
Part III

Analysis and Verification

This part of this text studies analysis of embedded systems, with emphasis on methods
for specifying desired and undesired behaviors and verifying that an implementation con-
forms to its specification. Chapter 13 covers temporal logic, a formal notation that can
express families of input/output behaviors and the evolution of the state of a system over
time. This notation can be used to specify unambiguously desired and undesired behav-
iors. Chapter 14 explains what it means for one specification to be equivalent to another,
and what it means for a design to implement a specification. Chapter 15 shows how to
check algorithmically whether a design correctly implements a specification. Chapter 16
illustrates how to analyze designs for quantitative properties, with emphasis on execu-
tion time analysis for software. Such analysis is essential to achieving real-time behavior
in software. Chapter 17 introduces the basics of security and privacy with a focus on
concepts relevant to embedded, cyber-physical systems.

13
Invariants and

Temporal Logic

13.1 Invariants . 359
13.2 Linear Temporal Logic . 362

13.2.1 Propositional Logic Formulas 362
13.2.2 LTL Formulas . 364
Sidebar: Probing Further: Alternative Temporal Logics 367
13.2.3 Using LTL Formulas . 369

13.3 Summary . 370
Sidebar: Safety and Liveness Properties 371

Exercises . 372

Every embedded system must be designed to meet certain requirements. Such system
requirements are also called properties or specifications. The need for specifications is
aptly captured by the following quotation (paraphrased from Young et al. (1985)):

“A design without specifications cannot be right or wrong, it can only be
surprising!”

In present engineering practice, it is common to have system requirements stated in a nat-
ural language such as English. As an example, consider the SpaceWire communication

13. INVARIANTS AND TEMPORAL LOGIC

protocol that is gaining adoption with several national space agencies (European Cooper-
ation for Space Standardization, 2002). Here are two properties reproduced from Section
8.5.2.2 of the specification document, stating conditions on the behavior of the system
upon reset:

1. “The ErrorReset state shall be entered after a system reset, after link operation has
been terminated for any reason or if there is an error during link initialization.”

2. “Whenever the reset signal is asserted the state machine shall move immediately to
the ErrorReset state and remain there until the reset signal is de-asserted.”

It is important to precisely state requirements to avoid ambiguities inherent in natural
languages. For example, consider the first property of the SpaceWire protocol stated
above. Observe that there is no mention of when the ErrorReset state is to be entered. The
systems that implement the SpaceWire protocol are synchronous, meaning that transitions
of the state machine occur on ticks of a system clock. Given this, must the ErrorReset
state be entered on the very next tick after one of the three conditions becomes true or on
some subsequent tick of the clock? As it turns out, the document intends the system to
make the transition to ErrorReset on the very next tick, but this is not made precise by the
English language description.

This chapter will introduce techniques to specify system properties mathematically and
precisely. A mathematical specification of system properties is also known as a formal
specification. The specific formalism we will use is called temporal logic. As the name
suggests, temporal logic is a precise mathematical notation with associated rules for rep-
resenting and reasoning about timing-related properties of systems. While temporal logic
has been used by philosophers and logicians since the times of Aristotle, it is only in the
last thirty years that it has found application as a mathematical notation for specifying
system requirements.

One of the most common kinds of system property is an invariant. It is also one of
the simplest forms of a temporal logic property. We will first introduce the notion of an
invariant and then generalize it to more expressive specifications in temporal logic.

13.1 Invariants

An invariant is a property that holds for a system if it remains true at all times during
operation of the system. Put another way, an invariant holds for a system if it is true in the

Lee & Seshia, Introduction to Embedded Systems 359

http://LeeSeshia.org

13.1. INVARIANTS

initial state of the system, and it remains true as the system evolves, after every reaction,
in every state.

In practice, many properties are invariants. Both properties of the SpaceWire proto-
col stated above are invariants, although this might not be immediately obvious. Both
SpaceWire properties specify conditions that must remain true always. Below is an ex-
ample of an invariant property of a model that we have encountered in Chapter 3.

Example 13.1: Consider the model of a traffic light controller given in Fig-
ure 3.10 and its environment as modeled in Figure 3.11. Consider the system
formed by the asynchronous composition of these two state machines. An obvi-
ous property that the composed system must satisfy is that there is no pedestrian
crossing when the traffic light is green (when cars are allowed to move). This
property must always remain true of this system, and hence is a system invariant.

It is also desirable to specify invariant properties of software and hardware implemen-
tations of embedded systems. Some of these properties specify correct programming
practice on language constructs. For example, the C language property

“The program never dereferences a null pointer”

is an invariant specifying good programming practice. Typically dereferencing a null
pointer in a C program results in a segmentation fault, possibly leading to a system crash.
Similarly, several desirable properties of concurrent programs are invariants, as illustrated
in the following example.

Example 13.2: Consider the following property regarding an absence of dead-
lock:

If a thread A blocks while trying to acquire a mutex lock, then the
threadB that holds that lock must not be blocked attempting to acquire
a lock held by A.

360 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

This property is required to be an invariant on any multithreaded program con-
structed from threadsA andB. The property may or may not hold for a particular
program. If it does not hold, there is risk of deadlock.

Many system invariants also impose requirements on program data, as illustrated in the
example below.

Example 13.3: Consider the following example of a software task from the open
source Paparazzi unmanned aerial vehicle (UAV) project (Nemer et al., 2006):

1 void altitude_control_task(void) {
2 if (pprz_mode == PPRZ_MODE_AUTO2
3 || pprz_mode == PPRZ_MODE_HOME) {
4 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {
5 float err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 }
15 }
16 }

For this example, it is required that the value of the desired climb vari-
able at the end of altitude control task remains within the range [-
CLIMB MAX, CLIMB MAX]. This is an example of a special kind of invariant, a
postcondition, that must be maintained every time altitude control task
returns. Determining whether this is the case requires analyzing the control flow
of the program.

Lee & Seshia, Introduction to Embedded Systems 361

http://LeeSeshia.org

13.2. LINEAR TEMPORAL LOGIC

13.2 Linear Temporal Logic

We now give a formal description of temporal logic and illustrate with examples of how
it can be used to specify system behavior. In particular, we study a particular kind of tem-
poral logic known as linear temporal logic, or LTL. There are other forms of temporal
logic, some of which are briefly surveyed in sidebars.

Using LTL, one can express a property over a single, but arbitrary execution of a system.
For instance, one can express the following kinds of properties in LTL:

• Occurrence of an event and its properties. For example, one can express the prop-
erty that an event A must occur at least once in every trace of the system, or that it
must occur infinitely many times.

• Causal dependency between events. An example of this is the property that if an
event A occurs in a trace, then event B must also occur.

• Ordering of events. An example of this kind of property is one specifying that every
occurrence of event A is preceded by a matching occurrence of B.

We now formalize the above intuition about the kinds of properties expressible in linear
temporal logic. In order to perform this formalization, it is helpful to fix a particular
formal model of computation. We will use the theory of finite-state machines, introduced
in Chapter 3.

Recall from Section 3.6 that an execution trace of a finite-state machine is a sequence of
the form

q0, q1, q2, q3, . . . ,

where qj = (xj , sj , yj), sj is the state, xj is the input valuation, and yj is the output
valuation at reaction j.

13.2.1 Propositional Logic Formulas

First, we need to be able to talk about conditions at each reaction, such as whether an
input or output is present, what the value of an input or output is, or what the state is.
Let an atomic proposition be such a statement about the inputs, outputs, or states. It is a
predicate (an expression that evaluates to true or false). Examples of atomic propositions
that are relevant for the state machines in Figure 13.1 are:

362 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

true Always true.
false Always false.
x True if input x is present.

x = present True if input x is present.
y = absent True if y is absent.

b True if the FSM is in state b

In each case, the expression is true or false at a reaction qi. The proposition b is true at a
reaction qi if qi = (x, b, y) for any valuations x and y, which means that the machine is
in state b at the start of the reaction. I.e., it refers to the current state, not the next state.

A propositional logic formula or (more simply) proposition is a predicate that combines
atomic propositions using logical connectives: conjunction (logical AND, denoted ∧),
disjunction (logical OR, denoted ∨), negation (logical NOT, denoted ¬), and implies
(logical implication, denoted =⇒). Propositions for the state machines in Figure 13.1
include any of the above atomic proposition and expressions using the logical connectives
together with atomic propositions. Here are some examples:

x ∧ y True if x and y are both present.
x ∨ y True if either x or y is present.

x = present ∧ y = absent True if x is present and y is absent.
¬y True if y is absent.

a =⇒ y True if whenever the FSM is in state a, the
output y will be made present by the reaction

Figure 13.1: Two finite-state machines used to illustrate LTL formulas.

Lee & Seshia, Introduction to Embedded Systems 363

http://LeeSeshia.org

13.2. LINEAR TEMPORAL LOGIC

Note that if p1 and p2 are propositions, the proposition p1 =⇒ p2 is true if and only
if ¬p2 =⇒ ¬p1. In other words, if we wish to establish that p1 =⇒ p2 is true, it
is equally valid to establish that ¬p2 =⇒ ¬p1 is true. In logic, the latter expression is
called the contrapositive of the former.

Note further that p1 =⇒ p2 is true if p1 is false. This is easy to see by considering
the contrapositive. The proposition ¬p2 =⇒ ¬p1 is true regardless of p2 if ¬p1 is true.
Thus, another proposition that is equivalent to p1 =⇒ p2 is

¬p1 ∨ p2 .

13.2.2 LTL Formulas

An LTL formula, unlike the above propositions, applies to an entire trace

q0, q1, q2, . . . ,

rather than to just one reaction qi. The simplest LTL formulas look just like the proposi-
tions above, but they apply to an entire trace rather than just a single element of the trace.
If p is a proposition, then by definition, we say that LTL formula φ = p holds for the
trace q0, q1, q2, . . . if and only if p is true for q0. It may seem odd to say that the formula
holds for the entire trace even though the proposition only holds for the first element of
the trace, but we will see that LTL provides ways to reason about the entire trace.

By convention, we will denote LTL formulas by φ, φ1, φ2, etc. and propositions by p, p1,
p2, etc.

Given a state machine M and an LTL formula φ, we say that φ holds for M if φ holds for
all possible traces of M . This typically requires considering all possible inputs.

Example 13.4: The LTL formula a holds for Figure 13.1(b), because all traces
begin in state a. It does not hold for Figure 13.1(a).

The LTL formula x =⇒ y holds for both machines. In both cases, in the first
reaction, if x is present, then y will be present.

364 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

To demonstrate that an LTL formula is false for an FSM, it is sufficient to give one trace for
which it is false. Such a trace is called a counterexample. To show that an LTL formula
is true for an FSM, you must demonstrate that it is true for all traces, which is often much
harder (although not so much harder when the LTL formula is a simple propositional logic
formula, because in that case we only have to consider the first element of the trace).

Example 13.5: The LTL formula y is false for both FSMs in Figure 13.1. In
both cases, a counterexample is a trace where x is absent in the first reaction.

In addition to propositions, LTL formulas can also have one or more special temporal
operators. These make LTL much more interesting, because they enable reasoning about
entire traces instead of just making assertions about the first element of a trace. There are
four main temporal operators, which we describe next.

G Operator

The property Gφ (which is read as “globally φ”) holds for a trace if φ holds for every
suffix of that trace. (A suffix is a tail of a trace beginning with some reaction and including
all subsequent reactions.)

In mathematical notation, Gφ holds for the trace if and only if, for all j ≥ 0, formula φ
holds in the suffix qj , qj+1, qj+2,

Example 13.6: In Figure 13.1(b), G(x =⇒ y) is true for all traces of the ma-
chine, and hence holds for the machine. G(x∧ y) does not hold for the machine,
because it is false for any trace where x is absent in any reaction. Such a trace
provides a counterexample.

If φ is a propositional logic formula, then Gφ simply means that φ holds in every reaction.
We will see, however, that when we combine the G operator with other temporal logic

Lee & Seshia, Introduction to Embedded Systems 365

http://LeeSeshia.org

13.2. LINEAR TEMPORAL LOGIC

operators, we can make much more interesting statements about traces and about state
machines.

F Operator

The property Fφ (which is read as “eventually φ” or “finally φ”) holds for a trace if φ
holds for some suffix of the trace.

Formally, Fφ holds for the trace if and only if, for some j ≥ 0, formula φ holds in the
suffix qj , qj+1, qj+2,

Example 13.7: In Figure 13.1(a), Fb is trivially true because the machine starts
in state b, hence, for all traces, the proposition b holds for the trace itself (the very
first suffix).

More interestingly, G(x =⇒ Fb) holds for Figure 13.1(a). This is because if x
is present in any reaction, then the machine will eventually be in state b. This is
true even in suffixes that start in state a.

Notice that parentheses can be important in interpreting an LTL formula. For
example, (Gx) =⇒ (Fb) is trivially true because Fb is true for all traces (since
the initial state is b).

Notice that F¬φ holds if and only if ¬Gφ. That is, stating that φ is eventually false is the
same as stating that φ is not always true.

X Operator

The property Xφ (which is read as “next state φ”) holds for a trace q0, q1, q2, . . . if and
only if φ holds for the trace q1, q2, q3,

Example 13.8: In Figure 13.1(a), x =⇒ Xa holds for the state machine,
because if x is present in the first reaction, then the next state will be a. G(x =⇒

366 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

Probing Further: Alternative Temporal Logics

Amir Pnueli (1977) was the first to formalize temporal logic as a way of specifying
program properties. For this he won the 1996 ACM Turing Award, the highest honor
in Computer Science. Since his seminal paper, temporal logic has become widespread
as a way of specifying properties for a range of systems, including hardware, software,
and cyber-physical systems.

In this chapter, we have focused on LTL, but there are several alternatives. LTL
formulas apply to individual traces of an FSM, and in this chapter, by convention, we
assert than an LTL formula holds for an FSM if it holds for all possible traces of the
FSM. A more general logic called computation tree logic (CTL∗) explicitly provides
quantifiers over possible traces of an FSM (Emerson and Clarke (1980); Ben-Ari et al.
(1981)). For example, we can write a CTL∗ expression that holds for an FSM if there
exists any trace that satisfies some property, rather than insisting that the property must
hold for all traces. CTL∗ is called a branching-time logic because whenever a reaction
of the FSM has a nondeterministic choice, it will simultaneously consider all options.
LTL, by contrast, considers only one trace at a time, and hence it is called a linear-time
logic. Our convention of asserting that an LTL formula holds for an FSM if it holds for
all traces cannot be expressed directly in LTL, because LTL does not include quantifiers
like “for all traces.” We have to step outside the logic to apply this convention. With
CTL∗, this convention is expressible directly in the logic.

Several other temporal logic variants have found practical use. For instance, real-
time temporal logics (e.g., timed computation tree logic or TCTL), is used for rea-
soning about real-time systems (Alur et al., 1991; Alur and Henzinger, 1993) where
the passage of time is not in discrete steps, but is continuous. Similarly, probabilistic
temporal logics are useful for reasoning about probabilistic models such as Markov
chains or Markov decision processes (see, for example, Hansson and Jonsson (1994)),
and signal temporal logic has proved effective for reasoning about real-time behavior
of hybrid systems (Maler and Nickovic, 2004).

Techniques for inferring temporal logic properties from traces, also known as spec-
ification mining, have also proved useful in industrial practice (see Jin et al. (2015)).

Lee & Seshia, Introduction to Embedded Systems 367

http://LeeSeshia.org

13.2. LINEAR TEMPORAL LOGIC

Xa) does not hold for the state machine because it does not hold for any suffix
that begins in state a. In Figure 13.1(b), G(b =⇒ Xa) holds for the state
machine.

U Operator

The property φ1Uφ2 (which is read as “φ1 until φ2”) holds for a trace if φ2 holds for
some suffix of that trace, and φ1 holds until φ2 becomes true.

Formally, φ1Uφ2 holds for the trace if and only if there exists j ≥ 0 such that φ2 holds
in the suffix qj , qj+1, qj+2, . . . and φ1 holds in suffixes qi, qi+1, qi+2, . . ., for all i s.t.
0 ≤ i < j. φ1 may or may not hold for qj , qj+1, qj+2,

Example 13.9: In Figure 13.1(b), aUx is true for any trace for which Fx holds.
Since this does not include all traces, aUx does not hold for the state machine.

Some authors define a weaker form of the U operator that does not require φ2 to hold.
Using our definition, this can be written

(Gφ1) ∨ (φ1Uφ2) .

This holds if either φ1 always holds (for any suffix) or, if φ2 holds for some suffix, then
φ1 holds for all previous suffixes. This can equivalently be written

(F¬φ1) =⇒ (φ1Uφ2) .

Example 13.10: In Figure 13.1(b), (G¬x)∨ (aUx) holds for the state machine.

368 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

13.2.3 Using LTL Formulas

Consider the following English descriptions of properties and their corresponding LTL
formalizations:

Example 13.11: “Whenever the robot is facing an obstacle, eventually it moves
at least 5 cm away from the obstacle.”

Let p denote the condition that the robot is facing an obstacle, and q denote the
condition where the robot is at least 5 cm away from the obstacle. Then, this
property can be formalized in LTL as

G (p =⇒ Fq) .

Example 13.12: Consider the SpaceWire property:
“Whenever the reset signal is asserted the state machine shall move immediately
to the ErrorReset state and remain there until the reset signal is de-asserted.”

Let p be true when the reset signal is asserted, and q be true when the state of the
FSM is ErrorReset. Then, the above English property is formalized in LTL as:

G (p =⇒ X(qU¬p)) .

In the above formalization, we have interpreted “immediately” to mean that the
state changes to ErrorReset in the very next time step. Moreover, the above LTL
formula will fail to hold for any execution where the reset signal is asserted and
not eventually de-asserted. It was probably the intent of the standard that the reset
signal should be eventually de-asserted, but the English language statement does
not make this clear.

Example 13.13: Consider the traffic light controller in Figure 3.10. A property
of this controller is that the outputs always cycle through sigG, sigY and sigR. We

Lee & Seshia, Introduction to Embedded Systems 369

http://LeeSeshia.org

13.3. SUMMARY

can express this in LTL as follows:

G { (sigG =⇒ X((¬sigR ∧ ¬sigG)U sigY))

∧ (sigY =⇒ X((¬sigG ∧ ¬sigY)U sigR))

∧ (sigR =⇒ X((¬sigY ∧ ¬sigR)U sigG)) } .

The following LTL formulas express commonly useful properties.

(a) Infinitely many occurrences: This property is of the form GFp, meaning that it is
always the case that p is true eventually. Put another way, this means that p is true
infinitely often.

(b) Steady-state property: This property is of the form FGp, read as “from some point
in the future, p holds at all times.” This represents a steady-state property, indicating
that after some point in time, the system reaches a steady state in which p is always
true.

(c) Request-response property: The formula G (p =⇒ Fq) can be interpreted to
mean that a request p will eventually produce a response q.

13.3 Summary

Dependability and correctness are central concerns in embedded systems design. Formal
specifications, in turn, are central to achieving these goals. In this chapter, we have studied
temporal logic, one of the main approaches for writing formal specifications. This chapter
has provided techniques for precisely stating properties that must hold over time for a
system. It has specifically focused on linear temporal logic, which is able to express
many safety and liveness properties of systems.

370 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

Safety and Liveness Properties

System properties may be safety or liveness properties. Informally, a safety property
is one specifying that “nothing bad happens” during execution. Similarly, a liveness
property specifies that “something good will happen” during execution.

More formally, a property p is a safety property if a system execution does not
satisfy p if and only if there exists a finite-length prefix of the execution that cannot
be extended to an infinite execution satisfying p. We say p is a liveness property if
every finite-length execution trace can be extended to an infinite execution that satisfies
p. See Lamport (1977) and Alpern and Schneider (1987) for a theoretical treatment of
safety and liveness.

The properties we have seen in Section 13.1 are all examples of safety properties.
Liveness properties, on the other hand, specify performance or progress requirements
on a system. For a state machine, a property of the form Fφ is a liveness property. No
finite execution can establish that this property is not satisfied.

The following is a slightly more elaborate example of a liveness property:

“Whenever an interrupt is asserted, the corresponding interrupt service
routine (ISR) is eventually executed.”

In temporal logic, if p1 is the property that an interrupt is asserted, and p2 is the property
that the interrupt service routine is executed, then this property can be written

G(p1 =⇒ Fp2) .

Note that both safety and liveness properties can constitute system invariants. For
example, the above liveness property on interrupts is also an invariant; p1 =⇒ Fp2
must hold in every state.

Liveness properties can be either bounded or unbounded. A bounded liveness prop-
erty specifies a time bound on something desirable happening (which makes it a safety
property). In the above example, if the ISR must be executed within 100 clock cycles
of the interrupt being asserted, the property is a bounded liveness property; otherwise,
if there is no such time bound on the occurrence of the ISR, it is an unbounded live-
ness property. LTL can express a limited form of bounded liveness properties using the
X operator, but it does not provide any mechanism for quantifying time directly.

Lee & Seshia, Introduction to Embedded Systems 371

http://LeeSeshia.org

EXERCISES

Exercises

1. For each of the following questions, give a short answer and justification.

(a) TRUE or FALSE: If GFp holds for a state machine A, then so does FGp.

(b) TRUE or FALSE: G(Gp) holds for a trace if and only if Gp holds.

2. Consider the following state machine:

(Recall that the dashed line represents a default transition.) For each of the fol-
lowing LTL formulas, determine whether it is true or false, and if it is false, give a
counterexample:

(a) x =⇒ Fb

(b) G(x =⇒ F(y = 1))

(c) (Gx) =⇒ F(y = 1)

(d) (Gx) =⇒ GF(y = 1)

(e) G((b ∧ ¬x) =⇒ FGc)

(f) G((b ∧ ¬x) =⇒ Gc)

(g) (GF¬x) =⇒ FGc

3. Consider the synchronous feedback composition studied in Exercise 6 of Chapter
6. Determine whether the following statement is true or false:

The following temporal logic formula is satisfied by the sequence w for every pos-
sible behavior of the composition and is not satisfied by any sequence that is not a
behavior of the composition:

(Gw) ∨ (wU(G¬w)) .

372 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

Justify your answer. If you decide it is false, then provide a temporal logic formula
for which the assertion is true.

4. This problem is concerned with specifying in linear temporal logic tasks to be per-
formed by a robot. Suppose the robot must visit a set of n locations l1, l2, . . . , ln.
Let pi be an atomic formula that is true if and only if the robot visits location li.

Give LTL formulas specifying the following tasks:

(a) The robot must eventually visit at least one of the n locations.

(b) The robot must eventually visit all n locations, but in any order.

(c) The robot must eventually visit all n locations, in the order
l1, l2, . . . , ln.

5. Consider a system M modeled by the hierarchical state machine of Figure 13.2,
which models an interrupt-driven program. M has two modes: Inactive, in which
the main program executes, and Active, in which the interrupt service routine (ISR)
executes. The main program and ISR read and update a common variable timer-
Count.

Answer the following questions:

(a) Specify the following property φ in linear temporal logic, choosing suitable
atomic propositions:

φ: The main program eventually reaches program location C.

(b) Does M satisfy the above LTL property? Justify your answer by constructing
the product FSM. If M does not satisfy the property, under what conditions
would it do so? Assume that the environment of M can assert the interrupt at
any time.

6. Express the postcondition of Example 13.3 as an LTL formula. State your assump-
tions clearly.

7. Consider the program fragment shown in Figure 11.6, which provides procedures
for threads to communicate asynchronously by sending messages to one another.
Please answer the following questions about this code. Assume the code is running
on a single processor (not a multicore machine). You may also assume that only
the code shown accesses the static variables that are shown.

Lee & Seshia, Introduction to Embedded Systems 373

http://LeeSeshia.org

EXERCISES

Figure 13.2: Hierarchical state machine modeling a program and its interrupt
service routine.

(a) Let s be an atomic proposition asserting that send releases the mutex (i.e.
executes line 24). Let g be an atomic proposition asserting that get releases
the mutex (i.e. executes line 38). Write an LTL formula asserting that g cannot
occur before s in an execution of the program. Does this formula hold for the
first execution of any program that uses these procedures?

(b) Suppose that a program that uses the send and get procedures in Figure
11.6 is aborted at an arbitrary point in its execution and then restarted at the
beginning. In the new execution, it is possible for a call to get to return
before any call to send has been made. Describe how this could come about.
What value will get return?

(c) Suppose again that a program that uses the send and get procedures above
is aborted at an arbitrary point in its execution and then restarted at the begin-
ning. In the new execution, is it possible for deadlock to occur, where neither

374 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

13. INVARIANTS AND TEMPORAL LOGIC

a call to get nor a call to send can return? If so, describe how this could
come about and suggest a fix. If not, give an argument.

Lee & Seshia, Introduction to Embedded Systems 375

http://LeeSeshia.org

14
Equivalence and Refinement

14.1 Models as Specifications . 377
14.2 Type Equivalence and Refinement 378

Sidebar: Abstraction and Refinement 378
14.3 Language Equivalence and Containment 381

Sidebar: Finite Sequences and Accepting States 384
Sidebar: Regular Languages and Regular Expressions 385
Sidebar: Probing Further: Omega Regular Languages 386

14.4 Simulation . 387
14.4.1 Simulation Relations . 389
14.4.2 Formal Model . 391
14.4.3 Transitivity . 392
14.4.4 Non-Uniqueness of Simulation Relations 393
14.4.5 Simulation vs. Language Containment 393

14.5 Bisimulation . 395
14.6 Summary . 398
Exercises . 399

This chapter discusses some fundamental ways to compare state machines and other
modal models, such as trace equivalence, trace containment, simulation, and bisimula-
tion. These mechanisms can be used to check conformance of a state machine against a
specification.

14. EQUIVALENCE AND REFINEMENT

14.1 Models as Specifications

The previous chapter provided techniques for unambiguously stating properties that a
system must have to be functioning properly and safely. These properties were expressed
using linear temporal logic, which can concisely describe requirements that the trace of
a finite-state machine must satisfy. An alternative way to give requirements is to provide
a model, a specification, that exhibits expected behavior of the system. Typically, the
specification is quite abstract, and it may exhibit more behaviors than a useful implemen-
tation of the system would. But the key to being a useful specification is that it explicitly
excludes undesired or dangerous behaviors.

Example 14.1: A simple specification for a traffic light might state: “The lights
should always be lighted in the order green, yellow, red. It should never, for ex-
ample, go directly from green to red, or from yellow to green.” This requirement
can be given as a temporal logic formula (as is done in Example 13.13) or as an
abstract model (as is done in Figure 3.12).

The topic of this chapter is on the use of abstract models as specifications, and on how
such models relate to an implementation of a system and to temporal logic formulas.

Example 14.2: We will show how to demonstrate that the traffic light model
shown in Figure 3.10 is a valid implementation of the specification in Figure
3.12. Moreover, all traces of the model in Figure 3.10 satisfy the temporal logic
formula in Example 13.13, but not all traces of the specification in Figure 3.12
do. Hence, these two specifications are not the same.

This chapter is about comparing models, and about being able to say with confidence that
one model can be used in place of another. This enables an engineering design process
where we start with abstract descriptions of desired and undesired behaviors, and suc-
cessively refine our models until we have something that is detailed enough to provide

Lee & Seshia, Introduction to Embedded Systems 377

http://LeeSeshia.org

14.2. TYPE EQUIVALENCE AND REFINEMENT

a complete implementation. It also tells when it is safe to change an implementation,
replacing it with another that might, for example, reduce the implementation cost.

14.2 Type Equivalence and Refinement

We begin with a simple relationship between two models that compares only the data
types of their communication with their environment. Specifically, the goal is to ensure
that a model B can be used in any environment where a model A can be used without
causing any conflicts about data types. We will require that B can accept any inputs that

Abstraction and Refinement

This chapter focuses on relationships between models known as abstraction and re-
finement. These terms are symmetric in that the statement “model A is an abstraction
of model B” means the same thing as “model B is a refinement of model A.” As a
general rule, the refinement model B has more detail than the abstraction A, and the
abstraction is simpler, smaller, or easier to understand.

An abstraction is sound (with respect to some formal system of properties) if proper-
ties that are true of the abstraction are also true of the refinement. The formal system of
properties could be, for example, a type system, linear temporal logic, or the languages
of state machines. If the formal system is LTL, then if every LTL formula that holds
for A also holds for B, then A is a sound abstraction of B. This is useful when it is
easier to prove that a formula holds for A than to prove that it holds for B, for example
because the state space of B may be much larger than the state space of A.

An abstraction is complete (with respect to some formal system of properties) if
properties that are true of the refinement are also true of the abstraction. For example,
if the formal system of properties is LTL, thenA is a complete abstraction ofB if every
LTL formula that holds for B also holds for A. Useful abstractions are usually sound
but not complete, because it is hard to make a complete abstraction that is significantly
simpler or smaller.

Consider for example a programB in an imperative language such as C that has mul-
tiple threads. We might construct an abstraction A that ignores the values of variables
and replaces all branches and control structures with nondeterministic choices. The
abstraction clearly has less information than the program, but it may be sufficient for
proving some properties about the program, for example a mutual exclusion property.

378 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

A can accept from the environment, and that any environment that can accept any output
A can produce can also accept any output that B can produce.

To make the problem concrete, assume an actor model for A and B, as shown in Figure
14.1. In that figure, A has three ports, two of which are input ports represented by the
set PA = {x,w}, and one of which is an output port represented by the set QA = {y}.
These ports represent communication between A and its environment. The inputs have
type Vx and Vw, which means that at a reaction of the actor, the values of the inputs will
be members of the sets Vx or Vw.

If we want to replace A by B in some environment, the ports and their types impose four
constraints:

1. The first constraint is thatB does not require some input signal that the environment
does not provide. If the input ports of B are given by the set PB , then this is
guaranteed by

PB ⊆ PA. (14.1)

B

A

x: Vx

w: Vw

y: Vy

x: V'x

z: V'z

y: V'y

PA = { x, w }

PB = { x }

QA = { y }

QB = { y, z }

(1) PB ⊆ PA

(2) QA ⊆ QB

(3) ∀ p ∈ PB, Vp ⊆ V ′p

(4) ∀ q ∈ QA, V ′q ⊆ Vq

Figure 14.1: Summary of type refinement. If the four constraints on the right are
satisfied, then B is a type refinement of A.

Lee & Seshia, Introduction to Embedded Systems 379

http://LeeSeshia.org

14.2. TYPE EQUIVALENCE AND REFINEMENT

The ports ofB are a subset of the ports ofA. It is harmless forA to have more input
ports than B, because if B replaces A in some environment, it can simply ignore
any input signals that it does not need.

2. The second constraint is thatB produces all the output signals that the environment
may require. This is ensured by the constraint

QA ⊆ QB, (14.2)

where QA is the set of output ports of A, and QB is the set of output ports of B. It
is harmless for B to have additional output ports because an environment capable
of working with A does not expect such outputs and hence can ignore them.

The remaining two constraints deal with the types of the ports. Let the type of an input
port p ∈ PA be given by Vp. This means that an acceptable input value v on p satisfies
v ∈ Vp. Let V ′p denote the type of an input port p ∈ PB .

3. The third constraint is that if the environment provides a value v ∈ Vp on an input
port p that is acceptable to A, then if p is also an input port of B, then the value
is also acceptable to B; i.e., v ∈ V ′p . This constraint can be written compactly as
follows,

∀ p ∈ PB, Vp ⊆ V ′p . (14.3)

Let the type of an output port q ∈ QA be Vq, and the type of the corresponding output
port q ∈ QB be V ′q .

4. The fourth constraint is that ifB produces a value v ∈ V ′q on an output port q, then if
q is also an output port of A, then the value must be acceptable to any environment
in which A can operate. In other words,

∀ q ∈ QA, V ′q ⊆ Vq. (14.4)

The four constraints of equations (14.1) through (14.4) are summarized in Figure 14.1.
When these four constraints are satisfied, we say that B is a type refinement of A. If B
is a type refinement of A, then replacing A by B in any environment will not cause type
system problems. It could, of course, cause other problems, since the behavior of B may

380 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

not be acceptable to the environment, but that problem will be dealt with in subsequent
sections.

If B is a type refinement of A, and A is a type refinement of B, then we say that A and
B are type equivalent. They have the same input and output ports, and the types of the
ports are the same.

Example 14.3: LetA represent the nondeterministic traffic light model in Figure
3.12 and B represent the more detailed deterministic model in Figure 3.10. The
ports and their types are identical for both machines, so they are type equivalent.
Hence, replacing A with B or vice versa in any environment will not cause type
system problems.

Notice that since Figure 3.12 ignores the pedestrian input, it might seem rea-
sonable to omit that port. Let A′ represent a variant of Figure 3.12 without the
pedestrian input. It is not safe to replace A′ with B in all environments, because
B requires an input pedestrian signal, but A′ can be used in an environment that
provides no such input.

14.3 Language Equivalence and Containment

To replace a machine A with a machine B, looking at the data types of the inputs and
outputs alone is usually not enough. If A is a specification and B is an implementation,
then normally A imposes more constraints than just data types. If B is an optimization of
A (e.g., a lower cost implementation or a refinement that adds functionality or leverages
new technology), then B normally needs to conform in some way with the functionality
of A.

In this section, we consider a stronger form of equivalence and refinement. Specifically,
equivalence will mean that given a particular sequence of input valuations, the two ma-
chines produce the same output valuations.

Lee & Seshia, Introduction to Embedded Systems 381

http://LeeSeshia.org

14.3. LANGUAGE EQUIVALENCE AND CONTAINMENT

Example 14.4: The garage counter of Figure 3.4, discussed in Example 3.4, is
type equivalent to the extended state machine version in Figure 3.8. The actor
model is shown below:

Counter

up : pure

down : pure

count : {0, …, M }

However, these two machines are equivalent in a much stronger sense than simply
type equivalence. These two machines behave in exactly the same way, as viewed
from the outside. Given the same input sequence, the two machines will produce
the same output sequence.

Consider a port p of a state machine with type Vp. This port will have a sequence of values
from the set Vp ∪ {absent}, one value at each reaction. We can represent this sequence as
a function of the form

sp : N→ Vp ∪ {absent}.
This is the signal received on that port (if it is an input) or produced on that port (if it is
an output). Recall that a behavior of a state machine is an assignment of such a signal to
each port of such a machine. Recall further that the language L(M) of a state machineM
is the set of all behaviors for that state machine. Two machines are said to be language
equivalent if they have the same language.

Example 14.5: A behavior of the garage counter is a sequence of present and
absent valuations for the two inputs, up and down, paired with the corresponding
output sequence at the output port, count. A specific example is given in Example
3.16. This is a behavior of both Figures 3.4 and 3.8. All behaviors of Figure
3.4 are also behaviors of 3.8 and vice versa. These two machines are language
equivalent.

In the case of a nondeterministic machine M , two distinct behaviors may share the same
input signals. That is, given an input signal, there is more than one possible output se-

382 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Figure 14.2: Three state machines where (a) and (b) have the same language,
and that language is contained by that of (c).

quence. The language L(M) includes all possible behaviors. Just like deterministic ma-
chines, two nondeterministic machines are language equivalent if they have the same
language.

Suppose that for two state machines A and B, L(A) ⊂ L(B). That is, B has behaviors
that A does not have. This is called language containment. A is said to be a language
refinement of B. Just as with type refinement, language refinement makes an assertion
about the suitability of A as a replacement for B. If every behavior of B is acceptable to
an environment, then every behavior of A will also be acceptable to that environment. A
can substitute for B.

Lee & Seshia, Introduction to Embedded Systems 383

http://LeeSeshia.org

14.3. LANGUAGE EQUIVALENCE AND CONTAINMENT

Finite Sequences and Accepting States

A complete execution of the FSMs considered in this text is infinite. Suppose that we
are interested in only the finite executions. To do this, we introduce the notion of an
accepting state, indicated with a double outline as in state b in the example below:

Let La(M) denote the subset of the language L(M) that results from executions that
terminate in an accepting state. Equivalently, La(M) includes only those behaviors in
L(M) with an infinite tail of stuttering reactions that remain in an accepting state. All
such executions are effectively finite, since after a finite number of reactions, the inputs
and outputs will henceforth be absent, or in LTL, FG¬p for every port p.

We call La(M) the language accepted by an FSM M . A behavior in La(M)
specifies for each port p a finite string, or a finite sequence of values from the type
Vp. For the above example, the input strings (1), (1, 0, 1), (1, 0, 1, 0, 1), etc., are all
in La(M). So are versions of these with an arbitrary finite number of absent values
between any two present values. When there is no ambiguity, we can write these
strings 1, 101, 10101, etc.

In the above example, in all behaviors inLa(M), the output is present a finite number
of times, in the same reactions when the input is present.

The state machines in this text are receptive, meaning that at each reaction, each
input port p can have any value in its type Vp or be absent. Hence, the language L(M)
of the machine above includes all possible sequences of input valuations. La(M) ex-
cludes any of these that do not leave the machine in an accepting state. For example,
any input sequence with two 1’s in a row and the infinite sequence (1, 0, 1, 0, · · ·) are
in L(M) but not in La(M).

Note that it is sometimes useful to consider language containment when referring
to the language accepted by the state machine, rather than the language that gives all
behaviors of the state machine.

Accepting states are also called final states, since for any behavior in La(M), it is
the last state of the machine. Accepting states are further explored in Exercise 2.

384 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Regular Languages and Regular Expressions

A language is a set of sequences of values from some set called its alphabet. A
language accepted by an FSM is called a regular language. A classic example of a
language that is not regular has sequences of the form 0n1n, a sequence of n zeros
followed by n ones. It is easy to see that no finite state machine can accept this lan-
guage because the machine would have to count the zeros to ensure that the number
of ones matches. And the number of zeros is not bounded. On the other hand, the
input sequences accepted by the FSM in the box on page 384, which have the form
10101 · · · 01, are regular.

A regular expression is a notation for describing regular languages. A central fea-
ture of regular expressions is the Kleene star (or Kleene closure), named after the
American mathematician Stephen Kleene (who pronounced his name KLAY-nee). The
notation V ∗, where V is a set, means the set of all finite sequences of elements from V .
For example, if V = {0, 1}, then V ∗ is a set that includes the empty sequence (often
written λ), and every finite sequence of zeros and ones.

The Kleene star may be applied to sets of sequences. For example, if A = {00, 11},
then A∗ is the set of all finite sequences where zeros and ones always appear in pairs.
In the notation of regular expressions, this is written (00|11)*, where the vertical
bar means “or.” What is inside the parentheses defines the set A.

Regular expressions are sequences of symbols from an alphabet and sets of se-
quences. Suppose our alphabet is A = {a,b, · · · ,z}, the set of lower-case charac-
ters. Then grey is a regular expression denoting a single sequence of four charac-
ters. The expression grey|gray denotes a set of two sequences. Parentheses can be
used to group sequences or sets of sequences. For example, (grey)|(gray) and
gr(e|a)y mean the same thing.

Regular expressions also provide convenience notations to make them more compact
and readable. For example, the + operator means “one or more,” in contrast to the
Kleene star, which means “zero or more.” For example, a+ specifies the sequences a,
aa, aaa, etc.; it is the same as a(a*). The ? operator species “zero or one.” For
example, colou?r specifies a set with two sequences, color and colour; it is the
same as colo(λ|u)r, where λ denotes the empty sequence.

Regular expressions are commonly used in software systems for pattern matching.
A typical implementation provides many more convenience notations than the ones
illustrated here.

Lee & Seshia, Introduction to Embedded Systems 385

http://LeeSeshia.org

14.3. LANGUAGE EQUIVALENCE AND CONTAINMENT

Example 14.6: Machines M1 and M2 in Figure 14.2 are language equiva-
lent. Both machines produce output 1, 1, 0, 1, 1, 0, · · · , possibly interspersed with
absent if the input is absent in some reactions.

Machine M3, however, has more behaviors. It can produce any output sequence
thatM1 andM2 can produce, but it can also produce other outputs given the same
inputs. Thus, M1 and M2 are both language refinements of M3.

Language containment assures that an abstraction is sound with respect to LTL formulas
about input and output sequences. That is, if A is a language refinement of B, then any
LTL formula about inputs and outputs that holds for B also holds for A.

Example 14.7: Consider again the machines in Figure 14.2. M3 might be a
specification. For example, if we require that any two output values 0 have at

Probing Further: Omega Regular Languages

The regular languages discussed in the boxes on pages 384 and 385 contain only finite
sequences. But embedded systems most commonly have infinite executions. To extend
the idea of regular languages to infinite runs, we can use a Büchi automaton, named
after Julius Richard Büchi, a Swiss logician and mathematician. A Büchi automaton is
a possibly nondeterministic FSM that has one or more accepting states. The language
accepted by the FSM is defined to be the set of behaviors that visit one or more of the
accepting states infinitely often; in other words, these behaviors satisfy the LTL formula
GF(s1 ∨ · · · ∨ sn), where s1, · · · , sn are the accepting states. Such a language is
called an omega-regular language or ω-regular language, a generalization of regular
languages. The reason for using ω in the name is because ω is used to construct infinite
sequences, as explained in the box on page 500.

As we will see in Chapter 15, many model checking questions can be expressed by
giving a Büchi automaton and then checking to see whether the ω-regular language it
defines contains any sequences.

386 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

least one intervening 1, then M3 is a suitable specification of this requirement.
This requirement can be written as an LTL formula as follows:

G((y = 0)⇒ X((y 6= 0)U(y = 1))).

If we prove that this property holds for M3, then we have implicitly proved that
it also holds for M1 and M2.

We will see in the next section that language containment is not sound with respect to LTL
formulas that refer to states of the state machines. In fact, language containment does not
require the state machines to have the same states, so an LTL formula that refers to the
states of one machine may not even apply to the other machine. A sound abstraction that
references states will require simulation.

Language containment is sometimes called trace containment, but here the term “trace”
refers only to the observable trace, not to the execution trace. As we will see next, things
get much more subtle when considering execution traces.

14.4 Simulation

Two nondeterministic FSMs may be language equivalent but still have observable differ-
ences in behavior in some environments. Language equivalence merely states that given
the same sequences of input valuations, the two machines are capable of producing the
same sequences of output valuations. However, as they execute, they make choices al-
lowed by the nondeterminism. Without being able to see into the future, these choices
could result in one of the machines getting into a state where it can no longer match the
outputs of the other.

When faced with a nondeterministic choice, each machine is free to use any policy to
make that choice. Assume that the machine cannot see into the future; that is, it cannot
anticipate future inputs, and it cannot anticipate future choices that any other machine
will make. For two machines to be equivalent, we will require that each machine be able
to make choices that allow it to match the reaction of the other machine (producing the
same outputs), and further allow it to continue to do such matching in the future. It turns
out that language equivalence is not strong enough to ensure that this is possible.

Lee & Seshia, Introduction to Embedded Systems 387

http://LeeSeshia.org

14.4. SIMULATION

Example 14.8: Consider the two state machines in Figure 14.3. Suppose that
M2 is acceptable in some environment (every behavior it can exhibit in that envi-
ronment is consistent with some specification or design intent). Is it safe for M1

to replace M2? The two machines are language equivalent. In all behaviors, the
output is one of two finite strings, 01 or 00, for both machines. So it would seem
that M1 can replace M2. But this is not necessarily the case.

Suppose we compose each of the two machines with its own copy of the environ-
ment that finds M2 acceptable. In the first reaction where x is present, M1 has no
choice but to take the transition to state b and produce the output y = 0. However,
M2 must choose between f and h. Whichever choice it makes, M2 matches the
output y = 0 of M1 but enters a state where it is no longer able to always match
the outputs of M1. If M1 can observe the state of M2 when making its choice,
then in the second reaction where x is present, it can choose a transition that M2

can never match. Such a policy for M1 ensures that the behavior of M1, given
the same inputs, is never the same as the behavior of M2. Hence, it is not safe to
replace M2 with M1.

On the other hand, if M1 is acceptable in some environment, is it safe for M2

to replace M1? What it means for M1 to be acceptable in the environment is
that whatever decisions it makes are acceptable. Thus, in the second reaction
where x is present, both outputs y = 1 and y = 0 are acceptable. In this second
reaction, M2 has no choice but to produce one or the other these outputs, and it
will inevitably transition to a state where it continues to match the outputs of M1

(henceforth forever absent). Hence it is safe for M2 to replace M1.

In the above example, we can think of the machines as maliciously trying to make M1

look different from M2. Since they are free to use any policy to make choices, they are
free to use policies that are contrary to our goal to replace M2 with M1. Note that the ma-
chines do not need to know the future; it is sufficient to simply have good visibility of the
present. The question that we address in this section is: under what circumstances can we
assure that there is no policy for making nondeterministic choices that can make machine
M1 observably different from M2? The answer is a stronger form of equivalence called
bisimulation and a refinement relation called simulation. We begin with the simulation
relation.

388 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Figure 14.3: Two state machines that are language equivalent but where M2 does
not simulate M1 (M1 does simulate M2).

14.4.1 Simulation Relations

First, notice that the situation given in Example 14.8 is not symmetric. It is safe for M2

to replace M1, but not the other way around. Hence, M2 is a refinement of M1, in a sense
that we will now establish. M1, on the other hand, is not a refinement of M2.

The particular kind of refinement we now consider is a simulation refinement. The
following statements are all equivalent:

• M2 is a simulation refinement of M1.

• M1 simulates M2.

• M1 is a simulation abstraction of M2.

Simulation is defined by a matching game. To determine whether M1 simulates M2,
we play a game where M2 gets to move first in each round. The game starts with both
machines in their initial states. M2 moves first by reacting to an input valuation. If this
involves a nondeterministic choice, then it is allowed to make any choice. Whatever it
choses, an output valuation results and M2’s turn is over.

Lee & Seshia, Introduction to Embedded Systems 389

http://LeeSeshia.org

14.4. SIMULATION

It is now M1’s turn to move. It must react to the same input valuation that M2 reacted
to. If this involves a nondeterministic choice, then it must make a choice that matches
the output valuation of M2. If there are multiple such choices, it must select one without
knowledge of the future inputs or future moves of M2. Its strategy should be to choose
one that enables it to continue to match M2, regardless of what future inputs arrive or
future decisions M2 makes.

Machine M1 “wins” this matching game (M1 simulates M2) if it can always match the
output symbol of machine M2 for all possible input sequences. If in any reaction M2 can
produce an output symbol that M1 cannot match, then M1 does not simulate M2.

Example 14.9: In Figure 14.3, M1 simulates M2 but not vice versa. To see this,
first play the game with M2 moving first in each round. M1 will always be able
to match M2. Then play the game with M1 moving first in each round. M2 will
not always be able to match M1. This is true even though the two machines are
language equivalent.

Interestingly, if M1 simulates M2, it is possible to compactly record all possible games
over all possible inputs. Let S1 be the states of M1 and S2 be the states of M2. Then a
simulation relation S ⊆ S2 × S1 is a set of pairs of states occupied by the two machines
in each round of the game for all possible inputs. This set summarizes all possible plays
of the game.

Example 14.10: In Figure 14.3,

S1 = {a, b, c, d}

and
S2 = {e, f, g, h, i}.

The simulation relation showing that M1 simulates M2 is

S = {(e, a), (f, b), (h, b), (g, c), (i, d)}

390 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

First notice that the pair (e, a) of initial states is in the relation, so the relation
includes the state of the two machines in the first round. In the second round,
M2 may be in either f or h, and M1 will be in b. These two possibilities are also
accounted for. In the third round and beyond, M2 will be in either g or i, and M1

will be in c or d.

There is no simulation relation showing that M2 simulates M1, because it does
not.

A simulation relation is complete if it includes all possible plays of the game. It must
therefore account for all reachable states of M2, the machine that moves first, because
M2’s moves are unconstrained. Since M1’s moves are constrained by the need to match
M2, it is not necessary to account for all of its reachable states.

14.4.2 Formal Model

Using the formal model of nondeterministic FSMs given in Section 3.5.1, we can formally
define a simulation relation. Let

M1 = (States1, Inputs,Outputs, possibleUpdates1, initialState1),

and
M2 = (States2, Inputs,Outputs, possibleUpdates2, initialState2).

Assume the two machines are type equivalent. If either machine is deterministic, then its
possibleUpdates function always returns a set with only one element in it. IfM1 simulates
M2, the simulation relation is given as a subset of States2 × States1. Note the ordering
here; the machine that moves first in the game, M2, the one being simulated, is first in
States2 × States1.

To consider the reverse scenario, ifM2 simulatesM1, then the relation is given as a subset
of States1 × States2. In this version of the game M1 must move first.

We can state the “winning” strategy mathematically. We say that M1 simulates M2 if
there is a subset S ⊆ States2 × States1 such that

1. (initialState2, initialState1) ∈ S, and

Lee & Seshia, Introduction to Embedded Systems 391

http://LeeSeshia.org

14.4. SIMULATION

2. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2, y2) ∈ possibleUpdates2(s2, x),
there is a (s′1, y1) ∈ possibleUpdates1(s1, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1.

This set S, if it exists, is called the simulation relation. It establishes a correspondence
between states in the two machines. If it does not exist, then M1 does not simulate M2.

14.4.3 Transitivity

Simulation is transitive, meaning that ifM1 simulatesM2 andM2 simulatesM3, thenM1

simulates M3. In particular, if we are given simulation relations S2,1 ⊆ States2 × States1
(M1 simulates M2) and S3,2 ⊆ States3 × States2 (M2 simulates M3), then

S3,1 = {(s3, s1) ∈ States3 × States1 | there exists s2 ∈ States2 where
(s3, s2) ∈ S3,2 and (s2, s1) ∈ S2,1}

Example 14.11: For the machines in Figure 14.2, it is easy to show that (c)
simulates (b) and that (b) simulates (a). Specifically, the simulation relations are

Sa,b = {(a, ad), (b, be), (c, cf), (d, ad), (e, be), (f, cf)}.

and
Sb,c = {(ad, ad), (be, bcef), (cf, bcef)}.

By transitivity, we can conclude that (c) simulates (a), and that the simulation
relation is

Sa,c = {(a, ad), (b, bcef), (c, bcef), (d, ad), (e, bcef), (f, bcef)},

which further supports the suggestive choices of state names.

392 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

14.4.4 Non-Uniqueness of Simulation Relations

When a machine M1 simulates another machine M2, there may be more than one simu-
lation relation.

Example 14.12: In Figure 14.4, it is easy to check that M1 simulates M2. Note
that M1 is nondeterministic, and in two of its states it has two distinct ways of
matching the moves of M2. It can arbitrarily choose from among these possibili-
ties to match the moves. If from state b it always chooses to return to state a, then
the simulation relation is

S2,1 = {(ac, a), (bd, b)}.

Otherwise, if from state c it always chooses to return to state b, then the simulation
relation is

S2,1 = {(ac, a), (bd, b), (ac, c)}.

Otherwise, the simulation relation is

S2,1 = {(ac, a), (bd, b), (ac, c), (bd, d)}.

All three are valid simulation relations, so the simulation relation is not unique.

14.4.5 Simulation vs. Language Containment

As with all abstraction-refinement relations, simulation is typically used to relate a simpler
specificationM1 to a more complicated realizationM2. WhenM1 simulatesM2, then the
language of M1 contains the language of M2, but the guarantee is stronger than language
containment. This fact is summarized in the following theorem.

Theorem 14.1. Let M1 simulate M2. Then

L(M2) ⊆ L(M1).

Lee & Seshia, Introduction to Embedded Systems 393

http://LeeSeshia.org

14.4. SIMULATION

Figure 14.4: Two state machines that simulate each other, where there is more
than one simulation relation.

Proof. This theorem is easy to prove. Consider a behavior (x, y) ∈ L(M2). We need
to show that (x, y) ∈ L(M1).

Let the simulation relation be S. Find all possible execution traces for M2

((x0, s0, y0), (x1, s1, y1), (x2, s2, y2), · · ·),

that result in behavior (x, y). (If M2 is deterministic, then there will be only one
execution trace.) The simulation relation assures us that we can find an execution trace
for M1

((x0, s
′
0, y0), (x1, s

′
1, y1), (x2, s

′
2, y2), · · ·),

where (si, s
′
i) ∈ S, such that given input valuation xi, M1 produces yi. Thus,

(x, y) ∈ L(M1).

One use of this theorem is to show that M1 does not simulate M2 by showing that M2 has
behaviors that M1 does not have.

394 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Example 14.13: For the examples in Figure 14.2, M2 does not simulate M3. To
see this, just note that the language of M2 is a strict subset of the language of M3,

L(M2) ⊂ L(M3),

meaning that M3 has behaviors that M2 does not have.

It is important to understand what the theorem says, and what it does not say. It does not
say, for example, that if L(M2) ⊆ L(M1) thenM1 simulatesM2. In fact, this statement is
not true, as we have already shown with the examples in Figure 14.3. These two machines
have the same language. The two machines are observably different despite the fact that
their input/output behaviors are the same.

Of course, if M1 and M2 are deterministic and M1 simulates M2, then their languages
are identical and M2 simulates M1. Thus, the simulation relation differs from language
containment only for nondeterministic FSMs.

14.5 Bisimulation

It is possible to have two machines M1 and M2 where M1 simulates M2 and M2 simu-
lates M1, and yet the machines are observably different. Note that by the theorem in the
previous section, the languages of these two machines must be identical.

Example 14.14: Consider the two machines in Figure 14.5. These two machines
simulate each other, with simulation relations as follows:

S2,1 = {(e, a), (f, b), (h, b), (j, b), (g, c), (i, d), (k, c), (m, d)}

(M1 simulates M2), and

S1,2 = {(a, e), (b, j), (c, k), (d,m)}

(M2 simulates M1). However, there is a situation in which the two machines will
be observably different. In particular, suppose that the policies for making the

Lee & Seshia, Introduction to Embedded Systems 395

http://LeeSeshia.org

14.5. BISIMULATION

Figure 14.5: An example of two machines where M1 simulates M2, and M2 sim-
ulates M1, but they are not bisimilar.

nondeterministic choices for the two machines work as follows. In each reaction,
they flip a coin to see which machine gets to move first. Given an input valuation,
that machine makes a choice of move. The machine that moves second must be
able to match all of its possible choices. In this case, the machines can end up in a
state where one machine can no longer match all the possible moves of the other.

Specifically, suppose that in the first move M2 gets to move first. It has three
possible moves, and M1 will have to match all three. Suppose it chooses to move
to f or h. In the next round, if M1 gets to move first, then M2 can no longer match
all of its possible moves.

Notice that this argument does not undermine the observation that these machines
simulate each other. If in each round,M2 always moves first, thenM1 will always
be able to match its every move. Similarly, if in each round M1 moves first, then
M2 can always match its every move (by always choosing to move to j in the
first round). The observable difference arises from the ability to alternate which
machines moves first.

396 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

To ensure that two machines are observably identical in all environments, we need a
stronger equivalence relation called bisimulation. We say that M1 is bisimilar to M2 (or
M1 bisimulates M2) if we can play the matching game modified so that in each round
either machine can move first.

As in Section 14.4.2, we can use the formal model of nondeterministic FSMs to define a
bisimulation relation. Let

M1 = (States1, Inputs,Outputs, possibleUpdates1, initialState1), and

M2 = (States2, Inputs,Outputs, possibleUpdates2, initialState2).

Assume the two machines are type equivalent. If either machine is deterministic, then
its possibleUpdates function always returns a set with only one element in it. If M1

bisimulates M2, the simulation relation is given as a subset of States2 × States1. The
ordering here is not important because if M1 bisimulates M2, then M2 bisimulates M1.

We say that M1 bisimulates M2 if there is a subset S ⊆ States2 × States1 such that

1. (initialState2, initialState1) ∈ S, and

2. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′2, y2) ∈ possibleUpdates2(s2, x),
there is a (s′1, y1) ∈ possibleUpdates1(s1, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1, and

3. If (s2, s1) ∈ S, then ∀ x ∈ Inputs, and
∀ (s′1, y1) ∈ possibleUpdates1(s1, x),
there is a (s′2, y2) ∈ possibleUpdates2(s2, x) such that:

(a) (s′2, s
′
1) ∈ S, and

(b) y2 = y1.

This set S, if it exists, is called the bisimulation relation. It establishes a correspondence
between states in the two machines. If it does not exist, then M1 does not bisimulate M2.

Lee & Seshia, Introduction to Embedded Systems 397

http://LeeSeshia.org

14.6. SUMMARY

14.6 Summary

In this chapter, we have considered three increasingly strong abstraction-refinement re-
lations for FSMs. These relations enable designers to determine when one design can
safely replace another, or when one design correctly implements a specification. The first
relation is type refinement, which considers only the existence of input and output ports
and their data types. The second relation is language refinement, which considers the
sequences of valuations of inputs and outputs. The third relation is simulation, which
considers the state trajectories of the machines. In all three cases, we have provided both
a refinement relation and an equivalence relation. The strongest equivalence relation is
bisimulation, which ensures that two nondeterministic FSMs are indistinguishable from
each other.

398 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Exercises

1. In Figure 14.6 are four pairs of actors. For each pair, determine whether

• A and B are type equivalent,
• A is a type refinement of B,
• B is a type refinement of A, or
• none of the above.

x:{0,1}

A Bw:{0,1}
y: pure y: pure

(a)

x:{0,1}

A Bw:{0,1}
y: pure

(b)

x:{0,1}

A Bw:{0,1}
y: pure

(c)

x:{0,1}

A Bw:{0,1}
y: {0, 1}

(d)

Figure 14.6: Four pairs of actors whose type refinement relationships are ex-
plored in Exercise 1.

Lee & Seshia, Introduction to Embedded Systems 399

http://LeeSeshia.org

EXERCISES

2. In the box on page 384, a state machine M is given that accepts finite inputs x of
the form (1), (1, 0, 1), (1, 0, 1, 0, 1), etc.

(a) Write a regular expression that describes these inputs. You may ignore stut-
tering reactions.

(b) Describe the output sequences in La(M) in words, and give a regular expres-
sion for those output sequences. You may again ignore stuttering reactions.

(c) Create a state machine that accepts output sequences of the form (1), (1, 0, 1),
(1, 0, 1, 0, 1), etc. (see box on page 384). Assume the input x is pure and that
whenever the input is present, a present output is produced. Give a determin-
istic solution if there is one, or explain why there is no deterministic solution.
What input sequences does your machine accept?

3. The state machine in Figure 14.7 has the property that it outputs at least one 1
between any two 0’s. Construct a two-state nondeterministic state machine that
simulates this one and preserves that property. Give the simulation relation. Are
the machines bisimilar?

4. Consider the FSM in Figure 14.8, which recognizes an input code. The state ma-
chine in Figure 14.9 also recognizes the same code, but has more states than the
one in Figure 14.8. Show that it is equivalent by giving a bisimulation relation with
the machine in Figure 14.8.

5. Consider the state machine in Figure 14.10. Find a bisimilar state machine with
only two states, and give the bisimulation relation.

Figure 14.7: Machine that outputs at least one 1 between any two 0’s.

400 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

Figure 14.8: A machine that implements a code recognizer. It outputs recognize
at the end of every input subsequence 1100; otherwise it outputs absent .

Figure 14.9: A machine that implements a recognizer for the same code as in
Figure 14.8, but has more states.

Lee & Seshia, Introduction to Embedded Systems 401

http://LeeSeshia.org

EXERCISES

6. You are told that state machine A has one input x, and one output y, both with type
{1, 2}, and that it has states {a, b, c, d}. You are told nothing further. Do you have
enough information to construct a state machine B that simulates A? If so, give
such a state machine, and the simulation relation.

7. Consider a state machine with a pure input x, and output y of type {0, 1}. Assume
the states are

States = {a, b, c, d, e, f},

and the initial state is a. The update function is given by the following table (ignor-
ing stuttering):

(currentState, input) (nextState, output)
(a, x) (b, 1)

(b, x) (c, 0)

(c, x) (d, 0)

(d, x) (e, 1)

(e, x) (f, 0)

(f, x) (a, 0)

(a) Draw the state transition diagram for this machine.

(b) Ignoring stuttering, give all possible behaviors for this machine.

(c) Find a state machine with three states that is bisimilar to this one. Draw that
state machine, and give the bisimulation relation.

8. For each of the following questions, give a short answer and justification.

Figure 14.10: A machine that has more states than it needs.

402 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

14. EQUIVALENCE AND REFINEMENT

(a) TRUE or FALSE: Consider a state machine A that has one input x, and one
output y, both with type {1, 2} and a single state s, with two self loops labeled
true/1 and true/2. Then for any state machine B which has exactly the
same inputs and outputs (along with types), A simulates B.

(b) TRUE or FALSE: Suppose that f is an arbitrary LTL formula that holds for
state machine A, and that A simulates another state machine B. Then we can
safely assert that f holds for B.

(c) TRUE or FALSE: Suppose that A are B are two type-equivalent state ma-
chines, and that f is an LTL formula where the atomic propositions refer only
to the inputs and outputs of A and B, not to their states. If the LTL formula f
holds for state machine A, and A simulates state machine B, then f holds for
B.

Lee & Seshia, Introduction to Embedded Systems 403

http://LeeSeshia.org

15
Reachability Analysis and

Model Checking

15.1 Open and Closed Systems . 405
15.2 Reachability Analysis . 406

15.2.1 Verifying Gp . 407
15.2.2 Explicit-State Model Checking 409
15.2.3 Symbolic Model Checking 411

15.3 Abstraction in Model Checking . 413
15.4 Model Checking Liveness Properties 417

15.4.1 Properties as Automata . 418
15.4.2 Finding Acceptance Cycles 420

15.5 Summary . 423
Sidebar: Probing Further: Model Checking in Practice 424

Exercises . 425

Chapters 13 and 14 have introduced techniques for formally specifying properties and
models of systems, and for comparing such models. In this chapter, we will study algo-
rithmic techniques for formal verification — the problem of checking whether a system
satisfies its formal specification in its specified operating environment. In particular, we
study a technique called model checking. Model checking is an algorithmic method for
determining whether a system satisfies a formal specification expressed as a temporal

15. REACHABILITY ANALYSIS AND MODEL CHECKING

logic formula. It was introduced by Clarke and Emerson (1981) and Queille and Sifakis
(1981), which earned the creators the 2007 ACM Turing Award, the highest honor in
Computer Science.

Central to model checking is the notion of the set of reachable states of a system. Reach-
ability analysis is the process of computing the set of reachable states of a system. This
chapter presents basic algorithms and ideas in reachability analysis and model checking.
These algorithms are illustrated using examples drawn from embedded systems design,
including verification of high-level models, sequential and concurrent software, as well
as control and robot path planning. Model checking is a large and active area of research,
and a detailed treatment of the subject is out of the scope of this chapter; we refer the in-
terested reader to Clarke et al. (1999) and Holzmann (2004) for an in-depth introduction
to this field.

15.1 Open and Closed Systems

A closed system is one with no inputs. An open system, in contrast, is one that maintains
an ongoing interaction with its environment by receiving inputs and (possibly) generating
output to the environment. Figure 15.1 illustrates these concepts.

Techniques for formal verification are typically applied to a model of the closed system
M obtained by composing the model of the system S that is to be verified with a model
of its environment E. S and E are typically open systems, where all inputs to S are
generated by E and vice-versa. Thus, as shown in Figure 15.2, there are three inputs to
the verification process:

• A model of the system to be verified, S;
• A model of the environment, E, and

outin

(a) Open system

SO
out

(b) Closed system

SC

Figure 15.1: Open and closed systems.

Lee & Seshia, Introduction to Embedded Systems 405

http://LeeSeshia.org

15.2. REACHABILITY ANALYSIS

S

E

Φ

Compose Verify

Property

System

Environment

YES
[proof]

NO
counterexample

M

Figure 15.2: Formal verification procedure.

• The property to be verified Φ.

The verifier generates as output a YES/NO answer, indicating whether or not S satisfies
the property Φ in environment E. Typically, a NO output is accompanied by a counterex-
ample, also called an error trace, which is a trace of the system that indicates how Φ is
violated. Counterexamples are very useful aids in the debugging process. Some formal
verification tools also include a proof or certificate of correctness with a YES answer;
such an output can be useful for certification of system correctness.

The form of composition used to combine system model S with environment model E
depends on the form of the interaction between system and environment. Chapters 5
and 6 describe several ways to compose state machine models. All of these forms of
composition can be used in generating a verification model M from S and E. Note that
M can be nondeterministic.

For simplicity, in this chapter we will assume that system composition has already been
performed using one of the techniques presented in Chapters 5 and 6. All algorithms
discussed in the following sections will operate on the combined verification model M ,
and will be concerned with answering the question of whether M satisfies property Φ.
Additionally, we will assume that Φ is specified as a property in linear temporal logic.

15.2 Reachability Analysis

We consider first a special case of the model checking problem which is useful in practice.
Specifically, we assume that M is a finite-state machine and Φ is an LTL formula of the
form Gp, where p is a proposition. Recall from Chapter 13 that Gp is the temporal logic

406 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

formula that holds in a trace when the proposition p holds in every state of that trace. As
we have seen in Chapter 13, several system properties are expressible as Gp properties.

We will begin in Section 15.2.1 by illustrating how computing the reachable states of a
system enables one to verify a Gp property. In Section 15.2.2 we will describe a technique
for reachability analysis of finite-state machines based on explicit enumeration of states.
Finally, in Section 15.2.3, we will describe an alternative approach to analyze systems
with very large state spaces.

15.2.1 Verifying Gp

In order for a system M to satisfy Gp, where p is a proposition, every trace exhibitable
by M must satisfy Gp. This property can be verified by enumerating all states of M and
checking that every state satisfies p.

When M is finite-state, in theory, such enumeration is always possible. As shown in
Chapter 3, the state space of M can be viewed as a directed graph where the nodes of
the graph correspond to states of M and the edges correspond to transitions of M . This
graph is called the state graph ofM , and the set of all states is called its state space. With
this graph-theoretic viewpoint, one can see that checking Gp for a finite-state system M
corresponds to traversing the state graph forM , starting from the initial state and checking
that every state reached in this traversal satisfies p. Since M has a finite number of states,
this traversal must terminate.

Example 15.1: Let the system S be the traffic light controller of Figure 3.10 and
its environment E be the pedestrian model shown in Figure 3.11. Let M be the
synchronous composition of S and E as shown in Figure 15.3. Observe that M
is a closed system. Suppose that we wish to verify that M satisfies the property

G ¬(green ∧ crossing)

In other words, we want to verify that it is never the case that the traffic light is
green while pedestrians are crossing.

The composed system M is shown in Figure 15.4 as an extended FSM. Note that
M has no inputs or outputs. M is finite-state, with a total of 188 states (using
a similar calculation to that in Example 3.12). The graph in Figure 15.4 is not

Lee & Seshia, Introduction to Embedded Systems 407

http://LeeSeshia.org

15.2. REACHABILITY ANALYSIS

Figure 15.3: Composition of traffic light controller (Figure 3.10) and pedestrian
model (Figure 3.11).

the full state graph of M , because each node represents a set of states, one for
each different value of count in that node. However, through visual inspection
of this graph we can check for ourselves that no state satisfies the proposition
(green∧crossing), and hence every trace satisfies the LTL property G¬(green∧
crossing).

In practice, the seemingly simple task of verifying whether a finite-state system M satis-
fies a Gp property is not as straightforward as in the previous example for the following
reasons:

• Typically, one starts only with the initial state and transition function, and the state
graph must be constructed on the fly.

408 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

Figure 15.4: Extended state machine obtained from synchronous-reactive com-
position of traffic light controller and pedestrian models. Note that this is nonde-
terministic.

• The system might have a huge number of states, possibly exponential in the size of
the syntactic description of M . As a consequence, the state graph cannot be repre-
sented using traditional data structures such as an adjacency or incidence matrix.

The next two sections describe how these challenges can be handled.

15.2.2 Explicit-State Model Checking

In this section, we discuss how to compute the reachable state set by generating and
traversing the state graph on the fly.

First, recall that the system of interest M is closed, finite-state, and can be nondetermin-
istic. Since M has no inputs, its set of possible next states is a function of its current state
alone. We denote this transition relation ofM by δ, which is only a function of the current
state of M , in contrast to the possibleUpdates function introduced in Chapter 3 which is

Lee & Seshia, Introduction to Embedded Systems 409

http://LeeSeshia.org

15.2. REACHABILITY ANALYSIS

also a function of the current input. Thus, δ(s) is the set of possible next states from state
s of M .

Algorithm 15.1 computes the set of reachable states of M , given its initial state s0 and
transition relation δ. Procedure DFS Search performs a depth-first traversal of the state
graph of M , starting with state s0. The graph is generated on-the-fly by repeatedly apply-
ing δ to states visited during the traversal.

Input : Initial state s0 and transition relation δ for closed finite-state
system M

Output: Set R of reachable states of M

1 Initialize: Stack Σ to contain a single state s0; Current set of reached
states R := {s0}.

2 DFS Search() {
3 while Stack Σ is not empty do
4 Pop the state s at the top of Σ
5 Compute δ(s), the set of all states reachable from s in one

transition
6 for each s′ ∈ δ(s) do
7 if s′ 6∈ R then
8 R := R ∪ {s′}
9 Push s′ onto Σ

10 end
11 end
12 end
13 }

Algorithm 15.1: Computing the reachable state set by depth-first explicit-state
search.

The main data structures required by the algorithm are Σ, the stack storing the current
path in the state graph being explored from s0, and R, the current set of states reached
during traversal. Since M is finite-state, at some point all states reachable from s0 will
be in R, which implies that no new states will be pushed onto Σ and thus Σ will become
empty. Hence, procedure DFS Search terminates and the value of R at the end of the
procedure is the set of all reachable states of M .

The space and time requirements for this algorithm are linear in the size of the state graph
(see Appendix B for an introduction to such complexity notions). However, the number of
nodes and edges in the state graph of M can be exponential in the size of the descriptions
of S and E. For example, if S and E together have 100 Boolean state variables (a small

410 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

number in practice!), the state graph of M can have a total of 2100 states, far more than
what contemporary computers can store in main memory. Therefore, explicit-state search
algorithms such as DFS Search must be augmented with state compression techniques.
Some of these techniques are reviewed in the sidebar on page 424.

A challenge for model checking concurrent systems is the state-explosion problem.
Recall that the state space of a composition of k finite-state systems M1,M2, . . . ,Mk

(say, using synchronous composition), is the cartesian product of the state spaces of
M1,M2, . . . ,Mk. In other words, if M1,M2, . . . ,Mk have n1, n2, . . . , nk states respec-
tively, their composition can have Πk

i=1ni states. It is easy to see that the number of states
of a concurrent composition of k components grows exponentially with k. Explicitly rep-
resenting the state space of the composite system does not scale. In the next section, we
will introduce techniques that can mitigate this problem in some cases.

15.2.3 Symbolic Model Checking

The key idea in symbolic model checking is to represent a set of states symbolically as
a propositional logic formula, rather than explicitly as a collection of individual states.
Specialized data structures are often used to efficiently represent and manipulate such
formulas. Thus, in contrast to explicit-state model checking, in which individual states
are manipulated, symbolic model checking operates on sets of states.

Algorithm 15.2 (Symbolic Search) is a symbolic algorithm for computing the set of
reachable states of a closed, finite-state system M . This algorithm has the same input-
output specification as the previous explicit-state algorithm DFS Search; however, all
operations in Symbolic Search are set operations.

In algorithm Symbolic Search, R represents the entire set of states reached at any point
in the search, and Rnew represents the new states generated at that point. When no more
new states are generated, the algorithm terminates, with R storing all states reachable
from s0. The key step of the algorithm is line 5, in which Rnew is computed as the set
of all states s′ reachable from any state s in R in one step of the transition relation δ.
This operation is called image computation, since it involves computing the image of
the function δ. Efficient implementations of image computation that directly operate on
propositional logic formulas are central to symbolic reachability algorithms. Apart from
image computation, the key set operations in Symbolic Search include set union and
emptiness checking.

Lee & Seshia, Introduction to Embedded Systems 411

http://LeeSeshia.org

15.2. REACHABILITY ANALYSIS

Input : Initial state s0 and transition relation δ for closed finite-state
system M , represented symbolically

Output: Set R of reachable states of M , represented symbolically

1 Initialize: Current set of reached states R = {s0}
2 Symbolic Search() {
3 Rnew = R
4 while Rnew 6= ∅ do
5 Rnew := {s′ | ∃s ∈ R s.t. s′ ∈ δ(s) ∧ s′ 6∈ R}
6 R := R ∪Rnew

7 end
8 }

Algorithm 15.2: Computing the reachable state set by symbolic search.

Example 15.2: We illustrate symbolic reachability analysis using the finite-state
system in Figure 15.4.

To begin with, we need to introduce some notation. Let vl be a variable denoting
the state of the traffic light controller FSM S at the start of each reaction; i.e., vl ∈
{green, yellow, red, pending}. Similarly, let vp denote the state of the pedestrian
FSM E, where vp ∈ {crossing, none,waiting}.
Given this notation, the initial state set {s0} of the composite system M is repre-
sented as the following propositional logical formula:

vl = red ∧ vp = crossing ∧ count = 0

From s0, the only enabled outgoing transition is the self-loop on the initial state
of the extended FSM in Figure 15.4. Thus, after one step of reachability compu-
tation, the set of reached states R is represented by the following formula:

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 1

After two steps, R is given by

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 2

and after k steps, k ≤ 60, R is represented by the formula

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ k

412 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

On the 61st step, we exit the state (red, crossing), and compute R as

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 60

∨ vl = green ∧ vp = none ∧ count = 0

Proceeding similarly, the set of reachable states R is grown until there is no fur-
ther change. The final reachable set is represented as:

vl = red ∧ vp = crossing ∧ 0 ≤ count ≤ 60

∨ vl = green ∧ vp = none ∧ 0 ≤ count ≤ 60

∨ vl = pending ∧ vp = waiting ∧ 0 < count ≤ 60

∨ vl = yellow ∧ vp = waiting ∧ 0 ≤ count ≤ 5

In practice, the symbolic representation is much more compact than the explicit one. The
previous example illustrates this nicely because a large number of states are compactly
represented by inequalities like 0 < count ≤ 60. Computer programs can be designed
to operate directly on the symbolic representation. Some examples of such programs are
given in the box on page 424.

Symbolic model checking has been used successfully to address the state-explosion prob-
lem for many classes of systems, most notably for hardware models. However, in the
worst case, even symbolic set representations can be exponential in the number of system
variables.

15.3 Abstraction in Model Checking

A challenge in model checking is to work with the simplest abstraction of a system that
will provide the required proofs of safety. Simpler abstractions have smaller state spaces
and can be checked more efficiently. The challenge, of course, is to know what details to
omit from the abstraction.

The part of the system to be abstracted away depends on the property to be verified. The
following example illustrates this point.

Lee & Seshia, Introduction to Embedded Systems 413

http://LeeSeshia.org

15.3. ABSTRACTION IN MODEL CHECKING

Example 15.3: Consider the traffic light systemM in Figure 15.4. Suppose that,
as in Example 15.1 we wish to verify that M satisfies the property

G ¬(green ∧ crossing)

Suppose we abstract the variable count away from M by hiding all references to
count from the model, including all guards mentioning it and all updates to it.
This generates the abstract model Mabs shown in Figure 15.5.

We observe that this abstract Mabs exhibits more behaviors than M . For instance,
from the state (yellow,waiting) we can take the self-loop transition forever, stay-
ing in that state perennially, even though in the actual system M this state must
be exited within five clock ticks. Moreover, every behavior ofM can be exhibited
by Mabs.

The interesting point is that, even with this approximation, we can prove thatMabs
satisfies G ¬(green∧crossing). The value of count is irrelevant for this property.

Notice that while M has 188 states, Mabs has only 4 states. Reachability analysis
on Mabs is far easier than for M as we have far fewer states to explore.

There are several ways to compute an abstraction. One of the simple and extremely
useful approaches is called localization reduction or localization abstraction (Kurshan
(1994)). In localization reduction, parts of the design model that are irrelevant to the
property being checked are abstracted away by hiding a subset of state variables. Hiding
a variable corresponds to freeing that variable to evolve arbitrarily. It is the form of
abstraction used in Example 15.3 above, where count is allowed to change arbitrarily, and
all transitions are made independent of the value of count.

Example 15.4: Consider the multithreaded program given below (adapted
from Ball et al. (2001)). The procedure lock unlock executes a loop within
which it acquires a lock, then calls the function randomCall, based on whose
result it either releases the lock and executes another loop iteration, or it quits
the loop (and then releases the lock). The execution of another loop iteration is

414 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

Figure 15.5: Abstraction of the traffic light system in Figure 15.4.

ensured by incrementing new, so that the condition old != new evaluates to
true.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2 unsigned int old, new;
3

4 void lock_unlock() {
5 do {
6 pthread_mutex_lock(&lock);
7 old = new;
8 if (randomCall()) {
9 pthread_mutex_unlock(&lock);

10 new++;
11 }
12 } while (old != new)
13 pthread_mutex_unlock(&lock);
14 }

Suppose the property we want to verify is that the code does not attempt to call
pthread mutex lock twice in a row. Recall from Section 11.2.4 how the
system can deadlock if a thread becomes permanently blocked trying to acquire a
lock. This could happen in the above example if the thread, already holding lock
lock, attempts to acquire it again.

Lee & Seshia, Introduction to Embedded Systems 415

http://LeeSeshia.org

15.3. ABSTRACTION IN MODEL CHECKING

If we model this program exactly, without any abstraction, then we need to reason
about all possible values of old and new, in addition to the remaining state of the
program. Assuming a word size of 32 in this system, the size of the state space is
roughly 232 × 232 × n, where 232 is the number of values of old and new, and
n denotes the size of the remainder of the state space.

However, it is not necessary to reason about the precise values of old and new
to prove that this program is correct. Assume, for this example, that our pro-
gramming language is equipped with a boolean type. Assume further that the
program can perform nondeterministic assignments. Then, we can generate the
following abstraction of the original program, written in C-like syntax, where the
Boolean variable b represents the predicate old == new.

1 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
2 boolean b; // b represents the predicate (old == new)
3 void lock_unlock() {
4 do {
5 pthread_mutex_lock(&lock);
6 b = true;
7 if (randomCall()) {
8 pthread_mutex_unlock(&lock);
9 b = false;

10 }
11 } while (!b)
12 pthread_mutex_unlock(&lock);
13 }

It is easy to see that this abstraction retains just enough information to show that
the program satisfies the desired property. Specifically, the lock will not be ac-
quired twice because the loop is only iterated if b is set to false, which implies
that the lock was released before the next attempt to acquire.

Moreover, observe that size of the state space to be explored has reduced to simply
2n. This is the power of using the “right” abstraction.

A major challenge for formal verification is to automatically compute simple abstrac-
tions. An effective and widely-used technique is counterexample-guided abstraction
refinement (CEGAR), first introduced by Clarke et al. (2000). The basic idea (when
using localization reduction) is to start by hiding almost all state variables except those
referenced by the temporal logic property. The resulting abstract system will have more

416 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

behaviors than the original system. Therefore, if this abstract system satisfies an LTL
formula Φ (i.e., each of its behaviors satisfies Φ), then so does the original. However, if
the abstract system does not satisfy Φ, the model checker generates a counterexample. If
this counterexample is a counterexample for the original system, the process terminates,
having found a genuine counterexample. Otherwise, the CEGAR approach analyzes this
counterexample to infer which hidden variables must be made visible, and with these ad-
ditional variables, recomputes an abstraction. The process continues, terminating either
with some abstract system being proven correct, or generating a valid counterexample for
the original system.

The CEGAR approach and several follow-up ideas have been instrumental in driving
progress in the area of software model checking. We review some of the key ideas in the
sidebar on page 424.

15.4 Model Checking Liveness Properties

So far, we have restricted ourselves to verifying properties of the form Gp, where p is an
atomic proposition. An assertion that Gp holds for all traces is a very restricted kind of
safety property. However, as we have seen in Chapter 13, several useful system properties
are not safety properties. For instance, the property stating that “the robot must visit
location A” is a liveness property: if visiting location A is represented by proposition q,
then this property is an assertion that Fq must hold for all traces. In fact, several problems,
including path planning problems for robotics and progress properties of distributed and
concurrent systems can be stated as liveness properties. It is therefore useful to extend
model checking to handle this class of properties.

Properties of the form Fp, though liveness properties, can be partially checked using the
techniques introduced earlier in this chapter. Recall from Chapter 13 that Fp holds for
a trace if and only if ¬G¬p holds for the same trace. In words, “p is true some time in
the future” iff “¬p is always false.” Therefore, we can attempt to verify that the system
satisfies G¬p. If the verifier asserts that G¬p holds for all traces, then we know that
Fp does not hold for any trace. On the other hand, if the verifier outputs “NO”, then
the accompanying counterexample provides a witness exhibiting how p may become true
eventually. This witness provides one trace for which Fp holds, but it does not prove that
Fp holds for all traces (unless the machine is deterministic).

Lee & Seshia, Introduction to Embedded Systems 417

http://LeeSeshia.org

15.4. MODEL CHECKING LIVENESS PROPERTIES

More complete checks and more complicated liveness properties require a more sophis-
ticated approach. Briefly, one approach used in explicit-state model checking of LTL
properties is as follows:

1. Represent the negation of the property Φ as an automaton B, where certain states
are labeled as accepting states.

2. Construct the synchronous composition of the property automaton B and the sys-
tem automatonM . The accepting states of the property automaton induce accepting
states of the product automaton MB .

3. If the product automaton MB can visit an accepting state infinitely often, then it
indicates that M does not satisfy Φ; otherwise, M satisfies Φ.

The above approach is known as the automata-theoretic approach to verification. We
give a brief introduction to this subject in the rest of this section. Further details may be
found in the seminal papers on this topic (Wolper et al. (1983); Vardi and Wolper (1986))
and the book on the SPIN model checker (Holzmann (2004)).

15.4.1 Properties as Automata

Consider the first step of viewing properties as automata. Recall the material on omega-
regular languages introduced in the box on page 386. The theory of Büchi automata and
omega-regular languages, briefly introduced there, is relevant for model checking liveness
properties. Roughly speaking, an LTL property Φ has a one-to-one correspondence with a
set of behaviors that satisfy Φ. This set of behaviors constitutes the language of the Büchi
automaton corresponding to Φ.

For the LTL model checking approach we describe here, if Φ is the property that the
system must satisfy, then we represent its negation ¬Φ as a Büchi automaton. We present
some illustrative examples below.

Example 15.5: Suppose that an FSM M1 models a system that executes forever
and produces a pure output h (for heartbeat), and that it is required to produce this
output at least once every three reactions. That is, if in two successive reactions
it fails to produce the output h, then in the third it must.

418 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

We can formulate this property in LTL as the property Φ1 below:

G(h ∨Xh ∨X2h)

and the negation of this property is

F(¬h ∧X¬h ∧X2¬h)

The Büchi automaton B1 corresponding to the negation of the desired property is
given below:

Let us examine this automaton. The language accepted by this automaton in-
cludes all behaviors that enter and stay in state d. Equivalently, the language
includes all behaviors that produce a present output on f in some reaction. When
we compose the above machine with M1, if the resulting composite machine can
never produce f = present, then the language accepted by the composite machine
is empty. If we can prove that the language is empty, then we have proved that M
produces the heartbeat h at least once every three reactions.

Observe that the property Φ1 in the above example is in fact a safety property. We give
an example of a liveness property below.

Example 15.6: Suppose that the FSM M2 models a controller for a robot that
must locate a room and stay there forever. Let p be the proposition that becomes
true when the robot is in the target room. Then, the desired property Φ2 can be
expressed in LTL as FGp.

The negation of this property is GF¬p. The Büchi automaton B2 corresponding
to this negated property is given below:

Lee & Seshia, Introduction to Embedded Systems 419

http://LeeSeshia.org

15.4. MODEL CHECKING LIVENESS PROPERTIES

Notice that all accepting behaviors of B2 correspond to those where ¬p holds
infinitely often. These behaviors correspond to a cycle in the state graph for the
product automaton where state b of B2 is visited repeatedly. This cycle is known
as an acceptance cycle.

Liveness properties of the form GFp also occur naturally as specifications. This form of
property is useful in stating fairness properties which assert that certain desirable proper-
ties hold infinitely many times, as illustrated in the following example.

Example 15.7: Consider a traffic light system such as that in Example 3.10. We
may wish to assert that the traffic light becomes green infinitely many times in
any execution. In other words, the state green is visited infinitely often, which
can be expressed as Φ3 = GF green.

The automaton corresponding to Φ3 is identical to that for the negation of Φ2

in Example 15.6 above with ¬p replaced by green. However, in this case the
accepting behaviors of this automaton are the desired behaviors.

Thus, from these examples we see that the problem of detecting whether a certain ac-
cepting state s in an FSM can be visited infinitely often is the workhorse of explicit-state
model checking of LTL properties. We next present an algorithm for this problem.

15.4.2 Finding Acceptance Cycles

We consider the following problem:

420 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

Given a finite-state system M , can an accepting state sa of M be visited
infinitely often?

Put another way, we seek an algorithm to check whether (i) state sa is reachable from
the initial state s0 of M , and (ii) sa is reachable from itself. Note that asking whether a
state can be visited infinitely often is not the same as asking whether it must be visited
infinitely often.

The graph-theoretic viewpoint is useful for this problem, as it was in the case of Gp
discussed in Section 15.2.1. Assume for the sake of argument that we have the entire state
graph constructed a priori. Then, the problem of checking whether state sa is reachable
from s0 is simply a graph traversal problem, solvable for example by depth-first search
(DFS). Further, the problem of detecting whether sa is reachable from itself amounts to
checking whether there is a cycle in the state graph containing that state.

The main challenges for solving this problem are similar to those discussed in Sec-
tion 15.2.1: we must perform this search on-the-fly, and we must deal with large state
spaces.

The nested depth-first search (nested DFS) algorithm, which is implemented in the SPIN
model checker (Holzmann (2004)), solves this problem and is shown as Algorithm 15.3.
The algorithm begins by calling the procedure called Nested DFS Search with argument
1, as shown in the Main function at the bottom. MB is obtained by composing the original
closed system M with the automaton B representing the negation of LTL formula Φ.

As the name suggests, the idea is to perform two depth-first searches, one nested inside the
other. The first DFS identifies a path from initial state s0 to the target accepting state sa.
Then, from sa we start another DFS to see if we can reach sa again. The variable mode
is either 1 or 2 depending on whether we are performing the first DFS or the second.
Stacks Σ1 and Σ2 are used in the searches performed in modes 1 and 2 respectively. If
sa is encountered in the second DFS, the algorithm generates as output the path leading
from s0 to sa with a loop on sa. The path from s0 to sa is obtained simply by reading off
the contents of stack Σ1. Likewise, the cycle from sa to itself is obtained from stack Σ2.
Otherwise, the algorithm reports failure.

Search optimization and state compression techniques that are used in explicit-state reach-
ability analysis can be used with nested DFS also. Further details are available in Holz-
mann (2004).

Lee & Seshia, Introduction to Embedded Systems 421

http://LeeSeshia.org

15.4. MODEL CHECKING LIVENESS PROPERTIES

Input : Initial state s0 and transition relation δ for automaton MB ; Target
accepting state sa of MB

Output: Acceptance cycle containing sa, if one exists

1 Initialize: (i) Stack Σ1 to contain a single state s0, and stack Σ2 to be empty;
(ii) Two sets of reached states R1 := R2 := {s0}; (iii) Flag found := false.

2 Nested DFS Search(Mode mode) {
3 while Stack Σmode is not empty do
4 Pop the state s at the top of Σmode

5 if (s = sa and mode = 1) then
6 Push s onto Σ2

7 Nested DFS Search(2)
8 return
9 end

10 Compute δ(s), the set of all states reachable from s in one transition
11 for each s′ ∈ δ(s) do
12 if (s′ = sa and mode = 2) then
13 Output path to sa with acceptance cycle using contents of

stacks Σ1 and Σ2

14 found := true
15 return
16 end
17 if s′ 6∈ Rmode then
18 Rmode := Rmode ∪ {s′}
19 Push s′ onto Σmode

20 Nested DFS Search(mode)
21 end
22 end
23 end
24 }
25 Main() {
26 Nested DFS Search(1)
27 if (found = false) then Output “no acceptance cycle with sa” end }
28

Algorithm 15.3: Nested depth-first search algorithm.

422 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

15.5 Summary

This chapter gives some basic algorithms for formal verification, including model check-
ing, a technique for verifying if a finite-state system satisfies a property specified in tem-
poral logic. Verification operates on closed systems, which are obtained by composing a
system with its operating environment. The first key concept is that of reachability anal-
ysis, which verifies properties of the form Gp. The concept of abstraction, central to the
scalability of model checking, is also discussed in this chapter. This chapter also shows
how explicit-state model checking algorithms can handle liveness properties, where a cru-
cial concept is the correspondence between properties and automata.

Lee & Seshia, Introduction to Embedded Systems 423

http://LeeSeshia.org

15.5. SUMMARY

Probing Further: Model Checking in Practice

Several tools are available for computing the set of reachable states of a finite-state
system and checking that they satisfy specifications in temporal logic. One such tool
is SMV (symbolic model verifier), which was first developed at Carnegie Mellon Uni-
versity by Kenneth McMillan. SMV was the first model checking tool to use binary
decision diagrams (BDDs), a compact data structure introduced by Bryant (1986) for
representing a Boolean function. The use of BDDs has proved instrumental in enabling
analysis of more complex systems. Current symbolic model checkers also rely heav-
ily on Boolean satisfiability (SAT) solvers (see Malik and Zhang (2009)), which are
programs for deciding whether a propositional logic formula can evaluate to true. One
of the first uses of SAT solvers in model checking was for bounded model checking
(see Biere et al. (1999)), where the transition relation of the system is unrolled only a
bounded number of times. A few different versions of SMV are available online (see
for example http://nusmv.fbk.eu/).

The SPIN model checker (Holzmann, 2004) developed in the 1980’s and 1990’s at
Bell Labs by Gerard Holzmann and others, is another leading tool for model checking
(see http://www.spinroot.com/). Rather than directly representing models as
communicating FSMs, it uses a specification language (called Promela, for process
meta language) that enables specifications that closely resemble multithreaded pro-
grams. SPIN incorporates state-compression techniques such as hash compaction (the
use of hashing to reduce the size of the stored state set) and partial-order reduction (a
technique to reduce the number of reachable states to be explored by considering only
a subset of the possible process interleavings).

Automatic abstraction has played a big role in applying model checking directly to
software. An example of abstraction-based software model checking is the SLAM
system developed at Microsoft Research (Ball and Rajamani, 2001; Ball et al., 2011).
SLAM combines CEGAR with a particular form of abstraction called predicate ab-
straction, in which predicates in a program are abstracted to Boolean variables. A
key step in these techniques is checking whether a counterexample generated on the
abstract model is in fact a true counterexample. This check is performed using sat-
isfiability solvers for logics richer than propositional logic. These solvers are called
SAT-based decision procedures or satisfiability modulo theories (SMT) solvers (for
more details, see Barrett et al. (2009)).

More recently, techniques based on inductive learning, that is, generalization from
sample data, have started playing an important role in formal verification (see Seshia
(2015) for an exposition of this topic).

424 Lee & Seshia, Introduction to Embedded Systems

http://nusmv.fbk.eu/
http://www.spinroot.com/
http://LeeSeshia.org

15. REACHABILITY ANALYSIS AND MODEL CHECKING

Exercises

1. Consider the system M modeled by the hierarchical state machine of Figure 13.2,
which models an interrupt-driven program.

Model M in the modeling language of a verification tool (such as SPIN). You will
have to construct an environment model that asserts the interrupt. Use the verifica-
tion tool to check whether M satisfies φ, the property stated in Exercise 5:

φ: The main program eventually reaches program location C.

Explain the output you obtain from the verification tool.

2. Figure 15.3 shows the synchronous-reactive composition of the traffic light con-
troller of Figure 3.10 and the pedestrian model of Figure 3.11.

Consider replacing the pedestrian model in Figure 15.3 with the alternative model
given below where the initial state is nondeterministically chosen to be one of none
or crossing:

(a) Model the composite system in the modeling language of a verification tool
(such as SPIN). How many reachable states does the combined system have?
How many of these are initial states?

(b) Formulate an LTL property stating that every time a pedestrian arrives, even-
tually the pedestrian is allowed to cross (i.e., the traffic light enters state red).

(c) Use the verification tool to check whether the model constructed in part (a)
satisfies the LTL property specified in part (b). Explain the output of the tool.

Lee & Seshia, Introduction to Embedded Systems 425

http://LeeSeshia.org

EXERCISES

3. The notion of reachability has a nice symmetry. Instead of describing all states that
are reachable from some initial state, it is just as easy to describe all states from
which some state can be reached. Given a finite-state system M , the backward
reachable states of a set F of states is the set B of all states from which some
state in F can be reached. The following algorithm computes the set of backward
reachable states for a given set of states F :

Input : A set F of states and transition relation δ for closed finite-state system M
Output: Set B of backward reachable states from F in M

1 Initialize: B := F

2 Bnew := B
3 while Bnew 6= ∅ do
4 Bnew := {s | ∃s′ ∈ B s.t. s′ ∈ δ(s) ∧ s 6∈ B}
5 B := B ∪Bnew

6 end

Explain how this algorithm can check the property Gp on M , where p is some
property that is easily checked for each state s in M . You may assume that M has
exactly one initial state s0.

426 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16
Quantitative Analysis

16.1 Problems of Interest . 428
16.1.1 Extreme-Case Analysis . 429
16.1.2 Threshold Analysis . 429
16.1.3 Average-Case Analysis . 430

16.2 Programs as Graphs . 430
16.2.1 Basic Blocks . 431
16.2.2 Control-Flow Graphs . 432
16.2.3 Function Calls . 432

16.3 Factors Determining Execution Time 435
16.3.1 Loop Bounds . 436
16.3.2 Exponential Path Space . 438
16.3.3 Path Feasibility . 439
16.3.4 Memory Hierarchy . 440

16.4 Basics of Execution Time Analysis 442
16.4.1 Optimization Formulation 442
16.4.2 Logical Flow Constraints . 445
16.4.3 Bounds for Basic Blocks . 449

16.5 Other Quantitative Analysis Problems 451
16.5.1 Memory-bound Analysis . 451
16.5.2 Power and Energy Analysis 452

16.6 Summary . 452
Sidebar: Tools for Execution-Time Analysis 454

Exercises . 455

16.1. PROBLEMS OF INTEREST

Will my brake-by-wire system actuate the brakes within one millisecond? Answering this
question requires, in part, an execution-time analysis of the software that runs on the
electronic control unit (ECU) for the brake-by-wire system. Execution time of the soft-
ware is an example of a quantitative property of an embedded system. The constraint
that the system actuate the brakes within one millisecond is a quantitative constraint.
The analysis of quantitative properties for conformance with quantitative constraints is
central to the correctness of embedded systems and is the topic of the present chapter.

A quantitative property of an embedded system is any property that can be measured.
This includes physical parameters, such as position or velocity of a vehicle controlled by
the embedded system, weight of the system, operating temperature, power consumption,
or reaction time. Our focus in this chapter is on properties of software-controlled sys-
tems, with particular attention to execution time. We present program analysis techniques
that can ensure that execution time constraints will be met. We also discuss how similar
techniques can be used to analyze other quantitative properties of software, particularly
resource usage such as power, energy, and memory.

The analysis of quantitative properties requires adequate models of both the software com-
ponents of the system and of the environment in which the software executes. The envi-
ronment includes the processor, operating system, input-output devices, physical compo-
nents with which the software interacts, and (if applicable) the communication network.
The environment is sometimes also referred to as the platform on which the software ex-
ecutes. Providing a comprehensive treatment of execution time analysis would require
much more than one chapter. The goal of this chapter is more modest. We illustrate
key features of programs and their environment that must be considered in quantitative
analysis, and we describe qualitatively some analysis techniques that are used. For con-
creteness, we focus on a single quantity, execution time, and only briefly discuss other
resource-related quantitative properties.

16.1 Problems of Interest

The typical quantitative analysis problem involves a software task defined by a program
P , the environment E in which the program executes, and the quantity of interest q. We
assume that q can be given by a function of fP as follows,

q = fP (x,w)

428 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

where x denotes the inputs to the program P (such as data read from memory or from sen-
sors, or data received over a network), andw denotes the environment parameters (such as
network delays or the contents of the cache when the program begins executing). Defin-
ing the function fP completely is often neither feasible nor necessary; instead, practical
quantitative analysis will yield extreme values for q (highest or lowest values), average
values for q, or proofs that q satisfies certain threshold constraints. We elaborate on these
next.

16.1.1 Extreme-Case Analysis

In extreme-case analysis, we may want to estimate the largest value of q for all values of
x and w,

max
x,w

fP (x,w). (16.1)

Alternatively, it can be useful to estimate the smallest value of q:

min
x,w

fP (x,w). (16.2)

If q represents execution time of a program or a program fragment, then the largest value is
called the worst-case execution time (WCET), and the smallest value is called the best-
case execution time (BCET). It may be difficult to determine these numbers exactly, but
for many applications, an upper bound on the WCET or a lower bound on the BCET is
all that is needed. In each case, when the computed bound equals the actual WCET or
BCET, it is said to be a tight bound; otherwise, if there is a considerable gap between the
actual value and the computed bound, it is said to be a loose bound. Computing loose
bounds may be much easier than finding tight bounds.

16.1.2 Threshold Analysis

A threshold property asks whether the quantity q is always bounded above or below by
a threshold T , for any choice of x and w. Formally, the property can be expressed as

∀x,w, fP (x,w) ≤ T (16.3)

or
∀x,w, fP (x,w) ≥ T (16.4)

Lee & Seshia, Introduction to Embedded Systems 429

http://LeeSeshia.org

16.2. PROGRAMS AS GRAPHS

Threshold analysis may provide assurances that a quantitative constraint is met, such as
the requirement that a brake-by-wire system actuate the brakes within one millisecond.

Threshold analysis may be easier to perform than extreme-case analysis. Unlike extreme-
case analysis, threshold analysis does not require us to determine the maximum or mini-
mum value exactly, or even to find a tight bound on these values. Instead, the analysis is
provided some guidance in the form of the target value T . Of course, it might be possible
to use extreme-case analysis to check a threshold property. Specifically, Constraint 16.3
holds if the WCET does not exceed T , and Constraint 16.4 holds if the BCET is not less
than T .

16.1.3 Average-Case Analysis

Often one is interested more in typical resource usage rather than in worst-case scenarios.
This is formalized as average-case analysis. Here, the values of input x and environment
parameter w are assumed to be drawn randomly from a space of possible values X and
W according to probability distributions Dx and Dw respectively. Formally, we seek to
estimate the value

EDx,DwfP (x,w) (16.5)

where EDx,Dw denotes the expected value of fP (x,w) over the distributions Dx and Dw.

One difficulty in average-case analysis is to define realistic distributions Dx and Dw that
capture the true distribution of inputs and environment parameters with which a program
will execute.

In the rest of this chapter, we will focus on a single representative problem, namely,
WCET estimation.

16.2 Programs as Graphs

A fundamental abstraction used often in program analysis is to represent a program as a
graph indicating the flow of control from one code segment to another. We will illustrate
this abstraction and other concepts in this chapter using the following running example:

430 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

Example 16.1: Consider the function modexp that performs modular expo-
nentiation, a key step in many cryptographic algorithms. In modular exponen-
tiation, given a base b, an exponent e, and a modulus m, one must compute
be mod m. In the program below, base, exponent and mod represent b, e
and m respectively. EXP BITS denotes the number of bits in the exponent. The
function uses a standard shift-square-accumulate algorithm, where the base is
repeatedly squared, once for each bit position of the exponent, and the base is
accumulated into the result only if the corresponding bit is set.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp(UI base, UI exponent, UI mod) {
6 int i;
7 UI result = 1;
8

9 i = EXP_BITS;
10 while(i > 0) {
11 if ((exponent & 1) == 1) {
12 result = (result * base) % mod;
13 }
14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;
17 }
18 return result;
19 }

16.2.1 Basic Blocks

A basic block is a sequence of consecutive program statements in which the flow of
control enters only at the beginning of this sequence and leaves only at the end, without
halting or the possibility of branching except at the end.

Lee & Seshia, Introduction to Embedded Systems 431

http://LeeSeshia.org

16.2. PROGRAMS AS GRAPHS

Example 16.2: The following three statements from the modexp function in
Example 16.1 form a basic block:

14 exponent >>= 1;
15 base = (base * base) % mod;
16 i--;

Another example of a basic block includes the initializations at the top of the
function, comprising lines 7 and 9:

7 result = 1;
8

9 i = EXP_BITS;

16.2.2 Control-Flow Graphs

A control-flow graph (CFG) of a program P is a directed graph G = (V,E), where the
set of vertices V comprises basic blocks of P , and the set of edges E indicates the flow
of control between basic blocks. Figure 16.1 depicts the CFG for the modexp program
of Example 16.1. Each node of the CFG is labeled with its corresponding basic block. In
most cases, this is simply the code as it appears in Example 16.1. The only exception is
for conditional statements, such as the conditions in while loops and if statements; in
these cases, we follow the convention of labeling the node with the condition followed by
a question mark to indicate the conditional branch.

Although our illustrative example of a control-flow graph is at the level of C source code,
it is possible to use the CFG representation at other levels of program representation
as well, including a high-level model as well as low-level assembly code. The level of
representation employed depends on the level of detail required by the context. To make
them easier to follow, our control-flow graphs will be at the level of source code.

16.2.3 Function Calls

Programs are typically decomposed into several functions in order to systematically or-
ganize the code and promote reuse and readability. The control-flow graph (CFG) repre-
sentation can be extended to reason about code with function calls by introducing special

432 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

call and return edges. These edges connect the CFG of the caller function – the one
making the function call – to that of the callee function – the one being called. A call
edge indicates a transfer of control from the caller to the callee. A return edge indicates
a transfer of control from the callee back to the caller.

result = 1;

i = EXP_BITS;

 (i > 0)?

 ((exponent & 1) == 1)?

 result = (result * base) % mod;

exponent >>= 1;

base = (base * base) % mod;

i--;

 return result;

1

0

1

0

1

2

3

4

5

6

Figure 16.1: Control-flow graph for the modexp function of Example 16.1. All
incoming edges at a node indicate transfer of control to the start of the basic
block for that node, and all outgoing edges from a node indicate an exit from the
end of the basic block for that node. For clarity, we label the outgoing edges from
a branch statement with 0 or 1 indicating the flow of control in case the branch
evaluates to false or true, respectively. An ID number for each basic block is noted
above the node for that block; IDs range from 1 to 6 for this example.

Lee & Seshia, Introduction to Embedded Systems 433

http://LeeSeshia.org

16.2. PROGRAMS AS GRAPHS

result = 1;

i = EXP_BITS;

 (i > 0)?

 result = update(result);

i--;

 return result;

1

0

 res = r;

 ((exponent & 1) == 1)?

 res = (res * base) % mod;

exponent >>= 1;

base = (base * base) % mod;

0

1

 return res;

call

return

Figure 16.2: Control-flow graphs for the modexp call and update functions in
Example 16.3. Call/return edges are indicated with dashed lines.

Example 16.3: A slight variant shown below of the modular exponentation
program of Example 16.1 uses function calls and can be represented by the CFG
with call and return edges in Figure 16.2.

1 #define EXP_BITS 32
2 typedef unsigned int UI;
3 UI exponent, base, mod;
4

5 UI update(UI r) {
6 UI res = r;
7 if ((exponent & 1) == 1) {
8 res = (res * base) % mod;
9 }

434 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

10 exponent >>= 1;
11 base = (base * base) % mod;
12 return res;
13 }
14

15 UI modexp_call() {
16 UI result = 1; int i;
17 i = EXP_BITS;
18 while(i > 0) {
19 result = update(result);
20 i--;
21 }
22 return result;
23 }

In this modified example, the variables base, exponent, and mod are global
variables. The update to base and exponent in the body of the while loop,
along with the computation of result is now performed in a separate function
named update.

Non-recursive function calls can also be handled by inlining, which is the process of
copying the code for the callee into that of the caller. If inlining is performed transitively
for all functions called by the code that must be analyzed, the analysis can be performed
on the CFG of the code resulting from inlining, without using call and return edges.

16.3 Factors Determining Execution Time

There are several issues one must consider in order to estimate the worst-case execution
time of a program. This section outlines some of the main issues and illustrates them with
examples. In describing these issues, we take a programmer’s viewpoint, starting with the
program structure and then considering how the environment can impact the program’s
execution time.

Lee & Seshia, Introduction to Embedded Systems 435

http://LeeSeshia.org

16.3. FACTORS DETERMINING EXECUTION TIME

16.3.1 Loop Bounds

The first point one must consider when bounding the execution time of a program is
whether the program terminates. Non-termination of a sequential program can arise from
non-terminating loops or from an unbounded sequence of function calls. Therefore, while
writing real-time embedded software, the programmer must ensure that all loops are guar-
anteed to terminate. In order to guarantee this, one must determine for each loop a bound
on the number of times that loop will execute in the worst case. Similarly, all function
calls must have bounded recursion depth. The problems of determining bounds on loop
iterations or recursion depth are undecidable in general, since the halting problem for Tur-
ing machines can be reduced to either problem. (See Appendix B for an introduction to
Turing machines and decidability.)

In this section, we limit ourselves to reasoning about loops. In spite of the undeciable
nature of the problem, progress has been made on automatically determining loop bounds
for several patterns that arise in practice. Techniques for determining loop bounds are a
current research topic and a full survey of these methods is out of the scope of this chapter.
We will limit ourselves to presenting illustrative examples for loop bound inference.

The simplest case is that of for loops that have a specified constant bound, as in Exam-
ple 16.4 below. This case occurs often in embedded software, in part due to a discipline
of programming enforced by designers who must program for real-time constraints and
limited resources.

Example 16.4: Consider the function modexp1 below. It is a slight variant of
the function modexp introduced in Example 16.1 that performs modular expo-
nentiation, in which the while loop has been expressed as an equivalent for
loop.

1 #define EXP_BITS 32
2

3 typedef unsigned int UI;
4

5 UI modexp1(UI base, UI exponent, UI mod) {
6 UI result = 1; int i;
7

8 for(i=EXP_BITS; i > 0; i--) {
9 if ((exponent & 1) == 1) {

10 result = (result * base) % mod;

436 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

11 }
12 exponent >>= 1;
13 base = (base * base) % mod;
14 }
15 return result;
16 }

In the case of this function, it is easy to see that the for loop will take exactly
EXP BITS iterations, where EXP BITS is defined as the constant 32.

In many cases, the loop bound is not immediately obvious (as it was for the above exam-
ple). To make this point, here is a variation on Example 16.4.

Example 16.5: The function listed below also performs modular exponentiation,
as in Example 16.4. However, in this case, the for loop is replaced by a while
loop with a different loop condition – the loop exits when the value of exponent
reaches 0. Take a moment to check whether the while loop will terminate (and
if so, why).

1 typedef unsigned int UI;
2

3 UI modexp2(UI base, UI exponent, UI mod) {
4 UI result = 1;
5

6 while (exponent != 0) {
7 if ((exponent & 1) == 1) {
8 result = (result * base) % mod;
9 }

10 exponent >>= 1;
11 base = (base * base) % mod;
12 }
13 return result;
14 }

Now let us analyze the reason that this loop terminates. Notice that exponent
is an unsigned int, which we will assume to be 32 bits wide. If it starts out equal
to 0, the loop terminates right away and the function returns result = 1. If
not, in each iteration of the loop, notice that line 10 shifts exponent one bit

Lee & Seshia, Introduction to Embedded Systems 437

http://LeeSeshia.org

16.3. FACTORS DETERMINING EXECUTION TIME

to the right. Since exponent is an unsigned int, after the right shift, its most
significant bit will be 0. Reasoning thus, after at most 32 right shifts, all bits of
exponent must be set to 0, thus causing the loop to terminate. Therefore, we
can conclude that the loop bound is 32.

Let us reflect on the reasoning employed in the above example. The key component of
our “proof of termination” was the observation that the number of bits of exponent
decreases by 1 each time the loop executes. This is a standard argument for proving
termination – by defining a progress measure or ranking function that maps each state
of the program to a mathematical structure called a well order. Intuitively, a well order is
like a program that counts down to zero from some initial value in the natural numbers.

16.3.2 Exponential Path Space

Execution time is a path property. In other words, the amount of time taken by the pro-
gram is a function of how conditional statements in the program evaluate to true or false.
A major source of complexity in execution time analysis (and other program analysis
problems as well) is that the number of program paths can be very large — exponential in
the size of the program. We illustrate this point with the example below.

Example 16.6: Consider the function count listed below, which runs over
a two-dimensional array, counting and accumulating non-negative and negative
elements of the array separately.

1 #define MAXSIZE 100
2

3 int Array[MAXSIZE][MAXSIZE];
4 int Ptotal, Pcnt, Ntotal, Ncnt;
5 ...
6 void count() {
7 int Outer, Inner;
8 for (Outer = 0; Outer < MAXSIZE; Outer++) {
9 for (Inner = 0; Inner < MAXSIZE; Inner++) {

10 if (Array[Outer][Inner] >= 0) {
11 Ptotal += Array[Outer][Inner];

438 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

12 Pcnt++;
13 } else {
14 Ntotal += Array[Outer][Inner];
15 Ncnt++;
16 }
17 }
18 }
19 }

The function includes a nested loop. Each loop executes MAXSIZE (100) times.
Thus, the inner body of the loop (comprising lines 10–16) will execute 10,000
times – as many times as the number of elements of Array. In each iteration of
the inner body of the loop, the conditional on line 10 can either evaluate to true or
false, thus resulting in 210000 possible ways the loop can execute. In other words,
this program has 210000 paths.

Fortunately, as we will see in Section 16.4.1, one does not need to explicitly enumerate
all possible program paths in order to perform execution time analysis.

16.3.3 Path Feasibility

Another source of complexity in program analysis is that all program paths may not be
executable. A computationally expensive function is irrelevant for execution time analysis
if that function is never executed.

A path p in program P is said to be feasible if there exists an input x to P such that
P executes p on x. In general, even if P is known to terminate, determining whether a
path p is feasible is a computationally intractable problem. One can encode the canonical
NP-complete problem, the Boolean satisfiability problem (see Appendix B), as a problem
of checking path feasibility in a specially-constructed program. In practice, however, in
many cases, it is possible to determine path feasibility.

Example 16.7: Recall Example 13.3 of a software task from the open source
Paparazzi unmanned aerial vehicle (UAV) project (Nemer et al., 2006):

Lee & Seshia, Introduction to Embedded Systems 439

http://LeeSeshia.org

16.3. FACTORS DETERMINING EXECUTION TIME

1 #define PPRZ_MODE_AUTO2 2
2 #define PPRZ_MODE_HOME 3
3 #define VERTICAL_MODE_AUTO_ALT 3
4 #define CLIMB_MAX 1.0
5 ...
6 void altitude_control_task(void) {
7 if (pprz_mode == PPRZ_MODE_AUTO2
8 || pprz_mode == PPRZ_MODE_HOME) {
9 if (vertical_mode == VERTICAL_MODE_AUTO_ALT) {

10 float err = estimator_z - desired_altitude;
11 desired_climb
12 = pre_climb + altitude_pgain * err;
13 if (desired_climb < -CLIMB_MAX) {
14 desired_climb = -CLIMB_MAX;
15 }
16 if (desired_climb > CLIMB_MAX) {
17 desired_climb = CLIMB_MAX;
18 }
19 }
20 }
21 }

This program has 11 paths in all. However, the number of feasible program
paths is only 9. To see this, note that the two conditionals desired climb
< -CLIMB MAX on line 13 and desired climb > CLIMB MAX on line 16
cannot both be true. Thus, only three out of the four paths through the two inner-
most conditional statements are feasible. This infeasible inner path can be taken
for two possible evaluations of the outermost conditional on lines 7 and 8: either
if pprz mode == PPRZ MODE AUTO2 is true, or if that condition is false, but
pprz mode == PPRZ MODE HOME is true.

16.3.4 Memory Hierarchy

The preceding sections have focused on properties of programs that affect execution time.
We now discuss how properties of the execution platform, specifically of cache memories,
can significantly impact execution time. We illustrate this point using Example 16.8.1 The
material on caches introduced in Sec. 9.2.3 is pertinent to this discussion.

1This example is based on a similar example in Bryant and O’Hallaron (2003).

440 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

Example 16.8: Consider the function dot product listed below, which
computes the dot product of two vectors of floating point numbers. Each vector
is of dimension n, where n is an input to the function. The number of iterations
of the loop depends on the value of n. However, even if we know an upper bound
on n, hardware effects can still cause execution time to vary widely for similar
values of n.

1 float dot_product(float *x, float *y, int n) {
2 float result = 0.0;
3 int i;
4 for(i=0; i < n; i++) {
5 result += x[i] * y[i];
6 }
7 return result;
8 }

Suppose this program is executing on a 32-bit processor with a direct-mapped
cache. Suppose also that the cache can hold two sets, each of which can hold 4
floats. Finally, let us suppose that x and y are stored contiguously in memory
starting with address 0.

Let us first consider what happens if n = 2. In this case, the entire arrays x and
y will be in the same block and thus in the same cache set. Thus, in the very
first iteration of the loop, the first access to read x[0] will be a cache miss, but
thereafter every read to x[i] and y[i] will be a cache hit, yielding best case
performance for loads.

Consider next what happens when n = 8. In this case, each x[i] and y[i] map
to the same cache set. Thus, not only will the first access to x[0] be a miss, the
first access to y[0] will also be a miss. Moreover, the latter access will evict
the block containing x[0]-x[3], leading to a cache miss on x[1], x[2], and
x[3] as well. The reader can see that every access to an x[i] or y[i] will
lead to a cache miss.

Thus, a seemingly small change in the value of n from 2 to 8 can lead to a drastic
change in execution time of this function.

Lee & Seshia, Introduction to Embedded Systems 441

http://LeeSeshia.org

16.4. BASICS OF EXECUTION TIME ANALYSIS

16.4 Basics of Execution Time Analysis

Execution time analysis is a current research topic, with many problems still to be solved.
There have been over two decades of research, resulting in a vast literature. We cannot
provide a comprehensive survey of the methods in this chapter. Instead, we will present
some of the basic concepts that find widespread use in current techniques and tools for
WCET analysis. Readers interested in a more detailed treatment may find an overview
in a recent survey paper (Wilhelm et al., 2008) and further details in books (e.g., Li and
Malik (1999)) and book chapters (e.g., Wilhelm (2005)).

16.4.1 Optimization Formulation

An intuitive formulation of the WCET problem can be constructed using the view of
programs as graphs. Given a program P , let G = (V,E) denote its control-flow graph
(CFG). Let n = |V | be the number of nodes (basic blocks) in G, and m = |E| denote the
number of edges. We refer to the basic blocks by their index i, where i ranges from 1 to
n.

We assume that the CFG has a unique start or source node s and a unique sink or end
node t. This assumption is not restrictive: If there are multiple start or end nodes, one
can add a dummy start/end node to achieve this condition. Usually we will set s = 1 and
t = n.

Let xi denote the number of times basic block i is executed. We call xi the execution
count of basic block i. Let x = (x1, x2, . . . , xn) be a vector of variables recording
execution counts. Not all valuations of x correspond to valid program executions. We say
that x is valid if the elements of x correspond to a (valid) execution of the program. The
following example illustrates this point.

Example 16.9: Consider the CFG for the modular exponentiation function
modexp introduced in Example 16.1. There are six basic blocks in this func-
tion, labeled 1 to 6 in Figure 16.1. Thus, x = (x1, x2, . . . , x6). Basic blocks 1
and 6, the start and end, are each executed only once. Thus, x1 = x6 = 1; any
other valuation cannot correspond to any program execution.

442 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

Next consider basic blocks 2 and 3, corresponding to the conditional branches
i > 0 and (exponent & 1) == 1. One can observe that x2 must equal
x3 + 1, since the block 3 is executed every time block 2 is executed, except when
the loop exits to block 6.

Along similar lines, one can see that basic blocks 3 and 5 must be executed an
equal number of times.

Flow Constraints

The intuition expressed in Example 16.9 can be formalized using the theory of network
flow, which finds use in many contexts including modeling traffic, fluid flow, and the flow
of current in an electrical circuit. In particular, in our problem context, the flow must
satisfy the following two properties:

1. Unit Flow at Source: The control flow from source node s = 1 to sink node t = n
is a single execution and hence corresponds to unit flow from source to sink. This
property is captured by the following two constraints:

x1 = 1 (16.6)

xn = 1 (16.7)

2. Conservation of Flow: For each node (basic block) i, the incoming flow to i from
its predecessor nodes equals the outgoing flow from i to its successor nodes.

To capture this property, we introduce additional variables to record the number
of times that each edge in the CFG is executed. Following the notation of Li and
Malik (1999), let dij denote the number of times the edge from node i to node j in
the CFG is executed. Then we require that for each node i, 1 ≤ i ≤ n,

xi =
∑
j∈Pi

dji =
∑
j∈Si

dij , (16.8)

where Pi is the set of predecessors to node i and Si is the set of successors. For the
source node, P1 = ∅, so the sum over predecessor nodes is omitted. Similarly, for
the sink node, Sn = ∅, so the sum over successor nodes is omitted.

Lee & Seshia, Introduction to Embedded Systems 443

http://LeeSeshia.org

16.4. BASICS OF EXECUTION TIME ANALYSIS

Taken together, the two sets of constraints presented above suffice to implicitly define all
source-to-sink execution paths of the program. Since this constraint-based representation
is an implicit representation of program paths, this approach is also referred to in the
literature as implicit path enumeration or IPET.

We illustrate the generation of the above constraints with an example.

Example 16.10: Consider again the function modexp of Example 16.1, with
CFG depicted in Figure 16.1.

The constraints for this CFG are as follows:

x1 = 1

x6 = 1

x1 = d12

x2 = d12 + d52 = d23 + d26

x3 = d23 = d34 + d35

x4 = d34 = d45

x5 = d35 + d45 = d52

x6 = d26

Any solution to the above system of equations will result in integer values for
the xi and dij variables. Furthermore, this solution will generate valid execution
counts for basic blocks. For example, one such valid solution is

x1 = 1, d12 = 1, x2 = 2, d23 = 1, x3 = 1, d34 = 0, d35 = 1,

x4 = 0, d45 = 0, x5 = 1, d52 = 1, x6 = 1, d26 = 1.

Readers are invited to find and examine additional solutions for themselves.

Overall Optimization Problem

We are now in a position to formulate the overall optimization problem to determine
worst-case execution time. The key assumption we make in this section is that we know

444 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

an upper bound wi on the execution time of the basic block i. (We will later see in
Section 16.4.3 how the execution time of a single basic block can be bounded.) Then the
WCET is given by the maximum

∑n
i=1wixi over valid execution counts xi.

Putting this together with the constraint formulation of the preceding section, our goal is
to find values for xi that give

max
xi, 1≤i≤n

n∑
i=1

wixi

subject to

x1 = xn = 1

xi =
∑
j∈Pi

dji =
∑
j∈Si

dij

This optimization problem is a form of a linear programming (LP) problem (also called
a linear program), and it is solvable in polynomial time.

However, two major challenges remain:

• This formulation assumes that all source to sink paths in the CFG are feasible and
does not bound loops in paths. As we have already seen in Section 16.3, this is
not the case in general, so solving the above maximization problem may yield a
pessimistic loose bound on the WCET. We will consider this challenge in Sec-
tion 16.4.2.

• The upper bounds wi on execution time of basic blocks i are still to be determined.
We will briefly review this topic in Section 16.4.3.

16.4.2 Logical Flow Constraints

In order to ensure that the WCET optimization is not too pessimistic by including paths
that cannot be executed, we must add so-called logical flow constraints. These con-
straints rule out infeasible paths and incorporate bounds on the number of loop iterations.
We illustrate the use of such constraints with two examples.

Lee & Seshia, Introduction to Embedded Systems 445

http://LeeSeshia.org

16.4. BASICS OF EXECUTION TIME ANALYSIS

Loop Bounds

For programs with loops, it is necessary to use bounds on loop iterations to bound execu-
tion counts of basic blocks.

Example 16.11: Consider the modular exponentiation program of Example 16.1
for which we wrote down flow constraints in Example 16.10.

Notice that those constraints impose no upper bound on x2 or x3. As argued
in Examples 16.4 and 16.5, the bound on the number of loop iterations in this
example is 32. However, without imposing this additional constraint, since there
is no upper bound on x2 or x3, the solution to our WCET optimization will be
infinite, implying that there is no upper bound on the WCET. The following single
constraint suffices:

x3 ≤ 32

From this constraint on x3, we derive the constraint that x2 ≤ 33, and also upper
bounds on x4 and x5. The resulting optimization problem will then return a finite
solution, for finite values of wi.

Adding such bounds on values of xi does not change the complexity of the optimization
problem. It is still a linear programming problem.

Infeasible Paths

Some logical flow constraints rule out combinations of basic blocks that cannot appear
together on a single path.

Example 16.12: Consider a snippet of code from Example 16.7 describing a
software task from the open source Paparazzi unmanned aerial vehicle (UAV)
project (Nemer et al., 2006):

1 #define CLIMB_MAX 1.0

446 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

2 ...
3 void altitude_control_task(void) {
4 ...
5 err = estimator_z - desired_altitude;
6 desired_climb
7 = pre_climb + altitude_pgain * err;
8 if (desired_climb < -CLIMB_MAX) {
9 desired_climb = -CLIMB_MAX;

10 }
11 if (desired_climb > CLIMB_MAX) {
12 desired_climb = CLIMB_MAX;
13 }
14 return;
15 }

The CFG for the snippet of code shown above is given in Figure 16.3. The system
of flow constraints for this CFG according to the rules in Section 16.4.1 is as
follows:

x1 = 1

x5 = 1

x1 = d12 + d13

x2 = d12 = d23

x3 = d13 + d23 = d34 + d35

x4 = d34 = d45

x5 = d35 + d45

A solution for the above system of equations is

x1 = x2 = x3 = x4 = x5 = 1,

implying that each basic block gets executed exactly once, and that both condi-
tionals evaluate to true. However, as we discussed in Example 16.7, it is im-
possible for both conditionals to evaluate to true. Since CLIMB MAX = 1.0, if
desired climb is less than −1.0 in basic block 1, then at the start of basic
block 3 it will be set to −1.0.

The following constraint rules out the infeasible path:

d12 + d34 ≤ 1 (16.9)

Lee & Seshia, Introduction to Embedded Systems 447

http://LeeSeshia.org

16.4. BASICS OF EXECUTION TIME ANALYSIS

err = estimator_z - desired_altitude;

desired_climb

 = pre_climb + altitude_pgain * err;

(desired_climb < -CLIMB_MAX)?

 desired_climb = -CLIMB_MAX;

(desired_climb > CLIMB_MAX)?

 return;

1

0

0

1

2

3

4

5

 desired_climb = CLIMB_MAX;

1

Figure 16.3: Control-flow graph for Example 16.12.

This constraint specifies that both conditional statements cannot be true together.
It is of course possible for both conditionals to be false. We can check that this
constraint excludes the infeasible path when added to the original system.

More formally, for a program without loops, if a set of k edges

(i1, j1), (i2, j2), . . . , (ik, jk)

in the CFG cannot be taken together in a program execution, the following constraint is
added to the optimization problem:

di1j1 + di2j2 + . . .+ dikjk ≤ k − 1 (16.10)

For programs with loops, the constraint is more complicated since an edge can be tra-
versed multiple times, so the value of a dij variable can exceed 1. We omit the details in

448 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

this case; the reader can consult Li and Malik (1999) for a more elaborate discussion of
this topic.

In general, the constraints added above to exclude infeasible combinations of edges can
change the complexity of the optimization problem, since one must also add the following
integrality constraints:

xi ∈ N, for all i = 1, 2, . . . , n (16.11)

dij ∈ N, for all i, j = 1, 2, . . . , n (16.12)

In the absence of such integrality constraints, the optimization solver can return fractional
values for the xi and dij variables. However, adding these constraints results in an inte-
ger linear programming (ILP) problem. The ILP problem is known to be NP-hard (see
Appendix B, Section B.4). Even so, in many practical instances, one can solve these ILP
problems fairly efficiently (see for example Li and Malik (1999)).

16.4.3 Bounds for Basic Blocks

In order to complete the optimization problem for WCET analysis, we need to compute
upper bounds on the execution times of basic blocks – the wi coefficients in the cost func-
tion of Section 16.4.1. Execution time is typically measured in CPU cycles. Generating
such bounds requires detailed microarchitectural modeling. We briefly outline some of
the issues in this section.

A simplistic approach to this problem would be to generate conservative upper bounds
on the execution time of each instruction in the basic block, and then add up these per-
instruction bounds to obtain an upper bound on the execution time of the overall basic
block.

The problem with this approach is that there can be very wide variation in the execution
times for some instructions, resulting in very loose upper bounds on the execution time
of a basic block. For instance, consider the latency of memory instructions (loads and
stores) for a system with a data cache. The difference between the latency when there
is a cache miss versus a hit can be a factor of 100 on some platforms. In these cases,
if the analysis does not differentiate between cache hits and misses, it is possible for the
computed bound to be a hundred times larger than the execution time actually exhibited.

Lee & Seshia, Introduction to Embedded Systems 449

http://LeeSeshia.org

16.4. BASICS OF EXECUTION TIME ANALYSIS

Several techniques have been proposed to better use program context to predict execution
time of instructions more precisely. These techniques involve detailed microarchitectural
modeling. We mention two main approaches below:

• Integer linear programming (ILP) methods: In this approach, pioneered by Li and
Malik (1999), one adds cache constraints to the ILP formulation of Section 16.4.1.
Cache constraints are linear expressions used to bound the number of cache hits and
misses within basic blocks. The approach tracks the memory locations that cause
cache conflicts – those that map onto the same cache set, but have different tags –
and adds linear constraints to record the impact of such conflicts on the number of
cache hits and misses. Measurement through simulation or execution on the actual
platform must be performed to obtain the cycle count for hits and misses. The cost
constraint of the ILP is modified to compute the program path along which the
overall number of cycles, including cache hits and misses, is the largest. Further
details about this approach are available in Li and Malik (1999).

• Abstract interpretation methods: Abstract interpretation is a theory of approx-
imation of mathematical structures, in particular those that arise in defining the
semantic models of computer systems (Cousot and Cousot (1977)). In particular,
in abstract interpretation, one performs sound approximation, where the set of
behaviors of the system is a subset of that of the model generated by abstract inter-
pretation. In the context of WCET analysis, abstract interpretation has been used
to infer invariants at program points, in order to generate loop bounds, and con-
straints on the state of processor pipelines or caches at the entry and exit locations
of basic blocks. For example, such a constraint could specify the conditions under
which variables will be available in the data cache (and hence a cache hit will re-
sult). Once such constraints are generated, one can run measurements from states
satisfying those constraints in order to generate execution time estimates. Further
details about this approach can be found in Wilhelm (2005).

In addition to techniques such as those described above, accurate measurement of execu-
tion time is critical for finding tight WCET bounds. Some of the measurement techniques
are as follows:

1. Sampling CPU cycle counter: Certain processors include a register that records the
number of CPU cycles elapsed since reset. For example, the time stamp counter
register on x86 architectures performs this function, and is accessible through a

450 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

rdtsc (“read time stamp counter”) instruction. However, with the advent of multi-
core designs and power management features, care must be taken to use such CPU
cycle counters to accurately measure timing. For example, it may be necessary to
lock the process to a particular CPU.

2. Using a logic analyzer: A logic analyzer is an electronic instrument used to mea-
sure signals and track events in a digital system. In the current context, the events of
interest are the entry and exit points of the code to be timed, definable, for example,
as valuations of the program counter. Logic analyzers are less intrusive than using
cycle counters, since they do not require instrumenting the code, and they can be
more accurate. However, the measurement setup is more complicated.

3. Using a cycle-accurate simulator: In many cases, timing analysis must be per-
formed when the actual hardware is not yet available. In this situation, a cycle-
accurate simulator of the platform provides a good alternative.

16.5 Other Quantitative Analysis Problems

Although we have focused mainly on execution time in this chapter, several other quan-
titative analysis problems are relevant for embedded systems. We briefly describe two of
these in this section.

16.5.1 Memory-bound Analysis

Embedded computing platforms have very limited memory as compared to general-purpose
computers. For example, as mentioned in Chapter 9, the Luminary Micro LM3S8962 con-
troller has only 64 KB of RAM. It is therefore essential to structure the program so that
it uses memory efficiently. Tools that analyze memory consumption and compute bounds
on memory usage can be very useful.

There are two kinds of memory bound analysis that are relevant for embedded systems.
In stack size analysis (or simply stack analysis), one needs to compute an upper bound
on the amount of stack-allocated memory used by a program. Recall from Section 9.3.2
that stack memory is allocated whenever a function is called or an interrupt is handled. If
the program exceeds the memory allocated for the stack, a stack overflow is said to occur.

Lee & Seshia, Introduction to Embedded Systems 451

http://LeeSeshia.org

16.6. SUMMARY

If the program does not contain recursive functions and runs uninterrupted, one can bound
stack usage by traversing the call graph of the program – the graph that tracks which
functions call which others. If the space for each stack frame is known, then one can track
the sequence of calls and returns along paths in the call graph in order to compute the
worst-case stack size.

Performing stack size analysis for interrupt-driven software is significantly more compli-
cated. We point the interested reader to Brylow et al. (2001).

Heap analysis is the other memory bound analysis problem that is relevant for embedded
systems. This problem is harder than stack bound analysis since the amount of heap space
used by a function might depend on the values of input data and may not be known prior
to run-time. Moreover, the exact amount of heap space used by a program can depend on
the implementation of dynamic memory allocation and the garbage collector.

16.5.2 Power and Energy Analysis

Power and energy consumption are increasingly important factors in embedded system
design. Many embedded systems are autonomous and limited by battery power, so a
designer must ensure that the task can be completed within a limited energy budget. Also,
the increasing ubiquity of embedded computing is increasing its energy footprint, which
must be reduced for sustainable development.

To first order, the energy consumed by a program running on an embedded device depends
on its execution time. However, estimating execution time alone is not sufficient. For
example, energy consumption depends on circuit switching activity, which can depend
more strongly on the data values with which instructions are executed.

For this reason, most techniques for energy and power estimation of embedded soft-
ware focus on estimating the average-case consumption. The average case is typically
estimated by profiling instructions for several different data values, guided by software
benchmarks. For an introduction to this topic, see Tiwari et al. (1994).

16.6 Summary

Quantitative properties, involving physical parameters or specifying resource constraints,
are central to embedded systems. This chapter gave an introduction to basic concepts in

452 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

quantitative analysis. First, we considered various types of quantitative analysis problems,
including extreme-case analysis, average-case analysis, and verifying threshold proper-
ties. As a representative example, this chapter focused on execution time analysis. Sev-
eral examples were presented to illustrate the main issues, including loop bounds, path
feasibility, path explosion, and cache effects. An optimization formulation that forms the
backbone of execution time analysis was presented. Finally, we briefly discussed two
other quantitative analysis problems, including computing bounds on memory usage and
on power or energy consumption.

Quantitative analysis remains an active field of research – exemplifying the challenges in
bridging the cyber and physical aspects of embedded systems.

Lee & Seshia, Introduction to Embedded Systems 453

http://LeeSeshia.org

16.6. SUMMARY

Tools for Execution-Time Analysis

Current techniques for execution-time analysis are broadly classified into those primar-
ily based on static analysis and those that are measurement-based.

Static tools rely on abstract interpretation and dataflow analysis to compute facts
about the program at selected program locations. These facts are used to identify de-
pendencies between code fragments, generate loop bounds, and identify facts about the
platform state, such as the state of the cache. These facts are used to guide timing mea-
surements of basic blocks and combined into an optimization problem as presented
in this chapter. Static tools aim to find conservative bounds on extreme-case execu-
tion time; however, they are not easy to port to new platforms, often requiring several
man-months of effort.

Measurement-based tools are primarily based on testing the program on multiple
inputs and then estimating the quantity of interest (e.g., WCET) from those measure-
ments. Static analysis is often employed in performing a guided exploration of the
space of program paths and for test generation. Measurement-based tools are easy to
port to new platforms and apply broadly to both extreme-case and average-case analy-
sis; however, not all techniques provide guarantees for finding extreme-case execution
times.

Further details about many of these tools are available in Wilhelm et al. (2008);
Seshia and Rakhlin (2012). Here is a partial list of tools with links to papers and
websites:

Name Primary Type Institution & Website/References
aiT Static AbsInt Angewandte Informatik GmbH (Wilhelm, 2005)

http://www.absint.com/ait/

Bound-T Static Tidorum Ltd.
http://www.bound-t.com/

Chronos Static National University of Singapore (Li et al., 2005)
http://www.comp.nus.edu.sg/˜rpembed/chronos/

Heptane Static IRISA Rennes
http://www.irisa.fr/aces/work/heptane-demo/heptane.html

SWEET Static Mälardalen University
http://www.mrtc.mdh.se/projects/wcet/

GameTime Measurement UC Berkeley
Seshia and Rakhlin (2008)

RapiTime Measurement Rapita Systems Ltd.
http://www.rapitasystems.com/

SymTA/P Measurement Technical University Braunschweig
http://www.ida.ing.tu-bs.de/research/projects/symtap/

Vienna M./P. Measurement Technical University of Vienna
http://www.wcet.at/

454 Lee & Seshia, Introduction to Embedded Systems

http://www.absint.com/ait/
http://www.bound-t.com/
http://www.comp.nus.edu.sg/~rpembed/chronos/
http://www.irisa.fr/aces/work/heptane-demo/heptane.html
http://www.mrtc.mdh.se/projects/wcet/
http://www.rapitasystems.com/
http://www.ida.ing.tu-bs.de/research/projects/symtap/
http://www.wcet.at/
http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

Exercises

1. This problem studies execution time analysis. Consider the C program listed below:

1 int arr[100];
2

3 int foo(int flag) {
4 int i;
5 int sum = 0;
6

7 if (flag) {
8 for(i=0;i<100;i++)
9 arr[i] = i;

10 }
11

12 for(i=0;i<100;i++)
13 sum += arr[i];
14

15 return sum;
16 }

Assume that this program is run on a processor with data cache of size big enough
that the entire array arr can fit in the cache.

(a) How many paths does the function foo of this program have? Describe what
they are.

(b) Let T denote the execution time of the second for loop in the program. How
does executing the first for loop affect the value of T ? Justify your answer.

2. Consider the program given below:

1 void testFn(int *x, int flag) {
2 while (flag != 1) {
3 flag = 1;
4 *x = flag;
5 }
6 if (*x > 0)
7 *x += 2;
8 }

In answering the questions below, assume that x is not NULL.

(a) Draw the control-flow graph of this program. Identify the basic blocks with
unique IDs starting with 1.

Lee & Seshia, Introduction to Embedded Systems 455

http://LeeSeshia.org

EXERCISES

Note that we have added a dummy source node, numbered 0, to represent the
entry to the function. For convenience, we have also introduced a dummy sink
node, although this is not strictly required.

(b) Is there a bound on the number of iterations of the while loop? Justify your
answer.

(c) How many total paths does this program have? How many of them are feasi-
ble, and why?

(d) Write down the system of flow constraints, including any logical flow con-
straints, for the control-flow graph of this program.

(e) Consider running this program uninterrupted on a platform with a data cache.
Assume that the data pointed to by x is not present in the cache at the start of
this function.
For each read/write access to *x, argue whether it will be a cache hit or miss.
Now, assume that *x is present in the cache at the start of this function. Iden-
tify the basic blocks whose execution time will be impacted by this modified
assumption.

3. Consider the function check password given below that takes two arguments: a
user ID uid and candidate password pwd (both modeled as ints for simplicity).
This function checks that password against a list of user IDs and passwords stored
in an array, returning 1 if the password matches and 0 otherwise.

1 struct entry {
2 int user;
3 int pass;
4 };
5 typedef struct entry entry_t;
6

7 entry_t all_pwds[1000];
8

9 int check_password(int uid, int pwd) {
10 int i = 0;
11 int retval = 0;
12

13 while(i < 1000) {
14 if (all_pwds[i].user == uid && all_pwds[i].pass == pwd) {
15 retval = 1;
16 break;
17 }
18 i++;
19 }
20

456 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

16. QUANTITATIVE ANALYSIS

21 return retval;
22 }

(a) Draw the control-flow graph of the function check password. State the num-
ber of nodes (basic blocks) in the CFG. (Remember that each conditional
statement is considered a single basic block by itself.)
Also state the number of paths from entry point to exit point (ignore path
feasibility).

(b) Suppose the array all pwds is sorted based on passwords (either increasing
or decreasing order). In this question, we explore if an external client that calls
check password can infer anything about the passwords stored in all pwds

by repeatedly calling it and recording the execution time of check password.
Figuring out secret data from “physical” information, such as running time, is
known as a side-channel attack.
In each of the following two cases, what, if anything, can the client infer about
the passwords in all pwds?

(i) The client has exactly one (uid, password) pair present in all pwds

(ii) The client has NO (uid, password) pairs present in in all pwds

Assume that the client knows the program but not the contents of the array
all pwds.

4. Consider the code below that implements the logic of a highly simplified vehicle
automatic transmission system. The code aims to set the value of current gear
based on a sensor input rpm. LO VAL and HI VAL are constants whose exact
values are irrelevant to this problem (you can assume that LO VAL is strictly smaller
than HI VAL).

1 volatile float rpm;
2

3 int current_gear; // values range from 1 to 6
4

5 void change_gear() {
6 if (rpm < LO_VAL)
7 set_gear(-1);
8 else {
9 if (rpm > HI_VAL)

10 set_gear(1);
11 }
12

13 return;

Lee & Seshia, Introduction to Embedded Systems 457

http://LeeSeshia.org

EXERCISES

14 }
15

16 void set_gear(int update) {
17 int new_gear = current_gear + update;
18 if (new_gear > 6)
19 new_gear = 6;
20 if (new_gear < 1)
21 new_gear = 1;
22

23 current_gear = new_gear;
24

25 return;
26 }

This is a 6-speed automatic transmission system, and thus the value of current gear
ranges between 1 and 6.

Answer the following questions based on the above code:

(a) Draw the control-flow graph (CFG) of the program starting from change gear,
without inlining function set gear. In other words, you should draw the
CFG using call and return edges.
For brevity, you need not write the code for the basic blocks inside the nodes
of the CFG. Just indicate which statements go in which node by using the line
numbers in the code listing above.

(b) Count the number of execution paths from the entry point in set gear to
its exit point (the return statement). Ignore feasibility issues for this question.
Also count the number of paths from the entry point in change gear to
its exit point (the return statement), including the paths through set gear.
State the number of paths in each case.

(c) Now consider path feasibility. Recalling that current gear ranges be-
tween 1 and 6, how many feasible paths does change gear have? Justify
your answer.

(d) Give an example of a feasible path and of an infeasible path through the func-
tion change gear. Describe each path as a sequence of line numbers, ig-
noring the line numbers corresponding to function definitions and return state-
ments.

458 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org

	Preface
	Introduction
	Applications
	Motivating Example
	The Design Process
	Summary

	I Modeling Dynamic Behaviors
	Continuous Dynamics
	Newtonian Mechanics
	Actor Models
	Properties of Systems
	Feedback Control
	Summary
	Exercises

	Discrete Dynamics
	Discrete Systems
	The Notion of State
	Finite-State Machines
	Extended State Machines
	Nondeterminism
	Behaviors and Traces
	Summary
	Exercises

	Hybrid Systems
	Modal Models
	Classes of Hybrid Systems
	Summary
	Exercises

	Composition of State Machines
	Concurrent Composition
	Hierarchical State Machines
	Summary
	Exercises

	Concurrent Models of Computation
	Structure of Models
	Synchronous-Reactive Models
	Dataflow Models of Computation
	Timed Models of Computation
	Summary
	Exercises

	II Design of Embedded Systems
	Sensors and Actuators
	Models of Sensors and Actuators
	Common Sensors
	Actuators
	Summary
	Exercises

	Embedded Processors
	Types of Processors
	Parallelism
	Summary
	Exercises

	Memory Architectures
	Memory Technologies
	Memory Hierarchy
	Memory Models
	Summary
	Exercises

	Input and Output
	I/O Hardware
	Sequential Software in a Concurrent World
	Summary
	Exercises

	Multitasking
	Imperative Programs
	Threads
	Processes and Message Passing
	Summary
	Exercises

	Scheduling
	Basics of Scheduling
	Rate Monotonic Scheduling
	Earliest Deadline First
	Scheduling and Mutual Exclusion
	Multiprocessor Scheduling
	Summary
	Exercises

	III Analysis and Verification
	Invariants and Temporal Logic
	Invariants
	Linear Temporal Logic
	Summary
	Exercises

	Equivalence and Refinement
	Models as Specifications
	Type Equivalence and Refinement
	Language Equivalence and Containment
	Simulation
	Bisimulation
	Summary
	Exercises

	Reachability Analysis and Model Checking
	Open and Closed Systems
	Reachability Analysis
	Abstraction in Model Checking
	Model Checking Liveness Properties
	Summary
	Exercises

	Quantitative Analysis
	Problems of Interest
	Programs as Graphs
	Factors Determining Execution Time
	Basics of Execution Time Analysis
	Other Quantitative Analysis Problems
	Summary
	Exercises

	Security and Privacy
	Cryptographic Primitives
	Protocol and Network Security
	Software Security
	Information Flow
	Advanced Topics
	Summary
	Exercises

	IV Appendices
	Sets and Functions
	Sets
	Relations and Functions
	Sequences
	Exercises

	Complexity and Computability
	Effectiveness and Complexity of Algorithms
	Problems, Algorithms, and Programs
	Turing Machines and Undecidability
	Intractability: P and NP
	Summary
	Exercises

	Bibliography
	Notation Index
	Notation Index
	Index

