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Security and privacy are two of the foremost design concerns for cyber-physical systems
today. Security, broadly speaking, is the state of being protected from harm. Privacy is the
state of being kept away from observation. With embedded and cyber-physical systems
being increasingly networked with each other and with the Internet, security and privacy
concerns are now front and center for system designers.



In a formal sense, there are two primary aspects that differentiate security and privacy
from other design criteria. First, the operating environment is considered to be signif-
icantly more adversarial in nature than in typical system design. Second, the kinds of
properties, specifying desired and undesired behavior, are also different from traditional
system specifications (and often impose additional requirements on top of the traditional
ones). Let us consider each of these aspects in turn.

The notion of an attacker or an adversary is central to the theory and practice of security
and privacy. An attacker is a malicious agent whose goal is to subvert the operation of
the system in some way. The exact subversion depends on characteristics of the system,
its goals and requirements, and the capabilities of the attacker. Typically, these charac-
teristics are grouped together into an entity called the threat model or attacker model.
For example, while designing an automobile with no wireless network connectivity, the
designers may assume that the only threats arise from people who have physical access
to the automobile and knowledge of its components, such as a well-trained mechanic.
Transforming an informal threat model (such as the preceding sentence) into a precise,
mathematical statement of an attacker’s objectives is a challenging task, but one that is
essential for principled model-based design of secure embedded systems.

The second defining characteristic of the field of security and privacy are the distinctive
properties it is concerned with. Broadly speaking, these properties can be categorized into
the following types: confidentiality, integrity, authenticity, and availability. Confidential-
ity is the state of being secret from the attacker. A good example of confidential data is
a password or PIN that one uses to access one’s bank account. Integrity is the state of
being unmodified by an attacker. An example of integrity is the property that an attacker,
who does not have authorized access to your bank account, cannot modify its contents.
Authenticity is the state of knowing with a level of assurance the identity of agents you
are communicating or interacting with. For instance, when you connect to a website that
purports to be your bank, you want to be sure that it indeed is your bank’s website and
not that of some malicious entity. The process of demonstrating authenticity is known as
authentication. Finally, availability is the property that a system provides a sufficient
quality of service to its users. For example, you might expect your bank’s website to be
available to you 99% of the time.

It is important to note that security and privacy are not absolute properties. Do not believe
anyone who claims that their system is “completely secure”! Security and privacy can
only be guaranteed for a specific threat model and a specific set of properties. As a
system designer, if security and privacy are important concerns for you, you must first

460 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


17. SECURITY AND PRIVACY

define your threat model and formalize your properties. Otherwise, any solution you
adopt is essentially meaningless.

In this chapter, we seek to give you a basic understanding of security and privacy with a
special focus on concepts relevant for cyber-physical system design. The field of security
and privacy is too broad for us to cover it in any comprehensive manner in a single chapter;
we refer the interested reader to some excellent textbooks on the topic, e.g., (Goodrich
and Tamassia, 2011; Smith and Marchesini, 2007). Instead, our goal is more modest: to
introduce you to the important basic concepts, and highlight the topics that are specific to,
or especially relevant for, embedded, cyber-physical systems.

17.1 Cryptographic Primitives

The field of cryptography is one of the cornerstones of security and privacy. The word
“cryptography” is derived from the Latin roots “crypt” meaning secret and “graphia”
meaning write, and thus literally means “the study of secret writing.”

We begin with a review of the basic cryptographic primitives for encryption and de-
cryption, secure hashing, and authentication. Issues that are particularly relevant for the
design and analysis of embedded and cyber-physical systems are highlighted. The reader
is warned that examples given in this chapter, particularly those listing code, are given at
a high level of abstraction, and omit details that are critical to developing secure crypto-
graphic implementations. See books such as (Menezes et al., 1996; Ferguson et al., 2010)
for a more in-depth treatment of the subject.

17.1.1 Encryption and Decryption

Encryption is the process of translating a message into an encoded form with the intent
that an adversary cannot recover the former from the latter. The original message is
typically referred to as the plaintext, and its encoded form as the ciphertext. Decryption
is the process of recovering the plaintext from the ciphertext.

The typical approach to encryption relies on the presence of a secret called the key. An
encryption algorithm uses the key and the plaintext in a prescribed manner to obtain the
ciphertext. The key is shared between the parties that intend to exchange a message se-
curely. Depending on the mode of sharing, there are two broad categories of cryptography.
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In symmetric-key cryptography, the key is a single entity that is known to both sender
and receiver. In public-key cryptography, also termed asymmetric cryptography, the
key is split into two portions, a public part and a private part, where the public key is
known to everyone (including the adversary) and the private key is known only to the re-
ceiver. In the rest of this section, we present a brief introduction to these two approaches
to cryptography.

One of the fundamental tenets of cryptography, known as Kerckhoff’s principle, states
that a cryptographic system (algorithm) should be secure even if everything about the sys-
tem, except the key, is public knowledge. In practical terms, this means that even if the
adversary knows all details about the design and implementation of a cryptographic algo-
rithm, as long as he does not know the key, he should be unable to recover the plaintext
from the ciphertext.

Symmetric-Key Cryptography

Let Alice and Bob be two parties that seek to communicate with each other securely. In
symmetric-key cryptography, they accomplish this using a shared secret key K. Suppose
Alice wishes to encrypt and send Bob an n-bit plaintext message,M = m1m2m3 . . .mn ∈
{0, 1}n. We wish to have an encryption scheme that, given the shared key K, should en-
code M into ciphertext C with the following two properites. First, the intended recipient
Bob should be able to easily recover M from C. Second, any adversary who does not
know K should not, by observing C, be able to gain any more information about M .

We present intuition for the operation of symmetric-key cryptography using a simple,
idealized scheme known as the one-time pad. In this scheme, the two parties Alice and
Bob share an n-bit secret key K = k1k2k3 . . . kn ∈ {0, 1}n, where the n bits are chosen
independently at random. K is known as the one-time pad. Given K, encryption works
by taking the bit-wise XOR of M and K; i.e., C = M ⊕K where⊕ denotes XOR. Alice
then sends C over to Bob, who decrypts C by taking the bit-wise XOR of C with K;
using properties of the XOR operation, C ⊕K = M .

Suppose an adversary Eve observes C. We claim that Eve has no more information about
M or K than she had without C. To see this, fix a plaintext message M . Then, every
unique ciphertext C ∈ {0, 1}n can be obtained from M with a corresponding unique
choice of keyK — simply setK = C⊕M where C is the desired ciphertext. Put another
way, a uniformly random bit-stringK ∈ {0, 1}n generates a uniformly random ciphertext
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C ∈ {0, 1}n. Thus, looking at this ciphertext, Eve can do no better than guessing at the
value of K uniformly at random.

Notice that Alice cannot use the key K more than once! Consider what happens if she
does so twice. Then Eve has access to two ciphertexts C1 = M1⊕K and C2 = M2⊕K.
If Eve computes C1 ⊕ C2, using properties of XOR, she learns M1 ⊕M2. Thus, Eve
receives partial information about the messages. In particular, if Eve happens to learn
one of the messages, she learns the other one, and can also recover the key K. Thus, this
scheme is not secure if the same key is used for multiple communications, hence the name
“one-time pad.” Fortunately, other, stronger symmetric key cryptography schemes exist.

Most common symmetric key encryption methods use a building block termed a block
cipher. A block cipher is an encryption algorithm based on using a k-bit key K to
convert an n-bit plaintext message M into an n-bit ciphertext C. It can be mathemati-
cally captured in terms of an encryption function E : {0, 1}k × {0, 1}n → {0, 1}n; i.e.,
E(K,M) = C. For a fixed key K, the function EK defined by EK(M) = E(K,M)
must be a permutation from {0, 1}n to {0, 1}n. Decryption is the inverse function of
encryption; note that the inverse exists for each K as EK is invertible. We denote the
decryption function corresponding to EK by DK = E−1K . Note that for simplicity this
model of encryption abstracts it to be (only) a function of the message and the key; in
practice, care must be taken to use a suitable block cipher mode that, for example, does
not always encrypt the same plaintext to the same ciphertext.

One of the classic block ciphers is the data encryption standard (DES). Introduced in
the mid-1970s, DES was the first block cipher based on modern cryptographic techniques,
considered to be “commercial-grade,” with an open specification. While the details of
DES are beyond the scope of this chapter, we note that versions of DES are still used
in certain embedded devices. For instance, a version of DES, known as 3DES, which
involves applying the DES algorithm to a block three times, is used in certain “chip and
PIN” payment cards around in the world. The basic version of the DES involves use
of a 56-bit key and operates on 64-bit message blocks. While DES initially provided
an acceptable level of security, by the mid-1990s, it was getting easier to break it using
“brute-force” methods. Therefore, in 2001, the U.S. National Institute of Standards and
Technology (NIST) established a new cryptographic standard known as the advanced
encryption standard or AES. This standard is based on a cryptographic scheme called
Rijndael proposed by Joan Daemen and Vincent Rijmen, two researchers from Belgium.
AES uses a message block length of 128 bits and three different key lengths of 128, 192,
and 256 bits. Since its adoption, AES has proved to be a strong cryptographic algorithm
amenable to efficient implementation both in hardware and in software. It is estimated
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that the current fastest supercomputers could not successfully mount a brute-force attack
on AES within the estimated lifetime of the solar system!

Public-Key Cryptography

In order to use symmetric-key cryptography, Alice and Bob need to have already set up
a shared key in advance. This is not always easy to arrange. Public-key cryptography is
designed to address this limitation.

In a public-key cryptosystem, each principal (Alice, Bob, etc.) has two keys: a public key,
known to everyone, and a private key, known only to that principal. When Alice wants
to send Bob a secret message, she obtains his public key KB and encrypts her message
with it. When Bob receives the message, he decrypts it with his private key kB . In
other words, the encryption function based onKB must be invertible using the decryption
function based on kB , and moreover, must not be invertible without kB .

Let us consider the last point. Encryption using a public key must effectively be a one-
way function: a publicly-known function F such that it is easy to compute F (M) but
(virtually) impossible to invert without knowledge of a suitable secret (the private key).
Remarkably, there is more than one public-key cryptographic scheme available today,
each based on a clever combination of mathematics, algorithm design, and implementa-
tion tricks. We focus our attention here on one such scheme proposed in 1978 (Rivest
et al.), known as RSA for the initials of its creators: Rivest, Shamir and Adleman. For
brevity, we mostly limit our discussion to the basic mathematical concepts behind RSA.

Consider the setting where Bob wishes to create his public-private key pair so that others
can send him secret messages. The RSA scheme involves three main steps, as detailed
below:

1. Key Generation: Select two large prime numbers p and q, and compute their prod-
uct n = pq. Then compute ϕ(n) where ϕ denotes Euler’s totient function. This
function maps an integer n to the number of positive integers less than or equal
to n that are relatively prime to n. For the special case of the product of primes,
ϕ(n) = (p−1)(q−1). Select a random integer e such that 1 < e < ϕ(n) such that
the greatest common divisor of e and ϕ(n), denoted GCD(e, ϕ(n)) equals 1. Then
compute d, 1 < d < ϕ(n), such that ed ≡ 1 (mod ϕ(n)). The key generation
process is now complete. Bob’s public key KB is the pair (n, e). The private key is
kB = d.
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2. Encryption: When Alice wishes to send a message to Bob, she first obtains his
public key KB = (n, e). Given the message M to transmit, she computes the
ciphertext C as C = M e (mod n). C is then transmitted to Bob.

3. Decryption: Upon receipt of C, Bob computes Cd (mod n). By properties of
Euler’s totient function and modular arithmetic, this quantity equals M , allowing
Bob to recover the plaintext message from Alice.

We make two observations on the above scheme. First, the operations in the various
steps of RSA make heavy use of non-linear arithmetic on large numbers, especially mod-
ular multiplication of large integers and modular exponentiation. These operations must
be implemented carefully, especially on embedded platforms, in order to operate effi-
ciently. For instance, modular exponentiation is typically implemented using a version of
the square-and-multiply technique outlined in Example 16.1 of Chapter 16. Second, the
effectiveness of the approach depends critically on infrastructure to store and maintain
public keys. Without such a public-key infrastructure, an attacker Eve can masquerade
as Bob, advertising her own public key as Bob’s, and thus fooling Alice into sending her
messages intended for Bob. While such a public-key infrastructure has now been estab-
lished for servers on the Web using so-called “certificate authorities,” it is more challeng-
ing to extend that approach for networked embedded systems for a variety of reasons: the
large scale of devices that may act as servers, the ad-hoc nature of networks, and the re-
source constraints on many embedded devices.1 For this reason, public-key cryptography
is not as widely used in embedded devices as is symmetric-key cryptography.

17.1.2 Digital Signatures and Secure Hash Functions

The cryptographic primitives for encryption and decryption help in providing confiden-
tiality of data. However, by themselves, they are not designed to provide integrity or au-
thenticity guarantees. Those properties require the use of related, but distinct, primitives:
digital signatures, secure hash functions, and message authentication codes (MACs). This
section provides a brief overview of these primitives.

1Let’s Encrypt, an ongoing effort to develop a free, automated, and open certificate authority might miti-
gate some of these challenges; see https://letsencrypt.org/ for more details.

Lee & Seshia, Introduction to Embedded Systems 465

https://letsencrypt.org/
http://LeeSeshia.org


17.1. CRYPTOGRAPHIC PRIMITIVES

Secure Hash Functions

A secure hash function (also known as cryptographic hash function) is a deterministic
and keyless function H : {0, 1}n → {0, 1}k that maps n-bit messages to k-bit hash
values. Typically, n can be arbitrarily large (i.e., the message can be arbitrarily long) while
k is a relatively small fixed value. For example, SHA-256 is a secure hash function that

Implementation Matters for Cryptography

Embedded platforms typically have limited resources such as memory or energy, and
must obey physical constraints, for instance on real-time behavior. Cryptography can
be computationally quite demanding. Such computations cannot simply be offloaded
“to the cloud” as secret data must be secured at the end point before being sent out
on the network. Thus, cryptographic primitives must be implemented in a manner that
obeys the constraints imposed by embedded platforms.

Consider, for example, public-key cryptography. These primitives involve modu-
lar exponentiation and multiplications that can have large timing, memory, and energy
requirements. Consequently, researchers have developed efficient algorithms as well
as software and hardware implementations. A good example is Montgomery mul-
tiplication (Montgomery, 1985), a clever way of performing modular multiplication
by replacing the division (implicit in computing the modulus) with addition. Another
promising technology is elliptic curve cryptography which allows for a level of se-
curity comparable with the RSA approach with keys of smaller bit-width, reducing the
memory footprint of implementations; see, for example, Paar and Pelzl (2009) for de-
tails. Due to the costs of public-key cryptography, it is often used to exchange a shared
symmetric key that is then used for all subsequent communication.

Another important aspect of implementing cryptographic schemes is the design and
use of random number generation (RNG). A high-quality RNG requires as input a
source of randomness with high entropy. Many recommended high entropy sources
involve physical processes, such atmospheric noise or atomic decay, but these may not
be easy to use in embedded systems, especially in hardware implementations. Alter-
natively, one can use on-chip thermal noise and the timing of input events from the
physical world and network events. Polling the physical world for many such sources
of randomness may consume power, leading to implementation trade-offs; see Perrig
et al. (2002) for an example.
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maps messages to a 256-bit hash, and is being adopted for authenticating some software
packages and for hashing passwords in some Linux distributions. For a message M , we
term H(M) as the “hash of M.”

A secure hash function H has certain important properties that distinguishes it from more
traditional hash functions used for non-security purposes:

• Efficient to compute: Given a message M , it should be efficient to compute H(M).
• Pre-image resistance: Given a hash (value) h, it should be computationally infeasible

to find a message M such that h = H(M).
• Second pre-image resistance: Given a messageM1, it should be computationally infea-

sible to find another message M2 such that H(M1) = H(M2). This property prevents
attackers from taking a known message M1 and modifying it to match a desired hash
value (and hence find the corresponding message M2).
• Collision resistance: It should be computationally infeasible to find two different mes-

sages M1 and M2 where H(M1) = H(M2). This property, a stronger version of
second pre-image resistance, prevents an attacker from taking any starting message
and modifying it to match a given hash value.

A common use of secure hash functions is to verify the integrity of a message or a piece of
data. For example, before you install a software update on your computer you might want
to verify that the update you downloaded is a valid copy of the package you are updating
and not something modified by an attacker. Providing a secure hash of the software update
on a separate channel than the one on which the update file is distributed can provide such
assurance. After separately downloading this hash value, you can verify, by computing
the hash yourself on the software, that the provided hash indeed matches the one you
compute. With the growing trend for embedded systems to be networked and to receive
software patches over the network, the use of secure hash functions is expected to be a
central component of any solution that maintains system integrity.

Digital Signatures

A digital signature is a cryptographic mechanism, based on public-key cryptography, for
the author of a digital document (message) to authenticate himself/herself to a third party
and to provide assurance about the integrity of the document. The use of digital signatures
involves the following three stages:
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1. Key generation: This step is identical to the key generation phase of public-key
cryptosystems, resulting in a public key-private key pair.

2. Signing: In this step, the author/sender digitally signs the document to be sent to
the receiving party.

3. Verification: The recipient of a signed document verifies, using the digital signature,
that the sender of the document is indeed who he/she purports to be.

We now illustrate how the basic scheme works for the RSA cryptosystem. Suppose
Bob wishes to digitally sign a message M before sending it to Alice. Recall from Sec-
tion 17.1.1 that, using RSA, Bob can generate his public key as KB = (n, e) and private
key kB = d. One simple authentication scheme is for Bob to use his key-pair in reverse:
to sign M , he simply encrypts it with his private key, computing S = Md (mod n), and
sends S to Alice along with M . When Alice receives this signed message, she uses KB

to recover M from the signature S and verifies it by comparing it with the received mes-
sage. If they match, the message has been authenticated; otherwise, Alice has detected
tampering either in the message or its signature.

The above scheme is simple, but flawed. In particular, given the signatures S1 and S2 for
two messages M1 and M2, notice that an attacker can construct the signature for message
M1 ·M2 by simply multiplying together S1 and S2 (mod n). In order to guard against
this attack, one can first compute a secure hash of M1 and M2 before computing the
signatures on the resultant hashes rather than on the messages.

Message Authentication Codes

A message authentication code (MAC) is a cryptographic mechanism, based on
symmetric-key cryptography, for providing integrity and authenticity to a document. It is
thus the symmetric-key analog of a digital signature. As in other symmetric-key schemes,
the use of a MAC requires first setting up a shared key between sender and receiver that
each of them can use to authenticate messages sent by the other. For this reason, MACs
are best suited to settings where such a shared key can be easily set up. For instance,
modern automobiles comprise multiple electronic control units (ECUs) communicating
with each other on an on-board network such as a controller-area network (CAN) bus.
In this case, if each ECU is pre-programmed with a common key, then each ECU can
authenticate messages sent from other ECUs on the CAN bus using MACs.
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17.2 Protocol and Network Security

An attacker typically gains access to a system via its connection to a network or some
other medium used to connect it with other components. Additionally, it is increasingly
the case that a single embedded system comprises many distributed components con-
nected over a network. Thus, one must address fundamental questions about security
over a network and using various communication protocols, a field termed protocol se-
curity or network security. In this section, we review basic ideas related to two topics
of particular relevance for embedded systems: key exchange and cryptographic protocol
design.

17.2.1 Key Exchange

We have already seen how secret keys are critical components of both symmetric and
asymmetric cryptosystems. How are these keys established in the first place? In a sym-
metric cryptosystem, we need a mechanism for two communicating parties to agree on a
single shared key. In an asymmetric cryptosystem, we need infrastructure for establish-
ing and maintaining public keys so that any party on a network can look up the public
key of any other party it wishes to communicate with. In this section, we discuss a classic
method for key exchange and some alternative schemes customized to specific embedded
system design problems, with a focus on symmetric cryptography.

Diffie-Hellman Key Exchange

In 1976, Whitfield Diffie and Martin Hellman introduced what is widely considered the
first public-key cryptosystem (Diffie and Hellman, 1976). The crux of their proposal was
a clever scheme for two parties to agree on a shared secret key using a communication
medium observable by anyone. This scheme is commonly referred to as Diffie-Hellman
key exchange.

Suppose there are two parties Alice and Bob that wish to agree on a secret key. Everything
Alice sends to Bob, and vice-versa, can be viewed by an attacker Eve. Alice and Bob wish
to agree on a key while ensuring that it is computationally infeasible for Eve to compute
that key by observing their communication. Here is how Alice and Bob can use Diffie-
Hellman key exchange to achieve this objective.
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To begin with, Alice and Bob need to agree on two parameters. In doing so, they can use
various methods including a hard-coded scheme (e.g., a parameter hard-coded into the
same program they use) or one of them can announce the parameters to the other in some
deterministic fashion (e.g., based on a fixed ordering between their network addresses).
The first parameter is a very large prime number p. The second is a number z such that
1 < z < p− 1. Note that an attacker can observe z and p.

After these parameters p and z are agreed upon, Alice randomly selects a number a from
the set {0, 1, . . . , p − 2} and keeps it secret. Similarly, Bob randomly selects a number
b ∈ {0, 1, . . . , p − 2} and keeps it secret. Alice computes the quantity A = za (mod p)
and sends it to Bob. Likewise, Bob computes B = zb (mod p) and sends it to Alice. In
addition to z and p, the attacker Eve can observe A and B, but not a and b.

On receiving B, Alice uses her secret number a to compute Ba (mod p). Bob performs
the analogous step, computing Ab (mod p). Now, observe that

Ab (mod p) = zab (mod p) = Ba (mod p)

Thus, amazingly, Alice and Bob have agreed on a shared key K = zab (mod p) simply
by communicating on a public channel. Note that they have revealed neither of the secret
numbers a or b to the attacker Eve. Without knowledge of a or b, Eve cannot reliably
compute K. Moreover, it is computationally very difficult for Eve to compute a or b sim-
ply by knowing p, z, A or B, since the underlying problem is one known as the discrete
logarithm problem, for which no efficient (polynomial-time) algorithm is known. Put
another way, the function f(x) = zx (mod p) is a one-way function.

Diffie-Hellman is simple, elegant, and effective: unfortunately, it is typically not practical
for resource-constrained embedded systems. Computing it involves modular exponen-
tiation for large primes (typical key sizes range to 2048-bits), and thus impractical for
energy-constrained platforms that must obey real-time constraints. We therefore discuss
next a few alternative schemes.

Timed Release of Keys

Many networked embedded systems use a broadcast medium for communication — one
where senders send data over a public channel where all receivers, intended and unin-
tended, can read that data. Examples include on-board automotive networks using the
CAN bus and wireless sensor networks. A broadcast medium has many advantages: it
is simple, requires little infrastructure, and a sender can quickly reach a large number of
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receivers. However, it also has certain disadvantages, notably that malicious parties can
eavesdrop and inject malicious packets with ease. Reliability of the broadcast medium
can also be concern.

How can one achieve secure key exchange in such a broadcast medium, under constraints
on timing and energy consumption? This question was studied in the early 2000s, when
the first work was done on deploying wireless sensor networks (e.g., see Perrig et al.
(2004); Perrig and Tygar (2012)). One of the novel ideas is to leverage timing properties
of these networks, an idea whose roots go back to a paper by Anderson et al. (1998).

The first property is that of clock synchronization, where different nodes on the network
have clocks such that the difference between the values of any two clocks is bounded by
a small constant. Many sensor nodes can have synchronized clocks via GPS or protocols
such as the precision time protocol (PTP) (Eidson, 2006).

The second property is that of scheduled transmission. Each node in the network transmits
packets at pre-determined times, following a schedule.

The combination of the above two properties permits the use of a secure broadcast pro-
tocol called µTESLA (Perrig et al., 2002). This protocol is designed for broadcast net-
works comprising two types of nodes, base stations and sensor nodes. A key property
of µTESLA is secure authentication — a node receiving a message should be able to
determine who the authentic sender is, discarding spoofed messages. It performs this by
using a message authentication code (MAC) in each message, which is computed using
a secret key. This secret key is broadcast some time after the original message was sent,
allowing the receiver to compute the MAC for itself, and determine the authenticity of
the received message. Since each message is timestamped, upon receiving a message the
receiver verifies that the key used to compute the MAC has not yet been disclosed based
on this timestamp, its local clock, the maximum clock skew, and the time schedule at
which keys are disclosed. If the check fails, the message is discarded; otherwise, when
the key is received, the authenticity of the message is checked by computing the MAC
and checking against the received MAC. In this way, the timed release of keys is used to
share keys between a broadcast sender and its receivers, for the purpose of authenticating
messages.

A similar approach has been adopted for CAN-based automotive networks. Lin et al.
(2013) have shown how to extend the µTESLA approach for the CAN bus where the
nodes do not necessarily share a common global notion of time. Timed delayed release
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of keys has also been implemented for Time Triggered Ethernet (TTE) (Wasicek et al.,
2011).

Other Schemes

In certain application domains, customized schemes have been developed for key ex-
change using special characteristics of those domains. For instance, Halperin et al. (2008)
discuss a key exchange scheme for implantable medical devices (IMDs) such as pace-
makers and defibrillators. They propose a “zero-power” security mechanism on the im-
planted device based on radio-frequency (RF) power harvesting. The novel key exchange
scheme involves a “programmer” device initiating communication with the IMD (and
supplying an RF signal to power it). The IMD generates a random value that is commu-
nicated as a weak modulated sound wave that is perceptible by the patient. The security

Reverse Engineering Systems to Improve Security

Several embedded systems were designed at a time when security was a secondary
design concern, if one at all. In recent years, researchers have shown how this lack of
attention to security can lead to compromised systems in various domains. The chief
approach taken is to reverse engineer protocols that provide access to systems and the
working of their components.

We present here three representative examples of vulnerabilities demonstrated in
real embedded systems. Halperin et al. (2008) show how implantable medical devices
(IMDs) can be read and reprogrammed wirelessly. Koscher et al. (2010) demonstrate
for automobiles how the on-board diagnostics bus (OBD-II) protocol can be subverted
to adversarially control a wide range of functions, including disabling the brakes and
stopping the engine. Ghena et al. (2014) study traffic light intersections and show
how their functioning can be partially controlled wirelessly to perform, for example, a
denial-of-service attack causing traffic congestion.

Such investigations based on reverse engineering “legacy” embedded systems to un-
derstand their functioning and uncover potential security flaws form an important part
of the process of securing our cyber-physical infrastructure.
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of this scheme relies on a threat model based on physical security around the patient’s
immediate vicinity, one that is plausible for this particular application.

17.2.2 Cryptographic Protocol Design

Some of the most-publicized vulnerabilities in networked embedded systems, at the time
of writing, arise from the fact that the communication protocols were designed with little
or no security in mind (see the box on page 472). However, even protocols designed for
security using cryptographic primitives can have vulnerabilities. Poor protocol design can
compromise confidentiality, integrity, and authenticity properties even if one assumes per-
fect cryptography and the presence of key exchange and key management infrastructure.
We explain this point with an example.

Example 17.1: A replay attack on a protocol is one where an attacker is able to
violate a security property by replaying certain messages in the protocol, possibly
with modifications to accompanying data.

We describe here a replay attack on a fictitious wireless sensor network protocol.
This network comprises a base station S and several energy-constrained sensor
nodes N1, N2, . . . , Nk communicating via broadcast. Each node spends most of
its time in a sleep mode, to conserve energy. When S wants to communicate with
a particular node Ni to take a sensor reading, it sends it a message M encrypted
with a suitable shared key Ki pre-arranged between S and Ni. Ni then responds
with an encrypted sensor reading R. In other words, the protocol has a message
exchange as follows:

S → Ni : E(Ki,M)

Ni → S : E(Ki, R)

This protocol, on the face of it, seems secure. However, it has a flaw that can
hinder operation of the network. Since the nodes use broadcast communication,
an attacker can easily record the messageE(Ki,M). The attacker can then replay
this message multiple times at a low power so that it is detected by Ni, but not by
S. Ni will keep responding with encrypted sensor readings, possibly causing it
to run down its battery much faster than anticipated, and disabling its operation.

Notice that there was nothing wrong with the individual cryptographic steps used
in this protocol. The problem was with the temporal behavior of the system —

Lee & Seshia, Introduction to Embedded Systems 473

http://LeeSeshia.org


17.3. SOFTWARE SECURITY

that Ni had no way of checking if a message is “fresh.” A simple countermeasure
to this attack is to attach a fresh random value, called a nonce, or a timestamp
with each message.

This attack is also an example of a so-called denial-of-service attack, abbre-
viated DoS attack, indicating that the impact of the attack is a loss of service
provided by the sensor node.

Fortunately, techniques and tools exist to formally model cryptographic protocols and ver-
ify their correctness with respect to specific properties and threat models before deploying
them. More widespread use of these techniques is needed to improve protocol security.

17.3 Software Security

The field of software security is concerned with how errors in the software implementa-
tion can impact desired security and privacy properties of the system. Bugs in software
can and have been used to steal data, crash a system, and worse, allow an attacker to obtain
an arbitrary level of control over a system. Vulnerabilities in software implementations
are one of the largest categories of security problems in practice. These vulnerabilities
can be especially dangerous for embedded systems. Much of embedded software is pro-
grammed in low-level languages such as C, where the programmer can write arbitrary
code with few language-level checks. Moreover, the software often runs “bare metal”
without an underlying operating system or other software layer that can monitor and trap
illegal accesses or operations. Finally, we note that in embedded systems, even “crashing”
the system can have severe consequences, since it can completely impair the interaction
of the system with the physical world. Consider, for example, a medical device such as a
pacemaker, where the consequences of a crash may be that the device stops functioning
(e.g. pacing), leading to potentially life-threatening consequences for the patient.

In this section, we give the reader a very brief introduction to software security problems
using a few illustrative examples. The reader is referred to relevant books on security
(e.g., Smith and Marchesini (2007)) for further details.

Our examples illustrate a vulnerability known as a buffer overflow or buffer overrun.
This class of errors is particularly common in low-level languages such as C. It arises from
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the absence of automatic bounds-checking for accessing arrays or pointers in C programs.
More precisely, a buffer overflow is a error arising from the absence of a bounds check
resulting in the program writing past the end of an array or memory region. Attackers can
use this out-of-bounds write to corrupt trusted locations in a program such as the value
of a secret variable or the return address of a function. (Tip: material in Chapter 9 on
Memory Architectures might be worth reviewing.) Let us begin with a simple example.

Example 17.2: The sensors in certain embedded systems use communication
protocols where data from various on-board sensors is read as a stream of bytes
from a designated port or network socket. The code example below illustrates one
such scenario. Here, the programmer expects to read at most 16 bytes of sensor
data, storing them into the array sensor data.

1 char sensor_data[16];
2 int secret_key;
3

4 void read_sensor_data() {
5 int i = 0;
6

7 // more_data returns 1 if there is more data,
8 // and 0 otherwise
9 while(more_data()) {

10 sensor_data[i] = get_next_byte();
11 i++;
12 }
13

14 return;
15 }

The problem with this code is that it implicitly trusts the sensor stream to be no
more than 16 bytes long. Suppose an attacker has control of that stream, either
through physical access to the sensors or over the network. Then an attacker can
provide more than 16 bytes and cause the program to write past the end of the
array sensor data. Notice further how the variable secret key is defined
right after sensor data, and assume that the compiler allocates them adja-
cently. In this case, an attacker can exploit the buffer oveflow vulnerability to
provide a stream of length 20 bytes and overwrite secret key with a key of
his choosing. This exploit can then be used to compromise the system in other
ways.
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The example above involves an out-of-bounds write in an array stored in global memory.
Consider next the case when the array is stored on the stack. In this case, a buffer overrun
vulnerability can be exploited to overwrite the return address of the function, and cause it
to execute some code of the attacker’s choosing. This can lead to the attacker gaining an
arbitrary level of control over the embedded system.

Example 17.3: Consider below a variant on the code in Example 17.2 where
the sensor data array is stored on the stack. As before, the function reads
a stream of bytes and stores them into sensor data. However, in this case,
the read sensor data is then processed within this function and used to set certain
globally-stored flags (which can then be used to take control decisions).

1 int sensor_flags[4];
2

3 void process_sensor_data() {
4 int i = 0;
5 char sensor_data[16];
6

7 // more_data returns 1 if there is more data,
8 // and 0 otherwise
9 while(more_data()) {

10 sensor_data[i] = get_next_byte();
11 i++;
12 }
13

14 // some code here that sets sensor_flags
15 // based on the values in sensor_data
16

17 return;
18 }

Recall from Chapter 9 how the stack frame of a function is laid out. It is possi-
ble for the return address of function process sensor data to be stored in
memory right after the end of the array sensor data. Thus, an attacker can
exploit the buffer overflow vulnerability to overwrite the return address and cause
execution to jump to a location of his choice. This version of the buffer overflow
exploit is sometimes (and rather aptly) termed as stack smashing.

Moreover, the attacker could write a longer sequence of bytes to memory and
include arbitrary code in that sequence. The overwritten return address could be
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tailored to be within this overwritten memory region, thus causing the attacker
to control the code that gets executed! This attack is often referred to as a code
injection attack.

How do we avoid buffer overflow attacks? One easy way is to explicitly check that we
never write past the end of the buffer, by keeping track of its length. Another approach
is to use higher-level languages that enforce memory safety — preventing the program
from reading or writing to locations in memory that it does not have privileges for or that
the programmer did not intend it to. Exercise 1 gives you some practice with writing code
so as to avoid a buffer overflow.

17.4 Information Flow

Many security properties specify restrictions on the flow of information between princi-
pals. Confidentiality properties restrict the flow of secret data to channels that are readable
by an attacker. For example, your bank balance should be viewable only by you and au-
thorized bank personnel and not by an attacker. Similarly, integrity properties restrict the
flow of untrusted values, controlled by an attacker, to trusted channels or locations. Your
bank balance should be writable only by trusted deposit or withdrawal operations and not
arbitrarily by a malicious party. Thus, secure information flow, the systematic study of
how the flow of information in a system affects its security and privacy, is a central topic
in the literature.

Given a component of an embedded system it is important to understand how informa-
tion flows from secret locations to attacker-readable “public” locations, or from attacker-
controlled untrusted channels to trusted locations. We need techniques to detect illegal
information flows and to quantify their impact on the overall security of the system. Addi-
tionally, given security and privacy policies, we need techniques to enforce those policies
on a system by suitably restricting the flow of information. Our goal, in this section, is to
equip the reader with the basic principles of secure information flow so as to be able to
develop such techniques.
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17.4.1 Examples

In order to motivate the secure information flow problem, we present a series of examples.
Although these examples focus on confidentiality, the same approaches and concerns ap-
ply for integrity properties as well.

Example 17.4: Medical devices are increasingly software-controlled, personal-
ized, and networked. An example of such a device is a blood glucose meter, used
by doctors and patients to monitor a patient’s blood glucose level. Consider a hy-
pothetical glucose meter that can take a reading of a patient’s glucose level, show
it on the device’s display, and also transmit it over the network to the patient’s
hospital. Here is a highly-abstracted version of the software that might perform
these tasks.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 void take_reading() {
4 float reading = read_from_sensor();
5

6 display(reading);
7

8 send(network_socket, hospital_server,
9 reading, patient_id);

10

11 return;
12 }

The function take reading records a single blood glucose reading (e.g., in
mg/dL) and stores it in a floating-point variable reading. It then writes this
value, suitably formatted, to the device’s display. Finally, it transmits the value
along with the patient’s ID without any encryption over the network to the hospital
server for analysis by the patient’s doctor.

Suppose that the patient wishes to have his glucose level kept private, in the sense
that its value is known only to him and his doctor, but no one else. Does this
program achieve that objective? It is easy to see that it does not, as the value
of reading is transmitted “in the clear” over the network. We can formal-
ize this violation of privacy as an illegal information flow from reading to
network socket, where the former is a secret location whereas the latter is a
public channel visible to an attacker.
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With the knowledge of cryptographic primitives presented earlier in this chapter, we know
that we can do better. In particular, let us assume the presence of a shared key between the
patient’s device and the hospital server that permits the use of symmetric-key encryption.
Consider the following new version of the above example.

Example 17.5: In this version of the program, we employ symmetric-key cryp-
tography, denoted by AES, to protect the reading. The encryption process is ab-
stractly represented by the function enc AES, and send enc differs from send
only in the type of its third argument.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 long cipher_text;
4

5 struct secret_key_s {
6 long key_part1; long key_part2;
7 }; // struct type storing 128-bit AES key
8

9 struct secret_key_s secret_key; // shared key
10

11 void take_reading() {
12 float reading = read_from_sensor();
13

14 display(reading);
15

16 enc_AES(&secret_key, reading, &cipher_text);
17

18 send_enc(network_socket, hospital_server,
19 cipher_text, patient_id);
20

21 return;
22 }

In this case, there is still a flow of information from reading to
network socket. In fact, there is also a flow from secret key to
network socket. However, both these flows passed through an encryption
function denoted by enc AES. In the security literature, such a function is termed
a declassifier since it encodes the secret data in such a way that it becomes accept-
able to transmit the encoded, “declassified” result to an attacker-readable channel.
In other words, the declassifier serves as a “dam” blocking the flow of secret infor-
mation and releasing only information that, by the properties of the cryptographic
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primitives, provides attackers with no more information than they had before the
release.

While the above fix to the code blocks the flow of information about the reading of the
patient’s blood glucose, note that it does not completely protect the program. In particular,
notice that the patient’s ID is still being sent in the clear over the network! Thus, even
though the attacker cannot tell, without the secret key, what the patient’s reading is, he/she
knows who transmitted a reading to the hospital (and possibly also at what time). Some
private data is still being leaked. One solution to this leak is fairly obvious – we can
encrypt both variables reading and patient id using the secret key before sending
them over the network.

So far we have assumed an implicit threat model where the attacker can only read in-
formation sent over the network. However, for many embedded systems, attackers may
also have physical access to the device. For instance, consider what happens if the patient
loses his device and an unauthorized person (attacker) gains access to it. If the patient’s
readings are stored on the device, the attacker might be able to read the data stored on it
if such an illegal information flow exists. One approach to guard against this attack is to
have the patient create a password, much like one creates a password for other personal
devices, and have the device prompt one for the password when turned on. This idea is
discussed in the example below.

Example 17.6: Suppose that a log of the past 100 readings is stored
on the device. The code below sketches an implementation of a function
show readings that prompts the user for an integer password, and displays
the stored readings only if the current password stored in patient pwd is en-
tered, otherwise displaying an error message that has no information about the
stored readings.

1 int patient_id; // initialized to the
2 // patient’s unique identifier
3 int patient_pwd; // stored patient password
4

5 float stored_readings[100];
6

7 void show_readings() {
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8 int input_pwd = read_input(); // prompt user for
9 // password and read it

10 if (input_pwd == patient_pwd) // check password
11 display(&stored_readings);
12 else
13 display_error_mesg();
14

15 return;
16 }

Assuming the attacker does not know the value of patient pwd, we can see
that the above code does not leak any of the 100 stored readings. However, it
does leak one bit of information: whether the input password provided by the
attacker equals the correct password or not. In practice, such a leak is deemed
acceptable since, for a strong choice of patient password, it would take even the
most determined attacker an exponential number of attempts to log in success-
fully, and this can be thwarted by disallowing more than a small, fixed number of
attempts to provide the correct password.

The above example illustrates the concept of quantitative information flow (QIF). QIF
is typically defined using a function measuring the amount of information flowing from
a secret location to a public location. For instance, one might be interested in computing
the number of bits leaked, as illustrated by the example above. If this quantity is deemed
small enough, the information leak is tolerated, otherwise, the program must be rewritten.

However, the code in Example 17.6 has a potential flaw. Once again, this flaw stems
from a corresponding threat model. In particular, consider the case where an attacker not
only has physical possession of the device, but also has the knowledge and resources to
perform invasive attacks by opening up the device, and reading out the contents of main
memory as it executes. In this case, the attacker can read the value of patient pwd
simply by booting up the device and reading out the contents of memory as the system is
initialized.

How can we protect against such invasive attacks? One approach involves the use of se-
cure hardware or firmware coupled with secure hash functions. Suppose the hardware
provides for secure storage where a secure hash of the user password can be written out,
and any tampering detected. Then, only the secure hash need be stored in main memory,
not the actual password. By the properties of a secure hash function, it would be compu-
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tationally infeasible for an attacker to reverse engineer the password simply by knowing
the hash.

A similar flaw exists in Example 17.5, where the secret key is stored in memory in the
clear. However, in this case, simply taking a secure hash of the key is insufficient as the
actual key is required to perform encryption and decryption to facilitate secure commu-
nication with the server. How do we secure this function? In general, this requires an
additional component such as a secure key manager, e.g., implemented in hardware or by
a trusted operating system, one that uses a master key to encrypt or decrypt the secret key
for the application.

Finally, although our examples illustrate the flow of information through values of vari-
ables in software, information can also be leaked through other channels. The term side
channel is used to refer to a channel that involves a non-traditional way of communicat-
ing information, typically using a physical quantity such as time, power consumption, or
the amplitude and frequency of an audio signal, or a physical modification to the system,
such as a fault, that induces a traditional information leak. We cover some basic concepts
on side-channel attacks in Section 17.5.2.

17.4.2 Theory

So far we have spoken of confidentiality and integrity properties only informally. How
can we state these properties precisely, similar to the notation introduced in Chapter 13?
It turns out that specifying security and privacy properties formally can be quite tricky.
Various formalisms have been proposed in the literature over the years, and there is no
consensus on a common definition of notions such as confidentiality or integrity. How-
ever, some foundational concepts and principles have emerged. We introduce these basic
concepts in this section.

The first key concept is that of non-interference. The term non-interference is used
to refer to any of a family of (security) properties that specify how actions taken by one
or more principals can or cannot affect (“interfere with”) actions taken by others. For
instance, for integrity properties, we require that actions of an attacker cannot affect the
values of certain trusted data or computations. Similarly, for confidentiality properties, we
require that the actions taken by an attacker cannot depend on secret values (thus implying
that the attacker has no information about those secrets).
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There are several variants of non-interference that are useful for expressing different kinds
of security or privacy properties. In defining these, it is customary to use the terms high
and low to denote two security levels. For confidentiality, the high level denotes secret
data/channels and the low level denotes public data/channels. For integrity, the high level
denotes trusted data/channels while the low level denotes untrusted data/channels. Non-
interference is typically defined over traces of a system, where each input, output, and
state element is classified as being either low or high.

The first variant we introduce is observational determinism (McLean, 1992; Roscoe,
1995) which is defined as follows: if two traces of a system are initialized to be in states
in which the low elements are identical, and they receive the same low inputs, then that
implies that the low elements of all states and outputs in that trace must be identical. Put
another way, the low parts of a system’s trace are deterministic functions of the low initial
state and the low inputs, and nothing else. This, in turn, implies that an attacker who
only controls or observes the low parts of a system’s trace cannot infer anything about the
high parts.

Another variant is generalized non-interference (McLean, 1996) which requires a sys-
tem to exhibit a set of traces with a special property: for any two traces τ1 and τ2, there
must exist a newly-constructed trace τ3 such that, at each time step in τ3, the high inputs
are the same as in τ1 and the low inputs, states, and outputs are the same as in τ2. Intu-
itively, by observing the low states and outputs, an attacker cannot tell if she is seeing the
high inputs as in τ1 or as they occur in τ2.

The different variants of non-interference, however, share something in common. Math-
ematically, they are all hyperproperties (Clarkson and Schneider, 2010). Formally, a
hyperproperty is a set of sets of traces. Contrast this definition with the definition of
a property as a set of traces, as introduced in Chapter 13. The latter is more accurately
called a trace property, as its truth value can be evaluated on a single, standalone trace of
a system. The truth value of a hyperproperty, in contrast, typically2 cannot be determined
by observing a single trace. One needs to observe multiple traces, and compute a relation
between them, in order to determine if they together satisfy or violate a hyperproperty.

Example 17.7: Consider the two state machines in Figure 17.1. In both cases,
the state machine has one secret input s and one public output z. Additionally,

2Clearly, every (trace) property has an equivalent hyperproperty, which is why we use the adverb “typi-
cally.”
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x=0 / 1

inputs: s, x : {0,1}
output: z : {0,1}

x=1 / 0

(a) M1

s = 0 / 1

input: s : {0,1}
output: z : {0,1}

s = 0 / 1

s = 1 / 0

s = 1 / 0

(b) M2

Figure 17.1: An example of a state machine satisfying observational determinism
(a) and one that does not (b). Input s is a secret (high) input, and output z is a
public (low) output.

M1 has a public input x. An attacker can directly read the value of x and z but
not s.

State machine M1 satisfies observational determinism (OD). For any input se-
quence, M1 produces a binary output sequence that depends solely on the values
of the public input x and not on s.

However, M2 does not satisfy OD. For example, consider the input sequence
1010ω. Then, the corresponding output sequence of M2 will be 0101ω. If the in-
put sequence is switched to 0101ω, then the output will correspondingly change to
1010ω. The adversary can gain information about the input s simply by observing
the output z.

17.4.3 Analysis and Enforcement

Several techniques have been developed to analyze and track the flow of information in
software systems, and, in some cases, to enforce information flow policies either at design
time or run time. We mention some of these methods below, with the caveat that this is a
rapidly evolving area and our selection is meant to be representative, not exhaustive.
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Taint analysis. In taint analysis, the flow of information is tracked using labels (“taint”)
attached to data items and by monitoring memory operations. When an illegal informa-
tion flow is detected, a warning is generated. Taint analysis has been mainly developed for
software systems. It can be performed statically, when software is compiled, or dynam-
ically, at run time. For instance, for the code in Example 17.4, taint analysis can detect
the flow of secret data from reading to network socket. At run time, this can be
detected before the write to the network socket, and used to raise a run-time exception or
other preventive action. Static taint analysis is a simple concept, and easy to apply, but
can generate false alarms. Dynamic taint analysis is just as easy and more precise, but im-
poses a run-time overhead. System designers must evaluate for themselves the suitability
of either mechanism for their contexts.

Formal verification of information flow. Techniques for formal verification, such as the
model checking methods covered in Chapter 15, can also be adapted to verify secure infor-
mation flow. These methods usually operate after the original analysis problem has been
reduced to one of checking a safety property on a suitably constructed model (Terauchi
and Aiken, 2005). Compared to taint analysis, such methods are much more precise, but
they also come at a higher computational cost. As these methods are still rapidly evolving,
detailed coverage of these methods is beyond the scope of this chapter at the present time.

Run-time enforcement of policies. The notion of taint allows one to specify simple
information flow policies, such as disallowing the flow of secret data to any public location
at all times. However, some security and privacy policies are more complex. Consider,
for example, a policy that a person’s location is public some of the time (e.g., while they
are at work or in a public space such as an airport), but is kept secret at selected other
times (e.g., when they visit their doctor). Such a policy involves a time-varying secret tag
on the variable storing the person’s location. The problem of specifying, checking, and
enforcing such expressive policies is an active area of research.

17.5 Advanced Topics

Certain problems in security and privacy gain special significance in the context of cyber-
physical systems. In this section, we review two of these problems and highlight some of
the key issues.
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17.5.1 Sensor and Actuator Security

Sensors and actuators form the interface between the cyber and physical worlds. In many
cyber-physical systems, these components are easily observed or controlled by an at-
tacker. Detecting attacks on these components and securing them is therefore an impor-
tant problem. Central to both efforts is to develop realistic threat models and mechanisms
to address those threats. We review two representative recent efforts in the area of sensor
security.

Recent work has focused on attacks on analog sensors, i.e., developing threat models
for these attacks as well as countermeasures. The main mode of attack is to employ
electromagnetic interference (EMI) to modify the sensed signal. Two recent projects
have studied EMI attacks in different applications. Foo Kune et al. (2013) investigate
EMI attacks at varying power and distances on implantable medical devices and consumer
electronics. Shoukry et al. (2013) study the possibility of EMI attacks that spoof sensor
values for certain types of automotive sensors. We present here some basic principles
from both projects.

Threat Models

In the context of sensor security, EMI can be classified along multiple dimensions. First,
such interference can be invasive, involving modification to the sensor components, or
non-invasive, involving observation or remote injection of spurious values. Second, it
can be unintentional (e.g., arising from lightning strikes or transformers) or intentional
(injected by an attacker). Third, it can be high-power, potentially injecting faults into or
disabling the sensor, or low-power, which simply injects false values or modifies sensor
readings. These dimensions can be used to define informal threat models.

Foo Kune et al. (2013) describe a threat model for intentional, low-power, non-invasive
attacks. This combination of characteristics is amongst the hardest to defend against,
since the low-power and non-intrusive nature of the attacks makes it potentially hard to
detect. The researchers design two kinds of EMI attacks. Baseband attacks inject signals
within the same frequency band in which the generated sensor readings lie. They can be
effective on sensors that filter signals outside the operating frequency band. Amplitude-
modulated attacks start with a carrier signal in the same frequency band of the sensor and
modulate it with an attack signal. They can match the resonant frequency of a sensor,
thus amplifying the impact of even a low-power attack signal. They demonstrate how
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these attacks can be performed on implantable cardiac devices, injecting forged signals
in leads, inhibiting pacing, causing defibrillation, etc. from 1 to 2 meters away from the
device.

The threat model considered by Shoukry et al. (2013) is for intentional, non-invasive
attacks, with a focus on anti-lock braking systems (ABS) in automobiles. The magnetic
wheel speed sensors are attacked by placing a malicious actuator in close proximity of
the sensor (mountable from outside the vehicle) that modifies the magnetic field measured
by the ABS sensor. One form of the attack, in which the actuator disrupts the magnetic
field but is not precisely controllable by the attacker, can be “merely” disruptive. Its
impact is similar to unintentional, high-power EMI. The trickier form of the attack is
a spoofing attack, where the ABS system is deceived into measuring an incorrect but
precise wheel speed for one or more of the wheels. This is achieved by implementing
an active magnetic shield around the actuator. The reader is referred to the paper for
additional details. The authors show how their attack can be mounted on real automotive
sensors, and demonstrate, in simulation, how the ABS system can be tricked into making
an incorrect braking decision in icy road conditions, causing the vehicle to slip off-road.

Countermeasures

Both of the projects mentioned above also discuss potential countermeasures to the at-
tacks.

Foo Kune et al. (2013) consider a range of defenses, both hardware-based and software-
based. Hardware or circuit-level approaches include shielding the sensor, filtering the
input signals, and common mode noise rejection. However, these methods are reported to
have limited effectiveness. Thus, software-based defenses are also introduced, including
estimating the EMI level in the environment, adaptive filtering, cardiac probing to see if
the sensed signals follow an expected pattern, reverting to safe defaults, and notifying
the victim (patient) or physician about the possibility of an attack to allow them to take
suitable actions to move away from the EMI source.

Shoukry et al 2015; 2016 take a somewhat different approach that is rooted in control
theory and formal methods. The idea is to create a mathematical model of the system and
of sensor attacks, and devise algorithms to identify subsets of sensors that are attacked,
isolate them, and use the remaining (unattacked) sensors to perform state estimation and
control.
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17.5.2 Side-channel Attacks

Many embedded systems are accessible to an attacker not just over a network but also
physically. These systems are therefore exposed to classes of attacks not possible in other
settings. One such class are known as side-channel attacks, which involve illegal infor-
mation flows through side channels. Since the seminal work by Kocher (1996), attacks
have been demonstrated using several types of side channels, including timing (Brumley
and Boneh, 2005; Tromer et al., 2010), power (Kocher et al., 1999), faults (Anderson and
Kuhn, 1998; Boneh et al., 2001) memory access patterns (Islam et al., 2012), acoustic sig-
nals (Zhuang et al., 2009), and data remanence (Anderson and Kuhn, 1998; Halderman
et al., 2009). Timing attacks involve the observation of the timing behavior of a system
rather than the output values it generates. Power attacks involve the observation of power
consumption; a particularly effective variant, known as differential power analysis, are
based on a comparative analysis of power consumption for different executions. In mem-
ory access pattern attacks, observing addresses of memory locations accessed suffices
to extract information about encrypted data. Fault attacks induce information leaks by
modifying normal execution via fault injection.

While an exhaustive survey of side-channel attacks is outside the scope of this book,
we illustrate, using the example below, how information can leak through a timing side
channel.

Example 17.8: Consider the C implementation of modular exponentiation given
as the modexp function of Example 16.1. In Figure 17.2 we show how the exe-
cution time of modexp varies as a function of the value of exponent. Recall
how the exponent usually corresponds to the secret key in implementations of
public-key cryptosystems such as RSA or Diffie-Hellman. Execution time is de-
picted in CPU cycles on the y axis, while the value of exponent ranges from
0 to 15. The measurements are made on a processor implementing the ARMv4
instruction set.

Notice that there are five clusters of measurements around 600, 700, 750, 850,
and 925 cycles respectively. It turns out that each cluster corresponds to values of
exponent that, when represented in binary, have the same number of bits set to
1. For example, the execution times for values 1, 2, 4 and 8, each corresponding
to a single bit set to 1, are clustered around 700 CPU cycles.
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Figure 17.2: Timing data for the modexp function of Example 16.1. The graph
shows how execution time (in CPU cycles on the y-axis) for modexp varies as a
function of the value of the 4-bit exponent (listed on the x-axis).
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Thus, from simply observing the execution time of modexp and nothing else,
and with some knowledge of the underlying hardware platform (or access to it),
an attacker can infer the number of bits set to 1 in exponent, i.e., in the secret
key. Such information can significantly narrow down the search space for brute-
force enumeration of keys.

In Example 17.8, it is assumed that an attacker can measure the execution time of a fairly
small piece of code such as modexp, embedded within a larger program. Is this realistic?
Probably not, but it does not mean timing attacks cannot be mounted. More sophisticated
methods are available for an attacker to measure execution time of a procedure. For
instance, Tromer et al. (2010) show how AES can be broken using a timing attack where
an attacker simply induces cache hits or misses in another process (by writing to carefully
chosen memory locations within its own memory segment), along with an indirect way of
measuring whether the victim process suffered a cache hit or a cache miss. This can allow
the attacker to know if certain table entries were looked up during the AES computation,
thereby allowing him to reconstruct the key.

Side-channel attacks remind us that security compromises are often achieved by breaking
assumptions made by system designers. In designing an embedded system, careful con-
sideration must be given to the assumptions one makes and to plausible threat models, in
order to achieve a reasonable level of assurance in the system’s security.

17.6 Summary

Security and privacy are now amongst the top design concerns for embedded, cyber-
physical systems. This chapter gave an introduction to security and privacy with a focus
on topics relevant for cyber-physical systems. We covered basic cryptographic primitives
covering techniques for encryption and decryption, secure hash functions, and digital sig-
natures. The chapter also gave overviews of protocol security and software security, as
well as secure information flow, a fundamental topic that cuts across many sub-areas in
security and privacy. We concluded with certain advanced topics, including sensor secu-
rity and side-channel attacks.
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Exercises

1. Consider the buffer overflow vulnerability in Example 17.2. Modify the code so as
to prevent the buffer overflow.

2. Suppose a system M has a secret input s, a public input x, and a public output z.
Let all three variables be Boolean. Answer the following TRUE/FALSE questions
with justification:

(a) Suppose M satisfies the linear temporal logic (LTL) property G¬z. Then M
must also satisfy observational determinism.

(b) Suppose M satisfies the linear temporal logic (LTL) property G [(s ∧ x) ⇒ z].
Then M must also satisfy observational determinism.

3. Consider the finite-state machine below with one input x and one output z, both
taking values in {0, 1}. Both x and z are considered public (“low”) signals from a
security viewpoint. However, the state of the FSM (i.e., “A” or “B”) is considered
secret (“high”).

x = 0 / 1

input: x : {0,1}
output: z : {0,1}

x = 0 / 1

x = 1 / 0

x = 1 / 0

TRUE or FALSE: There is an input sequence an attacker can supply that tells him
whether the state machine begins execution in A or in B.
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Part IV

Appendices

This part of this text covers some background in mathematics and computer science that
is useful to more deeply understand the formal and algorithmic aspects of the main text.
Appendix A reviews basic notations in logic, with particular emphasis on sets and func-
tions. Appendix B reviews notions of complexity and computability, which can help a
system designer understand the cost of implementing a system and fundamental limits
that make certain systems not implementable.



A
Sets and Functions
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This appendix reviews some basic notation for sets and functions.

A.1 Sets

In this section, we review the notation for sets. A set is a collection of objects. When
object a is in set A, we write a ∈ A. We define the following sets:

• B = {0, 1}, the set of binary digits.
• N = {0, 1, 2, · · · }, the set of natural numbers.
• Z = {· · · ,−1, 0, 1, 2, · · · }, the set of integers.
• R, the set of real numbers.
• R+, the set of non-negative real numbers.



A.2. RELATIONS AND FUNCTIONS

When set A is entirely contained by set B, we say that A is a subset of B and write
A ⊆ B. For example, B ⊆ N ⊆ Z ⊆ R. The sets may be equal, so the statement N ⊆ N
is true, for example. The powerset of a set A is defined to be the set of all subsets. It is
written 2A. The empty set, written ∅, is always a member of the powerset, ∅ ∈ 2A.

We define set subtraction as follows,

A \B = {a ∈ A : a /∈ B}

for all sets A and B. This notation is read “the set of elements a from A such that a is not
in B.”

A cartesian product of sets A and B is a set written A×B and defined as follows,

A×B = {(a, b) : a ∈ A, b ∈ B}.

A member of this set (a, b) is called a tuple. This notation is read “the set of tuples (a, b)
such that a is in A and b is in B.” A cartesian product can be formed with three or more
sets, in which case the tuples have three or more elements. For example, we might write
(a, b, c) ∈ A×B×C. A cartesian product of a setA with itself is writtenA2 = A×A. A
cartesian product of a set A with itself n times, where n ∈ N is written An. A member of
the set An is called an n-tuple. By convention, A0 is a singleton set, or a set with exactly
one element, regardless of the size of A. Specifically, we define A0 = {∅}. Note that A0

is not itself the empty set. It is a singleton set containing the empty set (for insight into
the rationale for this definition, see the box on page 500).

A.2 Relations and Functions

A relation from set A to set B is a subset of A × B. A partial function f from set A
to set B is a relation where (a, b) ∈ f and (a, b′) ∈ f imply that b = b′. Such a partial
function is written f : A ⇀ B. A total function or simply function f from A to B is a
partial function where for all a ∈ A, there is a b ∈ B such that (a, b) ∈ f . Such a function
is written f : A → B, and the set A is called its domain and the set B its codomain.
Rather than writing (a, b) ∈ f , we can equivalently write f(a) = b.

Example A.1: An example of a partial function is f : R⇀ R defined by f(x) =√
x for all x ∈ R+. It is undefined for any x < 0 in its domain R.
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A partial function f : A ⇀ B may be defined by an assignment rule, as done in the above
example, where an assignment rule simply explains how to obtain the value of f(a) given
a ∈ A. Alternatively, the function may be defined by its graph, which is a subset of
A×B.

Example A.2: The same partial function from the previous example has the
graph f ⊆ R2 given by

f = {(x, y) ∈ R2 : x ≥ 0 and y =
√
x} .

Note that we use the same notation f for the function and its graph when it is
clear from context which we are talking about.

The set of all functions f : A → B is written (A → B) or BA. The former notation is
used when the exponential notation proves awkward. For a justification of the notation
BA, see the box on page 500.

The function composition of f : A→ B and g : B → C is written (g ◦ f) : A→ C and
defined by

(g ◦ f)(a) = g(f(a))

for any a ∈ A. Note that in the notation (g ◦ f), the function f is applied first. For a
function f : A → A, the composition with itself can be written (f ◦ f) = f2, or more
generally

(f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸ = fn

n times

for any n ∈ N. In case n = 1, f1 = f . For the special case n = 0, the function f0 is
by convention the identity function, so f0(a) = a for all a ∈ A. When the domain and
codomain of a function are the same, i.e., f ∈ AA, then fn ∈ AA for all n ∈ N.

For every function f : A → B, there is an associated image function f̂ : 2A → 2B

defined on the powerset of A as follows,

∀ A′ ⊆ A, f̂(A′) = {b ∈ B : ∃ a ∈ A′, f(a) = b}.

The image function f̂ is applied to sets A′ of elements in the domain, rather than to single
elements. Rather than returning a single value, it returns the set of all values that f would
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return, given an element of A′ as an argument. We call f̂ the lifted version of f . When
there is no ambiguity, we may write the lifted version of f simply as f rather than f̂ (see
problem 2(c) for an example of a situation where there is ambiguity).

For any A′ ⊆ A, f̂(A′) is called the image of A′ for the function f . The image f̂(A) of
the domain is called the range of the function f .

Example A.3: The image f̂(R) of the function f : R→ R defined by f(x) = x2

is R+.

A function f : A → B is onto (or surjective) if f̂(A) = B. A function f : A → B is
one-to-one (or injective) if for all a, a′ ∈ A,

a 6= a′ ⇒ f(a) 6= f(a′). (A.1)

That is, no two distinct values in the domain yield the same values in the codomain. A
function that is both one-to-one and onto is bijective.

Example A.4: The function f : R → R defined by f(x) = 2x is bijective.
The function f : Z → Z defined by f(x) = 2x is one-to-one, but not onto. The
function f : R2 → R defined by f(x, y) = xy is onto but not one-to-one.

The previous example underscores the fact that an essential part of the definition of a
function is its domain and codomain.

Proposition A.1. If f : A→ B is onto, then there is a one-to-one function h : B → A.

Proof. Let h be defined by h(b) = a where a is any element in A such that f(a) = b.
There must always be at least one such element because f is onto. We can now show
that h is one-to-one. To do this, consider any two elements b, b′ ∈ B where b 6= b′.
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We need to show that h(b) 6= h(b′). Assume to the contrary that h(b) = h(b′) = a for
some a ∈ A. But then by the definition of h, f(a) = b and f(a) = b′, which implies
b = b′, a contradiction.

The converse of this proposition is also easy to prove.

Proposition A.2. If h : B → A is one-to-one, then there is an onto function f : A →
B.

Any bijection f : A→ B has an inverse f−1 : B → A defined as follows,

f−1(b) = a ∈ A such that f(a) = b , (A.2)

for all b ∈ B. This function is defined for all b ∈ B because f is onto. And for each
b ∈ B there is a single unique a ∈ A satisfying (A.2) because f is one-to-one. For any
bijection f , its inverse is also bijective.

A.2.1 Restriction and Projection

Given a function f : A→ B and a subset C ⊆ A, we can define a new function f |C that
is the restriction of f to C. It is defined so that for all x ∈ C, f |C(x) = f(x).

Example A.5: The function f : R→ R defined by f(x) = x2 is not one-to-one.
But the function f |R+ is.

Consider an n-tuple a = (a0, a1, · · · , an−1) ∈ A0 × A1 × · · · × An−1. A projection of
this n-tuple extracts elements of the tuple to create a new tuple. Specifically, let

I = (i0, i1, · · · , im) ∈ {0, 1, · · · , n− 1}m

for some m ∈ N \ {0}. That is, I is an m-tuple of indexes. Then we define the projection
of a onto I by

πI(a) = (ai0 , ai1 , · · · , aim) ∈ Ai0 ×Ai1 × · · · ×Aim .

Lee & Seshia, Introduction to Embedded Systems 497

http://LeeSeshia.org


A.3. SEQUENCES

The projection may be used to permute elements of a tuple, to discard elements, or to
repeat elements.

Projection of a tuple and restriction of a function are related. An n-tuple a ∈ An where
a = (a0, a1, · · · , an−1) may be considered a function of the form a : {0, 1, · · · , n−1} →
A, in which case a(0) = a0, a(1) = a1, etc. Projection is similar to restriction of this
function, differing in that restriction, by itself, does not provide the ability to permute,
repeat, or renumber elements. But conceptually, the operations are similar, as illustrated
by the following example.

Example A.6: Consider a 3-tuple a = (a0, a1, a2) ∈ A3. This is represented
by the function a : {0, 1, 2} → A. Let I = {1, 2}. The projection b = πI(a) =
(a1, a2), which itself can be represented by a function b : {0, 1} → A, where
b(0) = a1 and b(1) = a2.

The restriction a|I is not exactly the same function as b, however. The domain
of the first function is {1, 2}, whereas the domain of the second is {0, 1}. In
particular, a|I(1) = b(0) = a1 and a|I(2) = b(1) = a2.

A projection may be lifted just like ordinary functions. Given a set of n-tuples B ⊆
A0 × A1 × · · · × An−1 and an m-tuple of indexes I ∈ {0, 1, · · · , n − 1}m, the lifted
projection is

π̂I(B) = {πI(b) : b ∈ B} .

A.3 Sequences

A tuple (a0, a1) ∈ A2 can be interpreted as a sequence of length 2. The order of elements
in the sequence matters, and is in fact captured by the natural ordering of the natural
numbers. The number 0 comes before the number 1. We can generalize this and recognize
that a sequence of elements from set A of length n is an n-tuple in the set An. A0

represents the set of empty sequences, a singleton set (there is only one empty sequence).

The set of all finite sequences of elements from the setA is writtenA∗, where we interpret
∗ as a wildcard that can take on any value in N. A member of this set with length n is an
n-tuple, a finite sequence.
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The set of infinite sequences of elements from A is written AN or Aω. The set of finite
and infinite sequences is written

A∗∗ = A∗ ∪AN .

Finite and infinite sequences play an important role in the semantics of concurrent pro-
grams. They can be used, for example, to represent streams of messages sent from one
part of the program to another. Or they can represent successive assignments of values to
a variable. For programs that terminate, finite sequences will be sufficient. For programs
that do not terminate, we need infinite sequences.
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Exponential Notation for Sets of Functions

The exponential notation BA for the set of functions of form f : A → B is worth
explaining. Recall that A2 is the cartesian product of set A with itself, and that 2A is
the powerset of A. These two notations are naturally thought of as sets of functions. A
construction attributed to John von Neumann defines the natural numbers as follows,

0 = ∅
1 = {0} = {∅}
2 = {0,1} = {∅, {∅}}
3 = {0,1,2} = {∅, {∅}, {∅, {∅}}}
· · ·

With this definition, the powerset 2A is the set of functions mapping the set A into the
set 2. Consider one such function, f ∈ 2A. For each a ∈ A, either f(a) = 0 or
f(a) = 1. If we interpret “0” to mean “nonmember” and “1” to mean “member,” then
indeed the set of functions 2A represents the set of all subsets ofA. Each such function
defines a subset.

Similarly, the cartesian product A2 can be interpreted as the set of functions of form
f : 2 → A, or using von Neumann’s numbers, f : {0,1} → A. Consider a tuple
a = (a0, a1) ∈ A2. It is natural to associate with this tuple a function a : {0,1} → A
where a(0) = a0 and a(1) = a1. The argument to the function is the index into the
tuple. We can now interpret the set of functions BA of form f : A → B as a set of
tuples indexed by the set A instead of by the natural numbers.

Let ω = {∅, {∅}, {∅, {∅}}, · · · } represent the set of von Neumann numbers. This
set is closely related to the set N (see problem 2). Given a set A, it is now natural to
interpret Aω as the set of all infinite sequences of elements from A, the same as AN.

The singleton set A0 can now be interpreted as the set of all functions whose do-
main is the empty set and codomain is A. There is exactly one such function (no two
such functions are distinguishable), and that function has an empty graph. Before, we
defined A0 = {∅}. Using von Neumann numbers, A0 = 1, corresponding nicely with
the definition of a zero exponent on ordinary numbers. Moreover, you can think of
A0 = {∅} as the set of all functions with an empty graph.

It is customary in the literature to omit the bold face font for A0, 2A, and A2,
writing instead simply A0, 2A, and A2.
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Exercises

1. This problem explores properties of onto and one-to-one functions.

(a) Show that if f : A→ B is onto and g : B → C is onto, then (g ◦ f) : A→ C
is onto.

(b) Show that if f : A → B is one-to-one and g : B → C is one-to-one, then
(g ◦ f) : A→ C is one-to-one.

2. Let ω = {∅, {∅}, {∅, {∅}}, · · · } be the von Neumann numbers as defined in the box
on page 500. This problem explores the relationship between this set and N, the set
of natural numbers.

(a) Let f : ω → N be defined by

f(x) = |x|, ∀ x ∈ ω .

That is, f(x) is the size of the set x. Show that f is bijective.

(b) The lifted version of the function f in part (a) is written f̂ . What is the value
of f̂({0, {0}})? What is the value of f({0, {0}})? Note that on page 496 it
is noted that when there is no ambiguity, f̂ may be written simply f . For this
function, is there such ambiguity?
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Complexity theory and computability theory are areas of Computer Science that study
the efficiency and the limits of computation. Informally, computability theory studies
which problems can be solved by computers, while complexity theory studies how effi-
ciently a problem can be solved by computers. Both areas are problem-centric, meaning
that they are more concerned with the intrinsic ease or difficulty of problems and less
concerned with specific techniques (algorithms) for solving them.



B. COMPLEXITY AND COMPUTABILITY

In this appendix, we very briefly review selected topics from complexity and computabil-
ity theory that are relevant for this book. There are excellent books that offer a detailed
treatment of these topics, including Papadimitriou (1994), Sipser (2005), and Hopcroft
et al. (2007). We begin with a discussion of the complexity of algorithms. Algorithms are
realized by computer programs, and we show that there are limitations on what computer
programs can do. We then describe Turing machines, which can be used to define what
we have come to accept as “computation,” and show how the limitations of programs
manifest themselves as undecidable problems. Finally, we close with a discussion of the
complexity of problems, as distinct from the complexity of the algorithms that solve the
problems.

B.1 Effectiveness and Complexity of Algorithms

An algorithm is a step-by-step procedure for solving a problem. To be effective, an
algorithm must complete in a finite number of steps and use a finite amount of resources
(such as memory). To be useful, an algorithm must complete in a reasonable number
of steps and use a reasonable amount of resources. Of course, what is “reasonable” will
depend on the problem being solved.

Some problems are known to have no effective algorithm, as we will see below when we
discuss undecidability. For other problems, one or more effective algorithms are known,
but it is not known whether the best algorithm has been found, by some measure of “best.”
There are even problems where we know that there exists an effective algorithm, but no
effective algorithm is known. The following example describes such a problem.

Example B.1: Consider a function f : N→ {YES, NO} where f(n) = YES if
there is a sequence of n consecutive fives in the decimal representation of π, and
f(n) = NO otherwise. This function has one of two forms. Either

f(n) = YES ∀ n ∈ N,

or there is a k ∈ N such that

f(n) =

{
YES if n < k
NO otherwise
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It is not known which of these two forms is correct, nor, if the second form is
correct, what k is. However, no matter what the answer is, there is an effective
algorithm for solving this problem. In fact, the algorithm is rather simple. Either
the algorithm immediately returns YES, or it compares n to k and returns YES
if n < k. We know that one of these is the right algorithm, but we do not know
which. Knowing that one of these is correct is sufficient to know that there is an
effective algorithm.

For a problem with known effective algorithms, there are typically many algorithms that
will solve the problem. Generally, we prefer algorithms with lower complexity. How do
we choose among these? This is the topic of the next subsection.

B.1.1 Big O Notation

Many problems have several known algorithms for solving them, as illustrated in the
following example.

Example B.2: Suppose we have a list (a1, a2, · · · , an) of n integers, arranged in
increasing order. We would like to determine whether the list contains a particular
integer b. Here are two algorithms that accomplish this:

1. Use a linear search. Starting at the beginning of the list, compare the input
b against each entry in the list. If it is equal, return YES. Otherwise, proceed
to the next entry in the list. In the worst case, this algorithm will require n
comparisons before it can give an answer.

2. Use a binary search. Start in the middle of the list and compare b to the
entry a(n/2) in the middle. If it is equal, return YES. Otherwise, determine
whether b < a(n/2). If it is, then repeat the search, but over only the first
half of the list. Otherwise, repeat the search over the second half of the list.
Although each step of this algorithm is more complicated than the steps of
the first algorithm, usually fewer steps will be required. In the worst case,
log2(n) steps are required.

504 Lee & Seshia, Introduction to Embedded Systems

http://LeeSeshia.org


B. COMPLEXITY AND COMPUTABILITY

The difference between these two algorithms can be quite dramatic if n is large.
Suppose that n = 4096. The first algorithm will require 4096 steps in the worst
case, whereas the second algorithm will require only 12 steps in the worst case.

The number of steps required by an algorithm is the time complexity of the algorithm.
It is customary when comparing algorithms to simplify the measure of time complexity
by ignoring some details. In the previous example, we might ignore the complexity of
each step of the algorithm and consider only how the complexity grows with the input
size n. So if algorithm (1) in Example B.2 takes K1n seconds to execute, and algorithm
(2) takes K2 log2(n) seconds to execute, we would typically ignore the constant factors
K1 and K2. For large n, they are not usually very helpful in determining which algorithm
is better.

To facilitate such comparisons, it is customary to use big O notation. This notation
finds the term in a time complexity measure that grows fastest as a function of the size
of the input, for large input sizes, and ignores all other terms. In addition, it discards
any constant factors in the term. Such a measure is an asymptotic complexity measure
because it studies only the limiting growth rate as the size of the input gets large.

Example B.3: Suppose that an algorithm has time complexity 5 + 2n + 7n3,
where n is the size of the input. This algorithm is said to have O(n3) time com-
plexity, which is read “order n cubed.” The term 7n3 grows fastest with n, and
the number 7 is a relatively unimportant constant factor.

The following complexity measures are commonly used:

1. constant time: The time complexity does not depend at all on the size of the input.
The complexity is O(1).

2. logarithmic time: O(logm(n)) complexity, for any fixed m.
3. linear time: O(n) complexity.
4. quadratic time: O(n2) complexity.
5. polynomial time: O(nm) complexity, for any fixed m ∈ N.
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6. exponential time: O(mn) complexity for any m > 1.
7. factorial time: O(n!) complexity.

The above list is ordered by costliness. Algorithms later in the list are usually more
expensive to realize than algorithms earlier in the list, at least for large input size n.

Example B.4: Algorithm 1 in Example B.2 is a linear-time algorithm, whereas
algorithm 2 is a logarithmic-time algorithm. For large n, algorithm (2) is more
efficient.

The number of steps required by an algorithm, of course, is not the only measure of its
cost. Some algorithms execute in rather few steps but require a great deal of memory. The
size of the memory required can be similarly characterized using big O notation, giving a
measure of space complexity.

B.2 Problems, Algorithms, and Programs

Algorithms are developed to solve some problem. How do we know whether we have
found the best algorithm to solve a problem? The time complexity of known algorithms
can be compared, but what about algorithms we have not thought of? Are there problems
for which there is no algorithm that can solve them? These are difficult questions.

Assume that the input to an algorithm is a member of a set W of all possible inputs,
and the output is a member of a set Z of all possible outputs. The algorithm computes a
function f : W → Z. The function f , a mathematical object, is the problem to be solved,
and the algorithm is the mechanism by which the problem is solved.

It is important to understand the distinction between the problem and the mechanism.
Many different algorithms may solve the same problem. Some algorithms will be better
than others; for example, one algorithm may have lower time complexity than another.
We next address two interesting questions:

• Is there a function of the form f : W → Z for which there is no algorithm that can
compute the function for all inputs w ∈W ? This is a computability question.
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• Given a particular function f : W → Z, is there a lower bound on the time com-
plexity of an algorithm to compute the function? This is a complexity question.

If W is a finite set, then the answer to the first question is clearly no. Given a particular
function f : W → Z, one algorithm that will always work uses a lookup table listing
f(w) for all w ∈ W . Given an input w ∈ W , this algorithm simply looks up the answer
in the table. This is a constant-time algorithm; it requires only one step, a table lookup.
Hence, this algorithm provides the answer to the second question, which is that if W is a
finite set, then the lowest time complexity is constant time.

A lookup table algorithm may not be the best choice, even though its time complexity
is constant. Suppose that W is the set of all 32-bit integers. This is a finite set with
232 elements, so a table will require more than four billion entries. In addition to time
complexity, we must consider the memory required to implement the algorithm.

The above questions become particularly interesting when the set W of possible inputs
is infinite. We will focus on decision problems, where Z = {YES, NO}, a set with
only two elements. A decision problem seeks a yes or no answer for each w ∈ W . The
simplest infinite set of possible inputs is W = N, the natural numbers. Hence, we will
next consider fundamental limits on decision problems of the form f : N→ {YES, NO}.
We will see next that for such problems, the answer to the first question above is yes.
There are functions of this form that are not computable.

B.2.1 Fundamental Limitations of Programs

One way to describe an algorithm is to give a computer program. A computer program
is always representable as a member of the set {0, 1}∗, i.e., the set of finite sequences of
bits. A programming language is a subset of {0, 1}∗. It turns out that not all decision
problems can be solved by computer programs.

Proposition B.1. No programming language can express a program for each and ev-
ery function of the form f : N→ {YES, NO}.

Proof. To prove this proposition, it is enough to show that there are strictly more
functions of the form f : N→ {YES, NO} than there are programs in a programming
language. It is sufficient to show that the set {YES, NO}N is strictly larger than the
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set {0, 1}∗, because a programming language is a subset of {0, 1}∗. This can be done
with a variant of Cantor’s diagonal argument, which goes as follows.

First, note that the members of the set {0, 1}∗ can be listed in order. Specifically, we
list them in the order of binary numbers,

λ, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, · · · , (B.1)

where λ is the empty sequence. This list is infinite, but it includes all members of the
set {0, 1}∗. Because the members of the set can be so listed, the set {0, 1}∗ is said to
be countable or countably infinite.

For any programming language, every program that can be written will appear some-
where in the list (B.1). Assume the first such program in the list realizes the deci-
sion function f1 : N → {YES, NO}, the second one in the list realizes f2 : N →
{YES, NO}, etc. We can now construct a function g : N → {YES, NO} that is not
computed by any program in the list. Specifically, let

g(i) =

{
YES if fi(i) = NO
NO if fi(i) = YES

for all i ∈ N. This function g differs from every function fi in the list, and hence it
is not included in the list. Thus, there is no computer program in the language that
computes function g.

This theorem tells us that programs, and hence algorithms, are not capable of solving all
decision problems. We next explore the class of problems they can solve, known as the
effectively computable functions. We do this using Turing machines.

B.3 Turing Machines and Undecidability

In 1936, Alan Turing proposed a model for computation that is now called the Turing
machine (Turing, 1936). A Turing machine, depicted in Figure B.1, is similar to a finite-
state machine, but with an unlimited amount of memory. This memory has the form of an
infinite tape that the Turing machine can read from and write to. The machine comprises
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Figure B.1: Illustration of a Turing machine.

a finite-state machine (FSM) controller, a read/write head, and an infinite tape organized
as a sequence of cells. Each cell contains a value drawn from a finite set Σ or the special
value 2, which indicates an empty cell. The FSM acts as a control for the read/write head
by producing outputs that move the read/write head over the tape.

In Figure B.1, the symbols on the non-empty cells of the tape are drawn from the set
Σ = {0, 1}, the binary digits. The FSM has two output ports. The top output port is
write, which has type Σ and produces a value to write to the cell at the current position of
the read/write head. The bottom output port is move, which has type {L,R}, where the
output symbol L causes the read/write head to move to the left (but not off the beginning
of the tape), andR causes it to move to the right. The FSM has one input port, read, which
has type Σ and receives the current value held by the cell under the read/write head.

The tape is initialized with an input string, which is an element of the set Σ∗ of finite
sequences of elements of Σ, followed by an infinite sequence of empty cells. The Turing
machine starts in the initial state of the FSM with the read/write head on the left end of
the tape. At each reaction, the FSM receives as input the value from the current cell under
the read/write head. It produces an output that specifies the new value of that cell (which
may be the same as the current value) and a command to move the head left or right.

The control FSM of the Turing machine has two final states: an accepting state accept
and a rejecting state reject. If the Turing machine reaches accept or reject after a finite
number of reactions, then it is said to terminate, and the execution is called a halting
computation. If it terminates in accept, then the execution is called an accepting com-
putation. If it terminates in reject, then the execution is called a rejecting computation.
It is also possible for a Turing machine to reach neither accept nor reject, meaning that it
does not halt. When a Turing machine does not halt, we say that it loops.
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When the control FSM is deterministic, we say that the Turing machine is also determinis-
tic. Given an input string w ∈ Σ∗, a deterministic Turing machineD will exhibit a unique
computation. Therefore, given an input string w ∈ Σ∗, a deterministic Turing machine
D will either halt or not, and if it halts, it will either accept w or reject it. For simplicity,
we will limit ourselves in this section to deterministic Turing machines, unless explicitly
stated otherwise.

B.3.1 Structure of a Turing Machine

More formally, each deterministic Turing machine can be represented by a pair D =
(Σ,M), where Σ is a finite set of symbols and M is any FSM with the following proper-
ties:

• a finite set StatesM of states that includes two final states accept and reject;
• an input port read of type Σ;
• an output port write of type Σ; and
• an output port move of type {L,R}.

As with any FSM, it also must have an initial state s0 and a transition function updateM ,
as explained in Section 3.3.3. If the read/write head is over a cell containing 2, then the
input to the read port of the FSM will be absent. If at a reaction the write output of the
FSM is absent, then the cell under the read/write head will be erased, setting its contents
to 2.

A Turing machine described by D = (Σ,M) is a synchronous composition of two ma-
chines, the FSM M and a tape T . The tape T is distinctly not an FSM, since it does not
have finite state. Nonetheless, the tape is a (extended) state machine, and can be described
using the same five-tuple used in Section 3.3.3 for FSMs, except that the set StatesT is
now infinite. The data on the tape can be modeled as a function with domain N and
codomain Σ ∪ {2}, and the position of the read/write head can be modeled as a natural
number, so

StatesT = N× (Σ ∪ {2})N.

The machine T has input port write of type Σ, input port move of type {L,R}, and output
port read of type Σ. The updateT transition function is now easy to define formally (see
Exercise 1).
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Note that the machine T is the same for all Turing machines, so there is no need to include
it in the description D = (Σ,M) of a particular Turing machine. The description D can
be understood as a program in a rather special programming language. Since all sets in
the formal description of a Turing machine are finite, any Turing machine can be encoded
as a finite sequence of bits in {0, 1}∗.

Note that although the control FSM M and the tape machine T both generate output, the
Turing machine itself does not. It only computes by transitioning between states of the
control FSM, updating the tape, and moving left (L) or right (R). On any input string
w, we are only concerned with whether the Turing machine halts, and if so, whether it
accepts or rejects w. Thus, a Turing machine attempts to map an input string w ∈ Σ∗ to
{accept, reject}, but for some input strings, it may be unable to produce an answer.

We can now see that Proposition B.1 applies, and the fact that a Turing machine may not
produce an answer on some input strings is not surprising. Let Σ = {0, 1}. Then any in-
put string w ∈ Σ∗ can be interpreted as a binary encoding of a natural number in N. Thus,
a Turing machine implements a partial function of the form f : N → {accept, reject}.
The function is partial because for some n ∈ N, the machine may loop. Since a Turing
machine is a program, Proposition B.1 tells that Turing machines are incapable of realiz-
ing all functions of the form f : N → {accept, reject}. This limitation manifests itself as
looping.

A principle that lies at heart of computer science, known as the Church-Turing thesis,
asserts that every effectively computable function can be realized by a Turing machine.
This principle is named for mathematicians Alonzo Church and Alan Turing. Our intuitive
notion of computation, as expressed in today’s computers, is equivalent to the Turing
machine model of computation in this sense. Computers can realize exactly the functions
that can be realized by Turing machines: no more, no less. This connection between the
informal notion of an algorithm and the precise Turing machine model of computation
is not a theorem; it cannot be proved. It is a principle that underlies what we mean by
computation.

B.3.2 Decidable and Undecidable Problems

Turing machines, as described here, are designed to solve decision problems, which only
have a YES or NO answer. The input string to a Turing machine represents the encoding
of a problem instance. If the Turing machine accepts, it is viewed as a YES answer, and
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if it rejects, it is viewed as a NO answer. There is the third possibility that the Turing
machine might loop.

Example B.5: Consider the problem of determining, given a directed graph G
with two nodes s and t in G, whether there is a path from s to t. One can think
of writing down the problem as a long string listing all nodes and edges of G,
followed by s and t. Thus, an instance of this path problem can be presented to
the Turing machine as an input string on its tape. The instance of the problem is
the particular graph G, and nodes s and t. If there exists a path from s to t in G,
then this is a YES problem instance; otherwise, it is a NO problem instance.

Turing machines are typically designed to solve problems, rather than specific
problem instances. In this example, we would typically design a Turing machine
that, for any graphG, nodes s and t, determines whether there is a path inG from
s to t.

Probing Further: Recursive Functions and Sets

Logicians make distinctions between the functions that can be realized by Turing ma-
chines. The so-called total recursive functions are those where a Turing machine
realizing the function terminates for all inputs w ∈ Σ∗. The partial recursive func-
tions are those where a Turing machine may or may not terminate on a particular input
w ∈ Σ∗. By these definitions, every total recursive function is also a partial recursive
function, but not vice-versa.

Logicians also use Turing machines to make useful distinctions between sets. Con-
sider sets of natural numbers, and consider Turing machines where Σ = {0, 1} and an
input w ∈ Σ∗ is the binary encoding of a natural number. Then a set C of natural num-
bers is a computable set (or synonymously a recursive set or decidable set) if there is
a Turing machine that terminates for all inputs w ∈ N and yields accept if w ∈ C and
reject if w /∈ C. A set E ⊂ N is a computably enumerable set (or synonymously a
recursively enumerable set or a semidecidable set) if there is a Turing machine that
terminates if and only if the input w is in E.
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Recall that a decision problem is a function f : W → {YES,NO}. For a Turing machine,
the domain is a set W ⊆ Σ∗ of finite sequences of symbols from the set Σ. A problem
instance is a particular w ∈ W , for which the “answer” to the problem is either f(w) =
YES or f(w) = NO. Let Y ⊆W denote the set of all YES instances of problem f . That
is,

Y = {w ∈W | f(w) = YES}.

Given a decision problem f , a Turing machine D = (Σ,M) is called a decision proce-
dure for f if D accepts every string w ∈ Y , and D rejects every w ∈ W \ Y , where \
denotes set subtraction. Note that a decision procedure always halts for any input string
w ∈W .

A problem f is said to be decidable (or solvable) if there exists a Turing machine that
is a decision procedure for f . Otherwise, we say that the problem is undecidable (or
unsolvable). For an undecidable problem f , there is no Turing machine that terminates
with the correct answer f(w) for all input strings w ∈W .

One of the important philosophical results of 20th century mathematics and computer
science is the existence of problems that are undecidable. One of the first problems to be
proved undecidable is the so-called halting problem for Turing machines. This problem
can be stated as follows:

Given a Turing machine D = (Σ,M) initialized with input string w ∈ Σ∗

on its tape, decide whether or not M will halt.

Proposition B.2. (Turing, 1936) The halting problem is undecidable.

Proof. This is a decision problem h : W ′ → {YES,NO}, where W ′ denotes the set
of all Turing machines and their inputs. The proposition can be proved using a variant
of Cantor’s diagonal argument.

It is sufficient to prove the theorem for the subset of Turing machines with binary tape
symbols, Σ = {0, 1}. Moreover, we can assume without loss of generality that every
Turing machine in this set can be represented by a finite sequence of binary digits
(bits), so

W ′ = Σ∗ × Σ∗.
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Assume further that every finite sequence of bits represents a Turing machine. The
form of the decision problem becomes

h : Σ∗ × Σ∗ → {YES,NO}. (B.2)

We seek a procedure to determine the value of h(D,w), where D is a finite sequence
of bits representing a Turing machine and w is a finite sequence of bits representing an
input to the Turing machine. The answer h(D,w) will be YES if the Turing machine
D halts with input w and NO if it loops.

Consider the set of all effectively computable functions of the form

f : Σ∗ × Σ∗ → {YES,NO}.

These functions can be given by a Turing machine (by the Church-Turing thesis), and
hence the set of such functions can be enumerated f0, f1, f2, · · · . We will show that
the halting problem (B.2) is not on this list. That is, there is no fi such that h = fi.

Consider a sequence of Turing machines D0, D1, · · · where Di is the sequence of
bits representing the ith Turing machine, and Di halts if fi(Di, Di) = NO and loops
otherwise. Since fi is a computable function, we can clearly construct such a Turing
machine. Not one of the computable functions in the list f0, f1, f2, · · · can possibly
equal the function h, because every function fi in the list gives the wrong answer
for input (Di, Di). If Turing machine Di halts on input w = Di, function fi evalu-
ates to fi(Di, Di) = NO, whereas h(Di, Di) = YES. Since no function in the list
f0, f1, f2, · · · of computable functions works, the function h is not computable.

B.4 Intractability: P and NP

Section B.1 above studied asymptotic complexity, a measure of how quickly the cost (in
time or space) of solving a problem with a particular algorithm grows with the size of the
input. In this section, we consider problems rather than algorithms. We are interested in
whether an algorithm with a particular asymptotic complexity exists to solve a problem.
This is not the same as asking whether an algorithm with a particular complexity class is
known.
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A complexity class is a collection of problems for which there exist algorithms with the
same asymptotic complexity. In this section, we very briefly introduce the complexity
classes P and NP.

First recall the concept of a deterministic Turing machine from the preceding section. A
nondeterministic Turing machine N = (Σ,M) is identical to its deterministic counter-
part, except that the control FSM M can be a nondeterministic FSM. On any input string
w ∈ Σ∗, a nondeterministic Turing machine N can exhibit several computations. N is
said to accept w if any computation accepts w, and N rejects w if all its computations
reject w.

A decision problem is a function f : W → {YES,NO}, where W ⊆ Σ∗. N is said
to be a decision procedure for f if for each input w ∈ W , all of its computations halt,
no matter what nondeterministic choices are made. Note that a particular execution of a
nondeterministic Turing machine N may give the wrong answer. That is, it could yield
NO for inputw when the right answer is f(w) = YES. It can still be a decision procedure,
however, because we define the final answer to be YES if any execution yields YES. We
do not require that all executions yield YES. This subtle point underlies the expressive
power of nondeterministic Turing machines.

An execution that accepts an input w is called a certificate. A certificate can be repre-
sented by a finite list of choices made by the Turing machine such that it accepts w. We
need only one valid certificate to know that f(w) = YES.

Given the above definitions, we are ready to introduce P and NP. P is the set of problems
decidable by a deterministic Turing machine in polynomial time. NP, on the other hand,
is the set of problems decidable by a nondeterministic Turing machine in polynomial
time. That is, a problem f is in NP if there is a nondeterministic Turing machine N that
is a decision procedure for f , and for all inputs w ∈ W , every execution of the Turing
machine has time complexity no greater than O(nm), for some m ∈ N.

An equivalent alternative definition of NP is the set of all problems for which one can
check the validity of a certificate for a YES answer in polynomial time. Specifically, a
problem f is in NP if there is a nondeterministic Turing machine N that is a decision
procedure for f , and given an input w and a certificate, we can check in polynomial
time whether the certificate is valid (i.e., whether the choices it lists do indeed result in
accepting w). Note that this says nothing about NO answers. This asymmetry is part of
the meaning of NP.
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An important notion that helps systematize the study of complexity classes is that of
completeness, in which we identify problems that are “representative” of a complexity
class. In the context of NP, we say that a problem A is NP-hard if any other problem B
in NP can be reduced (“translated”) toA in polynomial time. Intuitively, A is “as hard as”
any problem in NP — if we had a polynomial-time algorithm for A, we could derive one
for B by first translating the instance of B to one of A, and then invoking the algorithm to
solve A. A problem A is said to be NP-complete if (i) A is in NP, and (ii) A is NP-hard.
In other words, an NP-complete problem is a problem in NP that is as hard as any other
problem in NP.

Several core problems in the modeling, design, and analysis of embedded systems are NP-
complete. One of these is the very first problem to be proved NP-complete, the Boolean
satisfiability (SAT) problem. The SAT problem is to decide, given a propositional logic
formula φ expressed over Boolean variables x1, x2, . . . , xn, whether there exists a valua-
tion of the xi variables such that φ(x1, x2, . . . , xn) = true. If there exists such a valuation,
we say φ is satisfiable; otherwise, we say that φ is unsatisfiable. The SAT problem is a
decision problem of the form f : W → {YES,NO}, where each w ∈ W is an encoding
of a propositional logic formula φ.

Example B.6: Consider the following propositional logic formula φ:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x2) ∧ (x1 ∨ ¬x3)

We can see that setting x1 = x3 = true will make φ evaluate to true. It is possible
to construct a nondeterministic Turing machine that takes as input an encoding of
the formula, where the nondeterministic choices correspond to choices of valua-
tions for each variable xi, and where the machine will accept the input formula if
it is satisfiable and reject it otherwise. If the input w encodes the above formula
φ, then one of the certificates demonstrating that f(w) = YES is the choices
x1 = x2 = x3 = true.

Next consider the alternative formula φ′:

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

In this case, no matter how we assign Boolean values to the xi variables, we
cannot make φ′ = true. Thus while φ is satisfiable, φ′ is unsatisfiable. The
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same nondeterministic Turing machine as above will reject an input w′ that is an
encoding of φ′. Rejecting this input means that all choices result in executions
that terminate in reject.

Another problem that is very useful, but NP-complete, is checking the feasibility of an
integer linear program (ILP). Informally, the feasibility problem for integer linear pro-
grams is to find a valuation of integer variables such that each inequality in a collection
of linear inequalities over those variables is satisfied.

Given that both SAT and ILP are NP-complete, one can transform an instance of either
problem into an instance of the other problem, in polynomial time.

Example B.7: The following integer linear program is equivalent to the SAT
problem corresponding to formula φ′ of Example B.6:

find x1, x2 ∈ {0, 1}
such that:

x1 − x2 ≥ 0

−x1 + x2 ≥ 0

x1 + x2 ≥ 1

−x1 − x2 ≥ −1

One can observe that there is no valuation of x1 and x2 that will make all the
above inequalities simultaneously true.

NP-complete problems seem to be harder than those in P; for large enough input sizes,
these problems can become intractable, meaning that they cannot be practically solved.
In general, it appears that to determine that f(w) = YES for some w without being
given a certificate, we might have to explore all executions of the nondeterministic Turing
machine before finding, on the last possibility, an execution that accepts w. The number
of possible executions can be exponential in the size of the input. Indeed, there are no
known polynomial-time algorithms that solve NP-complete problems. Surprisingly, as of
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this writing, there is no proof that no such algorithm exists. It is widely believed that NP
is a strictly larger set of problems than P, but without a proof, we cannot be sure. The P
versus NP question is one of the great unsolved problems in mathematics today.

Despite the lack of polynomial-time algorithms for solving NP-complete problems, many
such problems turn out to be solvable in practice. SAT problems, for example, can often
be solved rather quickly, and a number of very effective SAT solvers are available. These
solvers use algorithms that have worst-case exponential complexity, which means that
for some inputs they can take a very long time to complete. Yet for most inputs, they
complete quickly. Hence, we should not be deterred from tackling a problem just because
it is NP-complete.

B.5 Summary

This appendix has very briefly introduced two rather large interrelated topics, the theo-
ries of complexity and computability. The chapter began with a discussion of complexity
measures for algorithms, and then established a fundamental distinction between a prob-
lem to be solved and an algorithm for solving the problem. It then showed that there
are problems that cannot be solved. We then explained Turing machines, which are ca-
pable of describing solution procedures for all problems that have come to be considered
“computable.” The chapter then closed with a brief discussion of the complexity classes P
and NP, which are classes of problems that can be solved by algorithms with comparable
complexity.
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B. COMPLEXITY AND COMPUTABILITY

Exercises

1. Complete the formal definition of the tape machine T by giving the initial state of
T and the mathematical description of its transition function updateT .

2. Directed, acyclic graphs (DAGs) have several uses in modeling, design, and analy-
sis of embedded systems; e.g., they are used to represent precedence graphs of tasks
(see Chapter 12) and control-flow graphs of loop-free programs (see Chapter 16).

A common operation on DAGs is to topologically sort the nodes of the graph. For-
mally, consider a DAG G = (V,E) where V is the set of vertices {v1, v2, . . . , vn}
and E is the set of edges. A topological sort of G is a linear ordering of vertices
{v1, v2, . . . , vn} such that if (vi, vj) ∈ E (i.e., there is a directed edge from vi to
vj), then vertex vi appears before vertex vj in this ordering.

The following algorithm due to Kahn (1962) topologically sorts the vertices of
a DAG:

input : A DAG G = (V,E) with n vertices and m edges.
output: A list L of vertices in V in topologically-sorted order.

1 L← empty list
2 S ← {v | v is a vertex with no incoming edges}
3 while S is non-empty do
4 Remove vertex v from S
5 Insert v at end of list L
6 for each vertex u such that edge (v, u) is in E do
7 Mark edge (v, u)
8 if all incoming edges to u are marked then
9 Add u to set S

10 end
11 end
12 end

L contains all vertices of G in topologically sorted order.

13

Algorithm B.1: Topological sorting of vertices in a DAG
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EXERCISES

State the asymptotic time complexity of Algorithm B.1 using Big O notation. Prove
the correctness of your answer.
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