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Chapter 8
Transformation in Scale for Continuous
Zooming

Zhilin Li and Haowen Yan

Abstract This chapter summarizes the theories and methods in continuous zooming
for Digital Earth. It introduces the basic concepts of and issues in continuous zooming
and transformation in scale (or multiscale transformation). It presents the theories of
transformation in scale, including the concepts of multiscale versus variable scale,
transformation in the Euclidean space versus the geographical space, and the the-
oretical foundation for transformation in scale, the Natural Principle. It addresses
models for transformations in scale, including space-primary hierarchical models,
feature-primary hierarchical models, models of transformation in scale for irregular
triangulation networks, and the models for geometric transformation of map data.
It also discusses the mathematical solutions to transformations in scale (including
upscaling and downscaling) for both raster (numerical and categorical data) and vec-
tor (point set data, line data set and area data) data. In addition, some concluding
remarks are provided.

Keywords Continuous zooming · Transformation in scale · Natural principle ·
Multiscale · Variable scale

Z. Li (B)
Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Hong
Kong, China
e-mail: zl.li@polyu.edu.hk

H. Yan
Department of Geographic Information Science, Lanzhou Jiaotong University, Lanzhou, China

Z. Li
State-Province Joint Engineering Laboratory of Spatial Information Technology for High-Speed
Railway Safety, Southwest Jiaotong University, Chengdu, China

© The Editor(s) (if applicable) and The Author(s) and European Union 2020
H. Guo et al. (eds.), Manual of Digital Earth,
https://doi.org/10.1007/978-981-32-9915-3_8

279

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-32-9915-3_8&domain=pdf
mailto:zl.li@polyu.edu.hk
https://doi.org/10.1007/978-981-32-9915-3_8
https://www.dbooks.org/


280 Z. Li and H. Yan

8.1 Continuous Zooming and Transformation in Scale:
An Introduction

8.1.1 Continuous Zooming: Foundation of the Digital Earth

Continuous zooming is a fundamental function of a Digital Earth, as the demand for
such a function has been vividly portrayed by then-US Vice President Al Gore in
his famous speech “The Digital Earth: Understanding Our Planet in the twenty-first
Century” (Gore 1998):

Imagine, for example, a young child going to a Digital Earth exhibit at a local museum.
After donning a head-mounted display, she sees Earth as it appears from space. Using a
data glove, she zooms in, using higher and higher levels of resolution, to see continents,
then regions, countries, cities, and finally individual houses, trees, and other natural and
man-made objects.

The cascade scene seen by the young child is a result of continuous zooming. Such
zooming can be realized by continuously displaying a series of Earth images taken
at a given position and changing the focal length of the camera lens continuously or
displaying images taken at different heights continuously but with at a fixed camera
focal length.

In theory, to make the display visually smooth, the differences between two images
should be sufficiently small, thus the number of images in such a series is very large,
which demands huge data storage. Thus, it is a very difficult, if not impossible,
problem.

8.1.2 Transformation in Scale: Foundation of Continuous
Zooming

In practice, Earth images are acquired and stored at discrete scales (e.g., 1:500,000,
1:100,000, 1:10,000) or different resolutions (e.g., 100, 10, 1, 0.5 m), leading to the
term multiscale representation. Figure 8.1 shows a series of satellite images covering
Hong Kong Polytechnic University at six different scales, extracted from Google
Maps. If such images at discrete scales are displayed in sequence, there will be a
visual jump between two images. The obviousness of the visual jump is dependent
on the magnitude of the scale difference. The smaller the difference between the two
scales is, the less apparent the visual jump will be.

To minimize the effect of such visual jumps, some techniques are required to
smooth the transformations from one scale to another scale to make the display appear
like continuous zooming. This transformation in scale is the foundation of continuous
zooming. Thus, transformation in scale, also called multiscale transformation, is the
topic of this chapter.
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Fig. 8.1 A series of images covering HK Polytechnic University at different scales (from Google
Maps)

8.1.3 Transformation in Scale: A Fundamental Issue
in Disciplines Related to Digital Earth

Transformation in scale is one of the most important but unsolved issues in various
disciplines related to Digital Earth, such as mapping, geography, geomorphology,
oceanography, soil science, social sciences, hydrology, environmental sciences and
urban studies. Typical examples are map generalization and the modifiable areal unit
problem (MAUP). Although transformation in scale is a traditional topic, it has been
a critical issue in this digital era.

Transformation in scale has attracted attention from disciplines related to Digital
Earth since the 1980s because a few important publications on the scale issue in
that period awakened researchers in relevant areas. Openshaw (1984) revisited the
MAUP. Abler (1987) reported that multiscale representation was identified as one
of the initiatives of the National Center for Geographic Information and Analysis
(NCGIA), and noted that zooming and overlay are the two most exciting functions
in a geographical information system. Since then, the scale issue has been included
in many research agendas (e.g., Rhind 1988; UCGIS 2006) and has become popular
in the geo-information community.

The first paper on the scale issue in remote sensing was also published in 1987
(Woodcock and Strahler 1987). Later, in 1993, the issue of scaling from point to
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regional- or global-scale estimates of the surface energy fluxes attracted great atten-
tion at the Workshop on Thermal Remote Sensing held at La Londe les Maures,
France from September 20–24. Scale became a hot topic in remote sensing as well.

As a result, many papers on the scale issue have been published in academic
journals and at conferences related to Digital Earth. Other papers have been p in the
form of edited books, such as Scaling Up in Hydrology Using Remote Sensing edited
by Stewart et al. (1996), Scale in Remote Sensing and GIS edited by Quattrochi
and Goodchild (1997), Scale Dependence and Scale Invariance in Hydrology edited
by Sposito (1998), Modelling Scale in Geographical Information Science edited
by Tate and Atkinson (2001), Scale and Geographic Inquiry: Nature, Society and
Method edited by Sheppard and McMaster (2004), Generalisation of Geographic
Information: Cartographic Modelling and Applications edited by Mackaness et al.
(2007), and Scale Issues in Remote sensing edited by Weng (2014). Authored research
monographs have also been published by researchers, e.g., Algorithmic Foundation
of Multi-Scale Spatial Representation by Li (2007) and Integrating Scale in Remote
Sensing and GIS by Zhang et al. (2017).

8.2 Theories of Transformation in Scale

Transformation in scale is the modeling of spatial data or spatial representations
from one scale to another by employing mathematical models and/or algorithms
developed based on certain scaling theories and/or principles. This section describes
such scaling theories and/or principles.

8.2.1 Transformation in Scale: Multiscale Versus Variable
Scale

To facilitate zooming, not necessarily continuous, a common practice of service
providers such as Google Maps, Virtual Earth and Tianditu is to organize maps and
images into nearly 20 levels (scales or resolutions), from global level to street level.
Figure 8.2 shows a series of maps covering Hong Kong Polytechnic University at six
different scales (extracted from Google Maps). This follows the tradition of organiz-
ing maps by national map agencies. For example, the United States Geological Survey
(USGS) produces topographic maps at scales of 1:500,000, 1:250,000, 1:100,000,
1:50,000 and 1:24,000; the Chinese State Bureau of Surveying and Mapping pro-
duces maps at scales of 1:4,000,000, 1:1,000,000, 1:250,000, 1:50,000 and 1:10,000;
the Ordnance Survey of the UK produces maps at scales of 1:50,000, 1:25,000 and
1:10,000; and the German federal states produces maps at 1:1,000,000, 1:250,000,
1:100,000, 1:50,000, 1:25,000 and 1:10,000 scales. These maps at different scales
contain information at different levels of detail, and thus are suitable for different
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Fig. 8.2 A series of maps covering Hong Kong Polytechnic University at different scales (extracted
from Google Maps)

applications. Such a scale is also called the cartographic ratio. Similarly, image data
and digital elevation models (DEMs) are also produced and stored at discrete scales.
In these two cases, the scale is normally indicated by resolution.

This kind of representation is called multiscale representation. In such cases, the
cartographic ratio is uniform across a map and/or an image. Thus, such represen-
tations have multiple cartographic ratios. The cartographic ratio may vary across a
representation (e.g., oblique view), leading to the term variable scale representation;
the resolution may also vary across a representation, leading to the term variable res-
olution representation. As a result, the term multiscale might mean different things to
different people, i.e., multi cartographic ratio, variable cartographic ratio, multi res-
olution and variable resolution. This leads to nine different kinds of transformations
in scale, as shown in Fig. 8.3.

8.2.2 Transformations in Scale: Euclidean Versus
Geographical Space

In Euclidean space, an increase in scale will commonly cause an increase in length,
area and volume; and a decrease in scale will cause a decrease in length, area and
volume, accordingly. Figure 8.4 shows an example of scale reduction and increase in
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(a) Same carto ratio & 
same resolution

(b) Same carto ratio & 
finer resolution

(c) Same carto ratio &
variable resolution

(f) Reduced carto ratio & 
finer resolution

(e) Variable carto ratio &
same resolution

(g) Variable carto ratio 
& finer resolution

(h) Variable carto ratio &
variable resolution

(d) Reduced carto ratio & 
same resolution

(i) Reduced carto ratio & 
variable resolution

R
atio 

varied

R
atio 

changed

Resolution 
changed

Resolution 
varied

Fig. 8.3 Nine types of transformations in scale (Li 2008)

At Scale 1 At Scale 2
(2X reduction)

At Scale 3
(4X reduction)

At Scale 3At Scale 2At Scale 1

Fig. 8.4 Scale change in Euclidean space: a reversible process (Li 2007)
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At Scale 1 At Scale 2 At Scale 3

At Scale 3At Scale 2At Scale 1

Fig. 8.5 Scale change in 2D geographical space: lost complexity is not recoverable (Li 2007)

a 2D Euclidean space. In such a transformation in scale, the absolute complexity of
a feature or features remains unchanged. That is, the transformations are reversible.

However, the geographical space is fractal. If one measures a coastal line using
different measurement units, then different lengths will be obtained. The smaller the
measurement unit is, the longer the length obtained. Similarly, different length values
will be obtained when measuring a coastal line represented on maps at different scales
using identical measurement units at map scale. That is, the transformation in scale
in fractal geographical space is quite different from that in Euclidean space.

For a given area on a terrain surface, the size of the graphic representation (or map
space) on a smaller scale map is reduced compared with that on larger scale maps.
The complexity of the graphics on a smaller scale map remain compatible with larger
scale maps. However, the absolute complexity is reduced. As a result, if the graphics
on a smaller map are enlarged back to the size on the larger scale map, the level
of complexity of the enlarged representation will appear to be reduced. Figure 8.5
illustrates such a case. In a fractal geographical space, the level of complexity cannot
be recovered by an increase in scale. In other words, the transformations in scale in
such a geographical space are not reversible.

The transformation in scale is also termed scaling. The process of making the
resolution coarser (or making the map scale smaller) is called upscaling. In contrast,
the transformation process to make the resolution finer (or map scale larger) is called
downscaling.

8.2.3 Theoretical Foundation for Transformation in Scale:
The Natural Principle

One question that arises is “does such a transformation follow any principle or law?”
The answer is “yes”. Li and Openshaw (1993) formulated the Natural Principle for
such a transformation in scale in fractal geographical space.
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Li and Openshaw (1993) made use of the terrain surface viewed from different
height levels as an example to illustrate the Natural Principle, as follows:

• When one views the terrain surface from the Moon, all terrain variations disappear,
and one can only see a blue ball;

• When one views the terrain surface from a satellite, then the terrain surface
becomes visible, but the terrain surface looks very smooth;

• When one views the terrain surface from an airplane, the main characteristics of
the terrain variations become very clear, but small details do not appear; and

• When one views the terrain surface from a position on ground, the main charac-
teristics of the terrain variations become lost, and one sees small details.

When the viewpoint is higher, the ground area corresponding to the human eyes’
resolution becomes larger, but all detailed variations within this ground area can no
longer be seen, and thus the terrain surface appears more abstract. These examples
underline a universal principle, the Natural Principle as termed by Li and Openshaw
(1993). It can be stated as follows:

For a given scale of interest, all details about the spatial variations of geographical objects
(features) beyond a certain limitation cannot be presented and can thus be neglected.

It follows that a simple corollary to this process can be used as a basis for transfor-
mations in scale. The corollary can be stated as follows (Li and Openshaw 1993):

By using a criterion similar to the limitation of human eyes’ resolution, and, neglecting all
the information about the spatial variation of spatial objects (features) beyond this limitation,
zooming (or generalization) effects can be achieved.

Li and Openshaw (1992) also term such a limitation as the smallest visible object
(SVO) or smallest visible size (SVS) in other literature (Li 2007). Figure 8.6 illustrates

Fig. 8.6 The natural principle: spatial variations within a smallest visible size (SVS) to be neglected
(Li 2007)
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the idea of this corollary, that is, that all spatial variations within the SVS can be
neglected, no matter how big they are on the ground.

Figure 8.7 illustrates the working example of applying the Natural Principle to
a terrain surface. Figure 8.7a shows the views of a terrain surface at two different
heights based on the Natural Principle, resulting in two quite different representations
in terms of complexity. Figure 8.7b, c show the results viewed at levels L A and L B ,
respectively. In these two Figures, the zooming (or generalization) effects are very
clear.

To apply the Natural Principle, the critical element to be considered is the value
of this “certain limitation” or SVS, beyond which all spatial variations (no matter
how complicated) can be neglected. Li and Openshaw (1992, 1993) suggested the
following formula:

LA

LB

LBLA

(a) The process of zooming at two viewing distances (scales)

Fig. 8.7 Zooming effect of a terrain surface generated by the Natural Principle (Li and Openshaw
1993)
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K = k × ST ×
(

1 − SS

ST

)
(8.1)

where ST and SS are the scale factors of the target and source data, respectively; k is
the SVS value in terms of map distance at the target scale and K is the SVS value in
terms of ground distance at the target scale. Through intensive experimental testing,
Li and Openshaw (1992) recommend a k value between 0.5 and 0.7 mm, i.e.,

k = {0.5 mm, 0.7 mm} (8.2)

8.3 Models for Transformations in Scale

To realize a transformation in scale, some transformation models must be adopted
and algorithms and/or mathematical functions for these models are applied. The
former is the topic of this section and the latter are described in Sect. 8.4.

8.3.1 Data Models for Feature Representation:
Space-Primary Versus Feature-Primary

To record features in geographical space, two different viewpoints can be taken:
feature-primary and space-primary (Lee et al. 2000).

In a feature-primary view, the geographical space is considered as being tessellated
by features and the locations of these features are then determined. This kind of
model is also called feature-based. In such a model, features are represented by
vectors, leading to the popular term vector data model. Figure 8.8a–c show the
representation of points, a line and an area using a vector model.

In a space-primary view, the geographical space is considered as being tessellated
by space cells. In such a tessellation (partitioning), square raster cells are popularly
employed, leading to the popular term raster data model. In each raster cell, there
could be a feature or there might be no features. A point is represented by a pixel
(picture element); a line is represented by a string of connected pixels and an area
is formed by a set of connected pixels, as shown in Fig. 8.8d–f. The cells can be
in any form, regular or irregular. Irregular triangular networks are another popular
tessellation.

On a spherical surface, longitude/latitude is the coordinate system for feature-
primary representation. The cells with an equal interval in latitude/longitude (e.g.,
6′ × 6′) are the raster equivalent of spherical tessellation (Fig. 8.9a). However, the
actual area size of such a cell varies with the latitude. To overcome this problem,
the quaternary triangular mesh (QTM) (Fig. 8.9b) has been used (e.g., Dutton 1984,
1996). The cells can be any shape (e.g., triangle, hexagon), regular or irregular.
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(a) Points in vector

O 
X 

Y 

O 
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Y 

(b) A curve line in vector,
by connected line segments

(d) Points in raster
by pixels

(e) A line in raster
by a string of pixels

(f) An area in raster,
by agroup of pixels

O 
X 

Y 

(c) An area in vector,
by its boundary -- enclosed

line

Fig. 8.8 Feature-primary and space-primary representations of spatial features: vector and raster
models

(c) hexagon 
cells

(d) Voxel in 3D space(b) Triangular
cells

(a) Long./latitude
cells

Fig. 8.9 Spatial tessellation of a spherical surface and a 3D space

Figure 8.9c shows the use of a regular hexagon diagram for such a tessellation. For
3D space, the voxel (volume element) is the raster equivalent for space tessellation
(Fig. 8.9d).

As the natures of the raster and vector data models are quite different, the model
for transformation in scale in these two data models might also differ. Thus, separate
subsections are devoted to these topics.
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8.3.2 Space-Primary Hierarchical Models
for Transformation in Scale

Hierarchical models are popular for the multiscale representation of spatial data
at discrete scales. For example, Google Maps, Virtual Earth and Tianditu have all
adopted hierarchical models for the representation of images and maps. Figure 8.10
shows the first three zoom levels of the hierarchical model used by Google Maps
(Stefanakis 2017). This model has a special name, the pyramid model, which is a
result of aggregating a 2 × 2 pixel into one pixel. The number of pixels (squares) at
the nth level is 4n−1. A more general form of aggregation is to transform any N × N
pixels into one pixel.

A more general form of transformation to create a hierarchical representation is
to transform N × N pixels into M × M pixels, e.g., a 5 × 5 into a 2 × 2 or a 3 × 3
into a 2 × 2. In such cases, a resampling process (instead of simple aggregation) is
required.

With a hierarchical model, the resolution and cartographic ratio at each level
are not necessarily uniform. Typical examples of hierarchical models with variable
resolutions are shown in Fig. 8.11, i.e., the quadtree and binary tree models.

With the pyramid and quadtree models, the hierarchical levels are fixed and the
transformation in scale jumps from one level to another like stairs. To make the
transformation absolutely smooth, we need to make the difference between two
steps of the stairs infinitely small, to make the stairs become a continuous linear
slope (see Fig. 8.12).

For hierarchical representation on a spherical surface, the Open Geospatial Con-
sortium (OGC) approved a new standard called the Discrete Global Grid System
(DGGS) (OGC 2019) The hierarchical representation of QTM as shown in Fig. 8.9b
is an example of such a DGGS.

Fig. 8.10 Pyramid model used in Google Maps: the first three zoom levels (Stefanakis 2017)



8 Transformation in Scale for Continuous Zooming 291

Quadtree description

500 m level

1000 m level

250 m level

125 m level

62.5 m level

One kilometer square

NW
NE

SW 
SE 

Fig. 8.11 Hierarchical representations of area features with quadtree and binary tree models

(b) Continuous scales, like a slope(a) Discrete scales, like stairs

Fig. 8.12 Discrete and continuous transformations in scale: steps and a linear slope

8.3.3 Feature-Primary Hierarchical Models
for Transformation in Scale

Hierarchical models have also been used to represent point, line and area features in
feature-primary models. Figure 8.13 shows such a representation for the points on a
line. At level 1, only two points, i.e., points (1, 1) and (1, 2), will be used to represent
the line; at level 2, in addition to the two points at level 1, point 2 will also be used;
and at level 3, points (3, 1) and (3, 2) will also be used. This kind of model has been
employed for progressive transmission of vector data.

Figure 8.14 shows the hierarchical representation of a river network by the Hor-
ton and Shreve models. Figure 8.14a is a hierarchical representation based on river
segments. The formation of such a representation starts from the level 1 branches. A
segment of level 2 is formed by two or more segments of level 1. Similarly, a segment
of level 3 is formed by two or more segments of level 2. All higher level segments
are formed by following this principle. Figure 8.14b is a hierarchical representation
formed by the Horton model based on a river stroke, which is a concatenated seg-
ment. Figure 8.14c is a hierarchical representation formed by the Shreve model. The
numbering in this hierarchy is formed by adding the numbers of upstream branches.
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Fig. 8.13 Hierarchical representations of points on a line
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Fig. 8.14 Hierarchical representation of a river network using the Horton and Shreve models (Li
2007)

For example, the ranking value for the segment with the highest ranking is 13, which
is a result of adding 9 and 4. Such a numbering of ranking is not continuous.

Figure 8.15 shows the hierarchical representation of two transportation networks.
In this case, the importance of each road is evaluated based on geometric information
and/or thematic information. A ranking value is assigned to each road.

Figure 8.16 shows a hierarchical representation of area features. The area features
in the whole area are first connected by a minimum spanning tress (MST) as a
whole group, i.e., Group A. Group A is then subdivided into subgroups B and C
by breaking the tree at the connection with the largest span. Similarly, Group B is
broken into D and E, and Group C is broken into F and G. The subdivision goes on
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Fig. 8.15 Hierarchical representations of transformation networks (Zhang and Li 2009)
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Fig. 8.16 Hierarchical representations of area features (Ai and Guo 2007)
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until a criterion is met or until the complete hierarchy is constructed. In the end, a
hierarchical representation is formed.

8.3.4 Models of Transformation in Scale for Irregular
Triangulation Networks

An irregular triangulation network is an irregular space tessellation that has been
widely used for digital terrain models (DTMs). In such a representation, the resolution
is variable across the space. Therefore, special models should be used to make the
resolution transformable from one to another. Four basic transformation models have
been developed for such a purpose (Li 2005):

• Vertex removal: A vertex in the triangular network is removed and new triangles
are formed.

• Triangle removal: A complete triangle with three vertices is removed and new
triangles are formed.

• Edge collapse: An edge with two vertices is collapsed to a point and new triangles
are formed.

• Triangle collapse: A complete triangle with three vertices is collapsed to a point
and new triangles are formed.

Figure 8.17 illustrates these four transformation models.

8.3.5 Models for Geometric Transformation of Map Data
in Scale

The hierarchical model described in Sect. 8.3.2 is suitable to represent raster image
data because images are numerical data that naturally record the earth and such a
recording follows the Natural Principle described in Sect. 8.2.3. Figure 8.18 shows
four images with different resolutions, the result of a “2 × 2 into “1 × 1” aggrega-
tion. These images appear to be very natural. However, for the categorical data of
topographic maps, such a simple transformation does not work well, and there is a
need for other transformation models.

Topographic maps are produced via a complicated intellectual process that con-
sists of abstraction, symbolization, generalization, selective omission and simplifica-
tion. During this process, small details are ignored (or grouped together). All features
are represented by symbols (geometric or pictorial). The colors of the symbols are
not necessarily the natural colors of features. The graphic symbols are annotated
with text (e.g., name of a street/town/city). There are requirements for minimum
size, minimum separation and minimum differentiation for graphic elements. Thus,
when a map at a larger scale (Fig. 8.19c) is simply reduced by 4 times (equivalent to
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(c) Edge collapse

(d) Triangle collapse

(b) Triangle removal

(a) Vertex removal

Fig. 8.17 Basic models for geometric transformation in scale for a triangular network (Li 2005)

Image resolution becomes coarser with a 
“2×2” into “1x1” aggregation

Fig. 8.18 Four images with the same cartographic ratio but different resolutions
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(b) Topographic map at 1:7,000
displayed at 1:28,000

(a) Topographic map at 1:28,000

(c) Topographic map at 1:7,000

Fig. 8.19 Kowloon Peninsula represented on maps at two different scales, via generalization and
simple scale reduction (extracted from Google Maps)

a “2 × 2 into 1” aggregation), the graphics (Fig. 8.19b) become unclear because the
minimum requirements can no longer be met. Figure 8.20 illustrates such a situation
with the aggregation of buildings as an example. A set of special models is needed
for the transformation of map data from one scale to another to make the graphics at
the smaller scale clear (Fig. 8.19a).

The transformation of maps from a larger scale to a smaller scale is called map
generalization and has long been studied in the cartographic community. Some trans-
formation models have been identified by researchers. In the traditional textbook by
Robinson et al. (1984), only four models are listed, i.e., classification, induction,
simplification and symbolization. In the 1980s, more models were identified, and
a list of 12 models was produced by McMaster and Shea (1992). Many of these
models were still too general to be precisely implemented in a computer system.
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Settlements
Green Space

Source map at scale 1:S

1:2S 1:4S 1:8S
Results of map generalization at different scales

Results of maps with simple scale reduction to different scales
1:2S 1:4S 1:8S

Fig. 8.20 Comparison of map generalization and simple scale reduction

More recently, Li (2007) produced 40 detailed models for implementation. These
models are divided into six sets: three sets for individual points, individual lines and
individual areas and the other three sets for a class of points, a class of lines and a
class of areas. Tables 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6 list the six sets of models.

Table 8.1 Models for geometric transformations in scale of individual point features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Displacement
(move because it is too close to another
feature)

Elimination
(too small to represent, thus removed)

Magnification
(enlarged due to importance)

Table 8.2 Models for geometric transformations in scale of a set of point features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Aggregation
(group points and make a new one)

Regionalization
(delineate a boundary outlined by points
and make a new area feature)

(continued)
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Table 8.2 (continued)

Transformation model Large-scale Photo-reduced Small-scale

Selective Omission
(retain more important points and omit less
important ones)

(Structural) Simplification
(cluster complexity; the main structure is
retained)

Typification
(typical pattern kept while points removed
for clarity)

Table 8.3 Models for geometric transformations in scale of individual line features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Displacement
(to move a line away from the
position because it is too close to
another feature)

Elimination
(to remove the line because it is too
minor to be included)

(Scale-driven) generalization
(main structure suitable at target
scale retained but small details
removed)

Partial modification
(to modify the shape of a segment
within a line)

Point reduction
(to reduce the number of points by
removing less important points)

Smoothing
(to make the
data appear
smoother)

Curve-fitting
(to fit a curve
through a set of
points)

Filtering
(to filter out the
high-frequency
components or
small details of
a line)

(continued)
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Table 8.3 (continued)

Transformation model Large-scale Photo-reduced Small-scale

Typification
(typical patterns of the line bends
retained while removing some of
them)

Table 8.4 Models for geometric transformations in scale of a set of line features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Selective omission
(to select more important points and
remove less important points)

Collapse
(to reduce the
dimension)

Ring-to-point

Double-to-single

Enhancement
(to keep the characteristics clear)

Merging
(to combine to two or more close
lines together)

Displacement
(to move one away from others or
both away from each other)

Table 8.5 Models for geometric transformations in scale of individual area features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Collapse
(to reduce the
dimension of
features)

Area-to-point

Area-to-line

Partial

Displacement
(to move the area to a slightly
different position to solve the
conflict problem)

(continued)
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Table 8.5 (continued)

Transformation model Large-scale Photo-reduced Small-scale

Exaggeration
(to enlarge one
or two
dimensions of a
small area)

Directional
thickening
(to enlarge an
area feature in
a direction)

Enlargement
(to uniformly
magnify in all
directions)

Widening
(to widen the
bottleneck of
an area feature)

Elimination
(to eliminate data that is too small
to represent

(Shape) Simplification
(to reduce the complexity of a
boundary)

Split
(to split an area into two because
the connection between them is
too narrow)

Table 8.6 Models for geometric transformations in scale of a set of area features (Li 2007)

Transformation model Large-scale Photo-reduced Small-scale

Aggregation
(to combine area features, e.g., buildings
separated by open space)

Agglomeration
(to make area features bounded by thin
area features into adjacent area features)

Amalgamation
(to combine area features, e.g., buildings
separated by another feature such as
roads)

Dissolving
(to split a small area into pieces and
merge these pieces into adjacent areas)

(continued)
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Table 8.6 (continued)

Transformation model Large-scale Photo-reduced Small-scale

Merging
(to combine two adjacent areas into one)

Relocation
(to move more than one feature around to
solve the crowding problem)

(Structural) Simplification
(to retain the structure of area patches by
selecting important ones)

Typification
(to retain the typical pattern, e.g., a group
of areas aligned in rows and columns)

8.3.6 Models for Transformation in Scale of 3D City
Representations

For 3D representation of digital cities, the CityGML, which was officially adopted
by the OGC in 2008, specifies five well-defined consecutive levels of detail (LOD)
as follows, an example of which is shown in Fig. 8.21 (Kolbe et al. 2008):

• LOD 0—regional, landscape
• LOD 1—city, region
• LOD 2—city districts, projects
• LOD 3—architectural models (outside), landmarks
• LOD 4—architectural models (interior)

For the transformation in scale of 3D features, a set of models is listed in Table 8.7,
which is a summary of models proposed in the literature.

Fig. 8.21 The five levels of detail (LoD) defined by CityGML (Kolbe et al. 2008)
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Table 8.7 Models for transformation in scale of 3D features

Transformation model At large scale Photo-reduced At small scale

Elimination Geometric
elimination

Thematic
elimination

Exaggeration Thematic
exaggeration

Geometric
exaggeration

Simplification Vertical
simplification

Flattening

Squaring

Thematic
simplification

Displacement

Typification
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8.4 Mathematical Solutions for Transformations in Scale

In the previous section, several sets of models for the transformation in scale were
described. These models express what is achieved in such transformations, e.g., the
shape is simplified, important points retained, and/or the main structure is preserved.
To make these transformations work, mathematical solutions (e.g., algorithms and
mathematical functions) must be developed for each of these transformations. A
selection of these solutions is presented in this section.

8.4.1 Mathematical Solutions for Upscaling Raster Data:
Numerical and Categorical

For raster-based numerical data such as images and digital terrain models (DTMs),
aggregation is widely used to generate hierarchical models. In recent years, wavelet
transform (e.g., Mallat 1989), Laplacian transform (Burt and Adelson 1983) and other
more advanced mathematical solutions have also been employed. The commonly
used aggregation methods are by mode, by median, by average, and by Nth cell
(i.e., Nth cell in both the row and column). Figure 8.22 shows a “3 × 3 to 1 × 1”
aggregation with these four methods. The 6 × 6 grid is then aggregated into a 2 × 2
grid.

If the new cell interval is not multiples of the original cells, then interpolation
must be applied to resample the data. Bilinear and weighted averaging interpolations
are widely used for resampling. Figure 8.23 shows the resampling of a 3 × 3 grid
into a 2 × 2 grid using weighted averaging interpolation.

Bilinear interpolation can be performed for any four points (not along a line). The
mathematical function is as follows:
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Fig. 8.22 “3 × 3 to 1 × 1” aggregation of numerical data
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(a) Original data (6×6 grid)
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(b) Area-weighted interpolation

Fig. 8.23 “3 × 3 to 2 × 2” resampling of numerical data

z = a0 + a1x + a2 y + a3xy (8.3)

where a0, a1, a2, a3 is the set of four coefficients, which are to be determined by four
equations that are formed by making use of the coordinates of four reference points,
i.e., the centers of the four grid cells in Fig. 8.23b: P1(x1, y1, z1), P2(x2, y2, z2),
P3(x3, y3, z3) and P4(x4, y4, z4). The mathematical formula is as follows:

⎡
⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 x1 y1 x1 y1

1 x2 y2 x2 y2

1 x3 y3 x3 y3

1 x4 y4 x4 y4

⎤
⎥⎥⎦

−1⎡
⎢⎢⎣

z1

z2

z3

z4

⎤
⎥⎥⎦ (8.4)

Once the coefficients a0, a1, a2, a3 are computed, the height ZP of any point P
with a given set of coordinates (xP , yP) can be obtained by substituting (xP , yP) into
Eq. (8.1).

The mathematical expression of weighted averaging interpolation is as follows:

z =
∑n

i=1 wi zi∑n
i=1 wi

(8.5)

where wi is the weight of the ith reference point; zi is the height of the ith reference
point; and n is the total number of the reference points used. In the case of Fig. 8.23b,
n = 4.

Weights may be determined by using different functions. The simplest weighting
function assigns an equal weight to all reference points. However, it seems unfair to
those reference points that are closer to the interpolation point, as such points should
have a higher influence on the estimate. As a result, distance-based or area-based
weighting are more commonly used. The inverse of distance is most popularly used:

w = 1

d
or w = 1

d2
(8.6)
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where d is the distance from a reference point to the interpolation point. In the case
of interpolating the height of P in Fig. 8.23b, the four distances from the four (old)
cell centers to point P will be used. Figure 8.23b also shows that the distance of
each cell center to the interpolation point P is directly related to the size of the area
contributed by each (old) cell to the new cell. If the area size is denoted as A, the
weighting function is

wi = Ai (8.7)

For example, if the area of the new cell is composed of 100% of the upper left
cell, 50% of the upper right cell, 50% of the lower left cell and 25% of the lower
right cell, the weights of these four cells are 1.0, 0.5, 0.5 and 0.25, and the result of
the interpolation is:

zp = 1 × 4 + 0.5 × 7 + 0.5 × 5 + 0.25 × 7)/2.25 ≈ 5

For the raster-based categorical data, the averaging and median are no longer
applicable. The mode (also called the majority in some literature) is still valid and
widely used. Figure 8.24b shows such a result. However, the value for the upper
right cell is difficult to determine as there is no mode (majority) in the 3 × 3 window
at the upper right corner of the original data (Fig. 8.24a). Notably, some priority
rules or orders are in practical use. For example, a river feature is usually given a
priority because thin rivers are likely to be broken after aggregation. Figure 8.25
shows the improvement in the connectivity of river pixels with water as the priority.
Figure 8.24c-e show the results with different options, e.g., random selection and
central pixel. It is also possible to consider the statistical distribution of the original
data (e.g., A = 8, T = 10, W = 6, S = 11) to try to maintain the distribution as much
as possible.

In the aggregation/resampling process, as illustrated in Figs. 8.22, 8.23 and 8.24,
a moving window is used but the question of the most appropriate window size
has rarely been addressed. Li and Li (1999) suggested that the size of the moving
window for aggregation/resampling should be computed based on the resolutions
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Fig. 8.24 Aggregation of raster-based categorical data
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(a) Original data (b) “3×3 to 1” aggregation (c) “3×3 to 1” aggregation
with water as the priority

Fig. 8.25 Aggregation of landcover data with priority (extracted from Tan 2018)

(scales) of the input and output, following the Natural Principle (Li and Openshaw
1993) described in Sect. 8.2.3. Mathematically,

W = K

Rin
(8.8)

where Rin is the resolution (scale) of the input data; K is the SVS value in terms of
ground distance at the target scale computed by Eq. (8.1), and W is the size of the
window’s side in terms of pixel numbers (of input data).

8.4.2 Mathematical Solutions for Downscaling Raster Data

Downscaling produces a finer spatial resolution raster data than that of the input
data through prediction. It is possible to use simple resampling (as described in
Sect. 8.4.1) to achieve downscaling. However, methods based on spatial statistical
analysis are more theoretically grounded and have become popular (Atkinson 2008,
2013), particularly area-to-point prediction (ATPP). Double dictionary learning has
also been used (Xu and Huang 2014).

Area-to-point kriging (ATP Kriging or ATPK) (Kyriakidis 2004) is the typical
method. ATP Kriging can ensure the coherence of predictions, such as by ensuring
that the sum of the downscaled predictions within any given area are equal to the orig-
inal aggregated count. Some variants of ATP Kriging have also been developed, e.g.,
ATP Poisson Kriging (Goovaerts 2008, 2009, 2010), indicator cokriging (Boucher
and Kyriakidis 2006) and ATP regression Kriging (Wang et al. 2015). In this section,
the base version of ATP Kriging is described.

The basic principle behind Kriging is weighted averaging. The weights are opti-
mized by using the semivariogram computed from the original data.
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Ze,p =
∑

wi × Zi (8.9)

where Ze,p is the estimated (interpolated) value; Zi is the value of the ith reference
point; wi is the value of the ith reference point and

∑
wi = 1.

The interpolated value Ze,p is very likely to deviate from the actual value at point
p, Za,p. The difference is called the estimation error. The variance of these deviations
is expressed by Eq. (8.10).

σ 2
z =

∑n
i=0(Ze,p − Za,p)

2
i

n
(8.10)

The basic principle of Kriging is to produce the minimum estimation variance
by choosing a set of optimal weights. Such weights are obtained by solving a set of
simultaneous equations:

w1 × γ (d11) + w2 × γ (d12) + · · · · · · + wm × γ (d1m) + λ = γ (d1P)

w1 × γ (d21) + w2 × γ (d22) + · · · · · · + wm × γ (d2m) + λ = γ
(
d2p

)
. . . . . .

w1m × γ (dm1) + w12 × γ (dm2) + · · · · · · + w1m × γ (dmm) + λ = γ (dm P)

w1 + w2 + · · · · · · + wm = 1
(8.11)

where wi is the weight of the ith reference point; λ is the Lagrange multiplier;
and γ (d) is the semivariogram value of points with distance d apart, which can be
expressed as follows:

γ (d) =
∑nd

i=0(Zi − Zi+d)
2
i

nd
(8.12)

In ATP Kriging, the interpolation finds an estimate for a point at higher resolution.
In such a case, a cell point at coarser resolution corresponds to an area at higher
resolution. Therefore, the set of simultaneous equations is as follows:

w1 × γ (d11) + w2 × γ (d12) + · · · · · · + wm × γ (d1m) + λ = γ (d1A)

w1 × γ (d21) + w2 × γ (d22) + · · · · · · + wm × γ (d2m) + λ = γ (d2A)

. . . . . .

w1m × γ (dm1) + w12 × γ (dm2) + · · · · · · + w1m × γ (dmm) + λ = γ (dm A)

w1 + w2 + · · · · · · + wm = 1
(8.13)

where γ (di A) is the point-to-block semivariogram value from the ith point to area A.
It is the same as the average of the point-to-point semivariogram value between the
ith point and the points within A.
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8.4.3 Mathematical Solutions for Transformation (in Scale)
of Point Set Data

As discussed in Sect. 8.3.5, a number of transformations are possible, such as region-
alization, aggregation, selective omission, structural simplification, and typification.
In both aggregation and regionalization, the clustering plays a central role. In aggre-
gation, a cluster is represented by a point; in regionalization, a cluster is represented
by an area. Thus, clustering is discussed here.

Clustering is one of the most primitive activities of human beings (Anderberg
1973; Xu and Wunsch 2005). Clustering of spatial points is one of the main tasks in
digital earth such as in spatial data mining and exploratory spatial analysis (Estivill-
Castro and Lee 2002; Miller and Han 2009; Openshaw et al. 1987). Numerous
clustering methods are available. The classic algorithms are the K-means algorithms,
and the ISODATA algorithm is an important extension of K-means (Ball and Hall
1967). Classification by K-means is achieved by minimizing the sum of the square
error over all K clusters (i.e., the objective function) as follows:

E =
K∑

k=1

∑
xi ∈Ck

∣∣xi − C̄k

∣∣2
(8.14)

where C̄k is the mean of the cluster Ck . The procedure of this algorithm is as follows:

(1) arbitrarily select K points from data set (X) as initial cluster centroids;
(2) assign each point in X to the cluster whose centroid is closest to the point;
(3) compute the new cluster centroid for each cluster; and
(4) repeat Steps (2) and (3) until no change can be made.

However, Li et al. (2017) noted that (a) all clustering algorithms discover clusters in
a geographical dataset even if the dataset has no natural cluster structure and (b) quite
different results will be obtained with different sets of parameters for the same algo-
rithm. These two problems lead to the difficulty in understanding the implications of
the clustering results. Consequently, Li et al. (2017) proposed a scale-driven cluster-
ing theory. In this theory, scale is modeled as a parameter of a clustering model; the
scale dependency in the spatial clustering is handled by constructing a hypothesis
testing; and multiscale significant clusters can be discovered by controlling the scale
parameters in an objective manner. The basic model can be written as

C = f (D, A) (8.15)

where C is the clustering result; f is the clustering model; A is the analysis scale (the
size of clusters or the degree of homogeneity within clusters); and D is the data scale
(e.g., resolution and extent).

The clustering consists of two major tasks, i.e., estimation of the density for each
point and detection of dense regions. The procedure is as follows:
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Fig. 8.26 Scale-driven clustering: five results produced at five different scales from the same
simulated dataset (Li et al. 2017)

(1) Control the data scale: Determine the SVS (smallest visible size) based on input
and output data scales and following the Natural Principle, and ignore all the
points within an SVS in the calculation of point data density.

(2) Identify high-density points: The probability density function (PDF) of the
dataset is estimated with adaptive analysis scales. The PDF are statistically
tested against a null distribution. Points with a significantly higher density are
then identified.

(3) Group the high-density points into clusters: Clusters with different densities are
formed by adaptively breaking the long edges in the triangulation of high-density
points. The significance of clusters obtained at multiscales can be statistically
evaluated.

Figure 8.26 shows an example of transforming a set of point data into five different
scales. When the output scale decreases (or the resolution becomes coarser), fewer
classes can be identified by this clustering technique.

8.4.4 Mathematical Solution for Transformation (in Scale)
of Individual Lines

As discussed in Sect. 8.3.5, there are eight different types of transformation for
individual lines and the algorithms/mathematical solutions for the transformation
models are discussed in detail by Li (2007). In this section, two classic algorithms
are described in detail, i.e., the Douglas–Peucker algorithm (Douglas and Peucker
1973) and the Li–Openshaw algorithm (Li and Openshaw 1992).
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Fig. 8.27 Douglas–Peucker algorithm for generation of a point hierarchy

In Fig. 8.13, a hierarchical representation of the points on a line is presented.
The order of these points is sorted by the Douglas–Peucker algorithm. The working
principle of this algorithm is illustrated in Fig. 8.27. A curve line is given with an
ordered set of points, and a distance tolerance ε (> 0) is set. The basic idea is to
use a straight line connecting the first and last points to represent the curve line if
the deviations from all line points to the straight line are smaller than ε. In this case,
only the two end points are selected and all middle points are regarded as being
insignificant and can be removed.

The algorithm first selects two end points (i.e., the first and last points). It then
searches for the point that has the largest deviation from the straight-line segment
connecting these two end points, i.e., at point 2 in Fig. 8.27. If the deviation is larger
than ε, then this point is selected; otherwise, all other points can be ignored. In this
example, point 2 is selected and it splits the line into two pieces. The search is then
carried out for both pieces. Then, points (3, 1) and (3, 2) are selected. These two
points split the whole line into four pieces, and the search will be carried out for
these four pieces. The process continues until all the deviations are smaller than ε.

Visvalingham and Whyatt (1993) and Li (2007) noted that the Douglas–Peucker
algorithm may cause huge shape distortion. To overcome this problem, Visvalingham
and Whyatt (1993) believed that the size of an area “sets a perceptual limit on the
significance” and is the most reliable metric for measuring the importance of points
since it simultaneously considers the distance between points and angular measures.
They used the effective area of a point as the threshold, as illustrated in Fig. 8.28.
For example, the effective area of point 2 is the area covered by the triangle formed
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Fig. 8.28 Effective area as a metric in Visvalingham–Whyatt algorithm for generation of a point
hierarchy

by points 1, 2 and 3. The basic idea of this algorithm is to progressively eliminate
the point with smallest effective area from the list, and the effective areas of the two
points adjoining the recently deleted point should be immediately updated. In this
example, point 11 is first eliminated and point 13 is removed. The points are ranked
from least to most important according to the sequence of elimination.

Many researchers (Li and Openshaw 1992; Visvalingham and Whyatt 1993;
Weibel 1996) have noted that the Douglas–Peucker algorithm will create self-
intersection (with the line itself) and cross-intersections (between neighboring lines).
This problem is associated with all the algorithms with an objective of point reduction
or curve approximation. Li and Openshaw (1992) argued that these algorithms are not
suitable for generalization (i.e., transformation in scale) because they are normally
evaluated with the original curve line (but do not correspond with the curve line at
other scales) as the benchmark. To perform transformation in scale for line features,
the Li–Openshaw algorithm should be employed as this algorithm, “by virtue of its
raster structure, implicitly (but not explicitly) avoids self-overlaps” (Weibel 1996).
Even for a very complex coastline, it can produce results that are extremely similar to
those manually generalized to various scales, as illustrated by Fig. 8.29. Many recent
evaluations also indicate that the Li–Openshaw algorithm produces reasonable and
genuine results (e.g., Zhu et al. 2007).

The Li–Openshaw algorithm follows the Natural Principle (Li and Openshaw
1993) described in Sect. 8.2.3, i.e., to neglect all spatial variations within the SVS
that is computed by using input and output scales. The SVS is mimicked by a cell or
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Manual
Li-Openshaw

(a) Source map at 1:50,000

(b) Digitized map at 1:250,000

(d) Digitized map at 1:625,000

(c) Generalized to 1:250,000

(e) Generalized to 1:500,000

Fig. 8.29 A comparison of the results of manual generalization and the Li–Openshaw algorithm
(Li 2007)

pixel although other geometric elements are also possible (e.g., hexagon by Raposo
in 2013). The cells can be organized in the form of a none overlapped tessellation or
with overlaps. If there is no overlap, it becomes a pure raster template. Figure 8.30
shows the generalization (transformation) process with a raster template. In this
example, each SVS is represented by a raster pixel and the result is represented by
pixels, as shown in Fig. 8.30b, or by its geometric center.

Three algorithms were developed by Li and Openshaw (1993) in different modes,
raster node, vector mode and raster-vector mode. The algorithm in raster-vector
mode was recommended. Figure 8.31 shows the generalization by the Li–Openshaw
algorithm in raster-vector mode. The first point to be recorded is the starting point.
The second point is somewhere within the second cell. In this implementation, the
middle point between the two intersections between cell grids and the line (Fig. 8.31b)
is used. If there is more than one intersection, the first (from the inlet direction) and
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(a) Each SVS represented by a pixel

(b) Result represented by pixels

(c) Each SVS represented by its center

(d) Result represented by pixel centers

Fig. 8.30 Li–Openshaw algorithm in raster mode; each cell is an SVS (Li 2007)

(a) A raster template laid down
on the line

(b) Recording 1st and 2nd points

(c) If more than one intersection, 
take 1st and last

(d) Generalization of a complete line

Fig. 8.31 Li–Openshaw algorithm in raster-vector mode (Li 2007)
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Fig. 8.32 Downscaling of a line by fractal enhancement (Clarke 1995)

the last (outlet direction) intersections are used to determine the position of the new
point ((Fig. 8.31c). The final result of the generalization of a complete line is given
in Fig. 8.31d.

Similar to the algorithm in raster mode, overlap between SVSs can also be adopted,
although it is not too critical. Notably, it is not necessary to take the average to
represent a cell. It does not matter what point within the cell is used, as the cell itself
is an SVS. Thus, it is also possible to take an original point, which is considered a
critical point to represent the cell.

Some work has also been carried out to downscale the lines, i.e., to add more
details to the lines. A typical example of such work is that by Dutton (1981), which
adds more details to the line by following the fractal characteristics of the line itself
(see Fig. 8.32).

8.4.5 Mathematical Solutions for Transformation (in Scale)
of Line Networks

In geographical space, three types of line networks are commonly used, contour line
networks, hydrological networks and transportation networks. Some hierarchical
models were presented in Sect. 8.3.3. The mathematical solutions for the transfor-
mation in scale of these networks are discussed in detail by Li (2007). Here, only the
construction of a hierarchy for transportation networks is described.

The first approach is based on the importance of roads. As road networks are
stored in segments and intersections in a database, two steps are required, to build
strokes and to order strokes, as illustrated in Fig. 8.33. To build strokes means to
concatenate continuous and smooth network segments (see Fig. 8.33a) into a whole
(see Fig. 8.33b). To order strokes means to rank the strokes in a descending order
based on their importance from high to low (see Fig. 8.33b). The importance of
each stroke can be calculated according to various properties, i.e., geometric prop-
erties such as length (Chaudhry and Mackaness 2005), topological properties such
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(a) Six road segments (b) building and ordering strokes
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Fig. 8.33 Stroke formation and ordering

as degree, closeness and/or betweenness (Jiang and Claramunt 2004), and thematic
properties such as road class. A comparative analysis of the methodology for building
strokes was carried by Zhou and Li (2012). With each stroke, given an importance,
a stroke-based hierarchy of a line network can be built.

The importance of strokes can be evaluated by the connectivity of strokes in
the network. ego-network analysis and weighted ego-network analysis are possible
methods (Zhang and Li 2011). Figure 8.34 shows the basic structure of three types of
ego-networks and the weight of each link, also called the proportional link strength.

The proportional link strength of each link (pij) from node i to any of its immediate
neighbor nodes can be defined as the reciprocal of the degree of connectivity (k) of
node i. Mathematically,

pi j = 1

ki
( j ∈ ine) (8.16)

(a) complete ego-network (b) ego-control network (c) ego-passive network
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Fig. 8.34 Ego-networks and proportional link strength
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For instance, in Fig. 8.34a, the ego is connected to both alter1 and alter2, so its
degree of connectivity is 2; thus, the strengths of links from this ego to alter1 and to
alter2 are both 1/2 = 0.5. The strengths of other links are also indicated in Fig. 8.34.

If node i and node j are not directly linked but are linked via another node q in the
neighbor (ne), the strength of the link from node i to node j (i.e., pij) is defined as:

p
′
i j = piq pq j (8.17)

The total link strength (Cij) from node i to node j is defined as the square of the
sum of the direct link strength and the indirect link strength from node i to node j.
Mathematically,

Ci j =
(

pi j +
∑

p
′
i j

)2 =
⎛
⎝pi j +

m∑
q=1

piq pq j

⎞
⎠

2

(8.18)

The Cij value reveals the constraint of i by j. The larger the C value is, the larger
the constraint over i, and the smaller the opportunity for i.

To apply this concept to a transport network, the physical road network is first
concerted into a connectivity graph, and the link strength values are computed for
each node in the connectivity graph. Figure 8.35 shows an example. Roads can then
be ranked by the link strength values.

The ego-network is a feasible and effective solution for the formation of hierar-
chies for road networks. However, Zhang and Li (2011) identified two significant
limitations, the deviation of the link intensity definition from reality and the so-called
‘degree 1 effect’. They subsequently developed a weighted ego-network analysis
method.

Another important development is the mesh density-based approach proposed by
Chen et al. (2009). The so-called mesh is a closed region surrounded by several road
segments. In this approach, the density of each mesh in the road network is computed
according to the following formula:
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Fig. 8.35 Formation of a network hierarchy by ego-network analysis (Zhang and Li 2009)
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Fig. 8.36 Mesh density-based approach

D = P

A
(8.19)

where P is the perimeter of the mesh and A is the area of the mesh.
Then, the meshes with the highest density are merged progressively, as illustrated

in Fig. 8.36. In this Figure, the mesh with density of 0.64 is first merged into the that
with a density of 0.42 and segment L is eliminated. The density (0.32) of the new
mesh is then updated. The process is iterated until only one mesh is left.

Generally, a road network is often a hybrid of linear and areal patterns, thus Li
and Zhou (2012) proposed the construction of hybrid hierarchies, i.e., an integration
of a line hierarchy and an area hierarchy.

8.4.6 Mathematical Solutions for Transformation of a Class
of Area Features

Section 8.3.5 described how a hierarchy of areas could be structured by a minimum
spanning tree. In that example, the centroid of a polygon was used to represent the
polygon. However, if the polygon is thin and/or irregular, then the edge length is not
necessarily a good measure for closeness. Densification of points along the polygon
edge will make the problem simpler. Figure 8.37 shows such an example. Figure 8.38
shows the transformation of buildings into suitable representations at different scales.

Li (1994) argued that the transformation in scale should be better performed in
raster space (because a scale reduction causes a space reduction and the raster format
takes care of space) and proposed the use of techniques in mathematical morphology
for transformation in scale. Li et al. have developed a complete set of algorithms for
such transformations based on mathematical morphology.

One such algorithm is the aggregation of areas into groups and transformation
into representations at different scales (Su et al. 1997). The mathematical model for
the aggregation is:

C = (A ⊕ B1)� B2 (8.20)

where A is the representation (image) showing the original area features and B1 and
B2 are the two structuring elements.
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(a) Grouping for generalization to 1:25,000 (b) Grouping for generalization to 1:50,000

(c) Grouping for generalization to 1:100,000 (d) Grouping for generalization to 1:250,000

Fig. 8.37 Grouping of buildings at 1:10000 scale for generalization to various scales (Li et al.
2004)

(a) 1:25,000, by typification (b) 1:50,000, by typification and
aggregation

(c) 1:100,000, by aggregation (d) 1:250,000, by aggregation

Fig. 8.38 Transformation of grouped buildings to various scales (Li et al. 2004)
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The success of applying this model to area combination depends on the proper
size and shape of the structuring elements B1 and B2. Su et al. (1997) suggest that
the size of B1 and B2 should be determined by the input and output scales, following
the Natural Principle described in Sect. 8.2.3. Figure 8.39 shows the combination of

For 7× reduction For 10× reduction

(a) A set of area features

(b) Two structuring elements

(c) Combined for 7× reduction (d) Combined for 10× reduction

(e) 7× reduced 
left: combined + reduced; 
right: photo-reduced

(f) 10× reduced 
left: combined + reduced; 
right: photo-reduced

Fig. 8.39 Combination of area features at different scales (Extracted from Su et al. 1997)
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Fig. 8.40 Shape refinement
by the SLLM algorithm (Su
et al. 1997)

(a) A settlement with an
irregular shape

(b) Simplified by the SLLM
algorithm

buildings using this model for two different scales: one for a scale reduction by 7
times and the other by 10 times. The results are also compared with those using simple
photoreduction. The combined results are very reasonable. However, the combined
results are very irregular and the simplification of boundaries could be discussed. A
detailed description of such a simplification is omitted here but can be found in the
work of Su et al. (1997) and the book by Li (2007). The result is shown in Fig. 8.40.

8.4.7 Mathematical Solutions for Transformation (in Scale)
of Spherical and 3D Features

In the previous sections, mathematical solutions for transformation of 2D features
have been presented. Mathematical solutions for transformation of spherical (e.g.,
Dutton 1999) and 3D features (e.g., Anders 2005) have also been researched, although
the body of literature is much smaller than that for map generalization. In recent years,
there have been more papers on the generalization of buildings-based CityGML (e.g.,
Fan and Meng 2012, Uyar and Ulugtekin 2017); details on such methodologies are
omitted here due to page limitations.

8.5 Transformation in Scale: Final Remarks

The beginning of this chapter emphasized that continuous zooming is at the core of
Digital Earth as initiated by Al Gore. Continuous zooming is a kind of transforma-
tion of spatial representation in scale. In this chapter, the theoretical foundation for
transformations in scale was presented in Sect. 8.2. Then, models for such transfor-
mations were described in Sect. 8.3 for raster and vector data, images, digital terrain
models and map data. A selection of algorithms and/or mathematical functions for
achieving these transformations was presented in Sect. 8.4.

Notably, the content of this chapter was concentrated on the theories and method-
ology to achieve continuous zooming and some important issues related to transfor-
mation in scale have been omitted, such as temporal scale, scale effect and optimum
scale selection. For the content of the models for transformation in scale, emphasis
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was on the representations. Thus, other models such as geographical and environ-
mental processes were excluded. However, these aspects are important but were
omitted due to page limitations.
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Chapter 9
Big Data and Cloud Computing

Yun Li, Manzhu Yu, Mengchao Xu, Jingchao Yang, Dexuan Sha, Qian Liu
and Chaowei Yang

Abstract Big data emerged as a new paradigm to provide unprecedented content
and value for Digital Earth. Big Earth data are increasing tremendously with growing
heterogeneity, posing grand challenges for the data management lifecycle of storage,
processing, analytics, visualization, sharing, and applications. During the same time
frame, cloud computing emerged to provide crucial computing support to address
these challenges. This chapter introduces Digital Earth data sources, analytical meth-
ods, and architecture for data analysis and describes how cloud computing supports
big data processing in the context of Digital Earth.

Keywords Geoscience · Spatial data infrastructure · Digital transformation · Big
data architecture

9.1 Introduction

Digital Earth refers to the virtual representation of the Earth we live in. It represents
the Earth in the digital world from data to model. Data are collected and models are
abstracted to build the digital reality. Massive amounts of data are generated from
various sensors deployed to observe our home planet while building Digital Earth.
The term “big data” was first presented by NASA researchers to describe the massive
amount of information that exceeds the capacities of main memory, local disk, and
even remote disk (Friedman 2012). According to the National Institute of Standards
and Technology (NIST), “Big Data is a term used to describe the large amount of
data in the networked, digitized, sensor-laden, information-driven world” (Chang
and Grady 2015). This definition refers to the bounty of digital data from various
data sources in the context of Digital Earth, which focus on big data’s geographical
aspects of social information, Earth observation (EO), sensor observation service
(SOS), cyber infrastructure (CI), social media and business information (Guo 2017;
Guo et al. 2017; Yang et al. 2017a, b). Digital Earth data are collected from satellites,
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Table 9.1 Definition of the “9Vs” of big data

“V” Definition

Volume The vast data size that traditional data storage and computing technologies
cannot easily capture, store, manipulate, analyze, manage and present

Variety The diversity of data formats and sources. The data formats include text,
geometries, images, video, sounds or a combination

Velocity The speed of data production, storage, analysis, and visualization based on
advanced development of data collection methods, i.e., the massive number of
sensors in the Interest of Things (IoT) and social media networks

Veracity The varying reliability, accuracy, or quality of data sources

Validity The accuracy and correctness of Earth data for the intended usage

Variability The meaning of data continues to change, particularly for Earth data that relies
on natural language processing

Vulnerability Data security is an important part of typical and big Earth data because some
geospatial data contain identification information related to people or
governments

Volatility The timeliness and freshness of Earth data

Visualization Visualization of Earth data is challenging with limited memory, poor scalability
and functionality, and various data increasing at a high velocity

Value Value reflects the tremendous straightforward and potential scientific and social
worth based on imaginative insight and analysis results

sensors, simulation models, mobile phones, utilities, vehicles, and social networks
in different formats, e.g., imagery, text, video, sound, geometries and combinations
of them (Yang et al. 2017a, b). Digital Earth data are naturally big data because of
the variety of data sources and enormous data volume.

The increasing availability of big Earth data has provided unprecedented oppor-
tunities to understand the Earth in the Digital Earth context. In recent research, big
data have been characterized by 5 Vs (volume, variety, velocity, veracity, and value)
(Gantz and Reinsel 2011; Zikopoulos and Barbas 2012; Marr 2015). Firican (2017)
extended the 5 Vs into big data characteristics including variability, validity, vulner-
ability, volatility and visualization (as defined in Table 9.1 and further elaborated
below).

Volume
The volume of remote sensing imagery collected by satellites and drones easily
reaches the TB and PB levels. For example, the Integrated Multi-satellite Retrievals
for GPM (IMERG) data product records global precipitation information every half
hour, producing up to 3.45 TB data yearly (Huffman et al. 2015). Other location-
based data such as social media (e.g., Twitter) and VGI (e.g., OpenStreetMap) are
constantly growing.
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Variety
Data sources include sensors, digitizers, scanners, numerical models, mobile phones,
the Internet, videos, emails, and social networks in the context of Digital Earth. All
types of geospatial data require a more effective data structure, framework, index,
model, management methodology, and tactics. In addition, these geospatial data are
formatted in various data models, e.g., vector and raster, structured and unstructured.

Velocity
The speed of Earth data collection and generation has increased with the develop-
ment of advanced techniques such as drone observation for disaster monitoring. For
example, with the massive number of object-based sensors in the IoT, the data gen-
eration of IoT nodes is fast since most sensors continuously generate data in real
time.

Veracity
The accuracy of geospatial data varies by data source (Li et al. 2016). Taking pre-
cipitation as an example, the quality of remote sensing images such as TRMM and
IMERG depends on the sensor configuration, calibration methods, and retrieval algo-
rithms. Precipitation information in MERRA (Modern Era Retrospective-analysis for
Research and Applications) data relies on the sophistication of meteorological mod-
els. Stationary data collected by rain gauges are more accurate even though they are
sparse.

Validity
Similar to veracity, validity concerns the accuracy and correctness of Earth data
for the intended usage. In addition to data selection in which data are chosen with
appropriate spatial and temporal resolutions and variables for a specific application,
data preprocessing, e.g., data augmentation, interpolation, outlier detection, also
play an important role in uncovering information from big Earth data. Consistent
data quality, common definitions and metadata can benefit the community, resulting
in Earth data of high validity.

Variability
Variability refers to the continuous change in the meaning of data in the context of big
Earth data, particularly for data that relies on natural language processing. For exam-
ple, Twitter data emerged as an additional source for natural disaster management
(Yu et al. 2018), as tweets posted during disasters can be collected to aid situational
awareness. The meaning of words constantly changes over time, for example, the
word “Irma” may be a name but started to represent the strongest observed hurricane
in the Atlantic in most tweets around October 2017.

Vulnerability
Security is a challenging aspect because some geospatial data contain identifiable
information or are sensitive. For example, cellular data have been widely utilized to
analyze human activities in smart city applications, however, showing phone numbers
may divulge people’s private affairs.
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Volatility
Volatility refers to the timeliness and freshness of Earth data, i.e., how long the Earth
data stay useful and relevant to applications and how long the data should be kept.
Due to the velocity and volume of big Earth data, it is impossible to store all the
data in a live database without any performance issues. A series of rules should be
established for data currency, availability and rapid retrieval (Firican 2017), e.g.,
historical and less frequently visited Earth data could be archived on a lower-cost
tier of storage.

Visualization
Visualization of Earth data is a challenging task with limited memory due to poorly
scalable, low-functionality, and high-velocity datasets. Traditional methods may fail
to render billions of points, polylines and polygons when visualizing geospatial vector
data, therefore graphical methods, e.g., data clustering, parallel coordinates, cone tree
or circular network diagrams, should be used to represent Earth data (Firican 2017).

Value
Value presents a low-density pattern in the current big data ecosystem where only a
small portion of data is utilized in practice. Earth data occupies 80%+ of our data
assets (Dempsey 2012), but most datasets are not excavated and are under-utilized.
With appropriate spatiotemporal resolution and analysis methods, the 9Vs have been
addressed to obtain actionable knowledge to increase the value of big data.

Data collection strategies, data storage facilities, data analysis methods, and data
access services facilitate the transformation from the other 9Vs to the 10th V of
value. With the continuing increases in the volume and complexity of data, there are
challenges in the life cycle of data management, including data storage, data query,
data analysis, data sharing, and many other aspects. Managing big data requires an
extensible, interoperable and scalable architecture that supports data storage and
analysis. Fortunately, recent years have witnessed the evolution of cloud computing,
which brings potential solutions to support the life cycle of big data management.

Cloud computing is a new computing paradigm for delivering computation as
a fifth utility, which became popular earlier than big data (Yang et al. 2011a). It
has the features of elasticity, pooled resources, on-demand access, self-service and
pay-as-you-go characteristics (Mell and Grance 2011) and was termed spatial cloud
computing in the context of Digital Earth (Yang et al. 2011a). Big data technologies,
e.g., big data storage and big data analytics, evolve and benefit significantly from
their integration with cloud computing.

To provide a comprehensive overview of how cloud computing supports big data
in the context of Digital Earth, this chapter introduces Digital Earth data sources
(Sect. 9.2), data analysis methods (Sect. 9.3), architecture for big data analysis
(Sect. 9.4), and cloud computing and its support of big data management (Sect. 9.5).
Two examples of EarthCube and Data Cube are introduced in Sect. 9.6 to exemplify
cloud-based big data frameworks in the Digital Earth context.
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9.2 Big Data Sources

With the advanced developments in Earth observation systems, various Earth data
have been gathered at a high velocity from five major sources: (1) remote sensing, (2)
in situ sensing, (3) simulation, (4) social media, and (5) infrastructure management
(Fig. 9.1). Each covers more than one characteristic of big data. This section discusses
the five data sources.

Remote sensing data
Referring to the USGS’s definition, remote sensing is the process of detecting and
monitoring the physical characteristics of an area by measuring the reflected and

Fig. 9.1 Big Earth data sources: a remote sensing data (JPL 2001); b in situ data (NOAA 2017);
c simulation data (Lipponen 2017); d social media data (Gundersen 2013); and e infrastructure data
(Canada Line Vancouver Transit Map 2019; Robert 2000)
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emitted radiation at a distance from the targeted area (USGS 2019). Such remotely
observed data serve as a vital source for tracking natural phenomena, the growth
of a city, changes in farmland or forest, and discovery of the rugged topography
of the ocean floor. According to the Earth Observing System Data and Information
System (EOSDIS) 2014 statistics, EOSDIS manages over 9 PB of data and adds
6.4 TB of data to its archives every day (NASA 2016). As data precision and den-
sity increase over time, data volume increases exponentially. In addition, ongoing
international initiatives monitor the Earth in near-real time using satellites to support
rapid data collection for quick and effective emergency response (Zhang and Kerle
2008). Remote sensing data are big data due to the big volume, variety, veracity and
volatility.

In situ data
According to NOAA (National Oceanic and Atmospheric Administration), in situ
data are measurements made at the actual location of the object. In contrast to remote
sensing, in situ sensing harvests data directly at the observation location, and often
provides continuous data streams to reflect the actual situation with very low latency.
Examples of such measurements are (1) tall tower networks (NOAA ESRL/GMD)
that provide regionally representative measurements of carbon dioxide (CO2) and
related gases and (2) moored and drifting buoys for marine/ocean data collection. In
situ data are big data considering the volume, velocity, and veracity.

Simulation data
Simulation datasets or reanalysis datasets refer to the outputs of Earth models (e.g.,
climate) based on geophysical principles. By assimilating observations with models,
better initial conditions can be leveraged and simulation results can be significantly
improved, especially for short-term predictions. Simulation datasets can be used in
various applications. For example, the precipitation, evaporation, and runoff from
MERRA datasets can drive river flow models and enhance the study of sensitive
ecosystems such as estuaries (Rienecker et al. 2011). In addition, the reanalysis
winds used in transport models support the evaluation of aerosols. Simulation data
are big data due to its volume, variety and validity.

Social media data
In recent years, social media has become one of the most popular sources of big
data and provides valuable insights on event trends and people’s references. Social
networks such as Twitter and Facebook generate a vast amount of geo-tagged data
every second and are transforming social sciences (Yang et al. 2017a). Scientists from
economics, political science, social science, and geoscience domains utilize big data
mining methods to detect social interactions and analyze health records, phone logs,
and government records (Balakrishna 2012). For example, in Digital Earth, social
media and crowdsourcing data can provide trends of the urban flooding events or
wildfire spread, as well as support near-real time situational awareness when other
types of data are limited or hard to obtain. However, social media data have high
uncertainty and vary in format and quality. Tweet content analysis highly relies on
natural language processing, but word meaning constantly changes. Social media
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data are big data due to its volume, velocity, variety, veracity, validity, variability and
volatility.

Infrastructure data
Infrastructure data serve as a vital data source of Digital Earth information, espe-
cially for developing smart cities. For example, basic infrastructure data (e.g., utility,
transportation, and energy), healthcare data and governance data (e.g., environmental
and construction management) should be proposed, planned and provided by local
official departments and business agencies for a smart city (Hashem et al. 2016).
Some infrastructure data may contain sensitive information. Taking water distribu-
tion management systems as an example, a synthetic data methodology was proposed
to reproduce water consumption data according to privacy constraints (Kofinas et al.
2018). With the upgrades in infrastructure, Internet of Things (IoT) data, geo-tagged
or geo-referenced data are continuously produced by various devices, sensors, sys-
tems and services (Boulos and Al-Shorbaji 2014). In the near future, various appli-
cations based on IoT data will benefit individuals and society. For example, near-real
time data including temperature and wind information gathered by IoT sensors could
support real-time urban microclimate analysis (Rathore et al. 2017). Infrastructure
data are big data due to its volume, velocity, variety, veracity, vulnerability, validity
and volatility.

Earth data are continuing to grow in volume and complexity. Big data analytical
methods are utilized to mine actionable knowledge from big Earth data to convert
the 9Vs of Earth data to the 10th V, which is discussed in the next section.

9.3 Big Data Analysis Methods

The advancements in remote sensing, social networking, high-performance simula-
tion modeling and in situ monitoring provide unprecedented big data about our planet.
The large volume and variety of data offer an opportunity to better understand the
Earth by extracting pieces of knowledge from these data. This section discusses data
analysis methods from the three aspects of data preprocessing, statistical analysis
and nonstatistical analysis. The characteristics, applications, and challenges of these
methods are introduced below.

9.3.1 Data Preprocessing

Real-world data are usually incomplete, noisy and inconsistent due to data collection
limitations and sensor issues. Raw data may contain errors or outliers, lack specific
attributes or have discrepancies in the descriptions. Therefore, data preprocessing
(e.g., data cleaning, fusion, transformation, and reduction) are required to remove
noise, correct data, or reduce data size.
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Low-quality values (missing values, outliers, noises, inconsistent values) in raw
data are often removed or replaced with user-generated values, e.g., interpolation
values. The missing value is usually represented with a symbol (e.g., N/A) in raw
data and easily recognize. Outliers and inconsistent values are hidden in the raw
data and can be detected through statistical analysis. Taking water usage behavior
analysis as an example, data preprocessing is necessary to turn smart water meter
data into useful water consumption patterns because IoT sensors may fail to record
data (Söderberg and Dahlström 2017).

Data transformation also plays an essential role in data preprocessing. Multiple
Digital Earth data, e.g., climate data, soil moisture data, crop data, are converted to
monthly z-score data before analysis to eliminate the seasonal trends that usually
make the patterns of interest undiscoverable. Aggregation, another important data
transformation method, groups data based on numerical attributes (Heuvelink and
Pebesma 1999). In the Earth science domain, aggregating raw data to the county or
state levels could uncover essential patterns for decision making, urban planning,
and regional development.

Another trend in Digital Earth data analysis is multisource data fusion, which pro-
vides comprehensive data retrieved from several data sources. Generally, vector and
raster data store Earth information with different spatial-temporal resolutions; thus,
data must be converted to the same resolution by interpolating the lower resolution
data or aggregating the higher resolution data for intelligent analysis to investigate
scientific questions at a specific scale. Sharifzadeh and Shahabi (2004) introduced a
spatial aggregation method that takes the sensor data distribution into account. Spa-
tial interpolation is interpolation of point and areal data. Point interpolation is applied
to contour mapping and areal interpolation is used in isopleth mapping (Lam 1983).
In addition to spatial interpolation, temporal interpolation predicts values between
timestamps (Lepot et al. 2017).

9.3.2 Statistical Analysis

In the era of big data, statistical analysis is a common mathematical method of
information extraction and discovery. Statistical methods are mathematical formulas,
models, and techniques used to find patterns and rules from raw data (Schabenberger
and Gotway 2017). Data mining is the process of discovering patterns from large
datasets involving statistical analysis. Through data mining, historical data can be
transformed into knowledge to predict relevant phenomena. Both traditional statistics
and data mining methods are discussed in this section. These methods include but
are not limited to regression analysis, spatiotemporal analysis, association rules,
classification, clustering, and deep learning.

Regression analysis
Regression models the relationships between a dependent variable and one or more
explanatory variables (Yoo et al. 2014; Anderson 2015) by estimating the values of
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a dependent variable when the values of the independent variables are known and
the relationships exist. Regression models describe the strength or weakness of the
relationship between several variables. For example, Blachowski (2016) proposed a
weighted spatial regression method that identified four significant factors inducing
land subsidence: thickness, inclination, the depth of coal panels, and the slope of
the surface. There are challenges in spatial data analysis using regression methods,
especially for situations that are complicated enough to result in serious residuals in
the regression models.

Spatiotemporal analysis
Spatiotemporal data analysis investigates the trajectories and trends of spatiotem-
poral data. Li et al. (2016) investigated the spatiotemporal trends in the fluctuations
of housing price data. Spatial data analytics and modeling techniques were used to
identify the spatial distribution of housing prices at the micro level and explore the
space-time dynamics of residential properties in the market, as well as the detected
geographic disparity in terms of housing prices. Rahman and Lateh (2017) analyzed
the temperature and rainfall time series data from 34 meteorological stations dis-
tributed throughout Bangladesh over 40 years (1971–2010) to statistically evaluate
the magnitude of temperature and rainfall changes across space and time. Spatiotem-
poral analysis is still in its initial stage of development. Challenging questions remain,
such as what kinds of patterns can be extracted from time series data and which meth-
ods and algorithms should be applied.

Association rule
Association rule learning is the process of discovering strong relationships between
variables, i.e., rules, in a large database using measurements of support and confi-
dence (Agrawal et al. 1993). In Digital Earth, Yang (2011b, 2016) applied association
rules to mine the variables of Atlantic hurricanes from 1980 to 2003 and discovered
a combination of factors related to rapid intensification probability, the low vertical
shear of the horizontal wind (SHRD = L), high humidity in the 850–700 hPa range
(RHLO = H), and tropical cyclones in an intensification phase (PD12 = H). Com-
pared with traditional statistical methods, the rule-based mining method can find
combinations of factors instead of a single factor related to an event.

Classification
Classification learning is the task of mapping input variables to discrete output vari-
ables called labels or categories, for example, ‘building’ or ‘road.’ It is the process
of recognizing, differentiating and understanding objects. Support Vector Machine
(SVM) is a classical classification algorithm in which a kernel-based metric is used
to differentiate objects. Jiang et al. (2018b) integrated the ranking support vector
machine (RankSVM) model from the computer science community with ocean data
attributes to support data ranking in ocean portals. An SVM model is also used to
predict geological lithofacies from wireline logs.

Clustering
Clustering is the process of splitting a set of objects into closely related groups, and
each group is regarded as a cluster. Objects falling in the same cluster are more
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similar to each other than those in other clusters. In Digital Earth, clustering plays an
important role in pattern analysis. Hong and O’Sullivan (2012) clustered empirical
datasets in Auckland, New Zealand for ethnic residential cluster detection, which is
useful to understand contemporary immigrants and ethnic minorities in urban areas.
Zhao et al. (2017) proposed a method to generate urban road intersection models
from low-frequency GPS trajectory data. These patterns identified from empirical
data are crucial for urban transportation planning and management.

Deep learning
As a new paradigm of machine learning, deep learning has achieved remarkable suc-
cess in discovery of implicit knowledge (LeCun et al. 2015). In Digital Earth, deep
learning algorithms have been adopted to solve domain problems. For example, Guo
and Feng (2018) used multiscale and hierarchical deep convolutional features to
assign meaningful semantic labels to the points in a three-dimensional (3D) point
cloud, which is essential for generating 3D models. Li and Hsu (2018) proposed a
deep learning approach to automatically identify terrain features (i.e., sand dunes,
craters) from remote sensing imagery. Compared with traditional induction-based
approaches, the deep learning approach could detect diverse and complex terrain
features more accurately and process massive available geospatial data more effi-
ciently.

9.3.3 Nonstatistical Analysis

In addition to statistical analysis, nonstatistical analysis methods also play an essential
role in helping us descriptively understand Earth phenomena. This section introduces
two representative models in Digital Earth, linked data and 3D city modeling.

Linked data
Linked data are structured data in which datasets are interlinked in the collection,
which is useful for semantic queries and reasoning (Bizer et al. 2011). With linked
data, data are sharable, and the relationships among the data are recorded. Standard
web technologies such as RDF (Resource Description Framework) provide a way
to build shareable linked data. In Digital Earth, heterogeneous Earth data (multidis-
ciplinary, multitemporal, multiresolution, and multilingual) can be integrated based
on linked data principles for decision making and knowledge discovery (Vilches-
Blázquez et al. 2014). For example, Mc Cutchan (2017) proposed a structure of
embedding geographic data into linked data and forecasted spatial phenomena with
associated rules extracted from the linked data.

3D city modeling
A trend in Digital Earth analysis is to build a real 3D model with the aid of a
computer, especially for cities where most human activities occur. 3D models provide
real three-dimensional information for analysis, going beyond simple visualization
of 3D objects. 3D informatics has become a cornerstone for a series of city-related
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applications such as urban planning, skyline analysis, crisis and disaster management,
route selection and navigation (El-Mekawy 2010). For example, Amirebrahimi et al.
(2016) assessed and visualized flood damage using 3D urban modeling and a building
information model (BIM), improving the resilience of the community to floods using
detailed 3D information.

Knowledge distillation from Earth data has demonstrated excellent improvements
in our understanding of the planet we live. As Earth data increase faster than ever,
state-of-the-art analysis methods should be developed to handle the increasingly com-
plicated spatiotemporal data. In addition, an extensible, interoperable and scalable
architecture is a prerequisite for massive geographic data analysis, and we present a
big data analysis architecture in the next section.

9.4 Architecture for Big Data Analysis

To support Earth data access/query/analysis in a reasonable response time, it is crucial
to build a sophisticated analytical platform with robust architecture to reveal insights
from the data (Yang et al. 2017a, b). Generally, the architecture of analytical platforms
consists of a data storage layer, a data query layer, a data processing layer, and a
visualization layer (Fig. 9.2).

Fig. 9.2 Architecture for big data analyses
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9.4.1 Data Storage Layer

Digital Earth is heavily involved in processing big data from Earth observations
and model simulations, and these vast amounts of high-dimensional array-based
spatiotemporal data pose challenges for data storage (Li et al. 2017b). Customizations
are indispensable in integrating advanced data storage technologies with big Earth
data storage, as general distributed file systems such as Hadoop are not designed to
store spatiotemporal data.

A robust and stable data storage framework is the foundation of the data analysis
architecture. A series of research efforts focused on optimizing spatiotemporal data
storage in distributed file systems or databases. For example, Hu et al. (2018a) reor-
ganized NetCDF (Rew and Davis 1990), a standard data format for array-based raster
data, into CSV files and deployed them within SciDB (Cudre-Mauroux et al. 2009),
a scalable multidimensional array clustering database. Zhao et al. (2010) converted
NetCDF data into CDL (network Common data form Description Language) files and
distributed them on HDFS (Hadoop Distributed File System). MERRA data, which
store reanalysis Earth climatic variables in NetCDF format, were transformed into
Hadoop Sequence Files to be processed by standard MapReduce functions (Duffy
et al. 2012). Li et al. (2015) decomposed array-based raster data and stored them
with HBase, a NoSQL database built upon HDFS in a cloud computing environment
for efficient data access and query.

To enable efficient big data query, logical query capabilities have been proposed
to support spatiotemporal query of array-based models such as SciHadoop (Buck
et al. 2011). A spatiotemporal index was designed to efficiently retrieve and process
big array-based raster data using MapReduce and a grid partition algorithm atop
the index to optimize the MapReduce performance (Li et al. 2017a). SciHive was
developed as an extension of Hadoop Hive, mapping arrays in NetCDF files to a table
and calculating the value range for each HDFS to build a distributed adaptive index
(Geng et al. 2013, 2014). Malik (2014) introduced a Z-region index into GeoBase to
facilitate array-based data storage.

9.4.2 Data Query Layer

To help data consumers efficiently discover data from the massive available Earth
data, the Digital Earth communities have built various data portals to improve the
discovery, access, and usability of Earth data. The portals are normally supported
by text search and spatiotemporal search and include the GeoPortal,1 GeoNetwork2

Spatial Web Portal (Xu et al. 2011), Global Earth Observation System of Systems
GEOSS Clearinghouse (Liu et al. 2011; Nativi et al. 2015; Giuliani et al. 2017),

1https://www.geoportal.gov.pl/.
2https://geonetwork-opensource.org/.

https://www.geoportal.gov.pl/
https://geonetwork-opensource.org/
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GeoSearch (Lui et al. 2013) and many others. For example, GEOSS is a cloud-
based framework for global and multidisciplinary Earth observation data sharing,
discovery, and access (Nativi et al. 2015). In the framework, datasets or workflows
are registered into shared collections or global catalogs, allowing for end users to
search for workflows and datasets across multiple granularity levels and disciplines.

In addition, open-source information retrieval frameworks, e.g., Apache Lucene
or its variants such as Solr and Elasticsearch (McCandless et al. 2010), were adopted
to establish an Earth data portal instead of implementing a search engine for Earth
data from scratch. Lucene uses the Boolean model and the practical scoring function
to match documents to a query. Solr and Elasticsearch improve the Lucene index to
enable big data search capabilities. The Physical Oceanography Distributed Active
Archive Center (PO. DAAC) serves the oceanographic community with 514 col-
lection level datasets and massive granule level data atop Solr (Jiang et al. 2018a).
Elasticsearch is the fundamental component of NOAA’s OneStop portal in which data
providers manage data and metadata with increased discoverability and accessibility.

However, solely relying on open source solutions is insufficient for Earth data
discovery because these solutions only rely on a keyword-based relevance score for
ranking and ignore other user preferences, e.g., data processing level, sensor type.
A few related research efforts have been conducted in the Earth science domain to
make data search engines smarter and more intelligent. For example, an algorithm
combing Latent Semantic Analysis (LSA) and a two-tier ranking was reported to
build a semantic-enabled data search engine (Li et al. 2014a, b). Jiang et al. (2018a)
developed a smart web-based data discovery engine that mines and utilizes data
relevancy from metadata and user behavior data. The engine enables machine-learned
ranking based on several features that can reflect users’ search preferences.

9.4.3 Data Processing Layer

Data processing layer is a core component of the data analytics architecture. To ana-
lyze terabyte and petabyte datasets with low time latency, even in a real-time manner,
sophisticated parallel computing algorithms and scalable computing resources are
required in the big data processing framework (Yang et al. 2015a). Advanced open-
source parallel computing solutions, e.g., Hadoop MapReduce, Spark, and their vari-
ants in the Earth data domain have been leveraged to support data analysis and mining
tasks with better performance.

Hadoop MapReduce is a high-performance batch processing parallel framework
that solves large computational problems on distributed storage systems (White
2012). It transfers the algorithm code to data nodes rather than moving data blocks to
a compute node to avoid I/O bottlenecks. Spark enables high-performance data anal-
ysis with in-memory computing. An in-memory data structure called the Resilient
Distributed Dataset (RDD) manages datasets distributed in a Spark cluster (Zaharia
et al. 2012). However, the original distributed frameworks have limitations on big
spatiotemporal data processing. Yu et al. (2015) noted that the system scalability
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for spatiotemporal data and interactive performance are the two main challenges for
big Earth data processing. To solve these problems, scientists and engineers have
customized open-source solutions for spatiotemporal data analysis.

SpatialHadoop is a MapReduce-based framework with native support for spatial
data including a simple spatial high-level language, a two-level spatial index struc-
ture, a fundamental spatial component built on the MapReduce layer and three basic
spatial operations (range query, k-NN query, and spatial link) (Eldawy and Mokbel
2015). GeoSpark provides operational tools for spatial big data processing based on
Spark (Yu et al. 2015). The Spatial Resilient Distributed Datasets (SRDDs) structure
represents spatial data blocks in memory and index objects using quad-tree and r-tree
in each RDD partition (Lenka et al. 2016). ClimateSpark integrates Spark SQL and
Apache Zeppelin to develop a web portal that facilitates interaction among climatol-
ogists, climate data, analytical operations and computing resources (Hu et al. 2018b).
As an extension of Scala, GeoTrellis supports high-performance raster data analysis.
GeoMesa provides spatiotemporal data persistence on Hadoop and column-family
databases (e.g., Accumulo, HBase), as well as a suite of geospatial analytical tools
for massive vector and raster data (Hughes et al. 2015).

As described in this section, a service-oriented, scalable architecture usually con-
tains three major layers to provide desirable functionalities and capabilities: (1) the
bottom data storage layer provides physical data storage, (2) the data query layer
enables data discovery capabilities with proper functionality and interoperability,
and (3) the data processing layer supports extensible, interoperable and scalable
analytical functionalities based on open source solutions and their variants from the
geoscience communities. With the architecture, big Earth data could be accessed and
analyzed with low time latency or even in real time. However, it is challenging to
set up such architecture and share data stored inside them due to the requirements
of storage resources, computing resources, complicated configurations, and domain
knowledge. Fortunately, the paradigm of cloud computing, discussed in the next
section, brings potential solutions to ease the process of analytical framework setup
and data sharing.

9.5 Cloud Computing for Big Data

9.5.1 Cloud Computing and Other Related Computing
Paradigms

Grid computing and High Performance Computing (HPC) have been utilized for big
data analytics. Grid computing, a distributed system of computer resources, performs
large tasks using loosely coupled computers in a distributed system (Hamscher et al.
2000). The European Data Grid project utilizes grid computing to support exploration
of multi-petabyte datasets (Segal et al. 2000) and the TeraGrid GIScience gateway
utilized grid computing to perform computationally intensive geographical analytics
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(Wang and Liu 2009). HPC uses supercomputers to run applications in parallel,
efficiently and quickly, and is used in the PRACE project to serve European scientists
with high-performance computing capabilities to conduct research (Hacker et al.
2010).

Cloud computing virtualizes computer resources as a resource pool to provide
computing resources over the network by optimizing resource usage in terms of the
CPU, RAM, network, and storage. Cloud computing has intrinsic connection to the
Grid Computing paradigm (Foster et al. 2008) in that both are distributed computing
systems. Cloud computing relies on remote servers whereas grid computing connects
servers or personal computers over a common network using a Wide Area Network
(WAN) to perform parallel tasks (Foster et al. 2008). Compared with HPC, cloud
computing is cost effective and easy to use. Although cloud computing can provide
high performance computing capability, HPC is irreplaceable for some applications
since supercomputers are required to process very complicated processes such as
climate simulations. In addition, resources in cloud computing are controlled by the
service providers and users have limited controls.

In addition to cloud computing, other new computing paradigms have emerged
to build a comprehensive and economic computing framework. For example, edge
computing can process data at the edge of network due to the advancement of the IoTs.
IoT applications usually produce a massive amount of streaming data and require
near-real time response; thus, cloud computing alone is not an optimal solution for
data collection and analysis for such real-time applications. In edge computing, edge
nodes serve as data providers and consumers to protect data privacy and make full
use of the computing capacity of edge nodes. Less data is transferred to the cloud
computing platform after data preprocessing in edge nodes, reducing the response
time and bandwidth cost (Shi et al. 2016).

Mobile computing with portable computing nodes has become an important com-
puting paradigm with the improvements in the computing and storage capacity of
smart devices such as smartphones and tablets (Qi and Gani 2012). Although ser-
vices provided by mobile computing are not as reliable as edge computing and cloud
computing due to the restrictions in battery volume and network connection, mobile
computing can collect data and reach end users where cloud computing and edge
computing are inaccessible.

These computing paradigms have advantages and disadvantages, and can be inte-
grated to complement each other and provide reliable and effective data storage and
processing frameworks according to the data characteristics and computing require-
ments. Cloud computing and big data are the two most important technologies in
Digital Earth. The following section discusses the utilization of cloud computing to
support big data management in Digital Earth.
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9.5.2 Introduction to Cloud Computing

As a new computing paradigm, cloud computing delivers scalable, on-demand, pay-
as-you-go access to a pool of computing resources (Mell and Grance 2011; Yang
et al. 2011a). Practically, cloud computing aims to maximize the utilization rate of
physical resources and provide virtual resources to aid applications and services.
Cloud computing relies on several technologies including virtualization, network
security, and high availability to provide services over the network. These technolo-
gies make it easier, more efficient, and more economical to set up architecture for
big data analysis.

Virtualization is the fundamental technology for cloud computing, which abstracts
an application, operating system, or data store from the underlying hardware or
software. Virtualization creates a “layer of abstraction” between the physical systems
and a virtual environment in the virtualization process (Big Data Virtualization).
Server virtualization optimizes the use of redundant computing and storage resources
by virtualizing distributed computer resources (e.g., CPU, RAM, Network, and Disk)
and managing them in the same resource pool. With virtualization, cloud computing
can provide on-demand big data services and support big data technologies including
big data storage, process, analysis, visualization, and remote collaboration (Fig. 9.3).
Virtualizing big data resources as a pool serves as a user-friendly interface and makes
big data analytics accessible to end users.

As one of the cloud solutions, public clouds are the most accessible cloud com-
puting services offered by third-party providers (e.g., Amazon Web Services (AWS),
Microsoft Azure, Alibaba Cloud) over the Internet. Public clouds are available to
the public and may be offered on a pay-per-usage model (Li et al. 2010). In contrast
to public clouds, private clouds are dedicated for use inside an organization. Pri-
vate cloud resources can be managed by an organization or by a third-party vendor,

Fig. 9.3 Cloud computing for big data analysis
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regardless of the physical location of the resources (Dillon et al. 2010). The com-
puting resources in a private cloud are isolated and delivered via a secure private
network.

The advanced features of auto scaling and load balancing through resource mon-
itoring further maximize the capability of cloud computing resources. Based on the
individual performance of a machine, autoscaling can be applied to allow for some
servers to rest during times of low load to save electricity costs and automatically add
more instances during times of high demand. In addition, load balancing improves
the distribution of workloads across multiple instances to optimize resource use,
minimize response time, and avoid overloading any single instance.

9.5.3 Cloud Computing to Support Big Data

Cloud computing combines distributed computing resources into one virtual envi-
ronment, providing big data analytics and solutions during the life cycles of
big data. Three main categories of cloud computing services are (1) Infrastruc-
ture as a Service (IaaS), (2) Software as a Service (SaaS), and (3) Platform
as a Service (PaaS). Together with Data as a Service (DaaS), Model as a Ser-
vice (MaaS; Li et al. 2014a, b) and workflow as a service (WaaS; Krämer and
Senner 2015), cloud computing offers big data researchers the opportunity of
anything as a service (XaaS; Yang et al. 2017b).

Cloud Storage for Big Data Storage
The characteristics of big data in high volume lead to challenges for data storage.
Cloud computing’s potential for unlimited storage support helps solve the volume
challenge of big data, as the cloud provides virtually customizable storage with
elastically expandable and reducible size. An alternative solution is Data Storage as
a Service (DSaaS) enabled by block storage, which is the capability of adding external
storages as “blocks”. With block storage, it is possible to enlarge the storage size
without physically loading hard drives. Virtually unlimited scalable storage offered
by cloud computing grants users the capability of dynamic adjustment to satisfy
the storage requirements of data with high volume and velocity. The modularized
virtual resource offers effortless data sharing within production environments by
allowing for an external data block to be detached and remounted from one machine to
another. External data storage can be automatically backed up to prevent users from
losing data, and backups that are securely saved at the back-end server can be easily
transferred and restored. In addition, information security is guaranteed because the
physical location cannot be obtained from the disk drive (Mayama et al. 2011).

Cloud Computing for Big Data Processing
Processing large volumes of data requires dedicated computing resources, e.g., faster
CPUs and networks and larger disks and RAMs (Yang et al. 2017b). Cloud computing
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provides on-demand resources and delivers configurable resources including mount-
able external storage spaces, computing resources (CPU, RAM), and network ser-
vices. Traditionally, a computer uses approximately two-thirds of the power of a
busy computer (JoSEP et al. 2010), and cloud computing has the potential to provide
on-demand computing resources. Isolated virtual structures have been created for big
data systems to enhance system stabilities, which can be easily managed in differ-
ent file systems and replicated through backup images to provide fast configuration
recovery. The ability to replicate environments automates the expansion of compute
nodes in virtual machine clusters, thereby efficiently utilizing resource pools to sup-
port big data analytics. With the foundational support of storage for big data, data
processing inherits the advantages of fast data acquisition and relocation.

Although cloud computing could serve as an excellent infrastructure option for
big data processing, several aspects should be considered to minimize the bottleneck
effect for the general processing speed, such as the choice of cloud volume type
according to I/O demand and cloud bandwidth selection according to application
requirements.

Cloud Computing for Big Data Analytics
Popular big data analytical platforms such as Apache Hadoop are tradition-
ally installed on physical machine clusters, resulting in a waste of computing
resources due to hardware redundancy (CPU and RAM). With the virtual clusters
provided by cloud computing through virtualization technology, distributed analyti-
cal platforms can be migrated to the virtual clusters from physical machine clusters,
optimizing the usage of computing resources in an efficient manner.

With the aid of autoscaling and load balancing, deploying on-demand and scal-
able big data analytical platforms could easily provide resilient analytical frame-
works and minimize waste of computing resources. Autoscaling supports parallel
algorithms on distributed systems and architectures for scalability. It allows for
the expanded resources to function when the algorithms or programs are enabled
with parallel computing capability. Without it, public cloud providers such as AWS
could not offer automatic scalability (JoSEP et al. 2010). The load balancer dis-
tributes workloads among virtual clusters and triggers autoscaling functions when
analytics require higher computing configurations. The virtual system as a whole
could dynamically fit higher computing requirements by launching more virtual
duplications as needed. The load balancer acts as a virtual network traffic distributor
and can be optimized to better allocate overall resources.

Cloud Computing for Big Data Sharing and Remote Collaboration
Traditional deployment of big data systems requires complicated settings and efforts
to share data assets. It lacks access control and often leads to data security and data
privacy issues. Cloud computing enhances the sharing of information by applying
modern analytical tools and managing controlled access and security (Radke and
Tseng 2015). Virtualization enables different parties to share data assets to achieve
various goals and objectives under a centralized management system. With the sup-
port of cloud computing, it is possible to flexibly share data and remotely collaborate,
which involve interdisciplinary collaborations and advanced workflows. Though data
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sharing, computational resource sharing, and production environment sharing, cloud
computing can potentially be used to build a perceptual environment to support var-
ious businesses and applications (Li et al. 2015). Unfortunately, workflow sharing
remains challenging due to domain boundaries (Yang et al. 2017b).

9.6 Case Study: EarthCube/DataCube

Big data and cloud computing enable Earth scientists and application developers
to create web-accessible frameworks and platforms to efficiently store, retrieve and
analyze big Earth data. In the Earth science domain, scientists have proposed a series
of data models, frameworks, and initiatives to ensure the success of heterogeneous
data sharing and analysis. For example, a 10-year framework initiative on sustain-
able consumption and production from 2013 to 2023 was launched by the United
Nations Environmental Program (UNEP). The Future Earth framework, an interna-
tional research program in the environmental science community, serves as an evolv-
ing platform to support transitions toward sustainability (Lahsen 2016). Microsoft’s
Eye-On-Earth platform aids climate change research in several European countries
by collecting and sharing water and air quality data (Microsoft 2011). As part of
the European program to monitor the Earth, the Copernicus Data and Information
Access Service (DIAS) platform collects and processes data from remote and in situ
sensors and provides reliable information covering six thematic areas including land,
ocean, atmosphere, climate, emergency, and security (Bereta et al. 2019). Through
its Exploitation Platforms (EP) initiative, the European Space Agency (ESA) built
several cloud-based Thematic Exploitation Platforms (TEPs) in a preoperational
phase for geo-hazard monitoring and prevention (Esch et al. 2017). The CASEarth
Poles comprise a comprehensive big data platform of the three poles including the
Arctic, Antarctic and the Tibetan plateau within the framework of the “Big Earth
Data Science and Engineering” program of the Chinese Academy of Science (Guo
et al. 2017). One of the current initiatives is the NSF EarthCube originated from the
NSF GEO Vision report (NSF Advisory Committee for Geosciences 2009). In this
section, we introduce the EarthCube project and a big data infrastructure, Data Cube,
as two cases of big data and cloud computing in the context of Digital Earth.

9.6.1 EarthCube

NSF EarthCube involves (1) Building Blocks (BBs), to develop novel infrastructure
capabilities and demonstrate their value in a science context; (2) Research Coordi-
nation Networks (RCNs), to engage the science community around joint goals; (3)
Conceptual Designs (CDs), to develop broad architecture design and explore inte-
grative systems; (4) Integrative Activities (IAs), to explore concepts for the design of
an enterprise architecture, and (5) Data Infrastructures (DIs) to lay the groundwork
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for shared data. The EarthCube concept originated from the NSF GEO Vision report
(NSF Advisory Committee for Geosciences 2009), which was issued by the Advisory
Committee for NSF’s Geosciences Directorate (GEO) and identified the future focus
of the Earth science community as ‘fostering a sustainable future through a better
understanding of our complex and changing planet.’ To achieve the GEO vision, the
GEO and Office of Cyberinfrastructure (OCI) jointly launched the EarthCube (NSF
2011) initiative as a driving engine to build a geospatial cyberinfrastructure (similar
to a Digital Earth infrastructure, Yang et al. 2010) to (1) understand and forecast
the behavior of a complex and evolving Earth system; (2) reduce vulnerability and
sustain life; and (3) train the workforce of the future.

EarthCube (2012) is targeted at (1) transforming the conduct of data-enabled
geoscience-related research, (2) creating effective community-driven cyberinfras-
tructure, (3) allowing for interoperable resource discovery and knowledge man-
agement, and (4) achieving interoperability and data integration across disciplines
(Fig. 9.4).

In addition, EarthCube is evolving within a rapidly growing, diverse, and wide-
ranging global environment. In addition to the collaboration within EarthCube, there
are other contributing entities ranging from individual data sets and software applica-
tions to national and international cyberinfrastructure systems. The NSF has funded
the development of EarthCube through individual EarthCube awards since 2013. In
2016, the NSF awarded 11 new EarthCube activities, for a total of 51 awards. A
sampling of efforts in EarthCube that benefit from big data and cloud computing are
introduced below.

Fig. 9.4 Examples of related projects (derived from EarthCube goals, EarthCube Office 2016)
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Conceptual design DASHER
Yang et al. (2015b) proposed a conceptual EarthCube Architecture, DASHER (Devel-
oping a Data-Oriented Human-Centric Enterprise Architecture for EarthCube), to
support EarthCube and facilitate data communication and social collaboration in
pursuit of collaborative Earth sciences research. The final product is a four-volume
report containing different viewpoints that describe EarthCube architecture from dif-
ferent conceptual perspectives such as capabilities, operations, services, and projects.
It provides a comprehensive conceptual reference for developing a detailed and prac-
tical architecture to address the requirements of the EarthCube community. DASHER
was one of the first projects funded by EarthCube to design the conceptual framework
integrating computational resources and big data sources.

Building Block GeoSciCloud
GeoSciCloud (Deploying Multi-Facility Cyberinfrastructure in Commercial and Pri-
vate Cloud-based Systems) investigated two medium-size NSF funded data centers
to deploy data collections with cloud-based services in different environments to
assess feasibility and impact (EarthCube 2019). These environments include (1)
commercial cloud environments offered by Amazon, Google, and Microsoft and (2)
NSF-supported extensive computing facilities that are just beginning to offer services
with characteristics of cloud computing.

GeoSciCloud helps EarthCube compare and contrast these three environments
(the Extreme Science and Engineering Discovery Environment (XSEDE), commer-
cial cloud, and current infrastructure) in the massive data ingestion to the cloud, data
processing time, elasticity, the speed of data egress from multiple environments,
overall costs of operation, interoperability, and reliability of real-time data stream-
ing.

Integrated Activity ECITE
The EarthCube Integration and Test Environment (ECITE) is an outgrowth of activ-
ities of the EarthCube Testbed Working Group. The ECITE approach focuses on
integrating existing effective technologies and resources as well as capabilities built
by the EarthCube community using a cloud platform to provide a federated and inter-
operable test environment (EarthCube 2016). ECITE engages scientists and technol-
ogists from multiple disciplines and geographic regions across the Earth science
community to develop requirements, prototype, design, build, and test an integration
test-bed that will support cross-disciplinary research. The hybrid federated system
will provide a robust set of distributed resources including both public and private
cloud capabilities. This research addresses timely issues of integration, testing and
evaluation methodologies and best practices with a strong interoperability theme to
advance disciplinary research through the integration of diverse and heterogeneous
data, algorithms, systems, and sciences.
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Integrated Activity Pangeo
Pangeo3 (an open-source big data climate science platform) integrates a
suite of open-source software tools that can tackle petabyte-scale Atmo-
sphere/Ocean/Land/Climate (AOC) datasets. Pangeo aims to cultivate an ecosystem
in which the next generation of open-source analysis tools for ocean, atmosphere
and climate science can be developed, distributed, and sustained. These tools must
be scalable to meet the current and future challenges of big data, and the solutions
should leverage the existing expertise outside of the AOC community. The resulting
software improvements contribute to upstream open source projects, ensuring the
long-term sustainability of the platform. The result is a robust new software toolkit
for climate science and beyond. This toolkit will enhance the Data Science aspect of
EarthCube. Implementation of these tools on the cloud was tested, taking advantage
of an agreement between commercial cloud service providers and the NSF for big
data solicitation.

9.6.2 Data Cube

The term ‘data cube’ was originally used in Online Analytical Processing (OLAP)
of business and statistical data but has more recently been used in Earth domains as
an approach to manage and analyze large and rapidly growing datasets. In Digital
Earth, a data cube represents a multidimensional (n-D) array that stores gridded data
or array-based data produced by remote sensing and simulation (Zhang et al. 2005).
A data cube can be based on regular or irregular gridded, spatial and/or temporal data
with multiple parameters. To support the management, sharing, and serving of Digital
Earth data, tools and models, different cyberinfrastructures have been developed
based on data cubes. Examples include the EarthServer that provides data cube
services for Earth observations based on the RASDAMAN array database (Baumann
et al. 2016). Another example is the Earth Observation Data and Processing Platform
developed by the European Commission to integrate and analyze the combination
of satellite and in situ Earth observations for sustainable development goals (Soille
et al. 2016). The Committee on Earth Observation Satellites (CEOS) provides a data
processing infrastructure based on data cubes to support Earth science objectives in
developing countries, with a focus on remote sensing data (Nativi et al. 2017). The
platform automatically ingests different remote sensing data into an N-dimensional
data array.

Challenging issues in providing data services in data cube infrastructure include
interoperability, rapid data access and transfer, and real-time processing and analysis
(Strobl et al. 2017). Interoperability issues occur because datasets from various
sources can have distinct parameterizations, spectral band definitions, projections,
file formats, and database structures. One solution is to standardize the preprocess-
ing procedure before storage and sharing with the community. The Open Geospatial

3http://pangeo.io/.
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Consortium (OGC) Sensor Web Enablement (SWE) Common Data Model (CDM)
defines important element parameterization (Robin 2011). Datasets must be rep-
resented along different predefined dimensions of the data cube, including space,
time, and parameter properties. For projection difference issues, OGC recently devel-
oped the Discrete Global Grid System (DGGS) to optimize the loss of geospatial
data during the reprojection process and seamlessly integrate GIS data from various
sources (Stefanakis 2016). Data cube infrastructures also require rapid data access
and transfer and real-time processing and analysis. Functionalities for user inter-
actions must be built for various user demands, including file manipulation, data
preprocessing, and analysis. These functionalities should also meet the standards of
geographical information processing in OGC Web Coverage Services (WCS), geo-
graphic information analysis in the OGC Web Coverage Processing Service (WCPS),
and format-independent data cube exchange in the OGC Coverage Implementation
Schema (CIS).

Cloud computing and big data frameworks could enhance the data cube archive,
visualization, and analysis in many ways to meet the needs of big Earth data knowl-
edge mining. In cloud computing, storage is a virtual resource that can be attached
and scaled on demand. By leveraging cloud computing and big data frameworks,
visualizing data cubes and performing complicated spatiotemporal queries are more
effortless than ever before (Zhizhin et al. 2011). One example of data cube visu-
alization in the Earth science domain is the EOD4 (Earth Observation Data Cube),
which enables advanced data access and retrieval capabilities for the European cov-
erage of Landsat-8 and the global coverage of Sentinel2 data. It aims to improve the
accessibility of Big Earth data and offers more than 100 TB of Atmosphere, Land and
Ocean EO products, demonstrating satellite data in the context of a virtual globe. The
ESDC5 (Earth System Data Cube) is another example of climate data cube visualiza-
tion and analysis that aims to develop an environment to tap into the full potential of
the ESA’s Earth observations and integrate with the Biosphere-Atmosphere Virtual
Laboratory (BAVL) analysis environment. The use of cloud computing technologies
in big data visualization enables a massive amount of end users to explore data online
at the same time with very low latency.

Data cube partition and parallel query could be achieved by utilizing distributed
big data frameworks, which are faster and easier than traditional noncluster methods.
Pagani et al. combined the data cube concept with cloud computing to manage and
analyze large Earth datasets and observed better outcomes than traditional file-based
approach (2018). Open Data Cube6 is another example of the utilization of advances
in cloud computing, providing free and open technologies to end users without local
infrastructure. Thus, developing countries can access data and computing resources
to build applications that aid decision making. The Australian Geoscience Data Cube
(AGDA) solves similar problems of data sharing. It makes more than three decades
of satellite imagery available for the first time, spanning Australia’s total land area at

4https://eodatacube.eu/.
5https://cablab.readthedocs.io.
6https://www.opendatacube.org/.
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a resolution of 25 square meters with more than 240,000 images that show how Aus-
tralia’s vegetation, land use, water movements, and urban expansion have changed
over the past 30 years (NCI).

9.7 Conclusion

The advancement of Digital Earth drives collection of massive data such as trans-
portation data, utility data, hazard data and forest data to monitor the Earth and
support decision making. Valuable information extracted from the collected big data
can further speed the development of Digital Earth. Digital Earth data continue to
grow at a faster speed and with more heterogeneous types, leading to challenges to the
lifecycle of data management including storage, processing, analytics, visualization,
sharing, and integration. Fortunately, the emerging paradigm of cloud computing
brings potential solutions to address these challenges. Compared with traditional
computing mechanisms, cloud computing has the advantages of better data process-
ing computing supports. The customizable configuration saves computing resources
elastically, and data manipulation with higher security and flexibility offers secure
data storage, transfer and sharing. Analytics enabled by cloud computing advance the
process by allowing for automatic resource expansion when there are higher require-
ments.

To manage and analyze big Earth data, a service-oriented, scalable architecture
based on cloud computing was introduced in a three-layer architecture: (1) the bot-
tom data storage layer provides physical infrastructure, storage, and file systems; (2)
the data query layer supplies data discovery capabilities with proper functionality
and interoperability; and (3) the data processing layer supports extensibility, inter-
operability and scalability based on open source solutions and their variants from
Earth science communities. With this architecture, big Earth data can be accessed
and analyzed with low time latency or even in real time. The analysis results could
be published by a web-based map server (e.g., GeoServer) or web-based notebook
(e.g., Zeppelin) for visualization, public access, and collaboration, contributing to
advancements in handling big data in Digital Earth to fulfill the requirements of
scalability, extensibility and flexibility.
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Chapter 10
Artificial Intelligence

Eric Guérin, Orhun Aydin and Ali Mahdavi-Amiri

Abstract In this chapter, we provide an overview of different artificial intelligence
(AI) and machine learning (ML) techniques and discuss how these techniques have
been employed in managing geospatial data sets as they pertain to Digital Earth.
We introduce statistical ML methods that are frequently used in spatial problems
and their applications. We discuss generative models, one of the hottest topics in
ML, to illustrate the possibility of generating new data sets that can be used to
train data analysis methods or to create new possibilities for Digital Earth such as
virtual reality or augmented reality. We finish the chapter with a discussion of deep
learning methods that have high predictive power and have shown great promise in
data analysis of geospatial data sets provided by Digital Earth.

Keywords Artificial intelligence · Machine learning · Generative models ·
Statistical data analysis

10.1 Introduction

Earth and its associated data sets are massive. Various forms of geospatial data sets
are constantly accumulated and captured by different forms of sensors and devices
(Mahdavi-Amiri et al. 2015). Managing such an immense data set is a challenge.
As a result, many automated techniques have been designed to process geospatial
data sets with minimal human interference. Since manual involvement should be
minimal, the machines should be capable of processing data and delivering mean-
ingful information to the users. With advancements in machine learning, processing
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geospatial data sets has significantly improved. In this chapter, we discuss artificial
intelligence and machine learning techniques that have been useful to manage and
process geospatial data sets. Because the processing of geospatial data can also be
a source of knowledge, some methods use existing data to generate and synthesize
new data.

We start by discussing some traditional and statistical approaches in machine
learning and then present more recent learning techniques employed for geospatial
data sets. Traditional methods include predefined models such as linear regression,
PCA, SVD, active contour, and SVM, in which the model is fixed and the learning
is based on an optimization. We also briefly discuss evolutionary and agent-based
methods and autoencoders as traditional methods that can be deep or shallow. We
then discuss more recent deep learning techniques, including reinforcement learning,
deep convolutional networks and generative models such as variational autoencoders
and generative adversarial networks. In this chapter, we describe some applications
of these machine learning techniques to handle geospatial data sets that are the main
content of Digital Earth. In the future, a dynamic Digital Earth that can use such
techniques to work with geospatial datasets is extremely practical. Currently, such
methods are sparsely used on very specific Digital Earth data sets. We imagine that
a more advanced Digital Earth will use state-of-the-art machine learning techniques
much more than they are currently used.

10.2 Traditional and Statistical Machine Learning

Inferring patterns and forming relationships using artificial intelligence require
knowledge of some characteristics of the phenomena/system of interest. One of the
early approaches to enabling artificial intelligence for complex problems was to cre-
ate knowledge bases that contain explicit sets of rules and associations, also known
as ontology (Gruber 1993). For data pertaining to Earth system modeling, different
niche knowledge bases were designed by various authors (McCarthy 1988; Rizzoli
and Young 1997). The knowledge base approach to artificial intelligence required
expert input to define the rules and associations. In addition, the expert knowledge
had to be represented in a “computable form” (Sowa 2000), posing a bottleneck
for these approaches. For spatially varying, complex phenomena, ontology repre-
sentations were defined for Earth’s subsystems such as in environmental modeling
and planning (Cortés et al. 2001), and ecological reasoning (Rykiel 1989). General
spatial and GIS knowledge bases were proposed by various authors (Kuipers 1996;
Egenhofer and Mark 1995; Fonseca et al. 2002).

Despite the plethora of niche knowledge bases, knowledge base artificial intelli-
gence requires assertions and ground truths (Lenat 1995), which can conflict with
observations (Goodfellow et al. 2016). Numerous attempts to address this limitation
have been presented by various authors, such as defining hierarchical (Kuipers 1996),
or location/problem-tailored knowledge bases (Rizzoli and Young 1997).
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Statistical machine learning alleviates the limitations of the knowledge-based
approach to artificial intelligence and discovers rules and patterns from the data
directly without explicit supervision (Goodfellow et al. 2016). In the case of statistical
learning, patterns and rules from an unknown underlying process are defined for
descriptive, predictive and prescriptive analytics.

Applications of statistical learning to understand and forecast natural and human
phenomena are evaluated with respect to the components of the general definition of
machine learning (Mitchell 1997). Mitchell’s (1997) definition is as follows:

A computer program is said to learn from experience [D] with respect to some class of
tasks T and performance measure [Q], if its performance at tasks in T, as measured by [Q],
improves with experience [D].

Machine learning methods are broadly grouped into supervised and unsupervised
methods. Supervised machine learning methods experience modeled phenomena
through so-called labeled training data. Labels in the training data correspond to the
target variable to be predicted, either quantitative (regression) or qualitative (clas-
sification). Training data consists of predictors and their corresponding predictand.
Thus, supervised machine learning methods learn relationships in the data through
experiencing input/output pairs.

Unsupervised machine learning methods discover patterns in the data without
supervision or explicit rules. Clustering is one of the most common unsupervised
machine learning methods for geospatial datasets.

10.2.1 Supervised Learning

Supervised learning aims to define a relationship between r predictor variables,
denoted by X = (X1, X2, . . . , Xr ), and e predictands, Y = (Y1, Y2, . . . , Ye). Super-
vised learning can be posed as a density estimation problem (Hastie et al. 2001):

P(Y |X) = P(Y , X)/P(X) (10.1)

where P(Y |X) is the conditional probability density of observing the predictand
given the predictors, P(Y, X) is the joint probability distribution of the predictand
and predictors, and P(X) is the marginal probability distribution of the predictors.
Using Mitchell’s (1997) description, the performance Q can be quantified using a loss
function L where, for a given method and set of parameters �, a location function,
μ(x), is minimized (Hastie et al. 2001) in Eq. 10.2.

μ(x) = ar gmin� EY |XL(Y ,�) (10.2)

For a given �, a supervised machine learning method predicts the values at X
as ŷ. The loss function, L, quantifies the error between ŷ and the training data y.
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Some examples of supervised machine learning methods as they pertain to geospatial
analysis are given in the following subsection.

10.2.1.1 Random Forest

Random forest is a framework for nonparametric estimation in which both classifi-
cation and regression can be performed (Breiman 2001). It has gained popularity in
numerous geospatial applications due to its flexibility in accommodating different
types of inputs (categorical or continuous) and its ability to model complex relation-
ships in the data.

Random forest addresses the overfitting limitation of classification and regression
trees (CART). Random forest uses bootstrap aggregating, also known as bagging, to
create subsets of the training data by sampling with replacement to build different
CARTs (Breiman 1996). Each of the CARTs that make up the forest predict, or vote,
for a given data point of x and the forest returns the majority vote in a classification
or the average forest prediction for a regression. The voting scheme of random
forest allows for complex relationships to be captured in the data that might not be
possible otherwise. A pictorial summary of a random forest classifier for classifying a
successful retail store (one) or an unsuccessful one (zero) with respect to its distance
to the nearest highway exit and the number of brands it carries is given in Fig. 10.1.

Fig. 10.1 Cartoon representation of a random forest classifier

www.dbooks.org

https://www.dbooks.org/


10 Artificial Intelligence 361

Fig. 10.2 a Satellite image over southern California, with training data marked with black polygons
b classified land coverage map using random forest

Note that every tree experiences different subsets of training data and their struc-
tures are different from one another. The voting scheme allows for capturing underly-
ing patterns in the data by defining complex relationships captured in a large ensemble
of trees rather than a single tree.

In geospatial problems, various random forest classifiers are used in a wide range
of problems, including land cover classification (Gislason et al. 2006) and ecological
modeling (Cutler et al. 2007). In land cover classification, random forest speeds up
classification of land use by forming a relationship between the satellite image RGB
value and the type of land it corresponds to. In this case, the training data consists of
tagged locations at which the land cover and RGB values are known. An example of
the random forest classifier output for land use classification is given in Fig. 10.2.

In Fig. 10.2, a small number of farms and areas around them were used as training
data (marked with black polygons). The training set that consists of 300 farms was
used within the random forest classifier to define land use in southern California.

10.2.1.2 Geographically Weighted Regression

Geographically weighted regression (GWR) provides a statistical framework for
incorporating spatial dependency within a linear regression system (Fotheringham
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Fig. 10.3 Conceptual
depiction of GWR.
Regression is performed for
the orange point with a red
circle defining the
neighborhood

et al. 2003). GWR provides spatial extensions to ordinary least squares and general-
ized linear models (Nelder and Wedderburn 1972) such as geographically weighted
logistic regression. GWR is depicted conceptually in Fig. 10.3.

Figure 10.3 illustrates a regression system solved within the neighborhood (red
circle) for the location indicated in orange. First, GWR defines a weighting scheme
to determine spatial weights for the neighbors, and the predictors X at every location
(blue) are weighted with respect to their distance to the location for which the regres-
sion is performed (orange). The geographically weighted linear system of equations
solved at a point i can be expressed as follows:

β̂(ui , v i ) = (
XT W(ui , v i )X

)−1
XT W(ui , v i )Y (10.3)

where β̂(ui , v i ) is the coefficient matrix for the predictors X at location i . W(ui , vi )

is a diagonal weighting matrix that contains geographic weights on its diagonal
elements for neighbors inside the neighborhood window (red circle in Fig. 10.3),
and Y contains the variable being predicted. Note that the linear system above is
similar to the general linear regression system given in Eq. 10.4.

β̂ = (
XT X

)−1
XT Y (10.4)

where β̂ is defined globally for the entire dataset. The geographic weights are
inversely weighted with respect to the distance. Thus, the weights have large values
for neighbors close to the regression location i . Different weighting schemes and
neighborhood definitions are possible; the reader is encouraged to explore seminal
work on this topic (Fotheringham et al. 2003).
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Spatial representation via a weighting scheme can give GWR high predictive
power for geospatial datasets in which a strong spatial autocorrelation is observed.
The impact of incorporating spatial relationships in the regression model is demon-
strated by comparing GWR with a nonspatial supervised machine learning method.
In this example, GWR is juxtaposed against a random forest predictor for a prob-
lem with strong spatial autocorrelation in the data. Statistical climate downscaling
(Wilby and Wigley 1997) was performed with GWR and a random forest regressor.
Statistical downscaling calibrates the output of a global circulation model (GCM) to
observed climate data such as temperature or precipitation. In this example, climate
downscaling for the lower 48 US states; a regression model can be defined between
19 predictors (from GCM) and the observed average temperature. The regression
model can be used to predict the average temperature for the entire lower 48 states.
A random forest predictor can be trained using the observed average temperature and
simulated GCM variables. The GWR model is formed using only 3 of the indepen-
dent predictors due to the collinearity restriction of GWR. Below are the predicted
average temperature profiles.

Note that the average temperature profile estimated in Fig. 10.4a depicts the pat-
terns of temperature change captured in Fig. 10.4b. Even though fewer predictors
are used in the GWR than in the random forest regressor, large-scale patterns in the
temperature profile changes are captured. The GWR model in Fig. 10.4a was also
compared to a random forest regressor model trained using the same three predictors.
In that case, the GWR returned a mean-squared error that was 60% of that of the
random forest regressor.

10.2.1.3 SVM

Support vector machine (SVM) is a supervised nonparametric statistical learning
method (Corinna and Vapnik 1995). In its original form, the method comprises a set
of labeled data instances and the SVM attempts to find a hyperplane that separates
the dataset into a discrete predefined number of classes as consistently as possible
for the training data (see Fig. 10.5) (Vapnik 1979). It is possible to generalize SVM
to nonlinear kernels such as radial basis functions to learn and classify data sets with
higher complexity (Schölkopf and Smola 2002).

As studied and discussed by Mountrakis et al. (2011), SVMs have been extensively
employed in remote sensing and geospatial data analysis due to their ability to use
small training data sets, often resulting a higher classification accuracy than the
traditional methods (Mantero et al. 2005). For instance, SVM has been used in
road extraction from IKONOS imagery by (Huang and Zhang 2009) assessing the
influence of the slope/aspect of the terrain on the forest classification accuracy (Huang
et al. 2008), a crop classification task (Wilson et al. 2004), and many more factors.
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Fig. 10.4 a Downscaled temperature profile using GWR b downscaled temperature profile using
a random forest regressor
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Fig. 10.5 SVM attempts to distinguish two categories of data by a hyperplane. Image from Moun-
trakis et al. (2011)

10.2.1.4 Active Contours and Active Shapes

Active contours or snakes have been developed with the aim of finding important
features in an image by fitting a curve to the edges and lines of an image (Kass
et al. 1988). Active contours are a set of energy-minimizing splines that are guided
by external forces from the image. Snakes have been used extensively in geospatial
image processing to detect features such as roads and buildings.

Active contours were later extended to active shapes to accommodate specific
patterns in a set of objects and identify only those that are present in the training
data (Cootes et al. 1995). In essence, they are very similar to active contours, but
active shapes can only deform and fit the data that is consistent with the training
set. Both active shapes and active contours have been extensively used in different
applications of remote sensing and geoscience, such as object extraction (Liu et al.
2013), lane detection (Heij et al. 2004), and road extraction (see Fig. 10.6) (Kumar
et al. 2017; Laptev 1997).

10.2.2 Unsupervised Learning

Unsupervised learning aims to infer the distribution of P(X) in Eq. 10.1. Unlike
supervised learning, P(Y |X) or P(X, Y ) is not employed (Hastie et al. 2001). Thus,



366 E. Guérin et al.

Fig. 10.6 Active contours used to extract roads. Image taken form Laptev (1997)

unsupervised learning does not utilize any training dataset that contains information
on P(X, Y ). One of the most common uses of unsupervised learning in geospatial
analysis is in defining clusters and regions. These two terms differ, as clustering refers
to defining groups based on value similarity in the data whereas regionalization
performs clustering under spatial constraints (Duque et al. 2007). Both of these
unsupervised learning approaches have wide applications (Duque et al. 2007; Hastie
et al. 2001; Mitchell 1997; von Luxburg 2010). Most clustering and regionalization
methods require definition of k, the number of clusters to divide X into. There are
extensive surveys of clustering and regionalization in the literature for readers to
refer to (Duque et al. 2007; Jain et al. 1999).

10.2.2.1 SKATER Algorithm

As discussed in Chap. 8, the K-means algorithm (Macqueen 1967) aims to partition
X into k groups and minimize the intergroup dissimilarity with the assumption that
minimal intergroup dissimilarity corresponds to distinct groups. K-means seeks to
create groups that consist of similar elements, ensuring that dissimilar elements are
assigned to different groups. Mathematically:

μ(x) = ar gminC

k∑

i=1

∑

x∈ci

∥∥x − C̄ ι

∥∥2
(10.4)

where C = {C1, C2, . . . , Ck} is the group of clusters, with a cluster cm consisting
of a subset of X and c1 ∪ c2 ∪ · · · ∪ ck = X . K-means has various uses in geospatial
analysis, including detecting patterns in traffic accidents (Anderson 2009), analyz-
ing landslides (Keefer 2000) and creating labels by clustering topo-climatic data
(Burrough et al. 2001).

The SKATER algorithm is a regionalization algorithm that imposes graph-based
spatial constraints on the k-means algorithm (Assunção et al. 2006). Unlike Lloyd’s
algorithm (Lloyd 1982), SKATER only assigns spatially contiguous and similar
objects to the same cluster. Regionalization has vast uses in geospatial analysis,
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including analysis of gerrymandering, healthcare services (Church and Barker 1998)
and resource allocation (Or and Pierskalla 1979).

Clustering and regionalization were applied to the same dataset to juxtapose the
types of patterns they expose in the data and the resulting understanding gained using
these two methods. The average temperature in the United States in June 2012 was
used. The resulting clusters and regions are displayed below.

The regionalization and clustering results in Fig. 10.7 show similarities in the
overall temperature patterns, which change N-S in the eastern portion of the US
and W-E in the western portion. Notably, the k-means result in Fig. 10.7b displays
isolated patches whereas the regionalization result has spatially contiguous regions.
Due to the constrained optimization scheme to satisfy the spatial constraints, the
regions defined by regionalization have a higher variance than those in the k-means
result. However, both maps display similarities in the temperature and the extent to
which these similarities can be aggregated into homogeneous zones.

10.2.2.2 Autoencoders

Another very useful and common machine learning technique is autoencoders
(Rumelhart et al. 1985). In an autoencoder, the data passes through a bottleneck,
where the bottleneck is a lower representation of the same data. Autoencoders are
made of two neural networks called the encoder and decoder (Fig. 10.8). The encoder
receives data D, maps it to a lower space and obtains L; a decoder receives L, maps
it back to the same dimension of D and obtains D’. The distance between D and D’,
which is called the reconstruction loss, should be minimized. A direct application
of autoencoders is in compression, in which one can reduce the dimension of D to
L and work with L and the decoder instead of the data D in its native resolution.
Autoencoders have also been used in geospatial applications to find water bodies
(Zhiyin et al. 2015) or denoise satellite images (Liang et al. 2017).

Machine learning techniques are not limited to the list of applications and methods
provided here. Several variations of these methods as well as many other standalone
techniques have been successfully employed in the Digital Earth, geoscience and
remote sensing fields. For a more in-depth and comprehensive study, refer to the
work of Lary et al. (2016).

10.2.3 Dimension Reduction

There have been extensive efforts to learn the patterns and forms that data sets
contain. It is possible to predict the behavior of a data set and/or compress the data
set into a more compact form for transmission, storage, and retrieval. In addition
to autoencoders that can be used for dimensionality reduction, one of the easiest
methods for compression and dimensionality reduction for a given data set and
subsequent prediction of its behavior for unknown data points is linear regression.
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Fig. 10.7 a Temperature regions defined by SKATER b temperature regions defined by k-means
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Fig. 10.8 The autoencoder
passes the data (yellow
neurons) through an encoder
to learn a lower dimension
(hidden/latent space; gray
neurons) representation of
the data. The decoder
attempts to reconstruct the
data (red neurons) as closely
as possible to the given data

In the 2D case of this method, the data points attain two coordinates, and the line
that best represents these data sets is considered as the model representative of the
data. The best representation can have different meanings, including the line that
has the smallest least square distance with all the data points. Regression, linear or
nonlinear, has been a great tool to analyze spatial data. Belae et al. (2010) provided
a survey of regression techniques used to represent and analyze spatial datasets. For
Digital Earth platforms, Mahdavi-Amiri et al. (2018) combined regression with a
wavelet to transmit quantitative datasets on a discrete global grid system (DGGS).

10.2.3.1 PCA

Another form of linear representation of a data set is principal component analysis
(PCA). In this representation, the covariance matrix of the data is initially formed by
applying the inner product of a data matrix A in its transpose

(
Cov = AT A

)
. The

eigenvectors of the covariance matrix, λi , represent the main trends of the data. If we
have a data set forming an ellipsoid in 2D, the eigenvectors are the two main axes of
the ellipsoid. Figure 10.9 represents PCA in 2D. PCA has been extensively used in
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Fig. 10.9 PCA finds the
main trends of the data. The
data points illustrated in
yellow have two main trends
x′ and y′ that are the
eigenvectors associated with
the largest eigenvalues of the
covariance of the data

many applications including computer graphics, computer vision, and data science.
PCA has been used in different applications related to geospatial data representa-
tion and geospatial data analysis (Demšar et al. 2013). For instance, PCA has been
successfully used to study drought areas (Gocic and Trajkovic 2014), evaluate water
quality (Parinet et al. 2004), and distinguish vegetation (Panda et al. 2009).

10.2.3.2 SVD

Singular value decomposition (SVD) is a decomposition that reveals important infor-
mation about a matrix. In SVD, a matrix A is decomposed into the form U SV T , in
which U and V are two rotation matrices and S is a diagonal scale matrix with values
called the singular values, σi , of matrix A. There is a direct connection between
PCA and SVD because the singular values of the singular value decomposition of
data matrix A are the square root of the eigenvalues of the covariance matrix that is
found in PCA

(
σi = √

λi
)
. To compress or denoise data, it is possible to zero out

small eigenvalues obtained by SVD and keep important portions of the data. SVD
has been extensively employed in image processing applications (Sadek 2012). It
has also been used in geospatial applications. For instance, Wieland and Dalchow
(2009) used SVD to detect landscape forms, and Dvorsky et al. (2009) used SVD to
determine the similarity between maps.
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10.2.3.3 Evolutionary and Agent-Based Techniques

Evolutionary and Agent-based techniques have also been extensively used to perform
analyses of geospatial data sets. Two important algorithms are genetic algorithms
(GAs) and ant colony optimization (ACO).

In GAs, a set of random solutions is initially produced and these solutions are
considered parents to make a new generation of solutions based on three rules:
Selection rules that select parents based on their fitness, Crossover rules that combine
two parents to generate children for the next generation, and Mutation rules that
apply random changes to parents to form children (Mitchel 1998). GAs have been
used in many applications in geospatial data analysis such as road detection (Jeon
et al. 2002) and satellite image segmentation (Mohanta and Binapani 2011).

ACO is an optimization technique that works based in an agent-based environ-
ment. In this stochastic environment, the ants are agents that walk over a certain
solution path and leave a track called a pheromone. Paths with more pheromone are
usually more optimal (shortest) than others, and they attract more agents. A classic
problem that can be solved by ACO is the travelling salesman problem. ACO has
been successfully employed to solve other types of hard problems including those
involving geospatial data analysis. For instance, ACO has been used for path plan-
ning considering traffic (Hsiao et al. 2004) and road extraction from raster data sets
(Maboudi et al. 2017).

10.3 Deep Learning

When a large amount of data is involved and/or a complex model for representing the
data is used, it is common to employ deep learning methods (Goodfellow et al. 2016).
Digital earth data represents a massive amount of data, for example, high-precision
digital elevation models or aerial photography. Because the rules that produce this
kind of data are very complex and involve many natural or human processes, it can be
difficult to apply standard learning models or algorithms and retain this complexity.
Thus, the deep models described in this section are relevant.

10.3.1 Convolutional Networks

Deep learning has been popularized by image processing applications. In this con-
text, the processed data is arranged into a regular grid and is adapted to so-called
convolutional layers. Data extracted from Digital Earth can be of this nature by
construction. For example, raster data such as digital elevation models or aerial pho-
tography images are already arranged into regular grids and can be processed out
of the box with convolutional layers. Convolutional neural networks rely on the fact
that the same processing can be applied to different parts of the image. Traditional
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Input

Output

Fully connected layer Convolutional layer

Fig. 10.10 Convolutional layers use fewer coefficients and are spatialized

fully connected schemes for neural network layers use many coefficients that can be
spared with convolutional layers and used in other features. Figure 10.10 compares
the principle of a convolutional layer to that of a traditionally fully connected layer.
Both examples show an input of size 9. While a fully connected layer uses 27 coeffi-
cients to produce an output of size 3, the convolutional layer can produce 9 outputs
from only 3 different coefficients. This means that the same feature extraction is per-
formed but at different locations, which is relatively close to traditional convolution
in the discrete domain.

Recently, a convolutional network was used to infer the super-resolution of a dig-
ital elevation model by using aerial photography (Argudo et al. 2018). Figure 10.11
shows the architecture of this network. This work comes from the observation that
publicly available high-resolution DEMs (resolution less than 2 m) do not cover
the full Earth whereas it is possible to find high-resolution imagery (orthophotos)
with good coverage of the Earth. Many applications require a fine resolution for
the DEM, and Argudo et al. proposed inserting details into a coarse DEM using
inferred information drawn from the high-resolution orthophoto of the same foot-
print (Fig. 10.12). Basically, the method produces a DEM with 2 m precision from
a DEM with 15 m precision and an orthophoto with 1 m precision. To produce this
result, a fully convolutional network was used.

In the literature, a full system to automatically infer street addresses from satellite
imagery was proposed (Demir et al. 2018a). One step that must be performed is
the extraction of roads from the satellite images. This was done using a modified
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Fig. 10.11 A fully convolutional network was used to infer the high-resolution DEM from its
coarse version and the high-resolution orthophoto (courtesy of O. Argudo et al.)
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Fig. 10.12 Super-resolution of a 15 m precision DEM (top right) using an orthophoto (top left).
Result (bottom left) and the ground truth reference (bottom right) (courtesy of O. Argudo et al.)

version of SegNet, a convolutional network primarily used for image segmentation.
In this architecture, the input and output resolutions are identical, and the network
consists of several encoder layers that decrease the resolution followed by decoders
that increase the resolution. The network is trained using manually labeled 192 ×
192 pixel images, in which a binary road mask is associated with each pixel of the
image to indicate if the pixel belongs to a road or not. Figure 10.13 shows an example
of the results obtained in automatic extraction of the road information compared with
the ground truth.

More generally, automatic processing of satellite images with a deep learning
approach appears to be very efficient in segmentation and feature extraction. The
DeepGlobe project (http://deepglobe.org) aims to challenge authors to use deep
learning for three applications: road extraction, building detection and land cover
classification (Demir et al. 2018b).

Fig. 10.13 Automatic extraction of the road mask (right) from the satellite image (left), compared
with the ground truth road network (center) (courtesy of I. Demir et al.)

http://deepglobe.org
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Fig. 10.14 The schematic of
a recurrent neural network

10.3.2 Recurrent Neural Networks

While convolutional neural networks and dense neural networks work well for static
data in which there is no sense of time, a recurrent neural network (RNN) (Jain and
Medsker 1999) processes data by iterating through the input elements and maintain-
ing a state that contains information relative to what it has seen until then. An RNN
is a neural network with an internal loop (see Fig. 10.14). The state of the RNN is
updated between processing independent sequences; therefore, we still consider one
data sequence as a single data point in the network. The difference is that this data
point is not processed in a single step as opposed to those in dense or convolutional
neural networks. In an RNN, the network internally loops over sequence elements
until it learns the flow of the data. An RNN is helpful when dealing with a temporal
data set. In geospatial data analysis, an RNN has been recently applied in interest-
ing applications such as correction of satellite image classification (Maggiori et al.
2017) and land cover classification (Ienco et al. 2017). Since many types of geospa-
tial data sets such as weather, satellite images, or seasonal animal behavior have
timing attached to them, we expect that RNNs will be widely used in the analysis of
geospatial data sets in the near future and that Digital Earth will benefit from such
networks.

10.3.3 Variational Autoencoder

Deep neural networks are useful to analyze data sets and are also helpful in generating
new data sets. It is possible to consider two deep neural networks as the encoder and
decoder of an autoencoder and produce a latent space that represents the data. Using
only L and an encoder, we can reproduce a lossy representation of D. However, it
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is not possible to pick a vector in L and expect to reproduce a meaningful result by
feeding it to the encoder because the distribution of L is unknown if autoencoders are
used. In variational autoencoders (VAEs) (Kingma and Welling 2014), in addition
to the compression loss, another loss is minimized that forces the L to be a Gaussian
distribution. Thus, VAEs can be used as a generative neural network in which one
can sample the Gaussian distribution and feed it to the encoder to generate a new
shape that does not necessarily belong to the training data set. Although VAEs have
potential to generate data and learn low-dimensional data for geospatial data sets,
VAEs have not been extensively tested for geospatial data analysis and generation.

10.3.4 Generative Adversarial Networks (GANs)

Similar to VAEs, generative adversarial networks (GANs) (Goodfellow et al. 2014)
are also generative models. GANs consist of a pair of networks that have two differ-
ent and adversarial roles. These networks have a convolutional architecture and are
often complex to retain the complexity of the underlying models. The first network is
a generator that we denote as G, which attempts to generate the best result, for exam-
ple, an image. Then, the second network takes the image as input and tries to infer if
it is a generated image or not. This second network is called a discriminator and we
denote it as D. Both G and D are trained alternatively. The objective of G is to fool D
whereas D aims to avoid being fooled by G. The strength of this kind of adversarial
formalism is that it is equivalent to use of a very complex function to train the gener-
ator G (encoded into the discriminator), far more complex than traditional distance
would be.

Conditional GANs (cGANs) are GANs with a particular setup in which the dis-
criminator is trained to recognize the matching between an input image A and an
output B whereas a traditional GAN only tests the plausibility of the output with-
out any knowledge of the input. The training principle of a cGAN is explained in
Fig. 10.15.

Fig. 10.15 cGAN principle: a training pair (A, B) is used to learn positive examples. For negative
examples, only A is used together with the generator to form the pair (A, G(A))
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Conditional GANs have recently been used to automatically generate digital ele-
vation models from user sketches (Guérin et al. 2017). The user sketches the river
network, the crests and some altitude cues and obtains a plausible terrain that matches
the given constraints, based on a training dataset made of sketch/terrain pairs. The
method consists of building such a dataset by extracting the sketch from a real-world
terrain. The difficulty of this kind of setup is to automatically build a sketch that is
compatible with user sketches, i.e., similar to what a user would draw. Building a
sketch that is too close to the terrain features will force the user to draw very precisely,
which is not relevant in a sketching context but would be useful in a reconstruction
process. The digital elevation model must be simplified to produce simpler features.
In their work, Guérin et al. propose initially downsampling the digital elevation
model and then smoothing it. This coarse digital elevation model is then processed
by a flow simulation, from which the skeleton is extracted. The same process is
applied to extract ridges. This feature extraction is illustrated in Fig. 10.16.

The training dataset is formed of pairs that describe the matching between the
sketch and the terrain. Figure 10.17 gives examples of such pairs. To create a more
pliable terrain synthesizer, the sketches randomly include one, two or the three fea-
tures among the river lines, crest lines and altitude cues.

Figure 10.18 shows examples of outputs produced by the DEM generator from
sketches. The results were obtained by using training from a DEM extracted from
the NASA SRTM dataset at 1 arc-second from different locations in the United

Initial DEM Downsampled DEM Flow simulation Skeleton

Fig. 10.16 Training database examples

Fig. 10.17 Training database examples. Training pairs are formed by a sketch (a) and an associated
DEM (b). Sketches can feature river lines (blue), crests (red) and altitude cues (green)
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SketchSynthesized DEM Synthesized DEMSketch

Fig. 10.18 Examples of generated digital elevation models from simple sketches. A canyon gen-
erated using river and crest lines (left). A volcanic island generated using only crest lines (right)

States. In the same article, the authors proposed the use of the same principle to
automatically generate digital elevation models from a single level set sketch. They
also described examples of automatic void filling in digital elevation models. Finally,
because cGANs can embed very complex models, they used it to mimic an erosion
process.

10.3.5 Dictionary-Based Approaches

Approaches based on base function decompositions have intrinsic limitations. Base
functions are usually used because they have orthogonality properties that lead to an
efficient decomposition. Selecting the base can be difficult because it heavily depends
on the nature of the signal. Thus, it can be a viable option to use dictionary-based
descriptions. A signal is represented as a linear combination of atoms from a dictio-
nary. Atoms do not need to have special properties such as orthogonality. They are
typically chosen directly from the data by picking the most representative signals or
by using an optimization. A survey of dictionary-based methods for 3D modeling was
conducted by Lescoat et al. (2018). One of the applications of dictionary-based mod-
eling is called sparse modeling, which adds an additional constraint on the number
of atoms used to represent the final signal, called sparsity.

10.3.5.1 Dictionary Decomposition

Given a dictionary, the decomposition of a signal consists of finding the best atom,
i.e., the atom that maximizes the projection. Then, the same process is applied itera-
tively to the residual until reaching the target sparsity. This process is called matching
pursuit and was introduced by Mallat and Zhang (1993). This decomposition algo-
rithm was further improved by Cai and Wang (2011) by introducing the Orthogonal
Matching Pursuit (OMP) algorithm. The main difference is that the best decompo-
sition of the already-found atoms is recomputed after each new atom is found.
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1 2 3

Exemplar

Sketch ε= 1 km ε= 125 m ε= 4 m

Fig. 10.19 An example of terrain amplification that adds plausible details from a given exemplar
using a dictionary-based approach. The original terrain had a precision of 1 km, and successive
amplifications by a factor of 4 increase the precision to 4 m

10.3.5.2 Dictionary Optimization

One aim of dictionary based approaches is to find a dictionary that is adapted to a
given context or set of signals. This can be done by an optimization process. One
goal of this optimization is to minimize the reconstruction error, for example, by
computing an L2 distance between the reconstructed signal and the original. It is
common to add a constraint on the type of decomposition, for example, by setting
a maximum sparsity. Unfortunately, the optimization problem under this type of
constraint is too difficult to solve in an optimal way. Heuristics have been proposed
that lead to good results with a relatively low cost. K-SVD is one of these algorithms
(Aharon et al. 2006), which consists of iterating between two steps. The first step
consists of optimizing the decomposition, which can be done using a standard OMP
algorithm. The second step optimizes the dictionary with respect to the previously
computed decomposition. The two steps are repeated until a number of iterations is
reached or a given error is obtained.

Several applications of sparse modeling with terrains have been proposed by
Guérin et al. (2016) and Argudo et al. (2018). The terrain is decomposed into patches
that compose input signals. A so-called amplification process is used to introduce
plausible details into the terrain by mapping between low-resolution and hi-resolution
atoms. The dictionary is drawn from an exemplar terrain at high resolution and
automatically transformed into low resolution by a trivial downsampling process.
The amplification algorithm simply decomposes the patches from a given terrain in
the low-resolution dictionary and uses the corresponding high-resolution atoms to
reconstruct it. Because the dictionary has been extracted from real terrain, the added
details are plausible and realistic, as shown in Fig. 10.19.

10.3.6 Reinforcement Learning

Reinforcement learning (RL) is a powerful learning method in dynamic environments
(Sutton and Barto 1998). In RL, there is usually an agent in an environment and the
agent receives rewards based on its actions. The final goal is to learn how to take
actions to maximize the rewards. At any time t , an environment is defined by states St

in which an agent can take action At and change the environment state to St+1. When
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Fig. 10.20 An agent receives state s_t, performs an action and receives reward r_t from the envi-
ronment. The state of the environment changes to s_(t+1). This process continues until a terminal
state is achieved

the agent takes action At , the environment receives a reward rt . These iterations
continue until the environment reaches a terminal state (Fig. 10.20). Examples of
applications that RL can be extremely useful for are games or robot locomotion in
which more points and more stable states are the rewards of the game and locomotion
environments, respectively.

RL has also been used in applications in GIS and geospatial data analysis. For
instance, RL has been used to model land cover changes (Bone and Dragicevic 2009).
With recent advances in RL and the growth of computational power, we expect that
RL will receive more attention from the GIS and Digital Earth communities. For
instance, one application of RL can be to simulate the behavior of endangered species
in different simulated environments.

10.4 Discussion

In the past, machine learning has seen hypes and winter seasons. It started with sym-
bolic AI in the 1960s, which claimed the ability to make machines with intelligence
comparable to an average human being in less than a decade. However, people soon
realized that they were far from reaching that point. In the 1980s, with the rise of
expert systems, similar hype was seen in the area of machine learning, followed by a
winter season due to the lack of generality of expert systems and their high mainte-
nance costs (Chollet 2017). Recently, deep learning methods became popular again
and showed great success in different areas of computer science including geospatial
analysis, which is an important portion of Digital Earth platforms. Deep learning
will likely continue to grow and be applied more in this field, especially because
of the availability of computational power and big data sets that help create more
powerful models. However, deep learning cannot solve all problems. For instance,
current deep learning models are unable to solve problems that require reasoning or
long-term planning (Chollet 2017). Deep learning models work extremely well in
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mapping an input to a desired output with very little human-level knowledge about
the input or output and their effect on industry and science will probably remain for
a very long time. There is plenty of discussion about the future of deep learning and
AI, notably by its great pioneers such as Lecun et al. (2015) and in the European
perspective on AI (Craglia et al. 2018).

Artificial intelligence and particularly machine learning and deep learning have
great potential to contribute to the generation, analysis, and management of geospatial
data sets. Digital Earth should benefit from such opportunities, as a place holder
to represent such data sets and a platform to analyze them. Since Digital Earth
is constantly receiving geospatial data sets, a successful Digital Earth should use
reliable, fast, and comprehensive techniques to manage and make use of such data.
Deep Learning techniques show promise in these directions. However, there are still
issues in their use in Digital Earth platforms that must be addressed. In the following
sections, we discuss some of these issues.

10.4.1 Reproducibility

If a technique such as a deep neural network produces particular results, such results
should be reproduceable by others. Placing the code on GitHub and providing free
access to data sets have been helpful for this issue. However, there are still some
issues, especially when the data are owned by a company or the network was designed
by an industrial team. In particular neural network architectures, randomness can be
included, usually to improve the training. When this randomness is also present in
the operational network, it can disrupt the reproducibility of results.

10.4.2 Ownership and Fairness

Ownership of artifacts provided by machine learning techniques is also heavily under
question. If a person with almost no knowledge about a network takes information
from available sources, modifies a few parameters, takes data from an available source
and produces something unique or obtains a certain analysis, who is the owner of
such results? The data owner, developer of the network, or the person who combined
these ingredients? In more serious scenarios, who is at fault when a system that works
based on machine learning techniques makes a catastrophic mistake or performs a
discriminatory action that may involve racism or sexism? Another question is whether
data sets and computation power are available to everyone, i.e., do we have “data
democratization”? Fortunately, the wealth of free access data sets and code bases
along with cheap computational power such as Amazon Web Services (AWS) have
resolved some of these issues but we are still far from perfect.
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10.4.3 Accountability

Due to the nature of some algorithms involved in machine learning, it usually cannot
be used in contexts where accountability is a strong constraint. This is especially the
case with deep neural networks where a lot of information is hidden in the layers,
which can lead to unexpected and unwanted results. Conversely, traditional machine
learning methods such as linear regressions or PCA are very reliable even if they are
limited in terms of applications. Reasonably, one could consider using deep learning
methods only when traditional methods fail or are lacking.

10.5 Conclusion

In conclusion, we provided a sampling of artificial intelligence techniques and their
applications in geospatial data generation, analysis, and management. We discussed
how AI can be beneficial for generating new terrain data sets, identifying roads and
analyzing various geospatial data sets such as satellite imagery. AI techniques and
deep learning methods appear very promising. Extensive research on these topics
will likely make them even more suitable for use in different domains including
geospatial analysis and Digital Earth. However, these techniques are unfortunately
standalone and have not been integrated into a Digital Earth platform that makes use
of such techniques. Appropriate artificial intelligence techniques should be meticu-
lously included in Digital Earth, considering their pros and cons including fairness
and bias to provide interactive, comprehensive and meaningful analysis to users.
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Chapter 11
Internet of Things

Carlos Granell, Andreas Kamilaris, Alexander Kotsev, Frank O. Ostermann
and Sergio Trilles

Abstract Digital Earth was born with the aim of replicating the real world within
the digital world. Many efforts have been made to observe and sense the Earth, both
from space (remote sensing) and by using in situ sensors. Focusing on the latter,
advances in Digital Earth have established vital bridges to exploit these sensors and
their networks by taking location as a key element. The current era of connectivity
envisions that everything is connected to everything. The concept of the Internet of
Things (IoT) emerged as a holistic proposal to enable an ecosystem of varied, hetero-
geneous networked objects and devices to speak to and interact with each other. To
make the IoT ecosystem a reality, it is necessary to understand the electronic com-
ponents, communication protocols, real-time analysis techniques, and the location
of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly
form interrelated infrastructures for addressing today’s pressing issues and complex
challenges. In this chapter, we explore the synergies and frictions in establishing
an efficient and permanent collaboration between the two infrastructures, in order
to adequately address multidisciplinary and increasingly complex real-world prob-
lems. Although there are still some pending issues, the identified synergies generate
optimism for a true collaboration between the Internet of Things and the Digital
Earth.
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11.1 Introduction

According to Jayavardhana (Gubbi et al. 2013), the term Internet of Things (IoT) was
first coined by Kevin Ashton in 1999 in the context of supply chain management.
Empowered by the latest advances in Information and Communication Technology
(ICT), the IoT is revolutionizing the world, opening new possibilities and offering
solutions that were unthinkable even only a few years ago. The concept of the IoT
is highly multidisciplinary because it brings together a wide variety of technologies,
protocols, applications, scenarios, and disciplines (Atzori et al. 2010; Gubbi et al.
2013). The International Telecommunication Union (ITU) Standardisation Sector
defines it as ‘a global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) Things based on existing and
evolving interoperable information and communication technologies’ (International
Telecommunication Union 2018). As an infrastructure, the IoT can be seen as a
broader system involving data, resources, standards and communication protocols
as well as theoretical studies.

The pace of IoT development seems quite fast, with continuous proposals of new
approaches, applications, and use case scenarios, increasing the presence of IoT
in multiple and varied applications, and aspects of daily life. To date, smart devices
constitute the IoT’s most visible form, applied in a wide range of scenarios and sectors
such as cities, industry, commerce, agriculture, home, and mobility. Although we are
far from the 200 trillion smart devices as predicted by 2020 (Intel, n.d.), significant
progress has been made in this direction. Estimates suggest that there will be 26
smart devices per person in 2020, 40.2% of which will be located in the business
environment (termed Industry 4.0).

According to the Forbes analyst Daniel Newman (Newman 2017), the IoT is one
of the most rapidly evolving trends today, especially in three development lines:
the analytics arena, the development of edge computing, and the deployment of
5G networks. As 5G technology is progressively implemented and deployed (Shafi
et al. 2017), the current analysis platforms will need adaptation in order to analyze
effectively the large amount of data flows acquired, produced by IoT devices with
increasingly more powerful built-in sensors and emerging real-time analysis func-
tions, empowered even more by the rapid emergence and (parallel) development of
edge computing (Shi et al. 2016).

Edge computing is a recent paradigm motivated by bandwidth limitations between
the producer (smart objects) and consumer parts (cloud server), as well as the need for
improved performance in computing and consumer smart objects. The main feature
of edge computing is that data can be processed locally in smart devices rather than
being sent to the cloud for further processing.

Like the IoT, Digital Earth (DE) also entails an infrastructure. Al Gore, at his
famous speech in 1998 (Gore 1998), introduced the concept of a DE with the vision
of extending the real Earth with a digital/virtual replica or counterpart. Over the last
two decades, many geographic phenomena and observations have been converted
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to digital data to be used, analyzed, and visualized using digital tools such as vir-
tual globes (Butler 2006). In this chapter, we use the term DE to refer to a network
infrastructure that allows for the discovery, access, analysis, and processing of spa-
tially referenced data. For more details on DE, we refer the reader to Schade et al.
(2013). In particular, Schade et al. describe the origins and evolving concepts of terms
such as DE, Geographic Information Infrastructures and Spatial Data Infrastructures,
together with their theoretical and technical features.

This chapter takes a technological perspective focusing on the description of the
current relationships between DE and the IoT, identifying ongoing efforts, potential
synergies and bridges, as well as existing limitations and barriers that prevent both
infrastructures from collaborating and communicating in practical terms. Instead
of operating in parallel, scientists and researchers need the IoT and DE to work
jointly by establishing an efficient and permanent collaboration to adequately address
the multi-disciplinary nature and growing complexity of the pressing problems that
characterize modern science.

The rest of the chapter is divided into five sections. In Sect. 11.2, we provide an
overview of the most frequent definitions of the IoT, describe our working definitions
throughout this chapter, and briefly review related work in the interplay of the IoT and
the DE. In Sect. 11.3, we analyze the existing interplay between both infrastructures in
the context of the main, high-level functions of DE. Then, an overview of relevant case
studies across several smart scenarios in which the symbiosis of the IoT and DE could
lead to beneficial results is provided in Sect. 11.4. Afterwards, Sect. 11.5 analyses the
frictions and possible synergies today and in the future. Finally, concluding remarks
and emerging trends for the immediate future are provided in Sect. 11.6.

11.2 Definitions and status quo of the IoT

This section defines the current state of the IoT with respect to the concept of the
DE. The first subsection examines the different definitions of a ‘Thing’, adopted by
standardization organizations, followed by our working definition for this chapter.
The last subsection describes related works in which interaction between IoT and
DE is the main goal.

11.2.1 One Concept, Many Definitions

The concept of a ‘Thing’ may seem generic. A ‘Thing’ can be characterized as
a network object or entity that can connect to the Internet directly or through a
network gateway. This exemplifies a network-centric perspective of the IoT in which
a variety of interrelated ‘Things’ are able to communicate with each other to deliver
new applications and services (Atzori et al. 2010). In contrast to the network-centric
vision focusing on the communication technologies being used, the IoT can be seen
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from a purely Thing-centric perspective in which the services associated with Things
are pivotal. These services are expected to manage large amounts of data captured
by smart objects or ‘Things’ as a result of interacting with the environment.

Regardless of the vision, the definition of the term ‘Thing’ is extensive and
includes a wide variety of physical elements. Examples of these elements include: (i)
personal objects such as smartphones, smart watches or bands; (ii) ordinary objects
and appliances in our daily lives such as refrigerators, lights, cars, and windows; (iii)
other identifiable objects equipped with Radio-frequency identification (RFID) tags,
Near-field communication (NFC), or Quick Response (QR) codes; and (iv) objects
equipped with small microcontrollers.

Because of the heterogeneity of the technology and hardware, there is no sin-
gle, unified definition of the term ‘Thing’. Different international standardization
bodies and organizations have suggested a definition, resulting in multiple interpre-
tations of the concepts of Things and the IoT, which sometimes differ only slightly.
Consequently, each stakeholder group may have a particular view of what the IoT
and Things are, as demonstrated below by the definitions of some internationally
renowned organizations.

The World Wide Web Consortium (W3C), an international organization whose
aim is the collaborative development of Web standards, defines a ‘Thing’ as ‘the
abstraction of a physical or virtual entity that needs to be represented in IoT appli-
cations. This entity can be a device, a logical component of a device, a local hardware
component, or even a logical entity such as a location (e.g., room or building)’ (Kaji-
moto et al. 2017).

The Institute of Electrical and Electronics Engineers (IEEE), a global profes-
sional engineering organization whose mission is to foster technological innovations
and excellence for the benefit of humanity, defines a ‘Thing’ as a device with pro-
grammable capabilities. In contrast to the W3C’s definition, the IEEE’s definition
takes a more practical engineering view of Things, driven by two defining features:
(i) Things have the ability to communicate technologically, and (ii) Things have the
ability to connect to or integrate in an already connected environment. This net-
working capability can be based on microcontrollers such as Arduino, Raspberry Pi,
BeagleBone and PCDuino, among others.

The European Research Cluster on the Internet of Things (IERC) describes Things
as ‘physical and virtual things with identities, physical attributes, and virtual person-
alities and smart user interfaces, and are seamlessly integrated into the information
network.’ (IERC 2014). Similarly, considering that Things belong to a network, the
ITU introduces the term infrastructure and defines the IoT as “a global infrastructure
for the information society, enabling advanced services by interconnecting (physical
and virtual) things based on existing and evolving interoperable information and
communication technologies” (ITU-T 2012). In addition, the ITU recognizes three
interdependent dimensions that characterize Things (Fig. 11.1). This indicates the
versatility of the IoT in application domains that differ in terms of the requirements
and user needs.

The Internet Engineering Task Force (IETF), an open international community
of network designers, researchers, and operators concerned with the evolution of the
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Fig. 11.1 Dimensions of the IoT (inspired in ITU-T 2012)

IoT, takes a broad perspective of Things in the context of the IoT, contemplating that
“‘things’ are very varied such as computers, sensors, people, actuators, refrigerators,
TVs, vehicles, mobile phones, clothes, food, medicines, books, etc. These things are
classified into three scopes: people, machines (for example, sensor, actuator, etc.)
and information (for example, clothes, food, medicine, books, etc.). These ‘things’
should be identified at least by one unique way of identification for the capability
of addressing and communicating with each other and verifying their identities. In
here, if the ‘thing’ is identified, we call it the ‘object’” (Minerva et al. 2015).

Finally, the Organisation for the Advancement of Structured Information Stan-
dards (OASIS), a nonprofit consortium that drives the development, convergence and
adoption of open standards for the global information society, describes the IoT as a
‘system where the Internet is connected to the physical world via ubiquitous sensors’
(Cosgrove-Sacks 2014). OASIS focuses on the ubiquity of sensors, as they exist in
‘every mobile, every auto, every door, every room, every part, on every parts list,
every sensor in every device in every bed, chair or bracelet in every home, office,
building or hospital room in every city and village on Earth’.

In Fig. 11.2 we categorize the aforementioned IoT definitions based on physical,
virtual and location considerations. The definitions reveal that these institutions and
organizations consider the IoT from a physical point of view. In addition to the
physical view, three organizations (ITU, IERC and W3C) add a virtual connotation
to the definition of a ‘Thing’. Only the W3C definition acknowledges explicitly
location as a defining element of the IoT.
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Fig. 11.2 Classification of
IoT definitions

11.2.2 Our Definition

After analyzing the different definitions of internationally renowned institutions and
standardization organizations, we propose our interpretation of the term ‘Thing’ that
will be used throughout the rest of the chapter. This definition aims to (i) relate the
IoT to DE, and (ii) be as broad as possible.

From our perspective, three main features characterize a ‘Thing’: (i) networked
communication; (ii) programmability (data processing and storage); and (iii) sensing
and/or actuating capabilities. From a DE perspective, the third feature plays a more
prominent role. The sensing and/or actuating capabilities permit an IoT device or node
to interact with its environment. This environment is closely related to the location
feature, since all Things will intrinsically have this feature as a property, which
increases in importance when the ‘Thing’ has a mobile component. Contrary to most
of the definitions above, we consider a Thing’s location as a crucial characteristic
because it impacts how a ‘Thing’ can communicate and how it can interact with its
environment. However, we argue that the physical point of view can be understood to
include location implicitly, as a physical sensor is located somewhere in the physical
world.

11.2.3 Early Works on the Interplay Between DE and the IoT

As noted above, this chapter explores potential bridges between the IoT and DE for
the development of applications and services that take advantage of the benefits of
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both infrastructures to effectively address complex research issues. In this context,
we briefly summarize studies related to this objective.

In 1999, Gross predicted that electronic devices would populate the Earth and have
the ability to capture different types of information, forming an ‘electronic skin’
(Gross 1999). These devices would be able to communicate through the Internet,
and include meteorological or pollution sensors, cameras, blood pressure sensors or
microphones, among others. The imagined ‘electronic skin’ could be in contact with
what was happening in different scenarios and places on Earth, in the atmosphere,
cities, houses, or even in ourselves.

Gross’ vision is gradually becoming a reality. There is great variability in the form,
size and purpose of sensors in wireless networks. Such Wireless Sensor Networks
(WSN) enable distributed communication and data sharing between sensor network
nodes. From this perspective, WSN form a subset of the IoT and, as such, the IoT
can be seen as the logical next step of WSN in a progression that is still evolving
in terms of the sophistication, variability in functionality, flexibility and integration
with other infrastructures and network protocols (e.g., the Internet Protocol).

The IoT gained popularity between 2008 and 2013 (Fig. 11.3), and all organiza-
tions concerned with WSN began to focus on the IoT. The matured technology of
WSN was applied to IoT developments, and DE organizations were not an excep-
tion. The field of sensors and sensor networks has been the object of study from
multiple and varied angles, including the geospatial community, especially the Open
Geospatial Consortium (OGC). The OGC started to transfer improvements made in
the definition and application of standards and specifications in the field of WSN to
the IoT.

The most significant OGC contribution concerning sensors and WSN has been
the Sensor Web Enablement (SWE) standards suite (see Sect. 11.2.4 below). SWE
enables the discovery and access of sensors and associated observational data through
standard protocols and application programming interfaces (API) (Botts et al. 2008).
The SWE standards have been applied directly to many application domains in DE.

Fig. 11.3 Search volume on wireless sensor networks (red) and the Internet of Things (blue).
Source Google Trends
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The shared goal was to observe a particular phenomenon, for example, to predict
emergency warnings or fire alarms or alerts when an event is triggered (Wang and
Yuan 2010). For example, SWE has been widely applied to different Earth Obser-
vation (EO) application domains, with disaster management being one of the most
important and well-developed. One of the early applications was the use of sensor
web techniques to monitor natural and man-made hazards such as fires (Trilles et al.
2014; Jirka et al. 2009; Brakenridge et al. 2003), floods (Brakenridge et al. 2003),
and volcanic eruptions (Song et al. 2008).

In parallel with the concept of WSN, Ashton (2009) noted that the term IoT was
first used in his work entitled “I made at Procter & Gamble” in 1999. Back then, the
IoT was associated with the use of RFID technology. However, the term WSN was
not yet the focus of much interest, as shown in Fig. 11.3.

Some studies explored the connection between the IoT and DE concepts. Li and
his colleagues studied the impact of the IoT on DE and analyzed the transition to
Smart Earth (Li et al. 2014). The concept was introduced in 2009 during a panel
discussion with the U.S. president and U.S. business leaders. In that panel, IBM’s
CEO Sam Palmisano requested that countries should invest in a new generation of
smart infrastructure, with crucial use of sensors, suggesting the concept of ‘Smart
Earth’ as a name. Subsequent governments showed interest in adopting this type of
technology, and are making huge investments in researching and developing smart
devices (e.g., the ‘Array of Things’ in Chicago, https://arrayofthings.github.io).

The primary objective of a ‘Smart Earth’ is to make full use of ICT and the IoT,
and apply them in different fields (Bakker and Ritts 2018). In a ‘Smart Earth’, IoT
devices are placed in all possible locations of our daily life, as long as our privacy
can be respected. Through the combination of the IoT, DE, and cloud computing,
globally deployed physical objects and sensors can be accessible online. The idea of
a ‘Smart Earth’ is ambitious and includes remote sensing, GIS and network technol-
ogy in combination with DE platforms (see Chap. 2 in this book featuring “Digital
Earth Platforms”). The goal is to enable sustainable social development, which is a
visionary step that is still utopian today, towards the establishment of a global infor-
mation infrastructure to support UN Sustainable Development Goals (see Chap. 13
“Digital Earth for Sustainable Development Goals in this book,”).

The work by Van der Zee and Scholten (2014) highlighted the importance of loca-
tion in the concept of the IoT. The authors noted that space and time can play a role as
‘glue’, to enable an efficient connection between smart devices; therefore, geospatial
sciences should have an active presence in the development of IoT architecture. In
their study, Van der Zee and Scholten described a set of technologies related to the
geospatial domain and big data analysis that could be combined with the IoT. The
authors concluded that these technologies were already available for application in
the field of the IoT and recommended their immediate use. However, the authors
also identified the lack of IT professionals with knowledge in geospatial sciences as
the main obstacle in massive uptake of the IoT for geo-related applications. They
proposed to address this limitation through a gradual incorporation of core geospatial
skills and competences into IT curricula.

https://arrayofthings.github.io
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Our aim in this chapter is to move beyond the initial steps and thoughts presented
in Van der Zee and Scholten (2014), where the status quo of the IoT and DE was
described five years ago. We focus on the ‘current status quo’ by outlining emerging
technology trends that can be crucial for establishing real connections between DE
and the IoT, and investigate developments during the last five years in particular.
Even though development has been gradual and incremental, and not rapid and
revolutionary (i.e. from a GIScience perspective), new requirements and technology
trends have appeared and the IoT has become a topic that is undoubtedly gaining
increasing traction.

11.2.4 IoT Standards Initiatives from DE

As noted above, the IoT ecosystem has been very diverse for several years (Atzori
et al. 2010), and its diversity has been increasing. It is comprised of heterogeneous
devices, protocols and architectural approaches. A plethora of international initia-
tives are put in place to unify and streamline aspects associated with the design and
implementation of IoT infrastructures. The current standardization initiatives address
aspects related to discoverability, data transmission, device processing and tasking.

The growing number of interconnected devices, combined with the increasing
importance of the use of the IoT in almost any aspect of human life, tend to increase the
need and importance of mature, well-established and -implemented standards. The
diversity of different standardization initiatives provides designers and developers
with a broad range of opportunities that do not necessarily complement each other.
There are multiple ways of reaching the same destination, i.e., there is no single
solution to be adopted. Here, we provide a short overview of selected IoT standards
that play an important role within the context of DE. The SWE suite of standards is
described in more detail in Chap. 8 of this book.

From the geospatial perspective, the OGC coordinates different standardization
initiatives. This consortium is comprised of more than 525-member organizations
from governmental, commercial, non-governmental, academic and research institu-
tions. The primary objective of the OGC is to develop open standards that include
a geospatial component. These standards are developed through a consensus-based
process and are openly available to streamline the exchange of geospatial data. OGC
standards are used in a wide variety of domains, including geosciences and the envi-
ronment, defense and intelligence, emergency and disaster management, and public
services, among others.

Over a decade ago, well before the IoT became mainstream, the OGC developed
the SWE suite of standards for spatio-temporal observation data (Botts et al. 2008).
SWE outlines a set of specifications related to sensors and proposes data models and
Web service interfaces that can act as a bridge between sensors and users, allowing
the sensors and their measurements to be accessible and controllable through the Web
(Sheth 2018). The SWE suite, although initially designed for sensors, can easily be
applied to any type of spatio-temporal data flow (including heterogeneous types of
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smart devices with an observation capability). It offers a set of specifications in an
open standard schema using extensible markup language (XML) and web services.
It enables (i) finding sensors and sensor data; (ii) describing sensor systems and data;
(iii) recovering real-time and historical sensor observations; (iv) adding simulations
and recovering simulation results; (v) reporting results and alerts; and (vi) full web
control.

SWE (depicted in Fig. 11.4) is organized through several interdependent stan-
dards that include the Sensor Model Language (SensorML) (Botts and Robin 2007),
Observations and Measurements (O&M) (Cox 2003), Sensor Observation Service
(SOS), Transducer Markup Language (TransducerML, deprecated) (Havens 2007),
Sensor Planning Service (SPS) (Simonis 2007), Sensor Alert Service (SAS) (Simo-
nis 2006) and Sensor Event Service (SES) (Echterhoff and Everding 2008). In this
work, only the first three specifications are shown in detail (i.e. SensorML, O&M,
SOS), as they are the most widely used in the IoT context today.

SensorML provides the ability to define a sensor in a structured manner. The
standard specifies how to find, process and record sensor observations so that a data
model and XML schema can be established to control sensors through the Web.
SensorML defines a standard schema describing any type of sensor, stationary or
dynamic, in situ or remote, active or passive. The PUCK protocol (O’Reilly 2010) is
an addition to the SensorML standard that provides a low-level protocol to retrieve
sensor drivers, and metadata documents, encoded according to SensorML.

The O&M standard, initially developed by the OGC, is also adopted as an Inter-
national Organization for Standardization (ISO) standard (ISO 2011). It provides a
model for representing and exchanging sensor observations. The standard is encoded

Fig. 11.4 The sensor web enablement suite of standards. Source Bröring et al. (2011)
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using an XML/JSON data model, which describes the relationship between different
aspects of the data capture process. The O&M schema defines both observations and
phenomena. In addition, it can be extended to better support metadata.

Finally, the SOS provides an interoperable means for serving observations via
a Web interface and is the primary service model of the SWE suite. The current
version of the standard introduces a modular structure. The base module provides
three mandatory operations. The first, “GetCapabilities”, offers a spatial and temporal
description of the observations that have been stored, as well as a list of the sensors
and their available features. The “DescribeSensor” operation is used to return a sensor
description using SensorML. The “GetObservation” operation provides access to the
actual spatio-temporal data encoded in accordance with the O&M standard.

All the standards described above were conceptualized and adopted several years
ago within a completely different technological landscape. The rapid growth of the
IoT and the emergence of new technologies (e.g. remote sensing, 4G/5G communi-
cation, machine-to-machine and machine-to-human interactions) brought new chal-
lenges such as (i) the need for lightweight data encoding, (ii) the need for higher
bandwidth for data exchange, and (iii) the issue of constrained devices with little or
no computational capabilities, such as RFID tags and QR codes (Kotsev et al. 2018).
These challenges acted as a driver for the OGC and led to adoption of new standards
that better fit the IoT.

The SensorThings API (Liang et al. 2016), designed to follow the paradigm of the
Web of Things (WoT) (Guinard et al. 2010), offers access to data through standard
web protocols and is based on the O&M conceptual data model. The main features
of the standard are (i) a RESTful interface, (ii) the use of lightweight and efficient
JSON encoding, (iii) adoption of the OASIS OData URL pattern (OData) and query
options, and (iv) support for the ISO message queuing telemetry transport (MQTT)
messaging protocol to offer real-time connections.

The SensorThings API data model (shown in Fig. 11.5) is divided into two parts
(profiles), namely, the ‘Sensing’ profile and the ‘Tasking’ profile. The former enables
IoT devices and applications to CREATE, READ, UPDATE, and DELETE (through
the standard web operations HTTP POST, GET, PATCH, and DELETE) IoT data and
metadata by invoking a SensorThings API service. In addition, the tasking profile
provides a standardized approach for controlling IoT devices through the “ACT”
capability, which is revisited in the next section. Each ‘Thing’ has a Location (or
some Historical Locations) in space and time. A collection of Observations grouped
by the same Observed Property and Sensor is called a Datastream. An Observation
is an event performed by a Sensor that produces a value of an Observed Property of
the Feature of Interest.

From a spatial analysis perspective (De Smith et al. 2018), many raster- and
vector-based operators and techniques have been developed over the last decades and
have been shown to be successful in many varied applications. Substantial progress
has been made to bring geospatial workflows—i.e., a combination of the above
spatial operations to accomplish a sophisticated analytical process—to the cloud and
distributed computing environments (e.g., Granell et al. 2010; Granell 2014; Yue
et al. 2016), expanding the field of the Geoprocessing Web (Zhao et al. 2012) to the
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Fig. 11.5 The SensorThings API data model. Each thing has a location (or some historical locations)
in space and time. A collection of observations grouped by the same observed property and sensor
is called a datastream. An observation is an event performed by a sensor that produces a value
of an observed property of the feature of interest. Source OGC SensorThings API (http://docs.
opengeospatial.org/is/15-078r6/15-078r6.html)

Digital Earth (Hofer et al. 2018). The OGC Web Processing Service (WPS) (OGC
2005), a service interface for exposing and executing processes of any granularity on
the Web, enables sharing and integration of spatial data processing capabilities on the
Web, including polygon area calculation, routing services, or entire environmental
models (e.g., Díaz et al. 2008; Granell et al. 2010). The geoprocessing capabilities
in DE are extensively covered in other chapters, e.g., Chap. 5, and our interest lies
solely in the relationship between the WPS and the IoT (see Sect. 11.3.2).

11.3 Interplay Between the IoT and DE

One of the aims of this chapter is the identification of potential bridges between the
IoT and DE. This overview is partly speculative since we tried to identify potential
paths for collaboration between both infrastructures, which may or may not lead to
successful linkages in the future. To support our claims in Sect. 11.4, we identify the
current situation, i.e., the state of the art of the IoT’s and DE’s technological substrate.
In this section, we highlight new technological developments and emerging trends

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
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that are or may become crucial in the coming years that were not present or not
sufficiently developed at the time of Van der Zee and Scholten (2014).

Along the lines of the topics described in Sect. 11.2.3, the traditional focus of
DE embraces the following high-level functions (Lü et al. 2019): (i) discovery and
acquisition of spatial information, (ii) understanding of spatial objects and their
relationships (e.g., GIS analysis, spatial statistics), and (iii) determination of the
spatio-temporal behavior and simulation rules (e.g., simulations, predictions). These
functions help categorize and restrict the discussion in terms of the current techno-
logical substrate. However, we should interpret and contextualize these high-level
functions of DE from the viewpoint of the IoT.

First, the acquisition of spatial information is a crucial function in the IoT because
Things and smart devices observe and sense their environment to collect observa-
tional measurements. Through the lens of the IoT, the discoverability of Things
and the communication of gathered spatial data become extremely relevant for data
acquisition. Of the two main capabilities of Things (see Sect. 11.2.2), the ability to
observe and sense, is a fundamental mechanism to provide input observational data
for DE.

Second, spatial statistics and spatial analysis are well-established geospatial meth-
ods for exploring spatial patterns, relationships and distributions (De Smith et al.
2018; Worboys and Duckham 2004). Analytical methods are fundamental build-
ing blocks in DE, although recent trends in real-time analysis and edge computing
promise to move much of the analytical power to devices (i.e., edge and fog com-
puting) so that gathered data can be immediately processed directly on the smart
devices. This trend suggests that analytical improvements in the IoT will also play
an important role in DE.

Third, predictive modeling and simulations are required to explore both physi-
cal and social dynamic geographic phenomena to better understand the evolution,
changes and dynamics of the phenomena from a spatio-temporal perspective, to gain
new insights and scientific knowledge to support informed decision-making pro-
cesses. Understanding spatiotemporal behaviors makes sense from the DE point of
view, to aid in the assembly of a detailed yet broad perspective of the complex, mul-
tidimensional relationships that occur in the real world. We recognize that prediction
and simulation activities are typically associated with DE and that advances in the
IoT might contribute to this area, but we see this hypothetical scenario occurring
in the mid- to long-term, well beyond the time frame of the speculative exercise in
Sect. 11.4. Since research on the IoT and DE with respect to predictive modeling
and simulations is still in its infancy, we do not cover it in this chapter.

As a result of the previous functions, new scientific knowledge is generated that
is necessary for taking informed and insightful actions, often ‘acting’ over the envi-
ronment. In terms of acting, the second main capability of Things, new knowledge
can trigger actions at least at two different levels in the context of the IoT: first,
self-calibration of a sensor and/or Thing, similar to adjusting the lens in a human eye
to sharpen the image, e.g., changing the sampling frequency; and second, providing
a reflex similar to a reaction to pain without thinking, e.g., by opening a valve or
level in the case of imminent flooding. However, this view would mean a priori that
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Fig. 11.6 IoT and DE
workflow according to the
higher cognitive functions in
DE

the acting in IoT and Things do not contribute sufficiently to the higher (cognitive)
functions of DE such as spatial analysis, predictive modeling and simulation, but the
results of higher cognitive functions in DE may impact the acting behavior of Things
and the IoT. In addition, we add a fourth function related to the ability of Things to
act and take informed actions, depending on the insights and knowledge produced
in the analysis, simulations, and predictions in DE.

Figure 11.6 reflects the existing and potential roles of each infrastructure in rela-
tion to the four functions: (i) discoverability, acquisition, and communication of
spatial information, (ii) understanding of spatial objects and their relationships, (iii)
determining spatio-temporal behavior and simulation rules, and (iv) acting and tak-
ing informed actions. We argue that the IoT infrastructure is important in (i) and
(iv) whereas DE is more relevant in (ii) and (iii). For (i), the IoT can enhance DE
by acquiring data streams from new sources, at a fine scale and high frequency. For
(ii), it is plausible that both infrastructures progressively collaborate in a symbiotic
manner per use case. From a broader perspective, it can reasonably be argued that DE
includes IoT and encompasses the IoT life cycle in a broader ecosystem. Although
GIS methods and analysis have traditionally taken a predominant role in DE, the role
of the IoT will most likely increase in the future given the close relation between the
IoT and the nascent edge-fog-cloud computational paradigms that enable IoT-based
analytical processes to be conducted at different scales. This is a partial view, as
we focus on the relationship between DE and the IoT. For example, remote-sensing
satellite imagery, LIDAR and UAV were intentionally omitted even though they are
key spatial data sources (i.e., the first function) for DE. We acknowledge the fuzzi-
ness of the boundary between both infrastructures and pay special attention to the
interplay between DE and the IoT in Fig. 11.6, demonstrating how collaboration
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and integration is starting to happen while frictions and barriers are becoming more
visible.

In the following sections, we identify for all but the third function the current
technological substrate.

11.3.1 Discoverability, Acquisition and Communication
of Spatial Information

Discoverability of Things. An important objective in IoT research is the discovery
of devices and their services and/or the data they produce. The absence of standard-
ized discovery methods for the WoT (Zhou et al. 2016) led to the development of
online global sensor directories and collections such as Xively (https://xively.com),
SenseWeb (Grosky et al. 2007), SemSOS (Pschorr et al. 2010) and the SWE discov-
ery framework (Jirka et al. 2009). A key feature of these online directories/registries
is that they provide open Web APIs supporting the development of third-party appli-
cations. The main drawback is that they are centralized, with a single point of failure.
Decentralized approaches have also been proposed, such as IrisNet (Gibbons et al.
2003), which uses a hierarchical architecture for a worldwide sensor Web. G-Sense
(Perez et al. 2010) is a peer-to-peer (P2P) system for global sensing and monitor-
ing. These approaches, although more robust and scalable, do not effectively solve
the problem of sensor discovery as they still require sensor registration to dedicated
gateways and servers, which need to maintain a hierarchical or P2P structure among
them.

Approaches towards real-time discovery of physical entities include Snoogle
(Wang et al. 2008) and Dyser (Elahi et al. 2009). Snoogle is an information retrieval
system for WSNs, but it cannot scale for the World Wide Web. Dyser requires an addi-
tional Internet infrastructure such as sensor gateways to work. Moreover, utilization
of the domain name system (DNS) as a scalable, pervasive, global metadata reposi-
tory for embedded devices and its extension for supporting location-based discovery
of Web-enabled physical entities were proposed (Kamilaris et al. 2014; Kamilaris
and Pitsillides 2012). However, this technique requires changes in the existing Inter-
net infrastructure. It is possible to exploit web crawling for discovery of linked data
endpoints, and through them the discovery of WoT devices and services was exam-
ined in WOTS2E (Kamilaris et al. 2016) as well as in SPITFIRE (Pfisterer et al.
2011).

While the approaches described above are mainly targeted at ‘professional’ users,
there is demand for a simple and easy means for the general public to access IoT
data. Experts can use a plethora of different service interfaces and tools to discover
and utilize data from IoT devices, as implemented by the SmartEmissions platform
(Grothe et al. 2016). Nonexpert users typically only search for IoT devices and
their data through mainstream search engines such as Google and Bing. Ensuring
the discoverability of devices and the data they produce is being investigated for
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geospatial data in general (see Portele et al. 2016 for further details). A similar
approach might be adopted for the IoT, considering its higher complexity due to the
high temporal (and spatial) resolution of the data produced by Things.

Spatial acquisition with Things. Some examples of geospatial standards to
encode sensor metadata and observations were introduced in Sect. 11.2.4, and the
SensorML standard is one of the most important. SensorML describes sensor meta-
data in a comprehensive way, providing a useful mechanism to discover sensors and
associated observations. This standard specifies information about a sensor such as
its sensor operator, tasking services, location, phenomena, and history of the sensor.
Thus, it can be used by discovery services to fill their search indexes.

Following the SWE framework, there are two different search types (Jirka et al.
2009): sensor instance discovery and sensor service discovery. The first type finds
individual sensors (devices) or sensor networks, and the second type refers to services
that interact with the sensor (through sensing or tasking). Jirka et al. (2009) define
three different criteria to identify both annotated search types:

• The Thematic criterion covers the kind of phenomena that a sensor observes, such
as temperature, humidity, or rainfall.

• The Spatial criterion refers to the location where the sensor is deployed.
• The Temporal criterion is the time period during which the observations are gen-

erated.

This classification was defined from a conventional sensor point of view. The
inclusion of current IoT devices with the ability to act leaves the previous criteria
incomplete, as some IoT devices act as well as observe. Therefore, the definition of
the thematic criterion requires extension to include an IoT device’s capability to act,
for example, to turn on/off a light or activate/deactivate an air conditioner.

In addition to the three shared criteria, Jirka et al. (2009) defined two criteria
that focused exclusively on the sensor instance discovery type of search: sensor
properties and sensor identification. The sensor properties are based on a specific
state of the sensor, for example to find all online sensors. The sensor identification
refers to the unique id used to identify unambiguously a sensor. Regarding the sensor
service discovery type of search, two additional criteria were defined: functionality
and usage restrictions. The first refers to the functionalities of the associate service
such as available operations for data access, alerting or tasking, among others. The
second criterion on usage restrictions is related to the permissions and restrictions to
access the service functionalities.

Two different aspects are vital for the successful discovery of a sensor: metadata
and semantics. As for all spatial data, metadata is essential to describe and discover
a sensor or a network of sensors. SensorML was created for this purpose and can
define a sensor in a well-known manner to add flexibility and allow for the use of any
type of sensor. The Sensor Instance Registry (SIR) defines operations for handling
sensor metadata and allows for sensor discovery. The above criteria, both common
and specific for each type of search, are closely related to the metadata aspect for the
discovery of sensor instances and services.
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Semantics is the other pillar in a powerful and effective discovery service. Seman-
tic rules can aid in locating sensors related to the same phenomena or discovery of
all sensors that are related to the same thematic aspect. This semantic view can be
extrapolated to link sensors with places to retrieve sensors or observations associated
with place names. The Sensor Observable Registry (SOR) offers a primary interface
to explore this kind of relationship between phenomena and sensors.

Unfortunately, the support of semantics is a weakness in the SWE standards. To
solve this issue, an initiative from World Wide Web Consortium (W3C) was created
to integrate and align sensors with semantic web technologies and Linked Data. This
contribution was led by the W3C Semantic Sensor Network Incubator Group (SSN-
XG) that proposed an ontology called Semantic Sensor Network (SSN) to address
the semantic gap in sensor-related OGC standards (Compton et al. 2012). The main
fields of this ontology are sensors (e.g., location, type), properties (e.g., precision,
resolution, and unit), and measurements (values).

Despite the great advances that SSN brought, it does not currently support all
the possibilities that the IoT offers since SSN was designed before the mainstream
adoption of the IoT. New ontologies have been launched to cover this gap. One
example is how the Internet of Things Ontology (IoT-O). IoT-O adds some missing
concepts relevant to the IoT such as Thing, Actuator, and Actuation (Seydoux et al.
2016). Similarity, the Sensor, Observation, Sample, and Actuator (SOSA) ontology
is a follow-up to SSN. It is the result of a joint effort of the W3C and OGC that builds
on the lessons learned from SSN to provide a better representation of the IoT and
alignment with OGC-related specifications (Janowicz et al. 2018).

Communication with Things. The advances in IoT connectivity solutions such
as Bluetooth, ZigBee, Wi-Fi and 3-5G (Palatella et al. 2016) combined with decreases
in the price and energy consumption of IoT components have led to a huge deploy-
ment of smart devices using IP-connectivity worldwide, increasing the frequency of
communication to the point that they are perceived as always connected. As outlined
above, these devices can offer two different capabilities, observing (sensing) and act-
ing. A decade ago, sensor networks were only able to capture and send data, similar to
a simple data logger. In recent years, the ability to establish two-way communication
between Things and the cloud has added the feature that Things can (re)act. Con-
sequently, new protocols that enable machine-to-machine (M2 M) communication
have been developed, with the goal of providing efficient and transparent two-way
communication channels between smart devices. Examples of such TCP/IP-based
protocols are the advanced message queuing protocol (AMQP), MQTT, and the
simple/streaming text oriented messaging protocol (STOMP). These communica-
tion protocols are adapted to the requirements of IoT devices that are constrained
concerning their performance and energy efficiency.
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11.3.2 Spatial Understanding of Objects and Their
Relationships

Spatial analysis of Things. There are many more smart devices (Things) around
today than five years ago. Smart devices now produce massive volumes of data, i.e.,
flows of data with strong temporal and spatial features. Therefore, spatial analytical
methods such as proximity, area, volume, and trajectory are of vital importance in
analyzing processes of Things. However, the variety of data sources related to the
IoT has posed new analytical challenges, especially in the design and provision of a
new class of analytical tools capable of handling real-time temporally and spatially
referenced data from a plethora of heterogeneous smart devices (Trilles et al. 2017).
Despite the existence of tools capable of analyzing temporal data in real time, the
same does not appear to be true for the spatial component. Space (location and
orientation for all Things, size and shape for larger Things such as cars) plays an
indispensable role in the IoT, as Things-generated data have spatial properties and
are spatially related to each other. Promising initiatives and platforms have recently
emerged with the aim of performing spatio-temporal analysis in real-time, such
as Microsoft Streaminsight, the Oracle Spatial Database with the Oracle Complex
Event Processing engine, and the GeoEvent processor module as an extension of the
ArcGIS Server environment (ArcGIS Server, n.d.).

Despite these notable efforts, spatial support for the real-time analysis of IoT data
is still in its infancy. As Van der Zee and Scholten (2014) noted, any IoT architecture
should consider the geospatial component. Location provides a kind of ‘glue’ that
efficiently connects smart devices. The authors proposed storing the location of each
‘Thing’ and other geographic-related features such as orientation, size, and shape.
However, the ability to handle and analyze the location of Things in near real time is
still limited with existing analytical platforms, despite its opportunities (McCullough
et al. 2011; Rodríguez-Pupo et al. 2017).

Furthermore, spatio-temporally located Things have the potential to significantly
improve advanced geospatial analysis, as Kamilaris and Ostermann (2018) describe
in their review on the potential role of geospatial analysis in the IoT field. In short,
Kamilaris and Ostermann suggest network analysis and monitoring, surface interpo-
lation, and data mining and clustering as spatial analysis techniques and methods that
would especially benefit from an increasing number of mobile or stationary sensor
Things. However, as the authors noted, these advanced analytical applications have
been scarcely exploited to date.

Geospatial standards for Things. Despite some remarkable exceptions such
as prototype systems to analyze data from air quality sensor networks (Trilles et al.
2015b), real-time, geospatial analysis approaches and tools have not been sufficiently
developed to offer standardized procedures through uniform interfaces that can be
widely consumed and integrated in DE applications. DE has traditionally considered
sensors as a fundamental pillar to collect information to support and realize strategies
or policies at a higher level. As described in Sect. 11.2, the SWE suite was the
initial step in offering a standardized specification that would fulfil the requirements



11 Internet of Things 405

demanded by the IoT from the DE perspective. For example, the SOS specification
requires handling large XML documents, which is problematic in a typical scenario
in the IoT where memory capacity and connectivity are limiting factors.

Although the core of the SWE suite has served to cover the required functionality
of the IoT, the complexity of the data models in some of the specifications (Tamayo
et al. 2011; Trilles et al. 2014) and the appearance of new requirements such as the
ability to work in real time and to act have reduced the applicability and integration
of the SWE suite in the scope of the IoT. In an effort to bridge the gaps between SOS
and the IoT, new extensions or approaches attempt to make the SOS interfaces more
suitable for IoT devices. These approaches include SOSLite (Pradilla et al. 2015),
TinySOS (Jazayeri et al. 2012) and SOS over CoAP (Pradilla et al. 2016).

Another crucial feature for the analysis functionality of the IoT and Things is the
ability to specify and perform real-time and asynchronous notifications and com-
munications. In this regard, the GeoMQTT protocol based on the MQTT protocol
allows for adding spatial notification and data streaming between publish/subscribe
instances (Herle and Blankenbach 2018). Following the original approach of the
MQTT channels, the authors proposed the concept of GeoPipes to distribute instances
and enable the sharing of geospatial data streams in a standardized manner.

Laska et al. (2018) proposed a real-time stream processing pipeline that allows
for spatiotemporal data stream integration from IoT devices. A data integration layer
allows for geospatial subscriptions using the GeoMQTT. Tools such as Apache Kafka
and Storm are used to transfer and apply map matching algorithms to IoT data with
spatiotemporal components. For example, these algorithms were used to analyze
traffic congestion for a recent route optimization using IoT Things with Global Nav-
igation Satellite System (GNSS) receivers in buses.

Another study (Rieke et al. 2018) took an additional step to bridge the DE and
IoT realms by arguing for the need to establish event-driven architectures as a nat-
ural evolution of the predominantly static Spatial Data Infrastructures (SDI). The
authors identify a series of interdependent issues that need to be addressed in the
coming years to take full advantage of the uptake of eventing in GIScience (and
DE). The issues relate to the (i) inconsistencies between classic data access methods
that are based on a request-response pattern, and event-driven approaches where a
publish-subscribe pattern prevails, (ii) heterogeneous approaches for defining event
patterns, (iii) multiple standards and limited support in software tools, (iv) the inte-
gration of devices in an SDI and the data they produce, and (v) the lack of semantic
interoperability of geospatial events.
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11.3.3 Taking Informed Actions and Acting Over
the Environment (ACT)

As shown in the defined IoT lifecycle (Fig. 11.6), to act means to take or perform
actions (over the environment) depending on the results obtained in previous func-
tions. Bélissent (2010) noted that this feature can make the management of public
services in a city, education, health, safety, mobility or disaster management more
aware, interactive and efficient.

IoT devices have been traditionally suitable for use as input sources for Decision
Support Systems (DSSs) in a multitude of application domains and use case scenarios
such as disaster management, cities, mobility, and safety. In this chapter, we focus on
Spatial Decision Support Systems (SDSSs), which are defined as interactive systems
designed to support decision making related with spatial planning problems. SDSSs
have evolved to more complex architectures and communication models, from sys-
tems deployed on the cloud operating with data from the WSN (or IoT data sources)
to a shift in the computing paradigm in which the actual computation is implemented
at three different levels: edge, fog, and cloud (Fig. 11.7). In this new setting, both the
computation and decisions are made closer to the producers of the data (Things).

The ‘Edge’ is the layer that covers the smart devices and their users, providing
local computing capacity within Things. The ‘Fog’ layer is hierarchical, aggregating
a variable number of edge layers. In addition to computing, the fog layer has other
functionalities such as networking, storage, control, and data processing, possibly
using data produced by the edge layer and data from other sources. As a result, data
contextualization is more important in the fog layer to make sense of different data
sources than the typical single data stream in an edge layer. The ‘Cloud’ layer on
top performs the final analysis to extract information and create knowledge to be

Fig. 11.7 Three-layer IoT architecture
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transferred for decision support actions. This implies an increased level of contextu-
alization and complexity in the analysis process than in the previous (lower) layers,
at the cost of losing capacity for real-time analysis.

Given the edge-fog-cloud layered architecture, the introduction of geospatial con-
cepts and spatial analysis in the fog layer could allow for decision-making processes
without a human in the loop based entirely on the semantics of the spatial-temporal
dimensions in the incoming data. In recent years, many efforts have been made to
move the analysis from the cloud to the fog layer, with the aim of reducing latency
in the analysis once the data are received in the fog layer (Barik et al. 2016).

Although data usually flow from the edge to the cloud layer (sensing capability),
devices with the ability to act (tasking) also require information to perform their
operations. The tasking capability allows for other devices or users to actuate devices
via the Internet so that these ‘controlling’ devices or users can easily control them
to execute tasks remotely. Autonomous Things would be previously programmed
to act without establishing a connection. While the sensing capability allows for
users to continuously monitor the status of devices and the environmental properties
they capture, the tasking capability can help users make adjustments accordingly by
controlling devices remotely.

In general, combining the sensing and tasking capabilities of IoT devices enables
users to create various automatic and efficient tasks and applications. These kinds
of applications are called “physical mashup” applications (Guinard et al. 2010). A
simple, domestic example is the activation of an air conditioning system depending
on the position and behavior of the user, through an application that uses a GNSS
sensor. In this example, the air conditioning device provides an interface to turn on/off
(tasking) the system to establish a comfortable temperature. To facilitate this kind of
mashup of sensing and tasking capabilities, a uniform (interoperable) interface for
users or applications to enable access and communication is a critical requirement.

The tasking feature was initially conceived in the SPS specification of the SWE
suite. SPS offers a standardized interface for tasking sensors and sensor systems and
defines interfaces to expose sensor observations and metadata. For example, a sensor
network can be set up to measure air pollution in 5-min intervals or a satellite can be
tasked to remotely sense a specific region on the surface of the globe (De Longueville
et al. 2010). This standard offers operations such as GetFeasibility, which can be used
in advance to verify whether the execution of a task is feasible for a certain sensor, and
the DescribeResultAccess operation to determine the access points to collected data.
The SPS interface also offers functionality for managing submitted tasks, including
convenient operations for retrieving the status of a task, updating tasks or cancelling
them.

A next step is the tasking profile of the SensorThing API, which is a follow-up,
improved profile of the SPS (Simonis 2007). The SensorThing API (see Sect. 11.2)
defines two different profiles, Sensing and Tasking. The Tasking profile is based on
the SPS standard and enables interoperable submission of tasks to control sensors
and actuators. The main difference between SPS and the SensorThings API is that
the former offers task operations over sensors and the latter also includes tasks
on actuators. Although the first version of the SensorThing API did not include the
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Fig. 11.8 The SensorThings API tasking entities. Source OGC SensorThings API (http://docs.
opengeospatial.org/is/15-078r6/15-078r6.html)

Tasking profile, a new candidate standard illustrates the potential of the SPS standard,
duly adopted and aligned with the requirements of the SensorThings specification
(Liang and Khalafbeigi 2018). This new specification called Tasking Core defines
three new entities, TaskCapability, Task, and Actuator (Fig. 11.8).

The TaskingCapability entity describes all supported tasks for each Thing and
how they can be used. This entity is defined by four properties: name, description,
taskingParameters, and properties. The second entity, Task, is a list of performed tasks
that are defined by a set of tasking parameters (commands executed) and creation
time. The last entity is the Actuator and defines a type of transducer that converts
a signal to a real-world action or phenomenon. This entity is comprises a name,
description, encoding type of metadata and metadata.

11.4 Case Studies on Smart Scenarios

In this section, we show how the IoT and DE work hand-in-hand in real-world scenar-
ios based on the latest technology initiatives to relate the IoT and DE described in the
previous section. Kamilaris and Ostermann (2018) provide an extensive overview of
work at the nexus of geospatial analysis and the Internet of Things; here, we provide
a selection of case studies in various domain applications, with a special focus on
the relationship between DE and the IoT.

In the context of applications for environmental monitoring and resource man-
agement in cities, recent examples of IoT applications include an Arduino-based
sensor platform in Seoul to measure variations in the physical-chemical parameters
in water streams (Jo and Baloch 2017). The sensor platform is powered by solar
energy and transmitted sensor readings every second via Bluetooth for three years.
Although the case study in Jo and Baloch (2017) relies on a single sensor station and

http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
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the clustering analysis of the raw data focuses uniquely on the temporal dimension,
the paper shows the potential of Arduino-based sensing modules for environmental
sensing applications in smart city applications. To improve solid waste management,
Tao and Xiang (2010) developed an information platform to support recycling. The
main technologies were RFID and GPS to track and check waste flows between
collection, transport, and processing facilities. Lee et al. (2015) examined the role
of the IoT in an industrial service provision scenario (fleet management) and Fazio
and Puliafito (2015) use the example of road conditions to showcase a cloud-based
architecture for sensor and data discovery. They distinguish two scenarios of data- or
device-driven search, and develop the system architecture based on the OGC SWE
suite and the extensible messaging and presence protocol (XMPP).

Reducing the required energy consumption remains an important objective for
IoT devices. Ayele et al. (2018) proposed a dual radio approach for wildlife moni-
toring systems. They combine Bluetooth low energy for intraherd monitoring with
LoRa for low-power wide-area networks to communicate between herd clusters and
a monitoring server. The proposed architecture promises significant advantages in
reducing power consumption while maintaining low latency.

Improving traffic management is another promising IoT application area. In 2006,
Lee et al. proposed the use of cars as a mobile vehicular sensor network and for data
exchange in “smart mobs”. More recently envisioned solutions include parking man-
agement and smart traffic lights as part of a cognitive road management system that
handles different types of traffic efficiently (Miz and Hahanov 2014). Jing et al. (2018)
examined the combination of GNSS localization and RFID tagging for infrastructure
asset management with promising results. Additionally, the city of Aarhus in Den-
mark deployed traffic sensors across major roads in the city, and the information was
used by the CityPulse project to provide context-aware recommendations to users
for route planning (Puiu et al. 2016).

Noise pollution is a frequent problem in dense urban areas, and because urban
morphology makes noise distribution modeling difficult, it has attracted participatory
sensing approaches. Wireless acoustic sensor networks are another option. Segura
Garcia et al. (2016) presented a case study in the small city of Algemesi (Spain),
where a network of 78 inexpensive sensor nodes based on Raspberry PIs collected
sufficient data for a subsequent highly accurate spatial interpolation.

Okasenen et al. (2015) harnessed movement data from mobile sports tracking
applications in urban areas to produce heat maps of cyclists commuting through the
city of Helsinki. Mobile phones could be considered IoT sensor devices in partic-
ipatory sensing-based models for mining spatial information of urban emergency
events, as demonstrated by Xu et al. (2016). In addition, van Setten et al. (2004)
supported the COMPASS tourist mobile application with context-aware recommen-
dations and route planning. Mobile phones were also used for crowdsourcing-based
disaster relief during the Haitian earthquake (Zook et al. 2010), where people used the
camera and GPS of their phones to send information from the field to the authorities
to map the landscape of the disaster and assess the overall damage.
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University campuses present an interesting environment for smart city approaches
because the visitors are usually more tech-savvy than the average population, the net-
work coverage is good, and the geographic boundaries allow for a comparatively crisp
delineation of the study area. Cecchinel et al. (2014) presented a system architecture
for a smart campus case where the four requirements of sensor heterogeneity, recon-
figuration capability, scalability, and data as a service were handled via a middleware
in the Amazon Web Services (AWS) cloud, with Arduino Uno and Raspberry Pi sen-
sors for bridging. Another case study at a university campus examined the impact of
nearby weather and pollution sensors on the everyday decision-making of the stu-
dents (Kamilaris and Pitsillides 2014). Trilles et al. (2015a) presented a sensorized
platform proposal that adheres to the principles of the IoT and the WoT. They use
the SensorThings API to avoid interoperability issues. An environmental WSN in a
Smart Campus scenario was developed as a proof of concept.

However, smart approaches with IoT technology are not limited to smart city
applications. Sawant et al. (2014) presented a low-cost automated weather station
system for agriculture that uses Raspberry Pi systems at its core and SWE to trans-
mit data. The sensor readings were also broadcast on a dedicated Twitter account.
The system has been extended with additional components such as a web-based
client (Sawant et al. 2017). The environmental impact of agriculture was studied
by Kamilaris et al. (2018) in the region of Catalonia, Spain. In their study, sensors
measuring nitrates and data from the mobile phones of farmers in the region were
used. Fang et al. (2014) presented a holistic approach to environmental monitoring
and management through an integrated information system that collects data on the
regional climate for the city of Xinjiang from various sources including IoT sensors,
and related it with ecological response variables such as the primary production and
leaf area index. For environmental monitoring, the AirSensEUR project established
an affordable open software/hardware multisensor platform, which can monitor air
pollution at low concentration levels to create maps of pollution levels in different
areas (Kotsev et al. 2016).

A crucial component of any DE system and application is monitoring shifting
surface conditions such as erosion on sandy beaches. Pozzebon et al. (2018) presented
an Arduino-based system to measure the height of sandy beaches and dunes in real-
time. The sensor network uses the ZigBee standard to transmit data, with a GPRS
transmitter for sending sensor readings to a MySQL database. Another example
is the monitoring of landslides in mountainous areas. Benoit et al. (2015) tested a
successful cheap wireless sensor network using XBee for communication and GPS
for localization. A thematically related case study is the use of small and inexpensive
sensors for monitoring and early-warning systems for floods caused by melting snow
in the Quergou River basin (China), as reported by Fang et al. (2015). In addition,
changing climate conditions make reliable and efficient management of storm water
surges in urban areas important. Rettig et al. (2016) designed and tested a geospatial
sensor network for this task, built using common, off-the-shelf components.

With respect to the provision and reception of cultural heritage and cultural ser-
vices, Chianese et al. (2017) proposed and tested a system that combines business
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intelligence, Big Data, and IoT data collection to analyze visitor interests and behav-
iors in a museum. Although IoT devices were only part of the approach, measuring
visitor proximity to artworks, their integrated use with other technologies and plat-
forms showcases the strength of a multisensory DE approach.

11.5 Frictions and Synergies Between the IoT and DE

Based on the current technological substrate that provides the initial steps to estab-
lish connections between the IoT and DE according to the three cognitive functions
(Sect. 11.3), and the presentation of selected case studies (Sect. 11.4), in this section,
we (i) carry out a speculative exercise to discuss the main existing limitations and
frictions that prevent the IoT and DE from working closer together and (ii) suggest
future ways to establish effective communication channels between the two infras-
tructures.

Before going into detail, it is necessary to establish a fundamental assumption that
influences any discussion related to the frictions and synergies between the IoT and
DE: the diverging speeds of development of DE and the IoT. New technology and dis-
ruptive breakthroughs generally challenge the status quo in any sector, and adopting
such improvements can enable more rapid developments and new applications. How-
ever, the rapid growth of the IoT field has produced a vast variety of IoT devices and
protocols and, consequently, the landscape of IoT-related standards, protocols and
specifications is fragmented. For example, a large portion of ‘Things’ were not origi-
nally designed to connect to the Internet; they were later adapted to establish Internet
connections by adding connectivity chips via microcontrollers (e.g., Arduino, Rasp-
berry Pi) or through tags (QR Code or RFID). As a result, many different ways to
connect hardware and software to enable Internet connectivity were developed and
established with no clearly agreed upon consensus and consequently resulted in a
lack of interoperability. This example illustrates the great variety and complexity of
the IoT universe, where the exponential growth of the IoT is due to the rapid decrease
in the size, cost, and energy requirements of sensors, and the ubiquity of network
coverage for wireless Internet connections, leading to many standardization efforts
following diverging paths. In addition, DE has been traditionally characterized by a
slow adaptation of new improvements (López 2011), and thus, the recent technolog-
ical developments have not evolved at the same speed in DE as in the IoT. Noting
this fundamental friction, we identify other potential frictions and synergies, which
may be considered two sides of one coin, and organize the discussion according to
the cognitive functions defined in Sect. 11.3.
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11.5.1 Discoverability, Acquisition and Communication
of Spatial Information

A direct result of the fragmented standardization context noted above is the absence
of well-accepted global protocols for the discovery of Things, which also occurs
to some extent in DE. Search and discovery is crucial for geo-locating nearby, local,
and/or relevant real-world devices and services, a vital step in exploiting sensor data
and services to create more advanced knowledge. Early efforts in this direction are
discussed in Sect. 11.3.1, but we are still far from a complete solution to this difficult
problem, which must be addressed along with the challenges of better description
of devices and services and the semantics of the data involved, especially from a
geospatial point of view.

Therefore, it remains an open issue to build an IoT-DE ecosystem in a way that will
be compatible with standardized IoT reference models and architectures to enable
the discovery of relevant sensors (or Things) and related services. Although there are
many different scenarios and solutions, several common features can be extracted
to find synergies between both infrastructures: the modularity and interoperability
of IoT components, open models and architectures, flexible service compositions,
integrated security solutions, and semantic data integration. There is an intensified
effort regarding the development of architectural frameworks and solutions such as
the IEEE or ITU-T models, as well as other related works and approaches developed
under the auspices of IETF, W3C, or OASIS. From a DE point of view, associated
services for sensor devices and instances are the cornerstone to enable seamless
communication and interoperability between the IoT and DE. There are different
options such as the SWE and SensorThings API, the latter of which is especially
relevant for the establishment of potential solid bridges between the IoT and DE
concerning common data models for better data acquisition and unified interfaces
for enhanced sensor and service discovery. Some research works have already made
substantial progress. Jara et al. (2014) presented a comprehensive framework and
architecture to enable discovery over a wide range of technologies and protocols,
including legacy systems, and Wang et al. (2015) implemented annotations with an
ontology-based semantic service model, SPARQL queries, and geographic indexing
to enable sensor discovery in an experimental study, which delivered faster and more
accurate responses than other tested approaches.

11.5.2 Spatial Understanding of Objects and Their
Relationships

A friction between DE and the IoT is related to the way geographical features are
modeled. Traditional GIS data models conceptually abstract the real-world objects
into core geometric elements such as points, lines, polygons, and volumes, imple-
mented as raster data models, vector data models, or a combination. These data
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models were designed to perform spatial analyses such as distance computations
and topological operations. Despite these great achievements, GIS (and DE) data
models were not designed to cope with the richness and complexity of the inter-
actions between the physical, natural, and social actors that naturally occur in the
environment in the way that the IoT potentially can. As noted above, smart devices
and Things can ‘sense’ the environment in a way that was unimaginable before, and,
consequently, the streams of rich and finer data acquired by IoT devices do not
fit well with the “coarse-grained” vector/raster data models widely used in DE
applications and systems, as these spatial structures were not intended to handle data
with such a high spatio-temporal resolution.

The lack of suitable data models to efficiently manage data at high spatio-temporal
resolution highlights the need for new tools to process data coming from Things
and smart devices in which the modeling of geospatial features has not yet been
fully resolved. Moreover, real-time data is often a defining feature in the IoT, as
IoT devices and Things can produce data at a high frequency (e.g., data streams),
which requires methods for real-time analysis. Therefore, the lack of new algorithms
and implementations for real-time computation and processing streams of spatially
referenced data sets is a clear limitation. Although some tools can run geospatial
queries of stored data, they do not offer ways to analyze data from IoT devices and
sensor nodes in real-time (Nittel 2015).

Unlike the IoT, any changes in the DE arena have been more gradual and less
frenetic. However, some notable changes indicate the way forward to consolidate
potential bridges between DE and the IoT in the midterm and long term. For exam-
ple, in a Digital Earth Nervous System (De Longueville et al. 2010), Things could
perform basic geospatial operations on sub-networks of Things, providing pro-
cessed information for the higher-level elements of a DE. Geometric measurements
and basic geospatial analysis are application areas in which Things have been used
more widely in recent years (Kamilaris and Ostermann 2018). Similarly, an often
overlooked component of IoT applications are the gateway nodes that connect the
sensor devices to the wider network. In addition to a simple routing function, these
gateways can perform other tasks including exploratory analysis (clustering, event-
detection) of incoming data. Rahmani et al. (2018) examined the use of smart gate-
ways in an e-health system that monitors several individual physiological parameters,
demonstrating the potential benefits of (spatial) analysis executed directly on smart
gateways in the context of DE-related applications such as precision agriculture,
environmental monitoring, and disaster management.

The status quo of services for spatial analysis and geoprocessing on the Web is
mainly driven by the WPS standard specification (Sect. 11.2.4). However, Herle and
Blankenbach (2018) argued that the current WPS standard is not well suited to handle
the large amounts of real-time streaming data expected from massive IoT sensor
networks. Building on previous work, they extended the WPS with the GeoPipes
concept using the GeoMQTT protocol for communication, implementing several
smaller proofs-of-concept for application cases such as inverse distance weighting
with a sliding window and trajectory data mining. In addition, Armstrong et al. (2018)
presented an IoT + CyberGIS system to detect radiation risk and propose that new
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approaches are needed to integrate the IoT and geospatial analysis and support the
fourth scientific paradigm of data-intensive discovery (Hey et al. 2009).

11.5.3 Taking Informed Actions and Acting Over
the Environment

In the initial stages of DE, it was thought that sensors could only capture what is
happening in the physical environment, i.e., sensors as mere data loggers. The data
collected by these sensors are transferred from bottom to top until reaching the SDI
repositories. In this sense, the IoT is much more complex because, in addition the fea-
ture of acting on the physical environment, the IoT supports communication between
devices in the same layer (edge) and complex strategies to determine solutions to
real, large problems can be developed. As mentioned above, DE should be adapted to
the possibilities that the IoT devices can offer to enrich the capabilities of the current
SDIs.

The previously noted heterogeneity problem of connecting IoT devices implies
different hardware specifications across the multiple IoT devices. This variety of
hardware means that the abovementioned standards cannot work at a low level. This
is why the standards mainly define web service interfaces, and connectors or adapters
(hub approach) are required to control IoT nodes. Similar to the hub approach, the
Sensor Interface Descriptor (SID) solution is a declarative model based on the Sensor
ML standard for describing device capabilities (Broering and Below 2010), sensor
metadata, sensor commands, and device protocols. In terms of the tasking capability,
the SID describes device protocols with the Open Systems Interconnection (OSI)
model using an XML schema and thus understanding and adapting the SID may be
costly for IoT device manufacturers.

An opportunity that DE can offer the IoT is a global vision on the in situ data
that the IoT collects, with the aim of establishing strategies to perform actions in a
coordinated manner among the IoT nodes, taking advantage of the ability to act. To
conclude, the following Table 11.1 summarizes the frictions and synergies between
the IoT and DE.

11.6 Conclusion and Outlook for the Future of the IoT
in Support of DE

The concept of combining sensors organized in networks to monitor the environment
has been around for decades, and DE has contributed to its expansion. The confluence
of new technologies has created a new reality that offers millions of new possibilities,
led by the IoT revolution that promises to create a newly interconnected “smart” world
(or Earth). After the massive deployment of a ubiquitous array of IoT devices and the
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Table 11.1 Detected frictions and synergies between the IoT and DE

Discoverability,
acquisition and
communication of spatial
information

Understanding spatial
objects and their
relationships

Taking informed actions
and acting over the
environment

Frictions – Absence of
well-accepted global
protocols for the
discovery of Things

– IoT devices do not fit
well with coarser
vector/raster data
models

– Lack of tools to
process data from
Things

– DE has traditionally
considered sensors as
collectors, with data
flowing from bottom to
top.

– GIS standards must be
adapted for each
hardware specification

Synergies – Different standardized
IoT models and
architectures such as
SWE and
SensorThings API

– Things can perform
basic geospatial
operations

– Some initiatives have
adapted GIS
processing standards
to support IoT data

– DE provides a global
view to establish IoT
node strategies to act

impact it made, the world cannot give up being ‘online’. Today, the IoT has enabled
millions of relationships between objects and Things, so that objects, people, and
their environment are more tightly intertwined than ever. Despite the great advances
achieved in recent years, like all disruptive innovations, the IoT presents a series of
challenges that should be treated as a priority in the coming years, especially in the
areas of security, interoperability and standards, privacy, and legal issues. DE can
also play a crucial role in handling some of these challenges.

The IoT and DE dichotomy presents various challenges that should be addressed in
the near future to create a more beneficial union for both parties: The first challenge
is to activate mechanisms to streamline the adaptation of new IoT functionalities
from DE. Traditionally, DE is characterized by its comparative inertia to adopt new
approaches that imply improvements in terms of performance or usability. Examples
include the slow adoption of more flexible interfaces such as the RESTful web
interface or data formats that are more suitable for exchange such as JSON in sensor
standards such as the SOS specification (Tamayo et al. 2011). The tradeoffs between
standardization and disruptive innovation in DE should be carefully discussed by all
involved actors to fuel rapid, innovative developments in DE like those in the IoT
field. Although the standardization process is key to establishing permanent links
between the two infrastructures, it should not slow down innovative changes and
technical developments, and standards should be seen as a means to filter out and
embrace changes that prove to be useful, effective and valuable for improvement of
the IoT-DE ecosystem.

When a technological field grows exponentially, it often leads to heterogeneity
and variety in the short term. Within the IoT, this is partly due to the impact that
the continuous development and improvement of hardware technology has on IoT
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devices. Therefore, another challenge to be addressed is the heterogeneity of IoT
devices. Although the OGC specifications have helped in the service connection and
data/service access levels, the IoT still presents a wide variety of different hardware
developments and implementations, most of which are disconnected from the DE
infrastructure, and therefore remain invisible for DE applications. The development
of ad hoc adapters is one way, at least until a standards consensus is reached in the
IoT field, to allow for interaction with the variety of hardware specifications of IoT
devices and Things and foster connections between the two infrastructures. This is
not an optimal solution since the integration of IoT devices is a challenging and
difficult task, but it helps discern the connections and adaptors that may eventually
become candidates for standardization bodies.

Throughout this chapter, we revisited many tools that are capable of analyzing
spatially referenced data collected by IoT devices. However, the quantity and quality
of tools that handle the temporal dimension of data in real time far exceeds those
that deal with the spatial dimension. An additional barrier is the large-scale variance
in the data models between IoT devices and the decision-making systems that are
typically established in DE. Optimal spatial models to handle scale variations can
be useful to analyze the information received from IoT devices and obtain a more
high-level vision that can be interpreted by decision makers and policy makers.
Therefore, investment in the research and development of better tools to spatially
analyze IoT data in real time on the edge, fog and cloud scales is a priority in the
IoT-DE ecosystem roadmap.
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Chapter 12
Social Media and Social Awareness

Xinyue Ye, Bo Zhao, Thien Huu Nguyen and Shaohua Wang

Abstract The human behaviors and interactions on social media have maintained
themselves as highly dynamic real-time social systems representing individual social
awareness at fine spatial, temporal, and digital resolutions. In this chapter, we intro-
duce the opportunities and challenges that human dynamics-centered social media
bring to Digital Earth. We review the information diffusion of social media, the
multi-faced implications of social media, and some real-world cases. Social media,
on one hand, has facilitated the prediction of human dynamics in a wide spectrum of
aspects, including public health, emergency response, decision making, and social
equity promotion, and will also bring unintended challenges for Digital Earth, such
as rumors and location spoofing on the other. Considering the multifaceted impli-
cations, this chapter calls for GIScientists to raise their awareness of the complex
impacts of social media, to model the geographies of social media, and to understand
ourselves as a unique species living both on the Earth and in Digital Earth.

Keywords Social media · Human dynamics · Social awareness · Location spoofing

12.1 Introduction: Electronic Footprints on Digital Earth

Geo-positioning system-enabled instruments can record and reveal personal aware-
ness at fine spatial, temporal, and digital resolutions (Siła-Nowicka et al. 2016; Li
et al. 2017; Ye and Liu 2019). With an exponential growth, human dynamics data are
retrieved from location-aware devices, leading to a revolutionary research agenda
regarding what happens where and when in the everyday lives of people in both real
and virtual worlds (Batty 2013; Yao et al. 2019). Many location-based social media
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(LBSM) instances have been gaining popularity, fostering the emergence of fine-
grained georeferenced social media content through these personalized devices (Liu
et al. 2018a, b). The proliferation of LBSM enables researchers and practitioners to
efficiently track a large and growing number of human action and interaction records
over time and space to develop insights and enhance decision-making process from
individual to global levels. The patterns and trends produced by LBSM can iden-
tify the movement of active social media users and aid in inferring demographics
and related infrastructures. The collected data on users’ physical and virtual activ-
ities facilitate the in-depth understanding of human dynamics from various aspects
(Barabasi 2005; Shaw et al. 2016). The large volumes of such user-generated loca-
tional and contextual information are especially beneficial to studies relevant to the
evolution of population size and human settlement structure as well as highly topical
subjects such as traffic and epidemiological forecasting. For instance, real-time cus-
tomer shopping behaviors might be rapidly identified by searching specific keywords
in tweets, which allows for urban researchers and business analysts to monitor the
fine-scale dynamics of economic geography and market outcome (Ye and He 2016).
This new data landscape might not directly provide an ultimate solution to long-
standing social or economic issues, but can increasingly shed light on many societal
characteristics that are otherwise difficult to discover using traditional questionnaires
or surveys.

Human actions and interactions in the digital form as well as frequent status
updates can manifest themselves as highly dynamic real-time social systems, which
enable the government to formulate appropriate policies for the relevant groups and
targeted communities (Shi et al. 2018; Wang and Ye 2018). The electronic footprints
and perceptions left by social media users and derivatives of complicated social
networks can be utilized to enhance the design of location-based services (Ye and
Lee 2016). Hence, the increasing demands in mapping and analyzing social media
data call for more innovative conceptual and technological advances in visual and
computational methods. These research challenges and opportunities can facilitate
a paradigm shift in the broader social science disciplines in this new form of data
landscape. Social media messages can depict the interconnected patterns and rela-
tionships between cyberspace and physical space, and can also be distributed instantly
to a large number of users globally, who may belong to different virtual communities
(Shelton et al. 2015).

Geographic information has traditionally been spread by governments or indus-
tries in a top-down manner; but its broadcast is much faster through social media
than official agencies. The dramatic transition towards bottom-up digital dissemina-
tion has challenged these official or professional processes. Individuals can utilize
the power of volunteered geographic information to minimize the difference and/or
quality between experts and nonexperts in the context of generating a large col-
lection of user-described features and numerous georeferenced citizen observations
on socio-economic phenomena. With social media platforms becoming increasingly
location-enabled, users can share geo-tagged information about their own lives and,
as a result, rich content about large populations can be aggregated for social and
behavioral studies (Sui and Goodchild 2011). Such a practice facilitates the policy
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transition from long-term to short-term action with a new perspective of understand-
ing, visualizing, and analyzing human dynamics (Batty 2013).

The use of LBSM content represents a significant methodological advancement
in social sciences and humanities research, providing rich content regarding human-
environment interaction with locational estimation in ubiquitous/pervasive comput-
ing. It can efficiently assist place-based policy interventions in a timely fashion.
Prompt and rigorous detection of emerging social and economic events calls for
more robust algorithms to support such unprecedented research efforts in both qual-
itative and quantitative analyses. However, challenges and difficulties remain in pro-
cessing user-generated messages to derive effective and high-quality information,
considering the complex syntax and context embedded in social media messages.
Additionally, if data analytics cannot be effectively conducted, the expected results
could lose value for decision makers. These issues must be addressed to realize the
potential of social media analytics.

Considering the above-mentioned issues, the remainder of this chapter is orga-
nized as follows. Section 12.2 describes the multifaceted implications of social media.
Regarding social media, the unprecedented opportunities to predict human dynam-
ics are introduced in Sect. 12.3, while multiple challenges are listed in Sect. 12.4.
Then, the implications of these opportunities and challenges are further discussed in
Sect. 12.5, followed by a conclusion in Sect. 12.6.

12.2 Multifaceted Implications of Social Media

Value systems are fundamental to anything we do. Today, the rapid proliferation
of social media has greatly affected us and almost every aspect of human society.
Confronted with this complicated and unstoppable interaction, we employ value
structures to holistically discover the implications of social media, especially the
unintended but vital ones. McLuhan’s (1975) law of media is frequently utilized to
capture the social consequences of various media. Tuan (2003) also proposed the
psychology of power to unveil the internal logic of human’s perceptions of places,
and Ihde (1990) contemplated how technology mediates between human beings and
the world from a phenomenological perspective.

Among these value structures, we employ Ihde’s amplification-reduction struc-
ture to investigate the opportunities and challenges brought by social media. This
structure reveals how technology (including social media) amplify and simultane-
ously reduce a certain human experience. The amplified and reduced experiences are
intertwined and interrelated. More significantly, the amplified human experience is
obvious whereas the reduced human experience is undiscoverable and easily ignored.
Though Ihde only suggested applying this structure to the human experience, it can
also be applied to understand the social implications of the investigating object.
Through this structure, the opportunities and challenges of the social implications
can be revealed. For example, during the 2008 Olympic Games, social media was
touted as a tool of freedom to enable the general public to express their concerns
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about the air pollution issues in major Chinese cities. If we acknowledge the promo-
tion of free speech as the opportunities brought about by social media, the hidden
challenges can be revealed through this value structure—social media can also be
used as a tool of surveillance by big brother to control the discussion on air pollution
as well as a medium of advertisement by private companies to sell relevant products
(e.g., masks) to prevent air pollution-related symptoms. The implications of social
media are multifaceted. Therefore, the value structure can be applied to examine the
impacts of social media on the rapidly evolving Digital Earth. In the following sec-
tions, we discuss the opportunities provided by social media as well as the potential
challenges.

12.3 Opportunities: Human Dynamics Prediction

As a newly chartered territory for human activities, social media has resulted in
tremendous electronic footprints. Such footprints represent a large number of the
population and can be used to predict human dynamics on the ground via the rela-
tionships between the spread of information, user characteristics, and message con-
tents. In this section, we discuss how social media can be used for different aspects
of human society, including public health, emergency response, decision making,
and social equity promotion.

12.3.1 Public Health

Social media platforms can be used to mitigate the spread of pandemics and associ-
ated anxiety. Scholars have used sentiment analysis and spatial analysis to examine
how social media communication conveys information about contagious and infec-
tious diseases and alerts the public, through identifying, tracking, and visualizing the
behavioral patterns of users (Zadeh et al. 2019). For instance, Ye et al. (2018a, b)
explored public health-related rumors during disease outbreaks and evaluate how
such media framing sets the tone negatively, affecting the quality of disease outbreak
detection and prediction, using the diffusion of Ebola rumors in social media net-
works as a case study. Sharma et al. (2017) find that the inaccurate Facebook posts are
more popular than those with accurate and relevant information about the Zika virus.
Villar and Marsh (2018) studied the impact of social media health communication of
Ebola and Zika, concluding that the effect relies on users’ attitudes and trust towards
authorities and the media. Average citizens and ordinary social media users have
very limited knowledge regarding the accuracy and relevancy of infectious diseases
spreading over time and across space as well as concerning complications. As a force
in health communication, social media data could be utilized to define a temporal
extent of the infection and to populate a spatial database of reported occurrences
of the disease. Additionally, social media data can be used to track and predict the
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emergence and spread of infectious diseases and distribution across various spatial
and temporal scales. As a self-reported volunteered information platform and useful
surveillance tool, social media feeds outperform those from official or government
outlets in timeliness. They can also aid in gaining insights into the opinions and
perceptions of the public.

12.3.2 Emergency Response

The use of massive computer-mediated communication in emergency response and
disaster management has captured considerable interest from both the general public
and decision makers. Social media enables fast interpersonal communication during
crises through information dissemination, early warnings, environmental awareness,
and public participation in disaster-affected areas, allowing for emergency workers
to respond more speedily and capably (Hashimoto and Ohama 2014; Finch et al.
2016). As Yin et al. (2012) argue, “this growing use of social media during crises
offers new information sources from which the right authorities can enhance emer-
gency situation awareness. Survivors in the impacted areas can report on-the-ground
information about what they are seeing, hearing, and experiencing during natural
disasters. People from surrounding areas can provide nearly real-time observations
about disaster scenes, such as aerial images and photos.” Moreover, since social
media users can access information posted by official agencies through following
their accounts, organizations and agencies can leverage social media as a platform
to post authoritative situational announcements and communicate with the public in
emergency situations and to potentially retrieve and verify on-the-ground informa-
tion using the public as the information source (Wang et al. 2016). Palen et al. (2009)
examined the consequences of digital communication and information sharing on
emergency response in the context of the Virginia Tech massacre. Chen et al. (2016)
proposed real-time geo-tagged tweet collection and recording in a distributed geo-
database as well as real-time data redistribution using a Web GIS application. This
system was applied to a hypothetical mass evacuation using tweets from Hurricane
Joaquin in 2015.

12.3.3 Decision Making

As a new kind of user-generated geospatial information, social media data could be
invaluable to political agenda-setting that needs to be aware of location-based topic
distribution. For example, the data could help political strategists analyze the tweets
of residents or voters in a given geographical area. Politicians can gauge people’s
reactions by monitoring the communication among Twitter accounts regarding policy
issues. Ye et al. (2017) employed voting tweets regarding a water bond in California
to highlight place-based situational awareness. Convention and visitors’ bureaus may
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focus on ‘hot button’ issues in certain places within their cities or regions. These data
could provide operational indicators about places that are most visited or preferred by
visitors, which can inform the marketing strategies relevant to these locations. Local
governments could analyze social media messages to determine whether a proposed
construction project would be favored by the public or if other proposed projects
would be perceived positively by their constituents. Ye et al. (2018a, b) examined
how the Multilevel Model of Meme Diffusion (M3D) captures the debates regarding
death penalty abolishment across space. At the intracity scale, Liu et al. (2018a, b)
assessed the utility efficiency of subway stations in a Chinese city by matching
the capacity of train services and the travel needs using social media data. Deng
et al. (2018) analyzed how geotagged tweets are associated with hourly electric
consumption at the building level, given the assumption that tweeting behavior is
highly related to human activities.

12.3.4 Social Equity Promotion

Most social media platforms such as Twitter, Facebook, or Instagram are designed for
the general public; few are dedicated to specific groups (e.g., LGBTQ, photographers,
natural disaster victims, etc.). An in-depth analysis and visualization of the specific
groups can promote social equity among different groups. Social awareness of where
they are is the first and foremost step in enabling local residents and governments
to recognize the necessity to treat these underrepresented populations equally. For
example, Jack’d, a dedicated gay social networking app, enables its users to com-
municate online with those who are physically nearby. Through collecting online
locational information from Jack’d, a 3D distribution of the gay community in Bei-
jing were visualized (Zhao et al. 2017). By overlapping this distribution with land-
marks such as major roads, university campuses, shopping malls and gay-friendly
places (e.g., gay bars, gay saunas, gay-friendly gyms, gay-friendly parks and public
restrooms attracting gay activities, etc.), the characteristics of this underrepresented
group’s distribution can be revealed. Gay people in Beijing primarily concentrate in
the northwestern and eastern parts of the city. The northwestern area is the center for
higher education, with several famous universities. In the eastern area of Beijing, the
area from Sanlitun to Worker’s stadium is acknowledged as a recreation center for
LGBT people. To the south, a few famous gay-friendly residential communities are
surrounded by gay saunas; to the east, there are several high-end residential commu-
nities and shopping malls in the Guomao and Sihui subdistricts. This 3D distribution
reveals a hot spot of gay activities in the Tongzhou district. This may result from the
relatively low house rent and convenient accessibility to Chaoyang and other local
urban centers for hangouts. Through this 3D distribution of the gay community’s
electronic footprint, the local public health agencies can provide corresponding ser-
vices for the gay community and organize more targeted activities as an effective
means to promote social equity.
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12.4 Challenges: Fake Electronic Footprints

In addition to those obvious opportunities in human dynamics prediction, challenges
inherently in social media are often ignored. As Chun et al. (2019) argue, “uncertainty
and context pose fundamental challenges in GIScience and geographic research.
Geospatial data are imbued with errors (e.g., measurement and sampling) and various
types of uncertainty that often obfuscate any understanding of the effects of contextual
or environmental influences on human behaviors and experiences.” Although social
media has been touted as a platform to authentically present human trajectories and
their mobilities, rumors, spoofings and privacy concerns, not limited to the physical
world, are also exist on Digital Earth. In this sense, We cannot immediately treat social
media messages as accurate and credible without considering the above-mentioned
issues.

12.4.1 Rumors

The unmoderated nature of social media user’s posting behavior might lead to the
accumulation of invalidated and unverified information and news involving spec-
ulation and uncertainty regarding social events (Ye et al. 2018a, b). Jones et al.
(2017) found those who relying on social media for updates of a campus lockdown
tend to suffer from greater distress due to their increased exposure to conflicting
content in social media channels. Rumors are considered messages or forms of inter-
action among people about certain events that may not be true. As a nonprofessional
medium, social media platforms can spread rumors. However, some information
from reliable sources can minimize rumor propagation, lowering the level of anxiety
in the virtual community. Zubiaga et al. (2018) noted that the openness of social
media platforms also enables the study of user behavior on sharing and discussing
both long-standing and newly emerging rumors based on natural language processing
and data mining methods, especially for four components: rumor detection, rumor
tracking, rumor stance classification, and rumor veracity classification.

12.4.2 Location Spoofing

Location spoofing is a deliberate geographic practice to disguise one’s actual loca-
tion with inconsistent locational information (Zhao and Sui 2017). It facilitates the
spoofer to virtually travel to places of interest for various purposes. For smartphones,
the spoofing mechanism can be divided into three steps, (1) blocking the positioning
service of a smartphone to acquire the actual locational information, (2) generating
inconsistent locational information, and (3) transmitting it to an operating LBSM
app (e.g., Twitter, Facebook, Pokémon Go, etc.) on a smartphone (Zhao and Zhang
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2018). As a result, the LBSM app mistakes the fake location as where the oper-
ating smartphone really is. Specifically, the positioning service relies on a hybrid
approach that integrates three major positioning techniques: built-in GPS, surround-
ing WiFi network triangulation, and cellular tower network triangulation. For these
three techniques, the more accurate, the higher priority in deciding the final result. In
practice, the fundamental function of location spoofing is to downgrade the accuracy
of the positioning technique or totally block the positioning function. There are three
common location spoofing techniques, in terms of falsifying the MAC addresses of
surrounding WiFi routers, spoofing GPS signals in the environment, and mocking
in-transit locational information. The last method is predominantly adopted by dedi-
cated mobile android apps for location spoofing. Such apps enable users to virtually
visit a place other than the actual location. An example is presented below to clarify
this.

In reaction to the 2009 presidential election in Iran, the government of Iran regu-
larly monitors all activities on social networks (Ansari 2012). During the campaign,
social network sites were suddenly blocked, and online political activity became the
target of harsh criticism and reprisals from the government. To prevent this surveil-
lance and protect online protestors, many internationally based Green Movement
supporters spread disinformation over Twitter to mislead local police. Foreign sup-
porters who were not in Iran decided to set their online locations to Tehran to protect
those who were tweeting from Tehran. This strategy may have helped some Iranian
opposition leaders avoid persecution, but also made it impossible to understand the
real impacts of Twitter on the protest.

12.4.3 Privacy Abuse

When users share content and their data on social media, there is a risk that such
content and data are collected and exploited in a way that is not expected by the
users. This poses a serious challenge in terms of privacy for user data and calls for
the responsibility of the network administrators, researchers and users to preserve
privacy in social networks. Two broad classes of privacy issues in social networks—
user-user privacy and user-third party privacy—are discussed below.

In social media, one user might share content about another user or party. Although
this mechanism helps spread the content over the networks efficiently, it inherently
presents a tremendous risk for privacy violation. For instance, your friends might
share a picture you posted, showing you were in a restaurant with another friend.
The picture sharing might be done without your consent and accidentally reveal your
location, private information that you do not want to share beyond your friend list. To
prevent such privacy breaches, social media administrators have implemented mech-
anisms for users to make complaints and request that the content be removed from
the networks. However, before the content can be reviewed and revoked, it might
have caused some detrimental consequences for the users. It would be more effective
if such content dissemination was validated at the very beginning. Addressing the
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user-user privacy issue requires collaboration among scientists from different disci-
plines, including computer scientists, GIScientists, and psychologists. For example,
Kekulluoglu et al. (2017) studied a hybrid negotiation architecture with a reciprocity
mechanism to mimic the social responsibility in reality, and a credit system was used
to encourage agents/users to respect other’s privacy in social media.

Regarding user-third party privacy, content and data generated by social media
users might be collected by different third parties for various purposes, potentially
causing serious data leaks and violating the privacy of users. A retailer might retrieve
user profiles and posts to deliver appropriate ads to the users or an upstart voter-
profiling company could exploit such information to characterize the personalities of
users and influence their voting decisions (e.g., the recent Facebook privacy crisis and
data leak with Cambridge Analytica on American elections described in Rosenberg
et al. (2018)). Another example is researchers who query user data to infer various
user characteristics (e.g., depression, drug abuse) (Choudhury et al. 2013). While
such inferences can provide valuable insights into different social problems and
support monitoring systems for social issues, the leaks of such inferred information
for specific users can cause biases and affect the users’ ability to participate in social
activities (e.g., jobs, school admission). Consequently, it is important to develop
technological strategies to ensure privacy in user data-related activities in social
media. The Future of Privacy Forum and DataGuidance (2018) delivered the report
“Comparing privacy laws: GDPR v. CCPA.” This report compares the European
Union’s General Data Protection Regulation (GDPR) effective on May 25, 2018,
and the California Consumer Privacy Act of 2018 (CCPA) scheduled to be in effect
on January 1, 2020. Both laws would also fundamentally influence social media
platforms in collecting/sharing/employing users’ data online and offline.

12.5 From Awareness to Action

A close scrutiny of the opportunities and challenges would raise our awareness of
the potential capacity of social media in understanding human dynamics. As Yang
et al. (2016, p. 61) argued, “the convergence of social media and GIS provides an
opportunity to reconcile space-based GIS and place-based social media.” Driven by
this awareness, GIScientists should take actions to model the geographies of social
media, propose innovative approaches to location spoofing screening and connect
the virtual world in social media with the real word to better explain social media
phenomena.

12.5.1 Modeling the Geographies of Social Media

Tracking and predicting the diffusion of social media information from a neighbor-
hood to a global scale raises a series of questions such as where and when certain
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topics will be discussed and become popular. Sui and Goodchild (2011) suggested
two hypotheses to test the nature of social media message diffusion such as geo-
tagged hashtags spread through Twitter. The spatial influence model states that the
spatially nearby locations tend to be impacted in the near future, and the community
affinity influence model asserts that such dissemination would occur between func-
tionally connected places. However, the reality is usually a combination of these two
models. Such predictions will be useful for policymakers to estimate the spatial and
functional influence of economic downturns facilitated by supply-chain networks.
The community affinities are expected to enhance the prediction power of purely
spatial models.

12.5.2 Detecting Location Spoofing Through Geographic
Knowledge

If we examine location spoofing from the traditional standard of scientific data,
it is highly unlikely that such “fake” information is generated by environmental
uncertainties, measurement uncertainties, or limited knowledge about measurement
(Zhang and Goodchild 2002). Today, location spoofing cannot simply be treated as
fake data, as these data are associated with complicated generative motivations from
different stakeholders, governments, local business or average social media users.
To identify location spoofing, it is necessary to determine the motivations why the
author produces that location, and then judge whether it is spoofed or not.

Therefore, we must seek appropriate solutions to the positioning inconsistency
and the motivations for spoofing. Usually, self-reporting (e.g., survey, questionnaire)
or observations can qualitatively collect and interpret human motivations that trigger
the generation of positional inconsistency. However, in practice, it is difficult to
measure the real motivation: admittedly, the survey or questionnaire participants
might not report their true intentions of location spoofing due to the fear of being
recognized as location spoofers or rumormongers.

The positioning inconsistency in spoofing can be quantitatively detected. Theoret-
ically, any spoofing detection is supposed to unveil a certain underlying positioning
inconsistency. As Goodchild (2013) indicated, a geospatial accuracy model inter-
prets how a world is constructed geographically. In this sense, spoofing detection is
meant to detect scenarios that do not follow the way in which the world is geograph-
ically constructed. One crucial theoretical framework to build up the geographic
truth is Hägerstrand’s Time Geography (1970). This analytical framework concep-
tualizes the trajectory of each individual as a life path, which is restricted by several
predefined human behavioral constraints in space and time. Meanwhile, a series of
analytical tools to measure human dynamics are provided by Time Geography, such
as space-time path, prism, and cube. Zhao and Sui (2017) provided a Bayesian time
geographic estimation approach to determine the places that an examined user is
unlikely to appear. Time-geographic density estimation (TGDE) was used to model
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the human appearance in a region over time. TGDE can convert trajectories (e.g.,
a time sequence of historical geo-tags from an individual) to a visiting probability
distribution of spatial positions over time. This model can effectively convey the
behavioral constraints and describe where and when an individual is more likely to
visit. A location with a lower probability value is more likely to be spoofed. Moreover,
with the rise of deep learning such as long short-term memory, LSTM (Greff et al.
2017), it is worth investigating application of deep learning techniques in detecting
fake location information. For example, given a set of sequenced historical geo-tags
of an individual, LSTM can be used to model the sequential information and build
deep learning-based classification methods.

12.5.3 Connecting Social Media with the Real World

In social media, people share their thoughts and emotions about events in the real
world. Such events might be explicitly mentioned or implicitly referred to in their
posts. For instance, some social media posts might explicitly include a link to a
news article they would like to discuss whereas other posts might express the users’
attitude on some events without citing those events. In many inference problems for
social media data (e.g., sentiment analysis, opinion mining), it is crucial to determine
the corresponding realistic events to fully understand and explain the trends and
phenomena in social media (i.e., connecting social media with the real world). One
example is that social media posts concerning implicit events where the absence of
the implied events would clearly impede accurate analysis of the posts.

To model the real world, we can resort to public information resources such as
news articles and public knowledge resources such as Wikipedia and Freebase (Bol-
lacker et al. 2008). These resources cover a wide range of events across various
aspects of life. They are also updated with new events in almost real time due to
the recent advances in publication technologies, promoting these public information
resources as a digital counterpart of the real world. Consequently, we can connect
social media data with the real word via the reflected world of public information
resources. The major technical challenges to accomplish this connection involve
the ability to autonomously extract events from those public resources (e.g., news
articles) and the capacity to link the information in social media to the appropriate
detected events. Such challenges would require a deep analysis of the semantics of the
information presented in both (e.g., the posts in social media and the events in public
resources) to identify the events and connections with high accuracy. Fortunately,
deep semantic understanding of such information is being actively investigated in arti-
ficial intelligence research, including natural language processing, computer vision,
graph modeling and machine learning. For instance, many recent studies have shown
that events in news articles can be effectively curated using deep learning techniques,
a branch of machine learning that is capable of automatically inducing the underlying
representations for data to achieve high extraction performance (Nguyen et al. 2016;
Nguyen and Grishman 2018; Nguyen and Nguyen 2019). As these event extraction
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techniques can also recognize the time and locations at which the events occur, they
can be beneficial for GIScientists in geographical research of populations on social
media and the real world. In addition, deep learning might also present effective
solutions for the problem of linking social media data with realistic events due to its
recently demonstrated capacity for embedding and representation learning for var-
ious problems. Once converged, such advances in these fields of computer science
might eventually offer an opportunity to connect the virtual world and real world by
solving the aforementioned technical challenges.

Finally, the realistic events from public information resources enable novel
semantic-based solutions to combat the problems of rumors or fake news in social
media. An important property of the public resources discussed in this section is
that they generally capture trustful information/events, as such information is ver-
ified by the media administrators for accuracy and correctness. This is one reason
why news articles are usually slower than social media in presenting the informa-
tion to the public. Consequently, if the social media information can be accurately
linked and compared with the information/events in the trustful information sources,
novel detection and tracking techniques can be proposed to prevent rumors and fact-
check the information spread over social media. Artificial intelligence research can
provide the fundamental technologies to tackle these problems, as demonstrated in
recent research in natural language processing and deep learning (i.e., Yin and Roth
2018).

12.6 Conclusion

As a crucial platform for human dynamics and activities, social media content can
be mined in multiple approaches to determine how individuals connect and share
information as well as purposefully move across scales and resolutions (Croitoru
et al. 2013; Miller et al. 2019). When social media activities are attached with loca-
tional information, these online human activities can generate tremendous electronic
footprints on Digital Earth. Especially when merging with other digital overlays of
authoritative data through multisource data fusion, such as land use, urban planning,
and natural resources data, powerful interoperation and prediction that require both
electronic footprints and digital overlays on Digital Earth become feasible with the
optimal weights for combination (De Albuquerque et al. 2015; Lin et al. 2019). These
digital overlays serve as the socioenvironmental context within which the geosocial
media dynamics and events occur and evolve, calling for scientific cross-fertilization
of many separate domains toward an integrated science of human dynamics.

In this chapter, we introduce the opportunities and challenges that human
dynamics-centered social media bring to Digital Earth. We review the information
diffusion of social media, the multifaced implications of social media, and some
real-world cases. Social media will facilitate the prediction of human dynamics in
a wide spectrum of aspects, including public health, emergency response, decision
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making and social equity promotion. Social media will also bring unintended chal-
lenges for Digital Earth, such as rumors and fake location spoofing. Considering the
multifaceted implications, this chapter calls for GIScientists to raise their awareness
of the complex impacts of social media and urges them to model the geographies of
social media as well as filter fake locations through geographic knowledge, targeting
a more robust geosocial knowledge discovery. Social media will continue to evolve,
along with the development of human society. Social media has become a crucial
part of human activities on Digital Earth. Any effort that ignores the importance of
social media will bring the effort into question. Therefore, the study of social media
provides new data sources and data collection methods about real-world activities
and happenings, and social media help us in profoundly understanding ourselves as
a unique species living both on the Earth and in Digital Earth.

Acknowledgements This material is partially based upon work supported by the National Science
Foundation under Grant Nos. 1416509, 1535031, and 1739491. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

References

Ansari A (2012) The role of social media in Iran’s green movement (2009-2012). Glob Media J
Aust Ed 12:1–6

Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nature
435(7039):207–211

Batty M (2013) Big data, smart cities and city planning. Dialogues Hum Geogr 3(3):274–279
Bollacker K, Evans C, Paritosh P et al (2008) Freebase: a collaboratively created graph database

for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international
conference on management of data - SIGMOD ’08. ACM Press, New York, NY, p 1247–1250

Chen X, Elmes G, Ye X et al (2016) Implementing a real-time twitter-based system for resource
dispatch in disaster management. GeoJournal 81(6):863–873

Choudhury MD, Gamon M, Counts S et al (2013) Predicting depression via social media. In:
Proceedings of the seventh international aaai conference on weblogs and social media. p 128–137

Chun Y, Kwan M-P, Griffith DA (2019) Uncertainty and context in GIScience and geography:
challenges in the era of geospatial big data. Int J Geogr Inf Sci 33(6):1131–1134

Croitoru A, Crooks A, Radzikowski J et al (2013) Geosocial gauge: a system prototype for knowl-
edge discovery from social media. Int J Geogr Inf Sci 27(12):2483–2508

de Albuquerque JP, Herfort B, Brenning A et al (2015) A geographic approach for combining social
media and authoritative data towards identifying useful information for disaster management. Int
J Geogr Inf Sci 29(4):667–689

Deng C, Lin W, Ye X et al (2018) Social media data as a proxy for hourly fine-scale electric power
consumption estimation. Environ Plan A Econ Space 50(8):1553–1557

Finch KC, Snook KR, Duke CH et al (2016) Public health implications of social media use dur-
ing natural disasters, environmental disasters, and other environmental concerns. Nat Hazards
83(1):729–760

Future of Privacy Forum and DataGuidance (2018) Comparing privacy laws: GDPR
v. CCPA. https://fpf.org/wp-content/uploads/2018/11/GDPR_CCPA_Comparison-Guide.pdf.
Accessed 12 May 2019

Goodchild MF (2013) The quality of big (geo)data. Dialogues Hum Geogr 3(3):280–284

https://fpf.org/wp-content/uploads/2018/11/GDPR_CCPA_Comparison-Guide.pdf


438 X. Ye et al.

Greff K, Srivastava RK, Koutnik J et al (2017) LSTM: a search space odyssey. IEEE Trans Neural
Netw Learn Syst 28(10):2222–2232

Hägerstraand T (1970) What about people in regional science? Pap Region Sci 24(1):7–24
Hashimoto Y, Ohama A (2014) The role of social media in emergency response: the case of the

great East Japan earthquake. NIDS J Def Secur 15:99–126
Ihde D (1990) Technology and the lifeworld: from garden to earth (No. 560). Indiana University

Press, Bloomington
Jones NM, Thompson RR, Schetter CD et al (2017) Distress and rumor exposure on social media

during a campus lockdown. Proc Natl Acad Sci USA 114(44):11663–11668
Kekulluoglu D, Kokciyan N, Yolum P (2017) Preserving privacy as social responsibility in online

social networks. ACM Trans Internet Technol 18(4):1–22
Li M, Dong L, Shen Z et al (2017) Examining the interaction of taxi and subway ridership for

sustainable urbanization. Sustainability 9(2):242
Lin J, Wu Z, Li X (2019) Measuring inter-city connectivity in an urban agglomeration based on

multi-source data. Int J Geogr Inf Sci 33(5):1062–1081
Liu Q, Wang Z, Ye X (2018a) Comparing mobility patterns between residents and visitors using

geo-tagged social media data. Trans GIS 22(6):1372–1389
Liu X, Macedo J, Zhou T et al (2018b) Evaluation of the utility efficiency of subway stations based

on spatial information from public social media. Habitat Int 79:10–17
McLuhan M (1975) McLuhan’s laws of the media. Technol Cult 16(1):74–78
Miller HJ, Dodge S, Miller J et al (2019) Towards an integrated science of movement: converg-

ing research on animal movement ecology and human mobility science. Int J Geogr Inf Sci
33(5):855–876

Nguyen TH, Grishman R (2018) Graph convolutional networks with argument-aware pooling for
event detection. In: The association for the advancement of artificial intelligence (AAAI). AAAI
Press, Menlo Park, California, p 5900–5907

Nguyen TM, Nguyen TH (2019) One for all: neural joint modeling of entities and events. In: The
association for the advancement of artificial intelligence (AAAI), arXiv.org > cs > arXiv:1812.
00195

Nguyen TH, Cho K, Grishman R (2016) Joint event extraction via recurrent neural networks.
In: Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, p. 300–309

Palen L, Vieweg S, Liu SB et al (2009) Crisis in a networked world. Soc Sci Comput Rev
27(4):467–480

Rosenberg M, Confessore N, Cadwalladr C (2018) How trump consultants exploited the facebook
data of millions, New York Times. https://www.nytimes.com/2018/03/17/us/politics/cambridge-
analytica-trump-campaign.html?module=inline. Accessed 12 May 2019

Sharma M, Yadav K, Yadav N et al (2017) Zika virus pandemic—analysis of facebook as a social
media health information platform. Am J Infect Control 45(3):301–302

Shaw S-L, Tsou M-H, Ye X (2016) Editorial: human dynamics in the mobile and big data era. Int
J Geogr Inf Sci 30(9):1687–1693

Shelton T, Poorthuis A, Zook M (2015) Social media and the city: rethinking urban socio-spatial
inequality using user-generated geographic information. Landsc Urban Plan 142:198–211

Shi X, Xue B, Tsou M-H et al (2018) Detecting events from the social media through exemplar-
enhanced supervised learning. Int J Digit Earth 12(9):1083–1097

Siła-Nowicka K, Vandrol J, Oshan T et al (2016) Analysis of human mobility patterns from GPS
trajectories and contextual information. Int J Geogr Inf Sci 30(5):881–906

Sui D, Goodchild M (2011) The convergence of GIS and social media: challenges for GIScience.
Int J Geogr Inf Sci 25(11):1737–1748

Tuan Y-F (2003) On human geography. Daedalus 132(2):134–137
Villar ME, Marsh E (2018) Social media and infectious disease perceptions in a multicultural society.

In: Villar ME, Marsh E (eds) Reconceptualizing new media and intercultural communication in
a networked society. IGI Global, Pennsylvania, US, p 328–350

www.dbooks.org

http://arxiv.org/abs/1812.00195
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html?module=inline
https://www.dbooks.org/


12 Social Media and Social Awareness 439

Wang Z, Ye X (2018) Space, time, and situational awareness in natural hazards: a case study of
hurricane sandy with social media data. Cartogr Geogr Inf Sci 46(4):334–346

Wang Z, Ye X, Tsou M-H (2016) Spatial, temporal, and content analysis of Twitter for wildfire
hazards. Nat Hazards 83(1):523–540

Yang X, Ye X, Sui DZ (2016) We know where you are. Int J Appl Geospat Res 7(2):61–75
Yao XA, Huang H, Jiang B et al (2019) Representation and analytical models for location-based

big data. Int J Geogr Inf Sci 33(4):707–713
Ye X, He C (2016) The new data landscape for regional and urban analysis. GeoJournal

81(6):811–815
Ye X, Lee J (2016) Integrating geographic activity space and social network space to promote

healthy lifestyles. SIGSPATIAL Spec 8(1):20–33
Ye X, Liu X (2019) Introduction: cities as social and spatial networks. In: Ye X, Liu X (eds) Cities

as spatial and social networks. Springer, Cham, p 1–8
Ye X, Li S, Sharag-Eldin A et al (2017) Geography of social media in public response to policy-

based topics. In: Ye X, Li S, Sharag-Eldin A et al (eds) Geospatial data science techniques and
applications. CRC Press, Boca Raton, US, p 221–232

Ye X, Li S, Yang X et al (2018a) The fear of ebola: a tale of two cities in China. In: Ye X, Li S, Yang
X et al (eds) Big data support of urban planning and management. Springer, Cham, p 113–132

Ye X, Sharag-Eldin A, Spitzberg B et al (2018b) Analyzing public opinions on death penalty
abolishment. Chin Sociol Dialogue 3(1):53–75

Yin W, Roth D (2018) TwoWingOS: a two-wing optimization strategy for evidential claim verifica-
tion. In: Proceedings of the 2018 conference on empirical methods in natural language processing.
Association for Computational Linguistics, Brussels, Belgium, p 105–114

Yin J, Lampert A, Cameron M et al (2012) Using social media to enhance emergency situation
awareness. IEEE Intell Syst 27(6):52–59

Zadeh AH, Zolbanin HM, Sharda R et al (2019) Social media for nowcasting flu activity: spatio-
temporal big data analysis. Inf Syst Front 21(4):743–760

Zhang J, Goodchild MF (2002) Uncertainty in geographical information. CRC Press, Boca Raton,
FL

Zhao B, Sui DZ (2017) True lies in geospatial big data: detecting location spoofing in social media.
Ann GIS 23(1):1–14

Zhao B, Sui DZ, Li Z (2017) Visualizing the gay community in Beijing with location-based social
media. Environ Plan A 49(5):977–979

Zhao B, Zhang S (2018) Rethinking spatial data quality: pokémon go as a case study of location
spoofing. Prof Geogr 71(1):96–108

Zubiaga A, Aker A, Bontcheva K et al (2018) Detection and resolution of rumours in social media.
ACM Comput Surv 51(2):1–36

Xinyue Ye is an Associate Professor in the College of Computing at New Jersey Institute of Tech-
nology where he directs Urban Informatics & Spatial Computing lab. He develops and implements
new methods on spatiotemporal-social network analysis/modelling/simulation for different appli-
cation domains such as economic development, disaster response, land use, public health, and
urban crime.

Bo Zhao is an Assistant Professor in the Department of Geography at University of Washington.
His research interests are on the social implications of geospatial technologies, the study of dif-
ferent spoofing phenomena in geography towards a post-truth reflection on the value of geospatial
technologies, the geovisualization and geo-narrative of the coupled human and natural system.



440 X. Ye et al.

Thien Huu Nguyen is an Assistant Professor in the Department of Computer and Information
Science at University of Oregon. His research explores mechanisms to understand human lan-
guages for computers so that computers can perform cognitive language-related tasks for us.

Shaohua Wang is an Assistant Professor in the College of Computing at New Jersey Institute of
Technology where he directs Software Engineering lab. His research spans the study of software
engineering from system, empirical, and machine learning perspectives.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/


Part II
Digital Earth for Multi-domain

Applications



Chapter 13
Digital Earth for Sustainable
Development Goals

Graciela Metternicht, Norman Mueller and Richard Lucas

Abstract Sustainable development is nothing new, but it has proven notoriously
difficult to implement in practice. The 2030 Agenda for Sustainable Development,
with 17 goals, 169 targets and 232 associated indicators, was approved at the 2015
UN General Assembly and addresses the economic, social and environmental pillars
of development, aspiring to attain by 2030 a sustainable future that balances equitable
prosperity within planetary boundaries. While the goals are universal (i.e., applicable
to both developing and developed countries), it is left to individual countries to
establish national Sustainable Development Goal (SDG) targets according to their
own priorities and level of ambition in terms of the scale and pace of transformation
aspired to.

Keywords Sustainable development goals · Digital Earth · Earth Observation ·
Big Earth data · Indicators · Land cover classification

13.1 Fundamentals of Digital Earth for the Sustainable
Development Goals

The Digital Earth (DE) exists in parallel to the physical Earth along with some
translating elements between them (Sudmanns et al. 2019). Chapter 1 describes the
origin, evolution and main elements of Digital Earth, and the links between Digital
Earth, Big Data (Chap. 9) and big Earth data. Guo (2017) argues that, from the
perspective of big data, big Earth data inherits big data’s ‘Vs’ (volume, velocity and
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variety) and, in this context, DE can be considered to be big Earth data. Furthermore,
as big Earth data research focuses on synthesis of systematic observations of the
Earth, as well as data-intensive methods for studying Earth system models, based on
the premise of increased knowledge discovery (Chap. 1), Digital Earth can support
countries in their implementation of the 2030 Agenda for Sustainable Development.

Through analysis of recent literature and a case study, this chapter collects and
presents evidence of the potential and limitations of Digital Earth for systematic
generation of information and knowledge for use in measuring progress towards
the Sustainable Development Goals (SDGs). We frame the analysis and discussion
around priorities for implementation (ICSU, ISSU 2015), including:

(a) the design of SDG indicator metrics at national levels and how Digital Earth,
through the Analysis Ready Data (ARD) concept, can contribute to that end

(b) harmonized national metrics for SDG implementation, including for baseline
determination and target setting

(c) setting up monitoring platforms for tracking progress towards the SDGs
(d) knowledge needs for assessing implementation of actions and strategies towards

achieving set SDG targets
(e) governance and institutional arrangements, including multi-stakeholder partic-

ipation.

The remainder of the chapter is structured as follows. Section 13.2 identifies the
information needs of countries for the implementation of the SDGs, including for the
SDG Global Indicator Framework (GIF). Section 13.3 summarizes the findings of
recent research and practice on the use of Digital Earth (including Earth Observation1

and social sensing) in support of the SDGs. Section 13.4 presents a national case
study of multi-stakeholder engagement in the operationalization of the Indicator
Framework of the Sustainable Development Goals with Earth Observations. The
chapter closes (Sect. 13.5) with an outlook on the prospects of Digital Earth and big
Earth Data in relation to the SDGs.

13.2 Information and Knowledge Relevant to National
Implementation of the SDGs

The SDGs provide a coherent, evidence-based framework for development planning
and programming at a national level (Allen et al. 2017a). The goals and targets
essentially set the desired destination for development through to 2030 and provide
a framework for monitoring progress. This section introduces the metrics agreed for
monitoring and reporting of the SDGs, and broadly identifies data and information
requirements for their implementation.

1The Earth Observation data in this chapter refers to the definition provided by Nativi et al. (2019).
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13.2.1 How the SDGs Are Monitored and Reported

The Global Indicator Framework (GIF) was established in March 2016 to monitor
progress towards achieving the SDGs (UN Statistical Commission 2016). The SDG
indicators have been grouped into three different tiers according to the level of data
availability and methodological development. Of the 232 SDG indicators that make
up the GIF, as of March 2019, 101 are classified as being Tier I. This means that
the indicator is conceptually clear, has an internationally established methodology
and standards, and the data are regularly compiled for at least 50% of participating
countries. The remaining indicators are Tier II (94 indicators), which are conceptually
clear but for which the data are not regularly produced by participating countries,
or Tier III (34 indicators), for which no internationally established methodology
or standards are yet available. Six indicators are determined as having several tiers
(Inter-Agency and Expert Group on Sustainable Development Goals 2019). Hence,
three years after the adoption of the GIF, less than half (44%) of the SDG indicators
can be confidently populated.

It is worth noting that the SDG indicators are essentially performance metrics
and, as such, are reported regularly at national levels through National Voluntary
Reports (NVRs) (UNGA 2015, paras. 79 and 84), and annually at the global level.
The latter is undertaken by the UN Secretary General to inform the High-Level
Political Forum based on a selection of indicators from the GIF for which data are
available, as mandated by the General Assembly (UNGA 2015, para. 83). For Tier I
and II indicators, the availability of data at national levels may not necessarily align
with the global tier classification, and countries can create their own tier classification
for implementation.

13.2.2 Information Needs for Implementation of the SDGs

Recent research (Allen et al. 2018, 2019) has identified challenges for implementing
the SDGs that, in turn, influence information and knowledge needs.

(a) The comprehensiveness of scope makes prioritization essential.
(b) The goals are integrated, with very complex feedback and dynamics. This is a

significant change from prior narrow, linear approaches to development.
(c) The SDG targets have complex trade-offs and synergies, and conflict can emerge

from the interactions between targets and goals (Lusseau and Mancini 2019;
Nilsson et al. 2016; Le Blanc 2015; Allen et al. 2019).

(d) Currently, there is a weak conceptual understanding of these interlinkages,
which limits the ability to respond with coherent policy and management across
sectors (Allen et al. 2018; Spangenberg 2017).

Challenges related to aspects of target-setting are that the system of SDGs is not
coherent, but rather a network of interlinked targets and a reflection of the political
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mapping of development priorities rather than a reflection of how the Earth Sys-
tem works (Le Blanc 2015). Furthermore, the SDGs do not reflect the cause–effect
relationships that are needed to understand how the achievement of one target could
impact on the other targets. Hence, national implementation of the SDGs requires
more than information on performance metrics. For example, timely data in support
of policy formulation and targeted interventions may be of much greater impor-
tance for countries aiming to advance the implementation of the SDGs according
to their national circumstances than simply providing a metric around an agreed
global indicator. Furthermore, implementation of the SDGs at national levels also
requires determining a baseline for 2015, deciding on targets for 2030, as well as a
system for tracking the progress towards the set targets, monitoring the performance
of decisions (actions, policies and strategies) and reporting advances using the GIF.

Building an evidence-based framework for national implementation, monitoring
and reporting of the SDGs requires government agencies (including National Statis-
tics Offices) to address the what, why and how of data and information provision
(Fig. 13.1).

(a) What is happening requires baseline assessment of indicators related to SDG
targets, identifying priorities (e.g., what SDG targets or goals a country is lagging
behind) and the identification of data and information gaps needed for such
assessment, as summarized in Allen et al. (2017b).

(b) Why it is happening (e.g. drivers of and pressures leading to (un)sustainable
development) relates to the need for systems analysis of interlinkages between
SDG targets, understanding of cause–effect relationships, feedbacks and
dynamics, and the identification of leverage points for actions and strategies
to accomplish the transformational changes that the SDGs aim for.

(c) How to accomplish changes, demands that countries answering the above ques-
tions also understand how data and information are to be obtained and integrated.

Fig. 13.1 National implementation of the SDGs requires evidence-based approaches for monitoring
and reporting. As implementation will largely rely upon national action, government actions, through
their policy, planning, regulatory and expenditure functions—i.e. the ‘plan, do, check, act’ planning
cycle are central to the delivery
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13.3 State of the Art for the SDGs in DE

Whether 3Vs, 5Vs (including volatility and veracity, as suggested by Hammer et al.
2017) or 6Vs (including volatility, veracity and value: Fig. 13.2), big data may offer
new cost-effective or efficient ways of compiling indicators, improving timeliness,
and compiling linkable datasets, and also open the way for cross-cutting analyses
that may help with better understanding of the causation and identification of relevant
and coherent policy interventions (see Fig. 13.1).

When adopting the SDGs, the United Nations (UN) Assembly recognized the
contribution that could be made by Earth Observation (EO) and geospatial infor-
mation (i.e., big Earth data) in supporting and tracking progress towards the SDGs
(UNGA 2015, para. 76). Analysis and interpretation of big Earth data, including
Earth Observation, have much to offer the SDGs and other multi-lateral environmen-
tal agreements (Sudmanns et al. 2019). However, MacFeely (2019) makes a case for
the challenges that big data face (legal, technical and ethical) concerning their use in
compiling SDG indicators. National statistical offices, government agencies and UN
agencies, which are the custodians of specific SDGs tasked with implementing the

Fig. 13.2 The 6Vs of big data for official statistics. Modified from Hammer et al. (2017)
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GIF, face concerns about whether big data are representative and stable enough to be
used consistently for compiling the SDG indicators and also their operationalization.
For example, in the Big Data Project Inventory compiled by the UN Global Working
Group on Big Data, 34 national statistical offices from around the world registered
109 separate big data projects and their potential contribution to the SDG imple-
mentation. Most data projects focus on goals 3, 8, 11 and, with a lesser emphasis,
goals 2, 15 and 16. Though promising, most projects have not yet moved beyond
the planning stage, and others are dealing with legal issues related to data protection
(MacFeely 2019). Specific to the EO community are challenges for consistently and
systematically turning satellite and other remote sensing data into valuable global
information layers in support of effective implementation of the SDGs.

In late 2018, the Committee on Earth Observation Satellites (CEOS) compiled
a report on the potential of satellite EO for the SDGs (Paganini et al. 2018), and
their findings suggest that EO data has a role to play in quantifying around 40 of the
169 Targets, and around 30 of the 232 Indicators. The CEOS argues that there is an
unrealized potential for EO data to contribute to the Indicator Framework, with only
a third of its data being routinely exploited today. This is based on the premise that
only 12 out of the 30 indicators identified are listed as Tier I.

Moreover, the report points to the importance of EO in relation to Goal 6 (Clean
water and sanitation), Goal 11 (Sustainable cities), Goal 14 (Life below water), and
Goal 15 (Life on land). Most of the perceived contribution of EO towards these goals
has been around the provision of information in relation to the mapping of land cover,
land productivity, above ground biomass, soil moisture content, and water extent or
quality characteristics, as well as air quality and pollution parameters (Table 13.1). A
2016 compilation of the Group on Earth Observation (GEO) appraised the potential
of EO and geospatial information for informing all SDGs, although the document
was vague in terms of specific contributions to SDG targets and indicators. A sub-
sequent joint GEO-CEOS report (CEOS-GEO EO4SDG 2017) further investigated
the potential of big Earth Data (EO and geo-information) for supporting countries in
the implementation of the 2030 Agenda for Sustainable Development, arguing that it
could contribute to the implementation of 29 indicators (through direct measurement
or indirect support) and 71 targets of 16 goals (but not all indicators of these targets).
By referencing national-scale satellite datasets (e.g. Terra/Aqua MODIS, Landsat,
and Sentinel), Metternicht et al. (2018) concluded that EO satellite-derived infor-
mation tends to have a more indirect contribution to the SDG targets and indicators
(i.e. use as proxies). Using data available from the Australian Terrestrial Ecosystem
Research Network platform (TERN), the study ascertained that EO-derived infor-
mation was most relevant to Goal targets 15, 14, 13, 11, 6, 3, 2 and 1, and, to a lesser
extent, Goal 9 (Fig. 13.3).

The potential of EO to support the SDG indicator framework appears in the
biosphere cluster (Fig. 13.4) and to a lesser the SDG indicators related to society
and the economy. This concurs with the argument of Plag and Jules-Plag (2019)
that very few indicators can currently be quantified based on information extracted
from EO alone because of the strong focus of the SDGs on human needs and the
bias toward social and economic information and the built environment. Traditional
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Fig. 13.3 SDG targets that TERN Auscover products contribute to are listed in the table; the table
cells are color-coded according to whether the contribution is more direct (green) or more indirect
(yellow) (Metternicht et al. 2018)

EO techniques are designed for extracting information on environmental variables,
with only a few being related to the built environment and associated infrastructure
(e.g., built-up areas and roads). Hence, there are limitations on the possibility of
EO alone producing reliable metrics for SDG indicators (see Table 13.1); however,
approaches underpinned by big Earth data do have some potential, as evidenced in
recent research by Kussul et al. (2019), Foody et al. (2019), Freire et al. (2018), and
Corbane et al. (2017). Specifically:

• meta-optimization of EO with external data-intensive infrastructure has led to
improved mapping of built-up areas in support of the global human settlement
layer (Corbane et al. 2017)

• national mapping of SDG indicators 15.1.1, 15.3.1 and 2.4.1 has been achieved
through synergy of in situ and multi-resolution satellite data (Kussul et al. 2019)

• big Earth Data (global census data and satellite-derived built-up area maps) has
enabled enhanced mapping of population distribution along coastlines (Freire et al.
2018)

• EO and machine learning have enabled mapping of sites associated with slavery,
in support of SDG target 8.7 (“take immediate and effective measures to eradicate
forced labour, end modern slavery and human trafficking and secure the prohibition
and elimination of the worst forms of child labour”) (Foody et al. 2019).
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Fig. 13.4 Clustering of the SDGs that relate to the biosphere (earth life supporting system), society
and economy. Illustration Azote for Stockholm Resilience Centre, Stockholm University

In summary, EO data does not directly deliver the SDG indicators agreed by the
Inter-Agency and Expert Group (IAEG) on SDGs; rather, it provides a diversity of
spatio-temporal information that can then be related to the indicator framework. For
example, directly observed indicators can be specific biophysical aspects of entities
(e.g., land cover status and type) that provide evidence for monitoring advances
towards SDG targets. As an example, changes in land-cover states can be an indication
of land improvement or land degradation in SDG target 15.3. Indirect cues derived
from EO data can provide evidence for SDG domains related to human health, cities
and infrastructure, ecosystem health and so on (Paganini et al. 2018; Sudmanns et al.
2019). Few studies, however, refer to specific SDG indicator metrics; many papers
and reports highlight the potential of Earth Observation for targets and goals but fall
short of being specific regarding the operationalization of Digital Earth for the SDG
target or indicator.

For the full information potential of big EO data in support of the SDGs to be real-
ized, approaches are needed that broaden the use of EO beyond specialized scientific
communities and that support decision makers with the knowledge required by sys-
tematically analyzing all available observations by converting them into meaningful
geophysical variables. Data Cubes (see Chap. 21) apply the concept of satellite ARD
and are facilitating access to large spatio-temporal data (Giuliani et al. 2017). This
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enables the coupling of EO with other big data such as demographic, economic,
climatic, or administrative data, which are needed to make indicators and analysis
more relevant and targeted to the SDGs. Furthermore, some of the proposed SDG
targets relate to the so-called ‘means of implementation’, namely technology transfer
and capacity building (i.e. SDG17; SDG targets 13.1, 1.3.3 and 16.8). In this regard,
Digital Earth and EO infrastructure, as currently offered by Australia’s TERN Land-
scape initiative (TERN 2017) and other major international and national systems for
big Earth data (e.g. Google Earth Engine, Amazon Web Services, Earth Server, Earth
Observation Data Centre, Copernicus Data and Exploitation Platform-Deutschland,
United States Geological Survey Earth Explorer, Swiss Data Cube, Digital Earth
Australia, Chinese Academy of Sciences Earth, and GEOEssential of the Group on
Earth Observations), could serve as ‘methodological frameworks’ and examples of
good practice for cross-institutional governance models, thus indirectly contributing
to progress towards these targets.

The case study presented hereafter is an example of how EO can be a promising
complement to traditional national statistics. Digital Earth Australia (DEA) aligns
with the current trends in EO of having open data policies and using cloud comput-
ing and data cubes for improving big Earth data integration and analysis, thereby
strengthening environmental data and indicators (Dhu et al. 2017). In particular, this
case shows how the analysis capabilities of DEA (see Chap. 21 for infrastructure)
can be used to draw together and effectively link data from multiple domains in
support of the implementation of the 2030 Agenda for Sustainable Development in
Australia.

13.4 Case Study of Australia: Operationalizing
the Indicator Framework of the SDGs Through DE
and a Participatory Process

In July 2018, Australia produced its first Voluntary National Review (VNR) of the
SDGs (Australian Government 2018). Australia’s consideration of the SDG Indi-
cators has been a whole-government exercise. The Australian Bureau of Statistics
(ABS) undertook a data-mapping exercise for the SDGs, in conjunction with lead
agencies, exploring both ABS and other government-held data sources to identify
those germane to supporting monitoring and reporting on the SDGs. A Reporting
Platform2 was created to: (a) house identified Australian government datasets rel-
evant to the development of the country’s SDG indicator framework; (b) assist in
identifying new datasets; and (c) refine the SDG indicators, particularly as the move
from a Tier III to a Tier I or II occurs and where additional datasets may be needed.
An inter-agency governance agreement assigned the responsibility for following up
and completing additional data sets to individual agencies (particularly those that
hold datasets relevant to the SDG indicator framework).

2https://www.sdgdata.gov.au/.
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For the first VNR, a total of 118 indicators were reported online using data drawn
from a national indicator dataset. For 57 indicators, potential data sources were
identified. However, further analysis is needed to ensure the data are suitable for
reporting and are comparable to the globally agreed methodology for each UN SDG
indicator. 12 indicators were not reported either because the indicator was not relevant
to Australia or because no suitable Australian government data source exists for
the indicator. Another 57 were not considered because, at the time of reporting, a
globally agreed methodology for these UN SDG indicators is lacking (i.e., Tier III).
Therefore, Australia did not investigate potential data sources. In summary, the first
Australian VNR took a narrative approach, addressing each of the SDGs, though
no baseline was created. Targets were not specified and Australia had complete and
relevant datasets for only half of the SDG indicators. The Australian government
has acknowledged that EO technology can help progress towards the completion of
datasets and, in tandem, inform decision-makers about performance against SDG
targets and indicators (Australia Government 2018).

In this regard, EO-derived information could help in setting baselines against
which SDG targets could be set and, in turn, measure progress against agreed goals—
aspects that the first VNR did not tackle. Germane to this point is the DEA initiative
led by Geoscience Australia, which has enabled the compilation, analysis and inter-
pretation of decades of satellite sensor (largely Landsat) data into information and
insights about Australia’s terrestrial and marine ecosystems using ARD standards
(Dhu et al. 2017; Lewis et al. 2016). Building on the DEA infrastructure (see Chap.
21), Geoscience Australia is leading an inter-institutional initiative to produce reli-
able, standardized, continental-scale maps of land cover and land-cover dynamics
across Australia at 25 m spatial resolution using multi-scale time series of Landsat
and Copernicus Sentinel datasets. This approach builds on the Earth Observation
Data for Ecosystem Monitoring (EODESM; Lucas and Mitchell 2017), which is
fully described in Lucas et al. (2019a) and which provides multi-scale and temporal
land-cover and evidence-based change maps by integrating environmental variables
retrieved from EO data and utilizing the framework of the Food and Agriculture
Organisation (FAO) Land Cover Classification System (LCCS; Version 2, Di Gre-
gorio 2016). The approach is based on the requirement for information about land
cover and its change over time, as both are essential input metrics to several SDG
targets (Fig. 13.3) and indicators (e.g. 6.6, 11.3.1, 15.2.1, 15.3.1). This information is
also useful to other national and international reporting requirements on the state of
the environment (e.g. United Nations Convention to Combat Desertification, Aichi
Targets, and the Paris Agreement).

13.4.1 DEA to Map Land Cover and Dynamics Over Time

The DEA land cover product has been optimized for high-performance computing
within the Open Data Cube (ODC) framework and is generating continental maps of
land-cover datasets from environmental variables (thematic and continuous), with a
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focus on those that are generated at a national level within DEA’s ODC environment
(Lucas et al. 2019a) and for multiple points in time. These include the vegetation
cover fraction of the Joint Remote Sensing Research Program (Gill et al. 2017),
Water Observations from Space (WOfS) (Mueller et al. 2016), surface reflectance
Median Absolute Deviation (MAD) (Roberts et al. 2018), and national mangrove
distribution (Lymburner et al. 2019) (Fig. 13.5). Additional layers generated through
DEA are also used (e.g., the InterTidal Elevation Model (ITEM) of Sagar et al.
(2017). The mapping is undertaken at 25 m resolution and the initial focus has been on
generating land-cover classifications according to the LCCS Level 3 taxonomy, which
differentiates 8 classes relating to aquatic and terrestrial (semi) natural vegetation,
cultivated and managed terrestrial and aquatic vegetation, artificial and natural (bare)
surfaces, and natural and artificial water bodies (Fig. 13.5 and Table 13.2). More
detailed classifications are being generated at what is termed Level 4 (e.g., vegetation
canopy cover and height, and water hydroperiod), which are further described using

Fig. 13.5 Examples of data inputs for the application of the FAO LCCS level 3 within Digital Earth
Australia used to produce standardized land cover maps at 25 m resolution

Table 13.2 Level 3 FAO
land-cover classification
(FAO LCCS) classes

Class name Acronym

Cultivated terrestrial vegetation CTV

Natural terrestrial vegetation NTV

Cultivated aquatic vegetation CAV

Natural aquatic vegetation NAV

Artificial terrestrial non-vegetated AS

Natural terrestrial non-vegetated BS

Artificial waterbodies AW

Natural waterbodies NW
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environmental variables that are external to the LCCS taxonomy (e.g., soil moisture
and crop type), examples of which are given in Fig. 13.6.

The availability of multi-temporal land-cover layers enables change matrices (e.g.
T1–Tbaseline) to be generated between land covers obtained for any two time-separated
periods. When only the LCCS Level 3 is considered, the temporal comparison
between two land-cover maps results in 64 different change categories (Fig. 13.7a).

Fig. 13.6 Examples of environmental variables, class modifiers and derived measures required to
implement the LCCS at level 3 and level 4 in Australia

Fig. 13.7 a The 64 change categories generated through comparison of 2 LCCS Level 3 clas-
sifications (each with 8 classes) in the vicinity of Lake Ross (area of Townsville, Queensland)
based on multi-temporal classification of Landsat images using LCCS level 3. The key changes
are NAV-NTV: denoting changes from Natural Aquatic Vegetation (2014) to Natural Terrestrial
Vegetation (2016); NW-NAV: Natural Waterbodies to Natural Aquatic Vegetation; and NW-NTV:
Natural Waterbodies to Natural Terrestrial Vegetation. b The corresponding change map indicating
a progressive loss of open water area, the retreat of aquatic (wet) vegetation and a transition to drier
vegetation on the outer margins of the lake basin (Lucas et al. 2019a)
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Diagonal cells represent areas where the land cover (e.g. natural/semi-natural terres-
trial vegetation, natural water, artificial water, etc.) remains stable between the two
time periods and unique codes can be assigned for the From → To changes in land
cover. Figure 13.7b provides an example of a land-cover change matrix and map that
result from applying FAO LCCS level 3 on an inland water ecosystem in the State
of Queensland between two time periods.

One aspiration of DEA’s land cover product is to better inform management and
interventions in order to advance assessment and monitoring of progress towards the
SDGs at national levels. In this regard, research is being undertaken to concurrently
develop a change alert system (historically and when new data and data products
become available) that can associate changes in states (i.e., environmental variables)
with the causative mechanisms (i.e., human activities and climatic variability) and
the impacts that such changes produce (e.g. defoliation, land clearing, and increases
in built-up area). Such changes are based on evidence, and exploit a newly developed
change taxonomy (Lucas et al. 2019b). Geoscience Australia is extending the idea
to integrate, within DEA’s land cover product, EODESM with the Drivers-Pressure-
State-Impact-Response (DPSIR) framework (Lucas et al. 2019b; Metternicht et al.
2019). In doing so, links are—between economic and climate drivers and pressures of
change and detailed information on states, state changes and environmental impacts
(based on the change taxonomy). The drivers-pressure-state links can subsequently
inform impacts on management and policy (from local to international l-levels).
The ultimate ambition is to generate options for context-based policy and manage-
ment responses related to the SDGs (Fig. 13.8). Through this approach, responsible

Fig. 13.8 Conceptual framework that links the DPSIR framework with the LCCS-derived land-
cover maps within the DEA environment. Pressures (center of the wheel) are identified and state
indicators derived from the LCCS comparison between T0–T1 provide an estimation of state change.
Cumulative information on state change builds evidence on impacts (outer part of the wheel)
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authorities can make informed and timely decisions on interventions (e.g. manage-
ment decisions, new regulations).

As an illustration of the application of the integrated EODESM-DPSIR frame-
work, Fig. 13.9a shows the impact of rising sea levels (between 1991 and 2011)
on water and vegetation variables in Kakadu National Park, located in Australia’s
Northern Territory. An increase in water depth, salinity and hydroperiod and a cor-
responding rise in vegetation biomass, height and cover, along with an associated
transition from shrubs to trees (i.e., lifeform state change) was observed during this
period. Such changes might lead to an increase or a decrease in mangrove species.
In 2015, a substantive drop in sea level in the Gulf of Carpentaria (Duke et al. 2017)
was also noted in the Northern Territory (Lucas et al. 2018), which led to changes
in water conditions and a substantive dieback of mangroves. A loss of canopy cover
(%) and above-ground biomass (Mg ha−1) were the EO-derived state-change indi-
cators of short-term change; they were mapped through multi-temporal comparison
(2014–2016) of vegetation indices (primarily a Normalized Difference Vegetation
Index (NDVI) and a Plant Senescence Reflectance Index (PSRI)) derived from Rapid-
Eye satellite imagery. Dieback-affected mangroves were not removed and their height
(m) did not change (at least in the short term). A reduction in moisture content (%)
of woody vegetation was the proxy applied to differentiate dieback from defoliation
(Fig. 13.9b). Information on this proxy indicator can be discerned from, for example,
time series of Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band
Synthetic Aperture Radar (SAR) data. Figure 13.9 shows further aerial images of
sea-water encroachment along creeks and the associated colonization by mangroves
(9e), as well as mangrove dieback along the eastern and western shores of the West
Alligator River (9f).

The combination of the EODESM and DPSIR frameworks enables mapping of
where and how much change has occurred (extent and magnitude), the root causes
(sea-level change), and impacts (e.g., regrowth and dieback). Furthermore, likely
impacts on policy (e.g., the United Nations Framework Convention on Climate
Change or the Convention on Biological Diversity) and land management (e.g.,
associated with Kakadu National Park) can be indicated and future interventions
suggested. In the case of SDG 6.6 (“By 2020, protect and restore water-related
ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes”), main
policy actions to advance this target should address drivers of climate change (Met-
ternicht et al. 2018; Asbridge et al. 2018), including also environmental monitoring
through Digital Earth platforms (Lymburner et al. 2019).

Ongoing research is focusing on the use of DEA’s land cover product to derive
Australia-wide indicators for SDGs 6.6.1 (change in the extent of water-related
ecosystems over time), 11.3.1 (ratio of land consumption rate to population growth
rate), 15.1.1 (forest area as a proportion of total land area) and 15.3.1 (proportion of
land that is degraded compared to total land area). For example, the 2018 Australia
VNR mentions that the country is ‘exploring data sources’ for the implementation
of Indicator 15.3.1.

The following are examples of how multi-temporal land cover maps produced
within DEA using ARD satellite imagery (Landsat or Sentinel) and the combined
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(a) (b)

(c) (d)

(e) (f)

Fig. 13.9 Example of the application of the combined EODESM-DPSIR framework within DEA
for Kakadu National Park, NT, Australia, where the impacts of sea-level change (SLC; center) result
in a regrowth and colonization when rises occur and b dieback when drops in sea level follow.
These impacts are illustrated by c high-resolution maps of change from time-series comparison of
aerial photography from 1991 and LiDAR from 2011 (Asbridge et al. 2016), and d comparison of
RapidEye data from 2014 and 2016. Aerial images of mangrove change taken in September 2016
show e landward colonization along small creeks and f dieback (see green box in d)
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EODESMDPSIR framework could be used to derive metrics needed for baseline set-
ting, target setting and/or monitoring and reporting of SDG Target 15.3, which aims
‘to combat desertification, restore degraded land and soil, including land affected by
desertification, drought and floods, and strive to achieve a land degradation-neutral
world by 2030’.

13.4.2 DEA in Support of SDG Indicator 15.3.1

In the SDG Global Indicator Framework, indicator 15.3.1 “Proportion of land that
is degraded over total land area” is based on the analysis of available data for three
sub-indicators: land cover, land productivity and carbon stocks; this indicator takes
a binary form (degraded/not degraded). Computing SDG Indicator 15.3.1 for the
baseline (i.e., Tbaseline) and subsequent monitoring years (T1–Tn) requires adding
up all those areas where any changes in the sub-indicators (i.e. land cover, land
productivity and soil organic carbon) are considered negative (or stable if the baseline
or previous monitoring year labeled the area ‘degraded’) by national authorities. In
turn this involves:

i. assessing the land cover and changes in land cover (i.e., trends)
ii. analyzing the status of and trends in land productivity based on net primary

production
iii. determining carbon stock values and changes, with an initial assessment of soil

organic carbon as the proxy (Sims et al. 2017).

As a proxy for measuring progress towards SDG Target 15.3, indicator 15.3.1
presupposes that changes in land cover may point to land degradation if such change
implies a loss of ecosystem services considered desirable in a local or national con-
text. Hence, land cover information at the national level derived from a classification
system such as the FAO LCCS can be used to assess and quantify land cover and
trends in land-cover change (Step i from above) by disaggregating the landscape into
‘degraded/negative/declining’, ‘stable/unchanging’ or ‘improving/positive’.

Based on the example presented in Fig. 13.10, the change matrix (containing 64
possible types of land change), obtained by comparing two satellite images from
two different periods classified using LCCS Level 3, can be translated into descrip-
tors relevant to SDG indicator 15.3.1. Changes indicative of land degradation can
be decided by individual countries, according to their national circumstances. In
Fig. 13.10, changes highlighted in orange (e.g., agricultural and urban expansion,
wetland drainage and vegetation loss) are considered examples of land degradation.
Diagonal cells in blue denote areas of no change (i.e., the land cover remained stable
between periods 1 and 2).3 Cells in green denote changes that the country would

3It is worth noting that land degradation can still occur within classes considered stable at LCCS
Level 3. For example, a landscape may remain classified as terrestrial semi-natural vegetation at
both T1–T2 even though a loss of canopy cover may have occurred. This is described at Level 4 of
the LCCS (as illustrated in Fig. 13.9).
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Fig. 13.10 Example of deriving the sub-indicator ‘trend in land cover’ through a change matrix
that compares land-cover changes from time 1 to time 2. The land-cover layers are produced using
the FAO LCCS level 3 and EO ARD available within the DEA. Expert knowledge input is needed
to decide whether a change From To expresses an improvement (green cells), stability (blue cells),
or degradation (orange cells)

consider to correspond to a decrease in degraded areas (i.e., an improvement) as a
consequence of, for instance, sustainable land-management interventions that were
made during the time period T1–T2. Figure 13.10b shows the output of this EO-based
mapping process, summarizing the number of hectares of land that remained stable,
were improved or have been degraded further between T1 and T2. This output can
then be overlain and integrated with national information on land productivity status
and trends, as well as soil organic carbon stocks, as suggested by the GIF metadata
and good practice guidance for Indicator 15.3.1 (Sims et al. 2017).

Although it is still at the proof-of-concept stage, these applications show the poten-
tial of Digital Earth to assist countries in meeting several of the SDGs (particularly
6.6, 13, 14, and 15) where land cover and its change dynamics are relevant to report-
ing on the approved indicator (metric), tracking progress towards their attainment
by 2030, helping to set targets according to national circumstances, and importantly,
setting baselines. The baseline year for the SDG indicators is 2015 and for those
related to land, its value (t0) should be derived from time-series data for the period
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2000–2015. The retrospective capacity of data provision by EO provides a unique
comparative advantage to the achievement of this ambition.

13.4.3 Digital Earth in Support of SDG 17: Strengthen
Means of Implementation

DEA is an example of big Earth data contributing to SDG 17 in aspects such as
multi-stakeholder partnership, and production of data and systems for monitoring
and accountability, and is also enhancing capacity-building support to developing
and least-developed countries. The capabilities of the ODC to provide EO ARD and
for scaling out across the world are significant contributions to Goal 17 in terms
of strengthening means of implementation through technology transfer, capacity
building and data, and monitoring and accountability.

The technology that lies beneath DEA, which was pioneered by Geoscience
Australia, The Commonwealth Scientific and Industrial Research Organisation, and
Australia’s National Computational Infrastructure, underpins ODC initiatives being
rolled out in developed (e.g. Switzerland) as well as developing countries (e.g. Viet-
nam) and regions (e.g. Digital Earth Africa: DEAfrica). DEAfrica is an example of
Australia fulfilling Goal 17’s aim of strengthening the means of implementation, as
it builds technical and policy expertise as well as data analysis capability in-country
with technical and operational guidance from DEA. A public–private investment
partnership will provide continuing investment for DEAfrica, and it is envisaged
that analysis, products and tools produced by DEAfrica will be accessible across the
continent to inform decisions about land and water.

13.4.4 The Way Forward: Partnerships to Strengthen DEA
in Support of the SDGs

The Australian Bureau of Statistics and other lead agencies (e.g. Department of
Environment and Energy) that have contributed to the development of the Australian
Reporting Platform (Fig. 13.11) recognize the importance of partnerships and col-
laboration with data providers for collecting datasets relevant to the SDG indicator
framework. Big Earth data is needed to track the progress of Australia’s performance
on the goals and set targets, in addition to reporting to the United Nations High-Level
Political Forum on the SDG Indicators Framework. Multi-source, multi-temporal
data covering the socio-economic and environmental pillars of sustainable develop-
ment can also assist in identifying interlinkages, overlaps and interactions between
the SDGs, a key issue in the development of coherent policies and interventions, as
discussed in Sect. 13.1.



13 Digital Earth for Sustainable Development Goals 463

Fig. 13.11 The Australian Government’s Reporting Platform for the SDGs adopts a participatory,
whole-government approach

As progress is made on identifying datasets and on refining the SDG Indicators,
particularly as they move from Tier III to Tier I or II, additional datasets will be
uploaded to the platform, offering new data for indicator metrics and enabling the
development of time-series of datasets. The government plans that the platform can
assist in streamlining reporting for other nationally and internationally agreed goals
(e.g. Aichi Targets, Sendai Framework, and implementation of the System of Envi-
ronmental Economic Accounts (SEEA) framework). In keeping with the intention of
the SDG indicator framework, the official GIF may be complemented by SDG indi-
cators that are relevant at the regional and national levels (Australian Government
2018).
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13.5 Big Earth Data for the SDG: Prospects

Measuring progress for the SDG targets through the Global Indicator Framework
requires metrics that rely on biophysical, social, and economic data and information.
This chapter has reviewed the current role of Digital Earth (EO as a sub-set of big
Earth data) in the SDGs. It can be seen that progress has been made on identify-
ing EO data and information for the SDG GIF (Sect. 13.3), and that participatory,
cross-institutional approaches developed under a “Digital Earth” umbrella can deliver
operational, standardized information that contributes to baseline and target setting,
and to tracking progress towards the SDGs (4). Opportunities, and associated chal-
lenges, exist in relation to the realization of the full potential of DE for the SDG. This
final section identifies and discusses these in terms of three main aspects: research
and development (R&D) and technology; governance, institutional and normative
aspects; and the science-policy interface.

13.5.1 R&D and Technology

Social sensing and other big data integrated within DE have the potential to meet cur-
rent information and knowledge gaps for SDG indicators focused on socio-economic
information (e.g. zero hunger, good health and well-being, and gender equality). Plag
and Jules-Plag (2019) and Dong et al. (2019) conclude that new geospatial informa-
tion for sustainability (e.g. on the built environment, land use and management),
could be derived from the integration of traditional EO approaches to data gathering
with citizen science, crowd-sourcing, social sensing, big data analytics and the Inter-
net of Things. Hence, further research is needed to better establish how countries
can profit from these new technologies for data gathering and analysis, embedded in
a DE framework, and advance the development of indicators complementary to the
core of the SDG GIF. This can support country-based interpretation and better, more
coherent, narratives of national progress towards the 2030 Agenda for Sustainable
Development (Metternicht et al. 2019).

Information on the use and management of land rather than land cover is needed
for many SDGs (see Sect. 13.3 and Wunder et al. 2018); hence, it is relevant and
pertinent to develop ‘Essential Land Variables’ or ‘Essential Land Use Variables’ to
better support the information needs of the SDG targets and indicators. Digital Earth
data, technology and analytics can underpin primary observations of the changes in
state of land-related variables (Dong et al. 2019), with the potential to be linked to
state-change indicators or to the pressures driving changes in state (see Sect. 13.4 and
Lucas et al. 2019b), thus contributing to tracking progress on SDG implementation.
Recent research (Plag and Jules-Plag 2019; Masó et al. 2019) has put forward ways
of improving the current SDG indicator framework through considering Essential
Variables. The Group on Earth Observation (GEO) and major international networks
such as the Biodiversity Observation Network (GEO-BON) and the Global Ocean
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Observing System (GOOS) have developed essential variables on climate (ECVs),
oceans (EOVs), the water cycle (EWVs), and biodiversity (EBVs). However, stan-
dardized essential variables related to land (ELV) (or land use: ELUVs) are lacking.
Global programs (e.g., Future Earth’s GLP4) and EU-funded initiatives (e.g., the
GEOEssential, ERA-PLANET5 and ConnectinGEO projects) have started discus-
sions on the design and development of essential land variables; the research of
Reyes et al. (2017), Masó et al. (2019), Lehmann et al. (2019), Nativi et al. (2019),
and Plag and Jules-Plag (2019) provide the conceptual principles and the information
needs that these variables should fulfil in order to address current SDG policy and
the knowledge needs of indicators. A constellation of Essential Variables on land
cover/use, agriculture, biodiversity, water, and climate could better support imple-
mentation of the SDGs and the associated GIF, and also underpin systematic gen-
eration of sustainability-related knowledge from big Earth data. This would benefit
Agenda 2030’s global-change policy, as well as other major international agreements
and conventions (e.g. the Sendai Framework for Disaster Risk Reduction, and the
Paris Agreement on Climate Change).

13.5.2 Normativity, Governance and Institutional
Arrangements

Google Earth Engine and Amazon Cloud-based Web Services are among cutting
edge initiatives providing efficient solutions that lower the barriers to ARD products.
These allow users to concentrate on data analysis and interpretation for better use
of the growing volume of EO data (Giuliani et al. 2017), and expand the ecosys-
tem of ‘next users’ beyond specialized scientific communities. While this is a key
requirement for unlocking the informational power of big EO data and expanding the
number of potential EO data users, it presents normative and governance challenges
concerning big data veracity (Dong et al. 2019). Lowering access barriers for data
analytics by users beyond the scientific community could potentially deliver low-
quality information products. In this regard, the DE community needs to expand and
build upon existing norms, standards and guidelines that have been advanced in the
context of EO data storage and processing (see Sudmanns et al. 2019) to include data
validation and quality assurance for information products. For example, Hernandez
(2017) postulates that Digital Earth will need to consider how to store the proper
metadata so that any user can easily understand how accurate data are, and how the
quality of the data has been evaluated or validated. More to the point, he argues for
adequate e-infrastructure and standards.

4An ‘Essential Land Use Variables world café’ session was held at the 4th Open Science Meeting
of the GLP, Bern, Switzerland, April 2019. https://www.conftool.com/osm2019/index.php?page=
browseSessions&cols=3&form_session=112&mode=table.
5ERA PLANET: The European network for observing our changing planet.
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Normative challenges also remain regarding how best to determine the quality and
veracity of big data from a statistical perspective (e.g., ethical questions regarding
ownership of data and products). What is legally, ethically and culturally acceptable
for accessing and using big data? What should the governance of digital reposito-
ries, particularly those hosting globalized or multi-national big data sets, look like?
MacFeely (2019) rightly reflects that “open cloud, centralised statistical production
rather than replicating many times in countries is tempting, though it faces chal-
lenges of data and information sovereignty, as it places data owners and the data
themselves beyond the reach of national level systems”.

Institutional adaptation for transformative data and information acquisition is
needed as well. National Statistical Offices (NSOs) are tasked with assembling rele-
vant data for national voluntary reports on the SDGs. The big Earth data community
needs to understand how best to engage with this community to develop metrics
derived from EO data that can be used for reporting. Soulard and Grenier (2018)
summarize the challenges of using EO data for official statistics. Among the most
salient are that datasets created from EO were not designed for use as official statis-
tics. For integration of the EO datasets, and to better exploit the potential of big
Earth data, Soulard and Grenier argue that NSOs need to develop methodologies to
properly interpret existing datasets to provide estimates required by official statistics;
evaluate the pertinence of global datasets that are often designed without regional
considerations; keep up with the ever-increasing number of EO-generated datasets;
adjust the national or regional data where local data of better quality highlight impor-
tant shortcomings in the national or regional dataset; evaluate the complementarity
of using EO data where other data often does not exist; and influence EO producers
to integrate official statistical objectives into the EO processing workflow from the
beginning. It is a two-way communication process.

13.5.3 Science-Policy Interface

Operationalization of big Earth Data proof-of-concepts is relevant to the scientific
support for sustainable development policy strategies that are coordinated and coher-
ent across goals. Reflecting on the status of operationalization of big data for SDGs
from the perspective of NSOs, MacFeely (2019) argues that “Advances, such as, the
Internet of Things and biometrics will all surely present opportunities to compile
new and useful statistics. The implications of this ‘big (data) bang’ for statistics in
general, and the SDGs in particular, is not immediately clear, but one can envisage
a whole host of new ways to measure and understand the human condition and the
progress of development”. The UN Economic Commission for Europe (2016) reflect-
ing on their experiences, noted ‘High initial expectations about the opportunities of
Big Data had to face the complexity of reality. The fact that data are produced in
large amounts does not mean they are immediately and easily available for producing
statistics’. Simply put, the interface between science and policy needs enhancement
for context-based interpretation and communication as discussed below.
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The implementation of ‘transformational’ policies and strategies for achieving
the goals of the 2030 Agenda for Sustainable Development requires tracking the
progress of set targets to ensure that responses to interventions (e.g., land restoration
or sustainable cities) are as expected. In this regard, a major challenge of Digital
Earth is the linking of scientific results concerning knowledge derived from EO to the
policy decision space. On the one hand, multi-stake, whole-government, participatory
processes, as implemented by the Government of Australia in setting its National
Reporting Platform (see 4.1 and 4.4), contribute to bridging the gap between science
and policy. On the other hand, DE frameworks more focused on the ‘knowledge’
element of the Data-Information-Knowledge-Wisdom (DIKW) paradigm are needed.
SDG indicators should provide policy makers with the knowledge necessary for wise
decisions, drawn from information gathered from observed data, whether through
EO, social sensing, or other means. (Nativi et al. 2019). Most DE initiatives currently
focus on ‘Data’ (i.e., ARD) as shown in the review by Sudmanns et al. (2019) of
popular systems and portals for accessing or processing EO. This review makes clear
that many portals facilitate data access—although in the end users struggle to produce
information and ‘frame’ it according to context. This is an essential aspect of the
policy and political decision-making processes related to the implementation of the
SDGs, given that countries are to take into account their own national circumstances
and priorities (UNGA 2015) in defining SDG targets and, hence, one-size-fits-all
interventions do not exist.

13.6 Conclusion

The Sustainable Development Goals are highly ambitious and were adopted to stim-
ulate action over the next 15 years in areas of critical importance for humanity and
the planet (UNGA 2015). Digital Earth has untapped potential to improve the means
of implementing the SDGs at both national and global scales. Through an exten-
sive review of the recent literature and a case study of the operationalization of the
SDG Indicator Framework in Australia, this chapter discussed information needs and
promising operational initiatives underpinned by big Earth data and analytics, and,
as importantly, multi-stakeholder partnerships. Digital Earth Australia is an example
of the potential of Digital Earth to be an agent of ‘partnerships for the goals’, which
can increase the availability of high-quality, timely and reliable data that is relevant in
national contexts (SDG 17.18), and enhance regional and international cooperation
on, and access to, science, technology and innovation (SDG17.6).
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Chapter 14
Digital Earth for Climate Change
Research

Gensuo Jia, Li Zhang, Lanwei Zhu, Ronghan Xu, Dong Liang, Xiyan Xu
and Tao Bao

Abstract Our planet is undergoing one of the most rapid climate changes in Earth’s
history. The current change is particularly significant because it is most likely a conse-
quence of human activities since the 19th century. The Digital Earth platform, which
includes Earth-orbiting satellites, ground-based observations, and other technologies
for collecting, analyzing and visualizing data, has enabled scientists to see our cli-
mate and its impacts at regional and global scales. The Digital Earth platform offers
valuable information on the atmosphere, biosphere, hydrosphere and cryosphere to
understand Earth’s past and present, and it supports Earth system models for cli-
mate prediction and projection. This chapter gives an overview of the advances in
climate change studies based on Digital Earth and provides case studies that utilize
Digital Earth in climate change research, such as in the observation of sensitive fac-
tors for climate change, global environmental change information and simulation
systems, and synchronous satellite-aerial-ground observation experiments, which
provide extremely large and abundant datasets. The mapping of climate extremes
and impacts improves preparedness for climate change-related risks and provides
robust evidence to support climate risk management and climate change adaptation
for the public, decision makers, investors, and vulnerable communities. However,
Digital Earth faces the challenges of multisource data coordination and integration,
requiring international partnerships between governments and other organizations to
advance open data policies and practices.
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14.1 Introduction

Global climate change has long been recognized as the most critical issue of the 21st
century. The 2016 Paris Agreement within the United Nations Framework Conven-
tion on Climate Change (UNFCCC) highlights the importance and urgency of climate
action. Climate-related changes are becoming evident at various spatial and temporal
scales, accompanied by a record increase in the frequency of extreme climate events
and the emergence of complex environmental issues. As a result, vulnerability to cli-
mate change is expected to expand spatially, threatening larger human populations
as warming continues. Understanding climate change and delivering climate infor-
mation with high precision has therefore become increasingly important, especially
to assist governments and decision makers in implementing appropriate mitigation
and adaptation policies.

The Earth system is a complex collection of interlinked subsystems that require
multidimensional, multiscale and multitemporal datasets. Understandably, chal-
lenges and uncertainties in studying climate change and its impacts are largely due to
the massive amount of data that is required, and the complexity of analyses that can
translate data into useful information. Earth observation for this purpose has become
an invaluable resource. Earth observations, during most of the history of science,
have predominantly been recorded at the ground level with limited spatial coverage.
Methods such as those developed by World Weather Watch in 1963 combined a
series of single surface pictures to provide global coverage but lacked network den-
sity and vertical resolution. Geophysical and biological phenomena have also been
generally insufficiently sampled. However, the growing diversity and improvement
of sensors and sensing platforms has greatly diversified data sources, benefiting
global climate change research in the past few decades through technologies that
can increasingly provide a more accurate and precise picture of biological, phys-
ical, and chemical phenomena (Table 14.1). Moreover, satellite platforms and the
development of UAVs and other technologies have made multitemporal observa-
tions feasible, which have allowed for investigations into large-scale processes that
were traditionally not possible. Synoptic Earth observations have changed the way
we understand the planet, from the first weather satellite that revealed astonishing
cloud features to their utility to verify and improve our understanding of the coupling
between the El Niño-Southern Oscillation and ocean currents. They have been used
to study temperatures at various altitudes, atmospheric processes, the effects of snow
on water circulation, the effects of global and regional factors on sea level changes,
and other phenomena. From 1960 to 2011, 514 Earth observation satellites were
launched worldwide, and 200 more launches are planned by 2030 (Guo 2014). The
huge amount of data collected over the years provides a rich resource of information
for climate change research. However, this big data presents challenges in data col-
lection, characterization and analysis. Therefore, there is urgent need for a Digital
Earth platform that can integrate multisource spatial information into a single plat-
form and allow for integrated investigation into Earth observation data to generate
climate change information.

www.dbooks.org

https://www.dbooks.org/


14 Digital Earth for Climate Change Research 475

Table 14.1 Summary of the functions of satellites related to global change research

Satellite Function

TIROS series, Nimbus 4 and 7, ERS-1,
ERS-2, Envisat

Monitors global stratospheric ozone depletion
(including Antarctica and the Arctic)

Nimbus 7, ERS-2, Envisat, Aqua, Aura,
MetOp

Detects tropospheric ozone

Explorer 7, TIROS, Nimbus Measures radiation balance

TIROS series, ATS, SMS, MetOp Produces weather images

Meteorological satellites, including the
TIROS series, GOES and POES (NOAA),
MetOp (Eumetsat), ERS-1, ERS-2, Envisat

Weather forecasting

Radarsat, Landsat, Aura, Terra, Jason, ERS-1,
ERS-2, Envisat

Investigates ice flows in Antarctica and
Greenland

Topex/Poseidon, ERS-1, ERS-2, Envisat Detects mid-scale sea surface topography and
important variables in ocean mixtures

TIROS-N and NOAA series, ERS-1, ERS-2,
Envisat

Observations of oceanic contributions to
climate change

Landsat, SPOT series Agricultural land monitoring

LAGEOS, GPS Confirms high-precision terrestrial reference
frames

GCOM Observes Earth water and carbon dioxide

TANSAT Monitors atmospheric carbon dioxide
concentration

FY Used in weather forecasting, climate
prediction, natural disaster and environmental
monitoring, and resource development

Sources NRC (2008), Guo et al. (2015)

14.2 Digital Earth and the Essential Climate Variables

Climate change is highly heterogeneous over the globe, with strong regionality. The
UNFCCC provides 34 essential climate variables (ECVs) that require contributions
from Earth observations from space (Table 14.2) (Guo et al. 2015). The spatial
attributes of ECVs make it possible to effectively observe them through space tech-
nology (Guo et al. 2014a), and the Digital Earth platform based on space technology
plays an essential role in better understanding the spatial and temporal changes in
the climate.
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Table 14.2 Essential climate variables (ECVs) that are feasible for global implementation and have
a high impact on UNFCCC requirements

Domain Essential climate variables

Atmospheric Surface Air temperature, wind speed and direction, water vapor,
pressure, precipitation, surface radiation budget

Upper-air Temperature, wind speed and direction, water vapor, cloud
properties, Earth radiation budget (including solar irradiance)

Composition Carbon dioxide, methane, and other long-lived greenhouse
gases; ozone and aerosols, supported by their precursors

Oceanic Surface Sea surface temperature, sea surface salinity, sea level, sea state,
sea ice, surface current, ocean color (for biological activity),
carbon dioxide partial pressure, ocean acidity

Subsurface Temperature, salinity, current, nutrients, carbon dioxide partial
pressure, ocean acidity, oxygen, tracers, phytoplankton, marine
biodiversity, and habitat properties

Terrestrial River discharge, water use, groundwater, lakes, snow cover,
glaciers and ice caps, ice sheets, permafrost, albedo, land cover
(including vegetation type), fraction of absorbed
photosynthetically active radiation (FAPAR, leaf area index
(LAI), above-ground biomass, soil carbon, fire disturbance, soil
moisture, terrestrial biodiversity, and habitat properties

Sources CEOS (2006), Guo et al. 2015

14.2.1 Earth Observation Data Parameters and Their
Capabilities

Ground-based Earth observation systems such as rain gauge networks and radar have
always been a major means of observing atmospheric structures and they are still
being operated and maintained. However, satellite platforms have added valuable sci-
entific data to monitor clouds, water vapor, precipitation, and wind at multiple spatial
and temporal scales. Sensors such as the Advanced Very High Resolution Radiome-
ter (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) devel-
oped by the U.S., the Medium Resolution Imaging Spectrometer (MERIS) from the
European Space Agency (ESA), and the international A-Train satellite systems have
provided a wealth of information on clouds, rain, and pollutants, leading to a greater
understanding of cloud pollution influences (Guo et al. 2015).

The cryosphere, consisting of lakes, river ice, snow cover, glaciers, ice caps,
and frozen ground (including permafrost), is one of the most important parts of
the climate system. Thus, changes in the cryosphere as well as in soil moisture
and salinity are very important for monitoring global climate change, managing
regional water resources, and investigating water and land ecosystems and global sea
levels. Data from polar-orbiting and geostationary satellites (carrying visible/near-
infrared sensors), such as the Geostationary Operational Environmental Satellite
System (GOES), Landsat, MODIS, MERIS, and AVHRR, have been used to monitor
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the melt flow from snow cover and glaciers. This information is also valuable for the
management of water resources and disasters, and has been utilized for flood disaster
prediction and reservoir operation. Data from the Sea Winds scatterometers onboard
the QuikSCAT satellites can monitor seasonal changes in ice, track giant icebergs,
and provide daily maps of ocean ice at a 6-km resolution.

Earth observation satellites also provide hundreds of data products (Table 14.3) to
monitor water quality, water color (e.g., chlorophyll, suspended solids, and turbid-
ity) and sea surface temperatures. For example, the AVHRR, AATSR, and MODIS
sensors provide data on sea surface temperatures (CEOS 2006; Guo et al. 2015). In
addition, many satellites can obtain data on elevation measurements, geopotential
heights, and terrain. For example, P-band synthetic aperture radar (SAR) can pen-
etrate cloud cover and the vegetation canopy and is useful in tropical and northern
forest research at high altitudes. Improved SAR such as advanced synthetic aperture
radar (ASAR) and phased array L-band SAR (PALSAR) are available for agriculture,
forestry, land cover classification, hydrology, and cartography.

The main characteristics of climate change are the trends in temperature, pre-
cipitation, polar ice cover, and sea level. A new generation of satellite systems and
advanced sensors such as Suomi NPP, GPM, OSTM/Jason-2, ICESat-2, and SWOT

Table 14.3 Remotely sensed oceanographic parameters, their observational category, and repre-
sentative sensors

Parameter Observational category Satellite/Sensor

Bio-optical Visible to near-infrared ENVISAT/MERIS,
AQUA/MODIS,
OrbView-2/SeaWiFS

Bathymetry Visible to near-infrared Landsat, SPOT, IKONOS

Sea surface temperature Thermal infrared microwave
radiometers

POES/AVHRR,
GOES/Imager DMSP/SSM/I,
TRMM/TMI

Sea surface roughness, wind
velocities, waves and tides

Microwave scatterometers
and altimeters Synthetic
aperture radar

ERS-1 &-2/AMI QuikSCAT,
RADARSAT-1

Sea surface height and wind
speeds

Altimeters Topex/Poseidon, Jason-1

Sea ice Visible to near-infrared
microwave radiometers,
scatterometers and altimeters
Synthetic aperture radar

POES/AVHRR DMSP/SSM/I
ERS-1 &-2/AMI
RADARSAT-1

Surface currents, fronts, and
circulation

Visible to near-infrared,
thermal infrared microwave
scatterometers and altimeters

POES/AVHRR,
GOES/Imager
Topex/Poseidon, Jason-1

Surface objects-ships, wakes,
and flotsam

Synthetic aperture radar RADARSAT-1,
ENVISAT/ASAR

Source Brown et al. (2007), Guo et al. 2015
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have further improved our capability for space-based observation of these key param-
eters related to climate change. In addition to the space-based data, in situ data from
ground measurements and reanalysis data are used to provide information on key
indicators of climate change. The Copernicus Climate Change Service (C3S) com-
piles all the information obtained by the Copernicus environmental satellites, air and
ground stations, and sensors to provide comprehensive pictures of the past, present,
and future climate of Earth.

14.2.2 Heterogeneous Changes in Temperature

Heatwaves and rising temperatures have gained prominence in the context of global
warming. Digital Earth technology is relatively mature for monitoring global land and
sea surface temperatures, although the algorithms and retrieval accuracy need to be
further improved, and satellite LST measurements have uncertainties caused by data
accuracy and inconsistencies between sensors. Nevertheless, satellite measurements
have been very useful in monitoring surface temperatures and detecting extreme
temperature events.

Thermal infrared surface temperatures from satellite platforms are frequently inte-
grated into data assimilation systems and reanalysis data systems for climate param-
eters, including NCEP/NCAR and NCEP/DOE, ERA-40, and JRA-25, which effec-
tively improves the accuracy and reliability of datasets. The most widely used global
land surface temperature datasets are the monthly data measured by the AVHRR
thermal infrared band (4, 5) since 1982, the 8-day composite data derived from
the MODIS thermal infrared band since 2000, the daily global LST and SST data
provided by ENVISAT from the ESA, and the LST measured by Aster at small
scales. The geostationary satellite system operated by the United States, Europe,
China, Japan, and others provide low- and middle-latitude LST data at one-minute
intervals. In addition, SeaWiFS, FY-2/4 and FY-3 can acquire LST data. The Suomi
NPP satellite launched in 2012 carries a 750-meter spatial resolution Visible Infrared
Imaging Radiometer Suite (VIIRS) sensor, and its surface temperature data quality
was an improvement (Guillevic et al. 2014).

The monitoring and impact assessment of heat waves based on multisource ther-
mal infrared remote sensing data have made important progress in recent years. Since
the heat wave in central Europe in 2003, most large-scale heat wave events have been
successfully monitored, including the large-area heat wave in southern Asia in the
summer of 2010, the continued high-temperature anomaly in eastern Asia during
the spring of 2013, the extreme low-temperature event that lasted several weeks in
central and eastern North America in the winter of 2014, and the persistent heat wave
that swept over southern Asia and western Europe in the spring and summer of 2015.
Progressive improvement of Digital Earth’s thermal environment platform that inte-
grates multisensor and multiresolution spatial data can provide automatic and more
accurate extreme temperature information, and support government decision making
and public information services.
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14.2.3 Heterogeneous Changes in Precipitation

The accuracy of precipitation estimation has improved over the years with satellite-
based sensors. Satellite systems allow for continual monitoring and observation of
precipitation on a global scale, which was only possible at fixed intervals with lim-
ited spatial coverage using conventional ground-based observation systems. Infrared
sensors onboard geostationary satellites, passive microwave sensors carried by the
polar-orbiting satellites, and active radar onboard the TRMM satellite and its suc-
cessors have collected a huge wealth of data on precipitation over the years. The
establishment of Global Precipitation Measurement (GPM) realized a satellite con-
stellation with coordinated, seamless observation of global precipitation, indicating
a new era of “digital precipitation”. GPM is an independent and complex project
consisting of a core satellite and approximately eight other satellites. Its precipita-
tion observation can reach a radius of 5 km, covering 90% of the global land and
ocean surface at three-hour intervals, and can distinguish rainfall, snow, ice and
other precipitation forms. It is much more advanced than the previous generation of
TRMM.

Geostationary meteorological satellites such as FY-2, GOES, GMS, Meteosat,
and MTSAT have seen improvements in multichannel scanning and real-time per-
formance and have high spatial and temporal resolutions (from one-hour intervals
to half-hour intensive observation, and 5-km and 1.25-km spatial resolution at nadir
for the infrared and visible and near-infrared spectral channels, respectively). This
makes them more effective in monitoring hazardous weather systems. Therefore,
comprehensive application of multiple channels such as thermal infrared, visible
light, near-infrared, and water vapor channels is an essential component of the Dig-
ital Earth platform for extreme precipitation monitoring.

14.2.4 Extreme Climate Events

Extreme climate events refer to serious deviation of the climate from its average
state, including phenomena that are statistically less significant. Extreme climate
events generally include high-temperature heat waves, extreme snow, strong tropical
storms, floods, meteorological droughts, and natural fires. Space-based observation
of extreme climate events consists of real-time warning and monitoring, rapid postdis-
aster assessment, and disaster risk reduction. This requires high spatial and temporal
resolution satellite information and an efficient operational platform. This is both a
challenge and an opportunity for Digital Earth. For instance, regarding disaster risk,
the combination of multisource satellite data, land use data, and topographic data
makes it possible to rapidly assess flood risk at the watershed and regional scales
(Reager et al. 2014). Cold winter events have occurred frequently in Eurasia in the
last 10 years, and extreme low temperatures have been record-breaking. Mori et al.
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(2014) added Arctic sea ice data and SST to climate models and found that the reason
for most cold winters is Arctic Oscillation (AO).

Digital Earth technology has shown great potential in disaster monitoring, emer-
gency response, disaster assessment, and reconstruction. Disaster reduction is the
most effective aspect of the Digital Earth platform, which can perform all-weather,
all-day dynamic detection. Meteorological satellites, radar satellites, and high-
resolution visible and near-infrared Earth observation satellites can be used to monitor
rainfall, floods, and droughts in real time for emergency response. The Digital Earth
platform can support rapid analysis of the statistics and distribution of flooded areas,
flooded land use categories, and the number of people affected, especially when
satellite data is combined with digital thematic maps such as administrative, land
use, population, and socioeconomic maps.

14.3 Interactions Between Climate and Society Through
Space and Time

14.3.1 Greenhouse Gas Exchange

The current global climate change is mainly attributed to rapidly increasing atmo-
spheric concentrations of two greenhouse gases, carbon dioxide (CO2) and methane
(CH4). Most of the body of research on greenhouse gases has focused on CO2 rather
than CH4, which is a more potent greenhouse gas. The lack of high spatial and
temporal resolution datasets on continuous flux is a major reason for the limited
knowledge on CH4 exchange (Holgerson and Raymond 2016). In the case of CO2,
the scientific community still lacks a detailed understanding. For example, according
to existing ground measurements, 40–50% of the carbon dioxide produced by human
activities remains in Earth’s atmosphere, and the remaining 50–60% is considered
to be absorbed by the ocean and ground vegetation. However, scientists do not know
exactly where the carbon dioxide is stored, how this storage process occurs, and
whether this process can limit the increase in carbon dioxide in the atmosphere. To
date, spatiotemporal pattern studies of terrestrial carbon sources and carbon sinks
based on space technology have been mainly achieved through satellite-based visible
light and near-infrared band indexes. The 8-km inverted AVHRR continuous vege-
tation index data is the longest time series, since 1982, and the accuracy of the sixth
generation of the MODIS (C6) vegetation index data has been greatly improved. In
addition, Landsat, MERIS, VIIRS, SPOT Vegetation, and Sea-Viewing Wide Field-
of-View Sensor (SeaWiFS) data are available.

A key parameter for monitoring the temporal and spatial patterns of terrestrial
carbon sources and carbon sinks is the fraction of absorbed photosynthetically active
radiation (FAPAR), which largely determines the total gross primary production
(GPP) or carbon assimilation capacity. To date, more than six different global FAPAR
spatial databases have been released, inverted from MODIS, MERIS, SeaWiFS,
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MODIS-TIP, SPOT-VEG, and AVHRR time series data; however, the data are highly
uncertain. A systematic evaluation of more than 800 ground sample datasets revealed
that they differed greatly between continents and biomes, and all were insensitive
to vegetation coverage and needed further improvement (Pickett-Heaps et al. 2014).
Chinese scholars have made costrengthening observations among 25 field flux sta-
tions and driven vegetation productivity models with flux data, satellite-based veg-
etation indexes, surface albedo, and soil moisture indexes, which have significantly
improved the estimation of FAPAR and GPP on a regional scale (Wang et al. 2010).
A recent improvement was the use of chlorophyll fluorescence data from the GOME
satellite to drive vegetation productivity models and monitor global crop photosyn-
thesis (Guanter et al. 2014).

The Orbital Carbon Observing Satellite (OCO-2) is a satellite launched by the
United States in 2014 to monitor the global space-time distribution of carbon diox-
ide. It is mainly used to observe the carbon dioxide level of the Earth’s atmosphere
and to understand the role of humans in global climate changes caused by green-
house gas emissions. The satellite carries a three-channel spectrometer for accurate
measurements. OCO-2 collects approximately 8 million accurate global carbon diox-
ide measurements every 16 days, with a measurement accuracy of one in a million.
With instruments such as spectrometers carried on satellites, scientists can dynami-
cally measure carbon dioxide from different sources in the atmosphere and monitor
the adsorption of carbon dioxide by oceans and forests. The acquisition of such a
dynamic global carbon dioxide map will help reduce errors and improve the accuracy
of forecasts for global warming.

Prior to this, in 2009, JAXA (Japan) launched GOSAT, the first satellite dedicated
to detecting the concentration of greenhouse gases such as atmospheric CO2. The
satellite was equipped with high-precision observation equipment that used green-
house gases such as carbon dioxide and methane to absorb infrared rays of a specific
wavelength, and estimated the concentration of greenhouse gases by observing the
infrared rays reflected from the surface. The goal of GOSAT was to observe the
distribution of global CO2 and CH4, with a measurement precision of 2–3 ppm for
CO2 and approximately 15 ppb for CH4, to capture the spatial variation in the carbon
flux each year. GOSAT was equipped with thermal infrared and near-infrared sensors
to obtain carbon observations as well as cloud and aerosol images. As the infrared
rays passes through the atmosphere, a gas that forms a greenhouse effect, such as
carbon dioxide, causes a specific wavelength to be absorbed, and the concentration
of the gas can be calculated from these data. TanSat, launched by China, has further
improved our ability to detect atmospheric CO2 and other greenhouse gases.

Many countries including China are actively planning to launch satellites for the
special detection of atmospheric CO2 and other greenhouse gases. Integrating spatial
data from these different sources with station observation data on the Digital Earth
platform will greatly enhance the accuracy of detection and the technical support for
climate change research.
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14.3.2 Connectivity and Teleconnection in the Earth System

The Earth system as a whole, its components, and the various regional subsystems are
connected and closely related. For example, in ocean-air interactions, the transfer
of energy between the two is a teleconnection. We are gradually recognizing the
importance of teleconnections in the climate system. For example, variability in the
El Niño-Southern Oscillation (ENSO) model across the equatorial Pacific is linked to
widespread distribution of floods, droughts, and forest fires in often arid or semiarid
areas such as East Africa, tropical and subtropical Australia, and North America
within the mid-latitudes and the western coast of South America. Another good
example comes from Mori et al. (2014), who showed that most cold winters are
attributed to AO changes caused by Arctic sea ice.

Studying and understanding teleconnections is an important challenge and an
undertaking that can greatly benefit from utilization of the Digital Earth platform’s
capabilities of macroscopic multiparameter data integration to enable discovery of
hidden and underlying connections in the Earth system and reveal the mechanisms to
improve predictions of climate and weather. Various aspects remain to be identified
and can benefit from the Digital Earth platform. For example, regarding ENSO and
the North Atlantic Oscillation (NAO), we know relatively little about the teleconnec-
tion between the stratosphere and the Earth’s surface. A strong vortex is formed over
the polar region in winter, and the vortex intensity changes. When the vortex is strong,
a tightly stable cycle is concentrated in the stratosphere, with little connection to the
troposphere and the Earth’s surface. When the vortex is weak, the control is not very
stable, and it can generate a large-scale dynamic process. Therefore, it can be trans-
mitted to the surface of the Earth through the convective top layer. It causes unusually
cold weather at high latitudes, for example, in Scandinavia. When the Arctic vortex
weakens, cold air flows outwards and downwards. Another example is the study by
Zhang et al. (2019), which showed that the mean winter visibility throughout most
of eastern China is negatively correlated with the preceding Antarctic Oscillation
(AAO), especially in northern China. It emphasizes the important roles of sea sur-
face temperature warming or cooling tendencies in the northwestern southern Indian
Ocean (NSIO) and provides possible pathways through which NSIO warming may
influence the atmosphere of northern China.

14.4 Impacts and Response

14.4.1 Ecosystems

Currently, the spatial data used to analyze the response of large-scale ecosystems to
climate change are mainly acquired from long-term time series data from medium-
and coarse-resolution optical satellite sensors such as AVHRR, MODIS, SPOT,
VIIRS, SeaWiFS, and MERIS, which have inconsistencies between the sensors and
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their time spans (Guay et al. 2014). Several released global data series are generally
based on the records of a single sensor. There are few data series from multisource data
fusion and integration. However, satellite data often contain uncertainties caused by
biases in different sensors and retrieval algorithms as well as inconsistencies between
continuing satellite missions with the same sensor. Undetected drifts in sensor sen-
sitivity have been cited as the main reason for the apparent spectrum of change. If
the procedures for merging data from different time series are not well-developed
and calibrated, the uncertainties can potentially be high in combined datasets. An
integrated vegetation index dataset based on system calibration and data fusion is an
important requirement for the Digital Earth platform.

Due to the complexity of ecosystem dynamics in the context of climate change,
traditional methods based on single-satellite data have great limitations. By inte-
grating and comparing multiple satellite datasets and ground observation data, the
Digital Earth platform can dynamically and effectively display and analyze the trends
of climate-related parameters.

14.4.2 Water Cycle and Water Resources

The global water cycle involves transformation, flow, and redistribution, and the
redistribution of global and regional energy and regulation of the climate. The Earth
observation system can quantitatively monitor many key parameters of the global
water cycle, including various forms of precipitation (such as rainfall, hailstones, ice
rain, and snow), atmospheric water vapor, surface evaporation, vegetation canopy
transpiration, surface water, snow, continental glaciers, sea ice, soil moisture, and
surface runoff.

Using the Digital Earth platform, global hydrology cycle models can be devel-
oped to reveal the controlling factors of terrestrial water cycling and trends in water
resource patterns. It is expected to lead to a revolutionary solution to a series of key
issues in Earth’s multiple spheres of interactions from the perspective of Earth system
dynamics, including global ocean-atmospheric interaction, land-atmospheric inter-
action and the boundary layer process, ocean-land correlation, and coastal ecosystem
evolution.

14.4.3 Coastline, Urban Areas, and Infrastructure

Smajgl et al. (2015) employed remote sensing land use data, digital elevation data,
and high-resolution climate models to simulate the scenario of a regional sea level
rise of 30 cm by 2050. The study predicted that urban floods and sea water backflow
would be severe downstream of the Greater Mekong Subregion and that the land use
structure would change significantly.
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The urban heat island effect accompanies the expansion of human settlements and
is closely related to regional climate change. As the most active region of economic
growth and urbanization, the urban heat island phenomenon in Asia, especially in
China, has become an important issue in regional climate change. The Digital Earth
system provides comprehensive spatial information about urban areas (Hu et al.
2015), human activity intensity (Zhou et al. 2014), and thermal infrared land surface
temperature. It provides a scientific platform for research on urban heat islands
at different spatial and temporal scales. Regarding the potential contributions of
infrastructure to a warming climate, researchers have examined the impacts of urban
expansion on the trends in air temperature by investigating the changes in urban land
use around meteorological stations and analyzing the relationship between the rate
of urban expansion and air temperature magnitudes (He et al. 2013). Urban heat
islands can influence land-atmospheric energy exchange, the turbulence regime of
atmospheric flow, and the microclimate, and can accordingly modify the boundary
layer processes over urban canopy and downstream areas. Research showed that
estimation of key urban morphology parameters using high- and medium-resolution
satellite data and intense field measurement along urban-rural transects can improve
the performance of regional climate models in capturing critical climate effects over
large and rapidly expanding urban clusters (Jia et al. 2015; Feng et al. 2014; Wang
et al. 2012).

14.5 Multisource Digital Earth for Studying Climate
Change Phenomena

Earth is a large, complex system, broadly grouped into three subsystems: the atmo-
sphere, oceans, and land surface. Climate change involves understanding changes in
one of these subsystems and understanding how these systems interact, their impacts
on one another, and the consequences of changes in any one of them or their sub-
systems. This requires rich scientific datasets quantifying sensitive climate factors,
which is not possible without integration of data from multiple sources. These mul-
tisource datasets have been collected over the years through synchronous satellite-
aerial-ground observation experiments (Fig. 14.1).

Multisource datasets allow for comprehensive, continuous, and diverse informa-
tion on the Earth’s surface. Similarly, multisensor remote sensing datasets enable
dynamic (and in some cases real-time or near real-time) monitoring of Earth’s sys-
tems. It has played a fundamental role in supporting modern data-driven scientific
innovation. Effective use of multiplatform Earth observation data with multiple sen-
sors helps avoid and mitigate issues related to information extraction and inversions
that arise from the use of a single sensor.

These datasets have enabled researchers to explore new theories by devel-
oping new methodologies and assimilation models that can incorporate multi-
source/multisensor, heterogeneous spatial data to acquire precise information on
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Fig. 14.1 Synchronous satellite-aerial-ground observation experiments on the Qinghai-Tibetan
Plateau (revised from Guo et al. 2015)

sensitive climate factors and develop simulation platforms to understand regional
climate change patterns. Multisensor Earth observations also provide long-term,
stable spatial data for scientific research, compensating for uneven spatiotemporal
observations, and play a fundamental supporting role in global change research.

The National Basic Research Program of China (973 Program) launched the
project “Earth Observation for Sensitive Variables of Global Change: Mechanisms
and Methodologies” on January 1, 2009. This was the first research project on Earth
observation techniques for global change research in China. The project highlighted
sensitive variables in terrestrial, oceanic and atmospheric systems based on big data
from Earth observation from multiple platforms and multiband sensors, focusing
on the development of new theories, technologies, and methods in these fields. The
research scheme of the project is shown in Fig. 14.2. During the project, the new
concept of moon-based Earth observation for global change monitoring was also
widely discussed and considered as an efficient way to map the solid earth dynamics
and radiation budget at the top of the atmosphere (Guo et al. 2014b, 2018).
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Fig. 14.2 Research scheme for the “Earth observation for sensitive variables of global change:
mechanisms and methodologies” project (Guo et al. 2015)

14.5.1 Glaciers

Glaciers provide unique records and feedback that influence global climate change
and are closely related to temperature, precipitation, and the material balance. The
glaciers on the Tibetan Plateau have retreated considerably since the 1970s, and this
rate of retreat has accelerated in recent years. In general, the retreat rate for glaciers
covering less than 1 km2 is faster than those of larger glaciers, but there are significant
spatial differences. For example, glacial retreat was observed to be the fastest in the
Himalayas and slower in the central plateau (Yao et al. 2003). It has been suggested
that the retreat of the Himalayan glaciers is much more serious than expected (Ma
et al. 2010). Consequently, with the rapid melting of glaciers, lakes supplied by the
glacier melt water, such as Nam Co Lake (the highest lake on the central Tibetan
Plateau), have expanded between 1976 and 2009 (Zhang et al. 2011; Guo et al. 2015).

A method for extracting glacier thickness has been developed based on interfero-
metric synthetic aperture radar (InSAR) data and elevation data from the Geoscience
Laser Altimeter System instrument aboard the Ice, Cloud, and land Elevation satel-
lite (ICESat/GLAS14). As a result of calculations using the ICESat data along with
the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), a
reduction of 0.63 m per year (water equivalent) was observed in the thickness of the
Naimona’nyi glacier between 2000 and 2009 (Zong et al. 2013). This lies between
the material balance of 0.56 m per year (water equivalent) and the glacier thickness
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reduction of 0.65 m per year (water equivalent) measured by GPS (Li et al. 2012). In
general, glacial shrinkage decreases toward the interior plateau from the Himalayas,
and the minimum degree of shrinkage occurs in the Pamir mountain range (Yao et al.
2012; Guo et al. 2015).

14.5.2 Lakes

Large fluctuations in lake surface area in a short time significantly influence water
cycles and the local ecological environments. Studies have been conducted on lake
areas, in addition to water level monitoring in different regions of the Tibetan Plateau
using Landsat and ICESat data. Since 2003, a large spatial variation in lake area on
the Tibetan Plateau has been observed, with a shrinkage of lakes in southern Tibet
and an expansion trend for lakes in the Qiangtang region (Liao et al. 2013). In the
Qaidam Basin, Qinghai Lake showed an expansion trend, and the annual rate of
change in water volume in spring was greater than that in autumn. Gyaring Lake
in the eastern Tibetan Plateau also showed an expansion trend that mirrored that of
Qinghai Lake (Liao et al. 2013). Glacial melt is the dominant driver of the recent lake
expansions on the Tibetan Plateau. By investigating detailed changes in the surface
area and levels of lakes across the Tibetan Plateau from Landsat/ICESat data, Li et al.
(2014) found a spatial pattern in the lake changes from 1970 to 2010 (especially after
2000). They observed a southwest-northeast transition from shrinking, to stable, to
rapidly expanding lakes, which suggests a limited influence of glacial melt on lake
dynamics. The plateau-wide pattern of lake area changes is related to precipitation
variations and is consistent with the pattern of permafrost degradation induced by
rising temperatures (Li et al. 2014; Guo et al. 2015).

14.5.3 Vegetation

The plant phenological period is closely related to climate change, and phenological
changes influence the carbon balance of terrestrial ecosystems by affecting ecosystem
productivity. The alpine vegetation on the Tibetan Plateau is extremely sensitive to
global change. Zhang et al. (2013), Wang et al. (2015) used MODIS to analyze the
response and driving factors of space observations of plant greenness and phenology
(Fig. 14.3). Zhang et al. (2013) found that the normalized difference vegetation index
(NDVI) showed a gradual increasing trend in the plateau during the growing seasons
from 2000 to 2009. On the western Tibetan Plateau, the continuous decrease in
precipitation resulted in a delay in the alpine grassland phenology; in the eastern
part of the plateau, the precipitation continued to increase, resulting in an advance in
the grassland phenology (Wang et al. 2015). In addition, Liu et al. (2014) found that
the spring phenology of the grasslands on the Tibetan Plateau exhibited a stronger
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Fig. 14.3 Trends in a the growing season NDVI, b the start of the season, and c the end of the
season on the Tibetan Plateau during 2000–2009 (Zhang et al. 2013; Wang et al. 2015; Guo et al.
2015)

response to changes in temperature at higher elevations than at lower elevations (Guo
et al. 2015).

The remote sensing and monitoring of C3 and C4 grass species and their responses
to climate change are mainly focused on the high-precision extraction of plant func-
tional types and the transformation response of the grassland type to global climate
change and human factors. In the U.S. Great Plains, vegetation with different func-
tional types usually shows similar temporal trends in NDVI but different phenological
characteristics (Wang et al. 2013). The onset of the growing season for C3 grasses
is earlier than that for C4 grasses, and the growing season of C3 grasses is longer.
However, under mild weather conditions, C3/C4 short grasses have similar onsets of
season dates and growing season lengths compared with C3/C4 tallgrasses (Wang
et al. 2013). In northern China, a study by Guan et al. (2012) showed that temperate
grassland was mainly occupied by C3 species, yet C4 species made an important
contribution to the grassland biomass.

The fraction of photosynthetically active radiation (fPAR) is an important physi-
ological parameter that reflects the growth of vegetation and is a key parameter for
terrestrial ecosystem models and for reflecting global climate change (Fig. 14.4).
Peng et al. (2012) found that the spatial variation in the global fPAR was affected

Fig. 14.4 Spatial patterns of global fPAR: a annual average fPAR in 2006, and b average fPAR in
the latter half of August 2006. (Guo et al. 2015)
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by the vegetation types as well as changes in the seasonal cycles. Temperature, pre-
cipitation and extreme drought have different effects on the fPAR. Climate change,
deforestation, reforestation, and other human activities also significantly impact the
fPAR in regions such as southeast Asia and the Three-North Shelter Forest area in
China (Guo et al. 2015).

14.5.4 Radiation

(1) Impacts of aerosols on cloud cover and the regional radiation forcing effect

Based on satellite remote sensing data from aerosol-cloud-radiation and trace gases
and meteorological observations, Xia (2010, 2012) analyzed long-term trends in the
sunshine duration (SSD) and surface solar radiation and focused on the possible
impacts of clouds on solar radiation in China over the last 50 years. The results
indicated that the SSD and total cloud cover (TCC) showed a significant decreasing
trend; however, with low-level cloud cover (LCC), a slight increasing trend was
observed (Xia 2010). Short-term variability in the SSD is mainly determined by the
amount of cloud cover, but the long-term change in the TCC cannot account for the
decreasing trend in the SSD. Regarding the impacts of aerosols on clouds, Xia (2012)
found that the data are inconsistent with the expectation that larger decreasing trends
in cloud cover should be observed in regions with higher aerosol loading. Therefore,
the aerosol effect on decreasing cloud cover in China does not appear to be supported
by the results of their study (Guo et al. 2015).

(2) Spatiotemporal characteristics of land surface solar radiation in China

The land surface solar radiation in China and its temporal trends were calculated
and the results demonstrate that previous studies overestimated the downward trend
in land surface solar radiation in China (Tang et al. 2011). However, the aerosol
abundance from human activities was still negligible on the Tibetan Plateau, and the
decrease in solar radiation over the plateau was larger in magnitude than that for the
rest of China after the 1970s. Further research revealed that the solar radiation on
the Tibetan Plateau had continually decreased over the preceding 30 years due to the
increasing water vapor and deep convective clouds. These increases were found to
be connected to the warming climate and the enhanced effective convection energy
of the Tibetan Plateau (Tang et al. 2011; Guo et al. 2015).
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14.6 Digital Earth to Inform Climate Adaptation,
Mitigation, and Sustainable Development

Effective strategies for climate change adaptation and mitigation require a com-
prehensive understanding of various underlying factors, including natural science,
economics, society, and ethics. This makes climate change one of the most complex
and challenging issues of modern times. Climate prediction and climate change pro-
jection are highly relevant to policy makers, investors, and vulnerable communities.
The Digital Earth platform allows for investigations into many important processes
that control the climate system, incorporates spatial dimensions at higher resolutions
into the climate change context, and enables intuitive visual support for decisions and
innovative actions. Strong visual and virtual demonstrations, supported by the Digi-
tal Earth platform, can help translate complex data into communicable information
to support governments in decision and policy development and public information
services.

Decades of Earth observation information is critical to improving predictions at
different scales of climate projections. However, the existing remote sensing prod-
ucts have defects such as noise and time and space discontinuity (Brown et al. 2006;
Jia et al. 2006). These defects severely constrain land surface processes and climate
change simulations that are driven by spatial data parameters, and therefore reduce
the reliability of climate change predictions and projections. It is necessary to syn-
thesize multisensor remote sensing data to obtain high-quality and spatiotemporally
continuous land surface observation data. The synthesis processes face the challenges
of multisensor remote sensing data coordination and validation (Guo et al. 2015).
These processes can greatly benefit from the Digital Earth data framework.

In addition to climate-sensitive environmental parameters, socioeconomic param-
eters characterize the demographic, socioeconomic, and technological driving forces
underlying anthropogenic greenhouse gas emissions that have driven recent climate
change and are key in the assessment of climate impacts, adaptation, and vulnera-
bility. Conversely, the sensitivity, vulnerability, and adaptive capacity of socioeco-
nomic systems also depend on their responses to climate change. The IPCC Technical
Guidelines for Assessing Climate Change Impacts and Adaptations recommend the
use of socioeconomic scenarios, with and without climate change, to assess climate
impacts and adaptive responses. This adds a layer of complexity to predicting future
scenarios and is only possible in the integrative environment provided by the Digital
Earth platform. The challenges in implementing socioeconomic scenarios in Digital
Earth include compatible scales that match the socioeconomic and satellite data, and
rational assumptions that represent the evolution of key socioeconomic drivers.

The Digital Earth platform can also support the implementation of the UN Sustain-
able Development Goals (SDGs) by providing a conducive platform for information
and data sharing, access, and use, and as a multisource data fusion platform. In
the near future, Earth science will extensively make use of large amounts of data to
monitor and predict continuously changing climatic environments. The Digital Earth
platform can handle the challenge of geographical big data and the new emerging
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threats from climate change more systematically and specifically (Elder et al. 2016;
Guo et al. 2017). This greatly enhances preparedness, rapid response, and adaptation
to extreme events (such as extreme weather events) and facilitates understanding of
the climate and projection of climate change.

In addition to geographical big data, a new form of geo-referenced data from
the internet and social media, when combined with newly available observational,
reanalysis, or other data sources on the Digital Earth platform, can potentially expand
the scope of climate change studies greatly and increase the spatial and temporal
scales addressed. For example, by using data from social networking sites, smart
phones, and online experiments, we can assess the vulnerability to weather events
and the impacts of local and national policies and programs in real time (Hernandez
2017).

Digital Earth has great potential for increasing our understanding of global climate
change and its impacts on various dimensions. It is a powerful platform for policy
support in climate change adaptation and mitigation. New developments in emerging
technologies such as “big Earth data”, citizen science, the blockchain, and artificial
intelligence further enhance the power of Digital Earth to support studies and actions
on climate change.
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Chapter 15
Digital Earth for Disaster Mitigation

Milan Konecny, Temenoujka Bandrova, Petr Kubicek, Silvia Marinova,
Radim Stampach, Zdenek Stachon and Tomas Reznik

Abstract This chapter describes the state-of-the-art of the potential of Digital Earth
for progressively better solutions for disaster mitigation. The chapter illustrates the
use of strong Digital Earth tools for data sharing and important potential for users,
such as 2D or multi-D visualizations. Milestones of developments in early warning,
disaster risk management and disaster risk reduction concepts are highlighted as a
continuous movement between sustainable development and original concepts of dis-
aster risk reduction. Improved solutions have been based on new research directions
formulated in Sustainable Development Goals tasks and by expanding the possibil-
ities of new effective solutions via newly organized data ecosystems generated by
the United Nations Global Geospatial Information Management, the Group on Earth
Observations and the Group on Earth Observations System of Systems, Copernicus
and, more recently, the Digital Belt and Road initiative. The new trends in spatial
big data are emphasized; the most important for disaster risk reduction are the basic
theses of the U.N. Conference in Sendai. This chapter describes three aspects: inno-
vative Digital Earth development, national and local disaster risk assessment and
the benefits arising from the use of maps and dynamic data, and analyses of the
contributions of cartography to disaster risk reduction.

Keywords Digital earth potentials · Big data · Risk assessment · Risk mapping
technology · U.N. GGIM · DBAR

15.1 Introduction

In this chapter, we describe the state-of-the-art potential of Digital Earth (DE) for
progressively better solutions for disaster mitigation.
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For over 20 years, DE has witnessed an ebb and flow in interest from the world’s
scientific community. Initially, it sought a place between activities focused strictly
on maps, data and information (Global Map—GM, Global Spatial Data Infrastruc-
ture—GSDI, etc.). Later, it began to push through with a comprehensive concept and
an emphasis on the need to share and integrate data and information, and impetus and
knowledge from the scientific realm, the private sector, and the needs of people in
different parts of the Earth. Today, novel solutions are expected from DE, which will
also significantly help realize disaster risk reduction (DRR) and Disaster Mitigation
projects. Al Gore (former vice president of the USA) described a concept and defi-
nition of Digital Earth in his speech in Los Angeles on January 1998, saying it is: “A
multiresolution, three-dimensional representation of the planet, into which we can
embed vast quantities of geo-referenced data” (Gore 1998). In 2008, Goodchild noted
that “Digital Earth includes four aspects: visualization, ease of use, interoperability
and mashups, modelling and simulation” (Goodchild 2008). Some of the best anal-
yses of the potential of the DE concept in the European Union (EU) are the SWOT
analyses by De Longueville et al. (2010a, b). Studies showed positive and attractive
aspects based on the political and economic support of influential countries such as
the USA, China and, more recently, Russia. They also found obstacles originating
from overly complex DE approaches that did not fit the research concepts of the EU.
Clarification of DE leadership was also an issue. These aspects are all important for
finding more successful approaches to solve disaster mitigation and DRR problems
that are natural, societal or economical, as well as complex ones including known
and unidentified factors. In addition, knowledge and new technologies are develop-
ing. We now have access to new near- to real-time information resources such as
Prevention Web, the knowledge platform for disaster risk reduction managed by the
U.N. Office for Disaster Risk Reduction (U.N. DRR), and research analyzing some
of the unsuccessful efforts in developed countries such as those during Hurricane
Katrina and recommending adequate steps in the future.

Section 15.2 describes the terminology used in disaster mitigation and this chapter
and as well as some of the supportive efforts of international scientific organizations.
Section 15.3 describes the development of early warning (EW), disaster risk man-
agement (DRM) and disaster risk reduction (DRR) concepts. Section 15.4 describes
Digital Earth for the future of disaster mitigation and DRR and innovative support of
the implementation of the Sendai Framework and existing geospatial projects, includ-
ing the U.N. Global Geospatial Information Management (U.N. GGIM), Copernicus,
Global Earth Observation System of Systems (GEOSS) and Digital Belt and Road
(DBAR). Section 15.5 introduces national and local disaster risk assessment and
the benefits arising from the usage of maps and dynamic data. Section 15.6 ana-
lyzes and shows the development of selected disaster risk mapping approaches and
technologies with examples of adaptation principles, context map composition and
existing symbol systems. Studies have attempted to recognize how users and inhab-
itants understand information from databases, maps and specialized models. The
final Sect. 15.7 discusses expected developments in the research and technology
background in the near-future. It will be necessary to accelerate the creation of new
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concepts from new knowledge (like from the Hyogo Framework) and new environ-
ments created by the realization of ideas of the U.N. GGIM and Chinese DBAR. All
these approaches were developed on the same background as part of new data and
information media, demonstrating how the potential is open to all of society as well
as specialists and decision makers. Some of the approaches, such as mobile tools and
digital maps, are described in this chapter.

15.2 Terminology and Research Organization Efforts

A very important aspect of new approaches is the terminology. The United Nations
International Strategy for Disaster Reduction (U.N. ISDR) created the first terminol-
ogy from the fields of early warning, disaster risk management and disaster reduction,
which has been updated according to development the field. In this chapter, selected
terminology from the U.N. ISDR is used.

The definitions of disaster mitigation, emergency, disaster damage, disaster
impact, disaster management, emergency management, disaster risk, acceptable risk,
residual risk, disaster risk assessment, disaster risk management, disaster risk reduc-
tion, early warning system, multi-hazard early warning system, and vulnerability can
be found in the U.N. ISDR (2009).

There are two globally operating organizations, the U.N. ISDR and Integrated
Research on Disaster Risk (IRDR), which formulate global tasks in the disaster risk
reduction (DRR) area. There are also activities in important world organizations and
by members of the International Science Council (ICSU). The first working group
and later the Commission Cartography for Early Warning and Disaster Risk Man-
agement were founded within the International Cartographic Association—ICA (in
2004 and 2007, respectively, arranged by Konecny). The activities of the Interna-
tional Society for Photogrammetry and Remote Sensing (ISPRS), which started the
GI4DM organization, were also very fruitful as well as those of the International
Federation of Surveyors (FIG), which was organized during Working Week 2016 in
Christchurch, New Zealand, at the Recovery from Disaster conference.

15.3 Development of Early Warning (EW), Disaster Risk
Management (DRM) and Disaster Risk Reduction
(DRR) Concepts

In the past, DRM was solved together with problems of the environment, subse-
quently developed relatively separately, and a new DRR trend enhanced their close
cooperation in contemporary sustainable development efforts. There are two lines of
development in U.N. documents in approaches to crisis situations, both natural and
anthropogenic. They are:



498 M. Konecny et al.

(1) Environmental, linked to finding the most appropriate environmental approaches
to solve planet Earth’s problems. They are mainly oriented around concepts of
sustainable development (SD). As a first important document mentioning natural
disasters in the Report on Approaches to Crisis Management Issues Related to
Development, U.N. environmental policies were created at the United Nations
Conference on the Human Environment in Stockholm on 5–16 June 1972 (http://
www.biblebelievers.org.au/gc1972.htm). Later, this approach was documented
at the United Nations Conference in Rio de Janeiro in 1992, in Johannesburg in
2002 and at many others.

(2) Crisis risk management (early warning, disaster management and disaster risk
reduction). The second line of development includes the Yokohama and Hyogo
World Conferences (1994 and 2005), the Global Platform for Disaster Risk
Reduction in Geneva in 2010 and the key concept of the “U.N. International
Strategy for Disaster Reduction” (ISDR—United Nations International Strat-
egy for Disaster Reduction). Another concept was developed in disaster risk
research, which addresses the problem of natural and human-induced environ-
mental hazards in IRDR (Integrated Research on Disaster Risk) (Konecny et al.
2010).

Three United Nations Conferences focused on DRR have been held. First, the
World Disaster Reduction Conference in Yokohama in 1994, which defined the
Yokohama Strategy and Plan of Action for a Safer World: guidelines for natural
disaster prevention, preparedness and mitigation. The Second World Conference on
Disaster Reduction was held in Kobe, Japan from 18 to 22 January, 2005. The Hyogo
Framework for Action (2005–2015) (HFA): Building the Resilience of Nations and
Communities to Disasters was an outcome of the 2005 conference. The HFA set
five specific priorities for action: (1) making disaster risk reduction a priority; (2)
improving risk information and early warning; (3) building a culture of safety and
resilience; (4) reducing the risks in key sectors; and (5) strengthening prepared-
ness for response (WCDRR 2016). The third conference was the Third U.N. World
Conference on Disaster Risk Reduction in Sendai, Japan in 2015 (United Nations
General Assembly 2015). The goals and role of research in the realization of these
topics are described in Sect. 15.4 of this chapter. The Sendai Framework materials
highlighted the need to tackle disaster risk reduction and climate change adaption
when setting the Sustainable Development Goals, particularly in light of the insuffi-
cient focus on risk reduction and resilience in the original Millennium Development
Goals (WCDRR 2016).
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15.4 Digital Earth for the Future of Disaster Mitigation
and DRR: Innovative Support of the Implementation
of the Sendai Framework

15.4.1 Sendai Disaster Reduction Conference Targets

In the Third U.N. World Conference (U.N. DRR) on March 14, 2015 in Sendai,
Japan, the Sendai Framework for Disaster Risk Reduction 2015–2030 was adopted
(United Nations General Assembly 2015). The U.N. DRR conference is a culmi-
nation of contemporary state-of-the-art approaches to solve the problems of risks
and disasters on our planet. The conference materials mentioned the role of Infor-
mation and Communication Technologies (ICT), geographical information system
(GIS), remote sensing, mapping, sensors, and volunteered geographic information.
The document does not mention explicitly Digital Earth, but the proposed solutions
follow lines defined by Digital Earth pioneers and updated according to research
frontiers in the world. The necessity of design for deep integration of data and infor-
mation and the necessity of offering products to specialists, customers and all society
in an understandable way were emphasized.

The Sendai Framework defined four new priorities of action:

• Priority 1: Understand disaster risk;
• Priority 2: Strengthen disaster risk governance to manage disaster risk;
• Priority 3: Invest in disaster risk reduction for resilience;
• Priority 4: Enhance disaster preparedness for effective response and “Build Back

Better” in recovery, rehabilitation and reconstruction (United Nations General
Assembly 2015).

The priorities are equally important to find better solutions, and the Digital Earth
concept should be useful in addressing all of them. We discuss the priority 1 intentions
here. Researchers know enough about individual disasters, but are weak in their
knowledge when disasters are combined, as in the Fukushima nuclear power station
collapse or the Wenchuan earthquake. It is very valuable that solutions are being
accepted at global, national, regional and local levels. In priority 1: Understanding
disaster risk, on national and local levels, there are requests to develop, periodically
update and disseminate location-based disaster risk information such as risk maps to
decision makers, the general public and communities at risk of exposure to a disaster
in an appropriate format by using applicable geospatial information technology. In
addition, local and national organizations promote real-time access to reliable data,
make use of space and in situ information, including geographic information systems
(GIS), and use information and communication technologies innovations to enhance
measurement tools and the collection, analysis and dissemination of data.

The DRR framework defined in Sendai is inextricably linked with the main U.N.
document defining the Sustainable Development Goals 2015–2030 (SDGs).



500 M. Konecny et al.

15.4.2 Global Development Policy Framework (GDPF)

With other U.N. documents such as the Sendai Framework for DRR 2015–2030, the
SIDS Modalities of Action (SAMOA) Pathway, the Addis Ababa Action Agenda,
the Paris Agreement on Climate Change and the HABITAT III Urban Agenda, the
SDGs created a newly formulated Global Development Policy Framework (GDPF)
(Fig. 15.1).

In addition to natural disasters, there are new issues connected with problems
of cities or megacities from the geospatial information perspective in particular and
for DE in general. These problems are defined in another activity of the GDPF—
HABITAT III. Its key document “The New Urban Agenda” was adopted at the United
Nations Conference on Housing and Sustainable Urban Development (Habitat III)
in Quito, Ecuador (United Nations 2016) and represents a shared vision for a better
and more sustainable future. If well-planned and well-managed, urbanization can
be a powerful tool for sustainable development for both developing and developed
countries. The conference reached a critical point in understanding that cities can be
the source of solutions to, rather than the cause of, the challenges that our world is
facing today.

The New Urban Agenda presents a paradigm shift based on the science of cities;
it lays out standards and principles for the planning, construction, development,
management, and improvement of urban areas. The agenda also incorporates a new
recognition of the correlation between good urbanization and development. The New
Urban Agenda realizes the 2030 Agenda for Sustainable Development, especially

Fig. 15.1 Global development policy framework. Source UN-GGIM: strengthening the global data
ecosystem, by Scott, ©2018 United Nations. Reprinted with the permission of the United Nations
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Goal 11 on Sustainable cities and communities. It also planned to adopt and imple-
ment DRR and management, reduce vulnerability, build resilience and responsive-
ness to natural and human-made hazards and foster the mitigation of and adaptation
to climate change. DRR is aimed at preventing new risk, reducing existing disaster
risk and managing residual risk, all of which contribute to strengthening resilience
and therefore to the achievement of sustainable development. DRR is the policy
objective of disaster risk management, and its goals and objectives are defined in
disaster risk reduction strategies and plans.

To improve the quality of solutions in disaster mitigation and DRR, U.N. member
states should facilitate the strengthening and normative capacity-building of global
geospatial information management in support of the implementation of the 2030
Agenda. Efforts include promoting the use of geospatial information systems and
services for modern mapping, methodological development, national and regional
capacity-building, setting of standards, data collection, dissemination and sharing,
and better integration of geospatial and statistical information systems of U.N. Mem-
ber States.

15.4.3 U.N. GGIM

A newly established Global Data Ecosystem by the U.N. Global Geospatial Infor-
mation Management (U.N. GGIM) will support realization of the SDGs, including
all aspects linked with DRR, to respond to global data ecosystem needs. It helps to
develop the global understanding of geospatial information and, in a second step,
its coordination, coherence and implementation. The vision is to position geospatial
information to address global challenges and missions to ensure that geospatial infor-
mation and resources are coordinated maintained, accessible, and used effectively
and efficiently by member states and society to address key global challenges in a
timely manner.

In the U.N. GGIM, Scott defined the data needs for the 2030 Agenda as follows
(Scott 2018): “The scope of the 2030 Agenda requires high-quality and disaggregated
data that are timely, open, accessible, understandable and easy to use for a large range
of users, including for decision making at all levels. There is a need for a reporting
system on the SDGs that would have benefit from the subnational (local) to the
national level; and allow for global reporting that builds directly on the data shared by
countries. It is important to create an opportunity for countries to directly contribute
to the global reporting. While the challenges are immense, the digital technology that
is available today allows the necessary transformation. An aspiration is to strengthen
countries’ national geospatial and statistical information systems to facilitate and
enable a ‘data ecosystem’ that leverages an accessible, integrative and interoperable
local to global system-of-systems.”
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The U.N. GGIM is the newest initiative to qualitatively improve the potential
to solve the problems of the world, including disaster mitigation. In addition, other
important initiatives have the same aim in specific regions of the World—e.g., Coper-
nicus for Europe and the Digital Belt and Road (DBAR) initiative in Asia.

15.4.4 Copernicus—A European Contribution to GEOSS

Copernicus (formerly Global Monitoring for Environment and Security—GMES)
is a European project based on data received from Earth observation satellites and
ground-based information. These data are coordinated, analyzed and prepared for
end users. Through Copernicus, the state of our environment and its short-, medium-
and long-term evolution are monitored to support policy decisions and investments.
Copernicus plays key role in EU EW, DRM and DRR efforts. Copernicus mainly
supports decision making by institutional and private actors. Decisions can concern
new regulations to preserve our environment or urgent measures in the case of natural
or man–made catastrophes (i.e., floods, forest fires, water pollution) on a global
scale. The services are used by environmental agencies, local, regional and national
authorities, and civil protection organizations. The new observation techniques and
analysis of data will allow for these actors to better anticipate potential threats,
to intervene in a timely manner and to increase the efficiency of the intervention.
Figure 15.2 shows the structure and purposes of Copernicus.

Fig. 15.2 Structure of Copernicus. Adapted from: EC (2019). Used with permission: Copernicus
EU, European Commission
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Copernicus (and its INSPIRE component) is the European contribution and par-
ticipation in the worldwide monitoring and management of planet Earth organized
by the Group on Earth Observation (GEO). The global community acts together for a
synergy of all techniques of observation, detection and analysis. At the World Summit
on Earth Observation in Washington in July 2003, the Group on Earth Observations
(GEO) was established with the goal of addressing the information requirements for
the environment on a global scale. In Brussels in February 2005, a 10-year imple-
mentation plan of an integrated global earth observation system of systems (GEOSS)
was defined. A number of operational systems for supporting disaster response have
made steady to strong progress. Collaborative supersites have been established for
the scientific community to monitor and analyze volcanoes and earthquakes more
rapidly and effectively; for example, supersites have improved the assessment of
earthquakes in Haiti, China, Chile, and Indonesia. One example is SERVIR that pro-
vides mapping for disaster response and has assisted countries in Central America
and the Caribbean in responding to hurricanes, earthquakes and other extreme events
(GEOSS 2019).

15.4.5 Digital Belt and Road Program—Disaster Efforts

The Digital Belt and Road (DBAR) program and Digital Silk Road Alliance (DSRA)
are relatively new activities initiated by the Silk Belt and Road (BAR) initiative. The
DBAR is a pioneering international venture to share expertise, knowledge, technolo-
gies and data to demonstrate the significance of Earth observation science and tech-
nology and applications for large-scale sustainable development projects. The exten-
sive geographical scope of the “BAR” initiative calls for smart uses and applications
of big Earth data in the design, development and implementation of diverse projects
related to infrastructure improvement, environmental protection, disaster risk reduc-
tion, water resource management, urban development, food security, coastal zone
management, and the conservation and management of natural and cultural heritage
sites. DBAR is committed to implementing projects and actions relevant to the 17
Sustainable Development Goals (SDGs) adopted by the United Nations in Septem-
ber 2015 (United Nations Brussels Team 2018). In the DBAR, natural hazards are an
important issue. Belt and Road nations experience approximately 85% of the world’s
major earthquakes, tsunamis, typhoons, floods, droughts and heatwaves. For exam-
ple, more than 86,000 people were killed or reported missing in a massive earthquake
in Wenchuan, China in May 2008 and the 2004 Indian Ocean earthquake and tsunami
killed hundreds of thousands of people. Seven of the top ten countries that saw major
losses from disasters between 1995 and 2014 are in this region (Guo 2018, p. 26).
The program monitors different types of ecosystems and their evolution, including
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grasslands, forests, glaciers, urban areas, farmland and coastal regions. Environmen-
tal and socioeconomic information will be shared through a platform for big Earth
data, scheduled for roll-out between 2016 and 2026. This open-access gateway will
allow for researchers, policy makers and the public to track changes, development
and trends. The program will investigate indices and indicators to feed into the UN’s
2030 Sustainable Development Goals (Guo 2018).

Working group 6 of the DBAR says that DBAR disaster aims to integrate Earth
observations (EO) and social vulnerability data to promote implementation of the
Sendai Framework in countries along the BAR region. The approach taken by
this WG covers satellite information and communication technologies as well as
implementation-oriented technologies that involve hardware solutions for risk reduc-
tion challenges. “If we do nothing, sensitive environments will be lost and exposure
to risks will rise” (Guo 2018).

There are efforts to find solutions using newly defined ideas about big Earth
Data. There are four main obstacles to a strategy for the Belt and Road region: poor
access to data; a digital divide between developed and developing countries; a lack
of awareness of the potential of Earth observations among some policy makers, local
scientists and practitioners; and a lack of collaboration. These are long-standing
problems—they also slowed emergency responses during and after the Indian Ocean
tsunami in 2004, for example.

Important consequences of DBAR strategies necessitate research on new
approaches and knowledge improvements. There should be proof of concept for the
data. Guo is developing a new concept of big Scientific data and big Earth Data (Guo
2017, p. 4): “Big data is a revolutionary innovation that has allowed the development
of many new methods in scientific research. This new way of thinking has encour-
aged the pursuit of new discoveries. Big data occupies the strategic high ground in the
era of knowledge economies and also constitutes a new national and global strategic
resource. “Big Earth data”, derived from, but not limited to, Earth observation, has
macro-level capabilities that enable rapid and accurate monitoring of the Earth, and
is becoming a new frontier contributing to the advancement of Earth science and
significant scientific discoveries. … Big data research is different from traditional
logical research. It uses analytical induction applied to a vast amount of data to sta-
tistically search, compare, cluster, and classify. It involves correlation analysis and
implies that there may be certain a regularity in the relation between the values of
two or more variables; it also aims to uncover hidden correlated networks.”

The substantive characteristics of big data computing comprise a paradigm shift
from model-driven science to data-driven science, as well as the establishment of a
data-intensive scientific approach.

As a branch of big data, scientific big data is a typical representative of data-
intensive science. Scientific big data has a number of characteristics, including com-
plexity, comprehensiveness, and global coverage, as well as a high degree of inte-
gration with information and communication technology. The approaches used in
science are also being transformed—from single-discipline to multidisciplinary and
interdisciplinary approaches, from natural science to the integration of natural and
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social sciences, and from work carried out by individuals or small research groups
to projects coordinated by international scientific organizations.

In addition to helping scientists solve hard or previously unsolvable problems
through real-time dynamic monitoring and analysis of various related data, the data
itself can become an object and tool of research: scientists can conceive, design, and
implement research based on the data (Hey et al. 2009 in Guo 2017).

Earth science research, including the atmosphere, land and ocean, has produced
huge datasets derived from satellite observations, ground sensor networks, and other
sources. This is collectively called big Earth data. Big Earth data has features in
common with scientific big data and also has unique characteristics. Big Earth data
is characterized as being massive, multisource, heterogeneous, multitemporal, mul-
tiscale, high-dimensional, highly complex, nonstationary, and unstructured. It pro-
vides support for data-intensive research in the Earth sciences. Modern Earth sci-
ence requires globally established, quasi real-time, all-weather Earth data acquisition
capabilities, and has developed an integrated space-air-ground observation system
with high spatial, temporal, and spectral resolutions (Guo 2017).

To realize the above-mentioned efforts, the ISDE organization initiated the Digital
Silk Road Alliance (DSRA), established in Sydney in April 2017 with the support of
the China Association for Science and Technology (CAST), with the aim of building a
network of scientists involved in the Digital Belt and Road initiative and using Digital
Earth and geospatial information technologies to solve the scientific problems facing
human beings, and to address problems related to the U.N. Sustainable Development
Goals.

The DSRA wants to develop Digital Earth in the fields of cartography, remote
sensing and geo-information sciences, which are essential for socioeconomic devel-
opment. Further development of cooperation mechanisms and frameworks toward
the development of Earth observation systems and Digital Earth is expected. It is
important to use such approaches on global and regional levels in the realms of Earth
observation and Digital Earth.

15.4.6 GGIM and DBAR Comparisons and Potential

Comparing the contemporary differences between the U.N. GGIM and the DBAR,
the U.N. GGIM is a mature project connected with stable governmental and public
infrastructures aiming to address the needs of the SDGs and Sendai DRR and con-
temporary needs of civil society and its organizations. DBAR has similar ambitions
but primarily originated from the countries where spatial data infrastructure (SDI)
and national data infrastructure (NSDI) were still not fully developed according to
the Silk Belt and Road. The DBAR has a new approach to look for and elaborate big
data, mainly based on satellite images. There are still missing concepts regarding
delivery of data to interesting groups, the private sector and individual inhabitants
(such as the U.N. GGIM using INSPIRE knowledge and experiences). Along the Belt
and Road, countries have different political and economic systems and different data,
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information and knowledge policies. There has been great investment in the DBAR,
which created hopes for fast improvement of the situation, but data and information
are only part of the efforts, including DRR. In many countries, geoinformatics and
cartography are unappreciated. Maps are created without knowledge of how they will
be accepted by users (context and adaptive maps) and how the information should
be delivered for professionals and public users. This is very important in EW, DRM
and DRR.

It is difficult to say which areas will benefit more from Digital Earth. Because
the problems are very complex, their solutions require powerful and adaptable tools.
Digital Earth is based on integration of various streams and determination of adequate
decisions. Informed decisions also rely on the wishes, opinions and reactions of
societies, which can be collected via information from social media or volunteers in
the field.

It is likely that the main tasks of the U.N. GGIM will be realized incrementally.
DBAR activities elaborating important and new aspects of the big data reality will
create new situations in data policies in the countries along the Silk Road and Belt.
Convergence of both streams will be inevitable and will lead to realization of the
dreams of the founders of SDI and NSDI as well as appreciation of modern visual-
ization methods, mainly cartographical ones. Those methods will help experts and
the contemporary public to understand problems and cooperate to create solutions
for disaster mitigation problems.

15.5 Digital Earth for National and Local Disaster Risk
Assessment

Digital Earth is suitable for reporting practices that have been already tested and
implemented in one locality and can be successfully adapted in another. Sharing of
practices is important in any field of human activity, including disaster risk manage-
ment. As noted by Amaratunga et al. (2015), sharing of sound practices is intended
to improve knowledge sharing for exchange of data and experiences between users
on every level—global, national and local.

15.5.1 National Level

The goal of every state is to identify and minimalize risks in its territory. In the
Czech Republic, a group of emergency management experts studied the emergency
threats and vulnerabilities (Paulus et al. 2016) and identified and categorized the most
typical emergency situations. From this analysis, 22 typological emergency situa-
tions were pinpointed. A detailed and typified plan for each emergency was defined,
including the responsible public administrative organization and the administrative
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level on which the plans are used (central, regional, local). An indispensable part of
each typified plan is the list of recommended spatial data and maps necessary for
a successful reckoning of a particular emergency. Public administration bodies are
responsible for the development of action plans on the regional and local levels and
for identification of key stakeholders.

15.5.2 Local Level—Cities and Urban Areas

A report titled “State of Disaster Risk Reduction at the Local Level: A report on
the Patterns of Disaster Risk Reduction Actions at Local Level” (Amaratunga et al.
2015) focuses on disaster risk reduction in urban areas: “Fast growing cities and
urban areas of the world increase disaster risk due to economic growth and fast
population expansion. … Sound practices that have been tested and implemented
by different cities around the world aid knowledge sharing opportunities for future
disaster risk reduction. … The intent is to provide local governments and other
institutions learn from one another by effectively facilitating the sharing of sound
practices and disseminating these established sound practices in risk reduction.”

Ten essential goals and examples of well-functioning solutions for local govern-
ments to make their cities more disaster-resilient were defined and are listed below
(U.N. ISDR 2012).

15.5.3 Existing Methodologies for Risk Assessment

Overviews of how to map and estimate risk have been presented by several scholars
(Kappes et al. 2012; Klucka 2014; Forzieri et al. 2016). The European Commission
published the Risk Assessment and Mapping Guidelines for Disaster Management
(EC 2010), but it was not the first draft of such a pan-European manual. For example,
the output of the European project Interreg IIIC Interregional Response to SIPROCI,
to which seven countries contributed, is even wider and more thorough than the above
mentioned EU final document but was never fully implemented at the European
level (SIPROCI 2007). An example of a major non-EU agency that deals with risk
discovery and estimation is the Federal Emergency Management Agency (FEMA)
from the USA. FEMA announced the release of the State Mitigation Plan Review
Guide in 2016 (FEMA 2016) that aids state, tribal, or local governments in developing
hazard mitigation plans.
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15.5.4 Using Maps for Risk Assessment

An important part of any methodology for identifying and estimating risks is the
design of presentations to professionals and the general public. The ideal way to view
the risk estimates clearly is a map. The significance and role of maps is described in
the book Successful Response Starts with a Map (National Research Council 2007),
prepared as a Hurricane Katrina analysis. The creation of maps for risk identification
was also described by the above mentioned SIPROCI project (2007) and by other
authors including Carpignano et al. (2009) and Winter (1993) described in Dymon
(1994). Carpignano et al. (2009) described the development of a decision support
system based on a multirisk approach that can overcome difficulties in the overall
risk assessment for a territory. To define multirisk maps, a multirisk perspective and
stakeholder’s perceptions were integrated into a classical risk assessment frame. The
specific purpose of this work is to describe the methodological framework built at
this stage of the project and discuss the initial results.

Dymon (1994) describes a hazard management map taxonomy offered by Winter
(1993) that regards hazard, risk and emergency as the three major categories:

• Hazard maps identify and display the location of hazard zones, areas where there
are dangers to humans and their property.

• Risk maps (vulnerability) require calculation of the conditional probability that
a given area will experience a particular hazard or a combination of hazards and
portray the spatial distribution of those risk computations.

• Emergency maps comprise three additional types: planning, evacuation and crisis
maps.

The SIPROCI report (2007) provides a comprehensive method for risk mapping.
However, specific proposals were not included in the official final methodology
(EC 2010). However, conclusions and recommendations were incorporated into the
methodology, such as the by the Fire Rescue Service in the Czech Republic (Krömer
et al. 2010), which recommends creating the following types of maps:

• Hazard map—a summary map of the different types of hazards, i.e., a digital map
of the manifestations of individual types of emergencies.

• Vulnerability map—the indicator of accumulated vulnerability of the territory as
a sum of partial elements of vulnerability.

• Preparedness map—readiness in the territory can be expressed as the availability of
forces and means (components of the integrated rescue system) and the availability
of means of protection of the population (e.g., coverage of the territory by end
elements of the warning).

• Risk map—a summary of all the above map types.

In its official methodology, the EU Risk Assessment and Mapping Guidelines for
Disaster Management (EC 2010) only include general recommendations for prepar-
ing these types of maps:
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• Maps of the spatial distribution of major hazards show the spatial distribution of
all relevant elements that need to be protected, such as population, infrastructures,
and naturally protected areas.

• The spatial distribution of vulnerability in terms of the susceptibility to damage
for all relevant subjects.

• These maps can then provide the basis for the preparation of risk maps in terms of
showing the combination of the likelihood and impact of a certain event, as well
as for creating of aggregated hazard maps.

However, specific mapping requirements for risk assessment only appear in EU
directives for flood mapping such as the Floods Directive (EC 2007). Flood risk
mapping is the area of disaster management in which mapping methodologies have
advanced the most. The EU directive on the ‘Assessment and management of flood
risks’ requires Member States to conduct an initial assessment for flood hazard maps
and flood risk maps:

• The hazard maps should cover geographic areas that could be flooded according to
different scenarios. Flood hazard maps show the extent of floods at high- (optional),
medium- (at least a 100-year return period) and low-probability floods or extreme
events.

• Risk maps should show the potential adverse consequences associated with floods
under those scenarios.

15.5.5 The Benefits of Digital Earth for Risk
Assessment—Using Dynamic Data

Creating maps with the standardized content and symbolism mentioned in the previ-
ous section is necessary for preparing the components of an integrated rescue system
for crisis situations and for managing them. However, the basis of the Digital Earth
concept is not the creation of printed and static maps, but the dynamic sharing of
different types of data, including near-real time data sharing. The development of
electronics, networks, databases, data sharing (included in Digital Earth) brings new
possibilities for risk assessment.

As an example, for a risk assessment at a particular location and at a certain time, it
is possible to take advantage of the current location of mobile phones, from which the
present population can be estimated more accurately than using the standard census
data. Extensive studies focused on different aspects of human presence estimation
based on mobile phone data have been presented, particularly from Europe and Asia
(Ahas et al. 2010; Batista e Silva et al. 2013; Cao et al. 2017; Järv et al. 2017; Kang
et al. 2012). Kubíček et al. (2018) proposed analysis of human presence using data
from mobile operators. The analysis is based on a dataset describing the estimated
human presence (EHP) with two values—visitors and transiting persons—depending
on the overall time spent within a specific mobile cell.
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The advantage of using the EHP numbers over data from a census was analyzed
during the Integrated Rescue System training held in 2017 in Brno, Czech Republic.
The goal was to decide where to locate water tanks with supplies of drinking water
for inhabitants in case the standard water supply network becomes contaminated.

This emergency situation is demonstrated in Fig. 15.3. “The location-allocation
analysis on the leftmost side only takes into account census data and evenly dis-
tributed population throughout the administrative unit. Each water tank can supply
approximately 2000 people. The second analysis adjusts the water tank locations
according to the real locations of buildings and population in administrative units.
The third and fourth analysis quantifies the EHP for working days and weekends.
Using of EHP proposes a greater number of necessary water tanks in administra-
tive units, and their optimal locations change according population fluctuations”
(Kubíček et al. 2018).

Risk assessment is addressed at different levels (international, national and local),
and each of these levels has its own goals and uses. It is very useful to share expe-
riences and data between these levels. This allows for generalization of knowledge
and results from the local level to the national and international levels. Such analyses
can become an engine for developing better risk assessment methods and disaster
mitigation. The Digital Earth concept linking databases and enabling data sharing
provides a methodological and technological background for this goal.

Fig. 15.3 The role of the spatiotemporal distribution of the population in the case of a water
shortage. Reprinted from Kubíček et al. (2018) by permission of Taylor & Francis Ltd.
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15.6 Digital Earth and Disaster Risk Mapping Technology

15.6.1 The Role of Cartography in Disaster Risk Mapping

In the frame of disaster risk mapping, geographic knowledge is crucial for making
proper decisions. The importance of spatial information and its potential support for
emergency actions were stressed and evaluated by several authors (Kevany 2008;
Zlatanova and Li 2008; and Konecny 2006). Among the various ways to transmit,
share, and visualize geographic knowledge, cartography is one of the most important.
Cartography and geoinformatics have experienced a huge technological shift over
the last 30 years. Digital Earth systems have become important foundations for data
management related to geographic phenomena.

The application of dynamic cartographic visualization opens the possibilities of
adaptive cartography. It allows for creating maps of current risks (e.g., current and
predicted flooded area or direction of fire spread), the location of nearby emergency
services, or escape routes for the population at risk.

The theory of using adaptive cartography for emergency management geographic
support was described by Reichenbacher (2003) and Meng (2005). This method
is based on the idea of geographic data visualization automation and adjustment
according to the situation, purpose and user’s background (Reichenbacher 2003).

The adaptation of maps can generally be defined by a number of “Ws”—what,
when, where, who, and how—as documented in Fig. 15.4. It illustrates the types of
contexts that can influence the conditions of disaster risk mapping.

Fig. 15.4 Possible contexts influencing map use and mapping. Adapted from Kozel et al. (2011)
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15.6.2 Use Case Examples

The adaptive mapping principles described in the previous section were demonstrated
in several scenarios, e.g., Talhofer et al. 2007, Mulickova et al. 2007. One of the
scenarios, called “FLOOD”, aims to improve flood management. A case study was
practically verified in the winter of 2011/2012, when one of the field experiments
was performed. Based on an analysis of the flood management system in the Czech
Republic (Kubíček et al. 2011), five main ACTIVITIES were defined for the Flood
Use case (SITUATION):

• PREDICTION AND PROGRESS—development and expected progress of the
flood

• TECHNICAL SUPPORT—technical support in the inundated area—support of
Flood Security Activities

• RESCUE—the evacuation of citizens
• ORGANIZATION—an organization of powers and means
• PUBLIC INFORMATION—information for the public on flood development,

evacuation, etc.

Some of the ACTIVITIES defined above are universal (e.g., organization) and
may be performed in different SITUATIONS whereas others (e.g., flood prediction)
are situation-specific.

There were a few principal operational ranges defined in the pre-
sented use case: FLOODPLAIN for detailed information on the inundation,
REGION/DISTRICT/MUNICIPALITY to comply with the hierarchical order of the
flood management system, CATCHMENT to monitor the flood at natural borderlines,
and SECTION for a detailed view of the municipality.

15.6.3 Use Case Adaptation Principles

The fact that an object is evaluated from the perspective of a defined context is
fundamental to the map symbol adaptation process. The most important aspect of
the geographic feature may not be the character of the object as defined by the data
source, but what ROLE it plays in the decision-making process. The map symbol is
an expression of such a ROLE. Because the data are typically collected for purposes
other than emergency management, semantic relations must be defined, and new
roles should be specified.

Based on context, the semantic relevance is assessed. Information on the geo-
graphic object is relevant if it is necessary for the decision-making process within
the context. The relevancy assessment is important from the cartographic point of
view since the large number of objects that are visualized on the map limit its legibil-
ity and thus the effectiveness of the cartographic visualization as a decision support
tool.
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When information is relevant, we can assess the degree of relevancy and use
other cartography means to increase/decrease the importance of a spatial object or
phenomena. The relevancy degree can be assessed for both the semantic and spatial
aspects, as illustrated in Fig. 15.5.

The activity and the crisis event itself undergo temporal changes and thus the
object properties change as well. For example, if the water level is rising and another
house is endangered or a house is already evacuated. These facts should be considered
during map symbol design.

15.6.4 Context Map Composition

The process of data model definition is illustrated in Fig. 15.6. The emergency context
defines the basic data model (e.g. the information content of the map), and relevant

Fig. 15.5 Degrees of spatial and semantic relevance. Cartographic symbols prepared by L. Fried-
mannova. Adapted from: Brezinova et al. (2011)

Fig. 15.6 Data model definition. Adapted from Mulickova (2011)
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features of the models BASETOPO, CRITICAL, and CONTEXT SPECIFIC are
selected. The basic model is then modified as the context is more precisely specified
(i.e., according to the PHASE). The model is generalized and further specified for
each level of detail within the operation range.

The examples of a context map for flood management in Fig. 15.7 document dif-
ferent context views of the spatial database. Context maps for three emergency con-
texts—PREDICTION (A), RESCUE (B, D) and ORGANIZATION (C) are shown.
The level of detail corresponds with the operation range “section”. Maps share the
same topographic background (i.e., BASETOPO) and, to a certain extent, flood-
SPECIFIC features (i.e., the flood extent and buildings in it). The visualizations
differ in activity-specific features—i.e., features specific to prediction (flood activity
degree, number of affected persons), to the organization (places of intervention and
its description) and to the rescue efforts (evacuation zones, routes). The features of
the CRITICAL model are not included.

Maps A and B in Fig. 15.7 illustrate the phase of preparation—there is no flooding
yet but there is a prediction of flooding. At that time, houses are endangered. In
the response phase (Maps C and D), houses are already affected. The visualization
changes are based on the progress of the disaster event.

Maps B and D support the same activity (i.e., rescue) but in different phases.
The maps display visualization changes based on the progress of the activity. In the
preparation phase, the zone of evacuation is marked and buildings for evacuation are
selected. In the response phase, all the buildings are already evacuated.

A possible technical implementation is described in detail by Kozel (2009) and
Kozel and Štampach (2010).

15.6.5 Existing Symbol Systems for Disaster Management

Cartography plays a key role in disaster management for a clear representation of
the necessary objects and phenomena to decision makers. Upon the occurrence of
disasters, crisis management actors need specialized maps to provide a clear idea
of the emergency, localization, distribution and characteristics. One of the objec-
tives of cartographers is to design effective representation of spatial information
through graphic symbols (Akella 2009). The symbols should indicate information
about depicted objects and phenomena without the use of a legend, especially in an
emergency. They should also provide users qualitative and quantitative information
for the presented object or phenomenon (Konecny and Bandrova 2006).

A number of agencies and organizations related to disaster protection have devel-
oped databases, geo-portals and cartographic products for crisis management and
adopted their own standards for symbols.

One of the most popular symbol systems for crisis management is the set of
500 humanitarian symbols of the United Nations Office for the Coordination of
Humanitarian Affairs (OCHA). The symbols are freely available at http://reliefweb.
int/ and aim to help disaster responders present information about crisis situations
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Fig. 15.7 Examples of context mapping for various phases of the emergency management cycle.
Source Mulickova and Kubicek (2011)

quickly and simply (United Nations Office for the Coordination of Humanitarian
Affairs 2012). The symbols can be used to produce humanitarian reports, maps, and
websites. The OCHA humanitarian icons are divided into 17 categories. The set of
symbols covers both disasters and activities, including the supply of water containers
and equipment shelter, access to people in need and protection of civilians. The icons
are associative and have a simple structure that allows for easy comprehension.
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The Emergency Mapping Symbology (EMS) in Canada was developed under the
auspices of GeoConnections, with participation from emergency management orga-
nizations across Canada. It was designed to be used by federal, provincial, regional
and local organizations involved in the management of major events, disasters, and
other incidents where emergency help and security are needed (GeoConnections
2010). The EMS contains a set of symbols and a four-level, hierarchical classifica-
tion of the entities. The categories include incidents, infrastructures, operations, and
aggregates. Symbols in the same category have similar colors. There is also a second
version of the symbols adapted for black and white printing.

The Association of Volunteer Emergency Response Teams developed a project
called Disaster Response Map Symbols (DRMS) as an effort to compile a standard set
of symbols aimed to support the creation of efficient maps for disaster management.
It comprises 285 symbols. The DRMS contains 5 families of symbols in a single font,
including vehicles, infrastructure, mobile/temporary services and teams, events, ships
and some special symbols (Association of Volunteer Emergency Response Teams
2009).

Another popular symbol system is the symbology developed by federal, state, and
local agencies in the USA working together under the auspices of the Federal Geo-
graphic Data Committee (FGDC) Homeland Security Working Group. The symbol
system includes symbols and their definitions for the categories of incidents, natural
events, operations, and infrastructures. The structure of each category and a damage-
operational status hierarchy were developed using color and frame shapes with line
patterns (Homeland Security Working Group 2017). The symbols are designed to be
presented in color or black and white formats.

The cartographic symbols should have clear and short definitions to be used in
a map legend. One very important characteristic is that they are situated on a map
and should indicate qualitative and quantitative information about the represented
object, phenomena or process to users.

Considering the advantages and disadvantages of existing emergency symbol
systems, a new symbol system for the needs of disaster management was developed
at the Laboratory on Cartography of the University of Architecture, Civil Engineering
and Geodesy in Sofia. The Symbol System for Disaster Management (SSDM) was
developed to support thematic mapping for early warning and crisis management
and operational activities of all participants in disaster management, as well as to
help citizens understand specialized emergency maps. The SSDM was designed to
be useful for the general public as well as for professionals.
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15.6.6 Opportunities for New Disaster Risk Mapping
Technologies

The technological shifts in cartography and geoinformatics were on the level of data
analysis and visualization, bringing new data sources from different sensors and
mapping strategies. One of the most notable examples of this is cell phone data.

Data derived from active cell phones or active SIM cards for some administra-
tive units are becoming available for various uses (see an example from the Czech
Republic, the O2 Liberty API, https://www.o2.cz/podnikatel/liberty-api/). Analysis
of the number of SIM cards and existing demographic data has opened a novel set
of possible applications for emergency management and disaster risk mapping. The
availability of cell phone data enables the following:

• More accurate estimation of the actual number of inhabitants within the admin-
istrative unit and their temporal rhythms (example on Brno, Czech Republic in
Kubíček et al. 2018). Comparing such an analysis with the existing census data
and annual demographic reports (see Fig. 15.8), the administrative units can be
further divided into several typological units (with the maximum during working
days, weekends, etc.) In addition, the population estimations can be used to better
plan the evacuation and other inhabitant-sensitive activities during emergencies.

• The cell phone data analysis often reveals regular trends as described above and
some irregular peaks and peculiarities. These high concentrations of inhabitants
are connected with cultural and sports events such as concerts and music festivals.

Fig. 15.8 Variability of the population in an administrative unit Náměstí Svobody, Brno, Czech
Republic. Comparison of cell phone and census data. Reprinted from Kubíček et al. (2018) by
permission of Taylor & Francis Ltd.
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15.6.7 Future Directions—New Symbol System for Disaster
Management (SSDM)

The examples, approaches and case studies described above provide various oppor-
tunities for future development and applications such as the development of virtual
and augmented reality tools and devices. The Digital Earth concept can be also
understood as a virtual reality system (Çöltekin et al. 2019).

The new cartographic Symbol System for Disaster Management (SSDM) was cre-
ated in Bulgaria after proposing a classification structure of represented objects and
phenomena, construction and design of symbols, implementation in real situations
and use in map compiling for disaster preparedness.

15.6.7.1 Classification Structure

The SSDM consists of a 4-level hierarchical classification of objects and phenomena
concerning disaster management and a set of 115 symbols. At the highest level,
the objects are divided into 5 categories: disasters, infrastructure, protection services
and safety infrastructure, affected people and infrastructure, and operational sites and
activities. Each category is divided into classes, which are divided into subclasses
that consist of objects and phenomena (Fig. 15.9).

15.6.7.2 Design of Symbols

The ability of symbols to transmit information and the way they are perceived by
map users are critically important. The design process of the SSDM started with
consideration of the rules of construction and use of symbol systems, examination
of the relations between objects and phenomena, their classification and specifics.

Fig. 15.9 Classification structure Source Marinova (2018)
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The design was accompanied by optimal requirements to achieve readability, expres-
siveness and visibility, taking into account modern technologies and techniques in
cartography. It is challenging to choose graphical variables so that all the symbols
can be quickly and easily perceived and are associative and properly referred to their
respective categories.

All categories of the SSDM are distinguishable by their shape and color. The
symbols consist of white pictograms and shapes with various background colors.
The choice of background colors, except to achieve clear distinctiveness, depends on
the message that the symbols should express to the users. A psychological perception
of the colors was taken into account. The different shapes for the categories aim to
avoid potential problems resulting from low light or black and white printing.

Each category has an individual letter code for easy identification: A—disasters;
B—infrastructure; C—protection services and safety infrastructure; D—affected
people and infrastructure; and E—operational sites and activities. Each object and
its respective symbol have an alphanumeric code formed by the category code and
the serial number of the object in its category.

Figure 15.10 presents part of the symbol system, including the alphanumeric code,
graphic symbol and a brief description.

The status of objects in “infrastructure” and “protection services and safety infras-
tructure” in a crisis situation is represented by a combination of symbols in category
B (infrastructure) and category C (protection services and safety infrastructure), with
symbols representing destroyed, affected and unaffected objects of category D shown
in a reduced size (Fig. 15.11).

15.6.7.3 Maps for Disaster Protection

The new Symbol System for Disaster Management was applied in experimental
development of training maps supporting actions in emergencies and in a series of
maps for disaster protection at local and regional levels. The main tasks of local and
regional disaster protection plans are the analysis and assessment of disaster risks,
prevention and mitigation, early warning, and coordination of disaster management
activities. Participants in these activities need specialized geographic information to
support concrete actions.

The SSDM was applied in the production of base maps of the municipality of
Troyan, Bulgaria, at a scale of 1:50000 (Fig. 15.12) and Troyan at a scale of 1:10000
(Fig. 15.13). The maps were compiled according to predefined elements of map
content and aim to support activities described in the disaster protection plan of the
municipality.

The main features of hydrography, settlements, infrastructure (including trans-
port, telecommunication, energy, manufacturing and water infrastructure) as well as
services and facilities related to disaster protection (such as hospitals, shelters, and
helicopter pads) are represented by the SSDM. Based on the main disaster protec-
tion maps, a series of maps for disaster management in case of earthquakes, floods,
fire, and industrial accidents were created. Additional information was provided for
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Fig. 15.10 Symbols of the symbol system for disaster management (SSDM) Source Marinova
(2018)

Fig. 15.11 Symbols to
present affected
infrastructure Source
Marinova (2018)
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Fig. 15.12 Base map for disaster protection Source Marinova (2018)

Fig. 15.13 Base map for disaster protection (partial). Source Marinova (2018)
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Fig. 15.14 A map for evacuation planning Adapted from: Marinova (2018)

some features including the object name and description, number of beds in shelters,
dangerous industrial objects, type of stored materials, and fire-fighting equipment.
Infrastructure and services/facilities for protection are represented by the symbols
in Category B and Category C (Fig. 15.13). These maps also support predisaster
activities, including assessment and preparedness.

In a crisis situation base maps can be processed into rapid and reference maps pre-
senting the type and location of disaster(s) by adding symbols from Category A and
symbols for affected people and affected infrastructure in Category D (Fig. 15.14).
The symbols for operational sites and activities (Category E) could be useful for
damage assessment and recovery in the postdisaster stage.

The map content and displayed information of operational situations could help
support the responsible authorities and individuals to make timely and effective deci-
sions. Such maps could allow for identification of the affected areas in municipalities
or regions, and provide significant contributions to population protection, mitigation
and evacuation planning operations.

Cartography plays a key role in the main stages of disaster management. Efficient
and cooperative preventive and protective activities of authorities require appropri-
ate and easily understood geographic information. The use of a standard system
of associative symbols can facilitate significantly cooperative disaster management
strategies at local, regional and international levels.

15.7 Conclusion

Disaster mitigation and DRR are complicated processes, and solutions could be
improved by using powerful tools such as Digital Earth. The concept of DE covers
almost all activities occurring in ICT in the contemporary world. To be successful in
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employing the right solutions, we need to create improved concepts that consider the
newest knowledge about disaster mitigation and DRR. To realize this, we need well-
organized data and information such as in data ecosystems (as in the U.N. GGIM)
that reflect the complexity of the problems to be solved, defined by the SDGs. Shar-
ing data and information, visualization with the help of digital maps, cartographic
models and their combinations hold important promise to support decision makers
and society with true and understandable outputs to help to comprehend situations,
to create instructions and standards on how to behave in various situations, and to
be ready when risks transform into disasters. This chapter highlighted the newest
projects, including the U.N. GGIM and DBAR. In the future, these approaches with
commonalities and differences should be developed to support smart solutions for
human society.
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Chapter 16
Digital City: An Urban Perspective
on Digital Earth

Davina Jackson and Richard Simpson

Abstract Digital Earth and many other satellite and semiconductor-enabled cartog-
raphy advances imply the need for a globally useful schema for more scientific and
eco-ethical management of cities. How should we plan an internationally cohesive
and locally effective system for understanding and managing urban stocks and flows
around our planet? The answer to this question depends on new systems for manag-
ing geodata to underpin increasingly automated systems for evidence-based decision
making. The current concept of Digital Earth as a “self-aware nervous system” is
being advanced by urban proto-projects that are supported or followed by globally
applicable initiatives including Singapore’s new Geospatial Masterplan, the Interna-
tional Standards Organization’s City Standards, Denmark’s Open Public Life Data
Protocol, and the City-GML data model. These recent ventures are progressing a
movement that extends far beyond the 1990s concepts of “smart cities” enabled by
wireless telecommunications. In the Digital Earth science paradigm, cities must sim-
ulate their key situations and scenarios and analyze Earth observation data obtained
via satellite-enabled devices that remotely detect and interpret all the light and radio
waves of the electromagnetic spectrum.

Keywords Data cities · Geospatial · Digital urbanism · GEOSS · Digital earth ·
Earth observations · Smart cities · Urban modeling · Geodesign

16.1 Introduction: Satellites Meet Cities

The Digital Earth project (Gore 1992, 1999; Goodchild et al. 2012; Craglia et al.
2012; Jackson and Simpson 2012) is aligned with the intergovernmental program
for a Global Earth Observation System of Systems (GEOSS was launched in 2005,
the same year as the online commercial globe Google Earth; Group on Earth Observa-
tions (GEO) 2007, 2015; Jackson and Simpson 2012). These and many other satellite
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and semiconductor-enabled cartography advances imply the need to produce a glob-
ally useful schema for more scientific and eco-ethical management of cities (Ratti
and Claudel 2016). This aspect of Gore’s Digital Earth dream remains far from real-
ity and was promoted earlier by Richard Buckminster Fuller, beginning with his 4D
Air-Ocean World Town Plan concept diagram (Fuller 1928; Fig. 16.1), followed by
various urban synergetics proposals and prototypes. These contributed to his influ-
ential late-career book Operating Manual for Spaceship Earth (Fuller 1969), which
was published exactly fifty years before this Manual of Digital Earth.

How should we design an internationally cohesive and locally effective system
for understanding and managing urban stocks and flows around our planet? This
question requires comparisons and integrations of significant concepts published
and prototyped by key scientists, technology innovators, architects and other leaders
of the urban informatics revolution; especially since Fuller died in 1983.

His original World Town Plan sketch was invented when “computers” were math-
ematically minded people, more than a decade before German engineer Konrad Zuse
invented the first electromechanical, stored-program computing machine; his Model
Z3 was first demonstrated in 1941. Fuller expired shortly after Time magazine named
“The Computer” instead of a human recipient for its annual “Man of the Year Award”
cover feature (Brosan and Segal 1982).

Fig. 16.1 Fuller’s air-ocean
world town plan diagram,
1927–28 (Estate of R.
Buckminster Fuller/John
Ferry)
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Although his vision of an electronic infrastructure to operate Spaceship Earth was
inspired by radar and airplane autopilot systems, satellite navigation was not com-
mercialized widely for terrestrial vehicles until the early 1990s. Accompanying the
advent of GPS (global positioning system) devices linked to American NAVSTAR
satellites were magazine and newspaper reports forecasting commercialization of the
internet as a “new information superhighway” and revolutionary television and tele-
phony advances (Negroponte 1993, 1995; Gates 1995). Leading professors of town
planning and architecture expected computers to accelerate “smart cities” (Gibson
et al. 1992) and the MIT Smart Cities Lab was founded by William J. Mitchell in
2003. Other urban prophecies included “fractal cities” (Batty and Longley 1994),
the “city of bits” (Mitchell 1995) and “intelligent environments” (Droege 1997).
At the time of writing this chapter, the world’s main satellite navigation systems
were GPS (US), BeiDou (China), Galileo (Europe) and GLONASS (Russia; Hunter
and Hartcher 2019). We suggest that all of these 1990s terms emerged in response
to global commercialization of wireless and mobile telecom infrastructure—and
that this century’s Digital Earth and GEOSS planetary systems simulations vision
demands a new emphasis on the cruciality of satellite-enabled remote sensing data;
thus, we now use the term Data Cities when considering the urban aspects of Digital
Earth.

All of those end-of-century writers (and others before and since) highlighted
that “wireless” (actually extensively cabled) telecom technology was unlocking a
crucial new way to understand cities: not as static compositions of buildings and
streets but as dynamic, unpredictable and increasingly networked flows of activity
and connections. However, until recently (Jackson 2018) there was little emphasis on
how satellites have become essential to what Batty called “a science of cities” (Batty
2005, 3; 2013) and Stephen Wolfram termed “a new kind of science” (Wolfram 2002)
that would interpret fractal and cellular automata principles of evolutionary growth
and behavior.

Satellites allow for today’s environmental scientists and designers to use increas-
ingly sophisticated machines and programs to monitor and simulate various pro-
cesses that Jay Forrester termed “urban dynamics” (Forrester 1969). City monitor-
ing and modeling are being accelerated by increasing numbers and constellations of
Earth-observing (EO) satellites, including squads of tiny CubeSats carrying minia-
ture remote sensing instruments. These include scanners and sensors to scrutinize
atmospheric and ocean conditions for meteorological and marine agencies (produc-
ing data that are visualized dramatically for television weather reports). They also
include many devices that use all the wavelengths of the electromagnetic spectrum
to continually survey the world.

Earth observation methods such as SAR interferometry, GNSS reflectometry
(GNSS-R), radar altimetry and lidar sensing are revealing many structures and activ-
ities that normally cannot be viewed by humans or have been long obscured. Some
dramatic recent examples are digital heritage discoveries and detailed 3D mapping
of various ancient cities that were lost for centuries under tropical jungle foliage or
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catastrophic floods. Specialists in digital archaeology can study early stone carvings
under thick coats of dirt and moss, and explore fabled burial grounds, perhaps without
touching a spade (Venkataramanan 2014).

For professionals developing and managing contemporary cities, satellite-enabled
land surveying has become vital to understanding existing circumstances with
unprecedented accuracy—allowing designers, decision makers and stakeholders to
share the same eyewitness evidence in discussions of proposals and problems.

To understand how satellite technology and data are being applied to solve today’s
environmental planning and management challenges, Davina Jackson (coauthor of
this chapter) devised a matrix diagram of five research themes and their flow-on
priorities and projects in government, commerce and public sector contexts. Drafted
from 2008 to 2011, it was published in a GEO-sponsored snapshot report on the
scope of the GEOSS/Digital Earth project (Jackson and Simpson 2012, 5; Fig. 16.2).
All five research themes are being pursued concurrently towards the ideal of a global
model of complex environmental systems. They are natural systems modeling (NSM;
projects simulating certain area-defined environmental behaviors), building informa-
tion modeling (BIM; creating virtual models of structures and testing the viability
and defects of each design before on-site construction), city information modeling
(CIM; 3D mapping, satellite and aerial imagery, remote sensing and data analyt-
ics at scales from street corners to megalopolises), virtual nations and networks
(VNN; data management and mapping the environmental conditions of countries,

Fig. 16.2 Jackson’s global modeling network concept diagram, 2008–2011 (Jackson and Simpson
2012)
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multinational regions or continents—e.g., Virtual Singapore) and planetary systems
modeling (PSM; integrated 3D data mapping of environmental conditions around
the Earth).

All five scales of Earth observations and simulations must be integrated to achieve
the concept of a global EO system of systems but the diagram identified them sepa-
rately to reflect the reality that most researchers operate within specific professional
disciplines and domains of study (Fuller 1980). The following sections explain cur-
rent activities and recent projects that contribute to the integration of data and mod-
eling that is transforming urban development.

16.2 Global and Dynamic Data Mapping of Cities: A New
Cartography Paradigm

The Digital Earth vision and GEOSS program are both evolving through collabora-
tions between several hundred international governments, space agencies, science,
research and standards organizations, and United Nations entities (UN Global Mar-
ketplace n.d.). These groups are organizing different advances towards the system
of systems that has begun to allow users to access, analyze, visualize and exploit the
data collected by Earth observation instruments aboard or networked with satellites.
In this section, we identify how this system is being progressed in ways that may help
reform obsolete, insular and ecology-damaging practices by millions of influential
actors in urban development and city governance roles.

Today’s collaborations are underpinned by shared understandings of the impera-
tive to scientifically tackle the deadly impacts of climate change, including extreme
weather events (natural catastrophes), loss of biodiversity, rising sea levels, and
extreme heat and drought (UNDP n.d.). Two key UN bodies are leading the task
of broadly communicating information and strategies to deal with these wicked
problems: the Intergovernmental Panel on Climate Change (IPCC), which releases
five-yearly scientific reports recording the world’s environmental threats and perfor-
mance, and the UN Framework Convention on Climate Change (UNFCCC), which
organizes annual conventions where relevant organizations discuss, and participat-
ing governments agree, how they will reduce ecology-damaging practices in their
countries.

Another UN organization, the UN Development Programme (UNDP), globally
promotes seventeen sustainable development goals (SDGs) that include climate
action and sustainable cities and communities (UNDP n.d.) and other, mainly urban,
agendas. Its urban targets for 2030 include upgrading slums, increasing the resilience
of communities that are vulnerable to disasters, reducing the environmental impacts
of cities, improving air quality and waste management and providing affordable,
useful public transport and housing.
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Certain places are evidently dangerous to occupy—flood plains, fire and earth-
quake zones, or countries prone to war. Vast land areas, especially deserts or polar
regions, are shunned because they seem inhospitably dry or frozen. Should they be
invigorated via hydro- and geo-engineering? This matter is being debated by ambi-
tious scientists and engineers through their academic and professional organizations.

Many properties near water—clifftop mansions on New York’s Long Island or
entire island states such as Tokelau and Nauru—risk subsidence and submersion
through the same forces (freak waves, storms and rising sea levels) that caused ancient
monumental cities such as Thonis (Egypt) and Harrapan (India) to slide into the sea.
Cyclones sometimes destroy popular resorts on South Pacific islands and towns along
Asian coasts, and fires seasonally burn through leafy suburbs in southeast Australia
and southern California. Residents of large hillside cities in Central America and
South America—like La Paz in Bolivia—understand that their homes suddenly might
slip down their slopes of clay. All these dangers appear to be escalating with the
global warming that Swedish scientist Svante Arrhenius first predicted in 1896. He
calculated that global temperatures would rise by 5 °C with the doubling of carbon
dioxide burned into the atmosphere. This prediction seems consistent with today’s
UN forecasting of a 5 °C temperature increase globally by 2050 (UNDP n.d.).

In Geneva, the International Centre for Earth Simulations (ICES Foundation)
archives scientific and press reports of environmental disasters on its website (Bishop
2018). Its articles from September 2017 to March 2018 included photographs of a
hotel tower falling after a Taiwan earthquake, bridges collapsing in Colombia and
Florida, homes buried under mudslides in southern California, a volcano erupting in
Bali and Hurricane Irma battering Caribbean countries and Miami. ICES, led by Bob
Bishop, a scientist expert in high-performance, real-time computer simulations, aims
to establish an advanced computing facility in Switzerland for modeling complex
environmental systems. His foundation offers a worldwide QLARM message service
that promptly predicts and maps likely building damage and human casualties after
earthquakes (Wyss n.d.). More than 1000 alerts have been issued since 2002 using
geological data from the Swiss Seismological Service, settlement records from the
World Housing Encyclopedia and population statistics. ICES also completed earth-
quake vulnerability studies of Haiti (for the Swiss Department of Foreign Affairs)
and Kyrgyzstan (for Médecins Sans Frontièrs).

In recent lectures, Bishop analyzed the challenges and potential for building
“an open, integrated, wholistic model of Planet Earth for decision support, disaster
reduction and public good”—the same vision as the GEOSS, Gore’s 1990s Digital
Earth and Fuller’s 1960s Spaceship Earth. He warned that quantities of data—mostly
unstructured data—are growing far faster than global computing power—and that
both are insufficient to crunch solutions for the world’s many serious environmental
and sociopolitical threats. He predicted that, as well as quantum computing systems,
global simulations projects will ultimately be improved by neuromorphic comput-
ing to imitate information processing by human brains. Recent projects to develop
neuromorphic chips include TrueNorth by IBM, SpiNNaker by Manchester Univer-
sity and BrainScaleS, initiated by Heidelberg University. The two academic ventures
have transferred to Europe’s Human Brain Project (HBP), which aims to substantively
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upgrade today’s energy-guzzling computers built with von Neumann architectures
(Modha n.d.). Bishop (a former chair of the HBP advisory panel) suggested that,
while these computing capacity ambitions are being pursued, current projects can
reduce energy consumption by installing processor-in-memory (PIM) technologies
to use big data, preferably without moving it. While computer architectures would
be global, the data should be applied to solve local urban and regional problems.

European scientists recently published the first sophisticated satellite mapping of
the world’s human settlements, depicting four decades of population statistics and
machine-analyzed Landsat data, including some information on building heights,
footprints and materials. Launched in 2012 as the Global Human Settlement Layer
(GHSL dataset for GEOSS; Pesaresi et al. 2016), this project is included in the GEO
Human Planet initiative that was announced at the 2016 United Nations Habitat III
conference on settlements. As well as identifying several major new cities in Asia
that were not UN-recorded, it applied astrospatial (developed for space exploration),
geomatics (terrestrial monitoring) and telematics systems to the formerly paper-
centric domains of land surveying, cartography, architecture and town planning.
Outstanding 3D and 4D visualizations of the GHSL data, depicted as “population
mountains”, were produced by Alasdair Rae (Rae 2016, 2018) and Matt Daniels
(Daniels 2018a, b).

The first example of global 3D video-mapping of urban population (including
growth) statistics was Japan’s PopulouSCAPE project, which included a 10-minute
Night Flight Over an Urbanizing World, providing aerial views of cities as surging
towers of population (visualizing UN Figures) and intercity transport and commu-
nications connections (Ito et al. 2005; Team PopulouSCAPE 2005). Another his-
torically significant example of planet-scale modeling of cities was the Pulse of the
Planet real-time video visualization of AT&T data recording telephone and internet
traffic between New York and other cities. Produced by a Carlo Ratti-led team at
MIT’s SENSEable City Lab, it was shown in the Design and Elastic Mind exhibition
at New York’s Museum of Modern Art (MIT SENSEable City Lab 2008). These
two projects were perhaps history’s first world-scale depictions of the data cities
movement (Jackson 2008; Jackson and Simpson 2012)—following some important
mid-2000s video simulations of specific cities such as the Virtual London model
(showing flood and shadow simulations) by University College London’s Centre
for Advanced Spatial Analysis (2002–2005) and the Real-Time Rome mobile phone
data-mapping show at the Venice Biennale by MIT’s SENSEable Cities Lab (2006).

One notable new world urban mapping project is the Global Urban Footprint
(GUF), led by Thomas Esch’s team at the Earth Observation Center of the German
Space Agency (DLR, Fig. 16.3). Scatters of tiny black dots show settlement patterns
with unprecedented detail and precision, using radar data from the TerraSAR-X and
TanDEM-X pair of satellites operated by the DLR and Airbus Space and Defence.
Although only depicted in 2D, the GUF shows the global distribution of human settle-
ments with an unprecedented spatial resolution of 0.4 arcsec (~12 m), using 180,000
satellite scenes expressed in grayscale: black dots for urban areas, white for land
and gray for water (DLR n.d.; Fig. 16.4). This instantly informative data visualiza-
tion (seen on-screen via a swirling sphere) refreshes the adage that new technology
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Fig. 16.3 Global Urban Footprint map by the German aerospace center (DLR/Thomas Esch)

Fig. 16.4 Sunlight control modeling for Auckland city (1988), with the operative envelopes visu-
alized as “stained glass” windows (Cadabra)
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paradigms (such as 3D time-series video-mapping) are not the only, or always the
best, tool for communicating specific information in certain circumstances. As an
obvious example, audio remains preferable to video when people are walking or
driving cars.

16.3 Global Advances in Computer Design, Analysis
and Construction

This section highlights five significant advances in data modeling solutions for major
challenges in designing and managing built environments.

16.3.1 Environmental Performance Control Envelopes

New Zealand’s Resource Management Act, passed in 1991, was ground-breaking
legislation for the nation to conserve and sustainably manage its natural resources:
land, air and water. It was underpinned by one of the world’s first cases of using
architectural computer modeling (then known as CAD, computer-aided drawing,
now updated as BIM, building information modeling) to pretest the potential envi-
ronmental impacts of new building proposals. Approval by a New Zealand court of
law for uses of 3D computer models as evidence was first granted for the appeal of a
planning decision that delayed construction of Auckland’s Sky Tower. As the tallest
freestanding structure in the Southern Hemisphere, Sky Tower was a radical depar-
ture from the city’s conservative urban landscape and would not have been publicly
acceptable without using computer simulation and 3D visualization to articulate the
regulatory, design and environmental impacts (Fig. 16.4).

Before the Resource Management Act, basic prescriptive rules were used by
NZ planning authorities to maintain unimpeded sunlight for specific open spaces.
This approach was refined during the years after the 1987 stock market crash, when
city property values slumped. In 1988, the Auckland City Council commissioned
Cadabra, an applied computer graphics consultancy led by Richard Simpson (coau-
thor of this chapter) to develop one of the world’s first performance-based 3D virtual
city models to allow for patterns of sunlight to be more specifically and accurately
simulated.

Cadabra’s approach was to calculate an overarching operative control envelope
(OCE) for the central city. This performance-based envelope was generated from
an accurate 3D terrain model of the city, including twenty-seven designated public
places (mostly parks) that were to maintain access to sunlight and views. The sunlight
controls for these places were evaluated for every moment of the year to determine
the overall impact that each would have on the city height limits. The result was a
set of twenty-seven envelopes that intersected in complex and dramatic ways in 3D
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and 4D space above the virtual city skyline. The overarching operative envelope was
determined by overlaying all the place-specific envelopes and defining the combined
surface minimum to define the OCE.

This operative surface had the appearance of an exaggerated rugged terrain in the
sky. It defined a “battle” between ground-based controls. In one place, one control
might have a sweeping influence on the height of a potential new building, then would
be overridden by another control. The hilly nature of the inner city, protection criteria,
and eclectic formats of park boundaries all contributed to this complex expression
through controls on the generated operative envelope. Visually, this model appeared
like a paint-by-number on a wildly rumpled canvas.

The operative envelope was visualized as a contour plot of heights above a datum.
The model enabled performance-based sculpting of the city’s urban envelope and
regeneration of the individual sunlight controls to ensure solar irradiation for any
place for specific periods of the year and times of day. It was also rendered in 3D
with proposed and existing 3D CAD models of buildings. If a building complied
with the control, it would be visually obvious as it would not breach the envelope.
The rendering treated each control as a differently colored “stained glass” window
and thereby visualized the volumetric influences of controls in the airspace and
throughout any day. Colored light for a specific control might flood the ground to
clearly show the influence of any specific control through a day or year.

The final design of Auckland’s OCE was published as a set of regulatory con-
tour maps in the 1991 district scheme. This work defined the aesthetic balance and
shape of Auckland’s skyline and enabled a paradigm shift from obsolete prescrip-
tive controls to more evidence-precise and context-responsive performance controls.
The modeling removed legal ambiguities and provided more clarity and certainty for
citizens to enjoy maximum sunlight and views when using public spaces.

16.3.2 Geodesign

In 2001, Pascal Mueller, then a postgraduate student at ETH-Zurich’s Future Cities
Lab, introduced CityEngine, a procedural modeling program to rapidly generate and
modify basic forms of buildings in urban scenes. It offered designers flexibility to
change the heights and floorplates of specific buildings on the fly, using process scripts
rather than the prescriptions of parametric modeling. When commercially launched in
2008, it could generate a realistic 3D online (flythrough) depiction of Venice’s Gothic-
Byzantine building stock in a few minutes. Users could transform the heights and
areas of one or various buildings, and simulate shadows cast at different times of day
and year. Since 2011, CityEngine has been owned and updated by Esri, the world’s
largest commercial GIS mapping software supplier, to integrate with its formerly
offline and 2D (pre-Google Earth) suite of ArcGIS mapping tools. Esri’s transition
to online 3D dynamic modeling and what-if design tools, and its SYMAP-derived
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topographical data mapping, catalyzed a new educational-promotional venture that
the company’s founder, Jack Dangermond, launched with the name Geodesign in
2010 (Steinitz 2012, 2013; De Monchaux 2016).

Until recently, the GIS packages needed by surveyors and land-planning profes-
sionals have been used separately from the building design (BIM and CAD) programs
required by architects and building engineers. However, some surveying firms such
as Britain’s Severn Partnership are marketing “Scan2BIM” skills to provide point
clouds of 3D laser-scanned, geotagged data about existing buildings and landscapes,
giving precise bases for modeling structural alterations. Another example is the Ther-
malMapper project in Bremen, where Dorrit Borrmann and Andreas Nüchter from
Jacobs University recorded a 360° aerial point cloud of the city square with temper-
ature data from nine thermal images overlaid on eleven 40° laser-scanned poses of
the historic buildings, plaza and streets. They used a Riegl VZ-400 3D laser scanner
and an Optris PI infrared camera, with the pose files calculated using 3DTK based
on odometry information (Borrmann and Nüchter n.d., Fig. 16.5).

In 2017, Autodesk and Esri announced a new collaboration to integrate their build-
ing design and environmental data modeling tools. Patrick Janssen, with the Singa-
pore ETH Future Cities Lab, was skeptical that this partnership would resolve all

Fig. 16.5 ThermoRathaus, a point cloud of Bremen’s city square, overlaid with temperature data
from a thermal imaging camera (Borrmann and Nüchter, Jacobs University)



538 D. Jackson and R. Simpson

the aspirations of architects but recognized opportunities to resolve significant defi-
ciencies in Esri’s GIS and Autodesk’s BIM and graphics packages. Janssen praised
GIS software for providing data online and downloadable in tiles and criticized BIM
programs for not providing online access to data and fine-grain imagery. He said
advanced architects were eager for open semantics, “where you can compute your
own stuff”; a capability now available to some extent in Houdini but likely to be more
prevalent soon with new developers using Amazon Web Services or Web Assembly
(Wasm). He said that most sophisticated modeling programs remain too complex in
their structural routines—generating too many links and nodes in their data graphics.
He was developing a new online geometrical design application, Vidamo, which he
expected to be more efficient and more comprehensible for users without advanced
programming skills (Jackson 2018, 37).

At the 2018 Geodesign Summit, Dangermond’s presentation emphasized “the sci-
ence of where” as being crucial for “understanding and managing our world” through
“integrating people, processes, things and data about them” via three types of infor-
mation infrastructure: records, insights and engagement. He also highlighted three
major groups of trends that would evolve WebGIS during coming decades (and which
are applicable to other types of software needed for urban planning and design). For
professionals concerned with data, relevant advances include drones, lidar, scientific
measurements, real-time video, crowdsourcing and much more detailed information
on traffic, demographics, weather and locations. For experts developing computer
infrastructure, he highlighted mobile communications, big data, machine learning,
distributed computing, SaaS (software as a service), the IoT (Internet of Things),
cloud storage and parallel computing, web services, microservices and networks.
For GIS innovation, he focused on “expanding the power” via advanced analytics,
open APIs, dynamic image processing, online content, apps, 3D modeling and smart
mapping, data exploration, hubs, real-time visualization, Python programming and
portals (Dangermond 2018).

As a corporation led by landscape architecture graduates from Harvard, Esri is
focused on how to use computer tools to eco-sensitively integrate buildings and urban
infrastructure with natural environments. Echoing three of the five research themes
identified in Jackson’s 2007 GEOSS-DE network diagram (Jackson and Simpson
2012, 5; Fig. 16.2), Dangermond identified four main types of modeling that should
be increasingly integrated: landscape information models (LIMs; another term for
natural systems modeling), building information models (BIMs), city information
models (CIMs) and zoning information models (ZIMs; a CIM subset of particular
value to government planners; Dangermond 2018).

16.3.3 Digital Engineering and Digital Twinning Standards

Also called virtual engineering, digital engineering is a shorthand reference to the
consistent use of digital methods and tools throughout product development and pro-
duction processes to improve planning quality and process controls over an asset’s
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entire life cycle. Digital twinning involves modeling and simultaneously sustain-
ing all the virtual systems associated with a physical entity. These terms emerged
with computer modeling and autopiloting systems developed for aerospace, ship and
car manufacturing and operations. Now these labels have transferred to BIM and
geospatial environmental modeling—which evolved from different 2D paradigms
(CAD drawing and GIS mapping) that depend on different methods of structuring
data.

To establish interoperability, the buildingSMART International (bSI) group and
the Open Geospatial Consortium (OGC) established a joint working group in 2017
to prepare a roadmap towards a global standards framework named the Integrated
Digital Built Environment (IDBE). BSI administers Open BIM standards, including
Industry Foundation Classes (IFCs), and the OGC administers OpenGIS, includ-
ing geospatial data interoperability, and the Reference Model and GML standards.
The IDBE is intended to underpin digital engineering and enable digital twinning
of physical conditions with corresponding records held in digital repositories. The
physical twin may be represented in the digital twin (virtual model) at any level of
detail (LOD). However, there are new moves beyond formerly prescriptive notions
of LOD to a more agile, performance-based, level of information needed (LOIN)
approach, which specifies why data are required, what specific data are required,
when they are required, and who is responsible for the transfers and uses.

16.3.4 Astrospatial Architecture

Architecture’s ancient history switched tones around the turn of the third millen-
nium. In May 2000, Aaron Betsky published Architecture Must Burn, a critique of
late-twentieth century architectural culture and a “manifesto for architecture beyond
building” (Betsky and Adigard 2000). This book preceded, by just eighteen months,
the explosions that collapsed America’s twin towers of modern capitalism, the World
Trade Center, in September 2011. Five months later, Manhattan architects Diller
Scofidio+Renfro revealed an unprecedented anti-icon: the Blur pavilion, a wide
cloud of clean water vapor hovering low across Lake Neuchâtel during the 2002
Swiss National Expo. Solar-powered and with sensors dotted across its fog-obscured
steelwork, this work symbolized two novel impulses: to evaporate architecture’s anti-
quated focus on merely crafting static structures using weighty materials dug from
the Earth and to steam-clean a world remaining stubbornly reliant on carbon-belching
fossil fuels.

Blur catalyzed a post-internet design movement that was later named astrospatial
architecture (Jackson 2016). Protagonists now intend to design extraordinary com-
positions of solids and voids and devise memorable interpretations and experiences
via light and data. For example, in 2011 Joseph Paradiso’s Responsive Environ-
ments group at MIT’s Media Lab revealed perhaps the world’s first video simulation
of invisible atmospheric dynamics inside a building—using temperature, humidity,
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light, sound, human movement and other data, streaming from RFID and other sen-
sors around floors of the real building. Visualized with the Unity game engine, the
DoppelLab showed how space pulsates with unseen information (Paradiso 2011).

Architectural technology has evolved from computer-aided drawing (CAD) tools
(beginning with light pens drawn on tiny screens in the late 1950s) to BIMs that are
derived from aerospace engineering software and can script algorithms to operate
fabrication machinery such as 3D printers and construction robots. Professors lead-
ing this international revolution tend to be involved in three overlapping design
movements: Parametricism (Schumacher 2008), Smartgeometry (Smartgeometry
n.d.; Peters and Peters 2013) and the more recent Advanced Architectural Geometry
(AAG) group (Adriaenssens et al. 2016).

Building models created in programs such as Autodesk’s BIM360 or Revit, or
Trimble’s Tekla BIMsight or Connect, can be exported for viewing with head-
sets using plug-ins such as Modelo, Prospect, Enscape, Umbra or AUGmentecture.
Another capability was demonstrated by Greg LynnFORM at the 2016 Biennale of
Architecture in Venice, where Lynn and his team used Microsoft HoloLens goggles
and augmented reality (AR) software to compare multiple holographic scale models
of the Tate Modern building in London with a physical scale model of a giant former
car plant in Detroit (Fig. 16.6). HoloLens wearers could look inside the physical
model and walk around full-scale virtual rooms defined by lines of ephemeral light.
The team also highlighted and overlaid the history of the building being redesigned
and showed different road and aerial vehicles flowing around the site (Jackson 2018,
19–20).

Beyond the design studio, VR, AR and nonimmersive 360° viewing systems are
valuable tools for the property industry (Stanley 2017). They help clarify building
proposals to stakeholders influencing council development approvals. They help
in marketing buildings and apartments prior to completion or to inform remotely
located investors. For example, spherical imagery captured by drones can clarify
views from different floor levels of an unbuilt tower. The industry expects continuous

Fig. 16.6 Greg Lynn finger-snaps holographic (AR) building models of London’s Tate Modern
onto his physical model for car plant redevelopment in Detroit (Microsoft)
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improvements to VR and AR experience kits and 360° cameras over the coming
decade. Better graphics (pixel densities and spatial resolutions), audio, haptics (more
touch-sensitive handset interfaces), and tracking speeds are still needed.

Another way to represent architecture and cities is with holographic images. These
are data-coded recordings of light fields (waves of particles scattered off illuminated
objects). Like sound recordings, holographic recordings can be reproduced later—
but usually with considerable loss of fidelity, so the representations seem ethereal.
Virtual building and city models can also be converted into 3D holographic imagery
printed on film. When illuminated from above, these renditions seem to pop in three
dimensions from their glossy sheets. If not precisely lit and viewed, holographic
images appear spectral and chromatically fragmented.

Holographic glasses and headsets underpin augmented reality (AR)—a domain
alternatively named “metasensory augmentation” by wearable computing visionary
Steve Mann. At MIT in 1978, he prototyped the first AR spectacles, Digital Eye
Glass, and later versions could be finger-tapped to convey holographic data. Those
precedents inspired Google’s Glass smart specs (sold generally from 2013 to 2015),
Microsoft’s HoloLens system (launched 2016) and the Vuzix Blade smart glasses
(previewed in 2018, Statt 2018). The HoloLens has been surpassed technically by
another of Mann’s creations, Metavision’s Meta 2 visor, released to Unity game
developers in late 2017.

LiFi (light fidelity) is another emerging technology expected to energize built
environments. Demonstrated by Harald Haas in a TED talk in 2011, a LiFi system
uses the semiconductors of LED lamps (such as downlights) to transmit data (Haas
2015). In some early tests, LiFi networks transferred data at much faster speeds than
is currently possible over WiFi networks conducting low-frequency radio waves and
microwaves. This is because LiFi uses the higher frequencies and bandwidths that
come from the visible light, infrared and near-ultraviolet waves that share the mid-
range of the electromagnetic spectrum. Since Haas and his partner Mostafa Algani
set up the pureLiFi company to commercialize his discoveries, several dozen star-
tups and corporations have begun developing LiFi applications using next-generation
LEDs with signal processing capabilities. In Dubai, Zero 1 used LED streetlights for
networking data—exploiting pre-Haas research on urban transport-logistics telem-
atics. In Dresden, the Fraunhofer IPMS research center has developed industrial
automation solutions for several corporations. All major electronics manufacturers—
General Electric, Panasonic, Samsung, Philips, Osram, Qualcomm and Cree—are
racing to market with LiFi data-and-light product suites.

People in polar countries often feel depressed by the long nights of winter—need-
ing treatment with mood-elevating colors and wavelengths of light. This affliction,
called seasonal affective disorder (SAD), seems to emerge from changes to a body’s
circadian rhythm and serotonin and melatonin hormone levels. Some local govern-
ments in near-Arctic latitudes encourage their citizens to take therapy sessions and
cheer their communities with winter light festivals (that also magnetise tourism).
From 2012 to 2016, Oslo artists Christine Istad and Lisa Pacini responded to SAD
in Norwegian towns (where there is no daylight during January) by trucking around
a night sun—a 3 m-diameter circular panel crusted with hundreds of color-changing
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LEDs (Anon 2013). A popular, three-dimensional, night sun is Rafael Lozano-
Hemmer’s Solar Equation aerostat (helium balloon), which is video-mapped with
layers of computer-generated imagery and data derived from NASA’s sun-monitoring
instruments (Fig. 16.7). These are just two examples of creative urban (outdoor)
applications advancing this century’s revolution in ‘electroluminescent’ technology,
based on semi-conductor controls of electric pulses (Neumann and Champa 2002;
Jackson 2015).

16.3.5 Artificial Intelligence

Artificial intelligence was ignored by most built environment professionals until
the internet caused widespread apprehensions during the 1990s, systemic disruption
during the 2000s, and now, inevitably, new ways of understanding and doing things.
Today, AI brings another wave of unfamiliar technologies and terms—including
augmented intelligence, where machines are intended to improve human abilities to
decide and perform. This seems less threatening than artificial intelligence, where
machines are presumed to increasingly replace humans to a tipping point that Ray
Kurzweil termed the Singularity (Kurzweil 2005).

Fig. 16.7 Solar Equation, a “night-sun” (helium balloon) designed by Rafael Lozano-Hemmer and
mapped with NASA sun-monitoring data (Marcel Aucar)
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All intelligence, artificial or natural, flows from competent processing of infor-
mation. Most AI researchers have abandoned their early reliance on preprogrammed
rules to solve problems. Instead, they are evolving machine learning, where comput-
ers use statistical learning algorithms to gradually teach themselves how to intelli-
gently process big data. The more data that computers are given, the more capably
they can perform complex tasks; partly through their supra-human powers of pattern
recognition (New Scientist 2017).

Dacheng Tao at the University of Sydney has developed a classification sys-
tem to help understand different concepts, methods and challenges that are being
advanced in AI and robotics. His taxonomy highlights four basic functions per-
formed by machines: perceiving, learning, reasoning and behaving. Devices fueled
by data from sensors and cameras must perform one or more of these functions to
help solve humanity’s ultra-wicked problem of how to sensibly manage our planet.

Machine learning is a new field that is being divided into different specialties:
unsupervised learning (training machines to identify untagged images), supervised
learning (training using labeled or annotated information), reinforcement learning
(training via rewards for correct actions) and deep learning (using complex neural
networks). Neural networks are software circuits inspired by flows of information
through human brains. They can deliver general artificial intelligence (solving various
tasks) or narrow AI (expertise in one or two specific tasks).

One of the most promising potentials in AI is for robots to replace humans in
performing extremely dangerous tasks: such as exploring nuclear power plants after
an explosion, entering narrow cavities to replace damaged wiring or recording stress
points in unstable structures. Czech writer Karel Čapek first coined the term robot in
his 1921 play R. U. R: Rossum’s Universal Robots, and today’s humanoid versions
such as Boston Dynamics’ Atlas and Honda’s Asimo are agile and realistic. Most of
Boston’s robots, being developed with the US Defense Advanced Research Projects
Agency (DARPA), emulate fleet-footed animals and are intended to replace soldiers
on topographically rugged battlefields. Swiveling, fixed-footed robots (mounted on a
floor or ceiling) can print small masonry dome structures and assemble timber-framed
houses (Jackson 2018, 42–48; Kohler et al. 2014).

Researchers developing computer vision systems are evolving improved ways
for cameras, sensors and software to detect, recognize and track moving objects,
including people, analyze environments by segmenting items of interest in changing
scenes, estimate distances between cameras and objects in view, and enhance the
clarity of images. Face-detection software can discern and frame almost every head
in crowds of thousands. Any newly scanned face can be matched instantly with
the same face from a digital archive. Data analysts can also clarify blurry, hazy,
too-dark, wrongly colored and low-resolution images using smarter versions of the
photoenhance tools found on standard laptops and smartphones. As these perception
technologies improve, CCTV is becoming all-pervasive, with predictable reductions
of both public crime and personal privacy.

Machine vision scientists depend on open-source datasets comprising images of
objects that are classified and labeled to allow for comparisons with new images
containing similar objects. The world’s largest object dataset, ImageNet, contains
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more than 14 million crowd-labeled thumbnails, which can be downloaded to help
identify different types of natural places, buildings, rooms, products such as fridges
or dishwashers, furniture, fabrics, clothes, and apparel such as hats or sunglasses.
Vision experts classify database images according to whether they depict “things”
(box-frameable objects such as chairs, people or windows) or “stuff” (matter with
no clear boundaries such as a patch of sky, an office corridor, a wall, a hillside or a
street) (Stanford Vision Lab 2016).

Ironically, the image databases now being assembled to support AI analytics all
depend on the “artificial artificial intelligence” (i.e., the non-electronic knowledge of
humans working online) to label and cross-check the images uploaded by database
compilers. One busy conduit is Amazon’s Mechanical Turk (AMT) portal, which
matches employers (such as public research groups) with freelancers to contribute to
specific human intelligence tasks (HITs). One recent HIT, to assemble and correctly
label 328,000 thumbnail images of “common objects in context” for the Microsoft
COCO dataset, required 70,000 h of work by Microsoft-funded AMT participants
(Lin et al. 2015).

Cameras and scanners capture images that can be analyzed, compared and manip-
ulated, increasingly automatically and accurately. Some powerful processes are
becoming common practices for owners and managers of major buildings and public
places. For example, different faces, facial expressions, poses and walking gaits can
be transferred or morphed between source videos featuring one or more people and
“target” videos involving other people. Security cameras can detect licence plates and
simultaneously track clusters of moving vehicles, even at night. All these observation
systems are being integrated gradually with traffic lights, smartpoles and building
heating, ventilation and cooling (HVAC) systems.

Data networks underpin the sensing and imaging infrastructure that is necessary
to deliver key goals for the Global Earth Observation System of Systems. These
include improving urban and disaster resilience; public health; energy, mineral and
water resource management; infrastructure and transport systems; food security and
agriculture, and healthy, biodiverse ecosystems. These domains overlap—integration
of information and technology solutions is the main point of the GEOSS.

Caution pervaded a recent editorial for Environment and Planning B, in which
Michael Batty warned readers not to expect too much sophisticated intelligence
from “intelligent” machines. He said that machine learning through highly repeti-
tive schemes of pattern recognition is “not much more than sophisticated averaging”
but because machines could rapidly process vast quantities of data, they would con-
tinue to be useful for automated tasks such as monitoring and prediction of energy
uses, delivery of location-based services, and transport. He suggested that machines
would not be capable of replacing humans in planning long-term development of
cities because they could not compute “the hard choices” of how a city functions
economically and is organized in terms of social equity. He suggested both explo-
ration of the limits of AI in understanding cities and “a concerted effort” by planners
to invent new ways of automating urban functions (Batty 2018).
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16.4 Some Recent Urban and Regional Case Studies
with Global Potential

This section highlights seven projects and research groups that have advanced urban
environmental simulations with methods that could be applied in many other cases
and places.

16.4.1 MIT Media Lab Projects, United States

Carlo Ratti’s SENSEable City Lab worked with government leaders in Cambridge,
Massachusetts to prototype the City Scanner project to acquire weather and air quality
data for different precincts using sensors fixed to garbage trucks. Christoph Reinhart’s
Sustainable Design Lab developed an urban modeling interface (umi) program that
evaluates key environmental performances of neighborhoods and cities. First, the area
being studied is architecturally modeled in Rhino 3D, and then the model is analyzed
for walkability, daylighting and several types of energy consumption (Fig. 16.8).

Kent Larson’s City Science group is continuing its CityScope project to model
city precincts using color-coded Lego bricks, which are sensor-tagged and plotted
on screens as data units. Users rapidly move the data bricks to reveal different ways

Fig. 16.8 Energy use analysis of a Rhino 3D city model in the urban modeling interface (umi)
developed by MIT’s sustainable design lab
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to improve the density, proximity to services, and demographic diversity (vibrancy)
of each area. City Science researchers have also prototyped ingenious “mobility on
demand” (MOD) solutions. Their latest persuasive electric vehicle (PEV) can drive
autonomously, even following its human passengers slowly if they decide to walk
themselves; can be driven in bike lanes without the driver requiring a vehicle license;
could be suitable for public sharing and can move both people and goods. In another
project, Larson and Hasier Larrea showed how five hundred people could be housed in
a medium-rise block of 25 sqm “action apartments” with the same footprint as forty-
five conventional car spaces. Since graduation, Larrea has established a company,
Ori, to make and sell these robotically mobile furniture suites.

16.4.2 Almere 2030, the Netherlands

In the Netherlands, one of a few countries noted for consistent innovations in urban
spatial planning, architects MVRDV (Maas van Rijs de Vries) designed a 2030 vision
plan to help the municipality of Almere plan polycentric growth on 250 sq km of
polder land reclaimed in the 1960s (Fig. 16.9). The terrain is three meters lower
than the water level of the adjacent IJseelmeer (lake) so Almere is constantly at risk
of flooding, protected by a system of dykes and sluices. MVRDV’s plan, gradu-
ally underway now, contradicted the popular Western strategy of transport-oriented
development (TOD), where high-rise apartment buildings are clustered around subur-
ban metro stations and new ribbons of low-to-medium-rise housing and commercial
development are encouraged along main bus routes and rail lines.

Fig. 16.9 MVRDV masterplan for four “carpet cities” at Almere, the Netherlands
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Instead, MVRDV proposed four “carpet cities”. IJ-Land, designed with California
architect William McDonough, will be a series of new island nature reserves in the
lake, including 5–10,000 homes. Pampus will be a high-density, medium-rise vil-
lage of 20,000 partly floating homes, with all streets leading to a lakefront boulevard.
Almere Centre will extend the current city center with development of Almere Flori-
ade, a compact and ultragreen neighborhood intended to be the horticultural campus
for the World Expo in 2022. The public arboretum will contain 1,600 new homes,
offices and facilities. In Oosterwold (Freeland), the first residents have begun to build
their own neighborhood, with up to 15,000 new homes to be set in agricultural fields
east of central Almere (MVRDV 1999, 2007, n.d.).

16.4.3 Jade Eco Park, Taiwan, China

French architect Philippe Rahm redesigned an obsolete airport in Taichung to provide
a “meteorological” recreation landscape, Jade Eco Park, where vegetation and paths
are interrupted by freestanding structures comprising white pipes, air ducts, sensors,
filters and other electronic devices (Fig. 16.10). These were designed to mitigate
Taichung’s generally hot, humid climate and air pollution: they blow cool breezes,
release mists or patches of rain, or clean local air to generate three types of artificial
and contained atmospheric experiences: Coolia (four cool zones), Clearia (four areas
of clean air) and Dria (three areas of dry air). Rahm’s team first monitored and mapped
the existing temperatures, humidity and air pollution conditions across the site and
then used computational fluid dynamics to create an atmospherics map of the site. The

Fig. 16.10 Illustration of clean, cool and dry atmospheres generated across the Jade Eco Park in
Taipei, designed by a team led by Philippe Rahm
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new atmospheric zones overlap each other to allow for different sensory experiences
to be selected at different times of day or during the year (Jackson 2018, 54; Rahm
n.d.).

16.4.4 Nocturnal Barcelona, Spain

In Barcelona, the “datatecture” studio 300.000 km/s (speed of light) mapped the
city’s current and potential night-lighting of streets and public squares in a 2017
report for the city council’s Municipal Institute of Urban Landscape and Quality
of Life (Fig. 16.11). The project included analyses and visualizations of data on
mobility, citizens’ activities and business types in each location. The report also
included comparison pairs of day and night photographs of city scenes, a satellite
image of light pollution and the city’s lighting regulations.

Fig. 16.11 Map of night lighting around central Barcelona by 300.000 km/s
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16.4.5 Spatial Information Management Platform, Australia

Cities are complex, adaptive systems (CAS), where various dynamic systems evolve
in interdependent ways. To “digitally twin” (computer-simulate) a city successfully
in the Digital Earth context, this complexity needs to be represented accurately within
the digital framework. Each component of the model must be able to evolve inde-
pendently of the whole. Any viable CAS invariably evolved from a simple system
that worked. Any complex system designed from scratch typically fails and cannot
be repaired.

Modeling the behaviors of real-world complex systems with counterpart digital
systems deepens our knowledge and improves our control of real-world scenarios.
Recent projects undertaken by a Brisbane geospatial planning consultancy, Meta
Moto, have adopted a CAS framework so that complementary systems of record,
engagement, and insight can interact through a common semantic ecosystem support-
ing master data management and spatial data transformation functions. By adhering
to open standards and exchange formats, the complementary systems can be made
agnostic to one another. For example, graphics library transmission format (glTF) is a
royalty-free specification for the efficient transmission and loading of 3D scenes and
models by applications. This format defines the sizes of 3D assets and the runtime
processing needed to unpack and use those assets. It defines an extensible, common
publishing format for 3D content tools and services that streamlines authoring work-
flows and enables interoperable use of content across systems of engagement (such
as web base viewers). Adopting this as a pipeline within a CAS framework ensures
that the uses determine the engagement tools, and the semantic data model drives the
user experience and presentation of the data in these tools. This approach removes
the risks of vendor lock-in and ensures that the system has continuous opportunities
to evolve. Meta Moto recently used glTF for data visualizations supporting Bris-
bane’s Cross River Rail project and the next-generation spatial platform for South
East Water in Melbourne (Fig. 16.12).

16.4.6 Greening Greater Bendigo, Australia

Bendigo, a regional city of 100,000 people in central Victoria, Australia, recently
began to use EO imagery from Europe’s Sentinel satellites to regularly monitor
changes of vegetation around its towns and suburbs. A Melbourne landscape con-
sultancy, Office of Other Spaces, analyzed sixteen multispectral Earth observation
images (captured at 10 m resolution and stacked as a time-series ‘data cube’) to
monitor seasonal and area-specific changes in vegetation throughout the city during
the summer from December 2018 to February 2019. This pilot project allowed the
city council to create new a vegetation cover benchmark (named the consolidated
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Fig. 16.12 Heat mapping of incidents over time is an example of a system of insight for South East
Water, Victoria

mean value, CMV) to clarify the measure of its vegetation cover and determine
any site-specific risks of new building developments destroying existing vegetation
(Fig. 16.13).

16.4.7 Happy, Smelly and Chatty Maps, Britain

Computer scientists with the Cambridge node of the Nokia-Bell Labs network are
advancing a Good City Life program that is intended to support happier citizens—not
necessarily the prevailing corporate-governance agenda of ‘smart’ (time- and cost-
efficient) cities (Aiello et al. 2016; Quercia et al. 2016). Led by Daniele Quercia, the
Bell-Cambridge social dynamics team has been surveying, analyzing and mapping
how people are enjoying—or could better enjoy—the sights, smells, sounds and other
atmospheric experiences of public places that they navigate regularly (Fig. 16.14).
With other computer scientists at Yahoo Labs in London, and with the Universi-
ties of Turin and Sheffield, they analyzed diverse social media tags and developed
sophisticated algorithms which allow users of mobile devices to generate naviga-
tion routes on their GPS map apps (initially tested via OpenStreetMaps for specific
zones of London and Barcelona). The paths they calculate are usually longer than
the quickest journeys but can provide happier scenes, smells and sounds along the
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Fig. 16.13 Time-stacked EO images of Bendigo, analyzed for urban vegetation changes by Mel-
bourne’s Office of Other Spaces

Fig. 16.14 Data-visual street map indicating five types of smells and likely emotions for people
navigating an urban area, by Nokia-Bell Labs, Cambridge, UK
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way. In recent papers, Quercia’s team noted that urban planners and local govern-
ment officials tend to focus on unpleasant odors and acoustics (signaling air or noise
pollution) and mostly ignore desirable smells and sounds.

16.5 Urban Criteria, Process and Standards Taxonomies
and Platforms

Many of the world’s most intelligent and experienced urban professionals are not
digital natives, sometimes refer to themselves as Luddites, and still use hand-inked
diagrams, lists, tables and grammatical sentences to express their ideas. Some of these
thought-leaders have devised schema for systems that could someday be programmed
to analyze development proposals and building performance. This section reviews
some taxonomies (matrices of criteria, goals, procedures and standards) that should
be integrated into the future GEOSS-Digital Earth world-management system. These
develop Fuller’s concepts for what he initially named the 4D Air-Ocean World Town
Plan then termed the World Game and Spaceship Earth. In one of his last books,
Fuller said:

This design revolution must employ a world-around, satellite-interlinked, data-banks-and-
computer-accomplished conversion of present-day, exclusively geocentric, Spaceship Earth
wealth accounting [… to a system where …] computers fed with all the relevant energy-
efficiency facts will be able to demonstrate which uses will produce the greatest long-term
benefit for all humanity (Fuller 1980, 199, 225).

Two critical factors lie at opposite ends of today’s project to deliver Fuller’s vision.
One is the need to decide what data to collect to understand the world’s conditions
and how to organize it effectively (the main concern of UN-GGIM and other UN
technical agencies, the Group on Earth Observations (building the GEOSS Common
Infrastructure, GCI), CODATA, the Open Geospatial Consortium (OGC) and the
(now disbanded) Global Spatial Data Infrastructure Association (GSDI; Crompvoets
et al. 2008). The other challenge is for leaders of international land development
organizations to clarify how to identify and deliver all data relevant to future modeling
of eco-ethical developments. This agenda is being led by the World Bank (Global
Platform for Sustainable Cities), the C40 Large Cities for Climate Change group, the
Council on Tall Buildings and the Urban Habitat (CTBUH), the World Federation
of Engineering Organizations (WFEO), the World Green Building Council (WGBC)
and the OGC-buildingSMART alliance.

Guiding the collection and organization of satellite data are the essential climate
variables (ECVs) for all three domains of our planet’s environment: atmospheric,
hydrographic and terrestrial. The ECV datasets are intended to underpin future eco-
ethical practices in land development, and include river discharges, water use, ground-
water and lake levels, snow cover, glaciers and ice caps, permafrost and seasonally
frozen ground, albedo (surface reflectance), land cover (vegetation types), photosyn-
thetically active radiation, leaf area, biomass, fire disturbance and soil moisture.
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Geodata, urban planning and natural resource administration agencies will need
to collaborate to obtain the ECV data relevant to their domains of governance and
to integrate it with the cadastral and other topographical datasets that they adminis-
ter. Also valuable are the lidar and radar scanning and 3D city modeling data that
are obtained by commercial EO satellite operators (including DigitalGlobe, Airbus
and Urthecast), aerial survey companies (such as AAM, Nearmap and Borbas), and
locality-diverse providers of terrestrial environmental imaging and remote sensing
services.

16.5.1 CityGML and 3D Cadastre

CityGML is an XML-based, 3D vector, open data model for storing and exchanging
3D city and landscape models that is based on the geography markup language
(GML) produced by the Open Geospatial Consortium (OGC) and the International
Standards Organization (ISO TC211). It defines the objects, properties, aggregations
and relations contained in models, allowing for them to be readily compared and for
correctly classified data to be reused. The platform allows for sophisticated analysis
tasks and thematic inquiries relevant to most urban professions and management
functions. CityGML is evolving continuously to improve 3D and 4D city modeling.
Dynamic variations of the properties of a city object can be represented using the
Dynamizer feature type. This enables specific objects in the 3D model to be linked
with simulations or time series data. This can be used to trigger dynamic behaviors
such as transformation of the geometry, thematic data, or the appearance of a specific
object. This event-driven dynamic sentience of a city model is a foundation for
advancing digital twinning of the physical world.

Current urban development approaches require more sophisticated conceptualiza-
tions of spatial data and new tools to holistically facilitate four key spatial planning
tasks: urban management, impact assessment, site and road selection, and strate-
gic planning. Sabri et al. (2015) developed a new framework to leverage current
3D geospatial and data model technologies in urban modeling and analysis. This
framework, including recent insights by Biljecki et al. (2014), adopts a new concep-
tualization for CityGML that covers most 3D city modeling requirements. Sabri’s
team demonstrated how complex 3D urban scenarios enable city designers to have
a greater understanding of existing and proposed urban forms and potential urban
heat islands. The study showed how 3D analysis plays a critical role in examining
the impacts of urban consolidation strategies and the densification of inner cities.
Nevertheless, the 3D level of detail should be enhanced to support more accurate
decision making.

In a recent study, Agius et al. (2018) explained how rule-based 3D city modeling
enables planners to measure the physical impacts of building controls (e.g., heights,
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shadows, setbacks) and the functional impacts (e.g., mixes of land uses). This might
be useful for land administration (including subdivisions) but, if strata title properties
are to be visualized or the public and private ownership of future developments needs
to be analyzed by stakeholders, today’s tools must be improved.

The ability to measure the capacities and implications of underground infras-
tructure (Qiao et al. 2019) and the above-ground services needed for huge future
developments can be added through combinations of 3D cadastre data and BIM
methods. Adopting a 3D cadastre (Aien et al. 2013) will enable users to more accu-
rately evaluate future changes in land and property values, which is a major concern
for many stakeholders involved in inner city redevelopment (Shin 2009).

16.5.2 Graph Databases: Lossless Processes for Data Cities

Graph databases have nodes, edges and properties to represent and store data. They
aid in analysis of many-many relationships and have applications in machine learning,
fraud detection, social media, semantic harmonization and master data management.
Graphs are a key enabler of next-generation spatial platforms for the integrated digital
built environment (IDBE).

Recent Singapore research demonstrates potential for multidirectional lossless
transformation of semantic and geometric data across the paradigms from design
models to open standard formats. With traditional methods, there may be signifi-
cant loss of data integrity and content at each step in the transformation from the
proprietary design files (native BIM) into various OpenBIM standards (IFCs), and
then into CityGML and a city model. This journey wrangles data between multiple
paradigms. By adopting a triple graph-based framework for semantic and geomet-
ric conversions a “complete and near-lossless” mapping between the models can be
achieved (Stouffs 2018). This framework can be applied to bulk and incremental
updates between these models and may be applicable to lossless transformations
between IFC versions (for example, IFC2x3 to IFC4x2) and pivoting from project
information models (PIMs) to asset information models (AIMs) at handover.

Also significant for cities and major infrastructure projects and operations are
graph application platforms for master data management (MDM). Property type
graphs (with metadata at nodes and edges) will also become increasingly important
for building asset registers and to enable sophisticated twinning of a sentient virtual
model with its physical counterpart in the real world.

16.5.3 Open Public Life Data Protocol

Denmark’s Gehl Institute, founded by Jan Gehl and now led by Shin-pei Tsay, has
collaborated with city government agencies in Copenhagen, San Francisco and Seat-
tle to produce a data protocol for assembling and comparing metrics about how
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people use and enjoy public environments. Launched as a beta version in late 2017,
it includes a choice of eight components relevant to any public life survey: gender,
age, mode of mobility, groups, posture, activities, objects (accompanying people) and
“geotag” (which parts of a location are preferred). The protocol document explained
how to structure the survey to record all the information in data tables, to be saved as
CSV files that could be compared with the results of any similarly assembled survey.
Although this project was focused on using digital tools to collect and process the
survey information, it appears to be strongly influenced by Christopher Alexander’s
pattern language classifications (published before personal computers) to help design
comfortable indoor and outdoor places at different scales and for different times and
purposes (Gehl 2017; Alexander et al. 1977).

16.5.4 City Standards: ISO 37120

In 2014, the International Organization for Standardization (ISO) launched its first
suite of indicators to measure and compare the performance of cities across seven-
teen general themes including the economy, energy, governance, health, telecommu-
nications and innovation, transport, waste and water. Developed by the Global City
Indicators Facility (GCIF) at the University of Toronto and promoted by the related
World Council on City Data (WCCD), the ISO 37120 standard for sustainable cities
and communities was updated in 2018. Two subset standards documents, ISO 37122:
Indicators for Smart Cities and ISO 37123: Indicators for Resilient Cities, were also
produced (ISO 2018).

16.5.5 Data Cubes

Launched in 2013 by the national EO team at Geoscience Australia, the Australian
Geoscience Space-Time Data Cube is a system that stacks matching Landsat scenes in
time sequences (currently up to fifteen years) to allow for faster analysis of changing
conditions. The dataset for the whole of Australia amounts to almost four million
scenes and 110 TB of compressed geoTIFF files, which are analyzed by the Raijin
high-performance computing lab in Canberra. Technicians can access the dataset with
a Python API that can generate specific mosaics and stacks of image files, which can
be interpreted via users’ own algorithms (Jackson 2013). The Data Cube system is
the foundation of the Digital Earth Australia national satellite mapping project. It is
supplied freely to research agencies in other countries under the name Open Data
Cube (ODC), under the auspices of the Committee for Earth Observation Satellites
(CEOS n.d.). One ODC was repurposed as the Africa Regional Data Cube, providing
satellite surveys to an initial group of five African nations; it was later expanded to
all 54 African countries as the Digital Earth Africa project (Digital Earth Africa n.d.)
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In 2018, Peter Baumann at Jacobs University in Bremen received German research
funding to lead a BigDataCube project to improve Rasdaman (raster data manager)
software for data cubing satellite imagery from the European Space Agency’s Sen-
tinel constellation (source of the six terabytes per day of new satellite image files
that are stored in Germany’s CODE-DE archive). In addition to the commercial and
free/light versions of Rasdaman, Baumann is developing data cube standards for the
Open Geospatial Consortium (OGC), which works with the International Standards
Organization (ISO; Anon 2018).

16.5.6 Compact Cities

In 2012, the Organization for Economic Cooperation and Development (OECD)
released a list of fourteen characteristics of compact cities, which could be used as
indicators to compare and improve operations. Compact and often high-rise cities
such as Manhattan, Hong Kong and Paris are more efficient than sprawling low-rise
cities with wide traffic thoroughfares, such as Los Angeles and Dubai. The criteria
are high residential and employment densities, mixtures of land uses, a fine grain
of land uses (small sizes of land parcels), strong social and economic interaction,
contiguous development (rather than vacant land or street-level carparks), contained
urban development within demarcated limits, good urban infrastructure (especially
sewage and water mains), multimodal transport, high connectivity of streets (includ-
ing footpaths and bicycle lanes), extensive coverage of impervious surfaces and a
low ratio of open space (OECD 2012).

16.5.7 EcoDesign

Malaysian architect Ken Yeang pioneered ecological strategies for commercial tow-
ers and urban precincts. He clarified an “endemic” (climate and place-responsive)
design system that is now standard practice in urban development. He rejected key
modernist routines for tall buildings to look the same on all four sides, be built around
a central lift core, have sealed windows and be mechanically air conditioned through-
out. Instead, he designed buildings to respond to their different compass aspects and
sun and wind conditions; positioned lift cores on the sides of buildings where they
could best block excessive sun and wind and would allow for courtyards or atria to
be landscaped in the center; introduced natural sunlight and ventilation via openable
windows to the foyer, lift lobbies, fire stairs and toilets; and designed sky gardens
and sunny courtyards on upper levels. By working closely with engineers on climate-
response tests of his building models, he discovered that sky gardens could break
the flows of winds down the surfaces of his towers to reduce gusts for pedestrians
walking on nearby streets and plazas. On upper floor levels, some winds could be
deflected into the buildings to ventilate spaces and cool the structures.
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Yeang first applied green architecture principles to his tall buildings in tropi-
cal cities—beginning with Menara Mesiniaga, an office building in Kuala Lumpur
(1992). His most substantial book, EcoDesign (Yeang 2006), was the first to clarify
an eco-scientific system to design site-sensitive architectural projects anywhere in
the world. His method requires understanding the natural context of each site by
identifying its biome (regional community of diverse species sharing the same cli-
mate and terrestrial conditions). His system also included an “interactions matrix”
that requires four sets of data to be gathered to assess four main ecological impacts
of a building scheme: its relations to its environment, its internal relations, its inputs
(of energy and matter) and its outputs. He urged architects to plan developments to
avoid destroying healthy ecosystems or to rehabilitate damaged ecosystems. He also
described three criteria for modeling any design: a description of the built system, a
description of its environment and a mapping of interactions between the building
and its environment (Yeang 2006, 59–73).

16.5.8 Positive Development

Counterproductive practices in the “sustainable urban development” movement have
been targeted by Janis Birkeland, author of an evidence-based ecological building
theory that she named “positive development” and “net-positive design” (Birkeland
2008). She proposed that every building should be expected to sequester the amount
of carbon used in its operations and the amount of carbon emitted through resource
extraction and consumption. Every building project destroys many tons of the Earth’s
natural resources and the link between mining and construction is the major global
cause of excessive carbon emissions. The nature and extent of this problem are
obscured by green building assessment practices that “measure the wrong things in
the wrong ways”—and that measure negative impacts only up to zero without mea-
suring positive impacts. Birkeland suggested that buildings that support substantial
and permanent planting (green walls and roofs) will amortize carbon far earlier in
their life cycles than if they are only operated with renewable energy sources. She
expected machine-analyzed data to allow for much more comprehensive and accu-
rate analyses of buildings before and after construction, but the issues being recorded
and assessed must be changed and expanded.

16.5.9 Cities and the Digital Earth Nervous System

In a 2010 article for the International Journal of Digital Earth, European scientists
explained Digital Earth as a “metaphor for the organisation and access to digital
information through a multiscale, three-dimensional representation of the globe”
(De Longueville et al. 2010). They extended that vision by forecasting a “self-aware
nervous system” to provide decision makers with improved alerting mechanisms for
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crisis prediction and situational awareness. This goal may prove the most beneficial
for governments and citizens in urban areas—and strategies are essential to clarify
how the relevant officials and stakeholders can contribute to and usefully exploit such
a sophisticated system of automated operations.

New international protocols are essential to give urban authorities rapid access
and accurate, automatic analyses of the data sets relevant to their challenges. Several
international corporations—including Mapbox, Orbital Insight and OmniSci—are
managing and analyzing very large quantities of geodata for government customers
which cannot afford or do not find it feasible to apply the necessary resources and
infrastructure to maintain such sophisticated operations.

One geospatially advanced city (and nation) is Singapore, which ranked fourth
in the 2018 countries geospatial readiness index—not far behind the United States,
United Kingdom and Germany, and ahead of China (Geospatial Media and Commu-
nications 2018). Its extraordinarily integrated government created a national spatial
data infrastructure (NSDI) system in 2009, is locally training urban geotech special-
ists through joint research programs with Switzerland’s ETH Future Cities Lab and
America’s MIT SENSEable Cities Lab (with centers located at the National Univer-
sity of Singapore), has accelerated a Smart Nation policy since 2014, launched the
Virtual Singapore project in 2016 and released the Singapore Geospatial Masterplan
in 2018. Singapore aims to foster “geosmart government”, “geoempowered people”,
and “a thriving geoindustry”.

16.6 Summary

International scientists supporting the Digital Earth and GEOSS visions are apply-
ing satellite and semiconductor-enabled technology to accelerate delivery of Fuller’s
visions for a “4D Air-Ocean World Town Plan” and efficient management of
resources on “Spaceship Earth”. Many governments have been promoting “smart
city” policies and programs since the 1990s, when wireless and mobile telecom-
munications began to be commercialized internationally. The authors of this paper
suggest it is now important to not only emphasize systems that enable humans to
communicate worldwide but also next-generation infrastructure for societies to be
accurately informed about our planet’s environmental conditions and challenges.

At the urban scale of today’s planet-simulation project, there is a need to integrate
area-specific modeling of natural environmental systems with current best practices
in building information modeling and city information modeling. All three meth-
ods must be improved to incorporate real-time streaming of Earth observations data
obtained via sensing and scanning the light and radio waves of the electromagnetic
spectrum. This satellite and semiconductor-enabled movement has been labeled “the
new science of cities”, “geodesign”, “senseable cities”, “digital cities”, and “data
cities”. As De Longueville et al. clarified in 2010, it seems crucial for the Digital Earth
“nervous system” to become self-aware and be able to obtain and respond more auto-
matically to unprecedented quantities of environmental information—far too much
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to be processed by humans. This chapter highlighted some urban advances, strate-
gies, issues and case studies that are significant contributions to this millennium’s
Digital Earth/GEOSS imperative.
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The Way Forward

We have an unparalleled opportunity to turn a flood of raw data into understand-
able information about our society and out planet. This data will include not only
high-resolution satellite imagery of the planet, digital maps, and economic, social,
and demographic information. If we are successful, it will have broad societal and
commercial benefits in areas such as education, decision-making for a sustainable
future, land-use planning, agricultural, and crisis management.

The Digital Earth project could allow us to respond to manmade or natural
disasters—or to collaborate on the long-term environmental challenges we face.

A Digital Earth could provide a mechanism for users to navigate and search for
geospatial information—and for producers to publish it. The Digital Earth would be
composed of both the “user interface”—a browsable, 3D version of the planet avail-
able at various levels of resolution, a rapidly growing universe of networked geospa-
tial information, and the mechanisms for integrating and displaying information from
multiple sources.

A comparison with the World Wide Web is constructive. [In fact, it might build
on several key Web and Internet standards.] Like the Web, the Digital Earth would
organically evolve over time, as technology improves and the information available
expands. Rather than being maintained by a single organization, it would be com-
posed of both publically available information and commercial products and services
from thousands of different organizations. Just as interoperability was the key for the
Web, the ability to discover and display data contained in different formats would be
essential.

I believe that the way to spark the development of a Digital Earth is to sponsor
a testbed, with participation from government, industry, and academia. This testbed
would focus on a few applications, such as education and the environment, as well
as the tough technical issues associated with interoperability, and policy issues such
as privacy. As prototypes became available, it would also be possible to interact with
the Digital Earth in multiple places around the country with access to high-speed
networks, and get a more limited level of access over the Internet.

Clearly, the Digital Earth will not happen overnight.
In the first stage, we should focus on integrating the data from multiple sources

that we already have. We should also connect our leading children’s museums and
science museums to high-speed networks such as the Next Generation Internet so
that children can explore our planet. University researchers would be encouraged to
partner with local schools and museums to enrich the Digital Earth project—possibly
by concentrating on local geospatial information.

Next, we should endeavor to develop a digital map of the world at 1 meter
resolution.

In the long run, we should seek to put the full range of data about our planet and
our history at our fingertips.

In the months ahead, I intend to challenge experts in government, industry,
academia, and non-profit organizations to help develop a strategy for realizing this
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vision. Working together, we can help solve many of the most pressing problems
facing our society, inspiring our children to learn more about the world around them,
and accelerate the growth of a multi-billion dollar industry.



Appendix F
1999 Beijing Declaration on Digital Earth
and 2009 Beijing Declaration on Digital Earth

Beijing Declaration on Digital Earth
December 2, 1999

We, some 500 scientists, engineers, educators, managers and industrial
entrepreneurs from 20 countries and regions assembled here in the historical city
of Beijing, attending the first International Symposium on Digital Earth being orga-
nized by the Chinese Academy of Sciences with co-sponsorship of 19 organiza-
tions and institutions from November 29, 1999 to December 2, 1999, recognize
that humankind, while entering into the new millennium, still faces great challenges
such as rapid population growth, environmental degradation, and natural resource
depletion which continue to threaten global sustainable development;

Noting that global development in the 20th century has been characterized by
rapid advancements in science and technology which have made significant con-
tributions to economic growth and social wellbeing and that the new century will
be an era of information and space technologies supporting the global knowledge
economy;

Recalling the statement by Al Gore, Vice President of the United States of Amer-
ica, on Digital Earth: Understanding Our Planet in the 21st Century—and the state-
ment by Jiang Zemin, President of the People’s Republic of China, on Digital Earth
regarding trends of social, economic, scientific and technological development;

Realizing the decisions made at UNCED and Agenda 21, recommendations made
by UNISPACE III and the Vienna Declaration on Space and Human Development,
which address, among other things, the importance of the Integrated Global Observ-
ing Strategy, the Global Spatial Data Infrastructure, geographic information systems,
global navigation and positioning systems, geo-spatial information infrastructures
and modeling of dynamic processes;

Understanding that Digital Earth, addressing the social, economic, cultural, insti-
tutional, scientific, educational, and technical challenges, allows humankind to visu-
alize the Earth, and all places within it, to access information about it and to under-
stand and influence the social, economic and environmental issues that affect their
lives in their neighborhoods, their nations and the planet Earth;

© The Editor(s) (if applicable) and The Author(s) and European Union 2020
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Recommend that Digital Earth be promoted by scientific, educational and tech-
nological communities, industry, governments, as well as regional and international
organizations;

Recommend also that while implementing the Digital Earth, priority be given to
solving problems in environmental protection, disaster management, natural resource
conservation, and sustainable economic and social development as well as improving
the quality of life of the humankind;

Recommend further that Digital Earth be created in a way that also contributes
to the exploration of, and scientific research on, global issues and the Earth system;

Declare the importance of Digital Earth in achieving global sustainable develop-
ment;

Call for adequate investments and strong support in scientific research and devel-
opment, education and training, capacity building as well as information and technol-
ogy infrastructures, with emphasis, inter alia, on global systematic observation and
modeling, communication networks, database development, and issues associated
with interoperability of geo-spatial data;

Further call for close cooperation and collaboration between governments, public
and private sectors, non-governmental organizations, and international organizations
and institutions, so as to ensure equity in distribution of benefits derived from the
use of Digital Earth in developed and developing economies;

Agree that, as a follow-up to the first International Symposium on Digital Earth
held in Beijing, the International Symposium on Digital Earth should continue to be
organized by interested countries or organizations biannually, on a rotational basis.

Beijing Declaration on Digital Earth
September 12, 2009

We scientists, engineers, educators, entrepreneurs, managers, administrators and
representatives of civil societies from more than forty countries, international orga-
nizations and NGOs, once again, have assembled here, in the historic city of Bei-
jing, to attend the Sixth International Symposium on Digital Earth, organized by
the International Society for Digital Earth and the Chinese Academy of Sciences,
with co-sponsorship of sixteen Chinese Government Departments, Institutions and
international organizations, being held from September 9–12, 2009.

Noting
That Significant global-scale developments on Digital Earth science and technology
have been made over the past ten years, and parallel advances in space information
technology, communication network technology, high-performance computing, and
Earth System Science have resulted in the rise of a Digital Earth data-sharing platform
for public and commercial purposes, so that now Digital Earth is accessible by
hundreds of millions, thus changing both the production and lifestyle of mankind;

Recognizing
The contributions to Digital Earth made by the host countries of the previous Inter-
national Symposia on Digital Earth since November 1999, including China, Canada,
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the Czech Republic, Japan and the USA, and by the host countries of the previous
Summit Conferences on Digital Earth, including New Zealand and Germany, for the
success of the meetings as well as further promotion of Digital Earth;

Further, that the establishment of the International Society for Digital Earth and the
accomplishments of its Executive Committee, the launch of the International Journal
on Digital Earth, and its global contribution to cooperation and data exchange;

That the themes of the previous seven meetings: Moving towards Digital Earth,
Beyond Information Infrastructure, Information Resources for Global Sustainability,
Digital Earth as Global Commons, Bring Digital Earth down to Earth, Digital Earth
and Sustainability, Digital Earth and Global Change, and Digital Earth in Action,
have laid out a panoramic scenario for the future growth of Digital Earth;

That Digital Earth will be asked to bear increased responsibilities in the years to
come, in the face of the problems of sustainable development;

Further Recognizing
That Digital Earth should play a strategic and sustainable role in addressing such
challenges to human society as natural resource depletion, food and water insecurity,
energy shortages, environmental degradation, natural disasters response, population
explosion, and, in particular, global climate change;

That the purpose and mission of the World Information Summit of 2007, the
Global Earth Observation System Conference of 2007, and the upcoming United
Nations Climate Change Conference of 2009, and that Digital Earth is committed to
continued close cooperation with other scientific disciplines;

Realizing
That Digital Earth is an integral part of other advanced technologies including: earth
observation, geo-information systems, global positioning systems, communication
networks, sensor webs, electromagnetic identifiers, virtual reality, grid computation,
etc. It is seen as a global strategic contributor to scientific and technological devel-
opments, and will be a catalyst in finding solutions to international scientific and
societal issues;

We Recommend

(a) That Digital Earth expand its role in accelerating information transfer from theo-
retical discussions to applications using the emerging spatial data infrastructures
worldwide, in particular, in all fields related to global climate change, natural
disaster prevention and response, new energy-source development, agricultural
and food security, and urban planning and management;

(b) Further, that every effort be undertaken to increase the capacity for information
resource-sharing and the transformation of raw data to practical information and
applications, and developed and developing countries accelerate their programs
to assist less-developed countries to enable them to close the digital gap and
enable information sharing;
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(c) Also, that in constructing the Digital Earth system, efforts must be made to take
full advantage of next-generation technologies, including: earth observation,
networking, database searching, navigation, and cloud computing to increase
service to the public and decrease costs;

(d) Further, that the International Society for Digital Earth periodically take the
lead in coordinating global scientific research, consultations and popular science
promotion to promote the development of Digital Earth;

(e) Expanding cooperation and collaboration between the International Society
for Digital Earth and the international community, in particular with inter-
governmental organizations, and international non-governmental organizations;

(f) Extending cooperation and integration with Government Departments, the
international Scientific and Educational community, businesses and companies
engaged in the establishment of Digital Earth;

We Call for
Support from planners and decision-makers at all levels in developing plans, poli-
cies, regulations, standards and criteria related to Digital Earth, and appropriate
investments in scientific research, technology development, education, and popular
promotion of the benefits of Digital Earth.


	Preface
	Acknowledgements
	List of Editors
	Editors-in-Chief
	Managing Editors

	Contents
	About the Editors-in-Chief
	Digital Earth Technologies
	2 Digital Earth Platforms
	2.1 Introduction
	2.2 Discrete Global Grid Systems
	2.2.1 Initial Domain
	2.2.2 Cell Type
	2.2.3 Refinement
	2.2.4 Projection
	2.2.5 Indexing

	2.3 Scientific Digital Earths
	2.4 Public and Commercial Digital Earth Platforms
	2.4.1 Latitude/Longitude Grids
	2.4.2 Geodesic DGGSs
	2.4.3 Installations: DESP

	2.5 Discrete Global Grid System Standards
	2.5.1 Standardization of Discrete Global Grid Systems
	2.5.2 Core Requirements of the OGC DGGS Abstract Specification
	2.5.3 The Future of the DGGS Standard
	2.5.4 Linkages Between DGGS and Other Standards Activities

	References

	3 Remote Sensing Satellites for Digital Earth
	3.1 Development of Remote Sensing
	3.1.1 Overview of Remote Sensing
	3.1.2 Development of Remote Sensing Satellites

	3.2 Land Observation Satellites
	3.2.1 US Land Observation Satellites
	3.2.2 European Land Observation Satellites
	3.2.3 China’s Land Observation Satellites
	3.2.4 Other Land Observation Satellites

	3.3 Ocean Observation Satellites
	3.3.1 US Ocean Observation Satellites
	3.3.2 European Ocean Observation Satellites
	3.3.3 China’s Ocean Observation Satellites
	3.3.4 Other Ocean Observation Satellites

	3.4 Meteorological Observation Satellites
	3.4.1 US Meteorological Observation Satellites
	3.4.2 European Meteorological Observation Satellites
	3.4.3 China’s Meteorological Observation Satellites
	3.4.4 Other Meteorological Observation Satellites

	3.5 Trends in Remote Sensing for Digital Earth
	References

	4 Satellite Navigation for Digital Earth
	4.1 Introduction
	4.2 Global Navigation Satellite System
	4.2.1 BDS
	4.2.2 GPS
	4.2.3 GLONASS
	4.2.4 Galileo

	4.3 GNSS Augmentation Systems
	4.3.1 Wide-Area Differential Augmentation System
	4.3.2 Global Differential Precise Positioning System
	4.3.3 Local Area Differential Augmentation System
	4.3.4 Local Area Precise Positioning System

	4.4 Applications in Digital Earth Case Studies
	4.4.1 Terrestrial Reference System
	4.4.2 Time System
	4.4.3 High-Precision Positioning
	4.4.4 Location-Based Service

	References

	5 Geospatial Information Infrastructures
	5.1 Introduction
	5.2 A Brief History of Geospatial Information Infrastructures
	5.2.1 Geospatial Information Infrastructure Milestones
	5.2.2 Architectural Evolutions in Geospatial Information Infrastructure Development

	5.3 Geospatial Information Infrastructures Today
	5.3.1 The Evolution of Geospatial Information on the Web
	5.3.2 Geospatial Information Infrastructures Champion Openness
	5.3.3 Capacity Building and Learning for Geospatial Information Infrastructures

	5.4 Recent Challenges and Potential for Improvement
	5.4.1 Strengthened Role of Semantics
	5.4.2 Is Spatial Still Special?

	5.5 Conclusion and Outlook
	References

	6 Geospatial Information Processing Technologies
	6.1 Introduction
	6.2 High-Performance Computing
	6.2.1 The Concept of High-Performance Computing: What and Why
	6.2.2 High-Performance Computing Platforms
	6.2.3 Spatial Database Management Systems and Spatial Data Mining
	6.2.4 Applications Supporting Digital Earth
	6.2.5 Research Challenges and Future Directions

	6.3 Online Geospatial Information Processing
	6.3.1 Web Service-Based Online Geoprocessing
	6.3.2 Web (Coverage) Processing Services
	6.3.3 Online Geoprocessing Applications in the Context of Digital Earth
	6.3.4 Research Challenges and Future Directions

	6.4 Distributed Geospatial Information Processing
	6.4.1 The Concept of Distributed Geospatial Information Processing: What and Why
	6.4.2 Fundamental Concepts and Techniques
	6.4.3 Application Supporting Digital Earth
	6.4.4 Research Challenges and Future Directions

	6.5 Discussion and Conclusion
	References

	7 Geospatial Information Visualization and Extended Reality Displays
	7.1 Introduction
	7.2 Visualizing Geospatial Information: An Overview
	7.2.1 Representation
	7.2.2 User Interaction and Interfaces

	7.3 Understanding Users: Cognition, Perception, and User-Centered Design Approaches for Visualization
	7.3.1 Making Visualizations Work for Digital Earth Users

	7.4 Geovisual Analytics
	7.4.1 Progress in Geovisual Analytics
	7.4.2 Big Data, Digital Earth, and Geovisual Analytics

	7.5 Visualizing Movement
	7.5.1 Trajectory Maps: The Individual Journey
	7.5.2 Flow Maps: Aggregated Flows Between Places
	7.5.3 Origin-Destination (OD) Maps
	7.5.4 In-Flow, Out-Flow and Density of Moving Objects

	7.6 Immersive Technologies—From Augmented to Virtual Reality
	7.6.1 Essential Concepts for Immersive Technologies
	7.6.2 Augmented Reality
	7.6.3 Mixed Reality

	7.7 Virtual Reality
	7.7.1 Virtual Geographic Environments
	7.7.2 Foundational Structures of VGEs

	7.8 Dashboards
	7.9 Conclusions
	References

	8 Transformation in Scale for Continuous Zooming
	8.1 Continuous Zooming and Transformation in Scale: An Introduction
	8.1.1 Continuous Zooming: Foundation of the Digital Earth
	8.1.2 Transformation in Scale: Foundation of Continuous Zooming
	8.1.3 Transformation in Scale: A Fundamental Issue in Disciplines Related to Digital Earth

	8.2 Theories of Transformation in Scale
	8.2.1 Transformation in Scale: Multiscale Versus Variable Scale
	8.2.2 Transformations in Scale: Euclidean Versus Geographical Space
	8.2.3 Theoretical Foundation for Transformation in Scale: The Natural Principle

	8.3 Models for Transformations in Scale
	8.3.1 Data Models for Feature Representation: Space-Primary Versus Feature-Primary
	8.3.2 Space-Primary Hierarchical Models for Transformation in Scale
	8.3.3 Feature-Primary Hierarchical Models for Transformation in Scale
	8.3.4 Models of Transformation in Scale for Irregular Triangulation Networks
	8.3.5 Models for Geometric Transformation of Map Data in Scale
	8.3.6 Models for Transformation in Scale of 3D City Representations

	8.4 Mathematical Solutions for Transformations in Scale
	8.4.1 Mathematical Solutions for Upscaling Raster Data: Numerical and Categorical
	8.4.2 Mathematical Solutions for Downscaling Raster Data
	8.4.3 Mathematical Solutions for Transformation (in Scale) of Point Set Data
	8.4.4 Mathematical Solution for Transformation (in Scale) of Individual Lines
	8.4.5 Mathematical Solutions for Transformation (in Scale) of Line Networks
	8.4.6 Mathematical Solutions for Transformation of a Class of Area Features
	8.4.7 Mathematical Solutions for Transformation (in Scale) of Spherical and 3D Features

	8.5 Transformation in Scale: Final Remarks
	References

	9 Big Data and Cloud Computing
	9.1 Introduction
	9.2 Big Data Sources
	9.3 Big Data Analysis Methods
	9.3.1 Data Preprocessing
	9.3.2 Statistical Analysis
	9.3.3 Nonstatistical Analysis

	9.4 Architecture for Big Data Analysis
	9.4.1 Data Storage Layer
	9.4.2 Data Query Layer
	9.4.3 Data Processing Layer

	9.5 Cloud Computing for Big Data
	9.5.1 Cloud Computing and Other Related Computing Paradigms
	9.5.2 Introduction to Cloud Computing
	9.5.3 Cloud Computing to Support Big Data

	9.6 Case Study: EarthCube/DataCube
	9.6.1 EarthCube
	9.6.2 Data Cube

	9.7 Conclusion
	References

	10 Artificial Intelligence
	10.1 Introduction
	10.2 Traditional and Statistical Machine Learning
	10.2.1 Supervised Learning
	10.2.2 Unsupervised Learning
	10.2.3 Dimension Reduction

	10.3 Deep Learning
	10.3.1 Convolutional Networks
	10.3.2 Recurrent Neural Networks
	10.3.3 Variational Autoencoder
	10.3.4 Generative Adversarial Networks (GANs)
	10.3.5 Dictionary-Based Approaches
	10.3.6 Reinforcement Learning

	10.4 Discussion
	10.4.1 Reproducibility
	10.4.2 Ownership and Fairness
	10.4.3 Accountability

	10.5 Conclusion
	References

	11 Internet of Things
	11.1 Introduction
	11.2 Definitions and status quo of the IoT
	11.2.1 One Concept, Many Definitions
	11.2.2 Our Definition
	11.2.3 Early Works on the Interplay Between DE and the IoT
	11.2.4 IoT Standards Initiatives from DE

	11.3 Interplay Between the IoT and DE
	11.3.1 Discoverability, Acquisition and Communication of Spatial Information
	11.3.2 Spatial Understanding of Objects and Their Relationships
	11.3.3 Taking Informed Actions and Acting Over the Environment (ACT)

	11.4 Case Studies on Smart Scenarios
	11.5 Frictions and Synergies Between the IoT and DE
	11.5.1 Discoverability, Acquisition and Communication of Spatial Information
	11.5.2 Spatial Understanding of Objects and Their Relationships
	11.5.3 Taking Informed Actions and Acting Over the Environment

	11.6 Conclusion and Outlook for the Future of the IoT in Support of DE
	References

	12 Social Media and Social Awareness
	12.1 Introduction: Electronic Footprints on Digital Earth
	12.2 Multifaceted Implications of Social Media
	12.3 Opportunities: Human Dynamics Prediction
	12.3.1 Public Health
	12.3.2 Emergency Response
	12.3.3 Decision Making
	12.3.4 Social Equity Promotion

	12.4 Challenges: Fake Electronic Footprints
	12.4.1 Rumors
	12.4.2 Location Spoofing
	12.4.3 Privacy Abuse

	12.5 From Awareness to Action
	12.5.1 Modeling the Geographies of Social Media
	12.5.2 Detecting Location Spoofing Through Geographic Knowledge
	12.5.3 Connecting Social Media with the Real World

	12.6 Conclusion
	References

	Digital Earth for Multi-domain Applications
	13 Digital Earth for Sustainable Development Goals
	13.1 Fundamentals of Digital Earth for the Sustainable Development Goals
	13.2 Information and Knowledge Relevant to National Implementation of the SDGs
	13.2.1 How the SDGs Are Monitored and Reported
	13.2.2 Information Needs for Implementation of the SDGs

	13.3 State of the Art for the SDGs in DE
	13.4 Case Study of Australia: Operationalizing the Indicator Framework of the SDGs Through DE and a Participatory Process
	13.4.1 DEA to Map Land Cover and Dynamics Over Time
	13.4.2 DEA in Support of SDG Indicator 15.3.1
	13.4.3 Digital Earth in Support of SDG 17: Strengthen Means of Implementation
	13.4.4 The Way Forward: Partnerships to Strengthen DEA in Support of the SDGs

	13.5 Big Earth Data for the SDG: Prospects
	13.5.1 R&D and Technology
	13.5.2 Normativity, Governance and Institutional Arrangements
	13.5.3 Science-Policy Interface

	13.6 Conclusion
	References

	14 Digital Earth for Climate Change Research
	14.1 Introduction
	14.2 Digital Earth and the Essential Climate Variables
	14.2.1 Earth Observation Data Parameters and Their Capabilities
	14.2.2 Heterogeneous Changes in Temperature
	14.2.3 Heterogeneous Changes in Precipitation
	14.2.4 Extreme Climate Events

	14.3 Interactions Between Climate and Society Through Space and Time
	14.3.1 Greenhouse Gas Exchange
	14.3.2 Connectivity and Teleconnection in the Earth System

	14.4 Impacts and Response
	14.4.1 Ecosystems
	14.4.2 Water Cycle and Water Resources
	14.4.3 Coastline, Urban Areas, and Infrastructure

	14.5 Multisource Digital Earth for Studying Climate Change Phenomena
	14.5.1 Glaciers
	14.5.2 Lakes
	14.5.3 Vegetation
	14.5.4 Radiation

	14.6 Digital Earth to Inform Climate Adaptation, Mitigation, and Sustainable Development
	References

	15 Digital Earth for Disaster Mitigation
	15.1 Introduction
	15.2 Terminology and Research Organization Efforts
	15.3 Development of Early Warning (EW), Disaster Risk Management (DRM) and Disaster Risk Reduction (DRR) Concepts
	15.4 Digital Earth for the Future of Disaster Mitigation and DRR: Innovative Support of the Implementation of the Sendai Framework
	15.4.1 Sendai Disaster Reduction Conference Targets
	15.4.2 Global Development Policy Framework (GDPF)
	15.4.3 U.N. GGIM
	15.4.4 Copernicus—A European Contribution to GEOSS
	15.4.5 Digital Belt and Road Program—Disaster Efforts
	15.4.6 GGIM and DBAR Comparisons and Potential

	15.5 Digital Earth for National and Local Disaster Risk Assessment
	15.5.1 National Level
	15.5.2 Local Level—Cities and Urban Areas
	15.5.3 Existing Methodologies for Risk Assessment
	15.5.4 Using Maps for Risk Assessment
	15.5.5 The Benefits of Digital Earth for Risk Assessment—Using Dynamic Data

	15.6 Digital Earth and Disaster Risk Mapping Technology
	15.6.1 The Role of Cartography in Disaster Risk Mapping
	15.6.2 Use Case Examples
	15.6.3 Use Case Adaptation Principles
	15.6.4 Context Map Composition
	15.6.5 Existing Symbol Systems for Disaster Management
	15.6.6 Opportunities for New Disaster Risk Mapping Technologies
	15.6.7 Future Directions—New Symbol System for Disaster Management (SSDM)

	15.7 Conclusion
	References

	16 Digital City: An Urban Perspective on Digital Earth
	16.1 Introduction: Satellites Meet Cities
	16.2 Global and Dynamic Data Mapping of Cities: A New Cartography Paradigm
	16.3 Global Advances in Computer Design, Analysis and Construction
	16.3.1 Environmental Performance Control Envelopes
	16.3.2 Geodesign
	16.3.3 Digital Engineering and Digital Twinning Standards
	16.3.4 Astrospatial Architecture
	16.3.5 Artificial Intelligence

	16.4 Some Recent Urban and Regional Case Studies with Global Potential
	16.4.1 MIT Media Lab Projects, United States
	16.4.2 Almere 2030, the Netherlands
	16.4.3 Jade Eco Park, Taiwan, China
	16.4.4 Nocturnal Barcelona, Spain
	16.4.5 Spatial Information Management Platform, Australia
	16.4.6 Greening Greater Bendigo, Australia
	16.4.7 Happy, Smelly and Chatty Maps, Britain

	16.5 Urban Criteria, Process and Standards Taxonomies and Platforms
	16.5.1 CityGML and 3D Cadastre
	16.5.2 Graph Databases: Lossless Processes for Data Cities
	16.5.3 Open Public Life Data Protocol
	16.5.4 City Standards: ISO 37120
	16.5.5 Data Cubes
	16.5.6 Compact Cities
	16.5.7 EcoDesign
	16.5.8 Positive Development
	16.5.9 Cities and the Digital Earth Nervous System

	16.6 Summary
	References

	17 Digital Heritage
	17.1 A Brief Introduction to Digital Heritage
	17.2 Digital Natural Heritage
	17.2.1 Technology and Research Methods of Digital Natural Heritage
	17.2.2 Case Study of Digital Natural Heritage

	17.3 Digital Cultural Heritage
	17.3.1 Digital Cultural Heritage Research and Technical Methods
	17.3.2 Digital Cultural Heritage Application Cases

	17.4 The Development Trend of Digital Heritage
	17.4.1 The Depiction of Heritage Objects via Remote Sensing Technology Is Becoming Increasingly Precise
	17.4.2 The Demand for Durable Digital Heritage Preservation Media Will Continue to Drive Innovation
	17.4.3 Data Integration, Development, Publication and Dissemination for Heritage Protection Platform Software Urgently Need to Be Developed
	17.4.4 Increasingly Convenient Digital Technologies Are Adapted to Non-professional and Wide Public Participation in Heritage Conservation
	17.4.5 Quantitative Research Based on the Value Assessment of Natural and Cultural Heritage via Digital Technology
	17.4.6 The Study of Effective Protection of Digital Heritage and Legal Protection Is Becoming Increasingly Urgent

	References

	18 Citizen Science in Support of Digital Earth
	18.1 Introduction
	18.2 Definitions
	18.3 Digital Earth Technologies for Citizen Science
	18.4 OpenStreetMap
	18.4.1 Social Ecosystem
	18.4.2 Technological Ecosystem
	18.4.3 Other Citizen Science Projects: Social Innovation and Public Engagement

	18.5 Forms of Citizen Engagement and Distribution of Participation
	18.5.1 The “Power Law” Distribution of Participation
	18.5.2 Citizen Scientists Are a Minority and Have Specific Demographics
	18.5.3 Not Only Science: Citizen Science for Digital Social Innovation and the Role of Local Authorities and Governments

	18.6 Conclusions
	References

	19 The Economic Value of Digital Earth
	19.1 Introduction: Framing the Issue
	19.2 Different Viewpoints on the Value of Earth Observation
	19.2.1 Definition of EO
	19.2.2 Value for Whom?

	19.3 Review of Approaches and Methodologies to Assess the Value of EO
	19.3.1 Value of Information (VOI) Approach
	19.3.2 Economic Approaches
	19.3.3 Approaches Concerned with Maximization of EO Value

	19.4 Conclusions
	References

	Digital Earth Regional & National Development
	20 Digital Earth in Europe
	20.1 Introduction
	20.2 Information Infrastructure
	20.3 Big Data from Space
	20.3.1 Copernicus
	20.3.2 Data Access and Information Services
	20.3.3 Thematic Exploitation Platforms
	20.3.4 EuroGEOSS
	20.3.5 Galileo

	20.4 Citizen Science
	20.4.1 Citizen Science in the European Policy Landscape
	20.4.2 FP7 and H2020 Citizen Science Projects
	20.4.3 Initiatives and Platforms in EU Member States and Public Organizations

	20.5 Digital Europe and Horizon Europe
	20.6 Conclusions
	References

	21 Digital Earth in Australia
	21.1 Introduction
	21.2 An Historical Context of Geospatial Initiatives
	21.2.1 National Initiatives
	21.2.2 State Initiatives

	21.3 Digital Earth Australia
	21.3.1 Product Development for Enhanced Access
	21.3.2 Implementing Projects to Enhance Take-up

	21.4 Australian Use Case Examples
	21.4.1 Agricultural Sector—FarmMap4D
	21.4.2 Education Sector—Research Group (ISDE Research Node, Australia)
	21.4.3 Disaster Management—NSW Volunteer Rescue Association

	21.5 Conclusions
	References

	22 Digital Earth in China
	22.1 Introduction
	22.2 China’s Digital Earth Strategy and Policy
	22.2.1 National Macro Strategic Plans for Digital Earth in China
	22.2.2 Policies and Plans for Development of Digital Earth in China

	22.3 Infrastructure for Digital Earth in China
	22.4 China’s Experience in the Development of Digital Provinces and Cities
	22.4.1 Digital Fujian
	22.4.2 Digital Hong Kong and Digital Macao

	22.5 Development of Digital Earth Applications in China
	22.5.1 Digitalization: Drawing and Depicting China
	22.5.2 Digitalization to Make China Different
	22.5.3 Digitalization to Drive and Promote China’s Development

	22.6 Summary
	References

	23 Digital Earth in Russia
	23.1 Introduction
	23.2 Prehistory and Precursors of Digital Earth in Russia
	23.2.1 Cultural Precursors of Digital Earth in Russia
	23.2.2 Technological Prerequisites of Digital Earth in Russia

	23.3 Introducing Digital Earth in Russia
	23.4 Establishing the Digital Earth Russia Community
	23.5 Exploration of Digital Earth in Russia
	23.6 Digital Earth: Russian Government Initiatives
	23.7 Infrastructure of Digital Earth in Russia
	23.7.1 Remote Sensing Constellation
	23.7.2 National Global Navigation Satellite System
	23.7.3 The International Global Aerospace System (IGMAS)
	23.7.4 The ETRIS-DZZ System
	23.7.5 The SPHERE Project
	23.7.6 Services and Applications

	23.8 Digital Earth Russia: Private Business Initiatives
	23.9 Conclusions
	References

	Digital Earth Education and Ethics
	24 Digital Earth Education
	24.1 Introduction
	24.2 Digital Earth for K-12
	24.3 Digital Earth for Higher Education
	24.3.1 Instructional Technologies
	24.3.2 Academic Curricula
	24.3.3 Experiential Learning: Academic Certificates and Internships

	24.4 Digital Earth Education to Professional Careers
	24.4.1 Geospatial Competency-Based Models
	24.4.2 Geospatial Frameworks
	24.4.3 Geospatial Credentials: Certificate Versus Certification
	24.4.4 Geospatial Intelligence Bridging Academic and Professional Connections

	24.5 The Future of Digital Earth Education
	24.5.1 DE Future in K-12
	24.5.2 Micro-credentials
	24.5.3 Challenges and Opportunities for DE Education and Professional Development

	References

	25 Digital Earth Ethics
	25.1 Introduction
	25.2 Transforming Volunteered and Observed Data to Inferred Data
	25.3 A Typology for (Geo)Privacy
	25.4 Measures to Preserve Geoprivacy
	25.5 Toward a Sociocultural Understanding of Privacy
	25.6 Toward Digital Earth Ethics: The Ethics of Where
	References

	26 Digital Earth Challenges and Future Trends
	26.1 Introduction
	26.2 Major Challenges for Digital Earth
	26.2.1 Big Data Management in Digital Earth
	26.2.2 Large-Scale Digital Earth Platform Implementation and Construction
	26.2.3 Strengthening Fundamental Research for Digital Earth
	26.2.4 Developing an Ecosystem for Digital Earth
	26.2.5 Addressing Social Complexities
	26.2.6 Diversified Curricula Toward Digital Earth Education

	26.3 New Opportunities and Future Trends in Digital Earth
	26.3.1 New Technologies
	26.3.2 New Services
	26.3.3 New Applications
	26.3.4 New Paradigms
	26.3.5 New Challenges

	26.4 Conclusions
	References

	Appendix A International Society for Digital Earth (ISDE) History and Milestones
	Appendix B International Symposium on Digital Earth and Digital Earth Summit
	International Symposium on Digital Earth
	Digital Earth Summit
	Appendix C The Organization of the International Society for Digital Earth (ISDE)
	ISDE Bureau (2015–2019)
	ISDE Councilors (2015–2019)
	ISDE Executive Committee (2014–2015)
	ISDE Executive Committee (2011–2014)
	ISDE Executive Committee (2006–2011)
	National and Regional ISDE Chapters
	ISDE Secretariat
	Appendix D Journals Published by the International Society for Digital Earth
	International Journal of Digital Earth
	Big Earth Data
	Appendix E The Digital Earth: Understanding Our Planet in the 21st Century
	Technologies Needed for a Digital Earth
	Potential Applications
	The Way Forward
	Appendix F 1999 Beijing Declaration on Digital Earth and 2009 Beijing Declaration on Digital Earth

