initial angular rotation.

A linear time-invariant system (LTI) is a system that is both linear and time invariant.
A major objective in modeling physical dynamics is to choose an LTI model whenever
possible. If a reasonable approximation results in an LTI model, it is worth making this
approximation. It is not always easy to determine whether the approximation is reason-
able, or to find models for which the approximation is reasonable. It is often easy to
construct models that are more complicated than they need to be (see Exercise 4).

2.3.4 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just
stable) if the output signal is bounded for all input signals that are bounded.

Consider a continuous-time system with input w and output v. The input is bounded if
there is a real number A <∞ such that |w(t)| ≤ A for all t ∈ R. The output is bounded
if there is a real number B < ∞ such that |v(t)| ≤ B for all t ∈ R. The system is stable
if for any input bounded by some A, there is some bound B on the output.

Example 2.4: It is now easy to see that the helicopter system developed in
Example 2.1 is unstable. Let the input be Ty = u, where u is the unit step, given
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by

∀ t ∈ R, u(t) =

{
0, t < 0
1, t ≥ 0

. (2.8)

This means that prior to time zero, there is no torque applied to the system, and
starting at time zero, we apply a torque of unit magnitude. This input is clearly
bounded. It never exceeds one in magnitude. However, the output grows without
bound. In practice, a helicopter uses a feedback system to determine how much
torque to apply at the tail rotor to keep the body of the helicopter straight. We
study how to do that next.

2.4 Feedback Control

A system with feedback has directed cycles, where an output from an actor is fed back
to affect an input of the same actor. An example of such a system is shown in Figure
2.3. Most control systems use feedback. They make measurements of an error (e in
the figure), which is a discrepancy between desired behavior (ψ in the figure) and actual
behavior (θ̇y in the figure), and use that measurement to correct the behavior. The er-
ror measurement is feedback, and the corresponding correction signal (Ty in the figure)
should compensate to reduce future error. Note that the correction signal normally can
only affect future errors, so a feedback system must normally include at least one strictly
causal actor (the Helicopter in the figure) in every directed cycle.

Feedback control is a sophisticated topic, easily occupying multiple texts and complete
courses. Here, we only barely touch on the subject, just enough to motivate the interac-
tions between software and physical systems. Feedback control systems are often imple-
mented using embedded software, and the overall physical dynamics is a composition of
the software and physical dynamics. More detail can be found in Chapters 12-14 of Lee
and Varaiya (2011).

Example 2.5: Recall that the helicopter model of Example 2.1 is not stable. We
can stabilize it with a simple feedback control system, as shown in Figure 2.3.
The input ψ to this system is a continuous-time system specifying the desired
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e
K

ψ

Figure 2.3: Proportional control system that stabilizes the helicopter.

angular velocity. The error signal e represents the difference between the actual
and the desired angular velocity. In the figure, the controller simply scales the
error signal by a constant K, providing a control input to the helicopter. We use
(2.4) to write

θ̇y(t) = θ̇y(0) +
1

Iyy

t∫
0

Ty(τ)dτ (2.9)

= θ̇y(0) +
K

Iyy

t∫
0

(ψ(τ)− θ̇y(τ))dτ, (2.10)

where we have used the facts (from the figure),

e(t) = ψ(t)− θ̇y(t), and

Ty(t) = Ke(t).

Equation (2.10) has θ̇y(t) on both sides, and therefore is not trivial to solve. The
easiest solution technique uses Laplace transforms (see Lee and Varaiya (2011)
Chapter 14). However, for our purposes here, we can use a more brute-force
technique from calculus. To make this as simple as possible, we assume that
ψ(t) = 0 for all t; i.e., we wish to control the helicopter simply to keep it from
rotating at all. The desired angular velocity is zero. In this case, (2.10) simplifies
to

θ̇y(t) = θ̇y(0)− K

Iyy

t∫
0

θ̇y(τ)dτ. (2.11)
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Using the fact from calculus that, for t ≥ 0,

t∫
0

aeaτdτ = eatu(t)− 1,

where u is given by (2.8), we can infer that the solution to (2.11) is

θ̇y(t) = θ̇y(0)e−Kt/Iyyu(t). (2.12)

(Note that although it is easy to verify that this solution is correct, deriving the
solution is not so easy. For this purpose, Laplace transforms provide a far better
mechanism.)

We can see from (2.12) that the angular velocity approaches the desired angular
velocity (zero) as t gets large as long as K is positive. For larger K, it will ap-
proach more quickly. For negativeK, the system is unstable, and angular velocity
will grow without bound.

The previous example illustrates a proportional control feedback loop. It is called this
because the control signal is proportional to the error. We assumed a desired signal of
zero. It is equally easy to assume that the helicopter is initially at rest (the angular velocity
is zero) and then determine the behavior for a particular non-zero desired signal, as we do
in the following example.

Example 2.6: Assume that the helicopter is initially at rest, meaning that

θ̇(0) = 0,

and that the desired signal is
ψ(t) = au(t)

for some constant a. That is, we wish to control the helicopter to get it to rotate
at a fixed rate.
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We use (2.4) to write

θ̇y(t) =
1

Iyy

t∫
0

Ty(τ)dτ

=
K

Iyy

t∫
0

(ψ(τ)− θ̇y(τ))dτ

=
K

Iyy

t∫
0

adτ − K

Iyy

t∫
0

θ̇y(τ)dτ

=
Kat

Iyy
− K

Iyy

t∫
0

θ̇y(τ)dτ.

Using the same (black magic) technique of inferring and then verifying the solu-
tion, we can see that the solution is

θ̇y(t) = au(t)(1− e−Kt/Iyy). (2.13)

Again, the angular velocity approaches the desired angular velocity as t gets large
as long asK is positive. For largerK, it will approach more quickly. For negative
K, the system is unstable, and angular velocity will grow without bound.

Note that the first term in the above solution is exactly the desired angular veloc-
ity. The second term is an error called the tracking error, that for this example
asymptotically approaches zero.

The above example is somewhat unrealistic because we cannot independently control the
net torque of the helicopter. In particular, the net torque Ty is the sum of the torque Tt
due to the top rotor and the torque Tr due to the tail rotor,

∀ t ∈ R, Ty(t) = Tt(t) + Tr(t) .

Tt will be determined by the rotation required to maintain or achieve a desired altitude,
quite independent of the rotation of the helicopter. Thus, we will actually need to design a
control system that controls Tr and stabilizes the helicopter for any Tt (or, more precisely,
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any Tt within operating parameters). In the next example, we study how this changes the
performance of the control system.

Example 2.7: In Figure 2.4(a), we have modified the helicopter model so that it
has two inputs, Tt and Tr, the torque due to the top rotor and tail rotor respectively.
The feedback control system is now controlling only Tr, and Tt is treated as an
external (uncontrolled) input signal. How well will this control system behave?

Again, a full treatment of the subject is beyond the scope of this text, but we will
study a specific example. Suppose that the torque due to the top rotor is given by

Tt = bu(t)

for some constant b. That is, at time zero, the top rotor starts spinning a constant
velocity, and then holds that velocity. Suppose further that the helicopter is ini-
tially at rest. We can use the results of Example 2.6 to find the behavior of the
system.

First, we transform the model into the equivalent model shown in Figure 2.4(b).
This transformation simply relies on the algebraic fact that for any real numbers
a1, a2,K,

Ka1 + a2 = K(a1 + a2/K).

We further transform the model to get the equivalent model shown in Figure
2.4(c), which has used the fact that addition is commutative. In Figure 2.4(c),
we see that the portion of the model enclosed in the box is exactly the same as
the control system analyzed in Example 2.6, shown in Figure 2.3. Thus, the same
analysis as in Example 2.6 still applies. Suppose that desired angular rotation is

ψ(t) = 0.

Then the input to the original control system will be

x(t) = ψ(t) + Tt(t)/K = (b/K)u(t).

From (2.13), we see that the solution is

θ̇y(t) = (b/K)u(t)(1− e−Kt/Iyy). (2.14)
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(c)

(a)

(b)

Figure 2.4: (a) Helicopter model with separately controlled torques for the top
and tail rotors. (b) Transformation to an equivalent model (assuming K > 0). (c)
Further transformation to an equivalent model that we can use to understand the
behavior of the controller.
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The desired angular rotation is zero, but the control system asymptotically ap-
proaches a non-zero angular rotation of b/K. This tracking error can be made
arbitrarily small by increasing the control system feedback gain K, but with this
controller design, it cannot be made to go to zero. An alternative controller design
that yields an asymptotic tracking error of zero is studied in Exercise 7.

2.5 Summary

This chapter has described two distinct modeling techniques that describe physical dy-
namics. The first is ordinary differential equations, a venerable toolkit for engineers, and
the second is actor models, a newer technique driven by software modeling and simu-
lation tools. The two are closely related. This chapter has emphasized the relationship
between these models, and the relationship of those models to the systems being modeled.
These relationships, however, are quite a deep subject that we have barely touched upon.
Our objective is to focus the attention of the reader on the fact that we may use multiple
models for a system, and that models are distinct from the systems being modeled. The
fidelity of a model (how well it approximates the system being modeled) is a strong factor
in the success or failure of any engineering effort.
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Exercises

1. A tuning fork, shown in Figure 2.5, consists of a metal finger (called a tine) that
is displaced by striking it with a hammer. After being displaced, it vibrates. If
the tine has no friction, it will vibrate forever. We can denote the displacement of
the tine after being struck at time zero as a function y : R+ → R. If we assume
that the initial displacement introduced by the hammer is one unit, then using our
knowledge of physics we can determine that for all t ∈ R+, the displacement
satisfies the differential equation

ÿ(t) = −ω2
0y(t)

where ω2
0 is a constant that depends on the mass and stiffness of the tine, and where

ÿ(t) denotes the second derivative with respect to time of y. It is easy to verify that
y given by

∀ t ∈ R+, y(t) = cos(ω0t)

is a solution to the differential equation (just take its second derivative). Thus, the
displacement of the tuning fork is sinusoidal. If we choose materials for the tuning
fork so that ω0 = 2π × 440 radians/second, then the tuning fork will produce the
tone of A-440 on the musical scale.

displacement restorative force

tine

Figure 2.5: A tuning fork.
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(a) Is y(t) = cos(ω0t) the only solution? If not, give some others.

(b) Assuming the solution is y(t) = cos(ω0t), what is the initial displacement?

(c) Construct a model of the tuning fork that produces y as an output using generic
actors like Integrator, adder, scaler, or similarly simple actors. Treat the initial
displacement as a parameter. Carefully label your diagram.

2. Show that if a system S : AR → BR is strictly causal and memoryless then its
output is constant. Constant means that the output (S(x))(t) at time t does not
depend on t.

3. This exercise studies linearity.

(a) Show that the helicopter model defined in Example 2.1 is linear if and only if
the initial angular velocity θ̇y(0) = 0.

(b) Show that the cascade of any two linear actors is linear.

(c) Augment the definition of linearity so that it applies to actors with two input
signals and one output signal. Show that the adder actor is linear.

4. Consider the helicopter of Example 2.1, but with a slightly different definition of
the input and output. Suppose that, as in the example, the input is Ty : R → R, as
in the example, but the output is the position of the tail relative to the main rotor
shaft. Specifically, let the x-y plane be the plane orthogonal to the rotor shaft, and
let the position of the tail at time t be given by a tuple ((x(t), y(t)). Is this model
LTI? Is it BIBO stable?

5. Consider a rotating robot where you can control the angular velocity around a fixed
axis.

(a) Model this as a system where the input is angular velocity θ̇ and the output
is angle θ. Give your model as an equation relating the input and output as
functions of time.

(b) Is this model BIBO stable?

(c) Design a proportional controller to set the robot onto a desired angle. That
is, assume that the initial angle is θ(0) = 0, and let the desired angle be
ψ(t) = au(t), where u is the unit step function. Find the actual angle as a
function of time and the proportional controller feedback gain K. What is
your output at t = 0? What does it approach as t gets large?
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6. A DC motor produces a torque that is proportional to the current through the wind-
ings of the motor. Neglecting friction, the net torque on the motor, therefore, is
this torque minus the torque applied by whatever load is connected to the motor.
Newton’s second law (the rotational version) gives

kT i(t)− x(t) = I
d

dt
ω(t), (2.15)

where kT is the motor torque constant, i(t) is the current at time t, x(t) is the torque
applied by the load at time t, I is the moment of inertia of the motor, and ω(t) is
the angular velocity of the motor.

(a) Assuming the motor is initially at rest, rewrite (2.15) as an integral equation.

(b) Assuming that both x and i are inputs and ω is an output, construct an actor
model (a block diagram) that models this motor. You should use only prim-
itive actors such as integrators and basic arithmetic actors such as scale and
adder.

(c) In reality, the input to a DC motor is not a current, but is rather a voltage. If
we assume that the inductance of the motor windings is negligible, then the
relationship between voltage and current is given by

v(t) = Ri(t) + kbω(t),

whereR is the resistance of the motor windings and kb is a constant called the
motor back electromagnetic force constant. The second term appears because
a rotating motor also functions as an electrical generator, where the voltage
generated is proportional to the angular velocity.
Modify your actor model so that the inputs are v and x rather than i and x.

7. (a) Using your favorite continuous-time modeling software (such as LabVIEW,
Simulink, or Ptolemy II), construct a model of the helicopter control system
shown in Figure 2.4. Choose some reasonable parameters and plot the actual
angular velocity as a function of time, assuming that the desired angular veloc-
ity is zero, ψ(t) = 0, and that the top-rotor torque is non-zero, Tt(t) = bu(t).
Give your plot for several values of K and discuss how the behavior varies
with K.

(b) Modify the model of part (a) to replace the Controller of Figure 2.4 (the sim-
ple scale-by-K actor) with the alternative controller shown in Figure 2.6. This
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K1

K2KK

Figure 2.6: A PI controller for the helicopter.

alternative controller is called a proportional-integrator (PI) controller. It
has two parameter K1 and K2. Experiment with the values of these parame-
ters, give some plots of the behavior with the same inputs as in part (a), and
discuss the behavior of this controller in contrast to the one of part (a).
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3. DISCRETE DYNAMICS

Models of embedded systems include both discrete and continuous components. Loosely
speaking, continuous components evolve smoothly, while discrete components evolve
abruptly. The previous chapter considered continuous components, and showed that the
physical dynamics of the system can often be modeled with ordinary differential or in-
tegral equations, or equivalently with actor models that mirror these equations. Discrete
components, on the other hand, are not conveniently modeled by ODEs. In this chapter,
we study how state machines can be used to model discrete dynamics. In the next chap-
ter, we will show how these state machines can be combined with models of continuous
dynamics to get hybrid system models.

3.1 Discrete Systems

A discrete system operates in a sequence of discrete steps and is said to have discrete
dynamics. Some systems are inherently discrete.

Example 3.1: Consider a system that counts the number of cars that enter and
leave a parking garage in order to keep track of how many cars are in the garage
at any time. It could be modeled as shown in Figure 3.1. We ignore for now
how to design the sensors that detect the entry or departure of cars. We simply
assume that the ArrivalDetector actor produces an event when a car arrives, and
the DepartureDetector actor produces an event when a car departs. The Counter

Figure 3.1: Model of a system that keeps track of the number of cars in a parking
garage.
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Figure 3.2: Icon for the Integrator actor used in the previous chapter.

actor keeps a running count, starting from an initial value i. Each time the count
changes, it produces an output event that updates a display.

In the above example, each entry or departure is modeled as a discrete event. A discrete
event occurs at an instant of time rather than over time. The Counter actor in Figure 3.1 is
analogous to the Integrator actor used in the previous chapter, shown here in Figure 3.2.
Like the Counter actor, the Integrator accumulates input values. However, it does so very
differently. The input of an Integrator is a function of the form x : R→ R or x : R+ → R,
a continuous-time signal. The signal u going into the up input port of the Counter, on the
other hand, is a function of the form

u : R→ {absent, present}.

This means that at any time t ∈ R, the input u(t) is either absent, meaning that there is
no event at that time, or present, meaning that there is. A signal of this form is known as
a pure signal. It carries no value, but instead provides all its information by being either
present or absent at any given time. The signal d in Figure 3.1 is also a pure signal.

Assume our Counter operates as follows. When an event is present at the up input port,
it increments its count and produces on the output the new value of the count. When an
event is present at the down input, it decrements its count and produces on the output the
new value of the count.1 At all other times (when both inputs are absent), it produces no
output (the count output is absent). Hence, the signal c in Figure 3.1 can be modeled by a
function of the form

c : R→ {absent} ∪ Z .
(See Appendix A for notation.) This signal is not pure, but like u and d, it is either absent
or present. Unlike u and d, when it is present, it has a value (an integer).

1It would be wise to design this system with a fault handler that does something reasonable if the count
drops below zero, but we ignore this for now.
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Assume further that the inputs are absent most of the time, or more technically, that the
inputs are discrete (see the sidebar on page 45). Then the Counter reacts in sequence to
each of a sequence of input events. This is very different from the Integrator, which reacts
continuously to a continuum of inputs.

The input to the Counter is a pair of discrete signals that at certain times have an event (are
present), and at other times have no event (are absent). The output also is a discrete signal
that, when an input is present, has a value that is a natural number, and at other times is
absent.2 Clearly, there is no need for this Counter to do anything when the input is absent.
It only needs to operate when inputs are present. Hence, it has discrete dynamics.

2As shown in Exercise 8, the fact that input signals are discrete does not necessarily imply that the output
signal is discrete. However, for this application, there are physical limitations on the rates at which cars can
arrive and depart that ensure that these signals are discrete. So it is safe to assume that they are discrete.

Probing Further: Discrete Signals

Discrete signals consist of a sequence of instantaneous events in time. Here, we make
this intuitive concept precise.

Consider a signal of the form e : R → {absent} ∪X , where X is any set of values.
This signal is a discrete signal if, intuitively, it is absent most of the time and we can
count, in order, the times at which it is present (not absent). Each time it is present, we
have a discrete event.

This ability to count the events in order is important. For example, if e is present at
all rational numbers t, then we do not call this signal discrete. The times at which it
is present cannot be counted in order. It is not, intuitively, a sequence of instantaneous
events in time (it is a set of instantaneous events in time, but not a sequence).

To define this formally, let T ⊆ R be the set of times where e is present. Specifically,

T = {t ∈ R : e(t) 6= absent}.

Then e is discrete if there exists a one-to-one function f : T → N that is order pre-
serving. Order preserving simply means that for all t1, t2 ∈ T where t1 ≤ t2, we have
that f(t1) ≤ f(t2). The existence of such a one-to-one function ensures that we can
count off the events in temporal order. Some properties of discrete signals are studied
in Exercise 8.
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The dynamics of a discrete system can be described as a sequence of steps that we call
reactions, each of which we assume to be instantaneous. Reactions of a discrete system
are triggered by the environment in which the discrete system operates. In the case of
the example of Figure 3.1, reactions of the Counter actor are triggered when one or more
input events are present. That is, in this example, reactions are event triggered. When
both inputs to the Counter are absent, no reaction occurs.

Probing Further: Modeling Actors as Functions

As in Section 2.2, the Integrator actor of Figure 3.2 can be modeled by a function of
the form

Ii : RR+ → RR+ ,

which can also be written

Ii : (R+ → R)→ (R+ → R).

(See Appendix A if the notation is unfamiliar.) In the figure,

y = Ii(x) ,

where i is the initial value of the integration and x and y are continuous-time signals.
For example, if i = 0 and for all t ∈ R+, x(t) = 1, then

y(t) = i+

∫ t

0
x(τ)dτ = t .

Similarly, the Counter in Figure 3.1 can be modeled by a function of the form

Ci : (R+ → {absent, present})P → (R+ → {absent} ∪ Z),

where Z is the integers and P is the set of input ports, P = {up, down}. Recall that
the notation AB denotes the set of all functions from B to A. Hence, the input to the
function C is a function whose domain is P that for each port p ∈ P yields a function
in (R+ → {absent, present}). That latter function, in turn, for each time t ∈ R+ yields
either absent or present.
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A particular reaction will observe the values of the inputs at a particular time t and
calculate output values for that same time t. Suppose an actor has input ports P =
{p1, · · · , pN}, where pi is the name of the i-th input port. Assume further that for each
input port p ∈ P , a set Vp denotes the values that may be received on port p when the
input is present. Vp is called the type of port p. At a reaction we treat each p ∈ P as
a variable that takes on a value p ∈ Vp ∪ {absent}. A valuation of the inputs P is an
assignment of a value in Vp to each variable p ∈ P or an assertion that p is absent.

If port p receives a pure signal, then Vp = {present}, a singleton set (set with only one
element). The only possible value when the signal is not absent is present. Hence, at a
reaction, the variable p will have a value in the set {present, absent}.

Example 3.2: For the garage counter, the set of input ports is P = {up, down}.
Both receive pure signals, so the types are Vup = Vdown = {present}. If a car is
arriving at time t and none is departing, then at that reaction, up = present and
down = absent. If a car is arriving and another is departing at the same time, then
up = down = present. If neither is true, then both are absent.

Outputs are similarly designated. Consider a discrete system with output ports Q =
{q1, · · · , qM} with types Vq1 , · · · , VqM . At each reaction, the system assigns a value
q ∈ Vq ∪ {absent} to each q ∈ Q, producing a valuation of the outputs. In this chapter,
we will assume that the output is absent at times t where a reaction does not occur. Thus,
outputs of a discrete system are discrete signals. Chapter 4 describes systems whose
outputs are not constrained to be discrete (see also box on page 58).

Example 3.3: The Counter actor of Figure 3.1 has one output port named count,
so Q = {count}. Its type is Vcount = Z. At a reaction, count is assigned the count
of cars in the garage.
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3.2 The Notion of State

Intuitively, the state of a system is its condition at a particular point in time. In general,
the state affects how the system reacts to inputs. Formally, we define the state to be an
encoding of everything about the past that has an effect on the system’s reaction to current
or future inputs. The state is a summary of the past.

Consider the Integrator actor shown in Figure 3.2. This actor has state, which in this case
happens to have the same value as the output at any time t. The state of the actor at a time
t is the value of the integral of the input signal up to time t. In order to know how the
subsystem will react to inputs at and beyond time t, we have to know what this value is at
time t. We do not need to know anything more about the past inputs. Their effect on the
future is entirely captured by the current value at t. The icon in Figure 3.2 includes i, an
initial state value, which is needed to get things started at some starting time.

An Integrator operates in a time continuum. It integrates a continuous-time input signal,
generating as output at each time the cumulative area under the curve given by the input
plus the initial state. Its state at any given time is that accumulated area plus the initial
state. The Counter actor in the previous section also has state, and that state is also an
accumulation of past input values, but it operates discretely.

The state y(t) of the Integrator at time t is a real number. Hence, we say that the state
space of the Integrator is States = R. For the Counter used in Figure 3.1, the state s(t)
at time t is an integer, so States ⊂ Z. A practical parking garage has a finite and non-
negative number M of spaces, so the state space for the Counter actor used in this way
will be

States = {0, 1, 2, · · · ,M} .
(This assumes the garage does not let in more cars than there are spaces.) The state space
for the Integrator is infinite (uncountably infinite, in fact). The state space for the garage
counter is finite. Discrete models with finite state spaces are called finite-state machines
(FSMs). There are powerful analysis techniques available for such models, so we consider
them next.

3.3 Finite-State Machines

A state machine is a model of a system with discrete dynamics that at each reaction
maps valuations of the inputs to valuations of the outputs, where the map may depend on
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its current state. A finite-state machine (FSM) is a state machine where the set States of
possible states is finite.

If the number of states is reasonably small, then FSMs can be conveniently drawn using a
graphical notation like that in Figure 3.3. Here, each state is represented by a bubble, so
for this diagram, the set of states is given by

States = {State1,State2,State3}.

At the beginning of each sequence of reactions, there is an initial state, State1, indicated
in the diagram by a dangling arrow into it.

3.3.1 Transitions

Transitions between states govern the discrete dynamics of the state machine and the
mapping of input valuations to output valuations. A transition is represented as a curved
arrow, as shown in Figure 3.3, going from one state to another. A transition may also
start and end at the same state, as illustrated with State3 in the figure. In this case, the
transition is called a self transition.

In Figure 3.3, the transition from State1 to State2 is labeled with “guard / action.” The
guard determines whether the transition may be taken on a reaction. The action specifies
what outputs are produced on each reaction.

A guard is a predicate (a boolean-valued expression) that evaluates to true when the
transition should be taken, changing the state from that at the beginning of the transition
to that at the end. When a guard evaluates to true we say that the transition is enabled.
An action is an assignment of values (or absent) to the output ports. Any output port not

Figure 3.3: Visual notation for a finite state machine.
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mentioned in a transition that is taken is implicitly absent. If no action at all is given, then
all outputs are implicitly absent.

Example 3.4: Figure 3.4 shows an FSM model for the garage counter. The
inputs and outputs are shown using the notation name : type. The set of states is
States = {0, 1, 2, · · · ,M}. The transition from state 0 to 1 has a guard written
as up ∧ ¬down. This is a predicate that evaluates to true when up is present and
down is absent. If at a reaction the current state is 0 and this guard evaluates to
true, then the transition will be taken and the next state will be 1. Moreover, the
action indicates that the output should be assigned the value 1. The output port
count is not explicitly named because there is only one output port, and hence
there is no ambiguity.

If the guard expression on the transition from 0 to 1 had been simply up, then this
could evaluate to true when down is also present, which would incorrectly count
cars when a car was arriving at the same time that another was departing.

If p1 and p2 are pure inputs to a discrete system, then the following are examples of valid
guards:

Figure 3.4: FSM model for the garage counter of Figure 3.1.
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true Transition is always enabled.
p1 Transition is enabled if p1 is present.
¬p1 Transition is enabled if p1 is absent.

p1 ∧ p2 Transition is enabled if both p1 and p2 are present.
p1 ∨ p2 Transition is enabled if either p1 or p2 is present.
p1 ∧ ¬p2 Transition is enabled if p1 is present and p2 is absent.

These are standard logical operators where present is taken as a synonym for true and
absent as a synonym for false. The symbol ¬ represents logical negation. The operator
∧ is logical conjunction (logical AND), and ∨ is logical disjunction (logical OR).

Suppose that in addition the discrete system has a third input port p3 with type Vp3 = N.
Then the following are examples of valid guards:

p3 Transition is enabled if p3 is present (not absent).
p3 = 1 Transition is enabled if p3 is present and has value 1.

p3 = 1 ∧ p1 Transition is enabled if p3 has value 1 and p1 is present.
p3 > 5 Transition is enabled if p3 is present with value greater than 5.

Example 3.5: A major use of energy worldwide is in heating, ventilation, and
air conditioning (HVAC) systems. Accurate models of temperature dynamics
and temperature control systems can significantly improve energy conservation.
Such modeling begins with a modest thermostat, which regulates temperature to
maintain a setpoint, or target temperature. The word “thermostat” comes from
Greek words for “hot” and “to make stand.”

Figure 3.5: A model of a thermostat with hysteresis.
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Consider a thermostat modeled by an FSM with States = {heating, cooling} as
shown in Figure 3.5. Suppose the setpoint is 20 degrees Celsius. If the heater
is on, then the thermostat allows the temperature to rise past the setpoint to 22
degrees. If the heater is off, then it allows the temperature to drop past the setpoint
to 18 degrees. This strategy is called hysteresis (see box on page 53). It avoids
chattering, where the heater would turn on and off rapidly when the temperature
is close to the setpoint temperature.

There is a single input temperature with type R and two pure outputs heatOn and
heatOff. These outputs will be present only when a change in the status of the
heater is needed (i.e., when it is on and needs to be turned off, or when it is off
and needs to be turned on).

The FSM in Figure 3.5 could be event triggered, like the garage counter, in which case
it will react whenever a temperature input is provided. Alternatively, it could be time
triggered, meaning that it reacts at regular time intervals. The definition of the FSM does
not change in these two cases. It is up to the environment in which an FSM operates when
it should react.

On a transition, the action (which is the portion after the slash) specifies the resulting
valuation on the output ports when a transition is taken. If q1 and q2 are pure outputs and
q3 has type N, then the following are examples of valid actions:

q1 q1 is present and q2 and q3 are absent.
q1, q2 q1 and q2 are both present and q3 is absent.
q3 := 1 q1 and q2 are absent and q3 is present with value 1.

q3 := 1, q1 q1 is present, q2 is absent, and q3 is present with value 1.
(nothing) q1, q2, and q3 are all absent.

Any output port that is not mentioned in a transition that is taken is implicitly absent.
When assigning a value to an output port, we use the notation name := value to distinguish
the assignment from a predicate, which would be written name = value. As in Figure
3.4, if there is only one output, then the assignment need not mention the port name.

3.3.2 When a Reaction Occurs

Nothing in the definition of a state machine constrains when it reacts. The environment
determines when the machine reacts. Chapters 5 and 6 describe a variety of mechanisms
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and give a precise meaning to terms like event triggered and time triggered. For now,
however, we just focus on what the machine does when it reacts.

When the environment determines that a state machine should react, the inputs will have
a valuation. The state machine will assign a valuation to the output ports and (possibly)

Probing Further: Hysteresis

The thermostat in Example 3.5 exhibits a particular form of state-dependent behavior
called hysteresis. Hysteresis is used to prevent chattering. A system with hysteresis
has memory, but in addition has a useful property called time-scale invariance. In
Example 3.5, the input signal as a function of time is a signal of the form

temperature : R→ {absent} ∪ R .

Hence, temperature(t) is the temperature reading at time t, or absent if there is no
temperature reading at that time. The output as a function of time has the form

heatOn,heatOff : R→ {absent, present} .

Suppose that instead of temperature the input is given by

temperature′(t) = temperature(α · t)

for some α > 0. If α > 1, then the input varies faster in time, whereas if α < 1 then
the input varies more slowly, but in both cases, the input pattern is the same. Then for
this FSM, the outputs heatOn′ and heatOff ′ are given by

heatOn′(t) = heatOn(α · t) heatOff ′(t) = heatOff (α · t) .

Time-scale invariance means that scaling the time axis at the input results in scaling the
time axis at the output, so the absolute time scale is irrelevant.

An alternative implementation for the thermostat would use a single temperature
threshold, but instead would require that the heater remain on or off for at least a
minimum amount of time, regardless of the temperature. The consequences of this
design choice are explored in Exercise 2.
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change to a new state. If no guard on any transition out of the current state evaluates to
true, then the machine will remain in the same state.

It is possible for all inputs to be absent at a reaction. Even in this case, it may be possible
for a guard to evaluate to true, in which case a transition is taken. If the input is absent
and no guard on any transition out of the current state evaluates to true, then the machine
will stutter. A stuttering reaction is one where the inputs and outputs are all absent and
the machine does not change state. No progress is made and nothing changes.

Example 3.6: In Figure 3.4, if on any reaction both inputs are absent, then the
machine will stutter. If we are in state 0 and the input down is present, then the
guard on the only outgoing transition is false, and the machine remains in the
same state. However, we do not call this a stuttering reaction because the inputs
are not all absent.

Our informal description of the garage counter in Example 3.1 did not explicitly state
what would happen if the count was at 0 and a car departed. A major advantage of FSM
models is that they define all possible behaviors. The model in Figure 3.4 defines what
happens in this circumstance. The count remains at 0. As a consequence, FSM models
are amenable to formal checking, which determines whether the specified behaviors are
in fact desirable behaviors. The informal specification cannot be subjected to such tests,
or at least, not completely.

Figure 3.6: A default transition that need not be shown explicitly because it returns
to the same state and produces no output.
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Although it may seem that the model in Figure 3.4 does not define what happens if the
state is 0 and down is present, it does so implicitly — the state remains unchanged and
no output is generated. The reaction is not shown explicitly in the diagram. Sometimes
it is useful to emphasize such reactions, in which case they can be shown explicitly. A
convenient way to do this is using a default transition, shown in Figure 3.6. In that figure,
the default transition is denoted with dashed lines and is labeled with “true / ”. A default
transition is enabled if no non-default transition is enabled and if its guard evaluates to
true. In Figure 3.6, therefore, the default transition is enabled if up ∧ ¬down evaluates to
false, and when the default transition is taken the output is absent.

Default transitions provide a convenient notation, but they are not really necessary. Any
default transition can be replaced by an ordinary transition with an appropriately chosen
guard. For example, in Figure 3.6 we could use an ordinary transition with guard ¬(up ∧
¬down).

The use of both ordinary transitions and default transitions in a diagram can be thought
of as a way of assigning priority to transitions. An ordinary transition has priority over
a default transition. When both have guards that evaluate to true, the ordinary transition
prevails. Some formalisms for state machines support more than two levels of priority.
For example SyncCharts (André, 1996) associates with each transition an integer priority.
This can make guard expressions simpler, at the expense of having to indicate priorities
in the diagrams.

3.3.3 Update Functions

The graphical notation for FSMs defines a specific mathematical model of the dynamics
of a state machine. A mathematical notation with the same meaning as the graphical
notation sometimes proves convenient, particularly for large state machines where the
graphical notation becomes cumbersome. In such a mathematical notation, a finite-state
machine is a five-tuple

(States, Inputs,Outputs, update, initialState)

where

• States is a finite set of states;
• Inputs is a set of input valuations;
• Outputs is a set of output valuations;
• update : States × Inputs → States × Outputs is an update function, mapping a state

and an input valuation to a next state and an output valuation;
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• initialState is the initial state.

The FSM reacts in a sequence of reactions. At each reaction, the FSM has a current state,
and the reaction may transition to a next state, which will be the current state of the next
reaction. We can number these states starting with 0 for the initial state. Specifically, let
s : N → States be a function that gives the state of an FSM at reaction n ∈ N. Initially,
s(0) = initialState.

Let x : N → Inputs and y : N → Outputs denote that input and output valuations at each
reaction. Hence, x(0) ∈ Inputs is the first input valuation and y(0) ∈ Outputs is the first
output valuation. The dynamics of the state machine are given by the following equation:

(s(n+ 1), y(n)) = update(s(n), x(n)) (3.1)

This gives the next state and output in terms of the current state and input. The update
function encodes all the transitions, guards, and output specifications in an FSM. The term
transition function is often used in place of update function.

The input and output valuations also have a natural mathematical form. Suppose an FSM
has input ports P = {p1, · · · , pN}, where each p ∈ P has a corresponding type Vp. Then

Software Tools Supporting FSMs

FSMs have been used in theoretical computer science and software engineering for
quite some time (Hopcroft and Ullman, 1979). A number of software tools support
design and analysis of FSMs. Statecharts (Harel, 1987), a notation for concurrent com-
position of hierarchical FSMs, has influenced many of these tools. One of the first tools
supporting the Statecharts notation is STATEMATE (Harel et al., 1990), which subse-
quently evolved into Rational Rhapsody, sold by IBM. Many variants of Statecharts
have arisen (von der Beeck, 1994), and some variant is now supported by nearly every
software engineering tool that provides UML (unified modeling language) capabili-
ties (Booch et al., 1998). SyncCharts (André, 1996) is a particularly nice variant in that
it borrows the rigorous semantics of Esterel (Berry and Gonthier, 1992) for composi-
tion of concurrent FSMs. LabVIEW supports a variant of Statecharts that can operate
within dataflow diagrams, and Simulink with its Stateflow extension supports a variant
that can operate within continuous-time models.
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Inputs is a set of functions of the form

i : P → Vp1 ∪ · · · ∪ VpN ∪ {absent} ,

where for each p ∈ P , i(p) ∈ Vp ∪ {absent} gives the value of port p. Thus, a function
i ∈ Inputs is a valuation of the input ports.

Example 3.7: The FSM in Figure 3.4 can be mathematically represented as
follows:

States = {0, 1, · · · ,M}
Inputs = ({up, down} → {present, absent})

Outputs = ({count} → {0, 1, · · · ,M, absent})
initialState = 0

The update function is given by

update(s, i) =



(s+ 1, s+ 1) if s < M
∧ i(up) = present
∧ i(down) = absent

(s− 1, s− 1) if s > 0
∧ i(up) = absent
∧ i(down) = present

(s, absent) otherwise

(3.2)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs is
a function of the form o : {count} → {0, 1, · · · ,M, absent}. In (3.2), the first
alternative gives the output valuation as o = s + 1, which we take to mean the
constant function that for all q ∈ Q = {count} yields o(q) = s + 1. When
there is more than one output port we will need to be more explicit about which
output value is assigned to which output port. In such cases, we can use the same
notation that we use for actions in the diagrams.
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Moore Machines and Mealy Machines

The state machines we describe in this chapter are known as Mealy machines, named
after George H. Mealy, a Bell Labs engineer who published a description of these ma-
chines in 1955 (Mealy, 1955). Mealy machines are characterized by producing outputs
when a transition is taken. An alternative, known as a Moore machine, produces out-
puts when the machine is in a state, rather than when a transition is taken. That is,
the output is defined by the current state rather than by the current transition. Moore
machines are named after Edward F. Moore, another Bell Labs engineer who described
them in a 1956 paper (Moore, 1956).

The distinction between these machines is subtle but important. Both are discrete
systems, and hence their operation consists of a sequence of discrete reactions. For a
Moore machine, at each reaction, the output produced is defined by the current state
(at the start of the reaction, not at the end). Thus, the output at the time of a reaction
does not depend on the input at that same time. The input determines which transition
is taken, but not what output is produced by the reaction. Hence, a Moore machine is
strictly causal.

A Moore machine version of the garage counter is shown in Figure 3.7. The outputs
are shown in the state rather than on the transitions using a similar notation with a slash.
Note, however, that this machine is not equivalent to the machine in Figure 3.4. To see
that, suppose that on the first reaction, up = present and down = absent. The output at
that time will be 0 in Figure 3.7 and 1 in Figure 3.4. The output of the Moore machine
represents the number of cars in the garage at the time of the arrival of a new car, not the
number of cars after the arrival of the new car. Suppose instead that at the first reaction,
up = down = absent. Then the output at that time is 0 in Figure 3.7 and absent in
Figure 3.4. The Moore machine, when it reacts, always reports the output associated
with the current state. The Mealy machine does not produce any output unless there is
a transition explicitly denoting that output.

Any Moore machine may be converted to an equivalent Mealy machine. A Mealy
machine may be converted to an almost equivalent Moore machine that differs only
in that the output is produced on the next reaction rather than on the current one. We
use Mealy machines because they tend to be more compact (requiring fewer states to
represent the same functionality), and because it is convenient to be able to produce an
output that instantaneously responds to the input.
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Figure 3.7: Moore machine for a system that keeps track of the number of cars in
a parking garage. Note this machine is not equivalent to that in Figure 3.4.

3.3.4 Determinacy and Receptiveness

The state machines presented in this section have two important properties:

Determinacy: A state machine is said to be deterministic if, for each state, there is at
most one transition enabled by each input value. The formal definition of an FSM
given above ensures that it is deterministic, since update is a function, not a one-to-
many mapping. The graphical notation with guards on the transitions, however, has
no such constraint. Such a state machine will be deterministic only if the guards
leaving each state are non-overlapping. Note that a deterministic state machine is
determinate, meaning that given the same inputs it will always produce the same
outputs. However, not every determinate state machine is deterministic.

Receptiveness: A state machine is said to be receptive if, for each state, there is at least
one transition possible on each input symbol. In other words, receptiveness en-
sures that a state machine is always ready to react to any input, and does not “get
stuck” in any state. The formal definition of an FSM given above ensures that it is
receptive, since update is a function, not a partial function. It is defined for every
possible state and input value. Moreover, in our graphical notation, since we have
implicit default transitions, we have ensured that all state machines specified in our
graphical notation are also receptive.

It follows that if a state machine is both deterministic and receptive, for every state, there
is exactly one transition possible on each input value.
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3.4 Extended State Machines

The notation for FSMs becomes awkward when the number of states gets large. The
garage counter of Figure 3.4 illustrates this point clearly. If M is large, the bubble-and-
arc notation becomes unwieldy, which is why we resort to a less formal use of “...” in the
figure.

An extended state machine solves this problem by augmenting the FSM model with
variables that may be read and written as part of taking a transition between states.

Example 3.8: The garage counter of Figure 3.4 can be represented more com-
pactly by the extended state machine in Figure 3.8.

That figure shows a variable c, declared explicitly at the upper left to make it
clear that c is a variable and not an input or an output. The transition indicating
the initial state initializes the value of this variable to zero.

The upper self-loop transition is then taken when the input up is present, the input
down is absent, and the variable c is less than M . When this transition is taken,
the state machine produces an output count with value c + 1, and then the value
of c is incremented by one.

The lower self-loop transition is taken when the input down is present, the input
up is absent, and the variable c is greater than zero. Upon taking the transition,

Figure 3.8: Extended state machine for the garage counter of Figure 3.4.
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the state machine produces an output with value c − 1, and then decrements the
value of c.

Note that M is a parameter, not a variable. Specifically, it is assumed to be
constant throughout execution.

The general notation for extended state machines is shown in Figure 3.9. This differs
from the basic FSM notation of Figure 3.3 in three ways. First, variable declarations are
shown explicitly to make it easy to determine whether an identifier in a guard or action
refers to a variable or to an input or an output. Second, upon initialization, variables that
have been declared may be initialized. The initial value will be shown on the transition
that indicates the initial state. Third, transition annotations now have the form

guard / output action
set action(s)

The guard and output action are the same as for standard FSMs, except they may now
refer to variables. The set actions are new. They specify assignments to variables that
are made when the transition is taken. These assignments are made after the guard has
been evaluated and the outputs have been produced. Thus, if the guard or output actions
reference a variable, the value of the variable is that before the assignment in the set action.
If there is more than one set action, then the assignments are made in sequence.

Figure 3.9: Notation for extended state machines.
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Extended state machines can provide a convenient way to keep track of the passage of
time.

Example 3.9: An extended state machine describing a traffic light at a pedestrian
crosswalk is shown in Figure 3.10. This is a time triggered machine that assumes
it will react once per second. It starts in the red state and counts 60 seconds
with the help of the variable count. It then transitions to green, where it will
remain until the pure input pedestrian is present. That input could be generated,
for example, by a pedestrian pushing a button to request a walk light. When
pedestrian is present, the machine transitions to yellow if it has been in state green
for at least 60 seconds. Otherwise, it transitions to pending, where it stays for the
remainder of the 60 second interval. This ensures that once the light goes green,
it stays green for at least 60 seconds. At the end of 60 seconds, it will transition
to yellow, where it will remain for 5 seconds before transitioning back to red.

The outputs produced by this machine are sigG to turn on the green light, sigY to
change the light to yellow, and sigR to change the light to red.

Figure 3.10: Extended state machine model of a traffic light controller that keeps
track of the passage of time, assuming it reacts at regular intervals.
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The state of an extended state machine includes not only the information about which
discrete state (indicated by a bubble) the machine is in, but also what values any variables
have. The number of possible states can therefore be quite large, or even infinite. If there
are n discrete states (bubbles) and m variables each of which can have one of p possible
values, then the size of the state space of the state machine is

|States| = npm .

Example 3.10: The garage counter of Figure 3.8 has n = 1, m = 1, and
p = M + 1, so the total number of states is M + 1.

Extended state machines may or may not be FSMs. In particular, it is not uncommon for
p to be infinite. For example, a variable may have values in N, the natural numbers, in
which case, the number of states is infinite.

Example 3.11: If we modify the state machine of Figure 3.8 so that the guard
on the upper transition is

up ∧ ¬down

instead of
up ∧ ¬down ∧ c < M

then the state machine is no longer an FSM.

Some state machines will have states that can never be reached, so the set of reachable
states — comprising all states that can be reached from the initial state on some input
sequence — may be smaller than the set of states.
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Example 3.12: Although there are only four bubbles in Figure 3.10, the number
of states is actually much larger. The count variable has 61 possible values and
there are 4 bubbles, so the total number of combinations is 61×4 = 244. The size
of the state space is therefore 244. However, not all of these states are reachable.
In particular, while in the yellow state, the count variable will have only one of 6
values in {0, · · · , 5}. The number of reachable states, therefore, is 61× 3 + 6 =
189.

3.5 Nondeterminism

Most interesting state machines react to inputs and produce outputs. These inputs must
come from somewhere, and the outputs must go somewhere. We refer to this “some-
where” as the environment of the state machine.

Example 3.13: The traffic light controller of Figure 3.10 has one pure input sig-
nal, pedestrian. This input is present when a pedestrian arrives at the crosswalk.
The traffic light will remain green unless a pedestrian arrives. Some other sub-
system is responsible for generating the pedestrian event, presumably in response
to a pedestrian pushing a button to request a cross light. That other subsystem is
part of the environment of the FSM in Figure 3.10.

A question becomes how to model the environment. In the traffic light example, we could
construct a model of pedestrian flow in a city to serve this purpose, but this would likely
be a very complicated model, and it is likely much more detailed than necessary. We want
to ignore inessential details, and focus on the design of the traffic light. We can do this
using a nondeterministic state machine.
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Figure 3.11: Nondeterministic model of pedestrians that arrive at a crosswalk.

Example 3.14: The FSM in Figure 3.11 models arrivals of pedestrians at a
crosswalk with a traffic light controller like that in Figure 3.10. This FSM has
three inputs, which are presumed to come from the outputs of Figure 3.10. Its
single output, pedestrian, will provide the input for Figure 3.10.

The initial state is crossing. (Why? See Exercise 6.) When sigG is received,
the FSM transitions to none. Both transitions from this state have guard true,
indicating that they are always enabled. Since both are enabled, this machine is
nondeterministic. The FSM may stay in the same state and produce no output, or
it may transition to waiting and produce pure output pedestrian.

The interaction between this machine and that of Figure 3.10 is surprisingly sub-
tle. Variations on the design are considered in Exercise 6, and the composition of
the two machines is studied in detail in Chapter 5.

If for any state of a state machine, there are two distinct transitions with guards that can
evaluate to true in the same reaction, then the state machine is nondeterministic. In a
diagram for such a state machine, the transitions that make the state machine nondeter-
ministic may be colored red. In the example of Figure 3.11, the transitions exiting state
none are the ones that make the state machine nondeterministic.
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It is also possible to define state machines where there is more than one initial state. Such
a state machine is also nondeterministic. An example is considered in Exercise 6.

In both cases, a nondeterministic FSM specifies a family of possible reactions rather than
a single reaction. Operationally, all reactions in the family are possible. The nondeter-
ministic FSM makes no statement at all about how likely the various reactions are. It is
perfectly correct, for example, to always take the self loop in state none in Figure 3.11. A
model that specifies likelihoods (in the form of probabilities) is a stochastic model, quite
distinct from a nondeterministic model.

3.5.1 Formal Model

Formally, a nondeterministic FSM is represented as a five-tuple, similar to a determinis-
tic FSM,

(States, Inputs,Outputs, possibleUpdates, initialStates)

The first three elements are the same as for a deterministic FSM, but the last two are not
the same:

• States is a finite set of states;

• Inputs is a set of input valuations;

• Outputs is a set of output valuations;

• possibleUpdates : States× Inputs→ 2States×Outputs is an update relation, map-
ping a state and an input valuation to a set of possible (next state, output valuation)
pairs;

• initialStates is a set of initial states.

The form of the function possibleUpdates indicates there can be more than one next state
and/or output valuation given a current state and input valuation. The codomain is the
powerset of States × Outputs. We refer to the possibleUpdates function as an update
relation, to emphasize this difference. The term transition relation is also often used in
place of update relation.

To support the fact that there can be more than one initial state for a nondeterministic
FSM, initialStates is a set rather than a single element of States.
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Example 3.15: The FSM in Figure 3.11 can be formally represented as follows:

States = {none,waiting, crossing}
Inputs = ({sigG, sigY, sigR} → {present, absent})

Outputs = ({pedestrian} → {present, absent})
initialStates = {crossing}

The update relation is given below:

possibleUpdates(s, i) =



{(none, absent)}
if s = crossing
∧ i(sigG) = present

{(none, absent), (waiting, present)}
if s = none

{(crossing, absent)}
if s = waiting
∧ i(sigR) = present

{(s, absent)} otherwise

(3.3)

for all s ∈ States and i ∈ Inputs. Note that an output valuation o ∈ Outputs
is a function of the form o : {pedestrian} → {present, absent}. In (3.3), the
second alternative gives two possible outcomes, reflecting the nondeterminism of
the machine.

3.5.2 Uses of Nondeterminism

While nondeterminism is an interesting mathematical concept in itself, it has two major
uses in modeling embedded systems:

Environment Modeling: It is often useful to hide irrelevant details about how an envi-
ronment operates, resulting in a nondeterministic FSM model. We have already
seen one example of such environment modeling in Figure 3.11.
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Figure 3.12: Nondeterministic FSM specifying order of signal lights, but not their
timing. Notice that it ignores the pedestrian input.

Specifications: System specifications impose requirements on some system features,
while leaving other features unconstrained. Nondeterminism is a useful model-
ing technique in such settings as well. For example, consider a specification that
the traffic light cycles through red, green, yellow, in that order, without regard for
the timing between the outputs. The nondeterministic FSM in Figure 3.12 models
this specification. The guard true on each transition indicates that the transition can
be taken at any step. Technically, it means that each transition is enabled for any
input valuation in Inputs.

3.6 Behaviors and Traces

An FSM has discrete dynamics. As we did in Section 3.3.3, we can abstract away the
passage of time and consider only the sequence of reactions, without concern for when in
time each reaction occurs. We do not need to talk explicitly about the amount of time that
passes between reactions, since this is actually irrelevant to the behavior of an FSM.

Consider a port p of a state machine with type Vp. This port will have a sequence of values
from the set Vp ∪ {absent}, one value at each reaction. We can represent this sequence as
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a function of the form
sp : N→ Vp ∪ {absent} .

This is the signal received on that port (if it is an input) or produced on that port (if it is
an output).

A behavior of a state machine is an assignment of such a signal to each port such that the
signal on any output port is the output sequence produced for the given input signals.

Example 3.16: The garage counter of Figure 3.4 has input port set P =
{up, down}, with types Vup = Vdown = {present}, and output port set Q =
{count} with type Vcount = {0, · · · ,M}. An example of input sequences is

sup = (present, absent, present, absent, present, · · · )
sdown = (present, absent, absent, present, absent, · · · )

The corresponding output sequence is

scount = (absent, absent, 1, 0, 1, · · · ) .

These three signals sup, sdown, and scount together are a behavior of the state ma-
chine. If we let

s′count = (1, 2, 3, 4, 5, · · · ) ,

then sup, sdown, and s′count together are not a behavior of the state machine. The
signal s′count is not produced by reactions to those inputs.

Deterministic state machines have the property that there is exactly one behavior for each
set of input sequences. That is, if you know the input sequences, then the output sequence
is fully determined. That is, the machine is determinate. Such a machine can be viewed
as a function that maps input sequences to output sequences. Nondeterministic state ma-
chines can have more than one behavior sharing the same input sequences, and hence
cannot be viewed as a function mapping input sequences to output sequences.
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The set of all behaviors of a state machine M is called its language, written L(M).
Since our state machines are receptive, their languages always include all possible input
sequences.

A behavior may be more conveniently represented as a sequence of valuations called an
observable trace. Let xi represent the valuation of the input ports and yi the valuation of
the output ports at reaction i. Then an observable trace is a sequence

((x0, y0), (x1, y1), (x2, y2), · · · ) .

An observable trace is really just another representation of a behavior.

It is often useful to be able to reason about the states that are traversed in a behavior. An
execution trace includes the state trajectory, and may be written as a sequence

((x0, s0, y0), (x1, s1, y1), (x2, s2, y2), · · · ) ,

where s0 = initialState. This can be represented a bit more graphically as follows,

s0
x0/y0−−−→ s1

x1/y1−−−→ s2
x2/y2−−−→ · · ·

This is an execution trace if for all i ∈ N, (si+1, yi) = update(si, xi) (for a deterministic
machine), or (si+1, yi) ∈ possibleUpdates(si, xi) (for a nondeterministic machine).

Example 3.17: Consider again the garage counter of Figure 3.4 with the same
input sequences sup and sdown from Example 3.16. The corresponding execution
trace may be written

0
up∧down /−−−−−−→ 0

/−−−−→ 0
up / 1−−−→ 1

down / 0−−−−−→ 0
up / 1−−−→ · · ·

Here, we have used the same shorthand for valuations that is used on transitions
in Section 3.3.1. For example, the label “up / 1” means that up is present, down
is absent, and count has value 1. Any notation that clearly and unambiguously
represents the input and output valuations is acceptable.

For a nondeterministic machine, it may be useful to represent all the possible traces that
correspond to a particular input sequence, or even all the possible traces that result from
all possible input sequences. This may be done using a computation tree.
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Figure 3.13: A computation tree for the FSM in Figure 3.12.

Example 3.18: Consider the nondeterministic FSM in Figure 3.12. Figure 3.13
shows the computation tree for the first three reactions with any input sequence.
Nodes in the tree are states and edges are labeled by the input and output valua-
tions, where the notation true means any input valuation.

Traces and computation trees can be valuable for developing insight into the behaviors of
a state machine and for verifying that undesirable behaviors are avoided.

3.7 Summary

This chapter has given an introduction to the use of state machines to model systems with
discrete dynamics. It gives a graphical notation that is suitable for finite state machines,
and an extended state machine notation that can compactly represent large numbers of
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states. It also gives a mathematical model that uses sets and functions rather than visual
notations. The mathematical notation can be useful to ensure precise interpretations of
a model and to prove properties of a model. This chapter has also discussed nondeter-
minism, which can provide convenient abstractions that compactly represent families of
behaviors.
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Exercises

1. Consider an event counter that is a simplified version of the counter in Section 3.1.
It has an icon like this:

This actor starts with state i and upon arrival of an event at the input, increments the
state and sends the new value to the output. Thus, e is a pure signal, and c has the
form c : R→ {absent}∪N, assuming i ∈ N. Suppose you are to use such an event
counter in a weather station to count the number of times that a temperature rises
above some threshold. Your task in this exercise is to generate a reasonable input
signal e for the event counter. You will create several versions. For all versions,
you will design a state machine whose input is a signal τ : R→ {absent} ∪ Z that
gives the current temperature (in degrees centigrade) once per hour. The output
e : R→ {absent, present} will be a pure signal that goes to an event counter.

(a) For the first version, your state machine should simply produce a present out-
put whenever the input is present and greater than 38 degrees. Otherwise, the
output should be absent.

(b) For the second version, your state machine should have hysteresis. Specifi-
cally, it should produce a present output the first time the input is greater than
38 degrees, and subsequently, it should produce a present output anytime the
input is greater than 38 degrees but has dropped below 36 degrees since the
last time a present output was produced.

(c) For the third version, your state machine should implement the same hystere-
sis as in part (b), but also produce a present output at most once per day.

2. Consider a variant of the thermostat of example 3.5. In this variant, there is only one
temperature threshold, and to avoid chattering the thermostat simply leaves the heat
on or off for at least a fixed amount of time. In the initial state, if the temperature is
less than or equal to 20 degrees Celsius, it turns the heater on, and leaves it on for
at least 30 seconds. After that, if the temperature is greater than 20 degrees, it turns
the heater off and leaves it off for at least 2 minutes. It turns it on again only if the
temperature is less than or equal to 20 degrees.
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(a) Design an FSM that behaves as described, assuming it reacts exactly once
every 30 seconds.

(b) How many possible states does your thermostat have? Is this the smallest
number of states possible?

(c) Does this model thermostat have the time-scale invariance property?

3. Consider the following state machine:

Determine whether the following statement is true or false, and give a supporting
argument:

The output will eventually be a constant 0, or it will eventually be a
constant 1. That is, for some n ∈ N, after the n-th reaction, either the
output will be 0 in every subsequent reaction, or it will be 1 in every
subsequent reaction.

Note that Chapter 13 gives mechanisms for making such statements precise and for
reasoning about them.

4. How many reachable states does the following state machine have?

5. Consider the deterministic finite-state machine in Figure 3.14 that models a simple
traffic light.
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Figure 3.14: Deterministic finite-state machine for Exercise 5

(a) Formally write down the description of this FSM as a 5-tuple:

(States, Inputs,Outputs, update, initialState).

(b) Give an execution trace of this FSM of length 4 assuming the input tick is
present on each reaction.

(c) Now consider merging the red and yellow states into a single stop state. Tran-
sitions that pointed into or out of those states are now directed into or out of
the new stop state. Other transitions and the inputs and outputs stay the same.
The new stop state is the new initial state. Is the resulting state machine de-
terministic? Why or why not? If it is deterministic, give a prefix of the trace
of length 4. If it is nondeterministic, draw the computation tree up to depth 4.

6. This problem considers variants of the FSM in Figure 3.11, which models arrivals
of pedestrians at a crosswalk. We assume that the traffic light at the crosswalk is
controlled by the FSM in Figure 3.10. In all cases, assume a time triggered model,
where both the pedestrian model and the traffic light model react once per second.
Assume further that in each reaction, each machine sees as inputs the output pro-
duced by the other machine in the same reaction (this form of composition, which
is called synchronous composition, is studied further in Chapter 6).

(a) Suppose that instead of Figure 3.11, we use the following FSM to model the
arrival of pedestrians:
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Find a trace whereby a pedestrian arrives (the above machine transitions to
waiting) but the pedestrian is never allowed to cross. That is, at no time after
the pedestrian arrives is the traffic light in state red.

(b) Suppose that instead of Figure 3.11, we use the following FSM to model the
arrival of pedestrians:

Here, the initial state is nondeterministically chosen to be one of none or
crossing. Find a trace whereby a pedestrian arrives (the above machine tran-
sitions from none to waiting) but the pedestrian is never allowed to cross. That
is, at no time after the pedestrian arrives is the traffic light in state red.

7. Consider the state machine in Figure 3.15. State whether each of the following is
a behavior for this machine. In each of the following, the ellipsis “· · · ” means that
the last symbol is repeated forever. Also, for readability, absent is denoted by the
shorthand a and present by the shorthand p.

(a) x = (p, p, p, p, p, · · · ), y = (0, 1, 1, 0, 0, · · · )
(b) x = (p, p, p, p, p, · · · ), y = (0, 1, 1, 0, a, · · · )
(c) x = (a, p, a, p, a, · · · ), y = (a, 1, a, 0, a, · · · )
(d) x = (p, p, p, p, p, · · · ), y = (0, 0, a, a, a, · · · )
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(e) x = (p, p, p, p, p, · · · ), y = (0, a, 0, a, a, · · · )

8. (NOTE: This exercise is rather advanced.) This exercise studies properties of dis-
crete signals as formally defined in the sidebar on page 45. Specifically, we will
show that discreteness is not a compositional property. That is, when combining
two discrete behaviors in a single system, the resulting combination is not neces-
sarily discrete.

(a) Consider a pure signal x : R→ {present, absent} given by

x(t) =

{
present if t is a non-negative integer
absent otherwise

for all t ∈ R. Show that this signal is discrete.

(b) Consider a pure signal y : R→ {present, absent} given by

y(t) =

{
present if t = 1− 1/n for any positive integer n
absent otherwise

for all t ∈ R. Show that this signal is discrete.

(c) Consider a signal w that is the merge of x and y in the previous two parts.
That is, w(t) = present if either x(t) = present or y(t) = present, and is
absent otherwise. Show that w is not discrete.

(d) Consider the example shown in Figure 3.1. Assume that each of the two
signals arrival and departure is discrete. Show that this does not imply that
the output count is a discrete signal.

Figure 3.15: State machine for Exercise 7.
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Chapters 2 and 3 describe two very different modeling strategies, one focused on continu-
ous dynamics and one on discrete dynamics. For continuous dynamics, we use differential
equations and their corresponding actor models. For discrete dynamics, we use state ma-
chines.

Cyber-physical systems integrate physical dynamics and computational systems, so they
commonly combine both discrete and continuous dynamics. In this chapter, we show that
the modeling techniques of Chapters 2 and 3 can be combined, yielding what are known as
hybrid systems. Hybrid system models are often much simpler and more understandable
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than brute-force models that constrain themselves to only one of the two styles in Chapters
2 and 3. They are a powerful tool for understanding real-world systems.

4.1 Modal Models

In this section, we show that state machines can be generalized to admit continuous inputs
and outputs and to combine discrete and continuous dynamics.

4.1.1 Actor Model for State Machines

In Section 3.3.1 we explain that state machines have inputs defined by the set Inputs that
may be pure signals or may carry a value. In either case, the state machine has a number
of input ports, which in the case of pure signals are either present or absent, and in the
case of valued signals have a value at each reaction of the state machine.

We also explain in Section 3.3.1 that actions on transitions set the values of outputs. The
outputs can also be represented by ports, and again the ports can carry pure signals or
valued signals. In the case of pure signals, a transition that is taken specifies whether the
output is present or absent, and in the case of valued signals, it assigns a value or asserts
that the signal is absent. Outputs are presumed to be absent between transitions.

Given this input/output view of state machines, it is natural to think of a state machine as
an actor, as illustrated in Figure 4.1. In that figure, we assume some number n of input
ports named i1 · · · in. At each reaction, these ports have a value that is either present or
absent (if the port carries a pure signal) or a member of some set of values (if the port
carries a valued signal). The outputs are similar. The guards on the transitions define
subsets of possible values on input ports, and the actions assign values to output ports.
Given such an actor model, it is straightforward to generalize FSMs to admit continuous-
time signals as inputs.

4.1.2 Continuous Inputs

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions. We will now
generalize this to allow inputs and outputs to be continuous-time signals.
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i1

in om

o1
... ...

Figure 4.1: An FSM represented as an actor.

In order to get state machine models to coexist with time-based models, we need to inter-
pret state transitions to occur on the same timeline used for the time-based portion of the
system. The notion of discrete reactions described in Section 3.1 suffices for this purpose,
but we will no longer require inputs and outputs to be absent between reactions. Instead,
we will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled. As before, during the time between reactions, a state machine
is understood to not transition between modes. But the inputs and outputs are no longer
required to be absent during that time.

Example 4.1: Consider a thermostat modeled as a state machine with states
Σ = {heating, cooling}, shown in Figure 4.2. This is a variant of the model of
Example 3.5 where instead of a discrete input that provides a temperature at each
reaction, the input is a continuous-time signal τ : R → R where τ(t) represents
the temperature at time t. The initial state is cooling, and the transition out of this
state is enabled at the earliest time t after the start time when τ(t) ≤ 18. In this
example, we assume the outputs are pure signals heatOn and heatOff.
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In the above example, the outputs are present only at the times the transitions are taken.
We can also generalize FSMs to support continuous-time outputs, but to do this, we need
the notion of state refinements.

4.1.3 State Refinements

A hybrid system associates with each state of an FSM a dynamic behavior. Our first (very
simple) example uses this capability merely to produce continuous-time outputs.

Example 4.2: Suppose that instead of discrete outputs as in Example 4.1 we
wish to produce a control signal whose value is 1 when the heat is on and 0 when
the heat is off. Such a control signal could directly drive a heater. The thermostat
in Figure 4.3 does this. In that figure, each state has a refinement that gives the
value of the output h while the state machine is in that state.

In a hybrid system, the current state of the state machine has a state refinement that
gives the dynamic behavior of the output as a function of the input. In the above simple
example, the output is constant in each state, which is rather trivial dynamics. Hybrid
systems can get much more elaborate.

The general structure of a hybrid system model is shown in Figure 4.4. In that figure,
there is a two-state finite-state machine. Each state is associated with a state refinement

Figure 4.2: A thermostat modeled as an FSM with a continuous-time input signal.
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labeled in the figure as a “time-based system.” The state refinement defines dynamic
behavior of the outputs and (possibly) additional continuous state variables. In addition,
each transition can optionally specify set actions, which set the values of such additional
state variables when a transition is taken. The example of Figure 4.3 is rather trivial, in
that it has no continuous state variables, no output actions, and no set actions.

A hybrid system is sometimes called a modal model because it has a finite number of
modes, one for each state of the FSM, and when it is in a mode, it has dynamics specified
by the state refinement. The states of the FSM may be referred to as modes rather than
states, which as we will see, helps prevent confusion with states of the refinements.

The next simplest such dynamics, besides the rather trivial constant outputs of Example
4.2 is found in timed automata, which we discuss next.

4.2 Classes of Hybrid Systems

Hybrid systems can be quite elaborate. In this section, we first describe a relatively sim-
ple form known as timed automata. We then illustrate more elaborate forms that model
nontrivial physical dynamics and nontrivial control systems.

h

Figure 4.3: A thermostat with continuous-time output.
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i1

in om

o1
... ...

time-based system time-based system

Figure 4.4: Notation for hybrid systems.

4.2.1 Timed Automata

Most cyber-physical systems require measuring the passage of time and performing ac-
tions at specific times. A device that measures the passage of time, a clock, has a partic-
ularly simple dynamics: its state progresses linearly in time. In this section, we describe
timed automata, a formalism introduced by Alur and Dill (1994), which enable the con-
struction of more complicated systems from such simple clocks.

Timed automata are the simplest non-trivial hybrid systems. They are modal models
where the time-based refinements have very simple dynamics; all they do is measure the
passage of time. A clock is modeled by a first-order differential equation,

∀ t ∈ Tm, ṡ(t) = a,

where s : R → R is a continuous-time signal, s(t) is the value of the clock at time t, and
Tm ⊂ R is the subset of time during which the hybrid system is in mode m. The rate of
the clock, a, is a constant while the system is in this mode.1

1The variant of timed automata we describe in this chapter differs from the original model of Alur and
Dill (1994) in that the rates of clocks in different modes can be different. This variant is sometimes described
in the literature as multi-rate timed automata.
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Example 4.3: Recall the thermostat of Example 4.1, which uses hysteresis to
prevent chattering. An alternative implementation that would also prevent chat-
tering would use a single temperature threshold, but instead would require that
the heater remain on or off for at least a minimum amount of time, regardless of
the temperature. This design would not have the hysteresis property, but may be
useful nonetheless. This can be modeled as a timed automaton as shown in Figure
4.5. In that figure, each state refinement has a clock, which is a continuous-time
signal s with dynamics given by

ṡ(t) = 1 .

The value s(t) increases linearly with t. Note that in that figure, the state re-
finement is shown directly with the name of the state in the state bubble. This
shorthand is convenient when the refinement is relatively simple.

Notice that the initial state cooling has a set action on the dangling transition
indicating the initial state, written as

s(t) := Tc .

As we did with extended state machines, we use the notation “:=” to emphasize
that this is an assignment, not a predicate. This action ensures that when the
thermostat starts, it can immediately transition to the heating mode if the temper-
ature τ(t) is less than or equal to 20 degrees. The other two transitions each have
set actions that reset the clock s to zero. The portion of the guard that specifies
s(t) ≥ Th ensures that the heater will always be on for at least time Th. The
portion of the guard that specifies s(t) ≥ Tc specifies that once the heater goes
off, it will remain off for at least time Tc.

A possible execution of this timed automaton is shown in Figure 4.6. In that fig-
ure, we assume that the temperature is initially above the setpoint of 20 degrees,
so the FSM remains in the cooling state until the temperature drops to 20 degrees.
At that time t1, it can take the transition immediately because s(t1) > Tc. The
transition resets s to zero and turns on the heater. The heater will remain on until
time t1 + Th, assuming that the temperature only rises when the heater is on. At
time t1 + Th, it will transition back to the cooling state and turn the heater off.
(We assume here that a transition is taken as soon as it is enabled. Other transi-
tion semantics are possible.) It will cool until at least time Tc elapses and until
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h

Figure 4.5: A timed automaton modeling a thermostat with a single temperature
threshold, 20, and minimum times Tc and Th in each mode.

the temperature drops again to 20 degrees, at which point it will turn the heater
back on.

In the previous example the state of the system at any time t is not only the mode, heat-
ing or cooling, but also the current value s(t) of the clock. We call s a continuous state
variable, whereas heating and cooling are discrete states. Thus, note that the term “state”
for such a hybrid system can become confusing. The FSM has states, but so do the refine-
ment systems (unless they are memoryless). When there is any possibility of confusion
we explicitly refer to the states of the machine as modes.

Transitions between modes have actions associated with them. Sometimes, it is useful to
have transitions from one mode back to itself, just so that the action can be realized. This
is illustrated in the next example, which also shows a timed automaton that produces a
pure output.

Example 4.4: The timed automaton in Figure 4.7 produces a pure output that
will be present every T time units, starting at the time when the system begins
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h(t)

t...

(a)

(b)

(c)

s(t)

t...

τ(t)

t...
20 t1 t1 + Th

0

Tc

0
1

Figure 4.6: (a) A temperature input to the hybrid system of Figure 4.5, (b) the
output h, and (c) the refinement state s.

executing. Notice that the guard on the transition, s(t) ≥ T , is followed by an
output action, tick, and a set action, s(t) := 0.

Figure 4.7 shows another notational shorthand that works well for simple diagrams. The
automaton is shown directly inside the icon for its actor model.

Example 4.5: The traffic light controller of Figure 3.10 is a time triggered
machine that assumes it reacts once each second. Figure 4.8 shows a timed
automaton with the same behavior. It is more explicit about the passage of time
in that its temporal dynamics do not depend on unstated assumptions about when
the machine will react.
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Figure 4.7: A timed automaton that generates a pure output event every T time
units.

Figure 4.8: A timed automaton variant of the traffic light controller of Figure 3.10.
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Figure 4.9: Sticky masses system considered in Example 4.6.

4.2.2 Higher-Order Dynamics

In timed automata, all that happens in the time-based refinement systems is that time
passes. Hybrid systems, however, are much more interesting when the behavior of the
refinements is more complex. Specifically,

Example 4.6: Consider the physical system depicted in Figure 4.9. Two sticky
round masses are attached to springs. The springs are compressed or extended
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Figure 4.10: Hybrid system model for the sticky masses system considered in
Example 4.6.

and then released. The masses oscillate on a frictionless table. If they collide,
they stick together and oscillate together. After some time, the stickiness decays,
and masses pull apart again.

A plot of the displacement of the two masses as a function of time is shown in
Figure 4.9. Both springs begin compressed, so the masses begin moving towards
one another. They almost immediately collide, and then oscillate together for a
brief period until they pull apart. In this plot, they collide two more times, and
almost collide a third time.

The physics of this problem is quite simple if we assume idealized springs. Let
y1(t) denote the right edge of the left mass at time t, and y2(t) denote the left
edge of the right mass at time t, as shown in Figure 4.9. Let p1 and p2 denote the
neutral positions of the two masses, i.e., when the springs are neither extended
nor compressed, so the force is zero. For an ideal spring, the force at time t on
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the mass is proportional to p1 − y1(t) (for the left mass) and p2 − y2(t) (for the
right mass). The force is positive to the right and negative to the left.

Let the spring constants be k1 and k2, respectively. Then the force on the left
spring is k1(p1 − y1(t)), and the force on the right spring is k2(p2 − y2(t)). Let
the masses be m1 and m2 respectively. Now we can use Newton’s second law,
which relates force, mass, and acceleration,

f = ma.

The acceleration is the second derivative of the position with respect to time,
which we write ÿ1(t) and ÿ2(t). Thus, as long as the masses are separate, their
dynamics are given by

ÿ1(t) = k1(p1 − y1(t))/m1 (4.1)

ÿ2(t) = k2(p2 − y2(t))/m2. (4.2)

When the masses collide, however, the situation changes. With the masses stuck
together, they behave as a single object with mass m1 +m2. This single object is
pulled in opposite directions by two springs. While the masses are stuck together,
y1(t) = y2(t). Let

y(t) = y1(t) = y2(t).

The dynamics are then given by

ÿ(t) =
k1p1 + k2p2 − (k1 + k2)y(t)

m1 +m2
. (4.3)

It is easy to see now how to construct a hybrid systems model for this physical
system. The model is shown in Figure 4.10. It has two modes, apart and together.
The refinement of the apart mode is given by (4.1) and (4.2), while the refinement
of the together mode is given by (4.3).

We still have work to do, however, to label the transitions. The initial transition is
shown in Figure 4.10 entering the apart mode. Thus, we are assuming the masses
begin apart. Moreover, this transition is labeled with a set action that sets the
initial positions of the two masses to i1 and i2 and the initial velocities to zero.

The transition from apart to together has the guard

y1(t) = y2(t) .
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This transition has a set action which assigns values to two continuous state vari-
ables y(t) and ẏ(t), which will represent the motion of the two masses stuck
together. The value it assigns to ẏ(t) conserves momentum. The momentum of
the left mass is ẏ1(t)m1, the momentum of the right mass is ẏ2(t)m2, and the
momentum of the combined masses is ẏ(t)(m1 + m2). To make these equal, it
sets

ẏ(t) =
ẏ1(t)m1 + ẏ2(t)m2

m1 +m2
.

The refinement of the together mode gives the dynamics of y and simply sets
y1(t) = y2(t) = y(t), since the masses are moving together. The transition from
apart to together sets y(t) equal to y1(t) (it could equally well have chosen y2(t),
since these are equal).

The transition from together to apart has the more complicated guard

(k1 − k2)y(t) + k2p2 − k1p1 > s,

where s represents the stickiness of the two masses. This guard is satisfied when
the right-pulling force on the right mass exceeds the right-pulling force on the
left mass by more than the stickiness. The right-pulling force on the right mass is
simply

f2(t) = k2(p2 − y(t))

and the right-pulling force on the left mass is

f1(t) = k1(p1 − y(t)).

Thus,
f2(t)− f1(t) = (k1 − k2)y(t) + k2p2 − k1p1.

When this exceeds the stickiness s, then the masses pull apart.

An interesting elaboration on this example, considered in problem 11, modifies
the together mode so that the stickiness is initialized to a starting value, but then
decays according to the differential equation

ṡ(t) = −as(t)

where s(t) is the stickiness at time t, and a is some positive constant. In fact, it is
the dynamics of such an elaboration that is plotted in Figure 4.9.
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As in Example 4.4, it is sometimes useful to have hybrid system models with only one
state. The actions on one or more state transitions define the discrete event behavior that
combines with the time-based behavior.

Example 4.7: Consider a bouncing ball. At time t = 0, the ball is dropped from
a height y(0) = h0, where h0 is the initial height in meters. It falls freely. At
some later time t1 it hits the ground with a velocity ẏ(t1) < 0 m/s (meters per
second). A bump event is produced when the ball hits the ground. The collision is
inelastic (meaning that kinetic energy is lost), and the ball bounces back up with
velocity −aẏ(t1), where a is constant with 0 < a < 1. The ball will then rise to
a certain height and fall back to the ground repeatedly.

The behavior of the bouncing ball can be described by the hybrid system of Figure
4.11. There is only one mode, called free. When it is not in contact with the
ground, we know that the ball follows the second-order differential equation,

ÿ(t) = −g, (4.4)

where g = 9.81 m/sec2 is the acceleration imposed by gravity. The continuous
state variables of the free mode are

s(t) =

[
y(t)
ẏ(t)

]
with the initial conditions y(0) = h0 and ẏ(0) = 0. It is then a simple matter to
rewrite (4.4) as a first-order differential equation,

ṡ(t) = f(s(t)) (4.5)

for a suitably chosen function f .

At the time t = t1 when the ball first hits the ground, the guard

y(t) = 0

is satisfied, and the self-loop transition is taken. The output bump is produced,
and the set action ẏ(t) := −aẏ(t) changes ẏ(t1) to have value −aẏ(t1). Then
(4.4) is followed again until the guard becomes true again.
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t1 t2

t

t1 t2

t

Figure 4.11: The motion of a bouncing ball may be described as a hybrid system
with only one mode. The system outputs a bump each time the ball hits the
ground, and also outputs the position of the ball. The position and velocity are
plotted versus time at the right.

By integrating (4.4) we get, for all t ∈ (0, t1),

ẏ(t) = −gt,

y(t) = y(0) +

∫ t

0
ẏ(τ)dτ = h0 −

1

2
gt2.

So t1 > 0 is determined by y(t1) = 0. It is the solution to the equation

h0 −
1

2
gt2 = 0.

Thus,
t1 =

√
2h0/g.

Figure 4.11 plots the continuous state versus time.

The bouncing ball example above has an interesting difficulty that is explored in Exercise
10. Specifically, the time between bounces gets smaller as time increases. In fact, it
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gets smaller fast enough that an infinite number of bounces occur in a finite amount of
time. A system with an infinite number of discrete events in a finite amount of time is
called a Zeno system, after Zeno of Elea, a pre-Socratic Greek philosopher famous for
his paradoxes. In the physical world, of course, the ball will eventually stop bouncing;
the Zeno behavior is an artifact of the model. Another example of a Zeno hybrid system
is considered in Exercise 13.

4.2.3 Supervisory Control

A control system involves four components: a system called the plant, the physical pro-
cess that is to be controlled; the environment in which the plant operates; the sensors that
measure some variables of the plant and the environment; and the controller that deter-
mines the mode transition structure and selects the time-based inputs to the plant. The
controller has two levels: the supervisory control that determines the mode transition
structure, and the low-level control that determines the time-based inputs to the plant.
Intuitively, the supervisory controller determines which of several strategies should be
followed, and the low-level controller implements the selected strategy. Hybrid systems
are ideal for modeling such two-level controllers. We show how through a detailed exam-
ple.

Example 4.8: Consider an automated guided vehicle (AGV) that moves along
a closed track painted on a warehouse or factory floor. We will design a controller
so that the vehicle closely follows the track.

The vehicle has two degrees of freedom. At any time t, it can move forward along
its body axis with speed u(t) with the restriction that 0 ≤ u(t) ≤ 10 mph (miles
per hour). It can also rotate about its center of gravity with an angular speed ω(t)
restricted to−π ≤ ω(t) ≤ π radians/second. We ignore the inertia of the vehicle,
so we assume that we can instantaneously change the velocity or angular speed.

Let (x(t), y(t)) ∈ R2 be the position relative to some fixed coordinate frame and
θ(t) ∈ (−π, π] be the angle (in radians) of the vehicle at time t, as shown in
Figure 4.12. In terms of this coordinate frame, the motion of the vehicle is given
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track

AG
V

global
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frame

Figure 4.12: Illustration of the automated guided vehicle of Example 4.8. The
vehicle is following a curved painted track, and has deviated from the track by a
distance e(t). The coordinates of the vehicle at time t with respect to the global
coordinate frame are (x(t), y(t), θ(t)).

by a system of three differential equations,

ẋ(t) = u(t) cos θ(t),

ẏ(t) = u(t) sin θ(t), (4.6)

θ̇(t) = ω(t).

Equations (4.6) describe the plant. The environment is the closed painted track. It
could be described by an equation. We will describe it indirectly below by means
of a sensor.
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Figure 4.13: The automatic guided vehicle of Example 4.8 has four modes: stop,
straight, left, right.
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The two-level controller design is based on a simple idea. The vehicle always
moves at its maximum speed of 10 mph. If the vehicle strays too far to the left
of the track, the controller steers it towards the right; if it strays too far to the
right of the track, the controller steers it towards the left. If the vehicle is close
to the track, the controller maintains the vehicle in a straight direction. Thus the
controller guides the vehicle in four modes, left, right, straight, and stop. In stop
mode, the vehicle comes to a halt.

The following differential equations govern the AGV’s motion in the refinements
of the four modes. They describe the low-level controller, i.e., the selection of the
time-based plant inputs in each mode.

straight

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = 0

left

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = π

right

ẋ(t) = 10 cos θ(t)

ẏ(t) = 10 sin θ(t)

θ̇(t) = −π

stop

ẋ(t) = 0

ẏ(t) = 0

θ̇(t) = 0

In the stop mode, the vehicle is stopped, so x(t), y(t), and θ(t) are constant. In
the left mode, θ(t) increases at the rate of π radians/second, so from Figure 4.12
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we see that the vehicle moves to the left. In the right mode, it moves to the right.
In the straight mode, θ(t) is constant, and the vehicle moves straight ahead with
a constant heading. The refinements of the four modes are shown in the boxes of
Figure 4.13.

We design the supervisory control governing transitions between modes in such
a way that the vehicle closely follows the track, using a sensor that determines
how far the vehicle is to the left or right of the track. We can build such a sensor
using photodiodes. Let’s suppose the track is painted with a light-reflecting color,
whereas the floor is relatively dark. Underneath the AGV we place an array of
photodiodes as shown in Figure 4.14. The array is perpendicular to the AGV
body axis. As the AGV passes over the track, the diode directly above the track
generates more current than the other diodes. By comparing the magnitudes of
the currents through the different diodes, the sensor estimates the displacement
e(t) of the center of the array (hence, the center of the AGV) from the track. We
adopt the convention that e(t) < 0 means that the AGV is to the right of the track
and e(t) > 0 means it is to the left. We model the sensor output as a function f
of the AGV’s position,

∀t, e(t) = f(x(t), y(t)).

The function f of course depends on the environment—the track. We now specify
the supervisory controller precisely. We select two thresholds, 0 < ε1 < ε2, as
shown in Figure 4.14. If the magnitude of the displacement is small, |e(t)| < ε1,
we consider that the AGV is close enough to the track, and the AGV can move
straight ahead, in straight mode. If e(t) > ε2 (e(t) is large and positive), the AGV
has strayed too far to the left and must be steered to the right, by switching to
right mode. If e(t) < −ε2 (e(t) is large and negative), the AGV has strayed too
far to the right and must be steered to the left, by switching to left mode. This
control logic is captured in the mode transitions of Figure 4.13. The inputs are
pure signals stop and start. These model an operator that can stop or start the
AGV. There is no continuous-time input. The outputs represent the position of
the vehicle, x(t) and y(t). The initial mode is stop, and the initial values of its
refinement are (x0, y0, θ0).

We analyze how the AGV will move. Figure 4.15 sketches one possible trajectory.
Initially the vehicle is within distance ε1 of the track, so it moves straight. At some
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photodiode trackAGV

Figure 4.14: An array of photodiodes under the AGV is used to estimate the
displacement e of the AGV relative to the track. The photodiode directly above
the track generates more current.

later time, the vehicle goes too far to the left, so the guard

¬stop ∧ e(t) > ε2

is satisfied, and there is a mode switch to right. After some time, the vehicle will
again be close enough to the track, so the guard

¬stop ∧ |e(t)| < ε1

is satisfied, and there is a mode switch to straight. Some time later, the vehicle is
too far to the right, so the guard

¬stop ∧ e(t) < −ε2

is satisfied, and there is a mode switch to left. And so on.

The example illustrates the four components of a control system. The plant is described
by the differential equations (4.6) that govern the evolution of the continuous state at
time t, (x(t), y(t), θ(t)), in terms of the plant inputs u and ω. The second component
is the environment—the closed track. The third component is the sensor, whose output
at time t, e(t) = f(x(t), y(t)), gives the position of the AGV relative to the track. The
fourth component is the two-level controller. The supervisory controller comprises the
four modes and the guards that determine when to switch between modes. The low-level
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initial 
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Figure 4.15: A trajectory of the AGV, annotated with modes.

controller specifies how the time-based inputs to the plant, u and ω, are selected in each
mode.

4.3 Summary

Hybrid systems provide a bridge between time-based models and state-machine models.
The combination of the two families of models provides a rich framework for describing
real-world systems. There are two key ideas. First, discrete events (state changes in a state
machine) get embedded in a time base. Second, a hierarchical description is particularly
useful, where the system undergoes discrete transitions between different modes of opera-
tion. Associated with each mode of operation is a time-based system called the refinement
of the mode. Mode transitions are taken when guards that specify the combination of in-
puts and continuous states are satisfied. The action associated with a transition, in turn,
sets the continuous state in the destination mode.
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The behavior of a hybrid system is understood using the tools of state machine analysis
for mode transitions and the tools of time-based analysis for the refinement systems. The
design of hybrid systems similarly proceeds on two levels: state machines are designed to
achieve the appropriate logic of mode transitions, and continuous refinement systems are
designed to secure the desired time-based behavior in each mode.
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Exercises

1. Construct (on paper is sufficient) a timed automaton similar to that of Figure 4.7
which produces tick at times 1, 2, 3, 5, 6, 7, 8, 10, 11, · · · . That is, ticks are produced
with intervals between them of 1 second (three times) and 2 seconds (once).

2. The objective of this problem is to understand a timed automaton, and then to mod-
ify it as specified.

(a) For the timed automaton shown below, describe the output y. Avoid imprecise
or sloppy notation.

(b) Assume there is a new pure input reset, and that when this input is present,
the hybrid system starts over, behaving as if it were starting at time 0 again.
Modify the hybrid system from part (a) to do this.

3. In Exercise 6 of Chapter 2, we considered a DC motor that is controlled by an in-
put voltage. Controlling a motor by varying an input voltage, in reality, is often
not practical. It requires analog circuits that are capable of handling considerable
power. Instead, it is common to use a fixed voltage, but to turn it on and off period-
ically to vary the amount of power delivered to the motor. This technique is called
pulse width modulation (PWM).

Construct a timed automaton that provides the voltage input to the motor model
from Exercise 6. Your hybrid system should assume that the PWM circuit delivers
a 25 kHz square wave with a duty cycle between zero and 100%, inclusive. The
input to your hybrid system should be the duty cycle, and the output should be the
voltage.
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4. Consider the following timed automaton:

Assume that the input signals a and b are discrete continuous-time signals, meaning
that each can be given as a function of form a : R → {present, absent}, where at
almost all times t ∈ R, a(t) = absent. Assume that the state machine can take
at most one transition at each distinct time t, and that machine begins executing at
time t = 0.

(a) Sketch the output b if the input a is present only at times

t = 0.75, 1.5, 2.25, 3, 3.75, 4.5, · · ·

Include at least times from t = 0 to t = 5.

(b) Sketch the output b if the input a is present only at times t = 0, 1, 2, 3, · · · .
(c) Assuming that the input a can be any discrete signal at all, find a lower bound

on the amount of time between events b. What input signal a (if any) achieves
this lower bound?

5. You have an analog source that produces a pure tone. You can switch the source on
or off by the input event on or off. Construct a timed automaton that provides the on
and off signals as outputs, to be connected to the inputs of the tone generator. Your
system should behave as follows. Upon receiving an input event ring, it should
produce an 80 ms-long sound consisting of three 20 ms-long bursts of the pure tone
separated by two 10 ms intervals of silence. What does your system do if it receives
two ring events that are 50 ms apart?
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6. Automobiles today have the features listed below. Implement each feature as a
timed automaton.

(a) The dome light is turned on as soon as any door is opened. It stays on for 30
seconds after all doors are shut. What sensors are needed?

(b) Once the engine is started, a beeper is sounded and a red light warning is
indicated if there are passengers that have not buckled their seat belt. The
beeper stops sounding after 30 seconds, or as soon the seat belts are buckled,
whichever is sooner. The warning light is on all the time the seat belt is un-
buckled. Hint: Assume the sensors provide a warn event when the ignition
is turned on and there is a seat with passenger not buckled in, or if the igni-
tion is already on and a passenger sits in a seat without buckling the seatbelt.
Assume further that the sensors provide a noWarn event when a passenger de-
parts from a seat, or when the buckle is buckled, or when the ignition is turned
off.

7. A programmable thermostat allows you to select 4 times, 0 ≤ T1 ≤ · · · ≤ T4 < 24
(for a 24-hour cycle) and the corresponding setpoint temperatures a1, · · · , a4. Con-
struct a timed automaton that sends the event ai to the heating systems controller.
The controller maintains the temperature close to the value ai until it receives the
next event. How many timers and modes do you need?

8. Consider the following timed automaton:

Assume t1 and t2 are positive real numbers. What is the minimum amount of time
between events a? That is, what is the smallest possible time between two times
when the signal a is present?
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9. Figure 4.16 depicts the intersection of two one-way streets, called Main and Sec-
ondary. A light on each street controls its traffic. Each light goes through a cycle
consisting of a red (R), green (G), and yellow (Y) phases. It is a safety requirement
that when one light is in its green or yellow phase, the other is in its red phase. The
yellow phase is always 5 seconds long.

The traffic lights operate as follows. A sensor in the secondary road detects a ve-
hicle. While no vehicle is detected, there is a 4 minute-long cycle with the main
light having 3 minutes of green, 5 seconds of yellow, and 55 seconds of red. The
secondary light is red for 3 minutes and 5 seconds (while the main light is green
and yellow), green for 50 seconds, then yellow for 5 seconds.

If a vehicle is detected on the secondary road, the traffic light quickly gives a right
of way to the secondary road. When this happens, the main light aborts its green
phase and immediately switches to its 5 second yellow phase. If the vehicle is
detected while the main light is yellow or red, the system continues as if there were
no vehicle.

Design a hybrid system that controls the lights. Let this hybrid system have six
pure outputs, one for each light, named mG, mY, and mR, to designate the main

Main
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detector

R

R G

G Y

Y

Figure 4.16: Traffic lights control the intersection of a main street and a secondary
street. A detector senses when a vehicle crosses it. The red phase of one light
must coincide with the green and yellow phases of the other light.
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light being green, yellow, or red, respectively, and sG, sY, and sR, to designate the
secondary light being green, yellow, or red, respectively. These signals should be
generated to turn on a light. You can implicitly assume that when one light is turned
on, whichever has been on is turned off.

10. For the bouncing ball of Example 4.7, let tn be the time when the ball hits the
ground for the n-th time, and let vn = ẏ(tn) be the velocity at that time.

(a) Find a relation between vn+1 and vn for n > 1, and then calculate vn in terms
of v1.

(b) Obtain tn in terms of v1 and a. Use this to show that the bouncing ball is a
Zeno system. Hint: The geometric series identity might be useful, where
for |b| < 1,

∞∑
m=0

bm =
1

1− b
.

(c) Calculate the maximum height reached by the ball after successive bumps.

11. Elaborate the hybrid system model of Figure 4.10 so that in the together mode, the
stickiness decays according to the differential equation

ṡ(t) = −as(t)

where s(t) is the stickiness at time t, and a is some positive constant. On the tran-
sition into this mode, the stickiness should be initialized to some starting stickiness
b.

12. Show that the trajectory of the AGV of Figure 4.13 while it is in left or right mode
is a circle. What is the radius of this circle, and how long does it take to complete a
circle?

13. Consider Figure 4.17 depicting a system comprising two tanks containing water.
Each tank is leaking at a constant rate. Water is added at a constant rate to the
system through a hose, which at any point in time is filling either one tank or the
other. It is assumed that the hose can switch between the tanks instantaneously.
For i ∈ {1, 2}, let xi denote the volume of water in Tank i and vi > 0 denote the
constant flow of water out of Tank i. Letw denote the constant flow of water into the
system. The objective is to keep the water volumes above r1 and r2, respectively,
assuming that the water volumes are above r1 and r2 initially. This is to be achieved
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Figure 4.17: Water tank system.

by a controller that switches the inflow to Tank 1 whenever x1(t) ≤ r1(t) and to
Tank 2 whenever x2(t) ≤ r2(t).

The hybrid automaton representing this two-tank system is given in Figure 4.18.

Answer the following questions:

(a) Construct a model of this hybrid automaton in Ptolemy II, LabVIEW, or
Simulink. Use the following parameter values: r1 = r2 = 0, v1 = v2 = 0.5,
and w = 0.75. Set the initial state to be (q1, (0, 1)). (That is, initial value
x1(0) is 0 and x2(0) is 1.)
Verify that this hybrid automaton is Zeno. What is the reason for this Zeno
behavior? Simulate your model and plot how x1 and x2 vary as a function of
time t, simulating long enough to illustrate the Zeno behavior.

(b) A Zeno system may be regularized by ensuring that the time between tran-
sitions is never less than some positive number ε. This can be emulated by
inserting extra modes in which the hybrid automaton dwells for time ε. Use
regularization to make your model from part (a) non-Zeno. Again, plot x1
and x2 for the same length of time as in the first part. State the value of ε that
you used.

Include printouts of your plots with your answer.
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Figure 4.18: Hybrid automaton representing water tank system.
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