
9
Memory Architectures

9.1 Memory Technologies . 240
9.1.1 RAM . 240
9.1.2 Non-Volatile Memory . 241

9.2 Memory Hierarchy . 242
9.2.1 Memory Maps . 243
Sidebar: Harvard Architecture . 245
9.2.2 Register Files . 246
9.2.3 Scratchpads and Caches . 246

9.3 Memory Models . 251
9.3.1 Memory Addresses . 251
9.3.2 Stacks . 252
9.3.3 Memory Protection Units . 253
9.3.4 Dynamic Memory Allocation 254
9.3.5 Memory Model of C . 255

9.4 Summary . 256
Exercises . 257

Many processor architects argue that memory systems have more impact on overall sys-
tem performance than data pipelines. This depends, of course, on the application, but for
many applications it is true. There are three main sources of complexity in memory. First,
it is commonly necessary to mix a variety of memory technologies in the same embed-
ded system. Many memory technologies are volatile, meaning that the contents of the

9.1. MEMORY TECHNOLOGIES

memory is lost if power is lost. Most embedded systems need at least some non-volatile
memory and some volatile memory. Moreover, within these categories, there are several
choices, and the choices have significant consequences for the system designer. Second,
memory hierarchy is often needed because memories with larger capacity and/or lower
power consumption are slower. To achieve reasonable performance at reasonable cost,
faster memories must be mixed with slower memories. Third, the address space of a
processor architecture is divided up to provide access to the various kinds of memory, to
provide support for common programming models, and to designate addresses for inter-
action with devices other than memories, such as I/O devices. In this chapter, we discuss
these three issues in order.

9.1 Memory Technologies

In embedded systems, memory issues loom large. The choices of memory technologies
have important consequences for the system designer. For example, a programmer may
need to worry about whether data will persist when the power is turned off or a power-
saving standby mode is entered. A memory whose contents are lost when the power is
cut off is called a volatile memory. In this section, we discuss some of the available
technologies and their tradeoffs.

9.1.1 RAM

In addition to the register file, a microcomputer typically includes some amount of RAM
(random access memory), which is a memory where individual items (bytes or words)
can be written and read one at a time relatively quickly. SRAM (static RAM) is faster
than DRAM (dynamic RAM), but it is also larger (each bit takes up more silicon area).
DRAM holds data for only a short time, so each memory location must be periodically
refreshed. SRAM holds data for as long as power is maintained. Both types of memories
lose their contents if power is lost, so both are volatile memory, although arguably DRAM
is more volatile than SRAM because it loses its contents even if power is maintained.

Most embedded computer systems include an SRAM memory. Many also include DRAM
because it can be impractical to provide enough memory with SRAM technology alone. A
programmer that is concerned about the time it takes a program to execute must be aware
of whether memory addresses being accessed are mapped to SRAM or DRAM. More-

240 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

over, the refresh cycle of DRAM can introduce variability to the access times because the
DRAM may be busy with a refresh at the time that access is requested. In addition, the
access history can affect access times. The time it takes to access one memory address
may depend on what memory address was last accessed.

A manufacturer of a DRAM memory chip will specify that each memory location must
be refreshed, say, every 64 ms, and that a number of locations (a “row”) are refreshed
together. The mere act of reading the memory will refresh the locations that are read
(and locations on the same row), but since applications may not access all rows within
the specified time interval, DRAM has to be used with a controller that ensures that all
locations are refreshed sufficiently often to retain the data. The memory controller will
stall accesses if the memory is busy with a refresh when the access is initiated. This
introduces variability in the timing of the program.

9.1.2 Non-Volatile Memory

Embedded systems invariably need to store data even when the power is turned off. There
are several options for this. One, of course, is to provide battery backup so that power
is never lost. Batteries, however, wear out, and there are better options available, known
collectively as non-volatile memories. An early form of non-volatile memory was mag-
netic core memory or just core, where a ferromagnetic ring was magnetized to store data.
The term “core” persists in computing to refer to computer memories, although this may
change as multicore machines become ubiquitous.

The most basic non-volatile memory today is ROM (read-only memory) or mask ROM,
the contents of which is fixed at the chip factory. This can be useful for mass produced
products that only need to have a program and constant data stored, and these data never
change. Such programs are known as firmware, suggesting that they are not as “soft” as
software. There are several variants of ROM that can be programmed in the field, and the
technology has gotten good enough that these are almost always used today over mask
ROM. EEPROM, electrically-erasable programmable ROM, comes in several forms, but
it is possible to write to all of these. The write time is typically much longer than the read
time, and the number of writes is limited during the lifetime of the device. A particularly
useful form of EEPROM is flash memory. Flash is commonly used to store firmware and
user data that needs to persist when the power is turned off.

Flash memory, invented by Dr. Fujio Masuoka at Toshiba around 1980, is a particularly
convenient form of non-volatile memory, but it presents some interesting challenges for

Lee & Seshia, Introduction to Embedded Systems 241

http://LeeSeshia.org

9.2. MEMORY HIERARCHY

embedded systems designers. Typically, flash memories have reasonably fast read times,
but not as fast as SRAM and DRAM, so frequently accessed data will typically have to be
moved from the flash to RAM before being used by a program. The write times are much
longer than the read times, and the total number of writes are limited, so these memories
are not a substitute for working memory.

There are two types of flash memories, known as NOR and NAND flash. NOR flash
has longer erase and write times, but it can be accessed like a RAM. NAND flash is less
expensive and has faster erase and write times, but data must be read a block at a time,
where a block is hundreds to thousands of bits. This means that from a system perspective
it behaves more like a secondary storage device like a hard disk or optical media like CD
or DVD. Both types of flash can only be erased and rewritten a bounded number of times,
typically under 1,000,000 for NOR flash and under 10,000,000 for NAND flash, as of this
writing.

The longer access times, limited number of writes, and block-wise accesses (for NAND
flash), all complicate the problem for embedded system designers. These properties must
be taken into account not only while designing hardware, but also software.

Disk memories are also non-volatile. They can store very large amounts of data, but
access times can become quite large. In particular, the mechanics of a spinning disk and
a read-write head require that the controller wait until the head is positioned over the
requested location before the data at that location can be read. The time this takes is
highly variable. Disks are also more vulnerable to vibration than the solid-state memories
discussed above, and hence are more difficult to use in many embedded applications.

9.2 Memory Hierarchy

Many applications require substantial amounts of memory, more than what is available
on-chip in a microcomputer. Many processors use a memory hierarchy, which combines
different memory technologies to increase the overall memory capacity while optimizing
cost, latency, and energy consumption. Typically, a relatively small amount of on-chip
SRAM will be used with a larger amount of off-chip DRAM. These can be further com-
bined with a third level, such as disk drives, which have very large capacity, but lack
random access and hence can be quite slow to read and write.

The application programmer may not be aware that memory is fragmented across these
technologies. A commonly used scheme called virtual memory makes the diverse tech-

242 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

nologies look to the programmer like a contiguous address space. The operating sys-
tem and/or the hardware provides address translation, which converts logical addresses
in the address space to physical locations in one of the available memory technologies.
This translation is often assisted by a specialized piece of hardware called a translation
lookaside buffer (TLB), which can speed up some address translations. For an embed-
ded system designer, these techniques can create serious problems because they make it
very difficult to predict or understand how long memory accesses will take. Thus, embed-
ded system designers typically need to understand the memory system more deeply than
general-purpose programmers.

9.2.1 Memory Maps

A memory map for a processor defines how addresses get mapped to hardware. The
total size of the address space is constrained by the address width of the processor. A
32-bit processor, for example, can address 232 locations, or 4 gigabytes (GB), assuming
each address refers to one byte. The address width typically matches the word width,
except for 8-bit processors, where the address width is typically higher (often 16 bits).
An ARM CortexTM - M3 architecture, for example, has the memory map shown in Figure
9.1. Other architectures will have other layouts, but the pattern is similar.

Notice that this architecture separates addresses used for program memory (labeled A in
the figure) from those used for data memory (B and D). This (typical) pattern allows these
memories to be accessed via separate buses, permitting instructions and data to be fetched
simultaneously. This effectively doubles the memory bandwidth. Such a separation of
program memory from data memory is known as a Harvard architecture. It contrasts
with the classical von Neumann architecture, which stores program and data in the same
memory.

Any particular realization in silicon of this architecture is constrained by this memory
map. For example, the Luminary Micro1 LM3S8962 controller, which includes an ARM
CortexTM - M3 core, has 256 KB of on-chip flash memory, nowhere near the total of
0.5 GB that the architecture allows. This memory is mapped to addresses 0x00000000
through 0x0003FFFF. The remaining addresses that the architecture allows for program
memory, which are 0x00040000 through 0x1FFFFFFF, are “reserved addresses,”
meaning that they should not be used by a compiler targeting this particular device.

1Luminary Micro was acquired by Texas Instruments in 2009.

Lee & Seshia, Introduction to Embedded Systems 243

http://LeeSeshia.org

9.2. MEMORY HIERARCHY

program memory
(�ash)

data memory
(SRAM)

peripherals
(memory-mapped registers)

data memory
(DRAM)

0x00000000

0x1FFFFFFF
0x20000000

0x3FFFFFFF
0x40000000

0x5FFFFFFF
0x60000000

0x9FFFFFFF

} 0.
5

G
B

} 0.
5

G
B

} 0.
5

G
B

1.
0

G
B}

external devices
(memory mapped)

0xA0000000

0xDFFFFFFF

1.
0

G
B}

peripherals

0xE0000000

0xFFFFFFFF} 0.
5

G
B

private peripheral bus

A

B

C

D

E

F

G

Figure 9.1: Memory map of an ARM CortexTM - M3 architecture.

244 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

The LM3S8962 has 64 KB of SRAM, mapped to addresses 0x20000000 through
0x2000FFFF, a small portion of area B in the figure. It also includes a number of
on-chip peripherals, which are devices that are accessed by the processor using some
of the memory addresses in the range from 0x40000000 to 0x5FFFFFFF (area C in
the figure). These include timers, ADCs, GPIO, UARTs, and other I/O devices. Each of
these devices occupies a few of the memory addresses by providing memory-mapped
registers. The processor may write to some of these registers to configure and/or control
the peripheral, or to provide data to be produced on an output. Some of the registers may
be read to retrieve input data obtained by the peripheral. A few of the addresses in the
private peripheral bus region are used to access the interrupt controller.

The LM3S8962 is mounted on a printed circuit board that will provide additional de-
vices such as DRAM data memory and additional external devices. As shown in Fig-
ure 9.1, these will be mapped to memory addresses in the range from 0xA0000000 to
0xDFFFFFFF (area E). For example, the Stellaris R© LM3S8962 evaluation board from
Luminary Micro includes no additional external memory, but does add a few external de-
vices such as an LCD display, a MicroSD slot for additional flash memory, and a USB
interface.

This leaves many memory addresses unused. ARM has introduced a clever way to take
advantage of these unused addresses called bit banding, where some of the unused ad-
dresses can be used to access individual bits rather than entire bytes or words in the mem-
ory and peripherals. This makes certain operations more efficient, since extra instructions
to mask the desired bits become unnecessary.

Harvard Architecture

The term “Harvard architecture” comes from the Mark I computer, which used dis-
tinct memories for program and data. The Mark I was made with electro-mechanical
relays by IBM and shipped to Harvard in 1944. The machine stored instructions on
punched tape and data in electro-mechanical counters. It was called the Automatic Se-
quence Controlled Calculator (ASCC) by IBM, and was devised by Howard H. Aiken
to numerically solve differential equations. Rear Admiral Grace Murray Hopper of the
United States Navy and funding from IBM were instrumental in making the machine a
reality.

Lee & Seshia, Introduction to Embedded Systems 245

http://LeeSeshia.org

9.2. MEMORY HIERARCHY

9.2.2 Register Files

The most tightly integrated memory in a processor is the register file. Each register in
the file stores a word. The size of a word is a key property of a processor architecture. It
is one byte on an 8-bit architecture, four bytes on a 32-bit architecture, and eight bytes on
a 64-bit architecture. The register file may be implemented directly using flip flops in the
processor circuitry, or the registers may be collected into a single memory bank, typically
using the same SRAM technology discussed above.

The number of registers in a processor is usually small. The reason for this is not so
much the cost of the register file hardware, but rather the cost of bits in an instruction
word. An instruction set architecture (ISA) typically provides instructions that can access
one, two, or three registers. To efficiently store programs in memory, these instructions
cannot require too many bits to encode them, and hence they cannot devote too many bits
to identifying the registers. If the register file has 16 registers, then each reference to a
register requires 4 bits. If an instruction can refer to 3 registers, that requires a total of 12
bits. If an instruction word is 16 bits, say, then this leaves only 4 bits for other information
in the instruction, such as the identity of the instruction itself, which also must be encoded
in the instruction. This identifies, for example, whether the instruction specifies that two
registers should be added or subtracted, with the result stored in the third register.

9.2.3 Scratchpads and Caches

Many embedded applications mix memory technologies. Some memories are accessed
before others; we say that the former are “closer” to the processor than the latter. For
example, a close memory (SRAM) is typically used to store working data temporarily
while the program operates on it. If the close memory has a distinct set of addresses and
the program is responsible for moving data into it or out of it to the distant memory, then
it is called a scratchpad. If the close memory duplicates data in the distant memory with
the hardware automatically handling the copying to and from, then it is called a cache.
For embedded applications with tight real-time constraints, cache memories present some
formidable obstacles because their timing behavior can vary substantially in ways that
are difficult to predict. On the other hand, manually managing the data in a scratchpad
memory can be quite tedious for a programmer, and automatic compiler-driven methods
for doing so are in their infancy.

246 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

As explained in Section 9.2.1, an architecture will typically support a much larger address
space than what can actually be stored in the physical memory of the processor, with a
virtual memory system used to present the programmer with the view of a contiguous
address space. If the processor is equipped with a memory management unit (MMU),
then programs reference logical addresses and the MMU translates these to physical
addresses. For example, using the memory map in Figure 9.1, a process might be al-
lowed to use logical addresses 0x60000000 to 0x9FFFFFFF (area D in the figure),
for a total of 1 GB of addressable data memory. The MMU may implement a cache that
uses however much physical memory is present in area B. When the program provides
a memory address, the MMU determines whether that location is cached in area B, and
if it is, translates the address and completes the fetch. If it is not, then we have a cache
miss, and the MMU handles fetching data from the secondary memory (in area D) into
the cache (area B). If the location is also not present in area D, then the MMU triggers
a page fault, which can result in software handling movement of data from disk into the
memory. Thus, the program is given the illusion of a vast amount of memory, with the
cost that memory access times become quite difficult to predict. It is not uncommon for
memory access times to vary by a factor of 1000 or more, depending on how the logical
addresses happen to be disbursed across the physical memories.

Given this sensitivity of execution time to the memory architecture, it is important to
understand the organization and operation of caches. That is the focus of this section.

Basic Cache Organization

Suppose that each address in a memory system comprises m bits, for a maximum of
M = 2m unique addresses. A cache memory is organized as an array of S = 2s cache
sets. Each cache set in turn comprises E cache lines. A cache line stores a single block
of B = 2b bytes of data, along with valid and tag bits. The valid bit indicates whether the
cache line stores meaningful information, while the tag (comprising t = m− s− b bits)
uniquely identifies the block that is stored in the cache line. Figure 9.2 depicts the basic
cache organization and address format.

Thus, a cache can be characterized by the tuple (m,S,E,B). These parameters are sum-
marized in Table 9.1. The overall cache size C is given as C = S × E ×B bytes.

Suppose a program reads the value stored at address a. Let us assume for the rest of
this section that this value is a single data word w. The CPU first sends address a to the
cache to determine if it is present there. The address a can be viewed as divided into three

Lee & Seshia, Introduction to Embedded Systems 247

http://LeeSeshia.org

9.2. MEMORY HIERARCHY

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

Valid Tag Block

Valid Tag Block

. . .

.
.

.

Set 0

Set 1

Set S

Tag Set index Block offset

m-1 0

s bits t bits b bits

Address

1 valid bit t tag bits B = 2b bytes per block

CACHE

Figure 9.2: Cache Organization and Address Format. A cache can be viewed as
an array of sets, where each set comprises of one or more cache lines. Each
cache line includes a valid bit, tag bits, and a cache block.

248 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

Parameter Description
m Number of physical address bits
S = 2s Number of (cache) sets
E Number of lines per set
B = 2b Block size in bytes
t = m− s− b Number of tag bits
C Overall cache size in bytes

Table 9.1: Summary of cache parameters.

segments of bits: the top t bits encode the tag, the next s bits encode the set index, and
the last b bits encode the position of the word within a block. If w is present in the cache,
the memory access is a cache hit; otherwise, it is a cache miss.

Caches are categorized into classes based on the value of E. We next review these cate-
gories of cache memories, and describe briefly how they operate.

Direct-Mapped Caches

A cache with exactly one line per set (E = 1) is called a direct-mapped cache. For such
a cache, given a word w requested from memory, where w is stored at address a, there are
three steps in determining whether w is a cache hit or a miss:

1. Set Selection: The s bits encoding the set are extracted from address a and used as
an index to select the corresponding cache set.

2. Line Matching: The next step is to check whether a copy of w is present in the
unique cache line for this set. This is done by checking the valid and tag bits for
that cache line. If the valid bit is set and the tag bits of the line match those of the
address a, then the word is present in the line and we have a cache hit. If not, we
have a cache miss.

3. Word Selection: Once the word is known to be present in the cache block, we use
the b bits of the address a encoding the word’s position within the block to read that
data word.

Lee & Seshia, Introduction to Embedded Systems 249

http://LeeSeshia.org

9.2. MEMORY HIERARCHY

On a cache miss, the word w must be requested from the next level in the memory hier-
archy. Once this block has been fetched, it will replace the block that currently occupies
the cache line for w.

While a direct-mapped cache is simple to understand and to implement, it can suffer from
conflict misses. A conflict miss occurs when words in two or more blocks that map
to the same cache line are repeatedly accessed so that accesses to one block evict the
other, resulting in a string of cache misses. Set-associative caches can help to resolve this
problem.

Set-Associative Caches

A set-associative cache can store more than one cache line per set. If each set in a cache
can store E lines, where 1 < E < C/B, then the cache is called an E-way set-associative
cache. The word “associative” comes from associative memory, which is a memory
that is addressed by its contents. That is, each word in the memory is stored along with a
unique key and is retrieved using the key rather than the physical address indicating where
it is stored. An associative memory is also called a content-addressable memory.

For a set-associative cache, accessing a word w at address a consists of the following
steps:

1. Set Selection: This step is identical to a direct-mapped cache.

2. Line Matching: This step is more complicated than for a direct-mapped cache be-
cause there could be multiple lines that w might lie in; i.e., the tag bits of a could
match the tag bits of any of the lines in its cache set. Operationally, each set in a
set-associative cache can be viewed as an associative memory, where the keys are
the concatenation of the tag and valid bits, and the data values are the contents of
the corresponding block.

3. Word Selection: Once the cache line is matched, the word selection is performed
just as for a direct-mapped cache.

In the case of a miss, cache line replacement can be more involved than it is for a direct-
mapped cache. For the latter, there is no choice in replacement since the new block will
displace the block currently present in the cache line. However, in the case of a set-
associative cache, we have an option to select the cache line from which to evict a block.

250 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

A common policy is least-recently used (LRU), in which the cache line whose most
recent access occurred the furthest in the past is evicted. Another common policy is first-
in, first-out (FIFO), where the cache line that is evicted is the one that has been in the
cache for the longest, regardless of when it was last accessed. Good cache replacement
policies are essential for good cache performance. Note also that implementing these
cache replacement policies requires additional memory to remember the access order,
with the amount of additional memory differing from policy to policy and implementation
to implementation.

A fully-associative cache is one where E = C/B, i.e., there is only one set. For such a
cache, line matching can be quite expensive for a large cache size because an associative
memory is expensive. Hence, fully-associative caches are typically only used for small
caches, such as the translation lookaside buffers (TLBs) mentioned earlier.

9.3 Memory Models

A memory model defines how memory is used by programs. The hardware, the operating
system (if any), and the programming language and its compiler all contribute to the
memory model. This section discusses a few of the common issues that arise with memory
models.

9.3.1 Memory Addresses

At a minimum, a memory model defines a range of memory addresses accessible to the
program. In C, these addresses are stored in pointers. In a 32-bit architecture, memory
addresses are 32-bit unsigned integers, capable of representing addresses 0 to 232 − 1,
which is about four billion addresses. Each address refers to a byte (eight bits) in memory.
The C char data type references a byte. The C int data type references a sequence of
at least two bytes. In a 32-bit architecture, it will typically reference four bytes, able to
represent integers from −231 to 231− 1. The double data type in C refers to a sequence
of eight bytes encoded according to the IEEE floating point standard (IEEE 754).

Since a memory address refers to a byte, when writing a program that directly manip-
ulates memory addresses, there are two critical compatibility concerns. The first is the
alignment of the data. An int will typically occupy four consecutive bytes starting at an

Lee & Seshia, Introduction to Embedded Systems 251

http://LeeSeshia.org

9.3. MEMORY MODELS

address that is a multiple of four. In hexadecimal notation these addresses always end in
0, 4, 8, or c.

The second concern is the byte order. The first byte (at an address ending in 0, 4, 8, or c),
may represent the eight low order bits of the int (a representation called little endian), or
it may represent the eight high order bits of the int (a representation called big endian).
Unfortunately, although many data representation questions have become universal stan-
dards (such as the bit order in a byte), the byte order is not one those questions. Intel’s x86
architectures and ARM processors, by default, use a little-endian representation, whereas
IBM’s PowerPC uses big endian. Some processors support both. Byte order also matters
in network protocols, which generally use big endian.

The terminology comes from Gulliver’s Travels, by Jonathan Swift, where a royal edict
in Lilliput requires cracking open one’s soft-boiled egg at the small end, while in the rival
kingdom of Blefuscu, inhabitants crack theirs at the big end.

9.3.2 Stacks

A stack is a region of memory that is dynamically allocated to the program in a last-in,
first-out (LIFO) pattern. A stack pointer (typically a register) contains the memory ad-
dress of the top of the stack. When an item is pushed onto the stack, the stack pointer
is incremented and the item is stored at the new location referenced by the stack pointer.
When an item is popped off the stack, the memory location referenced by the stack pointer
is (typically) copied somewhere else (e.g., into a register) and the stack pointer is decre-
mented.

Stacks are typically used to implement procedure calls. Given a procedure call in C,
for example, the compiler produces code that pushes onto the stack the location of the
instruction to execute upon returning from the procedure, the current value of some or all
of the machine registers, and the arguments to the procedure, and then sets the program
counter equal to the location of the procedure code. The data for a procedure that is
pushed onto the stack is known as the stack frame of that procedure. When a procedure
returns, the compiler pops its stack frame, retrieving finally the program location at which
to resume execution.

For embedded software, it can be disastrous if the stack pointer is incremented beyond the
memory allocated for the stack. Such a stack overflow can result in overwriting memory
that is being used for other purposes, leading to unpredictable results. Bounding the stack

252 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

usage, therefore, is an important goal. This becomes particularly difficult with recursive
programs, where a procedure calls itself. Embedded software designers often avoid using
recursion to circumvent this difficulty.

More subtle errors can arise as a result of misuse or misunderstanding of the stack. Con-
sider the following C program:

1 int* foo(int a) {
2 int b;
3 b = a * 10;
4 return &b;
5 }
6 int main(void) {
7 int* c;
8 c = foo(10);
9 ...

10 }

The variable b is a local variable, with its memory on the stack. When the procedure
returns, the variable c will contain a pointer to a memory location above the stack pointer.
The contents of that memory location will be overwritten when items are next pushed onto
the stack. It is therefore incorrect for the procedure foo to return a pointer to b. By the
time that pointer is de-referenced (i.e., if a line in main refers to *c after line 8), the
memory location may contain something entirely different from what was assigned in
foo. Unfortunately, C provides no protection against such errors.

9.3.3 Memory Protection Units

A key issue in systems that support multiple simultaneous tasks is preventing one task
from disrupting the execution of another. This is particularly important in embedded
applications that permit downloads of third party software, but it can also provide an
important defense against software bugs in safety-critical applications.

Many processors provide memory protection in hardware. Tasks are assigned their own
address space, and if a task attempts to access memory outside its own address space, a
segmentation fault or other exception results. This will typically result in termination of
the offending application.

Lee & Seshia, Introduction to Embedded Systems 253

http://LeeSeshia.org

9.3. MEMORY MODELS

9.3.4 Dynamic Memory Allocation

General-purpose software applications often have indeterminate requirements for mem-
ory, depending on parameters and/or user input. To support such applications, computer
scientists have developed dynamic memory allocation schemes, where a program can at
any time request that the operating system allocate additional memory. The memory is
allocated from a data structure known as a heap, which facilitates keeping track of which
portions of memory are in use by which application. Memory allocation occurs via an
operating system call (such as malloc in C). When the program no longer needs access
to memory that has been so allocated, it deallocates the memory (by calling free in C).

Support for memory allocation often (but not always) includes garbage collection. For
example, garbage collection is intrinsic in the Java programming language. A garbage
collector is a task that runs either periodically or when memory gets tight that analyzes
the data structures that a program has allocated and automatically frees any portions of
memory that are no longer referenced within the program. When using a garbage collec-
tor, in principle, a programmer does not need to worry about explicitly freeing memory.

With or without garbage collection, it is possible for a program to inadvertently accu-
mulate memory that is never freed. This is known as a memory leak, and for embedded
applications, which typically must continue to execute for a long time, it can be disastrous.
The program will eventually fail when physical memory is exhausted.

Another problem that arises with memory allocation schemes is memory fragmentation.
This occurs when a program chaotically allocates and deallocates memory in varying
sizes. A fragmented memory has allocated and free memory chunks interspersed, and
often the free memory chunks become too small to use. In this case, defragmentation is
required.

Defragmentation and garbage collection are both very problematic for real-time systems.
Straightforward implementations of these tasks require all other executing tasks to be
stopped while the defragmentation or garbage collection is performed. Implementations
using such “stop the world” techniques can have substantial pause times, running some-
times for many milliseconds. Other tasks cannot execute during this time because refer-
ences to data within data structures (pointers) are inconsistent during the task. A technique
that can reduce pause times is incremental garbage collection, which isolates sections of
memory and garbage collects them separately. As of this writing, such techniques are
experimental and not widely deployed.

254 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

9.3.5 Memory Model of C

C programs store data on the stack, on the heap, and in memory locations fixed by by the
compiler. Consider the following C program:

1 int a = 2;
2 void foo(int b, int* c) {
3 ...
4 }
5 int main(void) {
6 int d;
7 int* e;
8 d = ...; // Assign some value to d.
9 e = malloc(sizeInBytes); // Allocate memory for e.

10 *e = ...; // Assign some value to e.
11 foo(d, e);
12 ...
13 }

In this program, the variable a is a global variable because it is declared outside any
procedure definition. The compiler will assign it a fixed memory location. The variables
b and c are parameters, which are allocated locations on the stack when the procedure
foo is called (a compiler could also put them in registers rather than on the stack). The
variables d and e are automatic variables or local variables. They are declared within
the body of a procedure (in this case, main). The compiler will allocate space on the
stack for them.

When the procedure foo is called on line 11, the stack location for b will acquire a copy
of the value of variable d assigned on line 8. This is an example of pass by value, where
a parameter’s value is copied onto the stack for use by the called procedure. The data
referred to by the pointer e, on the other hand, is stored in memory allocated on the heap,
and then it is passed by reference (the pointer to it, e, is passed by value). The address
is stored in the stack location for c. If foo includes an assignment to *c, then then after
foo returns, that value can be read by dereferencing e.

The global variable a is assigned an initial value on line 1. There is a subtle pitfall here,
however. The memory location storing awill be initialized with value 2 when the program
is loaded. This means that if the program is run a second time without reloading, then
the initial value of a will not necessarily be 2! Its value will be whatever it was when the
first invocation of the program ended. In most desktop operating systems, the program is
reloaded on each run, so this problem does not show up. But in many embedded systems,

Lee & Seshia, Introduction to Embedded Systems 255

http://LeeSeshia.org

9.4. SUMMARY

the program is not necessarily reloaded for each run. The program may be run from the
beginning, for example, each time the system is reset. To guard against this problem, it
is safer to initialize global variables in the body of main, rather than on the declaration
line, as done above.

9.4 Summary

An embedded system designer needs to understand the memory architecture of the target
computer and the memory model of the programming language. Incorrect uses of memory
can lead to extremely subtle errors, some of which will not show up in testing. Errors that
only show up in a fielded product can be disastrous, for both the user of the system and
the technology provider.

Specifically, a designer needs to understand which portions of the address space refer to
volatile and non-volatile memory. For time-sensitive applications (which is most embed-
ded systems), the designer also needs to be aware of the memory technology and cache
architecture (if any) in order to understand execution times of the program. In addition,
the programmer needs to understand the memory model of the programming language in
order to avoid reading data that may be invalid. In addition, the programmer needs to be
very careful with dynamic memory allocation, particularly for embedded systems that are
expected to run for a very long time. Exhausting the available memory can cause system
crashes or other undesired behavior.

256 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

Exercises

1. Consider the function compute variance listed below, which computes the
variance of integer numbers stored in the array data.

1 int data[N];
2

3 int compute_variance() {
4 int sum1 = 0, sum2 = 0, result;
5 int i;
6

7 for(i=0; i < N; i++) {
8 sum1 += data[i];
9 }

10 sum1 /= N;
11

12 for(i=0; i < N; i++) {
13 sum2 += data[i] * data[i];
14 }
15 sum2 /= N;
16

17 result = (sum2 - sum1*sum1);
18

19 return result;
20 }

Suppose this program is executing on a 32-bit processor with a direct-mapped cache
with parameters (m,S,E,B) = (32, 8, 1, 8). We make the following additional
assumptions:

• An int is 4 bytes wide.

• sum1, sum2, result, and i are all stored in registers.

• data is stored in memory starting at address 0x0.

Answer the following questions:

(a) Consider the case where N is 16. How many cache misses will there be?

(b) Now suppose that N is 32. Recompute the number of cache misses.

(c) Now consider executing for N = 16 on a 2-way set-associative cache with
parameters (m,S,E,B) = (32, 8, 2, 4). In other words, the block size is
halved, while there are two cache lines per set. How many cache misses
would the code suffer?

Lee & Seshia, Introduction to Embedded Systems 257

http://LeeSeshia.org

EXERCISES

2. Recall from Section 9.2.3 that caches use the middle range of address bits as the
set index and the high order bits as the tag. Why is this done? How might cache
performance be affected if the middle bits were used as the tag and the high order
bits were used as the set index?

3. Consider the C program and simplified memory map for a 16-bit microcontroller
shown below. Assume that the stack grows from the top (area D) and that the pro-
gram and static variables are stored in the bottom (area C) of the data and program
memory region. Also, assume that the entire address space has physical memory
associated with it.

interrupt vectors

data and program memory

0x0000
0x000F

0x0020

0xFFFF

A

C

D

memory-mapped I/O 0x0010
0x001FB

stack

program and static variables

1 #include <stdio.h>
2 #define FOO 0x0010
3 int n;
4 int* m;
5 void foo(int a) {
6 if (a > 0) {
7 n = n + 1;
8 foo(n);
9 }

10 }
11 int main() {
12 n = 0;
13 m = (int*)FOO;
14 foo(*m);
15 printf("n = %d\n", n);
16 }

You may assume that in this system, an int is a 16-bit number, that there is no op-
erating system and no memory protection, and that the program has been compiled
and loaded into area C of the memory.

(a) For each of the variables n, m, and a, indicate where in memory (region A, B,
C, or D) the variable will be stored.

(b) Determine what the program will do if the contents at address 0x0010 is 0
upon entry.

(c) Determine what the program will do if the contents of memory location 0x0010
is 1 upon entry.

4. Consider the following program:

1 int a = 2;
2 void foo(int b) {

258 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

9. MEMORY ARCHITECTURES

3 printf("%d", b);
4 }
5 int main(void) {
6 foo(a);
7 a = 1;
8 }

Is it true or false that the value of a passed to foo will always be 2? Explain.
Assume that this is the entire program, that this program is stored in persistent
memory, and that the program is executed on a bare-iron microcontroller each time
a reset button is pushed.

Lee & Seshia, Introduction to Embedded Systems 259

http://LeeSeshia.org

10
Input and Output

10.1 I/O Hardware . 261
10.1.1 Pulse Width Modulation . 262
10.1.2 General-Purpose Digital I/O 263
10.1.3 Serial Interfaces . 267
10.1.4 Parallel Interfaces . 270
10.1.5 Buses . 271

10.2 Sequential Software in a Concurrent World 272
10.2.1 Interrupts and Exceptions 273
Sidebar: Basics: Timers . 275
10.2.2 Atomicity . 276
10.2.3 Interrupt Controllers . 277
10.2.4 Modeling Interrupts . 278

10.3 Summary . 283
Exercises . 284

Because cyber-physical systems integrate computing and physical dynamics, the mech-
anisms in processors that support interaction with the outside world are central to any
design. A system designer has to confront a number of issues. Among these, the me-
chanical and electrical properties of the interfaces are important. Incorrect use of parts,
such as drawing too much current from a pin, may cause a system to malfunction or may
reduce its useful lifetime. In addition, in the physical world, many things happen at once.

10. INPUT AND OUTPUT

Software, by contrast, is mostly sequential. Reconciling these two disparate properties
is a major challenge, and is often the biggest risk factor in the design of embedded sys-
tems. Incorrect interactions between sequential code and concurrent events in the physical
world can cause dramatic system failures. In this chapter, we deal with issues.

10.1 I/O Hardware

Embedded processors, be they microcontrollers, DSP processors, or general-purpose pro-
cessors, typically include a number of input and output (I/O) mechanisms on chip, ex-
posed to designers as pins of the chip. In this section, we review some of the more
common interfaces provided, illustrating their properties through the following running
example.

Example 10.1: Figure 10.1 shows an evaluation board for the Luminary Micro
Stellaris R© microcontroller, which is an ARM CortexTM - M3 32-bit processor.
The microcontroller itself is in the center below the graphics display. Many of the
pins of the microcontroller are available at the connectors shown on either side of
the microcontroller and at the top and bottom of the board. Such a board would
typically be used to prototype an embedded application, and in the final product
it would be replaced with a custom circuit board that includes only the hardware
required by the application. An engineer will develop software for the board using
an integrated development environment (IDE) provided by the vendor and load
the software onto flash memory to be inserted into the slot at the bottom of the
board. Alternatively, software might be loaded onto the board through the USB
interface at the top from the development computer.

The evaluation board in the above example is more than a processor since it includes a
display and various hardware interfaces (switches and a speaker, for example). Such a
board is often called a single-board computer or a microcomputer board. We next
discuss a few of the interfaces provided by a microcontroller or single-board computer.
For a more comprehensive description of the many kinds of I/O interfaces in use, we
recommend Valvano (2007) and Derenzo (2003).

Lee & Seshia, Introduction to Embedded Systems 261

http://LeeSeshia.org

10.1. I/O HARDWARE

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
�ash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Figure 10.1: Stellaris R© LM3S8962 evaluation board (Luminary Micro R©, 2008a).
(Luminary Micro was acquired by Texas Instruments in 2009.)

10.1.1 Pulse Width Modulation

Pulse width modulation (PWM) is a technique for delivering a variable amount of power
efficiently to external hardware devices. It can be used to control for example the speed of
electric motors, the brightness of an LED light, and the temperature of a heating element.
In general, it can deliver varying amounts of power to devices that tolerate rapid and
abrupt changes in voltage and current.

PWM hardware uses only digital circuits, and hence is easy to integrate on the same chip
with a microcontroller. Digital circuits, by design, produce only two voltage levels, high
and low. A PWM signal rapidly switches between high and low at some fixed frequency,
varying the amount of time that it holds the signal high. The duty cycle is the proportion

262 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

of time that the voltage is high. If the duty cycle is 100%, then the voltage is always high.
If the duty cycle is 0%, then the voltage is always low.

Many microcontrollers provide PWM peripheral devices (see Figure 10.1). To use these,
a programmer typically writes a value to a memory-mapped register to set the duty cycle
(the frequency may also be settable). The device then delivers power to external hardware
in proportion to the specified duty cycle.

PWM is an effective way to deliver varying amounts of power, but only to certain devices.
A heating element, for example, is a resistor whose temperature increases as more cur-
rent passes through it. Temperature varies slowly, compared to the frequency of a PWM
signal, so the rapidly varying voltage of the signal is averaged out by the resistor, and the
temperature will be very close to constant for a fixed duty cycle. Motors similarly aver-
age out rapid variations in input voltage. So do incandescent and LED lights. Any device
whose response to changes in current or voltage is slow compared to the frequency of the
PWM signal is a candidate for being controlled via PWM.

10.1.2 General-Purpose Digital I/O

Embedded system designers frequently need to connect specialized or custom digital
hardware to embedded processors. Many embedded processors have a number of general-
purpose I/O pins (GPIO), which enable the software to either read or write voltage levels
representing a logical zero or one. If the processor supply voltage is VDD, in active high
logic a voltage close to VDD represents a logical one, and a voltage near zero represents
a logical zero. In active low logic, these interpretations are reversed.

In many designs, a GPIO pin may be configured to be an output. This enables software to
then write to a memory-mapped register to set the output voltage to be either high or low.
By this mechanism, software can directly control external physical devices.

However, caution is in order. When interfacing hardware to GPIO pins, a designer needs
to understand the specifications of the device. In particular, the voltage and current levels
vary by device. If a GPIO pin produces an output voltage of VDD when given a logical
one, then the designer needs to know the current limitations before connecting a device
to it. If a device with a resistance of R ohms is connected to it, for example, then Ohm’s
law tells us that the output current will be

I = VDD/R .

Lee & Seshia, Introduction to Embedded Systems 263

http://LeeSeshia.org

10.1. I/O HARDWARE

It is essential to keep this current within specified tolerances. Going outside these toler-
ances could cause the device to overheat and fail. A power amplifier may be needed to
deliver adequate current. An amplifier may also be needed to change voltage levels.

Example 10.2: The GPIO pins of the Luminary Micro Stellaris R© microcon-
troller shown in Figure 10.1 may be configured to source or sink varying amounts
of current up to 18 mA. There are restrictions on what combinations of pins can
handle such relatively high currents. For example, Luminary Micro R© (2008b)
states “The high-current GPIO package pins must be selected such that there are
only a maximum of two per side of the physical package ... with the total number
of high-current GPIO outputs not exceeding four for the entire package.” Such
constraints are designed to prevent overheating of the device.

In addition, it may be important to maintain electrical isolation between processor cir-
cuits and external devices. The external devices may have messy (noisy) electrical char-
acteristics that will make the processor unreliable if the noise spills over into the power
or ground lines of the processor. Or the external device may operate in a very different
voltage or power regime compared to the processor. A useful strategy is to divide a cir-
cuit into electrical domains, possibly with separate power supplies, that have relatively
little influence on one another. Isolation devices such as opto-isolators and transformers
may be used to enable communication across electrical domains. The former convert an
electrical signal in one electrical domain into light, and detect the light in the other elec-
trical domain and convert it back to an electrical signal. The latter use inductive coupling
between electrical domains.

GPIO pins can also be configured as inputs, in which case software will be able to react
to externally provided voltage levels. An input pin may be Schmitt triggered, in which
case they have hysteresis, similar to the thermostat of Example 3.5. A Schmitt triggered
input pin is less vulnerable to noise. It is named after Otto H. Schmitt, who invented it in
1934 while he was a graduate student studying the neural impulse propagation in squid
nerves.

264 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

Example 10.3: The GPIO pins of the microcontroller shown in Figure 10.1,
when configured as inputs, are Schmitt triggered.

In many applications, several devices may share a single electrical connection. The de-
signer must take care to ensure that these devices do not simultaneously drive the voltage
of this single electrical connection to different values, resulting in a short circuit that can
cause overheating and device failure.

Example 10.4: Consider a factory floor where several independent microcon-
trollers are all able to turn off a piece of machinery by asserting a logical zero
on an output GPIO line. Such a design may provide additional safety because
the microcontrollers may be redundant, so that failure of one does not prevent
a safety-related shutdown from occurring. If all of these GPIO lines are wired
together to a single control input of the piece of machinery, then we have to take
precautions to ensure that the microcontrollers do not short each other out. This
would occur if one microcontroller attempts to drive the shared line to a high
voltage while another attempts to drive the same line to a low voltage.

GPIO outputs may use open collector circuits, as shown in Figure 10.2. In such a circuit,
writing a logical one into the (memory mapped) register turns on the transistor, which
pulls the voltage on the output pin down to (near) zero. Writing a logical zero into the
register turns off the transistor, which leaves the output pin unconnected, or “open.”

A number of open collector interfaces may be connected as shown in Figure 10.3. The
shared line is connected to a pull-up resistor, which brings the voltage of the line up to
VDD when all the transistors are turned off. If any one transistor is turned on, then it will
bring the voltage of the entire line down to (near) zero without creating a short circuit with
the other GPIO pins. Logically, all registers must have zeros in them for the output to be
high. If any one of the registers has a one in it, then the output will be low. Assuming
active high logic, the logical function being performed is NOR, so such a circuit is called
a wired NOR. By varying the configuration, one can similarly create wired OR or wired
AND.

Lee & Seshia, Introduction to Embedded Systems 265

http://LeeSeshia.org

10.1. I/O HARDWARE

microcontroller

register

drive
transistor

GPIO
pin

Figure 10.2: An open collector circuit for a GPIO pin.

microcontroller
microcontroller

microcontroller

register

drive
transistor

pull-up
resistor

VDD

GPIO pin
GPIO pin

GPIO pin

Figure 10.3: A number of open collector circuits wired together.

The term “open collector” comes from the name for the terminal of a bipolar transistor. In
CMOS technologies, this type of interface will typically be called an open drain interface.
It functions essentially in the same way.

Example 10.5: The GPIO pins of the microcontroller shown in Figure 10.1,
when configured as outputs, may be specified to be open drain circuits. They
may also optionally provide the pull-up resistor, which conveniently reduces the
number of external discrete components required on a printed circuit board.

266 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

DB-9 serial port DB-25 parallel port

USB IEEE 488

Figure 10.4: Connectors for serial and parallel interfaces.

GPIO outputs may also be realized with tristate logic, which means that in addition to
producing an output high or low voltage, the pin may be simply turned off. Like an open-
collector interface, this can facilitate sharing the same external circuits among multiple
devices. Unlike an open-collector interface, a tristate design can assert both high and low
voltages, rather than just one of the two.

10.1.3 Serial Interfaces

One of the key constraints faced by embedded processor designers is the need to have
physically small packages and low power consumption. A consequence is that the num-
ber of pins on the processor integrated circuit is limited. Thus, each pin must be used
efficiently. In addition, when wiring together subsystems, the number of wires needs to
be limited to keep the overall bulk and cost of the product in check. Hence, wires must
also be used efficiently. One way to use pins and wires efficiently is to send information
over them serially as sequences of bits. Such an interface is called a serial interface.
A number of standards have evolved for serial interfaces so that devices from different
manufacturers can (usually) be connected.

Lee & Seshia, Introduction to Embedded Systems 267

http://LeeSeshia.org

10.1. I/O HARDWARE

An old but persistent standard, RS-232, standardized by the Electronics Industries Asso-
ciation (EIA), was first introduced in 1962 to connect teletypes to modems. This standard
defines electrical signals and connector types; it persists because of its simplicity and be-
cause of continued prevalence of aging industrial equipment that uses it. The standard
defines how one device can transmit a byte to another device asynchronously (meaning
that the devices do not share a clock signal). On older PCs, an RS-232 connection may be
provided via a DB-9 connector, as shown in Figure 10.4. A microcontroller will typically
use a universal asynchronous receiver/transmitter (UART) to convert the contents of
an 8-bit register into a sequence of bits for transmission over an RS-232 serial link.

For an embedded system designer, a major issue to consider is that RS-232 interfaces can
be quite slow and may slow down the application software, if the programmer is not very
careful.

Example 10.6: All variants of the Atmel AVR microcontroller include a UART
that can be used to provide an RS-232 serial interface. To send a byte over the
serial port, an application program may include the lines

1 while(!(UCSR0A & 0x20));
2 UDR0 = x;

where x is a variable of type uint8 t (a C data type specifying an 8-bit unsigned
integer). The symbols UCSR0A and UDR0 are defined in header files provided in
the AVR IDE. They are defined to refer to memory locations corresponding to
memory-mapped registers in the AVR architecture.

The first line above executes an empty while loop until the serial transmit buffer
is empty. The AVR architecture indicates that the transmit buffer is empty by
setting the sixth bit of the memory mapped register UCSR0A to 1. When that
bit becomes 1, the expression !(UCSR0A & 0x20) becomes 0 and the while
loop stops looping. The second line loads the value to be sent, which is whatever
the variable x contains, into the memory-mapped register UDR0.

Suppose you wish to send a sequence of 8 bytes stored in an array x. You could
do this with the C code

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];

268 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

4 }

How long would it take to execute this code? Suppose that the serial port is set
to operate at 57600 baud, or bits per second (this is quite fast for an RS-232
interface). Then after loading UDR0 with an 8-bit value, it will take 8/57600
seconds or about 139 microseconds for the 8-bit value to be sent. Suppose that
the frequency of the processor is operating at 18 MHz (relatively slow for a mi-
crocontroller). Then except for the first time through the for loop, each while
loop will need to consume approximately 2500 cycles, during which time the
processor is doing no useful work.

To receive a byte over the serial port, a programmer may use the following C
code:

1 while(!(UCSR0A & 0x80));
2 return UDR0;

In this case, the while loop waits until the UART has received an incoming
byte. The programmer must ensure that there will be an incoming byte, or this
code will execute forever. If this code is again enclosed in a loop to receive a
sequence of bytes, then the while loop will need to consume a considerable
number of cycles each time it executes.

For both sending and receiving bytes over a serial port, a programmer may use
an interrupt instead to avoid having an idle processor that is waiting for the serial
communication to occur. Interrupts will be discussed below.

The RS-232 mechanism is very simple. The sender and receiver first must agree on a
transmission rate (which is slow by modern standards). The sender initiates transmission
of a byte with a start bit, which alerts the receiver that a byte is coming. The sender then
clocks out the sequence of bits at the agreed-upon rate, following them by one or two stop
bits. The receiver’s clock resets upon receiving the start bit and is expected to track the
sender’s clock closely enough to be able to sample the incoming signal sequentially and
recover the sequence of bits. There are many descendants of the standard that support
higher rate communication, such as RS-422, RS-423, and more.

Newer devices designed to connect to personal computers typically use universal serial
bus (USB) interfaces, standardized by a consortium of vendors. USB 1.0 appeared in

Lee & Seshia, Introduction to Embedded Systems 269

http://LeeSeshia.org

10.1. I/O HARDWARE

1996 and supports a data rate of 12 Mbits/sec. USB 2.0 appeared in 2000 and supports
data rates up to 480 Mbits/sec. USB 3.0 appeared in 2008 and supports data rates up to
4.8 Gbits/sec.

USB is electrically simpler than RS-232 and uses simpler, more robust connectors, as
shown in Figure 10.4. But the USB standard defines much more than electrical trans-
port of bytes, and more complicated control logic is required to support it. Since modern
peripheral devices such as printers, disk drives, and audio and video devices all include
microcontrollers, supporting the more complex USB protocol is reasonable for these de-
vices.

Another serial interface that is widely implemented in embedded processors is known
as JTAG (Joint Test Action Group), or more formally as the IEEE 1149.1 standard test
access port and boundary-scan architecture. This interface appeared in the mid 1980s
to solve the problem that integrated circuit packages and printed circuit board technology
had evolved to the point that testing circuits using electrical probes had become difficult or
impossible. Points in the circuit that needed to be accessed became inaccessible to probes.
The notion of a boundary scan allows the state of a logical boundary of a circuit (what
would traditionally have been pins accessible to probes) to be read or written serially
through pins that are made accessible. Today, JTAG ports are widely used to provide a
debug interface to embedded processors, enabling a PC-hosted debugging environment
to examine and control the state of an embedded processor. The JTAG port is used, for
example, to read out the state of processor registers, to set breakpoints in a program, and
to single step through a program. A newer variant is serial wire debug (SWD), which
provides similar functionality with fewer pins.

There are several other serial interfaces in use today, including for example I2C (inter-
integrated circuit), SPI (serial peripheral interface bus), PCI Express (peripheral compo-
nent interconnect express), FireWire, MIDI (musical instrument digital interface), and
serial versions of SCSI (described below). Each of these has its use. Also, network inter-
faces are typically serial.

10.1.4 Parallel Interfaces

A serial interface sends or receives a sequence of bits sequentially over a single line. A
parallel interface uses multiple lines to simultaneously send bits. Of course, each line
of a parallel interface is also a serial interface, but the logical grouping and coordinated
action of these lines is what makes the interface a parallel interface.

270 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

Historically, one of the most widely used parallel interfaces is the IEEE-1284 printer port,
which on the IBM PC used a DB-25 connector, as shown in Figure 10.4. This interface
originated in 1970 with the Centronics model 101 printer, and hence is sometimes called
a Centronics printer port. Today, printers are typically connected using USB or wireless
networks.

With careful programming, a group of GPIO pins can be used together to realize a parallel
interface. In fact, embedded system designers sometimes find themselves using GPIO
pins to emulate an interface not supported directly by their hardware.

It seems intuitive that parallel interfaces should deliver higher performance than serial
interfaces, because more wires are used for the interconnection. However, this is not
necessarily the case. A significant challenge with parallel interfaces is maintaining syn-
chrony across the multiple wires. This becomes more difficult as the physical length of
the interconnection increases. This fact, combined with the requirement for bulkier cables
and more I/O pins has resulted in many traditionally parallel interfaces being replaced by
serial interfaces.

10.1.5 Buses

A bus is an interface shared among multiple devices, in contrast to a point-to-point in-
terconnection linking exactly two devices. Busses can be serial interfaces (such as USB)
or parallel interfaces. A widespread parallel bus is SCSI (pronounced scuzzy, for small
computer system interface), commonly used to connect hard drives and tape drives to
computers. Recent variants of SCSI interfaces, however, depart from the traditional par-
allel interface to become serial interfaces. SCSI is an example of a peripheral bus archi-
tecture, used to connect computers to peripherals such as sound cards and disk drives.

Other widely used peripheral bus standards include the ISA bus (industry standard archi-
tecture, used in the ubiquitous IBM PC architecture), PCI (peripheral component inter-
face), and Parallel ATA (advanced technology attachment). A somewhat different kind
of peripheral bus standard is IEEE-488, originally developed more than 30 years ago to
connect automated test equipment to controlling computers. This interface was designed
at Hewlett Packard and is also widely known as HP-IB (Hewlett Packard interface bus)
and GPIB (general purpose interface bus). Many networks also use a bus architecture.

Because a bus is shared among several devices, any bus architecture must include a
media-access control (MAC) protocol to arbitrate competing accesses. A simple MAC

Lee & Seshia, Introduction to Embedded Systems 271

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

protocol has a single bus master that interrogates bus slaves. USB uses such a mech-
anism. An alternative is a time-triggered bus, where devices are assigned time slots
during which they can transmit (or not, if they have nothing to send). A third alternative
is a token ring, where devices on the bus must acquire a token before they can use the
shared medium, and the token is passed around the devices according to some pattern.
A fourth alternative is to use a bus arbiter, which is a circuit that handles requests for
the bus according to some priorities. A fifth alternative is carrier sense multiple access
(CSMA), where devices sense the carrier to determine whether the medium is in use be-
fore beginning to use it, detect collisions that might occur when they begin to use it, and
try again later when a collision occurs.

In all cases, sharing of the physical medium has implications on the timing of applications.

Example 10.7: A peripheral bus provides a mechanism for external devices to
communicate with a CPU. If an external device needs to transfer a large amount
of data to the main memory, it may be inefficient and/or disruptive to require the
CPU to perform each transfer. An alternative is direct memory access (DMA).
In the DMA scheme used on the ISA bus, the transfer is performed by a separate
device called a DMA controller which takes control of the bus and transfers the
data. In some more recent designs, such as PCI, the external device directly takes
control of the bus and performs the transfer without the help of a dedicated DMA
controller. In both cases, the CPU is free to execute software while the transfer is
occurring, but if the executed code needs access to the memory or the peripheral
bus, then the timing of the program is disrupted by the DMA. Such timing effects
can be difficult to analyze.

10.2 Sequential Software in a Concurrent World

As we saw in Example 10.6, when software interacts with the external world, the tim-
ing of the execution of the software may be strongly affected. Software is intrinsically
sequential, typically executing as fast as possible. The physical world, however, is con-
current, with many things happening at once, and with the pace at which they happen
determined by their physical properties. Bridging this mismatch in semantics is one of

272 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

the major challenges that an embedded system designer faces. In this section, we discuss
some of the key mechanisms for accomplishing this.

10.2.1 Interrupts and Exceptions

An interrupt is a mechanism for pausing execution of whatever a processor is currently
doing and executing a pre-defined code sequence called an interrupt service routine
(ISR) or interrupt handler. Three kinds of events may trigger an interrupt. One is
a hardware interrupt, where some external hardware changes the voltage level on an
interrupt request line. In the case of a software interrupt, the program that is executing
triggers the interrupt by executing a special instruction or by writing to a memory-mapped
register. A third variant is called an exception, where the interrupt is triggered by internal
hardware that detects a fault, such as a segmentation fault.

For the first two variants, once the ISR completes, the program that was interrupted re-
sumes where it left off. In the case of an exception, once the ISR has completed, the pro-
gram that triggered the exception is not normally resumed. Instead, the program counter
is set to some fixed location where, for example, the operating system may terminate the
offending program.

Upon occurrence of an interrupt trigger, the hardware must first decide whether to re-
spond. If interrupts are disabled, it will not respond. The mechanism for enabling or
disabling interrupts varies by processor. Moreover, it may be that some interrupts are
enabled and others are not. Interrupts and exceptions generally have priorities, and an
interrupt will be serviced only if the processor is not already in the middle of servicing
an interrupt with a higher priority. Typically, exceptions have the highest priority and are
always serviced.

When the hardware decides to service an interrupt, it will usually first disable interrupts,
push the current program counter and processor status register(s) onto the stack, and
branch to a designated address that will normally contain a jump to an ISR. The ISR must
store on the stack the values currently in any registers that it will use, and restore their
values before returning from the interrupt, so that the interrupted program can resume
where it left off. Either the interrupt service routine or the hardware must also re-enable
interrupts before returning from the interrupt.

Lee & Seshia, Introduction to Embedded Systems 273

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

Example 10.8: The ARM CortexTM - M3 is a 32-bit microcontroller used in
industrial automation and other applications. It includes a system timer called
SysTick. This timer can be used to trigger an ISR to execute every 1ms. Suppose
for example that every 1ms we would like to count down from some initial count
until the count reaches zero, and then stop counting down. The following C code
defines an ISR that does this:

1 volatile uint timerCount = 0;
2 void countDown(void) {
3 if (timerCount != 0) {
4 timerCount--;
5 }
6 }

Here, the variable timerCount is a global variable, and it is decremented each
time countDown() is invoked, until it reaches zero. We will specify below
that this is to occur once per millisecond by registering countDown() as an
ISR. The variable timerCount is marked with the C volatile keyword, which
tells the compiler that the value of the variable will change at unpredictable times
during execution of the program. This prevents the compiler from performing
certain optimizations, such as caching the value of the variable in a register and
reading it repeatedly. Using a C API provided by Luminary Micro R© (2008c), we
can specify that countDown() should be invoked as an interrupt service routine
once per millisecond as follows:

1 SysTickPeriodSet(SysCtlClockGet() / 1000);
2 SysTickIntRegister(&countDown);
3 SysTickEnable();
4 SysTickIntEnable();

The first line sets the number of clock cycles between “ticks” of the SysTick
timer. The timer will request an interrupt on each tick. SysCtlClockGet()
is a library procedure that returns the number of cycles per second of the target
platform’s clock (e.g., 50,000,000 for a 50 MHz part). The second line regis-
ters the ISR by providing a function pointer for the ISR (the address of the
countDown() procedure). (Note: Some configurations do not support run-
time registration of ISRs, as shown in this code. See the documentation for your

274 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

particular system.) The third line starts the clock, enabling ticks to occur. The
fourth line enables interrupts.

The timer service we have set up can be used, for example, to perform some
function for two seconds and then stop. A program to do that is:

1 int main(void) {
2 timerCount = 2000;
3 ... initialization code from above ...
4 while(timerCount != 0) {
5 ... code to run for 2 seconds ...
6 }
7 }

Processor vendors provide many variants of the mechanisms used in the previous exam-
ple, so you will need to consult the vendor’s documentation for the particular processor
you are using. Since the code is not portable (it will not run correctly on a different pro-

Basics: Timers

Microcontrollers almost always include some number of peripheral devices called
timers. A programmable interval timer (PIT), the most common type, simply counts
down from some value to zero. The initial value is set by writing to a memory-mapped
register, and when the value hits zero, the PIT raises an interrupt request. By writing to
a memory-mapped control register, a timer might be set up to trigger repeatedly with-
out having to be reset by the software. Such repeated triggers will be more precisely
periodic than what you would get if the ISR restarts the timer each time it gets invoked.
This is because the time between when the count reaches zero in the timer hardware
and the time when the counter gets restarted by the ISR is difficult to control and vari-
able. For example, if the timer reaches zero at a time when interrupts happen to be
disabled, then there will be a delay before the ISR gets invoked. It cannot be invoked
before interrupts are re-enabled.

Lee & Seshia, Introduction to Embedded Systems 275

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

cessor), it is wise to isolate such code from your application logic and document carefully
what needs to be re-implemented to target a new processor.

10.2.2 Atomicity

An interrupt service routine can be invoked between any two instructions of the main
program (or between any two instructions of a lower priority ISR). One of the major chal-
lenges for embedded software designers is that reasoning about the possible interleavings
of instructions can become extremely difficult. In the previous example, the interrupt
service routine and the main program are interacting through a shared variable, namely
timerCount. The value of that variable can change between any two atomic opera-
tions of the main program. Unfortunately, it can be quite difficult to know what operations
are atomic. The term “atomic” comes from the Greek work for “indivisible,” and it is far
from obvious to a programmer what operations are indivisible. If the programmer is writ-
ing assembly code, then it may be safe to assume that each assembly language instruction
is atomic, but many ISAs include assembly level instructions that are not atomic.

Example 10.9: The ARM instruction set includes a LDM instruction, which
loads multiple registers from consecutive memory locations. It can be interrupted
part way through the loads (ARM Limited, 2006).

At the level of a C program, it can be even more difficult to know what operations are
atomic. Consider a single, innocent looking statement

timerCount = 2000;

On an 8-bit microcontroller, this statement may take more than one instruction cycle to
execute (an 8-bit word cannot store both the instruction and the constant 2000; in fact, the
constant alone does not fit in an 8-bit word). An interrupt could occur part way through the
execution of those cycles. Suppose that the ISR also writes to the variable timerCount.
In this case, the final value of the timerCount variable may be composed of 8 bits set
in the ISR and the remaining bits set by the above line of C, for example. The final
value could be very different from 2000, and also different from the value specified in the
interrupt service routine. Will this bug occur on a 32-bit microcontroller? The only way

276 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

to know for sure is to fully understand the ISA and the compiler. In such circumstances,
there is no advantage to having written the code in C instead of assembly language.

Bugs like this in a program are extremely difficult to identify and correct. Worse, the
problematic interleavings are quite unlikely to occur, and hence may not show up in test-
ing. For safety-critical systems, programmers have to make every effort to avoid such
bugs. One way to do this is to build programs using higher-level concurrent models of
computation, as discussed in Chapter 6. Of course, the implementation of those models
of computation needs to be correct, but presumably, that implementation is constructed
by experts in concurrency, rather than by application engineers.

When working at the level of C and ISRs, a programmer must carefully reason about
the order of operations. Although many interleavings are possible, operations given as a
sequence of C statements must execute in order (more precisely, they must behave as if
they had executed in order, even if out-of-order execution is used).

Example 10.10: In example 10.8, the programmer can rely on the statements
within main() executing in order. Notice that in that example, the statement

timerCount = 2000;

appears before

SysTickIntEnable();

The latter statement enables the SysTick interrupt. Hence, the former statement
cannot be interrupted by the SysTick interrupt.

10.2.3 Interrupt Controllers

An interrupt controller is the logic in the processor that handles interrupts. It supports
some number of interrupts and some number of priority levels. Each interrupt has an
interrupt vector, which is the address of an ISR or an index into an array called the
interrupt vector table that contains the addresses of all the ISRs.

Lee & Seshia, Introduction to Embedded Systems 277

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

Example 10.11: The Luminary Micro LM3S8962 controller, shown in Figure
10.1, includes an ARM CortexTM - M3 core microcontroller that supports 36 in-
terrupts with eight priority levels. If two interrupts are assigned the same priority
number, then the one with the lower vector will have priority over the one with
the higher vector.

When an interrupt is asserted by changing the voltage on a pin, the response may be either
level triggered or edge triggered. For level-triggered interrupts, the hardware asserting
the interrupt will typically hold the voltage on the line until it gets an acknowledgement,
which indicates that the interrupt is being handled. For edge-triggered interrupts, the
hardware asserting the interrupt changes the voltage for only a short time. In both cases,
open collector lines can be used so that the same physical line can be shared among
several devices (of course, the ISR will require some mechanism to determine which
device asserted the interrupt, for example by reading a memory-mapped register in each
device that could have asserted the interrupt).

Sharing interrupts among devices can be tricky, and careful consideration must be given to
prevent low priority interrupts from blocking high priority interrupts. Asserting interrupts
by writing to a designated address on a bus has the advantage that the same hardware can
support many more distinct interrupts, but the disadvantage that peripheral devices get
more complex. The peripheral devices have to include an interface to the memory bus.

10.2.4 Modeling Interrupts

The behavior of interrupts can be quite difficult to fully understand, and many catastrophic
system failures are caused by unexpected behaviors. Unfortunately, the logic of interrupt
controllers is often described in processor documentation very imprecisely, leaving many
possible behaviors unspecified. One way to make this logic more precise is to model it as
an FSM.

Example 10.12: The program of Example 10.8, which performs some action
for two seconds, is shown in Figure 10.5 together with two finite state machines

278 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

volatile uint timerCount = 0;
void ISR(void) {
 … disable interrupts
 if(timerCount != 0) {
 timerCount--;
 }
 … enable interrupts
}
int main(void) {
 // initialization code
 SysTickIntRegister(&ISR);
 … // other init
 timerCount = 2000;
 while(timerCount != 0) {
 … code to run for 2 seconds
 }
}
… whatever comes next

E
D

A
B

C

Figure 10.5: State machine models and main program for a program that does
something for two seconds and then continues to do something else.

Lee & Seshia, Introduction to Embedded Systems 279

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

that model the ISR and the main program. The states of the FSMs correspond to
positions in the execution labeled A through E, as shown in the program listing.
These positions are between C statements, so we are assuming here that these
statements are atomic operations (a questionable assumption in general).

We may wish to determine whether the program is assured of always reaching
position C. In other words, can we assert with confidence that the program will
eventually move beyond whatever computation it was to perform for two sec-
onds? A state machine model will help us answer that question.

The key question now becomes how to compose these state machines to correctly
model the interaction between the two pieces of sequential code in the proce-
dures ISR and main. It is easy to see that asynchronous composition is not the
right choice because the interleavings are not arbitrary. In particular, main can
be interrupted by ISR, but ISR cannot be interrupted by main. Asynchronous
composition would fail to capture this asymmetry.

Assuming that the interrupt is always serviced immediately upon being requested,
we wish to have a model something like that shown in Figure 10.6. In that figure,
a two-state FSM models whether an interrupt is being serviced. The transition
from Inactive to Active is triggered by a pure input assert, which models the timer
hardware requesting interrupt service. When the ISR completes its execution,
another pure input return triggers a return to the Inactive state. Notice here that
the transition from Inactive to Active is a preemptive transition, indicated by the
small circle at the start of the transition, suggesting that it should be taken im-
mediately when assert occurs, and that it is a reset transition, suggesting that the
state refinement of Active should begin in its initial state upon entry.

If we combine Figures 10.5 and 10.6 we get the hierarchical FSM in Figure 10.7.
Notice that the return signal is both an input and an output now. It is an output
produced by the state refinement of Active, and it is an input to the top-level FSM,
where it triggers a transition to Inactive. Having an output that is also an input
provides a mechanism for a state refinement to trigger a transition in its container
state machine.

To determine whether the program reaches state C, we can study the flattened
state machine shown in Figure 10.8. Studying that machine carefully, we see that
in fact there is no assurance that state C will be reached! If, for example, assert
is present on every reaction, then C is never reached.

280 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

E
D

A
B

C

Figure 10.6: Sketch of a state machine model for the interaction between an ISR
and the main program.

Could this happen in practice? With this program, it is improbable, but not im-
possible. It could happen if the ISR itself takes longer to execute than the time
between interrupts. Is there any assurance that this will not happen? Unfortu-
nately, our only assurance is a vague notion that processors are faster than that.
There is no guarantee.

In the above example, modeling the interaction between a main program and an interrupt
service routine exposes a potential flaw in the program. Although the flaw may be unlikely
to occur in practice in this example, the fact that the flaw is present at all is disturbing.
In any case, it is better to know that the flaw is present, and to decide that the risk is
acceptable, than to not know it is present.

Interrupt mechanisms can be quite complex. Software that uses these mechanisms to
provide I/O to an external device is called a device driver. Writing device drivers that
are correct and robust is a challenging engineering task requiring a deep understanding

Lee & Seshia, Introduction to Embedded Systems 281

http://LeeSeshia.org

10.2. SEQUENTIAL SOFTWARE IN A CONCURRENT WORLD

Figure 10.7: Hierarchical state machine model for the interaction between an ISR
and the main program.

282 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

Figure 10.8: Flattened version of the hierarchical state machine in Figure 10.7.

of the architecture and considerable skill reasoning about concurrency. Many failures in
computer systems are caused by unexpected interactions between device drivers and other
programs.

10.3 Summary

This chapter has reviewed hardware and software mechanisms used to get sensor data
into processors and commands from the processor to actuators. The emphasis is on un-
derstanding the principles behind the mechanisms, with a particular focus on the bridging
between the sequential world of software and the parallel physical world.

Lee & Seshia, Introduction to Embedded Systems 283

http://LeeSeshia.org

EXERCISES

Exercises

1. Similar to Example 10.6, consider a C program for an Atmel AVR that uses a UART
to send 8 bytes to an RS-232 serial interface, as follows:

1 for(i = 0; i < 8; i++) {
2 while(!(UCSR0A & 0x20));
3 UDR0 = x[i];
4 }

Assume the processor runs at 50 MHz; also assume that initially the UART is idle,
so when the code begins executing, UCSR0A & 0x20 == 0x20 is true; further,
assume that the serial port is operating at 19,200 baud. How many cycles are re-
quired to execute the above code? You may assume that the for statement executes
in three cycles (one to increment i, one to compare it to 8, and one to perform the
conditional branch); the while statement executes in 2 cycles (one to compute
!(UCSR0A & 0x20) and one to perform the conditional branch); and the assig-
ment to UDR0 executes in one cycle.

2. Figure 10.9 gives the sketch of a program for an Atmel AVR microcontroller that
performs some function repeatedly for three seconds. The function is invoked by
calling the procedure foo(). The program begins by setting up a timer interrupt
to occur once per second (the code to do this setup is not shown). Each time the
interrupt occurs, the specified interrupt service routine is called. That routine decre-
ments a counter until the counter reaches zero. The main() procedure initializes the
counter with value 3 and then invokes foo() until the counter reaches zero.

(a) We wish to assume that the segments of code in the grey boxes, labeled A, B,
and C, are atomic. State conditions that make this assumption valid.

(b) Construct a state machine model for this program, assuming as in part (a)
that A, B, and C, are atomic. The transitions in your state machine should
be labeled with “guard/action”, where the action can be any of A, B, C, or
nothing. The actions A, B, or C should correspond to the sections of code in
the grey boxes with the corresponding labels. You may assume these actions
are atomic.

(c) Is your state machine deterministic? What does it tell you about how many
times foo() may be invoked? Do all the possible behaviors of your model
correspond to what the programmer likely intended?

284 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;

// Interrupt service routine.
SIGNAL(SIG_OUTPUT_COMPARE1A) {

 if(timer_count > 0) {
 timer_count--;
 }
}

// Main program.
int main(void) {
 // Set up interrupts to occur
 // once per second.
 ...

 // Start a 3 second timer.
 timer_count = 3;

 // Do something repeatedly
 // for 3 seconds.
 while(timer_count > 0) {
 foo();
 }
}

A

B

C

Figure 10.9: Sketch of a C program that performs some function by calling proce-
dure foo() repeatedly for 3 seconds, using a timer interrupt to determine when to
stop.

Lee & Seshia, Introduction to Embedded Systems 285

http://LeeSeshia.org

EXERCISES

Note that there are many possible answers. Simple models are preferred over elab-
orate ones, and complete ones (where everything is defined) over incomplete ones.
Feel free to give more than one model.

3. In a manner similar to example 10.8, create a C program for the ARM CortexTM -
M3 to use the SysTick timer to invoke a system-clock ISR with a jiffy interval of
10 ms that records the time since system start in a 32-bit int. How long can this
program run before your clock overflows?

4. Consider a dashboard display that displays “normal” when brakes in the car operate
normally and “emergency” when there is a failure. The intended behavior is that
once “emergency” has been displayed, “normal” will not again be displayed. That
is, “emergency” remains on the display until the system is reset.

In the following code, assume that the variable display defines what is displayed.
Whatever its value, that is what appears on the dashboard.

1 volatile static uint8_t alerted;
2 volatile static char* display;
3 void ISRA() {
4 if (alerted == 0) {
5 display = "normal";
6 }
7 }
8 void ISRB() {
9 display = "emergency";

10 alerted = 1;
11 }
12 void main() {
13 alerted = 0;
14 ...set up interrupts...
15 ...enable interrupts...
16 ...
17 }

Assume that ISRA is an interrupt service routine that is invoked when the brakes
are applied by the driver. Assume that ISRB is invoked if a sensor indicates that the
brakes are being applied at the same time that the accelerator pedal is depressed.
Assume that neither ISR can interrupt itself, but that ISRB has higher priority than

286 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

ISRA, and hence ISRB can interrupt ISRA, but ISRA cannot interrupt ISRB.
Assume further (unrealistically) that each line of code is atomic.

(a) Does this program always exhibit the intended behavior? Explain. In the
remaining parts of this problem, you will construct various models that will
either demonstrate that the behavior is correct or will illustrate how it can be
incorrect.

(b) Construct a determinate extended state machine modeling ISRA. Assume
that:

• alerted is a variable of type {0, 1} ⊂ uint8 t,
• there is a pure input A that when present indicates an interrupt request for
ISRA, and

• display is an output of type char*.

(c) Give the size of the state space for your solution.

(d) Explain your assumptions about when the state machine in (b) reacts. Is this
time triggered, event triggered, or neither?

(e) Construct a determinate extended state machine modeling ISRB. This one has
a pure input B that when present indicates an interrupt request for ISRB.

(f) Construct a flat (non-hierarchical) determinate extended state machine de-
scribing the joint operation of the these two ISRs. Use your model to argue
the correctness of your answer to part (a).

(g) Give an equivalent hierarchical state machine. Use your model to argue the
correctness of your answer to part (a).

5. Suppose a processor handles interrupts as specified by the following FSM:

Lee & Seshia, Introduction to Embedded Systems 287

http://LeeSeshia.org

EXERCISES

Here, we assume a more complicated interrupt controller than that considered in
Example 10.12, where there are several possible interrupts and an arbiter that de-
cides which interrupt to service. The above state machine shows the state of one
interrupt. When the interrupt is asserted, the FSM transitions to the Pending state,
and remains there until the arbiter provides a handle input. At that time, the FSM
transitions to the Active state and produces an acknowledge output. If another inter-
rupt is asserted while in the Active state, then it transitions to Active and Pending.
When the ISR returns, the input return causes a transition to either Inactive or Pend-
ing, depending on the starting point. The deassert input allows external hardware
to cancel an interrupt request before it gets serviced.

Answer the following questions.

(a) If the state is Pending and the input is return, what is the reaction?

(b) If the state is Active and the input is assert ∧ deassert, what is the reaction?

(c) Suppose the state is Inactive and the input sequence in three successive reac-
tions is:

i. assert ,
ii. deassert ∧ handle ,

iii. return .

288 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

10. INPUT AND OUTPUT

What are all the possible states after reacting to these inputs? Was the interrupt
handled or not?

(d) Suppose that an input sequence never includes deassert. Is it true that every
assert input causes an acknowledge output? In other words, is every interrupt
request serviced? If yes, give a proof. If no, give a counterexample.

6. Suppose you are designing a processor that will support two interrupts whose logic
is given by the FSM in Exercise 5. Design an FSM giving the logic of an arbiter
that assigns one of these two interrupts higher priority than the other. The inputs
should be the following pure signals:

assert1, return1, assert2, return2

to indicate requests and return from interrupt for interrupts 1 and 2, respectively.
The outputs should be pure signals handle1 and handle2. Assuming the assert
inputs are generated by two state machines like that in Exercise 5, can you be sure
that this arbiter will handle every request that is made? Justify your answer.

7. Consider the following program that monitors two sensors. Here sensor1 and
sensor2 denote the variables storing the readouts from two sensors. The actual
read is performed by the functions readSensor1() and readSensor2(), re-
spectively, which are called in the interrupt service routine ISR.

1 char flag = 0;
2 volatile char* display;
3 volatile short sensor1, sensor2;
4

5 void ISR() {
6 if (flag) {
7 sensor1 = readSensor1();
8 } else {
9 sensor2 = readSensor2();

10 }
11 }
12

13 int main() {
14 // ... set up interrupts ...
15 // ... enable interrupts ...
16 while(1) {
17 if (flag) {
18 if isFaulty2(sensor2) {
19 display = "Sensor2 Faulty";
20 }

Lee & Seshia, Introduction to Embedded Systems 289

http://LeeSeshia.org

EXERCISES

21 } else {
22 if isFaulty1(sensor1) {
23 display = "Sensor1 Faulty";
24 }
25 }
26 flag = !flag;
27 }
28 }

Functions isFaulty1() and isFaulty2() check the sensor readings for any
discrepancies, returning 1 if there is a fault and 0 otherwise. Assume that the vari-
able display defines what is shown on the monitor to alert a human operator
about faults. Also, you may assume that flag is modified only in the body of
main.

Answer the following questions:

(a) Is it possible for the ISR to update the value of sensor1 while the main
function is checking whether sensor1 is faulty? Why or why not?

(b) Suppose a spurious error occurs that causes sensor1 or sensor2 to be a
faulty value for one measurement. Is it possible for that this code would not
report “Sensor1 faulty” or “Sensor2 faulty”?

(c) Assuming the interrupt source for ISR() is timer-driven, what conditions
would cause this code to never check whether the sensors are faulty?

(d) Suppose that instead being interrupt driven, ISR and main are executed con-
currently, each in its own thread. Assume a microkernel that can interrupt
any thread at any time and switch contexts to execute another thread. In this
scenario, is it possible for the ISR to update the value of sensor1 while the
main function is checking whether sensor1 is faulty? Why or why not?

290 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11
Multitasking

11.1 Imperative Programs . 294
Sidebar: Linked Lists in C . 297

11.2 Threads . 298
11.2.1 Creating Threads . 298
11.2.2 Implementing Threads . 301
11.2.3 Mutual Exclusion . 302
11.2.4 Deadlock . 305
Sidebar: Operating Systems . 306
11.2.5 Memory Consistency Models 308
11.2.6 The Problem with Threads 309

11.3 Processes and Message Passing . 311
11.4 Summary . 316
Exercises . 318

In this chapter, we discuss mid-level mechanisms that are used in software to provide
concurrent execution of sequential code. There are a number of reasons for executing
multiple sequential programs concurrently, but they all involve timing. One reason is to
improve responsiveness by avoiding situations where long-running programs can block a
program that responds to external stimuli, such as sensor data or a user request. Improved
responsiveness reduces latency, the time between the occurrence of a stimulus and the
response. Another reason is to improve performance by allowing a program to run simul-

11. MULTITASKING

Concurrent model of computation

 dataflow, time triggered, synchronous, etc.

Multitasking

 processes, threads, message passing

Processor

 interrupts, pipelining, multicore, etc.

Figure 11.1: Layers of abstraction for concurrency in programs.

taneously on multiple processors or cores. This is also a timing issue, since it presumes
that it is better to complete tasks earlier than later. A third reason is to directly control
the timing of external interactions. A program may need to perform some action, such as
updating a display, at particular times, regardless of what other tasks might be executing
at that time.

We have already discussed concurrency in a variety of contexts. Figure 11.1 shows the re-
lationship between the subject of this chapter and those of other chapters. Chapters 8 and
10 cover the lowest layer in Figure 11.1, which represents how hardware provides con-
current mechanisms to the software designer. Chapters 5 and 6 cover the highest layer,
which consists of abstract models of concurrency, including synchronous composition,
dataflow, and time-triggered models. This chapter bridges these two layers. It describes
mechanisms that are implemented using the low-level mechanisms and can provide infras-
tructure for realizing the high-level mechanisms. Collectively, these mid-level techniques
are called multitasking, meaning the simultaneous execution of multiple tasks.

Embedded system designers frequently use these mid-level mechanisms directly to build
applications, but it is becoming increasingly common for designers to use instead the
high-level mechanisms. The designer constructs a model using a software tool that sup-
ports a model of computation (or several models of computation). The model is then
automatically or semi-automatically translated into a program that uses the mid-level or

292 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

1 #include <stdlib.h>
2 #include <stdio.h>
3 int x; // Value that gets updated.
4 typedef void notifyProcedure(int); // Type of notify proc.
5 struct element {
6 notifyProcedure* listener; // Pointer to notify procedure.
7 struct element* next; // Pointer to the next item.
8 };
9 typedef struct element element_t; // Type of list elements.

10 element_t* head = 0; // Pointer to start of list.
11 element_t* tail = 0; // Pointer to end of list.
12

13 // Procedure to add a listener.
14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }
27 // Procedure to update x.
28 void update(int newx) {
29 x = newx;
30 // Notify listeners.
31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }
36 }
37 // Example of notify procedure.
38 void print(int arg) {
39 printf("%d ", arg);
40 }

Figure 11.2: A C program used in a series of examples in this chapter.

Lee & Seshia, Introduction to Embedded Systems 293

http://LeeSeshia.org

11.1. IMPERATIVE PROGRAMS

low-level mechanisms. This translation process is variously called code generation or
autocoding.

The mechanisms described in this chapter are typically provided by an operating system,
a microkernel, or a library of procedures. They can be rather tricky to implement cor-
rectly, and hence the implementation should be done by experts (for some of the pitfalls,
see Boehm (2005)). Embedded systems application programmers often find themselves
having to implement such mechanisms on bare iron (a processor without an operating
system). Doing so correctly requires deep understanding of concurrency issues.

This chapter begins with a brief description of models for sequential programs, which
enable models of concurrent compositions of such sequential programs. We then progress
to discuss threads, processes, and message passing, which are three styles of composition
of sequential programs.

11.1 Imperative Programs

A programming language that expresses a computation as a sequence of operations is
called an imperative language. C is an imperative language.

Example 11.1: In this chapter, we illustrate several key points using the example
C program shown in Figure 11.2. This program implements a commonly used
design pattern called the observer pattern (Gamma et al., 1994). In this pattern,
an update procedure changes the value of a variable x. Observers (which are
other programs or other parts of the program) will be notified whenever x is
changed by calling a callback procedure. For example, the value of x might be
displayed by an observer on a screen. Whenever the value changes, the observer
needs to be notified so that it can update the display on the screen. The following
main procedure uses the procedures defined in Figure 11.2:

1 int main(void) {
2 addListener(&print);
3 addListener(&print);
4 update(1);
5 addListener(&print);
6 update(2);
7 return 0;
8 }

294 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

This test program registers the print procedure as a callback twice, then per-
forms an update (setting x = 1), then registers the print procedure again, and
finally performs another update (setting x = 2). The print procedure simply
prints the current value, so the output when executing this test program is 1 1 2
2 2.

A C program specifies a sequence of steps, where each step changes the state of the
memory in the machine. In C, the state of the memory in the machine is represented by
the values of variables.

Example 11.2: In the program in Figure 11.2, the state of the memory of the
machine includes the value of variable x (which is a global variable) and a list of
elements pointed to by the variable head (another global variable). The list itself
is represented as a linked list, where each element in the list contains a function
pointer referring to a procedure to be called when x changes.

During execution of the C program, the state of the memory of the machine will
need to include also the state of the stack, which includes any local variables.

Using extended state machines, we can model the execution of certain simple C programs,
assuming the programs have a fixed and bounded number of variables. The variables of
the C program will be the variables of the state machine. The states of the state machine
will represent positions in the program, and the transitions will represent execution of the
program.

Example 11.3: Figure 11.3 shows a model of the update procedure in Figure
11.2. The machine transitions from the initial Idle state when the update proce-
dure is called. The call is signaled by the input arg being present; its value will be
the int argument to the update procedure. When this transition is taken, newx
(on the stack) will be assigned the value of the argument. In addition, x (a global
variable) will be updated.

Lee & Seshia, Introduction to Embedded Systems 295

http://LeeSeshia.org

11.1. IMPERATIVE PROGRAMS

Figure 11.3: Model of the update procedure in Figure 11.2.

After this first transition, the machine is in state 31, corresponding to the program
counter position just prior to the execution of line 31 in Figure 11.2. It then
unconditionally transitions to state 32 and sets the value of element. From state
32, there are two possibilities; if element = 0, then the machine transitions back
to Idle and produces the pure output return. Otherwise, it transitions to 33.

On the transition from 33 to 34, the action is a procedure call to the listener with
the argument being the stack variable newx. The transition from 34 back to 32
occurs upon receiving the pure input returnFromListener, which indicates that the
listener procedure returns.

The model in Figure 11.3 is not the only model we could have constructed of the update
procedure. In constructing such a model, we need to decide on the level of detail, and we
need to decide which actions can be safely treated as atomic operations. Figure 11.3 uses

296 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

Linked Lists in C

A linked list is a data structure for storing a list of elements that varies in length during
execution of a program. Each element in the list contains a payload (the value of the
element) and a pointer to the next element in the list (or a null pointer if the element is
the last one). For the program in Figure 11.2, the linked list data structure is defined
by:

1 typedef void notifyProcedure(int);
2 struct element {
3 notifyProcedure* listener;
4 struct element* next;
5 };
6 typedef struct element element_t;
7 element_t* head = 0;
8 element_t* tail = 0;

The first line declares that notifyProcedure is a type whose value is a C procedure
that takes an int and returns nothing. Lines 2–5 declare a struct, a composite data
type in C. It has two pieces, listener (with type notifyProcedure*, which is
a function pointer, a pointer to a C procedure) and next (a pointer to an instance of
the same struct). Line 6 declares that element t is a type referring to an instance of
the structure element.

Line 7 declares head, a pointer to a list element. It is initialized to 0, a value that
indicates an empty list. The addListener procedure in Figure 11.2 creates the first
list element using the following code:

1 head = malloc(sizeof(element_t));
2 head->listener = listener;
3 head->next = 0;
4 tail = head;

Line 1 allocates memory from the heap using malloc to store a list element and
sets head to point to that element. Line 2 sets the payload of the element, and line 3
indicates that this is the last element in the list. Line 4 sets tail, a pointer to the last
list element. When the list is not empty, the addListener procedure will use the
tail pointer rather than head to append an element to the list.

Lee & Seshia, Introduction to Embedded Systems 297

http://LeeSeshia.org

11.2. THREADS

lines of code as a level of detail, but there is no assurance that a line of C code executes
atomically (it usually does not).

In addition, accurate models of C programs are often not finite state systems. Considering
only the code in Figure 11.2, a finite-state model is not appropriate because the code
supports adding an arbitrary number of listeners to the list. If we combine Figure 11.2
with the main procedure in Example 11.1, then the system is finite state because only
three listeners are put on the list. An accurate finite-state model, therefore, would need to
include the complete program, making modular reasoning about the code very difficult.

The problems get much worse when we add concurrency to the mix. We will show in
this chapter that accurate reasoning about C programs with mid-level concurrency mech-
anisms such as threads is astonishingly difficult and error prone. It is for this reason that
designers are tending towards the upper layer in Figure 11.1.

11.2 Threads

Threads are imperative programs that run concurrently and share a memory space. They
can access each others’ variables. Many practitioners in the field use the term “threads”
more narrowly to refer to particular ways of constructing programs that share memory, but
here we will use the term broadly to refer to any mechanism where imperative programs
run concurrently and share memory. In this broad sense, threads exist in the form of
interrupts on almost all microprocessors, even without any operating system at all (bare
iron).

11.2.1 Creating Threads

Most operating systems provide a higher-level mechanism than interrupts to realize im-
perative programs that share memory. The mechanism is provided in the form of a col-
lection of procedures that a programmer can use. Such procedures typically conform to
a standardized API (application program interface), which makes it possible to write
programs that are portable (they will run on multiple processors and/or multiple operating
systems). Pthreads (or POSIX threads) is such an API; it is integrated into many modern
operating systems. Pthreads defines a set of C programming language types, functions and
constants. It was standardized by the IEEE in 1988 to unify variants of Unix. In Pthreads,

298 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

1 #include <pthread.h>
2 #include <stdio.h>
3 void* printN(void* arg) {
4 int i;
5 for (i = 0; i < 10; i++) {
6 printf("My ID: %d\n", *(int*)arg);
7 }
8 return NULL;
9 }

10 int main(void) {
11 pthread_t threadID1, threadID2;
12 void* exitStatus;
13 int x1 = 1, x2 = 2;
14 pthread_create(&threadID1, NULL, printN, &x1);
15 pthread_create(&threadID2, NULL, printN, &x2);
16 printf("Started threads.\n");
17 pthread_join(threadID1, &exitStatus);
18 pthread_join(threadID2, &exitStatus);
19 return 0;
20 }

Figure 11.4: Simple multithreaded C program using Pthreads.

a thread is defined by a C procedure and created by invoking the pthread create
procedure.1

Example 11.4: A simple multithreaded C program using Pthreads is shown in
Figure 11.4. The printN procedure (lines 3–9) — the procedure that the thread
begins executing — is called the start routine; in this case, the start routine
prints the argument passed to it 10 times and then exits, which will cause the
thread to terminate. The main procedure creates two threads, each of which will
execute the start routine. The first one, created on line 14, will print the value
1. The second one, created on line 15, will print the value 2. When you run this

1For brevity, in the examples in this text we do not check for failures, as any well-written program using
Pthreads should. For example, pthread create will return 0 if it succeeds, and a non-zero error code if
it fails. It could fail, for example, due to insufficient system resources to create another thread. Any program
that uses pthread create should check for this failure and handle it in some way. Refer to the Pthreads
documentation for details.

Lee & Seshia, Introduction to Embedded Systems 299

http://LeeSeshia.org

11.2. THREADS

program, values 1 and 2 will be printed in some interleaved order that depends
on the thread scheduler. Typically, repeated runs will yield different interleaved
orders of 1’s and 2’s.

The pthread create procedure creates a thread and returns immediately. The
start routine may or may not have actually started running when it returns. Lines
17 and 18 use pthread join to ensure that the main program does not ter-
minate before the threads have finished. Without these two lines, running the
program may not yield any output at all from the threads.

A start routine may or may not return. In embedded applications, it is quite common to
define start routines that never return. For example, the start routine might execute forever
and update a display periodically. If the start routine does not return, then any other thread
that calls its pthread join will be blocked indefinitely.

As shown in Figure 11.4, the start routine can be provided with an argument and can
return a value. The fourth argument to pthread create is the address of the argument
to be passed to the start routine. It is important to understand the memory model of C,
explained in Section 9.3.5, or some very subtle errors could occur, as illustrated in the
next example.

Example 11.5: Suppose we attempt to create a thread inside a procedure like
this:

1 pthread_t createThread(int x) {
2 pthread_t ID;
3 pthread_create(&ID, NULL, printN, &x);
4 return ID;
5 }

This code would be incorrect because the argument to the start routine is given by
a pointer to a variable on the stack. By the time the thread accesses the specified
memory address, the createThread procedure will likely have returned and
the memory address will have been overwritten by whatever went on the stack
next.

300 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

11.2.2 Implementing Threads

The core of an implementation of threads is a scheduler that decides which thread to
execute next when a processor is available to execute a thread. The decision may be
based on fairness, where the principle is to give every active thread an equal opportunity
to run, on timing constraints, or on some measure of importance or priority. Scheduling
algorithms are discussed in detail in Chapter 12. In this section, we simply describe how
a thread scheduler will work without worrying much about how it makes a decision on
which thread to execute.

The first key question is how and when the scheduler is invoked. A simple technique
called cooperative multitasking does not interrupt a thread unless the thread itself calls
a certain procedure or one of a certain set of procedures. For example, the scheduler may
intervene whenever any operating system service is invoked by the currently executing
thread. An operating system service is invoked by making a call to a library procedure.
Each thread has its own stack, and when the procedure call is made, the return address
will be pushed onto the stack. If the scheduler determines that the currently executing
thread should continue to execute, then the requested service is completed and the pro-
cedure returns as normal. If instead the scheduler determines that the thread should be
suspended and another thread should be selected for execution, then instead of returning,
the scheduler makes a record of the stack pointer of the currently executing thread, and
then modifies the stack pointer to point to the stack of the selected thread. It then returns
as normal by popping the return address off the stack and resuming execution, but now in
a new thread.

The main disadvantage of cooperative multitasking is that a program may execute for a
long time without making any operating system service calls, in which case other threads
will be starved. To correct for this, most operating systems include an interrupt service
routine that runs at fixed time intervals. This routine will maintain a system clock, which
provides application programmers with a way to obtain the current time of day and enables
periodic invocation of the scheduler via a timer interrupt. For an operating system with a
system clock, a jiffy is the time interval at which the system-clock ISR is invoked.

Example 11.6: The jiffy values in Linux versions have typically varied between
1 ms and 10 ms.

Lee & Seshia, Introduction to Embedded Systems 301

http://LeeSeshia.org

11.2. THREADS

The value of a jiffy is determined by balancing performance concerns with required timing
precision. A smaller jiffy means that scheduling functions are performed more often,
which can degrade overall performance. A larger jiffy means that the precision of the
system clock is coarser and that task switching occurs less often, which can cause real-
time constraints to be violated. Sometimes, the jiffy interval is dictated by the application.

Example 11.7: Game consoles will typically use a jiffy value synchronized to
the frame rate of the targeted television system because the major time-critical
task for such systems is to generate graphics at this frame rate. For example,
NTSC is the analog television system historically used in most of the Americas,
Japan, South Korea, Taiwan, and a few other places. It has a frame rate of 59.94
Hz, so a suitable jiffy would be 1/59.94 or about 16.68 ms. With the PAL (phase
alternating line) television standard, used in most of Europe and much of the rest
of the world, the frame rate is 50 Hz, yielding a jiffy of 20 ms.

Analog television is steadily being replaced by digital formats such as ATSC.
ATSC supports a number of frame rates ranging from just below 24 Hz to 60 Hz
and a number of resolutions. Assuming a standard-compliant TV, a game console
designer can choose the frame rate and resolution consistent with cost and quality
objectives.

In addition to periodic interrupts and operating service calls, the scheduler might be in-
voked when a thread blocks for some reason. We discuss some of the mechanisms for
such blocking next.

11.2.3 Mutual Exclusion

A thread may be suspended between any two atomic operations to execute another thread
and/or an interrupt service routine. This fact can make it extremely difficult to reason
about interactions among threads.

302 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

Example 11.8: Recall the following procedure from Figure 11.2:

14 void addListener(notifyProcedure* listener) {
15 if (head == 0) {
16 head = malloc(sizeof(element_t));
17 head->listener = listener;
18 head->next = 0;
19 tail = head;
20 } else {
21 tail->next = malloc(sizeof(element_t));
22 tail = tail->next;
23 tail->listener = listener;
24 tail->next = 0;
25 }
26 }

Suppose that addListener is called from more than one thread. Then what
could go wrong? First, two threads may be simultaneously modifying the linked
list data structure, which can easily result in a corrupted data structure. Suppose
for example that a thread is suspended just prior to executing line 23. Suppose
that while the thread is suspended, another thread calls addListener. When
the first thread resumes executing at line 23, the value of tail has changed. It is
no longer the value that was set in line 22! Careful analysis reveals that this could
result in a list where the second to last element of the list points to a random ad-
dress for the listener (whatever was in the memory allocated by malloc), and the
second listener that was added to the list is no longer on the list. When update
is called, it will try to execute a procedure at the random address, which could
result in a segmentation fault, or worse, execution of random memory contents as
if they were instructions!

The problem illustrated in the previous example is known as a race condition. Two
concurrent pieces of code race to access the same resource, and the exact order in which
their accesses occurs affects the results of the program. Not all race conditions are as
bad as the previous example, where some outcomes of the race cause catastrophic failure.
One way to prevent such disasters is by using a mutual exclusion lock (or mutex), as
illustrated in the next example.

Lee & Seshia, Introduction to Embedded Systems 303

http://LeeSeshia.org

11.2. THREADS

Example 11.9: In Pthreads, mutexes are implemented by creating an instance
of a structure called a pthread mutex t. For example, we could modify the
addListener procedure as follows:

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

void addListener(notifyProcedure* listener) {
pthread_mutex_lock(&lock);
if (head == 0) {

...
} else {
...

}
pthread_mutex_unlock(&lock);

}

The first line creates and initializes a global variable called lock. The first line
within the addListener procedure acquires the lock. The principle is that
only one thread can hold the lock at a time. The pthread mutex lock pro-
cedure will block until the calling thread can acquire the lock.

In the above code, when addListener is called by a thread and be-
gins executing, pthread mutex lock does not return until no other thread
holds the lock. Once it returns, this calling thread holds the lock. The
pthread mutex unlock call at the end releases the lock. It is a serious error
in multithreaded programming to fail to release a lock.

A mutual exclusion lock prevents any two threads from simultaneously accessing or mod-
ifying a shared resource. The code between the lock and unlock is a critical section. At
any one time, only one thread can be executing code in such a critical section. A pro-
grammer may need to ensure that all accesses to a shared resource are similarly protected
by locks.

Example 11.10: The update procedure in Figure 11.2 does not modify the list
of listeners, but it does read the list. Suppose that thread A calls addListener
and gets suspended just after line 21, which does this:

304 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

21 tail->next = malloc(sizeof(element_t));

Suppose that while A is suspended, another thread B calls update, which in-
cludes the following code:

31 element_t* element = head;
32 while (element != 0) {
33 (*(element->listener))(newx);
34 element = element->next;
35 }

What will happen on line 33 when element == tail->next? At that point,
thread B will treat whatever random contents were in the memory returned by
malloc on line 21 as a function pointer and attempt to execute a procedure
pointed to by that pointer. Again, this will result in a segmentation fault or worse.

The mutex added in Example 11.9 is not sufficient to prevent this disaster. The
mutex does not prevent thread A from being suspended. Thus, we need to protect
all accesses of the data structure with mutexes, which we can do by modifying
update as follows

void update(int newx) {
x = newx;
// Notify listeners.
pthread_mutex_lock(&lock);
element_t* element = head;
while (element != 0) {

(*(element->listener))(newx);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

This will prevent the update procedure from reading the list data structure while
it is being modified by any other thread.

11.2.4 Deadlock

As mutex locks proliferate in programs, the risk of deadlock increases. A deadlock occurs
when some threads become permanently blocked trying to acquire locks. This can occur,
for example, if thread A holds lock1 and then blocks trying to acquire lock2, which

Lee & Seshia, Introduction to Embedded Systems 305

http://LeeSeshia.org

11.2. THREADS

Operating Systems

The computers in embedded systems often do not interact directly with humans in the
same way that desktop or handheld computers do. As a consequence, the collection
of services that they need from an operating system (OS) may be very different. The
dominant general-purpose OSs for desktops today, Microsoft Windows, Mac OS X,
and Linux, provide services that may or may not be required in an embedded processor.
For example, many embedded applications do not require a graphical user interface
(GUI), a file system, font management, or even a network stack.

Several operating systems have been developed specifically for embedded applica-
tions, including Windows CE (WinCE) (from Microsoft), VxWorks (from Wind River
Systems, acquired by Intel in 2009), QNX (from QNX Software Systems, acquired in
2010 by Research in Motion (RIM)), Embedded Linux (an open source community
effort), and FreeRTOS (another open source community effort). These share many fea-
tures with general-purpose OSs, but typically have specialized the kernel to become a
real-time operating system (RTOS). An RTOS provides bounded latency on interrupt
servicing and a scheduler for processes that takes into account real-time constraints.

Mobile operating systems are a third class of OS designed specifically for hand-
held devices. The smart phone operating systems iOS (from Apple) and Android (from
Google) dominate today, but there is a long history of such software for cell phones and
PDAs. Examples include Symbian OS (an open-source effort maintained by the Sym-
bian Foundation), BlackBerry OS (from RIM), Palm OS (from Palm, Inc., acquired by
Hewlett Packard in 2010), and Windows Mobile (from Microsoft). These OSs have
specialized support for wireless connectivity and media formats.

The core of any operating system is the kernel, which controls the order in which
processes are executed, how memory is used, and how information is communicated
to peripheral devices and networks (via device drivers). A microkernel is a very
small operating system that provides only these services (or even a subset of these
services). OSs may provide many other services, however. These could include
user interface infrastructure (integral to Mac OS X and Windows), virtual memory,
memory allocation and deallocation, memory protection (to isolate applications from
the kernel and from each other), a file system, and services for programs to interact
such as semaphores, mutexes, and message passing libraries.

306 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

is held by thread B, and then thread B blocks trying to acquire lock1. Such deadly
embraces have no clean escape. The program needs to be aborted.

Example 11.11: Suppose that both addListener and update in Figure
11.2 are protected by a mutex, as in the two previous examples. The update
procedure includes the line

33 (*(element->listener))(newx);

which calls a procedure pointed to by the list element. It would not be unrea-
sonable for that procedure to itself need to acquire a mutex lock. Suppose for
example that the listener procedure needs to update a display. A display is typ-
ically a shared resource, and therefore will likely have to be protected with its
own mutex lock. Suppose that threadA calls update, which reaches line 33 and
then blocks because the listener procedure tries to acquire a different lock held by
thread B. Suppose then that thread B calls addListener. Deadlock!

Deadlock can be difficult to avoid. In a classic paper, Coffman et al. (1971) give necessary
conditions for deadlock to occur, any of which can be removed to avoid deadlock. One
simple technique is to use only one lock throughout an entire multithreaded program. This
technique does not lead to very modular programming, however. Moreover, it can make it
difficult to meet real-time constraints because some shared resources (e.g., displays) may
need to be held long enough to cause deadlines to be missed in other threads.

In a very simple microkernel, we can sometimes use the enabling and disabling of inter-
rupts as a single global mutex. Assume that we have a single processor (not a multicore),
and that interrupts are the only mechanism by which a thread may be suspended (i.e.,
they do not get suspended when calling kernel services or blocking on I/O). With these
assumptions, disabling interrupts prevents a thread from being suspended. In most OSs,
however, threads can be suspended for many reasons, so this technique won’t work.

A third technique is to ensure that when there are multiple mutex locks, every thread
acquires the locks in the same order. This can be difficult to guarantee, however, for
several reasons (see Exercise 2). First, most programs are written by multiple people, and
the locks acquired within a procedure are not part of the signature of the procedure. So
this technique relies on very careful and consistent documentation and cooperation across

Lee & Seshia, Introduction to Embedded Systems 307

http://LeeSeshia.org

11.2. THREADS

a development team. And any time a lock is added, then all parts of the program that
acquire locks may have to be modified.

Second, it can make correct coding extremely difficult. If a programmer wishes to call a
procedure that acquires lock1, which by convention in the program is always the first
lock acquired, then it must first release any locks it holds. As soon as it releases those
locks, it may be suspended, and the resource that it held those locks to protect may be
modified. Once it has acquired lock1, it must then reacquire those locks, but it will then
need to assume it no longer knows anything about the state of the resources, and it may
have to redo considerable work.

There are many more ways to prevent deadlock. For example, a particularly elegant tech-
nique synthesizes constraints on a scheduler to prevent deadlock (Wang et al., 2009).
Nevertheless, most available techniques either impose severe constraints on the program-
mer or require considerable sophistication to apply, which suggests that the problem may
be with the concurrent programming model of threads.

11.2.5 Memory Consistency Models

As if race conditions and deadlock were not problematic enough, threads also suffer from
potentially subtle problems with the memory model of the programs. Any particular im-
plementation of threads offers some sort of memory consistency model, which defines
how variables that are read and written by different threads appear to those threads. Intu-
itively, reading a variable should yield the last value written to the variable, but what does
“last” mean? Consider a scenario, for example, where all variables are initialized with
value zero, and thread A executes the following two statements:

1 x = 1;
2 w = y;

while thread B executes the following two statements:

1 y = 1;
2 z = x;

Intuitively, after both threads have executed these statements, we would expect that at
least one of the two variables w and z has value 1. Such a guarantee is referred to as
sequential consistency (Lamport, 1979). Sequential consistency means that the result of
any execution is the same as if the operations of all threads are executed in some sequential

308 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

order, and the operations of each individual thread appear in this sequence in the order
specified by the thread.

However, sequential consistency is not guaranteed by most (or possibly all) implemen-
tations of Pthreads. In fact, providing such a guarantee is rather difficult on modern
processors using modern compilers. A compiler, for example, is free to re-order the in-
structions in each of these threads because there is no dependency between them (that is
visible to the compiler). Even if the compiler does not reorder them, the hardware might.
A good defensive tactic is to very carefully guard such accesses to shared variables us-
ing mutual exclusion locks (and to hope that those mutual exclusion locks themselves are
implemented correctly).

An authoritative overview of memory consistency issues is provided by Adve and Ghara-
chorloo (1996), who focus on multiprocessors. Boehm (2005) provides an analysis of the
memory consistency problems with threads on a single processor.

11.2.6 The Problem with Threads

Multithreaded programs can be very difficult to understand. Moreover, it can be difficult
to build confidence in the programs because problems in the code may not show up in
testing. A program may have the possibility of deadlock, for example, but nonetheless
run correctly for years without the deadlock ever appearing. Programmers have to be
very cautious, but reasoning about the programs is sufficiently difficult that programming
errors are likely to persist.

In the example of Figure 11.2, we can avoid the potential deadlock of Example 11.11
using a simple trick, but the trick leads to a more insidious error (an error that may
not occur in testing, and may not be noticed when it occurs, unlike a deadlock, which is
almost always noticed when it occurs).

Example 11.12: Suppose we modify the update procedure as follows:
void update(int newx) {

x = newx;
// Copy the list
pthread_mutex_lock(&lock);
element_t* headc = NULL;
element_t* tailc = NULL;

Lee & Seshia, Introduction to Embedded Systems 309

http://LeeSeshia.org

11.2. THREADS

element_t* element = head;
while (element != 0) {

if (headc == NULL) {
headc = malloc(sizeof(element_t));
headc->listener = head->listener;
headc->next = 0;
tailc = headc;

} else {
tailc->next = malloc(sizeof(element_t));
tailc = tailc->next;
tailc->listener = element->listener;
tailc->next = 0;

}
element = element->next;

}
pthread_mutex_unlock(&lock);

// Notify listeners using the copy
element = headc;
while (element != 0) {

(*(element->listener))(newx);
element = element->next;

}
}

This implementation does not hold lock when it calls the listener procedure.
Instead, it holds the lock while it constructs a copy of the list of the listeners, and
then it releases the lock. After releasing the lock, it uses the copy of the list of
listeners to notify the listeners.

This code, however, has a potentially serious problem that may not be detected in
testing. Specifically, suppose that thread A calls update with argument newx
= 0, indicating “all systems normal.” Suppose that A is suspended just after
releasing the lock, but before performing the notifications. Suppose that while
it is suspended, thread B calls update with argument newx = 1, meaning
“emergency! the engine is on fire!” Suppose that this call to update completes
before thread A gets a chance to resume. When thread A resumes, it will notify
all the listeners, but it will notify them of the wrong value! If one of the listeners
is updating a pilot display for an aircraft, the display will indicate that all systems
are normal, when in fact the engine is on fire.

310 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

Many programmers are familiar with threads and appreciate the ease with which they ex-
ploit underlying parallel hardware. It is possible, but not easy, to construct reliable and
correct multithreaded programs. See for example Lea (1997) for an excellent “how to”
guide to using threads in Java. By 2005, standard Java libraries included concurrent data
structures and mechanisms based on threads (Lea, 2005). Libraries like OpenMP (Chap-
man et al., 2007) also provide support for commonly used multithreaded patterns such
as parallel loop constructs. However, embedded systems programmers rarely use Java or
large sophisticated packages like OpenMP. And even if they did, the same deadlock risks
and insidious errors would occur.

Threads have a number of difficulties that make it questionable to expose them to pro-
grammers as a way to build concurrent programs (Ousterhout, 1996; Sutter and Larus,
2005; Lee, 2006; Hayes, 2007). In fact, before the 1990s, threads were not used at all by
application programmers. It was the emergence of libraries like Pthreads and languages
like Java and C# that exposed these mechanisms to application programmers.

Nontrivial multithreaded programs are astonishingly difficult to understand, and can yield
insidious errors, race conditions, and deadlock. Problems can lurk in multithreaded pro-
grams through years of even intensive use of the programs. These concerns are partic-
ularly important for embedded systems that affect the safety and livelihood of humans.
Since virtually every embedded system involves concurrent software, engineers that de-
sign embedded systems must confront the pitfalls.

11.3 Processes and Message Passing

Processes are imperative programs with their own memory spaces. These programs can-
not refer to each others’ variables, and consequently they do not exhibit the same dif-
ficulties as threads. Communication between the programs must occur via mechanisms
provided by the operating system, microkernel, or a library.

Implementing processes correctly generally requires hardware support in the form of a
memory management unit or MMU. The MMU protects the memory of one process from
accidental reads or writes by another process. It typically also provides address trans-
lation, providing for each process the illusion of a fixed memory address space that is
the same for all processes. When a process accesses a memory location in that address
space, the MMU shifts the address to refer to a location in the portion of physical memory
allocated to that process.

Lee & Seshia, Introduction to Embedded Systems 311

http://LeeSeshia.org

11.3. PROCESSES AND MESSAGE PASSING

To achieve concurrency, processes need to be able to communicate. Operating systems
typically provide a variety of mechanisms, often even including the ability to create shared
memory spaces, which of course opens the programmer to all the potential difficulties of
multithreaded programming.

One such mechanism that has fewer difficulties is a file system. A file system is simply
a way to create a body of data that is persistent in the sense that it outlives the process
that creates it. One process can create data and write it to a file, and another process can
read data from the same file. It is up to the implementation of the file system to ensure
that the process reading the data does not read it before it is written. This can be done, for
example, by allowing no more than one process to operate on a file at a time.

A more flexible mechanism for communicating between processes is message passing.
Here, one process creates a chunk of data, deposits it in a carefully controlled section of
memory that is shared, and then notifies other processes that the message is ready. Those
other processes can block waiting for the data to become ready. Message passing requires
some memory to be shared, but it is implemented in libraries that are presumably written
by experts. An application programmer invokes a library procedure to send a message or
to receive a message.

Example 11.13: A simple example of a message passing program is shown in
Figure 11.5. This program uses a producer/consumer pattern, where one thread
produces a sequence of messages (a stream), and another thread consumes the
messages. This pattern can be used to implement the observer pattern without
deadlock risk and without the insidious error discussed in the previous section.
The update procedure would always execute in a different thread from the ob-
servers, and would produce messages that are consumed by the observers.

In Figure 11.5, the code executed by the producing thread is given by the
producer procedure, and the code for the consuming thread by the consumer
procedure. The producer invokes a procedure called send (to be defined) on line
4 to send an integer-valued message. The consumer uses get (also to be de-
fined) on line 10 to receive the message. The consumer is assured that get does
not return until it has actually received the message. Notice that in this case,
consumer never returns, so this program will not terminate on its own.

An implementation of send and get using Pthreads is shown in Figure 11.6.
This implementation uses a linked list similar to that in Figure 11.2, but where

312 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

1 void* producer(void* arg) {
2 int i;
3 for (i = 0; i < 10; i++) {
4 send(i);
5 }
6 return NULL;
7 }
8 void* consumer(void* arg) {
9 while(1) {

10 printf("received %d\n", get());
11 }
12 return NULL;
13 }
14 int main(void) {
15 pthread_t threadID1, threadID2;
16 void* exitStatus;
17 pthread_create(&threadID1, NULL, producer, NULL);
18 pthread_create(&threadID2, NULL, consumer, NULL);
19 pthread_join(threadID1, &exitStatus);
20 pthread_join(threadID2, &exitStatus);
21 return 0;
22 }

Figure 11.5: Example of a simple message-passing application.

the payload is an int. Here, the linked list is implementing an unbounded first-
in, first-out (FIFO) queue, where new elements are inserted at the tail and old
elements are removed from the head.

Consider first the implementation of send. It uses a mutex to ensure that send
and get are not simultaneously modifying the linked list, as before. But in ad-
dition, it uses a condition variable to communicate to the consumer process
that the size of the queue has changed. The condition variable called sent
is declared and initialized on line 7. On line 23, the producer thread calls
pthread cond signal, which will “wake up” another thread that is blocked
on the condition variable, if there is such a thread.

To see what it means to “wake up” another thread, look at the get procedure.
On line 31, if the thread calling get has discovered that the current size of the

Lee & Seshia, Introduction to Embedded Systems 313

http://LeeSeshia.org

11.3. PROCESSES AND MESSAGE PASSING

1 #include <pthread.h>
2 struct element {int payload; struct element* next;};
3 typedef struct element element_t;
4 element_t *head = 0, *tail = 0;
5 int size = 0;
6 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
7 pthread_cond_t sent = PTHREAD_COND_INITIALIZER;
8

9 void send(int message) {
10 pthread_mutex_lock(&mutex);
11 if (head == 0) {
12 head = malloc(sizeof(element_t));
13 head->payload = message;
14 head->next = 0;
15 tail = head;
16 } else {
17 tail->next = malloc(sizeof(element_t));
18 tail = tail->next;
19 tail->payload = message;
20 tail->next = 0;
21 }
22 size++;
23 pthread_cond_signal(&sent);
24 pthread_mutex_unlock(&mutex);
25 }
26 int get() {
27 element_t* element;
28 int result;
29 pthread_mutex_lock(&mutex);
30 while (size == 0) {
31 pthread_cond_wait(&sent, &mutex);
32 }
33 result = head->payload;
34 element = head;
35 head = head->next;
36 free(element);
37 size--;
38 pthread_mutex_unlock(&mutex);
39 return result;
40 }

Figure 11.6: Message-passing procedures to send and get messages.

314 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

queue is zero, then it calls pthread cond wait, which will block the thread
until some other thread calls pthread cond signal.

Notice that the get procedure acquires the mutex before testing the size vari-
able. Notice further on line 31 that pthread cond wait takes &mutex as an
argument. In fact, while the thread is blocked on the wait, it releases the mutex
lock temporarily. If it were not to do this, then the producer thread would be
unable to enter its critical section, and therefore would be unable to send a mes-
sage. The program would deadlock. Before pthread cond wait returns, it
will re-acquire the mutex lock.

Programmers have to be very careful when calling pthread cond wait, be-
cause the mutex lock is temporarily released during the call. As a consequence,
the value of any shared variable after the call to pthread cond wait may
not be the same as it was before the call (see Exercise 3). Hence, the call to
pthread cond wait lies within a while loop (line 30) that repeatedly tests
the size variable. This accounts for the possibility that there could be multiple
threads simultaneously blocked on line 31 (which is possible because of the tem-
porary release of the mutex). When a thread calls pthread cond signal,
all threads that are waiting will be notified. But exactly one will re-acquire the
mutex before the others and consume the sent message, causing size to be reset
to zero. The other notified threads, when they eventually acquire the mutex, will
see that size == 0 and will just resume waiting.

The condition variable used in the previous example is a generalized form of a semaphore.
Semaphores are named after mechanical signals traditionally used on railroad tracks to
signal that a section of track has a train on it. Using such semaphores, it is possible to use
a single section of track for trains to travel in both directions (the semaphore implements
mutual exclusion, preventing two trains from simultaneously being on the same section
of track).

In the 1960s, Edsger W. Dijkstra, a professor in the Department of Mathematics at the
Eindhoven University of Technology, Netherlands, borrowed this idea to show how pro-
grams could safely share resources. A counting semaphore (which Dijkstra called a PV
semaphore) is a variable whose value is a non-negative integer. A value of zero is treated
as distinctly different from a value greater than zero. In fact, the size variable in Ex-
ample 11.13 functions as such a semaphore. It is incremented by sending a message,

Lee & Seshia, Introduction to Embedded Systems 315

http://LeeSeshia.org

11.4. SUMMARY

and a value of zero blocks the consumer until the value is non-zero. Condition variables
generalize this idea by supporting arbitrary conditions, rather than just zero or non-zero,
as the gating criterion for blocking. Moreover, at least in Pthreads, condition variables
also coordinate with mutexes to make patterns like that in Example 11.13 easier to write.
Dijkstra received the 1972 Turing Award for his work on concurrent programming.

Using message passing in applications can be easier than directly using threads and shared
variables. But even message passing is not without peril. The implementation of the pro-
ducer/consumer pattern in Example 11.13, in fact, has a fairly serious flaw. Specifically, it
imposes no constraints on the size of the message queue. Any time a producer thread calls
send, memory will be allocated to store the message, and that memory will not be deal-
located until the message is consumed. If the producer thread produces messages faster
than the consumer consumes them, then the program will eventually exhaust available
memory. This can be fixed by limiting the size of the buffer (see Exercise 4), but what
size is appropriate? Choosing buffers that are too small can cause a program to deadlock,
and choosing buffers that are too large is wasteful of resources. This problem is not trivial
to solve (Lee, 2009b).

There are other pitfalls as well. Programmers may inadvertently construct message-
passing programs that deadlock, where a set of threads are all waiting for messages from
one another. In addition, programmers can inadvertently construct message-passing pro-
grams that are nondeterminate, in the sense that the results of the computation depend on
the (arbitrary) order in which the thread scheduler happens to schedule the threads.

The simplest solution is for application programmers to use higher-levels of abstraction
for concurrency, the top layer in Figure 11.1, as described in Chapter 6. Of course, they
can only use that strategy if they have available a reliable implementation of a higher-level
concurrent model of computation.

11.4 Summary

This chapter has focused on mid-level abstractions for concurrent programs, above the
level of interrupts and parallel hardware, but below the level of concurrent models of
computation. Specifically, it has explained threads, which are sequential programs that
execute concurrently and share variables. We have explained mutual exclusion and the
use of semaphores. We have shown that threads are fraught with peril, and that writing
correct multithreaded programs is extremely difficult. Message passing schemes avoid

316 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

some of the difficulties, but not all, at the expense of being somewhat more constraining
by prohibiting direct sharing of data. In the long run, designers will be better off using
higher-levels of abstraction, as discussed in Chapter 6.

Lee & Seshia, Introduction to Embedded Systems 317

http://LeeSeshia.org

EXERCISES

Exercises

1. Give an extended state-machine model of the addListener procedure in Figure
11.2 similar to that in Figure 11.3,

2. Suppose that two int global variables a and b are shared among several threads.
Suppose that lock a and lock b are two mutex locks that guard access to a and
b. Suppose you cannot assume that reads and writes of int global variables are
atomic. Consider the following code:

1 int a, b;
2 pthread_mutex_t lock_a
3 = PTHREAD_MUTEX_INITIALIZER;
4 pthread_mutex_t lock_b
5 = PTHREAD_MUTEX_INITIALIZER;
6

7 void procedure1(int arg) {
8 pthread_mutex_lock(&lock_a);
9 if (a == arg) {

10 procedure2(arg);
11 }
12 pthread_mutex_unlock(&lock_a);
13 }
14

15 void procedure2(int arg) {
16 pthread_mutex_lock(&lock_b);
17 b = arg;
18 pthread_mutex_unlock(&lock_b);
19 }

Suppose that to ensure that deadlocks do not occur, the development team has
agreed that lock b should always be acquired before lock a by any thread that
acquires both locks. Note that the code listed above is not the only code in the pro-
gram. Moreover, for performance reasons, the team insists that no lock be acquired
unnecessarily. Consequently, it would not be acceptable to modify procedure1
as follows:

1 void procedure1(int arg) {
2 pthread_mutex_lock(&lock_b);
3 pthread_mutex_lock(&lock_a);
4 if (a == arg) {
5 procedure2(arg);
6 }
7 pthread_mutex_unlock(&lock_a);

318 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

8 pthread_mutex_unlock(&lock_b);
9 }

A thread calling procedure1 will acquire lock b unnecessarily when a is not
equal to arg. 2 Give a design for procedure1 that minimizes unnecessary
acquisitions of lock b. Does your solution eliminate unnecessary acquisitions of
lock b? Is there any solution that does this?

3. The implementation of get in Figure 11.6 permits there to be more than one thread
calling get.

However, if we change the code on lines 30-32 to:
1 if (size == 0) {
2 pthread_cond_wait(&sent, &mutex);
3 }

then this code would only work if two conditions are satisfied:

• pthread cond wait returns only if there is a matching call to
pthread cond signal, and

• there is only one consumer thread.

Explain why the second condition is required.

4. The producer/consumer pattern implementation in Example 11.13 has the draw-
back that the size of the queue used to buffer messages is unbounded. A program
could fail by exhausting all available memory (which will cause malloc to fail).
Construct a variant of the send and get procedures of Figure 11.6 that limits the
buffer size to 5 messages.

5. An alternative form of message passing called rendezvous is similar to the pro-
ducer/consumer pattern of Example 11.13, but it synchronizes the producer and
consumer more tightly. In particular, in Example 11.13, the send procedure re-
turns immediately, regardless of whether there is any consumer thread ready to
receive the message. In a rendezvous-style communication, the send procedure
will not return until a consumer thread has reached a corresponding call to get.
Consequently, no buffering of the messages is needed. Construct implementations
of send and get that implement such a rendezvous.

2In some thread libraries, such code is actually incorrect, in that a thread will block trying to acquire a
lock it already holds. But we assume for this problem that if a thread attempts to acquire a lock it already
holds, then it is immediately granted the lock.

Lee & Seshia, Introduction to Embedded Systems 319

http://LeeSeshia.org

EXERCISES

6. Consider the following code.

1 int x = 0;
2 int a;
3 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
4 pthread_cond_t go = PTHREAD_COND_INITIALIZER; // used in part c
5

6 void proc1(){
7 pthread_mutex_lock(&lock_a);
8 a = 1;
9 pthread_mutex_unlock(&lock_a);

10 <proc3>(); // call to either proc3a or proc3b
11 // depending on the question
12 }
13

14 void proc2(){
15 pthread_mutex_lock(&lock_a);
16 a = 0;
17 pthread_mutex_unlock(&lock_a);
18 <proc3>();
19 }
20

21 void proc3a(){
22 if(a == 0){
23 x = x + 1;
24 } else {
25 x = x - 1;
26 }
27 }
28

29 void proc3b(){
30 pthread_mutex_lock(&lock_a);
31 if(a == 0){
32 x = x + 1;
33 } else {
34 x = x - 1;
35 }
36 pthread_mutex_unlock(&lock_a);
37 }

Suppose proc1 and proc2 run in two separate threads and that each procedure
is called in its respective thread exactly once. Variables x and a are global and
shared between threads and x is initialized to 0. Further, assume the increment and
decrement operations are atomic.

320 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

11. MULTITASKING

The calls to proc3 in proc1 and proc2 should be replaced with calls to proc3a
and proc3b depending on the part of the question.

(a) If proc1 and proc2 call proc3a in lines 10 and 18, is the final value of
global variable x guaranteed to be 0? Justify your answer.

(b) What if proc1 and proc2 call proc3b? Justify your answer.

(c) With proc1 and proc2 still calling proc3b, modify proc1 and proc2
with condition variable go to guarantee the final value of x is 2. Specifically,
give the lines where pthread cond wait and pthread cond signal
should be inserted into the code listing. Justify your answer briefly. Make the
assumption that proc1 acquires lock a before proc2.
Also recall that
pthread cond wait(&go, &lock a);

will temporarily release lock a and block the calling thread until
pthread cond signal(&go);

is called in another thread, at which point the waiting thread will be unblocked
and reacquire lock a.

(This problem is due to Matt Weber.)

Lee & Seshia, Introduction to Embedded Systems 321

http://LeeSeshia.org

12
Scheduling

12.1 Basics of Scheduling . 323
12.1.1 Scheduling Decisions . 323
12.1.2 Task Models . 325
12.1.3 Comparing Schedulers . 327
12.1.4 Implementation of a Scheduler 328

12.2 Rate Monotonic Scheduling . 329
12.3 Earliest Deadline First . 334

12.3.1 EDF with Precedences . 337
12.4 Scheduling and Mutual Exclusion 339

12.4.1 Priority Inversion . 339
12.4.2 Priority Inheritance Protocol 340
12.4.3 Priority Ceiling Protocol . 342

12.5 Multiprocessor Scheduling . 344
12.5.1 Scheduling Anomalies . 345

12.6 Summary . 348
Sidebar: Further Reading . 350

Exercises . 351

Chapter 11 has explained multitasking, where multiple imperative tasks execute concur-
rently, either interleaved on a single processor or in parallel on multiple processors. When
there are fewer processors than tasks (the usual case), or when tasks must be performed at

12. SCHEDULING

a particular time, a scheduler must intervene. A scheduler makes the decision about what
to do next at certain points in time, such as the time when a processor becomes available.

Real-time systems are collections of tasks where in addition to any ordering constraints
imposed by precedences between the tasks, there are also timing constraints. These con-
straints relate the execution of a task to real time, which is physical time in the envi-
ronment of the computer executing the task. Typically, tasks have deadlines, which are
values of physical time by which the task must be completed. More generally, real-time
programs can have all manner of timing constraints, not just deadlines. For example,
a task may be required to be executed no earlier than a particular time; or it may be re-
quired to be executed no more than a given amount of time after another task is executed;
or it may be required to execute periodically with some specified period. Tasks may be
dependent on one another, and may cooperatively form an application. Or they may be
unrelated except that they share processor resources. All of these situations require a
scheduling strategy.

12.1 Basics of Scheduling

In this section, we discuss the range of possibilities for scheduling, the properties of tasks
that a scheduler uses to guide the process, and the implementation of schedulers in an
operating system or microkernel.

12.1.1 Scheduling Decisions

A scheduler decides what task to execute next when faced with a choice in the execu-
tion of a concurrent program or set of programs. In general, a scheduler may have more
than one processor available to it (for example in a multicore system). A multiproces-
sor scheduler needs to decide not only which task to execute next, but also on which
processor to execute it. The choice of processor is called processor assignment.

A scheduling decision is a decision to execute a task, and it has the following three
parts:

• assignment: which processor should execute the task;
• ordering: in what order each processor should execute its tasks; and
• timing: the time at which each task executes.

Lee & Seshia, Introduction to Embedded Systems 323

http://LeeSeshia.org

12.1. BASICS OF SCHEDULING

Each of these three decisions may be made at design time, before the program begins
executing, or at run time, during the execution of the program.

Depending on when the decisions are made, we can distinguish a few different types of
schedulers (Lee and Ha, 1989). A fully-static scheduler makes all three decisions at
design time. The result of scheduling is a precise specification for each processor of what
to do when. A fully-static scheduler typically does not need semaphores or locks. It
can use timing instead to enforce mutual exclusion and precedence constraints. However,
fully-static schedulers are difficult to realize with most modern microprocessors because
the time it takes to execute a task is difficult to predict precisely, and because tasks will
typically have data-dependent execution times (see Chapter 16).

A static order scheduler performs the task assignment and ordering at design time, but
defers until run time the decision of when in physical time to execute a task. That deci-
sion may be affected, for example, by whether a mutual exclusion lock can be acquired,
or whether precedence constraints have been satisfied. In static order scheduling, each
processor is given its marching orders before the program begins executing, and it simply
executes those orders as quickly as it can. It does not, for example, change the order of
tasks based on the state of a semaphore or a lock. A task itself, however, may block on a
semaphore or lock, in which case it blocks the entire sequence of tasks on that processor.
A static order scheduler is often called an off-line scheduler.

A static assignment scheduler performs the assignment at design time and everything
else at run time. Each processor is given a set of tasks to execute, and a run-time sched-
uler decides during execution what task to execute next.

A fully-dynamic scheduler performs all decisions at run time. When a processor be-
comes available (e.g., it finishes executing a task, or a task blocks acquiring a mutex), the
scheduler makes a decision at that point about what task to execute next on that processor.
Both static assignment and fully-dynamic schedulers are often called on-line schedulers.

There are, of course, other scheduler possibilities. For example, the assignment of a task
may be done once for a task, at run time just prior to the first execution of the task. For
subsequent runs of the same task, the same assignment is used. Some combinations do not
make much sense. For example, it does not make sense to determine the time of execution
of a task at design time and the order at run time.

A preemptive scheduler may make a scheduling decision during the execution of a task,
assigning a new task to the same processor. That is, a task may be in the middle of exe-
cuting when the scheduler decides to stop that execution and begin execution of another

324 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

task. The interruption of the first task is called preemption. A scheduler that always lets
tasks run to completion before assigning another task to execute on the same processor is
called a non-preemptive scheduler.

In preemptive scheduling, a task may be preempted if it attempts to acquire a mutual
exclusion lock and the lock is not available. When this occurs, the task is said to be
blocked on the lock. When another task releases the lock, the blocked task may resume.
Moreover, a task may be preempted when it releases a lock. This can occur for example
if there is a higher priority task that is blocked on the lock. We will assume in this chapter
well-structured programs, where any task that acquires a lock eventually releases it.

12.1.2 Task Models

For a scheduler to make its decisions, it needs some information about the structure of the
program. A typical assumption is that the scheduler is given a finite set T of tasks. Each
task may be assumed to be finite (it terminates in finite time), or not. A typical operating
system scheduler does not assume that tasks terminate, but real-time schedulers often do.
A scheduler may make many more assumptions about tasks, a few of which we discuss in
this section. The set of assumptions is called the task model of the scheduler.

Some schedulers assume that all tasks to be executed are known before scheduling begins,
and some support arrival of tasks, meaning tasks become known to the scheduler as other
tasks are being executed. Some schedulers support scenarios where each task τ ∈ T
executes repeatedly, possibly forever, and possibly periodically. A task could also be
sporadic, which means that it repeats, and its timing is irregular, but that there is a lower
bound on the time between task executions. In situations where a task τ ∈ T executes
repeatedly, we need to make a distinction between the task τ and the task executions
τ1, τ2, · · · . If each task executes exactly once, then no such distinction is necessary.

Task executions may have precedence constraints, a requirement that one execution pre-
cedes another. If execution i must precede j, we can write i < j. Here, i and j may be
distinct executions of the same task, or executions of different tasks.

A task execution i may have some preconditions to start or resume execution. These
are conditions that must be satisfied before the task can execute. When the preconditions
are satisfied, the task execution is said to be enabled. Precedences, for example, specify
preconditions to start a task execution. Availability of a lock may be a precondition for
resumption of a task.

Lee & Seshia, Introduction to Embedded Systems 325

http://LeeSeshia.org

12.1. BASICS OF SCHEDULING

o
i

ei

ri si fi di

i

Figure 12.1: Summary of times associated with a task execution.

We next define a few terms that are summarized in Figure 12.1.

For a task execution i, we define the release time ri (also called the arrival time) to be
the earliest time at which a task is enabled. We define the start time si to be the time at
which the execution actually starts. Obviously, we require that

si ≥ ri .

We define the finish time fi to be the time at which the task completes execution. Hence,

fi ≥ si .

The response time oi is given by

oi = fi − ri .

The response time, therefore, is the time that elapses between when the task is first enabled
and when it completes execution.

The execution time ei of τi is defined to be the total time that the task is actually exe-
cuting. It does not include any time that the task may be blocked or preempted. Many
scheduling strategies assume (often unrealistically) that the execution time of a task is

326 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

known and fixed. If the execution time is variable, it is common to assume (often unre-
alistically) that the worst-case execution time (WCET) is known. Determining execution
times of software can be quite challenging, as discussed in Chapter 16.

The deadline di is the time by which a task must be completed. Sometimes, a deadline
is a real physical constraint imposed by the application, where missing the deadline is
considered an error. Such a deadline is called a hard deadline. Scheduling with hard
deadlines is called hard real-time scheduling.

Often, a deadline reflects a design decision that need not be enforced strictly. It is better
to meet the deadline, but missing the deadline is not an error. Generally it is better to not
miss the deadline by much. This case is called soft real-time scheduling.

A scheduler may use priority rather than (or in addition to) a deadline. A priority-based
scheduler assumes each task is assigned a number called a priority, and the scheduler will
always choose to execute the task with the highest priority (which is often represented by
the lowest priority number). A fixed priority is a priority that remains constant over all
executions of a task. A dynamic priority is allowed to change during execution.

A preemptive priority-based scheduler is a scheduler that supports arrivals of tasks and
at all times is executing the enabled task with the highest priority. A non-preemptive
priority-based scheduler is a scheduler that uses priorities to determine which task to
execute next after the current task execution completes, but never interrupts a task during
execution to schedule another task.

12.1.3 Comparing Schedulers

The choice of scheduling strategy is governed by considerations that depend on the goals
of the application. A rather simple goal is that all task executions meet their deadlines,
fi ≤ di. A schedule that accomplishes this is called a feasible schedule. A scheduler
that yields a feasible schedule for any task set (that conforms to its task model) for which
there is a feasible schedule is said to be optimal with respect to feasibility.

A criterion that might be used to compare scheduling algorithms is the achievable pro-
cessor utilization. The utilization is the percentage of time that the processor spends
executing tasks (vs. being idle). This metric is most useful for tasks that execute peri-
odically. A scheduling algorithm that delivers a feasible schedule whenever processor
utilization is less than or equal to 100% is obviously optimal with respect to feasibility. It

Lee & Seshia, Introduction to Embedded Systems 327

http://LeeSeshia.org

12.1. BASICS OF SCHEDULING

only fails to deliver a feasible schedule in circumstances where all scheduling algorithms
will fail to deliver a feasible schedule.

Another criterion that might be used to compare schedulers is the maximum lateness,
defined for a set of task executions T as

Lmax = max
i∈T

(fi − di) .

For a feasible schedule, this number is zero or negative. But maximum lateness can also
be used to compare infeasible schedules. For soft real-time problems, it may be tolerable
for this number to be positive, as long as it does not get too large.

A third criterion that might be used for a finite set T of task executions is the total com-
pletion time or makespan, defined by

M = max
i∈T

fi −min
i∈T

ri .

If the goal of scheduling is to minimize the makespan, this is really more of a performance
goal rather than a real-time requirement.

12.1.4 Implementation of a Scheduler

A scheduler may be part of a compiler or code generator (for scheduling decisions made at
design time), part of an operating system or microkernel (for scheduling decisions made
at run time), or both (if some scheduling decisions are made at design time and some at
run time).

A run-time scheduler will typically implement tasks as threads (or as processes, but the
distinction is not important here). Sometimes, the scheduler assumes these threads com-
plete in finite time, and sometimes it makes no such assumption. In either case, the sched-
uler is a procedure that gets invoked at certain times. For very simple, non-preemptive
schedulers, the scheduling procedure may be invoked each time a task completes. For
preemptive schedulers, the scheduling procedure is invoked when any of several things
occur:

• A timer interrupt occurs, for example at a jiffy interval.
• An I/O interrupt occurs.
• An operating system service is invoked.
• A task attempts to acquire a mutex.

328 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

• A task tests a semaphore.

For interrupts, the scheduling procedure is called by the interrupt service routine (ISR).
In the other cases, the scheduling procedure is called by the operating system procedure
that provides the service. In both cases, the stack contains the information required to
resume execution. However, the scheduler may choose not to simply resume execution.
I.e., it may choose not to immediately return from the interrupt or service procedure. It
may choose instead to preempt whatever task is currently running and begin or resume
another task.

To accomplish this preemption, the scheduler needs to record the fact that the task is
preempted (and, perhaps, why it is preempted), so that it can later resume this task. It can
then adjust the stack pointer to refer to the state of the task to be started or resumed. At
that point, a return is executed, but instead of resuming execution with the task that was
preempted, execution will resume for another task.

Implementing a preemptive scheduler can be quite challenging. It requires very careful
control of concurrency. For example, interrupts may need to be disabled for significant
parts of the process to avoid ending up with a corrupted stack. This is why scheduling
is one of the most central functions of an operating system kernel or microkernel. The
quality of the implementation strongly affects system reliability and stability.

12.2 Rate Monotonic Scheduling

Consider a scenario with T = {τ1, τ2, · · · , τn} of n tasks, where the tasks must execute
periodically. Specifically, we assume that each task τi must execute to completion exactly
once in each time interval pi. We refer to pi as the period of the task. Thus, the deadline
for the j-th execution of τi is ri,1+jpi, where ri,1 is the release time of the first execution.

Liu and Layland (1973) showed that a simple preemptive scheduling strategy called rate
monotonic (RM) scheduling is optimal with respect to feasibility among fixed priority
uniprocessor schedulers for the above task model. This scheduling strategy gives higher
priority to a task with a smaller period.

The simplest form of the problem has just two tasks, T = {τ1, τ2} with execution times
e1 and e2 and periods p1 and p2, as depicted in Figure 12.2. In the figure, the execution
time e2 of task τ2 is longer than the period p1 of task τ1. Thus, if these two tasks are to
execute on the same processor, then it is clear that a non-preemptive scheduler will not

Lee & Seshia, Introduction to Embedded Systems 329

http://LeeSeshia.org

12.2. RATE MONOTONIC SCHEDULING

e
2

p
2

e
1

p
1

τ1,1 τ1,2

τ2,2τ2,1

τ1,7τ1,6τ1,5τ1,4τ1,3τ1

τ2

Figure 12.2: Two periodic tasks T = {τ1, τ2} with execution times e1 and e2 and
periods p1 and p2.

e
2

p
2

p
1

+

τ1

τ2

Figure 12.3: Two periodic tasks T = {τ1, τ2} with a preemptive schedule that
gives higher priority to τ1.

yield a feasible schedule. If task τ2 must execute to completion without interruption, then
task τ1 will miss some deadlines.

A preemptive schedule that follows the rate monotonic principle is shown in Figure 12.3.
In that figure, task τ1 is given higher priority, because its period is smaller. So it executes
at the beginning of each period interval, regardless of whether τ2 is executing. If τ2 is
executing, then τ1 preempts it. The figure assumes that the time it takes to perform the

330 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

preemption, called the context switch time, is negligible.1 This schedule is feasible,
whereas if τ2 had been given higher priority, then the schedule would not be feasible.

For the two task case, it is easy to show that among all preemptive fixed priority sched-
ulers, RM is optimal with respect to feasibility, under the assumed task model with neg-
ligible context switch time. This is easy to show because there are only two fixed priority
schedules for this simple case, the RM schedule, which gives higher priority to task τ1,
and the non-RM schedule, which gives higher priority to task τ2. To show optimality, we
simply need to show that if the non-RM schedule is feasible, then so is the RM schedule.

1The assumption that context switch time is negligible is problematic in practice. On processors with
caches, a context switch often causes substantial cache-related delays. In addition, the operating system
overhead for context switching can be substantial.

τ1

τ2

τ1

τ2

τ1

τ2

τ1

τ2

o
2

Figure 12.4: Response time o2 of task τ2 is worst when its cycle starts at the
same time that the cycle of τ1 starts.

Lee & Seshia, Introduction to Embedded Systems 331

http://LeeSeshia.org

12.2. RATE MONOTONIC SCHEDULING

e
2

p
2

e
1

p
1

τ1

τ2

Figure 12.5: The non-RM schedule gives higher priority to τ2. It is feasible if and
only if e1 + e2 ≤ p1 for this scenario.

Before we can do this, we need to consider the possible alignments of task executions that
can affect feasibility. As shown in Figure 12.4, the response time of the lower priority
task is worst when its starting phase matches that of higher priority tasks. That is, the
worst-case scenario occurs when all tasks start their cycles at the same time. Hence, we
only need to consider this scenario.

Under this worst-case scenario, where release times align, the non-RM schedule is feasi-
ble if and only if

e1 + e2 ≤ p1 . (12.1)

This scenario is illustrated in Figure 12.5. Since task τ1 is preempted by τ2, for τ1 to not
miss its deadline, we require that e2 ≤ p1 − e1, so that τ2 leaves enough time for τ1 to
execute before its deadline.

e
2

p
2

e
1

p
1

τ1

τ2

Figure 12.6: The RM schedule gives higher priority to τ1. For the RM schedule to
be feasible, it is sufficient, but not necessary, for e1 + e2 ≤ p1.

332 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

To show that RM is optimal with respect to feasibility, all we need to do is show that if the
non-RM schedule is feasible, then the RM schedule is also feasible. Examining Figure
12.6, it is clear that if equation (12.1) is satisfied, then the RM schedule is feasible. Since
these are the only two fixed priority schedules, the RM schedule is optimal with respect to
feasibility. The same proof technique can be generalized to an arbitrary number of tasks,
yielding the following theorem (Liu and Layland, 1973):

Theorem 12.1. Given a preemptive, fixed priority scheduler and a finite set of re-
peating tasks T = {τ1, τ2, · · · , τn} with associated periods p1, p2, · · · , pn and no
precedence constraints, if any priority assignment yields a feasible schedule, then the
rate monotonic priority assignment yields a feasible schedule.

RM schedules are easily implemented with a timer interrupt with a time interval equal to
the greatest common divisor of the periods of the tasks. They can also be implemented
with multiple timer interrupts.

It turns out that RM schedulers cannot always achieve 100% utilization. In particular,
RM schedulers are constrained to have fixed priority. This constraint results in situations
where a task set that yields a feasible schedule has less than 100% utilization and yet
cannot tolerate any increase in execution times or decrease in periods. This means that
there are idle processor cycles that cannot be used without causing deadlines to be missed.
An example is studied in Exercise 3.

Fortunately, Liu and Layland (1973) show that this effect is bounded. First note that the
utilization of n independent tasks with execution times ei and periods pi can be written

µ =
n∑
i=1

ei
pi
.

If µ = 1, then the processor is busy 100% of the time. So clearly, if µ > 1 for any task
set, then that task set has no feasible schedule. Liu and Layland (1973) show that if µ is
less than or equal to a utilization bound given by

µ ≤ n(21/n − 1), (12.2)

then the RM schedule is feasible.

To understand this (rather remarkable) result, consider a few cases. First, if n = 1 (there
is only one task), then n(21/n − 1) = 1, so the result tells us that if utilization is 100% or

Lee & Seshia, Introduction to Embedded Systems 333

http://LeeSeshia.org

12.3. EARLIEST DEADLINE FIRST

less, then the RM schedule is feasible. This is obvious, of course, because with only one
task, µ = e1/p1, and clearly the deadline can only be met if e1 ≤ p1.

If n = 2, then n(21/n− 1) ≈ 0.828. Thus, if a task set with two tasks does not attempt to
use more than 82.8% of the available processor time, then the RM schedule will meet all
deadlines.

As n gets large, the utilization bound approaches ln(2) ≈ 0.693. That is

lim
n→∞

n(21/n − 1) = ln(2) ≈ 0.693.

This means that if a task set with any number of tasks does not attempt to use more than
69.3% of the available processor time, then the RM schedule will meet all deadlines.

In the next section, we relax the fixed-priority constraint and show that dynamic priority
schedulers can do better than fixed priority schedulers, in the sense that they can achieve
higher utilization. The cost is a somewhat more complicated implementation.

12.3 Earliest Deadline First

Given a finite set of non-repeating tasks with deadlines and no precedence constraints,
a simple scheduling algorithm is earliest due date (EDD), also known as Jackson’s
algorithm (Jackson, 1955). The EDD strategy simply executes the tasks in the same
order as their deadlines, with the one with the earliest deadline going first. If two tasks
have the same deadline, then their relative order does not matter.

Theorem 12.2. Given a finite set of non-repeating tasks T = {τ1, τ2, · · · , τn} with
associated deadlines d1, d2, · · · , dn and no precedence constraints, an EDD schedule
is optimal in the sense that it minimizes the maximum lateness, compared to all other
possible orderings of the tasks.

Proof. This theorem is easy to prove with a simple interchange argument. Consider
an arbitrary schedule that is not EDD. In such a schedule, because it is not EDD, there
must be two tasks τi and τj where τi immediately precedes τj , but dj < di. This is
depicted here:

334 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

0 fi

task i

fj dj di

task j

Since the tasks are independent (there are no precedence constraints), reversing the
order of these two tasks yields another valid schedule, depicted here:

0 f ’i

task i

f ’j dj di

task j

We can show that the new schedule has a maximum lateness no greater than that of
the original schedule. If we repeat the above interchange until there are no more tasks
eligible for such an interchange, then we have constructed the EDD schedule. Since
this schedule has a maximum lateness no greater than that of the original schedule, the
EDD schedule has the minimum maximum lateness of all schedules.

To show that the second schedule has a maximum lateness no greater than that of the
first schedule, first note that if the maximum lateness is determined by some task other
than τi or τj , then the two schedules have the same maximum lateness, and we are
done. Otherwise, it must be that the maximum lateness of the first schedule is

Lmax = max(fi − di, fj − dj) = fj − dj ,

where the latter equality is obvious from the picture and follows from the facts that
fi ≤ fj and dj < di.

The maximum lateness of the second schedule is given by

L′max = max(f ′i − di, f ′j − dj) .

Consider two cases:

Case 1: L′max = f ′i − di. In this case, since f ′i = fj , we have

L′max = fj − di ≤ fj − dj ,

Lee & Seshia, Introduction to Embedded Systems 335

http://LeeSeshia.org

12.3. EARLIEST DEADLINE FIRST

where the latter inequality follows because dj < di. Hence, L′max ≤ Lmax.

Case 2: L′max = f ′j − dj . In this case, since f ′j ≤ fj , we have

L′max ≤ fj − dj ,

and again L′max ≤ Lmax.

In both cases, the second schedule has a maximum lateness no greater than that of the
first schedule. QED.

EDD is also optimal with respect to feasibility, because it minimizes the maximum late-
ness. However, EDD does not support arrival of tasks, and hence also does not sup-
port periodic or repeated execution of tasks. Fortunately, EDD is easily extended to
support these, yielding what is known as earliest deadline first (EDF) or Horn’s al-
gorithm (Horn, 1974).

Theorem 12.3. Given a set of n independent tasks T = {τ1, τ2, · · · , τn} with asso-
ciated deadlines d1, d2, · · · , dn and arbitrary arrival times, any algorithm that at any
instant executes the task with the earliest deadline among all arrived tasks is optimal
with respect to minimizing the maximum lateness.

The proof of this uses a similar interchange argument. Moreover, the result is easily
extended to support an unbounded number of arrivals. We leave it as an exercise.

Note that EDF is a dynamic priority scheduling algorithm. If a task is repeatedly executed,
it may be assigned a different priority on each execution. This can make it more complex
to implement. Typically, for periodic tasks, the deadline used is the end of the period of
the task, though it is certainly possible to use other deadlines for tasks.

Although EDF is more expensive to implement than RM, in practice its performance is
generally superior (Buttazzo, 2005b). First, RM is optimal with respect to feasibility
only among fixed priority schedulers, whereas EDF is optimal w.r.t. feasibility among
dynamic priority schedulers. In addition, EDF also minimizes the maximum lateness.
Also, in practice, EDF results in fewer preemptions (see Exercise 2), which means less
overhead for context switching. This often compensates for the greater complexity in
the implementation. In addition, unlike RM, any EDF schedule with less than 100%

336 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

0

1

d1= 2

d2= 5

d3= 4
d6= 6

d5= 5

d4= 3

642

3 2 4 5 6EDF

1 2 4 3 5 6LDF

1 2 4 3 5 6EDF*

Figure 12.7: An example of a precedence graph for six tasks and the schedule
under three scheduling policies. Execution times for all tasks are one time unit.

utilization can tolerate increases in execution times and/or reductions in periods and still
be feasible.

12.3.1 EDF with Precedences

Theorem 12.2 shows that EDF is optimal (it minimizes maximum lateness) for a task
set without precedences. What if there are precedences? Given a finite set of tasks,
precedences between them can be represented by a precedence graph.

Example 12.1: Consider six tasks T = {1, · · · , 6}, each with execution time
ei = 1, with precedences as shown in Figure 12.7. The diagram means that task
1 must execute before either 2 or 3 can execute, that 2 must execute before either
4 or 5, and that 3 must execute before 6. The deadline for each task is shown in
the figure. The schedule labeled EDF is the EDF schedule. This schedule is not

Lee & Seshia, Introduction to Embedded Systems 337

http://LeeSeshia.org

12.3. EARLIEST DEADLINE FIRST

feasible. Task 4 misses its deadline. However, there is a feasible schedule. The
schedule labeled LDF meets all deadlines.

The previous example shows that EDF is not optimal if there are precedences. In 1973,
Lawler (1973) gave a simple algorithm that is optimal with precedences, in the sense that it
minimizes the maximum lateness. The strategy is very simple. Given a fixed, finite set of
tasks with deadlines, Lawler’s strategy constructs the schedule backwards, choosing first
the last task to execute. The last task to execute is the one on which no other task depends
that has the latest deadline. The algorithm proceeds to construct the schedule backwards,
each time choosing from among the tasks whose dependents have already been scheduled
the one with the latest deadline. For the previous example, the resulting schedule, labeled
LDF in Figure 12.7, is feasible. Lawler’s algorithm is called latest deadline first (LDF).

LDF is optimal in the sense that it minimizes the maximum lateness, and hence it is
also optimal with respect to feasibility. However, it does not support arrival of tasks.
Fortunately, there is a simple modification of EDF, proposed by Chetto et al. (1990).
EDF* (EDF with precedences), supports arrivals and minimizes the maximal lateness. In
this modification, we adjust the deadlines of all the tasks. Suppose the set of all tasks is T .
For a task execution i ∈ T , let D(i) ⊂ T be the set of task executions that immediately
depend on i in the precedence graph. For all executions i ∈ T , we define a modified
deadline

d′i = min(di, min
j∈D(i)

(d′j − ej)) .

EDF* is then just like EDF except that it uses these modified deadlines.

Example 12.2: In Figure 12.7, we see that the EDF* schedule is the same as the
LDF schedule. The modified deadlines are as follows:

d′1 = 1, d′2 = 2, d′3 = 4, d′4 = 3, d′5 = 5, d′6 = 6 .

The key is that the deadline of task 2 has changed from 5 to 2, reflecting the fact
that its successors have early deadlines. This causes EDF* to schedule task 2
before task 3, which results in a feasible schedule.

338 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

EDF* can be thought of as a technique for rationalizing deadlines. Instead of accepting
arbitrary deadlines as given, this algorithm ensures that the deadlines take into account
deadlines of successor tasks. In the example, it makes little sense for task 2 to have a later
deadline, 5, than its successors. So EDF* corrects this anomaly before applying EDF.

12.4 Scheduling and Mutual Exclusion

Although the algorithms given so far are conceptually simple, the effects they have in
practice are far from simple and often surprise system designers. This is particularly true
when tasks share resources and use mutual exclusion to guard access to those resources.

12.4.1 Priority Inversion

In principle, a priority-based preemptive scheduler is executing at all times the high-
priority enabled task. However, when using mutual exclusion, it is possible for a task to
become blocked during execution. If the scheduling algorithm does not account for this
possibility, serious problems can occur.

Example 12.3: The Mars Pathfinder, shown in Figure 12.8, landed on Mars on
July 4th, 1997. A few days into the mission, the Pathfinder began sporadically
missing deadlines, causing total system resets, each with loss of data. Engineers
on the ground diagnosed the problem as priority inversion, where a low priority
meteorological task was holding a lock and blocking a high-priority task, while
medium priority tasks executed. (Source: What Really Happened on Mars?
Mike Jones, RISKS-19.49 on the comp.programming.threads newsgroup, Dec.
07, 1997, and What Really Happened on Mars? Glenn Reeves, Mars Pathfinder
Flight Software Cognizant Engineer, email message, Dec. 15, 1997.)

Priority inversion is a scheduling anomaly where a high-priority task is blocked while
unrelated lower-priority tasks are executing. The phenomenon is illustrated in Figure 12.9.
In the figure, task 3, a low priority task, acquires a lock at time 1. At time 2, it is preempted
by task 1, a high-priority task, which then at time 3 blocks trying to acquire the same lock.

Lee & Seshia, Introduction to Embedded Systems 339

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Mars_Pathfinder.html
http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://LeeSeshia.org

12.4. SCHEDULING AND MUTUAL EXCLUSION

Before task 3 reaches the point where it releases the lock, however, it gets preempted by
an unrelated task 2, which has medium priority. Task 2 can run for an unbounded amount
of time, and effectively prevents the higher-priority task 1 from executing. This is almost
certainly not desirable.

12.4.2 Priority Inheritance Protocol

In 1990, Sha et al. (1990) gave a solution to the priority inversion problem called priority
inheritance. In their solution, when a task blocks attempting to acquire a lock, then the
task that holds the lock inherits the priority of the blocked task. Thus, the task that holds
the lock cannot be preempted by a task with lower priority than the one attempting to
acquire the lock.

Figure 12.8: The Mars Pathfinder and a view of the surface of Mars from the
camera of the lander (image from the Wikipedia Commons).

340 Lee & Seshia, Introduction to Embedded Systems

http://commons.wikimedia.org/wiki/Main_Page
http://LeeSeshia.org

12. SCHEDULING

Example 12.4: Figure 12.10 illustrates priority inheritance. In the figure, when
task 1 blocks trying to acquire the lock held by task 3, task 3 resumes executing,

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

p
re

em
p

t

re
le

as
e

d
o

n
e

task 1 blocked

Figure 12.9: Illustration of priority inversion. Task 1 has highest priority, task 3
lowest. Task 3 acquires a lock on a shared object, entering a critical section. It
gets preempted by task 1, which then tries to acquire the lock and blocks. Task
2 preempts task 3 at time 4, keeping the higher priority task 1 blocked for an
unbounded amount of time. In effect, the priorities of tasks 1 and 2 get inverted,
since task 2 can keep task 1 waiting arbitrarily long.

0 2 4 6 8 10

task 1

task 2

task 3

ac
q

u
ir

e
lo

ck

p
re

em
p

t

b
lo

ck

re
le

as
e

d
o

n
e

task 1 blocked

at priority of 1

d
o

n
e

task 2 preempted

Figure 12.10: Illustration of the priority inheritance protocol. Task 1 has highest
priority, task 3 lowest. Task 3 acquires a lock on a shared object, entering a
critical section. It gets preempted by task 1, which then tries to acquire the lock
and blocks. Task 3 inherits the priority of task 1, preventing preemption by task 2.

Lee & Seshia, Introduction to Embedded Systems 341

http://LeeSeshia.org

12.4. SCHEDULING AND MUTUAL EXCLUSION

0 2 4 6

task 1

task 2

ac
q

u
ir

e
lo

ck
 a

p
re

em
p

t

block on a

acquire lock b

a

b

block on ba

Figure 12.11: Illustration of deadlock. The lower priority task starts first and ac-
quires lock a, then gets preempted by the higher priority task, which acquires lock
b and then blocks trying to acquire lock a. The lower priority task then blocks
trying to acquire lock b, and no further progress is possible.

but now with the higher priority of task 1. Thus, when task 2 becomes enabled at
time 4, it does not preempt task 3. Instead, task 3 runs until it releases the lock at
time 5. At that time, task 3 reverts to its original (low) priority, and task 1 resumes
executing. Only when task 1 completes is task 2 able to execute.

12.4.3 Priority Ceiling Protocol

Priorities can interact with mutual exclusion locks in even more interesting ways. In
particular, in 1990, Sha et al. (1990) showed that priorities can be used to prevent certain
kinds of deadlocks.

Example 12.5: Figure 12.11 illustrates a scenario in which two tasks deadlock.
In the figure, task 1 has higher priority. At time 1, task 2 acquires lock a. At time
2, task 1 preempts task 2, and at time 3, acquires lock b. While holding lock b, it
attempts to acquire lock a. Since a is held by task 2, it blocks. At time 4, task 2

342 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

0 2 4 6

task 1

task 2

lo
ck

 a

p
re

em
p

t

prevented from locking b
by priority ceiling protocol

a

b

a b

unlock b, then a

a

Figure 12.12: Illustration of the priority ceiling protocol. In this version, locks a and
b have priority ceilings equal to the priority of task 1. At time 3, task 1 attempts
to lock b, but it cannot because task 2 currently holds lock a, which has priority
ceiling equal to the priority of task 1.

resumes executing. At time 5, it attempts to acquire lock b, which is held by task
1. Deadlock!

The deadlock in the previous example can be prevented by a clever technique called the
priority ceiling protocol (Sha et al., 1990). In this protocol, every lock or semaphore is
assigned a priority ceiling equal to the priority of the highest-priority task that can lock it.
A task τ can acquire a lock a only if the task’s priority is strictly higher than the priority
ceilings of all locks currently held by other tasks. Intuitively, if we prevent task τ from
acquiring lock a, then we ensure that task τ will not hold lock a while later trying to
acquire other locks held by other tasks. This prevents certain deadlocks from occurring.

Example 12.6: The priority ceiling protocol prevents the deadlock of Example
12.5, as shown in Figure 12.12. In the figure, when task 1 attempts to acquire
lock b at time 3, it is prevented from doing so. At that time, lock a is currently
held by another task (task 2). The priority ceiling assigned to lock a is equal to
the priority of task 1, since task 1 is the highest priority task that can acquire lock
a. Since the priority of task 1 is not strictly higher than this priority ceiling, task

Lee & Seshia, Introduction to Embedded Systems 343

http://LeeSeshia.org

12.5. MULTIPROCESSOR SCHEDULING

1 is not permitted to acquire lock b. Instead, task 1 becomes blocked, allowing
task 2 to run to completion. At time 4, task 2 acquires lock b unimpeded, and at
time 5, it releases both locks. Once it has released both locks, task 1, which has
higher priority, is no longer blocked, so it resumes executing, preempting task 2.

Of course, implementing the priority ceiling protocol requires being able to determine in
advance which tasks acquire which locks. A simple conservative strategy is to examine
the source code for each task and inventory the locks that are acquired in the code. This is
conservative because a particular program may or may not execute any particular line of
code, so just because a lock is mentioned in the code does not necessarily mean that the
task will attempt to acquire the lock.

12.5 Multiprocessor Scheduling

Scheduling tasks on a single processor is hard enough. Scheduling them on multiple pro-
cessors is even harder. Consider the problem of scheduling a fixed finite set of tasks with
precedences on a finite number of processors with the goal of minimizing the makespan.
This problem is known to be NP-hard. Nonetheless, effective and efficient scheduling
strategies exist. One of the simplest is known as the Hu level scheduling algorithm. It
assigns a priority to each task τ based on the level, which is the greatest sum of exe-
cution times of tasks on a path in the precedence graph from τ to another task with no
dependents. Tasks with larger levels have higher priority than tasks with smaller levels.

Example 12.7: For the precedence graph in Figure 12.7, task 1 has level 3,
tasks 2 and 3 have level 2, and tasks 4, 5, and 6 have level 1. Hence, a Hu level
scheduler will give task 1 highest priority, tasks 2 and 3 medium priority, and
tasks 4, 5, and 6 lowest priority.

Hu level scheduling is one of a family of critical path methods because it emphasizes the
path through the precedence graph with the greatest total execution time. Although it is

344 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

not optimal, it is known to closely approximate the optimal solution for most graphs (Kohler,
1975; Adam et al., 1974).

Once priorities are assigned to tasks, a list scheduler sorts the tasks by priorities and
assigns them to processors in the order of the sorted list as processors become available.

Example 12.8: A two-processor schedule constructed with the Hu level schedul-
ing algorithm for the precedence graph shown in Figure 12.7 is given in Fig-
ure 12.13. The makespan is 4.

12.5.1 Scheduling Anomalies

Among the worst pitfalls in embedded systems design are scheduling anomalies, where
unexpected or counterintuitive behaviors emerge due to small changes in the operating
conditions of a system. We have already illustrated two such anomalies, priority inversion
and deadlock. There are many others. The possible extent of the problems that can
arise are well illustrated by the so-called Richard’s anomalies (Graham, 1969). These
show that multiprocessor schedules are non-montonic, meaning that improvements in
performance at a local level can result in degradations in performance at a global level,
and brittle, meaning that small changes can have big consequences.

Richard’s anomalies are summarized in the following theorem.

0

1

42

3 5 6Processor A:

2 4Processor B:

Figure 12.13: A two-processor parallel schedule for the tasks with precedence
graph shown in Figure 12.7.

Lee & Seshia, Introduction to Embedded Systems 345

http://LeeSeshia.org

12.5. MULTIPROCESSOR SCHEDULING

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5 7

86

time

e1 = 3

e2 = 2

e3 = 2

e4 = 2

e9 = 9

e8 = 4

e7 = 4

e6 = 4

e5 = 4

Figure 12.14: A precedence graph with nine tasks, where the lower numbered
tasks have higher priority than the higher numbered tasks.

Theorem 12.4. If a task set with fixed priorities, execution times, and precedence con-
straints is scheduled on a fixed number of processors in accordance with the priorities,
then increasing the number of processors, reducing execution times, or weakening
precedence constraints can increase the schedule length.

Proof. The theorem can be proved with the example in Figure 12.14. The example
has nine tasks with execution times as shown in the figure. We assume the tasks
are assigned priorities so that the lower numbered tasks have higher priority than the
higher numbered tasks. Note that this does not correspond to a critical path priority
assignment, but it suffices to prove the theorem. The figure shows a three-processor
schedule in accordance with the priorities. Notice that the makespan is 12.

346 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

First, consider what happens if the execution times are all reduced by one time unit. A
schedule conforming to the priorities and precedences is shown below:

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4 9

5

7

8

6

time

Notice that the makespan has increased to 13, even though the total amount of compu-
tation has decreased significantly. Since computation times are rarely known exactly,
this form of brittleness is particularly troubling.

Consider next what happens if we add a fourth processor and keep everything else the
same as in the original problem. A resulting schedule is shown below:

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

95

7

8

6

time

proc4

Again, the makespan has increased (to 15 this time) even though we have added 33%
more processing power than originally available.

Consider finally what happens if we weaken the precedence constraints by removing
the precedences between task 4 and tasks 7 and 8. A resulting schedule is shown
below:

0 4 8 12 16

proc1

proc2

proc3

2 6 10 14

3

2

1

4

9

5

7

8

6

time

Lee & Seshia, Introduction to Embedded Systems 347

http://LeeSeshia.org

12.6. SUMMARY

0 4 8 12

proc1

proc2

2 6 10

3

1

4 5

time

2

proc1

proc2 3

1

4 5

2

0 4 8 122 6 10
time

Figure 12.15: Anomaly due to mutual exclusion locks, where a reduction in the
execution time of task 1 results in an increased makespan.

The makespan has now increased to 16, even though weakening precedence constraints
increases scheduling flexibility. A simple priority-based scheduling scheme such as
this does not take advantage of the weakened constraints.

This theorem is particularly troubling when we realize that execution times for software
are rarely known exactly (see Chapter 16). Scheduling policies will be based on approxi-
mations, and behavior at run time may be quite unexpected.

Another form of anomaly arises when there are mutual exclusion locks. An illustration is
given in Figure 12.15. In this example, five tasks are assigned to two processors using a
static assignment scheduler. Tasks 2 and 4 contend for a mutex. If the execution time of
task 1 is reduced, then the order of execution of tasks 2 and 4 reverses, which results in
an increased execution time. This kind of anomaly is quite common in practice.

12.6 Summary

Embedded software is particularly sensitive to timing effects because it inevitably inter-
acts with external physical systems. A designer, therefore, needs to pay considerable
attention to the scheduling of tasks. This chapter has given an overview of some of the

348 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

basic techniques for scheduling real-time tasks and parallel scheduling. It has explained
some of the pitfalls, such as priority inversion and scheduling anomalies. A designer that
is aware of the pitfalls is better equipped to guard against them.

Lee & Seshia, Introduction to Embedded Systems 349

http://LeeSeshia.org

12.6. SUMMARY

Further Reading

Scheduling is a well-studied topic, with many basic results dating back to the 1950s.
This chapter covers only the most basic techniques and omits several important top-
ics. For real-time scheduling textbooks, we particularly recommend Buttazzo (2005a),
Stankovic and Ramamritham (1988), and Liu (2000), the latter of which has particu-
larly good coverage of scheduling of sporadic tasks. An excellent overview article is
Sha et al. (2004). A hands-on practical guide can be found in Klein et al. (1993). For
an excellent overview of the evolution of fixed-priority scheduling techniques through
2003, see Audsley et al. (2005). For soft real-time scheduling, we recommend study-
ing time utility functions, introduced by Douglas Jensen in 1977 as a way to overcome
the limited expressiveness in classic deadline constraints in real-time systems (see, for
example, Jensen et al. (1985); Ravindran et al. (2007)).

There are many more scheduling strategies than those described here. For example,
deadline monotonic (DM) scheduling modifies rate monotonic to allow periodic tasks
to have deadlines less than their periods (Leung and Whitehead, 1982). The Spring
algorithm is a set of heuristics that support arrivals, precedence relations, resource
constraints, non-preemptive properties, and importance levels (Stankovic and Ramam-
ritham, 1987, 1988).

An important topic that we do not cover is feasibility analysis, which provides tech-
niques for analyzing programs to determine whether feasible schedules exist. Much
of the foundation for work in this area can be found in Harter (1987) and Joseph and
Pandya (1986).

Multiprocessor scheduling is also a well-studied topic, with many core results orig-
inating in the field of operations research. Classic texts on the subject are Conway
et al. (1967) and Coffman (1976). Sriram and Bhattacharyya (2009) focus on embed-
ded multiprocessors and include innovative techniques for reducing synchronization
overhead in multiprocessor schedules.

It is also worth noting that a number of projects have introduced programming lan-
guage constructs that express real-time behaviors of software. Most notable among
these is Ada, a language developed under contract from the US Department of De-
fense (DoD) from 1977 to 1983. The goal was to replace the hundreds of programming
languages then used in DoD projects with a single, unified language. An excellent dis-
cussion of language constructs for real time can be found in Lee and Gehlot (1985) and
Wolfe et al. (1993).

350 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

Exercises

1. This problem studies fixed-priority scheduling. Consider two tasks to be executed
periodically on a single processor, where task 1 has period p1 = 4 and task 2 has
period p2 = 6.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for the
execution time e2 of task 2 such that the RM schedule is feasible.

(b) Again let the execution time of task 1 be e1 = 1. Let non-RMS be a fixed-
priority schedule that is not an RM schedule. Find the maximum value for the
execution time e2 of task 2 such that non-RMS is feasible.

(c) For both your solutions to (a) and (b) above, find the processor utilization.
Which is better?

(d) For RM scheduling, are there any values for e1 and e2 that yield 100% utiliza-
tion? If so, give an example.

2. This problem studies dynamic-priority scheduling. Consider two tasks to be exe-
cuted periodically on a single processor, where task 1 has period p1 = 4 and task
2 has period p2 = 6. Let the deadlines for each invocation of the tasks be the end
of their period. That is, the first invocation of task 1 has deadline 4, the second
invocation of task 1 has deadline 8, and so on.

(a) Let the execution time of task 1 be e1 = 1. Find the maximum value for the
execution time e2 of task 2 such that EDF is feasible.

(b) For the value of e2 that you found in part (a), compare the EDF schedule
against the RM schedule from Exercise 1 (a). Which schedule has less pre-
emption? Which schedule has better utilization?

3. This problem compares RM and EDF schedules. Consider two tasks with periods
p1 = 2 and p2 = 3 and execution times e1 = e2 = 1. Assume that the deadline for
each execution is the end of the period.

(a) Give the RM schedule for this task set and find the processor utilization.
How does this utilization compare to the Liu and Layland utilization bound of
(12.2)?

(b) Show that any increase in e1 or e2 makes the RM schedule infeasible. If you
hold e1 = e2 = 1 and p2 = 3 constant, is it possible to reduce p1 below 2

Lee & Seshia, Introduction to Embedded Systems 351

http://LeeSeshia.org

EXERCISES

and still get a feasible schedule? By how much? If you hold e1 = e2 = 1
and p1 = 2 constant, is it possible to reduce p2 below 3 and still get a feasible
schedule? By how much?

(c) Increase the execution time of task 2 to be e2 = 1.5, and give an EDF sched-
ule. Is it feasible? What is the processor utilization?

4. This problem, formulated by Hokeun Kim, also compares RM and EDF schedules.
Consider two tasks to be executed periodically on a single processor, where task 1
has period p1 = 4 and task 2 has period p2 = 10. Assume task 1 has execution
time e1 = 1, and task 2 has execution time e2 = 7.

(a) Sketch a rate-monotonic schedule (for 20 time units, the least common multi-
ple of 4 and 10). Is the schedule feasible?

(b) Now suppose task 1 and 2 contend for a mutex lock, assuming that the lock
is acquired at the beginning of each execution and released at the end of each
execution. Also, suppose that acquiring or releasing locks takes zero time
and the priority inheritance protocol is used. Is the rate-monotonic schedule
feasible?

(c) Assume still that tasks 1 and 2 contend for a mutex lock, as in part (b). Sup-
pose that task 2 is running an anytime algorithm, which is an algorithm that
can be terminated early and still deliver useful results. For example, it might
be an image processing algorithm that will deliver a lower quality image when
terminated early. Find the maximum value for the execution time e2 of task
2 such that the rate-monotonic schedule is feasible. Construct the resulting
schedule, with the reduced execution time for task 2, and sketch the schedule
for 20 time units. You may assume that execution times are always positive
integers.

(d) For the original problem, where e1 = 1 and e2 = 7, and there is no mutex
lock, sketch an EDF schedule for 20 time units. For tie-breaking among task
executions with the same deadline, assume the execution of task 1 has higher
priority than the execution of task 2. Is the schedule feasible?

(e) Now consider adding a third task, task 3, which has period p3 = 5 and ex-
ecution time e3 = 2. In addition, assume as in part (c) that we can adjust
execution time of task 2.
Find the maximum value for the execution time e2 of task 2 such that the
EDF schedule is feasible and sketch the schedule for 20 time units. Again,

352 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

you may assume that the execution times are always positive integers. For
tie-breaking among task executions with the same deadline, assume task i has
higher priority than task j if i < j.)

5. This problem compares fixed vs. dynamic priorities, and is based on an example by
Burns and Baruah (2008). Consider two periodic tasks, where task τ1 has period
p1 = 2, and task τ2 has period p2 = 3. Assume that the execution times are e1 = 1
and e2 = 1.5. Suppose that the release time of execution i of task τ1 is given by

r1,i = 0.5 + 2(i− 1)

for i = 1, 2, · · · . Suppose that the deadline of execution i of task τ1 is given by

d1,i = 2i.

Correspondingly, assume that the release times and deadlines for task τ2 are

r2,i = 3(i− 1)

and
d2,i = 3i.

(a) Give a feasible fixed-priority schedule.

(b) Show that if the release times of all executions of task τ1 are reduced by 0.5,
then no fixed-priority schedule is feasible.

(c) Give a feasible dynamic-priority schedule with the release times of task τ1
reduced to

r1,i = 2(i− 1).

6. This problem studies scheduling anomalies. Consider the task precedence graph
depicted in Figure 12.16 with eight tasks. In the figure, ei denotes the execution
time of task i. Assume task i has higher priority than task j if i < j. There is no
preemption. The tasks must be scheduled respecting all precedence constraints and
priorities. We assume that all tasks arrive at time t = 0.

(a) Consider scheduling these tasks on two processors. Draw the schedule for
these tasks and report the makespan.

(b) Now consider scheduling these tasks on three processors. Draw the schedule
for these tasks and report the makespan. Is the makespan bigger or smaller
than that in part (a) above?

Lee & Seshia, Introduction to Embedded Systems 353

http://LeeSeshia.org

EXERCISES

e1= 3

e2= 2

e3= 2

e8= 5

e7 = 10

e4 = 5

e5 = 5

e6 = 5

Figure 12.16: Precedence Graph for Exercise 6.

(c) Now consider the case when the execution time of each task is reduced by
1 time unit. Consider scheduling these tasks on two processors. Draw the
schedule for these tasks and report the makespan. Is the makespan bigger or
smaller than that in part (a) above?

7. This problem studies the interaction between real-time scheduling and mutual ex-
clusion, and was formulated by Kevin Weekly.
Consider the following excerpt of code:

1 pthread_mutex_t X; // Resource X: Radio communication
2 pthread_mutex_t Y; // Resource Y: LCD Screen
3 pthread_mutex_t Z; // Resource Z: External Memory (slow)
4

5 void ISR_A() { // Safety sensor Interrupt Service Routine
6 pthread_mutex_lock(&Y);
7 pthread_mutex_lock(&X);
8 display_alert(); // Uses resource Y
9 send_radio_alert(); // Uses resource X

10 pthread_mutex_unlock(&X);
11 pthread_mutex_unlock(&Y);
12 }
13

14 void taskB() { // Status recorder task
15 while (1) {
16 static time_t starttime = time();
17 pthread_mutex_lock(&X);
18 pthread_mutex_lock(&Z);
19 stats_t stat = get_stats();
20 radio_report(stat); // uses resource X

354 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

12. SCHEDULING

21 record_report(stat); // uses resource Z
22 pthread_mutex_unlock(&Z);
23 pthread_mutex_unlock(&X);
24 sleep(100-(time()-starttime)); // schedule next excecution
25 }
26 }
27

28 void taskC() { // UI Updater task
29 while(1) {
30 pthread_mutex_lock(&Z);
31 pthread_mutex_lock(&Y);
32 read_log_and_display(); // uses resources Y and Z
33 pthread_mutex_unlock(&Y);
34 pthread_mutex_unlock(&Z);
35 }
36 }

You may assume that the comments fully disclose the resource usage of the proce-
dures. That is, if a comment says ”uses resource X”, then the relevant procedure
uses only resource X. The scheduler running aboard the system is a priority-based
preemptive scheduler, where taskB is higher priority than taskC. In this problem,
ISR A can be thought of as an asynchronous task with the highest priority.

The intended behavior is for the system to send out a radio report every 100ms and
for the UI to update constantly. Additionally, if there is a safety interrupt, a radio
report is sent immediately and the UI alerts the user.

(a) Occasionally, when there is a safety interrupt, the system completely stops
working. In a scheduling diagram (like Figure 12.11 in the text), using the
tasks {A,B,C}, and resources {X,Y,Z}, explain the cause of this behavior.
Execution times do not have to be to scale in your diagram. Label your dia-
gram clearly. You will be graded in part on the clarity of your answer, not just
on its correctness.

(b) Using the priority ceiling protocol, show the scheduling diagram for the same
sequence of events that you gave in part (a). Be sure to show all resource locks
and unlocks until all tasks are finished or reached the end of an iteration. Does
execution stop as before?

(c) Without changing the scheduler, how could the code in taskB be reordered to
fix the issue? Using an exhaustive search of all task/resource locking scenar-
ios, prove that this system will not encounter deadlock. (Hint: There exists

Lee & Seshia, Introduction to Embedded Systems 355

http://LeeSeshia.org

EXERCISES

a proof enumerating 6 cases, based on reasoning that the 3 tasks each have 2
possible resources they could block on.)

356 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

	Preface
	Introduction
	Applications
	Motivating Example
	The Design Process
	Summary

	I Modeling Dynamic Behaviors
	Continuous Dynamics
	Newtonian Mechanics
	Actor Models
	Properties of Systems
	Feedback Control
	Summary
	Exercises

	Discrete Dynamics
	Discrete Systems
	The Notion of State
	Finite-State Machines
	Extended State Machines
	Nondeterminism
	Behaviors and Traces
	Summary
	Exercises

	Hybrid Systems
	Modal Models
	Classes of Hybrid Systems
	Summary
	Exercises

	Composition of State Machines
	Concurrent Composition
	Hierarchical State Machines
	Summary
	Exercises

	Concurrent Models of Computation
	Structure of Models
	Synchronous-Reactive Models
	Dataflow Models of Computation
	Timed Models of Computation
	Summary
	Exercises

	II Design of Embedded Systems
	Sensors and Actuators
	Models of Sensors and Actuators
	Common Sensors
	Actuators
	Summary
	Exercises

	Embedded Processors
	Types of Processors
	Parallelism
	Summary
	Exercises

	Memory Architectures
	Memory Technologies
	Memory Hierarchy
	Memory Models
	Summary
	Exercises

	Input and Output
	I/O Hardware
	Sequential Software in a Concurrent World
	Summary
	Exercises

	Multitasking
	Imperative Programs
	Threads
	Processes and Message Passing
	Summary
	Exercises

	Scheduling
	Basics of Scheduling
	Rate Monotonic Scheduling
	Earliest Deadline First
	Scheduling and Mutual Exclusion
	Multiprocessor Scheduling
	Summary
	Exercises

	III Analysis and Verification
	Invariants and Temporal Logic
	Invariants
	Linear Temporal Logic
	Summary
	Exercises

	Equivalence and Refinement
	Models as Specifications
	Type Equivalence and Refinement
	Language Equivalence and Containment
	Simulation
	Bisimulation
	Summary
	Exercises

	Reachability Analysis and Model Checking
	Open and Closed Systems
	Reachability Analysis
	Abstraction in Model Checking
	Model Checking Liveness Properties
	Summary
	Exercises

	Quantitative Analysis
	Problems of Interest
	Programs as Graphs
	Factors Determining Execution Time
	Basics of Execution Time Analysis
	Other Quantitative Analysis Problems
	Summary
	Exercises

	Security and Privacy
	Cryptographic Primitives
	Protocol and Network Security
	Software Security
	Information Flow
	Advanced Topics
	Summary
	Exercises

	IV Appendices
	Sets and Functions
	Sets
	Relations and Functions
	Sequences
	Exercises

	Complexity and Computability
	Effectiveness and Complexity of Algorithms
	Problems, Algorithms, and Programs
	Turing Machines and Undecidability
	Intractability: P and NP
	Summary
	Exercises

	Bibliography
	Notation Index
	Notation Index
	Index

