
 123

LN
BI

P
39

6

XP 2020 Workshops
Copenhagen, Denmark, June 8–12, 2020
Revised Selected Papers

Agile Processes
in Software Engineering
and Extreme Programming –
Workshops

Maria Paasivaara
Philippe Kruchten (Eds.)

www.dbooks.org

https://www.dbooks.org/

Lecture Notes
in Business Information Processing 396

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0002-8698-3292
https://orcid.org/0000-0003-3303-2896

More information about this series at http://www.springer.com/series/7911

www.dbooks.org

http://www.springer.com/series/7911
https://www.dbooks.org/

Maria Paasivaara • Philippe Kruchten (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming –

Workshops
XP 2020 Workshops
Copenhagen, Denmark, June 8–12, 2020
Revised Selected Papers

123

Editors
Maria Paasivaara
IT University of Copenhagen
Copenhagen, Denmark

Philippe Kruchten
University of British Columbia
Vancouver, BC, Canada

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-58857-1 ISBN 978-3-030-58858-8 (eBook)
https://doi.org/10.1007/978-3-030-58858-8

© The Editor(s) (if applicable) and The Author(s) 2020. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

www.dbooks.org

https://orcid.org/0000-0001-7451-7772
https://orcid.org/0000-0003-1359-4867
https://doi.org/10.1007/978-3-030-58858-8
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Preface

This volume contains papers from the research workshops, the agile education and
training track, the doctoral symposium, as well as summaries of the research workshops
and a panel presented at the 21st International Conference on Agile Software Devel-
opment (XP 2020), held June 8–12, 2020. Although it was planned to take place at the
IT University of Copenhagen, Denmark, due to the COVID-19 pandemic, the con-
ference was very successfully held online.

XP is the premier agile software development conference combining research and
practice. It is a unique forum where agile researchers, practitioners, thought leaders,
coaches, and trainers get together to present and discuss their most recent innovations,
research results, experiences, concerns, challenges, and trends. XP conferences provide
an informal environment to learn and trigger discussions and welcome both people new
to agile and seasoned agile practitioners.

The XP 2020 research papers were published in the conference proceedings, volume
LNBIP 383. This companion volume, published after the conference, contains selected
workshop papers and workshops summaries, as well as three papers from the doctoral
symposium, two papers from the agile education and training track, and one panel
summary.

The research workshops, the agile education and training track, and the doctoral
symposium provide a highly relevant, friendly, and interactive platform to share and
discuss emerging and late-breaking research findings as well as educational experi-
ments and experiences. They represent smaller, close communities of passionate,
emerging and established researchers, and a psychologically safe environment to
provide and receive feedback. The publication of the post-conference proceedings
allows the researchers and educators to submit their papers, feedback, and lessons
learned from their participation in the conference and workshop sessions.

In 2020, the following six workshops took place:

• Third International Workshop on Software-Intensive Business
• 8th International Workshop on Large-Scale Agile Development
• Second European Symposium on Serverless Computing and Applications
• Second International Workshop on Agile Transformation
• First International Workshop on Agility with Microservices Programming
• Third International Workshop on Autonomous Agile Teams

In addition to the workshop papers and summaries, these post-conference
proceedings include papers from:

• Agile education and training track
� Doctoral symposium

Finally, we include a summary of a panel discussion:

• COVID-19’s Influence on the Future of Agile

We would like to extend our sincere thanks to all the people who contributed to XP
2020: the authors, reviewers, chairs, and volunteers. Finally, we would like to express
our gratitude to the XP Steering Committee and the Agile Alliance for their ongoing
support.

July 2020 Maria Paasivaara
Philippe Kruchten

vi Preface

www.dbooks.org

https://www.dbooks.org/

Organization

Conference Chair

Maria Paasivaara Technical University of Denmark, Denmark

Program Co-chairs

Viktoria Stray University of Oslo, SINTEF, Norway
Rashina Hoda Monash University, Australia

Workshop Co-chairs

Hubert Baumeister Technical University of Denmark, Denmark
Mansooreh Zahedi The University of Adelaide, Australia

Publication Chair

Philippe Kruchten The University of British Columbia, Canada

Third International Workshop on Software-Intensive Business

Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Paul Grünbacher Johannes Kepler University, Austria
Sami Hyrynsalmi LUT University, Finland
Kari Smolander LUT University, Finland

Eighth International Workshop on Large-Scale Agile Development

Julian Bass University of Salford, UK
Abdalla Salameh University of Salford, UK

Second European Symposium on Serverless Computing
and Applications

Davide Taibi Tampere University, Finland
Josef Spillner Zürich University of Applied Science, Switzerland
Fellong Wang Catalyst Cloud, New Zealand

Second International Workshop on Agile Transformation

Leonor Barroca The Open University, UK
Noel Carroll Lero, Ireland

Peggy Gregory University of Central Lancashire, UK
Diane Strode Whitireai Polytechnic, New Zealand

First International Workshop on Agility with Microservices
Programming

Saverio Giallorenzo University of Southern Denmark, Denmark
Marco Peressotti University of Southern Denmark, Denmark
Filipe Correia University of Porto, Portugal
Kati Kuusinen Technical University of Denmark, Denmark

Third International Workshop on Autonomous Agile Teams

Nils Brede Moe SINTEF, Norway
Viktoria Stray University of Oslo, SINTEF, Norway

Agile Education and Training Track

Martin Kropp FHNW, Switzerland
Maari Laanti Nitor, Finland

Doctoral Symposium

Peggy Gregory University of Central Lancashire, UK
Kati Kuusinen Technical University of Denmark, Denmark

viii Organization

www.dbooks.org

https://www.dbooks.org/

Contents

Third International Workshop on Software-Intensive Business

An Approach for Software-Intensive Business Innovation Based
on Experimentation in Non-software-Intensive Companies 9

Kelson Silva, Eduardo Guerra, and Jorge Melegati

Towards Specific Software Engineering Practices for Early-Stage Startups . . . 18
Jorge Melegati, Rafael Chanin, Afonso Sales, and Rafael Prikladnicki

API Utilization and Monetization in Finnish Industries 23
Saeid Heshmatisafa and Marko Seppänen

ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy
and Crowd Involvement. 32

Gabriella Laatikainen, Alexander Semenov, Yixin Zhang,
and Pekka Abrahamsson

What Key Aspects Do ICOs Reveal About Their Businesses? 41
Gabriella Laatikainen, Alexander Semenov, Yixin Zhang,
and Pekka Abrahamsson

Product Roadmap Alignment – Achieving the Vision Together:
A Grey Literature Review . 50

Stefan Trieflinger, Jürgen Münch, Emre Bogazköy, Patrick Eißler,
Jan Schneider, and Bastian Roling

Exploring the Success Factors for a Launch of an Algorithmic
Consulting Platform. 58

Andreas Kaselow, Dimitri Petrik, and Sven Feja

Eighth International Workshop on Large-Scale Agile Development

Operationalizing Agile Methods: Examining Coherence in Large-Scale
Agile Transformations . 75

Noel Carroll, Finn Olav Bjørnson, Torgeir Dingsøyr,
Knut-Helge Rolland, and Kieran Conboy

Transitioning from a First Generation to Second Generation Large-Scale
Agile Development Method: Towards Understanding Implications
for Coordination . 84

Finn Olav Bjørnson and Torgeir Dingsøyr

Exploring the Product Owner Role Within SAFe Implementation
in a Multinational Enterprise. 92

Daniel Remta, Michal Doležel, and Alena Buchalcevová

Evaluation of Agile Team Work Quality . 101
Alexander Poth, Mario Kottke, and Andreas Riel

A Systematic Approach to Agile Development in Highly Regulated
Environments . 111

Alexander Poth, Jan Jacobsen, and Andreas Riel

Second European Workshop on Serverless Computing
and Applications

Diminuendo! Tactics in Support of FaaS Migrations 125
Sebastian Werner, Jörn Kuhlenkamp, Frank Pallas, Niklas Anders,
Nebi Mucaj, Olesia Tsaplina, Christian Schmidt, and Kann Yildirim

Predictable Performance for QoS-Sensitive, Scalable, Multi-tenant
Function-as-a-Service Deployments . 133

Andrzej Kuriata and Ramesh G. Illikkal

On the Use of Web Assembly in a Serverless Context 141
Seán Murphy, Leonardas Persaud, William Martini, and Bill Bosshard

Second International Workshop on Agile Transformations

Agile Transformation: How Employees Experience and Cope
with Transformative Change. 155

Dina Koutsikouri, Sabine Madsen, and Nataliya Berbyuk Lindström

Strategy-Focused Agile Transformation: A Case Study 164
Helen Sharp and Katie Taylor

Shifting Conceptualization of Control in Agile Transformations 173
Marius Mikalsen, Viktoria Stray, Nils Brede Moe, and Idun Backer

It’s Not Easy Being Agile: Unpacking Paradoxes in Agile Environments 182
Bettina Horlach and Andreas Drechsler

First International Workshop on Agility
with Microservices Programming

Improving Agility by Managing Shared Libraries in Microservices 195
Saulo S. de Toledo, Antonio Martini, and Dag I. K. Sjøberg

x Contents

www.dbooks.org

https://www.dbooks.org/

Certification as a Service . 203
Sebastian Copei, Manuel Wickert, and Albert Zündorf

Third International Workshop on Autonomous Agile Teams

Dependencies of Agile Teams – An Analysis of the Scaled
Agile Framework . 219

Sven Theobald and Anna Schmitt

Understanding Work Practices of Autonomous Agile Teams:
A Social-psychological Review. 227

Lucas Gren

Spotify Tailoring for Architectural Governance . 236
Abdallah Salameh and Julian M. Bass

Enabling Team Autonomy in a Large Public Organization 245
Parastoo Mohagheghi, Casper Lassenius, and Ingrid Omang Bakken

Defining TestOps: Collaborative Behaviors and Technology-Driven
Workflows Seen as Enablers of Effective Software Testing in DevOps 253

Michal Doležel

Doctoral Symposium

Investigating Agile Adoption in Saudi Arabian Mobile Application
Development . 265

Fahad S. Altuwaijri and Maria Angela Ferrario

Crowd Agile Model for Effective Software Development 272
Shamaila Qayyum, Salma Imtiaz, and Huma Hayyat Khan

Continuous Information Monitoring in Software Startups 280
Usman Rafiq and Xiaofeng Wang

Agile Education and Training Track

Is It Possible to Apply Agile Methods to Contribute to the Linux Kernel? . . . 291
Thatiane de Oliveira Rosa and Alfredo Goldman

Forming and Assessing Student Teams in Software Engineering Courses 298
Henrik Hillestad Løvold, Yngve Lindsjørn, and Viktoria Stray

Contents xi

Panel

COVID-19’s Influence on the Future of Agile . 309
Dennis Mancl and Steven D. Fraser

Author Index . 317

xii Contents

www.dbooks.org

https://www.dbooks.org/

Third International Workshop
on Software-Intensive Business

Unleashing the Business Potential of Software:
A Summary of the Third International

Workshop on Software-intensive Business

Xiaofeng Wang1, Paul Grünbacher2, Sami Hyrynsalmi3, and Kari Smolander3

1 Free University of Bozen-Bolzano, Bolzano 39100, Italy
xiaofeng.wang@unibz.it

2 Johannes Kepler University Linz, Linz 4040, Austria
paul.gruenbacher@jku.at

3 LUT University, Lappeenranta 53850, Finland
{sami.hyrynsalmi,kari.smolander}@lut.fi

Abstract. Software-intensive companies face the challenges of changing
demands, rapidly evolving technology, and dynamic business ecosystems,
which urge them to rethink their business models to benefit from current and
future technological trends. These challenges pose interesting and significant
research problems that require multi-disciplinary approaches. The International
Workshop on Software-intensive Business (IWSiB) aims to bring together
different research communities working on relevant topics, to jointly investi-
gate the challenges, and to bridge the gap between these communities. The
third IWSiB featured two keynote talks contemplating the business of quantum
computing and the trend and impact of public cloud services. Seven research
presentations both hit the main research themes, e.g., platforms and software
startups, and address new topics such as product roadmapping, and Initial Coin
Offerings (ICOs) enabled by Blockchain. The participants suggested other
interesting topics for future workshops, including the impact of AI on software
business, and new software-driven business models.

Keywords: Software-intensive business � Software ecosystems � Software
startups

1 Introduction to the Workshop

“There’s no business like software business” [1]. The role of software-intensive business
solutions is still, after decades, ever-growing in our society. There is hardly a field or an
industrial domain where software-intensive solutions have not revolutionized the
business. In this context, software producing organizations face the challenges of
changing demands, rapidly evolving technology, and a dynamic ecosystem in which
their products and services need to operate. Organizations need to rethink their operating
models and benefit from current and future trends. For instance, design thinking and lean
startup approaches enable them to rapidly identify and validate the business value of
their software solutions, while agile engineering practices and DevOps techniques allow
them to respond swiftly to changes in their environment, thus embracing uncertainty.

www.dbooks.org

https://www.dbooks.org/

The challenges to make these organizations successful are multi-disciplinary. First,
there exist software engineering and technology challenges, such as eliciting and pri-
oritizing requirements, dealing with platforms and technology standards, and operating
in complex technology landscapes that constrain and enable their technology. Sec-
ondly, there exist adoption challenges: organizations need to find ways to convince
their target users to adopt their technologies and to coordinate evolving technologies to
provide the most valuable end-user experience. Thirdly, there exist business model
challenges and organizations must find ways to maximize profit from their innovations
and technologies. Because of the pervasiveness of software, the challenges are
observed everywhere in the economy, whether it is logistics, online marketing, or e-
health. Furthermore, they are applicable to organizations in every stage of develop-
ment, whether it is a software startup or a software giant that has influenced or dom-
inated the market consistently for decades [2].

The scientific field of software-intensive business investigates sustainable software-
based value creation, capture, and delivery through arrangements and methods i) within
organizations (e.g., product management, business models, agility) and ii) between
organizations (e.g. ecosystems, platforms, app stores, OSS communities). There are
many researchers and practitioners whose work is related to the field of software-
intensive business. However, they are often not fully aware of each others work as the
research is scattered to many small sub-fields such as software engineering economics,
software product management, software ecosystems, technology management, soft-
ware platforms, or software startups. The International Workshop on Software-
intensive Business (IWSiB) strengthens the ties between these sub-fields and
researchers working in different but strongly related topics. The specific goals of
IWSiB are to:

– Provide a venue for members of the software engineering and business research
communities to discuss issues of common interest;

– Provide a venue for sharing early work and work-in-progress to obtain feedback
from the wider community.

To achieve these goals, IWSiB is open to a wide range of topics, including

– Business-oriented software development practices
– Business practices in software development
– Software product management
– Software development practices in software startups
– Business models of software startups
– Business aspects of continuous, agile and lean development
– Organizational practices in software businesses
– Software engineering economics
– Interweaving product and business development
– Software ecosystem and platform architectures, evolution and lifecycle
– Ecosystem and platform orchestration and governance
– API economy solutions and challenges
– Observations of software industry and its trends

Unleashing the Business Potential of Software 3

– Impact of new technological and business model trends on software-intensive
businesses

This year’s workshop is the third edition of IWSiB, and a further implementation of
the above-stated vision. The fact that it was co-located with XP2020 helped to highlight
the theme of this edition - unleashing the business potential of software, as delivering
business value is one of the core tenets of agile software development. It is also worth
mentioning that, due to the Covid-19 pandemic situation, the workshop was run
completely virtually using the tele-conferencing solution chosen by the hosting con-
ference. Therefore, it offered different but new and interesting experience to the
workshop participants. One positive consequence of going virtual was that we have
seen a larger number of participants in comparison to the past two editions, and they
spread wider geographically, including countries such as the United States and Brazil
which were not represented in the past. In addition, there was a good mix of academics
and practitioners attending the workshop. To stimulate the discussion among workshop
participants and ensure that the presenting authors to receive feedback on their work,
we have assigned one discussant to each paper before the workshop, whose duty was to
read the paper beforehand, and lead the discussion of the paper during the work-
shop. Since interaction online is more challenging than that in physical format, the role
of discussant guaranteed a minimal level of interaction in an evenly distributed manner.

2 Presentations at the Workshop

The workshop featured two keynote talks. Following them were seven presentations
based on the accepted research papers, which could be roughly divided into two
categories: continuing the main themes of IWSiB, and suggesting new research
directions.

2.1 Keynote Talks

Michael Cusumano, MIT Sloan School of Management professor and author of several
seminal books and articles of the software business research area (e.g. [3]), kicked off
the workshop presentations with his keynote “Quantum Computing as the Next Soft-
ware Applications Platform”. Firstly, Michael explained what a quantum computer is.
Quantum computers mimic nature by using quantum bits (qubits) as their logic or
operating circuits, which can represent various states of 0, 1, or both (called super-
position). Qubits can interact at a distance (called entanglement) and cancel out wrong
solutions (called interference). The essential excitement over the quantum computing is
because correlated qubits represent an exponential increase in potential computing
power - “300 qubits can store and process information equal to the estimated number of
particles in the known universe”. Based on the notion that now may be a good time to
ponder on the business of quantum computing, Michael provided an overview of the
key players in the business of quantum computing, such as D-Wave, IBM, and many
startups innovating in this area, and of the areas where quantum computing can gen-
erate business impact, including materials, finance, pharmaceutical and computational

4 X. Wang et al.

www.dbooks.org

https://www.dbooks.org/

fluid dynamics (CFD). However, the keynote reminded us that we were still in the early
days of quantum computing, and there was still quite a long way to go before we could
see general-purpose, universal quantum computers (more than 20 years), and they were
not meant to be substitutes of conventional computers that we used in our daily lives.
The keynote envisioned quantum computing as the next software applications platform,
and encouraged people to “get feet wet” by playing various software development kits
(SDK) and cloud services made available by the key players.

The second keynote, “Advances in Public Cloud Technology as Foundation for
Global Software-Intensive Businesses”, was given by Christoph Bussler, solution
architect from Google, Inc., who is also an active contributor to the software-intensive
business research community. Christoph asserted that current technology advances in
public clouds fundamentally changed the abstractions of computing, storage and ser-
vices such as machine learning, and the new computing abstractions in turn changed in
significant ways the foundation of software architecture and the software development
process. Through highlighting the currently available cloud technology advances of
Google Cloud, the keynote talk demonstrated how global software-intensive businesses
confronted with an ever increasing competition can significantly benefit from the new
abstractions. One of the interesting arguments made during the talk was that, with
increasing levels of abstractions and with more details of infrastructure and technology
taken care of by public cloud services, software developers are freed up to focus more
on the business and value aspects of software development. However, as Christoph
admitted, it was a challenging task to guide software developers to focus more on
business value generation activities in software development.

2.2 Paper Presentations Continuing the Main Themes

Four presented papers could fall into this category, as they addressed the topics related
to software platforms, ecosystems and startups, which are the focal areas of software-
business intensive research.

Andreas Kaselow, Dimitri Petrik and Sven Feja presented their paper entitled
“Success Factors for a Launch of an Algorithmic Consulting Platform”. They argued
that, for the consulting industry, digital platforms offered the potential to win new
customer groups who had not previously purchased consulting services. In their study,
they examined the launch of digital platforms for the algorithmic consulting approach
because of its promising market potential. Through a qualitative analysis of electronic
documents on the actions of three successful crowdsourcing platforms, the authors
identified 14 success factors for the platform launch, including the open nature of
platform design in the areas of customer access, cooperation with other platforms,
interfaces, and communication.

“API Utilization and Monetization in Finnish Industries” was co-authored and
presented by Saeid Heshmatisafa and Marko Seppänen. The paper was based on the
observation that many companies have joined the trend to expose their business assets
through open (web) Application Programming Interface (API), and they appear to
adopt API technology due to the need and demand of their customers. However, the
pressure from the industry to develop, implement, and maintain API products and
services could cause neglect from companies’ side to better understand the true benefits

Unleashing the Business Potential of Software 5

behind the API development, and consequently they might not be able to exploit these
business assets in monetary or non-monetary manners. The study explored the status of
the API development and API economy in Finnish industries. using publicly available
information from 226 companies and organizations which represent a wide variety of
industries such as industrials, consumer goods, and services. Their study provided a
comprehensive view of the current status regarding factors such as API readiness,
types, protocols, and monetization models.

Jorge Melegati, Rafael Chanin, Afonso Sales and Rafael Prikladnicki presented a
position paper called “Towards specific software engineering practices for early-stage
startups”. Their goal was to argue the need of specific software development practices
for early-stage startups. In order to reach this goal, they discussed the consequences of
innovative and market-driven contexts, which are two of the key elements used to
describe software startups. They also argued that these practices could be applied to
innovative initiatives within established companies since they shared similar charac-
teristics and challenges as startups.

Kelson Silva, Eduardo Guerra and Jorge Melegati took an interesting angle and
investigated how non-software-intensive companies approach software-intensive
innovation projects. The main motivation behind their paper, “An Approach for
Software-Intensive Business Innovation Based on Experimentation in Non-Software-
Intensive Companies”, was that companies whose business were not centered on
technology might fail to innovate and lose to their competitors. The authors observed a
knowledge gap in the literature, that is, although experimentation was described as an
essential aspect of an innovation process and Software Engineering studies have
explored experimentation, there was a paucity of studies focusing on software-intensive
innovative projects in non-software-intensive companies which had rigid structures in
comparison to fast-changing software-intensive companies. The authors proposed an
experiment-oriented process, as well as roles involved, to implement innovation in non-
software-intensive companies, and demonstrated positive evaluation results through
three innovation projects of a cleaning and maintenance company.

2.3 Paper Presentations Suggesting New Directions

The other three paper presentations enlarged the workshop boundary and enriched its
themes with their different takes on software-intensive business research. Two papers
from the same group of authors, Gabriella Laatikainen, Alexander Semenov, Yixin
Zhang and Pekka Abrahamsson, investigated a current and intriguing phenomenon:
initial coin offerings (ICOs). Their work was set against the backdrop that blockchain
technologies disrupted industries by enabling decentralized and transactional data
sharing across a network of untrusted participants, and provided means to develop
services that were secure, transparent and efficient by nature. New business opportu-
nities emerged in the form of Initial Coin Offerings (ICOs), which was a novel way of
crowdfunding through which blockchain-enabled businesses managed to raise a huge
amount of fund in a remarkably short time. In one paper, the authors asked “What key
aspects do ICOs reveal about their businesses?” given the observed knowledge gap that
there was a lack of understanding of the ICO phenomenon especially related to the
business aspects. In this paper, the authors described the results of an exploratory study

6 X. Wang et al.

www.dbooks.org

https://www.dbooks.org/

of 91 ICOs. They identified the key business model elements that ICOs revealed in
their websites and whitepapers, and noted the immaturity and lack of transparency of
the business aspects behind these ICO campaigns. In the other paper entitled “ICO
Crowdfunding: Incentives, Pricing strategy, Token Strategy and Crowd Involvement”,
the authors continued to investigate the 91 ICOs through a content analysis, and
identified the ICO types, including equity-based, rewards-based, subscription-based or
a combination of these.

Last but not least, in the paper “Product Roadmap Alignment – Achieving the
Vision Together: A Grey Literature Review”, Stefan Trieflinger, Jürgen Münch, Emre
Bogazköy, Patrick Eißler, Jan Schneider and Bastian Roling set the goal of gaining a
better understanding of product roadmap alignment by identifying measures, activities
and techniques used to align different stakeholders around a product roadmap. Product
roadmap is an important tool in product development and sets the strategic direction in
which a product is to be developed to achieve the company’s vision. For product
roadmaps to be successful, it is essential that all stakeholders agree on the company’s
vision and objectives and are aligned and committed to a common product plan. The
authors reviewed grey literature and discovered several approaches to gain alignment,
such as defining and communicating clear objectives based on the product vision,
conducting cross-functional workshops, shuttle diplomacy, mission briefing, as well as
a “Behavioural Change Stairway Model” suggesting five steps to gain alignment by
building empathy and a trustful relationship.

3 Future Focuses of IWSiB

The third edition of IWSiB concluded with a question to all workshop participants:
“what topics/issues would you like to see in our next workshop?” While some sug-
gestions were well in line with the defined themes of IWSiB, others hint on several
interesting new directions that the future editions of IWSiB could focus on. There are
also suggestions on the types of research that the participants would like to see more in
the future. Table 1 summarizes the suggestions from the workshop participants.

In the future, IWSiB will continue the implementation of its vision, raising
awareness of this research community and its different facets. It will also support the
building of a common research agenda for the emerging area of software-intensive
business to address the complex interactions of software development and business and
to propose new avenues for research. Besides facilitating inter-group knowledge
exchange in this research context, we will also better design the workshop to make it a
desirable venue for researchers to share learning related to research rigor in the field
and receive early feedback to improve their ongoing research.

Unleashing the Business Potential of Software 7

References

1. Jansen, S.: There’s no business like software business: trends in software intensive
business research. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A., Tyrväinen,
P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP, vol 370, pp. 19–27. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_3

2. Abrahamsson, P., Bosch, J., Brinkkemper, S., Mädche, A.: Software business,
platforms, and ecosystems: fundamentals of software production research (Dagstuhl
seminar 18182). Dagstuhl Rep. 8(4), 164–198 (2018)

3. Cusumano, M. A.: The Business of Software: What Every Manager, Programmer,
and Entrepreneur Must Know to Thrive and Survive in Good Times and Bad. The
Free Press, USA (2004)

Table 1. The future research focuses suggested by the workshop participants

Category Topic

Corresponding to the existing
themes of IWSiB

- Business ecosystems (vs. software ecosystems)
- Software vs. digital innovations
- Digital platform
- Impact of software engineering practices in business
- (New) Software-driven business model

New focuses - Impact of AI on software businesses
- AI ethics
- Machine learning and software business
- What happened when “software ate the world”
- How to deal with giant corporations in innovation
- Intellectual Property Rights (IPR) issues for software
(governance, etc.)

Types of research - More studies with narrative and other qualitative
methods studies

- Case study of successful business model on top of
public API

8 X. Wang et al.

www.dbooks.org

https://doi.org/10.1007/978-3-030-33742-1_3
https://www.dbooks.org/

An Approach for Software-Intensive
Business Innovation Based on

Experimentation in
Non-software-Intensive Companies

Kelson Silva1, Eduardo Guerra2, and Jorge Melegati2(B)

1 Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
kelson@jetsoft.com.br

2 Free University of Bozen-Bolzano, Bolzano, Italy
guerraem@gmail.com, jmelegatigoncalves@unibz.it

Abstract. Several companies whose businesses are not centered on tech-
nology might fail to innovate and get advantages over their competi-
tors. For them, meaningful innovations are not necessarily related to
the usage of new technologies but the optimization of some business pro-
cess. In the literature, experimentation is described as an essential aspect
of the innovation process. Although software engineering studies have
explored experimentation, none has focused on software-intensive inno-
vative projects in non-software-intensive companies, which consists of
a contrast between the fast-changing environment in software-intensive
to rigid structures in consolidated businesses. This paper proposes an
experiment-oriented process to identify and implement innovation in this
kind of company, including the roles involved in such processes. It has
steps to identify business bottlenecks, search for solution alternatives,
implement a fast and functional software proof of concept, create a plan
for evolution, and migrate to a regular project to continue that idea. This
paper also presents an evaluation of this process in a company focused
on outsourced services, such as cleaning and maintenance. As a result,
several internal procedures in a year were improved and received software
support.

Keywords: Innovation · Software-intensive business ·
Experimentation

1 Introduction

In an increasingly competitive world, the innovation-ability has to be developed
in order to be able to survive in the long run, even in a non-high technological
market. Although not being the focus of these companies, in many cases, the
software may represent a way to non-software-intensive companies to innovate.
Innovation is generally linked to a discontinuity in the marketing and/or tech-
nological process either in a macro (new to the world or industry) or micro-level
(to the customer or the firm) [1].
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 9–17, 2020.
https://doi.org/10.1007/978-3-030-58858-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_1

10 K. Silva et al.

In the literature, experimentation is a crucial activity to innovation [2].
Therefore, practices to promote experimentation are valuable to improve innova-
tion. Based on experimentation, several practitioners oriented frameworks (e.g.,
Lean Startup [3]) have focused on innovation in companies developing a wide
range of products. Recently, several studies proposed models to describe exper-
imentation in software-intensive contexts (e.g., RIGHT [4] and HYPEX [5]).
However, one context has received less attention: a non-software-intensive com-
pany pursues innovation through implementing a novel software system. There
are several studies that investigate the usage of software development practices
on companies in which software is not its primary focus [6,7]. None of these
studies clearly define the differences from this kind of company, but we assume
that such a context may represent unique challenges due to the difference in
culture that is significant for practices related to innovation. Consequently, this
study will be guided by the following research question: How can software-
intensive business innovation be pursued in a non-software-intensive
company?

To answer the RQ, we proposed a framework to implement a software inno-
vation process based on experimentation, including steps and roles. Given that
the boundary between the framework implementation and the company opera-
tion is blurred, a case study is a proper research method choice. Such an option
is standard while evaluating artifacts in software engineering research [8]. As
an initial evaluation, we performed a case study in a Brazilian company called
Guima ConSeCo. We present three internal innovation projects that were used as
units of analysis: introduction of a recruitment portal, usage of a distance algo-
rithm to reduce transportation costs, and a software-aided process for cleaning
of hospital beds. Our results showed that the company succeeded in creating
software-intensive innovations supporting the usefulness of the framework.

2 Background and Related Work

The literature provides some examples of experimentation models. Olsson and
Bosch [5] proposed the HYPEX (Hypothesis Experiment Data-driven Develop-
ment). It consisted of six practices: generation of features that could be pos-
sibly valuable to the users; selection of highest priority features and creation
of hypotheses about it; extraction of the so-called minimum viable feature or
MVF: the smallest part that adds value to the customer; analysis of the differ-
ence between expected and actual behavior; in case of difference, development
of hypotheses to explain it; and, finally, analysis of the hypotheses created and
definition of what to do further.

Fagerholm et al. [4] proposed another model: RIGHT (Rapid Iterative value
creation Gained through High-frequency Testing). It consists of cycles that start
with the analysis of the learning obtained in previous cycles and the company’s
business model and vision. Following, the team identifies and prioritizes hypothe-
ses. Then, the team develops an MVP (Minimum Viable Product) or MVF to
test a subset of hypotheses and update the instrumentation. Once the experi-
ment is executed and its results are analyzed, the team reaches a decision-making

www.dbooks.org

https://www.dbooks.org/

Software-Intensive Business Innovation in Non-software-Intensive Companies 11

stage. Based on what it learned, the team may persevere in the idea (implement-
ing/optimizing, scheduling for deployment) or pivot it/change assumptions, etc.

Sveningson et al. [9] investigated the use of continuous experimentation in
companies with low control of roadmap. The authors argued that there is a
relationship among the control of the roadmap and the distance to the users to
the use of continuous experimentation.

Melegati et al. [10] argued that these models follow a similar cycle consisted
of the following steps: 1) identify, specify, and prioritize hypotheses, 2) design
an experiment, 3) execute it, and 4) analyze its results. These results will lead
to learning that will be used to feed the process by, if needed, updating the
hypotheses.

Nevertheless, to the best of our knowledge, there is no systematic approach
to perform software-intensive innovation in non-software intensive companies,
highlighting the research gap we are diving into.

3 Experiment-Driven Business-Oriented Innovation
Approach

In this section, we present a proposed approach for software-intensive business
innovation based on experimentation, including the roles needed. To describe it,
we will detail each of the experimentation process steps identified by Melegati
et al. [10] could be performed.

3.1 Roles

In the context where a non-software-intensive company wants to innovate, the
first thing that should be done is to form an innovation team. This group will be
responsible for identifying the opportunities for improvement and for following
the results and the initial implementation. This team should include a business
specialist that understands the market where the company is included. Addition-
ally, there should also be someone with good company knowledge, that knows
and understands its current main problems and difficulties. Both roles might be
played by the same person or not.

The team should also have technology experts who can propose and design
new solutions, including elements for software support. The expertise should be
on the design of software systems but not necessarily implementation since, for
the project execution, another team should be assigned. Since the company’s
primary focus is not technology, it might internally do not have an appropriate
person for this role. In this case, it can be an external consultant or someone
from a technology partner company. It is also advised to have someone with a
research background to structure the projects and experiments to ensure they
gather the appropriate data to evaluate the business goals’ suitability.

This innovation team does not need to be full-time because their members
would not necessarily work on the projects, but they will identify and prioritize
the innovation projects, evaluate the results, and make decisions. Because of that,

12 K. Silva et al.

the team should also have someone with the power to make decisions inside the
company. The level of hierarchy required depends on the company, but there
should be someone on this team that can assign for the innovation projects the
necessary resources, especially to allocate the time of persons in key positions of
the company that is important for a given project.

3.2 Steps

The first step is the identification of hypotheses about a possible innovation. In
this step, the innovation team has to identify opportunities for improvement. One
kind of these opportunities can be related to the company’s recurrent problems
in some process or area. As an example, it can be a process that is not fulfilling
its goals or spending more resources than it should. The target process might also
not be considered with problems, but it could have points that can be improved
and optimized. It can also be an opportunity to expand the company business
by developing a new product or expanding the market for an existing one. The
identified opportunities are prioritized, and the innovation team should define
what projects should be initiated.

Once a project is chosen, in the next step, a team should be assigned to design
and perform an experiment. This team might include members from inside the
innovation team, and also include others from outside, even from the target com-
pany, independent consultants, and partner company. It is essential to perform
a feasibility check, verifying if the team has the necessary technical and business
skills and knowledge to execute the project.

For each innovation project, it should be clear the scope and how much time
the team has to work. Each project should be short, usually from one to three
months. Due to the uncertainty of the results, it is better to fragment projects
with a broader scope, defining at first a small one with a more limited scope and
chain it with another defined based on the initial results. Usually, the output for
each project can be either a critical answer to move on a relevant company issue
or a functional proof-of-concept that can be implemented or evaluated even with
some limitations.

In this step, the team assigned to work on the innovation project should
search for solution alternatives that can solve the target problem. The solution
can involve a change in the work procedure and the adoption of new techniques;
however, it often involves the usage of the software that can support the adoption
of the new approach. Before proposing the development of new software, it should
be investigated if there is a product that can fulfill even partially those needs
in the market and how they can be integrated with the existing solutions. After
the possible solutions are evaluated, they are presented to the innovation team,
giving their feedback and approval to proceed to an experimentation phase.

In the next step, the team implements a proof-of-concept to evaluate the
proposed solution. It can be the installation of existing software or the creation
of a prototype of a new one. Even when existing software is used, it is usually
necessary for some development effort to integrate it with the existing applica-
tions and databases. The resulting products of this phase should be developed

www.dbooks.org

https://www.dbooks.org/

Software-Intensive Business Innovation in Non-software-Intensive Companies 13

in small iterations and frequently delivered to get feedback from the company’s
business side. Members of the innovation team should also follow these results.

When the innovation team judges that the solution was explored enough, it
follows to the final step: analyze the results accomplished. Based on that, they
make a final decision if the company is going to move forward in that direction
or not. With a positive response, the project leaves the innovation team and
become a regular company initiative. New related innovation projects might be
created. However, the part already well established might now be managed as a
regular project.

For various reasons that can be related to results, budget, or even focus, an
innovation project might be abandoned. In this scenario, the innovation team
should keep the knowledge obtained in the project in a way that can be used
in the future, preserving valuable findings by applying Knowledge Management
techniques. For instance, it is not rare for an idea that is not viable to be imple-
mented in the present to be practicable later due to technological advances.

4 Case Study

To evaluate the proposed approach, we performed a case study. This research
approach has been used in software engineering literature to the research purpose
of improvement [8], like our study.

The proposed approach was applied in a Brazilian company called Guima-
ConSeCo, focused on outsourcing services, such as cleaning and maintenance
engineering. During our study, the company developed three innovation projects
using the proposed approach. Each one is a unit of analysis. Data collection
consisted of participant observation and the analysis of the project’s documen-
tation.

The company currently has around 10.000 employees and provides services in
several public and private facilities. The company has plans to grow in size, and
its managers feel the need to innovate in certain aspects to make the company
more competitive and enable sustainable growth.

The company aims to take advantage of a Brazilian incentive law for inno-
vation1. Several countries also have similar laws to incentivize companies to
develop innovation. In Brazil, the company can use a small percentage of its
taxes to invest in this kind of project. To get the benefit, the company should
document and submit the project to the authorities.

The innovation team was composed of members of a partner technology com-
pany named Jetsoft. The third-party company was responsible for proposing and
implementing this process in the target company. Jetsoft started performing a
mapping study of all the business processes from the target company, identi-
fying problems and potential points for improvement. The team works with a
tool named Genexus [11], which allows fast development and generates code to

1 Law No 10.973 2nd December 2004 - http://www.planalto.gov.br/ccivil 03/
ato2004-2006/2004/lei/l10.973.htm.

http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.973.htm
http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.973.htm

14 K. Silva et al.

several platforms such as Java and .NET. The speed provided by this tool was
important for fast prototyping the solutions.

In all projects described, granular experiments happened, proposing solutions
to parts of the problem and validating them quickly. In many cases, the solutions
were discarded for not passing in an initial evaluation. The approved solutions
were put in practice on a small scale, being refined until being mature enough
for being deployed to production.

4.1 Units of Analysis

Recruitment Portal: As a company that manages outsourcing services for a
high number of employees, human resources is a crucial area, especially recruit-
ment. The motivation for this innovation project was that a high number of can-
didates delivered their resume in a paper, which was generating much manual
work, and nevertheless, many of them were not being processed. This innova-
tion project proposed the creation of a recruitment portal were the candidates
can add their resume. Additionally, an internal application was developed to
allow a search through this resume database. The initial experiments generated
a working prototype, and further, this solution was evolved to become a com-
pany product. After two months of the start of this innovation project, an initial
version was online. As a result, the human resources manual work reduced, and
now the company has a more suitable tool to search for potential job candidates
for a given position. Currently, the application database has around 18k resumes.

Distance Algorithm: The company manages employees working in different
areas of the city. Some of them worked in places far from their home, even having
alternatives close to where they live. This mismatch generates costs for the com-
pany like transportation, possible delays due to traffic, and a drop in employee’s
quality of life. This project proposed an algorithm to calculate the distance
between the workplace and the candidate’s address to be used in the recruit-
ment process. An experiment was performed executing the algorithm direct on
the data. After its validation, it was integrated into the recruitment portal men-
tioned in the previous section. The automation of this distance calculation is
currently being used in the recruitment process, and it is considered, as a next
step, to be used for workplace optimization of current employees.

Cleaning of Hospital Beds: The cleaning of hospitals is one of the services pro-
vided by the target company. Several problems occurred in this service because
the contracting hospital supervisor often evaluated the service after an extended
period, which can lead to divergences. An opportunity for improvement was
detected with the proposal of a tool that can be used to manage the requests for
cleaning and supervision, allowing the capture of images that can register the
service performed by the employee and problems found by the supervisor. The
company also considered that with this data, it would be possible to evaluate
the efficiency from different angles and perform actions to optimize the work. In
this innovation project, the first step was to search for products that could fulfill

www.dbooks.org

https://www.dbooks.org/

Software-Intensive Business Innovation in Non-software-Intensive Companies 15

those needs. Some potential matches were found, and meetings with their com-
panies were made to get knowledge about them. It was found that two of them
could partially fulfill the requirements, the central problem being the integration
with the current systems. An experiment with these two different solutions was
done in different clients, and both are currently being used in production after
adjustments from the providers.

5 Discussion and Conclusions

In each analysis unit, it was possible to observe that the company successfully
implemented an innovation. Such achievements were reached either by imple-
menting prototypes or by selecting a solution already existent in the market
and then experimenting and evaluating the results. Looking to the case consid-
ering the target research question: “How can software-intensive business
innovation be pursued in a non-software-intensive company?”, we can
conclude that the proposed approach can be a valid way for that. The target
company was able to innovate in some of its critical areas for its business, and
intend to keep applying this process continuously.

We considered the focus on business problems as one of the critical success
factors of this approach. Innovation can be seen wrongly as the usage of break-
ing edge technologies, however, with the focus on business, the use of simpler
software technology could solve the problem if it is appropriate for the demands.
Another critical point for the success in the studied case was the partnership
of the non-software-intensive company with a company specialized in business
process mapping and software development. That created a synergy where each
one focuses on its field of specialization but collaborates to reach a common goal.

Although the innovation projects described do not represent anything new
to the world, they can be described as micro-level innovations [1]. That is, the
solutions proposed represented novelty at the firm level, and its development
consisted of a challenge to the company. The novelty of the proposed approach
when compared to previous experimentation models and Lean Startup is its
focus on the dichotomy software-intensive innovation in a non-software-intensive
context. Such target allowed the description of specific roles and activities. It is
important to highlight that this work is still in progress and our goal is to tackle
the lack of operationalization of Lean Startup, as previously recognized in the
literature (e.g., [12]).

The proposed approach starts with identifying problems and opportunities
for improvement, creating a team that identifies potential solutions, and validates
them through experiments. It was evaluated through a case study in a company
focused on outsourcing of cleaning and maintenance. The results of the case
study imply that the proposed approach is feasible and suitable since it helped a
non-software-intensive business company pursue innovation based on software-
intensive business solutions.

As future work, we will collect more data in the presented case study through
interviews with different actors involved in the process. The goal is to acquire

16 K. Silva et al.

information about the main difficulties and try to identify other lessons learned.
We intend to implement the same process in other companies, intending to gen-
eralize practices, and identify difficulties that can arise in a different context.
Another future study could identify the differences and peculiarities from non-
software-intensive companies relevant for innovation projects.

References

1. Garcia, R., Calantone, R.: A critical look at technological innovation typology and
innovativeness terminology: a literature review. J. Prod. Innov. Manage. 19(2),
110–132 (2002)

2. Thomke, S.H.: Managing experimentation in the design of new products. Manage.
Sci. 44(6), 743–762 (1998)

3. Eric, R.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

4. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

5. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-
case study on how to close the ’open loop’ problem. In: 2014 40th EUROMICRO
Conference on Software Engineering and Advanced Applications, pp. 9–16. IEEE,
August 2014

6. Gustavsson, T.: Benefits of agile project management in a non-software develop-
ment context : a literature review. In: Project Management Development - Practice
and Perspectives : Fifth International Scientific Conference on Project Management
in the Baltic Countries, pp. 114–124. Latvijas Universitate (2016)

7. Conforto, E.C., Salum, F., Amaral, D.C., da Silva, S.L., de Almeida, L.F.M.: Can
agile project management be adopted by industries other than software develop-
ment? Proj. Manage. J. 45(3), 21–34 (2014)

8. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009). https://doi.
org/10.1007/s10664-008-9102-8

9. Sveningson, R., Mattos, D.I., Bosch, J.: Continuous experimentation for soft-
ware organizations with low control of roadmap and a large distance to users: an
exploratory case study. In: Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.)
PROFES 2019. LNCS, vol. 11915, pp. 528–544. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-35333-9 37

10. Melegati, J., Wang, X., Abrahamsson, P.: Hypotheses engineering: first essen-
tial steps of experiment-driven software development. In: 2019 IEEE/ACM Joint
4th International Workshop on Rapid Continuous Software Engineering and 1st
International Workshop on Data-Driven Decisions, Experimentation and Evolu-
tion (RCoSE/DDrEE), pp. 16–19. IEEE, May 2019

11. Castagnet, N.: Software factories para construir sistemas de información con
genexus. Technical report, Instituto de Computación, Facultad de Ingenieŕıa, Uni-
versidad de la República. Informe del proyecto de grado (2007)

12. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software
startup development model: a framework for operationalizing lean principles in
software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan,
L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-44930-7 1

www.dbooks.org

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-030-35333-9_37
https://doi.org/10.1007/978-3-030-35333-9_37
https://doi.org/10.1007/978-3-642-44930-7_1
https://www.dbooks.org/

Software-Intensive Business Innovation in Non-software-Intensive Companies 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Towards Specific Software Engineering
Practices for Early-Stage Startups

Jorge Melegati1(B) , Rafael Chanin2 , Afonso Sales2 ,
and Rafael Prikladnicki2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
jmelegatigoncalves@unibz.it

2 School of Technology, PUCRS, Porto Alegre, Brazil
{rafael.chanin,afonso.sales,rafaelp}@pucrs.br

Abstract. In this position paper, our goal is to argue the need for spe-
cific software development practices to early-stage startups. In order to
reach this goal, we discuss the consequences of innovative and market-
driven contexts, which are two of the key elements when describing soft-
ware startups. We also argue that these practices could be applied to
innovative initiatives within established companies since they share sim-
ilar characteristics and challenges as those from startups.

Keywords: Early-stage startups · Innovation · Market-driven

1 Introduction

The definition of a startup is blurry in scientific research. There are two sys-
tematic mapping studies (SMS) performed on the topic, and both discussed how
authors had defined the term. Back in 2014, Paternoster et al. [13] analyzed 43
primary studies and, as one of their results, grouped in themes the descriptions
used by papers’ authors to characterize these companies. The list consisted of
15 themes where the most common were: 1. lack of resources; 2. highly reactive;
3. innovation; 4. uncertainty; 5. rapidly evolving; 6. time pressure.

In 2018, Berg et al. [3] repeated the analysis, including papers published in
the period. They concluded that the rigor had increased, but there was not still
a consensus on the term. However, in the period between the SMSs, the most
common themes were innovation, uncertainty, small teams, lack of resources, and
little or no operating history.

Startups follow a life-cycle composed of four stages: inception, stabilization,
growth, and maturity [11]. Inception starts with the idea conception and ends
with the first release. In the stabilization stage, the startup prepares to scale
regarding technical and operational aspects. These two stages are the early-
stages where the focus is on finding a relevant problem and solution. In the
growth stage, the startup aims to reach the desired market participation, and,
in the last stage, it progresses into an established company.

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 18–22, 2020.
https://doi.org/10.1007/978-3-030-58858-8_2

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_2&domain=pdf
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0002-6293-7419
http://orcid.org/0000-0001-6962-3706
http://orcid.org/0000-0003-3351-4916
https://doi.org/10.1007/978-3-030-58858-8_2
https://www.dbooks.org/

Towards Specific Software Engineering Practices for Early-Stage Startups 19

In a divisive paper, Klotins [10] argued that there is no characteristic unique
to startups that are not observed in other teams developing innovative, market-
driven, software-intensive products. To reach his conclusions, he reviewed the lit-
erature regarding themes identified by Paternoster et al. [13]. Below, we oppose
this argument arguing that innovation and market-driven are necessary and suffi-
cient elements to characterize startups. Still, this combination has slightly been
touched in the software engineering literature. Finally, we show that current
research to tackle problems in this context is still in its infancy and which avenues
could be explored further.

2 Necessity: Innovation and Market-Driven Context as a
Challenge for Software Development in Startups

Innovation is an ambiguous term in the literature. To tackle this issue, Garcia
and Calantone [7] reviewed studies on market, engineering, and new product
development disciplines. The review showed that the term comprehends a dis-
continuity in marketing, technological, or both processes. In this context, ven-
tures operate through several trials and errors along various dimensions of the
business model [2]. This uncertain environment leads to challenges in software
development like unstable requirements, compromised testing, and lack of writ-
ten architecture specification [13]. These challenges exist, especially in market-
driven contexts that are characterized by the software being developed to an
open market with many customers instead of according to what is dictated by
a paying customer (the so-called bespoke development).

A natural choice to deal with a dynamic context is to use agile methodologies
since they embrace higher rates of change [15]. Nevertheless, agile methods may
not be the final answer for software startups. Agile methods tackle changes
through quick iterations with customer feedback [15]. However, these contact
points are not available since, many times, even the customers are not known in
the early-stages of a software startup. The lack of customer availability is a known
challenge for teams applying these methods in market-driven environments [1,9].
Therefore, the combination of innovation and a market-driven context leads to a
situation where a specific set of practices would be useful. Figure 1 summarizes
this argument.

Fig. 1. Early-stage startups: combining innovative and market-driven contexts.

20 J. Melegati et al.

3 Sufficiency: Innovation on Software-Intensive
Market-Driven Products as Startups

In this section, we argue that a team developing a new innovative, software-
intensive, market-driven product is a software startup. Although this aspect con-
tradicts common themes to describe software startups, such as lack of resources
and lack of experience [13], teams in large companies formed to develop inno-
vative products face similar problems as those from startups. Regardless of the
context of the innovation process, uncertainty, time pressure, and the need to be
highly reactive is always a part of the initiative. These characteristics require a
particular way of tackling the idea being developed. A large organization can-
not deal with uncertainty, for instance, just by adding more resources; the right
approach needs to be implemented to transform the questions (or hypothesis)
into facts.

To support our argument, we can mention the research on internal startups,
in which teams develop innovative software-intensive products inside large com-
panies. For instance, Edison et al. [5] investigated the use of Lean Startup in
large companies, arguing that it facilitated the software product innovation in
this context. That is, teams developing software-intensive innovative products,
even in large companies, can use methods tailored to startups.

In this sense, we intend to formulate a set of best practices or a framework
that could be applied in any scenario in which innovation on software-intensive
market-driven products is being developed. We acknowledge that large organi-
zations naturally differ from small ones. However, we can also find differences
among small organizations: they may face different regulatory elements, compe-
tition, technical challenges, and so on. If the literature does not indicate that
startups should apply different approaches depending on their characteristics,
there is no reason not to include innovation software-intensive market-driven
products or services being developed on large organizations.

4 Current Proposals and Future Directions

Based on the arguments above, software startups would benefit from a set of
practices tailored to an innovative process. Up to now, although a broad litera-
ture on the topic are being raised in the last years [3], there are no scientific stud-
ies proposing specific practices for these companies. Academic authors focused
on describing the context including currently used practices (e.g., [8,11,12]) and
faced challenges (e.g., [11,14]).

Nevertheless, in the industry, some methodologies, like Lean Startup and
Customer Development, are well-known. Although described based on anecdotal
evidence and the authors’ own experience, several academics argued the influence
and importance of experimentation to the core arguments of these practices,
e.g., [4,6]. Besides that, scientific studies in innovation and entrepreneurship
literature have argued the value of experimentation in these contexts. Therefore,
similar approaches seem a reasonable way to follow.

www.dbooks.org

https://www.dbooks.org/

Towards Specific Software Engineering Practices for Early-Stage Startups 21

Our goal is to further explore our hypothesis by gathering data from initia-
tives in large organizations as well as from early-stage startups. By confirming
our assumptions, we will work towards a set of software engineering practices for
these teams. Of course, such endeavor is a huge challenge and, instead of a small
team work, we expect this position paper acts as a call for the whole community
to go towards this end. The literature described above will inform the creation
of these practices.

5 Conclusions

This position paper initiated a discussion on software engineering practices tai-
lored to early-stage startups. Based on the fact that innovation and market-
driven are usually used to define software startups, we argue that these aspects
are decisive to characterize this context. Besides that, we claim that these aspects
are also relevant to teams in other contexts, such as large companies. We hope
that this discussion can encourage further investigation of specific practices for
early-stage startups in any given context.

Acknowledgments. This work is partially funded by FAPERGS (17/2551-0001/205-
4).

References

1. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2007)

2. Andries, P., Debackere, K., van Looy, B.: Simultaneous experimentation as
a learning strategy: business model development under uncertainty. Strateg.
Entrepreneurship J. 7(4), 288–310 (2013). https://doi.org/10.1002/sej.1170

3. Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144(February),
255–274 (2018)

4. Bortolini, R.F., Nogueira Cortimiglia, M., Danilevicz, A.d.M.F., Ghezzi, A.: Lean
startup: a comprehensive historical review. Manag. Decis. (2018). https://doi.org/
10.1108/MD-07-2017-0663

5. Edison, H., Smørsg̊ard, N.M., Wang, X., Abrahamsson, P.: Lean internal startups
for software product innovation in large companies: enablers and inhibitors. J. Syst.
Softw. 135, 69–87 (2018). https://doi.org/10.1016/j.jss.2017.09.034

6. Frederiksen, D.L., Brem, A.: How do entrepreneurs think they create value? A
scientific reflection of Eric Ries’ Lean Startup approach. Int. Entrepreneurship
Manag. J. 13(1), 169–189 (2016). https://doi.org/10.1007/s11365-016-0411-x

7. Garcia, R., Calantone, R.: A critical look at technological innovation typology and
innovativeness terminology: a literature review. J. Prod. Innov. Manage 19(2),
110–132 (2002). https://doi.org/10.1016/S0737-6782(01)00132-1

8. Gralha, C., Damian, D., Wasserman, A.I.T., Goulão, M., Araújo, J.: The evolution
of requirements practices in software startups. In: Proceedings of the 40th Interna-
tional Conference on Software Engineering - ICSE 2018, pp. 823–833. ACM Press,
New York (2018). https://doi.org/10.1145/3180155.3180158

https://doi.org/10.1002/sej.1170
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1108/MD-07-2017-0663
https://doi.org/10.1016/j.jss.2017.09.034
https://doi.org/10.1007/s11365-016-0411-x
https://doi.org/10.1016/S0737-6782(01)00132-1
https://doi.org/10.1145/3180155.3180158

22 J. Melegati et al.

9. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic
literature review on agile requirements engineering practices and challenges. Com-
put. Hum. Behav. 51, 915–929 (2015)

10. Klotins, E.: Software start-ups through an empirical lens: are start-ups snowflakes?.
In: CEUR Workshop Proceedings, vol. 2305, pp. 1–14 (2018)

11. Klotins, E., et al.: A progression model of software engineering goals, challenges,
and practices in start-ups. IEEE Trans. Software Eng. 13(9), 1 (2019)

12. Melegati, J., Goldman, A., Kon, F., Wang, X.: A model of requirements engineering
in software startups. Inf. Softw. Technol. 109(2018), 92–107 (2019). https://doi.
org/10.1016/j.infsof.2019.02.001

13. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

14. Wang, X., Edison, H., Bajwa, S.S., Giardino, C., Abrahamsson, P.: Key challenges
in software startups across life cycle stages. In: Sharp, H., Hall, T. (eds.) XP 2016.
LNBIP, vol. 251, pp. 169–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33515-5 14

15. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and
change. Computer 36(6), 39–43 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1016/j.infsof.2019.02.001
https://doi.org/10.1016/j.infsof.2019.02.001
https://doi.org/10.1007/978-3-319-33515-5_14
https://doi.org/10.1007/978-3-319-33515-5_14
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

API Utilization and Monetization in Finnish
Industries

Saeid Heshmatisafa and Marko Seppänen(&)

Unit of Information and Knowledge Management, Tampere University,
Kanslerinrinne 1, 33014 Tampere, Finland

{saeid.heshmatisafa,marko.seppanen}@tuni.fi

Abstract. Many companies have followed the trend toward exposing their
business assets through open (i.e., Web) application programming interfaces
(APIs). However, these firms appear to have adopted API technology largely to
meet their customers’ needs and demands. The pressures on industries to
develop, implement, and maintain API products and services can prevent
companies from gaining a greater awareness of API development’s benefits.
Firms may thus miss out on related monetary or non-monetary exploitation of
their business assets.
This study explored the status of the API economy and development among

Finnish industries. The dataset comprised publicly available information from
226 private and public organizations representing a variety of industries, such as
industrial, consumer goods, and services sectors. The current status of API
readiness, types, protocols, and monetization models is presented to provide a
more comprehensive overview.

Keywords: API � API economy � Web service � Explorative study

1 Introduction

In recent years, many companies have started to take advantage of the application
programming interface (API) economy. Web APIs have caused disruption because
firms can now operate, promote innovation, and create additional value from their
business assets with much lower overhead costs [1, 2]. The number of publicly
available APIs has thus grown significantly. For instance, ProgrammableWeb reports
that over 22,000 APIs are registered on its platform and, on average, 220 new APIs are
added every month [3].

Concurrently, developers perceive API as an enabler of software architecture
flexibility, efficiency, and agility [4], while API providers seek to seize this as an
opportunity to transform their existing business models [5]. For example, Salesforce, a
pioneer in customer relations management, offers APIs to increase companies’ system
capabilities and integration into their customers’ systems. This transformation of
Salesforce’s business model has empowered the firm to handle approximately 60% of
its customers’ transactions or about 1.3 billion daily calls through APIs instead of
traditional graphical user interfaces. The strategy has generated a new revenue stream
of more than five billion United States dollars annually. Another example is the

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 23–31, 2020.
https://doi.org/10.1007/978-3-030-58858-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_3

Amadeus IT Group, which operates a travel technology business and generates more
than six billion euros in revenue mostly from different API-based solutions.

More recently, API has become a means of developing new business strategies [6].
For instance, eBay’s APIs allow third party users to list auctions and bid, which is
responsible for 60% of this company’s annual revenue. In addition, significant pro-
portions of other firms’ revenue, such as 90% of Expedia and 100% of Amazon Web
Services, are being generated through APIs [7]. One reason for the API paradigm’s
success is its ability to expand ecosystems and increase innovation by embracing the
outside-in practice of open innovation. These features allow third-party consumers to
create new products or services from one API or a combination of available APIs,
thereby enabling new approaches to capturing and creating value [8]. APIs are,
therefore, becoming the corporate world’s central focus.

This paper presents the initial results of a study that explored the current status of
the API economy in various industries and sectors. Previous research has focused on
large multi-national companies, so scant attention has been paid to small and medium-
sized enterprises (SMEs) in this context. The API economy’s development within
SMEs was thus included in the present study. An explorative analysis was also con-
ducted to assess the popularity of this phenomenon by addressing the following
questions:

• How many organizations have adopted APIs?
• What are the most common API types and protocols?
• What monetization models are used?

2 Background

The buzzword “API economy” has recently started to attract much attention among
scholars and practitioners, but the concept of API is not new. This term was initially
coined in 1968 with reference to a framework or library for a specific programming
language [9]. In the 2000s, the advent of service-oriented architecture (SOA) created an
opportunity for companies to build business-to-business relationships using standard
interfaces via a simple object access protocol (SOAP) [7]. The concept of SOA was
then developed further by employing Web-based technologies such as representational
state transfer (REST) [10].

With the evolution of REST, Web API shifted developers’ approach to constructing
and publishing applications over the Internet and created the culture of reusability by
adapting create, read, update, and delete interfaces. Currently, software as a service,
platform as a service, and infrastructure as a service enable developers to publish and
manage application composites using key access. Developers have moved into a new
era focused on speed rate, innovation, and performance while becoming better at
controlling costs and risks [11].

In general, API is a way for two applications to communicate with each other over a
network using a common bilateral language [6]. Thus, API acts as a control point at
which a compilation of services is exposed to potential users in a controlled, managed
manner [11]. In the context of the API economy, API, Web API, and business API are

24 S. Heshmatisafa and M. Seppänen

www.dbooks.org

https://www.dbooks.org/

used interchangeably, functioning as a meta concept. Obtaining economic benefits from
API is often referred to as the “API economy,” which is defined as “an economy in
which companies expose their (internal) business assets or services in the form of
(web) APIs to third parties with the goal of unlocking additional business value” [12].
Consequently, a more appropriate definition of Web API is an Internet-based software
interface that publishes specific business assets in a controlled manner [12].

Typically, this new economic model consists of three key players: API providers,
API consumers, and end-users [2]. Providers expose their business assets (i.e., prod-
ucts, services, or/and data) over an API, and consumers are the businesses that take
advantage of one API or a combination of APIs to develop new products, services, or
results. End-users, in turn, are users who have a direct relationship with consumers.

Diverse and yet compatible API business models have been created [13], including
free, paid, and indirect models. In paid business models, the developers either pay or
get paid for API usage, while, in indirect business models, consumers are subject to
business models such as content acquisition and content syndication. In this context,
consumers can become the providers’ direct customers by using the exposed utility
services. In addition, providers may sell core products through an API, while con-
sumers play the role of resellers [2]. Providers can exploit APIs in a great number of
ways, and many of these fit into both categories or in between.

What makes APIs unique is that providers often operate in a black box and expose
their business assets without being aware of the business opportunities that APIs offer
and the ways that consumers can use APIs to innovate. The potential benefits of the
API economy are as follows [1]:

• Reducing development costs and time
• Staying relevant in the market
• Reaching diverse platforms and devices
• Focusing on core values by outsourcing production to API consumers
• Capitalizing on new partnerships
• Entering new customer bases
• Increasing brand loyalty
• Inspiring industry standards and user expectations

Regarding types of APIs, the most common classifications are open data, open
and/or public or partner, and internal and/or private APIs [14]. Open data APIs are
openly accessible information mostly provided for “free” from organizations such as
governments and schools. Open APIs are associated with Web APIs, which are the
present study’s focus and which include public and partner APIs. Open public APIs are
publicly available as they can be accessed by anyone without establishing a business
relationship. Conversely, partner APIs are only accessible with a key after a partnership
or customer agreement is signed.

API Utilization and Monetization in Finnish Industries 25

3 Research Method

Given this research’s aims, a quantitative descriptive statistics method was chosen to
explore the characteristics of the API economy within the sample of organizations.
First, the dataset was collected from diverse private and public organizations operating
in Finland, resulting in a final dataset on 226 organizations, a list of which is available
upon request in a Google sheet format. The first category in the dataset comprises the
top 100 companies in Finland based on their turnover in 2019 [15]. The second
category includes 126 convenience sample-based SMEs to provide a more compre-
hensive overview of the topic under study.

Second, four variables—API readiness, types, protocols, and monetization models
—were selected to define the dataset’s demographics. Third, secondary data such as
publicly available white papers and companies’ official websites were carefully
examined. Last, the content analysis’s results were evaluated and associated with the
findings for the defined variables. When a company did not clearly mention any of the
variables, the keyword “unknown” was used.

The required data were gathered in March 2020, and the results were processed and
stored in Microsoft Excel spreadsheets. Next, data wrangling was applied to clean the
dataset by removing different errors, nulls, and duplications. The purified dataset was
further analyzed by creating pivot tables to represent the variables’ demographics.
Finally, the relevant tables were constructed using Tableau software to validate and
facilitate a more in-depth examination of the results.

4 Results

Information was gathered from 226 companies and organizations from different
industries such as industrial, consumer goods, and services sectors. The results show
that, out of 226 firms, only one-third (number [n] = 77, 34%) have open APIs, and
two-thirds (n = 149, 66%) do not participate in APIs publicly (see Table 1).

The distribution of APIs indicates that the public sector is at the top of open API
development with 20 organizations, whereas the healthcare sector, with its vast
potential and high volume of data, has not yet invested in this technology substantially.
However, technology companies have produced the most APIs or approximately 40%
(n = 112) of the total. Notably, some organizations have several APIs (see Fig. 1).
Consumer services firms come second with a total number of 49 open APIs. In
addition, none or only one API was identified in six industries: basic materials,
healthcare, telecommunications, utilities, materials, and oil and gas.

26 S. Heshmatisafa and M. Seppänen

www.dbooks.org

https://www.dbooks.org/

Companies apparently tend toward investing in one API type. Firms have also
published more open public APIs (n = 38) compared to any other types. The second
most common API type is open partner APIs (n = 18). Only a small fraction of the
companies under study have APIs in both public and partner formats (n = 8). Thirteen
companies did not explicitly state their type of API in any of the documents examined.

Table 1. Distribution of APIs across industries.

With API Without API Total

Industrial 18 56 74
Consumer goods 3 31 34
Consumer services 10 23 33
Public 20 1 21
Technology 15 5 20
Financial 5 6 11
Basic materials 1 8 9
Healthcare 1 7 8
Materials 0 6 6
Oil and gas 0 3 3
Utilities 1 2 3
Consumer services 2 0 2
Telecommunications 1 1 2
Total 77 149 226

Fig. 1. API distribution across selected industries (more than one API).

API Utilization and Monetization in Finnish Industries 27

Regarding monetization models, the most common revenue model in the sample is
“free” with 39 companies, which means that no direct earnings or pricing is linked to
API usage. A further 32 cases fall into the category of “unknown,” indicating that a
monetization model was not specified. Evidently, companies tend to use APIs as a
facilitator and an added value to offer their existing customers.

The matrix in Table 2 shows that the 31 companies with open public APIs are
exposing their business assets for free. Only a small number of the organizations in
question have any monetization models linked with their APIs. All the API types and
monetization models counted, totaling six organizations, are shown in italics in
Table 2. Surprisingly, 12 companies did not mention their type of API or revenue
model. In total, 32 organizations did not clarify their revenue model and so were coded
as “unknown.”

Overall, the results indicate that companies do not clearly determine a revenue
model. In most cases, consumers are mandated to fill out an application or contact the
providers directly to receive detailed information about the type of contract and pricing
models. In addition, in freemium models, companies expect consumers to upgrade to a
premium model after a specific number of calls.

Similar to the findings for revenue models, API customers are also left ambiguous.
Most publicly available APIs (n = 45) do not target specific market segments, and
companies are unclear about whether the assets are offered to developers and/or their
business partners. However, 17 open APIs expose business assets as an added value
offered to partners, whereas only 3% (n = 9) of the APIs are used to collaborate with
both developers and business partners. Furthermore, six public APIs explicitly aimed to
serve developers.

Private companies also devote a portal to provide documentation on their APIs, but
this is true of less than one-fifth (18%) of these firms. About half of the companies
publish their business assets through third-party platforms such as GitHub, so the
results show that only one out of six (16%) private companies dedicate an official portal
to providing documentation and examples to consumers.

Table 2. Matrix of API classifications and monetization models.

Unknown Free Free &
Freemium

Free & Freemium &
Premium

Free &
Premium

Premium Total

Open API (Public) 7 31 0 0 0 0 38
Open API (Partner) 11 6 0 0 0 1 18
Unknown 12 1 0 0 0 0 13
Open API (Partner
& Public)

2 1 1 2 1 1 8

Total 32 39 1 2 1 2 77

28 S. Heshmatisafa and M. Seppänen

www.dbooks.org

https://www.dbooks.org/

One-third (33%) of providers further do not clarify where consumers can access the
APIs mentioned. Notably, most of the companies’ information was collected for this
study from their annual report, blogs, help portal, or even GitHub. This poor docu-
mentation of official information on companies’ assets reflects the high level of
uncertainty firms experience concerning their business assets.

In addition, SOAP architecture is more prevalent among open public APIs (see
Fig. 2), while REST architecture is more common among partners and hybrid APIs. At
least two firms with open partner APIs also appear to offer two different API styles (i.e.,
protocols) to consumers to increase the information’s flexibility and usability.

5 Conclusion

This paper provides an overview of public APIs and their monetization models among
Finnish industries, based on a broad sample of 226 private and public organizations.
Despite the growing trend toward developing open APIs, the results show that only
one-third of these firms provide public access to their Web APIs. Industrial companies
are pioneers in this area, but, rather surprisingly, even high potential sectors such as
healthcare do not show much sign of making APIs generally available.

In terms of monetization, the findings include that the most popular revenue model
among the firms under study is still “free,” so direct monetization has not yet been
established. Companies appear to provide APIs as an added value to their business
partners, as well as to remain relevant in the market. In addition, even though

Fig. 2. API types versus style.

API Utilization and Monetization in Finnish Industries 29

documentation and protocols are some of the effective ways to encourage and engage
with consumers, the results of the study indicate that companies have invested rather
little on the subject matter.

This study had a few limitations that are worth mentioning. First, given the
exploratory nature of the research, the results are only preliminary and are not gen-
eralizable to any great extent. Second, the data selection process was based on con-
venience and accessibility. Last, the results are descriptive and based on publicly
available sources. Therefore, the dataset did not allow an assessment of to what extent
the organizations in question may use APIs internally. Further studies using case study
or survey data could help to shed light on this internal use. In addition, future research
may benefit from a more theoretical approach to monetization strategies and causal
relationships between monetization and organizations’ performance.

References

1. Gat, I., Succi, G.: A Survey of the API Economy. Cutter Consortium Agile Product &
Project Management Executive Update, vol. 14, no. 6 (2013)

2. Gat, I., Remencius, T., Sillitti, A., Succi, G., Vlasenko, J.: The API economy: playing the
devil’s advocate. Cutter IT J. 26, 6–11 (2013)

3. Santos, W.: APIs show Faster Growth Rate in 2019 than Previous Years (2019). https://
www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/
research/2019/07/17. Accessed 26 Apr 2020

4. Cois, C.A.: Devops Case Study: Amazon AWS (2015)
5. Wulf, J., Blohm, I.: Service innovation through application programming interfaces -

towards a typology of service designs. In: Transforming Society with Digital Innovation,
ICIS 2017, pp. 1–12 (2018)

6. Jacobson, D., Woods, D., Brail, G.: APIs: A Strategy Guide. O’Reilly Media (2011)
7. Vukovic, M., Laredo, J., Muthusamy, V., Slominski, A., Vaculin, R., et al.: Riding and

thriving on the API hype cycle. Commun. ACM 59, 35–37 (2016)
8. Doerrfeld, B., Wood, C., Anthony, A., Sandoval, K., Lauret, A.: The API Economy:

Disruption and the Business of APIs. Nordic APIs (2016)
9. Cotton, I.W., Greatorex Jr., F.S.: Data structures and techniques for remote computer

graphics. In: Proceedings of the Fall Joint Computer Conference, part I, 9–11 December
1968, pp 533–544 (1968)

10. Fielding, R.T., Taylor, R.N.: Architectural Styles and the Design of Network-based Software
Architectures. University of California, Irvine (2000)

11. Brown, A., Fishenden, J., Thompson, M.: API economy, ecosystems and engagement
models. In: Digitizing Government. Business in the Digital Economy, pp 225–236. Palgrave
Macmillan, London (2014). https://doi.org/10.1057/9781137443649_13

12. Janes, A., Remencius, T., Sillitti, A., Succi, G.: Towards understanding of structural
attributes of web APIs using metrics based on API call responses. In: Corral, L., Sillitti, A.,
Succi, G., Vlasenko, J., Wasserman, Anthony I. (eds.) OSS 2014. IAICT, vol. 427, pp. 83–
92. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55128-4_11

13. Musser, J.: API Business Models (2013). https://www.slideshare.net/jmusser/j-musser-
apibizmodels2013. Accessed 23 June 2020

30 S. Heshmatisafa and M. Seppänen

www.dbooks.org

https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://www.programmableweb.com/news/apis-show-faster-growth-rate-2019-previous-years/research/2019/07/17
https://doi.org/10.1057/9781137443649_13
https://doi.org/10.1007/978-3-642-55128-4_11
https://www.slideshare.net/jmusser/j-musser-apibizmodels2013
https://www.slideshare.net/jmusser/j-musser-apibizmodels2013
https://www.dbooks.org/

14. Moilanen, J., Niinioja, M., Seppänen, M., Honkanen, M.: API Economy 101: Changes Your
Business. BoD-Books on Demand (2019)

15. The largest companies by turnover in Finland (2016). http://www.largestcompanies.com/
toplists/finland/largest-companies-by-turnover. Accessed 25 June 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

API Utilization and Monetization in Finnish Industries 31

http://www.largestcompanies.com/toplists/finland/largest-companies-by-turnover
http://www.largestcompanies.com/toplists/finland/largest-companies-by-turnover
http://creativecommons.org/licenses/by/4.0/

ICO Crowdfunding: Incentives, Pricing
Strategy, Token Strategy and Crowd

Involvement

Gabriella Laatikainen1(&), Alexander Semenov1, Yixin Zhang2,
and Pekka Abrahamsson1

1 Faculty of Information Technology, University of Jyväskylä,
Jyväskylä, Finland

{gabriella.laatikainen,alexander.semenov,pekka.

abrahamsson}@jyu.fi
2 Swedish Center for Digital Innovation, University of Gothenborg,

Gothenborg, Sweden
yixin.zhang@ait.gu.se

Abstract. Blockchain technologies provide means to develop services that are
secure, transparent and efficient by nature. Unsurprisingly, the emerging busi-
ness opportunities has gained a lot of interest that is realized in form of suc-
cessful Initial Coin Offerings (ICOs) that are able to raise billions of USD
through crowdfunding campaign. In this exploratory research we study 91 ICOs
through content analysis in order to investigate the special characteristics of ICO
crowdfunding as business models towards the possible investors. We found that
ICOs can be described through (1) the model for providing incentives for
investment, (2) the pricing strategy, (3) the token strategy and (4) the activities
for crowd involvement in value co-creation.

Keywords: ICO � Blockchain � Crowdfunding � ICOs as business models

1 Introduction

The emergence of blockchain technologies disrupts industries by providing means for
decentralization and making data processing more secure and more efficient [1, 2].
Furthermore, it allows both the creation and re-invention of services in different sectors
by providing a decentralized environment for value creation. In a blockchain-enabled
business environment, nobody has full control and lying about past events is impos-
sible; thus, the role of regulatory actors and intermediaries disappears. Smart contracts
(i.e., self-executing digital contracts) and smart properties (i.e., intelligent assets that
are controllable through internet) enable the emergence of new types of businesses
where organizations operate in a network with limited or no human interactions [3–5].

Initial Coin Offerings (ICOs) represent an unregulated fundraising model for
startups that use blockchain technologies [1, 6]. That is, they enable projects to be
funded via a crowdfunding model that can be seen as an open call for funds, evaluated
and supported by a group of individuals (the crowd) [7]. To date, the most successful

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 32–40, 2020.
https://doi.org/10.1007/978-3-030-58858-8_4

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_4
https://www.dbooks.org/

ICO, Filecoin was able to collect more than $257 million while ICOs raised a total of
almost $11.4 billion in 2019 [8].

However, despite of their importance, ICOs are poorly understood [9, 10] and they
represent a high-risk investment for investors. First, ICOs exist in an environment with
no regulation, and this allows the founders to design any business model that makes
their offering attractable without bearing any future consequences. Second, the
underlying cryptocurrencies have a high volatility. Third, the health of the blockchain
ecosystem depends on the crowd sentiments as well as it is exposed to speculations and
manipulation [6, 11].

Recent literature has studied ICOs as a special type of crowdfunding (e.g. [7, 9, 10]
and as revenue streams through which firms intend to collect funds for their business
ideas [12]. However, in this research, we argue that ICOs can be seen as business
models towards the possible investors. First, in case of ICOs the distinction between
customers and investors is rather blurry. For example, in case of utility tokens the
investors fund the service development for usage rights in return. Furthermore, besides
a fundraising model, ICOs also incorporate many other elements that enable the
founders to co-create and capture value in collaboration with possible investors. For
example, ICOs often provide incentive programs through which investors have a great
role in marketing and promoting the service. Thus, in this research, we look at ICOs
from a business perspective and our research question is: What are the key elements of
ICOs as business models towards the possible investors? In order to answer this
question and understand the ICO phenomenon better, we collected a sample of 91 ICOs
from 14 ICO enlisting sites and studied them through content analysis. The contri-
bution of this study is two-fold. First, the study contributes to the ICO, crowdfunding
and business model literature by conceptualizing ICOs as business models towards
possible investors and identifying the key constituents. Second, this work has man-
agerial implications by providing an overview of the key elements that practitioners
have to make decisions on.

2 Related Work

Crowdfunding represents a way to raise funds for innovative projects by linking
directly capital-seeking agents and a crowd of capital-giving agents through an open
call via internet [13, 14]. ICOs represent a special type of crowdfunding where
founders aim to raise capital for blockchain-enabled services; thus, they can be seen as
revenue models towards the crowd [12]. In ICO model, founders organize a token sale
when they provide tokens or coins for the initial funders at a discounted price. These
tokens may have financial value (i.e., equity or security token), functional value (i.e.,
utility token) and speculative value (i.e., the value resulting from the impact of token
trading on the exchange of cryptocurrencies) [15, 16]. However, there are a couple of
special characteristics of ICO campaigns as compared to classical crowdfunding pro-
jects. First, the tokens/coins can often be traded before the service is launched [10].
Second, in classical crowdfunding projects the founders and investors are matched via
crowdfunding platforms that serve as intermediaries while ICOs are based on P2P
interactions without intermediaries [14].

ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy 33

In the literature, different crowdfunding categories exist based on the funders’
incentives. Mollick [17] described four contexts in which individuals fund projects.
First, some crowdfunding projects, such as humanitarian projects, adopt the patronage
model where individuals donate and do not expect return. Second, in lending model,
individuals expect some return on the capital invested. Third, in reward-based
crowdfunding, individuals receive some kind of reward for supporting the project. The
reward can be purchasing products at discounted prices, and in this way the supporters
are early customers. Forth, in the equity model, crowdfunding supporters become
investors, and they can receive equity stake for their funding.

Other categorizations of crowdfunding archetypes include the crowdfounding
categories by Belleflame et al. [13]: pre-ordering and profit-sharing, and by Bradford
[18]: donation, rewards, pre-ordering, lending and equity. Furthermore, Hemer iden-
tified the following crowdfunding types: donation, sponsoring, pre-ordering, mem-
bership fees, crediting, lending and profit-sharing [19].

Recent literature on ICO crowdfunding found that the investors are heterogenous
and their main motives can be classified into ideology, technology, and financial
motives [20]. Moreover, Fridegen et al. identified the following archetypes using
cluster analysis: geographically restricted ICOs with hard funding caps and private pre-
sales, geographically restricted ICOs with fiat money-oriented pricings and staking
tokens, uncapped global foundation ICOs with native blockchain tokens and Global
ICOs with hard funding caps [10].

3 Methodology

In order to identify the special characteristics of ICO crowdfunding, we studied the
business models of 91 ICOs in May and June 2018. We collected the data by running
crawling scripts that gathered the name and the link of the ICOs and the category from
each ICO listing site. We aimed to crawl all sites whose primary task was to enlist
ICOs. After some exploratory analysis, the crawling scripts were running on the same
day in the following sites: bestcoins, coingecko, coinmarketplus, icohotlist, thetokener,
icorating, icomap, topicohotlist, coinschedule, icowhatchlist, icotracker, icobazaat,
listico and icobench. After identifying the sample frame, we eliminated the duplicates
and as a result, the data contained 4127 ICOs. Then we grouped the data by ICO
categories1. As a final step, we identified the final data sample of 91 ICOs by choosing
randomly at least three ICOs from each category in order to increase the industry
coverage of the sample data.

We used content analysis in the data analysis phase [21]. First, we manually
collected and reviewed the available information on the sample ICOs. We reviewed the
ICOs websites, the whitepapers and executive summaries as well as read the

1 We grouped our data into the following ICO categories: Internet, Tourism, Cryptocurrency, Business
services, Platform, Retail, Investment, Infrastructure, Financial services, Trading, Entertainment,
Casino Gambling, Energy, Smart contract, Manufacturing, Media, Communication, Banking,
Charity, Virtual Reality, Electronics, Software, Business services, Data analytics, Sports, Real estate
and Health.

34 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

information on the ICO listing sites. In the first phase of the content analysis, we
identified more than 30 ICO characteristics. Then we clustered homogeneous elements
and identified the key aspects that are special for blockchain-enabled businesses. In the
second phase, we calculated the descriptive statistics. Some of the characteristics could
not be found for each ICO. In the calculations, these missing values were not taken into
account, i.e. the percentages were calculated so that 100% is the number of ICOs with
available data.

During the empirical analysis, we paid special attention to the reliability and
validity of the study in each step. First, the listing sites were identified and discussed by
two authors. Second, the content analysis was carried out by three authors. Many ICOs
were coded by two different persons. In these cases, the results were compared and
discussed and the differences were negligible.

4 Findings

Our study revealed that only 84% of the ICOs websites were active after a two-month
period, and only 72% were active after two years. Furthermore, based on our findings,
even though the quality of the whitepapers differed significantly, in general, the amount
of information about the ICOs strategy, vision and operations was rather limited. The
whitepapers aimed to describe the ICO’s goals and motivation, the underlying
blockchain technology, the details of the ICO’s financial roadmap, the target customer
segments, the key partners, the risks, etc. However, most of the whitepapers lacked
some of the information, they were not transparent and not detailed enough. One of the
common problems was that they did not contain clear financial roadmap or information
on detailed risk assessment.

In this study we looked at ICOs as business models towards possible investors and
found that they could be described through the following key characteristics: their
approach for providing incentives for investment, their pricing strategy, their token
strategy and the activities for crowd involvement in value co-creation. In what follows,
we describe each of these elements in more details.

4.1 Strategy for Providing Incentives for Investment: Crowdfunding
Types

Based on the possible investors’ motives in our sample ICOs, we could differentiate
between the following ICO crowdfunding types:

Equity-based ICO crowdfunding: In this model, the investors buy shares from the
business and their goal is to make profit. In this case, the majority of the tokens are
allocated to the ICOs investors.
Rewards-Based ICO crowdfunding: In this model, the investors get rewards, such
as special usage of the service. For example, in case of ICO Wystoken the investors
got discounts on the ICO’s marketplace on special products.
Subscription-based ICO crowdfunding: In this model, the investors buy the pos-
sibility to use the service. For example, the ICO Oneroot provided a set of digital

ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy 35

asset infrastructure. Their token did not provide ownership and it could not be
exchanged for money; instead, buying their token gave the investors rights to use
the service.
A combination of these: For example, the ICO WorldTurtleCoin offered a game
platform where the investors could enhance their user experience while using the
ICO’s tokens in micropayments. This ICO attracted game lovers that bought tokens
to use it in payments for the service (i.e., subscription-based ICO crowdfunding);
however, the primary incentive for investors was to gain profit (equity-based
crowdfunding).

In our data, 72% of the ICOs applied equity-based crowdfunding, 7% reward-based
crowdfunding, 4% subscription-based crowdfunding and 17% some kind of combi-
nation of these.

4.2 Pricing Strategy: Time-Based Token Valuation

The founders of ICOs organize token sales, through which they offer tokens for the
possible investors. These token sales consist of Pre-Sale, Sale and Post-Sale Periods.
During these periods the tokens are sold through time-based token valuation. This
refers to a time-based second type price discrimination technique [22]. During the sale
periods, the possible investors can buy the tokens for a discounted price and this price
is increasing over time; thus, ICOs apply a market penetration strategy.

At operational level, ICO founders should decide on some additional properties:
soft cap and hard cap, country restrictions, accepted currencies, minimum and maxi-
mum purchase. The soft cap refers to the minimum amount of capital that the ICO
needs to gather in order to be considered as successful and to start to develop its
service. On the other hand, the hard cap is the maximum amount of capital that the
ICO aims to collect. It has to be noted that some ICOs are uncapped and they collect as
much capital as they can. In our sample data, the greatest hard cap was about 30
millions USD.

Another operational aspect is the country restrictions. Some of the countries (e.g.
U.S., China, Israel, Singapore) have very strict investment regulations that allows only
accredited investors to participate in the ICO token sales. Thus, ICOs can choose to
follow the regulations and offer the tokens only for accredited investors; or, they can
open the sale for everyone and restrict the investors coming from the countries that
have strict laws regarding the security of investments. However, in many cases,
investors are able to find a workaround to bypass these restrictions, e.g. by using VPN.
In our sample, the restricted countries included U.S. (92%), China (66%), Singapore
(18%), Canada (7%) and South Korea (7%).

Another characteristic of ICOs is the accepted currencies. The investors can pay
through different cryptocurrencies as well as, in some cases, in fiat money. In our
sample data, 85% of the ICOs accepted ETH as a cryptocurrency, 45% BTC, while fiat
money was accepted in 9% of the ICOs. The maximum number of accepted currencies
was 45 in our data sample (ICO FeastCoin).

ICOs define the amount of minimum and maximum purchase that refers to the
minimum and maximum amount of tokens that can be purchased. In our data sample,

36 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

the maximum amount of tokens was not usually restricted. The minimum amount
typically varied between 0.01 and 1 ETH (in cases that ETH was the accepted main
currency - this was the case in 85% of our sample data).

4.3 Token Strategy: Sell, Burn, Exchange, Give

The primary goal of ICOs is selling tokens. However, in case the hard cap is not
reached, the founders typically burn the unused tokens or leave them unburned.
Burning the token makes it non-existent that cannot be bought or sold anymore and
thus, it reduces the total supply of available tokens. Leaving the tokens unburned
returns the tokens to the founders. In some cases, ICOs redistribute the unused tokens
proportionally through Airdrop program; thus, the tokens are given away for free. In
our sample data, there was only one ICO that had an Airdrop program.

Founders may decide on the possibility to exchange the tokens into other cryp-
tocurrencies or fiat money (i.e., token liquidity). Our findings reveal that most of the
ICOs did not enclose detailed information regarding this in their whitepaper. In such
cases there was no lock-in period but the tokens could be exchanged right after the ICO
ended. In other cases, the ICOs described clearly that their tokens could not be
exchanged to other currencies. These tokens could then be used only for payments for
the service that the ICO developed. Finally, in some cases, the token exchange was
restricted during a so-called holding period (e.g. 3 months after the ICO ends) and this
temporary restriction kept away speculators.

4.4 Strategy for Crowd Involvement in Value Co-creation: Bounties
and Referral Programs

Blockchain-enabled ecosystems provide a distributed environment where the different
actors co-create value. ICO founders may involve the crowd in value co-creation
through bounty programs where they incite investors to perform small tasks and gain
some reward (usually in form of tokens) in return. The bounty tasks vary greatly among
ICOs; they can be related to marketing, bug reporting, development, promotion,
translation, proofreading, website design, etc. We found that 60% of our sample ICOs
used bounties.

Another common strategy for crowd involvement in value co-creation is the use of
referral program as a channel through which customers are reached and targeted. ICOs
typically offer the investors the possibility to gain tokens by advertising the ICO to their
friends and family, or through their websites or different social media sites. The ICO
benefits from this program in three ways. First, due to network effect, the value of their
service increases as the number of users increase. Second, the word-of-mouth builds
trust in new customers. Third, the program brings cost reduction by decreasing the
marketing and advertising costs. In our sample data, 90% of the ICOs had some kind of
loyalty program.

ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy 37

5 Discussion and Conclusions

In this study, we took a sample of 4127 ICOs collected from 14 ICO enlisting sites and
investigated the key aspects of 91 ICOs by analyzing the information available in the
ICO enlisting websites, the ICOs’ websites and their whitepapers. We looked at ICOs
as business models towards possible investors, and found that ICO founders should
decide on the following key elements: (1) what incentives the ICO offers, (2) the details
of the pricing strategy, (3) the token strategy, and (4) the programs to involve the crowd
in value co-creation.

Related to the first element, in 72% of the cases in our sample, the possible
investors had financial motives and the most used crowdfunding type was equity-based.
However, some ICOs used reward-based crowdfunding by incenting investors to give
funds and get some rewards in return. As a third option, some ICOs sold their tokens as
a subscription for their service. That is, investors could use and pay for the services
with the ICO’s own tokens.

Related to the pricing strategy, this study found that the most used pricing strategy
was time-based token validation that could be seen as a market penetration strategy
using second-degree price discrimination. Other operational pricing aspects consisted
of soft cap and hard cap, accepted currencies, country restrictions and minimum and
maximum purchase.

ICOs typically wanted to sell tokens; however, their token strategy determined also
whether and under what conditions the tokens should be burned or left unburned, given
for free or exchanged into fiat money (i.e., token liquidity). Finally, ICO founders
typically used bounties (60% of the cases) and referral programs (90% of the cases) to
incite the crowd to actively support value co-creation.

This study contributes to ICO and crowdfunding literature by conceptualizing ICOs
as business models towards possible investors where the founders and investors create
and capture value together. Furthermore, this research contributes to business model
literature by identifying the key elements of ICOs as special type of business models.
Finally, this study has managerial implications by identifying key elements that
practitioners have to make decisions on.

This study is an exploratory study that has some limitations. First, the sample was
collected in a limited period of time that had a limitation on the generalizability of the
results because of the fast changes of the market. Second, some of the information on
the websites and in the whitepapers were changed during the two-month period that the
empirical study was carried out. Furthermore, the available information was not con-
crete and detailed enough that lead to missing values.

The research area of blockchain technology and ICOs is rather new; thus, it opens
many opportunities for further research. As an example, the underlying dynamics of
ICOs’ success and failures could be investigated using different research methods.
Furthermore, the incentives of the ICO investors and the concept of trust in blockchain
environment could be studied as well. Finally, the ICO phenomenon could be inves-
tigated from the viewpoint of IEEE’s ethical design guidelines.

38 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

References

1. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ICO phenomenon and its
relationships with ethereum smart contract environment. In: 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE) (2018)

2. Sinegl, J.: Blockchain: disruption by decentralization? MorningStar (2018). http://www.
morningstar.com/articles/868019/blockchain-disruption-by-decentralization.html

3. Davidson, S., De Filippi, P., Potts, J.: Economics of blockchain (2016). Available at SSRN
2744751

4. Wright, A., De Filippi, P.: Decentralized blockchain technology and the rise of lex
cryptographia (2015). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2580664

5. Marchesi, M., Ortu, M., Tonelli, R.: Smart contracts vulnerabilities: a call for blockchain
software engineering? In: 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE) (2018)

6. Ibba, S., Pinna, A., Baralla, G., Marchesi, M.: ICOs overview: should investors choose an
ICO developed with the lean startup methodology? In: Garbajosa, J., Wang, X., Aguiar, A.
(eds.) XP 2018. LNBIP, vol. 314, pp. 293–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91602-6_21

7. Danmayr, F.: Archetypes of Crowdfunding Platforms: A Multidimensional Comparison.
Gabler Verlag, Wiesbaden (2014)

8. ICO statistics (2020). https://www.fundera.com/resources/ico-statistics. Accessed 29 Apr
2020

9. Panin, A., Kemell, K.-K., Hara, V.: Initial coin offering (ICO) as a fundraising strategy: a
multiple case study on success factors. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A.,
Tyrväinen, P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP, vol. 370, pp. 237–251.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_19

10. Fridgen, G., Regner, F., Schweizer, A., Urbach, N.: Don’t slip on the initial coin offering
(ICO): a taxonomy for a blockchain-enabled form of crowdfunding (2018)

11. Yadav, M.: Exploring signals for investing in an initial coin offering (ICO) (2017). Available
at SSRN 3037106

12. Morkunas, V.J., Paschen, J., Boon, E.: How blockchain technologies impact your business
model. Bus. Horiz. 62(3), 295–306 (2019). https://doi.org/10.1016/j.bushor.2019.01.009

13. Belleflamme, P., Lambert, T., Schwienbacher, A.: Individual crowdfunding practices.
Venture Capital 15(4), 313–333 (2013)

14. Haas, P., Blohm, I., Leimeister, J.M.: An empirical taxonomy of crowdfunding interme-
diaries. In: ICIS (2014)

15. de Quénetain, S.: Token economics: how to value tokens? https://www.blockchains-expert.
com/en/token-economics-how-to-value-tokens/. Accessed 23 Jun 2020

16. Holden, R., Malani, A.: The ICO paradox: transactions costs, token velocity, and token value
(no. w26265). National Bureau of Economic Research (2019). https://doi.org/10.3386/
w26265

17. Mollick, E.: The dynamics of crowdfunding: an exploratory study. J. Bus. Ventur. 29(1),
1–16 (2014)

18. Bradford, C.S.: Crowdfunding and the federal securities law. Columbia Bus. Law Rev. 2012
(1) (2012)

19. Hemer, J.: A snapshot on crowdfunding (2011)
20. Fisch, C., Masiak, C., Vismara, S., Block, J.: Motives and profiles of ICO investors. J. Bus.

Res. (2019). https://doi.org/10.1016/j.jbusres.2019.07.036

ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy 39

http://www.morningstar.com/articles/868019/blockchain-disruption-by-decentralization.html
http://www.morningstar.com/articles/868019/blockchain-disruption-by-decentralization.html
https://papers.ssrn.com/sol3/papers.cfm%3fabstract_id%3d2580664
https://doi.org/10.1007/978-3-319-91602-6_21
https://doi.org/10.1007/978-3-319-91602-6_21
https://www.fundera.com/resources/ico-statistics
https://doi.org/10.1007/978-3-030-33742-1_19
https://doi.org/10.1016/j.bushor.2019.01.009
https://www.blockchains-expert.com/en/token-economics-how-to-value-tokens/
https://www.blockchains-expert.com/en/token-economics-how-to-value-tokens/
https://doi.org/10.3386/w26265
https://doi.org/10.3386/w26265
https://doi.org/10.1016/j.jbusres.2019.07.036

21. Ackland, R.: Web Social Science: Concepts, Data and Tools for Social Scientists in the
Digital Age. Sage, Thousand Oaks (2013)

22. Anderson, S.P., Renault, R.: Price discrimination, processed. University of Virginia and
Université de Cergy-Pontoise (2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

40 G. Laatikainen et al.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

What Key Aspects Do ICOs Reveal About
Their Businesses?

Gabriella Laatikainen1(&), Alexander Semenov1, Yixin Zhang2,
and Pekka Abrahamsson1

1 Faculty of Information Technology, University of Jyväskylä,
Jyväskylä, Finland

{gabriella.laatikainen,alexander.semenov,

pekka.abrahamsson}@jyu.fi
2 Swedish Center for Digital Innovation, University of Gothenburg,

Gothenburg, Sweden
yixin.zhang@ait.gu.se

Abstract. Blockchain technologies disrupt industries by enabling decentralized
and transactional data sharing across a network of untrusted participants, among
others. Initial Coin Offerings (ICOs) are a novel form of crowdfunding through
which hundreds of blockchain-enabled businesses manage to raise billions of
dollars in total only in United States. However, there is a lack of understanding
of the ICO phenomenon especially related to the business aspects. In this paper,
we describe the results of an exploratory study of 91 ICOs and identify the key
business model elements that ICOs reveal in their websites and whitepapers.
Furthermore, we also note the immaturity and lack of transparency of the
business aspects of businesses behind the ICO campaigns.

Keywords: ICO � Blockhain � Business models

1 Introduction

The emergence of blockchain technologies sparked a lot of interest towards the
blockchain technology. Initial Coin Offerings (ICOs) represent an unregulated
fundraising model that enable blockchain-based projects to be funded via crowd-
funding model [1, 2]. To date, the most successful ICO, Filecoin was able to collect
more than 257 million USD while the average ICO raised a total of almost $11.4 billion
in 2019 [3]. It has to be noted that besides providing an easy opportunity to gain great
profits, ICOs are often frauds that fund scams.

ICOs are poorly understood and there is a need for more research in this area [4, 5].
Earlier research discusses how blockchain technology impacts the business models of
existing companies using case study methodology and literature review (e.g. [6, 7]).
However, research is still nascent related to the means of possible ICO investors to get
an overview of how the business behind the ICO makes money (i.e., the business
model). Thus, this study focuses on blockchain-enabled business models and aims to
answer the following research question: What business model characteristics do
blockchain-enabled businesses reveal in their ICO’s websites and whitepapers? To

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 41–49, 2020.
https://doi.org/10.1007/978-3-030-58858-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_5&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_5

answer this question, we collected a sample of 91 ICOs from 14 ICO enlisting sites and
studied the business model aspects of these ICOs through content analysis. This study
contributes to the growing body of blockchain literature by identifying the revealed
business model elements of blockchain-enabled businesses that aim to raise funds
through ICOs. These insights can be used both in further research and in practice.

2 Related Work

A firm’s business model is a conceptual model of a business: a description of how a
company organizes itself, operates, and creates value [8, 9]. It is an abstract concept; it
can be seen as a representation of a company or as a tool that provides a picture of a
firm’s competitiveness [10]. Business models are often viewed from a component-
oriented perspective. Despite the business models’ importance, researchers have not
formed a consensus regarding either the core components of business models or their
level of abstraction [11]. However, most researchers agree that business models contain
the following key components: (1) value proposition (i.e., the product and/or service
portfolio), (2) revenue logic (i.e., a top-level description of a business’s revenue
sources) and (3) activities (i.e., actions in order to create and deliver values to cus-
tomers) [8, 10–12].

Blockchain can be seen as a distributed database that maintains a continuously
growing list of records linked to each other [13]. Blockchain database is secure by
design, and once the block is recorded there, it cannot be modified retroactively.
Blockchain relies on a peer to peer (p2p) network without any central coordinating
node. Technically, each transaction contains a small piece of code that allows complex
cryptographic validation of transactions. This code presents a smart contract that is
defined as “complex application involving having digital assets being directly con-
trolled by a piece of code implementing arbitrary rules” [14]. Thus, these self-executing
digital contracts (i.e. smart contracts) and intelligent assets that are controllable through
internet (i.e., smart properties) enable the emergence of new types of businesses where
organizations operate in a network with limited or no human interactions [15].

Blockchain technologies affect the business models in different ways, such as by
authenticating traded goods, via disintermediation and via lowering transaction costs
[7]. Related to the value proposition, Morkunas et al. found that blockchain technology
can provide verifiability, access to new products and services, faster or less expensive
transactions, and fewer middle layers [6]. The greatest revenue stream for blockchain-
enabled businesses is the possibility to raise funds through ICOs; however, other
revenue sources are transaction fees and service or platform fees [6]. Key activities
include transforming the business processes and the key resource is the peer-to-peer
network [6].

42 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

3 Methodology

We studied the business aspects of 91 ICOs in May and June 2018 in order to identify
the special characteristics of blockchain-enabled business models. In the next sub-
section we describe the data sample and the data collection. Then, we overview the
details of the data analysis.

3.1 Data Sample

To ease the process of the data collection, we run crawling scripts that collected the
ICOs name, link and category from each ICO listing sites. We aimed to crawl all the
sites whose primary task is to enlist ICOs and we used Google search to identify these.
After some exploratory exercises, the crawling scripts for 14 websites were running on
the same day. We gathered the data from the following websites: Bestcoins, Coin-
gecko, Coinmarketplus, Icohotlist, the tokener, icorating, icomap, topicohotlist, coin-
schedule, icowhatchlist, icotracker, icobazaat, listico and icobench.

After identifying the sample frame, we eliminated the duplicates and the resulting
dataset contained 4127 ICOs. Then, we grouped the data by the ICOs categories1. As a
final step, we identified the final data sample by choosing randomly at least three ICOs
from each category in order to increase the industry coverage of the sample data.

3.2 Content Analysis

In the data analysis phase, we used content analysis [16]. First, we manually collected
information on the sample ICOs’ business models. We used the ICOs websites, the
whitepapers and executive summaries as well as data on the ICO listing sites as data
sources. In the first phase of the content analysis, we identified the characteristics of the
ICOs business models. The gathered information included more than 30 business
model characteristics, out of which many aspect could not be found for many ICOs. In
the second phase, we clustered homogeneous elements and identified the business
model aspects that are special for blockchain-enabled businesses.

Second, we calculated the descriptive statistics. Some of the characteristics could
not be find in case of every ICO. In the calculations, these missing values were not
taken into account, i.e. the percentages were calculated so that 100% is the number of
ICOs with available data.

During our empirical analysis, we paid special attention to the reliability and
validity of the study in each step. First, the listing sites were identified and discussed by
two authors. Second, the content analysis were carried out by three authors. In order to
avoid coder bias, we cross-validated the results and some of the ICOs were coded by

1 We grouped our data into the following ICO categories: Internet, Tourism, Cryptocurrency, Business
services, Platform, Retail, Investment, Infrastructure, Financial services, Trading, Entertainment,
Casino Gambling, Energy, Smart contract, Manufacturing, Media, Communication, Banking,
Charity, Virtual Reality, Electronics, Software, Business services, Data analytics, Sports, Real estate
and Health.

What Key Aspects Do ICOs Reveal About Their Businesses? 43

two different persons. In these cases, the results were compared and discussed and the
differences were negligible.

4 Findings

Our study revealed that after a two-month period, only 84% of the ICOs websites were
active and only 72% after two years. Furthermore, based on our findings, even though
the quality of the whitepapers differed significantly, in general, the amount of infor-
mation about the ICOs strategy, vision and operations was rather limited. The
whitepapers aimed to describe the ICO’s goals and motivation, the underlying
blockchain technology, the details of the ICO’s financial roadmap, the target customer
segments, the key partners, the risks, etc. However, most of the whitepapers lacked
some of the information, they were not transparent and not detailed enough. One of the
common problems was that they did not contain clear financial roadmap or information
on detailed risk assessment. However, in what follows, we describe the common
patterns on different aspects of the ICO’s business models.

4.1 The Value Proposition

The ICOs described the value proposition in their whitepaper (i.e., the blockchain-
enabled service that they developed) through two common aspects: the service char-
acteristics and the benefits of blockchain technology. It has to be noted, that in some
cases, the advantages of blockchain-based service as compared to a similar service that
uses alternative technologies remained unclear.

Service Characteristics. One of the important aspects of the service that they develop
is the underlying blockchain platform that they build their solution on. Our results
showed that the most used platform was the Ethereum platform and the tokens were
ERC20 tokens. In our sample, 89% of the ICOs used Ethereum as a base platform. The
second most used platform in our sample data was Bitcoin, followed by Waves, Lisk,
MultiChain, Pivx, etc.

Some of the ICOs do not use public blockchain, but they build their own private
network. That is, instead of allowing everyone to participate in the network, and
encouraging more participants to join, joining a private blockchain requires an invi-
tation and complying with a set of rules. This restriction on the participants can be
regulated by existing nodes, a regulatory authority or a consortium. The greatest
advantage of using a private blockchain as compared to the public one is that it requires
less computational power due to the smaller number of nodes and it assures higher
level of privacy and security requirements. In our sample, there was only one ICO
whose value proposition was based on a private blockchain.

Benefits of Blockchain Technology. Based on the sample data, the value of the offering
was mainly described through the benefits of blockchain technology.

First, ICOs promised to provide a quality service that was more secure and con-
fident because of the use of blockchain technology. For example, the ICO Adamant

44 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

provided a private messenger platform where the blockchain technology ensured that
no one had access to private data except of the owner.

Second, businesses could take use of the transparency and resistance to data
manipulation that the blockchain technology provided. For example, the ICO Affchain
offered a marketing protocol and a marketplace where businesses and affiliates met and
made deals in online advertising. The ICO provided a cryptographically verifiable
value distribution mode that increased the level of trust and enabled cost-reduction for
the parties because of automatic verification without human interactions.

Third, businesses could offer cost reduction because of the distributed network
where intermediaries were not needed. In blockchain-enabled businesses users could
find and contact each other directly that lead to reduced transaction costs. For example,
the ICO Lotuscore provided a game platform and the players were able to trade games
with friends while the developers earned 100% of the revenue derived from selling
their digital game.

Forth, blockchain-enabled services could provide more power for the users. In a
blockchain-enabled network there was no centralized influence and thus, the control
was distributed. For example, the ICO OneRoot proposed a platform that enabled
building relationships based on equal co-operation and common development instead
of an ecosystem with centralized entities.

Fifth, blockchain-enabled services benefitted from the self-executing smart con-
tracts where no or limited human interactions were needed to ensure different pro-
cesses. This simplified work processes and thus, it caused cost-reduction. For example,
the ICO VLux proposed a renewable energy trading solution that promised cost
reduction due to trading at optimal times.

Sixth, in some cases, blockchain-enabled services allowed users to pay anony-
mously in order to ensure their privacy. For example, the ICO Clean SL8 provided a
communication platform for life coaching where the users valued privacy and the
ability to stay anonymous.

Seventh, blockchain-enabled services provided the possibility of using cryptocur-
rencies as payments for the ICOs service. For example, in an ICO project Lunar, the
founders proposed online dating services. Users needed to pay in cryptocurrency in
order to communicate with other users.

Eighth, some of the value proposition of ICOs were unique because they were
related to blockchain technologies or the cryptocurrencies. Indeed, new businesses
emerged that addressed the possible investors’ interest in blockchain. For example, the
ICO Takeprofit provided a platform where experienced traders offered their advice on
cryptography investments for inexperienced users.

4.2 Revenue Logic

In this study, we found that in most cases, the revenue logic of ICOs towards the
customers was not well described. The ICOs gave some hints on the ways that the
business might bring profits; however, the detailed concrete description on the revenue
sources and the magnitude of the revenues was frequently missing in the sample we
collected.

What Key Aspects Do ICOs Reveal About Their Businesses? 45

As a general note, the results of this study showed that the commonly used pricing
models did not differ significantly from the businesses that offered a similar service
without the use of blockchain technology. In other words, the pricing models depended
mostly on the type of the service that the ICOs offered. The most used pricing models
in our sample were the following: (1) pay-per-use (customers are charged a so-called
transaction fee each time they use the service), (ii) advertisement model (customers use
the service for free and advertisers pay for their advertisements that are shown to the
users), (iii) micropayments (In ICOs that provide gaming platforms, micropayments are
used to enhance the players’ user experience) and (iv) price discrimination (different
prices are charged depending on customers’ characteristics, such as financial status or
country [17]).

4.3 Activities

The activities that ICOs promised to perform could be investigated from the data on the
usage of funds that described the activities and other cost factors that the collected
money would be used for. In order to create and deliver values to their customers, the
ICOs had to develop their service, market it to the customers, provide maintenance and
administrative services, solve legal conflicts, and so on.

One of the special characteristics of blockchain-enabled business model is the
importance of the ecosystem around the service where the actors jointly create value.
One example could be the bounty program that ICOs provide to incite investors to
perform small tasks and gain some reward (usually in form of tokens) in return. The
bounty tasks vary greatly among ICOs; they can be related to marketing, bug reporting,
development, promotion, translation, proofreading, website design, etc. We found that
60% of our sampled ICOs used bounties.

Another example of value co-creation is the use of referral program as a channel
through which customers are reached and targeted [18]. ICOs typically offer the
investors the possibility to gain tokens by advertising the ICO to their friends and
family, or through their websites or different social media sites. The ICO benefits from
this program in three ways. First, due to network effect, the value of their service
increases as the number of users increase. Second, the word-of-mouth builds trust in
new customers. Third, the program brings cost reduction by decreasing the marketing
and advertising costs. In our sample data, 90% of the ICOs had some kind of loyalty
program.

5 Discussion and Conclusions

In this study we took a sample of 4127 ICOs collected from 14 ICO enlisting sites and
investigated the business model aspects of 91 ICOs by analyzing the ICO enlisting
websites, the ICOs’ websites and their whitepapers. We found that the amount of
available information on the ICOs business models was rather limited. That is, the

46 G. Laatikainen et al.

www.dbooks.org

https://www.dbooks.org/

websites and the whitepapers lacked important details and concrete data on the business
strategy. However, our study found common patterns that blockchain-enabled busi-
nesses revealed about their business models in the whitepapers of their ICO.

In Table 1, the business model aspects of blockchain-enabled businesses are
summarized. The findings revealed that ICOs built their value proposition on the
benefits of the blockchain technology, such as security, transparency, confidentiality. In
blockchain-enabled businesses middlemen were not needed, and this might cause cost
reduction. The self-executing smart contracts simplified processes because they elim-
inated or mitigated the need for human interactions. Furthermore, in a blockchain-
enabled service different cryptocurrencies could be used for payments.

The revenue logic towards the customers was based on the type of the service rather
than on blockchain characteristics. For example, game platforms used micropayments
while electronic marketplaces got their revenues from advertisements.

In blockchain-enabled businesses, the actors of the ecosystem (e.g. investors, users)
were involved in different activities that the service required to create and deliver value.
For example, the referral programs provided incentives for the actors to advertise the
service to their friends, family and other individuals. Besides, everybody could perform
specific tasks related to development and marketing of the service and get some
rewards in return.

This study found that only 84% of the ICOs websites were active after a two-
months period and only 72% were active after two years. The reasons for an ICO not to
continue its business can vary. First, if it does not get the amount of funds required for
the development of the service (Soft Cap), then the money can be returned to the
investors and stop the business. Second, there is no guarantee that ICOs give the
investors’ money back. Thus, it can happen, that ICOs shut down their websites and
take the money they received as funds without any consequences. This is the conse-
quence of the unregulated environment where ICOs are not bound to economic reg-
ulations and laws and thus, ICOs provide easy means for frauds.

Table 1 Blockchain-enabled business models aspects revealed from ICOs’ whitepapers

Value
proposition

Service and platform characteristics: Ethereum (89% of the ICOs), Bitcoin,
Waves, Lisk, MultiChain, Pivx
Technology-enabled benefits: security, transparency, confidentiality, no
intermediaries, simplified processes, possible cost reduction, using
cryptocurrencies as payments, possibility to stay anonymous

Revenue
logic

Common revenue models include pay-per-use, advertisements,
micropayments

Activities Service development, marketing, maintenance and administrative services,
solving legal conflicts, implementing referral programs and bounties (60%
of the sample had bounties)

What Key Aspects Do ICOs Reveal About Their Businesses? 47

This study is an exploratory study that has some limitations. First, the sample was
collected in a limited period of time that had a limitation on the generalizability of the
results because of the fast changes of the market. Second, some of the information on
the websites and in the whitepapers were changed after the two-month period that the
empirical study was carried out. Furthermore, the available information was not con-
crete and detailed enough. Thus, there is a need for additional research in this area that
allows us to compare the results and give us further insights. For example, the ICOs
studied in this research could be analyzed again to investigate how their business model
changed based on longitudinal data.

References

1. Fenu, G., Marchesi, L., Marchesi, M., Tonelli, R.: The ICO phenomenon and its
relationships with Ethereum smart contract environment. In: 2018 International Workshop
on Blockchain Oriented Software Engineering (IWBOSE) (2018)

2. Ibba, S., Pinna, A., Baralla, G., Marchesi, M.: ICOs overview: should investors choose an
ICO developed with the lean startup methodology? In: Garbajosa, J., Wang, X., Aguiar, A.
(eds.) XP 2018. LNBIP, vol. 314, pp. 293–308. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-91602-6_21

3. ICO Statistics (2020). https://www.fundera.com/resources/ico-statistics. Accessed 29 Apr
2020

4. Panin, A., Kemell, K.-K., Hara, V.: Initial coin offering (ICO) as a fundraising strategy: a
multiple case study on success factors. In: Hyrynsalmi, S., Suoranta, M., Nguyen-Duc, A.,
Tyrväinen, P., Abrahamsson, P. (eds.) ICSOB 2019. LNBIP, vol. 370, pp. 237–251.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33742-1_19

5. Fisch, C., Masiak, C., Vismara, S., Block, J.: Motives and profiles of ICO investors. J. Bus.
Res. (2019, in press)

6. Morkunas, V.J., Paschen, J., Boon, E.: How blockchain technologies impact your business
model. Bus. Horiz. 62(3), 295–306 (2019). https://doi.org/10.1016/j.bushor.2019.01.009

7. Nowiński, W., Kozma, M.: How can blockchain technology disrupt the existing business
models? Entrep. Bus. Econ. Rev. 5(3), 173–188 (2017)

8. Massa, L., Tucci, C.L., Afuah, A.: A critical assessment of business model research. Acad.
Manage. Ann. 11(1), 73–104 (2017)

9. Magretta, J.: Why business models matter. Harv. Bus. Rev. 80, 86–87 (2002)
10. Laatikainen, G.: Financial Aspects of Business Models: Reducing Costs and Increasing

Revenues in a Cloud Context. Jyväskylä Studies in Computing, p. 278 (2018)
11. Luoma, E.: Examining Business Models of Software-as-a-Service Firms. Jyväskylä Studies

in Computing (2013)
12. Zott, C., Amit, R.: Business model design: An activity system perspective. Long Range Plan.

43(2–3), 216–226 (2010)
13. Yli-Huumo, J., Ko, D., Choi, S., Park, S., Smolander, K.: Where is current research on

blockchain technology?—a systematic review. PLoS ONE 11(10), e0163477 (2016)
14. Ethereum whitepaper. https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 5 June

2018

48 G. Laatikainen et al.

www.dbooks.org

https://doi.org/10.1007/978-3-319-91602-6_21
https://doi.org/10.1007/978-3-319-91602-6_21
https://www.fundera.com/resources/ico-statistics
https://doi.org/10.1007/978-3-030-33742-1_19
https://doi.org/10.1016/j.bushor.2019.01.009
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.dbooks.org/

15. Davidson, S., De Filippi, P., Potts, J.: Economics of Blockchain (2016)
16. Ackland, R.: Web Social Science: Concepts, Data and Tools for Social Scientists in the

Digital Age. Sage (2013)
17. Anderson, S.P., Renault, R.: Price discrimination. University of Virginia and Université de

Cergy-Pontoise (2008)
18. Ciaian, P., Rajcaniova, M., Kancs, D.: The economics of BitCoin price formation. Appl.

Econ. 48(19), 1799–1815 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

What Key Aspects Do ICOs Reveal About Their Businesses? 49

http://creativecommons.org/licenses/by/4.0/

Product Roadmap Alignment – Achieving
the Vision Together: A Grey Literature Review

Stefan Trieflinger1(&), Jürgen Münch1, Emre Bogazköy1,
Patrick Eißler1, Jan Schneider1, and Bastian Roling2

1 Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
{stefan.trieflinger,

juergen.muench}@reutlingen-university.de,

{emre.bogazkoey,patrick_denis.eissler,

jan_philip.schneider}@student.reutlingen-university.de
2 Viastore Software GmbH, Magirusstraße 13, 70469 Stuttgart, Germany

b.roling@viastore.com

Abstract. Context: A product roadmap is an important tool in product devel-
opment. It sets the strategic direction in which the product is to be developed to
achieve the company’s vision. However, for product roadmaps to be successful,
it is essential that all stakeholders agree with the company’s vision and objectives
and are aligned and committed to a common product plan.Objective: In order to
gain a better understanding of product roadmap alignment, this paper aims at
identifying measures, activities and techniques in order to align the different
stakeholders around the product roadmap. Method: We conducted a grey liter-
ature review according the guidelines to Garousi et al. Results: Several
approaches to gain alignment were identified such as defining and communi-
cating clear objectives based on the product vision, conducting cross-functional
workshops, shuttle diplomacy, and mission briefing. In addition, our review
identified the “Behavioural Change Stairway Model” that suggests five steps to
gain alignment by building empathy and a trustful relationship.

Keywords: Product management � Product roadmap � Stakeholder alignment �
Business agility � User experience � Objectives and key results

1 Introduction

An essential aspect for achieving product success in the software-intensive business is
that all stakeholders, i.e., all internal and external people who are involved in the
product development and related activities (such as engineering, user experience,
marketing, sales, suppliers etc.) are aligned and committed around a common product
plan. Usually this plan is visualized in the product roadmap. A product roadmap
describes how an organization intends to achieve a product vision. It should focus on
the value it aims to deliver to its customers and the organization itself in order to rally
support and coordinate effort among stakeholders [1]. Consequently, the main purpose
of a product roadmap is to provide a high-level view of the direction of the product
planning incorporating all key perspectives that supports the strategic dialogue about

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 50–57, 2020.
https://doi.org/10.1007/978-3-030-58858-8_6

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_6
https://www.dbooks.org/

the future product portfolio. The concept of a product roadmap has changed signifi-
cantly in recent years. New ways of working such as DevOps, continuous delivery and
the increasing use of customer data require to have much more flexible product
roadmap formats. Alignment around the product roadmap is important to ensure that
each employee is involved in achieving the goals in the product roadmap, so that all
activities within product development contribute to achieving the product vision [1].
Alignment means a concerted effort to help people understand the issues and what their
respective roles are. Therefore, the product roadmaps will not fulfill its purpose without
alignment and buy-in of the key stakeholders. In practice, however, it can be observed
that most companies still work in silos, i.e. there is poor communication and cooper-
ation between the different departments of a company [2]. Moreover, stakeholders often
do not have consistent and department-specific representations of a common high-level
product roadmap that reflects their information needs (e.g., the department product
management requires different information on the product roadmap than the department
engineering) [3]. One consequence of this situation is that often each department
identifies and pursues its own goals and creates its own roadmap independently of the
larger goals of the company. Thereby, individual goals are often placed above cor-
porate goals. As a result, not every product activity contributes to achieving the
company’s vision and goals, thus wasting important organizational resources [2, 4].

The current scientific literature provides only little knowledge on how alignment can
be achieved around a product roadmap [5]. In order to close this gap, the aim of this paper
is to identifymeasures, methods and techniques that help companies to achieve alignment
based on the analysis of the so-called “grey literature” (i.e., white papers, articles, blogs,
business bocks etc.). It should be stressed that this article refers to alignment of different
stakeholders around product roadmaps and not roadmaps in general.

2 Related Work

In the scientific literature, few approaches for gaining alignment around a product
roadmap can be found. In the following, selected examples are sketched. Khurum and
Gorschek [6] describe a method to evaluate the degree of alignment between success-
critical stakeholders with respect to the understanding and interpretation of a product
strategy. The method also covers misalignments and enables the identification of
leading causes. Furthermore, Luftman [7] presents a “strategic alignment maturity
assessment tool” which consists of 38 alignment practices grouped into six categories.
An organization can evaluate its current maturity level of alignment by giving a score
for each alignment practice, averaging the scores for each category and summing up the
corresponding average scores. The authors point out that the most valuable part of the
assessment is not the assessment itself but understanding its impact on the entire
organization and what needs to be done to improve alignment. Barney et al. [8] present
a case study in order to understand different levels of alignment between key stake-
holders with respect to software quality attributes. As the main reason for the low
alignment between different stakeholders, the authors identified among other things
insufficiently defined quality requirements and a culture that does not question man-
agement decisions. Moreover Lehtola et al. [9] report lessons learned from one

Product Roadmap Alignment 51

software product company that introduced roadmapping processes in order to tie the
business viewpoint to requirements engineering decision making and to improve the
communication between different stakeholder groups. The authors indicate that if just
one person or one function is responsible for the roadmapping process, the other
stakeholders may not see the benefits from their viewpoints and therefore feel unmo-
tivated. Finally, Suomalainen et al. [10] point out that typically 1–5 person should
participate in the roadmapping process and identified the following as the most
important stakeholders of the product roadmapping process: 1) product management,
2) marketing, 3) customer and partner representatives and 4) development including
manufacturing and engineering.

3 Research Approach

In order to conduct the study in a systematic and repeatable manner, the study at hand
follows the guidelines according to Garousi et al. [11]. These guidelines consider three
mains phases: 1) planning the review, 2) conducting the review, and 3) reporting the
review. The individual phases are described below.

3.1 Planning the Review

Identification of the Need of a Grey Literature Review (GLR): First, we assessed
whether a GLR is the appropriate method for our study. For this purpose, we used the
checklist developed by Garousi et al. [11]. A recent review of the scientific literature
about product roadmaps has shown that most scientific articles do not address product
roadmaps operationally or refer to modern product management practices [5]. Fur-
thermore, an initial review of the grey literature on product roadmapping in general and
the conduction of expert interviews [4, 12] indicate that the topic product roadmap
alignment is highly relevant and of great interest for practitioners. In order to obtain
more insights, the conduction of a grey literature review is an appropriate approach and
contributes to the transfer of practical knowledge in the scientific community.

Formulation of the Research Question: Based on the study goals we have defined
the following research question:

• RQ1:Which measures, methods and techniques are reported in the grey literature in
order to achieve alignment around the product roadmap?

Identification of the Search String: Our search term was developed in a brain-
storming session that aimed at identifying grey literature about product roadmapping in
general. In order to obtain sufficient results and cover our objectives we evolved the
search term iteratively. At the end of the search process we identified “alignment
around the product roadmap” as one of five main issues. Detailed information about the
search process can be found in [13]. After evaluating different options, we have defined
the following search terms:

52 S. Trieflinger et al.

www.dbooks.org

https://www.dbooks.org/

A1: Innovation; A2: Product*; A3: Product Management; A4: Agile; A5: Outcome*
driven; A6: Outcome* oriented; A7: Goal* oriented; A8: Theme*; A9: Roadmap*

The complete search string used in our study was:

(A1 OR A2 OR A3 OR A4 OR A5 OR A6 OR A7 OR A8) AND A9

Definition of the Inclusion/Exclusion Criteria: In order to filter relevant from
irrelevant articles, we defined the inclusion and exclusion criteria as shown in Table 1.

3.2 Conducting the Review

Conduction of the Study Selection Process. The data retrieval process was per-
formed by using the predefined search string and applying it to the Google search
engine (google.com). In order to avoid biased results based on past activities the search
was conducted in the incognito mode of the browser. Further, a VPN service was used
to anonymize the location from which the search was conducted. Moreover, the rele-
vance ranking was applied, which ranks the results according to the Google PageRank
algorithm. To increase the amount of available URL’s the Google option to include
similar results was activated. The search was conducted on January 17th, 2020 and
yielded in 426 hits. In addition to the search process, we conducted snowballing (i.e.,
considering further articles that are recommended in an article). This led to 53 further
articles. After the application of the selection process (1) scan title, (2) removal of
duplicates, (3) applying inclusion and exclusion criteria, (4) scan abstract, (5) scan full
text) we obtained 170 relevant articles which address the main topic product
roadmapping in a dynamic and uncertain market environment. On this basis we have
categorized the 170 articles according to five subject areas: (1) product roadmap for-
mats, (2) product roadmapping processes, (3) product roadmap prioritization tech-
niques, (4) alignment of different stakeholders around the product roadmap, and
(5) challenges and pitfalls regarding product roadmapping). This led to 16 relevant
articles that deal with the topic alignment of different stakeholders around the product
roadmap. Five of these articles are presented in this article. A list of the remaining 11
articles can be found on Figshare [14].

Quality Assessment: The criterion for the quality assessment was that the reviewers
were able to comprehend the suggested approach based on their practical experience. In
addition, all steps of the selection procedure were carried out individually by two
reviewers. In the case that the individual reviews led to different results, the process
was carried out by a third reviewer to make a final inclusion/exclusion decision.

Table 1. Inclusion and exclusion criteria

Inclusion • The article discusses the application of product roadmapping in practice
• The article was published in English
• The URL is working and freely available

Exclusion • The source is non text-based
• The article contains duplicated content of a previously examined article
• The article is not suitable for software-intensive businesses

Product Roadmap Alignment 53

http://google.com

4 Threats of Validity

We use the framework based on Wohlin et al. [15] as the basis for the discussion of the
validity of our study. Construct validity: First the construct validity is threatened by
the Google search engine regarding the accessibility of search results. After the
application of the search string Google returns 78.300.000 articles, but we have only
access on 426 articles. We cannot know whether these 426 articles were representative
of the total search result of 78.300.000 articles. Moreover, there may be articles that
deal with product roadmapping but use the terms that were not covered by our search
string. Internal validity: In order to mitigate this thread, the quality assessment was
conducted by two reviewers independently to limit confirmation bias and interpretation
bias. In the case that the individual reviews led to different results, the process was
repeated by a third reviewer in order to make a final decision. External Validity: The
results and conclusion relate to product roadmapping in a dynamic market environment
with high uncertainties (e.g., the software-intensive business). Therefore, the results are
not directly transferable to other industry sectors. Conclusion validity: In order to
mitigate this risk, we have presented and discussed our findings with practitioners of
the software-intensive business. In this context no major ambiguities or inconsistencies
were found [15, 16].

5 Results

In order to answer our research question, we analyzed the relevant articles and iden-
tified the following measures, methods and techniques that can be used to gain
alignment around the product roadmap.

Foster Alignment with Shared Vision and Goals (OKRs). Khanna [17] presents an
approach to reach vertical and horizontal alignment. Vertical alignment means to make
sure that everyone’s goals are aligned across the different layers of a company. In
contrast, horizontal alignment represents the collaboration between product teams with
other stakeholder such as design, engineering, operation and marketing. In order to
achieve a vertical and horizontal alignment, the author recommends as a first step the
definition of a clear vision and strategy and its communication throughout the com-
pany. Based on the product vision, objectives and key results (OKRs) should be
defined, which are broken down and communicated across the different levels of the
company. The aim of this activity is that everyone truly understands what strategic
direction the company wants to take and how everyone can contribute to the larger goal
of the company. In this context, Harke [18] recommends using a mixture of a top-down
and bottom-up approach. Besides the definition of a clear vision, Khanna [17] suggests
utilizing the following activities: 1) the conduction of weekly progress updates between
the management and the product teams in order to ensure that the product activities are
focused towards institutional objectives, while fostering transparency across the dif-
ferent levels of the company, 2) the performance of regular cross-functional meetings
on the operative level to discuss the future product strategy and eliminate ambiguities
regarding the direction of the future product portfolio, and 3) the publication and

54 S. Trieflinger et al.

www.dbooks.org

https://www.dbooks.org/

communication of a product roadmap that lets product teams and stakeholders know
which direction the company will take in the future and which topics can be expected.

Lombardo et al. [1] propose shuttle diplomacy, meetings and workshops, and
software applications (or some combination thereof) as means to achieve alignment and
buy-in around the product roadmap.

Shuttle Diplomacy. Shuttle diplomacy involves the conduction of one-on-one meet-
ings with each stakeholder to manage and coordinate their expectations and reach
agreement on what the current and future product will be. The idea of this approach is
to identify the individual’s goals, priorities as well as other considerations by dis-
cussing a draft of the roadmap and reflect whether the stakeholders’ views are in line
with the organization’s goals and vision. The one-on-one meetings foster the trust of
each stakeholder by listening to them and asking questions why and how things are
important for them.

Meetings and Co-creation Workshops. The presentation of recommendations at a
meeting or the conduction of co-creation workshops can support alignment under
certain conditions (e.g., if a culture exists that encourages constructive disagreement).
Co-creation workshops are less about presenting a plan and more an interactive event to
create a plan. Care should be taken to ensure that the workshops have clearly defined
outcomes and a plan for achieving these outcomes before it takes place. A co-creation
workshop can follow a shuttle diplomacy effort. However, in some situations (e.g.,
small teams) it might be useful to skip the one-on-one meetings and go straight to the
workshops.

Software Applications. Since geographically distributed teams and remote work are
becoming increasingly common, it might be difficult to conduct one-on-one shuttle
diplomacies or co-creation workshops. Therefore, Lombardo et al. recommend using
software applications such as “Roadmunk”, “Aha!” or “ProductPlan”. The combination
of such tools with other communications and tracking tools (such as “JIRA”; “Slack”,
“GoogleDocs”, “Asana” or “Trello”) can help to create alignment by allowing the
teams to agree on topics. The tools also help to raise, manage and track issues and
prioritize/reprioritize as necessary.

Mission Briefing. Stephen Bungay [19] proposes to create a “mission briefing” as a
means to reach alignment. Ideally, the entire product team works out the various
sections of the mission letter jointly and iteratively. Since decisions made in one section
strongly influence the other sections, it is advisable to work through each section before
moving on to the next section. The mission briefing consists of the following five
elements: 1) context, 2) higher intent, 3) team intent, 4) key implied tasks, and 5)
boundaries. The section “context” describes the current market situation, the problem
the product addresses and possible next steps regarding the evolution of the product.
The section “higher intent” outlines the overarching corporate strategy and its rela-
tionship to specific activities. The identification of customer and business outcomes
including appropriate metrics is addressed in the section “team intend”. Within the
section “key implied tasks” the forthcoming challenges as well as the persons who act
as a contact person for the respective challenges are identified. Finally, the overall
scope for the other sections is described in the section “boundaries”.

Product Roadmap Alignment 55

Behavioural Change Stairway Model. Pichler [20] points out that a good way to
gain alignment is to carefully listen to the stakeholders, empathise with the stake-
holders, and build a trustful relationship. Therefore, the author suggests using the so-
called “Behavioural Change Stairway Model” that intends to take the negotiator from
listening to influencing the behaviour of other persons. The model consists of the
following five stages: 1) active listening (i.e., make an effort to empathically listen to
other person while suspending judgement), 2) empathy (i.e., understand the perspec-
tive, needs and interests of each individual), 3) rapport (i.e., build rapport and establish
trust) 4) influence (i.e., help other persons let go of their position and look for a solution
that at least partially addresses the needs of each individual involved), 5) behavioural
change (i.e., agree on an acceptable solution).

6 Summary

Alignment with a product roadmap is extremely important to ensure that all product
development activities contribute to the achievement of corporate goals. The results of
the grey literature review presented in this article have in common that achieving
alignment should start with a clear vision. Then the vision should be transformed into a
strategy with clear goals that can be integrated into a product roadmap and commu-
nicated across the organization. This should involve all relevant stakeholders. The aim
is that every involved person identifies with this vision and directs his or her activities
towards achieving this vision. Besides this, the grey literature review helped to identify
several approaches and tactics to gain alignment around the product roadmap. Before
applying any of these methods, it should be ensured that the expected results and the
purpose of applying the method are clearly defined and communicated to the partici-
pants and that the way to achieve the results is well structured.

References

1. Lombardo, C.T., McCarthy, B., Ryan, E., Conners, M.: Product Roadmaps Relaunched -
How to Set Direction while Embracing Uncertainty. O’Reilly Media Inc., Sebastopol (2017)

2. Lencioni, P.: Silos, Politics and Turf Wars: A Leadership Fable About Destroying the
Barriers that Turn Colleagues into Competitors. Jossey-Bass, San Francisco (2006)

3. Münch, J., Trieflinger, S., Lang, D.: The product roadmap maturity model DEEP: validation
of a method for assessing the product roadmap capabilities of organizations. In: Hyrynsalmi,
S., Suoranta, M., Nguyen-Duc, A., Tyrväinen, P., Abrahamsson, P. (eds.) ICSOB 2019.
LNBIP, vol. 370, pp. 97–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33742-1_9

4. Münch, J., Trieflinger, S., Lang, D.: What’s hot in product roadmapping? Key practices and
success factors. In: Franch, X., Männistö, T., Martínez-Fernández, S. (eds.) PROFES 2019.
LNCS, vol. 11915, pp. 401–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35333-9_29

5. Münch J., Trieflinger S., Lang, D.: Product roadmap – from vision to reality: a systematic
literature review. In: International Conference on Engineering, Technology and Innovation,
ICE/IEEE ITMC. IEEE (2019)

56 S. Trieflinger et al.

www.dbooks.org

https://doi.org/10.1007/978-3-030-33742-1_9
https://doi.org/10.1007/978-3-030-33742-1_9
https://doi.org/10.1007/978-3-030-35333-9_29
https://doi.org/10.1007/978-3-030-35333-9_29
https://www.dbooks.org/

6. Khurum, M., Gorschek, T.: A method for alignment evaluation of product strategies among
stakeholders (MASS) in software intensive product development. J. Soft. Maint. Evol. Res.
Pract. 23(7), 494–516 (2011)

7. Luftman, J.: Assessing IT/business alignment. Inf. Syst. Manage. 20(4), 9–15 (2003)
8. Barney, S., Wohlin, C., Chatzipetrou, P., Angelis, L.: Offshore insourcing: a case study on

software quality alignment. In: Proceedings of IEEE Sixth International Conference on
Global Software Engineering, pp. 146–155 (2011)

9. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements
engineering: long-term product planning by roadmapping. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering, pp. 439–443 (2005)

10. Suomalainen, T., Salo, O., Abrahamsson, P., Similä, J.: Software product roadmapping in a
volatile business environment. J. Syst. Softw. 84(6), 958–975 (2011)

11. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering. Inf. Softw. Technol. 106,
101–121 (2019)

12. Münch J., Trieflinger S., Lang, D.: Why feature-based roadmaps fail in rapidly changing
markets: a qualitative survey. In: International Workshop on Software-Intensive Business:
Start-ups, Ecosystems and Platforms (SiBW), pp. 202–218. Ceur-WS (2018)

13. Münch, J., Trieflinger, S., Bogazköy, E., Eißler, P., Roling, B., Schneider, J.: Product
roadmap formats for an uncertain future: a grey literature review. Accepted at SEAA (2020).
https://bit.ly/prformats. Accessed 30 June 2020

14. Published on Figshare. https://figshare.com/articles/Product_Roadmap_Alignment_
Extended_references/12587759. Accessed 30 June 2020

15. Wohlin, C., Runeson, P., Hörst, M., Ohlsson, B., Regnell, B., Wesslen, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic Publishers (2000)

16. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research. Empir.
Softw. Eng. 14(2), 131–164 (2009)

17. Khanna, P.: How to run a product team. https://medium.com/pminsider/how-to-run-a-
product-team-fdbee3385c3a. Accessed 1 May 2020

18. Harke, M.I.: OKR Alignment with OKR examples. https://blog.weekdone.com/okr-
alignment-with-examples/. Accessed 1 May 2020

19. Bungay, S.: The Art of Action: How Leaders Close the Gaps Between Plans, Actions and
Results. Nicholas Brealey Publishing, London (2011)

20. Pichler, R.: How to Lead in Product Management – Practices to Align Stakeholders. Pichler
Consulting (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Product Roadmap Alignment 57

https://bit.ly/prformats
https://figshare.com/articles/Product_Roadmap_Alignment_Extended_references/12587759
https://figshare.com/articles/Product_Roadmap_Alignment_Extended_references/12587759
https://medium.com/pminsider/how-to-run-a-product-team-fdbee3385c3a
https://medium.com/pminsider/how-to-run-a-product-team-fdbee3385c3a
https://blog.weekdone.com/okr-alignment-with-examples/
https://blog.weekdone.com/okr-alignment-with-examples/
http://creativecommons.org/licenses/by/4.0/

Exploring the Success Factors for a Launch
of an Algorithmic Consulting Platform

Andreas Kaselow1, Dimitri Petrik2(&) , and Sven Feja3

1 Mercedes-Benz AG, 71063 Sindelfingen, Germany
andreas.kaselow@daimler.com

2 University of Stuttgart, 70174 Stuttgart, Germany
dimitri.petrik@gsame.uni-stuttgart.de

3 adesso SE, 70173 Stuttgart, Germany
sven.feja@adesso.de

Abstract. Even the rather traditional consulting industry is not spared from
digitization. Digital platforms are known to foster convergence and generativity.
For the consulting industry, digital platforms offer the potential to win new
customer groups who have not previously purchased consulting services before.
If digital platforms for the mediation of consulting services are established by
incumbent consulting companies, the new platform-based business models for
the consulting market will appear. Since network effects fuel platforms, the
launch phase of a platform is a serious challenge. In this paper, we examine the
launch of a digital platform for the algorithmic consulting (AC) approach, due to
its promising market potential. In order to research the adaptability of digital
platforms for AC consulting, we perform a qualitative study of electronic
documents on the actions of three successful crowdsourcing platforms. The
preliminary results comprise 14 success factors for the platform launch that will
be validated in a follow-up practical application. The open nature of platform
design in the areas of customer access, cooperation with other platforms,
interfaces, and communication appeared to be particularly important for a suc-
cessful platform launch. All identified success factors can be applied to AC
services and the consulting market in the future.

Keywords: Algorithmic consulting � Digital platforms � Consulting platforms

1 Introduction

Contributing a technical infrastructure, platforms usually connect independent com-
panies, fostering generative activities [1]. Generativity is a characteristic of platform-
centric markets, whereby digital technologies foster unprompted value creation through
the recombination of various capabilities provided by independent companies [2].
Generativity reshapes markets and challenges the incumbent companies since the
competition rules change [3, 4]. Platforms rely on the attraction of third-party com-
panies, resulting in a platform-based ecosystem. Affected by network effects, the
attractiveness of the platform and the aligning ecosystem are dependent on the number
of complements, the number of complementors, and their value contribution [5].

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 58–66, 2020.
https://doi.org/10.1007/978-3-030-58858-8_7

www.dbooks.org

http://orcid.org/0000-0002-0244-1235
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_7
https://www.dbooks.org/

In general, digitization opens up new possibilities for solving consulting-specific
problems by handing them over to be solved by a large number of people with the
appropriate expertise. This is exactly where the idea of consulting platforms comes into
play, where agents with problems meet agents with solutions [6]. We are not aware of
any integrative research on the platformization of the consulting business. While there
are some case studies on digital consulting and consulting platforms in practice, the
amount of scientific and academic literature is still rather small [7, 8].

Our paper analyses the application of platform-based business models to the con-
sulting market using algorithmic consulting (AC) as an exemplary but promising digital
business model in the consulting market. Market research in the German consultancy
industry by Nissen et al. reveals that the supply of AC-related solutions is rather low,
whereas the customer acceptance in contrast to other digital business model approaches
is nearly the same [9]. Therefore, we conclude that the establishment of an AC con-
sulting platform has the highest potential among all the consulting approaches [9].
Using secondary data, we apply a case study research design to research the question of
which success factors could help to implement the platform-based approach for
algorithmic consulting business models. For this purpose, we examine three existing
platforms to extract success factors (SF) from their actions related to the dynamics of
platform establishment. The preliminary results consist of 14 SFs regarding the plat-
form launch, distributed over three levels of consideration. Further research on the
validity of the derived SFs needs to be performed through a practical application by
incumbent consulting companies. This article contributes to the body of knowledge on
chicken-or-egg problems in platform context [10]. This problem is a significant chal-
lenge for new platforms to overcome, thus indicating the relevance of the conducted
research when adding the perspective of incumbent consulting companies, who would
like to establish platforms in the consulting market.

2 Related Concepts

This paper draws on the theoretical concepts of digital platforms [11] and the concept
of platform evolution [10]. In this section, we introduce the concepts of digital plat-
forms, followed by a description of an algorithmic consulting business model to
develop a theoretical pre-understanding of how platforms can facilitate the consulting
market. Evans conceptualized platforms from an economic perspective, defining them
as multi-sided markets to connect multiple sides of a market and manage their rela-
tionships, fostering generativity and convergence [11]. Similarly, a consulting platform
primarily targets two customer segments, further described as seeker and solver. The
seeker describes the customer segment that has a problem and is looking for a solution
to reduce their costs, benefit from external expertise, or profit from external capabilities.
In practice, seekers may be represented by big as well as small and medium-sized
enterprises, startups, or private individuals. The customer segment of solvers is willing
to offer solutions to the seeker problems. The solvers can be categorized as consultants,

Exploring the Success Factors for a Launch 59

project managers, developers, or testers. Solvers seek to join the platform to acquire
new projects and get in contact with new customers, for whom traditional consulting is
too expensive. From the technological perspective, platforms usually have a modular
architecture and are, therefore, extendable regarding their range of functions [10, 11].

Against this background, new consulting platforms are affected by the chicken-or-
egg-problem as well. The establishment of a platform-based ecosystem may be con-
strained by the absence of seeking or solving customer segments [10].

Algorithmic Consulting is described by the automation of components of the
consulting process. Especially data analysis components are suitable for algorithmic
calculations to support the consulting process. The goal of AC is to substitute the
consultant by algorithms that propose a solution for the customer. This enables scal-
ability and leads to a consulting-based business model with exponential growth. For
instance, algorithms can be used to analyze process data in transactional systems
automatically and detect abnormalities. The AC software can trigger interventions
when abnormalities are detected and then automatically generates reports and allocates
decisional guidance. That is how AC shifts the consultant’s role into a supervisory role
with the possibility to give further advisory support if needed. Another example are
automated reports for executives based on structured data. These reports are able to
determine and visualize trends and critical processes that can help to make faster
decisions [12]. Further examples of suitable use cases can be found at McKinsey
Solutions, which provides a collection of data-driven solutions in the context of AC
[13]. An AC platform is characterized by a platform where different AC software and
solutions are provided to solve customer problems with the use of algorithms as well as
additional consulting services to support the customer.

3 Research Approach

As mentioned in the first section, we chose three case studies to study the introduction
of platforms to establish an AC platform in the market. The chosen companies are
Upwork, Topcoder, and Innocentive. A brief overview of their financial metrics is
depicted in Table 1, and the full list of used sources is available online at: https://bit.ly/
2JRVAsx.

The reason to choose these three platforms can be explained with their success.
During preliminary market research, we found that all three platforms represent suc-
cessful platforms on the basis of key financial figures. All three platforms have suc-
cessfully built multi-sided communities around their platforms. For instance, Topcoder
still provides consulting services, but they established a platform-based business model
in the area of crowdsourcing, matching solvers, and seekers in challenges for com-
petitive programming. All of the examined companies offer at least a four-digit amount
of challenges. Hence, certain levels of financial success and maturity make it possible
to derive factors on how to establish a business model for platform-based AC for an
incumbent consulting company.

60 A. Kaselow et al.

www.dbooks.org

https://bit.ly/2JRVAsx
https://bit.ly/2JRVAsx
https://www.dbooks.org/

Methodically we rely on the longitudinal case study analysis to track the platform
evolution based on event streams related to a specific investigation object. The first step
consists of the search and selection of publicly available secondary data resulting from
the analysis of blog posts and press releases of the platform websites, technical blog
websites, scientific articles, and archival versions of the platform websites. The
examined articles, as well as the archived versions of platform websites, provided
information on how the examined companies proceeded to launch a platform in their
initial period. In addition, the timestamps of the analyzed articles helped to select only
the articles about the initial phase. The analyzed dataset consists of 37 articles in a
timespan between 2001 and 2020 (https://bit.ly/2JRVAsx). The second step is con-
cerned with the content analysis of the data obtained to determine SFs. Thus, the data
collection and the analysis approaches are inspired by Bowen’s document analysis.
This qualitative research method helps to capture the context of the analyzed data,
adding background, and historical insight [14]. Similarly, we use the contextual data of
each platform to capture their specific contexts and understand how they succeeded to
establish platforms and form communities. We derive the SFs by interpreting what we
notice during the analysis of the secondary data sources. Additionally, the inclusion of
additional and comparable case studies should ensure the completeness and general-
izability of our interpretations of the SFs. The main difference between the approach in
this paper and the case study conducted by Skog et al. [15] is that no phases are
determined to explain the evolution of a digital platform over time, but SFs are
explicitly identified for the introduction phase of a consulting platform. The intro-
duction phase describes the entering of a market that follows the R&D phase and
transitions into the ascent phase [10]. This difference was relevant in the analysis
procedure since it is possible to extract phase-independent SFs from late phases that
may be relevant for the introduction phase. Overall, we are confident that the utilization
of secondary data in multiple specific contexts of each case study is suitable to generate
valid insights, comparable with interviews or observations [14, 16].

To structure the content analysis in the electronic data, we used Tiwana’s vision of
the evolutionary development of platforms due to its comprehensiveness and clustered
the SFs in three levels of consideration: strategy, architecture, and governance.

Table 1. A brief overview of the financial metrics of the studied platform companies

Platform Profile Year
founded

Approx.
revenue in
2019 (Mio
USD)

Community
size

Upwork Focus on the mediation of freelancers
and problem solvers

1999 300 14000000+

Topcoder Focus on solving the problems in the
software domain conducting challenges
and tournaments

2001 19 1200000+

Innocentive Focus on the solution of scientific
problems, also organizing challenges
and tournaments

2001 10 400000+

Exploring the Success Factors for a Launch 61

https://bit.ly/2JRVAsx

According to Tiwana, design and organization of platform ecosystems are affected by
adapting these three dimensions [10, 17] and cover the aspects of an AC platform,
being a modularly extendable software platform to mediate different parties (i.e.,
seekers and solvers). By assigning the actions of the observed platform companies to
these three dimensions, we design a structured design framework on platform launches.

4 Results

The following section provides an overview of the extracted SFs for a platform launch,
which will be further described in more detail. The sources for each SFs, summed up as
a table, are available online at: https://bit.ly/2JRVAsx.

Strategy: (1) The first SF suggests Focusing on one specific value proposition and
building up expertise in that domain. Therefore, an owner of an AC Platform has to
focus on the specific approach of AC and develop know-how in AC as well as Artificial
Intelligence (AI). (2) One means for Customer acquisition describes the utilization of
existing partnerships, publishing their AC-related challenges on the platform. This
increases the number of seekers and challenges, which constitutes an incentive for
solvers to migrate on the platform. In addition, partnerships to universities can be built
to acquire students for challenge solving or to encourage them to develop and publish
their own AC software on the platform. Another means includes the usage of internal
consultants and developers with knowledge of AI (if available), who can be assigned to
solve customer challenges on the platform. Other effective means are customer referral
programs to subsidize the customer groups (solver & seeker) as well as online
challenge-solving competitions to attract solvers to the platform. (3) Customer loyalty
can be achieved by collecting and reacting to customer feedback. One means is to
establish online forums where customers can write feedback articles about value
proposition, price structures, or strategic decisions. A further means is founding a
community advisory board (CAB), which consists of both customers and representa-
tives of the platform to discuss improvement proposals. (4) Marketing provides means
to use the existing communication channels (Social Media channels like Facebook,
Youtube, Instagram etc.) to increase publicity and to get their followers to visit & join
the platform. Also, the own corporate blog can be used to publish longer and more
detailed insights of the technical functions as well as use cases of the platform. In
addition, search engines can be used through adverts and keyword optimization to raise
the traffic of the platform website. Moreover, exhibitions and events offer the oppor-
tunity to get physical contact with potential customers, where questions can be
answered individually in person. (5) The Expansion in emerging markets intends to
focus on one specific market where the platform owner is well informed at first. New
markets can be explored and engaged afterwards. (6) Openness is meant to create an
open strategic alignment of the platform, which impacts the dimensions of architecture
and governance that need to follow this openness. One means is the definition of rules
to steer the openness of the platform. The other means is the monitoring of whether the
rules are obeyed. (7) The Platform competition recommends collaborating with other
platforms to extend the value proposition by the value proposition of other platforms.

62 A. Kaselow et al.

www.dbooks.org

https://bit.ly/2JRVAsx
https://www.dbooks.org/

This constitutes synergies between both platforms to gain more customers and extend
the value proposition portfolio of the collaboration platform.

Architecture: (8) The Selection of the value proposition describes which propositions
the AC platform should supply. The recommendations for the selected value propo-
sition of the platform include an AC app store, the execution of AC-related challenges,
and additional consulting services. The AC app store describes a marketplace offered as
an online-website platform where solvers are able to supply their developed AC-
Applications. The model for this app store is constituted by the web-based platform
Solutions [13], which follows a closed design. Since the strategic advice is to follow an
open approach, it is recommended to create an open design that allows easy usage of
the applications through the online platform. The second value proposition describes
the ability to publish challenges on the platform to solve customer-specific AC-related
problems that are not covered by the available applications in the app store. The models
for the challenge-based approach are Innocentive and Topcoder. It is conceivable that
solutions could be hosted in the app store in a way to award the seeker & solver for
future usage. This would mean an extension of the app store supply where the platform
owner, as well as a new seeker, will benefit. The third value proposition is represented
by additional consulting services, which can be provided by the consultants of the
platform owner. One offered service could be assisting in identifying a suitable
application within the app store, which fits the needs of the seeker precisely. Another
consulting service could be defining and processing challenges in the name of the
seeker. (9) Modularity means in the case at hand for the AC platform that the online-
website constitutes the core component, whereas the AC-applications and services of
the solver are the peripheral components. The premise for the integration of peripheral
applications and services is an open platform architecture that allows solvers to offer
their AC-related solutions via the online website. Therefore, open interfaces are
required to ensure the technical integration of the solutions. (10) The results of the case
studies showed that Design is an important function for the customers. Therefore, the
UI-Design should be clear and able to be operated intuitively.

Governance: (11) The Access is influenced by strategic orientation and Openness (6).
Therefore, the organizational restrictions imposed on access for new customers should
be as low as possible. The case study analysis has shown that this factor directly helps
to ensure critical customer mass. To fulfill these factors, possible means could include
an easy registration process and importing customer data from other profiles (Google,
LinkedIn, GitHub etc.). An additional means could be to design a short registration
form with the possibility to provide necessary profile data after following the regis-
tration. Furthermore, an AC platform provider should not implement strict standards or
requirements that would prevent new customers from joining the AC platform if they
do not meet them. (12) Interfaces determine the extent to which solvers can integrate
their own applications and services into the platform or the integration of platform
functionalities into external applications and websites. A provision of a publicly
available and well-documented API is required. Therefore, as with Upwork and
Topcoder, an API library should be published in an easily accessible way on the online
portal for all interested parties. (13) The Price structure should be dependent on the
customer segment. In customer acquisition, the focus is initially on the seeker, since

Exploring the Success Factors for a Launch 63

solvers are initially available if an incumbent consulting company launches the plat-
form. Therefore, in the introductory phase, the aim is to subsidize the seekers by
waiving fees for the use of platform functions. This includes, for example, the costs for
consulting services or fees for challenge tenders, which would have to be paid to the
platform owner. The seeker only pays for the use or purchase of apps and services used
by the solver, from which the payment is transferred in full to the solver. As an
example, an AC platform company could charge solvers with commission fees from
application purchases or challenge prizes. (14) Communication contributes to com-
municating information and decisions regarding the platform to customers. The
existing social media and marketing channels, as well as the corporate blog of the
incumbent company, can be used for this. A further means is having the founded CAB
be in direct contact with customer representatives and to record their needs regarding
platform relevant changes.

5 Discussion

Results
In conclusion, in this preliminary paper, we pursue the goal of identifying important
SFs for practical application on the basis of real events. With this, we generated a
generally applicable list of SFs for the platform launch, derived from actions of already
established crowdsourcing platforms.

The identified SFs hold dependencies between each other. Generally, the strategic
SFs have an effect on the design of the architectural and governance-related SFs. The
distinction can be divided into sequential and technical dependencies. Sequentially, the
SF Openness shapes the platform’s alignment to open up Access, Interfaces, Com-
munication, and Platform Competition for the customer segments as well as other
platforms to collaborate with. Technically, the Modularity of a platform’s architecture
affects the Selection of value proposition, Design, Access, and Interfaces to facilitate
the integration of components into the platform.

Limitations
These findings, however, only allow us to conduct logical interpretations of the steps
the three observed platform companies undertook. The results do not allow extracting
cause-and-effect relationships between the actions and their effects in practice. For this
step, more research is required in the area of ecosystems engineering [18] to identify
the barriers of entry for solvers and seekers and to evaluate how practicable and
comprehensive the derived SFs are. Moreover, the identified SF list does not hold the
claim of completeness since the analysis is limited to the given data sources.

Future Research
In the future, we will address this with a field study, applying the derived SF list to
adesso SE, an incumbent consulting company, to help it to start a platform-based
business model in AC. In addition to that, more research is required for the integrity of
the identified SF list. For example, the quality of the engaged solver may have a
significant impact on the success of a platform. However, it is not considered in the

64 A. Kaselow et al.

www.dbooks.org

https://www.dbooks.org/

current state of the paper and has to be examined meticulously in the future. During this
step, we will also pursue the goal of transforming the SFs into a domain-specific design
framework to assist practitioners in the application of the identified SFs with guidance
on best practice and implementation approaches. Furthermore, additional research is
required to observe AC platform companies regarding how they implement the rec-
ommendations. The practical application of the derived SFs will help to review what
cause-and-effect relationships they have to launch a successful AC platform. For
instance, Upwork, which is the most successful platform in terms of sales and regis-
tered profiles, stands out due to its open nature in the areas of customer access,
cooperation with other platforms, interfaces, and communication. Openness and its
related SFs seem to play a more important role than the other extracted SFs. Therefore,
we are convinced that these SFs, as well as Upwork need to be studied in more detail.

References

1. Hein, A., et al.: Digital platform ecosystems. Electron. Mark. 30(1), 87–98 (2019). https://
doi.org/10.1007/s12525-019-00377-4

2. Nambisan, S., Wright, M., Feldman, M.: The digital transformation of innovation and
entrepreneurship: progress, challenges and key themes. Res. Policy 48(8), 103773 (2019)

3. De Reuver, M., Sorensen, C., Basole, R.C.: The digital platform: a research agenda. J. Inf.
Technol. 33(2), 124–135 (2018)

4. Porter, M.E., Heppelmann, J.E.: How smart connected products are transforming compe-
tition. Harv. Bus. Rev. 92(11), 64–68 (2014)

5. Iansiti, M., Levien, R.: The Keystone Advantage: What the New Dynamics of Business
Ecosystems Mean for Strategy, Innovation, and Sustainability. HBS Press, Boston Mass
(2004)

6. Werth, D., Greff, T., Scheer, A.W.: Digitale Beratung, ein Modell für den Mittelstand.
IM +io Fachzeitschrift, pp. 82–87 (2016)

7. Stummer, C., Kundisch, D., Decker, R.: Platform launch strategies. Bus. Inf. Syst. Eng. 60
(2), 167–173 (2018). https://doi.org/10.1007/s12599-018-0520-x

8. Lindner, D. Beratung 4.0 - Mittelstand berät Mittelstand, Working Paper (2017)
9. Nissen, V., Füßl, A., Werth, D., Gugler, K., Neu, C., Unternehmensberater, B.D.: Zum

aktuellen Stand der dig. Transformation im deutschen Markt für Unternehmensberatung
(2018)

10. Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strategy.
Morgan Kaufmann, Amsterdam (2014)

11. Gawer, A.: Bridging differing perspectives on technological platforms: toward an integrative
framework. Res. Policy 43, 1239–1249 (2014)

12. Nissen, V., Seifert, H.: Digital Transformation of the Consulting Industry – Extending the
Traditional Delivery Model. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
70491-3

13. Christensen, A., Wang, D., Van Bever, D.: Consulting on the cusp of disruption. Harv. Bus.
Rev. 91(10), 106–114 (2013)

14. Bowen, G.A.: Document analysis as a qualitative research method. Qual. Res. J. 9(2), 27–40
(2009)

Exploring the Success Factors for a Launch 65

https://doi.org/10.1007/s12525-019-00377-4
https://doi.org/10.1007/s12525-019-00377-4
https://doi.org/10.1007/s12599-018-0520-x
https://doi.org/10.1007/978-3-319-70491-3
https://doi.org/10.1007/978-3-319-70491-3

15. Skog, D.A., Wimelius, H., Sandberg, J.: Digital service platform evolution: how spotify
leveraged boundary resources to become a global leader in music streaming. In: Hawaii
International Conference on System Sciences, pp. 4564–4573 (2018)

16. Yin, R.K.: Case Study Research: Design and Methods. SAGE Publications, LA (2003)
17. Tiwana, A., Konsynski, B.: Complementarities between organizational it architecture and

governance structure. Inf. Syst. Res. 21(2), 288–304 (2010)
18. Hurni, T., Huber, T.: The interplay of power and trust in platform ecosystems of the

enterprise application software industry. In: 22nd European Conference on Information
Systems, Tel Aviv (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

66 A. Kaselow et al.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Eighth International Workshop
on Large-Scale Agile Development

Agile at Scale: A Summary of the 8th
International Workshop on Large-Scale Agile

Development

Julian M. Bass and Abdallah Salameh

University of Salford, 43 Crescent, Salford M5 4WT, UK
j.bass@salford.ac.uk, a.salameh@edu.salford.ac.uk

Abstract. The Large-Scale Agile Development workshop explored the main
research challenges in large-scale software development. We considered multi-
site organisations with large-scale projects that include a large number of teams
adopting agile methods. Such topics include inter-team coordination, knowl-
edge sharing, large project organisation, agile transformation, agile teamwork
quality, project models that facilitate several self-organising teams, and prac-
tices for scaling agile methods. We accepted five full research papers, which are
included in this volume. The accepted papers report empirical research studies
using surveys, observations and case studies. Also, an interactive online dis-
cussion session was conducted to compare the two approaches, SAFe and
Spotify. The workshop participants, which were around a hundred people,
joined this discussion to compare the two approaches and suggest some future
research questions about the hybridisation of SAFe and Spotify. This workshop
summary contributes as a current snapshot of research along with some results
from an interactive discussion about SAFe and Spotify.

Keywords: Large-scale agile software development � Software engineering �
SAFe � Spotify � Inter-team coordination � Agile transformation �
Agile teamwork quality � Organisational change � Autonomous teams

1 Introduction

The goal of Large-Scale Agile Development workshop was to explore the main
research challenges in conducting large-scale software development programmes using
agile methods. How to apply agile methods to large-scale projects was identified as the
“top burning research question” by practitioners at XP2010 and has since then attracted
increasing interest among agile practitioners and researchers. The first of this workshop
series was organised at XP2013. The workshop was planned to be conducted during the
XP conference in Copenhagen in June 2020. However, the workshop was conducted
online because of the Coronavirus disease (i.e., COVID-19) outbreak. Despite the
pandemic, around a hundred attendees joined the workshop, which is more than double
the attendance last year.

Agile methods are conventionally applied in small colocated software development
teams. Since many organisations with small collocated teams have realised successful

www.dbooks.org

https://www.dbooks.org/

implementation of software projects, agile methods became increasingly attractive for
researchers and practitioners to apply agile software development to large-scale pro-
jects [5].

Large-scale projects are challenging because several teams need to work closely
together to release a single software project [1, 4]. This workshop addressed research
challenges in large-scale agile development and identified topics such as inter-team
coordination, knowledge sharing, large project organisation, agile transformation, agile
teamwork quality, project models that facilitate several self-organising teams, and
practices for scaling agile methods.

2 Workshop Contributions

The workshop comprised speakers selected following submission of short papers,
which were peer-reviewed by members of the program committee, and an interactive
online discussion session about the differences between SAFe and Spotify.

2.1 Research Papers

For the 2020 workshop we had seven submissions, of which five were accepted as full
research paper presentations. The first paper, “Transitioning from a First Generation to
Second Generation Large-Scale Agile Development Method: Towards understanding
Implications for Coordination” [2] reported preliminary insights on the coordination
impact when an organisation moves from first (combined agile methods with traditional
project management frameworks) to a second generation (using large-scale agile
frameworks). The authors used four theories of coordination from different fields to
analyse the findings and explain changes in coordination. They found that two of the
theories are well suited to characterising the phases of the transition, providing answer
to how coordination was done. While two other theories provide answers to why the
coordination changes occurred and could help explaining the success of such transition.

The second paper, “Exploring the Product Owner Role within SAFe Implemen-
tation in a Multinational Enterprise” [10] compares previously identified activities of
Product Owners outside the context of SAFe with activities of Product Owners in an
examined SAFe implementation to improve the understanding of the Product Owner
role within the context of SAFe. The authors found that the Product Owners role in the
SAFe deviates from the previous understanding of the role outside the context of SAFe
as the range of Product Owner activities are narrowed. They attribute the narrowed
activities of Product Owners at SAFe to the introduction of a new form of management-
driven top-down approach with the fragmentation of the roles.

The third paper, “A systematic approach to agile development in highly regulated
environments” [8] describes an approach, called Levels of Done-Product Quality Risk
(LoD-PQR), to align agile teams and ensure that teams meet regulatory requirements
and product specific quality while retaining as much autonomy as possible. The authors
claim that this approach enabled the autonomous teams, in the case study organisation,
to realise efficiency by design and to share techniques on how to implement compliance

Agile at Scale: A Summary of the 8th International Workshop 69

requirements. This in turn has streamlined the development processes in the case study
organisation and led to a positive impact on process performance.

The fourth paper, “Evaluation of Agile Team Work Quality” [9] presents an
approach to measure “agile Team Work Quality (aTWQ)”, which enables teams in
improving their agile mindset and practices without external assessments. This
approach includes measurement indicators, which are based on extending the team-
work quality construct that are developed by previous research. The paper presents also
how the case study organisation has made use of findings on teamwork to create a
usable “Toolbox” for internal process improvement.

Finally, the fifth paper, “Operationalizing Agile Methods: Examining Coherence in
Large-Scale Agile Transformations” [3] explores coherence in operationalising large-
scale agile methods by presenting the results of a comparison between a successful and
a failed large-scale agile transformation. Also, the paper describes challenges in
understanding the rationale, differences, values, and roles associated with the methods
to support successful large-scale agile transformation. In addition, the authors highlight
factors that contribute to failed large-scale agile transformations.

2.2 SAFe vs Spotify - A Short Discussion

Both the SAFe framework and the Spotify model, which was initially introduced by
Kniberg and Ivarsson [6, 7], are increasingly attracting agile practitioners in organi-
sations of different context [4, 10–12]. The workshop participants were asked to pro-
vide similarities and differences between SAFe and Spotify by using an online Metro
Retro board. Also, the participants were asked to provide possible future research
directions for the hybrid of SAFe and Spotify.

The discussion did rise some aspects of importance when comparing SAFe to
Spotify. These aspects are highlighted in Table 1.

The participants highlighted very few similarities between SAFe and Spotify
compared to what differences they have provided. The mentioned similarities include
the utilisation of communities of practice, falling back to the agile mindset to pinpoint
what is needed, and trying to copy the agile approach. However, the participants
highlighted many differences between SAFe and Spotify. For example, SAFe is a
knowledge base (i.e., toolbox) of integrated principles, practices, and competencies for
Lean, Agile, and DevOps that range from scrum teams to portfolio. According to some

Table 1. The rised aspects from the discussion – comparing SAFe to Spotify

SAFe Spotify

Process/culture Knowledge base (toolbox) Culture & interactions
Inter-team dependencies High Low
Innovation Inhibitor Enabler
Completeness Detailed and complete Abstract
Adoption Easy Complicated
Tailoring & improving Hard Easy

70 J. M. Bass and A. Salameh

www.dbooks.org

https://www.dbooks.org/

participants, SAFe implementation is complicated, includes unnecessary process, plan
focused, bureaucratic, and dis-empowers team autonomy. Hence, SAFe is characterised
as anti-agile. On the contrary, the authors of the Spotify model do not want to develop a
big toolbox but rather to emphasise the need to create interactions between the teams
through an Agile culture. This Agile culture focuses on enabling teams’ autonomy by
aligning the teams to each other to common product goals and objectives.

Participants considered SAFe suitable for projects and environments that have
many dependencies among teams. Such dependencies, in turn, result in spending
considerable resources to plan and coordinate work. SAFe is appropriate when the need
for innovation among the developers is not a high priority because SAFe favours
command and control, and teams are not highly empowered compared to the Spotify
teams. The teams in the Spotify model have high autonomy to increase their creativity
and innovation.

SAFe offers a complete course for its implementation and certification path to
creating coaches of the framework. Whereas, the Spotify model is considered abstract
and provides high-level details. Consequently, everything needed to implement SAFe
is almost ready. Yet, it will require following its strict recommendations for the
implementation, which are difficult to set up but not difficult to implement. On the other
hand, adopting the Spotify model is perceived as an adventure where there are plenty of
rooms for agile process tailoring, which in turn demands to have senior agile coaches to
implement it. Such experienced agile coaches need to help autonomous squads to tailor
their Agile processes, align all squads together and to project objectives, set up port-
folio or program part, and define the Spotify communities (i.e., Squads, Chapters,
Tribes, and Guilds [6]) and their content. Unlike the Spotify model, everything is
already defined for SAFe, which makes it complicated to improve and adapt.

The participants were asked to provide possible future research directions for the
hybrid of SAFe and Spotify. Interestingly, three participants in our discussion revealed
encountering such hybrids in the industry nowadays. Also, the workshop participants
provided few research directions for such hybrids, as follows:

– Why should we have a hybrid Agile development approach from SAFe and
Spotify?

– How SAFe and the Spotify can be hybridised in the industry?
– How about a comparison of organically evolved approaches with prescriptive

frameworks and models (SAFe vs Spotify)?
– What are prerequisites for inter-team coordination through practices such as “big

room planning” in SAFe?

3 Programme Committee

Many thanks to the members of the programme committee many of whom have also
contributed to previous workshops. The members’ name are ordered alphabetically by
last name, as follows:

– Finn Olav Bjørnson, Norwegian University of Science and Technology, Norway.
– Torgeir Dingsøyr, Norwegian University of Science and Technology, Norway.

Agile at Scale: A Summary of the 8th International Workshop 71

– Denniz Donmez, Enabling Structures, Switzerland.
– Jutta Eckstein, IT communication, Germany.
– Peggy Gregory, UCLAN, UK.
– Tomas Gustavsson, Karlstad university, Sweden.
– Andrew Haxby, Competa IT BV, Netherlands.
– Aymeric Hemon, University of Nantes, France.
– Helena Holmström Olsson, University of Malmo, Sweden.
– Eric Knauss, Chalmers University, Sweden.
– Philippe Kruchten, University of British Columbia, Canada.
– Maarit Laanti, Nitor Delta, Finland.
– Carl Marnewick, University of Johannesburg, South Africa.
– Nils B. Moe, Sintef, Norway.
– Parastoo Mohagheghi, NAV, Norway.
– John Noll, University of Hertfordshire, UK.
– Maria Paasivaara, IT University of Copenhagen & Aalto University, Denmark &

Finland.
– Yvan Petit, ESG UQAM, Canada.
– Jan Pries-Heje, Roskilde University, Denmark.
– Scarlet Rahy, University of Salford, UK.
– Knut H. Rolland, University of Oslo, Norway.
– Darja Smite, Blekinge Institute of Technology, Sweden.
– Christoph Stettina, Leiden University, Netherlands.
– Klaas-Jan Stol, Lero, UK.
– Viktoria Stray, University of Oslo, Norway.
– Ömer Uludag, Technical University of Munich, Germany.

Without the valuable support of these programme committee members the work-
shop would not have been possible. Thanks to Hubert Baumeister and Mansooreh
Zahedi, the workshop co-chairs for XP 2020. Thanks also to Maria Paasivaara, the
conference chair for XP 2020.

4 Conclusions

The Large-Scale Agile Development workshop successfully created an opportunity for
researchers and practitioners to consider the latest trends in large-scale agile software
development. The accepted papers in this proceeding and the interactive discussion
session contribute as a snapshot of the start-of-the-art in the field of large-scale agile
software development. The authors presented evidence of approaches being used to
enable agile development in large-scale contexts. Yet, an incomplete adoption of some
presented approaches was provided since the authors share preliminary findings of their
conducted research. The workshop participants joined an interactive discussion to
compare SAFe and Spotify and suggest future research questions about their
hybridisation.

72 J. M. Bass and A. Salameh

www.dbooks.org

https://www.dbooks.org/

References

1. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international
workshop on large-scale agile development. In: Hoda, R. (eds) Agile Processes in
Software Engineering and Extreme Programming – Workshops. XP 2019. LNBIP,
vol. 364, pp. 75–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30126-2_9

2. Bjørnson, F.O., Dingsøyr, T.: Transitioning from a first generation to second
generation large-scale agile development method: towards understanding impli-
cations for coordination. In: Kruchten, P. (ed.) Agile Processes in Software
Engineering and Extreme Programming – Workshops. Springer International
Publishing (2020)

3. Carroll, N., Bjørnson, F.O., Dingsøyr, T., Rolland, K., Conboy, K.: Operational-
izing agile methods: examining coherence in large-scale agile transformations. In:
Kruchten, P. (ed.) Agile Processes in Software Engineering and Extreme Pro-
gramming – Workshops. Springer International Publishing (2020)

4. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges
and recommendations. IEEE Softw. 36(2), 44–50 (2019)

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119, 87–
108 (2016)

6. Kniberg, H.: Spotify squad framework, March, 2017. https://medium.com/project-
management-learnings/

7. Kniberg, H., Ivarsson, A.: Scaling agile spotify with tribes, squads, chapters &
guilds, October, 2012. https://blog.crisp.se/wp-content/uploads/2012/11/
SpotifyScaling.pdf

8. Poth, A., Jacobsen, J., Riel, A.: Systematic agile development in regulated envi-
ronments. In: Yilmaz, M., Niemann, J., Clarke, P., Messnarz, R. (eds.) EuroSPI
2020. CCIS, vol. 1251, pp. 191–202. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56441-4_14

9. Poth, A., Kottke, M., Riel, A.: Evaluation of agile team work quality. In: Kruchten,
P. (ed.) Agile Processes in Software Engineering and Extreme Programming –

Workshops. Springer International Publishing (2020)
10. Remta, D., Doležel, M., Buchalcevová, A.: Exploring the product owner role

within safe implementation in a multinational enterprise. In: Kruchten, P. (ed.)
Agile Processes in Software Engineering and Extreme Programming –Workshops.
Springer International Publishing (2020)

11. Salameh, A., Bass, J.M.: Spotify tailoring for promoting effectiveness in cross-
functional autonomous squads. In: Hoda, R. (eds.) Agile Processes in Software
Engineering and Extreme Programming – Workshops. XP 2019. LNBIP, vol. 364,
pp. 20–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_3

12. Salameh, A., Bass, J.M.: Heterogeneous tailoring approach using the spotify
model. In: Proceedings of the Evaluation and Assessment in Software Engineering,
EASE’20, pp. 293–298. Association for Computing Machinery, New York (2020)

Agile at Scale: A Summary of the 8th International Workshop 73

https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-30126-2_9
https://medium.com/project-management-learnings/
https://medium.com/project-management-learnings/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://doi.org/10.1007/978-3-030-56441-4_14
https://doi.org/10.1007/978-3-030-56441-4_14
https://doi.org/10.1007/978-3-030-30126-2_3

Operationalizing Agile Methods: Examining
Coherence in Large-Scale Agile

Transformations

Noel Carroll1(&), Finn Olav Bjørnson2, Torgeir Dingsøyr3,
Knut-Helge Rolland4, and Kieran Conboy1

1 Lero, National University of Ireland Galway, Galway, Ireland
noel.carroll@nuigalway.ie

2 Norwegian University of Science and Technology, Trondheim, Norway
3 SINTEF Digital, Trondheim, Norway
4 University of Oslo, Oslo, Norway

Abstract. Following the highly pervasive and effective use of agile methods
for software development, attention has now turned to the much more difficult
challenge of applying these methods in large scale, organization-wide devel-
opment. However, identifying to what extent certain factors influence success
and failure of sustaining large-scale agile transformations remains unclear and
there is a lack of theoretical frameworks to guide such investigations. By
adopting Normalization Process Theory and specifically ‘coherence’, we com-
pare two large-scale agile transformation case studies and the different per-
spectives individuals and teams had when faced with the problem of
operationalizing the agile method as part of their large-scale agile transforma-
tion. The key contributions of this work are: (i) this is a first attempt to present
the results of a comparison between a successful and failed large-scale agile
transformations; and (ii) we describe the challenges in understanding the
rationale, differences, value, and roles associated with the methods to support
the large-scale agile transformation. We also present future research for prac-
titioners and academics on large-scale agile transformation.

Keywords: Large-scale agile transformation � Normalization Process Theory �
Coherence � Case study � Organizational change � Autonomous teams

1 Large-Scale Agile Transformation

Agile methods have been well received by practitioners and academics over the past
two decades. Given the success of agile approaches at the team level, many large
software organizations have begun to scale these methods to a large-scale and often
enterprise-wide context [1]. We adopt the description of “transformation” from [2]
which explains how the concept of transformation and “scaling up” are very closely
related to describing how development organizations with small agile practices (e.g. a
single agile team in a large setting) scale their agile practices to at least 50 people or 6
teams (i.e. large-scale agile practices). However, such large-scale adoption has proven
challenging [3, 4], with very few successful cases reported across literature which

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 75–83, 2020.
https://doi.org/10.1007/978-3-030-58858-8_8

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_8
https://www.dbooks.org/

hampers the research community in learning about specific factors of large-scale agile
transformation processes. The literature identifies particular challenges such as the
complexity and uncertainty introduced when a method tries to enable radical and
continuous change across a fragmented set of teams and projects across an organization
[2], the confusion caused by numerous variants and misinterpretations of that method
[5], as well as the limitations of both top-down (management-driven) or bottom-up
(team-driven) agile method transformations [2, 5]. The objective of this study is to
explore coherence as one key part of normalization and in operationalizing large-scale
agile transformations. Coherence is the process of sensemaking that individuals and
organizations undergo in order to promote or inhibit the routine embedding of a
practice (i.e. determining specifically “what is the work?”). We achieve this by
(i) comparing coherence across two separate case studies (a successful and failed large-
scale agile transformation); (ii) reporting on the key lessons learned around the need to
consider coherence of a large-scale agile transformation; and (iii) presenting a summary
of recommendations for organizations on scaling agile methods as a continuum rather
than a change in state which the notion of transformations can imply.

2 Normalization Process Theory

Normalization Process Theory (NPT) is a derivative sociological theory on the
implementation, embedding and integration of new technologies and organizational
innovations [6] which allows us to challenge assumptions around embedding change
during transformations [7]. NPT provides a rich theoretical lens to explain a trans-
formation process since it allows us to uncover whether practices become routinely
embedded in their social contexts as the result of people working, individually and
collectively, to enact them. There are four main NPT constructs which explain
normalization:

1. Coherence: the meaningful qualities of a specific practice
2. Cognitive participation: enrolment and engagement of individuals and groups
3. Collective action: interaction with already existing practices
4. Reflexive monitoring: how a new practice is understood and assessed by impli-

cated actors

Each NPT construct comprises of four theoretical components, i.e. 16 components
in total [7]. Within each of the core theoretical constructs, we can examine the nor-
malization of large-scale agile transformations and shed new insights on organizing
structures, social norms, group processes and conventions, i.e. work relating to
assessing patterns of work and outcomes. NPT provides practical insights on specific
phenomena both qualitatively and quantitatively such as examining the sustainability of
large-scale agile methods [7]. NPT allows us to unpack the dynamic nature of large-
scale agile transformations by focusing on the social organization of the work (im-
plementation) of making practices routine elements of everyday life (embedding), and
of sustaining embedded practices in their social context (integration). For the large-
scale agile transformation case study comparison in this study, we focus on the

76 N. Carroll et al.

coherence. We focus on coherence because it uncovers four key components of ini-
tiating and operationalizing new practices:

1. Differentiation: Comparing differences in an old and new set of practices
2. Communal specification: Building a shared understanding of the vision, aims,

objectives, and expected benefits of a set of practices.
3. Individual specification: Assessing individual perceptions on their specific tasks

and responsibilities around a new set of practices.
4. Internalization: Evaluating team members perception on the value, benefits, and

importance of a new set of practices.

Specifically, coherence is a critical stage of large-scale agile transformations as it
enables us to focus on sensemaking carried out individually and collectively when
faced with the problem of operationalizing a set of practices, i.e. in this research
context, operationalizing a large-scale agile transformation method. This also allows us
to examine the rationale and drivers to transform an organization’s practices and
compare how people make sense of (re)defining and (re)organizing practices.

3 Research Method

Comparative case studies involve the analysis and synthesis of the key similarities,
differences and emerging patterns across two or more cases [8]. This method is suitable
to explore new topic areas which focus on ‘how’ or ‘why’ questions around a con-
temporary set of events.

Table 1. Comparative case study summary

Description FinanceCo PublicOrg

Sector Financial Services Public Services
Employees 50,000 20,000
Locations USA, Ireland, India, China Norway
Agile method
(before
transformation)

Customized Customized (based on [10])

Large-scale
agile method

Spotify Multidisciplinary semi-autonomous
teams

Result Method abandoned after two years in
favor of SAFe

Method in use with good results

Study
timeframe of
transformation

2017–2018 2016–2020

No. of
interview
participants

8 development teams (50
participants)

10 development teams (39
participants)

Data collection
method(s)

Semi-structured interviews;
observations; access to systems,
documents, reports, meetings

Semi-structured interviews;
observations; access to systems,
documents, reports, meetings

Operationalizing Agile Methods 77

www.dbooks.org

https://www.dbooks.org/

This study compares two large-scale agile transformation projects using the
FinanceCo [7] and PublicOrg [9] case studies. In the context of this research, both
cases share a common research objective in understanding an organization’s experience
in undertaking a large-scale agile transformation (Table 1). Both cases were selected
based on a specific criteria [2] in that the organizations with small agile practices scales
their agile practices to at least 50 people or 6 teams (i.e. large-scale agile practices). In
the context of the case studies, both qualitative and quantitative methods were adopted
to better understand the context which influences the success and failure of a trans-
formation process.

4 Findings

This section presents a summary of the key findings on the four components of
coherence to explain efforts on the normalization of the two large-scale agile trans-
formations. We compare how each of these components were operationalized and
contributed to the success and failure of normalizing a large-scale agile transformation.

4.1 Differentiation

By examining differentiation, we can compare how FinanceCo and PublicOrg managed
the initial stages of the large-scale transformation. For FinanceCo, there was no clear
evidence that their teams attempted to differentiate the new practices associated with
the large-scale agile transformation strategy. Management considered high-level dif-
ferences and used sweeping claims to promote the potential of the Spotify model in
terms of outcomes. Management presented ideas around how the Spotify model would
address some ongoing business challenges, for example through a new software
development culture, fluid team structures, and continuous software development flow.
However, Squads were tasked with operationalizing the Spotify model with little
guidance or expectation on how to differentiate the new practice to old ways of
working.

In contrast, PublicOrg demonstrated evidence of a planned induction period to
inform all stakeholders on the implications and expectations from the large-scale agile
transformation. This included both consultants from two different suppliers and the
developers from PublicOrg. More concretely a work group consisting of representa-
tives working on business needs, software architecture, and development recommended
to change deployment model from a bimodal model to a model of multidisciplinary
semi-autonomous teams. The group delivered a 24-slide presentation to the project
manager with a joint proposal, which sought to align development practice in the
project with a future way of working in PublicOrg. The group considered the
deployment model after identifying dependencies, suitability for continuous deploy-
ment, cross-functional teams, time criticality and user value.

78 N. Carroll et al.

4.2 Communal Specification

By focusing on communal specification, we compared how teams built a shared
understanding of the vision, aims, objectives, and expected benefits of the large-scale
agile transformation. Within FinanceCo, Squads perceived that the Spotify model had
imposed changes to divisional structures and created a separation of powers. However,
management had reported that team restructuring was imposed in an effort to build and
sustain relational work through self-organized teams and autonomy to drive change.
For FinanceCo, the overall objective to transform was to improve software team
productivity and performance (guided by software flow metrics). However, a Squad
Lead viewed the Spotify model as a way to remove predictability of team performance
and control across relational work: “It’s difficult to make sense of the Spotify model.
You want certainty, predictivity, and control on the management side. Yet, you adopt
the Spotify model because you have admitted that you don’t want predictability or
control for the transformation process.”

PublicOrg, however, launched a four-month subproject prior to introduction of the
new deployment model in order to “build competence on agile methods” in the project.
The main vision described by PublicOrg was to transition from a delivery model based
on phases and handovers to a flow-based model where the division between customer
and supplier is invisible. The change involved end-to-end automatic testing, toggling of
features, one shared stream of code, and an improved deployment pipeline. The change
project aimed to minimize “work in progress” and to establish a code base per product
to minimize complexity of development. The expected benefits described in the report
included “higher quality and user value”, “earlier realizations of business value”, “more
time to develop solution, less time on reporting and documentation”, “a more moti-
vating workday for employees”. PublicOrg also hired two agile coaches to assist in the
transition process. One of the Technical Leads described how: “The agile coach we
had – without him the whole process would have been a lot more painful!”.

4.3 Individual Specification

By focusing on individual specification, we compare how individuals across both case
studies perceived their specific tasks and responsibilities imposed by the large-scale
agile method. From a managerial perspective at FinanceCo, the Spotify model provided
a roadmap for the roles and responsibilities required to improve organizational-wide
agility and software team performance and productivity. However, there was a lack of
clarity in terms of how it would be operationalized and it was not always well received
by software developers. As one software developer within the Platform Chapter of a
Squad at FinanceCo explained: “not only are we forced to change roles but now we are
held to account to reach new performance targets in these roles…”.

At PublicOrg, a work group was established and recommended: “The degree of
autonomy must be adapted to each domain, based on need of collaboration, depen-
dencies, and the connection to the central administrative system team, and this might
change over time.” Preparation for a new model started early, a product owner stated,
“I was aware that this change was coming since I was assigned to the project in 2017.
So, the first thing I did was to attend one of those two-days agile workshops. That was

Operationalizing Agile Methods 79

www.dbooks.org

https://www.dbooks.org/

two months before I started this project.” A functional advisor experienced a varying
clarity of roles: “The thing is, my role is very vaguely defined. The product owner, that
role is very specified, you attribute a lot of responsibility to that role, really. Too much
if you ask me, and then me and another is in the role of functional advisor which is very
vaguely defined, just supporting the product owner, really.

4.4 Internalization

For internalization, we explored team members perception on the value, benefits, and
importance of the new agile method. Within a FinanceCo transformation context we
probed whether value, benefits, and importance related to topics such as financial,
business, cultural, or personal. However, the concepts of ‘value’, ‘benefits’, and ‘im-
portance’ were considered to be a vague or elusive from both a management and team
perspectives and efforts were placed on developing metrics to represent how work
should be prioritized. A Senior Business Intelligence Developer in the Business
Intelligence Chapter stated: “Our progress or lack of progress is probably best
reflected in the amount of unplanned work we are faced with which makes it difficult to
understand the value of using the Spotify model.”

PublicOrg, on the other hand, present evidence of more optimism around the
transformation process and their transition using a large-scale agile method. For
example, a Technical Lead (previous Scrum Master) explains: “It’s not really much of
a difference. I see it as a good idea, and it’s good to have shorter decision paths” In
addition, a Tester at PublicOrg described their experience by stating: “Summing up the
transition, I’m happy that we transitioned to such an agile way of working. It makes my
workday easier and more fun, if I’m allowed to say that. Less stressful and I feel more
ownership and responsibility for the functionality we deliver as a team.”

5 Discussion

This research focuses on coherence as a critical stage of large-scale agile transforma-
tions and compares how two organizations faced the problem of operationalizing a new
set of practices. Table 2 presents a summary of our comparative findings. We sum-
marize how FinanceCo had a relatively weak foundation and attempted to adopt a
“scale and learn approach”. This approach was largely based on many weak
assumptions around operationalizing the Spotify model which eventually led to
growing tensions across the organization and failure in their transformation efforts. In
contrast, we learned how PublicOrg had a strong foundation and implemented an agile
culture and adopted a “learn and scale approach” which proved to be very successful
in operationalizing the reorganization into autonomous teams. The key contribution of
examining coherence is that we identify tensions between management expectations
and teams operationalizing new practices.

We identify how complexity and uncertainty emerge when organizations try to
instigate change across an organization [2] due to the lack of clarity on a large-scale
transformation process and weak assumptions on how to manage the process. We
uncover some of the key tensions which go unreported throughout literature regarding

80 N. Carroll et al.

the top-down (management-driven) or bottom-up (team-driven) agile method trans-
formations [2, 5]. Our findings indicate the need for organizations to become more
proactive by introducing a large-scale agile transformation induction period to embed
an agile culture and mindset across the organization before undergoing any transfor-
mation process. While communication is often documented as a generic yet key factor
for large-scale agile transformation throughout literature [10], we identify the need to
specifically focus on coherence in order to compare differences in an old and new agile
method and to have a shared understanding of the vision, aims, objectives, and
expected benefits of a large-scale agile transformation.

By focusing on coherence, we also identify the importance of providing dedicated
resources to support the transformation, for example, agile coaches being available at
team level to understand how to operationalize a scaling agile method. There is little

Table 2. Summary of comparative findings on operationalizing large-scale agile methods

Coherence FinanceCo PublicOrg

Differentiation Weak foundation in terms of
competencies in place and poor
communication to differentiate the
transformation method and goals

Strong foundation in terms of
competencies in place and excellent
communication to differentiate the
transformation method and goals

Lack of agile training prior to
transformation to instill an agile
culture and mindset

Planned induction of agile training
provided prior to transformation
and implementation of an agile
culture

Communal
specification

Sense of imposed changes to
divisional structures and created a
separation of powers

Introduced a project to build
competence on agile methods

Improvements on software team
productivity and performance were
guided by software flow metrics

Recruitment of two agile coaches to
assist in the transition process

Individual
specification

Method provided a roadmap for the
roles and responsibilities required
to improve organizational-wide
agility and software team
performance and productivity

Emphasis on need of collaboration,
dependencies, and the connection
to the central administrative system
team

Lack clarity across teams on how
the new method would be
operationalized in practice

Awareness of change brought about
by the methods a number of years
prior to the transformation

Internalization Concepts of ‘value’, ‘benefits’, and
‘importance’ were considered to be
a vague or elusive from both the
management and team perspectives

Evidence of value in large-scale
transformation, e.g. shorter decision
paths

Efforts placed on developing
metrics to represent how work
should be prioritized

Improved sense of satisfaction in an
agile way of working and more
ownership and responsibility as a
team

Operationalizing Agile Methods 81

www.dbooks.org

https://www.dbooks.org/

comparative research on how organizations assess individual perceptions of specific
tasks and responsibilities around a large-scale agile transformation. This research
demonstrates how critical it can be to evaluate team members perception of a large-
scale agile transformation at the very early stages [5].

6 Conclusion

We present two clear contributions from this research: (i) present the results of a
comparison between a successful and failed large-scale agile transformations; (ii) we
describe the challenges in understanding the rationale, differences, value, and roles
associated with the methods to support and sustain a successful large-scale agile
transformation and factors which contribute to failed transformations. While we adopt
NPT to focus on one of the theoretical constructs of coherence, we present future
research for practitioners and academics on large-scale agile transformation on the NPT
framework which explains how practices become implemented, embedded, integrated,
and evaluated. As part of our future research, we will focus on comparing additional
cases on assumptions associated with large-scale agile transformations. NPT could set
new directions for research on large-scale agile development [3], agile transformation
[4], and extending into other research developments on IT-enabled and digital trans-
formations [11].

Acknowledgements. This work was supported, in part, by Science Foundation Ireland grant
13/RC/2094 and by the Research Council of Norway through grant 236759.

References

1. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional methods
at Nokia: a survey of opinions on agile transformation. Inf. Softw. Technol. 53(3), 276–290
(2011)

2. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

3. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international workshop on
large-scale agile development. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 75–80.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_9

4. Barroca, L., Dingsøyr, T., Mikalsen, M.: Agile transformation: a summary and research
agenda from the first international workshop. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364,
pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_1

5. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

6. May, C., Finch, T.: Implementing, embedding, and integrating practices: an outline of
normalization process theory. Sociology 43(3), 535–554 (2009)

7. Carroll, N., Conboy, K.: Applying normalization process theory to explain large-scale agile
transformations. In: 14th International Research Workshop on IT Project Management
(2019)

8. Miles, M.B., Huberman, A.M., Huberman, M.A., Huberman, M.: Qualitative Data Analysis:
An Expanded Sourcebook. Sage (1994)

82 N. Carroll et al.

https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-30126-2_1

9. Bjørnson, F.O., Vestues, K., Rolland, K.H.: Coordination in the large: a research design. In:
Proceedings of the XP2017 Scientific Workshops, pp. 1–5 (2017)

10. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation.
Empir. Softw. Eng. 23(1), 490–520 (2018)

11. Carroll, N.: Theorizing on the normalization of digital transformations. In: Twenty-Eight
European Conference on Information Systems, ECIS2020 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Operationalizing Agile Methods 83

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Transitioning from a First Generation
to Second Generation Large-Scale Agile

Development Method: Towards Understanding
Implications for Coordination

Finn Olav Bjørnson1(&) and Torgeir Dingsøyr2

1 Norwegian University of Science and Technology, Trondheim, Norway
bjornson@ntnu.no

2 SINTEF Digital, Trondheim, Norway

Abstract. This paper reports our initial findings from a longitudinal case study
within a large development project in a public organization in Scandinavia. We
focus on changes in coordination practices as the development project moved
from a 1st to a 2nd generation large-scale agile development methodology.
Building on four theories of coordination from different fields, we investigate
how each theory illuminates our case and what insight they might provide. We
find that two of the theories are well suited to characterizing each phase, pro-
viding answer to how coordination was done. While two other theories can
provide answers to why these changes occurred.

Keywords: Large-scale agile � Coordination

1 Introduction

Large-scale agile software development has received significant interest in the last
years [1, 2]. In particular, the topic of how to coordinate many development teams has
been seen as critical to the success of agile development at scale. A previous study
identified coordination challenges in large-scale agile development due to misaligned
planning at inter-team levels [3]. The introduction to the special issue on large-scale
agile development in IEEE Software, describes two generations of large-scale agile
development methods:

The first generation of large-scale agile development methods combined agile
methods at team level with traditional project management frameworks such as
PRINCE2. A second generation of large-scale agile development methods are currently
taken up globally. These methods which include Disciplined Agile Delivery, Large-
Scale Scrum, the Scaled Agile Framework and the Spotify model [2] prescribe new
arenas as well as roles in order to ensure coordination.

Agile methods have significant impact on coordination practices. They “de-em-
phasize traditional coordination mechanisms such as forward planning, extensive
documentation, specific coordination roles, contracts, and strict adherence to a pre-
defined specified process” [4]. In a previous article, we argued that coordination has to
be re-thought [5] in order to emphasize a number of characteristics of large-scale agile

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 84–91, 2020.
https://doi.org/10.1007/978-3-030-58858-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_9

development including focus on oral communication, work in teams, a high level of
interdependencies, uncertainty in tasks, many people involved, relations between
individuals and that coordination needs change over time.

Today, many organisations and projects are transitioning from a first to a second-
generation method for large-scale agile development. In this paper, we discuss the
following research question: How can theories on coordination explain changes in
coordination when moving from a first- to a second generation large-scale agile
development method?

We draw on a longitudinal case study of a development project in a large public
organization in a Scandinavian country. The project started with a first generation
large-scale agile method. However, in the last phase of the project, they changed to a
second-generation model with autonomous teams. In the following, we first present
theory which has previously been used to study coordination in large-scale agile
development, then our case study method, some initial results from the case study and
then a discussion of around using identified theory in analysing this case. We conclude
with what we see as preliminary recommendations for studying transitions of coordi-
nation practices in large-scale agile development.

2 Theory

A previous article [5] identified four theories we believe are relevant in order to
develop research-based advice for the software industry on coordination. In Table 1
below, we briefly present each theory with key reference and with reference to studies
using this theory on large-scale agile development. Note that the theories have very
different origins. The theory from Strode [4] and from Salas et al. [6] have basis in
single teams, while Van de ven [7] and Jarzabkowski [8] focuses on organisations.

3 Method

Our data is based on a longitudinal case study of a development project in PublicOrg.
In order to explain the setting, we first provide an overview of PublicOrg and the
development project, before commenting briefly on our research method for under-
standing the case.

3.1 Case

The fieldwork was conducted within a development project at PublicOrg, a large
Scandinavian organization for public services. The IT department develops, operates,
and manages IT solutions that support close to 20,000 employees in their work, and
provide solutions for about 800,000 active users. The IT department has approximately
700 employees and 400 consultants and maintains and operates close to 300
applications.

One of the core systems was originally developed in 1978. To accommodate leg-
islative changes and support increased automation of work, the organization began a

Transitioning from a First Generation to Second Generation 85

www.dbooks.org

https://www.dbooks.org/

series of modernization projects in 2012. The projects would replace the old system in
three increments. The first of these projects failed, and the failure resulted in massive
media attention. When the second project began in 2016, stakeholders were therefore
determined to avoid failure at any cost. This project, the “Beta” project, which is the
one we are studying, had an estimated cost of 130 million Euro. At the start of our
fieldwork, PublicOrg’s strategy for IT development was to outsource software devel-
opment projects to external suppliers. The suppliers, usually consultancy companies,
would then be responsible for development and maintenance, while PublicOrg was
responsible for coordination and operations. The IT department at PublicOrg employed
a staged development method, with formal handovers between stages.

Our unit of analysis is the Beta project, the project was organized and run by
PublicOrg according to their traditional model. They created a project group and hired
one consultancy company to help them with formulating requirements and another

Table 1. Four coordination theories, adapted from [5]

Field Description References

Software Engineering
(Strode et al.)

A coordination strategy consists of three
components: Synchronization: In arenas such as
daily meetings where team members meet at the
same time and place. Structure: Physical closeness,
team member availability and that team members
can substitute others. Boundary spanning:
Activities, artefacts and roles to coordinate with
other people or units beyond the project

Key
reference:
[4]

Sociology (van de Ven
et al.)

Coordination is done through persons (“personal
mode”) or through artefacts (“impersonal mode”). If
coordination is done through persons, it could be
done individually or in groups. Impersonal
coordination is “programmed” or “codified” for
example through plans or written coding standards

Key
reference:
[7]
Used in:
[9–11]

Organizational
Psychology (Salas
et al.)

Mechanisms for coordination on team level are seen
as relevant for inter-team coordination in multiteam
systems. Three coordination mechanisms: Shared
mental models: Common understanding of tasks,
work process and knowledge of others. Closed-loop
communication: Senders of messages ensure that
messages are received correctly. Mutual trust:
Shared belief that team members will perform roles
and protect interests of teammates

Key
reference:
[6]
Used in:
[12–14]

Management Science
(Jarzabkowski et al.)

Management Science researchers refer to the
process of Coordinating to underscore the dynamic
and emergent characteristics of coordination
mechanisms. Jarzabkowski et al. argue that
coordinating mechanisms are subject for change,
are established, fall apart, and are transformed over
time

Key
reference:
[8]

86 F. O. Bjørnson and T. Dingsøyr

consultancy company to implement the solution. At the height of the project group
including the consultancy companies involved approximately 200 people.

Since the previous project had been a failure, much attention was given to control
mechanisms and to ensure accountability within this second project. At the same time,
the IT-department at PublicOrg hired a new leader who had new ideas of how Pub-
licOrg should manage their IT strategy. They would move away from the previous
regime of outsourcing and more towards inhouse development, taking ownership of
their own systems. However, while the head of PublicOrg IT was talking about lean
business driven development in autonomous teams in an environment of trust and
openness, the project was still underway under the old regime of control and formal
handovers. This change in strategy by PublicOrg IT would affect the Beta project
gradually.

3.2 Research Method

The study of the Beta project has been organized as a longitudinal case study. Several
researchers have been involved with gathering data over a period of two years. Our
material consists of observations, project documents, and over 30 semi-structured
interviews usually lasting from 30 min to two hours. The interviews were recorded and
transcribed. Our main source of informants were the people from the consultancy
company hired to develop the solution, but we also conducted interviews with key
people in PublicOrg and in the consultancy company hired to assist with the
requirements.

We are currently in the process of organizing and coding the material. The findings
in this paper is based on our initial understanding of the case and the material before
beginning a thorough analysis. Our analysis will consist of combination of bottom up
and top down coding, and this paper outlines some key theories and constructs which
will be used in the top down part of the analysis.

4 Results

During the first phase of the development project, which was based on the first gen-
eration “Perform model” [15, 16], there were several structures designed to promote
coordination at the inter team level. We have identified around 20 arenas and tools used
during this phase. Formal meetings like the upstart meetings in the beginning of each
iteration, and Scrum of Scrums intended to keep the teams in the loop on what was
happening in other teams. Architectural forums and test forums sought to keep the
specialized roles in each team in touch with each other. Artefacts such as the overall
architecture and dependency map contributed to handling of dependencies between
teams. In addition, many team members were rotated between teams as the project was
scaling up in order to promote knowledge sharing between developers. Contact
between the developers and PublicOrg was largely formal, each team had a “functional
architect” from their consultancy company that was the contact person towards the
product owners and solution architects at PublicOrg. The product owners and solution
architects were situated in another part of the building. We label this first part of the

Transitioning from a First Generation to Second Generation 87

www.dbooks.org

https://www.dbooks.org/

project “First generation agile development methodology”, since the agility of the
development teams takes place in strict boundaries within a framework of project
management and waterfall methodology.

For the second phase of the project not much was changed for the core develop-
ment teams. They were scaling up eventually ending up with seven teams. There were
some changes relating to how they communicated with PublicOrg, as the product
owners and solution architects were moved physically closer to the teams they were
working with, but handover of user stories was still much based on a “relay race”
approach. The larger change for this phase was that a part of the system was spun off
from the larger solution and given to a dedicated multidisciplinary team, “Team
Bravo”. This was in addition to the seven core teams. Team Bravo was not locked into
the reporting, testing and deployment regime of the core teams, they had autonomy to
deploy to production at will. This team was not part of any of the coordination arenas
the core teams were using to coordinate their dependencies, and dependencies with the
core system was handled on an ad hoc basis, leading to some frustration as expressed
by a project manager: “We were not quite in phase when it came to coordination, I’d
say. And I bet they thought we were daft, and we thought they were a bit daft too. But
such things pass easy, given some time”. This second phase of the project we’ve
labeled “Bimodal”, since the core teams are continuing with their original methodol-
ogy, while team Bravo is trying out a new way of working.

During the second phase of the project, the decision was made to change the entire
organization of the project, this happened in the third phase Everybody should now
work in multidisciplinary teams. A change that was characterized as “Changing the
engine of an airplane in flight with 200 passengers aboard”. Every team had autonomy
to decide their own work structure, and most of the coordination arenas across teams
was dropped in addition to several middle management roles being removed. Pub-
licOrg hired two agile coaches that would advise the teams on how they could work.
From two major deployments a year, they would now move to daily deployments. The
teams were structured around functional areas of the overall system so every team had a
dedicated area to develop and support. We characterize this third phase of the devel-
opment project as a “second generation agile development model” as in this phase the
teams have a much larger degree of both agility and responsibility.

5 Discussion

We return to our initial research question: How can theories on coordination explain
changes in coordination when moving from a first generation to a second generation
large-scale agile development method?

From the theoretical perspective of Strode [4] we see that the synchronization has
been left to the teams in the new structure. Very little emphasis has been on syn-
chronization structures across teams and six months after the change, informants were
expressing needs for more synchronization arenas across teams. Structure has been well
kept in that all members of teams are sitting together and they are physically close to
the other teams. However, team member availability across teams can be a challenge,
as can teams’ ability to substitute each other since every team is now specialized within

88 F. O. Bjørnson and T. Dingsøyr

an application area. Boundary spanning is where we can see a clear lack of structure in
the new organization, which might have implications later. However, six months after
phase three began, we saw new boundary spanning mechanisms emerging to meet this
need.

Looking at the case with the theoretical perspective of van de Ven [7], we see a
move from group mode of personal coordination towards individual mode of personal
coordination. In addition, we see a move within group mode coordination from
scheduled to unscheduled meetings. Since decisions are moved towards the team level,
we see a decline in impersonal modes of coordination across teams since teams are no
longer bound by guidelines developed by other teams.

The theoretical lens of Salas [6] allows us to explain why we continue to see good
coordination between teams despite removing many arenas of cross team coordination.
The main explanation lies in the development of a shared mental model during the first
phases of the project. With this in mind, developers are able to coordinate across teams
because they know what the other teams are doing. It will be interesting to see if the
new structure will lead to a decline in the shared mental model over time, which some
informants were indicating signs of six months after the transition to phase three. With
the teams being given much autonomy, trust is probably the second most influential
factor. The management trusts the teams and the teams trust each other. The shared
mental model and trust might also be key constructs in explaining the poor coordi-
nation between the first autonomous team and the rest of the developing teams during
the second phase of the project.

Finally, the theoretical perspective of Jarzabkowski [8] allows us to understand the
process of rebuilding the coordination arenas after they were removed during the
change in the project organization. After the reorganization most of the focus was on
establishing coordination at the intra team level, but when we visited the project six
months after the transition, multiple respondents expressed interest in re-establishing
some of the coordination mechanisms at the inter team level.

It seems like these four theories align themselves along two major lines of questions
for this case. Strode and van de Ven are useful to characterize the phases and answer
questions relating to how coordination practices were organized during the project. The
theories of Salas and Jarzabkowski are useful to describe why these changes occurred,
and the apparent success of the transition.

The main limitation of this paper is that we are presenting initial findings before the
main analysis is done. We do, however, believe the findings are important and inter-
esting in that they are guiding our work on structuring the analysis, and what types of
questions each theory might provide answers to. Other researchers may find the con-
structs from the identified theories useful in guiding their own research towards
coordination in large-scale development methods. Practitioners may find it useful to use
the constructs of Strode and van de Ven to map their own current practices and keep the
constructs of Salas and Jarzabkowski in mind when designing a transition strategy.

Transitioning from a First Generation to Second Generation 89

www.dbooks.org

https://www.dbooks.org/

6 Conclusion and Further Work

In this paper we have reported on some of our initial findings relating to coordination
from a large scale development project that transitioned from a first to a second gen-
eration development methodology during the project.

We used four different theoretical perspectives, originally put forward in [5], to
analyse our findings. We found that two theories [4, 7] were useful for characterizing
the phases of the transition and answer questions relating to how coordination was
done. The other two theories [6, 8] were useful to describe why the changes occurred,
and could help us explain the apparent success of the transition. From our initial
findings, a well developed shared mental model and sufficient degree of trust seems to
be key factors in the successful coordination while transitioning from one generation to
the next.

From a research point of view, the identified concepts might be useful in informing
new studies of coordination in large-scale software development. From a practitioner
point of view we offer guidance on how to categorize the current strategy and offer
some key concepts to keep in mind when designing a transition strategy.

Moving forward, we will continue to analyse the material from our longitudinal
study more in depth from the different theoretical perspectives we have identified, we
might also broaden our study with the theory of Relational Coordination, recently
suggested in [17] or specifically focus on coordination artefacts [18]. Our aim is to both
provide input to practitioners looking for evidence-based advice on scaling their agile
methods, as well as continuing our discourse on rethinking coordination in large-scale
software development.

Acknowledgement. This work was supported by the project Agile 2.0 supported by the
Research Council of Norway through grant 236759 and by the companies DNV GL, Equinor,
Kantega, Kongsberg Defence & Aerospace, Sopra Steria, and Sticos.

References

1. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international workshop on
large-scale agile development. In: Hoda, Rashina (ed.) XP 2019. LNBIP, vol. 364, pp. 75–
80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_9

2. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier. IEEE
Softw. 36, 30–38 (2019). https://doi.org/10.1109/MS.2018.2884884

3. Bick, S., Spohrer, K., Hoda, R., Scheerer, A., Heinzl, A.: Coordination challenges in large-
scale software development: a case study of planning misalignment in hybrid settings. IEEE
Trans. Softw. Eng. 44(10), 932–950 (2018). https://doi.org/10.1109/TSE.2017.2730870

4. Strode, D.E., Huff, S.L., Hope, B.G., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Softw. 85, 1222–1238 (2012)

5. Dingsøyr, T., Bjørnson, F.O., Moe, N. B., Rolland, K., Seim, E.A.: Rethinking coordination
in large-scale software development, Gothenburg, Sweden, pp. 91–92 (2018). https://doi.org/
10.1145/3195836.3195850

6. Salas, E., Sims, D.E., Burke, S.C.: Is there a “Big five” in teamwork? Small Group Res. 36,
555–599 (2005)

90 F. O. Bjørnson and T. Dingsøyr

https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1109/MS.2018.2884884
https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1145/3195836.3195850
https://doi.org/10.1145/3195836.3195850

7. Van de Ven, A.H., Delbecq, A.L., Koenig Jr., R.: Determinants of coordination modes
within organizations. Am. Sociol. Rev. 41(2), 322–338 (1976)

8. Jarzabkowski, P.A., Le, J.K., Feldman, M.S.: Toward a theory of coordinating: creating
coordinating mechanisms in practice. Organ. Sci. 23, 907–927 (2012). https://doi.org/10.
1287/orsc.1110.0693

9. Moe, N.B., Dingsøyr, T., Rolland, K.: To schedule or not to schedule? An investigation of
meetings as an inter-team coordination mechanism in large-scale agile software develop-
ment. Int. J. Inf. Syst. Proj. Manage. 6, 45–59 (2018)

10. Dingsøyr, T., Moe, N.B., Seim, E.A.: Coordinating knowledge work in multi-team
programs: findings from a large-scale agile development program. Proj. Manage. J. 49, 64–
77 (2018). https://doi.org/10.1177/8756972818798980

11. Nyrud, H., Stray, V.: Inter-team coordination mechanisms in large-scale agile. In:
Proceedings of the XP2017 Scientific Workshops, pp. 1–6 (2017)

12. Bjørnson, F.O., Wijnmaalen, J., Stettina, C. J., Dingsøyr, T.: Inter-team coordination in
large-scale agile development: a case study of three enabling mechanisms. In: XP2018,
Porto, Portugal, pp. 216–231 (2018)

13. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software
development: a multiteam systems perspective. In: 2014 47th Hawaii International
Conference on System Sciences, pp. 4780–4788 (2014)

14. Scheerer, A., Kude, T.: Exploring coordination in large-scale agile software development: a
multiteam systems perspective. In: Proceedings of the International Conference on
Information Systems (2014)

15. Dingsøyr, T., et al.: Key lessons from tailoring agile methods for large-scale software
development. IEEE IT Prof. 21, 34–41 (2019). https://doi.org/10.1109/MITP.2018.2876984

16. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation.
Empir. Softw. Eng. 23(1), 490–520 (2017). https://doi.org/10.1007/s10664-017-9524-2

17. Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an empirical
study through the lens of relational coordination theory. In: Kruchten, P., Fraser, S., Coallier,
F. (eds.) XP 2019. LNBIP, vol. 355, pp. 121–136. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-19034-7_8

18. Zaitsev, A., Gal, U., Tan, B.: Coordination artifacts in agile software development. Inf.
Organ. 30, 100288 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Transitioning from a First Generation to Second Generation 91

www.dbooks.org

https://doi.org/10.1287/orsc.1110.0693
https://doi.org/10.1287/orsc.1110.0693
https://doi.org/10.1177/8756972818798980
https://doi.org/10.1109/MITP.2018.2876984
https://doi.org/10.1007/s10664-017-9524-2
https://doi.org/10.1007/978-3-030-19034-7_8
https://doi.org/10.1007/978-3-030-19034-7_8
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Exploring the Product Owner Role Within
SAFe Implementation in a Multinational

Enterprise

Daniel Remta(&) , Michal Doležel , and Alena Buchalcevová

University of Economics, Prague, Czech Republic
{xremd03,michal.dolezel,alena.buchalcevova}@vse.cz

Abstract. [Context] Agile development methods are highly popular across
software organizations. To leverage benefits in larger enterprises, Agile devel-
opment methods have to be scaled. Scaled Agile Framework (SAFe) is the most
commonly used scaling framework. Performing of the Product Owner role has
been identified as crucial in project success in large-scale environments. Staffing
the right Product Owner is one of the challenges of adopting SAFe. [Motivation]
Research papers focused on Product Owner in SAFe are scarce. Our study
outcomes help enterprises to understand the Product Owner role in SAFe and
therefore contribute to the removal of challenges with finding the right Product
Owners. Additionally, we aim to improve the research community’s under-
standing of the Product Owner role within the context of SAFe. [Method]
Qualitative data were collected through three semi-structured interviews and
analyzed using deductive content analysis. [Results] This paper presents the
initial results of a single case study. We found out that many activities identified
for Product Owners in previous research are not carried out by Product Owners
in this particular SAFe implementation.

Keywords: Product Owner � Responsibilities � Functions � Scaled Agile
Framework � SAFe � Large-scale agile methods

1 Introduction

Agile, as a set of iterative and incremental software engineering methods [1], becomes
commonplace in many large organizations [2], where agile practices have to be scaled
[3]. Scaling Agile was identified as an important research topic [4], and more and more
large organizations are transitioning towards Agile [1, 2]. During this process, new
roles are introduced to the enterprise environment, such as the Product Owner
(PO) role. The PO role originates from the Scrum method [5] and has been identified to
play a crucial role in project success [1]. The PO role is also present in the frameworks
for large-scale Agile, such as Scaled Agile Framework (SAFe) [6], which is the most
commonly used framework for scaling Agile [7]. However, staffing the right PO was
identified as one of the challenges of adopting SAFe [8]. Surprisingly, research papers
with a focus on the PO role in SAFe are scarce. A better understanding of the role in
SAFe will help enterprises to acknowledge requirements to people assigned to the PO
role and therefore help with the success of their SAFe adoption. In our research, we

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 92–100, 2020.
https://doi.org/10.1007/978-3-030-58858-8_10

https://orcid.org/0000-0002-1086-7156
https://orcid.org/0000-0002-5963-5145
https://orcid.org/0000-0002-8185-5208
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_10

address the following research question (RQ): Which of the activities described for
Product Owners in previous research are performed by the Product Owners in the
examined enterprise that follows SAFe?

The paper is organized as follows. Following Introduction, Sect. 2 provides a
literature review and a taxonomy of PO functions mapped to SAFe roles. In Sect. 3, the
adopted research method and the context of the study are described. Section 4 provides
findings from the semi-structured interviews. Section 5 concludes the paper with a
discussion and a summary of key take-aways.

2 Background

In this section, we provide a literature review and present a taxonomy of PO functions.
We use the term “function” to refer to a designated group of coupled activities.

Large-Scale Agile. Scaling Agile was identified as an important topic [4]. Dikert et al.
[1] identified challenges and success factors for large-scale Agile transformations,
focusing on large-scale organizations with 50 or more people. The agile practices have
to be scaled [3], and POs must cope with a range of new activities [9].

Product Owner. Originally, Scrum defined the PO role relatively simply as the sole
person responsible for managing the Product Backlog [5]. Yet, the adequate performing
of Product Owners was identified as one of the critical success factors for projects [1],
and a wide range of other activities performed by PO was described [3, 10–14]. The PO
role has been examined in previous research. Bertzen and Moe [15] identified the
importance of frequent communication and interaction between POs in large-scale
Agile. Paasivaara et al. [3] described the differences in approaches to scaling the PO
role. Bass carried out an empirical research [9, 10] on the PO activities in a large-scale
Agile environment. Yet, only a limited amount of papers focus on the PO role in SAFe.

SAFe. SAFe provides prescriptive guidelines for implementing enterprise-scale Lean-
Agile development, and a number of companies that have applied SAFe have reported
significant benefits from it [6]. Interestingly, the popularity of SAFe seems unaffected
by concerns about Agile principles and values in the top-down approach, and SAFe’s
strong emphasis on process rather than on people [16, 17].

SAFe and PO. Despite some existing research on SAFe [8], papers focused on the
PO role in SAFe are still scarce. The study of Paasivaara et al. [2] states that imple-
menting SAFe results in closer collaboration and communication between POs and
Product Managers (PM). However, the study focus was on SAFe adoption in general.
Overall, little is known about the PO in SAFe.

PO in SAFe. SAFe adopted the PO role but, in contrast to Scrum, assumes that a
single person cannot handle product and market strategy while also being dedicated to
agile teams. It was confirmed in [9, 10] that in large-scale Agile environments, the
scope of activities goes beyond the capacity of one person acting as PO. PO and PM
share responsibilities for working with customers [6]. We have identified some of the
PO activities from [3, 10–14] in the descriptions of activities performed by other SAFe

Exploring the Product Owner Role Within SAFe Implementation 93

www.dbooks.org

https://www.dbooks.org/

roles. The System Architect (SA) creates an architectural vision and aligns teams around
a shared technical direction [6]. Aside from development, during planning, the Agile
Team (AT) identifies risks and impediments [6]. The risks are actively managed by the
Release Train Engineer (RTE) [6]. Specialty roles, people, and services to cover cus-
tomer training, support, and compliance audits are represented in Shared Services [6].
Scrum Master (SM) ensures that the agile processes and guidelines are followed [6].

Taxonomy of PO Functions. To understand the fragmentation of PO activities, we
extracted the taxonomy of the PO functions from the previous research on POs outside
the context of SAFe [3, 10–14]. Next, we mapped the activities from the taxonomy to
the descriptions of roles provided in SAFe [6]. The results are presented in Table 1. The
functions described by Bass [10, 11] were used in accordance with his descriptions.
When adding functions from [3, 12–14], we followed the example of the descriptions of
functions in [10, 11]. Added functions from [3, 12–14] are written in italics.

Table 1. PO functions taxonomy mapped to SAFe. (Synthetized from [3, 6, 10–14].)

Function Activity Role in
SAFe

Prioritizer [10] Prioritizes requirements in the product or sprint backlog and
ensures requirements bring value to the business.

PO/PM

Groom [10] Makes sure product backlog is continuously evolving and registers
requirements from clients. Clarifies the details of product backlog
items and their respective acceptance criteria.

PO/PM

Release Master [10] Manages and approves release schedules. PM
Technical Architect
[10]

Designs, implements, and disseminates a reference architecture,
provides architecture coordination on large projects.

SA

Governor [10] Provides a technical governance framework to project teams
working on a program and ensures project compliance with
corporate guidelines and policies.

RTE/SM/SA

Communicator [10] Ensures that global teams are in sync and bridges onshore and
offshore geographical distribution.

SM/PO

Traveler [10] Travels to clients to get first-hand knowledge of the client’s needs
and gathers an understanding of it by spending time onshore at
customer sites.

PM/PO

Intermediary [10] Has extensive experience in the system business domain and acts
as an interface to senior executives.

PM

Risk Assessor [10] Performs risk management and mitigation when needed, especially
with focus on technical complexity.

AT/RTE

Gatekeeper [11] Determines feature or story completeness for inclusion in the
release.

PO

Customer Relationship
Manager [11]

Provides technical support to customers, assists with site
preparation and product installation, and conducts product training.

Shared
Services

Entrepreneur [12] Develops business/product plan and service planning. PM

Motivator [13] Motivates the team and finds ways to get the team more involved. SM
Leader [14] Leads the development teams. SM

Negotiator [3] Negotiates with different stakeholders to avoid conflicts. PM/PO

94 D. Remta et al.

The mapping in Table 1 indicates the fundamental difference between the PO role
in SAFe and the PO role examined in previous research by showing a visible frag-
mentation of previously identified PO activities to other SAFe roles.

3 Research Method

Context. The single-case study has been conducted in a division of multinational
enterprise that delivers mainframe software. The examined value stream specifically
focuses on workload automation software, written mostly in low-level programming
languages. For newer components (e.g. modern user interfaces), higher languages like
C, Java, or JavaScript are used. The division follows the Portfolio SAFe configuration
[6] and claims to follow SAFe on the team and program level “by the book”. The
development teams work in 2- to 4-week sprints. Overall, the environment can be
characterized as a very large-scale Agile with 30 teams and 250+ team members.

Data Collection. Three POs have participated in the initial phase of the study. Table 2
shows the length of their experience in the role, the number of teams they concurrently
work with, the number of development team members they work with, their previous
position, and overall experience in the field of mainframe enterprise software. Addi-
tional interviews with 6–7 respondents are planned to complete the study.

The interviews were done in person, audio-recorded, and transcribed. The interview
guide is available at https://rebrand.ly/4ylvsbo. The interviews consisted of 54 ques-
tions, 3 to 4 per each function, and took from 65 to 85 min to complete. Our aim was to
identify if the activity of the function had been performed, to what extent, how often,
typically followed by a request to provide an example to validate the previous answers.
All recordings and transcripts were given codes and stored separately from any names
or other direct identification of participants.

Data Analysis. A deductive content analysis [18] was used. We used the functions
from the taxonomy introduced in Table 1 as categories for the analysis. Next, we
manually open coded, analyzed, and matched data into these categories. As the last
step, we have interpreted the results.

Table 2. Research participants

PO Months in the role Teams Members Previous position Years in field

POA 14 3 16 Developer, Scrum Master 3
POB 12 2 16 Developer 5
POC 10 1 16 Software support engineer 22

Exploring the Product Owner Role Within SAFe Implementation 95

www.dbooks.org

https://rebrand.ly/4ylvsbo
https://www.dbooks.org/

4 Results

In this section, we provide the preliminary results from the examined SAFe imple-
mentation. The comparison of each PO function from the taxonomy introduced in
Table 1 with the findings from the semi-structured interviews showed that POs in the
selected enterprise SAFe implementation perform the activities of Prioritizer, Groom,
Communicator, Traveler, Gatekeeper, and Motivator. In the rest of the functions, POs
are only partially involved. In Table 3, we present evidence for each function in the
form of quotations or merged findings. The functions confirmed as being performed by
POs are written in bold.

Table 3. PO Functions in SAFe – findings. Source: Interviews

Function Commentary

Prioritizer “PI objectives are our highest priority […] if we have some
customer interest in the feature or the story, it will get prioritized
higher. I try to keep my thoughts out of it. I try to prioritize first
based on customer, then on business needs.” [POC]

Groom “[…] continuously going through the backlog, seeing if there are
stories to be delivered and updated, as we are learning about new
technologies and based on the feedback from the customer I go
through the stories and change them or update them, and move into
the direction we want to go.” [POC]

Release master PO’s main activity in the release process is ensuring completion of
the release checklist, which has to be signed off by involved
stakeholders representing different business units. POA described
PM as the only one responsible. “Release dates, numbering, names,
all of this stuff goes to the product manager, and it is his
responsibility.” [POA]

Technical architect All POs stated that architectural activities and decisions are not in
the scope of PO activities. As evident from POC’s answer, they try
to avoid any architectural involvement as much as possible. “I try
very hard to exclude myself from any involvement with architectural
decisions. And I also try very hard to avoid anything in the
description of the user stories that will imply any suggestion for
architectural decision.” [POC]

Governor Different roles perform governance activities. POs mentioned: SA,
Legal, Functional Managers, and SMs. For POs, the delivery of the
item is the primary concern. POs only make sure that the
frameworks are followed and, in case not, inform other roles to take
action. “I raise a point or question when I believe it is appropriate
to raise the point, but I don’t see myself as a policeman being on
guard, or anything [like that].” [POB]

Communicator “I have team members in Texas, in Pittsburg, North Virginia, and
Sydney, and it is very difficult to manage the team across so many
different time zones.” [POC]

(continued)

96 D. Remta et al.

Table 3. (continued)

Function Commentary

Traveler “[…] mostly technical conferences, and this year I want to continue
in US and Europe. I am also expecting to do a few customer visits.
[POC]”

Intermediary All POs felt experienced in the domain of enterprise software
development, but POB and POC were not that confident in the
domain of Product Ownership. POs confirmed communications with
senior executives; however, as the senior executives, they
understand PMs, customer Account Managers, and Business
Owners. “[…] in general PM and upper product management,
while I talk most of the time with PM.” [POB]

Risk assessor All POs do identify and articulate potential risks but do not
participate in risk mitigation. The mitigation is understood as
belonging to other roles.
“Other people will go and take care of this. It is not a product
owner’s responsibility to solve it; it is a PO’s responsibility [just] to
raise it.” [POA]

Gatekeeper “I consider it complete when engineers will demo it, will show to me
and the other stakeholders what they did, elect feedback, and I don’t
consider it complete when there will not be proper QA [Quality
Assurance] testing on it to make sure what we have is working in
that front.” [POA]

Customer relationship
manager

All POs clearly stated that there are dedicated support and education
teams, so POs are not directly involved in providing support nor
training to the customers. PO activities in this area are limited to
providing internal training sessions and materials to support and
education teams. “I got the skillset, but it is not what I do. I will not
sit with the client and show him how to install the product.” [POB]

Entrepreneur All POs are involved and are contributing by providing information
to, and having discussions with, PM. The decisions and plans are
made by PM, who also owns the product roadmap. “As PO I just
discuss what customer want, reflect this to the management, and
then the decisions will come from the management, not the product
owner.” [POA]

Motivator All POs stated motivating the team, and people is part of their job.
“[…] give KUDOS to people who deserve it, always pull out
someone and say ‘Hey, good job!’, in case they did a good job. If
someone did an outstanding job, you should communicate this to
their managers and directors. [POA]

Leader None of the POs identified himself as the leader of the team.
“No. I don’t consider myself being a leader to the team. But I don’t
even know who the leader for the team is.” [POB]

Negotiator POs seem to be positioned as mediators, but not the negotiators per
se. “I would consider myself a mediator between different
stakeholders and trying to find the source of the conflict and
initiator of it.” [POC]

Exploring the Product Owner Role Within SAFe Implementation 97

www.dbooks.org

https://www.dbooks.org/

5 Discussion and Summary

Examining the Scaled Agile Framework [6] and its concrete implementation in
a multinational enterprise, we addressed the RQ: “Which of the activities described for
Product Owners in previous research are performed by the Product Owners in the
examined enterprise using SAFe?”. We found out that many activities identified for PO
in previous research are not carried out by POs in this SAFe implementation.
Specifically, our preliminary research findings demonstrated that PO in this particular
SAFe implementation is *not*: leading the teams; mitigating identified risks; design-
ing, implementing and disseminating technical architecture; providing governance
frameworks; ensuring compliance with corporate guidelines; communicating with
senior executives; nor providing support and customer training. This is surprising
because previous research conducted outside the context of SAFe assumed that PO
responsibilities are very broad. Below, we offer a hypothesis about the reason for the
inconsistency.

The mapping provided in Table 1 indicated that there is a complex relationship
between the previously identified PO functions and roles in SAFe, where the per-
forming of the activities is fragmented among multiple roles. Supported by the out-
comes from the conducted semi-structured interviews, which indicate that in SAFe, the
original PO role functions have undergone significant modifications, it is evident that
PO functions in SAFe are different from the functions of the PO role identified in
previous research. In our research, the close collaboration between PO and PM
described in [2] was confirmed. In fact, PO’s decisions about priorities and require-
ments for development are strongly influenced by PM, who, in reality, drives and
develops business and product plans. This PM activity contradicts the prime Scrum
definition of PO as the sole person responsible for managing the Product Backlog [5].
Therefore, the PO’s accountability for product leadership fades away.

We offer a possible explanation. SAFe provides rigorous descriptions for the
implementation of Agile processes on a large-scale and put the emphasis on the process
[15]. This de-facto leads to a new form of the management-driven top-down approach
[16] with the fragmentation of the roles. We support this statement by evidence from
the interview: “As PO I just discuss what customer want, reflect this to the manage-
ment, and then the decisions will come from the management, not the product owner.”
[POA]

Conclusion. The PO role in the examined SAFe implementation deviates from the
previous understanding of the role outside the context of SAFe, as the range of PO
activities is narrowed. We attribute it to the top-down approach criticized by practi-
tioners and confirmed during our single-case study. We identified PM as the person
accountable for, and steering, the product.

Limitations and Threats to Validity. The presented results were obtained in one
division of a large multinational enterprise and, therefore, might be influenced by the
local context. Achieving a validity in a single case study is a known challenge, thus
plausible, rival explanations or triangulation methods should be used in further research
to strengthen validity of our findings [19]. The study provides only preliminary

98 D. Remta et al.

outcomes from the three interviews. Hence, it is too soon generalize the PO role in
SAFe. Two papers [12, 13] used in our taxonomy did not explore a large-scale envi-
ronment context. Still, we identified similar activities appearing in the examined
environment.

Future Works. As this research is ongoing, another 6–7 interviews will follow to
validate the preliminary findings. Our next steps will be to gather, analyze, and
incorporate more data from POs with different experience and from different parts of
the organization, which will help to understand the real-life PO functions in SAFe
implementations. More case studies exploring further enterprise SAFe adoptions are
needed to confirm the findings presented in this study.

Acknowledgment. This work was supported by an internal grant funding scheme (F4/23/2019)
administered by the University of Economics, Prague.

References

1. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

2. Paasivaara, M.: Adopting SAFe to scale agile in a globally distributed organization. In:
ICGSE, pp. 36–40 (2017)

3. Paasivaara, M., Heikkila, V.T., Lassenius, C.: Experiences in scaling the product owner role
in large-scale globally distributed scrum. In: ICGSE, pp. 174–178 (2012)

4. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.
SIGSOFT Softw. Eng. Notes 38, 38 (2013)

5. Schwaber, K., Sutherland, J.: The Definitive Guide to Scrum: The Rules of the Game (2017).
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

6. SAFe: Scaled agile framework (2019). http://www.scaledagileframework.com/
7. CollabNet VersionOne: The 13th State of Agile Survey (2019). https://www.stateofagile.

com/
8. Putta, A., Paasivaara, M., Lassenius, C.: Adopting scaled agile framework (SAFe): a

multivocal literature review. In: XP’18, pp. 39:1–39:4 (2018)
9. Bass, J.M., Haxby, A.: Tailoring product ownership in large-scale agile projects: managing

scale, distance, and governance. IEEE Softw. 36, 58–63 (2019)
10. Bass, J.M.: How product owner teams scale agile methods to large distributed enterprises.

Empir. Softw. Eng. 20, 1525–1557 (2015)
11. Bass, J., Beecham, S., Razzak, M.A., et al.: Poster: an empirical study of the product owner

role in scrum. In: ICSE, pp. 123–124 (2018)
12. Oomen, S., Waal, B.D., Albertin, A., Ravesteyn, P.: How can Scrum be succesful?

Competences of the scrum product owner. In: ECIS, pp. 130–142 (2017)
13. Raithatha, D.: Making the whole product agile – a product owners perspective. In: XP,

pp. 184–187 (2007)
14. Kristinsdottir, S., Larusdottir, M., Cajander, Å.: Responsibilities and challenges of product

owners at spotify - an exploratory case study. In: HCSE/HESSD, pp. 3–16 (2016)
15. Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an empirical

study through the lens of relational coordination theory. In: XP, pp. 121–136 (2019)
16. Jeffries, R.: Issues with SAFe (2014). https://ronjeffries.com/xprog/articles/issues-with-safe/.

Accessed 22 Mar 2020

Exploring the Product Owner Role Within SAFe Implementation 99

www.dbooks.org

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://www.scaledagileframework.com/
https://www.stateofagile.com/
https://www.stateofagile.com/
https://ronjeffries.com/xprog/articles/issues-with-safe/
https://www.dbooks.org/

17. Elssamadisy, A.: Has SAFe Cracked the Large Agile Adoption Nut? (2013). https://www.
infoq.com/news/2013/08/safe/#. Accessed 22 Mar 2020

18. DeFranco, J.F., Laplante, P.A.: A content analysis process for qualitative software
engineering research. Innov. Syst. Softw. Eng. 13, 129–141 (2017)

19. Yin, R.K.: Validity and generalization in future case study evaluations. Evaluation 13, 321–
332 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

100 D. Remta et al.

https://www.infoq.com/news/2013/08/safe/#
https://www.infoq.com/news/2013/08/safe/#
http://creativecommons.org/licenses/by/4.0/

Evaluation of Agile Team Work Quality

Alexander Poth1(&) , Mario Kottke1, and Andreas Riel2

1 Volkswagen AG, Berliner Ring 2, 38436 Wolfsburg, Germany
{Alexander.Poth,mario.kottke}@volkswagen.de
2 Grenoble INP, G-SCOP, CNRS, Grenoble Alps University,

38031 Grenoble, France
andreas.riel@grenoble-inp.fr

Abstract. The maturity of organizations is measured with process assessment
models like the ISO/IEC 33001. The product quality is aligned with internal and
external product quality charactersitics based on models like the ISO/IEC
25010. With the shift from the Tailorism-driven process orientation to a more
people centric organization, the two dimensions process and product quality
have to be extened by the people or team quality dimension. The presented
approach offers aspects for agile Team Work Quality (aTWQ), as well as related
measurement indicators. The approach is evaluated in the large enterprise
context of the Volkswagen AG. The indicators of aTWQ have been integrated
and established in the agile tool box for a sustainable agile transition of the
company.

Keywords: Agile team work quality (aTWQ) � Large-scaling agile � Quality
assurance (QA) � Agile transformation

1 Introduction

Several big enterprises like Cisco [1], Ericsson [2], and Volkswagen [3] are in the
process of agile transformation. Accompanying tools and measures have to scale from
individual project teams to bigger organizational entities [4]. The key of agile devel-
opment is the team who delivers the customer value. However, systematic approaches
to team development in software developing industries are rare. They need to cover
criteria for the determination of team culture and performance, metrics, as well as
recommendations for improvement. In this article, we present the aTWQ (agile Team
Work Quality) approach to supporting teams in improving their agile mindset and
practices by themselves without external assessments. Given the legislative and cultural
context that is typical for large European enterprises, aTWQ shall meet the following
particular requirements and constraints:

– The approach shall not use specific roles that are typically fulfilled by a particular
person to avoid individual performance measures to be aligned with workers
council mindset in enterprises.

– The approach shall be appropriate for integration in project and program reviews to
measure transition progress from a governance perspective.

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 101–110, 2020.
https://doi.org/10.1007/978-3-030-58858-8_11

www.dbooks.org

http://orcid.org/0000-0002-2868-5633
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_11
https://www.dbooks.org/

– The approach shall be applicable as a self-service by the teams to ensure scaling
without centralized coaching etc. and support the autonomy of the teams during
evolving.

The lean and agile approaches most frequently used in industry, Scrum and
SAFe®, do not address TWQ explicitly. In SAFe®, one of the four core-values is
“Build-in Quality” [5]. In the deep dive documentation [6], however, the focus is
product quality and “Flow” as a generic construct for all other aspects of quality. The
process quality is implicitly addressed by links to other topics. TWQ is not mentioned
at all, and therefore implicit. On the other hand, the consequence of this observation is:
everything that is needed for quality is done inherently and not defined in SAFe®. In
Scrum, the heart of the value creation is the team, which is supported by the Definition
of Done (DoD) for achieving product quality, as well as the team retrospectives for
process improvement. The team itself does not get any kind of explicit quality-related
instructions and tasks. Instead, the daily, open communication and commitments are
essential parts of TWQ. This is motivated by the aspects like mutual trust and per-
formance monitoring which are observed in [7]. Also in [8] aspects like the ability to
complete whole tasks or feedback are shown to have an impact to the team work
quality. In [9] it is observed that team work quality correlates with performance in some
settings which is an important fact for organization development. Also, collocation and
diversity in teams [10] helps to improve team work quality.

The particular challenge related to TWQ is the fact that TWQ is part of internal
quality aspects that are typically hidden and invisible from the outside. This makes it
difficult in lean and agile environments to identify and explicitly “spend effort” on
them. The ISO/IEC 25010:2011 makes this more transparent by distinguishing “quality
in use” from “product quality”. The latter is often directly addressed by regulation and
compliance requirements like security or reliability. The process quality is treated as a
“first class citizen”, because there are powerful and influential (external) stakeholders
for legal compliance. Therefore, without some explicit measures and metrics related to
TWQ, a systematic development is difficult from the organizational point of view.

2 A Team-Based Approach to Agile TWQ

Team work aspects have been treated to a large extent in literature, e.g. [11] and [12].
Some of this previous work addresses agile team work quality explicitly [13] or [14]
some also propose organizational models fostering team work quality [15]. During the
design of our approach, we focused on integration of different concepts with a longer
evaluation time to not have the work to start from scratch and get benefits form the
diversity of the different approaches we are integrating. The three approaches we
consider most relevant are the Team Work Quality (TWQ) [14], Team Climate
Inventory (TCI) [16] and Group Development Questionnaire (GDQ) [15] because they
address both the team development and maturity. The TWQ approach focuses on
quality indicators of team work. The TCI approach developed over years and evaluates
team indicators related to the teams’ working structures for innovation. The GDQ
approach focuses on evaluating the teams’ alignment with stages of group

102 A. Poth et al.

development. Based on [17], the following empirical observations provide the basis of
our aTWQ approach:

a) Team Performance is based on TWQ.
b) TWQ and the TCI have similar “content”.
c) TCI works well with GDQ.

Based on [14] and [18], we derived the initial team-level approach covering the six
aspects communication, coordination, balance of contribution, mutual support, effort,
cohesion. These six quality aspects lead to team performance [19], legitimating eco-
nomically the effort for measurement and further TWQ improvement. We combined
these aspects with those of TCI and defined 19 related questions to come up with a
holistic team evaluation questionnaire for aTWQ, see Table 1.

Table 1. aTWQ questionnaire with specific indicators for Scrum and SAFe® and team
development level.

Topic Question (Base Practices) Scrum SAFe® Level

Participative
safety

Do we have a “we are in it
together” attitude driven
by the ability and
willingness to help and
support each other in
carrying out their tasks?

IV

Do people keep each other
informed about work-
related issues in the team
supported by a frequent
communication?

Daily Scrum Program, team
backlog

I

Do people feel understood
and accepted by one
another?

III

Are there real attempts to
share information
throughout the team driven
by openness of the
information exchange?

Daily Scrum,
Retrospective

Portfolio
Kanban, Inspect
& Adapt

(I) III

Is there a lot of give and
take by the team members’
motivation to maintain the
team?

Innovation and
Planning
Iteration

IV

Do we keep in touch with
one another as a team by
accepting that team goals
are more important than
individual goals?

Pairing/frequent
review

III

(continued)

Evaluation of Agile Team Work Quality 103

www.dbooks.org

https://www.dbooks.org/

Table 1. (continued)

Topic Question (Base Practices) Scrum SAFe® Level

Support for
innovation

Is this team always moving
towards the development
of new answers?

IV

Is this team open and
responsive to change?

Inspect &
Adaptation

Innovation and
Planning
Iteration

III

Do people in this team
always search for fresh,
new ways of looking at
problems?

Retrospective Innovation and
Planning
Iteration, PI
Planning

III

Do members of the team
provide and share
resources to help in the
application of new ideas
driven by team members’
ability and willingness to
share workload?

Inspect &
Adaptation

Innovation and
Planning
Iteration

III

Do team members provide
practical support for new
ideas and their application
by prioritize the teams’
task over other
obligations?

self-
organizing

Innovation and
Planning
Iteration

IV

Vision How clear are you about
what your team’s
objectives are?

(Product)
Vision, Sprint
Goal

Vision I

To what extent do you
agree with these
objectives?

Sprint
commitment

PI planning I

To what extent do you
think other team members
agree with these
objectives?

Refinement ART
commitment

I

To what extent do you
think members of your
team are committed to
these objectives?

Sprint
commitment,
DoD

ART
commitment

I

(continued)

104 A. Poth et al.

TWQ aspects not explicitly covered by the TCI questionnaire have been added and
printed in italics. Terms printed in bold letters signify the most important aspects of the
respective question. Column 3 and 4 show the mapping of the questions to Scrum and
SAFe®, respectively, based on the specific approach’s elements covering the aspects
addressed by the questions. Hence, the TCI/TWQ questions represent generic practices,
while the associated elements from Scrum or SAFe represent specific practices of either
approach. Both combined constitute the practice set of aTWQ in a specific team
environment. The sparsely populated columns 3 and 4 indicate that neither Scrum nor
SAFe® cover aTWQ aspects well. The indicators of the approaches are based on the
current versions of SAFe® 5.0 and the Scrum Guide version of Nov. 2017.

For the integration into the project reviews [20] evaluating individual product
teams, a group of teams (like programs), as well as entire organizational units, an
extension beyond a typical team size is needed. For the context of aTWQ, a team is

Table 1. (continued)

Topic Question (Base Practices) Scrum SAFe® Level

Task
orientation

Do your team colleagues
provide useful ideas and
practical help to enable
you to do the job to the
best of your abilities?

Pairing/frequent
review

IV

Are team members
prepared to question the
basis of what the team is
doing?

Daily Scrum,
Refinement

IV

Does the team critically
appraise potential
weaknesses in what it is
doing in order to achieve
the best possible outcome?

Refinement,
Retrospective

II

Do members of the team
build on one another’s
ideas in order to achieve
the highest possible
standards of performance?

Refinement,
Retrospective

(I) IV

Coordination Is there a common
understanding when
working on parallel
subtasks, and agreement
on common work
breakdown structures,
schedules, budgets and
deliverables?

Backlog,
Stories

Roadmap,
Portfolio, ART,
Iteration plan,
Stories

III

Evaluation of Agile Team Work Quality 105

www.dbooks.org

https://www.dbooks.org/

constituted by people who have common goals within a purpose. The team size is
aligned with the agile definition of 7–9 individuals [21]. A group is a collection of
people or teams coordinating outcomes and efforts.

In the aTWQ approach, the extension to groups larger than one team is realized
with the Group Development Questionnaire (GDQ) because in scaling agile approaches
there is no “one big team”. In SAFe®, for example, there exist different types of teams
like the technical and business teams sharing a common basic approach. “Both types of
teams strive for fast learning by performing work in small batches, assessing the
results, and adjusting accordingly” [22]. This leads us to deriving that in SAFe, a group
of different types of teams is managed. To handle this appropriately, something beyond
TWQ is needed to show that the group which forms a SAFe® environment works fine.

The evaluation of the readiness of organizations is based on the spiral dynamics
approach, which is usable in larger social systems like the GDQ. These two models
provide the basis for using the aTWQ approach from individual teams to larger
organizational units including many teams that work for some shared objectives. Based
on this, the Level specification has been made in column 5 of Table 1. These levels
represent the following GDQ approach stages: (I) Dependency and inclusion,
(II) Counter-dependency and fight, (III) Trust and structure, and (IV) Work and pro-
ductivity. The numbers in parentheses indicate the rating aligned without the mindset
objective primarily based on the formal application of the respective agile aspects only.
For example, in the Scrum theater, people apply some Scrum methods “mechanically”
without actually forming a Scrum team with an agile mindset – this Scrum theater have
to be rated with the parentheses level. The levels can be used by the teams to prioritize
the improvement actions – start with actions on lower levels to establish a base to build
on for higher level actions. The four maturity levels can be easily mapped to ratings
used in specific process assessment frameworks such as the ISO/IEC 33001:2015. To
have some specific indicators for the rating, column 3 and 4 can be used. Furthermore,
the level rating is an indicator for the maturity of teams based on the TCI/GDQ
approach.

3 Evaluation and Improvement Iterations

In the first step, the initially designed approach was simulated with the coaches of the
Agile Center of Excellence (ACE) [23] which are the Volkswagen Group IT compe-
tence center for agile transitions and quality experts from the Quality Innovation
Network (QiNET) [24] which is an innovation network for IT quality within the
Volkswagen AG. The simulation was realized by virtual application of the aTWO
questionnaire to teams coached in the past. For each simulation a point in the past was
used as timestamp for answering the aTWO questions based on the situation around the
timestamp. During the simulation the answers of the teams were simulated by the
coaches/experts based on their knowledge about the team. Based on the answers
potential chances and risks for the team development were derived. Then the timestamp

106 A. Poth et al.

was move ahead to check if the chances or risks identified by the aTWO approach are
realistic to validate the questionnaire as a starting point for team improvements. An
initial Proof of Concept (PoC) was done in the Scrumban aligned product team of TaaS
[25]. The self-assessments taken ca. 1.5 h. The team can answer the questions in a way
it is most useful and common in the team – bullet points or phrases are valid options to
document evidences and indicators as well as for improvement ideas. But it is
important to make the rating in the defined NPLF-schema to be able to compare team
ratings of different organizations.

Some facts about the TaaS PoC: The concerned service was introduced in 2016 and
has been offered in the Volkswagen Group since 2017. Over the years, evolving the
team constellations have led to an established devops team with end-to-end responsibly
for the service delivery. In April 2020, the team included an internal product owner,
two internal software engineers and one external software engineer with a primary
focus on product development and third-level ops-support, as well as one external part-
time devops engineer with primary focus on first and second-level support and some
third-level support activities. The team members’ experience levels covers a wide range
from junior developer to senior engineer. After a team composition change a few weeks
earlier, the team was in a re-balancing phase. The application of the aTWQ ques-
tionnaire worked fine and was conducted as a dedicated task of a team retrospective.
The identified enhancement potentials were used like retrospective outcomes and lead
to actions for team improvement. Some small improvements based on the feedbacks
and observations were made about aTWQ and are reflected in the version of Table 1.
As an outcome, a spreadsheet was derived with supporting notes and remarks for the
teams. This sheet is the core of the aTWQ self-service kit.

Team sizes and self-assessments were similar in the two other applications we
investigated. The teams remained stable at least one year before the self-assessment
was conducted. All these teams belong to the same organizational unit, which has
approximately 25 employees. Furthermore, the organizational unit “shares” experts in
the teams. Therefore, in each self-assessment of a team at least one person has two self-
assessments. The organizational unit achieves a 2-digit million Euro turnover based on
a service-catalog based delivery approach. The service delivery is realized with a few
hundreds of external partners. The service are a full stack from management activates,
consulting, coding to operations. The evaluation results from this application shows
that the self-service kit is ready to use. This leads to the next step to reflect the aTWQ
self-service kit in the coach guild of the Volkswagen AG and offer it to the coaches
with all brands. In a final step, the integration into the agile tool box was made for a
general availability to everybody in the Volkswagen AG. Furthermore, aTWQ was
integrated into the agile project review [20] in June. This provides the base to compare
teams and organizations in the future. To avoid that this approach is used only as a
management tool the self-service kit offered to ensure that independent form external
triggers the team can work in a safe private environment to improve them.

Evaluation of Agile Team Work Quality 107

www.dbooks.org

https://www.dbooks.org/

4 Conclusion

With aTWQ, we proposed a model for the awareness of the team-dimension of the
three quality dimensions product-, process- and team-quality. We specified an explicit
indicator set for the most popular agile approaches Scrum and SAFe®. First evidences
for relevance and added-value for effective team development in Scrumban environ-
ments have been given by the self-assessments and the derived team actions.

The key contributions to theory can be summarized by the identification of the gap
between the current quality-models to the real world in industrial settings which
emphasize agile team work which is not explicitly addressed and covered by the
established product and process quality models and approaches. The identification of
possible approaches reduced this gap by the integration of the TCI, TWQ and DGQ
approach to the aTWQ approach with a focus on the application in real world product
teams. The initial analysis about the state-of-the-art provides a basis for more
sophisticated research about the added value created by the aTWQ approach in the
context of team-, multi-team- and organizational-level.

The context of the development and evaluation of aTWQ is a large enterprise
setting with a European culture and mindset. This narrows the possibilities and degrees
of freedom by design. The evaluation criteria in the questionnaire are not fine grained
which lets room for interpretation of what is adequate if no explicit evidences are
expected and no indicators are given by the evaluation model. Currently aTWQ has an
open design to leave the decision by the teams in case of self-application and by the
reviewer from the governance in case of “external” team evaluations. The interpretation
by a more or less constant governance reviewer team will give sufficient comparability
between the teams within an organization. Really mature agile teams will actively
request for external “feedbacks” to get the ranking to other teams and learn from
external inspiration for their improvement journey. This kind of limitation is a chance
by design to ensure continuous improvement within the teams and organizations
because they have not static target like an evidence or indicator list which have to be
fulfilled and the “aTWQ story is done”.

References

1. Chen, R., Ronxin, R.R., Proctor, D.: Managing the transition to the new agile business and
product development model: Lessons from Cisco Systems. Bus. Horiz. 59(6), 635–644
(2016)

2. Paasivaara, M., Lassenius, C., Heikkilä, V.T., Dikert, K., Engblom, C.: Integrating global
sites into the lean and agile transformation at ericsson. In: 2013 IEEE 8th International
Conference on Global Software Engineering, Bari, pp. 134–143 (2013)

3. Poth, A.: Effectivity and economical aspects for agile quality assurance in large enterprises.
J. Softw. Evol. Process 28(11), 1000–1004 (2016)

4. Poth, A., Kottke, M., Riel, A.: Scaling agile – A large enterprise view on delivering and
ensuring sustainable transitions. In: Przybyłek, A., Morales-Trujillo, M.E. (eds.)
LASD/MIDI -2019. LNBIP, vol. 376, pp. 1–18. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-37534-8_1

108 A. Poth et al.

https://doi.org/10.1007/978-3-030-37534-8_1
https://doi.org/10.1007/978-3-030-37534-8_1

5. https://www.scaledagileframework.com/safe-core-values/. Accessed 10 June 2020
6. https://www.scaledagileframework.com/built-in-quality/. Accessed 10 June 2020
7. Strode, D.: Applying Adapted Big Five Teamwork Theory to Agile Software Development.

arXiv preprint arXiv:1606.03549 (2016)
8. Tessem, B., Maurer, F.: Job satisfaction and motivation in a large agile team. In: Concas, G.,

Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 54–61. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73101-6_8

9. Lindsjørn, Y., Bergersen, G.R., Dingsøyr, T., Sjøberg, D.I.K.: Teamwork quality and team
performance: exploring differences between small and large agile projects. In: XP2018,
Porto, Portugal, pp. 267–274 (2018)

10. Melo, C.O., Cruzes, D.S., Kon, F., Conradi, R.: Interpretative case studies on agile team
productivity and management. Inf. Softw. Technol. 55, 412–427 (2013). https://doi.org/10.
1016/j.infsof.2012.09.004

11. Moe, N.B., Dingsøyr, T., Røyrvik, E.: Putting agile teamwork to the test – An preliminary
instrument for empirically assessing and improving agile soft-ware development. In: Agile
Processes in Software Engineering and Extreme Programming: 10th International Confer-
ence (XP2009), Pula, Italy, pp. 114–123 (2009)

12. Lingard, R.W.: Teaching and assessing teamwork skills in engineering and computer
science. J. Systemics Cybern. Inform. 18(1), 34–37 (2010)

13. Ramírez-Mora, S.L., Oktaba, H.: Team maturity in agile software development: The impact
on productivity. In: IEEE International Conference on Software Maintenance and Evolution
(ICSME), Madrid, pp. 732–736 (2018)

14. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innovative projects: A
theoretical concept and empirical evidence. Organ. Sci. 12(4), 435–449 (2001)

15. Wheelan, S.A., Hochberger, J.M.: Validation studies of the group development question-
naire. Small Group Res. 27(1), 143–170 (1996)

16. Anderson, N., West, M.A.: The Team Climate Inventory: Development of the TCI and its
applications in teambuilding for innovativeness. Eur. J. Work Organ. Psychol. 5(1), 53–66
(1996)

17. Gren, L., Torkar, R., Feldt, R.: Group maturity and agility, are they connected? – A survey
study. In: 2015 41st Euromicro Conference on Software Engineering and Advanced
Applications, Funchal, pp. 1–8 (2015)

18. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: A systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

19. Lindsjørn, Y., Sjøberg, D.I., Dingsøyr, T., Bergersen, G.R., Dybå, T.: Teamwork quality and
project success in software development: A survey of agile development teams. J. Syst.
Softw. 122, 274–286 (2016)

20. Poth, A., Kottke, M., Riel, A.: Scaling agile on large enterprise level – systematic bundling
and application of state of the art approaches for lasting agile transitions. In: 2019 Federated
Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany,
pp. 851–860 (2019)

21. Rodríguez, D., Sicilia, M.A., García, E., Harrison, R.: Empirical findings on team size and
productivity in software development. J. Syst. Softw. 85(3), 562–570 (2012)

22. https://www.scaledagileframework.com/agile-teams/. Accessed 10 June 2020
23. Poth, A.: Effectivity and economical aspects for agile quality assurance in large enterprises.

J. Softw. Evol. Process 28(11), 1000–1004 (2016)

Evaluation of Agile Team Work Quality 109

www.dbooks.org

https://www.scaledagileframework.com/safe-core-values/
https://www.scaledagileframework.com/built-in-quality/
http://arxiv.org/abs/1606.03549
https://doi.org/10.1007/978-3-540-73101-6_8
https://doi.org/10.1016/j.infsof.2012.09.004
https://doi.org/10.1016/j.infsof.2012.09.004
https://www.scaledagileframework.com/agile-teams/
https://www.dbooks.org/

24. Poth, A., Heimann, C.: How to innovate software quality assurance and testing in large
enterprises? In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI
2018. CCIS, vol. 896, pp. 437–442. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-97925-0_37

25. Poth, A., Werner, M., Lei, X.: How to deliver faster with CI/CD integrated testing services?
In: Larrucea, X., Santamaria, I., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2018. CCIS,
vol. 896, pp. 401–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97925-0_
33

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

110 A. Poth et al.

https://doi.org/10.1007/978-3-319-97925-0_37
https://doi.org/10.1007/978-3-319-97925-0_37
https://doi.org/10.1007/978-3-319-97925-0_33
https://doi.org/10.1007/978-3-319-97925-0_33
http://creativecommons.org/licenses/by/4.0/

A Systematic Approach to Agile Development
in Highly Regulated Environments

Alexander Poth1(&) , Jan Jacobsen2, and Andreas Riel3

1 Volkswagen AG, Berliner Ring 2, 38436 Wolfsburg, Germany
alexander.poth@volkswagen.de

2 Volkswagen Financial Services AG, 38112 Brunswick, Germany
jan.jacobsen@vwfs.com

3 Université Grenoble Alpes, CNRS, Grenoble INP, G-SCOP,
38031 Grenoble, France

andreas.riel@grenoble-inp.fr

Abstract. For established domains within highly regulated environments, a
systematic approach is needed to scale agile methods and assure compliance
with regulatory requirements. The presented approach works adequately in
small agile teams – independently of the underlying method such as Scrum,
Kanban, etc. – and is scalable to more and bigger teams or even entire sub-
sidiaries. It is based on a compliance and a quality risk dimension respectively.
Both dimensions are needed to fit regulatory requirements in our finance
example with more than 100 developers in one subsidiary.

Keywords: Software development management � Agile software
development � Regulation compliance � Large scaling agile

1 Introduction

Established industry sectors are more or less regulated. Less regulated sectors solely
have to incorporate basic requirements like European Union regulation, i.e. the General
Data Protection Regulation (GDPR) [1], and/or national requirements such as the
German Commercial Code (HGB) [2]. In highly regulated sectors however, products
and services have to comply with further extensive standards and regulations. The
financial sector, for example, has to fulfill regulations imposed by the EU countries’
national supervisory authorities, as well as Minimum Requirements for Risk Man-
agement for financial institutions (MaRisk) in Germany [3]. Many regulations are
domain-specific like medical, finance or automotive. However, regulations have some
common aspects like quality assurance evidences for verification and validation which
demand a more or less stringent traceability and risk management [4].

Our research objective is to design a framework that can be used to derive a specific
compliance guideline offering as much autonomy to agile teams as possible by fitting
the required specific regulations of the product or service with its organization. In large
organizations, specific organizational units have to be aligned with specific compliance
requirements. To support this specificity, the approach shall be generic by design. This
will enable scaling the approach into different organizations and their units. As for

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 111–119, 2020.
https://doi.org/10.1007/978-3-030-58858-8_12

www.dbooks.org

http://orcid.org/0000-0002-2868-5633
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_12
https://www.dbooks.org/

evidences for the effectiveness of the framework, we want to meet the following three
core requirements. First, the external confirmation by audits with focus on compliance
shall be facilitated. Second, the delivery of the demanded business value shall not be
hampered and remain an essential part of the outcome flow. Third, the framework shall
be adaptable to new regulations over time.

2 Related Work and Methodology

A huge body of documentation exists to handle regulation and compliance. However,
these works mostly focus on a specific solution or aspect within the respective domain.
This leads to partial [5] and inconsistent [6] agile adoptions [7] like ScrumBut.
Examples for agile development in regulated domains are [8] for safety related prod-
ucts, [9] for the medical, and [10] for the finance domain. However, it is difficult to find
a generic practical framework for regulated domains.

The framework presented here was developed following the design science
research approach [11], demonstrating the framework’s application in a case study in
the financial domain. The framework’s general applicability is assured by design thanks
to its independence from any specific regulation. Furthermore, it is adoptable by design
to different business domain specific demands in large organizations to scale into their
units.

3 Scaling Conformity to Regulations via Levels of Done

The development process has to address two dimensions. The domain dimension
handles the organizational and procedural compliance requirements. It has to assure
that the compliance requirements be fulfilled at least at the latest required point in the
product or service life cycle. Earlier assurance of regulatory requirements is possible
and a part of the team’s self-organization. The product specific dimension helps teams
identify and realize their product specific quality-risk requirements. Within this
dimension, the team handles product or service specific quality-risks in a structured and
transparent manner to assure an adequate risk management. For handling the product
specific quality risks, we use the Product Quality Risk (PQR) [12] approach, which
focusses on quality risks implied by the specific market chances and opportunities of
each service or product. PQR guides the teams from a systematic identification of
specific service and product quality risks, and helps them define adequate mitigation
actions.

To leverage a lean and agile development process, which teams can apply outcome-
specific refinements to, only a minimum predefined framework shall be set while still
assuring a systematic handling of the team’s refinement work. The process outcome’s
value is assessed by its (inherent) quality risks. Systematic product or service quality
risk identification and handling proposed in [12], can be used to assure that the
development process does not lose outcome focus. In [5], the product capabilities and
features are used to derive the product specific quality risks. Based on the identified and

112 A. Poth et al.

prioritized quality risks, adequate mitigation actions are scheduled during the devel-
opment to ensure a compliant and high quality outcome.

To assure that product teams incorporate both dimensions just in time, we propose a
Levels of Done (LoD) approach. LoD are an enriched variant of the Definition of Done
(DoD) of Scrum that is aligned with requirements [13] at defined milestones in the
development process. The LoD approach applies the concept of boundaries [14]
beyond the sprint time-box between Definition of Ready (DoR) and DoD to all take-
overs in a value chain. This makes it simple and independent from any specific agile
approach based on sprints, as well as sufficiently generic to adapt to different regulation
domains with the specific check-points they require. This is necessary to fulfill a
systematic product and process quality approach demanded by most quality related
standards, as well as to allow agile scaling while staying effective [15].

4 The LoD-PQR Approach

While in a traditional compliance scope, the software development life-cycle is clearly
defined by a comprehensive set of fixed requirements and deliverables prior to project
start, we propose the following four steps to define LoD in agile environments:

Identify all relevant regulations and standards of your enterprise for compliant
products and/or services.

Identify how many stages you have for product development via a Kanban board.
The Kanban board helps to identify handover-points in a work stream. These points

are the most relevant for LoD.
According to Conway’s law [16], the structure of an origination drives their out-

comes. Therefore, alignment of the “planned” outcome architecture with the organi-
zation shall be considered. This should also drive future changes to an existing LoD to
support the transformation in a pull-fashion. The LoD does not refine the internal team
organization between two stages. The teams can apply their preferred agile approach
like Scrum, Kanban etc. in their self-organized working flows to fit the next stage.

Enabling teams to choose the most effective ways to comply with regulatory
relevant outcomes by mapping them to the stages of the Kanban board.

A transparent traceability from the regulation to the LoD will facilitate regulation
adoption. However, finding adequate implementations should be delegated to the team
to give them freedom to find solutions that fit into their particular context. The
openness about how to reach the outcomes give the teams the autonomy to work as it is
best for their specific demands and the mastery (responsibility) about their imple-
mentations. The traceability from the external requirements to their internal represen-
tations – the topics in Fig. 1 – shall be established to avoid interpretations by missing
“root” and to avoid non-value adding activities in a lean context.

Reduce the outcomes of “chains” to the last outcome for a shorter list.
To optimize the LoD, chains of dependencies can be reduced to the latest outcome.

For example, a separate test protocol is not needed if the test result log and protocols
are saved as part of the comprehensive deployment-log and stored in an auditable way.
This is covered by an underlying internal control system.

A Systematic Approach to Agile Development 113

www.dbooks.org

https://www.dbooks.org/

Provide additional information about practices and work instructions about
outcomes for assisting the teams. To help the teams for a fast instantiation, a practice
collection can be provided sharing of experiences across the organization. If a new
practice is identified, it will be added to the practice collection to leverage continuous
improvement and replacement of outdated practices.

Add the PQR dimension to assure that products and services have a compre-
hensive quality approach. To derive systematically the specific PQR a self-service kit
for the teams is recommended as described in [17]. While the LoD covers only formal
regulation requirements, the PQR method handles business risks related to deliverables
by quality related mitigation actions as described in [12] and [17]. These mitigation
actions are mapped to the corresponding stages and handled by the teams. Based on the
regulation and quality risk dimension, a holistic quality management system can be
established. Figure 1 shows how the actions fit together in a product team specific
instantiation. It visualizes the instantiation of the 4 LoDs, the product team specific
PQRs actions (a) on top of the organization-wide valid LoD topics (t), as well as the
numerous product checks.

The LoD-PQR approach is easily repeatable for the iterative and incremental
development in agile product teams. It also foresees cross-team reviews conducted by
technical reviewers (IT experts) providing evidence of compliance with the LoD.
Quality standards covered in the reviews include: architecture, code quality, PQR,
security, documentation, etc. Every topic has its own LoD acceptance criteria.
Depending on the technical review result, the accountable role (e.g. Head of IT) grants
technical approval for the product release (Fig. 2).

One difference to a DoD is that the latter is typically defined by the team, while a
LoD is given by the organization to a team, and team-specific parts are defined via the
PQR with a product or service focus. A second difference is that a DoD addresses
aspects which are handled by the team, while the LoD-PQR approach ensures an end-

Product N

Iden fy compliance requirements (§)

Iden fy handovers for levels

Map § to levels Define LoD topics (t)

Organiza on

§1.1

§n.1
§2.2

§1.1
§2.x
§3.1

§1.4
§2.2

§1.4
§2.2

§1.1
§2.x
§3.1

t1

- t2
- t3
- t4

Add product specific PQR ac ons (a) to LoD

Product A

t1

t2

t3

t4

a1

a2

a3

Fig. 1. Schematic picture of a practical LoD-PQR method application scenario.

114 A. Poth et al.

to-end view for a delivery of a product or service. Furthermore, the DoD is checked by
the team as a kind of a self-commitment, while the LoD is typically checked and
ensured by team external reviews initiated by the organization’s compliance.

For the review and approval process as well as the LoD, internal criteria shall be
derived. The control owner shall establish a monitoring on the whole process against
these criteria (via preventive gates and/or detective post-checks) in order to conduct
appropriate actions depending on the level of conformance and control effectiveness.

Derivations to the LoD shall be assessed and tracked to sign-off by the risk owners.
Teams “pull” experts for specific standards for support in case of new or special issues.
Any regulation changes shall be integrated into the LoD as soon as possible and all
teams have to ensure to fulfill the current version as soon as possible. Teams can
autonomously set synchronization points in case of inter-team dependencies. The time
span between the different levels of the LoD in a team mostly depends on the team’s
delivery frequency, and is independent from a team’s delivery cycle duration. Some
teams need weeks, others months.

5 Case Study: Instantiation, Deployment and Its Limitations

The Volkswagen Financial Services AG Digital Unit Berlin (DU) identified four stages
for their LoD (cf. Fig. 1). First, the business takes over the stories into the team.
Second, the team implements the requirements according to compliance for security
etc. Third, the product is checked for compliance and business process integration.
Finally, the product’s functionality is verified during operation. The last stage is
interesting for the handover in cases were no DevOps is applied.

The identified regulations and standards for the financial domain are defined by the
European Union and are instantiated by German governance and regulation institutions
like the MaRisk, BAIT [18] or GDPR. As shown in Fig. 1, a key input to LoD was the
experts’ collection of LoD-relevant requirements. They derived them from the relevant

Iden fy product
team and schedule

review

Conduct review
based on LoD

acceptance criteria

Report technical
review results

conduct provide evidence
of compliance

Technical reviewer Product teams
Central IT-

compliance
team/Head of IT

Fig. 2. LoD compliance process and involved stakeholders.

A Systematic Approach to Agile Development 115

www.dbooks.org

https://www.dbooks.org/

regulations and collected them in a central document. Subsequently they mapped
similar requirements and merged them. They integrated requirements addressing the
development process (e.g. independent checks from the business of IT systems in
BAIT requirement 41) into the LoD design. These requirements from the identify
compliance aspects of Fig. 1 have an impact on the team’s organization and their
interfaces. Hence, regulations impact organization setup and team handovers (identify
handovers for levels in Fig. 1), in as described in Conway’s law. In the given context,
this happened for the acceptance testing by the business which is realized in an
independent stage in map § to levels in Fig. 1. Based on this, all teams have to
instantiate this regulation implementation before they can add product specific PQR
actions in the last step in Fig. 1. Another example is the regulation requirement about
systematic requirement documentation of the BAIT requirement 37 “Requirements for
the functionality of the application must be compiled, evaluated and documented in the
same way as for non-functional requirements.” This regulation requirement about
requirements is handled in the LoD’s first level with the task to refine requirements
based on the recommendation to align stories on the INVEST criteria [19]. INVEST
stands for Independent, Negotiable, Valuable, Estimable, Small and Testable. The
recommendation is given to establish a kind of state of the art for requirements doc-
umentation however teams have the option to substitute the recommendation with
another more adequate method for the product or service context. Furthermore the
BAIT 37 requires “The organisational units shall be responsible for compiling and
evaluating the requirements.” which leads to assign it to the LoD’s first level –

responsibility for this level is by the business product owner - and not to the second
level with IT responsibility. Both examples show that in a regulated finance environ-
ment one team have to has hand-over points which leads to at least three levels of done
to be compliant to the BAIT.

Preventive checks of the LoD’s correct application are conducted before a pro-
ductive deployment, while detective compliance check are done after deployment. To
assure LoD compliance, the DU adopted the approach from Fig. 2 with some refine-
ments for adequate review sampling and time (pre- or post-deployment). To reduce the
direct effects of the LoD procedures on team level, the objective is to reduce the pre-
deployment checks, which interrupt the delivery workflow of the team for a compliance
task. However, each team has to ensure that in an audit, all relevant artifacts and
evidences are available to demonstrate a compliant delivery.

The LoD of the DU has been developed by a cross-functional team. The team
incorporated experts from the headquarters compliance, headquarters security, business
and development teams, as well as external experts from the Volkswagen AG.
Reflections with external consults (agile coaches, auditors etc.) were done cyclically
too. Throughout the development period of almost one year, the team allocated
approximately 6–7 experts. The initial application (evaluation) in the first teams was
done with facilitation by the expert team. After small enhancements and the positive
feedbacks of the early adopter teams, a LoD Community of Practice (CoP) was
established. This was useful to ensure that the scaling to all teams can be made efficient
and quick. The experts are limited resources and in the CoP the teams can help each
other too – this helps to reduce bottlenecks by the experts who were focusing on the
new issues and questions.

116 A. Poth et al.

In the last 3 years we established and enhanced the approach for more efficient
delivery and to regulation updates with the Scrum masters and the teams. Currently
more than 100 developers are working with the LoD-PQR approach, and further
locations and organizational units are in the adoption phase.

The application to the DU financial case revealed the following limitations of the
LoD-PQR approach with respect to the corporate governance having to assure

• The correct outcomes for the compliance requirements, as well as
• The expected deliverable which creates the customer/user value;
• The update of the LoD by the regulation experts;
• The update of the PQR by the product or service experts.

These limitations are partly addressed by the review procedure (Fig. 2), which
however generates a base workload scaling linearly with the delivery frequency of the
products and services. To reduce this linear correlation of reviews to deliveries, a team
maturity approach can be established. Higher team maturity leads to more autonomy
and thus reliefs the team from having mandatory pre-deployment LoD-triggered
technical reviews by team-independent reviewers.

6 Discussion and Conclusion

The LoD-PQR approach addresses the demand for a generic approach to handling
regulation requirements and product specific quality management in an agile envi-
ronment. While we have shown the generic LoD-PQR method application to the
European finance domain, other domain specific requirements would need to be
identified, e.g. for the DO-178 (avionics safety) or ISO 26262 (automotive safety).
However, the amount of regulation requirements in finance was lower than initially
expected, approximately 50 with direct impact to the software development. The
product specific PQRs strongly depend on the outcomes, however the workload which
can be handled by a team is a “limiting factor”.

The acceptance of our methodology within the agile-teams was encouraged by the
committed degree of freedom. In our case, we have witnessed that implementing the
LoD-PQR approach supported the teams to navigate through the complex compliance
requirements in our domain in a lean way (conformity). Our approach enabled the
product teams to realize efficiency by design and to share techniques how to implement
compliance requirements in an uncomplicated way. Besides, the genuine learning
character of the LoD-PQR approach leads to streamlined development processes of the
approach itself, leading to a positive impact on process performance.

A Systematic Approach to Agile Development 117

www.dbooks.org

https://www.dbooks.org/

References

1. General Data Protection Regulation (GDPR). https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679. Accessed 11 June 2020

2. Handelsgesetzbuch (HGB). http://www.gesetze-im-internet.de/englisch_hgb/. Accessed 11
June 2020

3. Mindestanforderungen an das Risikomanagement (MARisk). https://www.bafin.de/
SharedDocs/Veroeffentlichugen/DE/Rundschreiben/2017/rs_1709_marisk_ba.html. Acces-
sed 11 June 2020

4. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., O’Brien, D.: Scaling agile methods to regulated
environments: an industry case study. In: 35th International Conference on Software
Engineering (ICSE), pp. 863–872. IEEE (2013)

5. Karvonen, T., Sharp, H., Barroca, L.: Enterprise agility: why is transformation so hard? In:
Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 131–145.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6_9

6. Uludag, O., Kleehaus, M., Caprano, C., Matthes, F.: Identifying and structuring challenges
in large-scale agile development based on a structured literature review. In: 2018 IEEE 22nd
International Enterprise Distributed Object Computing Conference (EDOC), pp. 191–197.
IEEE (2018)

7. Eloranta, V.P., Koskimies, K., Mikkonen, T.: Exploring ScrumBut—an empirical study of
scrum anti-patterns. Inf. Softw. Technol. 74, 194–203 (2016)

8. Wolff, S.: Scrum goes formal: agile methods for safety-critical systems. In: 2012 First
International Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches (FormSERA), Zurich, pp. 23–29 (2012). https://doi.org/10.1109/formsera.2012.
6229784

9. Mc Hugh, M., Cawley, O., McCaffcry, F., Richardson, I., Wang, X.: An agile v-model for
medical device software development to over-come the challenges with plan-driven software
development lifecycles. In: 5th International Workshop on Software Engineering in Health
Care (SEHC), pp. 12–19. IEEE (2013)

10. Birkinshaw, J.: What to expect from agile. MIT Sloan Manag. Rev. 59(2), 39–42 (2018)
11. Hevner, A., Samir, C.: Design science research in information systems. Design Research in

Information Systems, pp. 9–22. Springer, Boston (2010). https://doi.org/10.1007/978-1-
4419-5653-8_2

12. Poth, A., Sunyaev, A.: Effective quality management: risk- and value-based software quality
management. IEEE Softw. 31(6), 79–85 (2014)

13. Perkusich, M., et al.: A systematic review on the use of Definition of Done on agile software
development projects. In: International Conference on Evaluation and Assessment in
Software Engineering (EASE) (2017). https://doi.org/10.1145/3084226.3084262

14. Power, K.: Definition of ready: an experience report from teams at Cisco. In: Cantone, G.,
Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 312–319. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06862-6_25

15. Poth, A.: Effectivity and economical aspects for agile quality assurance in large enterprises.
J. Softw. Process: Improv. Pract. 28(11), 1000–1004 (2016)

16. Conway, M.E.: How do committees invent? Datamation 14(5), 28–31 (1968)

118 A. Poth et al.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/%3furi%3dCELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/%3furi%3dCELEX:32016R0679
http://www.gesetze-im-internet.de/englisch_hgb/
https://www.bafin.de/SharedDocs/Veroeffentlichugen/DE/Rundschreiben/2017/rs_1709_marisk_ba.html
https://www.bafin.de/SharedDocs/Veroeffentlichugen/DE/Rundschreiben/2017/rs_1709_marisk_ba.html
https://doi.org/10.1007/978-3-319-91602-6_9
https://doi.org/10.1109/formsera.2012.6229784
https://doi.org/10.1109/formsera.2012.6229784
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1007/978-1-4419-5653-8_2
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1007/978-3-319-06862-6_25

17. Poth, A., Riel, A.: Quality requirements elicitation by ideation of product quality risks with
design thinking. In: Proceedings of the 28th IEEE International Requirements Engineering
Conference (RE 2020), Vienna (2020, in print)

18. BAIT. https://www.bafin.de/SharedDocs/Downloads/EN/Rundschreiben/dl_rs_1710_ba_
BAIT_en.pdf?__blob=publicationFile&v=6. Accessed 11 June 2020

19. INVEST. https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/. Accessed 11
June 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

A Systematic Approach to Agile Development 119

www.dbooks.org

https://www.bafin.de/SharedDocs/Downloads/EN/Rundschreiben/dl_rs_1710_ba_BAIT_en.pdf%3f__blob%3dpublicationFile%26v%3d6
https://www.bafin.de/SharedDocs/Downloads/EN/Rundschreiben/dl_rs_1710_ba_BAIT_en.pdf%3f__blob%3dpublicationFile%26v%3d6
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Second European Workshop
on Serverless Computing

and Applications

Summary of the 2nd European Symposium
on Serverless Computing and Applications -

ESSCA

Davide Taibi1, Josef Spillner2, and Feilong Wang3

1 Tampere University, Tampere, Finland
davide.taibi@tuni.fi

2 Zurich University of Applied Science, Winterthur, Switzerland
josef.spillner@zhaw.ch

3 Catalyst Cloud, Wellington, New Zealand

For the second time, a venue in Europe brought together researchers and innovators
around serverless technologies. Serverless computing provides a platform to efficiently
develop and deploy applications to the market without having to manage any under-
lying infrastructure. These refer to services, tools and patterns for modular, event-
driven and highly scalable application architectures.

After ESSCA @ UCC 2018, which gave the inaugural event a cloud background,
ESSCA @ XP 2020 was fitting with a software engineering background. This inter-
disciplinary nature of serverless topics increasingly tapping into and connecting the
cloud, big data and software engineering communities is an ongoing trend that we
wanted to debate again, and thus called for submissions in early 2020.

Each submission was reviewed by at least two reviewers from the wider serverless
research community. Four papers with positive review scores were chosen to be pre-
sented at ESSCA. Authors from five countries were represented at the symposium. The
topics focused on application rearchitecting (FaaSification of a web application with
database) and execution in FaaS contexts (performance prediction, isolation with
WebAssembly, memory autotuning (demo)). The speakers observed that using
serverless requires careful planning and design choices, as the associated cost and on-
demand serving advantages may otherwise decline or even reverse, making serverless a
more expensive choice than necessary.

Contrary to our planning, world-wide travel restrictions led to a pure online event
that allowed for sticking with the original date. The virtual symposium took place in
two sessions: One for presenting the research results, with space for only few questions,
and one more for interactively debating on provocative theses related to the presen-
tations and determining in which directions serverless applications and systems would
develop in the future. There was consensus that while FaaS presents the current
technology for serverless applications, future technologies will be less constrained and
not necessarily function-based.

www.dbooks.org

https://www.dbooks.org/

Overall, we look back to a small but beautiful and certainly not boring event. We
take note of the increasing interest by software engineers in serverless application
engineering, as evidenced by an upcoming theme issue of the IEEE Software magazine
on Serverless Applications Engineering, as well as of growing publishing activity, as
evidenced by the Serverless Literature Dataset.

Summary of the 2nd European Symposium 123

Diminuendo! Tactics in Support of FaaS
Migrations

Sebastian Werner1(B), Jörn Kuhlenkamp1, Frank Pallas1, Niklas Anders2,
Nebi Mucaj2, Olesia Tsaplina2, Christian Schmidt2, and Kann Yildirim2

1 Information Systems Engineering, Technische Universität Berlin, Berlin, Germany
{sw,jk,fp}@ise.tu-berlin.de

2 ProgPrak Team, Technische Universität Berlin, Berlin, Germany
pp1920@ise.tu-berlin.de

Abstract. Function-as-a-Service (FaaS) receives close attention due to
highly desirable characteristics, including pay-as-you-go pricing, high
elasticity, and its fully managed nature. To leverage these benefits for
existing applications, developers face the challenge of migrating legacy
code to a FaaS platform (FaaSification). Unfortunately, however, action-
able guidance on how to do so for real-world applications does not exist.
In this paper, we report on our experience from FaaSifying a data-
intensive application, and evaluating different options through extensive
experimentation, using approaches such as regression tests and tracing.
Based on the obtained results, we present five migration tactics in sup-
port of future FaaSification.

Keywords: Serverless · Migration · FaaS · FaaSification

1 Introduction

Function-as-a-Service (FaaS) is a new cloud execution model that receives close
attention due to highly desirable characteristics, including pay-as-you-go pricing,
millisecond elasticity, or provider-managed operational tasks for, e.g., deploy-
ment [6]. To leverage these benefits for existing applications, developers face the
challenge of migrating legacy code to a FaaS platform (FaaSification).

While an increasing number of supported programming languages and
relaxed limitations, e.g., maximum execution time, give the impression that
FaaSification is a trivial task, first exploratory research [4,7] indicates that lever-
aging the non-functional benefits of FaaS beyond correct execution requires a
careful redesign, profiling, and configuration. Unfortunately, little information is
available on how these and further subjects are (to be) addressed in the FaaSi-
fication of real-world web applications. Thus, many application developers are
unaware of the different fallacies of FaaSification.

In this paper, we report on our experience from FaaSifying a data-intensive
web application from a VM-based deployment. For the migration, we initially
used a näıve migration approach presented in [7] that expectedly resulted in
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 125–132, 2020.
https://doi.org/10.1007/978-3-030-58858-8_13

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_13
https://www.dbooks.org/

126 S. Werner et al.

failing non-functional end-to-end regression tests. We were able to significantly
reduce these degradations by 1) instrumenting application code for tracing
purposes, 2) identifying the root-cause for degradation in different third-party
libraries and some sections of legacy code, and, finally, 3) refactoring parts of
the application architecture and the usage of third-party libraries.

To let others profit from our experiences, we synthesize our insights from the
migration and additional previous research into five common migration tactics in
support of future FaaSification: Precompute, Reuse, Strip, Be Lazy, and Replace.

2 Application and Migration Goal

We selected the open participatory data platform OpenSense.network [2] as a
use-case to evaluate the effects of legacy code during the migration to FaaS envi-
ronments. OpenSense.network offers a horizontally scalable, Flask-based API to
let users contribute and access sensor data of globally distributed environmen-
tal sensors in a uniform, web-friendly way. To provide geospatial capabilities
and high-volume sensor data in a performant and scalable manner, it employs a
hybrid storage model, comprising a PostGIS database for static metadata and a
Cassandra cluster holding timeseries of actual measurements (see Fig. 1). Both
the API and databases of OpenSense.network are deployed on the TU Berlin
data center premises. For the migration, we were particularly interested in mov-
ing the Flask API to a FaaS platform to free up computation resources when the
API is not in use while at the same time being able to handle spiking loads in
case of, for instance, occasional bulk inserts or data access surges. Further, we
were interested in reducing operational overhead, e.g., the management of the
Flask API virtual machines.

API
Stateless REST

(Flask)

Sensor Metadata
Geospatial DB

(PostGIS)

Sensor Values
NoSQL DB

(Cassandra)
get/add metadata get/add values

forward request

Motivation for migration:

End Users Software Services

OpenSense.network

Clients

Serves volatile workloads Has low utilization, slow scale-up

Fig. 1. OpenSense.network architecture with selected component for migration.

We selected Apache OpenWhisk1 as the target platform and deployed it
in the same network as the current OpenSense.network deployment to allow
1 https://openwhisk.apache.org/.

https://openwhisk.apache.org/

Diminuendo! Tactics in Support of FaaS Migrations 127

connections to the same databases as the original APIs and, thus, to avoid the
need for data migration.

To compare the behavior and responses of the migrated API to those of the
original one, we additionally created and continuously extended a rich set of
end-to-end regression tests.

3 FaaS Migration Approach

In this section, we outline our approach in migrating OpenSense.network. We
start by describing our initial näıve approach, followed by the steps taken to
identify root-causes of performance degradations and the subsequent refactoring.

3.1 Näıve Migration

In the first step of the migration, we followed a näıve reuse approach similar to
Llyod et al. [7]. Accordingly, we implemented a custom runtime container, based
on the OpenWhisk Python runtime2 with the necessary Python dependencies
for OpenSense.network already built-in. These custom runtimes can reduce cold-
start problems as less code needs to be downloaded and compiled initially.

Furthermore, we used a modified version of the flask-openwhisk3 wrapper
to map OpenWhisk requests to Flask, resulting in a FaaS version of the pre-
existing Flask API with almost zero modification.4 In line with our expectations
and previous findings [7], this näıve FaaSification approach was successful on a
functional level but exhibited significant performance degradation compared to
the original deployment. For instance, a request for a single sensor value for the
migrated API took between 2 and 20 s for cold and warm functions, respectively,
while it took less than a second on the original API.

In the following, we first describe our approach to identifying the root-causes
of this degradation.

3.2 Regression Detection

Determining the root-cause of problems in FaaS applications is challenging [4]
since FaaS platforms offer no out-of-the-box facilities for remote-debugging and
-profiling. Instead, developers have to rely on application and system log infor-
mation which can be limited in volume, making debugging and profiling tasks
tedious and cumbersome.

As a first step of refactoring towards a more FaaS-aware implementation, we,
therefore, created a simple, lightweight profiling tool that instruments Open-
Whisk’s logging facilities and allows to easily include start- and endpoints of

2 https://github.com/apache/openwhisk-runtime-python.
3 https://github.com/alexmilowski/flask-openwhisk.
4 Initially we considered more mature frameworks, e.g., Zappa (https://github.com/

Miserlou/Zappa). However, OpenWhisk is not supported in most of them.

www.dbooks.org

https://github.com/apache/openwhisk-runtime-python
https://github.com/alexmilowski/flask-openwhisk
https://github.com/Miserlou/Zappa
https://github.com/Miserlou/Zappa
https://www.dbooks.org/

128 S. Werner et al.

initialize ():

topen ("init")

topen ("flask")

flask()

tclose ("flask")

...

tclose ("init")

Fig. 2. Example of instrumented code

relevant functional sections in the code. An accompanying evaluation tool allows
to easily analyze respective runtimes5. Using these tools, we instrumented the
migrated application with a set of tracepoints, see Fig. 2.

We placed each trace-point at potential bottlenecks and points of interest
within the code. In particular, we measured object creation, database connec-
tion initialization, overall initialization, execution [5], and serialization and de-
serialization times. Figure 3 shows exemplary results of these measurements for
a simple sensor query, before and after refactoring.

We were quickly able to pin down the root causes of the observed performance
degradation based on the gathered information. In particular, we observed that
in the initial, näıve approach, the API implementation took substantial time to
(re-) initialize certain libraries on every single request. Large portions of these
initialization overheads could be attributed to Flask and the Cassandra driver.
Accordingly, the inefficient pattern of continuous re-initialization for both Flask
and the Cassandra driver was a particular subject of refactoring, described fur-
ther in the next section.

3.3 Refactoring

The data from the regression detection provided a road-map to address the
performance issues in the näıvely migrated application. Based on the identified
bottlenecks, the following measures particularly helped us to significantly reduce
FaaS-specific overheads:

Reuse: We initially focused on reducing the re-initialization of objects and
libraries on every single request, see the Reuse tactic in Sect. 4. Specifically,
we moved the initialization of most libraries away from the OpenWhisk handler
so that initialized libraries remain in memory. We faced some minor challenges as
the OpenWhisk runtime did not offer simple mechanisms to execute code before a
handler call. However, Python packages allow code execution on imports through
including the code to be executed in the init method, which enabled us to
shift all expensive initializations to the OpenWhisk runtime creation.

5 https://bit.ly/2Z4TpsR.

https://bit.ly/2Z4TpsR

Diminuendo! Tactics in Support of FaaS Migrations 129

Flask Cassandra
Library Initialization

0

200

400

600

800

1000

1200

1400

tim
e

[m
s]

Experimentes
Naïve
Refactored

Fig. 3. Comparison of cold-start initialization times. “Näıve” refers to the initial migra-
tion, see Sect. 3.1. “Refactored” refers to the code-base after the changes described
in Sect. 3.3 (Precompute). Results a based on 200 sensor range queries.

These steps already reduced performance degradations for warm6 execution
environments significantly.

Precompute: Based on a more in-depth analysis of the execution times, we
identified that the initialization of both Flask and the Cassandra driver still
created notable performance impacts during cold-starts.

For Flask, we managed to precompile most of the Flask object state through
the pickle api7, which we could store as part of the deployment artifact. Using the
precompiled object allows that most of the dynamic computation which Flask
performs during server initialization can be removed. The effects of this can be
seen in the left part of Fig. 3, see the Precompute tactic in Sect. 4.

We tried to follow a similar strategy for the Cassandra driver. However, we
could not reduce the initialization time significantly with this method. Further-
more, we tried to disable thread-pooling and other functionality that is unnec-
essary in a FaaS context, but these steps also slightly reduced the initialization
time.

Strip: To address the Cassandra driver’s performance issues, we observed that
the Cassandra driver is not used for every request. For instance, an API method
only returning sensor metadata based on several query parameters does not
need access to the timeseries data stored in Cassandra and could, therefore,
be included in a “Cassandra-less” function. Thus, we decided to strip away
the Cassandra driver splitting the Flask API into two functions. Of course, this

6 Warm execution environments are functions that were deployed by the platform
for a previous event. State in these functions can be reused, reducing expensive
initializations, that occur during cold-starts [8].

7 https://docs.python.org/3/library/pickle.html.

www.dbooks.org

https://docs.python.org/3/library/pickle.html
https://www.dbooks.org/

130 S. Werner et al.

step did not help to reduce the start-up time for Cassandra-related requests but
significantly improved the request-response time for all other requests. Signifi-
cantly decreasing the Cassandra-related overheads for API methods with time-
series functionality, however, would have required us to replace or rewrite the
Cassandra library. Even though this would have gone beyond the scope of our
migration project, this nonetheless illustrates the need for more lightweight, and
possibly less feature-rich libraries and drivers in the FaaS context.

4 Migration Tactics

Beyond those explicitly mentioned above, we also experimented with further
approaches of adjusting our code and the underlying runtime to FaaS-specific
givens, which mostly took a similar line, albeit with less significant impacts.
Altogether, however, our experiences can be synthesized into five general tac-
tics for FaaSification. Each of these tactics implies different prerequisites, the
potential for performance improvements, and development costs.

Precompute: This tactic precomputes intermediate results that are included
as static content in the deployment package of a function. The tactic requires
that the intermediate result does not depend on runtime information and that
the size of the intermediate result is comparatively small due to FaaS platform
limitations – e.g., 3-250MB for AWS Lambda8. In addition, it increases cold-start
times with the size of a deployment package [9]. The tactic affects all invocations
of a function handler and requires additional development efforts.

Reuse: This tactic caches intermediate results over multiple invocations of a
function handler on the same function container. It requires that multiple exe-
cutions occur on the same function container. This tactic is quite simple to
implement by storing intermediate results in global class variables of a function
handler or on the ephemeral storage available. However, it benefits only a subset
of executions, namely those that actually run on the same function container
repeatedly. Thus, Reuse becomes less effective with increasing numbers of cold
starts. Different approaches for experiment-driven analysis of cold/warm start
ratios [3,5,9] can indicate the effectiveness of this tactic to developers.

Strip: Strip implies that the developer removes source code from the function
handler that is initialized but not used on the execution paths of any invocation.
It requires that such source code exists and is identifiable by developers. While
all invocations benefit, the tactic implies additional development efforts due to
profiling and exhaustive testing. We envision that system providers will begin
offering specialized lightweight client libraries for short-lived ephemeral compute
environments like FaaS platforms.

Be Lazy: This tactic is applicable for function handlers with multiple initial-
izations that are not required on all execution paths. The application developer
can conditionally initialize by relying on conditional statements in a function
8 https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html.

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html

Diminuendo! Tactics in Support of FaaS Migrations 131

handler. As an alternative, a developer can decompose a function into multiple
focused functions [1]. The potential for performance improvements depends on
the distribution of the different execution paths. It implies additional develop-
ment efforts and potentially changes the application on an architectural level.

Replace: Application developers can resort to re-implementing third-party
libraries. A particular form of replacement could be the inclusion of lightweight
database connectors within FaaS platforms, allowing FaaS application develop-
ers to offload respective functionalities from their code-base. This tactic has no
prerequisites and a high potential for improvement but can imply significant
development costs. In a FaaS context, the potential additional costs of feature-
rich client libraries in terms of higher execution latency and monetary execution
costs motivate coexisting lightweight clients with a reduced set of features.

Besides, we argue that a high degree of automation is achievable in order
to reduce the development efforts for the different tactics significantly. However,
it remains an open question on which level of the technology stack each tactic
is applied best. For example, a tactic might be best applied automatically by
the cloud platform, integrated with application frameworks, or supported by
additional developer tooling in support of FaaSification. We argue that future
work should discuss and give guidance on the different associated trade-offs.

5 Conclusion

In this paper, we introduced five tactics in support of migrating legacy-
-applications to FaaS, that we synthesized from a real-world migration effort.
We argue that a high degree of automation is achievable in order to reduce
the development efforts for migrations in the future. We additionally see that
an extension to current FaaS platforms by offloading expensive operations like
database connections to the platform could be an area for investigation. Fur-
ther, we argue that application framework developers could support FaaS best-
practices like lazy loading directly. Lastly, we see an opportunity for third-party
library vendors to offer more lightweight options aligned with the FaaS context.

Acknowledgments. The work in this paper was partially performed in the context
of the SMILE and BloGPV.Blossom projects. BloGPV.Blossom is partially funded by
the German Federal Ministry for Economic Affairs and Energy (BMWi) under grant
no. 01MD18001E. SMILE is funded by the German Federal Ministry of Education
and Research (BMBF) as part of the Software-Campus 2.0 grand, project number
01IS17052. The authors assume responsibility for the content.

References

1. Baldini, I., et al.: The serverless trilemma: function composition for serverless com-
puting. In: International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward 2017, pp. 89–103. ACM, New York (2017)

www.dbooks.org

https://www.dbooks.org/

132 S. Werner et al.

2. Borges, M.C., Pallas, F., Peise, M.: Providing open environmental data–the scal-
able and web-friendly way. In: Bungartz, H.J., Kranzlmüller, D., Weinberg, V.,
Weismüller, J., Wohlgemuth, V. (eds.) Advances and New Trends in Environmental
Informatics, pp. 21–37. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99654-7 2

3. Jackson, D., Clynch, G.: An investigation of the impact of language runtime on
the performance and cost of serverless functions. In: 3rd International Workshop on
Serverless Computing, WoSC 2018, Zurich, Switzerland, pp. 154–160. IEEE (2018)

4. Kuhlenkamp, J., Werner, S., Tai, S.: The ifs and buts of less is more: a serverless
computing reality check. In: Proceedings of The International Conference on Cloud
Engineering (IC2E 2020), 21–24 April 2020, Sydney, Australia. IEEE (2020)

5. Kuhlenkamp, J., Werner, S., Borges, M.C., Ernst, D., Wenzel, D.: Benchmarking
elasticity of FaaS platforms as a foundation for objective-driven design of serverless
applications. In: 34th ACM/SIGAPP Symposium on Applied Computing. Associa-
tion for Computing Machinery, New York, SAC 2019, pp. 284–291 (2019)

6. Leitner, P., Wittern, E., Spillner, J., Hummer, W.: A mixed-method empirical study
of function-as-a-service software development in industrial practice. J. Syst. Softw.
149, 340–359 (2018)

7. Lloyd, W., Vu, M., Zhang, B., David, O., Leavesley, G.: Improving application
migration to serverless computing platforms: latency mitigation with keep-alive
workloads. In: Proceedings of the 3rd International Workshop on Serverless Com-
puting, pp. 195–200. IEEE (Dec 2018)

8. Manner, J., EndreB, M., Heckel, T., Wirtz, G.: Cold start influencing factors in
function as a service. In: International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 181–188. IEEE (2018)

9. Manner, J., Endreß, M., Heckel, T., Wirtz, G.: Cold start influencing factors in func-
tion as a service. In: Proceedings of the 3rd International Workshop on Serverless
Computing, WoSC 2018, Zurich, Switzerland, pp. 181–188. IEEE (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-99654-7_2
https://doi.org/10.1007/978-3-319-99654-7_2
http://creativecommons.org/licenses/by/4.0/

Predictable Performance for QoS-Sensitive,
Scalable, Multi-tenant Function-as-a-Service

Deployments

Andrzej Kuriata1(&) and Ramesh G. Illikkal2(&)

1 Intel Technology Poland, Gdansk, Poland
andrzej.kuriata@intel.com
2 Intel Corp., Santa Clara, CA, USA

ramesh.g.illikkal@intel.com

Abstract. In this paper we present the results of our studies focused on
enabling predictable performance for functions executing in scalable, multi-
tenant Function-as-a-Service environments. We start by analyzing QoS and
performance requirements and use cases from the point of view of End-Users,
Developers and Infrastructure Owners. Then we take a closer look at functions’
resource utilization patterns and investigate functions’ sensitivity to those
resources. We specifically focus on the CPU microarchitecture resources as they
have significant impact on functions’ overall performance. As part of our studies
we have conducted experiments to research the effect of co-locating different
functions on the compute nodes. We discuss the results and provide an overview
of how we have further modified the scheduling logic of our containers
orchestrator (Kubernetes), and how that impacted functions’ execution times
and performance variation. We have specifically leveraged the low-level
telemetry data, mostly exposed by the Intel® Resource Director Technology
(Intel® RDT) [1]. Finally, we provide an overview of our future studies, which
will be centered around node-level resource allocations, further improving a
function’s performance, and conclude with key takeaways.

Keywords: Performance � Telemetry � Scheduling

1 Introduction

The general Cloud Computing model relies on centralizing computing power and then
re-distribution of this computing power among multiple users and tenants. The benefits
of such approach, among others, are inherit scalability and, from the end user per-
spective, simplified resources management.

Additional layers built on top of Cloud Computing, like Function-as-a-Service
deployments, release the burden of managing hardware and software resources, from
service developers, even further. At the same time, however, resource providers must
ensure that performance of services is stable and independent from performance and
resource utilization of other services running at the same time on the same set of
resources.

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 133–140, 2020.
https://doi.org/10.1007/978-3-030-58858-8_14

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_14
https://www.dbooks.org/

In this paper we investigate the methods for improving services’ performance
stability, which we view as an important aspect of overall Quality of Service.

1.1 The Importance of Predictable Functions Performance

The predictability of function execution performance (most often function execution
time) is important from several reasons. Here are the QoS and performance expecta-
tions from Users, Developers/Application Owners and Infrastructure Owners/Admins:

1. End users value performance consistency for practical reasons. Unexpected appli-
cation slowdown can cause frustration but also can negatively impact important
business operations. Positive overall user experience requires assurance that service
response time will have low, predictable latency.

2. Developers/Application Owners want predictable billing. Most often Infrastructure
Owners charge by millisecond of function execution time. Any churn in function
execution time can impact billing negatively. The reason for inconsistent function
execution time is only partially in control of Developers/Application Owners (e.g.
associated with function logic processing the input). Other issues, like resource
contention or noisy neighbor problems in shared-resources, multi-tenant environ-
ments, can be solved only by the Infrastructure Owners.

3. Infrastructure Owners want to provide predictable performance for their Users and
at the same time maximize resources utilization as this improves their Total Cost of
Ownership. As for FaaS, many CSPs adopt sub second billing, which puts stringent
SLA requirements in terms of run-to-run variability. When Infrastructure Owners
have awareness which resources are most critical for stable functions’ performance,
they can better optimize their scheduling policies to optimize their computing
resources utilization.

In this study we define predictable performance in relation to Coefficient of Vari-
ation (CV) for function execution time. The CV itself is defined as [2]:

cv ¼ r
l

ð1Þ

Where, cv is a coefficient of variation, r is a standard deviation and l is a mean.
We consider function to have predictable performance when its CV is less than or

equal to 15%. Otherwise, we consider the performance to be unpredictable. When
average function execution time is 1 s, and resource utilization billing is done at 100 ms
granularity, then 15% execution time churn corresponds to up to 2 billing cycles, which
we consider tolerable from function owner perspective.

FaaS deployments are intrinsically multi-tenant and expected to scale rapidly, on-
demand. To enable such scaling, without sacrificing performance, we propose to pay
special attention to CPU microarchitecture resources utilization, as it directly correlates
with functions’ performance. Here is the high-level view of resources for Intel Xeon
Processor (Fig. 1).

134 A. Kuriata and R. G. Illikkal

Especially shared resources, like memory bandwidth to DRAM (controlled by the
Integrated Memory Controller) and Last Level Cache (i.e. Third Level Cache) should
be closely monitored, as minimizing contention on those resources improves overall
functions’ performance. Also, for multi-socket platforms, crossing socket or NUMA
node boundary might be associated with performance penalty (due to narrower remote
memory bandwidth). The study analyzing impact of memory latency and memory
bandwidth to the workload’s performance is described in [3].

In general, the pool of CPU cores is also a constrained resource on which con-
tention might happen. But we leave the task of allocating software threads to CPU
cores to the Linux scheduler and did not interfere with that in our study.

2 Analyzing Functions Performance and Performance
Predictability

In the following sections we describe how we were analyzing functions performance.
We have started with gathering information about functions characteristics, especially
resources sensitivity patterns. That enabled us to further analyze performance related
problems and propose solutions.

2.1 Test Stack and Test Functions

We’ve conducted our experiments on a 4-node Kubernetes cluster, with 1 master and 3
worker nodes. All nodes are 2-socket Intel Skylake platforms (Intel® Xeon® Gold
6140 CPU @ 2.30 GHz, with 18 physical cores and HyperThreading enabled).

For the software stack we used: Kubernetes as containers orchestrator, Docker as
containers engine/runtime, OpenFaaS as a FaaS framework and Intel Workload Col-
location Agent [4] as a main telemetry framework.

Core

Level 1 Cache

Level 2 Cache

Core

Level 1 Cache

Level 2 Cache

Core

Level 1 Cache

Level 2 Cache

Core

Level 1 Cache

Level 2 Cache

Level 3 Cache (Shared)

Integrated Memory Controller

DDR

Shared memory bandwidth

Fig. 1. High level view of Intel Xeon processor

Predictable Performance for QoS-Sensitive, Scalable 135

www.dbooks.org

https://www.dbooks.org/

In our experiments we are using following functions:

• Incept, which uses Tensorflow for image recognition
• Nmt, which uses Tensorflow for English to German translation
• Sgemm, which does single precision floating General Matrix Multiply
• Stream, the STREAM benchmark [5].

2.2 Introduction to Top-Down Microarchitecture Analysis Methodology

Our test functions have been profiled using Top-Down Microarchitecture Analysis
methodology [6, 7]. This approach facilitates finding categories of platform resources,
and individual resources, that are most critical to the workload (e.g. function) and can
limit performance when not available. The results of the profiling, at high CPU uti-
lization (ranging from 95 to 100%), are presented in the Table 1 below.

Where: A – Last Level Cache Misses per 1000 Instructions, B – Memory Band-
width Utilization [%], C – Frontend Bound [%], D – Backend Bound [%], E – Retiring
[%], F – Bad Speculation, G – Flops Used/Flops Max [%].

This knowledge can be leveraged in optimizing scheduling and load balancing
logic, so that functions’ performance is not hampered by the lack of critical platform
resources. This is specifically important in large scale, multi-tenant deployment where
noisy neighbor effects are most prominent.

2.3 Platform Resources Utilization Monitoring

During functions’ execution we collect telemetry data to better understand resources
utilization patterns. For each function instance, per each call, we are collecting the
following:

• Memory bandwidth utilization – exposed by the Linux ‘resctrl’ filesystem, the
source of data is Intel RDT Memory Bandwidth Monitoring technology

• Last Level Cache Occupancy – exposed by the Linux ‘resctrl’ filesystem, the source
of data is Intel RDT Cache Monitoring Technology

• Last Level Cache Misses Per Kilo Instructions – exposed by the platform as a CPU
architectural performance monitoring event, can be collected, for example: via
Linux perf tool

• CPU utilization – exposed by the Linux CGroup filesystem

Table 1. TMA profiles of the test functions

Function A B C D E F G

Incept 1.13 60.7 17.0 56.1 22.2 4.7 3.1
Nmt 2.35 52.4 22.8 60.6 10.8 5.8 0.1
Sgemm 0.49 32.8 17.7 25.8 40.8 15.6 29.4
Stream 2.40 71.6 1.5 93.0 5.5 0.1 0.1

136 A. Kuriata and R. G. Illikkal

We also record function execution times as an indicator of a function’s
performance.

Having insight into nodes’ resource utilization and availability is critical in order to
improve placement of functions on the nodes. Here are the most important telemetry
data that we collect per each compute node:

• CPU utilization – exposed by the Linux/proc/stat file
• Memory bandwidth utilization – exposed by the CPU Performance Monitoring Unit

(of Integrated Memory Controller), can be calculated from events collected, for
example via Linux perf tool

• Average memory latency – exposed by the CPU Performance Monitoring Unit (of
Integrated Memory Controller), can be calculated from events collected, for
example via Linux perf tool.

3 Improving Performance Predictability

3.1 Analyzing Functions’ Co-location Cases

In this experiment we use “hey” [8] to stress the test functions. We start from light load
(low Request-Per-Second values) and continue stressing functions up to the point
where all cores (36 total for 2 sockets, 18 cores per function) on the platform are
utilized, thus translating to high RPS values. Theoretically, functions with moderate
memory bandwidth consumption should co-exist better on the same node than func-
tions with high memory bandwidth requirements. The reason is less contention on the
resource required by both functions. We should also see improved function execution
times and lower resources utilization when functions are not competing over the same,
shared resource.

The results for the “Incept” function scheduled along with other functions are
depicted below (Fig. 2):

Fig. 2. Incept’s CV when scheduled with other test functions (red, dashed line at 15% represents
our threshold, below which, we consider function to have predictable performance) (Color figure
online)

Predictable Performance for QoS-Sensitive, Scalable 137

www.dbooks.org

https://www.dbooks.org/

We can observe that, if Incept is located with Sgemm it achieves the best perfor-
mance predictability (lowest CV values across the RPS range) and best throughput
(lowest average function execution time). An optimal scheduler should co-locate Incept
with Sgemm, rather than Nmt or Stream. The worst colocation case is placing Incept
and Nmt on the same node, and optimal scheduler should avoid that. Incept and Nmt
are poor candidates for colocation because they are heavy memory bandwidth users
and natural contenders for this resource.

The table below presents comparison of average node resources utilization when
Incept is collocated with Nmt (sub-optimal placement) and when Incept is collocated
with Sgemm (optimal placement) in case when all CPU cores on the platform are
utilized (Table 2).

Sub-optimal placement results in almost 20% higher memory bandwidth utilization,
increased memory latency, and around 20% higher CPU utilization. And as we’ve seen
before, wrong placement decision ultimately impacts function execution time and
execution time variability.

3.2 Scheduling Improvements

By leveraging per-container telemetry (especially memory bandwidth utilization) and
per-node resource availability we tried to improve the scheduling logic. In Kubernetes,
which we are using as our containers’ orchestrator, scheduling is a two-stage process.
In the first step (filtering) we exclude any nodes without enough available memory
bandwidth. In the second step (prioritization) we assign scores to the nodes and select
the node with the highest score. Here are the scoring categories:

• Available memory bandwidth – nodes are sorted with available memory bandwidth
in descending order. The node with maximum available memory bandwidth is
assigned highest score, and the one with the lowest amount of available memory
bandwidth is assigned the lowest score.

• Memory Latency – nodes are sorted and assigned scored based on the memory
latency (lower values are preferred over higher values)

• CPU utilization – nodes are sorted based on available CPU (more available CPU
equals to higher score)

Table 2. Comparison of average node resources utilization between optimal (Incept + Sgemm)
and sub-optimal (Incept + Nmt) co-location scenarios

Resource Optimal placement Sub-optimal placement

Memory bandwidth utilization [%] 30 47
Average memory latency [ns] 41 92
CPU Utilization [%] 55 78
LLC MPKIa 50 110
aLLC MPKI – Last Level Cache Misses Per Kilo Instructions

138 A. Kuriata and R. G. Illikkal

Scores from all categories are summarized per node and the node with highest
overall score is selected.

Graph below present comparison of Incept’s CV when using default scheduling
logic vs scheduling logic which takes memory bandwidth and memory latency into
account. Scheduling enhancement were done by leveraging Kubernetes scheduler
extender mechanism [9] (Fig. 3).

For lower RPS (up to around 7), the scheduler extender reduces CV to acceptable
level (15%). Execution time also improves slightly, which can result in improved
cluster throughput. Those results can be further improved with RDT Memory Band-
width Allocation feature, which we plan to leverage in future experiments.

4 Future Work

As a next step we plan to research how at-node-level allocation of resources (e.g. by
using Intel RDT Memory Bandwidth Allocation and Cache Allocation Technology)
impacts functions’ performance.

We would also like to deepen studies on differentiated performance for QoS-
sensitive workloads. The Service Level Agreements are commonly used for managing
QoS. At its simplest form the SLA can be expressed as a two-level function prioriti-
zation agreement, distinguishing between high and low priority tasks (e.g. functions).
We’d like to research how high-level SLAs can be mapped to resource allocations and
how allocations enforcement can be used for improving performance predictability
even further.

Fig. 3. The comparison of Incept’s CV when using default scheduler vs. scheduler which is
memory bandwidth and memory latency aware.

Predictable Performance for QoS-Sensitive, Scalable 139

www.dbooks.org

https://www.dbooks.org/

5 Conclusions

We have demonstrated that low level telemetry data (especially related to memory
bandwidth utilization) can be used to improve functions performance predictability, for
example by optimizing scheduling logic.

By leveraging memory bandwidth monitoring capabilities of Intel Resource
Director Technology, we were able to optimize resource utilization and provide best
performance for memory bandwidth sensitive workloads (ML-based inference work-
loads in our experiment).

References

1. Intel® Resource Director Technology (Intel® RDT). https://www.intel.com/content/www/us/
en/architecture-and-technology/resource-director-technology.html. Accessed 10 Mar 2020

2. Everitt, B.: The Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge
(1998). ISBN 978-0521593465

3. Clapp, R., et al.: Quantifying the performance impact of memory latency and bandwidth for
big data workloads. In: IEEE International Symposium on Workload Characterization. IEEE
(2015). ISBN 978–1-5090-0088-3

4. Workload Collocation Agent. https://github.com/intel/workload-collocation-agent. Accessed
10 Mar 2020

5. STREAM benchmark. http://www.cs.virginia.edu/stream/ref.html. Accessed 10 Mar 2020
6. Yasin, A.: A top-down method for performance analysis and counters architecture. In: 2014

IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE (2014). ISBN 978–1-4799-3606-9

7. Yasin, A.: Software Optimizations Become Simple with Top-Down Analysis Methodology
on Intel® Microarchitecture, Code Name Skylake, Intel Developer Forum, IDF 2015, Intel
(2015)

8. Hey GitHub web page. https://github.com/rakyll/hey. Accessed 10 Mar 2020
9. Kubernetes Scheduler Extensions. https://kubernetes.io/docs/concepts/extend-kubernetes/

extend-cluster/#scheduler-extensions. Accessed 10 Mar 2020

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

140 A. Kuriata and R. G. Illikkal

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://github.com/intel/workload-collocation-agent
http://www.cs.virginia.edu/stream/ref.html
https://github.com/rakyll/hey
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/#scheduler-extensions
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/#scheduler-extensions
http://creativecommons.org/licenses/by/4.0/

On the Use of Web Assembly in a
Serverless Context

Seán Murphy1(B), Leonardas Persaud2, William Martini1,2,
and Bill Bosshard1,2

1 Zurich University of Applied Science, Winterthur, Switzerland
murp@zhaw.ch

2 University of Zurich, Zurich, Switzerland

Abstract. This paper considers how WASM can be run in different
serverless contexts. A comparison of different serverside WASM run-
time options is considered, specifically focused on wasmer, wasmtime and
lucet. Next, different options for running WASM within two serverless
platforms – Openwhisk and AWS Lambdai – are compared. Initial results
show that a solution which uses the built-in node.js WASM supports
is found to work better than using the dedicated WASM runtimes but
this has limitations and providing more direct integration with WASM
runtimes should be explored further.

Keywords: Web Assembly · WASM · Serverless · Runtimes

1 Introduction

Web Assembly (WASM) is a technology that has been receiving considerable
interest of late. Originally, developed as a portable runtime for browser contexts,
its benefits have been recognized for alternative contexts and there is increasing
interest in understanding other environments in which it can be used. Serverless
is one such context [2–4] and the use of WASM in a serverless context is the
focus of this work.

WASM evolved from asm.js1 – a previous attempt to define a simple assem-
bly like instruction set which could run efficiently within a browser – and was
adopted by the Mozilla foundation in 2017 to co-ordinate development and stan-
dardization of the technology across all major browser developers.

WASM is designed to be fast, secure, portable and not tied to any specific
language or runtime, although realizing all of these aspects is still something
of a work in progress. It is characterized by a simple instruction set which can
be formally verified, a stack based Virtual Machine which supports functions
and control flow abstractions such as loops and conditionals. A good overview
of WASM is provided in [1].

1 http://asmjs.org/.

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 141–145, 2020.
https://doi.org/10.1007/978-3-030-58858-8_15

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_15&domain=pdf
http://asmjs.org/
https://doi.org/10.1007/978-3-030-58858-8_15
https://www.dbooks.org/

142 S. Murphy et al.

Good support for WASM is provided in today’s major browsers but it is
still evolving with significant innovations required to provide support for multi-
threaded operation, garbage collection GPU and WebGL supports amongst other
items2.

As well as browser support, work has been ongoing on developing supports
for execution of WASM outside the browser context. Much of this work has been
consolidated under the Bytecode Alliance’s work on developing a Web Assembly
Systems Interface (WASI)3 which is a set of APIs available within the WASM
runtime which can provide POSIX style capabilities (file system access, network
access, process management, etc.). This effort and, in particular, the parallel
development effort to create WASI compatible execution engines which can run
in different environments is creating new opportunities and use cases for WASM,
one of which is serverless.

Serverless solutions today are closely coupled to Docker containers; WASM
could provide an alternative or complementary runtime environment which is
lightweight, works well with different developer toolchains and could potentially
be deployed across different serverless platforms. Having some insight into how
this could be realized is the focus of this work.

The remainder of this paper is structured as follows. In Sect. 2 there is a brief
comparison of different WASM runtimes which can be used on the server side.
This is followed in Sect. 3 by a discussion of different solutions for running WASM
within serverless platforms. Finally there is a short conclusion and outlook.

2 Evaluation of Serverside WASM in Different Runtimes

Running WASM on the server side requires a means to map from WASM byte-
code to native hardware instructions. A number of technologies have been devel-
oped to support this: in this work, three were considered – (i) wasmer4, (ii),
wasmtime5 and (iii) lucet6.

Both wasmer and wasmtime are runtimes which parse given WASM bytecode,
mapping it to native instructions to operate on the host processor using Just-in-
Time (JIT) compilation mechanisms. The former is under active development by
a commercial company, while the latter is developed within the context of a col-
laborative, standardization activity operated by the Mozilla Foundation. lucet
uses a different approach - it performs an a priori compilation of the WASM
bytecode to produce a standard executable for the host system architecture.

Generating WASM bytecode is generally straightforward although there is
some difference in the supports available for different languages and compiler
toolchains. Rust and C/C++ currently have the best supports but support for
Golang is also good. To compare the different solutions, we chose some reference

2 https://www.w3.org/2020/03/webassembly-wg-charter.html.
3 https://github.com/WebAssembly/WASI.
4 https://www.wasmer.io.
5 https://github.com/bytecodealliance/wasmtime.
6 https://github.com/bytecodealliance/lucet.

https://www.w3.org/2020/03/webassembly-wg-charter.html
https://github.com/WebAssembly/WASI
https://www.wasmer.io
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/lucet

WASM-Serverless 143

C algorithm implementations as we knew the code was mature and the toolchain
supported generation of WASM output; the Clang toolkit was used to generate
WASI compatible WASM binaries7 which could be run directly in wasmer and
wasmtime and compiled to native with lucet.

The different approaches were compared using standard memory and com-
pute bound workloads. Figure 1 shows the time taken to determine if a large
number is prime using the different approaches.

Fig. 1. Time taken to determine if 4294967029 is prime

Here it can be seen that the performance of wasmer is similar to lucet, both
performing faster than wasmtime. A number of other comparisons using memory
bound and compute bound computation were performed and this conclusion
largely held across all the experiments8. For this reason, as well as the fact
that it has a substantial developer interest, wasmer was chosen as the preferred
WASM/WASI runtime9. It is also interesting to note that the time difference
between the WASM executables and native C is not large, with the WASM
executables taking approximately 20% longer than native compiled code.

3 Running WASM in Serverless Context

Although the ultimate goal of this work is to understand how WASM can be
used as a native runtime in a serverless context, the first priority in this work

7 https://depth-first.com/articles/2019/10/16/compiling-c-to-webassembly-and-
running-it-without-emscripten/.

8 More details are available in the project report [5] and in the project’s Github
repository at https://github.com/WilliamMartini/WASM.

9 The bytecode alliance reached out to note the performance of wasmtime was due to
optimizations being disabled by default in previous versions of wasmtime, meaning
that similar performance between wasmer and wasmtime can now be expected.

www.dbooks.org

https://depth-first.com/articles/2019/10/16/compiling-c-to-webassembly-and-running-it-without-emscripten/
https://depth-first.com/articles/2019/10/16/compiling-c-to-webassembly-and-running-it-without-emscripten/
https://github.com/WilliamMartini/WASM
https://www.dbooks.org/

144 S. Murphy et al.

was to devise a solution which would enable a WASM executable to be run
on existing serverless platforms - Openwhisk and AWS Lambda in particular.
Hence the initial focus was on the problem of getting WASM code operating in
docker container running in different serverless platforms leveraging wasmer as
the WASM runtime.

The first approach to address the problem focused on using a Python-flask10

wrapper around the WASM executable; the wrapper provided hooks into the
serverless platform, offering a small number of HTTP endpoints which the plat-
form could invoke to initialize the serverless function and to trigger it with some
input parameters. Although this approach worked in principle, as it used Python,
which typically has a large set of dependencies, it resulted in a large container,
thus eliminating one of the potential advantages of considering WASM as a run-
time.

The second approach was to leverage WASM capabilities within node.js;
node.js offers the possibility to run WASM binaries directly within the node
runtime (rather than needing a standalone WASM/WASI execution environ-
ment). As node.js is well supported in serverless systems, this approach held
some promise.

To compare the different solutions a simple WASM file was generated which
performed a calculation of the 42nd number in the Fibonacci sequence. The
time taken to execute this function when implemented via the Docker/Python
solution was compared with that of the node.js solution on different platforms.
The results are shown in Fig. 2.

From the figure, it can be seen that using the node.js results in lower latency
than the docker solution when run on Openwhisk. One limitation of the node.js
solution, however is that only integer types are supported when communicating
between the serverless platform and the executable. The slower execution on
AWS is still being investigated.

Fig. 2. Time taken to calculate the 42nd Fibonacci number

10 https://flask.palletsprojects.com/en/1.1.x/.

https://flask.palletsprojects.com/en/1.1.x/

WASM-Serverless 145

4 Conclusion

In this work, the use of WASM in a serverless context was considered: We com-
pared three different options for running server side WASM: wasmer, wasmtime
and lucet. wasmer was the best option to proceed with based on the first anal-
ysis. Execution of WASM applications within serverless platforms was then con-
sidered. One option was to use a container containing glue to the serverless
platform, the WASM runtime – wasmer in this case – and the WASM applica-
tion itself. An alternative approach removed the necessity for the WASM specific
runtime as standard node.js engines provide support for running WASM. An
initial comparison of these alternatives showed that using node.js can be more
efficient than using a dedicated WASM runtime.

Future work will involve deeper comparison of these different approaches for
running WASM within different serverless platforms.

References

1. Haas, A., et al.: Bringing the web up to speed with WebAssembly. In: Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (2017)

2. Hall, A., Umakishor, R.: An execution model for serverless functions at the edge.
In: Proceedings of the International Conference on Internet of Things Design and
Implementation (2019)

3. Gadepalli, P.K., et al.: Challenges and opportunities for efficient serverless comput-
ing at the edge. In: 2019 38th Symposium on Reliable Distributed Systems (SRDS).
IEEE (2019)

4. Shillaker, S., Pietzuch, P.: Faasm: lightweight isolation for efficient stateful serverless
computing. arXiv preprint arXiv:2002.09344 (2020)

5. Persaud, L., Bosshard , B., Martini, W.: Using WebAssembly to make serverless
applications more portable. Project report, Software Maintenance and Evolution
Module, University of Zurich, December 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

http://arxiv.org/abs/2002.09344
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Second International Workshop
on Agile Transformations

Agile Transformation (ATRANS) Workshop:
A Summary and Research Agenda

Leonor Barroca1, Noel Carroll2, Peggy Gregory3, and Diane Strode4

1 The Open University, UK
leonor.barroca@open.ac.uk

2 Lero, NUI Galway, Ireland
3 University of Central Lancashire, UK
4 Whitireia Polytechnic, New Zealand

Abstract. Agile transformation is a process many organisations undertake to
survive and thrive in volatile, uncertain, complex, and ambiguous environ-
ments. Global and local challenges such as those caused by COVID-19 have to
be embraced at very short notice and impose changes on people, processes, and
technology to facilitate an agile transformation. Building on the first interna-
tional workshop on agile transformation (ATRANS), this year’s workshop
challenged the scientific community to examine agile transformation across IT
functions, business units and whole organisations, focusing in particular on
aspects of culture, leadership, people and sustainability. This paper reports on
the results of the second international workshop on agile transformation.

Keywords: Agile transformation � Theoretical perspectives � Sustaining agile �
Human factors � Research agenda

1 Introduction

Agile transformation is the process of transforming an organisation’s socio-technical
structures, activities and culture so it can embrace change and thrive in a turbulent and
competitive international environment. With a growing global focus on digitalisation,
the importance of agility across every sector of society has become paramount to scale
and strengthen competitiveness. Within a software context, agile software methods
were originally designed for small and collaborative single-team projects with evolving
needs. However, given the success of agile methods, many large software organisations
have begun to scale these methods to a large-scale and often enterprise-wide context in
a hope to mimic their success. As a result, agile transformation has emerged as an
important concept within the C-Suite [1]. For example, in 2020, management and
leadership commentators report that we are in “the age of agile” and “without agile,
human-centered organization is not possible at all” [2]. Yet, for the practitioner and
research communities, there are a number of core challenges which still remain, and
which are even more pronounced as a result of the current unprecedented pandemic
changes.

Following on from the success of the first Agile Transformation (ATRANS)
workshop in 2019 [3], the second ATRANS workshop in 2020 provided an online

www.dbooks.org

https://www.dbooks.org/

forum which brought together an excellent mix of practitioners and academics to
present and discuss current practice and research, to explore the current challenges, and
to pose solutions based on experience and theory [4]. ATRANS 2020 comprised of
three sessions. In the first session, four papers on agile transformation were presented
on the following topics:

1. How Employees Experience and Cope with Transformative Change by Dina
Koutsikouri, Sabine Madsen, and Nataliya Berbyuk Lindström;

2. It’s not Easy Being Agile: Unpacking Paradoxes in Agile Environments by Betting
Horlach and Andreas Drechsler;

3. Agile Transformation; Shifting conceptualization of control in Agile Transforma-
tions by Marius Mikalsen, Viktoria Stray, Nils Brede Moe, and Idun Backer;

4. Strategy-focused agile transformation: a case study by Helen Sharp and Katie
Taylor.

The second session consisted of three breakout group discussions on agile trans-
formation running in parallel. The third session hosted a four-person panel led by two
practitioners and two academics. The panel focused on current research challenges in
agile transformation. In the following sections we summarise the key findings from the
discussion and the panel sessions.

2 Experience with Agile Transformation

The workshop provided over 80 participants with an opportunity to share their expe-
riences on agile transformation during breakout sessions under the following three
categories: (i) theoretical perspectives of agile transformation; (ii) sustaining agile
transformation; and (iii) human factors in agile transformation. The three categories
were identified, prior to the workshop, by the workshop chairs (the authors of this
article) from research and gaps in the literature; we also took into account the topics
presented across the workshop research articles. Prior to the breakout sessions, three
Metro Retro (an agile retrospective tool) whiteboards were organised, each divided into
quarters in order to structure participants’ contributions and facilitate discussions
during the sessions. During the research article presentations, participants were given
the opportunity to indicate which of the three breakout sessions they wished to par-
ticipate in. There were approximately 25 participants in each breakout session. In each
breakout session, participants were asked to identify specific challenges they experi-
enced around the specific topic. Within the Metro Retro site, participants posted virtual
post-it notes on various quadrants of a virtual whiteboard which allowed us to probe for
more details during discussions and share experiences of participants. The authors of
this article facilitated the breakout sessions and summarised the key points from these
interactive discussions. All of the key points were also presented back to the main
workshop after the breakout sessions for further discussion and debate. We summarise
the key takeaway points from each of these sessions in Table 1.

A common theme expressed by participants was a concern with the focus of
practitioners and researchers on technical factors (e.g. comparing agile methods and
analytics), rather than on the core human elements (e.g. examining the impact of added

Agile Transformation (ATRANS) Workshop 149

pressures exerted on teams to operationalise agile transformations). Many of the key
challenges identified by participants in the discussion were related to human factors
throughout the transformation process: e.g., being flexible, trusting, and embracing an
agile mindset. Participants also highlighted the need for more novel perspectives on
management and coordination of agile and for sustaining transformation through
improved communication and training processes.

Table 1. Summary of discussion in ATRANS Breakout Sessions

Theoretical perspectives of
agile transformation

Sustaining agile
transformation

Human factors in agile
transformation

Examine the complexity of
agile transformations using
theories such as complex
adaptive systems theory
Identify new ways to explain
changes brought about by agile
transformations using theories
on coordination, change
management (e.g. Kotter’s
model or Worley's
framework), temporality, and
dependency
Explore the application of
control theory and stewardship
theory to explain factors which
enable or inhibit agile
transformations
Develop theoretical accounts
of the inherently fluid nature of
agility as a theory and new
norms resulting from agile
transformations
Identify the paradoxes,
tensions, and contradictions
which emerge during agile
transformation
Propose new theoretical and
interdisciplinary insights on
the management of agile
transformation using, for
example, institutional theory,
leadership theories, adaptation
theory, process theory, actor
network theory, activity
theory, and normalisation
process theory

Clearly communicate the
rationale, objectives, and
benefits of transformation
Improve knowledge sharing
across the whole organisation
Keep the curiosity about what
to do next to improve
transformation
Recognise, identify and
manage change fatigue
Continuously assess agility,
setting expectations, i.e. the
time it takes, being a journey
not a destination, etc.
Educate leaders ahead of the
transformation with clear
expectations and about how to
let go of control
(re)Organise the business
around value streams
Ensure sufficient resources to
sustain long term
transformation and
commitment from leadership,
e.g. budget, agile coaches,
processes, and tools, etc
Inform people about advances
in the transformation and
celebrate those
Inspire and train people,
addressing fear of change and
insecurity allowing for space
and time for improvement
Don’t try to do it all at the
same time, establish priorities

Distinguish between deep
transformation and process
change
Explore how management
become agile themselves
Investigate how to support
people to change to an agile
mindset
Examine the influence of the
certification industry on agile
transformation
Explore the role of
communication between
different parts of the
organisation, e.g.
understanding differences in
terminology and aims
Consider the role and
significance of developing a
shared high-level vision
Investigate the impact of
national and organisational
culture on change
Explore how to build
stakeholder trust during
transformation
Investigate managers’
expectations of agile
transformation and how they
change over time
Explore how individual
psychological factors enable or
inhibit change and affect
embracing an agile mindset
Explore how to support staff
experiencing resistance to
change and fear of job loss

150 L. Barroca et al.

www.dbooks.org

https://www.dbooks.org/

3 The Panel

The workshop concluded with a panel of four (two academics and two practitioners)
reflecting on the future of agile transformation, a research agenda, and key challenges
that need to be addressed.

The first panellist, Torgeir Dingsøyr (SINTEF, Norway) highlighted two of the
challenges prioritised by participants in the first agile transformation workshop [1],
(i) resistance to change and (ii) coordination challenges in multi team environment, as
areas in need of further research. Coordination needs to be rethought on several fronts:
in personal relations, in teams, when there are higher-level interdependencies, when
there is task uncertainty, when many people are involved, and as coordination changes
over time. Focusing on agile transformation at the organisation level, the second
panellist, Helen Sharp (The Open University, UK) reflected on the drivers for trans-
formation and the choices that need to be made (where/how to start? what to trans-
form?). Helen highlighted opportunities for interdisciplinary research teams to study,
for example, agility from an IT perspective and from a business-oriented perspective,
and to test theories from different disciplines in the context of agile transformation. She
also pointed to the need to consider appropriate or develop new research methods to
study transformation. These need to take into account the fact that the research process
is complex, large-scale, and of a long duration. Bringing the voice of practitioners, the
third panellist, Parag Gogate (Ascendere, UK) stressed how practice is based on per-
sonal experience, advice from colleagues, and knowledge and intuition rather than on
findings from the scientific research community. He pointed to the gap between theory
and practice that is difficult to bridge, while still acknowledging that it is beneficial to
bring theory to practice and vice versa. Focus was placed on the need to consider ways
to improve praxis, i.e. the process by which theory can be enacted, embodied, or
realized in practice. The fourth panellist, Kjetil Røe (Sopra Steria, Norway) introduced
a case study from the Norwegian public sector project highlighting the challenges faced
and how they were addressed; initially with a change of focus from process to product,
empowering multidisciplinary teams, and then by implementing continuous delivery.
One of the decisions taken was not to follow any specific framework. Kjetil reported
that more research is needed on the impact of frameworks. During this project they saw
the positive impact that continuous delivery had on team culture and processes; yet
continuous delivery is another aspect of agile transformation that is not well understood
by research.

4 Research Agenda on Main Challenges

Building on the broad themes around paper presentations, workshop participants’
insights and experiences, and the panel members contributions, the initial three areas
for discussion (in the breakout rooms) were explored in depth resulting in the following
proposed research agenda for agile transformation:

• Theoretical perspectives on agile transformation: there was a common theme
across workshop articles, breakout sessions, and panel discussions on the

Agile Transformation (ATRANS) Workshop 151

importance of building new theory and adopting existing theories from other dis-
ciplines which can explain facets of the agile transformation phenomenon. There
continues to be a gap between theory and practice often due to (i) practitioners’ lack
of awareness of recent academic developments, and (ii) a lack of open access to
academic research outputs, e.g. published journal articles. As part of future research,
we propose the need to develop new theoretical accounts across various stages of an
agile transformation from the motivation to transform, techniques to manage change
and coordination, implementing controls, normalising new agile methods, and
evaluating the successes and failures of agile transformations. In addition, aca-
demics should consider the importance of praxis to apply and test new theoretical
developments in practice. The four panelists highlighted the growing importance of
bridging the gap between theory and practice using interdisciplinary viewpoints.
The panelists also agreed on the need for academics to target open access publi-
cations so practitioners can access research and read about recent initiatives on agile
transformation so they can apply and test new research developments.

• Sustaining agile transformation: Agile adoption is not the end of the road;
recently, agile has extended to larger projects and across the organisation to non-IT
areas. Once adopted, agile still needs to be supported, sustained and embedded in
the organisation. This raises research questions in a wide range of areas. The papers
in this workshop dealt with issues that emerge in the process of sustaining agile
transformation, e.g.: managing control in cross-functional teams, identifying ten-
sions in agile environments, understanding how employees sustain confidence in an
agile transformation, and bringing a wider organisation perspective to sustaining the
transformation, by focusing on strategy. Panel members also highlighted areas that
need further research in sustaining the agile transformation: resistance to change;
coordination in multi-functional teams; the impact on culture derived from
empowering multidisciplinary teams; and implementing continuous delivery. As
part of further research, we propose the following questions: how do organisations
handle critical incidents (such as COVID-19) and ensure they sustain their agile
projects?, What challenges do organisations face when sustaining agile at all
levels?, How do organisations overcome challenges in agile transformation con-
cerning leadership, knowledge sharing, communication, organisational structure,
motivation, culture and mindset?, How do organisations deal with resistance to
change and coordination in multi-functional teams?, Where and how do organisa-
tions start transformations and what strategies and choices do they need to make to
sustain the transformation?

• Human factors in agile transformation: The impact of human factors on agile
transformation emerged as a major theme across the workshop articles, breakout
sessions, and panel discussion. We propose that future research needs to refocus on
this issue. Three key challenges for researchers to investigate were identified during
the workshop: conceptualising agile transformation, organisation-level human
factors, and individual human factors. Important aspects of agile conceptualisation
included the paradox of ‘doing agile’ versus ‘being agile’ discussed by Horlach and
Drechsler in the second paper presentation. Other issues discussed during the
breakout session included how to support people to understand and adopt an agile
mindset, the frequent problem of underestimating the size of the task of an agile

152 L. Barroca et al.

www.dbooks.org

https://www.dbooks.org/

transformation, and the need for managers to understand that the deep transfor-
mation required during an agile transformation includes many changes to man-
agement practices. Organisation-level factors include the need for a clearly
communicated shared vision and goal for transformation, dealing with the current
organisational culture and its diversity, and developing a mutual understanding
between people in different parts of the organisation. In the panel discussion Helen
Sharp highlighted the need to explore the motivations that organisations have to
undertake transformations and how those drivers affect the way in which the
transformation is approached. Individual human factors of interest include the
different ways individuals respond to and resist change. These factors were also
highlighted in the panel discussion. Torgeir Dingsøyr discussed the common phe-
nomenon of resistance to change and Parag Gogate described his experience with
practitioners who often find it hard to set aside time to critically reflect even when
they know it is an important process.

5 Conclusion

Agile approaches represent a fundamental shift in how we build teams and services to
sustain contemporary business practices. Successful agile transformation embeds a
deep philosophical change in how ideas are nurtured, how organisations are structured,
and how cultures embrace openness and innovation. Yet, as the authors, participants,
and panellists reported throughout this workshop, there are many fundamental chal-
lenges associated with agile transformation which point to new directions for future
research. This workshop demonstrated there is a continuing interest among the research
community in agile transformation and a growing body of studies upon which to build.
The purpose of the second ATRANs workshop was to explore issues in transformation
primarily from the perspective of theory, sustainability, and human factors. The
workshop participants explored these issues in depth and based on the submissions,
discussions, and insights from practitioners and researchers we propose the following
research agenda:

1. To build new interdisciplinary theoretical accounts of agile transformation that are
accessible to practitioners and can be applied in practice.

2. To explore how to continuously support, sustain and embed agile within the
organisation at all levels (people, processes, products) and throughout time.

3. To enhance our understanding of the complex human factors that influence agile
transformation at organisational, team and individual levels.

This second ATRANS workshop built on the first ATRANS workshop [3] and
identified in depth areas that constitute a rich research agenda. Going forward, we
aspire to two aims for the future of ATRANS. First, that the exchange of interdisci-
plinary ideas between practice and academia will flourish and support agile software
engineering and agile management. Second, that the research agenda developed at the
workshop will inspire future studies in this complex and challenging domain and

Agile Transformation (ATRANS) Workshop 153

encourage academics and practitioners to build new theoretical perspectives and
practical guidelines on how to better manage agile transformation.

Acknowledgement. Thanks to all presenters and participants, to Maria Paasivara for the overall
organisation of XP2020 and Hubert Baumeister and Mansooreh Zahedi for chairing the research
workshops. Further, we are very grateful to the program committee members: Akim Berkani
(Paris Dauphine University, France), Julian Bass (University of Salford, UK), Torgeir Dingsøyr
(SINTEF, Norway), Henry Edison (Lero, NUI Galway, Ireland), Christoph Fuchs (Germany),
Lucas Gren (Chalmers University, Sweden), Tomas Gustavsson (Karlstadt University, Sweden),
Ludvig Lindlöf (Chalmers University, Sweden), Marius Mikalsen (SINTEF, Norway), Sunila
Modi (University of Hertfordshire, UK), Nils Brede Moe (SINTEF, Norway) and Helen Sharp
(The Open University, UK).

References

1. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

2. Denning, S.: The irresistible rise of agile: A paradigm shift in management. Forbes.
(2019)

3. Barroca, L., Dingsøyr, T., Mikalsen, M.: Agile tansformation: a summary and
research agenda from the first international workshop (ATRANS). In: Hoda, R.
(ed.) Agile Processes in Software Engineering and Extreme Programming –

Workshops. XP 2019, Springer, Cham (2019)
4. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges

and recommendations. IEEE Softw. 36(2), 44–50 (2019)

154 L. Barroca et al.

www.dbooks.org

https://www.dbooks.org/

Agile Transformation: How Employees
Experience and Cope with Transformative

Change

Dina Koutsikouri1(&), Sabine Madsen2,
and Nataliya Berbyuk Lindström1

1 Department of Applied IT, University of Gothenburg, Gothenburg, Sweden
dina.koutsikouri@ait.gu.se

2 Department of Politics and Society, Aalborg University, Aalborg, Denmark

Abstract. Modern manufacturing is highly competitive, requiring that orga-
nizations reduce lead times and achieve greater organizational flexibility, for
example by implementing agile ways of working. However, studies show that
incumbent firms have persistent problems with adopting and scaling such
practices. In this paper, we present an empirical account of agile transformation
in a large manufacturing company that has adopted the SAFe framework. Based
on interviews, focus groups, and observation data, we identify three themes for
understanding how employees experience and cope with transformative change
by: 1) making sense of the new, 2) practicing with peers and 3) letting go of
legacy. Key findings are that initially employees are more concerned with
making sense of the new rather than with the implementation of agile itself and
that implementation of agile happens very gradually over time rather than
through major breakthroughs. Thus, it takes time for employees to weather
change, become acquainted with the new way of working and stabilize how they
work together in the agile teams and across the ARTs (Agile Release Trains).
We contribute to extant literature with insight into the human implications of
agile transformation.

Keywords: Agile transformation � Software development � Case study �
Manufacturing

1 Introduction

Recently, there has been an outpouring of literature that seeks to explain why orga-
nizations should strive for agility to be able to respond quickly to change [1]. In larger
organizational settings, becoming agile often requires the organization to undergo an
agile transformation. Agile transformation refers to how large incumbent organizations
change from their existing operating model to an agile way of working. This is
accomplished through the adoption of principles, methods and frameworks that facil-
itate the scaling of agile development [2]. However, agile transformation and agile
scaling are considered challenging because they require that employees in an organi-
zation change how they think, work and interact [2, 3]. Thus, as organizations attempt
to become agile, employees face the challenge of letting go of traditional ways of

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 155–163, 2020.
https://doi.org/10.1007/978-3-030-58858-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_16

working and embracing the ‘new’ thereby making agile transformation primarily a
‘people transformation’ [4]. Yet, main lessons from scholarly research are mostly
presented from an instrumental and managerial view in terms of identifying, classi-
fying, and mapping solutions onto transition challenges.

In this paper, we look at agile transformation from the employees’ lifeworld per-
spective to better understand the effort and agency of employees when their organi-
zations undergo transformative change, for various reasons. For us as researchers, it is
both a value position to emphasize employee agency rather than managerial drive and
an avenue for shedding light on what management-initiated transformation ‘feels like’.
Thus, the aim is to contribute to the emerging research agenda that focuses on the social
aspects and human implications of large-scale agile transformations. To this end, we
ask: How do employees experience and cope with transformative change?

We address this research question using a case study design [5], where we followed
the agile transformation for one year by conducting interviews, focus groups and
observations in a large Swedish manufacturing company. Thus, we have studied the
employees experience of having to adopt the Scaled Agile Framework (SAFe) [2] and
to adapt to a new operating model that emphasizes team interaction and agile roles
rather than hierarchical power and traditional job titles. The paper advances current
knowledge by focusing on agile transformation as a change process, which causes
intense experiences that unfold over time as the employees make sense of the change
and gradually adjust the way they work, and especially how they work together.

2 Background

Agile transformation and scaling are challenging, because they require transformative
change as well as figuring out how to make agile work outside the small-team context,
which it was intended for and where it has proven successful [6]. Therefore, researchers
as well as practitioners have also demonstrated a significant interest in understanding
agile transformation and in supporting agile scaling [e.g. 3, 7–9].

Several frameworks have been proposed for scaling agile in larger organizational
settings. The Scaled Agile Framework (SAFe) [2] is the most adopted model for
scaling agile across the enterprise. However, there is scarce empirical evidence on how
the SAFe framework is deployed (or to what extent it can be fruitfully implemented in a
large distributed environment). Further, the existing literature indicates that reaping the
benefits of agile principles at a large scale is inherently difficult [3, 8, 9]. Although this
do not seem to deter organizations from implementing agile scaling efforts [see, e.g. 7]
understanding the contingencies surrounding agile transformation appear more
important than ever [10].

Establishing an agile development approach often requires transformation, but
many organizations underestimate the efforts required to institute new ways of working
[11]. In a recent review of 13 agile transformation cases [9], the authors identified nine
key challenges associated with implementing agile methods on a large-scale, including:
difficulty in defining concepts and terms, comparing and contrasting frameworks,
readiness and appetite for change, top-down vs bottom-up implementation, overem-
phasis on 100% adherence over value, lack of evidence-based use, balancing

156 D. Koutsikouri et al.

www.dbooks.org

https://www.dbooks.org/

organizational structure while adhering to large-scale methods, lack of evidence-based
use, maintaining developer autonomy, and misalignment between customer and pro-
cesses frameworks. They also note that since many problems are ‘subtle and can exist
under the radar’ it is difficult to address all of them. Moreover, they urge researchers to
move toward developing theory that captures the dynamic nature of transformation
processes and evolution over time.

Paasivaara et al. [8] propose four lessons learnt for large-scale agile transforma-
tions: 1) consider using an experimental approach to transformation, 2) consider
implementing the transformation step-wise in complex large-scale settings, 3) team
inter-changeability can be limited in a complex large-scale product—specialization
might be needed, and 4) not using a common agile framework for the whole organi-
zation, in combination with insufficient common trainings and coaching may lead to a
lack of common direction in the agile implementation. Further, according to the The
state of Agile Survey [12] ‘internal culture’ remains an obstacle to adopting and scaling
agile practices successfully in many organizations.

In general, the growing body of literature shows consensus on factors that enable
and hinder adoption of agile methods and the challenges of scaling agile practices.
However, literature reviews show a lack of systematically conducted studies on large
software development organizations adopting agile methods [11, 13]. Given the nas-
cent stage of agile research and theory there is a strong call from the research com-
munity for more empirical studies on agile transformation [3, 7, 8].

3 Method

In this paper, we investigate the experience of transformative change, while it is
happening. Thus, our study follows the case of an ART (Agile Release Train)
implementing the SAFe framework to change from waterfall to agile way of working.
When we started collecting the data, the ART had entered the early stages of agile
transformation. Data collection in the form of 25 interviews, two focus group sessions
and several observations took place over a period of one year at the case company’s
premises. Specifics regarding the case company have been anonymized for confiden-
tiality reasons.

The interviews lasted 60–90 min and where held with members of the ART,
including roles such as systems developers, software testers, system architects, scrum
masters, product owners, ART managers and agile coaches. Each of the focus group
sessions lasted 90 min. The first session was carried out with four group managers and
the second included eight scrum masters. To analyze the empirical data, we have
applied Braun and Clarke’s [14] phases of thematic analysis. No a priori coding
template was used as the purpose was to understand transformative change from the
employees’ perspective rather than from a pre-existing theoretical point of view. In the
first phase, we read the transcribed interviews and noted down ideas in a process of
familiarization. Secondly, we conducted open coding to generate the initial codes.
Next, the whole data set was grouped together under similar codes and then sorted into
initial themes. In the third stage, we considered and conceptualized the themes in
relationship to each other. As we examined how the practitioners experienced and were

Agile Transformation 157

coping with the transition (from waterfall to agile) we began to realize that this
emphasized three overlapping processes. We then refined and conceptualized these
processes as three overlapping phases, which are illustrated in Fig. 1 (see the con-
clusion section).

4 Case Study

The organization under study has realized that in order to stay relevant in a highly
competitive marketplace, it must be able to respond quickly to change in customer
demands and technology. Moreover, the organization’s competitiveness is increasingly
relying on frequent releases of new/better software that improves the functionality of
the physical products, rather than the physical products per se. Therefore, senior
management has introduced agile methods and the SAFE framework as a solution that
is intended to help the organization’s software development employees speed up their
ability to release product embedded software often. However, our analysis shows that
the shift from the plan-driven waterfall approach to delivery-oriented agile sprints is a
major transformative change that involves many elements. These are listed below. The
first two elements refer to top management decisions, while the latter three refer to
aspects that our interviewees described as particularly challenging.

(1) Formal training. Everybody is going through formal training.
(2) Co-located teams. The previous departmental/functional area structure is replaced

with a cross-functional team structure and if possible, team members are physically
relocated to sit together in shared office space.

(3) Becoming a team. The team members in the new teams have to get to know each
other and figure out how to become a self-organizing team.

(4) Communication between teams. The teams must find out if, when and how it is
necessary to communicate between teams in the ART.

(5) Lag time. Not everybody has switched to the agile way of working yet as it takes a
long time for everybody to attend the basic formal training and to be allocated and
physically moved into teams. Thus, employees who are trying to learn the new way
of working must collaborate with employees, who are still working in the old way.

With the shift to agile nearly everything that the employees could previously take for
granted is called into question, meaning that there is much cognitive and practical
pressure to create new shared understandings about how to behave, work and relate to
each other in the new organization.

4.1 Making Sense of the New

The first process, making sense of the new, is characterized by the employees spending
much mental energy on trying to understand the new agile working model. However,
“…it is hard, it is a totally different way of working and thinking…” (Systems
architect).

The employees understand the agile way of working by comparing it with what
they are familiar with, namely the waterfall approach. In other words, the old is the

158 D. Koutsikouri et al.

www.dbooks.org

https://www.dbooks.org/

frame of reference for making sense of the new. It is also clear from our data that an
important step towards understanding the new is to prefer, and even glorify, the past.
Thus, the new way of working is initially evaluated rather critically through profes-
sional and personal filters based on previous experience. Moreover, agile is subject to
continuous individual and shared (re)interpretation and (re)negotiation.

To cope, the employees seek explanations and ask for facts and measurements.
However, they still feel that they lack information. Moreover, they express that com-
munication has become more burdensome after the change to agile, because the method
prescribes that they must communicate more within the team, but they lack knowledge
of who knows what and who can make which decisions.

“I feel that I lack information. But I have been thinking about this a lot, and I cannot really say
what I’m lacking…and that is quite confusing…I hear from a lot of people that we are missing
information…but no one really knows what we are missing…I think it is because I have not
adjusted…” (Systems architect).

Several interviewees realize that these information and communication challenges are
not the real problem, but rather a way of deflecting uncomfortable experiences asso-
ciated with the change: “We are still in the uncertainty and they are not really liking
this” (Scrum master). In general, our empirical data suggests that it is the individual’s
intense experience of confusion, uncertainty and anxiety that carries and colours the
sense making processes at the early stages of transformative change.

4.2 Practicing with Peers

The second process, practicing with peers, foregrounds the employees’ efforts to, in
their own terms, grow into the agile way of working at the coalface, because “[t]he
reality is that you cannot stop [development], because you want to learn how the team
has to work together” (Software developer). This is described positively, as the
employees state that it is by trialing and learning agile together in the new teams, that
they are able to collectively figure out what the concepts of agile, such as self-
organizing teams, rapid feedback, prioritizing backlog and focusing on continuous
learning, really mean for their day-to-day work. While the formal training is important
for building basic understanding, it is by practicing with their peers that the employees
start to adjust to the agile roles and work practices.

“It is a new thing…so everybody is trying to learn…the Scrum master is new, so he needs to
learn more, the Product Owner needs to learn about it, and of course all other parts of the
organization…to also even communicate with each other.” (Software Developer).

However, it is challenging and time-consuming to practice new relationship types and
develop new interaction norms through socializing, while also attempting to do the
actual work in another way, using a new language. Consequently, the interviewees
experience that because so many things are new for so many people, there is a rela-
tively long period with less productivity; despite the aim being to speed up software
development.

“It takes time, takes time…I just want to go to the same level as before agile. We had a better
productivity than now. But I’m expecting it will happen. I’m hoping.” (Software Tester).

Agile Transformation 159

The employees understand that the software development part of the organization is
going through a major learning process. Hoping that people will learn and that things
will get better in a foreseeable future seems to be the main coping mechanism. The
future-orientation helps the employees deal with the experiences of productivity loss
and collaboration challenges that seems to characterize the change at the middle stages.

4.3 Letting Go of Legacy

Once the agile transformation had picked up pace, most employees sought routine in
their daily operations and interactions, which contributed to a surge to make it work.
Crucial to this ‘reorientation’ period, is the third process of letting go of legacy.
However, some aspects are more difficult to let go of than others, particularly hierar-
chical structure, cultural values, and identity-defining skills.

“What is hard at the moment, is that we are still living in the traditional project management
world and this cannot be changed in an afternoon!” (Product Owner).

Indeed, the interviewees’ hierarchical organizational structure difficult to let go of. This
challenge is referred to as ‘adopting a new mindset’. The employees experience the
new agile teams and roles as vastly different from how they used to work. In particular,
the team members have to let go of having a boss that they can go to for help. Instead
they have to embrace the freedom and responsibility of self-organizing teams. While
some employees enjoy this, others find it uncomfortable and feel more alone with the
burden of decision-making.

Moreover, some employees who previously had the title of project managers, now
have to function as scrum masters. This is a difficult change as old conceptions of what
it means to be a manager has to be unlearned in favor of a more facilitating approach.
Reminding oneself not to fall back into old habits and encouraging co-workers to
remember the new are important coping mechanisms:

‘‘I find it difficult to avoid meddling with technical issues since in my old role as group manager
I was responsible for the team and technical side. Now I have to let go of the technical
responsibility to the product owner. I have to work hard to get myself into this new mindset.”
(Group manager).

For the individual employee, the change to agile creates an intense experience of
anxiety about the relevance of one’s skills and ultimately, one’s relevance in the new
organization. This is turn means that fear of letting go co-exists with a desire to be as or
more productive than before the shift to agile. Therefore, the task is to keep doing the
hard work of understanding agile, its feasibility and its desired outcome, while
simultaneously hooking it into the prevailing work system, which is ultimately very
difficult to discard.

5 Conclusion

Our research is an attempt to draw on lifeworld interviews with employees to shed new
light on why agile transformation presents challenges for established organizations.

160 D. Koutsikouri et al.

www.dbooks.org

https://www.dbooks.org/

In Fig. 1, we summarize our research findings. This process model delineates how
the employees experience and cope with transformative change over time through three
recursive processes. Thus, initially the employees are more concerned with making
sense of the new by comparing it with the past than with the implementation of agile
itself. This is a very intense experience propelled by anxiety and uncertainty. Next, an
important way for the employees to understand what is required of them and their new
roles, is to practice with peers, and despite a drop in productivity due to learning, to
hope that things will get better in the foreseeable future. However, it is difficult to let go
of the hierarchical structure and identity-defining values and skills and to begin to form
a new mindset. Therefore, the implementation of the agile way of working happens
very gradually through subtle shifts in meanings and practices rather than through
major breakthroughs. At this latter stage, the letting go of legacy is driven forward by
the employees’ desire for the change to be ‘over’ and for the new to work as ‘normal’.

Above all our study highlights that employees will take their time to cope with
change, because it is a time- and energy consuming endeavor, both emotionally and
practically as well as individually and collectively. We find it interesting that our
findings led us to emphasize slowness as key to understanding and perhaps also
overcoming some of the challenges of agile transformation. This is of course an
uncomfortable insight, for the case company as well as in general, as agile transfor-
mation is undertaken to speed up software development and keep up with a competitive
marketplace. Overall, the lessons from this case study are relevant for leaders of
organizations contemplating large-scale agile transformation.

Future research will assist in determining the extent of generalizability to other
organizational contexts facing transformative change. We believe that further research

Fig. 1. Three overlapping processes of coping with transformative change

Agile Transformation 161

into the three empirically derived phases of change has potential to uncover how
members of organisations collectively enact transformative change; thus, acknowl-
edging and normalizing the silent individual struggles, the role of hope when the going
gets tough as well as the effort and agency of employees in acquiring new skills and
engaging with each other to socialize their way into the new way of working. It will be
important to further investigate other types of emotive processes or mechanisms
involved in dealing with similar types of transformative change efforts. We hope to
have provided a start in this direction.

References

1. Birkinshaw, J.: What to expect from agile. MIT SMR 59(2), 39–42 (2018)
2. Leffingwell, D.: Scaling Software Agility. Best Practices for Large Enterprises. Addison

Wesley, Boston (2007)
3. Carroll, N., Conboy, K.: Applying normalization process theory to explain large-scale agile

transformations. In: 14th International Research Workshop on IT Project Management
(IRWITPM), 14th December, Munich, Germany (2019)

4. Eden, R., Jones, A.B., Casey, V., Draheim, M.: Digital transformation requires workforce
transformation. MIS Q. Executive 18(1), 1–17 (2018)

5. Eisenhardt, K.: Building theories from case study research. Acad. Manag. Rev. 14(4), 532–
550 (1989)

6. Baskerville, R., Pries-Heje, J., Madsen, S.: Post-agility: what follows a decade of agility.
Inform. Softw. Technol. 53(5), 543–555 (2011)

7. Denning, S.: Why and How Volvo embraces agile at Scale, Forbes, January 2020
8. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile transformation

at ericsson: a case study. Empir. Softw. Eng. 23, 2550–2596 (2018)
9. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and

recommendations. IEEE Softw. 36(2), 44–50 (2019)
10. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software development.

SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)
11. Klunder, J.A., Hohl, P., Prenner, N., Schneider, K.: Transformation towards agile software

line engineering in large companies: a literature review. J. Softw. Evol. Process, 1–23 (2018)
12. VersionOne Inc 13th Annual ‘state of agile development survey’ (2019). https://www.

stateofagile.com/#ufh-c-473508-state-of-agile-report
13. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale

transformatins: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)
14. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–

101 (2006)

162 D. Koutsikouri et al.

www.dbooks.org

https://www.stateofagile.com/#ufh-c-473508-state-of-agile-report
https://www.stateofagile.com/#ufh-c-473508-state-of-agile-report
https://www.dbooks.org/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Agile Transformation 163

http://creativecommons.org/licenses/by/4.0/

Strategy-Focused Agile Transformation:
A Case Study

Helen Sharp1(&) and Katie Taylor2

1 The Open University, Milton Keynes MK7 6AA, UK
helen.sharp@open.ac.uk

2 University Central Lancashire, Preston, UK

Abstract. Strategic agility enables an organisation to sense and seize oppor-
tunities, manage uncertainty and adapt to changes. This paper presents one case
study of a traditional charitable organisation taking a strategy-focused approach
to agile transformation. Interview data was collected over a 13-month period
through interviews at different stages and with different members of the trans-
formation team and Heads of Department. This case study illustrates the chal-
lenges faced in such a transformation, and shows that strategic agility requires
different time horizons to co-exist: a future vision, a medium term set of
objectives and a short term performance monitoring perspective.

Keywords: Culture � Performance measurement � Strategic flexibility

1 Introduction

The implementation of agility outside IT departments and across organisations, often
referred to as enterprise agility, is growing in popularity, and is a significant challenge
[4]. This is partly driven by the tensions that can arise when agile IT teams interact with
non-agile departments in different parts of the organisation [6], and partly by the
increasing need for organisations to be responsive to change [7]. Research in the
managerial field refers to flexibility rather than agility, and although the similarities and
differences are disputed, literature on flexibility provides a useful viewpoint for ana-
lysing enterprise agility. For example, Toni and Tonchia [13] identify four comple-
mentary dimensions of flexibility: economic, operational, organisational and strategic.
The economic dimension has been addressed in conjunction with theories for man-
agement of financial buffers against demand uncertainties or external market shocks.
The operational dimension deals with aspects of manufacturing system flexibility, e.g.
ability to adapt the manufacturing system to different environmental conditions and a
variety of product features. Agile software development literature [8] captures espe-
cially operational aspects related to software component development, e.g. manage-
ment of rapidly changing business requirements and iterative delivery practices. The
organisational dimension deals with models of organisation and labour flexibility in
rapidly changing environments [13].

The strategic dimension may be viewed through culture [10], leadership [5] and
dynamic capabilities [12] that enable an organisation to sense and seize opportunities,
manage deep business uncertainty and adapt to changes in the business environment.

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 164–172, 2020.
https://doi.org/10.1007/978-3-030-58858-8_17

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_17
https://www.dbooks.org/

From a strategic management perspective [12], strategy is not just a plan but a means to
achieve agility through implementation of those plans, hence organisations achieve
agility by forming an appropriate strategy and embedding the strategy vision, values,
and goals at the operational level across the organisation.

Agile transformation of this kind is referred to using different names, including
business agility and enterprise agility [6], but although process guidance for transfor-
mation can be found [1], empirical studies are lacking [3]. In particular, there is a lack
of evidence illustrating how organisations transform to agility through a strategy focus,
and the issues they encounter during this type of transformation. To address this, we
conducted a 13-month case study during 2017 and 2018, to answer the research
question: What issues arise within organisations focusing on strategic agility? This
paper reports the findings of a case study [11], investigating a charitable organisation
transforming to agility through a focus on strategic agility.

2 Case Background

“What is the role of a Victorian patriarchal provider of services for <disabled> people
in an age where funding streams, public expectations, customer expectations, deem
that we’re actually no longer relevant, fundamentally all of our lead indicators for the
business are really unhealthy. Need to fundamentally transform and that makes it
really big.” Change manager (member of transformation team).

Our case organisation is a traditional charity for disabled people. It was originally
two separate organisations with different foci, but over time each took on a wider range
of activities and the merged organisation had hundreds of different services and
products. As a result they were carrying a lot of cost and their purpose had become
confused, both for staff and for customers. Also, their services were not used by the
majority of potential customers. Before the transformation reported here, the charity’s
strategy set an aspiration to reach more potential customers but it wasn’t designed to
deliver the required step change. To address this, a change programme was initiated but
it failed to get sufficient senior management sponsorship, and so the programme started
as skunk works (a small group of people with autonomy to work on a “secret” project),
led by the change management group, with no widespread communication and
engaging only with those who had an appetite for change. This was to deliver a change
programme for a new agile strategy that focused on a small number of activities.
Hence, the change programme encompassed both organisational change and significant
strategy change. The change manager, our gatekeeper, was keen to draw on previous
Agile Transformation experiences and had self-trained in agile approaches and
principles.

Prior to our involvement, an assessment of group culture and a re-structuring of the
organisation had taken place. In particular there was an urgent need to improve the
financial health of the organisation, and to embed the “lived experience” of disabled
people into the organisation, by involving the community more. In April 2017, the
organisation was restructured to remove duplicate functions, which resulted in the loss
of senior management posts. From July 2017 a series of papers was put to the Board of
Trustees setting out the development of a new strategy and delivery plan. Through

Strategy-Focused Agile Transformation 165

these papers and ongoing work of the change management group, a new strategy
evolved from then until its launch in late 2018.

Strategy development began with identifying an overarching vision and a set of
ambitious goals. These were iterated through a group of 10–12 people invited to take
part, from a range of different grades, departments, and physical locations around the
country. The initial goals and objectives were tested with customer and internal staff
stakeholders, and strategy drafts were regularly presented to the Board of Trustees.

Task and finish (T&F) groups were set up to drive the business plan forward. This
included a subset of “Heads of Department”. Their remit included making sure that
others in their department were kept informed of developments. The strategy devel-
opment process aimed to produce a five-year and a three-year strategy, and a one-year
plan. In the end, a five-year strategy, and a one year plan were delivered to the Board of
Trustees, and the three-year plan was used as a basis for ongoing improvement.

3 Method

We engaged with this case study from July 2017 to August 2018. The overall approach
was to understand the transformation from the participants’ point of view rather than to
impose any a priori expectations or analytical frameworks [9]. The initial meeting in
July 2017 set the scene and agreed subsequent meetings. In Oct 2017 a workshop with
the transformation team was held to explore agility and contextual matters including
how to assess performance in an agile setting. Short catch-up phone calls (10–20 min)
took place in Nov and Dec 2017, and longer interviews and discussions with members
of the team (1–2 h) took place in January 2018 and March 2018. During these
engagements, the team explained progress and shared their reflections. This data was
used to construct a narrative of the transformation from the teams’ point of view.

In July 2018 we conducted semi-structured interviews with 9 Heads of Department
about the transformation process to identify challenges, successes and next steps. These
included Heads of Community Involvement, Customer Service, HR, Finance and
Relationship Development. Our interviewees had been with the organisation for
between 1 year and 17.5 years, and many were goal owners for the final strategy; none
had received formal agile training. In August 2018 we conducted the same semi-
structured interview with the Head of Transformation.

Throughout this time, researchers also had access to several documents and ver-
sions of the strategy including the one issued to staff in Sept 2018. This included a set
of values and behaviours expected from staff and to be used as a guide for recruitment.

All interactive sessions were audio recorded and transcribed, or detailed notes were
taken contemporaneously. The documentation, and some aspects of the audio
recordings were used to construct the case background above. The views of the
journey, including successes and challenges were analysed thematically [2].

166 H. Sharp and K. Taylor

www.dbooks.org

https://www.dbooks.org/

4 Results

We present the results from two perspectives: one focusing on the transformation team
and the other focusing on the Department Heads. These two are compared in Sect. 5.

4.1 Transformation from Inside the Agile Transformation Team1

The main engagements with the transformation team were in Oct 2017, and in January,
March and August 2018. During Oct 2017, four related issues were discussed:

1. What is agility, and what is it not? Issues included the need for accountability,
discipline, empowerment, customer focus, and responsiveness. Common miscon-
ceptions about agile that staff in the organisation may have were identified,
including that agile isn’t chaotic or process-obsessed. A longer list of issues were
identified for discussion later, including business readiness, appraisal of team and
individuals, agile behaviours and consensus.

2. Performance management in an agile environment. For someone to be accountable,
performance needs to be measured, but agile focuses on the team rather than the
individual so how can performance of an individual rather than the team be
measured?

3. Agile strategy. The strategy needs to be responsive to the environment and hence
updated regularly. Discussion included the idea of a three-year rolling plan, and
questions such as “where do I start?”, “what’s sprint 1?”, how to keep momentum
going – not to just run workshops, get a brilliant “buzz” and then stall. An evidence
base for challenging ideas and providing rapid feedback was needed.

4. Sustainability of agile. Agile behaviours and performance management were framed
in terms of sustainability “We can do agile planning, but agile sustainability comes
down to what people are motivated to do…and how they are motivated to behave”.

By January 2018, there was a sense in the transformation team that the process
around the strategy needed to support its continuous improvement, and therefore
should be agile. Although the original focus was on an agile strategy, they realised that
“Agile strategy has to be a process”. The organisation had identified a long term vision,
and developed a business plan with four priorities and eight cross-cutting objectives.
The next step was to change the portfolio management process to adapt to having three-
year rolling plans that move towards that long term goal, through three-month cycles to
check progress “is this the right stuff? Yes, move on; no, stop it or cut it”. This will
involve test-learn cycles. “That’s your agile strategy, it’s your tactical 1-3 year
business plan moving towards big significant goals, that get refined”. Creating those
business plans was underway, and a template for the business plan for each department
had been developed. The culture change that was needed was planned to be driven
through the new branding process, which was expected to launch towards the end of
the year.

1 All quotes in this sub-section are from a member of the transformation team (one of 3 people).

Strategy-Focused Agile Transformation 167

InMarch 2018 (about half way through the transformation process), accountability
continued to be a big issue, along with the need to identify and acquire appropriate data
for performance management. Difficulties arose from senior managers concerned that
they would be accountable for things outside their direct budgetary control. Some
people associated accountability with blame, and were concerned about consequences
if the objective failed. Although they were still not very agile, the changes so far
highlighted the “massive culture change required”… “fundamentally we are not cur-
rently built to deliver those goals”. Instead of focusing on changing the culture, the
terminology had changed to look at values and behaviours.

Fixed hierarchical structures and fixed timeframes were causing problems, and
there was little appreciation that the plan had to drive activities. In the past, the plan
was delivered through line management and the budget, and these are structured in
silos. In a fixed governance structure it’s hard to explain the dynamic nature of the
process.

A new operational model was being developed to offer more activities online. Staff
and customers had been consulted about the plan and organisational changes; the goals
and objectives had also been tested with customers and staff, including potential cus-
tomers who had not engaged with the organisation before.

People were still working in silos creating their own plans, not talking across
departments, and without reference to the overall goals – if it’s not in the strategy then
“you really shouldn’t be doing it…this isn’t about empowerment but discipline”.
Overall, the team felt “it’s moving us in the right direction” but “we just assumed way
too much” and “<the process> gently exposed some of the undercurrents of the
organisation”.

Highlights from the Head of Transformation’s interview in August 2018 include:

“the approach we’re moving towards is absolutely right – right for <the organisa-
tion> specifically but actually generically right for an awful lot of organisations”… “the
change we’re seeing in our external customer environments is just not gonna stop”

However, he also identified several challenges including

• Senior stakeholders may have buy-in to the process, but they also need to go
through a personal change as well as a fundamental organisational transformation
“we didn’t appreciate the depth of mindset change basically that it would need.”

• They needed more stability in terms of leadership
• Agility needs a collaborative way of working, which is counter to a hierarchical

organisation with silos. “half the senior management didn’t know what other
functions did” “A key thing is just understanding what everyone does”.

• Communicating the approach outside the managers involved was limited.
• Difficulty in communicating what accountability means – “you may not be in

control of all the direct levers for an outcome but you are in control of relationships
with the people who can pull those levers”

• Need a real-time (as close as possible) operational dashboard

Two main areas for improvement for the next cycle in the agile process are to:

168 H. Sharp and K. Taylor

www.dbooks.org

https://www.dbooks.org/

• Be a bit more creative, e.g. using design thinking, so that people engage in real
business change “we need to focus a lot more on enabling the business change…
and probably a bit less on the process itself”

• Get new senior people up to speed quickly, or find a way to retain senior people.
Constant change of personnel created instability.

In his view, strategic agility requires different perspectives to co-exist: a future
vision that sets an aspiration, a medium term horizon: “We now have the purpose
statement and the priorities, and we have business plans, but we need to tackle the
really important medium-term strategic goals.”, and a short term horizon: “our major
Achilles heel across the whole charity is data … our new performance dashboard is a
lot better … we’re nowhere near being able to report the real-time heartbeat type
metrics that we really need to understand how the business is performing day-by-day”

4.2 Transformation from the Heads of Department Perspectives

The interviews with the Heads of Department were analysed for themes according to
successes, challenges, what could have been done better in the transformation, and next
steps. Table 1 summarises the themes emerging from this analysis. Note that the quotes
do not represent the full data set; where cells are empty, no interviewee identified
anything in that category, e.g. no-one suggested that aspects of Organisational Struc-
ture could have been Done Better.

Table 1. Themes from Heads of Department interviews, with illustrative quotes

Theme Success Challenge (past) Challenge (future) Done better Next steps

Plan/strategy “Strategy is
great”

“No control or proper
oversight”

“Succession
planning strategy
ownership”

Org structure “More
manageable
organisation”

“Organisation too
convoluted”

Org culture “Shift in
mentality”

“Honesty and openness” “Morale”

Org purpose “Shared
organisational
goals”

“No guiding narrative or
philosophy for decision-
making”

“Be clear
about
Charity’s
role”

Level of org
change

“Degree of
organisational change”

“Change fatigue” “Stability,
everything’s
been changing”

“Get changes
embedded”

Transformation
process

“Process has been
excellent”

“Process took too long”

External profile “Responding to
external events
well”

“Reputation declining
for years”

“Need to make
sure people know
us”

“Launch
ourselves as
listening”

Operational “Budget agreed” “Identifying accountable
owners”

“Data difficult to
quantify”

“Find effective
way to update
finances”

“Articulate
budget
requirements”

Staff buy-in “Getting senior
people on the
T&F group”

“People need to buy-in
to the philosophy”

“Bring along
people across the
organisation”

“Excite and
energise
everyone”

Strategy-Focused Agile Transformation 169

Reading Table 1 left to right provides an overview of the theme and how it plays
out across the transformation activities. For example (quotes come from different
interviewees, so sentences do not represent any one person’s view):

Level of Organisational Change: There was no mention of success in this theme.
A past challenge was the high degree of organisational change, and a future challenge
will be change fatigue. What could be done better is to achieve more stability as
everything’s been changing, and next steps are to get the changes embedded.

External Profile: A success was the response to external events. A past challenge was
that reputation had been declining, and a future challenge will be to make sure people
know what we stand for; next steps are to launch as a listening organisation.

5 Discussion

The meaning of accountability was a concern for the transformation team throughout
the process. It was mentioned in every engagement we had with the transformation
team, but hardly mentioned at all in the Heads of Department interviews. Other issues
raised by the transformation team were recognised by the Heads, but not all the issues
raised by the Heads were recognised by the team.

There was a strong support for the progress that had been made up to the new
strategy’s launch – not just the strategy itself, but also its vision and goals. Other
successes related to the organisation’s structure, a change in culture and mindset, and
the turnaround of the financial situation.

There were several past challenges, but fewer future challenges. Those that were
identified relate to keeping staff engaged and energised in the continuing transforma-
tion process, succession planning for strategic development, getting the right data
available to performance management, aligning the Departments and the strategic
goals, and communicating the right external profile.

Areas for improvement in terms of the transformation process were maintaining
more stability in the organisation, finding a better way to update finances, being clear
and transparent in communications and expectations, and being more creative in how
the process unfolds. The next steps identified were in response to the issues raised
above, and included embedding changes, articulating clearly the organisation’s goals
externally, and energising everyone to take the changes forward.

6 Conclusion

“I thought we’d embarked on achieving a destination, but actually what we embarked
on was a really long journey” Head of Transformation.

Strategic agility requires three different horizons to co-exist: a long term aspiration,
a medium term set of goals, and a short-term response to real-time performance
management. The experience of this case study shows that introducing this approach to
a traditional, hierarchical organisation requires a number of conditions including:
sufficient resources, stable leadership, and suitable performance measurement data.

170 H. Sharp and K. Taylor

www.dbooks.org

https://www.dbooks.org/

Although not driven by IT or encompassing traditional Agile frameworks, this case
study contributes empirical results to the growing set of transformation studies within
the XP community. Future plans in this research include to engage with other organ-
isations using a strategic approach to their transformation, and to compare these
findings with organisations who take a different approach to transformation.

Acknowledgements. We thank our participants for taking part, the Agile Business Consortium
for funding this work, and our colleagues in the Agile Research Network for their time and
support.

References

1. Appelbaum, S.H., Habashy, S., Malo, J.-L., Shafiq, H.: Back to the future: revisiting Kotter’s
1996 change model. J. Manage. Dev. 31(8), 764–782 (2012)

2. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3(2), 77–
101 (2006)

3. By, R.T.: Organisational change management: a critical review. J. Change Manage. 5(4),
369–380 (2005)

4. Dikert, K., Paasivaara, M., Lassenious, C.: Challenges and success factors for large-scale
agile transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

5. Doz, Y.L., Kosonen, M.: Embedding strategic agility: a leadership agenda for accelerating
business model renewal. Long Range Plan. 43, 370–382 (2010)

6. Karvonen, T., Sharp, H., Barroca, L.: Enterprise agility: why is transformation so hard? In:
Proceedings of XP2018 (2018)

7. Kuusinen, K., Gregory, A.J., Sharp, H., Barroca, L.: Strategies for doing agile in a non-agile
environment. In: Proceedings of ESEM 2016 (2016)

8. Laanti, M., Similä, J., Abrahamsson, P.: Definitions of agile software development and agility.
In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. CCIS, vol. 364,
pp. 247–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8_22

9. Robinson, H., Segal, J., Sharp, H.: Ethnographically-informed empirical studies of software
practice. Inf. Softw. Technol. 49(6), 540–551 (2007)

10. Schein, E.H.: Organizational Culture and Leadership. Jossey-Bass, San Francisco (2010)
11. Sharp, H., Barroca, L., Strode, D., Gregory, A.J., Taylor, K.: A strategy-focused agile

transformation: planning simultaneously 50 years ahead and 5 minutes ahead (2020). http://
agileresearchnetwork.org/publications

12. Teece, D., Peteraf, M., Leih, S.: Dynamic capabilities and organizational agility: risk,
uncertainty, and strategy in the innovation economy. Calif. Manag. Rev. 58, 13–35 (2016)

13. Toni, D.A., Tonchia, S.: Definitions and linkages between operational and strategic
flexibilities. Omega 33, 525–540 (2005)

Strategy-Focused Agile Transformation 171

https://doi.org/10.1007/978-3-642-39179-8_22
http://agileresearchnetwork.org/publications
http://agileresearchnetwork.org/publications

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

172 H. Sharp and K. Taylor

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Shifting Conceptualization of Control in Agile
Transformations

Marius Mikalsen1,2(&), Viktoria Stray1,3, Nils Brede Moe1,
and Idun Backer4

1 SINTEF, Trondheim, Norway
marius.mikalsen@sintef.no

2 Norwegian University of Science and Technology, Trondheim, Norway
3 University of Oslo, Oslo, Norway

4 Storebrand, Oslo, Norway

Abstract. Agile transformation implies that organizations apply agile methods
also outside of software development units. One particular way of doing such
transformations is to create cross-functional software development units. This
represents new challenges for control for organizations as the unformal agile
control mechanisms from the software units meet the more formal, bureaucratic
and hierarchical control from other units. The research on how to manage
control in agile transformations, however, is scarce. Through a case study of a
new, cross-functional unit in a financial institution, we report on their work to
implement control in agile transformations. To analyze our results, we draw on
new perspectives for control in the digital era, which challenges existing pre-
sumptions on control. Our findings indicate how agile transformations require
rethinking traditional control mechanisms and experiment with new control
perspectives more suitable for the digital era.

Keywords: Agile transformation � Agile program � Empirical � Case study �
Control � Stewardship theory � OKRs

1 Introduction

The pressure of digitalization with rapidly changing markets and technology devel-
opments drive organizations towards adopting agile ways of working, also outside
software development units [1]. Such agile transformation implies that agile methods
are used not only in software development teams but also by other parts of the orga-
nization, such as business units [3]. Agile transformations deal with challenges such as
hierarchical management in waterfall mode, difficulties working across organizational
boundaries [1], and units not willing or able to change [3]. One particular form of
change aiming to overcome some of these challenges is creating semi-independent,
cross-functional units (i.e. consisting of personnel from both business- and software-
development units) that use agile methods to improve the value of the software
developed [2].

Collaboration across different units while working in new ways represent new
challenges for control for organizations. The informal agile control mechanisms from

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 173–181, 2020.
https://doi.org/10.1007/978-3-030-58858-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_18

the software units meet the more formal and hierarchical control from other units. How
to implement control mechanisms that enable management to have control while still
allowing the autonomy and rapid changes that are required in agile methods remains an
open question in the literature of agile transformations. We, therefore, ask the following
research question: How to manage control in agile transformations?

To answer this research question, we report from a case study of a financial
institution that implements a new semi-independent unit, an agile program, consisting
of several cross-functional teams working according to agile principles. The teams
consist of both software and business developers. In this paper, we report on their work
on devising metrics for measuring the teams’ performance using Objectives and Key
Results (OKRs) [11]. To analyze the results, we draw on new perspectives of control
for the digital era, based on stewardship theory. Stewardship argues that our conception
of software development control needs to be reinvented in an era in which collaborative
value creation is increasingly prevalent [4]. Our analysis indicates how agile trans-
formations allow rethinking control and implementing new control perspectives more
suitable for the digital era.

The rest of the paper is organized as follows. Section 2 provides the theoretical
background on how agile transformation challenges existing control, using stewardship
theory as an alternative theoretical perspective. Section 3 introduces the case and
explain how we collected and analyzed data. Section 4 shows the findings from one
questionnaire and two retrospectives. In Sect. 5, we discuss our findings in light of a
stewardship perspective on control. Section 6 concludes and presents future work.

2 Theory: A Changing Conceptualization of Control

2.1 Agile Transformation and New Challenges of Control

Agile transformation represents new challenges for control for organizations. Previ-
ously, large software development projects were controlled by plans, hierarchies and
standardization [5]. As this is no longer suitable, new forms of control are introduced,
such as large-scale agile frameworks like SAFe and Spotify, with its own set of
challenges [6] that again can challenge autonomy [7, 8]. In the digital era, managers
face growing pressure to introduce techniques and practices to improve software
productivity and reduce such impediments, however, it is unclear how impediments in
software practices are controlled, i.e., identified, measured and managed [9]. One
technique many organizations use to guide and measure work is OKRs [11].

2.2 Stewardship Theory – Alternative Conceptions of Control

Recent theoretical work suggests that we need new conceptualizations of control for the
digital era. Wiener et al. [4] argue that the digital era, with increasingly advanced and
pervasive technologies, changes how we develop software. Changes include: new work

174 M. Mikalsen et al.

www.dbooks.org

https://www.dbooks.org/

practices with blurring of roles, a move from delivering commodities to continuous
innovation, a move from hierarchical control structures to leveraging dynamic net-
works, and a changing workforce with increased specialization. Previous research on
control has had an agency perspective, which implied that the purpose of control is to
ensure that project actors reduce self-interest and work according to a project, program
or organization goal. Now rather, the purpose of control shifts towards value creation,
which has support in stewardship theory which considers the agent an intrinsically
motivated steward working towards a common overall goal [ibid.].

Wiener et al. [4] outline key control questions and digital-era characteristics based
on stewardship theory (see the themes of these two aspects in Table 1 below). First,
key control questions are concerned with 1) control modes, whether these are formal or
informal, 2) control style, and whether this is authoritative or enabling, and 3) whether
there is a value appropriation or value-creation purpose to control. Second, digital era
characteristics are concerned with: 1) congruence with the common overall goal. 2)
information asymmetry is ok, 3) intrinsically motivated actors, 4) long term orientation
rather than short term, and 5) dynamic network structures.

3 Case and Method

3.1 Case Background

This study is a part of a longitudinal interpretative case study [10] of agile autonomous
teams set in a Norwegian bank (dubbed NorBank for anonymity), with more than 2,000
employees. NorBank initiated in 2017 an agile program (AP) consisting of five cross-
functional autonomous teams organized in line with agile principles, with the goal of
developing improved software for their business-to-business solutions in the insurance
market. The teams consist of resources from both the software and business devel-
opment side of the organization. The teams deliver software solutions to the business
side of the organization, such as sales and settlements. The teams collaborate closely

Fig. 1. The participants discussing OKR implementation

Shifting Conceptualization of Control in Agile Transformations 175

with organizational units responsible for technology development and innovation. Each
team is led by product managers, who is part of the steering-forum of the program,
together with managers from the business and technology units. The program has been
developing software for a while and is now focusing on delivering value on the
business side. Their concern is how to measure and control these processes, while still
being agile. In response, the program has decided to use OKRs [11] as a method for
goal setting and measurement (Fig. 1).

3.2 Data Collection and Analysis

We collected data through two retrospectives with the program in February 2020. The
first retrospective was held with four product managers. The second retrospective was
with the steering forum of the program. In this retrospective, a total of 12 people
participated. The participants included product managers, the leader of the program,

Table 1. Aspects of stewardship theory, themes and questions, from Wiener et al. [4].

Aspect of
stewardship
theory

Theme Statements

Key control
questions

Formal control or
informal control

1) We measure what we produce
2) We control each other and that the team
delivers

Authoritative control
style or enabling

3) I have extensive dialogue with those who
decide the goals

Value-appropriation or
value-creation purpose

4) We measure to handle insecurity regarding
budget, time and functionality
5) We measure to handle insecurities regarding
collaborations between actors with different
competencies
6) We measure to handle insecurities regarding
business value

Digital-era
characteristics

Congruence with
common goal

7) My goals align with the goal of the program

Information asymmetry 8) It is ok that others (e.g., experts) have
information that I do not have

Intrinsically motivated
actors

9) I am intrinsically motivated by working in
the program

Long-term or short-term
focus?

10) We focus on short-term goals
11) We consider the development as part of
something that continuously changes

Dynamic network
structures?

12) I collaborate with people outside my team

176 M. Mikalsen et al.

www.dbooks.org

https://www.dbooks.org/

managers from the business units, managers from the technology units, and key IT staff
such as architects. Each of the sessions lasted about 1.5 h. The authors facilitated the
retrospectives and asked questions for clarifications.

Data was collected by taking pictures, documenting the post-its on the whiteboards,
taking notes, and collecting data through a questionnaire. Our data analysis was partly
deductive as we asked questions regarding stewardship theory in our questionnaire, but
also inductive by analyzing our notes and pictures of the whiteboards for themes
emerging in the retrospectives. We operationalized the control questions and digital-era
characteristics from [4], as shown in Table 1. The statements were given in Norwegian
and rated on a 5-point Likert scale from strongly disagree (1) to strongly agree (5). We
collected the questionnaire responses digitally during the second retrospective, and the
participants answered from their mobile phones. We decided that we wanted to collect
the responses this way so that the participants could think individually in silence and
also answer anonymously. Furthermore, the tool we used (Mentimeter.com) gave us
the ability to show the answers to the questions in real-time, which sparked a discussion
among the participants. As such, we were able to get feedback and better understand
the responses. The participants scored the statements on a 5-point Likert scale from
strongly disagree to strongly agree.

4 Findings

Key Control Questions Regarding Control Configuration, Enactment and
Purpose
In Fig. 2 below, we see the score on key control questions regarding control config-
uration, enactment and purpose. Team members control each other (Item 2) and have
dialogue with those who decide the goals (Item 3). This is in line with a stewardship
perspective on control. Still, we see that traditional forms of measurement such as
measuring on time and budget (Item 4) and what is produced (Item 1) are in place,
indicating the remains of agency rather than value creation perspectives. Measuring on
cooperation between different actors is low (Item 5).

Findings Regarding Digital Era Characteristics of Control
In Fig. 3 below, regarding digital-era characteristics of control, we find scores indi-
cating stewardship assumptions. We see a that practitioners are intrinsically motivated
(Item 9). We see that their goals align with program goals (Item 7), that information
asymmetry among actors is accepted (Item 8), and there is a lot of cooperation with
people outside the team indicating dynamic networks (Item 12). Finally, wee see that
there is a is a long-term orientation in the work (Item 11), and a lower score on short-
term goals (Item 10).

Shifting Conceptualization of Control in Agile Transformations 177

Findings from the Retrospectives: Collaboration with Business Units
In the retrospective with the product managers, we found that there were collaboration
and interdependencies with units outside the agile program. For example, developers in
a separate software development unit made architecture decisions that led to the teams
needing to rewrite their APIs. Also, they relied on developers from another unit on

1 – Strongly disagree
5 – Strongly agree

Fig. 2. Key control questions regarding control configuration, enactment and purpose

1 – Strongly disagree
5 – Strongly agree

Fig. 3. Digital-era characteristics of control

178 M. Mikalsen et al.

www.dbooks.org

https://www.dbooks.org/

implementing workflow automation, and these developers were often busy. Moreover,
collaboration with actors outside the organization was challenging. Action items
identified included increased use of OKRs and continuous OKR reviews as a way to
focus the teams, the need for flexibility from the tech side on delivering on what the
teams needed, and also get more competence on workflow optimization.

In the retrospective with the program’s steering forum, the participants discussed
that the most important thing to improve was to better demonstrate to the business side
the value of what the program delivered. The second most important was OKRs and
how this could be used to engage and involve the business side. The third most
important was to keep the steering forum meetings lightweight and short. Action items
identified included: OKR reviews, quarterly reviews with regard to overall goals, and
clarify roles and responsibilities in the steering forum to make sure everyone could
contribute more in future meetings.

5 Discussion

Agile transformations involve that participants from different units, such as software
and business, work together using agile methods [1, 3]. Such collaborations challenge
traditional conceptions of control found in agile methods. To answer our research
question - how to manage control in agile transformations – we have reported findings
from a cross-functional unit in the midst of an agile transformation.

We used the stewardship theory [4] to shed light on how a cross-functional unit
approach control. Our results show that, regarding control configuration, enactment and
purpose (Fig. 2), team members control each other and have dialogue with those who
decide the goals. This is in line with a stewardship perspective on control. Still, we see
that traditional forms of measurement such as measuring time, and budget and what is
produced are in place, indicating the remains of agency rather than value creation
perspectives. Measuring cooperation is weaker and can be worth focusing on in order
to manage known impediments for flow [9].

Regarding digital-era characteristics of control (Fig. 3), we find strong indication of
stewardship assumptions [4]. Practitioners are intrinsically motivated, their goals align
with program goals, information asymmetry among actors is accepted, there is a lot of
cooperation with people outside the team indicating dynamic networks, and there is a
long-term orientation. This indicates that the ways of controlling in the agile program
keep with the agile principles of mutual adjustment and autonomy [7].

The retrospectives indicated an appreciation of using OKRs as a way to set goals
and communicate goals with the rest of the organization, such as the business units in
particular, in order to ensure that what is valuable is agreed upon between units, and
that value can be delivered. In terms of stewardship theory [4], such dynamic networks
are a key characteristic of the digital era and should also be the focus of new forms of
control. It is not clear exactly how to control it. In this case OKRs are used as a way to
communicate between the cross-functional teams and the business side. What is clear
however, is that determining what is a valuable software deliverable will be an element
of negotiation between interdependent units [1].

Shifting Conceptualization of Control in Agile Transformations 179

6 Conclusion and Future Work

In this paper, we have used stewardship theory to investigate how cross-functional
teams work with OKRs and how new forms of control can emerge in agile transfor-
mations. Our results indicate that the members take responsibility for each other and
that the team delivers; they also have an extensive dialogue with those who decide the
goals. Almost all stated that their goals aligned with the goal of the program, which
indicates that the information flow and goal setting works well in this company. The
participants also stated that it was ok that others had information that they did not
possess. In terms of stewardship theory, this is called information asymmetry. Ste-
wardship assumes that knowledge workers are intrinsically motivated and self-
actualizing and that they display a high level of commitment and involvement. The
participants in our study reported being intrinsically motivated by working in the
program. In sum, our findings indicate the balancing act between new and traditional
control in agile transformations.

A key limitation of this study is that it is a single case study. We find indications of
stewardship assumptions in the case. However, how and what to measure and control
remains a challenge during agile transformations. Future research can investigate how
for example, OKRs can be used to support stewardship assumptions rather than older
paradigms of control. Also, old paradigms of control are not likely to disappear, so how
to incorporate stewardship perspectives with other control regimes is relevant. In sum,
agile transformation is about changing practices in organizations, and control seems to
us to be a relevant aspect of changing practices.

References

1. Mikalsen, M., Moe, N.B., Stray, V., Nyrud, H.: Agile digital transformation: a case study of
interdependencies. In: Thirty Ninth International Conference on Information Systems, San
Francisco (2018)

2. Vial, G.: Understanding digital transformation: a review and a research agenda. J. Strateg.
Inform. Syst. 28, 118–144 (2019)

3. Barroca, L., Dingsøyr, T., Mikalsen, M.: Agile transformation: a summary and research
agenda from the first international workshop. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364,
pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_1

4. Wiener, M., Mähring, M., Remus, U., Saunders, C., Cram, A.: Moving is project control
research into the digital era: the “Why” of control and the concept of control purpose.
Inform. Syst. Res. 30(4), 1387–1401 (2019)

5. Barlow, J.B., et al.: Overview and guidance on agile development in large organizations.
Commun. Assoc. Inform. Syst. 29, 25–44 (2011)

6. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

7. Moe, N.B., Šmite, D., Šāblis, A., Börjesson, A.L., Andréasson, P.: Networking in a large-
scale distributed agile project. In: Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (2014)

180 M. Mikalsen et al.

www.dbooks.org

https://doi.org/10.1007/978-3-030-30126-2_1
https://www.dbooks.org/

8. Moe, N.B., Dahl, B., Stray, V., Karlsen, L.S., Schjødt-Osmo, S.: Team autonomy in large-
scale agile. In: Proceedings of the 52nd Hawaii International Conference on System Sciences
(2019)

9. Carroll, N., O’Connor, M., Edison, H.: The identification and classification of impediments
in software flow. In: Americas Conference on Information Systems (AMCIS). Association
for Information Systems (2018)

10. Klein, H.K., Myers, M.D.: A set of principles for conducting and evaluating interpretative
field studies in information systems. MIS Q. 23(1), 67–88 (1999)

11. Doerr, J.: Measure What Matters: How Google, Bono, and the Gates Foundation Rock the
World with OKRs, p. 31. Penguin Publishing Group (2018). ISBN 9780525536239

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Shifting Conceptualization of Control in Agile Transformations 181

http://creativecommons.org/licenses/by/4.0/

It’s Not Easy Being Agile: Unpacking
Paradoxes in Agile Environments

Bettina Horlach1 and Andreas Drechsler2(&)

1 University of Hamburg, Hamburg, Germany
horlach@informatik.uni-hamburg.de

2 Victoria University of Wellington, Wellington, New Zealand
andreas.drechsler@vuw.ac.nz

Abstract. In this paper, we outline inherent tensions in Agile environments,
which lead to paradoxes that Agile teams and organizations have to navigate. By
taking a critical perspective on Agile frameworks and Agile organizational
settings the authors are familiar with, we contribute an initial problematization
of paradoxes for the Agile context. For instance, Agile teams face the contin-
uous paradox of ‘doing Agile’ (= following an established Agile way of
working) versus ‘being Agile’ (= changing an established Agile way of work-
ing). One of the paradoxes that organizations face is whether to start their Agile
journey with a directed top-down (and therefore quite un-Agile) ‘big bang’ or to
allow an emergent bottom-up transformation (which may be more in-line with
the Agile spirit but perhaps not be able to overcome organizational inertia).
Future research can draw on our initial problematization as a foundation for
subsequent in-depth investigations of these Agile paradoxes. Agile teams and
organizations can draw on our initial problematization of Agile paradoxes to
inform their learning and change processes.

Keywords: Agile teams � Agile organizations � Agile projects � Agile
paradoxes

1 Introduction

Agile and hybrid project environments are increasingly becoming the norm within and
even beyond the IT industry, and organizations increasingly start scaling Agile1 beyond
IT project teams [1]. There are numerous methodologies for Agile project management
and scaling Agile, which claim to embody the Agile Manifesto’s principles and values
(e.g., Scrum, SAFe, Disciplined Agile etc.). Studies show that embracing Agile leads to
generally satisfied individuals and companies, but there are also a variety of obstacles
that teams and organizations may face [2–4].

In a more general perspective, “most management practices create their own
nemesis” [5 p. 491], and Agile is no exception. As one role of research is to critique the
status quo [6], we do so in this paper for the Agile context by outlining areas of tension

1 For brevity, we use the term Agile (with a capital A) in this paper as a term encompassing agile
values, principles, methodologies, and techniques, without referring to specific ones.

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 182–189, 2020.
https://doi.org/10.1007/978-3-030-58858-8_19

www.dbooks.org

http://orcid.org/0000-0002-7026-0241
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_19
https://www.dbooks.org/

which result in paradoxes that Agile teams and organizations running Agile teams may
have to navigate. Following Putnam et al. [7], we define paradoxes as “contradictions
that persist over time, impose and reflect back on each other, and develop into
seemingly irrational or absurd situations because their continuity creates situations in
which options appear mutually exclusive, making choices among them difficult”
(p. 72).

By providing this critique, we problematize [8] Agile beyond a functionalist view
that is centered on performance or effectiveness. Our initial problematization therefore
paves the way for future, more in-depth research contributions that investigate each
paradox – as an instance of ‘the dark side of Agile’ – more closely. We see these
paradoxes as a starting point for more focused theoretical and empirical investigations
how Agile teams and organizations encounter, experience, and cope with these Agile
paradoxes. As one key tenet of Agile organizations is continuous learning and change,
such in-depth treatments of Agile paradoxes can therefore also contribute to organi-
zational learning and change efforts in practice.

Our analysis draws on a critical reading of selected Agile methodologies and
techniques, the Agile research literature, as well as a critical assessment of Agile
environments that the authors are familiar with (see Sect. 2). Note that while there is a
quite comprehensive dataset that informed the authors’ other research in Agile orga-
nizational contexts, there was no specific data analysis conducted for this paper to
inform our initial problematization of Agile paradoxes. We see such an undertaking as
a fruitful endeavor for future research.

In this short paper, we first outline the backdrop against which we provide our
critique. We then start discussing sources for agile paradoxes on the levels of the Agile
team as well as on the organizational level for those organizations who scaled Agile
beyond individual teams.

2 Empirical Background

Both authors are involved in a large-scale cross-industry and cross-country research
program on Agile organizational transformation and have collected extensive data
across two phases. The first data collection phase consisted of interviews and focus
groups with seven executives (e.g., CIO or CDO), whereas the second phase consisted
of interviews with lower level managers (e.g. program managers, product owners,
enterprise architect) or external consultants. The participants had two essential criteria
to fulfill: 1) their organization is undergoing a transformation towards organizational
agility, and 2) the participants hold a position with in-depth insights on the overall
(agile) organizational system. For the executives group, we conducted three single day
focus group workshops [9] and seven semi-structured interviews. For the other group,
we conducted 33 semi-structured interviews. Each interview session lasted 45–75 min
and was audio-recorded and transcribed.

All gathered data has been qualitatively analyzed to inform research on the
implications of Agile for topics such as portfolio management [10], enterprise archi-
tecture [11], business/IT alignment [12], and IT governance (currently under review).
Beyond these specific topics, however, the authors also observed more general patterns

It’s Not Easy Being Agile 183

of a paradoxical nature in the Agile organizational contexts the interview and focus
group participants gave insight into, and likewise in the (Scaling) Agile frameworks
that the interviewees referred to. The following two sections outline the sources for
these paradoxes that the authors have identified. Due to space restrictions in this short
paper, we are only able to outline and problematize each paradox on a rather general
level.

3 Sources for Agile Paradoxes on the Team Level

3.1 Being Agile Versus Doing Agile

The different aspects of Agile such as values, principles, methodologies, or techniques
allow us to distinguish between teams that are ‘being Agile’ (i.e., embrace Agile prin-
ciples and values in an Agile mind-set and truly focus on delivering customer value while
learning continuously) and ‘doing Agile’ (i.e. adopt an Agile methodology or a set of
Agile techniques and simply follow them). Note that ‘doing Agile’ can be a step on the
way of towards fully embracing the Agile mindset [13, 14]. However, there is the danger
that an Agile team stops advancing beyond the ‘doing Agile’ stage, i.e. it keeps trying to
‘perfect’ their adoption of their chosen Agile approach. In contrast, teams ‘being Agile’
commit themselves to being accountable for their work, being willing and able to handle
uncertainty in their work, and to strive for continuous improvement. The specific way of
working (methodology, process, techniques, tools) or any form of adherence is less
important. In this sense, the term ‘Agile methodology’ is already paradoxical in itself, as
the term ‘methodology’ implies a specific prescription. Especially in volatile environ-
ments or in environments where an Agile methodology or framework forms the
cornerstone of the Agile transformation, there may be a permanent paradoxical tension
between ‘doing Agile’ and ‘being Agile’ for Agile teams.

3.2 Experience Versus ‘Appetite’ for Change and Flexibility

Agile environments are built around the assumption that information completeness is
never achieved due to ever-changing environments and customer needs. Hence, a high
level of readiness for coping with change is a critical factor for Agile team effectiveness.
However, a high amount of teammembers’ experience in particular may also be a source
for a paradox. A team member’s experience can come from traditional project envi-
ronments (particularly since Agile is still a quite young trend) and therefore include a
preference for stable processes and predefined requirements based on detailed planning.
Each Agile team member also continuously gains experience in (and may become
accustomed to) their particular Agile approach and also regarding the artefact they are
working on. Both variants of experience are challenged, however, by Agile’s ‘permanent
uncertainty’ in its mindset. Sometimes, a radical change to the way of working or the
deliverable may be what the situation or the market requires, and extant experiences may
be source for resistance or inertia regarding those changes. The paradox here is therefore
that an increase in individual and collective experience may lead to a decreased ‘appetite’
for future change and therefore to less flexibility for a team.

184 B. Horlach and A. Drechsler

www.dbooks.org

https://www.dbooks.org/

3.3 Exploration Versus Exploitation

Agile teams are also characterized by a high level of self-organization and decision-
making autonomy. In traditional Agile teams, this autonomy mainly concerns the
choice of and ongoing changes to the methodology, techniques, and tools [15–17]. In
Scaling Agile teams, this autonomy often extends to product or service design changes
and future directions for their product(s)/service(s)/area(s) [18, 19]. In the former case,
a paradox arises out of the tension between the requirements of getting work done and
continuously sharpening (and potentially re-learning) one’s – metaphorical and literal –
tools. This may pose the danger of splitting a group into those advocating change and
those advocating getting things done. Autonomy over one’s artefact in the latter case
could lead to a similar paradoxical scenario of the well-researched tension between
exploration vs. exploitation [20, 21]. Should a team radically re-invent the artefact to
adapt to or anticipate market changes, or incrementally refine the artefact to fine-tune it
to established customer needs? In both cases, the team’s handling of this paradox
would enable or constrain future actions.

3.4 Directed Versus Emergent Team Process Change

As the notion of continuous change is built into Agile environments and teams, roles
such as the Scrum Masters and Agile coaches are responsible for guiding and sup-
porting the Agile team towards becoming more effective. However, there are two
general archetypes how these roles could be set up (or choose by themselves) to fulfill
their task: Agile coaches and Scrum Masters could either direct a team’s development
according to what they perceive as best for the team (to be an ‘Agile leader’ or even an
‘Agile police’, so to speak), or could nurture the teams instead (i.e. ‘help the people to
help themselves’) and let any changes to a team’s way of working emerge from within
the team. In the former case, having change directed and induced from outside the team
could potentially undermine a team’s autonomy. On the flip side, a team that is perhaps
‘too comfortable’ with their current Agile approach may not engage in a self-
transformation without external direction even though it would benefit from certain
changes [22]. Either way, Scrum masters and Agile coaches could even oppose or
counteract good Agile practices – perhaps just subconsciously – in order to continu-
ously create their own work in order to be kept employed or contracted and make
themselves seemingly indispensable. The underlying paradox here is the one of bal-
ancing team autonomy with external directions with respect to changes to the team’s
way of working.

4 Sources for Agile Paradoxes on the Organization Level

4.1 Starting/Realizing the Agile (Self-)transformation: ‘Big Bang’ Versus
Emergence

When aiming to introduce Agile on a larger scale, organizations have to choose an
approach that lies somewhere between an initial ‘big bang’ top-down transformation
towards Agile or an incremental, iterative, and emergent approach where different parts

It’s Not Easy Being Agile 185

of the organizations can choose whether and how they adopt Agile [23, 24]. In other
words, how Agile should the Agile transformation itself be, and how much predefined
structures and processes should the first target state have? For instance, in one situation a
common way of working across several Agile teams or units may be more effective to
successfully transform (parts of) the organization, whereas in another situation self-
taught bottom-up experimentation with Agile techniques and tools may be the more
effective approach – particularly when considering how to set the stage for ‘being Agile’
in a longer-term and sustained perspective. As Agile implies a high degree of team
autonomy instead of having top-down pre-planned decisions, a ‘big bang Agile intro-
duction’ is therefore paradoxical in itself. The danger of mixed messages during an Agile
transformation lies in a regression to a directive (i.e. non-autonomous) way of working
and organizational culture, and also would constrain the Agile units’ autonomy to self-
transform in the future. Simultaneously, unfettered team autonomy right from the start
could lead to the danger of an aimless or quickly stalling transformation process.

4.2 Directing Teams Versus Team Autonomy

The tension between directing and simultaneously sustaining autonomous Agile teams
may not only occur during the initial Agile transformation but may stay with organi-
zations throughout their entire Agile journey. The nature of the resulting paradox,
however, shifts to issues related to focus, resources, effectiveness, and efficiency. The
focus component affects how a team’s strategic direction is set and influenced. While
each team may know their product’s customers best, an organization’s top management
may wish to change or retire some products. In this situation, the tension arises whether
a team should be in charge of a changed purpose or even its own dissolution, or
whether an organization wants to override its teams’ autonomy in these cases. With
respect to staffing and resourcing, the Agile idea generally implies that a team would be
responsible for the resources they require to fulfill their purpose. However, resource
scarcity in organizations, competition for resources across teams, and the willingness to
achieve a global optimum across teams may prevent a purely bottom-up decision-
making on resources. Again, the organization would paradoxically interfere with a
team’s autonomy if it denies requested necessary resources. Measuring Agile team
effectiveness or performance is another source for paradoxes. Measuring performance
could have the purpose of identifying the extent to which an Agile team contributes
business value, or the purpose of aligning teams with overarching strategic objectives.
In both cases an organization would again interfere directly with team autonomy.
Finally, efficiency concerns the way of working throughout the organization, i.e. should
teams be provided with or even have to adhere to a common set of Agile values,
processes, techniques, and tools, which would allow team members to be shared or
move between teams without having to adjust to fundamentally new ways of working?
On the other hand, an organization-wide ‘Agile standard’ is again a paradox in itself,
since one emphasis of Agile lies on continuous change and adaptability, and different
Agile approaches may be effective for different teams. All these aspects are manifes-
tations of a systemic contradiction of having autonomous teams within a coherent
business organization. In a nutshell, any decision above the team level may ultimately
undermine the teams’ perceived autonomy.

186 B. Horlach and A. Drechsler

www.dbooks.org

https://www.dbooks.org/

4.3 Team Identity and Purpose Versus the Need for Radical Business
Change

When an Agile team in a Scaled Agile environment is made responsible for (a) par-
ticular product(s)/service(s)/area(s), it achieves its sustained focus through this purpose.
Over time, having a consistent focus and purpose contributes to a team’s shared
identity. However, being responsible for a specific product or service for quite a long
period may lead to a ‘blindness’ and attachment of teams to their built artefact. Con-
sequently, a team may add unnecessary bells and whistles to ‘their’ artefact to justify
the product’s as well as the team’s continued existence and resourcing in comparison to
other teams. A team may also become protective of ‘their’ product or service (area)
instead of recognizing the need for a radical change or its retirement, in order to fulfill
and surpass changed customer needs and support the organization in thriving in the
changing business environment. A team’s purpose may therefore become a self-
referential part of its identity so that strong repressions of or reactions against a radical
change to the purpose occur, with the unanticipated consequence of limiting the
effective team agility to self-transform when necessary. The paradox here therefore is
that the same mechanisms that keep an Agile team together and effective may also
hinder its ability to detect the best time and ways to re-invent themselves for their best
possible contribution to organizational value.

5 Discussion, Conclusion, Outlook

In this paper, we identified and briefly discussed several potential paradoxes in Agile
contexts. Through our discussion of these Agile paradoxes, we contribute a prob-
lematization [8] of Agile on a deeper level than a functionalist perspective that analyzes
‘what works’ [25], a critique of Agile as a management fashion [26], or previous
attempts at identifying Agile paradoxes [27]. In our problematization, we interrogated
key Agile tenets and found that embracing Agile may produce a number of paradoxes
on the team and the organizational level. We do not see these paradoxes’ existence as a
negative thing. In fact, to harness the true potential of Agile transformations organi-
zations may need to become adept at continuously confronting these paradoxes and
utilizing their forces in a constructive and not a destructive way for their ongoing self-
transformation. Since learning and change are two key Agile tenets, Agile organiza-
tions may be uniquely positioned to incorporate the confrontation with their paradoxes
into their ‘business as usual’, instead of treating tensions and paradoxes as issues that
stand in the way of organizational effectiveness and need to be resolved. While we have
not investigated each paradox in-depth, our initial problematization may still be useful
to guide and inspire [28] learning and change processes in Agile organizations.

Some of the underlying tensions – such as the exploration vs. exploitation one – are
already well known in the literature [20, 29]. Others – such as the tensions around
Agile team autonomy – may be specific for Agile environments and transformations.
They have – to the authors’ best knowledge – not been thoroughly investigated yet.
Our problematization therefore contributes to a comprehensive research agenda to
investigate how Agile teams and organizations encounter, experience, and cope with

It’s Not Easy Being Agile 187

paradoxes on their Agile journeys. We therefore encourage empirical validation and
extension of our findings, as the paradoxes in this paper are limited by being based on
general insights from IT organizational roles within two countries. Thus, we also
advocate for analyzing tensions perceived by the business side in order to capture a
truly comprehensive perspective on the paradoxes.

References

1. Panditi, S.: Survey Data Shows That Many Companies Are Still Not Truly Agile (2018).
https://hbr.org/sponsored/2018/03/survey-data-shows-that-many-companies-are-still-not-
truly-agile

2. VersionOne: 13th Annual State of Agile Report. https://explore.versionone.com/state-of-
agile/13th-annual-state-of-agile-report. Accessed 12 Aug 2019

3. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20, 329–354 (2009)

4. Kropp, M., Meier, A., Anslow, C., Biddle, R.: Satisfaction, practices, and influences in agile
software development. In: 2018 Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering, pp. 112–121. ACM (2018)

5. Clegg, S.R., da Cunha, J.V., Pina e Cunha, M.: Management paradoxes: a relational view.
Hum. Relat. 55, 483–503 (2002)

6. Willmott, H.: Critical Management Studies. SAGE, Thousand Oaks (1992)
7. Putnam, L.L., Fairhurst, G.T., Banghart, S.: Contradictions, dialectics, and paradoxes in

organizations: a constitutive approach. Acad. Manag. Ann. 10, 65–171 (2016). https://doi.
org/10.1080/19416520.2016.1162421

8. Alvesson, M., Sandberg, J.: Generating research questions through problematization. Acad.
Manag. Rev. 36, 247–271 (2011). https://doi.org/10.5465/amr.2009.0188

9. Krueger, R.A., Casey, M.A.: Focus Groups: A Practical Guide for Applied Research. SAGE,
Thousand Oaks (2014)

10. Horlach, B., Schirmer, I., Drews, P.: Agile portfolio management: design goals and
principles. In: Proceedings of the European Conference on Information Systems, ECIS 2019,
Stockholm-Uppsala, Sweden. AIS Electronic Library (AISeL) (2019)

11. Horlach, B., Drechsler, A., Schirmer, I., Drews, P.: Everyone’s going to be an architect:
design principles for architectural thinking in agile organizations. In: Proceedings of the 53rd
Hawaii International Conference on System Sciences (2020)

12. Horlach, B., Schirmer, I., Böhmann, T., Drechsler, A., Drews, P.: Reconceptualising
business-IT alignment for organisational agility. In: Proceedings of the 28th European
Conference on Information Systems, Marrakesh, Morocco (2020)

13. Denning, S.: Agile’s ten implementation challenges. Strategy Leadersh. 44, 15–20 (2016)
14. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In: Dingsøyr,

T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014. LNBIP,
vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14358-3_1

15. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley
Professional, Boston (2004)

16. Moe, N.B., Aurum, A., Dybå, T.: Challenges of shared decision-making: a multiple case
study of agile software development. Inf. Softw. Technol. 54(8), 853–865 (2012)

17. Moe, N.B., Dahl, B., Stray, V., Karlsen, L.S., Schjødt-Osmo, S.: Team autonomy in large-
scale agile. In: Proceedings of the 52nd Hawaii International Conference on System Sciences
(2019)

188 B. Horlach and A. Drechsler

www.dbooks.org

https://hbr.org/sponsored/2018/03/survey-data-shows-that-many-companies-are-still-not-truly-agile
https://hbr.org/sponsored/2018/03/survey-data-shows-that-many-companies-are-still-not-truly-agile
https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/13th-annual-state-of-agile-report
https://doi.org/10.1080/19416520.2016.1162421
https://doi.org/10.1080/19416520.2016.1162421
https://doi.org/10.5465/amr.2009.0188
https://doi.org/10.1007/978-3-319-14358-3_1
https://www.dbooks.org/

18. Gerster, D., Dremel, C., Kelker, P.: How enterprises adopt agile structures: a multiple-case
study. In: Proceedings of the 52nd Hawaii International Conference on System Sciences
(2019)

19. Leybourn, E., Hastie, S.: #noprojects - A Culture of Continuous Value. C4Media (2018)
20. Andriopoulos, C., Lewis, M.W.: Exploitation-exploration tensions and organizational

ambidexterity: managing paradoxes of innovation. Organ. Sci. 20, 696–717 (2009)
21. Jansen, J.J., Tempelaar, M.P., Van den Bosch, F.A., Volberda, H.W.: Structural

differentiation and ambidexterity: The mediating role of integration mechanisms. Organ.
Sci. 20, 797–811 (2009)

22. Weiner, B.J.: A theory of organizational readiness for change. Implement Sci. 4, 67 (2009)
23. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile

transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)
24. Paasivaara, M., Lassenius, C., Heikkilä, V.T., Dikert, K., Engblom, C.: Integrating global

sites into the lean and agile transformation at ericsson. In: 2013 IEEE 8th International
Conference on Global Software Engineering, pp. 134–143. IEEE (2013)

25. Meyer, B.: Agile! Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05155-0
26. Cram, W.A., Newell, S.: Mindful revolution or mindless trend? Examining agile

development as a management fashion. Eur. J. Inf. Syst. 25, 154–169 (2016). https://doi.
org/10.1057/ejis.2015.13

27. Wang, X., Conchuir, E.O., Vidgen, R.: A paradoxical perspective on contradictions in agile
software development. In: ECIS 2008 Proceedings (2008)

28. Nicolai, A.T., Seidl, D.: That’s relevant! Different forms of practical relevance in
management science. Organ. Stud. 31, 1257–1285 (2010). https://doi.org/10.1177/
0170840610374401

29. Matook, S., Soltani, S., Maruping, L.: Self-organization in agile ISD teams and the influence
on exploration and exploitation (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

It’s Not Easy Being Agile 189

https://doi.org/10.1007/978-3-319-05155-0
https://doi.org/10.1057/ejis.2015.13
https://doi.org/10.1057/ejis.2015.13
https://doi.org/10.1177/0170840610374401
https://doi.org/10.1177/0170840610374401
http://creativecommons.org/licenses/by/4.0/

First International Workshop on Agility
with Microservices Programming

www.dbooks.org

https://www.dbooks.org/

Summary of the First International Workshop
on Agility with Microservices Programming

Saverio Giallorenzo1, Marco Peressotti1, Filipe F. Correia2,3, and Kati Kuusinen4

1 University of Southern Denmark, Denmark
{saverio,peressotti}@imada.sdu.dk

2 Faculty of Engineering, University of Porto, Portugal
filipe.correia@fe.up.pt

3 INESC TEC, FEUP Campus, Portugal
4 Technical University of Denmark, Denmark

kakuu@dtu.dk

Abstract. We present the proceedings of the AMP 2020 workshop, co-located
with XP 2020, and report our main insights from its conduction. The workshop
focused on exploring the interplay between agile methods and microservice
architectures. Due to the COVID outbreak, AMP 2020 was moved online,
divided into two parts: a live presentation session and a three-week interaction
period where authors of accepted papers discussed improvements to their
proposals with the PC. The workshop featured four accepted works. More that
30 participants attended the online event. More than 15 people took an active
part to the three-week discussion period.

1 Introduction

We are pleased to present the proceedings of the 2020 edition of the Agility with
Microservices (AMP 2020) workshop, held in affiliation with the annual International
Conference on Agile Software Development (XP 2020). This was the first edition of the
workshop, building on the success of the second International Workshop on
Microservices: Agile and DevOps Experience (MADE 18) [1].

The theme of the workshop originates from the realisation that agile architecture
does not necessarily emerge from the use of agile practices—it needs to be deliberately
sought after—and often results in the style of architecture described as microservices.
This notion lead us to the theme of the workshop: the interplay between agile methods
and the microservices architectural paradigm.

2 Workshop Model and Discussion

Due to the COVID-19 outbreak, the XP 2020 organisation decided to hold the con-
ference online. To adapt to the new medium, we chose to structure the experience of
the attendees of the workshop into two distinct moments.

Live Session

The first one was a live session through the Zoom platform, provided by the XP 2020
organisation. The session took place on Friday June 12th 2020, lasted 90 minutes, and
included the presentation of the accepted works. The workshop attracted more than 30
participants. The works presented included presentations on a wide range of topics: the
interplay between the management of shared libraries in microservices and develop-
ment agility; the effects of the standardisation of communication protocols in
microservices agile programming; the industrial experience on the implementation of
API binding generators for the agile development of microservices; and the empirical
results of using microservices and agile techniques to teach complex system devel-
opment in undergraduate courses. All presentations followed a 5-10-minute Q/A ses-
sion. The questions asked by the participants were approached briefly by the present
authors, and provided some initial points of discussion for the second phase of the
workshop (reported below). The general insight that we gathered is that the interplay
between microservices and agile methods happens at many levels (from tooling to
architecture and even education), all of interest to the community of involved experts.

Open Interactive Review

The second moment was a three-week period of open interactive review. This period
started in the week after the workshop and had the goal of promoting interaction with
the authors—which is often hindered in online events—and to help them to improve
their work further. The discussion happened via a mailing list with all authors and PC
members. Some members of the Program Committee were invited to assume the role of
chaperone for one of the accepted papers. Chaperones played the role of moderators
and fostered the online discussion with the authors. This resulted in more than 15
people interacting with several empathetic, intelligent, and inspiring discussions among
the participants. We summarise below the main points of discussion (and improvement)
developed during the interactive review period of the accepted contributions.

Improving Agility by Managing Shared Libraries in Microservices. Full paper by Saulo
S. de Toledo, Antonio Martini and Dag I. K. Sjøberg. Questions asked and address by
the authors regarded including more insight on how the organisation chart influences
the awareness of shared libraries and their agile development process, eliciting the
distinctive characteristics of shared-library management in microservices architectures
(w.r.t. the other existing architectural paradigms), and clarifying the possible open
challenges of shared-library management (e.g., addressable through new tools or
organisational configurations).

Certification as a Service. Full paper by Sebastian Copei, Manuel Wickert and Albert
Zündorf. The main improvement included a more detailed discussion on the empirical
evidence on the discrepancies between protocol-standardisation processes and agility,
the definition of the elements that let the proponents of new (or updated) protocols
declare their specification “complete” to proceed with implementations, and the
expansion of the relationship linking microservice architecture development and the
agile standardisation of protocols.

Summary of the First International Workshop 193

www.dbooks.org

https://www.dbooks.org/

Multicloud API Binding Generation from Documentation. Extended abstract by
MichaÅ‚ J. Gajda, Victor Vitali Barrozzi and Gabriel Araujo. The main points of
improvement centred on expanding the description of the agile process used to create
their proposal, refining the presentation of the stages that characterise their solution,
and how the generated tool fits into agile processes for microservices development.

Teaching Complex Systems based on Microservices. Extended abstract by Renato
Cordeiro, Thatiane Rosa, Alfredo Goldman and Eduardo Guerra. The improvements
included details on the concrete applications, useful to other teachers/researchers. That
encompassed the characteristics of the services the students developed (architecture,
functionalities, codebase metrics) and how much of the course time was spent in the
microservices design and implementation vs other activities.

3 Acknowledgements

We want to thank everyone who contributed to this workshop and all the participants to
the online event. We thank Florian Rademacher for his work as Publicity Chair and the
PC members that acted as chaperones: Florian Rademacher, Jonas Sorgalla, Rebecca
Wirfs-Brock and Stefano Pio Zingaro. We also thank the members of the programme
committee who made essential contributions to the workshop, in the form of reviews to
the submitted works before the presentations took place, and by participating of the
open interactive reviews.

We would also like to thank our institutions for their support, as well as the
Microservices Community, an international NPO aimed at fostering research on
microservices and collaboration between academia and industry.

Reference

1. Taibi, D., Mandić, V., Jabangwe, R., Giallorenzo, S.: Session details: MADE’18:
second international workshop on microservices: agile and devops experience. In:
Proceedings of the 19th International Conference on Agile Software Development:
Companion. XP’18. Association for Computing Machinery, New York (2018).
https://doi.org/10.1145/3329526

Ademar Aguiar Alceste Scalas Alfredo Goldman
Andrea Melis Antonio Bucchiarone Blagovesta Kostova
Cees de Groot Eduardo Guerra Florian Rademacher
Gustavo Petri Jacopo Soldani Jessica Dı́az
Jonas Sorgalla José Luiz Justus Bogner
Ka I Pun Larisa Safina Nuno Santos
Pooyan Jamshidi Rebecca Wirfs Brock Stefano Pio Zingaro
Tiago Boldt Sousa

194 S. Giallorenzo et al.

https://doi.org/10.1145/3329526

Improving Agility by Managing Shared
Libraries in Microservices

Saulo S. de Toledo(B), Antonio Martini, and Dag I. K. Sjøberg
{saulos,antonima,dagsj}@ifi.uio.no

University of Oslo, Oslo, Norway

Abstract. Using microservices is a way of supporting an agile architec-
ture. However, if the microservices development is not properly managed,
the teams’ development velocity may be affected, reducing agility and
increasing architectural technical debt. This paper investigates how to
manage the use of shared libraries in microservices to improve agility dur-
ing development. We interviewed practitioners from four large interna-
tional companies involved in microservices projects to identify problems
when using shared libraries. Our results show that the participating com-
panies had issues with shared libraries as follows: coupling among teams,
delays on fixes due to overhead on libraries development teams, and need
to maintain many versions of the libraries. Our results highlight that the
use of shared libraries may hinder agility on microservices. Thus, their
use should be restricted to situations where shared libraries cannot be
replaced by a microservice and the costs of replicating the code on each
service is very high.

Keywords: Cross-company study · Multiple-case study · Software
quality · Qualitative analysis · Architectural technical debt

1 Introduction

A microservices architecture may be considered a kind of agile architecture. Over
the years, large companies such as Amazon and Netflix shared their success histo-
ries with microservices on dozens of presentations1, always highlighting how such
architectural style helped them to be agile and surpass many of the limitations
and impediments they had in their previous monolithic software solutions. Since
then, many other companies and practitioners tried to learn about microservices
and adopted them in their projects.

However, systems that use microservices may become more complex than
monolith systems [8]. Practitioners are still struggling with the adoption of this
architectural style in their projects, and there is not much knowledge about
Architectural Technical Debt (ATD) in microservices [10].
1 Examples of presentations are “Mastering Chaos” by Josh Evans (Netflix, 2016),

“Amazon and the Lean Cloud” by Werner Vogels (Amazon, 2011) and “What We
Got Wrong: Lessons from the Birth of Microservices” by Ben Sigelma (Google, 2018).

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 195–202, 2020.
https://doi.org/10.1007/978-3-030-58858-8_20

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_20
https://www.dbooks.org/

196 S. S. de Toledo et al.

ATD is a metaphor used to describe architectural suboptimal decisions that,
in exchange of benefits in the short term, incurs future additional costs for the
software. There are many studies on ATD in general but few on ATD in microser-
vices and no discussion about agility. Our previous study [10] investigates what
is ATD in microservices through a qualitative case study in a single company,
Lenarduzzi and Taibi [5] presents a position paper about code debt on microser-
vices, also in a case study in a single company, Bogner et al. [3] performed a
qualitative case study in 10 companies to explore evolvability assurance pro-
cesses for microservice-based systems. The three studies have distinct scopes.

In this study, we investigate the practice of using shared libraries in compa-
nies that use microservices, and how do these companies manage such libraries
in order to improve agility. We define a shared library as a piece of software
developed in-house containing a collection of resources used by several compo-
nents. Externally developed components such as frameworks and language sup-
port extensions are not considered shared libraries in this study. Shared libraries
are used as a black box by the different components, have their own version
management and are copied and bundled together with the components.

Taibi and Lenarduzzi [9] have shown that the use of shared libraries may be
a microservice bad smell and have proposed solutions for removing the smell.
We extend that work by presenting an expanded list of issues and solutions, and
do it in the context of different companies.

We pose the research questions as follows:

RQ1: Which practical issues when using shared libraries in microservices
hinder agility in organizations?
RQ2: Which solutions do developers apply to solve such issues?

In order to answer these questions, we conducted a multiple-case study in
four large international companies that use microservices. The remainder of
this paper is structured as follows: Sect. 2 presents our background, Sect. 3 our
methodology, Sect. 4 our results, Sect. 5 our discussion and threats to validity.
Section 6 concludes and outlines future work.

2 Background

Using microservices architecture is an approach that decomposes a single appli-
cation into a collection of small and loosely coupled services; such services are
autonomous, independent of each other and run on separate processes [6]. A few
other characteristics are also taken in consideration while defining microservices,
such as loose coupling, organization around business capabilities and ownership
by small teams.

Microservices may improve agility by allowing teams to focus on small pieces
of software, facilitating aspects like change, scalability and testing. As it raises
new ways of developing software, it also raises new kinds of ATD [10]. If properly

Improving Agility by Managing Shared Libraries in Microservices 197

managed, the accumulation of ATD may be beneficial to the software develop-
ment, but it is necessary to know when the debt should be avoided and how to
prevent its accumulation [7].

ATD is based on financial terms and has three main concepts [2]: debt, which
describes a sub-optimal solution that yields short-term benefits, but recurring
to the later payment of some interest; interest, which is the additional cost that
has to be paid because of the accumulation of debt; and principal, which is the
cost of refactoring in order to remove the debt.

3 Methodology

We conducted a multiple-case study in four large international companies, with
more than 1000 employees. For confidentiality reasons, the companies are named
A, B, C and D, respectively. The studied projects operate in the domains as
follows, respectively: financial systems, healthcare systems, city management
and transport mobility.

We interviewed six architects: one from Company A, two from each of Com-
panies B and C, and one from Company D. We conducted semi-structured inter-
views that lasted from 30 min to one and a half hours. We discussed several
aspects of architecture beyond the scope of this investigation, such as architec-
tural issues and solutions while using microservices. The questions in the inter-
view guide relevant to this study are available at https://bit.ly/ImprAgilitySL.
Three of the interviews were conducted face-to-face. The three other ones were
conducted through remote audio calls due to the physical distance between the
parts.

4 Results

4.1 The Issues Caused by Using Shared Libraries

Table 1 shows which issues related to shared libraries were found in which com-
panies. We refer to the those issues by using their IDs between parenthesis in
the following paragraphs. The context related to the issues discussed below is
illustrated in Fig. 1, an example reported by Company B: A team is assigned to
create and maintain a library for authentication and authorization. Versions of
the library are regularly released with fixes or new functionalities. Other teams
are assigned to develop microservices. Eventually and due to several reasons,
several microservices end up using distinct versions of the library. We present
below the causes and implications of such circumstances for each company in
the context of the projects we investigated.

Company A could not migrate all the clients to a newer version of a library
right after its release. Distinct teams have different priorities: some services are
critical, some are secondary, some have more urgent updates (1). Such a scenario
required libraries maintainers to be active in supporting previous versions of their
libraries that were still being used in production (2). Even in situations where

www.dbooks.org

https://bit.ly/ImprAgilitySL
https://www.dbooks.org/

198 S. S. de Toledo et al.

ID Issue Company

A B C D

1 Impossibility to update library in service due to priorities X X

2 Need to maintain too many versions of the library X X

3 Impossibility to update library in service due to breaking changes X

4 Delays while waiting for fixes X X X

5 Early adopters refusing to migrate X

6 Failures due to unknown use cases X X

7 Failures after library upgrades X X

8 Overhead to library maintainers X X X

9 Dependent agile teams X X X X

Table 1. Issues reported by companies as the result of using shared libraries

the library was supposed to be updated soon, the company experienced delays in
the process due to other priorities (1). In addition, the company also identified
situations where early adopters resisted to migrate (5), since a new version of
the library was released right after they finished the integration of the previous
version in their project.

In Company B, the developers experienced a number of system breaks. Later
they identified that part of the breaks were caused by the use of libraries in many
unforeseen and untested situations (6). In addition, Company B also noticed an
overhead on library maintainers (8) and consequent delays. Since the functional-
ity was provided by the libraries, the teams using them had to wait for the fixes,
which caused delays in new microservices releases (4). In some situations, the
new versions of the libraries caused new issues that prevented the microservices
to be released in production right away (7).

Fig. 1. Shared libraries example

Company C, similarly to Company A, found itself in a situation where it was
not possible to migrate all the clients, which required teams to support many
deprecated versions of libraries (2). Breaking changes and internal roadmap pri-
orities were some of the factors that prevented developers to use new versions of
the libraries (3 and 1). The use of shared libraries became a bottleneck, causing

Improving Agility by Managing Shared Libraries in Microservices 199

failures on microservices (6 and 7), delays while waiting for fixes (4) and an
unexpected amount of extra work for library developers (8).

Company D reported delays in delivering new functionalities as the most
damaging issue connected to the use of shared libraries (4). The library develop-
ers had to handle an extensive amount of change requests, including requests for
additional features and fixes (8). The microservices developers were frequently
blocked while waiting for the arrival of the new versions of the libraries.

In all four companies, there was a clear dependency (coupling) among the
microservices developers and the library teams (9).

4.2 How to Manage Issues Regarding the Use of Shared Libraries

All the companies reported that the use of shared libraries should be reduced as
much as possible. Company B reported that many libraries implemented trivial
functionality that could be implemented by the microservices themselves, and
the fixes could be implemented by the teams, reducing the delays caused by third-
party developers. Company D suggested that well-defined and well-documented
interfaces of their own implementations were important for guiding practitioners
when they did not use shared libraries to provide required functionality.

Figure 2 shows solutions proposed by the companies for the issues caused
by the use of shared libraries. Considering the example presented in Fig. 1,
simple functionalities, such as extracting an ID or user name from a token,
could be implemented by the services themselves. Such a functionality is easy
to implement, usually by using a well-known technique that can be learned by
the developers, and that does not require the use of an entire library. On the
other hand, some functionalities are complex and could involve, as in our exam-
ple, many security steps. In such circumstances, an external microservice with
a well-defined interface, good documentation and a versioning policy should be
maintained by a separate team. Well-defined interfaces should not be changed
unless in exceptional cases, meaning that internal bug fixes may be conducted
without the other services noticing it, and new functionality may be added with-
out breaking previous behavior unless a breaking change is strictly necessary.
Such a scenario reduces the need for changes in the other microservices that
are using the aforementioned interfaces. Finally, if there are important reasons
for not using one of the approaches above, the use of shared libraries may be
acceptable. Similar approaches may be found in other migration reports. Bal-
alaie et al. [1], for example, moved common libraries to microservices when they
migrated to such an architecture style. Hasselbring et al. [4] argue that code
should not be shared among microservices because teams and applications should
be as independent and loosely coupled as possible.

5 Discussion and Threats to Validity

Our results suggest that using shared libraries in some contexts impacts on the
development flow, causing delays, reducing development velocity and hindering

www.dbooks.org

https://www.dbooks.org/

200 S. S. de Toledo et al.

Fig. 2. How to handle shared functionality

agility. In such cases, shared libraries are an ATD that may lead to costly interest
if not managed properly. By sharing the experience from other practitioners on
issues and solutions, we can prevent others from having to pay high software
maintenance costs later.

We answer the research questions introduced in Sect. 1 by listing the issues
(RQ1) raised by the use of shared libraries and by presenting corresponding
solutions (RQ2). The issues we identified do not seem connected to any spe-
cific application domain; the practitioners from the different companies com-
plained about similar issues and solutions. We do not claim that shared libraries
should never be used. However, their use should be controlled to prevent high
costs. There are also drawbacks of such an approach. For example, it may incur
additional latency; performance may decrease due to network as opposed to
in-memory invocations; reliability may decrease since the service might not be
reachable; and complex functionality may not be possible to be implemented in
a distributed system. Such drawbacks should be carefully considered in practical
situations.

Companies should also consider the reasons for replacing their shared
libraries. There may be alternative solutions, such as improving processes for
development, testing and quality assurance, which should be considered when
the drawbacks of moving to services may be more costly than using shared
libraries.

Regarding the validity of this study, we consider the following threats: (i) The
interviewees may have interpreted the concept of shared libraries differently. We
mitigated this threat by asking the interviewees to clarify if they were talking
about libraries developed internally or about external dependencies; (ii) Our
sample of interviewees was small from each company, we do not know how rep-
resentative the opinions in this study were for the investigated companies. Still,
the sample was heterogeneous and the practitioners were located in three dif-
ferent countries, with projects from four different companies; (iii) There might
be factors that the interviewees were not aware of or did not express in the
interviews, such as the quality of the implementations and management issues.

Improving Agility by Managing Shared Libraries in Microservices 201

6 Conclusions and Future Work

In four Europe-based companies, we identified a set of issues that reduce devel-
opment velocity and hinder team agility while using shared libraries in microser-
vices. We highlighted two solutions: creating additional microservices or imple-
menting the code in the microservices themselves. Although these solutions have
been reported by Taibi and Lenarduzzi [9], we went beyond their work by pre-
senting and discussing a more comprehensive list of issues, and relating them all
to the different companies. Our results suggest that the use of shared libraries
may increase the complexity of the system, which in turn decreases development
agility, cause delays and raises maintainability costs. Our results do not indicate
that shared libraries should not be used at all, but if there are no acceptable
alternatives, they should be used rather carefully as they often generate costly
interest. As an alternative to the use of shared libraries, simple functionalities
should be implemented by each microservice, whereas complex functionalities
should be implemented by external microservices with well defined interfaces,
good documentation and adequate versioning policies.

As future work, we propose a further investigation of the problem, increasing
the size of the sample and looking for practitioners with different experiences.
As part of this investigation, we propose to look for a decision process supported
by the factors that influence the trade-off between using a shared library and a
microservice. We would also like to investigate the problem and their solutions
with other architectural styles, like Service Oriented Architecture, in order to
identify whether there are other solutions proposed by practitioners that could
be used in microservices. In addition, we would like to investigate the external
dependencies and how moving to them could affect our results.

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33, 42–52 (2016)

2. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: a unified
model and systematic literature review. J. Syst. Softw. 135, 1–16 (2018)

3. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability
of microservices: insights into industry practices and challenges. In: IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME) (2019)

4. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. In: Proceedings - IEEE International Conference on
Software Architecture Workshops (ICSAW): Side Track Proceedings (2017)

5. Lenarduzzi, V., Taibi, D.: Microservices, continuous architecture, and technical
debt interest: an empirical study. Euromicro SEAA. Work in Progress (2018)

6. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). https://www.martinfowler.com/articles/microservices.html

7. Martini, A., Bosch, J.: An empirically developed method to aid decisions on archi-
tectural technical debt refactoring: AnaConDebt. In: Proceedings of the 38th Inter-
national Conference on Software Engineering Companion (ICSE) (2016)

www.dbooks.org

https://www.martinfowler.com/articles/microservices.html
https://www.dbooks.org/

202 S. S. de Toledo et al.

8. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

9. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

10. de Toledo, S.S., Martini, A., Przybyszewska, A., Sjøberg, D.I.K.: Architectural
technical debt in microservices: a case study in a large company. In: 2019
IEEE/ACM International Conference on Technical Debt (TechDebt) (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Certification as a Service

Sebastian Copei1(B), Manuel Wickert2, and Albert Zündorf1

1 Kassel University, Kassel, Germany
{sco,zuendorf}@uni-kassel.de

2 Frauenhofer IEE, Kassel, Germany
manuel.wickert@iee.frauenhofer.de

Abstract. The development of industry 4.0 and smart energy IT-
Components relies on highly standardized communication protocols
to reach vendor-independent interoperability. In innovative and fast-
changing environments, the support of standard protocols increases the
time to market significantly. In the energy domain, the business models
and the regulatory frameworks will be updated more often than the pro-
tocols. Thus agile development and supporting standardized protocols at
the same time seems to be an issue. Here we will present a new proposal
for standardization and certification processes as well as an architecture
for a certification platform. Both will improve the support of agile devel-
opment in the industry and energy domain.

Keywords: Microservices · Standardization · Certification · Agile

1 Motivation

In the energy and industry domain, vendor-independent scaling of distributed
systems is a key challenge. To provide interoperability between different systems
or integrated electronic devices (IED) the use of standardized communication
protocols (such as OPC UA [11], IEC 61850 [8], IEC 60870-5-104 [7], etc.) is
very common. While vendor independence is crucial for IEDs, which stay in
operation for years or decades, for IED vendors itself selling certified products
may also be a sales argument.

Test &
CertificationImplementation

Requirements Standard
Specification

Publishing
Standard

Conformance
Tests

Specification

Implementing
Test Suite

Standardization Process

Development & Certification Process

Requirements Design Operation

Fig. 1. Classic standardization and product development processes

S. Copei and M. Wickert—These two authors contributed equally.

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 203–210, 2020.
https://doi.org/10.1007/978-3-030-58858-8_21

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_21
https://www.dbooks.org/

204 S. Copei et al.

Figure 1 shows a classical standardization and certification scenario divided
into two processes. The first (upper) process shows a view on developing a new
version of a standard. The second process shows a classical waterfall model
for applications where the certification is part of the testing phase. Note, both
process views are very coarse overviews and do not provide a detailed look at a
certain complex standardization or certification scenario.

The standardization typically begins with the specification of standard doc-
uments for a collection of requirements. Usually, the communication standard
only describes the communication of a particular layer of the ISO/OSI commu-
nication stack. After publishing a finished version, conformance tests may be
specified, and test suites may be implemented. E.g. The OPC Foundation offers
a conformance test suite for its members [12]. The development of compliant
products and the certification of them are illustrated as a classical waterfall
model, where the certification is done in the test phase.

The key message of Fig. 1 is that the development process typically starts
after (a new version of) the standard has been published. An earlier start of
software development may result in incompatibilities with the standard. From a
new requirement for the communication standard to a certified software version
in operation, it may easily take several years. E.g., the Protocol IEC 61850-1 was
published in 2003 in version 1.0 and 2013 in version 2.0. In the meantime, a lot of
extensions were developed e.g., [1,14]. From our practical experience with such
communication standards, we see a lot of vendor-specific deviations. Therefore
we assume that standardization approaches are often designed for classical and
not for agile development processes.

Smart Energy Applications and Industry 4.0, are connecting classical indus-
trial monitoring and control solutions with modern IoT-based technologies.
Thereby modern software development processes are applied to address fast-
changing requirements in both sectors to provide fast feedback cycles. Therefore
we reconsidered how standardization and certification processes can be inte-
grated into an agile product development process. It can be argued that stability
is an essential requirement for communication protocols. But from our experi-
ence with more than 15 different projects, we see an upcoming preference for
regular updates in operation over stability.

This paper presents two proposals to support agile standardization and cer-
tification processes. We propose a new standardization and certification process
for communication protocols. For both process, proposals will use the terms
standardization and certification. Our second proposal is an architecture for
cloud-native certification services. The aim of the architecture is to support our
idea of future agile certification processes. The proposals were developed with a
background in smart energy systems and industry 4.0. However, our aim was to
specify the process very generic to achieve transferability.

2 Related Work

Agile standardization and certification processes have already been examined
in various domains. Examples are high security system certification for aviation

Caas 205

[4] and railways [2]. The authors of [4] present a way to certify security-critical
components in a transportation system. They focus on high-level certificates. To
provide the credibility of the certificates, the authors use a semi-formal descrip-
tion language. [2] shows a way to certify security-critical aerospace components.
The authors use UML as a modeling tool to provide an incrementally changeable
model description to achieve an agile certification process. However, the solutions
presented in both papers are very domain-specific and focused on security certi-
fication. The given solutions only fit into their use cases and can not be used as a
general approach. Furthermore, the solutions only cover the certification process
on a client-side. Our solution wants to cover the whole process from developing
a standard to certifying implementations of it.

An evolutionary standardization approach for file-based data is presented
in [5]. The considered standardization focus is the engineering of automation
systems. The basic idea is to start from an existing proprietary file format of one
vendor and change it evolutionary to a neutral and later on to a common format,
apparently often XML in that context. Similar to our process, this approach
proposes a stepwise standardization. Nevertheless, the evolutionary approach is
not intended to support agile development processes and focuses on file-based
communication.

In [3] an agile standardization was performed for Process Control Equipment
(PCE). The domain is close to the considered domain of this work. The authors
require that standardization has to be done agile and “should proceed stepwise”.
However, the focus of [3] is the concrete standardization of PCE Requests, not
the standardization process itself.

3 The Agile Standardization and Certification Processes

Fig. 2. Agile standardization process

We propose an agile standardization and certification process that has two
intertwined development cycles, cf. Fig. 2. As in other agile approaches, standard-
ization and certification should be performed in small increments. The basic idea
is to start with a minimal set of communication protocol features (e.g., establish

www.dbooks.org

https://www.dbooks.org/

206 S. Copei et al.

a connection or login to a server) and add feature by feature in several itera-
tions. Every iteration ends with a minor version change in the standard. The
corresponding part of the overall standard is published e.g., via Github or some
other configuration management service. Based on the publication of the stan-
dard for some features, the standard conformance tests that certify compliance
with these features are extended or adapted and again published via a config-
uration management service. The standardization process runs iteratively, i.e.,
as soon as one feature has been completed, subsequent application development
may start while the standardization continues with the next features.

The product development cycle, including the certification of a product, is
shown on the right side of Fig. 2. The development of standard-compliant prod-
ucts may start with the requirements definitions for specific product features.
The implementation of these product features may follow this. As soon as some
feature is available, the feature implementation may try to pass the correspond-
ing protocol conformance tests for a specific communication standard version.
When the new product version is certified, it may be released and operated in
production.

Each time a new version of the standard is exposed, and the correspond-
ing conformance tests are deployed a test-driven development iteration of the
products is ready to begin. Obviously, the conformance test will not be able to
provide a complete test set for a product. However, these tests will support the
product development relating to the communication interfaces. This approach
has the advantage that first conformance tests will be available soon after the
first iterations of the standardization process have completed. Thus, product
development and standard development may be intertwined. Thereby, standard-
compliant products will be available soon after the standard has reached a suffi-
cient level of completeness. Besides, product development may provide feedback
to the standardization process. Product development may e.g, point to overly
complex conformance tests or inconvenient APIs or missing details, etc. This
feedback may be used by the standardization process to enhance the standard-
ization of the corresponding features and to come up with improved versions of
the conformance tests. The importance of such feedback is also discussed in [5].

On the other hand, new versions of the standard lead to changes in the con-
formance test. This may result in failing tests for the new standard version and
triggers the adaption of existing features. Such changes to already defined confor-
mance tests may also happen when following features or later standardization
iterations require previously standardized features to evolve. This is an infre-
quent problem inherent in agile software development. If a product development
team wants to avoid such issues, it may wait until the standardization process
has reached a sufficient level of completeness and stability. One can argue that
this may be a drawback of our approach since stability is a critical requirement
for communication devices in operation. However, since we have also to consider
security for such field devices, we have to provide easy mechanisms to provide
software updates in operation.

Caas 207

4 Certification as a Service Architecture

For a certain standard, a certification service will support the agile standardiza-
tion and certification process. Here we propose a microservice [6,10] based cer-
tification as a service architecture. This architecture should support the under-
standing of our agile standardization and certification process on the one hand.
An implementation of this architecture is currently work in progress and part of
our future work.

Repository Integration Certification DeploymentProduct
Sources

Conformance
Tests Repository

Certification Body

Developer

Fig. 3. Continuous certification pipeline

Continuous integration and continuous deployment are methods to support
fast feedback during agile development. A Certification as a service implemen-
tation extends a typical continuous deployment pipeline, as shown in Fig. 3.
The certification step should be performed after the integration phase (which
includes integration testing). The certification step consists of the execution of
the conformance tests and the creation of a certificate. An implementation of our
certification as a service platform will perform this step. This allows the deploy-
ment of certified products in every continuous deployment cycle. If conformance
tests fail, the pipeline stops at the certification step, just like a failure during
integration tests will stop the pipeline.

Each certification pipeline certifies a product according to a particular stan-
dard version. Whenever a new standard version is published, the respective con-
formance tests will be adapted or extended for this version of the standard. The
certification bodies will add the standard to a repository. As soon as the new
tests have uploaded, a product can be certified for the new standard version.

The certification service itself should be hosted as a service by the standard-
ization or depending on organizational aspects, a certification body. As software
as a service (SaaS), it should be compatible with a typical build pipeline software
such as Jenkins. That allows an independent certification of products even with
fast development cycles.

Our proposal for the certification service architecture is shown in Fig. 4. We
defined five microservices, two repositories, and an event broker.

The repositories are responsible for storing a product for certification (arti-
fact repository) and the conformance tests (conformance test repository). Both
artifacts and conformance tests should be available in different versions. To per-
form the conformance tests, an instance of the artifact should be up and run-
ning for certification. The “Artifact runner Service” is responsible for running
this artifact and configure it correctly. The “Test Service” will do the execution

www.dbooks.org

https://www.dbooks.org/

208 S. Copei et al.

Conformance Test
Repository

Certification Service Architecture

Te
st

 S
er

vi
ce

C
er

tif
ic

at
io

n
Se

rv
ic

e

U
se

r M
an

ag
em

en
t

Ar
te

fa
ct

 R
un

ne
r S

er
vi

ce

Bi
llin

g
Se

rv
ic

e

Event Broker

Artifact Repository

Fig. 4. Certification service architecture

of the conformance tests. It will also provide test results for the “Certification
Service”. The certification service will create a certificate for the artifact if all
tests are passed successfully. The “User Management” and “Billing Service” have
administrative responsibilities. Since the business model of a certification body
is to issue certificates, it is necessary to implement user management and billing
functionalities. The communication to the product development should be done
by RESTful HTTP, to integrate with existing build pipelines easily. For internal
communication, event sourcing should be used. Therefore we suggest making use
of an event broker like Apache Kafka.

Our architecture aims to provide a proposal for certification as a service solu-
tion. Typical container orchestration tools can support implementations. There-
fore an implementation of our service should be cloud-native [13].

5 Conclusion and Future Work

We presented a new way to achieve a more agile process during the standard-
ization and certification steps. We provide an architecture that should support
the affected stakeholders during the whole process. On the one hand, this means
that a standardization organization should have the possibility to provide fast
incremental updates of their standards. On the other hand, we enable com-
panies to use agile development processes for their certified implementation of
standardized communication interfaces.

In the next steps, we will implement the architecture for a new communica-
tion standard for e-mobility use cases. We will examine how agile standardiza-
tion approaches will work in that context. Furthermore, we will evaluate how
this approach will support the agile development of prototypes for e-mobility
use cases.

Caas 209

Acknowledgement and Disclaimer. This Publication is part of a
project [9] that has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement
N◦857237. The sole responsibility of this publication lies with the author. The European
Union is not responsible for any use that may be made of the information contained
therein.

References

1. Bergmann, J., Glomb, C., Götz, J., Heuer, J., Kuntschke, R., Winter, M.: Scalabil-
ity of smart grid protocols: protocols and their simulative evaluation for massively
distributed DERs. In: 2010 First IEEE International Conference on Smart Grid
Communications, pp. 131–136 (2010)

2. Bezzecchi, S., Crisafulli, P., Pichot, C., Wolff, B.: Making agile development
processes fit for V-style certification procedures. CoRR, abs/1905.06604 (2019).
arXiv:1905.06604

3. Bigvand, P.G., Drath, R., Scholz, A., Schüller, A.: Agile standardization by means
of PCE requests. In: 2015 IEEE 20th Conference on Emerging Technologies Factory
Automation (ETFA), pp. 1–8 (2015)

4. Coe, D.J., Kulick, J.H.: A model-based agile process for DO-178C certification.
In: Proceedings of the International Conference on Software Engineering Research
and Practice (SERP), p. 1. The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (WorldComp)
(2013)

5. Drath, R., Barth, M.: Concept for managing multiple semantics with automationml
— maturity level concept of semantic standardization. In: Proceedings of 2012
IEEE 17th International Conference on Emerging Technologies Factory Automa-
tion (ETFA 2012), pp. 1–8 (2012)

6. Fowler, M., Lewis, J.: Microservices (2014). http://martinfowler.com/articles/
microservices.html

7. IEC 60870-5-104: Telecontrol equipment and systems. Standard, International
Electrotechnical Commission, Geneva, CH (2006)

8. IEC 61850 Standard Series: Communication networks and systems in substations.
Standard, International Electrotechnical Commission, Geneva, CH (2020)

9. Interconnect project - homepage. https://interconnectproject.eu/. Accessed 20 Apr
2020

10. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol
(2015)

11. OPC Unified Architecture, IEC 62541, Standard Series. Standard, OPC Founda-
tion, International Electrotechnical Commission, Scottsdale, USA (2008)

12. OPC foundation test tools. https://opcfoundation.org/developer-tools/certification-
test-tools/opc-ua-compliance-test-tool-uactt. Accessed 20 Apr 2020

13. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. 18 (2017). https://doi.org/10.1145/3104028

14. Ustun, T.S., Ozansoy, C.R., Zayegh, A.: Implementing vehicle-to-grid (V2G) tech-
nology with IEC 61850-7-420. IEEE Trans. Smart Grid 4(2), 1180–1187 (2013)

www.dbooks.org

http://arxiv.org/abs/1905.06604
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://interconnectproject.eu/
https://opcfoundation.org/developer-tools/certification-test-tools/opc-ua-compliance-test-tool-uactt
https://opcfoundation.org/developer-tools/certification-test-tools/opc-ua-compliance-test-tool-uactt
https://doi.org/10.1145/3104028
https://www.dbooks.org/

210 S. Copei et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Third International Workshop
on Autonomous Agile Teams

www.dbooks.org

https://www.dbooks.org/

A Decade of Research on Autonomous Agile
Teams: A Summary of the Third International

Workshop

Nils Brede Moe1 and Viktoria Stray1,2

1 SINTEF, Trondheim, Norway
nilsm@sintef.no

2 University of Oslo, Oslo, Norway
stray@ifi.uio.no

Abstract. Ever since the agile manifesto was created in 2001, the research
community has devoted attention to autonomous teams. This article first
examines publications on autonomous agile teams to illustrate how the research
has progressed in the last ten years and next summarizes the result of the Third
International Workshop on Autonomous Agile Teams. The workshop’s goal
was to capture what practitioners and researchers in the field of agile software
development believe are emergent research themes and update the research
agenda. We found that the top-rated research questions are related to autonomy
in large-scale agile software development. Further, the number of relevant
scientific publications is increasing, and there is widespread interest in the topic
at various conferences.

Keywords: Autonomous teams � Agile software development � Team design �
Self-organizing teams � Self-managing teams � Coordination � Large-scale
frameworks

1 Introduction

To succeed in solving complex projects, agile organizations have to find ways to
support and regulate teams’ autonomy according to environmental demands. Further-
more, agile organizations have to take into consideration the degree of change and
uncertainty and that there is no one-size-fits-all autonomy approach [1]. The process of
forming and implementing autonomous teams, as well as the effective coordination of
such teams, are not yet adequately addressed or understood [2]. Common barriers for
such teams are 1) too much dependence on others, 2) lack of trust, and 3) part-time
resources [3]. In large-scale agile development, autonomous teams struggle to handle
organizational dependencies, set and communicate goals, establish a shared direction
[4], and implementing tools like Slack to increase team awareness [5]. Further, even in
the same large-scale agile projects, teams have individual needs for coordination with
experts and other teams [6]. Thus, there is a need for new knowledge on how orga-
nizations should organize for the right level of team autonomy and utilize autonomous
teams to attain better performance, productivity, innovation, and value creation.

Next, we introduce research on autonomous teams and present findings from a
literature search in the Scopus database. Then, we introduce the papers and results from
the workshop. Finally, we present the updated research agenda.

2 Research on Autonomous Teams

Autonomy refers to control over the way a task is carried out [7] and can simultane-
ously reside at the team level and the individual level [8, 9]. While autonomy can have
a positive impact on a team, an important question to answer is when—and how
much—autonomy is appropriate under the specific conditions the team and organiza-
tions are facing. Hackman [10 p.92] discusses the relationship between self-
management and autonomy, where the self-managing team has a certain but limited
amount of autonomy. More precisely, the self-managing team is given responsibility for
executing its tasks and monitoring and management of its work processes. As auton-
omy increases, the team is given responsibility for both designing the team and setting
the overall direction. When a software development company maintains or develops a
product or service, the work is assigned to several teams, and each team needs to align
many decisions regarding the tasks and process with the rest of the unit. As a result, the
team’s autonomy will be reduced in large-scale agile software development.

First-generation large-scale agile methods combine agile methodology, such as
Scrum, with project management frameworks, such as Prince2. Today, many second-
generation large-scale frameworks, such as the Scaled Agile Framework (SAFe) and
the Large-Scale Scrum (LeSS) have been implemented. The SAFe is a comprehensive
framework that requires the introduction of many predefined roles and processes, and
the goal is establishing stable processes. Stable roles and processes provide control but
reduce the flexibility required to solve complex tasks and experiment with ideas. The
SAFe is based on daily team meetings and cross-team meetings as well as planning
ahead with “big room planning.” Empirical studies suggest that these practices are
insufficient when coordination is complex and changes over time [11]. The LeSS is
based on the principles in Scrum related to product queue and defined sprints (time-
boxing). Although the LeSS is more flexible than the SAFe, it does not support the
need for team members with a high degree of autonomy and high responsibility to
make decisions on a continuous basis when solving problems. The Spotify model is
inspired by the Nordic model with a high degree of autonomy. However, the model is
designed for a born digital company, built on an entirely separate platform without
legacy systems and with many thousands of developers.

To better understand current research on autonomous agile teams, we conducted a
literature search in the Scopus database. This search identified 170 research papers
from journals and conferences that were published in the last ten years—between 2009
and 2019 (Fig. 1). After conducting the initial search, we added 2020 (until July 1) to
check if the trend continued. We used the following search string: TITLE-ABS-KEY =
(“autonomous team*” OR “self-managing team*” OR “empowered team*” OR “team
autonomy” OR “self-organizing team*”) AND (computer science). We carefully read
all titles and excluded articles that were not about teamwork. When in doubt, we read
abstracts to make the decision. Seventy-four papers were excluded, and 96 were kept.

A Decade of Research on Autonomous Agile Teams 213

www.dbooks.org

https://www.dbooks.org/

Most were conference articles (66%); however, 30% were journal articles, indi-
cating the field is maturing. The ten most productive authors on the topic are shown in
Fig. 2, and the four most productive institutions are SINTEF (Norway), University of
Auckland (New Zealand), University of Oslo (Norway) and Victoria University of
Wellington (New Zealand). However, as many as 33 countries are represented (Fig. 3).
The top conference for research on autonomous teams is the XP conference, and many
articles can be found in Springer proceedings.

Fig. 1 shows that the number of publications per year is increasing, and one reason
for this is the XP conferences and the International Workshop on Autonomous Teams.
There are a low number of publications recorded for 2020 because the search was
conducted July 1. We estimate that 2020 will have more publications on autonomous
teams than the previous years. The post-conference workshop proceedings from XP
2020 include five articles and will be summarized in Section 3.

We investigated the use of theories and the construction of theories in the articles
included in the literature review by adding “AND (*theory OR *theories)” to the search

Fig. 1. Publication per year on autonomous teams in the field of computer science until July 1
2020

Fig. 2. Publication per authors on autonomous teams in the field of computer science

214 N. Brede Moe and V. Stray

string earlier presented. We found a total of 12 articles (13%) and these articles
reported using Agile Matching Theory, Modern Sociotechnical Theory, Control The-
ory, Complex Adaptive Systems Theory, Big Five Teamwork Theory, and Grounded
Theory.

3 Summary of the Workshop

The 2020 workshop was an online event (because of COVID-19) as part of XP2020.
The main conference had 900 registered participants, and the workshop on autonomous
agile teams had 120 participants attending via Zoom. The workshop included five
presentations by researchers who had had their papers peer-reviewed. After each
presentation, the workshop participants gave feedback and asked questions. Finally,
there were two interactive sessions.

In the first interactive session, attendees were divided into breakout rooms using
Zoom, with 4–5 participants in each room (a total of 24 rooms), to discuss two
questions: “What are the real-world problems that need to be solved (for autonomous
teams)?” and “What are the research questions that should be answered?” In the second
session, a silent writing session was conducted using Metro Retro to collect ideas.
Forty-two ideas were posted on the virtual board and synthesized into a list of research
questions by the organizers of the workshop. Because XP 2020 and the workshops
were held online, the timeslots for all sessions and workshop were reduced. As a
consequence, there was no time to discuss the identified research questions. The day
after the workshop, the research questions were posted on the conference’s Slack
channel for the workshop participants to vote on the most important questions.

3.1 Research Themes on Autonomous Agile Teams

All of the papers presented at the workshop were based on investigations of autono-
mous teams in the context of large-scale agile frameworks. In the workshop, Gren [12]
presented a paper using two popular theories from social psychology to better under-
stand team autonomy in a large-scale setting: Group Socialization Theory and Social

Fig. 3. Publication per authors on autonomous teams in the field of computer science

A Decade of Research on Autonomous Agile Teams 215

www.dbooks.org

https://www.dbooks.org/

Identity. Gren argues that the two social theories can be useful in explaining com-
plexities to help one gain a better understanding when building autonomous agile
teams, such as the social-psychological components of the team-based workplace or
group dynamics. Group Socialization Theory explains patterns of behavior in retro-
spective meetings, and the Social Identity Theory explains why stand-up meetings
within cross-functional teams decrease intergroup bias.

Salameh and Bass [13] explored how architectural governance increases team
autonomy in a case study of a multinational fintech organization. The authors identified
tailored practices that promote effectiveness in autonomous teams using the Spotify
model. One important practice was introducing new roles and responsibilities within
the team, such as the architect with a focus on facilitating decision-making regarding
the architectural aspect and sharing architectural knowledge among teams.

Theobald and Schmitt [14] highlighted some challenges faced by agile teams when
working on large, complex projects; in such projects, agile teams are often required to
collaborate with other organizational branches, such as marketing and human resour-
ces. Moreover, safety-critical products still utilize traditional system engineering pro-
cesses and mindsets, which may cause issues in collaboration between teams and their
surrounding environments. In their study on the SAFe, the authors found that the
framework does not provide enough details on how an efficient collaboration should be
set up.

Mohagheghi et al. [15] highlighted challenges of autonomous teams within the
governmental sector, such as inexperience with agile methods, large and complex
projects, and reliance on traditional approaches. The authors examined a team in the
Norwegian Labor and Welfare Administration that adopted agile methods while back-
sourcing. Defining a clear product boundary, reducing dependencies on other teams,
and developing necessary skills were critical factors for team autonomy. Furthermore,
changes such as adding product owners to the team; abandoning a stage-based software
development process with handovers between business, IT, and vendors; and having
the team refine its portfolio for better cohesion supported agile adoption.

Doležel [16] collaborated with a global antivirus company to provide more clarity
on the coined term “TestOps.” The author analyzed a set of practitioner videos on
YouTube using thematic analysis and found that TestOps was understood as either a
collaborative behavior associated with a shift in test personnel’s mindset or as a
technology-intensive set of software practices. The first perspective is a people-centric
view that binds with culture and sharing elements in DevOps, while the second is a
technical view denoting TestOps as new tools, workflows, and processes supporting
DevOps teams, highlighting automation and measurement elements. Doležel argued
that both perspectives should be combined.

4 Revised Research Agenda

During the 2019 workshop, we asked participants about the best team size for
autonomous agile teams; 23% answered four to five members, 23% answered eight to
nine members, and 54% answered six to seven members. In the 2020 workshop, 9%

216 N. Brede Moe and V. Stray

answered two to three members, 18% answered four to five members, 55% answered
six to seven members, and 18% eight to nine members.

The actual performance of an autonomous agile team depends not only on the
competence of the team itself in managing and executing its work but also on the
organizational context of the teams. In the 2018 workshop, eight barriers to team
autonomy were identified [2], and in 2019, these eight barriers were rated on a scale
from 1 to 10. “Too much dependence on others” was rated as the main barrier [3]. One
explanation could be that agile methods are applied increasingly often in a large-scale
context.

The 120 participants of the 2020 workshop generated 42 ideas for research ques-
tions and these questions were synthesized into a list of eight questions. The workshop
participants were then invited to rate these questions on a scale from 1-10. The top two
questions are related to the challenges of autonomy in large-scale agile frameworks.
Below is the ranked list:

1. How can autonomy and alignment be balanced?
2. How does a top-down approach to agile (e.g., SAFe) affect autonomy?
3. How can relationships and good communication habits be established?
4. How can teams be autonomous within a hierarchy?
5. What are the limits to the level of autonomy?
6. How can the dependencies between teams be reduced?
7. How can autonomous BizDevOps teams be implemented?
8. How can autonomy be measured?

5 Conclusion

It should be apparent from this introductory article that the research community is
paying greater attention to issues related to autonomous teams in software develop-
ment. There is an increasing number of scientific publications and widespread interest
in the topic at various conferences; in addition, many countries (33) have engaged in
research on autonomous teams in the field of computer science. This paper presents an
overview of what practitioners and researchers in the field of agile software develop-
ment believe are emergent research themes for autonomous teams. Top-rated research
questions are related to autonomy in large-scale agile frameworks.

Acknowledgement. The work was funded by the A-team project, supported by the Research
Council of Norway through Grant 267704 and the companies Kantega, Sbanken, Storebrand, and
Knowit. We would like to thank the program committee members, workshop participants for
engaging discussions, Lucas Paruch and Marthe Berntzen for valuable input to the analysis, and
the reviewers of this article for their constructive feedback.

A Decade of Research on Autonomous Agile Teams 217

www.dbooks.org

https://www.dbooks.org/

References

1. Bass, J.M.: Future trends in agile at scale: Chen, J., Neubaum, D.O., Reilly, R.R.,
Lynn, G.S.: The relationship between team autonomy and new product develop-
ment performance under different levels of technological turbulence. J. Oper.
Manag. 33, 3483–3496 (2015).

2. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future
directions for research. In: Proceedings of the 19th International Conference on
Agile Software Development: Companion, pp. 1–5. ACM, Porto (2018).

3. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autono-
mous agile teams: a summary of the second international workshop at XP2019. In:
Agile Processes in Software Engineering and Extreme Programming – Workshops,
Montreal, Canada, pp. 13–19 (2019).

4. Moe, N.B., Dahl, B., Stray, V., Karlsen, L.S., Schjødt-Osmo, S.: Team autonomy
in large-scale agile. In: Proceedings of the 52nd Hawaii International Conference
on System Sciences, pp. 6997–7006 (2019)

5. Stray, V., Moe, N.B.: Understanding coordination in global software engineering:
a mixed-methods study on the use of meetings and slack. J. Syst. Softw. 170
(2020). https://doi.org/10.1016/j.jss.2020.110717

6. Sablis, A., Smite, D., Moe, N.: Team-external coordination in large-scale software
development projects. J. Softw. Evol. Process (2020)

7. Hackman, J.R., Oldham, G.R.: Work redesign (1980)
8. Langfred, C.W.: The paradox of self-management: Individual and group autonomy

in work groups. J. Organ. Behav. 21(5), 563–585 (2000)
9. van Mierlo, H., Rutte, C.v., Vermunt, J., Kompier, M., Doorewaard, J.: Individual

autonomy in work teams: the role of team autonomy, self-efficacy, and social
support. Eur. J. Work Organ. Psychol. 15(3), 281–299 (2006)

10. Hackman, J.R.: The psychology of self-management in organizations. In: Pallack,
M.S., Perloff, R.O. (eds.) Psychology and work: Productivity, change, and
employment. American Psycological Association, Washington, DC (1986)

11. Moe, N.B., Dingsøyr, T., Rolland, K.: To schedule or not to schedule? An
investigation of meetings as an inter-team coordination mechanism in large-scale
agile software development. Int. J. Inf. Syst. Project Manag. 6(3), 45–59 (2018)

12. Gren, L.: Understanding work practices of autonomous agile teams: a social-
psychological review. In: XP2020. Springer (2020)

13. Salameh, A., Bass, J.: Spotify tailoring for architectural governance. In: XP2020.
Springer (2020)

14. Theobald, S., Schmitt, A.: Dependencies of agile teams – an analysis of the scaled
agile framework. In: XP2020. Springer (2020)

15. Mohagheghi,P., Lassenius, C., Bakken, I.: Enabling team autonomy in a large
organization. In: XP2020. Springer (2020)

16. Dolezel, M.: Defining TestOps: collaborative behaviors and technology-driven
workflows seen as enablers of effective software testing in DevOps. In: XP2020.
Springer (2020)

218 N. Brede Moe and V. Stray

https://doi.org/10.1016/j.jss.2020.110717

Dependencies of Agile Teams – An Analysis
of the Scaled Agile Framework

Sven Theobald(&) and Anna Schmitt

Fraunhofer IESE, Fraunhofer-Platz 1, Kaiserslautern, Germany
{Sven.Theobald,Anna.Schmitt}@iese.fraunhofer.de

Abstract. Context: Agile teams are small teams with 3 to 9 members. In
complex development endeavors such as systems engineering, an agile team has
many dependencies, since it is not possible to incorporate all specialist skills into
one team. Frameworks like the Scaled Agile Framework (SAFe) describe how
agile teams operate in a larger setting. Objective: The aim of this study is to
analyze how agile teams collaborate with their organizational environment.
Method: We analyzed SAFe to investigate how much guidance it provides
concerning the collaboration between agile teams and their environment.
Results: The results show that many different organizational parts exist with
which agile teams have to collaborate. SAFe mentions concepts like shared
services, system teams, or business teams, but there is no further guidance on
collaboration with the agile team. Conclusion: We motivate future research into
guidelines for efficient collaboration of agile teams with their organizational
environment.

Keywords: Agile team � Dependency � Interface � Scaled Agile Framework

1 Introduction

Many software development teams already use agile development approaches like
Scrum, eXtreme Programming or Kanban [1]. In an ideal agile environment, agile
teams are small cross-functional teams that have all the competencies needed to ship
product increments in regular short time intervals. They are self-empowered and can
work without external dependencies. However, this ideal team setup is not always
possible. For the development of large, complex products, many specialized skills are
required that cannot all be part of a small agile team. Most of those roles are not
required full-time, but only contribute in certain phases of the product development.

Therefore, agile software development teams have to collaborate with many dif-
ferent parties. In addition, teams need the support of different organizational functions
like marketing, sales, or the human resources department [2]. Especially in established
large companies, it is difficult to change the existing hierarchical structures, silo
knowledge, and traditional mindset. For the development of safety-critical products like
cars, traditional systems engineering processes are still in use and define a framework
for the underlying agile, hybrid, or traditional subprojects [3]. This gap between the
agile way of working of development teams and the traditional approach of the sur-
rounding organization leads to problems regarding the collaboration between an agile

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 219–226, 2020.
https://doi.org/10.1007/978-3-030-58858-8_22

www.dbooks.org

http://orcid.org/0000-0001-7491-6431
http://orcid.org/0000-0002-5889-3708
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_22
https://www.dbooks.org/

team and its environment, so-called interface problems [2]. Since the environment is
important in order to allow agile teams to thrive [4], efficient collaboration between
agile teams and the environment on which they depend is important.

In this work, we analyze what guidance the Scaled Agile Framework (SAFe)
provides regarding collaboration at the interface between an agile team and its envi-
ronment. In Sect. 2, we provide further motivation for research on the collaboration
between agile teams and their environment, and present the research question as well as
our research approach. Section 3 presents the concepts of SAFe for synchronizing agile
teams with their environment. In Sect. 4, we discuss how much guidance is provided
and what guidance is lacking, and summarize the need for further research on this
topic. Finally, we conclude the paper with suggestions for future work in Sect. 5.

2 Motivation and Research Approach

Challenges mentioned at the workshop A-Teams in 2019 [5] were that teams have “too
many dependencies to others”, a “lack of organizational support”, and “part-time
resources”, which are all “interface problems” [2]. In the 2018 A-teams workshop [6],
concerns like “coordination”, “organizational context supporting autonomy”, or
“leadership” also address interface problems and were rated as having the highest
priority.

The large-scale agile workshop [7] also identified “inter team communication” as a
challenge, e.g., whether formal interfaces are needed or whether new or special roles
need to be defined that intermediate between interface partners. “Agile transformation
and business agility” was another challenge that deals with the alignment between
business and IT, and “Scaling Agile” dealt with agile beyond software development.

Participants of the Agile Transformation workshop (A-Trans) 2019 [8] reported
challenges like “hierarchical management and organizational boundaries”, “integrating
non-development functions”, or “coordination challenges in multi-team environment”.

The research themes from these workshops show the need to investigate how
autonomous teams collaborate with their organizational environment. Every team is
dependent on organizational functions, independent of whether they are part of a scaled
agile project or working as a single team. In the scaled context, additional dependencies
occur. Team-level agile methods like Scrum, Kanban, or XP only discuss a few of these
dependencies, namely the interface to the customer in the form of the Product Owner,
as well as the Scrum Master, who shields the team from negative influences from the
organization or resolves impediments caused by the environment.

In order to get a more complete picture, we wanted to investigate so-called scaling
agile frameworks in terms of their support of those interfaces. We initially considered
the list collected for a comparison of scaling agile frameworks [9]. We then focused on
the frameworks that not only deal with scaled product development (e.g., Scrum of
Scrums, LeSS, or Nexus), but also offer solutions for a complete agile organization.
The expectation was that these frameworks provide support when synchronizing agile
teams with their environment.

We selected the Scaled Agile Framework (SAFe), the Disciplined Agile
(DA) Framework, Scrum at Scale (SaS), and the lesser known Recipes for Agile

220 S. Theobald and A. Schmitt

Governance (RAGE). These frameworks had the largest scope, thus we hoped to identify
the most complete list of dependencies between agile teams and the rest of the
organization.

For this work, we decided to focus on SAFe [10] as the most popular and most
commonly used scaling framework [1]. Thus we defined the following research
question:

RQ1. What guidance does SAFe provide for the collaboration between an agile
team and its environment?

In order to answer this research question, the existing documentation on SAFe
version 4.6 [10] was analyzed. The “Full SAFe” configuration was considered, cov-
ering all four levels (Team, Program, Large Solution, Portfolio). For each level, all
concepts such as roles and practices are investigated by reading the information pro-
vided for each concept. In addition, “the foundation” of SAFe includes information
about core values, the lean-agile mindset, SAFe principles, or guidelines for the
implementation of SAFe. The “competencies for a lean enterprise” define five com-
petencies regarding lean-agile leadership, team and technical agility, DevOps and
release on demand, business solutions and lean systems engineering, and lean portfolio
management. Finally, the “spanning palette” contains additional aspects that influence
several levels, e.g., metrics, shared services, communities of practice, roadmap, or
system teams.

First, a student researcher systematically went through all these parts of SAFe to
identify all mentioned dependencies between an agile team and its environment and
noted down all dependencies in a document. Independently, the two authors investi-
gated SAFe regarding concepts that align the agile team with dependent organizational
parts. This was not done systematically, but based on previous experiences of the
authors with scaling agile frameworks in general and SAFe in particular. Afterwards,
the two authors checked the dependencies found by the systematic analysis of the
student researcher and had a closer look into the information that is provided by SAFe
on how to handle these dependencies.

3 Results

Our analysis of SAFe [10] identified several concepts regarding the collaboration of
agile teams with their organizational environment. We will present and explain the
identified concepts in this section.

In SAFe, cross-functional agile teams are called technical teams – they have all the
necessary skills to define, build, test, and deliver products. We will discuss how these
technical teams are supported by their environment, explain the differences in the
concepts of system teams, shared services, and business teams, and discuss how they
collaborate with the technical team to generate value.

The Agile Release Train (ART) is the mechanism used to synchronize different
agile teams when it comes to joint development of a product increment. Different teams
work on parts of the solution and have joint planning, daily standups, reviews, and
retrospectives. Solution trains coordinate multiple ARTs to build complex solutions.
Solution trains include organizational functions in the form of business teams.

Dependencies of Agile Teams 221

www.dbooks.org

https://www.dbooks.org/

Both system teams and shared services work in an ART to support value genera-
tion. System teams provide support in building and maintaining the proper environ-
ment for development, testing, or integration. System teams are usually not cross-
functional teams, since they only focus on one aspect, e.g., taking over end-to-end
testing. A system team can be dedicated to supporting one ART, or it could support all
ARTs in a solution train.

Shared services are specialist roles that are needed in an ART, but that cannot be
dedicated to a team full-time. Examples are data security experts or database admin-
istrators. Shared services may be responsible for supporting a certain ART, or even
multiple ARTs across the enterprise. One way of working with the ART is that shared
service staff join a team for a short period of time, which also has the advantage that
knowledge is shared, so dependencies on the shared service team might be reduced in
the future. Shared services occasionally form a separate team. Anyway, they join in all
synchronization events of an ART and help resolve all issues related to backlog items
where their experience is needed.

Thus, the difference is that system teams are incorporated as a team into the ART,
while shared services are not dedicated to a specific team, but rather flexibly support an
ART by providing their experience when and where it is needed.

Business teams provide support regarding infrastructure, contracting, supplier
management, legal guidance, marketing, security, compliance topics, etc. They col-
laborate with technical teams and are aligned via shared objectives and the same
cadence.

SAFe defines a three-step process for aligning business teams with technical
teams. Business teams have to first adopt the agile mindset by applying the principles
of the Agile Manifesto to their work. This allows for a shared value system in the whole
company and an increased understanding on how technical teams work. Teams also
apply the typical Scrum practices, like sprint planning, daily scrum, demo, and retro-
spective, and use the Scrum roles (Scrum Master and Product Owner). If the business
teams have understood and live the mindset, they join the value stream. This means the
way they work has to change; e.g., business teams have to collaborate more closely
with the technical teams. This could happen by including a whole business team into an
ART, having a business team work in a separate ART within a solution train, or by
including single experts into an agile team. Finally, business teams need to identify
their own agile way of working by defining specialized principles and practices. The
old processes that conflict with the nature of agile need to be evolved to allow for better
integration of the way of working of agile teams and the ART.

SAFe also mentions other ways to handle dependencies between an agile team
and its environment. One specific interface appears between the development team and
operations. DevOps is mentioned as the agile product delivery competency that is used
in ART and solution trains. However, the operation side is not further explained.
Another specific interface mentioned for solution trains is the one towards suppliers.
Suppliers are part of the solution train, so they are required to work in an agile way,
sharing the same cadence and participating in all events of the ART. They are treated
like an individual ART that develops a subsystem or capabilities for the value stream.
Another important dependency is towards customers that are involved at every level,
e.g., with the help of the role of the Product Owner.

222 S. Theobald and A. Schmitt

4 Discussion and Related Work

In this section, the identified concepts for the collaboration between an agile team and
its environment will be discussed and contrasted with related work. We will first
discuss whether the existing guidance provided by the proposed concepts from SAFe is
sufficient, especially highlighting any lack of guidance. Then we will discuss how
SAFe provides guidance for the stepwise improvement of collaboration at the interface
between technical and business teams aimed at agile collaboration. Finally, we will
summarize the need for further research on collaboration between agile teams and the
environment on which they depend.

Guidance Regarding Collaboration. In SAFe, the agile development team’s auton-
omy depends on support by shared services, support by system teams, and collabo-
ration with business teams. SAFe defines these concepts with different levels of
involvement in the development processes of an agile team. Some constraints are
defined, such as working in the same cadence, or that synchronization happens
throughout the events of the agile release train, such as joint planning, daily syn-
chronization, product demonstration, and retrospectives. Thus, SAFe provides concrete
guidance on the synchronization mechanisms that can be used.

However, it remains unclear whether the information and collaboration needs of all
related stakeholders can be fulfilled by participating in these joint events. Some
stakeholders might not benefit from participating in every event. On the other hand,
satisfying the needs of all additional stakeholders might extend the scope and the
intention of the normal sprint events, leading to increased time effort to conduct these
meetings. Since product development happens in a cadence, it might not always be
possible for shared service staff or business teams to attend multiple sprint events of
several teams within the same ART.

There is also no concrete guidance on synchronization between a cross-functional
agile delivery team and a functional system team, e.g., on how an agile software
development team coordinates testing with one or multiple system teams that are
responsible for end-to-end testing.

When setting up an ART, there is no help regarding the decision on what expertise
has to be incorporated into the agile teams, or generally into the ART, and what
expertise only collaborates with the agile team, e.g., in the form of business teams or
shared services. This was also identified as a challenge in [11]. Developing criteria on
when to use one or the other concept could be beneficial to practitioners. DevOps could
be an example of how to bring two different functional teams closer together, and
similar concepts could be developed for the collaboration between the agile team and
other organizational functions.

Guidance is also needed on how agile teams should coordinate activities such as
architecture or testing within a scaled product development. As an example, [12]
investigated the collaboration between architects and agile teams - similar guidance is
needed for other aspects.

SAFe only prescribes how to synchronize in the process, but does not talk about
how to manage the information or products that are shared at the interface between an
agile team and another party. Explicitly defining such so-called boundary objects that

Dependencies of Agile Teams 223

www.dbooks.org

https://www.dbooks.org/

are exchanged across team borders [13] could improve collaboration, as SAFe does not
provide information on what artifacts need to be exchanged or on which concrete
information is shared.

Transition to Agile Collaboration. SAFe provides an example of how business teams
align with the agile teams they support within an ART. A three-step process for
integrating business functions into the ART is defined (cf. Sect. 3, business teams).
First, business teams are required to understand agile and live the mindset themselves.
In practice, companies that start with an agile transformation using SAFe adapt the
framework to their own purpose and situation. Often, the surrounding organization is
not touched and business functions continue to work in their established processes.
A survey of SAFe adoptions also reported challenges regarding mindset change [14].
Guidance for assessing and improving the agility of teams is provided by [15].

As a second step, agile business teams need to join the ART in order to have a
shared cadence and synchronization points. There is not much guidance on the way
business functions have to collaborate with agile teams, or whether this collaboration is
feasible for every business function.

Finally, business teams are supposed to improve their process in order to create
their own agile way of working that harmonizes with the development flow of the
ART. Guidance is missing for different business functions on what this collaboration
could look like in detail.

Summarizing the Need for Further Research. In summary, the autonomy of an agile
team highly depends on its environment. [16] also claims that the organizational culture
and structures need to be adapted in order to increase the autonomy of an agile team.
When synchronizing agile teams with their environment, the production and control
structures influence the autonomy of agile teams [17]. Thus, it is important to be aware
of the environment of an agile team, explicitly considering how to synchronize and
what information to share.

Hence, it must first be understood with what parties an agile team has to collab-
orate. SAFe already mentions some dependent functions and responsibilities, but does
not try to provide a complete view. More interfaces not explicitly addressed by SAFe
exist, e.g., synchronizing agile development with a product line approach [18]. An
initial overview of the dependencies of agile teams on their environment is provided by
[2]. A possible next step for research would be to refine this classification of interfaces
to understand what concrete dependencies exist in order to be able to find solutions.

SAFe provides synchronization concepts that could be used to improve the col-
laboration between an agile team and its environment, but there needs to be further
research on when a certain concept is suitable for solving a certain dependency. In
addition, SAFe does not provide guidelines about the content of the synchronization.
Providing guidelines on what information to exchange or which artifacts to share at a
certain interface could benefit practitioners. A final step would be to combine the
“what” and the “how” to explain how the collaboration mechanisms can be used to
convey certain information or artifacts.

224 S. Theobald and A. Schmitt

5 Conclusion and Future Work

Autonomous agile teams often have dependencies on their organizational environment.
In order to improve the efficiency of these agile teams, collaboration with their envi-
ronment has to be improved. The Scaled Agile Framework (SAFe) was reviewed to
analyze what guidance exists for managing the dependencies of agile teams. SAFe
provides concepts like system teams, business teams, or shared services that define
different levels of involvement, but does not provide details on what efficient collab-
oration should look like.

In future work, we want to list existing dependencies by analyzing all scaling
frameworks. It would also be interesting to look at other sources, such as PMBOK or
CMMI, and evaluate how their recommendations are applicable to handling depen-
dencies. Based on the results, those dependencies that need most research can be
prioritized in order to find solutions for specific interfaces or identify strategies or
patterns for collaboration that are commonly applicable.

Acknowledgments. This research is funded by the German Ministry of Education and Research
(BMBF) as part of a Software Campus project (01IS17047). We would like to thank Sonnhild
Namingha for proofreading the final version of this paper.

References

1. VersionOne: 12th Annual State of Agile TM Report (2018) https://www.versionone.com/
2. Theobald, S., Diebold, P.: Interface problems of agile in a non-agile environment. In:

Garbajosa, J., Wang, X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 123–130.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91602-6_8

3. Marner, K., Theobald, S., Wagner, S.: Release planning in a hybrid project environment. In:
Przybyłek, A., Morales-Trujillo, M.E. (eds.) LASD/MIDI -2019. LNBIP, vol. 376, pp. 19–
40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37534-8_2

4. Krieg, A., Theobald, S., Küpper, S.: Erfolgreiche agile Projekte benötigen ein agiles Umfeld.
In: Mikuzs, M., Volland, A., Engstler, M., Hanser, E., Linssen, O. (eds.) Projektmanagement
und Vorgehensmodelle 2018 - Der Einfluss der Digitalisierung auf Projektmanagement-
methoden und Entwicklungsprozesse, pp. 217–222. Gesellschaft für Informatik, Bonn
(2018)

5. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autonomous agile
teams: a summary of the second international workshop at XP2019. In: Hoda, R. (ed.) XP
2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30126-2_2

6. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future directions
for research. In: Proceedings of the 19th International Conference on Agile Software
Development: Companion, pp. 1–5. ACM, Porto (2018)

7. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international workshop on
large-scale agile development. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 75–80.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_9

8. Barroca, L., Dingsøyr, T., Mikalsen, M.: Agile transformation: a summary and research
agenda from the first international workshop. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364,
pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_1

Dependencies of Agile Teams 225

www.dbooks.org

https://www.versionone.com/
https://doi.org/10.1007/978-3-319-91602-6_8
https://doi.org/10.1007/978-3-030-37534-8_2
https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-30126-2_1
https://www.dbooks.org/

9. Diebold, P., Schmitt, A., Theobald, S.: Scaling agile: how to select the most appropriate
framework. In: Proceedings of the 19th International Conference on Agile Software
Development: Companion (XP 2018), pp. 1–4. Association for Computing Machinery, New
York (2018). Article 7. https://doi.org/10.1145/3234152.3234177

10. Scaled Agile Framework (2019). http://www.scaledagileframework.com/. Accessed 01 Dec
2019

11. Putta, A., Paasivaara, M., Lassenius, C.: How are agile release trains formed in practice? A
case study in a large financial corporation. In: Kruchten, P., Fraser, S., Coallier, F. (eds.) XP
2019. LNBIP, vol. 355, pp. 154–170. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-19034-7_10

12. Uludağ, Ö., Kleehaus, M., Erçelik, S., Matthes, F.: Using social network analysis to
investigate the collaboration between architects and agile teams: a case study of a large-scale
agile development program in a german consumer electronics company. In: Kruchten, P.,
Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 137–153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-19034-7_9

13. Wohlrab, R., Pelliccione, P., Knauss, E., Larsson, M.: Boundary objects in Agile practices:
continuous management of systems engineering artifacts in the automotive domain. In:
Proceedings of the 2018 International Conference on Software and System Process (ICSSP
2018), pp. 31–40. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3202710.3203155

14. Laanti, M., Kettunen, P.: SAFe adoptions in Finland: a survey research. In: Hoda, R. (ed.)
XP 2019. LNBIP, vol. 364, pp. 81–87. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-30126-2_10

15. Guckenbiehl, P., Theobald, S.: Assessment of agile culture. In: PVM 2019, p. 165 (2019)
16. Spiegler, S.V., Heinecke, C., Wagner, S.: The influence of culture and structure on

autonomous teams in established companies. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364,
pp. 46–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_6

17. Mikalsen, M., Næsje, M., Reime, E.A., Solem, A.: Agile autonomous teams in complex
organizations. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 55–63. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_7

18. Hohl, P., Theobald, S., Becker, M., Stupperich, M., Münch, J.: Mapping agility to
automotive software product line concerns. In: Kuhrmann, M., et al. (eds.) PROFES 2018.
LNCS, vol. 11271, pp. 409–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03673-7_32

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

226 S. Theobald and A. Schmitt

https://doi.org/10.1145/3234152.3234177
http://www.scaledagileframework.com/
https://doi.org/10.1007/978-3-030-19034-7_10
https://doi.org/10.1007/978-3-030-19034-7_10
https://doi.org/10.1007/978-3-030-19034-7_9
https://doi.org/10.1145/3202710.3203155
https://doi.org/10.1145/3202710.3203155
https://doi.org/10.1007/978-3-030-30126-2_10
https://doi.org/10.1007/978-3-030-30126-2_10
https://doi.org/10.1007/978-3-030-30126-2_6
https://doi.org/10.1007/978-3-030-30126-2_7
https://doi.org/10.1007/978-3-030-03673-7_32
https://doi.org/10.1007/978-3-030-03673-7_32
http://creativecommons.org/licenses/by/4.0/

Understanding Work Practices of
Autonomous Agile Teams: A
Social-psychological Review

Lucas Gren1,2(B)

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
lucas.gren@lucasgren.com

2 Volvo Cars, Gothenburg, Sweden

Abstract. The purpose of this paper is to suggest additional aspects
of social psychology that could help when making sense of autonomous
agile teams. To make use of well-tested theories in social psychology
and instead see how they replicated and differ in the autonomous agile
team context would avoid reinventing the wheel. This was done, as an
initial step, through looking at some very common agile practices and
relate them to existing findings in social-psychological research. The two
theories found that I argue could be more applied to the software engi-
neering context are social identity theory and group socialization the-
ory. The results show that literature provides social-psychological rea-
sons for the popularity of some agile practices, but that scientific studies
are needed to gather empirical evidence on these under-researched top-
ics. Understanding deeper psychological theories could provide a better
understanding of the psychological processes when building autonomous
agile team, which could then lead to better predictability and interven-
tion in relation to human factors.

Keywords: Programming · Social psychology · Agile practices ·
Teams

1 Introduction

The importance of understanding team autonomy has increased in the last
decades due to agile development processes [1]. There have been studies on
the barriers of self-organization in agile teams [2], the emerging roles of self-
organizing agile teams and how these roles enable agility [3], and the role of
senior management [4] to just mention a few. Some authors, like Moe et al.
[5], suggest using theories from social psychology to better understand team
autonomy. They refer to studies on self-organization in psychology but here are
many more theories in that field that would make sense to use in the software
development context. The two theories from social psychology, namely Social
Identity Theory and Group Socialization Theory where selected from a text-
book on social psychology [6]. I do not consider these theories more important
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 227–235, 2020.
https://doi.org/10.1007/978-3-030-58858-8_23

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_23
https://www.dbooks.org/

228 L. Gren

than others, they were only selected based on the vast number of studies on
them in the last decades. Therefore, they seem to be quite robust and relevant
to investigate in the software development context. Some results might replicate,
but others might not.

In order to theoretically analyze these two theories from social psychology
and their connection to agile teams, I use the study by So [7] in which the
author divide common agile practices into core, technical, team interaction, and
customer interaction practices. Due to saving space, I selected only the core
and team interaction practices (five in total) for this paper. I do not consider
these practices to cover all aspects of agility nor to be the most important agile
practices, however, the practices chosen are widely used in industry [8].

I will describe the general agile work practices and connect these to existing
social, management, and organizational psychology findings, but I will start by
presenting the two important psychological theories that are in focus.

2 Important Psychological Theories

I have chosen to focus on two popular theories in social psychology on which
none or very few studies exist in software engineering research. The first one is
group socialization, which can be defined as the “dynamic relationship between
the group and its members that describes the passage of members through a
group in terms of commitment and of changing roles” [6]. The idea is that a
new team members will go through a certain set of phases through the group’s
lifespan. The group as a whole will evaluate a new member first by assessing how
much a potential new member can contribute to the group’s goal-fulfillment. The
individual will also assess how much the group can fulfill their personal needs.
Step two is commitment, which takes the outcome from the evaluation as input
and is an assessment of both parties’ beliefs about the rewadingness (i.e. the
quality of being rewarding) of the relationship (and other alternative ones). The
last phase is role transition in which the commitment reaches a critical level and
the relationship thereby changes. These three phases are continuously depending
on the result of the assessment. The individual goes through five phases of group
socialization: (1) Investigation, (2) Socialization, (3) Maintenance, (4) Resocial-
ization, and (5) Remembrance. These phases have transition steps in-between
that are: (1) Entry, (2) Acceptance, (3) Divergence, and (4) Exit [9].

Group socialization is separate from stages that the whole group goes through
together. The most famous and used model of group development was introduced
in 1965 by Tuckman [10]. He integrated many theories and research findings into
a model with the four stages Forming, Storming, Norming, and Performing. The
forming stage is when the group is new and need to set the stage and figure our
what it is supposed to do and who can do what. Storming is a conflict stage
where people now feel safe to question the other team members, which is needed
to figure out good group goals and good strategies of work. The Norming phase
is when the group starts to set group norms of their collaboration and know how
to organize to be productive, and the final stage, Performing, is when the team

Understanding Work Practices of Autonomous Agile Teams 229

can focus the most of being productive because they have created a system of
good collaboration and effective conflict resolution techniques. These phases are
similar to the ones suggested by Agazarian and Gantt [11] in systems centered
theory, and what Wheelan [12] also suggested as an integrated model of group
development.

Another well-researched approach to explaining many group phenomena is
the social identity theory (see e.g. Hewstone et al. [13] or Hogg [6]). Not only has
the theory gained empirical evidence in social psychology research but also in
quite recent research in social neuroscience (see e.g. van Bavel and Cunningham
[14]). To understand that theory, we first need to understand the concepts on
which it is based. Social categorization is the classification of people into differ-
ent social groups, which is a deeply-rooted human trait, and a person’s social
identity is the part of the self that is derived from the various memberships we
have in social groups. Social identity theory is, therefore, the theory of group
membership and intergroup relations based on self-categorization, social com-
parison and a self-definition regarding in-group1 properties (i.e. a prototype2).
Self-categorization is how we categorize ourselves and thereby construct a social
identity [15]. According to the minimal group paradigm [16], even explicitly ran-
dom group assignments trigger discriminatory behavior against an out-group3.
The idea is that a successful intergroup bias creates or protects (high) in-group
status, which provides a positive social identity (which in turn satisfies group-
members’ need for positive self-esteem4). Researchers have successfully explained
how groups gain positive self-esteem through intergroup bias but have been less
successful when explaining intergroup bias motives due to threats or depressed
self-esteem [13]. However, Hogg and Williams [15] suggest that competition for
positive social identity characterizes intergroup behavior.

3 Agile Practices and Social Psychology

3.1 Iterative Development – A Core Practice of Agile Development

Delivering in short iterations has high face validity, but when broken down, these
ideas include a diversity of competences and dynamics needed by the agile team
to deliver value in such short iterations. In more general management research,
there has been more thorough research on which general work practices con-
tribute to performance (see e.g. Combs et al. [17]) and to successfully implement
iterative development, the team must have a high degree and maturity of, for
example, staffing, decentralized decision-making, and communication [18]. So
to understand the dynamics of iterative development, we should consider these
confounding factors before we, as researchers, jump to conclusions about other
found effects.

1 A group that an individual is a member of [6].
2 Cognitive representation of the typical/ideal defining features of a category [6].
3 A group that an individual is not a member of [6].
4 Feelings about and evaluations of oneself [6].

www.dbooks.org

https://www.dbooks.org/

230 L. Gren

3.2 Iteration Planning – A Teamwork Practice

Obtaining empowered and motivated individuals that have the needed support to
solve any given task together with high levels of trust, are all aspects known to be
necessary [19] but are not always in place [20]. Creating a shared vision has also
been shown in research to be a key for success since the beginning of the 1990s
and is one of the main components of transformational leadership [21]. A shared
vision is necessary since the team needs an overall goal to break down when
planning the upcoming iteration. Regarding the importance of simplicity in agile
is somewhat connected to the concept of reducing waste in lean manufacturing,
together with the continued avoidance of doing unnecessary activities in the
project (or process) life-cycle [22]. To plan in such a way, the team must know
the members’ real competences and abilities, which also implies maturity in
the development process and that the members of the group are committed and
fully integrated into the group. With such prerequisites, understanding the group
socialization process then becomes paramount when understanding how teams
plan in short iterations.

3.3 Stand-Up Meetings – A Teamwork Practice

Developers, but also business people and testers, should be on the same team
and collaboratively work together through the whole project life-cycle (i.e. hav-
ing cross-functional teams). When connecting the popularity of having cross-
functional teams in the modern workplace (see e.g. Denison et al. [23]) to social
identity theory, it becomes clear that it, in fact, decreases intergroup bias. Hav-
ing these various organizational functions share their chores and issues often,
would be expected to increase cohesion and understanding of the whole project
through shared mental models, which have also gained initial empirical support
[24]. Having social identity theory and intergroup bias as factors in software
engineering research would then probably increase the explained variance.

3.4 Retrospectives – A Teamwork Practice

The idea of a retrospective meeting is that the team should reflect on possible
improvement points about their teamwork at the end of each iteration [25].
More generally, such reflective meetings are often called team debriefs, and have
been shown with scientific rigor to increase effectiveness [26]. McHugh et al. [19]
found that these types of meeting need work and careful guidance to function in
their intended way also in software development. In a recent longitudinal study,
Lehtinen et al. [27] showed that, initially, newly formed teams focus more on
task progress and task outcome and, as the teams mature, they focus to a larger
extent on process and cooperation. Such findings also relate the “agility” of a
team to group socialization and group development since members of the group
will behave differently depending on how well integrated they are in the team
[9], meaning that a well-integrated individual will be more likely to perform
retrospectives in the way they are intended. If the socialization process is not a

Understanding Work Practices of Autonomous Agile Teams 231

part of understanding the dynamics of retrospective meetings, studies will have
difficulty explaining and predicting patterns of behavior.

3.5 Co-location – A Teamwork Practice

Having the team co-located in the same room with requirements as sticky notes
on physical boards have been promoted by the agile community in order to,
again, increase the velocity of the development in a rapidly changing environ-
ment. Many cases have been reported where the communication challenges of
distributed teams have been satisfactory dealt with using modern technology and
slightly different practices (see e.g. Berczuk [28]). Another study showed that
both agile and traditional projects have the same issues regarding co-location
[29]. All-in-all, every social aspect of building relationships will become more
cumbersome with distance and implies that more effort is needed to mitigate
these challenges [30]. Since the social problems are amplified with distance, fail-
ing to understand their influence in distributed agile teams will have even larger
negative effects on teamwork. And since agile processes are dependent on the
team as a working unit, understanding the social aspects of both distributed and
co-located teams are a key to building effective agile teams.

4 Discussion and Implications

As we have seen in this review, there is a lot of overlap between existing knowl-
edge of, and research on, the workplace in general and the agile practices. A
few internal organizational examples being decreasing inter-group bias through
cross-functional teams [23], striving towards self-organization of teams in order to
increase responsiveness to change [18], creating organizational citizenship behav-
ior through shared visions [21], empowerment and trust [31], and removing waste
in the process [22]. All these aspect are of interest to agile software engineer-
ing researchers when trying to understand the development of software using
agile teams because these theories might add explanatory power to the observed
behaviors.

However, the theory could be seen as complex and hard to grasp for people
without any behavioral science education, which means researchers must first
run experiments to gather empirical evidence in order to eventually build a the-
ory of “agility,” and then provide scientifically founded and validated guidelines
to practitioners. One large hurdle of achieving this, though, is the fact that
an overwhelming majority of human factors research in software engineering is
conducted by software engineering researchers interested in psychology and not
psychology researchers interested in software engineering, which often means
that the research findings have little depth and offer little new insights from a
psychological perspective. I will not cite any studies here due to the fact that
such studies were conducted with the best of intentions and do have high value
in that they have highlighted the importance of looking at psychological factors
in the software engineering domain, which was not the case at all before.

www.dbooks.org

https://www.dbooks.org/

232 L. Gren

Social identity theory could be utterly useful when navigating through the
added complexity of the different social relationship surfacing in an agile project.
Hogg and Williams [32] explicitly suggest a set of propositions for how social
identity and self-categorization relate to the organizational context. One of their
propositions is that changes in which out-groups the in-group compares itself to,
will change the view of the group’s own identity, including the properties of the
ideal member (i.e. the prototype). Another proposition is that harmonious rela-
tions between different subgroups of the organization is best kept by recognizing
both the subgroups (e.g. Quality Assurance Engineer, Software Developers, Soft-
ware Tester, etc.) and other organizational constellations, including the teams
and the company as a whole. This means that the cross-functional agile teams
must recognize both the value of the team as a whole but also the different roles
and make distinctions between them. All these aspects should be part of agile
team measurements in the future in order to fully make sense of the agile team
context.

When looking at the descriptions of the agile practices overall, many of the
internal practices seem to assume full group-membership seen from a group
socialization perspective [9]. They also assume the entire work-group to be
mature from a developmental perspective [10]. In order to fully understand the
social-psychological components of the team-based workplace in general, and the
agile context in particular, we also need to investigate the temporal perspective
of the interplay between group development, group socialization, and the agile
approach to projects by setting up autonomous teams.

As have also been shown in this short review, the prescribed behavior in
these agile practices are well-founded in social psychology, which provides social-
psychological reasons for their popularity. The reason for this is that if the agile
practices enable mechanisms known to work well for people in other contexts, it
is likely that they would also be appropriate in some variation in the agile con-
text. One example is the decrease of intergroup bias by having cross-functional
teams. Therefore, I argue for that these theories should be applied more to
the study of autonomous agile teams. In the review by [33], they also call for
more theory-based research since the current status of the field mostly com-
prises method-specific case studies, which is particularly the case in software
engineering studies on human factors. In this present study, I have explained
some social-psychological underpinnings in relation to five common agile prac-
tices, which contributes to founding agile practices in more general social psy-
chology theories. An understanding of such underpinnings can help abstract the
essentials of agile software development as opposed to other approaches, but also
guide researchers in conducting experiments using theory from social psychology
in the software development context. Many of the agile principles are far from
new in relation to human knowledge of work-groups. However, what might be
considered as having gotten a stronger acceptance is the implementation of being
responsive to change. The reasons for not relating agile software development
to any existing science outside of software engineering might be due to lack of

Understanding Work Practices of Autonomous Agile Teams 233

research knowledge from practitioners, but it might also reflect the difficulty of
interdisciplinary research.

5 Conclusion

Without understanding the psychology of groups, agile maturity survey findings
are hard to use in order to improve one’s own practices. Relating agile practices
to deeper psychological theories, like in this study, could instead provide a deeper
understanding of the psychological processes of implementing autonomous agile
teams.

References

1. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for
autonomous agile teams: a summary of the second international workshop at
XP2019. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2 2

2. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: Understanding self-organizing teams in agile
software development. In: 19th Australian Conference on Software Engineering
(ASWEC 2008), pp. 76–85. IEEE (2008)

3. Hoda, R., Noble, J., Marshall, S.: Self-organizing roles on agile software develop-
ment teams. IEEE Trans. Softw. Eng. 39(3), 422–444 (2012)

4. Hoda, R., Noble, J., Marshall, S.: Supporting self-organizing agile teams. In: Sillitti,
A., Hazzan, O., Bache, E., Albaladejo, X. (eds.) XP 2011. LNBIP, vol. 77, pp. 73–
87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20677-1 6

5. Moe, N.B., Dingsyr, T., Kvangardsnes, O.: Understanding shared leadership in
agile development: a case study. In: 2009 42nd Hawaii International Conference on
System Sciences, pp. 1–10. IEEE (2009)

6. Hogg, M.A., Vaughan, G.M.: Social Psychology, 7th edn. Pearson, Harlow (2014)
7. So, C.: Making Software Teams Effective: How Agile Practices Lead to Project

Success Through Teamwork Mechanisms. Peter Lang, Frankfurt am Main (2010)
8. Licorish, S.A., et al.: Adoption and suitability of software development methods

and practices. In: 23rd Asia-Pacific Software Engineering Conference (APSEC),
pp. 369–372, December 2016

9. Levine, J.M., Moreland, R.L.: Group socialization: theory and research. Eur. Rev.
Soc. Psychol. 5(1), 305–336 (1994)

10. Tuckman, B.W.: Developmental sequence in small groups. Psychol. Bull. 63(6),
384–399 (1965)

11. Agazarian, Y., Gantt, S.: Phases of group development: systems-centered hypothe-
ses and their implications for research and practice. Group Dyn. Theory Res. Pract.
7(3), 238 (2003)

12. Wheelan, S.: Group Processes: A Developmental Perspective, 2nd edn. Allyn and
Bacon, Boston (2005)

13. Hewstone, M., Rubin, M., Willis, H.: Intergroup bias. Annu. Rev. Psychol. 53(1),
575–604 (2002)

14. van Bavel, J.J., Cunningham, W.A.: A social neuroscience approach to self and
social categorisation: a new look at an old issue. Eur. Rev. Soc. Psychol. 21(1),
237–284 (2010)

www.dbooks.org

https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/978-3-642-20677-1_6
https://www.dbooks.org/

234 L. Gren

15. Hogg, M.A., Williams, K.D.: From I to we: social identity and the collective self.
Group Dyn. Theory Res. Pract. 4(1), 81 (2000)

16. Tajfel, H., Billig, M.G., Bundy, R.P., Flament, C.: Social categorization and inter-
group behaviour. Eur. J. Soc. Psychol. 1(2), 149–178 (1971)

17. Combs, J., Liu, Y., Hall, A., Ketchen, D.: How much do high-performance work
practices matter? A meta-analysis of their effects on organizational performance.
Pers. Psychol. 59(3), 501–528 (2006)

18. Evans, W.R., Davis, W.D.: High-performance work systems and organizational
performance: the mediating role of internal social structure. J. Manag. 31(5), 758–
775 (2005)

19. McHugh, O., Conboy, K., Lang, M.: Agile practices: the impact on trust in software
project teams. IEEE Softw. 29(3), 71–76 (2012)

20. Buchanan, D.A.: You stab my back, I’ll stab yours: management experience and
perceptions of organization political behaviour. Br. J. Manag. 19(1), 49–64 (2008)

21. Bass, B.M.: From transactional to transformational leadership: learning to share
the vision. Organ. Dyn. 18(3), 19–31 (1990)

22. Hicks, B.J.: Lean information management: understanding and eliminating waste.
Int. J. Inf. Manag. 27(4), 233–249 (2007)

23. Denison, D.R., Hart, S.L., Kahn, J.A.: From chimneys to cross-functional teams:
developing and validating a diagnostic model. Acad. Manag. J. 39(4), 1005–1023
(1996)

24. Stray, V., Sjøberg, D.I., Dyb̊a, T.: The daily stand-up meeting: a grounded theory
study. J. Syst. Softw. 114, 101–124 (2016)

25. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. Pragmatic
Bookshelf, Raleigh (2006)

26. Tannenbaum, S.I., Cerasoli, C.P.: Do team and individual debriefs enhance perfor-
mance? A meta-analysis. Hum. Factors 55(1), 231–245 (2013)

27. Lehtinen, T.O., Itkonen, J., Lassenius, C.: Recurring opinions or productive
improvements – what agile teams actually discuss in retrospectives. Empir. Softw.
Eng. 22(5), 2409–2452 (2017)

28. Berczuk, S.: Back to basics: the role of agile principles in success with a distributed
scrum team. In: Agile Conference (AGILE), 2007, pp. 382–388. IEEE (2007)

29. Noll, J., Beecham, S., Richardson, I.: Global software development and collabora-
tion: barriers and solutions. ACM Inroads 1(3), 66–78 (2010)

30. Alzoubi, Y.I., Gill, A.Q., Al-Ani, A.: Empirical studies of geographically distributed
agile development communication challenges: a systematic review. Inf. Manag.
53(1), 22–37 (2016)

31. Wat, D., Shaffer, M.A.: Equity and relationship quality influences on organizational
citizenship behaviors: the mediating role of trust in the supervisor and empower-
ment. Pers. Rev. 34(4), 406–422 (2005)

32. Hogg, M.A., Terry, D.I.: Social identity and self-categorization processes in orga-
nizational contexts. Acad. Manag. Rev. 25(1), 121–140 (2000)

33. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodolo-
gies: towards explaining agile software development. J. Syst. Softw. 85, 1213–1221
(2012)

Understanding Work Practices of Autonomous Agile Teams 235

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Spotify Tailoring for Architectural
Governance

Abdallah Salameh(B) and Julian M. Bass

University of Salford, 43 Crescent, Salford M5 4WT, UK
a.salameh@edu.salford.ac.uk, j.bass@salford.ac.uk

Abstract. Organisations usually tailor Agile methods to fit their needs
best. Spotify has developed its own Agile culture to facilitate software
development for hundreds of developers across multiple cities. The Spo-
tify model has become influential among agile proponents and hence
formed the basis of methods used in other organisations. We have iden-
tified a lack of research into agile architecture using the Spotify model.

To explore How can architectural governance increase the autonomy
of teams when using the Spotify model?, an intervention embedded case
study was conducted in a multinational FinTech organisation, using the
Spotify model. New processes were introduced by developing and eval-
uating an approach to Agile architectural governance. This approach
incorporates a structural change and a change management process. We
conducted 6 semi-structured open-ended interviews and direct observa-
tions of Agile practices. The collected data was analysed using Thematic
Analysis and informed by some Grounded Theory techniques.

The practitioners in our study report benefits of this evaluated app-
roach. These benefits include transforming architectural based decision
into decentralised based decision-making, strengthening the autonomy of
squads through aligning architectural based decisions, sharing the archi-
tectural knowledge among the squads, and other benefits.

We identify the characteristics and benefits of our evaluated approach
to Agile architectural governance using the Spotify model. Also, we iden-
tify guidelines and challenges for those wishing to adopt this approach.

Keywords: Spotify tailoring · Architecture governance · Autonomous
teams · Large-scale · FinTech · Intervention embedded case study

1 Introduction

The introduction of agile software development has shifted the focus from the
individual level into the team level by employing self-organising autonomous
teams [8]. These teams should be aligned with each other and to common prod-
uct development objectives to enable their autonomy [9]. Previous research has
identified the topic of autonomous teams as immature within software engineer-
ing because of some identified challenges that need addressing [12].

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 236–244, 2020.
https://doi.org/10.1007/978-3-030-58858-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_24

Spotify Tailoring for Architectural Governance 237

The Spotify model is an example of an agile approach that is driven by
creating autonomous, yet aligned squads (i.e., teams) [6]. In our previous work on
Spotify Tailoring, we have identified tailored practices that promote effectiveness
in autonomous squads [9] and have revealed a novel approach to agile tailoring
using the Spotify model, which we called Heterogeneous Tailoring [11]. Two key
features characterise this approach. Firstly, each autonomous cross-functional
squad is empowered to select and tailor its development method. Secondly, each
squad is aligned with other squads and to common product development goals.

One of the identified challenges to the Heterogeneous Tailoring approach is
the need for aligning and governing architectural decisions across autonomous
squads [11]. In the same way, previous research on the topic of autonomous teams
has identified the coordination of system architecture among autonomous teams
as a challenge that needs exploration [12]. Often, positions are linked to individu-
als, which leads to a bottle neck since one person bears many responsibilities and
has to reply to many different demands simultaneously [4]. External dependen-
cies to one person decreases team autonomy and its innovation. We found that
our case study organisation utilises a centralised architectural decision-making
while using the Spotify model.

Our research question in this study is: How can architectural governance
increase the autonomy of teams when using the Spotify model? To answer this
question, we have conducted an intervention embedded case study in a multi-
national FinTech organisation uses the Spotify model with a large-scale project.
In this intervention, we develop and evaluate an approach to architectural gov-
ernance. In this approach, we introduce specific roles in each squad to increase
autonomy within squads instead of relying on one person (i.e., architect) who
is responsible for all teams. Also, we introduce a change management process
to streamline the agile architecture process among the stakeholder. During this
intervention trial, we have conducted a direct observation of 23 ceremonies over
9 weeks. After that, 6 semi-structured interviews were conducted.

The practitioners in our study report benefits of this approach such as trans-
forming architectural decision-making into decentralised based decision-making,
resolving conflicted architectural decisions and mitigating key technical risks
across autonomous squads, strengthening the autonomy of squads through align-
ing architectural based decisions, and other benefits.

In this paper, we identify the characteristics and benefits of our evaluated
approach to architectural governance. Also, we identify guidelines and challenges
for those wishing to adopt this approach using the Spotify model.

2 Background

2.1 The Spotify Model

The Spotify model, which was introduced by Henrik Kniberg [6,9], has been
developed to utilise agile development with hundreds of developers that are dis-
tributed among many squads and across 4 cities. The overall structure consists,

www.dbooks.org

https://www.dbooks.org/

238 A. Salameh and J. M. Bass

mainly, of Squads, Chapters, Guilds and Tribes. A Tribe is a collection of co-
located squads with less than 100 members and aims to promote collaboration
among the squads. Within the same Tribe, there are small groups of people,
called Chapters, that work within the same competency area and have similar
skill sets. While Chapters are always located within a specific Tribe, there are
groups of people, called Guilds, who are wide-reaching with a desire to share
knowledge across the whole organisation.

A squad leader is responsible for communicating what problem needs to be
solved and why. Squads’ job is to collaborate to find a solution [6]. A Squad has
access to a coach, which is responsible for improving squads’ ways of working.
Each squad has a Product Owner, who is responsible for prioritising the work,
matching product backlog for each squad, and maintaining a high-level roadmap
for the organisation.

2.2 Agile Architecture

Iterative and incremental way of architecture evolution is recognised by previous
research as an agile way to reduce Big Design Up-Front and to keep a project
synchronised with the latest changing conditions [7]. Previous research realised
the coexistence of software architectures and agile development in the utilisation
of identified architecting activities and approaches, as well as agile architecting
practices [13]. Yang et al. [13] identified 41 agile architecting practices. How-
ever, only a few of these practices have been widely employed in practice and
discussed in the literature – such as Backlog, Sprint, Iterative and Incremental
Development, Just Enough Architectural Work, and Continuous Integration.

Neglecting certain architectural considerations even early in the software
development process can make architectural refactoring costly [2]. What teams
build is influenced and constrained by how they build it. Yet, how teams build
something is affected and also constrained by their design and architecture [2].
Hence, agile practitioners need to focus on “what architectural issues block a
team’s agility” to achieve technical excellence, good design and improve the
agility of software development [2]. For instance, modular architecture and
microservices are identified as prerequisites for applying agile practices [5].

3 Research Design and Methodology

Our case study is carried out in a multinational FinTech organisation that
employs around 650 people in 60 markets. This organisation processes around 60
billion AC per year. Our case study project is considered as an offshore outsourced
FinTech project, which manages hundreds of autonomous financial services. The
development programme of our case study project is of large-scale size (<100 peo-
ple). The developers are distributed over 6 squads. Also, there is 1 Architect, 3
Key Account Managers, 5 Product Owners, 2 Agile Coaches, and 1 Test Lead.

The intervention embedded case-study was conducted in one squad and two
Chapters within the case study organisation. This squad consists of 6 develop-
ers – 2 of them are Chapter Leaders. The data were collected through direct

Spotify Tailoring for Architectural Governance 239

observation of agile practices for 9 weeks, during which 23 ceremonies were
observed. After the intervention trial, 6 semi-structured open-ended interviews
were conducted and continued for around 50 min. After the second interview,
the questions were revised. After conducting each interview, the recording was
transcribed verbatim and analysed in a continuous basis.

The collected data was analysed using Thematic Analysis [1] and informed
by some Grounded Theory techniques [3]. Our analysis was carried out by fol-
lowing the six steps proposed by Braun and Clarke [1]: (1) familiarising with the
data, (2) generating initial codes, (3) searching for themes, (4) themes review
and refinement, (5) defining and naming themes, and (6) writing the final report.
During these steps, we utilised some Grounded Theories techniques such as con-
tinuous memoing, open coding, constant comparison, and sorting [3]. Further-
more, the observations were analysed and compared to the derived themes from
the analysed interviews. In result, minor contradictions were identified, which
were explored and accommodated accordingly.

4 Findings

This section presents the findings of our study, before and after conducting the
intervention embedded case study. Also, this section describes the character-
istics of our introduced architecture governance approach, which incorporates
an organisational structural change and a change management process. More-
over, this section describes the reported benefits and challenges of the evaluated
approach.

4.1 Before Conducting the Intervention – Baseline

Before starting this intervention embedded case-study, our case-study organisa-
tion was utilising Spotify’s organisational structure while exercising a centralised
based architectural decision-making because of the complexity of this FinTech
project. Practitioners say: “Despite having chapters communities, I was the
main reference for all squads when it comes to any architectural based change
because of the complexity of the project”–P2, Enterprise Architect. Also, “we
(developers) were always turning to our architect when it comes to architectural
based decisions to figure out the best way to perform an architectural change”–P4,
Senior Developer and Chapter Leader. However, our case study organisation had
challenges in aligning and governing architectural decisions across autonomous
squads. “The size of the development programme is now much larger than what
it was 3 years ago... I’m overloaded with many responsibilities, which in turn
causes a delay in taking architectural decisions and impacts squads autonomy”–
P2, Enterprise Architect.

www.dbooks.org

https://www.dbooks.org/

240 A. Salameh and J. M. Bass

4.2 After Conducting the Intervention – The Evaluated Approach

Organisational Structural Change: This intervention introduced a change
to the organisational structure. This change aims to facilitate the alignment
architectural decisions across autonomous squads and ultimately to strengthen
the autonomy of squads. The structural change is presented in (1) empowering
Chapter Leaders and other developers with the role of Architecture Owners, (2)
changing the responsibilities of the architect to be of Enterprise Architectural
focus, and (3) locating all Architecture Owners in a virtual squad that is led by
an Enterprise Architect.

The role of Architecture Owners is assigned to Chapter Leaders. Since Chap-
ters are formed based on competency areas, and Squads are aligned on the
product-level, the Architecture Owners were aligned accordingly. Practitioners
say: “Giving me the role of Architecture Owner facilitates taking architectural
decisions within my Chapter”–P4, Senior Developer and Chapter Leader. Also,
“breaking down the role of the architect into Architecture Owners roles and dis-
tribute it among Chapter Leaders, based on their competency areas transforms
decisions into the operational level, which is beneficial in aligning architectural
based decisions”–P1, Agile Coach.

The role of Enterprise Architect is assigned to the architect. The architect’s
responsibilities are changed to be of enterprise nature. Practitioners say: “The
architect has great knowledge about the technical and the business roadmaps
of our organisation... He should continue focusing on the Enterprise architec-
tural tasks”–P1, Agile Coach. This Enterprise Architect should support and
help Chapter Leaders in tackling architectural based decisions. A practitioner
says: “It is vital to have the required commitment and support from our the
Enterprise Architect in taking enterprise architectural decisions such as inte-
grating two intercorrelated components or even specifying how to expose some
APIs”–P5, Senior Developer and Chapter Leader.

A virtual architecture squad, which consists of Architecture Owners and
Enterprise Architect, was created to facilitate the technical and architectural
governance and alignment among autonomous squads. Architecture Owners
should have “willing” to collaborate closely with the Enterprise Architect and
other Architecture Owners. This is to get the best out of the Architecture Squad
and to utilise better alignment across the organisation. A practitioner says: “The
main reason behind creating this virtual architecture squad is to have proper
technical and architectural based alignment through the organisation... Meeting
whenever needed is important to resolve encountered obstacles”–P1, Agile Coach.

Change Management Process: Our introduced change management process
was adapted throughout the intervention trial. This evaluated change manage-
ment process aimed to guide the involved stakeholders – including the developers,
Architecture Owners, Enterprise Architects and Product Owners – in governing
and aligning architectural based decisions. This process is comprised of those
activities illustrated in the figure shared online in [10].

When a developer encounters a possible architectural change, the developer
will determine the impact of the architectural change, create a Kanban card

Spotify Tailoring for Architectural Governance 241

describing the change request and visualise it as a WIP in the analysis phase.
Then, the architecture owner and the involved developers should understand the
nature of the change and determine its potential architectural impact. The Archi-
tecture Owner updates the Kanban card with more accurate technical specifica-
tions. If the work requires an enterprise architectural change, the architecture
owner should discuss the required change with the enterprise architect and if
needed within the architecture squad. An iterative impact analysis process can
be conducted based on the encountered challenges. In case of identifying newly
impacted components, the architecture owner will create new user story for unpre-
dicted changes. If the change request was approval by the architecture squad
and the architecture owner, the Kanban card should be available for the planing
and development. Consequently, POs can plan the implementation of this change
request and forward the user story and its tasks to the relevant squads for imple-
mentation. The squads utilise a hybrid process of Behaviour Driven Development
and Test Last Development. Also, the developers utilise the continuous integra-
tion to avoid delays caused by integration problems. Also, the scope of testing is
extended from test cases to behaviour requirement. Based on the testing results,
a new release can be planned for deployment on production.

4.3 Benefits and Challenges of the Evaluated Approach

The practitioners in our case study reported benefits of this introduced app-
roach. Firstly, it has shifted the boundaries and transformed the architectural
based decisions into decentralised decision-making. A practitioner says: “I do
not need to wait for the architect anymore... Instead, I can get in touch directly
with our Chapter Leader (Architecture Owner)”–P6, Senior Developer. However,
enterprise architectural decisions need to be discussed within the architecture
squad. A practitioner says: “Taking decisions about how to integrate different
components, or APIs might require a deep investigation by multiple Architec-
ture Owners and the Enterprise Architect”–P4, Senior Developer and Chapter
Leader. Secondly, our approach has facilitated resolving conflicted architectural
decisions and mitigating key technical risks across autonomous squads. Develop-
ers might encounter conflicted architectural decisions and not always come to an
agreement. A practitioner says: “Many developers are smart and strong-willed
where they do not always come to an agreement... Someone should lead and facili-
tate the evolution of the architecture”–P4, Senior Developer and Chapter Leader.
Thirdly, our approach has facilitated sharing architectural knowledge among
the squads. A practitioner says: “Our Enterprise Architect started arrang-
ing and conducting workshops to train and coach our squads in architectural
related aspects”–P4, Senior Developer and Chapter Leader. Fourthly, our app-
roach has improved software quality and mitigated obstacles to aligning architec-
tural decisions across autonomous squads. Practitioners say: ‘Conducting proper
architectural analysis within our Chapter and then evaluating and discussing the
results, if needed, with the Enterprise Architect improves the quality of our pro-
duced work”–P4, Senior Developer. Yet, “overlooking some aspects that can be

www.dbooks.org

https://www.dbooks.org/

242 A. Salameh and J. M. Bass

considered at the time being might cause a lot of waste because of the need for
refactoring”–P6, Senior Developer.

The practitioners in our case study reported a challenge of this introduced
approach. This challenge is presented in prioritising user stories without con-
sidering the technical and architectural aspects, which can in turn impact the
planning activity negatively. The introduced change management process does
not support a process for screening the user stories by the Architecture Squad
before conducting the planning. A practitioner says: “Right now, we do not
go through the user stories, in our Architecture Squad, before planning... Yet,
sometimes we discuss them informally upon POs request”–P5, Senior Developer
and Chapter Leader. However, the introduced change management process han-
dles such situations when discovering unpredicted architectural changes. This is
achieved by moving from Step 6 to Step 1, as illustrated in [10]. The case study
organisation considers a spike as an investment to figure out what needs to be
built and how. A practitioner says: “We allocate some resources for complicated
work items, ahead of the targeted delivery deadline, to find out what needs to be
done... Such investments are considered as necessity to solve architectural issues,
which work as enabler for the next Sprint”–P3, Product Owner.

5 Discussion and Conclusion

The topic of autonomous teams is immature within software engineering since
there are challenges that need to be addressed [12]. One of these identified chal-
lenges that need exploration is how system architecture can best support the
coordination of autonomous teams [12]. Our previous research on the Spotify
model has revealed a novel approach to agile tailoring, which we called Het-
erogeneous Tailoring [11]. One of our identified challenges to the Heterogeneous
Tailoring approach is the need for aligning and governing architectural decisions
across autonomous squads [11].

We conducted an intervention embedded case study to overcome the challenge
of aligning architectural decisions across autonomous squads. In this interven-
tion, we developed and evaluated an approach to agile architectural governance,
which comprises a structural change and a change management process.

Our findings demonstrate that team-external (i.e., architect) influence over
architectural based decisions is negatively related to teamwork quality and team
autonomy. The external dependencies to one person decrease team autonomy
and lead to a bottleneck since one person bears many responsibilities and has to
reply to many different demands simultaneously. In fact, team-external depen-
dencies to individuals should carefully consider any interference with operational
project decisions since it is negatively related to important collaborative pro-
cesses in the teams [4,11]. Therefore, we have introduced Architecture Owners
roles within Chapters to devolve architecture decision making to the opera-
tional level. Also, we have changed the responsibilities of the Architect to be of
Enterprise Architectural focus to facilitate enterprise architecture decision mak-
ing, resolve conflicted architectural decisions, and mitigating key technical risks
across autonomous squads.

Spotify Tailoring for Architectural Governance 243

Our evaluated change management process comprises a set of activities,
which cover 7 activities out of 11 that have been identified by Yang et al. [13].
These activities are Architectural Analysis and Synthesis (Activity 1 and 2),
Architectural Evaluation and Impact Analysis (Activity 3), Architectural Refac-
toring (Activity 6), and Architectural Maintenance and Evolution (from Activity
6 back to Activity 1). However, Architectural Description and Understanding are
used to some extent at the enterprise level. In addition, Architectural Reuse is
observed within the squads and encouraged by Architecture Owners.

In this paper, we identified the characteristics and benefits of our evaluated
approach to Agile architectural governance using the Spotify model. Also, we
identified guidelines and challenges for those wishing to adopt this approach.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.
3(2), 77–101 (2006)

2. Buschmann, F., Henney, K.: Architecture and agility: married, divorced, or just
good friends? IEEE Softw. 30(2), 80–82 (2013)

3. Glaser, B.G.: Doing Grounded Theory: Issues and Discussions. Sociology Press,
Mill Valley (1998)

4. Hoegl, M., Parboteeah, P.: Autonomy and teamwork in innovative projects. Hum.
Resour. Manag. 45(1), 67–79 (2006)

5. Kilu, E., Milani, F., Scott, E., Pfahl, D.: Agile software process improvement by
learning from financial and fintech companies: LHV bank case study. In: Win-
kler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2019. LNBIP, vol. 338, pp. 57–69.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05767-1 5

6. Kniberg, H.: Spotify squad framework - part II, April 2014. https://medium.com/
project-management-learnings/spotify-squad-framework-part-ii-c5d4b9398c30

7. Kruchten, P.: Software architecture and agile software development: a clash of
two cultures? In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 2, pp. 497–498, May 2010

8. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: Overcoming barriers to self-management in
software teams. IEEE Softw. 26(6), 20–26 (2009)

9. Salameh, A., Bass, J.M.: Spotify tailoring for promoting effectiveness in cross-
functional autonomous squads. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp.
20–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30126-2 3

10. Salameh, A., Bass, J.M.: Spotify tailoring for architectural governance, March
2020. https://salford.figshare.com/articles/Spotify Tailoring for Architectural
Governance/11960835/1

11. Salameh, A., Bass, J.M.: Heterogeneous tailoring approach using the spotify model.
In: Proceedings of the Evaluation and Assessment in Software Engineering, EASE
2020, pp. 293–298. Association for Computing Machinery, New York (2020)

12. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future
directions for research. In: Proceedings of the 19th International Conference on
Agile Software Development: Companion, XP 2018, pp. 16:1–16:5. ACM, New
York (2018)

13. Yang, C., Liang, P., Avgeriou, P.: A systematic mapping study on the combination
of software architecture and agile development. J. Syst. Softw. 111, 157–184 (2016)

www.dbooks.org

https://doi.org/10.1007/978-3-030-05767-1_5
https://medium.com/project-management-learnings/spotify-squad-framework-part-ii-c5d4b9398c30
https://medium.com/project-management-learnings/spotify-squad-framework-part-ii-c5d4b9398c30
https://doi.org/10.1007/978-3-030-30126-2_3
https://salford.figshare.com/articles/Spotify_Tailoring_for_Architectural_Governance/11960835/1
https://salford.figshare.com/articles/Spotify_Tailoring_for_Architectural_Governance/11960835/1
https://www.dbooks.org/

244 A. Salameh and J. M. Bass

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Enabling Team Autonomy in a Large Public
Organization

Parastoo Mohagheghi1(&), Casper Lassenius2,3,
and Ingrid Omang Bakken1

1 The Norwegian Labour and Welfare Administration, Oslo, Norway
{parastoo.mohagheghi,ingrid.omang.bakken}@nav.no
2 Simula Metropolitan Centre for Digital Engineering, Oslo, Norway

casper@simula.no
3 Aalto University, Aalto, Finland

Abstract. This paper describes how autonomy emerged in a team in a large
public organization and which factors were important in this process. The
organization has back sourced software development and abandoned a stage-
based software development process with many handovers between business, IT
and vendors. We collected data in four semi-structured interviews and analyzed
information on changes in the structure and responsibilities of the team. The
team has refined its portfolio for better cohesion, stepwise taken over the
responsibility for software development from the vendor and in parallel
recruited software developers, UX designers and testers. Product owners have
joined the team as well. Supported by changes to the financing model, the team
has transformed from mediating between business and vendors to a cross-
functional product team with autonomy over its budget, backlog and software
development process. As a result, the team can better balance between deliv-
ering new features and quality improvements, continuously deliver software
with less overhead and focus on its mission to deliver user-friendly services with
increased involvement of domain experts. Defining a clear product boundary
and reducing dependencies on other teams, developing necessary skills and
changing the financing model are recognized as the main success factors, as well
as the main challenges in the transition process.

Keywords: Agile � Autonomous team � Backsourcing � Outsourcing

1 Introduction

Agile software development has become the norm in the industry and is increasingly
getting a foothold in the public sector, albeit so far not as an exclusive approach [1].
Public sector organizations adopt agile to solve several problems, including faster value
delivery, better end-user satisfaction, better collaboration between business and IT, and
cost reduction [2]. However, several factors in the government sector, such as lack of
experience with agile methods, IT megaprojects and reliance on traditional procure-
ment have been reported to make the adoption difficult [2]. When agile method
adoption is combined with a change from outsourcing to insourcing, additional chal-
lenges arise such as recruiting, competence transfer and contractual negotiations [3].

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 245–252, 2020.
https://doi.org/10.1007/978-3-030-58858-8_25

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_25
https://www.dbooks.org/

In this paper, we present a single case study of a team in the Norwegian Labour and
Welfare Administration (NAV) that adopted agile methods while taking ownership of
previously outsourced IT systems. We describe how the team evolved from supporting
product owners for the acquisition of systems from an external vendor to an autono-
mous agile team with full ownership of the applications it is responsible for.

2 Related Work

A systematic literature review on agile methods in the public sector citing 17 primary
studies reported several benefits, including faster value delivery, increased end-user
satisfaction, lower cost, better collaboration between business and IT, reduced
dependency on contractors, and improved team morale. Factors making adoption dif-
ficult included an unsuitable organizational culture, lack of experience with agile
methods, the ingrained use of prescriptive approaches, and big bang deliveries. In
addition, the public sector often runs “IT megaprojects” and relies heavily on tradi-
tional procurement and contracts, which make agile adoption challenging [2].

The 1990s and early 2000s saw a wave of outsourcing when organizations, often in
the pursuit of cost savings, outsourced IT, oftentimes to low-cost countries. Lack of
client involvement and competence is reported as a major challenge. A more recent
trend, spurred by factors such as the recognition of IT as a core competence, unmet
goals with outsourcing, and the need for better control of the IT systems, is back-
sourcing (or insourcing), i.e. bringing the outsourced components back in-house [3].

There is an extensive amount of literature on autonomous teams and different types
of autonomy such as autonomy over product, people and planning decisions [4].
Autonomy has some pre-conditions, among them having the right skills in the team as
well as a redundancy of skills (since it affects the team’s capability to adapt to changing
situations), culture such as team orientation, sharing of information and management
support in order to create the right environment for the teams [4, 5]. Team autonomy
has furthermore been identified as a success factor for agile transformations [8].

3 Context and Method

NAV was founded in 2006 by merging three large organizations in the public sector.
NAV has 19000 employees including an IT department of over 700 employees and
administers a third of the Norwegian national budget through various benefit schemes
such as pension, unemployment and child-care benefits. The end-users of IT applications
are twofold: organizations and individuals in Norway on the one hand, and the
employees of NAV who manage the benefits on the other. Since the establishment of
NAV, IT development and maintenance has mainly been outsourced to several vendors,
with NAV responsible for requirements specification, acceptance testing and operation
of services. In 2017, due, e.g., to high development costs and the growing need for
digitalization of services, NAV decided to backsource most of the IT development. In
addition, the organization has gradually adopted agile development to achieve better
commitment, motivation to perform and desire for responsibility in the organization.

246 P. Mohagheghi et al.

In previous work [7], we described a pilot study on autonomous agile teams at
NAV. The experience described therein was considered successful and encouraged the
organization to initiate a move towards increased cross-functionality, and to have NAV
employees and vendor resources working shoulder to shoulder.

The team in this case study develops and maintains the information and user
interfaces intended for the general population provided via the organization’s main
website nav.no, apps and in other channels. The team is also responsible for developing
organization-wide guidelines for publishing information online.

The research presented here is a single qualitative case study and part of a larger
study into agile adoption and backsourcing in NAV. We selected the case due to the
insights it provides on enabling team autonomy in a complex setting. We collected data
through four semi-structured interviews [6], which forms the main unit of analysis. We
interviewed the team leader, one product owner, a member of the team performing test,
and a representative from the vendor; all being involved in the team since 2017. The
interviews lasted between 60 and 90 min and were recorded and transcribed for
analysis. In addition, we had a workshop with the team leader to analyze changes in the
team structure and responsibilities and validated our findings with her.

4 Results and Discussion

In this section, we present the results, first discussing the transition of the team, fol-
lowed by discussing factors that enabled the transition towards an agile autonomous
team.

4.1 Steps in the Transition Process

Before backsourcing, over 50 applications covering a broad range of user interfaces
were managed by a group of employees organized in an office in the IT department.
The office managed the contract with the vendor, provided support to the business side,
and followed testing, deployment, and operations of the applications. The employees of
the office had roles such as functional experts, technical experts, team leaders and
project leaders. Functional experts had deep domain knowledge, while technical
experts focused on non-functional aspects and technology. The business side, orga-
nized in other departments in NAV, specified the requirements, prioritized the backlog,
financed changes (often via projects), evaluated the estimations and design, and tested
the final applications. The vendors estimated the costs of changes and designed and
developed the solutions. The process thus required many handovers between business,
IT and vendors. Changes were often delivered in a few large deliveries per year to
manage dependencies between services.

In the first step in the backsourcing process, the portfolio covered by the office was
divided and assigned to multiple teams. In this process, the team “Self-services” was
established, consisting of a team leader, six functional experts and one technical expert.
The vendor had its own team collocated at NAV, with seven developers and one team

Enabling Team Autonomy in a Large Public Organization 247

www.dbooks.org

https://www.dbooks.org/

leader. Figure 1 shows the changes in the team structure and roles from 2017 to 2020.
The term “IT team” refers to a team managed by the IT department which has an own
budget for maintenance, but depends on the business side for prioritization and
financing of major changes.

The situation was changed gradually, through the following steps:

1. Building internal development capability. Before backsourcing, the team consisted
of functional and technical experts while the developers were on the vendor side.
The business department owning the applications financed recruiting 3 developers
in 2018, the first one starting in February. This was considered a major step towards
insourcing software development.

2. Competence transfer. The team had little knowledge of the code prior to the
backsourcing. The IT-team and the vendor team started working together on soft-
ware development for the purpose of competence transfer; including working
shoulder to shoulder and pair-programming.

3. Analyzing the applications and planning the handover. The outsourcing contracts
included steps for handover to other vendors but not to NAV. The team and the
vendor performed an analysis of applications regarding their status (functionality,
technical debt, security concerns and remaining failures) and developed a roadmap
with milestones and actions for a stepwise handover of applications.

4. Defining the product boundary in steps. The old contract model put many appli-
cations to be developed by a single vendor in the same contract. As a result, the
contract included over 50 applications, all related to user interfaces but managed by
different stakeholders. By September 2017, the portfolio of applications was divided
between two teams with a shared team leader: “Team A” (services for unemploy-
ment) and “Team B” followed here, named “Team Insight”. Some applications were

Fig. 1. Changes in the team structure and roles for enabling team autonomy.

248 P. Mohagheghi et al.

handed over to other teams as well. The purpose was to separate concerns and avoid
communication with multiple product owners.

5. Transfer of ownership and responsibility; becoming self-sufficient competence-wise.
By June 2018, the team had the full responsibility for software development. A User
experience (UX) designer was recruited in addition to getting support from two
external UX designers. A new tester, who used to be a functional expert, was added
to the team as well. Thus, the team included all necessary skills for software
development. The team changed its name to “Personal users” to highlight its focus.
Some functionality was left out to be handled by “Team C”.

6. Becoming an autonomous product team. By January 2019, the team was fully
financed by the business side and one functional expert became a product owner,
enhancing his competence by taking courses and participating in product owners’
fora. This type of team is called a “cross-functional product team” (in short Product
Team) and the team owns its budget, product backlog and its prioritization.

7. Enhancing the portfolio. In January 2020, the team merged with an IT team
responsible for the information on web pages, which had backsourced its applica-
tions as well (“Team D” in Fig. 1). The whole team working receives a yearly
budget covering the personnel costs in full, instead of receiving funds for the
changes to be implemented. The team covers two areas of functionality with team
members almost 50-50 divided between these two and the possibility to assist each
other when needed.

The focus of this paper has been on “Team B” and its evolution. For information,
“Team A” and “Team C” are still IT Teams with some changes in their portfolio as
well.

4.2 Factors Important for Enabling Team Autonomy

The transition from an IT team mediating between product owners and vendors towards
an autonomous team required several changes. We identified the following seven
factors that were necessary to enable team autonomy:

1. Full product ownership. NAV had made a strategic decision to backsource the
development of its systems and decided not to renew the contract with the vendor.
Taking ownership of both the systems and the teams developing them was a pre-
cursor to creating autonomous teams. The case team has full ownership of its
product and prioritizes, implements, and delivers features based on urgency and
capacity.

2. An agile mindset and way of working. Teams can now choose their own devel-
opment processes and tools, and the whole organization is developing an agile
mindset, which is a profound change. The case team started to use Kanban almost
overnight in September 2017. The whole team sits together and delivers
continuously.

3. Building all needed competences. Building all the skills necessary for working
autonomously was a major challenge for the organization. This included recruiting
software developers in a highly competitive market, and knowledge transfer and
continued collaboration with the vendor. NAV has recruited over 130 software

Enabling Team Autonomy in a Large Public Organization 249

www.dbooks.org

https://www.dbooks.org/

developers since 2017 by improving its image as a high-skilled software devel-
opment organization and emphasizing its role in the society. After the contract
expired, a transition period was necessary for knowledge transfer and preparing the
NAV team for taking charge of software development. In the team discussed here,
newly recruited software developers applied pair-programming with peers from the
vendor for six months. Some employees in the IT department have changed their
roles and developed skills to become product owners, testers, software developers
and coaches. The team leader is, e.g., now a coach for this team and other teams.
The relation with the vendor was and continues to be professional with good
collaboration. A new contract type is now in place to hire resources from 2–3
vendors when necessary by paying per hour.

4. Empowerment and trust. Without trust between the team and the surrounding
organization, as well as empowerment to make and execute product and process
related decisions, a team cannot function autonomously. Developing this in a large
organization with a long history of traditional management can be extremely
challenging.

5. Resource-based financing. The organization is gradually abandoning large projects
and its traditional portfolio management process, and giving some teams, such as
the team in this case their own budgets, which facilitates their autonomy.

6. A manageable team portfolio. The old contract model put many pieces to be
developed by a single vendor in the same contract. It was necessary to focus the
portfolio to reduce dependencies and give the team autonomy over the product.

7. The right team size. Like many organizations, NAV had challenges cutting the team
size down to the optimal one, which their experience is 7–9 people, just in line with
most recommendations in the team and agile literature.

4.3 Benefits and Challenges

The team leader, product owner and the team member participating in this research
reported many subjective benefits of the autonomy. The feeling of ownership and
mastery had led to increased employee satisfaction. The team could now respond faster
to changes since there are no handovers in the development process. Since they have
product ownership, the team members can think strategically, and better balance
between functional and technical improvements. This has made it possible to signifi-
cantly reduce the technical debt. Cost-wise an internal employee costs less than half of
an external one, and the savings are invested in new technology and in further
development.

The reported challenges were mainly related to 1) the people factor; it was difficult
to recruit enough software developers and develop skilled product owners; 2) the
product factor: i.e. defining suitable product teams with fewer dependencies on other
teams and a more coherent portfolio. In this process, it has been challenging to han-
dover legacy applications to other teams with limited budget and capacity; and 3) the
financing model is still not homogenous and creates challenges in prioritization and
planning.

250 P. Mohagheghi et al.

4.4 Discussion

In this paper, we understood team autonomy in agile software development as having
the power to plan and prioritize the work of the team according to budget, resources,
roadmaps and constraints, and to have ownership of the processes and practices
employed. This required several changes in the organizational structure and processes,
and even the financing model. The autonomy to plan and prioritize work was imple-
mented through incorporating the product ownership in the team. In this case, the
organization was able to design the work of the team to have a rather independent
portfolio, making it possible to have a high degree of autonomy. Our findings about
how to enable team autonomy are well in line with what other cases have reported, as
summarized in [8]. In particular, similar results with respect to increased morale was
reported by [9, 10].

Our finding regarding the need for changing the financing model points to the
importance and challenges of portfolio management in large-scale agile development,
an area which currently has a lack of research. Furthermore, our findings indicate that
outsourcing relationships can lead to a high degree of technical debt if there are lack of
financing to remove technical debt and lack of mechanisms to incentivize high code
quality.

The findings in this paper are based on four interviews with practitioners in the
studied team in different roles, as well as of an analysis of other documents such as
presentations. While this limits the generalizability of the findings, they are well in line
with existing literature, and point toward a need for deeper understanding not only of
how autonomous teams can work, but of the surrounding organizational context. Two
of the authors are employees of NAV, which could introduce bias. However, the first
author works in an independent role, and the findings are based on an analysis done
jointly by the first two author.

5 Conclusions and Future Research

We presented a case study of how team autonomy was enabled in a single team in a
large public organization. We discussed that many factors are required to enable
autonomy, both in the team and in the organization. The team members agreed on the
benefits of the transformation that happened over the course of three years and expe-
rience increased employee satisfaction, faster response to changes and more strategic
thinking.

By now, we have interviewed 35 employees in different roles and from different
teams in NAV, as well as representatives from vendors. This paper is based on an
initial analysis of the data from one team. We are extending our analysis to multiple
teams with focus on backsourcing of software development and large-scale agile
development.

We thank NAV and the interviewees for the possibility to perform the research and
for sharing valuable data and insights with us.

Enabling Team Autonomy in a Large Public Organization 251

www.dbooks.org

https://www.dbooks.org/

References

1. Viechnicki, P., Kelkar, M.: Agile by the numbers: a data analysis of Agile development in
the US federal government. In: Kaji, J., Rao, A., Garia, N., Khan, A. (eds.) Agile in
Government: A Playbook from the Deloitte Center for Government Insights, Deloitte,
pp. 42–47 (2017)

2. Vacari, I., Prikladnicki, R.: Adopting agile methods in the public sector: a systematic
literature review. In: The 27th International Conference on Software Engineering and
Knowledge Engineering (2015). https://doi.org/10.18293/seke2015-159

3. Von Bary, B., Westner, M.: Information systems backsourcing: a literature review. J. Inf.
Technol. Manag. 29(1), 62–78 (2018)

4. Moe, N.B., Dingsøyr, T., Dybå, T.: Understanding self-organizing teams in agile software
development. In: 19th Australian Conference on Software Engineering, pp. 76–85 (2008)

5. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Commun. ACM 48(5), 72–78 (2005)

6. Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory and Practice.
SAGE Publications, Thousand Oaks (2014)

7. Lundene, K., Mohagheghi, P.: How autonomy emerges as agile cross-functional teams
mature. In: XP2018, Workshop on Autonomous Agile Teams (2018). https://doi.org/10.
1145/3234152.3234184

8. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-scale agile
transformations: a systematic literature review. J. Syst. Softw. 119, 87–108 (2016)

9. Long, K., Starr, D.: Agile supports improved culture and quality for healthwise. In: Agile
2008, pp. 160–165 (2008)

10. Moore, E., Spens, J.: Scaling agile: finding your agile tribe. In: Agile 2008, pp. 121–124
(2008)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

252 P. Mohagheghi et al.

https://doi.org/10.18293/seke2015-159
https://doi.org/10.1145/3234152.3234184
https://doi.org/10.1145/3234152.3234184
http://creativecommons.org/licenses/by/4.0/

Defining TestOps: Collaborative Behaviors
and Technology-Driven Workflows Seen
as Enablers of Effective Software Testing

in DevOps

Michal Doležel(&)

University of Economics, Prague, 130 67 Prague, Czech Republic
michal.dolezel@vse.cz

Abstract. Context: DevOps is an increasingly popular approach to software
development and software operations. Being understood as mutually integrated,
both activities have been re-united under one single label. In contrast to tradi-
tional software development activities, DevOps promotes numerous funda-
mental changes, and the area of software testing is not an exception. Yet, the
exact appearance of software testing within DevOps is poorly understood, so is
the notion of TestOps. Objective: This paper explores TestOps as a concept
rooted in industrial practice. Method: To provide a pluralist outline of practi-
tioners’ views on What is TestOps, the YouTube platform was searched for
digital content containing either “TestOps” or “DevTestOps” in the content title.
Through a qualitative lens, the resulting set was systematically annotated and
thematically analyzed in an inductive manner. Results: Referring to DevOps,
practitioners use the notion of TestOps when characterizing a conceptual shift
that occurs within the area of software testing. As a matter of fact, two dominant
categories were found in the data: (i) TestOps as a new organizational philos-
ophy; (ii) TestOps as an innovative software technique (i.e. process supported
by technology). A set of high-level themes within each of these categories was
identified and described. Conclusion: The study outlines an inconsistency in
practitioner perspectives on the nature of TestOps. To decrease the identified
conceptual ambiguity, the proposed model posits two complementary meanings
of TestOps.

Keywords: Continuous testing � Testing in production � Shift-left testing �
Shift-right testing � Software testers � Software-testing skills � Collaboration

1 Introduction

During the past years, the concept of DevOps (Development-Operations) has firmly
established itself as an important landmark in the software domain. DevOps can be
defined in a number of ways, including a “set of practices”, a “development method-
ology”, a “cultural movement”, an “organizational approach”, and “infrastructure” [1].
Hence, little clarity around DevOps exists, and many see DevOps representing more
than one of these aspects. Bringing a sort of consensus and partly clearing the “buzz”

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 253–261, 2020.
https://doi.org/10.1007/978-3-030-58858-8_26

www.dbooks.org

http://orcid.org/0000-0002-5963-5145
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_26
https://www.dbooks.org/

[2], four DevOps dimensions were proposed to describe DevOps as a multifaceted
phenomenon. Specifically, Culture, Automation, Measurement and Sharing (CAMS)
have been viewed as the key focus areas when adopting DevOps [3, 4].

Regarding Sharing, i.e. one of the organizational vehicles crucial for DevOps,
practitioner literature claims that team members should be encouraged to share
knowledge and practices to make DevOps successful [1]. In essence, DevOps teams are
considered autonomous, and exhibit more blurred responsibilities of software profes-
sionals than in traditional teams [5]. For example, previously independent functions,
such as independent software testers, may become embedded in DevOps teams in an
attempt to strengthen the teams’ autonomy, self-sufficiency and cross-disciplinarity [6].

Not only due to the Sharing element in DevOps, software testing is an area which is
expected to become significantly influenced by the adoption of DevOps principles (cf.
[7]). In fact, new test approaches and strategies are needed for DevOps, along with the
new skills of test personnel [8]. The emergence of continuous testing is one particular
facet of this shift, being enthusiastically promoted as “the key for DevOps” [9]. Yet,
from an overall perspective, the possible synergy between software testing and DevOps
is still poorly understood, having been discussed in only a handful of empirical studies
[10] and practitioner reports [6, 9] so far. Also, in practitioner forums, the discussion
seems to be somewhat fragmented. Two salient topics related to DevOps have emerged
– the notion of shifting left, and the notion of testing in production. Simply put, the
former is an idea of involving testers early in the software development life cycle [11];
the latter idea proposes to start “using real users and real environments to find bugs that
matter” [12].

In addition to the previous ideas, some practitioners recently coined the term
TestOps [12, 13]. Nevertheless, this broad notion seems to add even more confusion on
the top of the already ambiguous DevOps concept. Presently, there is little clarity about
what the term TestOps means to practitioners today, or could mean in the future. This
gap in knowledge has motivated the present exploratory qualitative study. Using an
inductive approach, a thematic analysis of available YouTube content related to
TestOps was carried out. As a result, a conceptual map was constructed, rendering an
inconsistency in practitioner perspectives on the nature of TestOps. By exploring the
influential, yet in Software Engineering (SE) research an under-used digital media [14],
the study reports on the significance of TestOps, as being promoted by early adopters in
the field. The paper contributes to the emerging line of research on software testing in
DevOps.

The paper is organized as follows. Following Introduction, the research approach is
described in Sect. 2. Section 3 presents a summary of findings. Section 4 concludes the
paper by discussing the principal takeaways and limitations of the study.

2 Research Approach

The practice-driven research described in this paper took part within a broader col-
laborative initiative between academia and a global antivirus company. Our common
focus has been on increasing the understanding of the changing role of software testers
nowadays (see also [8]). The main aim of this small-scale study was to propose a

254 M. Doležel

provisional definition of TestOps/DevTestOps by analyzing how practitioners across
the world characterize this emerging concept. The study was motivated by a lack of
clarity in how the concept fits into a broader picture of DevOps and continuous
practices studied earlier [2–4]. The research question posed here therefore is: How do
early-adopters define and promote TestOps/DevTestOps as a concept?

YouTube as Data Source. We used YouTube – a content-sharing media platform – as
the main source of empirical evidence. While software practitioners follow a plethora
of knowledge sources to learn about new technologies and influential ideas, media
platforms like YouTube seem to be particularly popular among them [14]. In fact, these
platforms represent an inexpensive, easily accessible option for staying updated about
the latest trends in the field. Presently, only a small portion of SE researchers use this
type of research data [14]. Arguably, this is because these platforms are not viewed by
the academic part of the SE community as a credible-enough source of information.
Yet, Garousi, Felderer, and Mäntylä [15] explicitly categorize audio-video media
within the same category as blogs, both exhibiting “moderate outlet control and
credibility”. So far, only the merit of the latter data source has been clearly articulated
by SE researchers [16]. Fortunately, regarding the use of YouTube, inspiration can be
taken from other disciplines, e.g. from medicine. In this field, YouTube is considered a
legitimate source of research data, for example when exploring specific topics with
limited existing knowledge [17], or when mapping emerging sources of information
available to patients [18].

In our view, publicly available video platforms offer a vivid, pluralist view on
coming SE trends rooted in practice. Having said that, an important methodological
aspect should be taken into consideration. That is, the content available at these plat-
forms may be significantly shaped by marketing activities of software companies (e.g.
tool-producers). Similarly, additional individual actors may cause that the obtained
perspective will fundamentally differ from a mainstream one, i.e. from a hypothetical
view of an “average” software practitioner. To label these actors with influence, we
propose the term brand evangelists borrowed from marketing research. The term
denotes individuals who act on their own with the intention to persuade others to adopt
a product or idea [19]. Typically, brand evangelists do so via social media platforms.

Regarding the material included in this study, the majority of videos was recorded
at practitioner conferences focused on software testing, or during software testing
webinars. In SE, both the above mentioned platforms represent crucial vehicles for
knowledge dissemination among practitioners [20]. In this study, we did not attempt to
identify brand evangelists nor categorize the analyzed content by involving any similar
criteria. In general, we hold that it is presently unclear how practitioners judge the
credibility of conference speakers in terms of sensing them as possibly selling or
evangelizing. Indeed, many practitioners consider conference speakers to be highly
influential figures and de-facto thought leaders of industrial practice [21].

Data Collection. Using two keywords (“TestOps”, “TestDevOps”), a search for rel-
evant content at YouTube was performed. The search results were sorted according to
relevance, which is the default setting. All content displayed in the main result section
and containing “TestOps” or “DevTestOps” [and variants such as Dev(Test)Ops] in the
title was considered. The results listed in the sections “Related to your search” and “For

Defining TestOps: Collaborative Behaviors and Technology-Driven Workflows 255

www.dbooks.org

https://www.dbooks.org/

you” were not included. After an initial screening, further excluded was: (i) trade
content dealing solely with a technological aspect of commercially available solutions;
(ii) all content in different languages than English; (iii) post-conference interviews with
the presenters. Additionally, the most recent presentation from the same author pre-
senting the topic at more than one venue was selected. Whenever possible, the decision
was based on the examination of the presentation details (e.g. the first slide), not
YouTube metatags of the videos.

Possible Replicability Issues. With regard to the nature of data, full replicability
cannot be guaranteed, as researchers have generally little control over media ranking
algorithms embedded in the platforms like YouTube [15]. In the present study, this was
partly mitigated by using a ‘clean’ browser, carrying out the search with the same
keywords multiple times, and focusing only on the non-personalized search results.
Also, the consistency of the results was checked using a different computer homed in a
different network infrastructure. The final list of included content is available in on-line
Appendix (https://cutt.ly/ciQgedC).

Data Analysis. The principles of inductive thematic analysis [22, 23] were followed to
analyze the material, which comprised of 8 h and 19 min of recordings. To get familiar
with the data, we firstly played every recording in full-length. During this process,
memoing [22] was used to capture preliminary ideas about the data. This phase was
followed by a systematic annotation (open-coding) of the content using the video
analysis feature in our qualitative data analysis software (MAXQDA Plus 2020, r.
20.0.7). The descriptive codes derived from individual recordings were than cross-
compared and re-organized into larger categories. The resulting conceptual map was
constructed in an inductive manner through constant comparison [22].

3 Results: What Is TestOps?

Based on our analysis, a level of disagreement among practitioners regarding the
meaning of the term TestOps was identified. While concise definitions of the term were
rarely given in the analyzed talks, it was still possible to derive two broad super-
categories of meanings that practitioners attribute to TestOps (Fig. 1). These are as
follows.

TestOps as a Pattern of Collaborative Behavior Associated with a Shift in the Test
Personnel’s Mindset and Organization. This super-category covers the human and
organizational aspects of TestOps described by the following high-level themes. To
begin with, the theme Testers [need to be] involved early was central to the discussion.
While this is not a new claim, it is in contrast with the everyday reality of sequentially-
managed software projects, in which independent testers dominate a separate testing
phase near the end of the software development lifecycle. Inversely, TestOps-inspired
testers were encouraged to leave silo-ed test centers and move back to development
teams (Testing is activity, not [organization] function). Highlighting the aspects of
collaboration, testers were further encouraged to Act as “bridge” [or “glue”] between
Dev and Ops (hence the term DevTestOps). Also, they were asked to offer their testing-

256 M. Doležel

https://cutt.ly/ciQgedC

related expertise to both developers and operations specialists, and to guide these
professionals through software testing problems (Testers share test[ing-related]
knowledge). Proactive trust and relationship building (Testers build trust with Ops/Dev)
initiated by testers was promoted as a mean for lowering existing organizational bar-
riers (e.g. issues related to organizational structures). The practitioners also held that the
described patterns of behavior did not happen automatically. Therefore, creating a
Culture of collaboration and learning, resulting in the “right mindset” of people, was
suggested as a key enabler.

TestOps as a Technology-Intensive Set of Software Practices. In contrast to the
previous view, this super-category covers the technology-related aspects of TestOps
summarized as the following high-level themes. First and foremost, the practitioners
argued that software testing in TestOps needed to be conducted in a rapid and holistic
way. Again, this new form overarches the traditional (phase-based) understanding of
software testing. In that sense, Continuous testing was promoted as a key practice that
was to introduce automated tests as an integral part of deployment pipelines (i.e.
automated processes driving the integration, building and deployment of software
versions). As the professionals argued, while testers did not need to become DevOps
engineers, they needed to acquire skills allowing them to support DevOps engineers
and/or developers in their effort. In addition, another impactful shift was discussed: The
scope of software testing was claimed as newly ranging beyond test (or non-
production) environments. To label this new phenomenon, the term Testing in pro-
duction (TiP) was introduced. The TiP theme was conceptually rich. Interestingly,
some practitioners explicitly cited the work of Seth Eliot [12] as a source of the ideas
presented by them. Therefore, Eliot’s categorization informed also our analysis.

TestOps
(DevTestOps)

Test Process
& Tools

Test Personnel’s
Mindset &
Behavior

Testers build trust
with Ops (Dev)

Testers share test
knowledge

Con nuous
tes ng

transformsinfluences

Tes ng in produc on

•
•
•

Canary tes ng
Feedback from telemetry
Synthe c monitoring

1. TestOps as an organiza onal
philosophy

People-centric view on TestOps
(relates to “C” & “S” dimensions of DevOps)

2. TestOps as a so ware
development technique

Technology/process-centric view on TestOps
(relates to “A” & “M” of DevOps)

Culture of collabora on and
learning

enables

New technical skills
in testers

Testers involved
early

Innova ve
technologies in

tes ng

enable

Testers act as
“bridge” between

Dev and Ops

Tes ng is ac vity,
not func on

“Shi -le tes ng”

manifest as

“Shi -right tes ng”

make use of

Fig. 1. Conceptual map of TestOps

Defining TestOps: Collaborative Behaviors and Technology-Driven Workflows 257

www.dbooks.org

https://www.dbooks.org/

Eliot’s “TestOps model of software testing” [12] promotes three TiP-related
activities discussed by the practitioners to a varying extent: 1) evaluating the impact of
new features provided to a small proportion of end-users (canary testing); 2) using
telemetry data from production to design better tests; 3) using “active monitors” or
“synthetic monitoring” at production environments. All these activities were suggested
as a source of rich production data that could be used by testers for improving test
coverage and the depth of their testing. Differently put, by increasing testers’ under-
standing of end-user interactions with the application, testers could do their job better.

Finally, varying significantly in depth and focus, some practitioners discussed the
impact of new technologies on TestOps (e.g. cloud, big data, and artificial intelligence
being the technologies that caused “digital disruption” in many segments) (Innovative
technologies in testing). Details regarding this theme are considered beyond the scope
of this paper. Taking into consideration all the above technology-related aspects, the
key enabler was conceptualized as New technical skills in testers.

While not explicitly defined in the analyzed video sample, the notions of Shift-left
and Shift-right testing are conceptually related to TestOps. The proposed understanding
is portrayed in the conceptual map as well, and further discussed in Sect. 4.

4 Discussion and Conclusion

Exploring the views of TestOps advocates, this paper brings initial insights into the
nature of TestOps. The presented analysis demonstrates that according to the practi-
tioners, the notion comes with a set of powerful ideas. When embraced by industry, the
ideas may cause a shift in the field of software testing, which was previously dominated
by manual testing [8]. Using a conceptual map, two meanings of TestOps were
explored. First, a people-centric view was conceptualized as the cornerstone of
TestOps. This perspective binds TestOps with the Culture and Sharing dimensions in
DevOps. In contrast to this view, it was proposed that some practitioners used the term
“TestOps” to label a different area of interest: the emerging field of software technology
concerned with new tools, workflows and processes for effective test automation
supporting DevOps teams. The latter meaning of TestOps goes back to the Automation
and Measurement DevOps dimensions. This is to highlight that a potential for bringing
significant technological innovations to the SE field exists by establishing synergies
between test tools and other tools used by either developers or operations.

As portrayed in the conceptual map, the term Shift-left testing transcends the
boundary between the two perspectives, i.e. refers both to people and technology. This
is due to the term being a conceptual umbrella for both an organizational approach
(Testers involved early [and continually]) and a related technology-driven practice
(Continuous testing). By contrast, the term Shift-right testing refers to the aspects
connected with two technology-related concepts – Continuous testing and Testing in
production. Interestingly, while the term Shift-left testing originated from a 2001 vision
[11], the term Shift-right testing appears to be of a more recent origin. The suggested
metaphor of “right” vs. “left” becomes obvious when one considers a V-shaped life-
cycle model, such as the one proposed by Rook in the late 1980s [24]. In Rook’s
model, the logical beginning (i.e. requirement specification) of SE activities was

258 M. Doležel

located on the left side, and the logical end (i.e. software operation and maintenance)
on the right side. Therefore, shift-left means earlier than during the separate testing
phase following coding. In contrast, shift-right means later than during that phase, i.e.
in production.

Regarding the two high-level perspectives of TestOps (i.e. people vs technology),
this paper does not suggest either of them as dominating. Quite to the contrary, SE
practice can possibly take the best from the TestOps-related ideas by combining both
views [25]. However, as our data show, not all the TestOps promoters followed this
route. Not only that – some of the presentations seemingly made use of the term
TestOps (DevTestOps) only as of a catchy title to attract the attention of conference
audience (see Sect. 2). Likewise, it is important to mention that TestOps overlaps with
already existing concepts such as continuous testing [4] and testing in production [9,
12]. As made clear in one of the analyzed videos by Lisa Crispin, a software testing
thought leader, one of the reasons for using the term TestOps/DevTestOps is: “People
see the word DevOps … [and they may think there is] no tester in DevOps”.
Accordingly, the terms TestOps and DevTestOps were coined to highlight the
importance of software testing in the DevOps world. Differently put, software testing,
as a domain of expertise, is not to cease to exist. Yet, testing activities may become
cross-fertilized into the total of development and operational activities performed by
autonomous DevOps teams [26].

Methodologically speaking, this study has important limitations. First and foremost,
exploring grey literature relates to a specific set of challenges [15] outlined in Sect. 2.
Regarding the scope of this study, the YouTube content was considered for our
analysis only when explicitly containing the word “TestOps” or “DevTestOps” in the
title. This approach to acquiring empirical data was chosen to mimic the behavior of
practitioners performing an initial mapping of a new phenomenon by searching through
available YouTube videos. However, the chosen approach obviously did not cover the
complete landscape of software testing in DevOps, as only a fraction of available
knowledge was mapped. In our subsequent research, we plan to conduct a broader,
multi-vocal study focused on getting a more comprehensive perspective on the state of
software testing in DevOps.

Acknowledgement. I thank Vladimír Falada from AVAST for sharing his thoughts on TestOps.
This research was supported by the University of Economics, Prague (F4/23/2019).

References

1. Erich, F.: DevOps is simply interaction between development and operations. In: Bruel, J.-
M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2018. LNCS, vol. 11350, pp. 89–99. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-06019-0_7

2. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and DevOps: beyond the buzz,
what does it all mean? In: SEAA, pp. 440–448 (2017)

3. Lwakatare, L.E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In: Lassenius, C., Dingsøyr,
T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 212–217. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18612-2_19

Defining TestOps: Collaborative Behaviors and Technology-Driven Workflows 259

www.dbooks.org

https://doi.org/10.1007/978-3-030-06019-0_7
https://doi.org/10.1007/978-3-319-18612-2_19
https://www.dbooks.org/

4. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

5. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autonomous agile
teams: a summary of the second international workshop at XP2019. In: Hoda, R. (ed.) XP
2019. LNBIP, vol. 364, pp. 13–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-30126-2_2

6. Roche, J.: Adopting DevOps practices in quality assurance. Commun. ACM 56, 38–43
(2013)

7. Cruzes, D.S., Moe, N.B., Dyba, T.: Communication between developers and testers in
distributed continuous agile testing. In: ICGSE, pp. 59–68 (2016)

8. Florea, R., Stray,V.: The skills that employers look for in software testers. Softw.Qual. J.27(4),
1449–1479 (2019). https://doi.org/10.1007/s11219-019-09462-5

9. Zimmerer, P.: Strategy for continuous testing in iDevOps. In: ICSE, pp. 532–533 (2018)
10. Cruzes, D.S., Melsnes, K., Marczak, S.: Testing in a DevOps era: perceptions of testers in

Norwegian organisations. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622,
pp. 442–455. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_33

11. Smith, L.: Shift-Left Testing. Dr. Dobb’s J. 26, 56 (2001)
12. Eliot, S.: The future of software testing. Part Two - TestOps. Test. Planet. 3, 1–5 (2012)
13. Dracup, B.: DevOps and the emergence of TestOps! https://www.devopsonline.co.uk/

devops-and-the-emergence-of-testops/
14. MacLeod, L., Storey, M.A., Bergen, A.: Code, camera, action: how software developers

document and share program knowledge using YouTube. In: ICPC, pp. 104–114 (2015)
15. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature and

conducting multivocal literature reviews in software engineering. Inf. Softw. Technol. 106,
101–121 (2019)

16. Rainer, A., Williams, A.: Using blog-like documents to investigate software practice:
benefits, challenges, and research directions. J. Softw. Evol. Process. 31, e2197 (2019)

17. Linkletter, M., Gordon, K., Dooley, J.: The choking game and YouTube: a dangerous
combination. Clin. Pediatr. 49, 274–279 (2010). (Phila)

18. Kallur, A., et al.: Doctor YouTube’s opinion on seasonal influenza: a critical appraisal of the
information available to patients. Digit. Health 6, 1–6 (2020)

19. Cestare, T.A., Ipshita, R.: The tribes we lead: understanding the antecedents and
consequences of brand evangelism within the context of social communities. J. Mark.
Dev. Compet. 13, 10–26 (2019)

20. Garousi, V., Felderer, M.: Worlds apart: industrial and academic focus areas in software
testing. IEEE Softw. 34, 38–45 (2017)

21. Bride, E.: The media are the message: “the influencers”. IEEE Ann. Hist. Comput. 28, 74–79
(2006)

22. Stol, K.-J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering research: a
critical review and guidelines. In: ICSE, pp. 120–131 (2016)

23. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101
(2006)

24. Rook, P.E.: Controlling software projects. Softw. Eng. J. 1, 7–16 (1986)
25. Luz, W.P., Pinto, G., Bonifácio, R.: Adopting DevOps in the real world: a theory, a model,

and a case study. J. Syst. Softw. 157, 110384 (2019)
26. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future directions

for research. In: XP Companion (2018)

260 M. Doležel

https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/978-3-030-30126-2_2
https://doi.org/10.1007/s11219-019-09462-5
https://doi.org/10.1007/978-3-030-24305-0_33
https://www.devopsonline.co.uk/devops-and-the-emergence-of-testops/
https://www.devopsonline.co.uk/devops-and-the-emergence-of-testops/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Defining TestOps: Collaborative Behaviors and Technology-Driven Workflows 261

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Doctoral Symposium

Investigating Agile Adoption in Saudi
Arabian Mobile Application Development

Fahad S. Altuwaijri1,2(B) and Maria Angela Ferrario1

1 School of Computing and Communications, Lancaster University, Lancaster, UK
{f.altuwaijri,m.ferrario}@lancaster.ac.uk

2 Department of Information Technology, College of Computer, Qassim University,
Buraydah, Saudi Arabia
f.altuwaijri@qu.edu.sa

Abstract. Mobile app development has been considered as one of the
fastest growing segments of the software industry both worldwide and
in Saudi Arabia. Due to their pervasiveness, mobile applications call
for consideration of complex and rapidly changing requirements given
the diversity of their environments. Therefore, agile is considered the
most suitable methodology for developing mobile apps. However, little
research has investigated agile adoption in mobile app development in
the real context. Therefore, the purpose of this PhD is to investigate the
factors that have a significant impact on agile adoption in mobile app
development by small and medium-size software organisations in Saudi
Arabia. The expected key contribution of this research will be a deep
insight into agile adoption in mobile app development, and the design
and development of tools and techniques that may support agile adoption
within Saudi context.

Keywords: Agile software development · Agile methods · Agile ·
Mobile application development · Mobile apps · Software engineering

1 Introduction

The aim of this PhD research is to investigate the factors influencing agile adop-
tion in mobile application development sector in Saudi Arabia. Mobile app devel-
opment has been considered as one of the fastest growing segments of the soft-
ware industry both worldwide [1], and in Saudi Arabia [2] with mobile devices
now becoming integral parts of our lives across domains such as health, enter-
tainment, education and marketing. Due to their pervasiveness and ubiquity,
mobile applications call for careful consideration of complex and rapidly chang-
ing requirements given the diversity of the environments of their use in terms of
user experience, user interface, and reception quality [3,4].

Although there have been several studies that concluded that agile is a nat-
ural fit for mobile app development [4–7], there is a need for empirical evidence-
based research that investigates the specific factors (e.g. cultural, technical and
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 265–271, 2020.
https://doi.org/10.1007/978-3-030-58858-8_27

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_27
https://www.dbooks.org/

266 F. S. Altuwaijri and M. A. Ferrario

environmental) that support or challenge the agile adoption in mobile app devel-
opment by small and medium-size software organisations. To the best of the
author’s knowledge, there are no studies about that in Middle Eastern coun-
tries, particularly in Saudi Arabia.

In the following subsections, the research aims and objectives are presented
as well as the research questions. Section 2 briefly summarises the related work.
The research methodology design is provided in Sect. 3, covering a description
of each step of the research process. Section 4 discusses the validity threats. The
last section outlines the current status of my PhD and some future works.

1.1 Research Aims and Objectives

This research aims to investigate the key factors that can either support or
hinder agile adoption in mobile app development by software organisations in
the Kingdom of Saudi Arabia. It is intended that the key research contribution
will be twofold: (1) a deeper insight into agile adoption in Saudi mobile app
development; and (2) the development of tools and techniques that support
agile work in Saudi Arabia. These aims will be achieved through the following
objectives:

1. Review current literature about the adoption of agile, particularly in mobile
app development.

2. Investigate the awareness, current usage, and perception of agile by Saudi
mobile app practitioners through empirical research.

3. Obtain a deeper insight into the factors that may influence agile adoption in
Saudi Arabian mobile app development through empirical research.

4. Design and develop tools and techniques that can support agile adoption in
Saudi Arabia’s mobile app industry.

1.2 Research Questions

The main research questions that motivated this research are:
RQ1. What are the types of factors that support or hinder agile adop-
tion in mobile app development in the context of Saudi Arabian soft-
ware organisations?
The main research question is divided into four sub-research questions:

RQ1.1 What is the state-of-art research in agile adoption in general and partic-
ularly its adoption in mobile app development?
RQ1.2 What is the level of awareness of agile amongst mobile app practitioners
in Saudi Arabia? How is it perceived?
RQ1.3 What are the enabling factors and the challenges of adopting agile in
mobile app development in the context of Saudi Arabia?
RQ1.4 What are the mechanisms (including software tools and techniques) that
can support agile adoption in Saudi Arabian mobile app development?

Agile Adoption in Mobile App Development 267

2 Related Work

2.1 Agile Software Development Adoption

It is important to investigate the facilitating factors and the challenges related
to the adoption of agile principles and practices in developing software projects.
This is because such understanding will help determine to what extent agile can
be adopted and how it influences the success of projects. In this regard, scholars
have advocated that the suitability of agile adoption by software organisations
depends on the practitioners’cultural background, hence, agile is dependent on
several human factors [8,9]. Studies have found that practitioners’ culture, com-
munication, skills and experiences are considered as the most important factors
that influence the adoption of agile [10,11]. Furthermore, organisational aspects
are considered as one of the most significant aspects of agile adoption [9,11].
On the other hand, Chow and Cao [8] argued that besides the importance of
organisational and people aspects, technical factors have a significant impact on
agile adoption, including the agile software techniques and delivery strategies.

All of the studies mentioned above advocate that the practice of agile is
mainly influenced by human factors. This means that people or organisations
in different countries practice agile differently according to their cultural differ-
ences. Therefore, this research will investigate the factors identified in previous
studies to determine whether they can be considered as the main aspects affect-
ing the adoption of agile in Saudi mobile app development. Although there are
numerous studies that focused on identifying the factors influencing agile adop-
tion [10,12,13], there is a lack of studies on the adoption of agile in Middle
Eastern countries, particularly its adoption in mobile app development in Saudi
Arabia. With regards to investigating agile adoption in mobile app development,
several studies have focused on identifying the benefits and challenges of the
adoption and discussing the proposed agile-based mobile methodologies such as
Mobile-D [5,6]. However, these studies did not investigate the factors influencing
agile adoption in mobile app development.

2.2 Agile Awareness and Perceptions

The initial step in investigating the factors influencing agile adoption by soft-
ware organizations is to examine practitioners’ awareness and perceptions of
agile. Several research efforts about this topic, however, most of these studies
were conducted in developed countries such as [14–16] and only a handful were
conducted in the context of developing countries such as Brazil [17], Paraguay
[18] and India [19]. Unfortunately, none of these studies is focused on agile per-
ceptions and usage in mobile app development in the Middle Eastern countries,
especially Saudi Arabia. In the context of Saudi Arabia, Bin-Hezam et al. [20]
studied to what extent agile has been adopted by SMEs in Saudi Arabia. This
study was applied to different enterprises (i.e. technical and non-technical) and
did not target mobile software organisations.

www.dbooks.org

https://www.dbooks.org/

268 F. S. Altuwaijri and M. A. Ferrario

Some existing research examined the awareness and perception on a global
scale. An example is the work of Begel and Nagappen [14] who investigated
that among Microsoft employees. On the other hand, even though this study
was considered global because the data was collected from three continents (i.e.
North America, Asia and Europe), it only concentrated on one company that has
similar aspects across the world. Therefore, to the best of the author’s knowledge,
there has been no study about the level of awareness among Saudi mobile app
developers towards agile, the reasons for agile adoption and non-adoption from
their point of view, their perceptions towards agile methods and the tools and
techniques used to support their agile teams and their limitations.

3 Research Methodology

The design of this research will be explorative and inspired by interdisciplinary
research framework [21], which is agile, people-focused and reflective. Using an
agile approach in managing our PhD research will help us move forward quickly
and reflectively through the research process. Hence, the results from each study
will be used to inform and shape the subsequent studies of the research.

3.1 Empirical Investigation Design

This research is divided into three cycles, which are explained below and sum-
marised in Fig. 1. Each cycle will last for 7–9 months and involves three iterative
stages (i.e. plan, act and reflect). In each cycle, there are several sprints each of
which will last for 2–4 weeks.

Fig. 1. Research cycles

The First Cycle: Formative and Piloting. This cycle aims to study the
current related work and to understand the current usage and perception of
agile in Saudi Arabia. Expert interviews will be conducted to take the experts’
viewpoint about the perception of agile and take their opinions before designing
next studies. In addition, a survey questionnaire will be conducted to identify
the awareness and perception of software development in general, particularly
agile among Saudi mobile app developers who either adopt or do not adopt agile
methods.

Agile Adoption in Mobile App Development 269

The Second Cycle: Design and Development. This cycle aims to conduct
in-depth investigation to obtain a deep insight into the key factors that may
influence agile adoption in Saudi mobile app development and the tools and
techniques used. This investigation will be achieved through three data collection
methods (i.e. interviews, observation and a focus group). The results of each
activity will be used to inform and shape the next one. In addition, a prototype
of tools or techniques that can support agile team within Saudi context will be
designed and developed. If there are certain tools and techniques that widely
acceptable in agile in western context, but may not be suitable in Saudi context,
we will investigate what mechanisms could support the outcome of these tools
and techniques in Saudi context.

The Third Cycle: Analysis and Evaluation. This cycle aims to analyse and
evaluate the factors and tools, as well as to conclude the writing up of the thesis.
A questionnaire will be utilised in this study to analyse the relationships between
variables with a statistical technique (i.e. Factor Analysis). In terms of the tools
and techniques developed, they will be evaluated based on the interviews with
the agile team members who will use them.

3.2 Data Analysis

The data collected from the quantitative methods will be analysed using a sta-
tistical software (i.e. SPSS). This will determine the relationships and trends
in the data and illustrate them through graphs and cross-tabulated formats. In
addition, Factor Analysis (FA) will be used to analyse the relationships between
variables [22]. With regards to the data collected from qualitative methods,
NVivo software will be used for organising and coding the data. In addition,
the data will be subjected to the approach of thematic analysis that helps in
developing themes and patterns from the data collected [23].

4 Validity Threats and Control

The validity threats are discussed in this research to explain how to reduce these
threats. Using the empirical research method, I will reduce my bias by apply-
ing mixed research methods as different data collection methods will be used. A
pilot test for each data collection method will be conducted to avoid the threat of
having questions that can be hard to understand by the participants. In terms of
the research context, the study will not be limited to a specific software organisa-
tion and data will be collected from different teams from different organisations
to represent organisations throughout Saudi context. Furthermore, my supervi-
sor has strong experience in empirical research methods, thus, she could be a
reference point to ensure the validity of the study.

www.dbooks.org

https://www.dbooks.org/

270 F. S. Altuwaijri and M. A. Ferrario

5 Current Status

This research is still in the early phase, thus, we have not started the fieldwork
yet. Several tasks have been completed over the last months. First, we have
reviewed the current literature. Second, we have designed the research methods
that will be used throughout this research. Third, we have contacted mobile app
developers in Saudi Arabia to participate in our study, and they agreed to col-
laborate with us. Finally, we have designed the first empirical study (i.e. expert
interviews) that is seeking approval from the ethics committee. The next step
will be conducting expert interviews. A survey questionnaire will be designed
and shaped based on the finding of the expert interviews to the awareness and
perceptions of agile. After that, we will begin to investigate the key factors influ-
encing agile adoption through empirical research.

References

1. Ahmad, A., Li, K., Feng, C., Asim, S.M., Yousif, A., Ge, S.: An empirical study of
investigating mobile applications development challenges. IEEE Access 6, 17711–
17728 (2018)

2. Ernst & Young Global Limited. Unlocking the digital economy potential of the
Kingdom of Saudi Arabia, Technical report, Ernst & Young Global Limited (2019)

3. Aldayel, A., Alnafjan, K.: Challenges and best practices for mobile application
development: review paper. In: ACM International Conference on Compute and
Data Analysis Proceeding Series, vol. Part F1302, pp. 41–48 (2017)

4. Wasserman, T.: Software engineering issues for mobile application development.
In: Proceedings of the ACM Workshop on the Future of Software Engineering
Research FoSER, pp. 397–400 (2010)

5. Corral, L., Sillitti, A., Succi, G.: Software development processes for mobile sys-
tems: is agile really taking over the business? In: 2013 IEEE 1st International
Workshop on the Engineering of Mobile-Enabled Systems (MOBS), pp. 19–24.
IEEE (2013)

6. Kaleel, S.B., Harishankar, S.: Applying agile methodology in mobile software engi-
neering: android application development and its challenges. Computer Science
Technical Reports, pp. 1–11 (2013)

7. Francese, R., Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Mobile app devel-
opment and management: results from a qualitative investigation. In: Proceedings
- 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering
and Systems MOBILESoft 2017, pp. 133–143 (2017)

8. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software
projects. J. Syst. Softw. 81(6), 961–971 (2008)

9. Misra, S.C., Kumar, V., Kumar, U.: Identifying some important success factors in
adopting agile software development practices. J. Syst. Softw. 82(11), 1869–1890
(2009)

10. Cockburn, A., Highsmith, J.: Agile software development: the people factor. IEEE
Comput. 34(11), 131–133 (2001)

11. Gandomani, T.J., Nafchi, M.Z.: Agile transition and adoption human-related chal-
lenges and issues: a grounded theory approach. Comput. Hum. Behav. 62, 257–266
(2016)

Agile Adoption in Mobile App Development 271

12. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over process: key chal-
lenges in agile development. IEEE Softw. 28(4), 48–57 (2011)

13. Iivari, J., Huisman, M.: The relationship between organizational culture and the
deployment of systems development methodologies. Mis Q. 31(1), 35–58 (2007)

14. Begel, A., Nagappan, N.: Usage and perceptions of agile software development
in an industrial context: an exploratory study. In: The First IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp.
255–264 (2007)

15. Pikkarainen, M., Salo, O., Kuusela, R., Abrahamsson, P.: Strengths and barriers
behind the successful agile deployment-insights from the three software intensive
companies in Finland. Empirical Softw. Eng. 17, 675–702 (2012)

16. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in
finnish software industry. In: International IEEE Symposium on Empirical Software
Engineering and Measurement, pp. 139–148 (2012)

17. de O. Melo, C., et al.: The evolution of agile software development in Brazil. J.
Braz. Comput. Soc. 19(4), 523–552 (2013). https://doi.org/10.1007/s13173-013-
0114-x

18. Salinas, M.R.N., Neto, A.G.S.S., Emer, M.C.F.P.: Concerns and limitations in
agile software development: a Survey with Paraguayan Companies. In: Santos,
V.A., Pinto, G.H.L., Serra Seca Neto, A.G. (eds.) WBMA 2017. CCIS, vol. 802,
pp. 77–87. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73673-0 6

19. Nazir, N., Hasteer, N., Bansal, A.: A survey on agile practices in the Indian IT
industry. In: Proceedings of the 2016 6th International Conference - Cloud System
and Big Data Engineering, Confluence 2016, pp. 635–640 (2016)

20. Bin-Hezam, R., Bin-Essa, A., Abubacker, N.F.: Is the agile development method
the way to go for small to medium enterprises (SMEs) in Saudi Arabia? In: 21st
IEEE Saudi Computer Society National Computer Conference NCC 2018, pp. 1–6.
IEEE (2018)

21. Ferrario, M.A., Simm, W., Newman, P., Forshaw, S., Whittle, J.: Software engi-
neering for ’social good’: Integrating action research, participatory design, and agile
development. In: Companion Proceedings of the 36th International Conference on
Software Engineering, pp. 520–523. Association for Computing Machinery (2014)

22. Field, A.: Discovering Statistics Using IBM SPSS statistics, 4th edn. Sage publi-
cations, CA (2013)

23. Boyatzis, R.: Thematic Analysis and Code Development. Sage Publications Inc.
(1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1007/s13173-013-0114-x
https://doi.org/10.1007/s13173-013-0114-x
https://doi.org/10.1007/978-3-319-73673-0_6
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Crowd Agile Model for Effective Software
Development

Shamaila Qayyum1(&), Salma Imtiaz1, and Huma Hayyat Khan2

1 International Islamic University, Islamabad, Pakistan
shamaillla@gmail.com, salma.imtiaz@iiu.edu.pk
2 National University of Modern Languages, Islamabad, Pakistan

humakhan0@gmail.com

Abstract. Crowd Sourced Software Development (CSSD) is becoming popular
in software development industries due to reduced cost and efficiency. Many
companies are moving towards crowdsourcing, and have already adopted Agile
Software Development (ASD). However, CSSD differs from ASD in many
ways due to its distributed nature. Although there is little research on the
integration of these two approaches, whereas at the same time the combination
of the two is advocated by some. It is deemed necessary to identify and resolve
the issues emerged while integrating CSSD and ASD. This study hence intends
to explore the issues emerged as a result of integrating agile and CSSD and
propose a Crowd Agile model that will help in effective software development.

Keywords: Agile � ASD � Scrum � Crowd source software development �
CSSD

1 Introduction

With the growth of software industry, traditional software development practices are
getting old [1–3]. Internet and social media have provided ways for developers and
employers to reach each other across the globe to get their task done [1, 3]. This
approach of developing software which utilizes people around the globe for various
kind of tasks is known as crowdsourcing [4, 5]. Recently Crowd Sourced Software
Development (CSSD) has taken over the software industry [6]. The phenomenon
involves outsourcing the tasks to the crowd consisting of unknown, heterogeneous
people by an open call [4, 7]. The crowd, coordinates via any online platform [8] such
as Amazon Mechanical Turk and Topcoder, to complete the tasks given by the
employer [7]. This technique has said to improve the quality of tasks by increasing
response time and reducing the cost [9].

CSSD enables the abilities of assorted individuals to be incorporated into a single
venture [12]. It is commonly used for coding [13–16] and testing [17–23] in software
development. In crowdsourcing, people performing tasks are heterogeneous gatherings,
who do not know each other. As the software requirements are becoming unpredictable
and researchers are emphasizing on more communication within team [24], CSSD is
facing the challenges of team development [4, 9], developing volunteers’ network [8],

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 272–279, 2020.
https://doi.org/10.1007/978-3-030-58858-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_28

task decomposition, trust among the crowd working on same project [14] and
coordination.

On the other hand agile methodology is also a very popular software development
methodology [25, 26] as it enables software teams to deliverable valuable services in
flexible manner [27, 28]. It has been established that many companies adopting CSSD
are also following ASD [29]. Companies, such as TPI, that use TopCoder as a platform,
are shifting towards crowdsourcing and are already following agile methods [30]. The
combination of crowd sourced software development and agile is one of an interesting
and latest research area. As stated by Mishra [29], lately practitioners are following
crowd source approach while working in agile environment, but research lacks suffi-
cient articles on the effective integration of these two approaches. Stol [30] also
highlighted the importance of effective combination of crowd and agile. The research is
still very new and limited. Therefore, we aim to conduct an exploratory research to
determine what are the challenges faced when CSSD is used within agile environment
and what strategies can be followed to reduce these challenges, followed by an
explanatory research in which we will validate our proposed model.

The rest of the document is divided into following sections; Sect. 2 gives the
background on CSSD and agile. Section 3 provides literature review and recent state of
art of agile and CSSD. Section 4 contains the objectives of this study and research
questions this study intends to follow. Section 5 states detailed research methodology.
Section 6 presents the contribution of this research and Sect. 7 provides a timeline in
which this research will be completed.

2 Background and Motivation

In the recent years a new trend of software development has become popular in
industry that lets the organizations involve isolated group of developers to develop
software projects [1–3]. This concept is known as crowdsourcing. The term crowd-
sourcing was initially defined by Howe [10] in 2006. Social networking is one reason
behind this globalization [1, 3]. A crowd can be any group of large number of
anonymous people, which may comprise of experts as well as fresh graduates and
inexperienced people. Crowdsourcing helps utilizing the skills of different people to be
integrated into a single project [12].

At the same time, companies are widely adopting agile software development
methodology [33]. Interestingly, some of the characteristics that are faced as challenges
by CSSD are the benefits achieved as a result of following ASD. Agile not only keeps
the team productive and motivated, but provides quality products [34]. ASD empha-
sizes on face to face communication [35, 36] and works in iteration with close col-
laboration of team, project manager and business people [27, 37]. Trust development
among team members is another strength of ASD [38]. A daily meeting is held to
discuss the progress of the project [34, 39]. ASD also helps in lowering cost of project
as there is increased communication which decreases the chances rework and therefore
cost overrun and project delay [24]. However, it is problematic executing CSSD in an
agile environment [33].

Crowd Agile Model for Effective Software Development 273

www.dbooks.org

https://www.dbooks.org/

Agile Software Development (ASD) has been adopted by the organizations doing
Global Software Development (GSD) [27, 40–43]. GSD leads software developing
companies, develop the software across remotely located teams [44]. Since many
practices of agile are thought to solve different challenges of the organizations working
across the globe [44–46]. CSSD is different from GSD, in GSD there are designated
teams and CSSD comprise of a large group of unknown people who do not know each
other neither are they designated employees of the organization [33]. Since agile
practices can benefit GSD [33] we suggest they can be integrated and used during
CSSD. How both can be effectively integrated needs to be explored [4]. This motivated
us to conduct a research on exploring how agile and CSSD can be used together in a
way that the maximum benefits of both the approaches can be achieved.

3 Related Work

3.1 State of Knowledge on Crowd Sourced Agile Development

After reviewing recent literature we found a few studies on crowd sourced agile
development. The most recent study among them on crowd source agile development
was conducted by Klass Jan Stol [30] in 2019. They conducted interviews and found
that the managers, who were involved in CSSD as well as agile, faced many problems
because of these contradictory approaches. Researchers emphasized the need to
investigate how these two approaches can be combined effectively. Likewise, another
study by Klass Jan Stol is conducted in 2014 [4], where the researchers reported the
significance of crowdsourcing. Mishra and colleagues in 2017 [29] conducted a study
that reports the importance of integrating CSSD and ASD. The researchers highlighted
the recent trends towards investigating agile development with crowd sourcing.

CSSD [1] and ASD [34] are widely adapted by the companies today since there are
some key issues in following these both simultaneously as many characteristics of agile
and crowdsourcing are contradicting each other. As [30] stated:

“Given the widespread adoption of agile approaches to software development (in particular
Scrum) that emphasize regular face-to-face communication, how can the crowdsourcing
approach (which resembles a waterfall-style approach to software development with an
emphasis on documented requirements) be effectively combined and coordinated?”

Literature shows that ASD is also used by organizations doing GSD [40], [60].
Since GSD also has many characteristics that contradict with the principles of ASD.
However, it has been established that agile practices are used for mitigating many
challenges of GSD [44–46]. GSD differs from CSSD as in GSD there are designated
teams but in CSSD a large group of unknown people is working on same task [33].
However, in CSSD the workers are globally dispersed as the designated teams in GSD
are working from remote locations, so geographical difference is a commonality among
both. If agile practices can be used for GSD, where teams are geographically apart from
each other, it can also be used within CSSD for effective software development.

274 S. Qayyum et al.

4 Research Questions

The study aims to explore the challenges of CSSD when used with ASD and the
solutions that help reduce these challenges. This motivated us to design our research
questions, as follows:

RQ1:
How can Crowd Sourced Software Development (CSSD) be effectively integrated with
Agile Software Development (ASD) to achieve maximum benefits of both?

RQ 1.1: What are the challenges when ASD is used with CSSD?
RQ 1.2: What strategies could be used to overcome the challenges of ASD and

CSSD integration?
RQ 1.3: How can the crowd agile model help CSSD teams be more successful in

their use of ASD?

5 Methodology

To answer each research question of the study, following research methodology will be
adapted. Table 1 gives a detailed research summary along with the methodology.

Literature review (LR) will be conducted in order to find the reported issues while
working together with crowd sourcing and agile. LR will also be carried out to find the
solutions and strategies for the issues emerged that are given in the literature.

A survey will be conducted to find out what issues practitioners are facing when
they use crowdsourcing while working in an agile environment. This survey will also

Table 1. Research summary

Research
question

Objective Methodology Outcome

RQ 1.1 To identify the challenges of
integrating CSSD and ASD
from literature as well as
industry

- Literature
review
- Survey

List of issues faced by
companies following crowd
source approach with agile
software development

RQ 1.2 To identify the practices that
can address the identified
challenges of CSSD and
ASD

- Literature
Review
- Survey

- List of solution strategies
adapted by companies to
resolve issues while using
crowd sourcing approach
within agile environment

To propose a Crowd Agile
model

- a model based on the issues
and solutions identified in
previous phases

RQ 1.3 To evaluate how crowd agile
model helps in effective
software development

- Case study
- Plan B -
Experiment

An evaluated model

Crowd Agile Model for Effective Software Development 275

www.dbooks.org

https://www.dbooks.org/

figure out what strategies these practitioners adopt to overcome the issues faced by
combining crowdsourcing with agile. The survey will be exploratory as we will be
identifying issues and the strategies that are faced by industry. Guidelines for con-
ducting survey by Kasunic [47] will be followed. Type of survey: This survey will be
self-administered. Self-administered surveys are those which are sent online through
web based surveys or emails. The survey will be a mix of both open and closed
questions. Target audience: The targeted audience for our survey is the software
development practitioners and managers working with crowdsourcing and agile. The
target audience will be approached by different platforms which allow crowdsourcing.
It will be first confirmed through email/any other contact medium that they are also
following agile.

Case study: The evaluation of the model proposed in this study, will be done with a
case study. For carrying out case study effectively, guidelines for conducting and
reporting case study research in software engineering by Runeson [48] will be fol-
lowed. Case study will be explanatory. This study intends to find how CSSD and agile
can be integrated and what benefits can be achieved from this integration. Case defi-
nition: The case of any software development company will be considered who carry
out software engineering activities through crowdsourcing while working in agile
environment. Unit of analysis: Our unit of analysis will be the software project and the
practitioners that will develop software using our model. Data Collection: Data col-
lection from the case study will be done through second level technique. The
researchers will directly collect raw data by monitoring the use of the model. This will
be done using interviews. Data analysis: Qualitative data analysis will be done. Nar-
rative analysis and discourse analysis will be used for this purpose. As the data will be
received in the form of different responses from the respondents’’ so it will be better
analyzed in the form of respondents’ stories, talks and texts.

We understand the issues in identifying an organization for case study, as a plan B,
we will conduct an experiment for the evaluation of our proposed model.

6 Research Framework

Theoretical Perspective of Research: The theoretical perspective of this study is based
on organizational theory as it focuses on the improvement in organizational perfor-
mance. A positivist approach is being followed as the research aims to study human
behavior and results are produced on empirical basis.

Methodological Perspective of Research: This is applied research as the sole purpose
of carrying out this research is to address the problems of an organization which is
using ASD along with CSSD. The type of applied research this study follows is
evaluation research, as we intend to study the impact of our suggested model.

276 S. Qayyum et al.

7 Expected Outcomes

The outcome of this study will be in the form of a model. In this model guidelines will
be provided for effective use of CSSD with ASD. These guidelines will be in the form
of challenge-strategy pair. This pair will specify that for any particular challenge (while
integrating CSSD with ASD), what strategy can be followed so that the benefits of both
can be achieved. The contribution of this research will be; the identification of issues
while using CSSD with agile, the identification of solutions for the issues identified
while using CSSD with agile, a crowd agile model for effective usage of CSSD and
agile and validation of the model.

References

1. Begel, A., Bosch, J., Storey, M.I.: Social networking meets software development:
perspectives from github, msdn, stack exchange, and topcoder. IEEE Softw. 30(1), 52–66
(2013)

2. Tamburri, P., Vliet, H.: Organizational social structures for software engineering. ACM
Comput. Surv. 46(1), 1–35 (2013)

3. Storey, M.A., Singer, L., Filho, F.F., Zagalsky, A., German, D.M.: How social and
communication channels shape and challenge a participatory culture in software develop-
ment. IEEE Trans. Softw. Eng. 41(7), 185–204 (2015)

4. Stol, K.J., Fitzgerald, B: Two’s company, three’s a crowd: a case study of crowdsourcing
software development. In: Proceedings of the 36th International Conference on Software
Engineering, pp. 187–198 (2014)

5. Ågerfalk, P.J., Fitzgerald, B., Stol, K.J.: Software Sourcing in the Age of Open. SCS.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17266-8

6. Mao, K., Capra, L., Harman, M., Jia, Y.: A survey of the use of crowdsourcing in software
engineering. J. Syst. Softw. 126, 57–84 (2017)

7. Mooty, M., Faulring, A., Stylos, J., Myers, B.A.: Calcite: completing code completion for
constructors using crowds. In: 2010 IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 15–22 (2010)

8. Schenk, E., Guittard, C.: Towards a characterization of crowdsourcing practices. J. Innov.
Econ. Manag. (1), 93–107 (2011)

9. Hosseini, M., Phalp, K., Taylor, J., Ali, R.: Towards crowdsourcing for requirements
engineering (2014)

10. Howe, J.: The rise of crowdsourcing [Eлeктpoнний pecypc] (2006)
11. Brabham, D.: Crowdsourcing. MIT Press, Cambridge (2013)
12. Vander Schee, B.A.: Crowdsourcing: why the power of the crowd is driving the future of

business. J. Consum. Mark. 26(4), 305–306 (2009)
13. Latoza, T.D., Zhao, M., Van Der Hoek, A., Chen, M., Jiang, L., Van Der Hoek, A.:

Borrowing from the Crowd: A Study of Recombination in Software Design Competitions
Microtask Programing View Project Merge Nature View Project Borrowing from the Crowd:
A Study of Recombination in Software Design Competitions (2015)

14. Oi, D., Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

15. Morisaki, S., Usui, Y.: An Approach for crowdsourcing software development. In:
Proceedings Joint Conference of the 21st International Workshop on Software Measurement
and the 6th International Conference on Software Process and Product Measurement,
pp. 32–33 (2011)

Crowd Agile Model for Effective Software Development 277

www.dbooks.org

https://doi.org/10.1007/978-3-319-17266-8
https://www.dbooks.org/

16. Xu, X., Wang, Y.: Crowdsourcing software development process study on ultra-large-scale
system. In: Advanced Materials Research, pp. 4441–4446 (2014)

17. Schneider, C., Cheung, T.: The power of the crowd: performing usability testing using an
on-demand workforce. In: Information Systems Development. Springer, New York (2013).
https://doi.org/10.1007/978-1-4614-4951-5_44

18. Liu, D., Bias, R.G., Lease, M., Kuipers, R.: Crowdsourcing for usability testing. Proc. Am.
Soc. Inf. Sci Technol. 49(1), 1–10 (2012)

19. Nebeling, M., Speicher, M., Grossniklaus, M., Norrie, M.C.: Crowdsourced web site
evaluation with crowdstudy. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012.
LNCS, vol. 7387, pp. 494–497. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31753-8_52

20. Meier, F., Bazo, A., Burghardt, M., Wolff, C.: Evaluating a web-based tool for crowdsourced
navigation stress tests. In: Marcus, A. (ed.) DUXU 2013. LNCS, vol. 8015, pp. 248–256.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39253-5_27

21. Speicher, M., Nebeling, M., Norrie, M.C.: CrowdStudy: general toolkit for crowdsourced
evaluation of web interfaces In: Proceedings of the 5th ACM SIGCHI symposium on
Engineering interactive computing systems, pp. 255–264 (2013)

22. Teinum, A.: User testing tool towards a tool for crowdsource-enabled accessibility
evaluation of websites (2013)

23. Gomide, V.H.M., et al.: Affective crowdsourcing applied to usability testing. Int. J. Comput.
Sci. Inf. Technol. 5(1), 575–579 (2014)

24. Bowes, J.: Kanban vs scrum vs XP–an agile comparison. Kanban vs Scrum vs xp (2015)
25. Williams, L., Cockburn, A.: Underlying values (2003)
26. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
27. Hossain, E., Ali Babar Lero, M.A.: Using scrum in global software development: a

systematic literature review Hye-young Paik. In: 2009 Fourth IEEE International Conference
on Global Software Engineering, pp. 175–184 (2009)

28. Sutherland, J., et al.: Distributed scrum: agile project management with outsourced
development teams. In: 2007 40th Annual Hawaii International Conference on System
Sciences (HICSS 2007) (2007)

29. Mishra, A., Garbajosa, J., Wang, X., Bosch, J., Abrahamsson, P.: Future directions in agile
research: alignments and divergence between research and practice. J. Softw. Evol. Proc 00,
1–5 (2017)

30. Stol, K.J., Caglayan, B., Fitzgerald, B.: Competition-based crowdsourcing software
development: a multi-method study from a customer perspective. IEEE Trans. Softw.
Eng. 45(3), 237–260 (2019)

31. Latoza, T.D., Ben Towne, W., Van Der Hoek, A., Herbsleb, J.D.: Crowd development. In:
2013 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pp. 85–88 (2013)

32. Greengard, S.: Following the crowd. Commun. ACM 54(2), 20–22 (2011)
33. Li, W., Tsai, W.T., Wu, W.: Crowdsourcing for large-scale software development. In: Li,

W., Huhns, M.N., Tsai, W.T., Wu, W. (eds.) Crowdsourcing. PI, pp. 3–23. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47011-4_1

34. Profile, S., Alyahya, S., Alsahli, A., Khan, H.: Agile development overcomes GSD
challenges: a systematic literature review. Int. J. Comput. Sci. Softw. Eng. 6(1), 7 (2017)

35. Newkirk, J.: Introduction to agile processes and extreme programming. In: Proceedings of
the 24th International Conference on Software Engineering. ICSE 2002, pp. 695–696 (2002)

278 S. Qayyum et al.

https://doi.org/10.1007/978-1-4614-4951-5_44
https://doi.org/10.1007/978-3-642-31753-8_52
https://doi.org/10.1007/978-3-642-31753-8_52
https://doi.org/10.1007/978-3-642-39253-5_27
https://doi.org/10.1007/978-3-662-47011-4_1

36. Damian, D., Lassenius, C., Paasivaara, M., Schröter, A., Borici, A.: Teaching a globally
distributed project course using Scrum practices NaPiRE: Naming the Pain in Requirements
Engineering View project Need for Speed View project Teaching a Globally Distributed
Project Course Using Scrum Practices (2012)

37. Srivastava, A., Bhardwaj, S.: SCRUM model for agile methodology. In: 2017 International
Conference on Computing, Communication and Automation (ICCCA), pp. 864–869 (2017)

38. Kniberg, H., Skarin, M.: Kanban and Scrum-Making the Most of Both. Lulu. com,
Morrisville (2010)

39. Rubin, K.: Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addison-
Wesley, Boston (2012)

40. Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.Ó.: Agile practices reduce
distance in gloral software development. Inf. Syst. Manag. 23(3), 7–18 (2006)

41. Beecham, S., Noll, J., Richardson, I.: Using agile practices to solve global software
development problems - a case study. In: Proceedings International Computer Software and
Applications Conference, 18–21 August 2014, pp. 5–10 (2014)

42. Hossain, E., Babar, M.A., Verner, J.: How can agile practices minimize global software
development co-ordination risks? In: O’Connor, R.V., Baddoo, N., Cuadrago Gallego, J.,
Rejas Muslera, R., Smolander, K., Messnarz, R. (eds.) EuroSPI 2009. CCIS, vol. 42, pp. 81–
92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04133-4_7

43. Shrivastava, S.V., Date, H.: Distributed agile software development: a review, June 2010
44. Herbsleb, J.D.: Global software engineering: the future of socio-technical coordination, in

FoSE. Future Softw. Eng. 2007, 188–198 (2007)
45. Bannerman, P.L., Hossain, E., Jeffery, R.: Scrum practice mitigation of global software

development coordination challenges: a distinctive advantage?. In: Proceedings of the
Annual Hawaii International Conference on System Sciences, pp. 5309–5318 (2012)

46. Hossain, E., Bannerman, P.L., Jeffery, D.R.: Scrum practices in global software develop-
ment: a research framework. In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G.
(eds.) PROFES 2011. LNCS, vol. 6759, pp. 88–102. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21843-9_9

47. Kasunic, M.: Designing an Effective Survey DISTRIBUTION STATEMENT a Approved
for Public Release Distribution Unlimited (2005)

48. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Crowd Agile Model for Effective Software Development 279

www.dbooks.org

https://doi.org/10.1007/978-3-642-04133-4_7
https://doi.org/10.1007/978-3-642-21843-9_9
https://doi.org/10.1007/978-3-642-21843-9_9
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Continuous Information Monitoring
in Software Startups

Usman Rafiq(&) and Xiaofeng Wang

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{urafiq,xiaofeng.wang}@unibz.it

Abstract. Software startups are central nowadays and considered primary
drivers of economy and innovation. Lean and agile approaches are suggested for
software startups to continuously build and validate the product. Thereby, they
need to balance between the speed to deliver product and the quality of the
product. It further urges startups to continuously monitor the versatile infor-
mation, adjust their directions, and keep the bird’s-eye view. However, the
preliminary literature review highlights that software startups, especially at the
early stages, are not even aware of the need for information monitoring. This
research project aims to identify how software startups decide what information
needs to be monitored. The research plan proposes to utilize multiple case-study
and surveys as data collection methods while grounded theory and factor
analysis as data analysis procedures. Overall, both qualitative and quantitative
research methods are expected to be implemented. The prospective research
results encompass a framework to decide what information needs to be con-
tinuously monitored.

Keywords: Software startups � Information monitoring � Metric monitoring

1 Introduction

Startups have peculiar characteristics and are human organizations aiming to innovate
and grow under extreme conditions of uncertainty [6]. They strive to develop and offer
new services or products. A rough estimate indicates that about 100 million new
startups are created each year around the world [3]. Among them, there is a large pool
of software startups. The venture capital group of IBM [17] states that software-based
startups are central nowadays among the pool and considered primary drivers of
economy and innovation. Success stories of many existing and successful startups like
Facebook, Instagram, Dropbox, Airbnb and etc. are primarily contributing towards this
radical uplift. Despite this latest trend, very little is known about failures. The statistics
given in [4] show about 98% of startups that aim to present new products end up with
failure. Whatsoever we may think of a startup failure reason, the statistics still remain
alarming for all definitions of failure. For instance, Nobel and Carmen [5] reported that
90–95% of startups fail in the conception phase, 70–80% fail to see a return on
projection, and 30–40% fail by losing everything.

Software startups share a lot with other types of startups; however, they are also
required to cope with the frequently changing technological wave [7]. Time pressure is

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 280–287, 2020.
https://doi.org/10.1007/978-3-030-58858-8_29

http://orcid.org/0000-0003-3198-851X
http://orcid.org/0000-0001-8424-419X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_29

also critical when a software startup is at an early stage [11]. A software startup is at an
early stage when it struggles to conceptualize the idea and float it to the market for the
first time [11]. These all factors urge software startups to balance between the speed
and the quality of the product [14]. Pantiuchina et al. [14] also indicate that software
startups combine agile and lean startup approaches to build the product. Similar results
are reported in [2, 8]. While agile helps to manage product development, the lean
startup approach helps to continuously validate product ideas with the help of potential
customer collaboration [8]. These pieces of evidence suggest that “moving fast” is a
compulsion for software startups. While doing so, a software startup continuously
communicates with various stakeholders including the team itself to meet both short
and long-term goals [2].

Gislaine Camila et al. [2] highlight that communication, direct or indirect, brings a
lot of changes in the original idea and startups need to continuously adjust their product
and business models to conform to the requirements of their customers. The team needs
to continuously communicate and discuss the day-day operations and also look at past
decisions to make better ones in the future [2]. The early-stage startup teams are usually
small, and decisions are taken by the team as a whole, involving co-founders, playing
multiple roles in startup [13].

There is still uncertainty, however, how software startups, especially, at early
stages, continuously monitor the versatile information and keep the bird’s-eye view.
The study [12] reveals that the majority of the startups, especially at early stages, are
not even aware of the dire need for information measurements. Whilst the body of
literature on software startups is growing, however, most studies are conducted on
software development methodologies [7, 16]. A search of the literature only revealed
limited studies that discussed a few aspects of the information monitoring in software
startups. However, the studies we found, such as [12, 13], only discuss the importance
of monitoring metrics and benefits of measuring it. Despite the listed benefits, software
startups are also not using consolidated information measurement tools [3]. Therefore,
software startups must utilize information monitoring to deliver better quality products,
maintain good momentum, and stay competitive, while moving fast [2, 12]. The term
‘information’ refers to the sum of data and associated meaning, which holds further
power to generate knowledge [23].

2 Aim and Objectives

The aims of this study are to understand what startups are currently doing regarding
information monitoring and investigate how information monitoring could serve them
better. Our initial literature review highlights the lack of studies on the utilization of
information monitoring in startups. Regarding the second aim, we did not find how
software startups decide what key information they shall monitor. Both qualitative and
quantitative methods will be utilized to meet the research aims. The resultant frame-
work will ease software startups to decide what is really important for them to monitor
according to their needs. This will further enable them to filter the flood of available
information to grow and take corrective action when required.

Continuous Information Monitoring in Software Startups 281

www.dbooks.org

https://www.dbooks.org/

3 Research Questions

The main research question that we plan to answer is:

RQ1: How to identify what information a software startup needs to monitor
continuously?

This main research question is decomposed into the following aspects of contin-
uous information monitoring in software startups:

RQ1.1: What information is available for startups to monitor?
RQ1.2: What are the enablers and inhibitors of information monitoring in software
startups?
RQ1.3: How do software startups decide what information they need to monitor
continuously?

The initial literature review reveals a lot of results about the large pool of infor-
mation on measurements in software startups i.e. RQ 1.1. On the other hand, it clearly
lacks on how the startups decided what is really important for them and what makes
them do so.

Expected Results:
• Enablers and inhibitors of information monitoring in software startups.
• A framework enabling a particular software startup to identify the key infor-

mation that needs to be monitored continuously.
• A Goal Question Metric for software startups based on the prospective

framework.

We also foresee that the information monitoring process inside software startups
would be iterative, flexible, and robust i.e. continuous. This indicates that once the key
information is identified and monitored then the startup may decide to look for the
additional information again in the next iteration. As a result, a modification in the
required key information will occur. According to [19], the process of learning and
discovery brings changes in a startup and takes it to the different life-cycle stages. This
process goes in parallel with the product development process [19]. A startup is also
divided into different stages according to the product development state. These stages
are concept in-development, working prototype, functional product with limited users,
functional product with high growth, and mature product [19]. When a startup moves to
the next stage as a result of learning then there seems to be the need to monitor
additional or different perspectives. Accordingly, this research proposes to monitor the
key information continuously i.e. across all life-cycle stages of a startup.

4 Related Work

The key studies were identified using multiple search strings. The initial search string
was based on the keywords, or their synonyms, used in the research questions.
However, reading the search results revealed additional keywords that were later added
to the list. The sources selected for this search were Scopus, Google Scholar, and IEEE

282 U. Rafiq and X. Wang

Xplore. The search was performed in the title, abstract, and keywords fields. Likewise,
search strings were developed by merging keywords information monitoring and
startup. We did not particularly look for information monitoring in software startups as
we were expecting a few results on the topic. Therefore, all the articles ranging from
general startup organizations to software startups, in particular, were also undertaken.

The search results were first examined using the titles of the articles. However, in
some of the cases, the abstracts were also used to know whether the particular article
answers any of the research questions. Articles were also excluded if the word startup
or start-up did not refer to the startup organization. Our search stems up from two
sources i.e. information monitoring and startups. For information monitoring, we used
keywords like information monitor, metric monitor, knowledge monitor, performance
analysis, performance monitor, knowledge acquisition, performance indication, key
performance indication, key performance data, monitor, and dashboard. Similarly, for
the startup, we used startup, start-up, software startup, and software start-up.

4.1 Findings

The literature review findings are classified and discussed according to the research
questions. It is also found that the results were mainly discussing a few or none of the
aspects of information monitoring.

Identification of key information that needs to be monitored is the very first and
crucial challenge of this research. The initial literature review revealed very few
published studies that discussed some aspects of information identification. The found
studies provide a long list of recommended measurements and metrics in software
startups while what is not clear is how software startups decide the most relevant
information that needs to be monitored continuously. In the same vein, we did not find
factors that motivate or restrict startups to monitor information. For instance, recently
Kamulegeya et al. [12], studied 19 nascent software startups of the East-African region
and concluded that software startups are measuring or wish to measure relevant
information and also aware of the benefits of measurements. A similar conclusion has
been echoed by [13] while stressing the use of data in the form of metrics to make
better decisions. While performing a multi-vocal literature review and considering the
practitioner’s opinions, available on the web, Kemell et al. [13] produced more than
100 different metrics. However, these metrics are not validated with the software
startups and we also believe that a major portion of this list of metrics is applicable for
more mature software startups. In contrast to Kemell et al. [13], Kamulegeya et al. [12]
also studied software startups, particularly at early stages, and also produced a list of
metrics that is important for software startups. The list seems comprehensive and well-
classified. However, we found a limited similarity in the results of [12, 13].

Kamulegeya et al. [12] based their study on the measurements in large and
established software companies [18] and compared their results with a practitioner’s
book, known as “Lean Analytics” [10] that motivates software entrepreneurs to start
measuring. While highlighting the paucity of studies on measurements in software
startups, authors [12] conclude that software startups are using several measurements.
The word metric and measurements are used interchangeably in this article. They
classify the metric, being measured, or wish to be measured in software startups, into

Continuous Information Monitoring in Software Startups 283

www.dbooks.org

https://www.dbooks.org/

five categories. These categories include business-oriented, product-oriented, organi-
zational performance-oriented, project-oriented and design-oriented metrics. This cat-
egorization is originally discussed in the study of measurements in large organizations
[18]. Overall, 28 metrics were found belonging to one of these categories. It is inter-
esting to relate that most software startups (17 out of 19) were using at least one of the
business-oriented metrics while no one was using or wish to use design-oriented
metrics. Likewise, what stands out in [12] is that the majority of startups, 12 out of 19,
were not satisfied with what they were measuring and believed that they shall measure
several aspects of software startups more adequately.

Based on the results discussed in [12], a multiple case-study report, we present
categories and a list of associated key information that software startups, particularly at
early stages, aremeasuring orwish tomeasure. Thefirst category is related to business and
associated key metrics include customer analytics (number of people using platform,
customer behaviour), product delivery process time estimation, rate of customer/partner
acquisition/growing customer base, revenue growth/generated revenue/activities that
generate revenue, using a telemetry tool, tracking market indicators/market events, set
and review business targets, product awareness/customer interest, using market as a
benchmark, customer feedback measurement, reaching key business milestones (patents,
tax registration, incorporation). The second category, product-oriented information,
covers product/feature usage, production process time estimation, system reliability,
ability to build a complete product, feedback from friends about product features (peer
endorsement), product maintenance/support, and comparing product versions (added
features). The third category, organizational performance measures, set and evaluate key
performance indicators, time-based task setting, tracking and review for progress of
project and time-based project performance appraisal. The fourth category, project
metrics, monitors monetary value of time spent on task/activity, set and evaluate tasks,
activity completion time, process adherence by the team, tools usage by team, product
maintenance/support, documenting, and reviewing activities for progress. Lastly, not a
single startup was found measuring design metrics.

Together, these studies [12, 13] indicate that data is worthwhile and provides deep
insights if measured properly. Alongside, in another study, Kamulegeya et al. [13]
interestingly, glimpsed a little about the Goal Question Metric (GQM) approach and
concluded that GQM can also be used to identify the data required to be measured
during business operations. While highlighting the limitations of GQM in only
revealing productivity and quality metrics, they concluded that software startups are
also required to look at other aspects such as business and technical activities. On that
basis, we propose to build a GQM for software startups, including but not limited to
product quality and team productivity.

A significant contribution to the use of data in software startups was introduced by
Croll and Yoskovitz [10] in their book on lean analytics. The book explained to grow
the startup faster and better by using measurements and metrics. Croll and Yoskovitz
[10] categorized software startups according to six different business models and the
relevant metrics were defined and associated with each kind of model. The business
models include e-commerce, Software as a Service (SaaS), free mobile app, two-sided
marketplaces, media sites, and startups providing user-generated content. Startups were
also classified using the stages of software startups when startups sell to the enterprise.

284 U. Rafiq and X. Wang

The stages referred to as empathy, stickiness, virality, revenue, and scale. The book
[10] further defined the criteria to make sure that the startup is choosing the right
metrics. Here, metrics were classified into five categories (qualitative versus quanti-
tative metrics, vanity versus actionable metrics, exploratory versus reporting metrics,
leading versus lagging metrics, and lastly correlated versus causal metrics). On the
other hand, in contrast to the practitioner’s opinion [6], Kamulegeya et al. [12] claimed
that the startup models which are listed in [10] are not sufficient to cover the types of
startups in the market. They also pointed out that the metric provided by the lean
analytics framework [10] specifically targets established software startups in developed
economies and does not apply to emerging and nascent ecosystems.

5 Research Methods

The research design consists of both qualitative and quantitative research methods. This
research study aims to have a thorough understanding of what startups are currently
doing regarding information monitoring. It highlights the nature of the study i.e.
exploratory nature, particularly at initial stages; therefore, multiple case study method
[22] is considered as the appropriate research method. Moreover, we also consider
multiple case study approach as suitable due to the startup context and limited existing
literature on the topic. The decision of using a multiple-case study approach is inspired
by the recommendations provided by Easterbrook et al. [21]. A major advantage of
using a multiple-case study is that it brings greater generalizability and validity control.
Consequently, it is much easier to conclude strong and reliable results by investigating
multiple cases.

To select the sample for our study, we propose to stratify cases according to the
product type or business model and product development stages. Six classifications of
software startups are indicated in [10] based on the product type and business models.
Overall, therefore, we expect a combination of semi-structured interviews and obser-
vations to explore the cases for further analysis. Accordingly, interpretivist approach
[20] is found suitable for this investigation based on the focus of research, nature of
startups, and the use of interviews and observations as data collection methods. Going
in the same vein, survey research is also being proposed to bring methodological
triangulation for the initial findings. We also propose to conduct multiple interview
sessions with startup representatives by involving multiple researchers to control
validity threats.

Similarly, we plan to utilize both inductive and deductive data analysis approaches
to analyze the data. In the inductive analysis, Grounded Theory (GT) [20] is proposed
to analyze the qualitative data. It has been suggested that GT should be considered
when there are no existing theories, or the explanation of a phenomenon is inadequate
[20]. On the other hand, for deductive analysis, we will explore the relationships
between variables using factor analysis [20].

Continuous Information Monitoring in Software Startups 285

www.dbooks.org

https://www.dbooks.org/

6 Conclusions

Software startups are different from other software development organizations, as they
need to handle business aspects as well along with the technical challenges, in a very
limited time. They are required to monitor information continuously to make better
decisions in the future, adjust their directions in finding the right product idea, maintain
the momentum and balance between speed and quality. While the literature on software
startups is growing, there is still uncertainty, however, how software startups need to
monitor the key information continuously. Likewise, existing software engineering
tools and practices are considered heavy for software startups. Therefore, the current
research project aims to address the challenge of understanding how software startups
decide what information needs to be monitored continuously. To conduct the study, we
plan to employ multiple case studies using interviews and observations, and survey.
Similarly, to analyze the data, we plan to implement grounded theory and factor
analysis approaches. Taken together, the research will take an interpretivist approach to
execute the work.

References

1. Mackinlay, C.: Readings in Information Visualization: Using Vision to Think. Morgan
Kaufmann, San Francisco (1999)

2. Leal, G.C.L., Prikladnicki, R., Ebert, C., Balancieri, R., Pompermaier, L.B.: Practices and
tools for software start-ups. IEEE Softw. 37(1), 72–77 (2020)

3. Worldwide business start-ups. MKM Research Web site. http://www.moyak.com/papers/
business-startups-entrepreneurs.html. Accessed 30 June 2020

4. Mullins, J.W., Mullins, J.W., Mullins, J., Komisar, R.: Getting to Plan B: Breaking Through
to a Better Business Model. Harvard Business Press, Boston (2009)

5. Nobel, C.: Why Companies Fail–and How Their Founders Can Bounce Back. Harvard
Business School, Boston (2011)

6. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Currency, New York (2011)

7. Unterkalmsteiner, M., et al.: Software startups–a research agenda. e-Inf. Softw. Eng. J. 10(1),
89–123 (2016)

8. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software startup
development model: a framework for operationalizing lean principles in software startups.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-44930-7_1

9. Cockburn, A.: Agile Software Development: The Cooperative Game. Pearson Education,
Upper Saddle River, NJ (2006)

10. Croll, A., Yoskovitz, B.: Lean Analytics: Use Data to Build a Better Startup Faster. O’Reilly
Media Inc, Sebastopol (2013)

11. Giardino, C., Paternoster, N., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: the greenfield startup model. IEEE Trans.
Softw. Eng. 42(6), 585–604 (2015)

286 U. Rafiq and X. Wang

http://www.moyak.com/papers/business-startups-entrepreneurs.html
http://www.moyak.com/papers/business-startups-entrepreneurs.html
https://doi.org/10.1007/978-3-642-44930-7_1
https://doi.org/10.1007/978-3-642-44930-7_1

12. Kamulegeya, G., Mugwanya, R., Hebig, R.: Measurements in the early stage software start-
ups: a multiple case study in a nascent ecosystem. Found. Comput. Decis. Sci. 43(4), 251–
280 (2018)

13. Kemell, K.-K., Wang, X., Nguyen-Duc, A., Grendus, J., Tuunanen, T., Abrahamsson, P.:
100+ metrics for software startups – a multi-vocal literature review. In: CEUR Workshop
Proceedings, vol. 2305, pp. 15–29 (2018)

14. Pantiuchina, J., Mondini, M., Khanna, D., Wang, X., Abrahamsson, P.: Are software
startups applying agile practices? the state of the practice from a large survey. In:
Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp. 167–183.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6_11

15. Paredes, J., Anslow, C., Maurer, F.: Information visualization for agile software
development. In: 2014 Second IEEE Working Conference on Software Visualization,
pp. 157–166. IEEE (2014)

16. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.:
Software development in startup companies: a systematic mapping study. Inf. Softw.
Technol. 56(10), 1200–1218 (2014)

17. Srinivasan, S., Barchas, I., Gorenberg, M., Simoudis, E.: Venture capital: fueling the
innovation economy. Computer 47(8), 40–47 (2014)

18. Staron, M., Meding, W.: Mesram–a method for assessing robustness of measurement
programs in large software development organizations and its industrial evaluation. J. Syst.
Softw. 113, 76–100 (2016)

19. Blank, S.: The Four Steps to The Epiphany: Successful Strategies for Products that Win.
Wiley, Hoboken (2020)

20. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. Sage Publications, Thousand Oaks (2013)

21. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods for
software engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering. Springer, London (2008). https://doi.org/10.
1007/978-1-84800-044-5_11

22. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thousand Oaks
(2013)

23. Floridi, L.: Information: A Very Short Introduction. OUP, Oxford (2010)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

Continuous Information Monitoring in Software Startups 287

www.dbooks.org

https://doi.org/10.1007/978-3-319-57633-6_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Agile Education and Training Track

Is It Possible to Apply Agile Methods to
Contribute to the Linux Kernel?

Thatiane de Oliveira Rosa1,2(B) and Alfredo Goldman2

1 University of São Paulo, São Paulo, SP, Brazil
{thatiane,gold}@ime.usp.br

2 Federal Institute of Tocantins, Paráıso do Tocantins, TO, Brazil

Abstract. In this document, we describe the experience of teaching
Agile Methods for developing projects related to the Linux Kernel, dur-
ing the XP Lab course. In 2018, the first project related to this context
emerged. This project had the objective of making adjustments to the
driver for Linux IIO subsystem. The second project was developed in
2019 and aimed to refactor the Ethernet driver used in the kernel of a
Brazilian Single Board Computer. Based on 19 years of experience offer-
ing the XP Lab course, we consider the development of these projects to
be a challenging teaching activity, which deserves to be presented and
discussed with students, educators, and professionals. Our aim is to show
that it is possible to adapt Agile Values to different software development
settings.

Keywords: Agile methods · Linux kernel · Low-level programming ·
XP Lab · Teaching challenges

1 Introduction

There are several challenges related to the teaching-learning process of Agile
Methods in the academic context. The ideal is that students learn the theoretical
concepts and have a practical experience close to the industry reality. Since
2001, the Institute of Mathematics and Statistics of the University of São Paulo
annually offers the eXtreme Programming Laboratory (XP Lab) course, which
aims to teach Agile Methods in practice, where students deal with real customers
and projects and follow the XP values and principles [4]. From the offer of this
course, we can deal with different teaching challenges, contexts, and development
projects, as well as to evolve and continuously improve.

Recently, we were faced with a new challenge: to teach the adoption of Agile
Methods to develop projects that deal with low-level programming. In 2018,
we had a project in our Agile Methods course related to the Linux Kernel IIO
Staging Drivers. In 2019, we had another project that the goal was to refactor
the Ethernet driver of a new device. In this paper, we describe how we adapted
our mindset to do Agile in these particular software development environments.

The rest of this experience report is organized as follows. Section 2 presents
our XP Lab course. Sections 3 and 4 describe the two projects developed during
c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 291–297, 2020.
https://doi.org/10.1007/978-3-030-58858-8_30

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_30&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_30
https://www.dbooks.org/

292 T. de Oliveira Rosa and A. Goldman

2018 and 2019 related to low-level programming. Section 5 discusses how we
adapted to support the development and present some lessons learned. The last
section presents some final thoughts and remarks.

2 XP Lab Course

XP Lab (eXtreme Programming Laboratory) is a course offered annually by
IME/USP (Institute of Mathematics and Statistics of University of São Paulo)
since 2001 for undergraduate and graduate students in Computer Science. The
main goal is to teach Agile Methods in practice, providing the student with
real knowledge and experience [3]. To achieve this goal, during the course, stu-
dents develop real projects with real customers. The projects are developed by
the students following the XP (eXtreme Programming) values - communication,
simplicity, feedback, respect, and courage - and principles such as continuous
improvement, incremental changes, and mutual benefit [1].

Furthermore, students use the original XP practices such as pair program-
ming, shared code, stand-up meetings, and simple design, and other prac-
tices such as whole-class retrospectives in fishbowl format, lightning talks at
lunchtime, rotation of team members across teams, brainwriting, coding dojos,
test day, and refactoring day. During the first classes and in a punctual and
opportune manner during the course, lectures and practical activities are held on
relevant subjects such as Agile Methods and practices, DevOps, software archi-
tecture and patterns, continuous integration, technological stack, software test-
ing, and technical debt. During the course, it is possible to notice that learning
evolved, and students started to continuously learn and share technical knowl-
edge, projects, Agile Methods, and skills [3].

Since 2001, over 500 students have been taught to adopt Agile Methods, 89
projects were executed, and over 10 companies attended [4]. During 19 years of
offering, we had to adapt to several different contexts and situations.

In the last two years, we have faced the challenge of developing projects to
contribute to the Linux Kernel. In the two next sections, we present an overview
of these projects, outline the development process, some practices used, chal-
lenges faced, outcomes, and the evaluation process adopted.

3 IIO Staging Drivers Project

This project was proposed by Rodrigo Siqueira1, an autonomous Linux Kernel
contributor. The purpose was to create a development and contribution cycle
to the Linux Kernel, disseminating the desired procedures to collaborate with
the Linux Kernel’s evolution, in partnership with Kernel maintainers in Brazil.
The main planned tasks were: basic contributions such as preparation of the
development environment, aiming the code style adjustments; intermediary con-
tributions such as minor bug fixes and refactorings; and advanced contributions,
such as adjustments to the driver for the IIO subsystem [2].
1 https://www.linkedin.com/in/rodrigosiqueirajordao/.

https://www.linkedin.com/in/rodrigosiqueirajordao/

Is It Possible to Apply Agile Methods to Contribute to the Linux Kernel? 293

Since XP Lab students did not know about Linux Kernel development, it
was proposed contributing to staging drivers (drivers that need more adjust-
ment, before being added to the live Kernel tree). Therefore, during the XP Lab
course, students adopted Agile Development Methods to improve Linux test
drivers. Furthermore, adjusted drivers should meet quality requirements to be
appropriately added to the Linux Kernel.

The team of this project was formed by six students and two external coaches
(Linux Kernel contributors). The customer was the Linux Kernel Community.
During the project development, different face-to-face meetings with the cus-
tomer were held to discuss and plan tasks. At the beginning of each class (twice
a week), a stand-up meeting was held. Once a week, a member selected by the
team participated in a stand-up meeting with the coaches of other projects that
were being developed in the course. The purpose of this meeting was to share
experiences among the teams. The team held regular meetings with the customer
to discuss and plan tasks and priorities. Furthermore, at the end of each sprint,
the team held a retrospective meeting. One of the most useful and used Agile
Practices was pair programming.

As reported by the team members, the main challenge faced during the
project development was the distance or unavailability of customers. The strat-
egy adopted to mitigate this challenge was reading the available documentation
to minimize the impacts of the lack of interaction with the customer.

At the end of the project, the team members reported that they could learn
fundamental concepts of FLOSS (Free/Libre and Open Source Software) devel-
opment. The main concepts learned were: the importance of clear and complete
documentation and the importance of searching information in this documen-
tation; recognize the importance of code reviews; use of tools that facilitate
software development for Linux; workflow and development process in the Linux
Kernel; and importance of sharing the code with the community. Furthermore,
the team emphasizes that communication between developers, specialists (exter-
nal coaches), and the community is essential for successful FLOSS development.

Another relevant outcome is that during the course, the team accounted for
20% of the contributions to the Linux IIO Subsystem. Furthermore, at the end
of the course, the team members founded an extension group called FLUSP2,
which aims to contribute to FLOSS projects. Among their main achievements
we have: FLUSP was one of the top contributors for the kernel drivers for a
while; one of our former students is now contributing to GCC as a commit-
ter; one of our former students was responsible for parallelizing the grep com-
mand of GIT. More details and information about this project is available in
the following GitHub repositories: github.com/rodrigosiqueira/kworkflow and
gitlab.com/groups/kernel-usp/.

2 https://flusp.ime.usp.br/.

www.dbooks.org

https://github.com/rodrigosiqueira/kworkflow
https://gitlab.com/groups/kernel-usp/
https://flusp.ime.usp.br/
https://www.dbooks.org/

294 T. de Oliveira Rosa and A. Goldman

4 Labrador Project

The Labrador is a Brazilian Single Board Computer (SBC) developed by Caninos
Loucos that works with open hardware and software. Caninos Loucos is an orga-
nization that develops SBCs with an open structure (hardware and software) for
the Internet of Things (IoT). It is an initiative of the Technological Integrated
Systems Laboratory (LSI-TEC) with the support of Polytechnic School of the
University of São Paulo (Poli-USP) and Jon “Maddog” Hall, Board Director of
the Linux Professional Institute [5].

The proposed project for the XP Lab course was to adopt Agile Development
Methods to refactor the Ethernet driver used in the Labrador Kernel. This driver
used obsolete Linux Kernel functions and must be updated. Such updates were
necessary to enable the wide distribution of Labrador SBC.

The team of this project was formed by two students and three external
coaches (domain specialists). The customers were the Caninos Loucos members.
The development process and practices adopted in this project were very similar
to the IIO Staging Drivers Project. At the beginning of each class (twice a week),
a stand-up meeting was held. Once a week, the two members participated in a
stand-up meeting with the coaches of other projects that were being developed
in the course. The team held regular face-to-face meetings with the customer to
discuss and plan tasks and priorities. Furthermore, at the end of each sprint, the
team held a retrospective meeting.

According to the team, the main challenges faced are related to communica-
tion with the customers and the complexity of the legacy architecture and code.
Communication with the customer was unsatisfactory, and it was difficult to get
constant feedback. Given the complexity of the legacy architecture and code, it
was difficult to define objectives and dimension the sprints. This last problem
hindered the measurement of the progress of the driver refactoring work. Fur-
thermore, given the difficulties listed, students were unable to adopt strategies
to automate tests or carry out effectively continuous integration.

In order to mitigate the communication problem, the team sought other infor-
mation sources. Thus, the students tried to use discussion forums and sought
members of the Labrador project with higher availability. Regarding the com-
plexity of the legacy architecture and code, the team readjusted expectations
and broke the work into smaller issues.

At the end of the project, the team members reported that they could learn
about the importance of efficient communication, constant feedback, clear and
complete documentation, and proper software architecture.

The main results of this project include the refactoring of a part of
the Labrador Ethernet driver and redefining the used software architec-
ture. Furthermore, students resolved a Linux Kernel bug (approved patch),
which influenced the Labrador driver’s refactoring. More details and infor-
mation about this project is available in the following GitHub repository:
github.com/r0zbot/labrador-linux.

http://patchwork.ozlabs.org/project/netdev/patch/3A5A66BC-5DAB-4408-A904-10D5EDD99158@usp.br/
https://github.com/r0zbot/labrador-linux

Is It Possible to Apply Agile Methods to Contribute to the Linux Kernel? 295

5 Lessons Learned

In the XP Lab course, the students are assessed continuously and incremen-
tally. The final grade is defined based on the analysis of the following elements:
Class attendance; Compliance with four extra hours per week; Self-evaluation;
The internal coach’s evaluation of each team member (coach is a team member
with greater knowledge of Agile Methods); Team evaluation by the customer;
Team evaluation by meta-coach (graduate student with deep knowledge of Agile
Methods, who supports the professor and guides the students).

The team evaluation by meta-coach is divided into three stages, where differ-
ent requirements are analyzed. During stage 1, it is analyzed if the infrastructure
has been installed and if the team is organized. In stage 2, the meta-coach ana-
lyzes the internal and external communication of each team and observes the
activities’ planning and recording. Furthermore, the meta-coach monitors the
rotation of pairs, the use of repositories, the realization of commits and tests,
and the initialization of the continuous integration practice. In the last evalu-
ation stage, elements such as tracking documentation, continuous integration,
implementation of test-driven development, test coverage index, deliveries made
to the customer, self-organization of the team during the course, and publication
of “artifacts” to ensure the project continuity are considered.

However, when trying to adopt the same criteria for evaluating projects
related to the Linux Kernel, we realized some could be adopted, and others
could not. Among the inadequate criteria, we can mention continuous integra-
tion, test-driven development, test coverage, and deliveries. It is because, con-
sidering the development close to the hardware, it is very complex to create a
continuous integration pipeline or obtain a good test coverage index. Therefore,
it was necessary to adjust the criteria evaluated by the meta-coach.

To adapt the evaluation process, we return to the origin of Agile Methods;
that is, we consider adherence to the values and principles of the Agile Mani-
festo [6]. For that, we monitored the teams’ work closely and made a checklist,
composed by items such as customer satisfaction through valuable software, team
adaptation to late changes, working software after a few weeks of development,
team members engagement, face-to-face communication, simplicity of design,
and self-organize ability. In the end, we were surprised at how the Agile Values
were present.

We believe that the main lessons learned from the development of the projects
presented were:

– Is recommended that the team has at least one coach (internal or external)
who is a member of the FLOSS community and knows the Linux Kernel
workflow and development process;

– It is fundamental to adopt the original Values and Principles of the Agile
Manifesto to assist in the evaluation of projects developed in agile contexts.

www.dbooks.org

https://www.dbooks.org/

296 T. de Oliveira Rosa and A. Goldman

6 Final Remarks

The main objective of this document was to share the experience of adopting
Agile Methods to develop software that deals with low-level programming. This
type of project is especially challenging because it is not trivial to combine the
teaching of Agile Methods with development close to the hardware.

We consider that our experience was successful, and we could provide rele-
vant contributions to educators and the Agile and Free Software Communities.
Furthermore, we were quite happy to leave our comfort zone and see that it is
possible to apply Agile Principles and Methods to different environments. There-
fore, the main conclusion we reached with the development of this work was to
realize the simplicity, relevance, versatility, and transversality of the Agile Values
and Principles.

We hope to have the opportunity to adopt and teach Agile Methods in new
projects that deal with low-level programming and in other challenging contexts.

Acknowledgment. We would like to thank to Diogo Pina, meta-coach in 2018; Joe
Yoder, who suggested adopting Agile Principles for adjusting the assessment; to cus-
tomers Rodrigo Siqueira, Giuliano Belinassi, and Marcelo Schmitt; and to the students
who developed the projects: Bruno Almeida Carneiro da Cunha, Daniel Martinez,
Gabriel Capella, Lucas Moreira Santos, Matheus Tavares Bernardino, Renato Lui Geh,
and Victor de Oliveira Colombo.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley Pro-
fessional (2000)

2. FLUSP: Flusp - floss at USP - linux kernel - IIO. https://flusp.ime.usp.br/projects/
3. Goldman, A., de Oliveira Rosa, T., Santos, V.A.: Having fun doing research on

agile methods. In: Meirelles, P., Nelson, M.A., Rocha, C. (eds.) WBMA 2019. CCIS,
vol. 1106, pp. 147–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36701-5 12

4. Goldman, A., Santos, V.A.: Continuous improvement of an XP laboratory course:
An 18 year history. In: 2019 Agile Conference (2019)

5. Loucos, C.: Caninos loucos. https://caninosloucos.org/en/program-en/
6. Manifesto, A.: Principles behind the agile manifesto. https://agilemanifesto.org/

principles.html

https://flusp.ime.usp.br/projects/
https://doi.org/10.1007/978-3-030-36701-5_12
https://doi.org/10.1007/978-3-030-36701-5_12
https://caninosloucos.org/en/program-en/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html

Is It Possible to Apply Agile Methods to Contribute to the Linux Kernel? 297

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Forming and Assessing Student Teams in
Software Engineering Courses

Henrik Hillestad Løvold(B), Yngve Lindsjørn, and Viktoria Stray

Department of Informatics, University of Oslo, Oslo, Norway
{henrihlo,ynglin,stray}@ifi.uio.no

Abstract. In software development projects, working in teams is essen-
tial. Therefore, software engineering courses often require the students to
be working in teams to learn about team work behaviors and practices.
The instructors of software engineering courses are presented with several
challenges when teaching courses that require teamwork. For example,
how to form high-performing student teams, and how to assess their
work. The aim of this study is to evaluate whether there are differences
in performance whether the students form the teams themselves, or if
the teams are formed by the instructor. We evaluated a course involving
agile software development by 200 students working in 39 teams. A total
of 76% of the students chose to form their own teams, the remaining 24%
were placed in teams by the instructors. Our findings indicate that teams
formed by the students perform slightly better than the teams formed
by the instructors.

1 Introduction

To better prepare software engineering students for real work-life, it is important
to let them experience developing software in project teams. A main goal with
teamwork is that the participants value working together and learning from each
other. Teamwork in software engineering projects is harder than the students
expect [1]. A common problem with teamwork is a lack of commitment and con-
tribution of one or more members of the team [4] and communication challenges
among the team members [3]. Therefore, understanding how to form teams that
experience successful teamwork where everyone learns and contributes is of vital
importance.

There are many ways to form teams, ranging from the simple randomizing
of teams, to hand-picking students for each team based on their qualifications.
Research within the field of formation of teams (also called team composition [3]
and group selection [2]) within software engineering courses at the undergraduate
level is scarce. Some research on team formation within software engineering in
general has been carried out in the US, pointing instructors towards forming
teams themselves, without the involvement of the students [9]. Other research
points to using algorithm-based tools to automatically match students [5], or by
using personality tests to match team members [8].

c© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 298–306, 2020.
https://doi.org/10.1007/978-3-030-58858-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_31&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_31

Forming and Assessing Student Teams in Software Engineering Courses 299

Oakley et al. [9] found that simply putting students in groups to work on
assignments is not a sufficient condition for achieving the benefits of cooperative
learning and working in teams. One of the findings in this study is that the
teams should establish policies that will govern their operation and get them to
formulate their own expectations of one another using a Team Policies Statement
and the Team Expectations Agreement.

There seems to be no consensus on which way actually leads to more learn-
ing and better results in terms of students’ overall performance. Motivated by
this, we aimed to investigate the topic of team formation in a large software
engineering course.

2 Methods

In the spring of 2019, the University offered a software engineering course involv-
ing a major agile project where the students worked in teams to develop a mobile
application. The course was 20 ECTS credits; equivalent to a total workload
of 33% of one full academic year in Norway. The course was made manda-
tory for second-year undergraduate students following three study programmes;
Programming and Systems Architecture (ProSA), Design, Use and Interaction
(Design) and Digital Economy and Leadership (DigØk). This study was carried
out using the data recorded from the teams participating in this course.

2.1 Course Design

During a project period of 13 weeks, students were assigned to write an app for
the Android operating system involving API data gathered from the Institute of
Meteorology. The students were given introductions to agile methods of software
engineering, Scrum and Kanban in particular. All work was to be logged and
end up in a report which was then assessed together with the final product and
scored on a scale of 0–50 points. The report and product were assessed using the
criteria presented in Table 1.

In our course, all the teams followed an agile project model. While Scrum was
the process model most focused on in the lectures, this was not the most used
process model among the teams. Scrum was chosen by 17 teams. However, the
majority of the teams incorporated Kanban elements into their Scrum process
models. This process model, ScrumBan, was chosen by 21 teams. The two most
popular tools to use in the teams were Trello (used by 24 teams) and Slack
(used by 20 teams). Trello was used to keep track of tasks and visualize the
workflow. Slack was used to communicate and coordinate, and this tool has
been shown to increase team awareness and communication in agile teams [10].
In our teaching, we aimed to focus both technical and soft skills. This applies in
the learning elements of the course such as lectures, weekly tasks and mandatory
assignments, as well as in the assessment of the report and product as seen in
Table 1.

www.dbooks.org

https://www.dbooks.org/

300 H. H. Løvold et al.

Table 1. Criteria for the evaluation of student reports and products, and their per-
centage of total score.

Criteria % of score

Title, abstract, team presentation, introduction 4

User documentation 11

Requirements analysis, modelling, patterns 15

Technical product documentation 15

Testing and test documentation 8

Process documentation, reflection on process 19

Overall impression, language, context 12

References, sources, appendices 4

Product and functionality 12

The report and product accounted for 50% of the final grade given to stu-
dents, the other half being the result of a final individual written exam. The
questions on the exam were both from theory presented in lectures and group
sessions and from the project they were a part of in the teamwork.

As we can see from Table 1, we assessed the product and functionality of the
projects. This includes the source code written by the teams; an aspect which
is inherently difficult to assess. In many courses where students write code, only
the final outcome and the product is assessed. We found it important not only
to look at the outcome and product, but also the source code, as this gives us
better insight in the architecture and design patterns chosen by the students,
and how this is reflected on in their final report.

2.2 Forming Teams

Early on in the process of designing the course, the question about how teams
were to be formed, and how involved in the forming of teams the instructors were
to be, arose. Initially, we aimed to minimize the work required by the lecturers,
and wanted all students to form their own teams consisting of 4–6 students.
We quickly became concerned about the students forming too homogeneous
teams in terms of study programme, gender and workload capacity. We were also
concerned that students who did not have a social network at the campus would
fall behind and not find other students to work together with. To solve these
problems, we went with a middle-ground solution where students could choose
to either form teams on their own, or be placed in a group manually by the
lecturers, based on the following: study programme, ambitions, and availability.

We initially aimed to make the teams as diverse as possible with regards
to study programme and gender, whilst minimising the distance between group
members level of ambition. This is in line with previous studies within the field
with successful results [11]. The students were also instructed to report to the

Forming and Assessing Student Teams in Software Engineering Courses 301

instructors immediately if any signs of dysfunction occurred. This would then
lead to a conversation with the course administration in order to solve the prob-
lems as they arose.

3 Results

In total, 76.3% of the students opted to organise teams by themselves, without
the involvement of the instructor. The rest of the students who answered wanted
to be placed in teams by the instructor. We were not surprised that the students
opting to be placed in teams by the instructor were outnumbered by students
opting to form teams on their own; these are second-year students who know
each other well and many have already formed study groups.

Unsurprisingly, most students (68.7%) answered that their ambitions were
to aim for grades A-B. About a third answered (31.3%) that they aimed at
an average grade, and no students answered that they were happy about just
passing the course. Furthermore, it is interesting to note that no students were
happy as long as they passed.

3.1 Group Formation Outcome

The instructors assessed the results of the survey and put together nine teams
of five to six individuals. Six of the teams were within the A-B ambition level,
and three of the teams were in the average grade ambition level.

As we see from Table 2, three teams formed by the instructors consisted of
only males, and males were over-represented in all but one team formed by the
instructor. For the 9 teams formed by the instructors 27% of the students were
female. For the 30 teams formed by the students themselves 31% of the students
were female. While some research suggests the gender balance within the team
is irrelevant in regards to result [6], we wanted our teams to be diverse. We made
it a rule that teams formed by the instructors should at least have two students
of each gender, or otherwise be a single-gender team. This was to prevent one
student from becoming the “odd one out”, and thus purely for social reasons.
However, in the student-formed teams, five of the teams chose to have only one
female. The average team size across all teams was 5.21.

As for study programme, on the other hand, we wanted diversity. Mishra et al.
state that most of the tasks of software development organizations are diverse in
nature, and suggests that Software Engineering educators should seek diversity

Table 2. Gender distribution of teams formed by the instructors and teams formed by
the students. M denotes male, F denotes female.

M only F only One F Mixed

Instructor formed 3 0 0 6

Student formed 9 2 5 14

www.dbooks.org

https://www.dbooks.org/

302 H. H. Løvold et al.

Fig. 1. Distribution of students from each study programme grouped by team, from
the teams formed by the instructors.

Fig. 2. Distribution of students from each study programme grouped by team, from
the teams formed by the students themselves.

when preparing students for the industry [7]. Figure 1 shows the distribution
of students with regards to study programme, grouped by teams. We can read
from the figure that students from the programme ProSA were over-represented.
This comes as no surprise as this by far is the largest study programme at the
department with regards to number of students.

For the self organised teams, as we can read from Fig. 2, there were 99 from
ProSA, 37 from Design and 17 from DigØk. 12 of the 30 teams had team mem-
bers from a single study programme, 10 of them were from ProSA, 1 from Design,
and 1 from DigØk. It is interesting to note that the student-made teams seem to
be just as diverse as the teams formed by the instructors in terms of study pro-
gramme. This is likely a result of the students signing up to be placed in groups
by the instructors mainly coming from a single study programme (ProSA).

Forming and Assessing Student Teams in Software Engineering Courses 303

Table 3. Team project score and individual exam score grouped by student-formed
and instructor-formed teams.

Average points Standard deviation

Team score

Student-formed teams 42.5 4.70

Instructor-formed teams 40.3 4.27

Individual exam score

Student-formed teams 40.1 6.47

Instructor-formed teams 38.5 7.55

3.2 Project Performance

The first section of Table 3 shows the average final points on a scale between 0
and 50 for all teams, grouped by those formed by students and those formed by
the instructor, as well as the standard deviation within the teams. As we can see
from the results, the teams formed by the students themselves performed slightly
better than the teams formed by the instructor. The difference is, however, well
within one standard deviation, and with a p-value of p = 0, 114 we cannot draw
a clear conclusion from our data.

Although the data is somewhat inconclusive, it is interesting to note that the
results seem to indicate that teams formed by the students themselves perform
slightly better than teams formed by the instructor. The implications of these
results will be further analysed in Sect. 4.

3.3 Individual Exam

In addition to the project report and the software product, all students had
an individual exam with questions from the curriculum and from the project
and teamwork. The second section of Table 3 shows the average points for the
individual exam on a scale from 0 to 50 for all teams, grouped by those formed
by students and those formed by the instructor, as well as the standard deviation
within the teams. For each team we calculated the average of the points (exam
results) for all the individual team members in the team. The results are similar
to the results presented in Table 3 for average team score, but with a higher
standard deviation due to the differences in the results of the individual team
members within the teams.

4 Discussion

In this study we have analysed the results of student teams in a large 20 ECTS
course on software engineering. The students were given the choice to either
form teams on their own, or be placed in a team by the instructors based on a
small questionnaire at the beginning of the semester. The instructors’ goal was

www.dbooks.org

https://www.dbooks.org/

304 H. H. Løvold et al.

to make teams as diverse as possible, as previous studies seem to support the
claim that diverse teams perform better overall than homogeneous teams [11].

We found that 31% of the students chose to be placed in teams by the instruc-
tor, while the majority (69%) formed their own teams. Many of the students who
opted to form their own teams probably knew each other well on beforehand.
This course was offered exclusively to students in their 4th semester of computer
science studies, and it is not unlikely that many of the students already had a
group of 4–6 peers with which they have collaborated with on other courses. This
means that the students who formed teams on their own had the advantage of
already knowing they work well together with their teammates, compared to the
students who were placed in teams by the instructor.

Furthermore, our analysis might indicate that individuals in teams formed by
the students themselves performed slightly better than the individuals in teams
formed by the instructors, both on the team evaluation, and the individual final
exam.

4.1 Study Limitations

Although we aimed to make the teams as diverse as possible, we do not know
the level of diversity, both professionally and in terms of gender and study pro-
gramme of the teams that the students created themselves. In other words; we
cannot be sure whether the teams created by the instructor are, in fact, more
diverse than the teams created by the students themselves. We did, though, find
it plausible to assume that the general level of diversity probably was in fact
lower, as students from the same programmes usually attend the same lectures
and spend spare time together.

Although more than 200 students attended the course, and with 39 teams
included in our study, there were only 9 teams formed by the instructors. A
sample size this small makes it hard to draw definite conclusions, as personal
factors of each student within the teams affect the final result.

5 Conclusion and Future Work

We studied 39 teams in a major software engineering course. Our results suggest
that teams formed by the instructors intended to be as diverse as possible, do not
necessarily perform better than teams formed by the students themselves. Our
data indicate that the teams formed by the students perform slightly better, but
there is no significant difference between the teams in each group. We have no
conclusive evidence of why this is the case, but we assume that the social factor
plays a major role in this regard. Teams consisting of peers who know each other
on beforehand have an advantage over teams who have to get to know each other
before starting to work.

Future research should go deeper into investigating if and why student-formed
groups perform better, as well as to analyse the effect of diversity. Furthermore, it
is a need to understand how this diversity affects the quality of the different parts

Forming and Assessing Student Teams in Software Engineering Courses 305

of the project (such as testing, documentation, usability and maintainability). It
would also be interesting to investigate how teamwork quality, meeting frequency
and agile practices differed with regards to how the teams were formed. As other
research shows promising results using algorithm-based tools to match students
[5], this might also be something worth looking further into.

This course was offered again in spring 2020 with a different approach to
forming teams. Students could not select all team members by themselves, but
were instructed to suggest 1–3 peers they wanted to have in their team. Based
on their wishes, we put together teams of 5–6 members, and thus all students
had to work with at least one team member they did not know beforehand. This
approach has shown promising results, which might be worth looking further
into.

References

1. Bastarrica, M.C., Perovich, D., Samary, M.M.: What can students get from a soft-
ware engineering capstone course? In: 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering: Software Engineering Education and Training Track
(ICSE-SEET), pp. 137–145 (2017). https://doi.org/10.1109/ICSE-SEET.2017.15

2. Dugan Jr., R.F.: A survey of computer science capstone course literature. Comput.
Sci. Educ. 21(3), 201–267 (2011)

3. Dzvonyar, D., Alperowitz, L., Henze, D., Bruegge, B.: Team composition in soft-
ware engineering project courses. In: 2018 IEEE/ACM International Workshop on
Software Engineering Education for Millennials (SEEM), pp. 16–23. IEEE (2018)

4. Iacob, C., Faily, S.: Exploring the gap between the student expectations and the
reality of teamwork in undergraduate software engineering group projects. J. Syst.
Softw. 157, 110393 (2019)

5. Jahanbakhsh, F., Fu, W.T., Karahalios, K., Marinov, D., Bailey, B.: You want
me to work with who?: stakeholder perceptions of automated team formation in
project-based courses. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, pp. 3201–3212. ACM (2017)

6. Lingard, R., Berry, E.: Teaching teamwork skills in software engineering based on
an understanding of factors affecting group performance. In: 32nd Annual Frontiers
in Education, vol. 3, pp. S3G–S3G. IEEE (2002)

7. Mishra, A., Mishra, D.: Industry oriented advanced software engineering education
curriculum. Croatian J. Educ. 14(3), 595–624 (2012)

8. Rodŕıguez Monteqúın, V., Mesa Fernández, J.M., Balsera, J.V., Garćıa Nieto, A.:
Using MBTI for the success assessment of engineering teams in project-based learn-
ing. Int. J. Technol. Des. Educ. 23(4), 1127–1146 (2012). https://doi.org/10.1007/
s10798-012-9229-1

9. Oakley, B., Felder, R.M., Brent, R., Elhajj, I.: Turning student groups into effective
teams. J. Stud. Cent. Learn. 2(1), 9–34 (2004)

10. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! Using enterprise social
networking tools in virtual agile teams. In: 2019 ACM/IEEE 14th International
Conference on Global Software Engineering (ICGSE), pp. 111–121. IEEE (2019)

11. Tafliovich, A., Petersen, A., Campbell, J.: Evaluating student teams. In: Proceed-
ings of the 47th ACM Technical Symposium on Computing Science Education
- SIGCSE 2016, pp. 181–186. ACM Press, New York (2016). https://doi.org/10.
1145/2839509.2844647, http://dl.acm.org/citation.cfm?doid=2839509.2844647

www.dbooks.org

https://doi.org/10.1109/ICSE-SEET.2017.15
https://doi.org/10.1007/s10798-012-9229-1
https://doi.org/10.1007/s10798-012-9229-1
https://doi.org/10.1145/2839509.2844647
https://doi.org/10.1145/2839509.2844647
http://dl.acm.org/citation.cfm?doid=2839509.2844647
https://www.dbooks.org/

306 H. H. Løvold et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Panel

www.dbooks.org

https://www.dbooks.org/

COVID-19’s Influence on the Future of Agile

Dennis Mancl1(&) and Steven D. Fraser2

1 MSWX Software Experts, Bridgewater, NJ 08807, USA
dmancl@acm.org

2 Innoxec, Santa Clara, CA, USA
sdfraser@acm.org

Abstract. As a result of the global COVID-19 pandemic, the way the world
works, collaborates, and plays has changed. Commerce has stalled with travel,
hospitality, education, retail, and health sectors particularly affected. This paper
is based on an XP 2020 panel organized by Steven Fraser and featuring Aino
Corry, Steve McConnell, and Rachel Reinitz. The panel discussed the impact of
COVID-19 on knowledge workers, the acceleration of digital workplace
transformation, and anticipated long term effects from the pandemic in the
context of agile practices. Four key observations emerged from the discussion:
First, virtual collaboration between those working from home is enabled by a
variety of communication tools – substituting for face-to-face interactions.
Second, agile work practices are harder to perform given the virtual nature of
meetings and interactions. Third, communication tools are not always adequate
for high-bandwidth or informal interactions, such as brainstorming, side dis-
cussions, or hallway conversations. Fourth, forming new teams and onboarding
staff is challenging in a virtual work environment.

Keywords: Agile � COVID-19 � Digital transformation � Virtual collaboration

1 Setting the Context: COVID-19’s Impact on Agile

In March 2020, the world changed due to the pandemic, which necessitated quarantines
that impacted most if not all individuals, communities, and countries around the world.
The pandemic had an almost immediate effect on the software community by limiting
face-to-face collaborations and meetings.

Other consequences of the pandemic included supply chain and business continuity
interruptions. The delivery of goods and services were affected by transportation
challenges, including border closures, quarantines, and the need to prioritize medical
supplies. COVID-19 has impacted many sectors of the global economy, including
hospitality (restaurants, hotels, cruises, casinos, theme parks, etc.), travel (airlines,
trains, buses, etc.), education (school and university), retail, and health. All of these
sectors have struggled to adapt to a world where most people-to-people interactions are
virtual.

Additionally, we now have virtual rather than face-to-face conferences. Technical
interactions catalyzed by internationally recognized conferences such as ACM/IEEE’s
ICSE and the Agile Alliance’s XP conference have been transformed to virtual
experiences. Without face-to-face presence, the opportunity for interesting personal

© The Author(s) 2020
M. Paasivaara and P. Kruchten (Eds.): XP 2020 Workshops, LNBIP 396, pp. 309–316, 2020.
https://doi.org/10.1007/978-3-030-58858-8_32

http://orcid.org/0000-0002-4418-6324
http://orcid.org/0000-0002-3958-6585
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58858-8_32&domain=pdf
https://doi.org/10.1007/978-3-030-58858-8_32

hallway conversations, which have long been a hallmark of such international
exchanges, is lost. It is likely that virtual experiences will be de rigueur for the
foreseeable future. The widespread adoption of work-from-home environments has
accelerated the digital workplace transformation. A serendipitous consequence includes
issues related to workforce compensation (based on location) and the move to wide-
spread virtual interaction channels between work teams and with customers. In some
ways, this move to mostly remote staff accelerates the possibility of offshoring and
outsourcing, since if geography is removed as a limiting constraint, team members need
not be co-located. Previously mandated face-to-face interactions have transformed to
digital interactions through necessity – and knowledge workers are enjoying the ben-
efits of reduced commute time while shifting employer expenses (e.g. real estate, heat,
light, power, IT infrastructure) to personal home “overhead” costs.

The panel session began with an online poll of conference participants. The
audience members were asked if they attended XP 2020 only because it was an online
conference. Of the 80 conference attendees who responded, 30 indicated they had
planned to attend the in-person conference, in contrast to 50 who indicated their
attendance was enabled by the virtual nature of the conference. A similar response was
elicited regarding plans to attend XP 2021: 47 participants said they would attend XP
2021 if it were virtual, in contrast to 31 who indicated that they would attend an in-
person conference. This result suggests that conference organizers of the future should
consider hybrid virtual-physical conferences to increase conference geographic reach
even if COVID-19 is no longer a factor.

The three XP 2020 panelists, Aino Corry, Steve McConnell, and Rachel Reinitz,
expressed their personal views on the world of virtual work in a discussion facilitated
by Steven Fraser. Aino Vonge Corry is an agile software expert, a teacher, technical
conference editor, and retrospectives facilitator working for her own consultancy
company, MetaDeveloper. Corry is the author of a forthcoming book, Retrospectives
Antipatterns, that is planned for release in fall 2020 [1]. Steve McConnell is CEO and
Chief Software Engineer at Construx, a worldwide software consulting and training
company. McConnell is also the author of Code Complete [2], the classic book on
software development practices, as well as the recent More Effective Agile [3], a
roadmap for software leaders. Rachel Reinitz is an IBM Fellow, and the CTO and
Founder of the IBM Garage, an organization that consults with clients to define, build,
and deploy cloud applications.

The panel impresario and co-author of this paper, Steven Fraser (Innoxec), advises
on open innovation strategies to accelerate the development and adoption of tech-
nologies based on his work at HP, Cisco, Qualcomm, Nortel, and the Software
Engineering Institute (SEI) at Carnegie Mellon University. Dennis Mancl, panel
recorder and co-author of this paper, is an independent consultant on software tech-
nology and practices. He worked for many years for AT&T, Lucent, and Alcatel-
Lucent. In his role as an internal software technology expert, he supported the ongoing
education of developers in many technologies.

There were four main conclusions from the panelists. First, COVID-19 has made
drastic changes in the way we do our daily work – it has affected our work schedule,
our collaborations and travel, and we are still working to readjust our work-life balance.
Second, agile work practices are harder to perform since casual conversations are

310 D. Mancl and S. D. Fraser

www.dbooks.org

https://www.dbooks.org/

limited due to the online nature of meetings and interactions. Third, although virtual
collaboration tools for video chat and online meetings have improved since the turn of
the century, current communications tools are still not as good as face-to-face for
performing high-bandwidth and informal interactions, such as brainstorming, white-
boarding, side discussions, and hallway conversations. Finally, the process of forming
new teams and onboarding new employees is challenging in a virtual work
environment.

2 COVID-19 Impact on Daily Work

Early in the panel discussion, McConnell presented a few results from a recent Con-
strux study based on a survey of his clients’ recent experiences with a work-from-home
environment [4]. McConnell noted that for most people, routine communications
continue to work well in the new all-virtual environment, and some people feel more
productive because they have fewer distractions. High-performing teams continued to
do well in a virtual environment, however if a team suffered from interpersonal friction
prior to COVID-19, the friction was exacerbated by working from home. McConnell
further explained that the survey suggested that virtual collaborators felt discussions
were more to the point, attendees weren’t distracted by side conversations, and
meetings started on time and ran more efficiently.

Reinitz observed that the organization of work activities needed to be modified in
the new virtual regime. She observed that one needs to resist merely “taking what you
do face-to-face and now doing it virtually.” For example, her team used to run multi-
day face-to-face workshops with clients. But in the new virtual COVID-19 environ-
ment, they made one important change to their process by spreading their workshops
over additional days – scheduling a series of half-day sessions. Reinitz explained that a
multi-day schedule made it easier for team members to schedule workshops since
schedules were more flexible and not tightly constrained by travel logistics. Participants
also had time for daily mini-retrospectives: “When we do workshopping, we usually do
them in the morning – then in the afternoon, the team reflects and discusses what’s
working.”

Corry added to Reinitz’s points, agreeing that we need to adjust the way we run
some of our work activities. She observed that it is essential to discover what can be
done in virtual meetings that would provide added benefits over being physically
together. For example, Corry has frequently used “round robin” in virtual meetings –
where each participant gets to speak in turn. It is more socially acceptable to use a
round robin when virtual than in a face-to-face setting.

The panel discussion turned to speculation about back-to-work protocols when the
dangers of COVID-19 diminish. Corry explained that many offices in Denmark had
reopened in May and June, but that “some people thrived so much on working from
home” that they would prefer to remain virtual.

McConnell echoed this observation. “I agree with Corry that we are seeing people
who really don’t want to go back to work from the office. I see that in my own
company. Some of that is about avoiding a potentially risky work environment, and
some of it is just a work practice preference. I think right now it is impossible to

COVID-19’s Influence on the Future of Agile 311

separate which is which.” McConnell noted many tech workers have worked virtually
(from home) for years, but the pandemic increased the use of online collaboration tools
by less technical business partners. The increased familiarity with online collaboration
likely will increase future acceptance for virtual work.

McConnell raised the issue of how virtual working might erode trust between team
members. A lack of trust within a team might not be a serious problem in the short
term, but McConnell was unsure of long-term consequences if work-from-home
practices were to be mandated for six months or more.

Reinitz voiced concern for work-life balance issues, noting emergent issues with
overwork and Zoom (conferencing) fatigue. Reinitz has observed team members
working long hours without breaks, even though in the office they would formerly take
regular breaks to play ping pong. Reinitz also observed benefits working from home –
since it gives her more face time with her teenage daughter and the two often play cards
during breaks. Reinitz has also observed other team members interacting with their
children while in virtual meetings.

3 Impact on Agile Practices

The panelists reflected on the changes in agile practices in an all-virtual work envi-
ronment. McConnell observed that many agile teams are somewhat conservative and
old-fashioned, using agile practices the way they were defined at the turn of the
century, in the days before global distributed teams. McConnell believes that working
from home and using virtual collaboration tools has “forced” teams to adopt more state-
of-the-art communication practices. One area where many agile teams are progressing
is in innovative uses of remote collaboration technology.

Reinitz’s team pair programmed for much of their coding work, but with the
COVID-19 constraints they use a combination of approaches with some solo coding,
some pairing, and some mob programming. Reinitz addressed the challenges of “mixed
mode” meetings, where some attendees are face-to-face and others are remote. Her
experience is that hybrid meetings require much more advance preparation. She
explained that they made careful choices to select the right tools for their interactive
sessions, including interactive drawing and distributed note taking. She found it ben-
eficial to have facilitators as remote participants.

Overall, the lessons shared by the three panelists suggested that remote collabo-
ration should be embraced. McConnell emphasized a key point from the Construx
work-from-home report – “It’s really helpful to have the entire team working from
home, if they’re going to work from home.” Corry agreed that all face-to-face or all
virtual would be ideal, but in her experiences in Denmark, there have been more hybrid
meetings. Corry warned of challenges if management creates multi-national distributed
teams as a cost saving measure – merely to take advantage of differential pay scales
based on geography.

312 D. Mancl and S. D. Fraser

www.dbooks.org

https://www.dbooks.org/

4 Whiteboarding and Other High-Bandwidth Collaborations

The panelists shared experiences with virtual brainstorming tools for remote collabo-
ration. McConnell reported that many participants in the Construx work-from-home
survey had mentioned the word “whiteboarding” in their text responses to the survey,
so it was clear that many respondents struggled with virtual brainstorm as a replace-
ment for face-to-face whiteboard interactions. McConnell noted that respondents
characterized early design activities for conceptualization and other high-bandwidth
interactions with project stakeholders as particularly challenging.

Reinitz explained that she uses multiple alternatives to traditional in-person com-
munications including a small physical whiteboard in her home office which she uses
for brainstorming and is visible via video. Participations also create drawings on paper,
scan (digital photo), and then share with meeting participants. Another useful tool for
shared drawings is MURAL (mural.co). Reinitz advised to be “agile” – try different
approaches, leverage what works, and iterate and adjust as necessary.

Which collaboration tools are best? Simplicity and functionality are attributes often
admired when assessing collaboration tools. Collaboration platforms such as Zoom,
WebEx, GoToMeeting, Microsoft Teams, Skype, etc. combined with software devel-
opment environments and visioning tools such as MURAL, Box Notes, Slack, and
MentiMeter were important enablers for virtual work. As an aside, the XP 2020
conference applied a simple set of tools for remote collaboration: Zoom for presen-
tations (sometimes with breakout rooms for tutorial activities), MentiMeter for quick
surveys, Zoom “chat” for audience questions, and Slack for follow-up discussions.

Reinitz explained that many people find text-based communication tools such as
Slack useful, but she warned that text exchanges should not be considered a replace-
ment for face-to-face conversation. McConnell believed that people generally com-
municate with greater fidelity face-to-face, although introverts may communicate more
readily by text with a degree of anonymity. Text interactions complemented by emojis
can both avoid and cause awkward interactions.

Audience members for this virtual panel contributed to the discussion of online
drawing tools and text-based communications tools. One attendee noted that drawing
isn’t easy with a mouse or a touch screen. Another comment noted that groups turn to
text-based collaboration tools like Slack for casual conversations in their everyday
work. Slack-based dialogs are generally less effective than the conversations that co-
workers would have face-to-face over lunch or in hallways, because text-based com-
munication lacks body language cues and may be harder to interpret. It was also noted
that text communication using emojis can be misinterpreted since so much depends on
personal interpretation.

5 Spinning up New Teams and On-Boarding New Employees

McConnell reported that the Construx survey respondents found that spinning up new
teams in an all-virtual environment is difficult. New team members require high-touch
interactions (a mix of coaching and mentoring) to learn and excel at their new jobs.
Reinitz shared experiences for new hires at IBM’s Garage organization, explaining that

COVID-19’s Influence on the Future of Agile 313

their training takes more effort. Training in a remote collaboration environment requires
integration of online and virtual training experiences to be effective. Virtual training is
exhausting due to long hours of “screen time” – a similar challenge to that experienced
by virtual conference attendees such as XP 2020 participants.

Reinitz further reflected on the training process for new employees, observing that
we learn how to shape our work by watching and emulating others. In a distributed
online work environment, it is necessary to be very deliberate about the act of watching
others work. Reinitz believes that a technique of immersive learning for new employee
onboarding can be achieved through virtual work shadowing.

6 Summary

In the short term, many organizations are rediscovering Plato’s [5] observation that
“necessity is the mother of invention.” The primary conclusion of the panel was that
tech workers will continue to work from home and use virtual collaboration technology
for the foreseeable future. High-performing teams will do well, but teams with inter-
personal communication challenges will likely struggle. Many (as expressed in the
popular press [6]) prefer to work in a virtual collaboration environment from their
home without the need for a physical office and the overhead of commute, even if the
COVID-19 crisis subsides.

Although the virtual work environment will be appealing to many knowledge
workers and companies, the popular press is also beginning to warn about some of the
risks and problems of a transition to a virtual environment [7, 8]. Employees are now
taking personal responsible for issues usually administered by their company: e.g.,
office furnishings, network and compute infrastructure, workplace safety, heat, light,
and power. As an aside, press reports [9] attribute world-wide shortages in toilet paper
to differences in supply chains for commercial and home use.

Some companies may follow the lead of Facebook, whose CEO indicated the
possibility that “employee compensation will be adjusted based on the cost of living in
the locations where workers choose to live. [10]” Virtual workers are often very
isolated, they have more pressure to work unpaid overtime, and it is more difficult for
virtual workers to organize collectively to oppose unfair management practices.
Unequal and potentially unfair compensation policies are not consistent with agile
values [11]. Related issues of outsourcing and offshoring have been previously dis-
cussed at XP [12] and ACM’s OOPSLA/SPLASH [13, 14] conferences in the not so
distant past.

Teams that excel in the application of agile development practices will likely
succeed with the integration of virtual collaboration practices and tools into their
distributed work environment. High-bandwidth interactions such as design discussions
and dialogs with stakeholders will drive teams to replace standard “discussions cat-
alyzed by a whiteboard” with new kinds of virtual interactions. Some meetings will use
tools including digital cameras and physical whiteboards, while others will rely on a
mix of collaborative software, digital drawing tools, and distributed annotation tools.

Meeting the challenge of building new teams and onboarding employees will
require better strategies for virtual training and knowledge sharing. In many ways,

314 D. Mancl and S. D. Fraser

www.dbooks.org

https://www.dbooks.org/

COVID-19 has accelerated the adoption and deployment of network-based digital
collaboration tools and new practices to ensure team and company agility – however,
many of the team challenges described in Peopleware [15] and Brooks’ treatise on
development practices [16] endure – and teams would be well advised to remember
past lessons in the still short history of software development.

References

1. Corry, A.: Retrospectives Antipatterns website. http://retrospectiveantipatterns.com. Acces-
sed 29 June 2020

2. McConnell, S.: Code Complete, 2nd edn. Microsoft Press, Redmond (2004)
3. McConnell, S.: More Effective Agile. Construx Press, Bellingham (2019)
4. McConnell, S., Stuart, J.: WFH in the Age of the Coronavirus: Lessons for Today and

Tomorrow (2020). https://www.construx.com/resources/wfh-in-the-age-of-coronavirus-
report/. Accessed 29 June 2020

5. Plato: The Republic (375 BC)
6. Zippia, P: Half of American workers would rather work from home forever. https://www.

zippia.com/advice/coronavirus-remote-work-survey/. Accessed 2 July 2020
7. Turits, M: Why are some people better at working from home than others? BBC News

website. https://www.bbc.com/worklife/article/20200506-why-are-some-people-better-at-
working-from-home-than-others. Accessed 2 July 2020

8. The future of the remote worker. https://us.directlyapply.com/future-of-the-remote-worker.
Accessed 2 July 2020

9. What Covid-19 toilet Paper shortages tell us about supply chains, Financial Times, 7 June
2020. https://www.ft.com/video/6e5acf3e-511b-48d1–948c-ff7c94f3ba1b. Accessed 2 July
2020

10. Conger, K.: At Facebook, Home Work Could Be Permanent. New York Times, p. B1, 22
May 2020

11. The Agile Manifesto (2001). https://agilemanifesto.org/. Accessed 2 July 2020
12. Fraser, S., et al.: Off-Shore agile software development. In: Baumeister, H., Marchesi, M.,

Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 267–272. Springer, Heidelberg (2005).
https://doi.org/10.1007/11499053_43

13. Fraser, S., et al.: Challenges in outsourcing and global development: how will your job
change?. In: OOPSLA 2004 Companion, pp. 145–147 (2004). https://doi.org/10.1145/
1028664.1028722

14. Fraser, S., Mancl, D., Namioka, A., Salama, R., Wirfs-Brock, A.: East meets west: the
influences of geography on software production. In: SPLASH 2014 Companion, pp. 41–42
(2014). https://doi.org/10.1145/2660252.2661293

15. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams, 3rd edn., p. 2013.
Addison-Wesley, Upper Saddle River, New Jersey (2013)

16. Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley
Longman Inc., Cambridge (1995)

COVID-19’s Influence on the Future of Agile 315

http://retrospectiveantipatterns.com
https://www.construx.com/resources/wfh-in-the-age-of-coronavirus-report/
https://www.construx.com/resources/wfh-in-the-age-of-coronavirus-report/
https://www.zippia.com/advice/coronavirus-remote-work-survey/
https://www.zippia.com/advice/coronavirus-remote-work-survey/
https://www.bbc.com/worklife/article/20200506-why-are-some-people-better-at-working-from-home-than-others
https://www.bbc.com/worklife/article/20200506-why-are-some-people-better-at-working-from-home-than-others
https://us.directlyapply.com/future-of-the-remote-worker
https://www.ft.com/video/6e5acf3e-511b-48d1%e2%80%93948c-ff7c94f3ba1b
https://agilemanifesto.org/
https://doi.org/10.1007/11499053_43
https://doi.org/10.1145/1028664.1028722
https://doi.org/10.1145/1028664.1028722
https://doi.org/10.1145/2660252.2661293

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

316 D. Mancl and S. D. Fraser

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Author Index

Abrahamsson, Pekka 32, 41
Altuwaijri, Fahad S. 265
Anders, Niklas 125

Backer, Idun 173
Bakken, Ingrid Omang 245
Bass, Julian M. 236
Bjørnson, Finn Olav 75, 84
Bogazköy, Emre 50
Bosshard, Bill 141
Buchalcevová, Alena 92

Carroll, Noel 75
Chanin, Rafael 18
Conboy, Kieran 75
Copei, Sebastian 203

de Oliveira Rosa, Thatiane 291
de Toledo, Saulo S. 195
Dingsøyr, Torgeir 75, 84
Doležel, Michal 92, 253
Drechsler, Andreas 182

Eißler, Patrick 50

Feja, Sven 58
Ferrario, Maria Angela 265
Fraser, Steven D. 309

Goldman, Alfredo 291
Gren, Lucas 227
Guerra, Eduardo 9

Heshmatisafa, Saeid 23
Horlach, Bettina 182

Illikkal, Ramesh G. 133
Imtiaz, Salma 272

Jacobsen, Jan 111

Kaselow, Andreas 58
Khan, Huma Hayyat 272

Kottke, Mario 101
Koutsikouri, Dina 155
Kuhlenkamp, Jörn 125
Kuriata, Andrzej 133

Laatikainen, Gabriella 32, 41
Lassenius, Casper 245
Lindsjørn, Yngve 298
Lindström, Nataliya Berbyuk 155
Løvold, Henrik Hillestad 298

Madsen, Sabine 155
Mancl, Dennis 309
Martini, Antonio 195
Martini, William 141
Melegati, Jorge 9, 18
Mikalsen, Marius 173
Moe, Nils Brede 173
Mohagheghi, Parastoo 245
Mucaj, Nebi 125
Münch, Jürgen 50
Murphy, Seán 141

Pallas, Frank 125
Persaud, Leonardas 141
Petrik, Dimitri 58
Poth, Alexander 101, 111
Prikladnicki, Rafael 18

Qayyum, Shamaila 272

Rafiq, Usman 280
Remta, Daniel 92
Riel, Andreas 101, 111
Roling, Bastian 50
Rolland, Knut-Helge 75

Salameh, Abdallah 236
Sales, Afonso 18
Schmidt, Christian 125
Schmitt, Anna 219
Schneider, Jan 50
Semenov, Alexander 32, 41
Seppänen, Marko 23

Sharp, Helen 164
Silva, Kelson 9
Sjøberg, Dag I. K. 195
Stray, Viktoria 173, 298

Taylor, Katie 164
Theobald, Sven 219
Trieflinger, Stefan 50
Tsaplina, Olesia 125

Wang, Xiaofeng 280
Werner, Sebastian 125
Wickert, Manuel 203

Yildirim, Kann 125

Zhang, Yixin 32, 41
Zündorf, Albert 203

318 Author Index

www.dbooks.org

https://www.dbooks.org/

	Preface
	Organization
	Contents
	Third International Workshop on Software-Intensive Business
	Unleashing the Business Potential of Software: A Summary of the Third International Workshop on Software-intensive Business
	1 Introduction to the Workshop
	2 Presentations at the Workshop
	2.1 Keynote Talks
	2.2 Paper Presentations Continuing the Main Themes
	2.3 Paper Presentations Suggesting New Directions

	3 Future Focuses of IWSiB
	References

	An Approach for Software-Intensive Business Innovation Based on Experimentation in Non-software-Intensive Companies
	1 Introduction
	2 Background and Related Work
	3 Experiment-Driven Business-Oriented Innovation Approach
	3.1 Roles
	3.2 Steps

	4 Case Study
	4.1 Units of Analysis

	5 Discussion and Conclusions
	References

	Towards Specific Software Engineering Practices for Early-Stage Startups
	1 Introduction
	2 Necessity: Innovation and Market-Driven Context as a Challenge for Software Development in Startups
	3 Sufficiency: Innovation on Software-Intensive Market-Driven Products as Startups
	4 Current Proposals and Future Directions
	5 Conclusions
	References

	API Utilization and Monetization in Finnish Industries
	Abstract
	1 Introduction
	2 Background
	3 Research Method
	4 Results
	5 Conclusion
	References

	ICO Crowdfunding: Incentives, Pricing Strategy, Token Strategy and Crowd Involvement
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Findings
	4.1 Strategy for Providing Incentives for Investment: Crowdfunding Types
	4.2 Pricing Strategy: Time-Based Token Valuation
	4.3 Token Strategy: Sell, Burn, Exchange, Give
	4.4 Strategy for Crowd Involvement in Value Co-creation: Bounties and Referral Programs

	5 Discussion and Conclusions
	References

	What Key Aspects Do ICOs Reveal About Their Businesses?
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Sample
	3.2 Content Analysis

	4 Findings
	4.1 The Value Proposition
	4.2 Revenue Logic
	4.3 Activities

	5 Discussion and Conclusions
	References

	Product Roadmap Alignment – Achieving the Vision Together: A Grey Literature Review
	Abstract
	1 Introduction
	2 Related Work
	3 Research Approach
	3.1 Planning the Review
	3.2 Conducting the Review

	4 Threats of Validity
	5 Results
	6 Summary
	References

	Exploring the Success Factors for a Launch of an Algorithmic Consulting Platform
	Abstract
	1 Introduction
	2 Related Concepts
	3 Research Approach
	4 Results
	5 Discussion
	References

	Eighth International Workshop on Large-Scale Agile Development
	En
	1 Introduction
	2 Workshop Contributions
	2.1 Research Papers
	2.2 SAFe vs Spotify - A Short Discussion

	3 Programme Committee
	4 Conclusions
	References

	Operationalizing Agile Methods: Examining Coherence in Large-Scale Agile Transformations
	Abstract
	1 Large-Scale Agile Transformation
	2 Normalization Process Theory
	3 Research Method
	4 Findings
	4.1 Differentiation
	4.2 Communal Specification
	4.3 Individual Specification
	4.4 Internalization

	5 Discussion
	6 Conclusion
	Acknowledgements
	References

	Transitioning from a First Generation to Second Generation Large-Scale Agile Development Method: Towards Understanding Implications for Coordination
	Abstract
	1 Introduction
	2 Theory
	3 Method
	3.1 Case
	3.2 Research Method

	4 Results
	5 Discussion
	6 Conclusion and Further Work
	Acknowledgement
	References

	Exploring the Product Owner Role Within SAFe Implementation in a Multinational Enterprise
	Abstract
	1 Introduction
	2 Background
	3 Research Method
	4 Results
	5 Discussion and Summary
	Acknowledgment
	References

	Evaluation of Agile Team Work Quality
	Abstract
	1 Introduction
	2 A Team-Based Approach to Agile TWQ
	3 Evaluation and Improvement Iterations
	4 Conclusion
	References

	A Systematic Approach to Agile Development in Highly Regulated Environments
	Abstract
	1 Introduction
	2 Related Work and Methodology
	3 Scaling Conformity to Regulations via Levels of Done
	4 The LoD-PQR Approach
	5 Case Study: Instantiation, Deployment and Its Limitations
	6 Discussion and Conclusion
	References

	Second European Workshop on Serverless Computing and Applications
	Summary of the 2nd European Symposium on Serverless Computing and Applications - ESSCA

	Diminuendo! Tactics in Support of FaaS Migrations
	1 Introduction
	2 Application and Migration Goal
	3 FaaS Migration Approach
	3.1 Naïve Migration
	3.2 Regression Detection
	3.3 Refactoring

	4 Migration Tactics
	5 Conclusion
	References

	Predictable Performance for QoS-Sensitive, Scalable, Multi-tenant Function-as-a-Service Deployments
	Abstract
	1 Introduction
	1.1 The Importance of Predictable Functions Performance

	2 Analyzing Functions Performance and Performance Predictability
	2.1 Test Stack and Test Functions
	2.2 Introduction to Top-Down Microarchitecture Analysis Methodology
	2.3 Platform Resources Utilization Monitoring

	3 Improving Performance Predictability
	3.1 Analyzing Functions’ Co-location Cases
	3.2 Scheduling Improvements

	4 Future Work
	5 Conclusions
	References

	On the Use of Web Assembly in a Serverless Context
	1 Introduction
	2 Evaluation of Serverside WASM in Different Runtimes
	3 Running WASM in Serverless Context
	4 Conclusion
	References

	Second International Workshop on Agile Transformations
	Agile Transformation (ATRANS) Workshop: A Summary and Research Agenda
	1 Introduction
	2 Experience with Agile Transformation
	3 The Panel
	4 Research Agenda on Main Challenges
	5 Conclusion
	References

	Agile Transformation: How Employees Experience and Cope with Transformative Change
	Abstract
	1 Introduction
	2 Background
	3 Method
	4 Case Study
	4.1 Making Sense of the New
	4.2 Practicing with Peers
	4.3 Letting Go of Legacy

	5 Conclusion
	References

	Strategy-Focused Agile Transformation: A Case Study
	Abstract
	1 Introduction
	2 Case Background
	3 Method
	4 Results
	4.1 Transformation from Inside the Agile Transformation Team
	4.2 Transformation from the Heads of Department Perspectives

	5 Discussion
	6 Conclusion
	Acknowledgements
	References

	Shifting Conceptualization of Control in Agile Transformations
	Abstract
	1 Introduction
	2 Theory: A Changing Conceptualization of Control
	2.1 Agile Transformation and New Challenges of Control
	2.2 Stewardship Theory – Alternative Conceptions of Control

	3 Case and Method
	3.1 Case Background
	3.2 Data Collection and Analysis

	4 Findings
	5 Discussion
	6 Conclusion and Future Work
	References

	It’s Not Easy Being Agile: Unpacking Paradoxes in Agile Environments
	Abstract
	1 Introduction
	2 Empirical Background
	3 Sources for Agile Paradoxes on the Team Level
	3.1 Being Agile Versus Doing Agile
	3.2 Experience Versus ‘Appetite’ for Change and Flexibility
	3.3 Exploration Versus Exploitation
	3.4 Directed Versus Emergent Team Process Change

	4 Sources for Agile Paradoxes on the Organization Level
	4.1 Starting/Realizing the Agile (Self-)transformation: ‘Big Bang’ Versus Emergence
	4.2 Directing Teams Versus Team Autonomy
	4.3 Team Identity and Purpose Versus the Need for Radical Business Change

	5 Discussion, Conclusion, Outlook
	References

	First International Workshop on Agility with Microservices Programming
	Summary of the First International Workshop on Agility with Microservices Programming
	1 Introduction
	2 Workshop Model and Discussion
	Reference

	Improving Agility by Managing Shared Libraries in Microservices
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	4.1 The Issues Caused by Using Shared Libraries
	4.2 How to Manage Issues Regarding the Use of Shared Libraries

	5 Discussion and Threats to Validity
	6 Conclusions and Future Work
	References

	Certification as a Service
	1 Motivation
	2 Related Work
	3 The Agile Standardization and Certification Processes
	4 Certification as a Service Architecture
	5 Conclusion and Future Work
	References

	Third International Workshop on Autonomous Agile Teams
	A Decade of Research on Autonomous Agile Teams: A Summary of the Third International Workshop
	1 Introduction
	2 Research on Autonomous Teams
	3 Summary of the Workshop
	3.1 Research Themes on Autonomous Agile Teams

	4 Revised Research Agenda
	5 Conclusion
	References

	Dependencies of Agile Teams – An Analysis of the Scaled Agile Framework
	Abstract
	1 Introduction
	2 Motivation and Research Approach
	3 Results
	4 Discussion and Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

	Understanding Work Practices of Autonomous Agile Teams: A Social-psychological Review
	1 Introduction
	2 Important Psychological Theories
	3 Agile Practices and Social Psychology
	3.1 Iterative Development – A Core Practice of Agile Development
	3.2 Iteration Planning – A Teamwork Practice
	3.3 Stand-Up Meetings – A Teamwork Practice
	3.4 Retrospectives – A Teamwork Practice
	3.5 Co-location – A Teamwork Practice

	4 Discussion and Implications
	5 Conclusion
	References

	Spotify Tailoring for Architectural Governance
	1 Introduction
	2 Background
	2.1 The Spotify Model
	2.2 Agile Architecture

	3 Research Design and Methodology
	4 Findings
	4.1 Before Conducting the Intervention – Baseline
	4.2 After Conducting the Intervention – The Evaluated Approach
	4.3 Benefits and Challenges of the Evaluated Approach

	5 Discussion and Conclusion
	References

	Enabling Team Autonomy in a Large Public Organization
	Abstract
	1 Introduction
	2 Related Work
	3 Context and Method
	4 Results and Discussion
	4.1 Steps in the Transition Process
	4.2 Factors Important for Enabling Team Autonomy
	4.3 Benefits and Challenges
	4.4 Discussion

	5 Conclusions and Future Research
	References

	Defining TestOps: Collaborative Behaviors and Technology-Driven Workflows Seen as Enablers of Effective Software Testing in DevOps
	Abstract
	1 Introduction
	2 Research Approach
	3 Results: What Is TestOps?
	4 Discussion and Conclusion
	Acknowledgement
	References

	Doctoral Symposium
	Investigating Agile Adoption in Saudi Arabian Mobile Application Development
	1 Introduction
	1.1 Research Aims and Objectives
	1.2 Research Questions

	2 Related Work
	2.1 Agile Software Development Adoption
	2.2 Agile Awareness and Perceptions

	3 Research Methodology
	3.1 Empirical Investigation Design
	3.2 Data Analysis

	4 Validity Threats and Control
	5 Current Status
	References

	Crowd Agile Model for Effective Software Development
	Abstract
	1 Introduction
	2 Background and Motivation
	3 Related Work
	3.1 State of Knowledge on Crowd Sourced Agile Development

	4 Research Questions
	5 Methodology
	6 Research Framework
	7 Expected Outcomes
	References

	Continuous Information Monitoring in Software Startups
	Abstract
	1 Introduction
	2 Aim and Objectives
	3 Research Questions
	4 Related Work
	4.1 Findings

	5 Research Methods
	6 Conclusions
	References

	Agile Education and Training Track
	Is It Possible to Apply Agile Methods to Contribute to the Linux Kernel?
	1 Introduction
	2 XP Lab Course
	3 IIO Staging Drivers Project
	4 Labrador Project
	5 Lessons Learned
	6 Final Remarks
	References

	Forming and Assessing Student Teams in Software Engineering Courses
	1 Introduction
	2 Methods
	2.1 Course Design
	2.2 Forming Teams

	3 Results
	3.1 Group Formation Outcome
	3.2 Project Performance
	3.3 Individual Exam

	4 Discussion
	4.1 Study Limitations

	5 Conclusion and Future Work
	References

	Panel
	COVID-19’s Influence on the Future of Agile
	Abstract
	1 Setting the Context: COVID-19’s Impact on Agile
	2 COVID-19 Impact on Daily Work
	3 Impact on Agile Practices
	4 Whiteboarding and Other High-Bandwidth Collaborations
	5 Spinning up New Teams and On-Boarding New Employees
	6 Summary
	References

	Author Index

