
Brian Fitzgerald · Klaas-Jan Stol · Sten Minör
Henrik Cosmo

The Digitalization Journey

www.dbooks.org

https://www.dbooks.org/

Scaling a Software Business

Brian Fitzgerald • Klaas-Jan Stol • Sten Minör • Henrik Cosmo

Scaling a Software Business
The Digitalization Journey

www.dbooks.org

https://www.dbooks.org/

Brian Fitzgerald
Lero - Irish Software Research Centre
University of Limerick
Limerick, Ireland

Klaas-Jan Stol
University of Limerick
Limerick, Ireland

Sten Minör
Mobile and Pervasive Comuting Institute (MAPCI)
Lund University
Lund, Sweden

Henrik Cosmo
Mobile and Pervasive Comuting Institute (MAPCI)
Lund University
Lund, Sweden

ISBN 978-3-319-53115-1 ISBN 978-3-319-53116-8 (eBook)
DOI 10.1007/978-3-319-53116-8

Library of Congress Control Number: 2017941052

© The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a
credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Illustrations and design: Ove Jansson, www.monpetitstudio.fr

This work was supported, in part, by the Swedish Innovation Agency VINNOVA and Enterprise
Ireland grant IR/2013/0021 and Science Foundation Ireland grant 13/RC/2094 and co-funded
under the European Regional Development Fund through the Southern & Eastern Regional
Operational Programme to Lero—the Irish Software Research Centre (www.lero.ie).

www.dbooks.org

https://www.dbooks.org/

6

Proven ways to
scale a business

7

 This book is a product of a research project that tackled one of the key
challenges currently facing the software industry in Europe, and indeed

worldwide, namely, how do we transform our organization as software increas-
ingly becomes a critical part of our business? How can we support the digitali-

zation of assets and offerings?

This book presents the Scaling Management Framework (SMF), which is unique in
the sense that it supports the above transformation in three domains: 1) products
systems & services, 2) organization & business, and 3) methods & processes. These
domains are interdependent and are integrated into a single model in the SMF.

The framework was developed in the SCALARE (“SCAling softwARE”) proj-
ect which was a pan-European project funded under the auspices of the ITEA
(Information Technology for European Advancement), a program in the EU-
REKA Cluster program that supports industry-driven research in the area of
software-intensive systems & services.

The intensive case-study approach adopted throughout the project makes the
framework highly relevant for today’s businesses. The project members have
drawn on over 300 years of software engineering and senior management
experience conducting more than 30 company case studies companies in
Germany, Ireland, Spain and Sweden.

The project was supported by Enterprise Ireland, Science Foundation
Ireland, and the Swedish innovation agency, Vinnova.

www.dbooks.org

https://www.dbooks.org/

8

The digitalization transformation in both industry and society has been ongoing for several
decades. Companies in the telecom industry were early movers, whereas the automotive industry
is currently in the midst of their digitalization journey. Digitalization implies a shift in focus from
hardware and products towards software and services and possibly disruptive business models.
This is a game-changer for most companies and the race is on right now.

You may be in a situation where you want to take the next step to increase your usage of soft-
ware and services in your offerings. You need to do something, but you don’t know what options
you have, nor what actions you need to take.

http://www.scalare.org*

The SCALARE project* draws on the Scal-
ing Management Framework (SMF) to provide
guidance on creating a roadmap for different
scaling approaches such as Open Source, Lean
& Agile and global software development.

9

The answer to the question of “how to make a roadmap of our transformation?” can be found in

that is relevant to you. The framework helps you to understand your own situation. It will help pin
down what you want to achieve and how to use this knowledge to search for valid solutions. It also pro-
vides guidance to help include all personnel in the process, to use their knowledge about the company.

The SCALARE team’s objectives

There are many models that can be used to analyze and assess companies and their
products. Often they have a grading system to evaluate whether they are good or bad.

Considering the increasing importance of software throughout the entire company, the
model must cover all perspectives of a software business, not just the technical aspects.

This resulted in the integration of the three domains,
product, process, and organization into a single model.

The
only one way to accomplish the transformation. Presenting a smorgasbord of possi-
ble ways to improve, there would inevitably be arguments for different and additional
practices. Instead, the SMF became a mechanism to design a structure where relevant
real experiences could be added.

The model does not produce an evaluation grade for activities,
but can be used to capture and describe many different situations.

Even though this reduced the model itself and made it simpler, it was still what we
desired and needed.

www.dbooks.org

https://www.dbooks.org/

10

Co-created by industry and academia professionals

Brian Fitzgerald
Lero/University of Limerick

Chief Scientist with Lero,
the Irish Software Re-
search Centre. He holds
the Frederick Krehbiel II
Professorship in Innova-
tion in Business and Tech-
nology at the University
of Limerick. His research
focuses on innovative
software development ap-
proaches.

Sten Minör
MAPCI/Lund University

PhD in Computer Science.
Industrial experience from
Ericsson and Sony Erics-
son where he has held
several senior positions
within software devel-
opment and strategy. He
is innovation director at
MAPCI - Mobile and Per-
vasive Computing Institute
at Lund University and
CEO of Sigrun Software
Institute.

Klaas-Jan Stol
Lero/University of Limerick

Research Fellow with Lero,
the Irish Software Re-
search Centre. He holds a
PhD in Software Engineer-
ing from the University
of Limerick. His research
focuses contemporary
software development
approaches, in particular
innersourcing, opensourc-
ing, and crowdsourcing
.

Henrik Cosmo
MAPCI/Lund University

MSc and Tech. Lic. in Soft-
ware Engineering. 25 years
of experience from the
global wireless industry.
Has held senior positions
in large multinational com-
panies as well as in small
Silicon Valley startups, in
organizations developing
and operating software.

Ove Jansson
Mon Petit Studio

Visual communicator since 2007.
Prior to this, MSc in Computer
Science and 12 years in software
development and management.
He visualizes time machines and
other good ideas, such as the SMF.

This book has been written by the team that cre-
ated the SMF. We have reduced the SMF to its
essence, a format that’s easier to comprehend.
But it’s not a handbook. It’s for senior executives
who need a proven guide to approach a transfor-
mation project. The book also facilitates commu-
nication, by establishing a common terminology.

11

Jonas Ahnlund, Lund University
Nicolas Martin-Vivaldi, Addalot
Even Andre Karlsson, Addalot
Horst Hientz, Kugler Maag
Hans-Jürgen Kugler, Kugler Maag

Max
Sunemark
Addalot

MSc in Electrical Engineer-
ing. Over 20 years of ex-
perience as SW developer,
project and line manager.
Has held several senior
manager positions at large
international companies.

Carl-Eric
Mols
Sony Mobile
Communications

Has close to 30 years of
experience on telecom-
munication and mobile in-
dustry software, the last 8
years holding the position
as Head of Open Source.

Ulrika
Bergman
Tieto

Customer Executive, Tieto.
Holds a MSc in Electrical
Engineering. More than
20 years of experience in
large IT projects in telecom
and the public sector.

Anders
Mattsson
Husqvarna

PhD in Software Engineer-
ing. He has 27 years of ex-
perience in industrial soft-
ware development and
research with focus on SW
architecture and model
driven development.

Krzysztof Wnuk, Lund University
Ola Morin, Softhouse
Johan Kardell, Softhouse
Marcus Degerman, Softhouse
Donal O’Brien, QUMAS

Martin
Höst
Lund University

Professor in Software En-
gineering at Lund Univer-
sity, Sweden. His main
research interests include
software quality and em-
pirical software engineer-
ing.

Miguel Oltra
Rodríguez
Schneider
Electric

MSc in Telecommunica-
tion Engineering. 15 years
of experience in research
projects on topics such
as software product lines,
OSS practices & SOA.

Anders
Sixtensson
Softhouse

MSc and Tech. lic. in Electri-
cal and SW Engineering. 30
years as consultant, manag-
er and business developer
in the field of business im-
provement in SW intensive
products and organizations.

Ulf
Asklund
Lund University

PhD in Computer Science. Ex-
perience both from industry
and research projects, with fo-
cus on how to improve prod-
uct lifecycle management,
configuration management,
and product architecture.

In addition to those on the previous page, others have been instrumental in the creation of this book.

many individuals across the project who conducted the industry research, all the case studies that SMF
builds on. They are named below:

Joanne O’Driscoll, QUMAS
Ryan O’Sullivan, QUMAS
John Burton, Vitalograph
Ger Hartnett, Goshido

www.dbooks.org

https://www.dbooks.org/

12

;;;;;;;;;;;;;;;;;;;;;;;;
;;;;

;;;
; ;;

;;;
;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

It’
s i

n the software

13

ALLAN 37
023456789

D I G I T A L

Hello world
The big breakthrough for mobile telephony during the nineties is a part of tech-
nological history characterized by intense competition between innovative com-
panies. For Ericsson Mobile Communications, it meant a period of explosive
expansion of the mobile phone software development department in Lund,
Sweden: growing from a handful of developers, to an army of thousands within
a few years. While this story is from the days when mobile telephony was made
into an everyday tool for billions of people, it’s still highly relevant for all of us
interested in scaling a business.

The software organization in Ericsson’s mobile phones is a great example of an
organization that just keeps growing and growing. It started in 1992 when Erics-

on the software for mobile phones. Eleven of them were working with the

We’re in a business where most of our product features have to be realized with software. Adding
software to a business is a complex enterprise, whether we start from scratch or take our products
to the next level. There are as many ways to organize such product evolutions as there are people
involved. However, reality leaves us no choice: we have to take the plunge in order to sustain our
business. Fortunately, many companies have already embarked on such journeys. Based on numer-
ous case studies with a variety of companies in different domains, we developed the Scaling Man-

assess our starting point as well as our destination. This book is full of stories of companies, and
we describe their journeys using the SMF. Ericsson is one such company, and we start telling their
story next.

How a dozen software developers became several thousands in
a few years – the story of a technical and an organizational boom

www.dbooks.org

https://www.dbooks.org/

14

technical and telecoms-related platform software. Only one of the developers was responsi-
ble for the phones’ user interface. You could use the phone to make calls – but that’s about
all you could do.

GSM offered more powerful services, and operators offered better terms and prices, which
led to an increase in mobile phone users. In the latter half of the nineties, email and internet
services were no longer exclusively used by academics and companies, but were now available
and affordable to the wider public. As technology advanced, customers had growing expec-

tations to have advanced features on all their devices.

As customers were demanding an increasing level of
“mobility” and the ability to access a fast growing num-
ber of network services, Ericsson Mobile Communi-
cation’s R&D department faced major challenges. The
number of different phone models. The amount of
software in phones grew exponentially and doubled

every 18 months – closely aligned with Moore’s Law. Programmers were thrown into the
project, only to drown in the complexity of maintaining existing functionality while devel-
oping new features. Teams were no longer co-located but were distributed over different
sites. Every month, the technical complexity increased: more different phone models,
more network services, more feature requests from customers, and more innovations
from competitors. Mobile phone operators demanded a continuous stream of soft-
ware updates to the phones they were selling and had no intention of waiting. In

-
son had some 40 different phone models, and countless combinations of
hardware, software, and infrastructure services.

Programmers were thrown into
the project, only to drown in the
complexity of maintaining exist-
ing functionality while developing
new features

15

It was time to take the plunge. As the software grew exponentially, the change process had
to embrace the entire organization. Product and system architecture, organizational changes,
business and development processes – all had to adapt in a coordinated manner towards a
common goal. Rules for what can and cannot be done with the software had to be estab-
lished. The organization needed to think in new ways, to invest in a software architecture that

control the wide variety of different software versions.

Being well into the 2010s, the ongoing digitalization of industry and
public organizations leaves few companies untouched. To survive, many
have to change. Fortunately, there is much to learn from stories like
Ericsson’s. With this book, we want to share their and other’s experiences
with you. At the end of the day, you will hopefully have an idea of how to
transform your business, successfully.

www.dbooks.org

https://www.dbooks.org/

16

Common challenges
with software

17

“Our organization has become a software company. The problem is that we haven’t realized that
yet!” This is how the VP of a major semiconductor manufacturing company, traditionally seen as
a classic hardware company, characterized the context in which software solutions were replacing
hardware in their products. This organization knew precisely the threshold of reuse level for their
hardware components before “designing for reuse” became cost-effective. However, no such so-
phistication was present in their software processes.

The digitalization of society is changing businesses more rapidly than ever seen before, there are

does not depend on software.

For several years now, we have seen how traditional compa-
nies adopt novel and clever business concepts using digital
technologies that integrate into our everyday life. Everything
that can be digitalized is digitalized, and
any data that can be collected is
collected.

Technological advances, such as
the emergence of cloud-based
solutions, mobile devices and
social media have paved the

way for this evolution. Take smart watches, for example, which are
becoming very popular. By adding software to an ordinary watch,
it can now access internet services which opens up a wide range of
new possibilities and opportunities. The Smart watch is an excel-
lent example of products that have emerged from digitalization.

What motivates these companies to transform their businesses,
what are their goals, or to put it differently, what are the business
drivers? The primary answer is that software affords development

Incoming call

Sally

Our organization has
become a software
company.
The problem is that
we haven’t realized
that yet!

www.dbooks.org

https://www.dbooks.org/

18

of new business opportunities. Some companies see radical cost savings from digitalization,
where others see revenue growth by creating innovative products and services. So, it’s not sur-
prising that traditional industries such as manufacturing are now in the midst of developing their
digital strategies. Software has become a critical part of their product offerings, but they need
to scale the business systematically in order to not lose momentum, or worse, to lose business
altogether.

How do they do it? Needless to say, transforming software requires rethinking existing processes
as well as incorporating new practices and tools. Studying other companies to see how they ap-
proached the transformation is a very useful exercise as it teaches us so many things. All of them
have more or less created a new sort of IT organization. In the digitalized company, IT is not
only about internal network services and technology, but also deals with business models and the
digital platform for customer facing services and products. It’s not unlikely that the traditional IT
organizations dissolve and merge with development organizations as a consequence.

Obviously, IT is just one of the cogwheels in the digitalized business that need to spin in new
ways. The entire organization will need a lift. As this chapter proceeds, it will become clear that it
all boils down to a company’s motivations to transform: the business drivers.

This is the point of departure for this book. The transformation journey can be done in a variety
of ways, but ultimately we can categorize any software transforming activity to one of three
domains product, process, or organization.

19

This book embodies three years of research that was conducted in a European project called
“SCAling softwARE” – SCALARE for short – which was established by a consortium of partners
in Germany, Ireland, Spain, and Sweden.

Over 30 case studies were conducted, involving companies in a variety of domains, ranging from
pharma to automotive as well as emerging industries that aim to deliver IoT (Internet of Things)
products and services.. Each case study is based on in-depth interviews with vice presidents, direc-
tors, managers, supervisors and front-line service employees.

The map. The SMF canvas is
the map of the digital trans-
formation. It helps you in cre-
ating a digitalization strategy.

The compass. Five groups
of common drivers that will
help you to find your digital
transformation journey.

The journeys. An experience
database with best practices
and lessons learned from past
digitalization transformations.

1 2 3

Knowing what needs to be done is quintessential when approaching the digital transformation.
This book offers a method that will help your organization in three ways:

www.dbooks.org

https://www.dbooks.org/

20

1
2 3

1.000.000

Let’s get back to the starting point of this book: why do companies need to transform? Answering
this question will help later in this book, when we’re pinpointing what journey a company needs to

journey.

Drive revenue growth and
outperform competitors
with new business models

Develop innovative new
products and services,
innovate in current prod-
ucts and services

Expand into new markets
and geographies

Increase quality, make oper-
ational expenditure savings
and shorten time-to-market

Deal with organizational
challenges (access to qual-

ramp resources, round the
clock development, divide
the work between different
departments, and so on.)

21

board is looking for an IT department to address”.

Where does your organization need to scale? Which of the business drivers are key to your organi-
zation? You may identify several drivers to match your business plan and digital strategy. You have
to bear in mind that this has to be a cross-organizational effort, where the current IT department

an essential part of the digital strategy.

Let’s get back to the SCALARE project room. The eight standard scenarios, the map and the
compass on your scaling journeys, are compilations of the most common repeated patterns that
the SCALARE team observed during the various case
studies. In other words, a scenario based on real life
scaling experiences in companies that all shared
similar drivers.

This is how we should approach the scenar-
ios. Which scenarios have similar drivers to
ours? Since we may have several drivers
to consider, our transformation journey
could very well match several scenarios.

Bottom-line:

We have to get a clear picture
of what drivers we have.

The Harvey Nash CIO Survey 2016, made
in association with KPMG, col-

lected data between December 12,
2015 and April 10, 2016. It represents

the views of 3.352 technology leaders

from more than 82 countries, with a

combined IT spend of over $200bn.
The respondents were CIOs, CTOs,

VPs in technology and senior ex-
ecutives such as CEOs, COOs and CDO.http://www.hnkpmgciosurvey.com

www.dbooks.org

https://www.dbooks.org/

22

Not to waste time
Get an overview by reading the map.
Find out how the framework fits into your picture by reading the compass.
Then read what solutions there are by

Page

reading relevant journeys.

23

The map
The Scaling Management Framework

The compass
Ways to find journeys relevant to you

The journeys
Travel Brochures and Travel Stories

24

46

56

Your journey
How you get there236

www.dbooks.org

https://www.dbooks.org/

2424

The
B. Fitzgerald et al., Scaling a Software Business,
DOI 10.1007/978-3-319-53116-8_1

© The Author(s) 2017

 Scaling Managem

2525

map
ment Framework

www.dbooks.org

https://www.dbooks.org/

26

holistic view

to change

A

27

Scaling software development is a complex enterprise that can be organized in a number of ways.
Since the early days of computing, hundreds, if not thousands of software development methods
have been proposed. What is becoming increasingly clear, however, is that the software develop-
ment function affects the whole organization, not only its software developers. For example, as
the software development workforce is expanding, the processes that are used may have to be ad-
justed to facilitate large-scale collaborations. Developing more and larger software-based products
requires consideration of architectural strategies such
as the adoption of a software product line approach.
The SMF covers three scaling domains to capture this
complexity: product, organization, and process. It also
captures the relationships between these domains.

To exemplify the scope of the SMF, let’s consider the

very successful in their local market, but now have the
opportunity to expand to Asia. The SMF may help them
in the analysis of their software development and sup-
port organization. The SMF is not a tool for analyzing business models, but instead it can be used

customer requirement or a new support organization.

The SMF can be used in several different ways to support the digital transformation journey. It
offers systematic guidance for decision makers to identify scaling needs, to analyze scaling options

and end states of the transformations, management can easily measure the success of the trans-
formation journey.

The framework is simple yet complete enough to suit all sorts of companies: small as large, local
as global. It works equally well for companies that mainly deal with hardware but need to intro-
duce software, as for companies that develop proprietary software and want to engage with Open
Source communities.

The Scaling
Management Framework
covers transformations

in three domains

www.dbooks.org

https://www.dbooks.org/

28

Drivers

AbilitiesInabilities
Desired organizationCurrent organization

Current process Desired process

Current product Desired product

Key
transitions

29

The SMF offers a multi-dimensional view on the software-scaling phenomenon. The SMF canvas,
an integral part of the SMF, is a tool for understanding and describing the scaling of software
development. It’s designed to be visualized on a whiteboard, along with post-it notes. To the left,
we have the present, and to the right we have the desired future. The transformation happens in
between the two.

It starts with top management to identi-
fy the drivers, the reasons to scale. These
are typically the outcome of a digitaliza-
tion strategy.

Next we observe the software development
as a black box, focusing on performance, qual-
ity and other aspects that can be measured with-
out knowing how they work. We know what we
spend and how much we generate from the their
work. These are basically the complaints and wishes
of our top management, matters we also could use to
measure the success of the transformation.

Having all this, we’re ready to dive into the black box,
the software model. Inside we have as well a present to
the left and a future to the right. But foremost, it’s parted in the three scaling domains organization,

cause come up with an idea of how we want it to be, ideally. This is done within all three domains
and it is important that all inabilities are explained by at least one root cause.

transitions. In fact, the lot of this book is about scenarios; they are that important. If we know that
part of our digitalization for instance includes one of the Open Source transitions, then we’ll just

Time

Quality

Cost

Software abilities

Product Organization

Process

>> Drivers >>

www.dbooks.org

https://www.dbooks.org/

30

The drivers of the
need to change.

The inabilities that make the
transformation challenging.

The measurable

Current set-up Desired set-up

The key activities that are needed to
make the transformation possible.

Drivers Inabilities Desired abilities

Organization domain

Process domain

Product domain

Transition

31

Drivers

you build your current product, ways of working and organization. But now, new drivers force you
to create new solutions – to transform your software.

We need to clearly formulate why we want to make a change and scale our software development.
If these drivers get too vague, also the solutions and eventually the implementation will be un-

strategy.

Reach new
markets faster

Easy to
customize
solutions

Long
development
leadtime

www.dbooks.org

https://www.dbooks.org/

32

It seems simple to create the drivers, but it often turns out to be quite hard to decide on what

with the requirement “to faster reach different markets”? We argue it is the latter and that the

We might for instance need to pursuit new market opportunities through expansion or a com-
pany takeover. Or why not do as Amazon and start selling
your internal development platform as a service? Do we
need to extend the functionality in our current offering?
The mobile phone industry has made that, seeing the mo-
bile phone developed from being a communication device
to also be our primary entertainment device. In regulatory
requirements we need to comply with safety standards such
as ISO 26262 (Road vehicles), or with software maturity

standards such as CMMI (Capability Maturity Model Integration). Such requirements will inevi-
table turn into drivers, since these are tickets to trade.

In addition to external drivers, it is also possible to have internal drivers. An internal driver is
something you want to achieve, as you believe it will help you move in the right direction even
though no external customer or market is requesting it right now. One such example is the com-
pany culture. It might not directly affect the close-term business, but will most likely affect the
long-term results.

Since drivers are quite diverse and particular to every company, the SMF do not provide any
model for analyzing and understanding drivers. Yet they need to be listed and understood before

-
ers, and how they can be translated into SMF transitions.

We provide a short-list of five
high-level drivers, and how they
can be translated into SMF tran-
sitions.

33

1
2 3

1.000.000

Expand into new markets

Make OPEX savings and improve TTM

Develop innovative new offer
ings

Drive revenue growth and out
perf

orm
 c
om

pe
tit

or
s

Dea
l wit

h leadership challenges

www.dbooks.org

https://www.dbooks.org/

34

Software abilities
Drivers represent the trigger for the transformation of a business; they are the reasons to drive
a transformation in one of the SMF domains. They are the fuel that starts a journey to get from
current software abilities to desired software abilities.

Inabilities or growing pains are what currently stop us from achieving the desired drivers. The in-
abilities are mostly visible outside of the organization, for instance by other organizations within
the company or outside the company by customers. Abilities have to be measurable, in order for us
to know if we’re getting any better. When we measure the abilities, the organization is considered
being a black box.

Most abilities can be put into one of the following categories:

• Revenue – How much do we earn from our products or services?

• Cost – How much do we invest in development?

• Speed of development – How fast is the software being developed? This covers all aspects of
speed, from adding or updating a feature to deliver the product or service.

• Speed of the product or service – What are the response times for different use cases?

• Availability of a service, that is, the amount of time a service is usable.

• Flexibility – How fast can we change our development scope? This can be on a small scale like
creating a variant, or on a large scale like entering a new market.

• Quality – How good is the product or service that we are delivering? Quality includes many as-

and evolvability.

35

Let’s use the taxi car as an analogy. The drivers are the type of customers and their requirements,
including school children, business people, disabled people, party crowd in need to make short
as well as long drives. The abilities include for in-
stance cost, speed and capacity of the car to meet
the business needs. The driver’s ability to avoid traf-

is probably the most important competition factor.

Some abilities are not really sprung out of drivers,
but can still be a reason for the company to make improvements. The SMF refer to these inabil-
ities and drivers as growing pains. Examples of growing pains are when a company has trouble

handling systems to manage parallel feature development.

Software abilities usually end up as Key
Performance Indicators or Balanced Score-
cards in the organization.

www.dbooks.org

https://www.dbooks.org/

36

????

Software model set-up
When we work with the drivers and abilities, we treat software development as a black box. The
black box is called the software model.

The purpose of the software model domain is to:

• Be able to analyze what we’re bad at and what we need to
improve in.

• For all improvements, analyze and describe dependencies
to make the transformation.

Opening up the box, we see domains as the software organi-
zation, how they work, how they are organized and how the
product looks. We cannot only focus on one of these domains,
but need to look at the entire complex situation. The depen-
dencies to organizations outside the box are usually many and
intertwined. And it’s not just the present, the future might as
well require new relations to be established between the software
organization and the rest of the company. For instance, if the
company wants to start using Open Source software, the legal
organization will be needed.

The canvas is for this reason divided into the three domains: organization, process, and product.
-

37

Pr
od
uc

t Organization

P rocess

Our work is to make an inventory of the current ways we’re working, and we should use post-its
-

ing. It is natural to begin with our inabilities. Are there any existing assets we can exploit and are
there any roadblocks in the way we’re working? It’s time to ask all these questions we have on
our mind.

In the following sections we describe the individual domains and their building blocks.

Why? Why?Why?

The SMF doesn’t manage tools separately; they are instead regarded as integrated parts of the software domains they support.

www.dbooks.org

https://www.dbooks.org/

38

Product domain
The product domain covers the software architecture of your product or service. This is more
complex than just describing a software application as a monolith. The offering might be based

The SMF divides this domain into three building blocks:

• How the product is structured and managed during development; the creation and manag-

and directories, libraries, modules, and interfaces. It also covers the tools that are used in
handling of the code such as editors, version handling systems, and issue handling systems.
This area is important to achieve reuse of code.

• All mechanisms and tools that are used to produce the executable system from the source
-

vice, as well as branching in the version system. It also includes how the system is deployed
to the end user. This is typically an important area for continuous deployment and to be
able to create customized products.

• How the product is organized when installed and executed by the user. It covers all aspects
of interaction with the system when it’s in use during operations of the software, including
GUI interfaces to the system. Examples of architectures are client/server and cloud tech-

Process domain
The process domain covers all aspects about how the product or service is developed and tested.
This domain is divided in two building blocks:

39

• Engineering covers all activities directly related to producing and testing the product. This
-

tion. It also includes all tools needed to support modeling, coding, testing and so on. The
activities are preferable further divided into the three categories producing, verifying, and
correcting.

• Project management covers all activities related to steering, planning and controlling the
engineering work, including prioritizing, estimation, risk management, planning, follow up,

management, etc. It also includes all tools supporting these activities.

Organization domain
The organization domain covers aspects such as how a company is structured, how the compa-
ny’s culture is and how are each individual employee treated. The organization domain is divided
in four building blocks:

• Structure – the organization chart. What sections, departments and teams are there? Who
does what in the organization? How is governance implemented? What are the responsi-
bilities and how are decisions made? Also described here is the physical structure of the
organization – is there one site or many sites with distributed teams and organizations? Is
outsourcing or offshore development in use?

• Culture and leadership describes the general attitude in the organization, how decisions are
taken and how changes are perceived and implemented. How is the attitude towards change
and improvement? Is the atmosphere OK, are people speaking over the silo borders? Is

• People management describes how the staff is managed. This includes recruitment, perfor-
mance management, and competence management.

• Improvements describe all activities related to implementing and improving the product
architecture, processes, and the organization. This covers as well descriptions, examples,
templates, training, measurements, lessons learned, and improvement processes.

www.dbooks.org

https://www.dbooks.org/

40

Transitions
The key transitions are the most important activities in order to get where we aim; altogether they
constitute the very transformation journey, the fun part where all the magic happens.

The transition area of the canvas consists of a set of actions, each one representing a transforma-
tion of the software model from a current state to a desired state. Transitions can be so general
their descriptions turn into patterns.

Examples of transitions are:

• The organization chooses to outsource; development is made on both sites, but the outsourc-
ing partner makes all test.

• Changing the process from an agile process with morning stand-up meetings and other meet-
ings on-demand, to a waterfall-like process focused on phases in which documents and other
artifacts must be ready for hand-over. This requires recurrent meetings to discuss deliverables.

• -

abilities to overcome.

the drivers). In the example above, to meet the requirement and lower the development cost, many
changes are likely needed. No business situation is the other alike. We have to pay good attention
to this phase.

41

It all fits together
-

isting software.

Drivers and abilities gives the structure to describe the reason for scale and the main metrics need-
ed to measure the improvements. Look into case studies with similar drivers and abilities as the
business we want to change. Working with drivers and abilities is very important to understand the
reason, why you want to scale.

The software model with its three domains and their build-
ing blocks gives a structure to describe the actual imple-
mentation of the product or service. Each domain studies
the building blocks and also the dependencies between im-
plementations in different blocks.

The connection between the domains, how things works
in each one of them, and the current inabilities encourage
us to think through all domains and their building blocks in order to understand why we have the
inabilities. This is part of the self-assessment to understand what needs to be improved.

The transitions – capturing the needed change from current situation to desired situation is the
most important part of the SMF. Experts within each domain will have to discuss possible chang-

-
nies have to customize their unique set of changes in order to implement their particular drivers.
Exactly as the SMF was intended to be used.

The SMF defines several standard
change scenarios, but still most
companies have to customize their
unique set of changes in order to
implement their particular drivers.

www.dbooks.org

https://www.dbooks.org/

42

Tran

Driver

Inability

Current
organization

process

Current
product

Why do we do
what we do, as we do?

Why? Why? Why?
Why? Why?

Why?
Why?

43

Ability

Desired
organization

Desired
process

Desired
product

sition

Why do we
want to scale the business?

What abilities would we need to
be able to scale successfully?

Can we measure the
abilities as KPIs?

www.dbooks.org

https://www.dbooks.org/

44

How the canvas can be used
For this example, we will have a look at Spotify. Its service allows us to search for artists, al-
bums, titles, labels and genres, and access music tracks from major as well as independent labels.
Streaming of music has in many regions become the predominant way we listen to music.

How did Spotify achieve to make the software service so successful? According to the vast amount
of articles that have been written on the topic, they simply seem to have decided to “create the
best streaming music service”. We can assume this was their driver. What they
intended to measure was the number of Spotify streams. This was their de-
sired ability. The higher the number of steams (listeners), the more successful
they became. Let’s try to express their journey with a few SMF post-it notes.

To accomplish what their driver boldly stated, their software
engineering department made this transformation.

Most importantly, to stimulate motivation and innovation, they introduced an Agile Engineering
Culture. They also organized themselves in loosely coupled but aligned Autonomous Squads
(small, self-organized teams). A Squad has end-to-end responsibility of what they build (design,
commit, deploy, maintain and operate). They did try the software development methodology
SCRUM for a while, but decided quite early to skip this way of working. A more generic agile
methodology was simply more relevant for them.

Create the best
streaming music

service

Number of

streams > x
streams

Usage of
app > y minutes

Increased
motivation and
innovation

45

Product develop-
ment approach
is based on Lean

Start-up principles

Continuous delivery

with small,

frequent releases

to customers

They introduced continuous delivery with small and frequent releases to their customers. The
software architecture was changed to enable decoupled releases (synchronized releases were too
time-consuming). Their product development approach was based on Lean Start-up* principles.

Scrum teams

Agile engineering
culture based on
Lean startup

principles

Scrum product
development
approach

The way of working
was the same in
the company

Each Squad decides
on processes
and tools

Continuous deliver
y

with larger release
s

and focus on

avoiding failures

Software archi-tecture enables Decoupled Releases

Loosely coupled
but aligned
autonomous
Squads

Each Squad has end

to end responsibility

of everything they

create

The Lean Startup. Crown Publishing Group. Eric Ries*
www.dbooks.org

https://www.dbooks.org/

4846

The co
 Ways to find

4947

mpass
journeys

www.dbooks.org

https://www.dbooks.org/

1
2 3

1.000.000
Two ways to

 read this book

www.dbooks.org

https://www.dbooks.org/

5250

The easiest way to read the book is to
turn page and read through the brief sce-
nario descriptions. So if you are interest-
ed in Open Source you can just read the
two Open Source chapters.

A second way to read the book is to have a look at the
five categories of drivers, presented to the right on
this page spread. If you for instance want increased
revenues, then there are two journeys that can help,
Servitization and Open Source (business driven).

Journeys

>>
 >> >> > >> >> >>> >

so. Instead, we’ve written this book with busy managers in mind – people, like you, who don’t have
the time to read the whole book carefully but only the sections that are relevant to your particular
business. We’ve therefore organized this book along a set of journeys.

>>> >> > >> > >>

Drivers

5351

1
2 3

1.000.000

Develop innovative new products and services or improve current products and services

Expand into new markets and geographies

Deal with leadership challenges

Journey 2
Journey 3

Journey 1
Journey 3
Journey 7

Journey 5

Journey 1
Journey 4
Journey 5

Journey 5
Journey 8

>>

>>

>>

>>

>>

Drive revenue growth and outperform competitors with new business models

Increase quality, make OPEX savings and improve time to market

>>

>>

>>

>>

>>

Journey 6
Journey 8

www.dbooks.org

https://www.dbooks.org/

5452

Journey 4 – Deliver 24/7

they want it. The time we need to test and deliver makes it hard to meet deadlines
and steals time from development. As if it weren’t bad enough, serious bugs have

by running more experiments and do-learn-adapt cycles with our market.

Journey 1 – Co-operate in a community

It is admittedly an irresistible temptation to us, getting free software. The cost to
maintain a particular part of our system is sometimes far too high. It is possible to
develop common components in cooperation with others and gain from proven,
de-facto standard software. Entering this path would encourage us to further
advance how we do business.

Journey 2 – Building ecosystems

By now we’ve been into Open Source development for quite a while. Even the
management has acknowledged the contra productivity in just using free software
without giving back, that sharing is caring. We imagine the ultimate Open Source
strategy, to go beyond the communities and orchestrate our own ecosystem, to
divide and conquer.

Journey 3 – Add supplementary services

Customers are getting more and more demanding: they want it all and they want it

ours, equally or even better priced. Our product-oriented business slows us down.
We need to move towards a service-driven business model.

5553

Journey 8 – First things first

It didn’t happen overnight, but still, if we had staid calm when the business took
off, we wouldn’t have been in this situation. 15 additional programmers have joined
the two of us, and our development process is getting a bit shaky. We need to adopt
essential engineering principles and possibly re-factor the software architecture.

Journey 5 – Pump up the volume

We have the greatest product; every batch we produce literally sells out as soon as it
leaves the production line. We need to throw in more people, to build the products
faster and increase the volumes. Innovation is not a matter at this point, neither is
the cost. What matters is how to get around the many dependencies between
products, services and departments.

Journey 6 – Agile and disciplined

As manufacturer in the automotive industry, everything we do need to adhere to
industry standards. The Niagara-like waterfall processes makes even small things

kill every discussion by saying “Agile software development lack discipline.”
We need to break this barrier.

Journey 7 – Outside the box

How about moving parts of our software development to India? Learnings suggest

and talented engineers can still be recruited at a relatively low cost. Incorporated

www.dbooks.org

https://www.dbooks.org/

5654

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

5555
www.dbooks.org

https://www.dbooks.org/

5856

B. Fitzgerald et al., Scaling a Software Business,
DOI 10.1007/978-3-319-53116-8_2

© The Author(s) 2017

The jo
 Travel

5957

urneys
 brochures and stories

www.dbooks.org

https://www.dbooks.org/

And stories

58

60
86
100

120

142

160

182

212

Co-develop in a community
Building ecosystems
Add supplementary services
Deliver 24/7
Pump up the volume
Agile and disciplined
Outside the box
First things first

Scaling with Open Source

Scaling with Servitization

Scaling with Agile

Scaling with Outsourcing or Offshoring

Basic Software Engineering

Scaling with Open Source

Scaling with Agile

Scaling with Agile

59
www.dbooks.org

https://www.dbooks.org/

6262

Co-develop in a
community

60

SCENARIO / Open Source

6363

The source
code is tied with a copyright

license, giving any receiver of
the source code the rights to use,
modify and redistribute the code
for free. Think of free as in free

speech, not free beer*.

Open Source refers

to software that has been
made available to the public
and is free to use in any

application.

”Free software is a matter of liberty, not price. To understand the concept,
you should think of free as in free speech, not as in free beer.”

 —Richard Stallman

<Think big. How to transform a software business in a good way>

Copyright (C) <2016> <S.W. Scalare>

This program is free software: you can redistribute it and/or

modify it under the terms of the GNU General Public License as

published by the Free Software Foundation,

either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope

that it will be useful, but WITHOUT

ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY

or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

www.dbooks.org

https://www.dbooks.org/

6462

In recent years, this image of OSS developers has become outdated, and many companies are
now actively participating in OSS communities for a variety of reasons.

However, no matter the business incentives, the initiative to start working with OSS communities
is almost always taken within the development organization. As any development organization,
they simply need to:

The Open Source movement is several decades old, but it wasn’t until the turn of the millen-
nium that major companies entered the game. Traditional business wisdom had suggested that
source code, which was seen as a “crown jewel” of a software company represented valuable

(OSS) development the effectiveness of this tactic is reduced
since the source code is made publicly available.

The original intention with Open Source is that software is
collectively developed, typically in an Open Source community
characterized by collaboration, transparency and self-organiza-
tion. This development model is an interesting value proposi-

tion to companies, as development is potentially done quickly, involving hundreds of developers,
*: given enough

eyeballs, all bugs are shallow. In other words, there is always someone who knows the solution
to a given software problem. This may also lead to new and better ideas from someone who has
stood on the sideline thus far—these “lurkers” may decide to contribute after using the software
for a while.

Improve
innovation

Accelerate speed
of development

Share development costs

There is always someone who
knows the solution to a given
software problem

A claim formulated by Eric S. Raymond, named in honor of Linus Torvalds*

6563

• Increase Innovation – the drive to include novel and innovative software in the solution, as
well to participate in the communities were this innovation occurs.

• Reduce Time-To-Market – as a solution is available for free, and much of Open Source
software has become de-facto standard, it can reduce the time for an offering to reach the

-

• Reduce maintenance costs – sharing the development and maintenance as conducted in an
Open Source community, substantially reduces the overall operating expenses.

A skunkwork project is a small and loosely structured group of people who research and devel-
op a project primarily for the sake of radical innovation.

Even if the work with Open Source preferably ought to be sanctioned by management it often
starts as skunkwork*.

Those Open Source drivers are particularly appealing for the development organization whose
software is characterized by a large heap of legacy and proprietary code that haven’t been main-
tained and modernized for a long time.

When the cost to maintain the code supersedes what is invested in new features development,
Open Source offers an irresistible temptation for engineering. Business as usual – to constant-
ly postpone innovation and delay novelties in the offering to the future – simply isn’t a viable
option.

Maintenance
effort

supersedes
development

Slow and costly

Innovation
fatigue Proprietary

and not likely
compatible

*
www.dbooks.org

https://www.dbooks.org/

6664

The reason they don’t include management and keep doing skunkwork may vary. The not-in-
vented-here argument is often heard. Management may not trust third-party code. Until only a
few years ago, Open Source was considered by most as a hacker’s phenomenon and a headache
for the Legal department. The threshold to explain what Open Source is really about and why

other hand most Open Source newbies are everything but knowledgeable about legal obligations
that come with Open Source. Neither are they likely to comprehend how to truly leverage from
Open Source as long as they only consider it as being “free as gratis” code. Both development
and management need to learn about it.

Most optimally the use of Open Source ought to be introduced in a company as a coordinated
and strategic activity, on which the following pages will elaborate in more detail.

One of the goals could be to get the entire organization seeing how Open Source saves money
and improves innovation, to get it to use Open Source software more regularly. But foremost,
control has to be established. The Open Source activities need to be agreed and standardized
within the organization.

Not-invented
here culture

Product
Management
fears Open

Source culture
(a hacker thing)

Accidental
Open Source

Legal is not
part of the
process and
fears Open
Source

Personnel doesn’t
understand the
fundamentals of
Open Source

So the engineers decides to “accidentally” use Open Source as a novel way to cut corners when
solving development challenges they have at hand. This is very common, but of course not the
preferred way forward. Quite likely, they don’t have formal approval from the management.

6765

The company introduces policies, procedures, organization and hopefully some training as well

that follows with Open Source.

However, introducing Open Source in an organization raises some concerns too. Training all
staff on the fundamentals of copyright law and Open Source licenses is costly and might offer
a challenge for engineers to grasp. It could be hard to implement and defend the added cost for
the necessity of conducting the Compliance work that follows with Open Source.

Awareness on costs related to Open Source arises, both as a threat (potential litigations for li-
cense breaches), but foremost as an opportunity (faster development and reduced maintenance).

communities, including source code contributions, as that will soon will be discovered that is the

Closed (internal)
and non

collaborative

Open source
Competence &

developer
program

No license
compliance

check

BRANCH OUT
WHAT YOU WANT

CALL COMMUN I TY
FOR D ISCUSS ION

CONTR IBUTE
YOUR CHANGES

MAKE YOUR C H ANGES REV IEW AND D I SCUSS

www.dbooks.org

https://www.dbooks.org/

6866

Initially, the likely main challenge for management is that Open Source is perceived to raise an
unknown legal risk. Management may also perceive that with Open Source unknown technology,

copyright and patent lawsuits and to lose control of software and other intellectual property
rights. In fact, to handle these matters comes at a bargain in relation to what we gain, compared
to continuing the business as usual. We just have to deal with it properly.

Open Source
Governance

Tools

Control
Contribution

Control
Intake

Control
Compliance

Open Source governance policies, processes, tools and organizational structures will be required.
Three fundamental processes are essential; an Intake process for legally vetting code that de-
velopment intends to use, a Compliance process for ensuring that code follows the terms and
conditions of Open Source licenses, and a Contribution process for the approval of code to be
released to an Open Source community.

Cooperation with
Legal & IPR

We will need organizational roles
such as the Open Source Officer
and specific roles for compliance
and contribution management.

6967

possess mandates that management might be unwilling to share. An implication that is seldom
fully understood is that the current product management has to let go parts of the requirements

toward the engineers and the Open Source communities.

Getting control of the legal matters requires legal and patent counselors to be involved in the
software development process. The counseling will be around copyright, patent, IP, and trade-
mark laws. As contributions to Open Source communities become frequent, a larger organiza-

-
ly such an Open Source Board vets and approves contributions, while considering both business
needs and IP protection needs. Such a body would also naturally be mandated to issue corporate
policies on Open Source.

www.dbooks.org

https://www.dbooks.org/

70

Reduced
development

and mainten
ance

costs

Increase innovation Reduced
time-to-market

To most developers this goes without saying: Integrating Open Source software is no different
from integrating any 3rd party software. The software architecture has likely to change to host the
Open Source software artifacts. If it’s already modular, just with a few cuts in the wrong places,
the adaptation will be a smooth job. If it’s monolith, a major refactoring of the software is likely
required. The Open Source software’s APIs must in turn never be changed without approval, to
facilitate contributions back to the Open Source community.

To some companies, the Open Source software becomes key elements in both the company’s
offering as well as its innovation. The companies’ engagement in Open Source has to get direct-
ed and has to evolve to an Open Source strategy that encompasses development goals as well as

-
velopment in the community. The incentives to do this ranges from simply sharing development
costs with partners and use common technology, to give the company a competitive edge on its
own offering while disrupting the competition. In most Open Source communities the control is
i gained by becoming a champion contributor.

Introducing Open Source development sensibly and cross the organization as a strategic and co-
ordinated activity, will likely pay off in a more competitive product offering. Getting state-of-the
art Open Source technology to a reduced cost and with a shorter lead-time isn’t that bad, after all.

Modularization Control of APIs
Open Source
Community
Culture

68

71

One more thing
In many large companies, software is considered the property of the team that de-
veloped it and is not shared freely within the company. Inner Sourcing is the prac-
tice of developing and sharing software openly within the company but not beyond
(in contrast to Open Source Software).

The companies get many advantages of Open Source software and avoid at the
same time IP and license complications associated with open source software con-

-

to contribute improvements to each other’s code.

and competence, something that will not only reduce
development cost but also increase speed and overall
quality.

There are many other reasons to consider Inner Sourc-
ing. An open environment facilitates increased aware-
ness of the software and helps to break down barriers between teams through the
use of common code, tools and methods. Having less duplication of development
will cut costs. Volunteer contributors will spring up freely to contribute to inter-
esting projects, which may lead to shorter time-to-market. Since contributions are
under large-scale scrutiny, developers get aware of their reputation and motivated
to write “good” code.

Moreover, since they are familiar with a standard set of common tools and infra-
structure, developers can be more easily transferred to other projects or products.
This in turn will reduce time-to-market, as project start-up time can be reduced.

Volunteer contributors will
spring up freely to contrib-
ute to interesting projects

69
www.dbooks.org

https://www.dbooks.org/

7270

Innovation
fatigue

Not-invented-here culture

Personnel doesn’t understand the
fundamentals of Open Source

Closed (internal) and
non-collaborative

Proprietary and not
likely compatible

 Reduced
development
and mainte-
nance costs

 Increased
innovation

Accelerate speed of development

Share development costs
Improve innovation

Maintenance
effort
supersedes
development

Slow and
costly

Management fears Open
Source (a hacker thing)

Management doesn’t understand
the potential with Open Source

Legal is not part of the process and
fears Open Source

No license compliance check

Accidental use of
Open Source

Open Source Competence
& Developer Program

Open Source Officer - Co-
operation with
Legal & IPR

Open Source
Community Culture

Control Intake, Compliance,
and Contributions

Modularization

Control of APIs

Open Source governance tools

 Reduced time-
to-market

Shun the “Use but
not Contribute” trap

 Product value
extracted from
Open Source
communities

Decentralized Product
Strategy

Make-Buy-Share Analysis

7371

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Open Source. Learn from their experiences, what they gained and
what they had to overcome.

Sharing is caring
A quiet revolution was changing the world for the software engineers at the mobile phone
manufacturer Sony Ericsson. An Open Source force of epic dimensions had just been
released. This case study is about the manufacturer who embraced a powerful engineering
movement and created an Open Source strategy that, although there were initial business

A thriving Open Source culture behind the wall
Open Source projects really can’t be beaten in terms of development power. This case
study gives insights into a multi-national mobile network equipment supplier, which expe-
rienced a similarly quiet but powerful Open Source revolution, but behind the company

and created an Internal Source culture.

Keeping the doors open
Traditionally, door-opening solutions were about locks and keys. Nowadays, they are still
about mechanics but use a lot of electronics and software. It is not just a piece of hardware
anymore. The solutions even tap into the industry of services. And there is of course Open
Source software usable also in this particular business. Read about ASSA ABLOY, who
went from using bits of Open Source software they found, to get really professional about
it and implement an Open Source strategy cross their organization.

www.dbooks.org

https://www.dbooks.org/

7472

Sharing is caring
CASE STUDY / Co-develop in a community

7573

Sony Mobile’s Open Source journey began with general curiosity among developers at Sony
Ericsson’s development department. This led eventually to an investigation whose results were
so convincing that the management took the bold decision to shut down the work on propri-
etary operating systems and invest wholeheartedly in the Open Source based Android operating
system. The new era began in 2010 with the Android telephone Xperia X10, and today all its
smartphones are based on the common Android platform.

The company sees a whole host of advantages in belonging to the Open Source movement. First
of all, it increases the pace of innovation and development, simply by having a larger number
of developers focusing their creativity on a single task. And when someone comes up with a

constantly creating new opportunities for everyone else. Without Android, Sony Mobile don’t
believe it would have existed. More than 85 % of its software is based on Open Source.

It realized early that an Open Source project must be transparent and encourage participation
and collaboration. Management had to make Open Source a part of their corporate culture.

R & D and Legal, hand in hand
Close collaboration with the Legal department has played a central role. A success factor was the
early establishment of a “double-command”, consisting of its chief strategist for Open Source
and a lawyer at its Legal department. The duo has been instrumental in changing the business
and mindset throughout the development organization.

The Legal department recognized in the initial stage that Open Source was perfectly solid and
valid from a legal standpoint – acquiring Open Source was essentially the same as any other kind
of third party software. They also noted that Open Source would become utterly essential for
the company’s survival from a business perspective. In this way, the Legal department became
a key player in persuading executive management that the necessary culture shift not only was
possible, but also would be warranted by governance under Legal’s supervision.

www.dbooks.org

https://www.dbooks.org/

7674

concern and something of slight headache to the Legal department. These earlier viewpoints
dominated the thinking in Sony Mobile’s early days of Open Source. It was seen as OK to use
because it was “free of charge”. In the last couple of years, as the success of Android unfolded,
the mindset changed completely.

Eventually, software developers and lawyers developed mutual trust. The duo translated legal
concerns to developers, as well as the other way around, educated Legal on engineering con-
cerns. The resulting trust has also led to executive management being much more daring in
taking business initiatives involving openness and collaboration – even when it involves the
competition.

Sony Mobile Open Source Maturity and Strategy model
Today, not only does most of Sony Mobile use Open Source for everyday development, but the
company has also established itself as the largest external contributor to Android development.

Recently, it has also taken several initiatives in the marketplace in leveraging Open Source in tilt-
ing business to its advantage. It is making progress in achieving position on the higher levels of
the Sony Mobile Open Source Maturity and Strategy model, the levels when business concerns
come into play.

driven by engineering and development concerns, whereas the last three levels are more business
driven.

Even if the model isn’t a tool for scaling into Open Source development, the model has proven
to be very effective to communicate where it is and where it aims. It’s a model to measure matu-
rity and to set the strategies that works with both developers and management.

7775

Level 1, “Accidental”
A stage of discovery and early awareness where developers
explore and “play around” with Open Source software.

Level 2, “Repetitive”
A company begins to make use of Open Source software
in a governed way, seeing that it can reduce cost and
improve interoperability.

Level 3, “Directed”
Open Source has support from executive management,
is incorporated in the product strategy, development aims
for champion communities and collaborations widens.

Level 4, “Collaborate”
Open Source projects and collaborations are run to achieve
both technical and more so business goals which are able
to change the market logic.

Level 5, “Prevail”
The company has developed a fully-fledged Open Source
company culture, with full strategic support from the top
management, to the extent the company is able to disrupt
entire markets.

Engineering Driven

Business Driven

www.dbooks.org

https://www.dbooks.org/

7876

Advices & take aways
• Use an Open Source Maturity model

Understand the level of maturity to drive change, provide a vision and outline a strate-
gy to drive change. Use this extensively as a communication and education tool. Rules
and roles regarding project contribution are important – Inner Sourcing projects should
start with defining contribution rules and responsibilities.

• Describe the processes for governing Open Source
This should include how we work, our roles and our responsibilities. The most import-
ant processes are intake, compliance and contribution.

• Take benefit from tools
Take benefit from an Open Source audit tool to ensure compliance and to extract
copyleft* code. Though, it’s important to recognize that the main benefit of a tool is to
reduce engineers’ workload – a tool can’t itself replace a lack of policies and processes.

• Educate, educate, educate
In addition to courses, an everyday present spirit of education should be a part of all
interaction. Lead by example, following the three key concepts of transparent, partici-
pative and collaborative.

Copyleft (a play on the word copyright) refers to the copyright licensing scheme used when mak-
ing Open Source contributions.*

7977

 Slow
development

Not-invented-here culture

Personnel doesn’t understand the
fundamentals of Open Source

Closed (internal) and
non-collaborative

Proprietary and not
likely compatible

 Reduced
development
and mainte-
nance costs

 Increased
innovation

Accelerate speed of development

Share development costs Increase innovation

Maintenance
effort
supersedes
development

High OPEX

Management fears Open
Source (a hacker thing)

Management doesn’t understand
the potential with Open Source

Legal is not part of the process and
fears Open Source

No license compliance check

Accidental use of
Open Source

Open Source Competence
& Developer Program

 Open Source Officer - Cooper-
ation with Legal & IPR

Open Source
Community Culture

Modularization

Open Source
governance tools

 Reduced time-
to-market

Minimize maintenance cost

Influence/Drive industry standards

Open Source may be OK as it
is “free of charge”

Participatory culture

Industry-wide
collaborations

Make-Buy-Share analysis is
part of intake

 A mix of strategic and pro-
prietary components and a
huge amount of openly shared
components

 Faster growth
than competi-
tion

Control Intake,
Compliance,
and Contributions

www.dbooks.org

https://www.dbooks.org/

80

A thriving Open Source
culture behind the wall

CASE STUDY / Co-develop in a community

78

81

Adam is a senior software developer at a big Swedish company in the telecom business. Some
years ago, Adam realized that many projects and developers more or less developed the same
code. There had to be a way to reuse code and competence across the company. Since he was
already familiar with Open Source software he thought a similar approach would also work in-
ternally. So he made his own software repository solution available to his colleagues so that they
could start sharing code and projects.

The rumor spread and more and more colleagues started to use Adam’s tools for sharing code.
Later, several teams decided to manage all their internally developed tools by using this reposi-
tory installation, which still was running on Adam’s PC. This was just the start. By the word of
mouth and some internal blogging, the initiative spread within the company and grew to such
proportions that also other managers realized their organizations depended on Adam’s code
sharing initiative.

The IT department had at the time licensed a commercial system for code life cycle management
but it turned out that the developers rather desired to use Adam’s tools. A few attempts were
made to get developers to use the commercial solution, but Adam’s solution was already too well
established within the organization. 5 years later, the Inner Source initiative had grown to a stag-
gering 5.000 projects and 16.000 people. And the only support Adam provided was some short
documentation on how to use the tools and some thoughts on Inner Sourcing through his blog.

The company has since long realized that this was a too important and powerful environment
to be managed and driven by one person on a small PC. Eventually, they also switched to use a
standard commercial system for code sharing and collaboration.

The main reasons the Internal Source initiative grew so strong in the company are the low entry
barrier of the tools and the extremely short lead-time for starting up a new project. Developers
like it because it is so easy to use and that they instantly get up and running.

resources, by this initiative. A side effect, but a very powerful one, was that the company also

79
www.dbooks.org

https://www.dbooks.org/

8280

gained full transparency in development made by third parties, since they as well started to use
the Inner Sourcing environment.

A key success factor behind introducing Inner Sourcing was the corporate culture. The teams

working. Adam states that to succeed with Inner Sourcing, the company culture has to be built
on trust and empowerment of teams and individuals.

Even though tools still are the most common Inner Source projects within the company, also a
few commercial products rely on Inner Sourcing. Adam is convinced that Inner Sourcing will be
instrumental to tackle future capacity and time-to-market challenges.

Advices & take aways
• Culture is extremely important – trust, openness, collaborative and

empowerment are key ingredients.

• Rules and roles regarding project contribution are important – Inner
Sourcing projects should start with defining contribution rules and
responsibilities.

• Financing of Inner Source projects is a common challenge and not
always easy to solve. It’s best to settle this before starting a project.

• Review and evaluate different tool suppliers carefully before running
out and purchasing tools and systems

8381

Little or no collaboration between
teams doing similar things

Slow and cumbersome
process to start new
projects

A multitude of similar
tools and technologies

Less hierarchal and
bureaucratic organization

 Fast transparent and lean
process for starting and work-
ing with projects

Innovative products and
technology

Reuse of best practice
tools and technologies

Bureaucratic top-down
governed organization

 Similar teams
doing similar
things on their
own – wasting
efforts

Shorten development time
Increase collaboration and innovation

Increase reuse and decrease redundancy

 Low level of
synergies and
capitalization on
investments

 Fairly long
lead times when
kicking off new
projects

Slow and heavy IS/IT
processes and tools

A collaborative
organization

Empowered and
motivated teams

 Continuously improved process-
es and tools based on best practic-
es and collaboration

Processes created by the
ones using them

 Increased de-
velopment speed

 More synergies
and reuse – high-
er ROI

 Higher degree
of collaboration
and innovation

 Shorter startup
time for new
projects

Tendency of hoarding IP in separate
parts of an organization

www.dbooks.org

https://www.dbooks.org/

8482

Keeping the doors open
CASE STUDY / Co-develop in a community

O
PE

N
 S

O
U

R
C

E

8583

One very clear example of a company that has moved from hardware-based products to soft-
ware-intensive solutions is ASSA ABLOY. This company is a leading manufacturer in door-open-
ing solutions and a market leader in Europe, North America, China and Oceania. The company
was formed in 1994 through a merger of ASSA in Sweden and Abloy in Finland. Since then, it has
grown from a regional company to an international group employing a workforce of over 46.000.

Traditionally, door-opening solutions were about designing and manufacturing locks and keys, and
as such, this business is very much dependent on the price and availability of steel as the raw ma-
terial. While steel and mechanical solutions are still important, most of the costs of the company’s
solutions are spent on software development. Modern door opening solutions involve a consid-
erable amount of electronic circuits and software to control them. Furthermore, door-opening
solutions now also start tapping into the industry of services. The days where a lock was just a
piece of hardware are over.

ASSA ABLOY has developed software for decades for its back-end door-lock systems and Open

Open Source Software can offer, such as reducing development time, increased security (as some
of the relevant OSS components are thoroughly tested), and high quality products. However,
there was never a company-wide strategy or policy around Open Source. As is common in many

the company realized the increasing strategic importance of Open Source, the company started in-
vestigating tools and policies for using Open Source more consistently. This new task was assigned
to ASSA ABLOY’s Shared Technologies division, which is responsible for developing common
software assets and scouting new technology.

ASSA ABLOY Shared Technologies understood that becoming fa-
miliar with the various Open Source licenses was key in order to

become compliant. To that end, a tool was used that automatically
-
-

cient to engage with Open Source products. Engaging in Open Source
also requires developing an understanding of the Open Source software

lifecycle management, and how to align this with the company’s internally

www.dbooks.org

https://www.dbooks.org/

8684

ASSA ABLOY took a number of steps to establish an Open Source engagement policy. First, the
company sought advice from Open Source consultants to be better informed about the conse-

process, all engineers, project managers and line managers in the Shared Technologies division
were enrolled in a training program on these issues.

software, which includes the following key processes:

• Acquisition. This process is concerned with avoiding risks related to IPRs, patents and secu-
rity threats. Furthermore, it considers understanding the availability of Open Source software
and developing a make-buy-share strategy for adding software components in their products.

• Compliance. The Compliance process deals with license matters and how their proprietary
software and new Open Source software can coexist.

•
Source software communities.

A key challenge was really the absence of a company-wide Open Source policy. It was very dif-

shared with many other companies, is how to more actively engage with
Open Source communities. Even though the company management en-
courages participation in communities, the development teams are still
mainly users, not contributors, of Open Source software. Achieving this is
truly a challenge.

using Open Source in their products but it also sees the value in actively engaging in communities,
in order to actively participate in the evolution of Open Source products that it has a stake in.

Getting the teams more
involved in communities
is truly a challenge

8785

Classic development
organization

Develops everything self

Proprietary products

Introduction of the Open
Source Officer role

Compliance and license
processes in place

Innovative, new products
and services

Compatible and co-de-
veloped with the
industry

Fairly new in software
development

 Limited or no
competence in
Open Source

Accelerate growth of business
Shorten time to market

Decrease development cost per product

 Not sufficient
understanding of
risks and benefits
with Open Source

 Limited pos-
sibilities to join
or drive industry
standards

Agile and innovative
organization

Contribution and com-
munity policy in place

Use of a Make-Buy-Share
strategy

 Full under-
standing of the
risks and benefits
of Open Source
on an engineer-
ing and business
level

 Increased
development
speed, quality
and innovation

 Ability to
co-develop and
drive or lead the
standards in the
industry

Intake process in place

www.dbooks.org

https://www.dbooks.org/

8886

Building ecosystems
SCENARIO / Open Source

8989

This scenario is about

how to go from “only”
creating product value from
an Open Source community
to drawing comprehensive
gains from orchestrating an

own ecosystem.

www.dbooks.org

https://www.dbooks.org/

90

Value
extracted from
own ecosystem

The ultimate Open Source strategy is to go beyond the communities and create an ecosystem that
becomes the business and not just supports the business. At its furthest implementation, the eco-
system has disrupted the entire market logic and became the helm of the market. Google and Ap-
ple are great examples of companies that made exactly this. Google’s Android is basically nothing
but a collection of 60 to 70 Open Source software packages. Similarly, Apple’s OS X and iOS are
highly dependent on Open Source (BSD Unix and Web Kit among others). The key aspect of
their success has been their ability to join together Open Source communities and blend differen-
tiating (often proprietary) parts of their products with commodities offered as Open Source.

Proprietary
strategic
technology

Strategic tech-
nology opened
up as market

disruptor

Open Source
contribution
strategy as
product
strategy

Open Source
driven product
innovation

Accelerate
growth of
business

Disrupt
market logic

Open up alternative business opportunities

New markets,
products,

services and
business model

Increased sales

in capturing
multiple revenue

streams

Faster growth
than the

competitors

Control
ecosystem

88

91

Open Source is a game changer to the business, since parts that are contributed as Open Source
also gets commodities and brings down the value of the offering. The business drivers are
mostly a product of the change in the business model. Typical goals that companies aim for are
basically to:

• Accelerate growth of business – to expand the market both in terms of a broadened offer-
ing and to grow higher in the value chain

• Disrupt market entry barriers – to gain access to a market with an open offering, while rais-
ing the bar for proprietary and non-collaborative businesses

•
streams since the revenues for software alone disappears

an extended business model (when alternative revenue is collected from something related to
the core offering, e.g. a service fee), an indirect business model (when revenue is mainly collect-
ed through a device or a hardware offering) or an asymmetric business model (when revenue is
collected from a source unrelated from the core offering). An example of the latter is Google’s

offs from openness.

Internal
technology

External
technology

Licensing

Technology spin-offs

Technology
insourcing

Venture
handling

Current
market

A new market

Another company’s market

Illustration based on picture from presentation of Open Business Models by Henry Chesbrough 89
www.dbooks.org

https://www.dbooks.org/

9290

However, a journey like this can only start once a company’s use of Open Source can be said is
being directed, when the company has gained such support from the executive management so
the use of Open Source software is paramount of the product management. (See the chapter
Co-operate in a community.) At this stage the company is well versed on the engineering and
legal aspects of Open Source. The company’s knowledge level on Open Source is satisfying to
the extent that directives and policies are relaxed and some automation of the governance pro-
cesses has been introduced. Moreover, Open Source technologies have become such a valuable

-
ment. The product offering itself has also gone through a transformation. Fundamental is that
it has a modular architecture, but more, it’s likely that the product is connected to the Internet,
preparing the offering to be extended by cloud-based services.

Only product
value enhanced
by Open Source

Passive
receivers

Basic Open
Source

directives and
policies are
established

The key desired abilities we strive for – to be able to reach, create and orchestrate an Open
Source based ecosystem, an ecosystem that also could be described as a community of
communities – require a collaborative business model.

control Open
Source evolu-
tion – passive

receivers
Contribution
strategy
formulated

Participatory
culture

Leadership that

coaches and
supports

9391

Able to
create and direct

ecosystems

Directed by
business aspects
of Open Source

Although the entire idea with building an ecosystem is to scale the business, it can still be a
challenge for the management to recognize how Open Source as a phenomenon can be used
as a business tool. The management will have to explore radically different market logic, and
in this, they have to fundamentally question what really is the company’s core offering and
how alternative revenue streams then can be created. The cemented truth that “proprietary
Intellectual Property is paramount for a company’s success” will often be proven wrong.

Most essentially comes with Open Source a participatory culture. Custom-
ers are moving from being passive receivers of purchased solutions to ac-
tively involve themselves in the development of the product offering itself.
Many companies have created Developer Programs to catch and nurture

-
ment of the product offering.

A Developer Program is very often seen as the seed of an ecosystem.

-
orative business model, a more supporting and coaching leadership
style is highly promoted. The business lends itself to be run by a

www.dbooks.org

https://www.dbooks.org/

9492

though, that the role for the product Management is adapted to envision

towards crowd-based requirement engineering set-up in the ecosystem.

The Legal department will deepen its collaboration and start building legal frameworks for
novel offerings, as part of the company business development.

be to recruit the necessary talents in order to build the ecosystem. This accounts in particular for
cloud-based services and the necessary support systems for the new business it will offer. Those
people are currently amongst the most sought after in the industry.

Directed by
business aspects
of Open Source

shared Open Source, including partners, customers, end users and sometimes competitors. The
latter is not too far-fetched as many competitors may be entangled in the same Open Source

-
cantly raises the market entrance bar for competitors with proprietary offerings – who would
have costlier development and maintenance as well as the burden of alone having to prove its
value on the market.

Industry-wide
collaborations

Authority on
Open Source

9593

 Only product
value enhanced
by Open Source

Collaborative, though mainly passive
receivers

Basic Open Source di-
rectives and policies are
established

Proprietary strategic
technology

 New mar-
kets, products,
services and
business models
due to Open
Source

Accelerate growth of business

 Able to create and direct
ecosystem

Crowd-based
requirements engineering

Strategic technology opened
up as market disruptor

Disrupt market logic

Open up for alternative business opportunities

 Difficult to
control Open
Source evolu-
tion – passive
receivers

 Directed by business as-
pects of Open Source
 Leadership that
coaches and support

 Participatory culture

 Authority on Open Source

Industry-wide
collaborations

Control ecosystems

Open Source contribution
strategy as product strategy

Open Source driven product
innovation

 Increased
sales and
profitability

 Value
extracted
from own
ecosystem

 High
flexibility in
capture multiple
revenue streams

 Faster growth
than the com-
petition

Contribution strategy formulated

www.dbooks.org

https://www.dbooks.org/

9694

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Open Source. Learn from their experiences, what they gained and
what they had to overcome.

Pushing the boundaries
There are companies that relies on cloud technology infrastructure more than others. If
they also happen to include gigantic data transfers in their offerings, it’s not unlikely that

company that employs more than 700 engineers that more or less gives away everything

9795

Servitization
Open source and ecosystems are almost
always the preferred way when scaling a
business from products into services.
Take again Netflix, who provided a DVD-
by-mail service before creating their vid-
eo streaming service. They likely made
a transformation such as the one the
Servitization scenario describes. It’s the
next chapter in this book, “Add supple-
mentary services.” Read it as well!

www.dbooks.org

https://www.dbooks.org/

9896

Pushing the boundaries
CASE STUDY / Building ecosystems

A block buster

Open Source
in

9997

contenders such as YouTube, Hulu, Amazon, and iTunes.

The computers handle customer information, video recommendations, digital rights manage-

systems. When a new device as for instance an upgraded game console or a smartphone comes

its limits.

Since they rely on Amazon data centers, their 700+ engineers focus on tools that for instance

-
ware that underlies their operations. The companies compete in fact on who’s paying most for
the most clever engineers, to give away their outcome so that others can build on top of it.

Giving away their technical wizardry for free and to rely on 4.000+ volunteer programmers

has been infused with bleeding-edge innovation.

Together, these companies forge the cutting-edge Open Source cloud computing technology
-

ing role in streaming video cloud technology to maintain their forerunner market position. They
have to accept that their competitors – old ones working with cable technology as well as new

-

them and to test them without causing any downtime. The so-called Simian Army, another set

www.dbooks.org

https://www.dbooks.org/

100

performance problems. Chaos Monkey, for instance, simulates small outages by randomly turn-
ing services off, while Chaos Kong takes down an entire data center.

projects, the company wants to put together a cloud management system that software devel-
opers can poke and prod and advance. A platform would provide an opportunity to widen the
offering beyond the core business.

-
ed in 2011. Only a few years later, they had built a bustling community and ecosystem. Today,

-
opment – it’s a strategic weapon for their business. We should expect the “More to come, stay
tuned!” screen on their business outlook.

*Sources and more reading
Netflix, Reed Hastings Survive Missteps to Join Silicon Valley’s Elite, 2013, www.businessweek.com

Netflix Announces $100,000 in Prizes for Coders, 2013, www.businessweek.com

Netflix and YouTube Dominate Online Video. Can Amazon Catch Up?, 2013, www.businessweek.com

NetflixOSS Meetup, 2013, www.slideshare.net

techblog.netflix.com

Netflix Open Source software downloads
netflix.github.io/#repo

98

101

Internal focused
development

Proprietary process

Proprietary technology

Highly paid top talent developers

Strategic technology opened up
as a market disruptor

 Slow develop-
ment

Accelerate growth of business

 Increase sales
and profitability

 Hired developers that share
almost all code freely

Secure leadership in streaming
video technology

Provide the best UX for streaming video

 Difficulties of
securing high
demands on
robustness

 Value and new
business extract-
ed from own
ecosystem

 Faster growth
than the compe-
tition

 Attracting the
best developers

Developers want to be part of an
attractive community

Participatory culture

Highly skilled in cloud computing

Authority on open source

Industry-wide
collaborations

Leader of the evolution of
streaming technology

Open source contribution strate-
gy as product strategy

Attractive and interesting product

Robust and high quality product

99
www.dbooks.org

https://www.dbooks.org/

102102

Add supplementary
services

100

SCENARIO / Servitization

103103

A service is the means of

delivering value to customers

by facilitating outcomes customers want

to achieve without the ownership of

specific costs and risks.
ITIL* defines

service this way. It basically
means that the customer gets some-

thing they want without having to bother
about the supplier’s efforts to provide it.

Services are stand-alone offerings, but
could also be offered with a product as

a supplement.

To get to the grips with
servitization, see also:

• Made to Serve: How Manufacturers can Compete
Through Servitization and product Service Systems,
Timothy Baines

• The Startup Owner’s Manual: The Step-By-Step
Guide for Building a Great Company, Steve Blank

ITIL 2011, (Information Technology Structure Library)*
www.dbooks.org

https://www.dbooks.org/

104102

In essence servitization is a transformation journey - it involves companies develop-
ing the capabilities needed to provide services and solutions that either supplement
or replace their traditional product offerings. Recent technological advances such
as cloud computing, big data analytics, mobility and social media have enabled the
servitization trend.

servitization
[ser · vi · ti · sa · tion]

105103

To completely replace a prod-
uct with a service requires a
long-term investment.

In this case there is no product
or owner. The service is con-
sumed at the same time as it’s
delivered.

Companies that made this
journey can for instance be
found in the entertainment
industry.

Example: Netflix

A middle-road approach is to
keep the product and trans-
form the business model to
be subscription-based.

The owner of the product is
now the service provider.
Companies that made this
journey can be found where
buying the product requires a
substantial investment.

Examples: Rolls-Royce with
its Power-by-the-hour aircraft
engine program and Xerox
printer service.

Least complex is to keep the
product and purchase-based
business model, but add
supplementary services such
as maintenance and premium
programs.

The owner of the product is in
this case still the customer.
Numerous businesses suc-
cessfully adopts this model.

Examples: Ericsson offers
maintenance of their tele-
communication equipment.

Servitization is used when a company introduces a service offering as a means to further satisfy
-

peting with low-cost countries on a cost alone basis. The theory suggests there are three levels of
product-to-service transformations, but there are no clearly delineated boundaries. It’s rather a

Low cost
competition

Customer
expectations

Financial
incentives

Gaining
competitive
advantage

www.dbooks.org

https://www.dbooks.org/

106104

Consider for a minute the dynamics within the management group. Who gets to talk most on the
management group meetings? This will change. Substantial amount of time and resources that are
currently allocated to track and report development and manufacturing will decrease to an abso-
lute minimum. Sales, or rather the new function that sales will have to become, will get the most
attention. Expect clashes since not everybody will be able to free themselves from their previous
roles and traditional ways to run the business.

Being able to offer a service is a huge opportunity that can completely change your business mod-

your competitors have already started. Agility will turn out being your key ability.

Product
culture

Service
culture

Turning a legacy product business into a cloud-based service business has become the Holy
Grail of the software industry in recent years. Being able to provide customer value by making
services that for instance use data from the billions of Internet of Things sensors,
turns out to be a money-maker. It’s not that easy, of course. You have to make sense
of the data, turn it into knowledge and meaningful actions. Parking place sensors
are practically useless if you can’t come up with a clever way to help your customers

have successfully made the journey to replace their products with services and by that
-

sualties are usually claimed during the transformation phase. Learning from the pitfalls

succeed. The solution described in this chapter has proven to be fruitful.

107105

Regardless where you aim in your scaling effort, it cannot be emphasized enough how
important it is to start in the management team. First priority is to change every-

body’s point of view, to stop gazing at the Gantt chart and
instead seeing the customers.

Service business
model unknown

Customer
Development

Service
business
model

Another priority, and indeed a great challenge, is to develop a scalable,

really any difference between an established product business that wants to start a ser-
vice and a start-up business. They have an idea of a service business but the value proposition

hasn’t been carved out entirely. Both have to ask and challenge the same questions.

Dropbox, Airbnb and IMVU – use the customer development method described in the book
“The Lean Startup”.* It’s a very good start, no matter from where you come.

The Lean Startup. Crown Publishing Group. Eric Ries*
www.dbooks.org

https://www.dbooks.org/

108106

How do you provide a service that customers willingly pay for
month after month? You have to get to know them and demonstrate
that your service adds value to every one of them, every day. The
technology gets secondary – the customer experience becomes pri-
mary. What are their needs? Understanding your customers and their
behavior will be key. How do they use your service? Fortunately, it’s
much easier to monitor customer behavior when they’re using services
than it is when they’re using products.

A huge advantage with software services is that you can prototype im-
provements and new features in a small scale without having to make major
investments. The service can grow as the business grows and your customers

data and prioritize development that improves the service, makes this advantage even
more valuable.

The development work lends itself to be carried out in an iterative way, to create a so-called

Service
management

Customers have to get value day after day, month after month, to stay as such. They have very high
demands on availability. When at least 99.9% availability is expected on a normal service, there’s ab-
solutely no room for temporary glitches. The ITIL 2011 has shown to be a great source of knowl-
edge to support how to get there. Study in particular the Service Management guidelines.

109107

minimum viable product every week, or even every day. There are Ag-
ile development techniques such as Continuous Delivery, A/B testing
and DevOps* that perfectly support this way of working. An iteration
would only comprise a few of the highest ranked work items in a pri-
ority-ordered list, called the backlog.

After having provided the new features to your customers, you can
measure, analyze and improve them. If a feature doesn’t live up to
the customer’s expectations, the design has to be improved. New
features are not taken away from the developer’s backlog until the
customers show, either through surveys or logged behavior, that ev-
erything works nicely.

Simply put – fail fast, learn fast, and improve fast.

This is a never ending cycle of making a hypothesis about a new cus-
tomer feature, building the minimum viable product, looking into how

it’s used, learning from it, making a new hypothesis, building, releasing, ana-
lyzing and learning, and on and on. There will always be high time to improve

either the business model or the service.

Experiences have shown that the companies that have created small, autonomous teams
that work as start-ups are the ones that also are the most successful. Many of them work ac-

cording to the customer development methods described in “The Lean Startup”.

IT and R&D
organizations
separated

Long development loops
DevOps Continuous

Delivery

A practice that emphasizes the collaboration and communication
of software developers and IT professionals*

www.dbooks.org

https://www.dbooks.org/

110108

The challenges are plenty fold, as can be expected. While many companies are successful, many

• Creating a service oriented business culture

The pit holes along any servitization journey are numerous and failing to get around them will
inevitably jeopardize the transformation process. But, there’s no reason to be discouraged. De-
spite a massive change in business and ways of working, the servitization journey is proven to be
truly worthwhile. Research shows, for instance, that successful service providers clearly gain:

• Customer loyalty

The servitization canvas helps to avoid making old mistakes in getting these gains.

Customer
loyalty

Increased
revenue and sell solutions are

underestimated

Service
culture

111109

Low cost
competition

Product culture

IT and Development
organization separated

Long development feed-
back loops

Service business mod-
el unknown

Service management

Service culture

DevOps

Continuous Delivery

Customer Development

Service business model

Customer
loyalty

 Increased
revenue and
profitability

 Difficulties
to sell solutions
are underesti-
mated

Service
culture

Customer expectations

Financial incentives
Gaining competitive advantage

Activity 1

Activity 3

Activity 4

Activity 2

www.dbooks.org

https://www.dbooks.org/

112110

Get insights
This scenario has been based on case studies of different companies that have made this
journey, to scale with Servitization. Learn from their experiences, what they gained and
what they had to overcome.

Adding Internet to things
Read about the company that boosted their B2B sales by spicing their lawnmowers prod-
ucts with IoT.

Boosting product sales by services
Learn from the company who aimed too high with a worldwide download service for the
man on the street.

113111

One more thing
When scaling a software organization through
servitization, the software architecture has to be
adapted.

The chapter First things rst describes a canvas
that was created for this purpose, as a guide on how
to improve the software’s internal structure.

It is furthermore strongly recommended to work in
an Agile way. Find canvases for Agile development
in the chapters Pump up the volume, Deliver 24/7
and Agile and Disciplined.

www.dbooks.org

https://www.dbooks.org/

114112

Husqvarna is a global manufacturer of lawn and garden equipment, offering products varying
from chainsaws to lawn mowers. They are now in a shift from offering mechanical products to
also produce products having electronics and software. An increasing amount of unique product

mowers were launched, but until 2016 the products had virtually no connectivity. It’s connectivity
that makes the machines able to communicate and possible to integrate with customer services.
Husqvarna Fleet Services is such a service.

Adding Internet to things
CASE STUDY / Add supplementary services

115113

Customer

expectation
s

The hardware of the system consists of a sensor that is mounted on the machine, an operator
tag that is carried by the person who uses the machine and a base station that is placed in the

also keeps track of who is operating the machine. When the machine is back in the garage, the
data is collected and sent through a gateway to Husqvarna Fleet Services cloud data services.
Operators, managers and technicians at the companies that subscribe to the service can then get
information such as vibration levels, service needs and machine usage based on collected data
that has been fused with data from other Husqvarna data sources.

Husqvarna Fleet Services started in 2007 as an idea in the After-sales department, basically to
-

varna products. Until 2011, all development was run by After-sales as a study on a very limited
budget. To create the proof-of-concept, they cooperated with an external technology company.
From that point, in 2011, the project gained increasing support from the R&D department. In

new R&D department was started in December, with the responsibility to host all Husqvarna
service products, one of them being the Husqvarna Fleet Services. A group wide decision forum

limited commercial release of Husqvarna Fleet Services was released mid-2016.

Hardware
oriented company.
No connectivity
in products

Connectivity
built into
products

No sales o
rgani-

zation for
selling

services

Market & sales organization for service products

Group wide de-
cision forum for
product connec-

tivity

Gaining
competitive
advantage

www.dbooks.org

https://www.dbooks.org/

116114

Husqvarna saw the demand from the market, the need for a product like Husqvarna Fleet Ser-

organization is changing accordingly. What originally started as an experiment is now reshaping
the identity of the entire company – it’s a transformation from a traditional, product-oriented
manufacturing business to a business where services lead the way towards the future. It has taken
a long time to get where they are now, about nine years. But the idea of introducing services was
a good one, an idea that eventually made the whole company line up and work towards a com-
mon goal. As this is written Husqvarna is still on the journey, but its chances to succeed in its
servitization is considered very good.

Husqvarna’s products were becoming smart devices – but this wasn’t enough: Husqvarna’s
organization had to become smarter, too. As a hardware-oriented company, Husqvarna had
initially very limited software and system development capabilities. An important step was to
form an R&D department that could develop new services. The IT organization had to create a
new department as well, with responsibility to build and operate the IT infrastructure needed for
the service. They worked independently from the original parts of the IT department. The IT
organization had to work in a Bi-modal way, so to say in one speed for the original IT work and
in another speed for the rapidly moving services developed by the DevOps teams.

No IT infra-
structure for
handling con-

nected services
Limited soft-
ware & system
development
capabilities

Common IT
department

for connected
services

Agile DevOps process implemented

No R&D organization for services

R&D
organization

formed

117115

No R&D organization
for services

No sales organization for
selling services

No IT infrastructure
for handling connected
services

Hardware oriented com-
pany. No connectivity in
products

R&D organization formed

Marketing and sales
organizations for
service products

Agile DevOps process
implemented

Scalable and flexible com-
mon back-end

Connectivity built into
products

 Services is
a profitable rev-
enue stream

 Services are
offered for all
products

Customer expectations Gaining competitive advantage

Activity 1

Activity 3

Activity 5

Activity 2

Limited software and
system development
capabilities

Group wide decision fo-
rum for product connec-
tivity
Common IT department
for connected services

Activity 4

www.dbooks.org

https://www.dbooks.org/

118116

MP3

This case study is about how the mobile phone manufacturer Sony Ericsson went from only
offering physical products to also include a music listening service called “PlayNow plus”. Sony

listening to music. The PlayNow plus service was basically introduced to increase sales of mobile
phones, but also to be a step to keep the lead in the global music listening business. The service

Boosting product sales by
services

CASE STUDY / Add supplementary services

Increase sales of mobile phones

Leading the
global music lis-
tening business

119117

IT organization
limited experience

in consumer
services

-
vices. Atos Consulting*
including adjustment of KPIs, redesigning processes, aligning management, organization (not
least the IT department), people, and culture. It is virtually impossible to shift the entire organi-
zation at once. The servitization transformation is a journey and not a one-time change.

Sony Ericsson was a product company with very little experience in delivering services. The
-

son as educating personnel in what it meant to deliver a service. Part of the explanation is that

plus. Sony Ericsson continued to focus on product development and also expected the PlayNow
team to align with their long-lasting product development cycles. With customers expecting new
functionality continuously, the way the service developed and how it was operated was far from
optimal.

The IT organization did not have any prior experience of external customer facing applications.
-

zation simply didn’t understand the implications of this decision. This led to enormous problems,

-uct develop-ment process

Product
culture

Product and
service culturedevelopment process

Service installed
inside company

Atos 2011, www.consultancy.nl*
www.dbooks.org

https://www.dbooks.org/

120118

While cultural problems were among of the biggest internal hurdles to overcome, communicating
the service business model to potential customers became their biggest external problem. The
service organization lacked basic knowledge about the market. Two questions they didn’t ask were:

• Was there a need for the service or did the users want another kind of music service?

• Did the users like the service or was there a need for updates and new functionality?

The PlayNow plus service was launched to the Nordic countries in August 2008. As a reference,
Spotify was launched shortly after, in October. PlayNow plus offered DRM free (without digital
rights management) MP3 tracks, while Spotify offered a streaming service. They offered basically
the same service, but in two completely different ways.

it could take the loss for an extended amount of time. PlayNow plus was never considered to

as a decision to cut costs.

such as having to shut down the service during weekends during the regular maintenance of the
internal IT systems. A service like PlayNow plus must be available 99.9% of the time, if its users
should even think about using the service as their main way to listen to music.

Services
are

-

nue strea
ms

No business model for music listening service

A scalable,
repeatable and -
ness model

121119

Product culture

No business model for
music listening service

IT organization limited
experience in consumer
services

Product and service
culture

A scalable, repeatable and
profitable business model

Efficient service develop-
ment processes

Service installed inside
company firewalls

Services are
profitable
revenue
streams

Increase sales of mo-
bile phones

Leading the global music
listening business

Activity 1

Activity 3

Activity 2

Efficient product develop-
ment processes

www.dbooks.org

https://www.dbooks.org/

122122

 VII
VIII

 IX

 X

 X
I Deliver 24/7

120

SCENARIO / Agile

123123

I II III IV V VI
XII

This chapter focuses

on the offering and value
stream domains.

The scaling
Agile model is for compa-

nies that want to start working
with Agile on a larger scale.
The complete model describes
scaling in three domains: value

stream, offering and size.

www.dbooks.org

https://www.dbooks.org/

124122

About Agile
During the 1990s, a number of lightweight software development methods evolved in
reaction to the prevailing waterfall software development methods. They all follow the
principles that were outlined in the Agile manifesto 2001.* There are many agile devel-
opment methods now. Most of them promote teamwork, collaboration, and process
adaptability throughout the product development life cycle.

Agile development methods break product development work into
small increments allowing frequent feedback on value and quality.

Scaling Agile is a concept that helps you spread and consolidate the agile philosophy
throughout the organization to follow the Agile Manifesto that says that “our highest
priority is to satisfy the customer through early and continuous delivery of valuable
software.”

This type of change is often very thorough and includes a review of leadership, gov-
-

innovation, or something else.

http://agilemanifesto.org/*

125123

Companies that succeed with the scaling Agile
process are characterized by three things:

1

2

3

Co-located, cross-functional teams
The teams contain all the necessary competence to deliver value, for instance
developers, testers, architects and business representatives. The teams are as well

Delegative style leadership
Management must understand the agile values and make it necessary to imple-
ment the planned change. Agile methods also requires that the leadership focus
on teams in a very different way than the traditional command and control style.
A more delegative and cooperative leadership style is needed.

Iterative approach with short feedback loops
Technology and infrastructure will enable fast feedback and fast, frequent release
cycles. At the end of each iteration, stakeholders as well as customers review the
progress and re-evaluate priorities to optimize the return on investment and to
ensure alignment with customer needs.

www.dbooks.org

https://www.dbooks.org/

126124

Value stream

Of
fe
rin

gs
Differentiation

Scaling agile

There are three reasons why a company
would want to scale up agile to the whole

organization:

1. Doing the right thing
 at the right time,

2. Focusing on delivering value to
 the customer, and

3. Improving the capability to innovate.

Everything is sprung out of the need to
become stronger, to innovate better products

and to better differentiate between products.

Customer value

Innovation

The scaling objective (what we want to become) is in the theory

called Scaled Agile. Scaling Agile is the transformation that gets

us there, towards the Scaled Agile. There is no actual end state,

since the market, technical trends and so on vary over time.

Many large companies struggle with timely delivery of products and
services that customers really want. While agile methods are widely
adopted, a key challenge is to scale the agile approach to the corporate
level. While software development teams may follow agile methods such

-
tion are still operating based on a waterfall philosophy. Adoption of Lean Thinking
and Enterprise Agile philosophies that focus on end-to-end systems thinking is still

of being agile.

127125

In this scenario we deal with two levels of scaling objectives. The primary objective is to scale the
value stream – this is what being Agile is all about, to take full responsibility from idea to payment,

the offering – this is to scale stand-alone products or services. Each offering will have its own value
stream and perform as a “mini-company” in its own.

-
uct is developed
before going out

to market

Minimum Viable
product

Very little coop-eration between development and product manage-
ment

Co-located self-managed teams with pri-oritized backlogs of requirements

It’s a challenge to get everybody on-board, getting everybody to accept full responsibility. Every
person in the development process needs to understand the business, how the market evolves, and
what competitors are up to. From what they know, they have to create a Minimum Viable product
(MVP). This is a central concept in agile and lean philosophies, to not implement too little, not
too much, but just about what is takes to keep the customer ahead and the competition behind.

www.dbooks.org

https://www.dbooks.org/

128126

Once a company has established an agile value stream, it becomes easier to differentiate between
various products and services. Of course, it’s not as simple as just replicating teams, or worse, as-
signing the same team for several product offerings. Scaling in the product domain, creating new
products and services based on existing assets, usually means that the software architecture and
supporting systems have to be adapted. Introducing continuous portfolio planning and project
visualization will become of utmost importance to remain agile.

Delivering continuously
As innovation and coding can be dealt with by introducing agile methods, so can test, integration,
build, and delivery practices. How about eliminating all manual work, developing an ability to de-
liver a change to the customer within hours, or even minutes? How about being able to deliver bug

this is Continuous Delivery. Its practice is rapidly becoming very popular among major software
and service suppliers such as Microsoft, Ebay, Amazon, Facebook, and Google. In particular prod-
ucts that are deployed through the cloud are very amenable to this approach.

Continuous Delivery helps in becoming more receptive and responsive to customers’ needs. To
continuously get new features might not be what every customer wish, but many would even love

-
portant concept within Continuous Delivery. Another important concept is to implement essential
features in two variants and using A/B testing to determine which variant works best.

Customers
frequently not

the outcome Feature toggles and
split tests

Customer satis-
faction by early
and continu-
ous delivery of

software

Implementing
the simple
solution

129127

Continuous Delivery depends on a delivery pipeline – a series of steps that a product’s source code
has to go through to be delivered. To establish such a pipeline isn’t trivial and doesn’t happen over
a night. Apart from the very challenging task to automate delivery to customers, the biggest chal-
lenge is to automate testing. Constructing a comprehensive test suite that is good enough takes a
lot of time, and so does the implementation of the required automation tool support, which is an
instrumental and challenging part for any organization. To continuously allow all changes that pass
all tests to be deployed to customers requires a mature and stable team that embraces a culture of

an altruistic mindset and culture, and to build the trust that is needed for such a culture.

Plans aren’t always followed up on

Working software
is the princi-
pal measure of

progress

Acceptance tests

Unit tests

Integration

Deployment

Bu
ild

www.dbooks.org

https://www.dbooks.org/

130128

Maintaining stability
When scaling IT systems in an established company, there is usually a need to balance the stability

-
nologies and infrastructure is deliberate, consensus-driven, and slow moving, and so it has to be.
The cash cow must not be rushed. The most novel products and services, on the other hand, may
be highly experimental and may require more frequent updates in the technology infrastructure.

This is called Bimodal IT, the concept of having two distinct IT methodologies in the same
company. The Agile IT team handles the growing needs of the business while the core IT team
handles day-to-day business technology functions. The Agile IT team can quickly roll out fast
evolving technologies while the core IT team executes long-term plans and goals in a more disci-
plined fashion.

Innovation intense systems

Differentiating systems

Core systems

– C
ha
ng
e
 +

+ G
ov

er
na
nc

e
 –

Traditional
Exploratory

131129

Keeping the IT systems separated but balanced can be a deliberate and strategic decision. Busi-
nesses that have outsourced application development might also want to keep their core IT infra-
structure stable in order to keep control of software deliveries from their external partners, who
work following agile principles.

Despite the neat separation implied by Bimodal IT, the different teams will need to cooperate.

Both teams have to respect the different ways of working and agree on mutual processes. How-
ever, to avoid getting the teams too intertwined, it’s good to create a layered or modularized base
system architecture to from the beginning that provides and supports a high degree of change
and agility above it.

Keeping two separate IT teams can prove to be a challenge. In order to create a bridge and to be

.

Everybody works
in the same

process with the
same product

Architecture
that supports
a bimodal way
of working

www.dbooks.org

https://www.dbooks.org/

132130

Senior managers often believe they fully understand and embrace agile principles, yet they

demonstrate the opposite when making decisions. -
ognize and mend whilst the managers in matter have attended training sessions and use the right
agile buzzwords. It’s not that they’re faking it; they honestly believe they’re doing the right things.
So what can we do? Experience has shown that having more workshops, training, and discussions
are not the most effective approach. A better way to tackle this situation is to let the management
team visit another company for in-depth demonstrations and sharing sessions, and to introduce
them to agile champions and leaders that can demonstrate what agile leadership really is about.

Low maturity in a company’s continuous integration and test procedures causes long

quality feedback cycles. To have successfully implemented procedures include at least daily
integration and build, and some level of automatic testing. If the environment and processes
don’t allow for this, then further steps in the agile transformation journey have to focus on this.

including production, legacy system owners, and quality assurance, and this makes running change

Administrative matters such as organizational structures, governance, forums and roles

get more attention than the focus on achieving agility. If development teams aren’t agile,
then we’re scaling something that doesn’t work. This causes unnecessary overhead in terms of
coordination between teams and micro management of the whole program. So, make sure that

-
nition-of-done. Ensure they are self-organizing and have the authority and skills to pull, plan and
deliver their work and to get frequent feedback.

When scaling Agile, avoid these common pitfalls:

133131

Distributed development and dealing with multiple vendors are challenging. Fundamental
aspects of agile methods include a team’s ability to self-organize, transparent collaboration, and
quick feedback cycles. Geographical distance and cultural differences combined with multiple
vendors and diverse business and contract models require a lot of the development organization.
It’s necessary to share visions, high-level goals and agreed-on deliveries between the different or-
ganizations, to maintain total visibility. Organizational boundaries have to be removed to get fully
cross-functional teams. If you really need to engage multiple vendors, you also need a well-crafted
outsourcing strategy that works with multiple suppliers.

Stick to old ways for governing projects with demanding progress reporting hampers agility.
With traditional governance – involving steering groups and traditional portfolio management –
projects are burdened with detailed estimates in terms of investments and return, milestones and
decision gates, and expected dates for deliveries. All results are basically a product of a project with
all people and budget allocated in advance. Any deviation is managed
by renegotiating project scope and budget, resulting in people get-

no projects with allocated people. Instead, there are a number
of backlogs and a total development capacity. The developers
organize themselves in teams that pull prioritized work out
of these backlogs. All planning and governance is based
on a quarterly, monthly, and weekly cadence. There are
still people responsible for the business. They decide
what and when to release. From a management point
of view, this regime requires a lot of trust. It’s im-
portant that there is full transparency to how
much the teams can deliver per delivery. This
enables product owners to make forecasts
and reprioritize the next delivery.

www.dbooks.org

https://www.dbooks.org/

134132

 Quality not
sufficient

 Time is lost on coordination
because teams are not able to take
decisions on their own

Plans are not
followed up

Customers frequently dissat-
isfied with the outcome

 Increased
quality

Customer value

 Close, daily cooperation between busi-
ness people and developers where plans
are adapted to current situation

Automatic testing

Customer satisfaction by
early and continuous deliv-
ery of software

Innovation

 Problems with
visibility in proj-
ect follow up

 The team regularly discusses how
to be more effective and adjusts
then accordingly

 Co-located self-managed teams
with prioritized backlogs of re-
quirements

 Working software as principal
measure of progress

Implementing the simple
solution

Architecture that supports agile
way of working

 Decreased
cost

 Increased
productivity

 Software
organization
deliveries are
predictable

 Change of re-
quirements are
welcome, even
late in develop-
ment

Differentiation

 High mainte-
nance cost

 Problems with
late require-
ment changes

 Little cooperation between
development and product
management

 Requirements are not always un-
derstood by the developers

To deliver software
takes too long

 A finished product is developed
before going out to market

 Everybody works in the same process
with the same product

Continuous delivery

Feature toggles and
split tests

 Minimum Viable product

 Architecture that supports a
bimodal way of working

135133

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Agile. Learn from their experiences, what they gained and what they
had to overcome.

Pruning a bush
At this company, any development of new functionality literally drowned in the work to

without jeopardizing the relations with their customers and quality in their old products.

Ensuring prima deliveries
Critical bugs passed unnoticed for weeks or even months. Corrected bugs took days or
weeks to deliver, since the procedure is manual and requires the system to be shut down
This was the situation when a team at Prima decided to implement Continuous Delivery.

www.dbooks.org

https://www.dbooks.org/

	Proven ways to scale a business
	SCALARE
	The SCALARE team's objectives
	Co-created by industry and academia professionals

	It’s in the software
	Hello world

	Common challenges with software
	1 2 3
	Not to waste time

	The map
	Drivers
	Software abilities
	Software model set-up
	Product domain
	Process domain
	Organization domain
	Transitions
	It all fits together
	How the canvas can be used

	The compass
	Two ways to read this book
	Journey 1 – Co-operate in a community
	Journey 2 – Building ecosystems
	Journey 3 – Add supplementary services
	Journey 4 – Deliver 24/7
	Journey 5 – Pump up the volume
	Journey 6 – Agile and disciplined
	Journey 7 – Outside the box
	Journey 8 – First things first

	The journeys
	Co-develop in a community
	One more thing
	Get inspired
	Sharing is caring
	A thriving Open Source culture behind the wall
	Keeping the doors open

	Sharing is caring
	R & D and Legal, hand in hand
	Sony Mobile Open Source Maturity and Strategy model
	Engineering Driven
	Business Driven

	Advices & take aways

	A thriving Open Source culture behind the wall
	Advices & take aways

	Keeping the doors open

	Building ecosystems
	Get inspired
	Pushing the boundaries

	Servitization
	Pushing the boundaries
	Sources and more reading
	Netflix Open Source software downloads

	Add supplementary services
	servitization
	Get insights
	Adding Internet to things
	Boosting product sales by services

	One more thing

	Adding Internet to things
	Boosting product sales by services

	Deliver 24/7
	About Agile
	Companies that succeed with the scaling Agile process are characterized by three things
	Co-located, cross-functional teams
	Delegative style leadership
	Iterative approach with short feedback loops

	Scaling agile
	Delivering continuously
	Maintaining stability
	When scaling Agile, avoid these common pitfalls
	Get inspired
	Pruning a bush
	Ensuring prima deliveries

	Pruning a bush
	Ensuring prima deliveries

	Pump up the volume
	Get inspired
	Global R&D goes agile with SAFe
	Multi-site development

	Global R&D goes agile with SAFe
	Multi-site development

	Agile and disciplined
	Drivers
	Architecture
	Working code, short development cycles and continuous integration
	Minimum of documentation and functionality
	Quality and verification by agile means
	Visualized system and work in progress
	Customer needs
	Improvements in small steps

	Get inspired
	Scaling Agile in Automotive
	Scaling Agile in Life Sciences

	One more thing
	Scaling Agile in Automotive
	Scaling Agile in Life sciences
	Lessons Learned

	Outside the box
	The unforeseen costs
	We’re only human
	Due diligence
	Our strategy
	Get inspired
	Efficient communication in a global delivery model
	Outsourcing Strategy at Sony Mobile
	Not so shore anymore
	Play it again, Sam, backwards

	Efficient communication in a global delivery model
	Observations
	Recommendation on how to succeed

	Outsourcing Strategy at Sony Mobile
	Not so shore anymore
	Play it again, Sam, backwards

	First things first
	Get inspired
	Robotic growing pains
	Softhouse reflects on architecture changes
	From mobile to platform

	One more thing
	Robotic growing pains
	Softhouse reflects on architecture changes
	From mobile to platform

	Your journey
	Good old post-its
	Setting up the workshop
	Let’s start! Why are we here?
	What is our strategy? - What are the drivers?
	Start with the external drivers
	Good things we want to keep
	Continue with internal drivers

	Desired abilities and current inabilities
	Iterative process

	Explain current abilities with domain capabilities
	Find a solution
	Use the body of knowledge and experiences to be creative
	Decision time

	Done – let’s get on with the real work

	The real work
	Agile change center

	SMF
	Alphabetical list of terms and definitions

