
136134

CASE STUDY / Deliver 24/7

Pruning a bush

137135

The company had long release cycles due to their lack of capacity but mostly because their

products that the company’s technicians needed to be able to maintain and service. A few of
the larger customers desired to have the products branded as theirs. The consequence was a
complex branching strategy (a way to keep track of the software for each customer). Every bug

many branches made it impossible to keep their release deadlines.

Any development of new functionality literally
drowned in the work to support customers and

drenched in work and very little new software
was produced. However, a new product was
in the roadmap. The organization knew they
needed to make this a priority without jeopar-
dizing the relations with their customers and
quality in their old products.

The maintenance team added the patches directly on the customer’s production branch at any
time. So when a new release was created, all patches from the different customer branches had

-

branch to the main branch. Sometimes there were even several release branches to merge into
the main branch. It was a mess.

The Agile transformation started by training the development teams, product owners and man-
agers in Agile, Scrum and Kanban methodologies*. After the training was completed, new ways
of working were introduced in a big bang. The department was divided into three development
teams. The team that got responsibility for maintenance started to work according to Kanban.
The team that got to work with customer projects and the team that got to work with new prod-

The many and conflicting patches made integra-
tion and verification very difficult. The team had
to move all patches from the release branch to
the main branch. Sometimes there were several
release branches to merge into the main branch.
It was a mess.

www.scrumalliance.org
kanbanblog.com/explained*

www.dbooks.org

https://www.dbooks.org/

138136

ucts started to work according to Scrum. The people in the test team were all distributed in the

the developers in how to test. The testers could now focus on more complex test cases and the
overall quality.

team’s Scrum masters and Kanban leaders. The two development teams adapted quickly and
started to produce and solve challenges as they arose. The external coaches were still available,
to support the teams, the scrum master and the managers in their new roles. They also got help
with their group development, to help them in seeing how to improve. The branching strategy

and merged into the main branch after every sprint.

take the step and merge corrections both into the service pack release branch and the main

guarantee the quality on both branches.

-
time. They hadn’t been able to do this for a very long time, a huge step forward according both
to management and the employees.

To get the software departments up and running with Scrum and Kanban required two weeks of
initial training.

139137

 Common ground
training for custom-
er driven, “can do”
mindset

Poor communication

Low value and innovation

Flexible, business minded
and responsive

 Delight customers by valuable
and easy to use features

Time to market

 Skilled, com-
petent and flat
organization

Iterative adaptive light
weight process

Adding market value

Right level of quality

Accountability and
responsibility

Efficiency

Business sense
and awareness

Focus
New technology

Not working together,
blaming game

Not responsible or com-
mitted

Slow and chaotic at the
end

Complex and no risk
awareness

Manual tests performed
at the end

Expensive development

Many bugs

Huge and complex code base

 Competence and
sharing

 Visualization and
communication

Creativity and
innovation

 Resolute and committed team
within clear boundaries

 Goal oriented communication

 Flow focused to minimize
overhead and handovers

Enable creativity

Enabling continuous delivery

 Efficient, maintainable, scal-
able and customizable

 Profitable and innovative

 Right quality and
stability level

 Quick
decisions

 Great user
experience

 Powerful and
market leader

www.dbooks.org

https://www.dbooks.org/

140138

Ensuring prima deliveries
CASE STUDY / Deliver 24/7

141139

Many organizations are suffering from sub-optimal development and deployment process-
es. Common bottlenecks are: outdated tools, lack of systematic and pro-active error handling
procedures, and deployments that only can be made at night time in order to limit downtime.
The consequences are low quality and delayed deliveries. The feedback loop from customers to
developers tends to be too long. Critical defects can pass unnoticed for weeks or even months.

days or weeks to deploy.

This was also the situation when the Swedish company Projekstyrning Prima (Pri-
ma) decided to implement Continuous Delivery of its route planning systems. To
that end, Prima developers introduced new systems for source control manage-
ment, build automation, automated deliveries, and a new way to log information
– one module and one developer at a time. These steps made a great difference

work long nights or weekends. With this set of tactical changes, new product
versions could be deployed in the middle of the day, without any downtime. The

to increased customer satisfaction and fewer calls to Prima’s support lines. The
shorter cycles also made it easier to plan the work ahead on a realistic time scale,
and measure effects such as product quality of their new approach.

The key driver for Prima was to increase the release cadence without jeopardizing the quality and
stability of the product. To make this possible, the development pipeline had to be fully auto-

Poor
quality

Delayed
deliveries Too long feed-

back loop from
customers

Critical bugs can

pass unnoticed
for weeks or
even months

Corrected bugs
can take days
or weeks to
deliver to
customers

New way to log
information – one
module and one
developer at a

time

New systems for
source control
management,

build automation
and automated

deliveries

www.dbooks.org

https://www.dbooks.org/

142140

Prima was using the Microsoft Azure cloud platform, but this wasn’t a key problem. The chal-
lenges they ran into could have arisen with any cloud technology stack. While cloud technology
certainly facilitates a transformation to continuous delivery, this wasn’t a key requirement.

The changes that the Prima team made took just over three weeks – less than 16 days to be
precise. Some of the major improvements were made by rethinking and simplifying the product
release procedures. Another cornerstone for making improvements was to introduce monitoring
systems: detecting when things go wrong is essential to continuously improving processes and
removing bottlenecks. This continuous improvement is key in true enterprise agility and can also
be traced back to the Lean Thinking philosophy. Continuous improvement is not the destina-
tion—it is the journey itself.

Cloud platform
Microsoft Azure

Lean Thinking is derived from the Toyota production System, which itself contains many con-
cepts using Japanese words. One simple tactic is described by “Genchi Genbutsu”, which refers

coach walk through the steps with every member of the team helps to overcome many prob-
lems. Soon it became clear that the chance to succeed increases if everybody knows the whole
team, and the product, before embarking on this journey. Of course, using support from mod-
ern tool chains is a necessity. These tools don’t need to be very expensive—many of the tool
chains are available free of charge as open source products. While some tool migrations might
take some effort, such as migrating to a modern source code management system, such invest-
ments will pay off in the end. This is one of the many trade-offs that teams will have to make in
a process improvement initiative.

New source
code management

system

Manual
routines

Automated
release process

Deployments
can only be
made during

nights

Deployments
can be made
quickly and

during daytime

143141

Outdated tools

Manual routines
New way to log informa-
tion – one module and one
developer at a time

New systems for source control
management, build automation
and automated deliveries

 Poor quality

Customer value

 Increased cus-
tomer satisfac-
tionAutomated release pro-

cess

Increase the release cadence

 Delayed deliv-
eries

 Too long feed-
back loop from
customers

 Critical bugs
can pass unno-
ticed for weeks or
even months

 Corrected bugs
can take days or
weeks to deliver
to customers

Lack of proactive error
handling

Deployments can only be
made during nights

Deployments can be made
quickly and during daytime

New source code man-
agement system

Cloud platform Microsoft
Azure

 Fewer calls to
the support

www.dbooks.org

https://www.dbooks.org/

144142

Pump up the volumehe vohe vo
SCENARIO / Agile

145145

The scaling Agile model is for

companies that want to start

working with Agile on a larger scale.

The complete model describes

scaling in three domains: size,

offerings and value stream.

This chapter focuses

solely on the size
domain.

The model is
for companies that aim to extend

the number of people in the value
stream so that more teams work together
towards a joint delivery. The typical start-
ing point is that a development department
has been using Lean and Agile successfully
for a few years, and now they wish to

spread the ways of working through the
rest of the company.

www.dbooks.org

https://www.dbooks.org/

146144

Software
organization
deliveries are
predictable

Decreased
cost

Increased
quality

Problems
with visibility
in project
follow up

High maintenance costs

Quality n
ot

faster, more predictable and in bigger volumes. Innovation is not a matter at this point. This is
a business need that mostly appears in very large companies that deliver complex products or
services to the market. They search for ways to be more productive together in an organization
that suffers from too many dependencies between products, services and departments. This

Welcome changes
in requirements,
even late in the
development

Productivity

Great problems
when getting

late requirement
changes

Quality Cost Project
predictability

Increased
productivity

147145

resources on maintenance. What complicates everything is that the scaling would need to be
made without serious interrupts in the product development. This is where scaling Agile comes
in, an approach cut out for the change.

Agile development, for example Scrum and Kanban*, has rapidly proven to be the preferred
methodologies among software teams and their developers. Even if a company formally hasn’t
made the switch to use Agile methods, it’s not unlikely that some of their teams already have
started to work this way. Teams working in an Agile fashion strive for clear goals and boundaries,
open communication with full visibility of decisions and priorities.

Letting go of details and focusing on Lean and Agile principles will turn out to be challenging
for most managers in a traditional organization, even if it’s been successfully proven empirically.
They have to be courageous and trust in the method and in the staff they manage. In fact, Agile
provides discipline, transparency and working code frequently so trust will come by itself. It’s
important to grasp the idea that scaling Agile has no end; this is the way the organization is run.

Organizations that have been scaled in this way shows that they are able to deliver utterly com-

Agile, it’s important to consider all customer requests carefully. The product owner has to make
the right priorities. It’s important to not forget to start innovate again.

All
changes

A batch
of a few
changes
at time

Batch planning
every 3 weeks

15 minute, daily
standup meeting

Made
changes

www.scrumalliance.org
kanbanblog.com/explained*

www.dbooks.org

https://www.dbooks.org/

148146

Implement Agile
framework

There are several frameworks for scaling Agile and there is no right or wrong
choice. A decision of what combination of frameworks to use can be made once
there is an agreement of what is relevant to the organization. If you already use
Scrum in the company, you might want to consider LeSS (Large-Scale Scrum).
LeSS is sprung out of complex R&D development and emphasizes on contin-

uous learning, inspection and adaption of both product and processes from a systemic point of
view. If portfolio and program level management is central to your company, you might want to
get a closer look at SAFe (Scaled Agile Framework*). SAFe put emphasis on governance, pro-
gram and portfolio management and in particular suitable for organizations from hundreds to
thousands of developers.

www.scaledagileframework.com*

149147

A lot of time i
s

lost on coordi-

nation because

teams are not

able to make
decisions

Software
developers do
not always

understand the
requirements

Customer satis-
faction by early
and continu-
ous delivery of

software

Very little coop-eration between development and product manage-
ment

Daily cooperation
between business
and development,
planning for the
current situation

Regularly, the

how to become
more effective,
and adjusts
accordingly

Implementing the
simple solution

Co-located self-managed teams with pri-oritized backlogs of requirements

New archi-
tecture that
supports Agile
way of working

All frameworks have their differences but they all share the Agile principles. This means also that
the change will require new roles and ways-of-working, even in an organization that uses Agile
development methods. It’s a good idea to form a cross-functional change team. To change the
mindset of leadership and the governance will be one of the biggest challenges in this trans-
formation. One of the most important principles of Agile software development is to have

www.dbooks.org

https://www.dbooks.org/

150148

Another important aspect is to have close cooperation between the product management and
the development team. Ideally product management competence must be in the self-managed
teams, so that the communication is fast and direct. But there are some Agile frameworks that
promote to have the product management in a central team. Whichever way this is organized

-
cient. This should ideally be done regularly.

Follow up on progress in software-based projects is usually a big challenge. In an Agile project

Since functionality is split up in smaller pieces (chunks), this is a proven way to measure prog-
ress. This also drives customer satisfaction, due to that customers can give their feedback in early

Customers
frequently not

the outcome

Plans aren’t always followed up on

Working software
is the princi-
pal measure of

progress

Customer satis-
faction by early
and continu-
ous delivery of

software

Implementing
the simple
solution

self-managed co-located cross-functional teams working. The teams should understand the re-
quirements fully and have all necessary competence to take all decisions for the functionality that
they are responsible for. Read more about change in Your journey.

151149

phases of the development cycle instead of at the end of a project. Customers usually want

why emphasis is put on choosing the simplest possible solution. It makes customers happy and
engaged already in the early phases of the software development lifecycle.

www.dbooks.org

https://www.dbooks.org/

152150

 Quality not
sufficient

 A lot of time is lost on coordination
because teams are not able to take
decisions on their own

Plans are not followed up

Customers frequently
dissatisfied with the
outcome

 Increased
quality

Quality

 Close, daily cooperation between busi-
ness people and developers where plans
are adapted to current situation

Implement agile
framework

Customer satisfaction by
early and continuous deliv-
ery of software

Cost

Productivity

 Problems with
visibility in proj-
ect follow up

 Regularly, the team reflects on how
to become more effective and adjust
accordingly

 Co-located self-managed
teams with prioritized backlogs
of requirements

Working software is the
principal measure of
progress

Implementing the simple
solution

New architecture that sup-
ports agile way of working

 Decreased
cost

 Increased
productivity

 Software
organization
deliveries are
predictable

 Welcome
changing
requirements,
even late in
development

Project predictability

 High mainte-
nance cost

 Great prob-
lems with late
requirement
changes

 Very little cooperation between
development and product man-
agement

 Requirements are not always
understood by the developers

153151

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Agile. Learn from their experiences, what they gained and what they
had to overcome.

Global R&D goes agile with SAFe

global organization.

Multi-site development
If you’re into services, you might want to read about how the large mobile operator gained
excellent predictability by visualization.

www.dbooks.org

https://www.dbooks.org/

154152

Global R&D goes agile
 with SAFe*

CASE STUDY / Pump up the volume

10:15

www.scaledagileframework.com*

155153

The global high tech company had struggled for quite some time to deliver as promised. This
had created a strained relationship between the company and their customers, which seldom
believed in the promised dates and the quality of the deliveries. When the customers got back
to the company they had to wait far too long to get corrections. The market competition was at
the time getting tougher and tougher for the company. Many competitors aspired to be the rising

most out of their employees to speed up development and to solve customer feedback cases.

These drivers initiated their Agile transformation:

current mobile platform market.

The organization was set up as an R&D organization parted in four requirement areas (RA) and

area (like core SW) or a function area (like test). These RAs were located to 4 different sites over
the world; in fact, the same RA could even be distributed over several different sites. About 800
people in Sweden and about 1500 persons globally were affected by the transformation. The
change was led by a core team working in an Agile way, using whiteboards and visualization.

Increase

Increase
responsiveness

Predictable development

www.dbooks.org

https://www.dbooks.org/

156154

The R&D organization improved well, both the integration time and the customer response time
decreased. A major reason this went so well was that the introduction of Continuous Integration
and Continuous Delivery. Read about this in the chapter Deliver 24/7. Another reason was the
coaches, who worked with the teams to help improve transparency and collaboration. A stable
change velocity helped the product management to make releases predictable. Realizing that
more and more Agile tools actually worked, they completely changed their mindset. A year after
the start of the transformation, the company was able to manage a full program increment, an
activity that last over a quarter of a year. At this point in time, everybody in the organization
could go to the visualization room and have a look at the different RA plans, goals and KPIs.
Everything was updated on a regular basis.

The biggest challenge in the transformation was to change the mindset in the organization.
Slowly, small success stories spread in the company, making people to start trust one another. A

157155

Increased responsibilities

Increased efficiency

Project predictability

 Long time to
get corrections
on bugs

 Quality not
sufficient

 Problem with
visibility in proj-
ect follow up

 A lot of time is lost on coordination
because teams are not able to take
decisions on their own

Plans are not followed up

Customers frequently
dissatisfied with the
outcome

 Increased
quality

 Close, daily cooperation between busi-
ness people and developers where plans
are adapted to current situation

Implement agile
framework

Customer satisfaction by
early and continuous deliv-
ery of software

 Regularly, the team reflects on how
to become more effective and adjust
accordingly

 Co-located self-managed
teams with prioritized backlogs
of requirements

Working software is the
principal measure of
progress

Implementing the simple
solution

New architecture that sup-
ports agile way of working

 Increased
productivity

 Software
organization
deliveries are
predictable

 Integration
and customer
response time
decreased

 Very little cooperation
between development and
product management

 Requirements are not always un-
derstood by the developers

www.dbooks.org

https://www.dbooks.org/

158156

The management of a large mobile operator had realized that one of their biggest projects was not
progressing at all. The project had been planned as always, in accordance with waterfall principles.

prestige already invested in the project, it simply had to succeed.

The project aimed to merge a multitude of different systems, of different age and status, into one
big system. Part of the development was made in-house, but part were also made by many vendors
spread over the world.

Productivity

Multi-site development
CASE STUDY / Pump up the volume

ToDo Doing Done

159157

was spread out over different systems and customer service needed to access all these systems to
support their customers. But, the work took a long time and it was hard to train them. The system

across different channels. The tools needed existed, but resided in systems that were not connect-
ed. They desired to create a cohesive experience across all channels. It should look and feel the
same on all platforms.

from the start to the end. A clear goal had to be set and the solution had to develop over time,
with tight learning and feedback cycles. That’s when they decided to start working with an Agile
methodology.

First they implemented Scrum as a project methodology. They divided the large in-house team
into two smaller teams, to keep the team members focused. A single, prioritized backlog was cre-
ated and the teams started to develop based on it. This change alone turned out to be one of the
most important ones they ever made in the project. During the following six months, an extensive

But one challenge remained. They didn’t manage to solve the long lead times that were required
for each new function they added. The many dependencies between teams and vendors made it

which each team was measured, turned out to be useless as a mean to estimate the releases. Depen-

that needed to be changed, and place a new pre-order.

ongoing work. The change team concluded in that Scrum had to be replaced by Kanban, in each
team and on a project level. Work-in-progress limits is the key principle in Kanban. Additionally,

Quality

Project
predictability

www.dbooks.org

https://www.dbooks.org/

160158

Plans aren’t
always followed

up on

a limit was set of how much ongoing work was allowed at the same time. On project level, a Kan-
ban board was introduced. It gave an overview of the features each team was working on. A clear

use this board and start estimate throughput and lead times on an overall level. They had real data
to analyze in order to see if the project was going to manage the project deadline. They could now

re-prioritize based on this information. Each team and vendor got such a Kanban board, enabling
them to prioritize tasks and solve their bottlenecks. They also introduced collaborative analysis and
design, in which key people from each team met and talk through each task, what the task means
to them.

A key get-away from the project was the importance of visualizing work in progress on both proj-
ect and team level, to make sure problems are detected fast. They solved it by start using JIRA* in
the cloud, by this enabling smooth access by both external and in-house teams.

To split the original organization into two teams and start running Scrum took a couple of weeks.

that the set up was not working. The resulting move from Scrum to Kanban, to get all teams
and vendors on board and get everyone involved in the collaborative meetings, took another six
months.

desired to be able to predict what part of the scope could be completed by that time. By being able
to do this, they could then re-prioritize early and solve problems as they appeared.

Did they deliver in time? Yes, they did.

Implement Scrum, then change to Kanban

A lot of time is
lost on coordi-
nation because teams are not able to take decisions
on their own

Co-located
self-managed

teams with pri-
oritized backlogs
of requirements

Working software is the princi-pal measure of progress

A bug tracking, issue tracking
and project management tool*

161159

Quality

Productivity

Project predictability

 Long lead
times

 Quality not
sufficient

 Problem with
visibility in proj-
ect follow up

 A lot of time is lost on coordination
because teams are not able to take
decisions on their own

Plans are not followed up

Customers frequently
dissatisfied with the
outcome

 Increased
quality

 Close, daily cooperation between busi-
ness people and developers where plans
are adapted to current situation

Implement Agile work-flow

Customer satisfaction by
early and continuous deliv-
ery of software

 Regularly, the team reflects on how
to become more effective and adjust
accordingly

 Co-located self-managed
teams with prioritized backlogs
of requirements

Working software is the
principal measure of
progress

Implementing the simple
solution

New architecture that sup-
ports agile way of working

 Increased
productivity

 Software
organization
deliveries are
predictable

 Very little cooperation
between development and
product management

 Requirements are not always un-
derstood by the developers

www.dbooks.org

https://www.dbooks.org/

162160

Agile and disciplined
SCENARIO / Agile

163163

There is no room for bugs
and maintenance updates
when life is at stake

Some businesses imply

severe demands on design

and manufacturing.

Take a car maker,
or a manufacturer of dialysis machines. A

software bug in their products could have seri-
ous consequences on public or personal safety.
Rigorous safety and quality norms have to be
met by these products and services to reduce
risks to acceptable levels.

www.dbooks.org

https://www.dbooks.org/

164162

Regulated domains, such as automotive and healthcare, are compliance oriented. Products and

manufacturing and deploying those products and services. Consider the automotive domain,
for example. A car contains parts and components from thousands of suppliers. In Europe, the
Original Equipment Manufacturer (OEM) takes full responsibility for the product and has to be
certain that all the parts from its suppliers are compatible in performance, durability, and many
other qualities attributes. All parts need to be engineered and produced according to stringent
quality standards. Quality standards are not enough, though. Additional requirements such as
safety and security have also been deployed as standards.

165163

example, the Agile Manifesto values working software over documentation—yet, it is documen-
tation (e.g. for process traceability) that is so important in regulated domains. Therefore, it’s still a
challenge to apply Agile development methods within these domains.

Better
differentiation

Customer value
Innovation Time-to-market

Quality, cost,
productivity
and project
predictability

Drivers
Agile methods have seen widespread adoption in the software industry with some surveys sug-
gestion adoption rates of up to 80%, and for good reasons. The iterative, time-boxed approach
with regular feedback cycles helps to improve software quality and customer satisfaction, and to
improve developer productivity. Many of the drawbacks of traditional waterfall-based approach-
es can be overcome with Agile methods. However, Agile methods were initially seen as inappro-
priate for use in regulated domains such as the automotive industry and medical devices.

In the last few years, driven by market demands and companies’ desire to improve their devel-
opment processes, this assumption has been challenged, and companies in various regulated

-
main. This is also driven by trends such as digitalization in society and Internet of Things. While
safety requirements are still of primary concern, even companies in these regulated domains
need to consider the increasing demand for new and innovative software.

www.dbooks.org

https://www.dbooks.org/

166164

So, the drivers that have led many companies to adopt Agile development methods also
play an important role in companies that are subject to regulations and standards.

shorter time-to-market. But they also have to get better in communicating
with the consumer. The digitalization trend that sweeps through our in-
dustry, and society at large, is changing customers’ expectations. Cus-
tomers now expect to interact with devices through web-based in-
terfaces, and seamless interconnectivity between different devices.

Companies in regulated domains have traditionally been us-
ing waterfall-based development approaches, including the
“V-model,” an extension of the waterfall model, but many
are now moving towards agile methods. However, while

development context, regulated domains require a number

A number of general factors affect how a company should
tailor agile methods. Some of those factors are:

• How many that work with the software

• Whether or not software is developed by distributed teams,
and if so, how many locations are involved

• Whether or not parts of the development are outsourced

• Experiences of the workforce and organizational culture

• Complexity of the product and whether or not it concerns embed-

• -
velopment (continue develop on existing software)

• Criticality of the software – whether or not the software must comply with standards
and regulations

A
rg

u
m

en
ts

 a
n

d
 e

vi
d

en
ce

167165

We
 ha

ve
the

 rig
ht

req
uir
em
ent

s

We m
eet

the

requ
ireme

nts

We use thecorrectprocesses

We have

a good

safety culture

evidence

In regulatory businesses, a product has to be proven to be safe. To this end, a company can create
a Safety Case, which consist of structured arguments supported by evidence that the sys-

software:

They shall be maintained throughout requirement decomposition

They shall address the software contribution to system hazards

In order to provide evidence to the safety case, a few areas need

Extensive product documentation

Full traceability from requirements to test cases

A documented way of working

A documented risk management process

Independent quality assurance

All these areas have to be adhered to satisfy the safety standards.

been accomplished by using a waterfall development method, with a
-

tion of how to move away from waterfall development principles is to
-

of the project. A long-term strategy requires the industry to change the standards
in a more Agile direction.

www.dbooks.org

https://www.dbooks.org/

168166

There is a short-term strategy for any company in regulated environments that wants to work
agile: Apply as many Agile ideas in the development organization as possible by still following

-

software development has to offer.

Architecture

advantages, but also some disadvantages. It is worthwhile to split the architecture in two or more
parts, where some are connected to regulatory aspects and others are not. This makes it possible
to also split the organization in the same way, enabling the parts that are not affected by regulato-
ry requirements to work in a more Agile way.

Sh
o

rt
-t

er
m

 s
tr

at
eg

y

Traditional archi-
tecture following

the hardware

Introduce a layered
architecture to
be able to work
agile in parts of
the software that
have no regulatory

dependencies
Organization
adopted to an

architecture con-
taining regulated
and non-regulated

layers

169167

Autonomous teams

Introduce autonomous teams with full functional responsibility and by this reduce handovers
and dependencies. Making decisions at the right place encourages furthermore commitment,
engagement and minimizes changes and task switching.

Working code, short development cycles and continuous integration

The development work can be done in an iterative way. Create a so-called minimum viable prod-
uct in weekly or biweekly steps. Always having working code increases the overall quality of the
software.

Teams are orga-nized around parts of the architec-ture rather than functionality

Feature oriented
teams with full
responsibility for

end to end
functionality

Waterfall
development

Agile development
with continuous

delivery

www.dbooks.org

https://www.dbooks.org/

170168

Visualized system and

work in progress

To visualize work in progress and technology
is a core part of Agile ways of working. It
is possible to also work like this in regulated
projects.

Minimum of documentation and functionality

Minimizing documentation and functionality is
a good strategy to increase quality. Doing as

proven to increase customer satisfaction.

Documentation
is huge

Minimized
documentation

Low visibility of progress

Progress is
visible and very

open

Quality and verification

by agile means

-
cation requirements to Agile ideas. One way
is to run daily, automatic regression tests.

Waterfall quality
assurance
activities

171169

Hardening
development
iterations

Improvements in small steps

small steps by for instance having
weekly retrospectives.

Customer needs

It is of course possible to also focus on
customer needs, perhaps the most critical
agile principle. This is best done by early
and continuous deliveries that can be shared
with the customers.

Customer
features are not
taken care of

Focus on cust
omer

satisfaction b
y

early and cont
in-

uous delivery
of

functionality

Feedback
loops on

improvements
are long

learning in small
steps

Independent
quality assurance
adopted to agile
ways of working

www.dbooks.org

https://www.dbooks.org/

172170

 Quality not
sufficient

 Feedback loops on
improvements are long

Waterfall development

Traditional architecture
following the hardware

Customer value

 Organization adopted to an architecture contain-
ing regulated and non-regulated layers

Agile development with
continuous delivery

Progress is visible and very
open

Innovation

Better differentiation

 Problems
with visibility in
project
follow up

 Independent quality assurance
adopted to agile ways of working

 Feature oriented teams with
full responsibility for end to end
functionality

Hardening sprints

Minimized documentation

 Introduce a layered architecture
to be able to work agile in parts of
the software that have no regulato-
ry dependencies

 Customer
loyalty

 Increased
revenue

Time-to-market

 High mainte-
nance cost

 Great prob-
lems with late
requirement
changes

 Teams are organized
around parts of the
architecture rather than
functionality

 Waterfall quality
assurance activities

Quality, cost,
productivity and proj-
ect predictability

 Long time to
introduce new
functionality to
market

 Product is only
partly connect-
ed

Low visibility of progress

Documentation is huge

Customer features are not
taken care of

Reflecting and learning in small steps

Automated tests

 Focus on customer satisfaction by early and
continuous delivery of functionality

173171

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Agile. Learn from their experiences, what they gained and what they
had to overcome.

Scaling Agile in Automotive

Kugler-Maag are a key player who aim to bring innovations to the automotive sector, in-
cluding the use of agile software development methods and open source software.

Scaling Agile in Life Sciences

Agile methods were originally considered unsuitable for regulated domains, but QUMAS
found a way to scale the Scrum approach to be compliant with the standards and regula-
tions in their domain.

One more thing
Scaling a software organization in the regulated do-
main seldom means to only implement Agile ways
of working. Many organizations have to redesign their
software architecture. Continuous delivery usually
gets a high rank in the wish list. The organizations also
tend to see clear competitive advantages in adapting
to service-oriented business models and to work in
a network of co-creators that uses open source soft-
ware. All these areas have been covered by other sce-
narios in this book.

www.dbooks.org

https://www.dbooks.org/

174172

Scaling Agile in Automotive
CASE STUDY / Agile and disciplined

GPS

Ready for 75 kWh plug-in electric engineLifelong software updates

Only
€9990
per month

175173

The automotive industry is going through a huge transformation. The entire industry has been
disrupted by a connectivity trend. This case study is based on an industry survey conducted by
Kugler Maag Cie,* a leading consulting company with many of the well-known car manufacturers
as its customers. Over 40 expert interviews with decision-makers in the automotive, IT and tele-

affects software development. The conclusion represents the transformation that the automotive
industry is in the middle of.

This study involved interviews with over 40 experts and decision-makers in the automotive, IT and
telecommunications industries. A large-scale online survey was subsequently conducted to identify
the key trends with respect to the role of software and its development in the automotive indus-

experiencing a major transformation as the role of software is becoming increasingly important.

Customers expect their cars to be web-enabled, with many advanced features that are now custom
for smartphones. Cars get increasingly more features, and similar to trends found in the smart-
phone industry, the car becomes a platform to which customers can seamlessly connect their
peripheral devices. As a result, this increasing demand for new features and innovation delivered
more quickly requires that the automotive industry responds more quickly. This is where the in-
dustry hopes the promises of agile methods can be realized. Implementing agile practices such as
continuous delivery is not without its challenges, but it doesn’t have to be an impossible mission.

The architecture is replaced by a layered and service-oriented architecture, containing a physical
and a connected layer. This requires R&D to replace proprietary component-oriented product
architectures with Internet enabling service architectures. The latter inevitable changes the R&D

Innovation
Customers expect

web-enabled
vehicles with same
functionality as

their smartphones

Short time-to-
market from

product idea to
release

See for the full report: www.softwaredrives.com*

www.dbooks.org

https://www.dbooks.org/

176174

organizations, mostly because the culture in the organizations performing the R&D tasks for these
two layers will develop differently. They have to work in a Bimodal way by focusing on speed of
innovation and inter-disciplinary cooperation at the connected layer and focusing on quality and
safety at the physical layer.

Also in automotive, development communities are expected to emerge dynamically around ser-
vices.

The car manufacturer needs to work with open standards to quickly adjust to different organiza-
tional cultures of changing partners. In an agile organization, independent but networked units

This is perhaps the most challenging part of the transformation, this that services become more

products. The cultural challenges far outweigh the technological challenges.

The Internet of Things phenomenon is a critical enabler to gain more sales through service based
business models. The executive management must acquire the necessary core competence to har-
ness the emergent power of this new technology.

Once a car moves into its production phase, software development must carry on and add new
functionality. Cars have to support updates and add-on apps that are developed after delivery.
Naturally, the start of production-focused development has to be replaced by continuous devel-
opment with short release cycles. By the architectural changes already mentioned, in combination
with standardized hardware with performance reserves, the functionality of the car can be expand-

To enable fast return on investment, the organization needs to optimize the time to transit soft-
-

ful with continuous development, to enable additional revenue in the longer term.

Open source software in vehicles is already a reality. Open source will also become widespread in
functionally critical software. This will in turn affect the organizational structure of companies as
well as the way of working. The transformation has not really an end state.

177175

Customers expect web-enabled
vehicles with same functionality
as their smartphones

Short time-to-market from prod-
uct idea to release

Innovation

Long time to
introduce new
functionality
to market

Vehicles are
partly con-
nected but not
web-
enabled

Waterfall development

 Able to sell a
product before
it is released

Organization needs
Internet of Things

Services provides the rev-
enue

A network of co-creators add
competence to the man-
ufacturer by open source
software

Customer satisfaction by
early and continuous deliv-
ery of functions through out
the life of the vehicle

Layered and services
enabled architecture

 Conduct
internal
audits more
often and
quickly

 Respond to
customers with-
in two sprints

Agile development
with continuous deliv-
ery of new function-
ality to
customers

 Up-to-date
marketing
material as an
effect of docu-
mentation and
test material be-
ing up-to-date

The manufacturing com-
panies steer the develop-
ment and own the most
of the code

Product sales provides the
revenue

Release of functionality only
at the start of the production

Traditional car architecture

Organization adapted to an
architecture that contains
a physical and a connected
layer

www.dbooks.org

https://www.dbooks.org/

178176

Scaling Agile in Life sciences
CASE STUDY / Agile and disciplined

3 Weeks

Sprint
backlogProduct

Backlog

Shippable
product

Daily
standup
meeting

The Team +
documentation .

Product owner

Scrum Master

Sprint
Planning
Meeting

Dev check

3
Months

QA
Check Point

Sprint review
+ demo

 1
day

1
task

Non-conformance
report

FeedbackProduct
Strategy

Product Council

Marketing
demo material

Testing Team

“Hardening”
sprint

+

Standard Scrum
Regulated Scrum (R-Scrum), tailored specifically
to the needs of regulated environments

179177

Large release
overhead

Agile methods have long been thought only to suit small projects with co-located teams that
don’t operate in regulated domains such as the automotive and medical sectors. This case study
describes how QUMAS, a leading supplier of regulatory compliance management software to
the life sciences sector has tailored the standard Scrum framework to regulated environments.

QUMAS had employed a classic Waterfall approach ever since the company was founded. The
approach resulted however in a long time-to-market and a large release overhead, all-in-all quite
serious weaknesses on a rapidly changing market such as the one QUMAS operates in. To com-
bat this, the company spent about two years to adopt and augment the Scrum methodology.

ProductivityIncreased sales
opportunities

Time-to-market

Able to sell a
product before
it is releasedLong time

to-market

Conduct internal
audits more of-
ten and quickly

Respond to
customers
within two
sprints

Up-to-date
marketing material
as an effect of
documentation and
test material being

up-to-date

www.dbooks.org

https://www.dbooks.org/

180178

The Agile Manifesto offers four value propositions:

Individuals and interactions over Processes and tools

Working software over Comprehensive documentation

Customer collaboration over Contract negotiation

Responding to change over Following a plan

While agile advocates accept that the blue statements on the right are important, they value the
red statements on the left more. However, in regulated environments, the blue statements on
the right loom very large and are perceived to be key. If it isn’t documented, it isn’t done is a
frequent refrain in the regulated domain. Agile methods may for that reason appear to be inap-

regulatory requirements.

the team, and the scrum master are for instance roles. The ceremonies include activities such as
the daily stand-up, the sprint planning meeting, the sprint review and the retrospective meeting.
Artifacts include the product backlog, the sprint backlog and at the end of every sprint, a “ship-
pable” product. QUMAS’s development process is regularly audited. In order to comply with the
various regulations they are subject to, QUMAS has extended the standard Scrum framework
with a number of additional roles, ceremonies and artifacts, resulting in R-Scrum: Scrum for
Regulated domains.

New roles

Quality Assurance
User documentation

New Artifacts

Marketing demo material
Updated design documentation

Non-conformance report

New Ceremonies

Dev Check
QA Check Point
Hardening sprint

181179

Quality Assurance is an important additional role in R-Scrum. Regulations require that QA is in-
dependent from the development team. The QA Check Point is a new ceremony that takes place
after every sprint, when QA conduct an internal audit to ensure “continuous compliance”. Rath-
er than conducting an extensive, annual audit, audits now take place after every sprint. Any issues
that emerge during the audit are reported in a non-conformance report, which is addressed in
the next sprint.

The user documentation role is also new and assigned to at least one member of the develop-
ment team. The team has also got a new ceremony, the Dev Check. After a task is completed,
any code and documentation is peer reviewed by another developer. This is required by the reg-
ulations that QUMAS must adhere to. Another new ceremony, the hardening sprint, should be

regulations.

Traceability is a key concern in regulated domains. QUMAS have adopted the Atlassian toolset,
which offers full end-to-end traceability. Jira is used for issue tracking and project management.
Other tools in the toolset offer source code search, an enterprise wiki, agile planning and project
management, continuous integration, and peer review. The toolset is a key ingredient to the Agile
transformation and facilitates a very effective audit process.

www.dbooks.org

https://www.dbooks.org/

182180

Lessons Learned
QUMAS have successfully tailored the standard Scrum framework to facilitate the additional
constraints imposed by the regulations that their development process must consider. The key
lessons learned of this case study are:

• A fully integrated toolset is essential to support the R-Scrum method and to ensure “living
traceability.”

• It is necessary that the QA department also adapts; the migration from a waterfall process
to a Scrum process cannot be done without organizational changes. QA must also adapt to a
“sprint schedule” in order to achieve “continuous compliance.”

• Additional roles and ceremonies such as the Dev Check and the user documentation role
are needed to ensure that any code that is checked in is compliant and properly documented.

The sprint-based approach allows QUMAS to always be able to demonstrate the latest version to
potential customers. The marketing demonstration material is always up to date. This has greatly
improved QUMAS’ sales opportunities. Based on product demonstrations, several customers
have pre-ordered new products, even when they were still under development. This by itself is
noteworthy, and is untypical of in regulated domains.

-
nizational and the product domains. QUMAS’ story is therefore representative of the “scaling
software” phenomenon that this book focuses on.

.

183181

Increased sales opportunities

Productivity

Time-to-market

Long time-to-
market

Large release
overhead

Waterfall development

 Able to sell a
product before
it is releasedIndependent quality

assurance using R-Scrum

R-Scrum

Marketing demo material

User documentation role

Non conformance report

Updated design
documentation

 Conduct
internal
audits more
often and
quickly

 Respond to
customers with-
in two sprints

Hardening sprints

Quality assurance check
point

Development check

 Up-to-date
marketing
material as an
effect of docu-
mentation and
test material be-
ing up-to-date

www.dbooks.org

https://www.dbooks.org/

184184

Outside the box

182

SCENARIO / Offshoring/Outsourcing

185185

Over the years,
focus in outsourcing and offshoring

has gradually shifted from low-cost
to factors such as qualified personnel,
ability to ramp resources and access to
an international market. To solely fo-
cus on low-cost has turned out to be

counter-productive.

www.dbooks.org

https://www.dbooks.org/

186184

Even if development cost reduction is the most common reason for choosing Outsourcing or
Offshoring as a software development strategy, there are many other reasons why companies
embark on such an endeavor. A bit of clarity over the terms will shed light on what these other

Outsourcing means that we contract a third party to develop what we used to

develop ourselves. They can very well be located in the same town as we are.

Offshoring means that we relocate all or part of our development to another

country. We are still doing the development; we’re just doing it abroad.

187185

Putting the low-cost aspect aside, managing workload peaks is a good reason to choose out-
sourcing, as it is costly and risky to build up and maintain internal overcapacity. Further, to
balance our investments and risks, it also makes sense to have our own developers working on
the most important areas and letting a third party take care of less critical development. Another

Increase capacity
Decrease

development
cost

Increase
resource (peak) Increase

competence

High development
costs

Lack of re-
sources and
competence

Inability to manage peak loads of work

Product made
by own

development

The reasons for choosing offshoring are similar as those for outsourcing. Another good reason
is the continuous character of an offshoring relationship, with permanent cost reductions and
without the hassle of contract negotiations with vendors. Moreover, it enables organic knowl-
edge transfer, growth and “follow-the-sun development.”

www.dbooks.org

https://www.dbooks.org/

188186

Many companies choose near-offshoring where time zone differences are minimal and travel
time is short between locations. Other companies decide to offshore to regions very far and with
time-zone differences of six hours or more.

and the more we detach. But it’s not impossible. So, bear with us while we outline a strategy that
can get you where you want.

The unforeseen costs

Over the years, the trend in outsourcing has gradually shifted focus from reducing costs to factors

market. Focusing solely on cost reduction has turned out to be contra-productive.

But still, it’s ever so common that an outsourcing project starts with a clear drive to cut costs, only
-

ect can become more expensive than when the outsourced task was done internally. And worse,

189187

We can expect additional costs due to:

• Time and effort to transfer knowledge and projects to a third party.

• Initial quality and security concerns.

• Delays and long lead times due to communication issues,
cultural differences and geographical distances.

• Lack of competence and training -- the supplier may not have the same competence and
the ability to achieve the same velocity in development and thus compensates by adding
more resources than needed internally.

This might come without saying, but better safe than sorry: we should expect the running costs
for managing the outsourcing partner, requirements and deliveries to be higher compared to if
we had continued running the project internally.

Staying in control over the costs, or investments which they rather are, will help us not making
hasty decisions when taking on the real challenges.

Processes are focused on
internal development

Low maturity
of supplier
management

quality issues may negatively impact customer satisfaction and drive the sales down the drain.

So, we need to get aware of what the real costs are. Too often, the cost and investment calcula-
tion are based on a price per person-hour comparison, which hardly give the full picture of the
total cost.

www.dbooks.org

https://www.dbooks.org/

190188

We’re only human
There will be challenges. Certainly, there are matters we can’t predict and matters that are totally
out of our control. But many problems that arise in an outsourcing or offshoring project can be
traced down to human nature. It’s due to how we communicate, how we motivate and are mo-
tivated, and make everybody believe in the project (or not), how we make the journey inclusive,
and a million other things. We have to deal with them and take these issues seriously.

Flexible resource
management

High quality
and precision in deliverables

On our home site, employees will worry about their jobs, even be annoyed over the idea of
having to train and transfer their knowledge and work to those that replace them. They will make
assumptions, rightly or not, leading to an inner resistance to cooperate. Another challenge is the
need to change roles, routines and processes for the staff remaining at the home site. It’s not

delivery set-up.

At an external site in for instance India or China, we should expect it’s a challenge to attract and

their staff, resulting in a very high employee turnover. The competition between global engi-

are indeed lots of engineers with knowledge in modern, standard based technologies. But if our

analyzed thoroughly in this and other studies.

Own orga
nization

develops
every-

thing
Not used to
co-develop development

191189

Due diligence

a mission such as this, we need to analyze and prioritize the following
parameters:

Given the costs, distractions, investment of management time and other
hurdles that will come when getting into outsourcing or offshoring, the
importance of the due diligence can’t be emphasized enough.

Com
petence

Com
plexity or dependencies

Criticality or con
tro

l

What
 are

our
curre

nt

comp
etenc

es an
d wh

at

comp
etenc

es w
ill

we n
eed i

n th
e

futu
re

What parts are

due to a lot of technical or

project related dependencies

What parts are
key to our business?
Are all parts equally
important to control

over time

www.dbooks.org

https://www.dbooks.org/

192190

Our strategy
Once having the due diligence done, we’re ready
to outline our outsourcing or offshoring strategy:

Why do we want to outsource, what are our goals?
Is the outcome measurable?

It is very critical to set clear goals and expectations because it shapes everything that follows

about the outcome of the entire operation. How would we know if we have succeeded? So, de-
pending on what we want to achieve, what our business drivers are, we could for instance elabo-
rate with the following targets:

1. Outsourcing ratio (e.g. 80% of our staff are outsourced and 20% of our staff are in-house)

2. Cost-saving (e.g. we cut 50% from the current cost)

3. Market presence (e.g. 10% of the market share in a partner’s country or region).

What do we want to outsource?

We need to make a make-versus-buy analysis to determine what’s possible to outsource and
what’s not. For instance, complex parts that aren’t easily decoupled or used by several other
projects won’t likely be easy to outsource. On the other hand, we might actually want to out-
source a part even if it would be cheaper to develop it ourselves. This would for instance be the
case if we want to allocate our own resources to more critical activities or if we want to build
up and maintain capacity for peaks in our workload. It all depends on our goals.

Outsourced
components are
chosen from the
use of a Make-
Buy strategy

193191

processes for
outsourcing

Organizational
setup for
managing

outsourcing

Responsibilities are allocated in organization

Who can we outsource to?

In addition to cost, we need to analyze the third party supplier’s competence and maturity,

understand the political situation, and geographical and cultural contexts. If our development
team will be tied up in ongoing projects and our deadline is tight, we could consider bringing in
consultancy help. Having clear goals is key to be able to objectively select a partner.

It is critical to stay on top of things and be prepared when the transformation doesn’t run as
smooth as anticipated. The goals are the cornerstones in the measurements and the quality
assurance we need to put in place. Both direct and indirect costs need to be taken into account.

How can we organize ourselves?

Which new roles will be needed to manage the supplier and their deliverables? While setting up
an organization isn’t that complicated, transferring necessary product and process knowledge
requires substantial effort and time. Not only do we have to make several trips to the supplier’s
location, staff from both sites will have to meet face to face, not only to get to know one anoth-
er, but more importantly to better understand the tasks and challenges they face. It is particularly
important to introduce incentives for the employees at the outsourcing site in order to minimize
staff turnover.

www.dbooks.org

https://www.dbooks.org/

194192

 High develop-
ment costs

Low maturity of supplier
management

Product made by own
development

 Cost efficient
development

Decrease development cost

 Organizational responsibilities are allocat-
ed and outsourcing is carefully chosen by
making a make-buy strategy

A global Best Practice pro-
cess for outsourcing estab-
lished

Increase capacity

 Lack of
resources and
competence

Outsourced components are
chosen by using a Make-Buy
strategy

 Flexible
resource man-
agement

 High quality
and precision in
deliverables

 Risk for a
higher total cost
due to a too
optimistic plan –
a very common
case!

Increase resource (peak) flexibility

 Inability to
manage peak
loads of work

Own organization devel-
ops everything

Processes are focused on
internal development

Well-defined processes for
outsourcing

Increase competence

Not used to co-develop

Organizational setup for
managing outsourcing

Difficulties in transferring
knowledge to third party

Use of a Make-Buy strategy

Risk for quality degradation
due to competence gaps

195193

Get inspired
This scenario has been based on case studies of different companies that have made this
journey, to scale with Offshoring or Outsourcing. Learn from their experiences, what they
gained and what they had to overcome.

Efficient communication in a global delivery model
Since this scenario is about the glam of succeeding, and not the gloom of struggling, do
pay attention to the case study of Tieto.

Outsourcing Strategy at Sony Mobile
Read about the smartphone manufacturer, which journey started like many others at the
time, a bit on a bumpy road. Eventually, they scaled into an organization that was able to
identify parts that are best suited for outsourcing, to continuously introduce and manage
outsourced development projects along with their internal development.

Not so shore anymore
This company had an equally bumpy experience when they decided to outsource a system
that was not particular well suited for the purpose. It didn’t go well, but there are still many
lessons to learn from their case.

Play it again, Sam, backwards
Another story to learn from is the rise and fall of Sony Ericsson’s PlayNow service. It’s an
excellent example of when bringing development back and run it in-house makes sense.

www.dbooks.org

https://www.dbooks.org/

196194

Efficient communication
CASE STUDY / Outside the box

197195

This case study features Tieto, one of the largest IT suppliers in the Nordic countries. As Tieto
operates in many different locations and with different suppliers, which is why they seek ways for

costs and release personnel for design of the next generation of systems, and at the same time to
maintain high system availability and service levels.

complex with a large number of integrations, databases and functional modules. The system is
business critical and used in the daily work by approximately 3,500 users.

offshore site in Pune, India in 2010. The goal was to reach an offshore ratio of 80% and to keep
a team with strategic architectural competence in Sweden.

in a global delivery model

www.dbooks.org

https://www.dbooks.org/

198196

interviews with persons involved both before and during the transformation. As the level of the
offshored activities increased, also the need for project communication and knowledge transfer

-
tion.

The focus of the case study has for that reason been the importance
of good communication and knowledge transfer in terms of:

• Competence

• Processes

• Organization

• Requirement handling

• Motivation and engagement

• How further improvements can be made

Sweden for an 18 weeks training program. Next, senior architects from Sweden were sent to In-
dia for 6 months to build up the competence level of staff of the Indian team. To assist training,

team gradually increased their system knowledge and could take over responsibility for more
complex tasks already during the transformation period. The regular visits have continued after
the transformation, in both directions.

The goal was to establish “one team” distributed over the two sites. Instead of creating a pro-
cess where each site was responsible for different phases and deliverables, a single team was built
based on the roles that were needed. The purpose was to bridge between the sites and get an

199197

Observations

single site organization. Splitting the team over two locations resulted in a more
complex communication structure between engineers from different cultures
and locations. The team now needed communication solutions such as chat,
voice and video conferencing.

The complexity of the system functionality was also problematic. It took longer
for the offsite part of the team to learn and understand the solution functional-
ity than the technical solution. The implementation techniques were often quite

Both the Swedish and Indian teams were exposed to new cultures. There are

The Swedes were surprised about the extensive hierarchical approach to respon-
sibilities and roles that were common practice in India. This allowed the Indians

architects.

Indian team. To switch employer is common and a cultural norm in India. This
turnover requires additional training efforts and jeopardizes successful and sus-
tainable knowledge transfer.

much higher after visits between the two sites. In addition, a business trip to
Sweden was regarded as a very attractive goal in itself and highly motivating for
the Indian team.

www.dbooks.org

https://www.dbooks.org/

200

Recommendation on how to succeed
Make a thorough analysis of the system before selecting competence needs and communication
strategies. It is more challenging to get an effective offshore for complex systems, so focus on
functional complexity rather than technical solutions.

Decide upon a competence strategy early in the offshoring phase. Take this into account when
staff reduction starts at the local site. It’s important to secure personnel for future roles available
in later phases of offshoring.

Make a visible step-by-step knowledge transfer process. Tailor training programs to areas of
expertise and let team members mature over time, area-by-area. Repeat steps per area:

1) Self-study using existing training material (docs and videos)

2) Supervised trial operative work

3) On-site training with architects

4) Unsupervised operative work

team members know what is going on.

• Make an analysis of which recurring meetings that are needed and decide on frequency,
participants, purpose and scope.

• Decide on communication channels to use and establish good conducts.

• Reduce the amount of redundant communication. Rules and processes for how to commu-
nicate can solve this problem. Be careful, however, as it also creates latency in communica-
tion and reduced awareness between sites. Documentation solutions like the wiki will also
help reduce redundant questions.

• Create processes to continuously secure the quality of the documentation. Old information
must be removed and relevant information must be searchable and readable.

198

201

Single site setup

No specific communica-
tion process or policy

Communication pro-
cesses and policies

Functional complexity is
guideline for choice of off-
shore strategy

Reduce operational cost

 Maintained
but transferred
competence

Able to benefit from different
cultural strengths

Free up resources for new development

 Good
competence

 High
availability and
service level

Fairly high
OPEX

Homogeneous culture

No specific knowledge
training Well-defined process for

knowledge transfer

Maintained level of service
and quality

 Maintained
level of service
and quality

Ad hoc communication

Complex product and
service

Knowledge to minimize
cultural risks

Efficient multi-site setup

Reduced
OPEX

199
www.dbooks.org

https://www.dbooks.org/

202200

Outsourcing Strategy at
Sony Mobile

CASE STUDY / Outside the box

2B ! 2Bor

203201

a minimal amount of software, today mobile phones contain more powerful processors than
those used to put man on the moon. This allows modern phones to do much more than just
making phone calls, offering many more advanced features. To develop software that makes this
possible, all major players in this industry have outsourced some of their software development
– and Sony Mobile is no exception. For Sony Mobile, the main driver was to reduce development

All these reasons are very common throughout the software industry. Unfortunately, not many
companies perform a thorough analysis to evaluate whether cost savings are realistic and achiev-
able. Sony Mobile didn’t stick out here either. Too often, companies embark on outsourcing
journeys solely to reduce costs based only on a simplistic comparison of the hourly wages of
developers. This, however, leads to a completely wrong conclusion when other factors are not in-
cluded in such calculations. When starting on an outsourcing journey, companies need to spend
considerable efforts and expenses on knowledge transfer activities, onboarding, and companies
must also anticipate various barriers that might emerge due to more complicated communication
that is now hindered by time zones and geographical distance.

Outsourcing partners – the supplier that will do the customer’s work – often don’t possess the
same level of knowledge and experience as the customer company, and often this lack of knowl-
edge is compensated by adding more people to a the project, all of whom take considerable time

than anticipated – perhaps more than if the software were developed in-house. Building up do-
main knowledge takes considerable time. Moreover, this is effectively an investment in the out-
sourcing supplier, and not the customer’s own development staff. For certain outsourced tasks
that involves standardized (non-differentiating) technology, this may be an appropriate strategy,
and may pay off when a company is building a long-term relationship with a supplier.

Another lesson learned by Sony Mobile is to evaluate carefully what should be outsourced. Sony
Mobile has extensive experience with outsourcing, and this has led to the development of a
global software outsourcing strategy. They also introduced a shared outsourcing forum for their
global development centers, which had been struggling with different outsourcing projects for

Decrease
development

cost

www.dbooks.org

https://www.dbooks.org/

204202

outsourcing partners. Projects, partners and all tasks, risks and issues involved in an outsourcing
project should be managed systematically and equally. This way, it’s possible to achieve synergies

management are two key areas where it is very important to use common best practices, because
those are critical to Sony Mobile’s products.

Furthermore, Sony Mobile created a common reference process framework for analyzing,

outsourcing projects in organization. An outsourcing business manager supports projects in the
preparation and execution phases of outsourcing projects. The reference framework also in-
cludes a milestone process for approval and execution of each outsourcing projects, which helps
to keep track of the stages of the various outsourcing projects within the company.

Ad-hoc an
d

non-sync
hed

outsourc
ing

activities

No reuse, no best practices

Making same mis-
takes over and

over, choosing the
wrong suppliers,
costly in price
and quality

A global
outsourcing

forum

Outsourc-
ing business
manager as an
outsourcing
champion

A globally
aligned process
for choosing
and managing
outsourcing
partners

205203

The second activity was to create a decision framework to help business units analyze and select
suitable components to outsource. Using a tool support, business units can evaluate components
based on a set of three key parameters.

current capabilities, which refers to competence and amount of
resources. What is the current capability for a given component? Is there a lack of competence
to implement or maintain the component? Are resources wasted on components that can easily
be acquired from a third party supplier?

A second parameter is dependencies, including technical and project dependencies. Techni-
cal dependencies indicate the extent to which a component is coupled to other modules in the
system. Project dependencies indicate the level of usage (or reuse) of a given component by
other projects. If a component plays a key role in many systems, this means it is important to an
organization as a whole, and such components should not be outsourced.

The third parameter is concerned about long term control and competence. This is an indi-
cator of whether or not it is important to be able to control a given component’s roadmap and
future evolution. When outsourcing (or opensourcing) a component, a certain level of control is
lost. Components that represent key assets (or “crown jewels) of a company, Sony Mobile have
found it is best to retain development in-house.

If, on the other hand, components are ‘commodity assets,’ a company will get very little differen-
tiating value from such components. In such cases, it may be a suitable candidate to outsource.
Typically, excellent candidates for outsourcing are software assets that are in the maintenance
phase or better still, in a dead-end state, where no or limited reuse is to be expected.

Ad-hoc process
for choosing
what to out-

source

A strategy that outlines the common criteria in choosing what to outsource and what to not

www.dbooks.org

https://www.dbooks.org/

206204

207205

 Quality issues
from outsourced
activities

Selection of components to
outsource is made without
any strategic direction

 Cost efficient
development

Decrease development cost

 Organizational responsibilities
are allocated according to the
strategy

A global Best Practice pro-
cess for outsourcing estab-
lished

Increase resource capacity

 Delays in
deliverables
from out-
sourcing

Outsourced components are
chosen by using a Make-Buy
strategy

 Flexible
resource man-
agement

 High quality
and precision in
deliverables

Increase resource (peak) flexibility

 Expensive
development
cost from out-
sourcing

Outsourcing is managed
by the lowest level in
each organizational unit

Outsourcing is managed
case by case on the lowest
level without any use of
shared best practices, poli-
cies, synergies, etc

Established a global outsourcing
forum where outsourcing
business managers participate

Established Outsourcing
Business Managers that
support the organizations
and secure global use of
best practices

Use of a Make-Buy strategy

www.dbooks.org

https://www.dbooks.org/

208206

Not so shore anymore
CASE STUDY / Outside the box

!!!

209207

This is the story of a business unit in a large multinational organization that decided to out-
source all development and maintenance of one of their systems. The system was a large prod-
uct lifecycle management system, which was of critical importance to support the organization
in its functioning. The system’s architecture was typical for this type of systems, and the system

-
more, the system architecture was extensible by including custom developed modules.

In the years prior to the decision to outsource further development and maintenance, the orga-
-

nization suffered from an economic downturn, which led management to establish cost saving
strategies. At the same time, the organization had moved away from a traditional waterfall de-

organization was still divided in maintenance and development; solution managers were respon-
-

tions with architects and developers.

In order to cut costs, the organization decided to outsource all development activities. In addi-

on new functionality. The company chose an existing outsourcing supplier that was already used
for other large systems within the organization. The organization’s requirements on cost savings
resulted in a decision of the outsourcing partner to offshore the entire development to another
organization in India.

The solution manager and the architecture knowledge were retained in the original organization,
while development was moved out. The outsourced part consisted of about ten developers and

previous agile transformation was abandoned, and a waterfall model was adopted instead. An
implication of this was that the on-site roles became less interesting from a technological point
of view, which resulted in the architects leaving the project. This in turn led to a reduction of
skilled and experienced staff that was available which was very important for the requirements
and design phase.

www.dbooks.org

https://www.dbooks.org/

210208

At the outsourcing organization there were developers as in the original organization, but also
team leaders responsible for leading the work and keeping the contact with the original organiza-

to be carried out. All the customizations became roadblocks. These forced the developers to
undergo a large amount of training before they could be productive. But, despite all the training,

major release.

The initial phase was characterized by long lead times, a large number of misunderstandings and

too much on the formal process instead of having a common view of the development and the
system was simply too customized.

After the initial outsourcing phase, efforts were made to improve the understanding of the
development from both sides of the organization. Representatives from the outsourcing orga-
nization came to visit the original organization. The original organization started also to visit
the outsourcing organization more frequently. This resulted in both better understanding of the
development and in a more personal commitment to the system and the original organization at
the outsourcing organization. However, the architecture was still too customized.

A number of recommendations can been made. Creating a common social group for developers
early in the change process would probably have worked better than the starting off with a for-

-
tence already from the beginning at the outsourcing organization. The developers at the out-
sourcing site could probably have been involved earlier to reduce mistakes and to gain a better
understanding about the system and why it was needed.

The organization decided later to take home the development and conduct it at another business
unit inside the company. The driver for this was also this time to save costs, but which this time
was possible as the business unit that will do the development had about the same cost of de-
velopers as the outsourcing organization. With the same cost structure, but with a development

211209

Traditional in-house
organization

Started some Agile
activities

Waterfall approach seen
as necessary

Specialist skills due
to architecture at
outsourcing site

 Fix size re-
source pool

Reduced costs

 Lower cost per
hour

Outsourced development
and test

Homogeneous IT environment

 High costs

Multiple roles taken by
single individuals

Informal communication
Less collaboration between
developers and architect

Customized product

 Unclear pro-
ductivity

Resource flexibility

Customized product

New roles introduced at
outsourcing site

On site roles less
technically interesting

 Still not flexible

www.dbooks.org

https://www.dbooks.org/

212210

Play it again, Sam, backwards
CASE STUDY / Outside the box

213211

PlayNow was Sony Ericsson’s download service for media such as music, games, ringtones,
wallpapers and themes. They used to have the bigger part of the PlayNow team outsourced. The
development was taken care of by the outsourcing partner and Sony Ericsson took care of the
project and product management internally. The outsourcing partner actually desired to have the

this never happened. So the set up was very top heavy. Communication could only go between a
point-of-contact at each company, causing a lot of time lost. Every three months the outsourc-
ing partner delivered a version of the software delivery. This led to a very slow feedback loop. It

Due to cost saving directives, management decided to bring back the software, to develop it in-

even though cost per head-count was increased. This was mainly thanks to reduction of over-
head and that they started to work in an agile way with weekly deliveries.

What we can see from the Sony Ericsson case is that it is not always cheaper to outsource.
Overhead, communication and innovation were factors that certainly added extra cost to their
outsourcing activity. This is not an isolated case, several other companies suffers from the very
same problems. A global trend is that the outsourcing market is shrinking. The largest outsourc-
ing deals in the world are far less valuable today than they were ten years ago, according to IDC
in the Wall Street Journal.

To decrease costs is one of the most common reasons to outsource, but outsourcing is not al-
ways the least costly solution. As in this case, the overhead cost of outsourcing grows that much
that it is a lot cheaper to bring home the software development. By having the software devel-
opment in-house it’s easier to keep the project in control and to know what is developed and
why. Those aspects are much harder to manage when all development takes place outside of the
company walls. Another reason that causes added costs is the growing overhead in the outsourc-
ing organization. Usually only software development costs are included in the cost calculations.
But, the outsourcing partner also needs to have project managers, architects, system designers
and line managers.

www.dbooks.org

https://www.dbooks.org/

214212

First things first
SCENARIO / Basic software engineering

215215

Basic principles and concepts for achieving quality,

Emanuel R. Baker, Mattew J. Fisher, 2007

The first things
are about the very basic needs.

We need for instance to know what
to do and how, when and where to
do it. We also need to check the

quality of it.

A good read

 “What to do”
-

ments from the customers and to
communicate them to the software
developers.

“How, when and where to do it”
is about the software develop-
ment methodology, how we take
on roles and responsibilities and
split the organization into a
sensible structure. It’s about
staying in control regarding
your source code. Which revision
should we work on? Which part
of the software have certain
part of the functionality?

“Check the quality of it”
is simply to follow up on
the planning and the coding

www.dbooks.org

https://www.dbooks.org/

216214

Increased
productivity

This might not come as a surprise, but in case our organization has been growing from just
about nothing to employ some twenty developers or more, it’s likely we have problems with

new bugs.

Quality Increased
qualityQual

ity n
ot

Hard to

introduce
 code

without
intro-

ducing bu
gs

Project
predictability

Problems with visibility when following up

Software
organization
deliveries are
predictable

Cost

High
maintenance

cost
Decreased

cost

Productivity

217215

One of the reasons why we have these problems is probably that our organization has outgrown

It will in particular make the projects more predictable.

It’s hardly a surprise that growing organizations get problems. To do a good job, basically de-
velopers need to know “what to do” and “how, when and where to do it”. As easy as one, two

as the organization grows. What isn’t a problem to communicate between very few developers,
simply is more complicated in a larger team. It isn’t rocket science. We recognize this from all
sorts of contexts, not just business. Yet most software projects fail in their communication. Only
a software organization in possession of these basic capabilities can be scaled to meet the de-
mands of today; if not with ease, at least without the chaos it would cause to not have them.

To state the obvious, our engineers need to know what to do and how to test what they have
done. The requirements need to be communicated in a way that they understand. While there are
many ways to manage requirements and every way comes with its pros and cons, most important
is that we do it.

Requirements
are unclear

Developers know and understand what to
implement

www.dbooks.org

https://www.dbooks.org/

218216

All engineers need to know their roles and responsibilities. The organizational structure must fa-
cilitate effective communication in all directions, not just vertically. The optimal structure closely
follows the ways people work, weather they work in projects or in a product line. Agile devel-
opment methodology, which nowadays is the de-facto way of working, promotes for instance
self-organized teams that in its most extreme implementation can be seen as companies in the
company. It’s safe to say that we should avoid old school hierarchies that merely organize people
on what they do.

Roles and re-
sponsibilities are

unclear

Plans are not
followed

Roles and
responsibilities

New organiza-
Organization does not suit the scaled organization

Resource

planning up
and

running

Developers know what is expected of
them

Development method chosen

Growing the software labor effort from one or two developers to more than 15 to 30 develop-
ers puts great demands on both the software process and the software architecture. While two

planning and follow up in an informal way, the larger team simply runs into serious communica-
tion problems.

219217

About those ever-late projects of ours, they need to be dealt with. It’s not that our current
project managers aren’t doing their job; it’s just that they have to change direction every now and
then. The ways to plan have to be adapted to the reality, where plans are revised continuously.
It’s wise, though, to not overdo the planning and instead try to capture the few next weeks in
detail. In Agile development methodologies, already mentioned, all planning is made in two-
week chunks. Trying to grasp a much longer period of time into a plan has simply shown to be
doomed to fail.

www.dbooks.org

https://www.dbooks.org/

220218

Code is not developed in a logical way

In what state is our software architecture and how do we manage it? The software has to serve

structural integrity and durability. If optimally designed we should be able to:

• Make changes in one part of the system without negatively affecting other parts

• Distribute work in the system between different departments

• Reuse software components from one part of the software system in another

Architect
ure is

for the

organizat
ion

management

Branching
strategy
followed

Software
architecture re-engineered

-
ware architecture is, simply put, how these parts are structured and how they relate and commu-
nicate with one another. The architecture starts with its documentation, a blueprint that governs
how to design parts in order to facilitate development of the software system. And, as with ways
of working has the organization to tightly follow the architecture.

221219

Optimally, to ensure we’re going in the right direction, both the plan and the software ought to
be followed up on. This shouldn’t be done at the end of the project but frequently, tightly cou-
pled with the iterations in which development takes place. We would want to keep the feedback
loop as short as possible. All Agile development methods have this built-in to the method. At
the end of the iteration, an automatic test script would test the software and a retrospect would
evaluate if we work in a good way or if a change of direction is needed.

Plans are not

followed up on
Follow up of plans is done
regularly

Serious issues frequently slips testing

Testing

and follow
ed

Finally, we have the testing. Is this activity considered the necessary evil that continuously gets
down prioritized when the project slips in time? If so, we should really be cleverer. To monitor
and evaluate how the organization is doing quality-wise pays of as soon as the heat is turned on
and the business gets into full production mode. When everyone involved runs as fast as they
can, occasionally even making short cuts to get in time, there’s simply no room for thinking
about what can be improved. The test activity is really our only mean to identify bottlenecks and
to optimize processes and tools.

www.dbooks.org

https://www.dbooks.org/

222220

 Quality not
sufficient

Serious issues frequently
slips through tests

Architecture is not sufficient for
the organization

Decrease cost

Quality

Development method
chosen

Cost

 Hard to
introduce code
without causing
bugs

Increased
productivity

Increased
quality

 Software
organization
deliveries are
predictable

Project predictability

 Problems with
visibility in proj-
ect follow-up

Roles and responsibilities
are unclear

Requirements are unclear
Developers know and
understand what to do

Productivity

Organization doesn’t suit
the scaled business

Roles and responsibilities
defined

Plans are regularly
followed up on

 High mainte-
nance cost

Plans are not followed

Plans are not followed
up on

Code is not developed in a
logical way

New organization
defined

Resource planning up and
running

Testing method defined
and followed

Software architecture
re-engineered

Configuration
management

Branching strategy
followed

223221

Get inspired
Being one of the engineering disciplines mostly written about, you shouldn’t have to go far

software organizations and architectures. The following pages summarize the real-life case

Robotic growing pains
Read about Husqvarna’s experience when they added Internet of Things to some of their
lawn and garden products.

Softhouse reflects on architecture changes
Learn about the effects of architectural changes in Android development.

From mobile to platform

enables new products and offerings to be created quickly, without having to redo a lot.

One more thing
When scaling through a development
method has to be chosen. As we have hinted throughout
this scenario, it is strongly recommended to work in an
agile way. Find canvases for Agile development in the
chapters Pump up the volume, Deliver 24/7 and Agile

and disciplined.

www.dbooks.org

https://www.dbooks.org/

224222

Robotic growing pains
CASE STUDY / First things first

225223

Project man-
agement doesn’t
know what is
implemented

Project
predictability

Husqvarna Robotics had grown from a small team of 3 software engineers to over 30 software
engineers in a very short time. They understood they needed to improve their quality and project
predictability because of the problems they had with their software development.

Robotics had started to get problems with late deliveries, bug corrections very often led to new
more serious problems, and new bugs reports from the market disturbed the software team in
their work to develop new functionality, this led to delayed software projects and releases. Project

-
tecture improvements were pushed in the future, due to lack of time. The testers did not have
time to test everything in a release, which led to even more bugs being reported from the market.

Project management did not know which requirements being implemented at the moment.
There was little visibility of the progress in the software team. All software was delivered late to
the main branch. At that time a major part of functionality did not work, so what was working
or not wouldn’t be discovered until very close to the release of the product.

Quality Serious issues frequently slips through tests Architecture is

for the
organization

www.dbooks.org

https://www.dbooks.org/

226224

During fall 2014 a series of general seminars in software engineering was conducted in the entire
R&D organization. Robotics understood it would be good to get external help to do an analysis
of the current situation. A kick-off of the improvement project at Robotics was held in Septem-
ber 2014. A series of interviews was held and a report of the situation and improvement pro-
posals was presented in January 2015.

Suggestions of improvements were made for the areas such as requirement handling, project

said that the software architecture needed to be restructured.

A new meeting was held to agree on which changes to prioritize. The software organization,
project management and product management were all involved in this decision.

The most important suggestions of improvements from the audit were prioritized to be imple-

In April 2016 the software organization had a completely new situation. Instead of the negative
atmosphere that characterized 2014, a more positive attitude characterized the organization. The
software team was positive to the new ways of working and they believed they were working in a
good way.

in the larger organization. Even though this was a large competence loss, the organization was
now better prepared for situations like this. The new ways of working and the new documented
architecture made the organization less dependent on a few very competent champions.

Husqvarna has in this project gone through a very common growth problem. The exact same
problems were found in several different Ericsson departments in the early nineties and have
been found in several other companies since then.

227225

Quality
Project predictability

 Quality not
sufficient

Serious issues frequently
slips through tests

Architecture is not sufficient for
the organization

Decrease cost

Development method
chosen

 Hard to
introduce code
without causing
bugs

 Increased
productivity

Increased
quality

 Software
organization
deliveries are
predictable

 Problems with
visibility in proj-
ect follow-up

Roles and responsibilities
are unclear

Project management
doesn’t know what is
implemented

Developers know and
understand what to do

Organization doesn’t suit
the scaled business

Roles and responsibilities
defined

Plans are regularly
followed up on

 High mainte-
nance cost

Plans are not followed

Plans are not followed
up on

Code is not developed in a
logical way

New organization
defined

Resource planning up and
running

Testing method defined
and followed

Software architecture
re-engineered

Configuration
management

Branching strategy
followed

www.dbooks.org

https://www.dbooks.org/

228226

Softhouse reflects on
architecture changes

CASE STUDY / First things first

229227

A typical situation in software development is that a product is developed as a prototype or as a
-

tions grow. One problem with this is that the software architecture might not be suited for what
it is used for, thus resulting in added functionality that causes unpredictable software faults. It
gets necessary to improve the architecture through refactoring. This happened to Softhouse.

There were three main reasons for Softhouse to make a change in the software architecture:

• The amount of code and functionality a new team member needed
to understand was too large.

• There was a negative trend of quality issues like old bugs being
re-introduced and too many errors found late in testing.

•
near future and be used in new ways.

Monolithic
architecture

Extended
functionality

Long
knowledge

transfer for
new project
members

Starting as a small prototype, they created a client system to provide their customers with data
from their internal information systems. As the usage of the client system grew, the product it-
self and the number of functions increased rapidly. A problem was for instance that any changes
in the product affected many parts of it, which resulted in unpredicted faults.

The system was built with focus on reuse, i.e. when new functionality was added, existing class-
es were reused as much as possible. This focus lead to an architecture with many dependencies

www.dbooks.org

https://www.dbooks.org/

230228

To make the design less fragile, the architecture was divided into modules. Each module imple-

also allowed for parallel updates of different functions at the same time. It also allowed for intro-
duction of new functionality independent of the existing ones.

The architecture guidelines were changed to stress on the use of independent modules and how
to manage them individually. Drawbacks of architectures like this are less reuse and more double
maintenance of similar code in different modules. However, changes can mostly be limited to

The project followed an agile approach similar to Scrum with collective code ownership where
the developers assign the tasks to themselves. The new process allows developers to avoid
change requests in modules they haven’t knowledge in. From an organizational perspective, the
new architecture makes it easier to scale. New developers that join the project can start work on
one function in one module and learn the system function-by-function. The new software archi-
tecture is now used in full effect.

231229

New markets

Flexibility

 Long know-
ledge transfer
for new project
members

Pipe architecture
Monolithic architecture

Short lead
time for new
functionality

Extended functionality

New business models

Fragile
architecture

Long lead
time for new
functionality

One team with shared
responsibilities

Collective code
ownership

Feature teams

Divided responsibilities

Robust
architecture

Easily
changed
product

www.dbooks.org

https://www.dbooks.org/

232230

From mobile to platform
CASE STUDY / First things first

233231

To move towards a platform development strategy, where the same software is used in many

been successfully released, the company now looks for ways to grow the business and to reuse
the investments already being made.

The platform concept builds on modularized, stable and reusable components that easily can be

having to redo a lot. However, the strategy and its implementation is always an act of balance
between reuse and product focus.

their activities took place in product projects. There were two similar product development
organizations with redundant development competence as a way to develop more than one

business and offering even more. It was of course not possible to scale up the development
capacity linear to the number of products in the portfolio. So a platform concept was intro-
duced.

The old software architecture was heavily impacted by the platform concept. Modularizing and

key concepts and patterns in order to create the platform concept. It was essential to identify

and customization framework.

This made it possible to maintain and reuse the majority of the software and functionality and

also led to that the number of product variants grew dramatically.

This in turn had an impact on both the processes and the organization. The soft-
-

ment. A special software release management organization and process were established
-

Line
organization

=
Project organization

Modularization
&

Layered
architecture

Product &
Platform

components

www.dbooks.org

https://www.dbooks.org/

234232

came the billion-dollar question, as they couldn’t multiply the test activities in a linear way.

Sony Ericsson was successful in this journey since they were able to release more and more
products without having to increase the work force in a corresponding way. The time-to-market

– So did they continue to improve and become better and better?

The answer is no.

As the platform concept grew stronger and stronger the focus on the product itself and its
offering became weaker. The platform projects and its organization grew bigger and bigger
and tried to include more and more products in its releases. Together with a waterfall approach

products with all their market and customer needs. This also made the projects lengthy as not
all products were released at the same time. As a way to cope with all the products and require-
ments, the platform projects started to claim that all requirements had to be set at least two and
a half to three years prior to the product releases. This was not possible in the mobile industry
during mid-2000, as tons of new features and concepts were released every year.

The organization and process became impossible to maneuver and the product offerings became
late and were not competitive enough on the very tough mobile phone market.

The lesson learned is that a platform concept that is well prepared and balanced with a contin-
uous product and customer focus can lower time to market and reduce development cost. But

reuse system components.

235233

The line organization = the
project organization

Limited reuse
Portfolio planning

One product at
a time

Accelerate growth of business

 Lowered cost
for maintaining
solution

Platform organization

Shorten time-to-market

 Low levels of
synergies from
investments

 Linear relation
between number
of products and
development
costs

Project process =
product life time Common requirements &

specific product require-
ments

Modularization &
layered architecture

 New devel-
opment still
possible

Sequential development

Typical characteristics of
product focus

Ad-hoc project structure

Monolithic software archi-
tecture

Slow and heavy
platform limits
throughput of
products

Parallel development

 Continued cus-
tomer contract
and trust

Decrease development cost per product

Product & Platform
configuration components

www.dbooks.org

https://www.dbooks.org/

236234

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

229235
www.dbooks.org

https://www.dbooks.org/

238236

Your
B. Fitzgerald et al., Scaling a Software Business,
DOI 10.1007/978-3-319-53116-8_3

© The Author(s) 2017

239237

journey
 How you get there

www.dbooks.org

https://www.dbooks.org/

238

Good old post-its

239

Please come in. Welcome to our

home turf. It’s time to roll up your

Post-It notes on the table. We’ve already put
up blue ones. As usual these represent your in-
put, what we’d like to achieve. Now, go ahead and

what changes you think it would take. Wearing
your glasses, consider the impact on our organ-
ization, on our ways of working and on our
offering. Needless to say, before you jot down
your note, browse through the shelf with

notes from previous experiences.

www.dbooks.org

https://www.dbooks.org/

240

chapter we’ll show how to setup a workshop to identify the steps that an organization can take
to embark on a software scaling transformation. The proposed solution from the workshop will
be a concrete list of transitions describing changes in the three key domains that the Scaling

throughout the workshop to support this process.

The workshop in short:

 1. Define the drivers – They should be derived from the company business strategy.
 2. Decide on inabilities and desired abilities that will drive the change.
 3. Identify the current domain characteristics that cause the current inabilities.
 4. Use the compass to find a solution and read relevant scenarios with similar drivers.
 5. Prioritize the transitions and start to implement.

241

Setting up the workshop

participation and creativity. However, using the canvas to structure the ideas and drive the process

audience, varying from other managers to developers.

Running a successful workshop depends heavily on active participation and brainstorming by all
participants. It’s important to get everybody engaged to encourage innovative and creative con-
tributions. This can be achieved by actively coaching this process and asking open questions, but
beware of critical comments and feedback that might discourage participants. Later on in the pro-
cess, the pros and cons of different strategies are evaluated before decisions are made. We won’t
go into different theories and techniques on how to optimize the workshop phases and group
dynamics. Instead, we’ll focus on the purpose and content of each phase, and how we use the SMF
and the canvas to support the process.

To get started, you’ll need to have access to all decision makers in the organization. Remember
to cover input from both management who understand the drivers, and from specialists from all
three SMF domains: product, process, and organization. As illustrated in the introduction, it’s pos-
sible to divide the work into two workshops without having all persons on site at the same time.
However, when possible it is always best to gather all roles and skills in the same room at the same
time, and let them work iteratively together.

Some practicalities before we start the rst workshop:

Make sure that the room is equipped with a whiteboard and a projector that can display the canvas
on the whiteboard. Being able to put up post-it notes and connecting them with lines and arrows
is important.

together, to get a good overview of the situation. Actually, for most post-its, its place in the canvas
tells what type it is. The color is mostly redundant, but the visual distinction can help. There is
one place where it isn’t redundant, so you will need at least two colors to distinguish the meaning.

www.dbooks.org

https://www.dbooks.org/

242

Let’s start! Why are we here?
Put the SMF canvas on the whiteboard. Present the goal and the expectations of the workshop
and explain how the workshop will be performed.

The goal is to create a list of transitions to be implemented in order to reach a couple of goals

In order to reach this goal there are a couple of sub-targets. Although this is an iterative process,
it’s good to know the purpose and goal of each phase (sub target).

What is our strategy? - What are the drivers?

reasons why we need and want to scale our software, and are often closely aligned to the compa-
ny’s strategy. Typical drivers are a desire to enter a new market or market segment, or to become
more innovative. Rapidly expanding organizations can also suffer from growing pains, for exam-
ple when if the software architecture doesn’t scale with the organization, or when well-trained

Start with the external drivers

Most drivers are external, i.e. derived from outside the company. It can be customers, markets,
or global regulatory requirements that want us to make the changes. To get our brain to start
formulating these drivers we can ask questions like:

• What are the market or customer expectations on our organization?

• What are the management team expectations on our organization?

• Have any regulatory requirements been changed that we need to cope with?

• Where is the market heading – What are our competitors doing?

Utilize the help from the structure of the “driver groups” and ask what really drives the compa-

1

2

243

ny to a successful future. Is it the OPEX cost that needs to be lowered or is it rather a complete
new business model that will outperform our competitors?

Fill the top area of the canvas with blue post-its, each with a driver. This can be done in many
ways. For example, we can let the participants do this one by one. We can also do it in small
groups and ask one person from each group to present and argue why the drivers are important
to have from an external point of view. It’s important that all post-its are discussed and under-
stood (and maybe even rephrased) by everybody before being put on the canvas.

When all notes are on the canvas we most likely need to group and reduce them according to a
prioritization.

• Group them in new common areas if possible as the number of post-it notes grows.

• What are the two to three most important items to focus on?

Put the drivers on the canvas in priority order from left to right.

Good things we want to keep

The drivers primarily capture things we want to change in order to scale. However, at this point
-

sion turn out to have negative impact on already existing (good) drivers. Here we have the possi-
bility to remember this by creating post-it for a driver we want to keep. Keep these post-it notes
to the right on the driver’s area, to distinguish these as external drivers.

1 2 3

www.dbooks.org

https://www.dbooks.org/

244

Continue with internal drivers

Most drivers are external, but sometimes we also have internal drivers. These are things the

direction for the future. Ask questions like:

• What would make us proud?

• What kind of work climate do we want to have?

• What do we need to be well prepared for the future (which is sometimes not so easy to
predict – so why not become as prepared as possible)?

Generate blue post-it notes. Explain, discuss and prioritize them. Add the most important to the
left of the external drivers. Post-it notes that are removed due to prioritization can be stored in a
“parking lot” for later retrieval if needed.

Desired abilities and current inabilities
Now when we have all the blue post-it notes in place,
next up is to identify the abilities. Abilities are aspects
of the software development such as cost, performance,
and quality, which are possible to measure without know-
ing any details of how the development is made. In the
workshop the goal is not to create all-covering measure-
ments of the entire software development, but we will fo-
cus on abilities we need to have in order to meet the driv-
ers, the desired abilities. We will also identify the current

inabilities, the abilities we have today that we need to
improve in order to get the desired abilities. Start by
looking at the drivers and formulate measures related

to them. If the drivers are about customer satisfaction, and product quality, the desired abilities

3

245

will most likely be about number of issues, customer satisfaction survey results or time to market.

The desired abilities will be the De nition of done in the implementation phase, so

look carefully at them and ask, ”Have we succeeded if we reach this?”.

When the desired abilities are in place continue with the current inabilities. What is it that is not
good enough – what are our growing pains? Obviously, many of them will be similar to the de-
sired abilities, like for instance customer support availability: a desired ability is 24/7, but current

Put up post-its both for the desired abilities and the inabilities and make sure they cover all
the drivers.

Iterative process
To identify drivers, desired abilities, and inabilities is an important sub target. It often

-
ing the software development as a black

-
mon ground with the company’s strategy and
vision.

drivers and abilities, and the people that can
break these down in terms of organization,
process and product, are not the same. In

-
ited workshop with management only, to
decide on drivers and identify abilities, and
use this outcome as input for a subsequent
workshop .

1

2

n

www.dbooks.org

https://www.dbooks.org/

246

Explain current abilities with domain capabilities
Now it’s time to open the black box. We need to understand why we have inabilities, we need to
analyze and describe our current situation as is.

Ask challenging questions within all three domains: product, organization, and process. Identify
the current domain characteristics that potentially are the problems causing the inabilities. Find
characteristics, that if changed will solve or remove
the current inabilities. A domain characteristic is sim-
ply explained as a hallmark for the company’s software
development. Examples of such are “manual test and
delivery,” “no routines for source code management”
and “no process for customer requirements.”

Don’t just look for the no-brainers, we might have to

cause. Why do we have a manual test? Maybe is it
because we lack the competence to create automatic
tests. If so, this is a yellow note in the organization
domain rather than one in the process domain – or
both with a line in between depicting the relationship.

During this phase we really need domain experts, people from the company that know how
things actually work. What are the actual practices that are used? What does the product archi-
tecture look like and what affects on the abilities does it have?

Troubleshooting requires deep knowledge about dependencies - causes and effects. This means
we also need people with good general knowledge about the domains and the characteristics of
different solutions. If the knowledge can’t be found within the company, bring in external com-
petence to the workshop. Such people can also assist as moderators and help getting a holistic
view of the discussion.

4

247

Use the building blocks within the domains to, in a structured way think through how we actual-
ly work and why. In the organization domain, go through all four blocks (structure, culture and
leadership, people management, and improvements) to search for reasons to the inabilities. Let
the experts from this domain shortly explain the current characteristics of each building block.
Discuss if we should add a yellow note.

us from reaching the desired abilities. Put up yellow notes and draw arrows between them to
show dependencies.

Don’t stop until all inabilities are explained by at least one domain characteristic. For non-obvi-
ous relations, draw an arrow in the canvas, from the yellow domain characteristic to the orange
inability.

We might identify existing
characteristics we’re about to
remove or change, but during
the discussion realize we ought
to keep these. Leave these in
the canvas and mark them with
“keep”, to remember they are
also part of the desired solution.
These won’t have any arrows to
current inabilities.

KEEP

www.dbooks.org

https://www.dbooks.org/

248

Find a solution
Now the creative part starts. We need to decide on what changes to make in order to improve

needs to do.

The goal is to have yellow post-its in the
-

sired abilities. Each yellow note in the as-is
domain should have a transition explain-
ing how it is transformed into the desired
solution. When not obvious, draw arrows
depicting the transitions. Similarly, all yel-
low notes in the desired domain should
have corresponding transitions needed to
have them implemented.

In reality, this isn’t so easy. Most like-
ly there will be many alternative transi-
tions with different pros and cons and no
obvious “silver bullet” solution. Also, a
transition in one domain may also affect
other domains. As an example, to make a
quite obvious change to a process might
also call for changes to the organization,
e.g. new skills needed. In these cases, we
need to add yellow notes also explaining the needed ”supportive” desired domain characteristics.

Make sure to evaluate different transition possibilities. Also make sure that all desired abilities

5

249

1
2 3

1.000.000

6 Use the body of knowledge and experiences to be creative

creative tasks, it is also here we can use this book to utilize the experience from previous
situations in other companies. Journeys and travel stories provides us examples and captured
experience from other companies who have been through similar situations.

main driver groups do you see your drivers. Then, go to the “The compass” part of the

An alternative way of using the book is if you want to know how companies similar to yours

entire journey for the selected stories. The canvas for each journey and Travel story gives a
quick overview in order to determine if a more thorough read is needed.

www.dbooks.org

https://www.dbooks.org/

250

Decision time
All sorts of design ideas have been discussed, pros and cons argued, and trade-offs worked out.
It’s time to outline the initial change project.

changes we need to make, document the changes. Start with the main transitions and draw ar-
rows to show how the new domain characteristics result in the desired abilities.

As we know we might need additional transitions to create the pre-conditions needed for the
main transitions, add also these to the canvas and draw arrows to show how they support the
main characteristics.

describe the dependencies between the transitions.

Use the dependencies between the transitions and put together an ordered list of transforma-
tions. This list can be used throughout the implementation of the change. In the next chapter
you will see how to succeed with the actual change implementation phase.

7

251

Done – let’s get on
with the real work

www.dbooks.org

https://www.dbooks.org/

252

... most organizations lack
all the skills needed to implement

and optimize business processes ...
 Successful process management
requires an agile iterative approach

to process change.
 Gartner Inc.

The real work

253

The Scaling Management Framework will help you to identify the transformation journey to
take. It can also help you in dividing the transformation project into reasonable steps. While un-
derstanding what to do is crucial, it’s not the same thing as knowing how to do it. Every change
needs success criteria, a project team, a plan and a budget. However, the planning accuracy is not
saying if your change project will be a success or not.

A successful implementation requires a lot of work from all employees involved. Everyone needs
to understand why there is a need for change. They have to acknowledge the reason that drives
the change and understand how it affects the organization and the ways of working. If it isn’t
clear “what’s in it for me,” there is a risk that the project will meet resistance from the employees.

One obvious factor for success is the ownership and the attention from management. High-level
progress should be communicated from top management and not only from the project lead-
ers, which should focus on more detailed information sharing. Visibility and transparency in the
change process is a key aspect to grow trust and motivation among the employees. The manage-
ment team should also support the project removing any impediments that might arise during
implementation.

A change project can be set up similar to an agile project. Using a prioritized change backlog, use
small iterations and retrospectives to minimize the work in progress and keep the lead-time
short. The agile change process provides a lot of tools to follow up the results and track the
progress. All measurements should help to drive the change (or at least not slow them down) and
serves also to reinforce the motivation.

Budget
Specification Time plan

www.dbooks.org

https://www.dbooks.org/

254

Driver

Ability

Change backlog

Management team

Agile change center
The Agile change center is a framework for guiding any transformation, based on the same
principles that guide agile development. Through determined commitment to small, continuous
and incremental change, the Agile change center may be used to investigate, propose, facilitate,
execute and deliver any of the change scenarios presented in this book.

The Agile change center primarily seeks to accelerate the transformation and provide:

• Organizational alignment around agreed drivers and abilities (KPIs)

• Management engagement in the transformation

• Mechanism for continuous and sustainable improvement aided by visibility, feedback and

The center consists basically of two teams, the management and the doers. The management

that they want to measure on, critical success factors of the transformation.

255

Change
item

Transition owner Rollout team Agile coach

The implementation teams are manned with all necessary competences to roll out the transfor-
mation. Two important members of such a team is the transformation owner, who represents
the management team, and the Agile coach, who facilitates the performance, learning and devel-
opment of the individuals in the team, as well as the team per se.

items and to follow up on previous change items. The change backlog contains all actions in the
transformation. It’s basically a list of change Items that is prioritized by the management team.
A change item can be any opportunity for improvement, in any of the three SMF domains. The
opportunities can be expressed as impediments of a problem, investigations, proposals or sug-
gestions.

The implementation teams meet every 1–2 weeks, for iteration planning and commitments, to
review progress and give feedback and to look back at changes that already have taken place.
All but the transformation owner meet as well every one or two days to synchronize work, raise

www.dbooks.org

https://www.dbooks.org/

256

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

257
www.dbooks.org

https://www.dbooks.org/

258258

SM
B. Fitzgerald et al., Scaling a Software Business,
DOI 10.1007/978-3-319-53116-8

© The Author(s) 2017

 D e f i n i t

259

MF
259

t i o n s

www.dbooks.org

https://www.dbooks.org/

260

Alphabetical list of terms and definitions

Abilities

Abilities can be seen as Key Process Indicators (KPIs) for the
transformation journey. The KPIs are preferably the ones used in
the company’s Balanced Scorecard. Abilities have to be measur-
able in order for us to recognize if we’re getting any better. The
whole organization, with its three domains, is considered being a
black box when we measure such abilities.

Case study
A case study gives real world experience from a company that is
in the midst of or past their digital transformation. Some compa-
nies have been successful and some have not.

Characteristics

The characteristics of an organization is how it looks when we
open up the black box and see in detail what is happening. The
current characteristics are the root cause of the inabilities and
the desired characteristics are the reasons to why we achieve the
desired abilities.

Current organization domain.

Current process domain.

Current product domain.

261

Digital transformation
The process of radical change, where companies are converting
from an analog to a digital world.

Digitalization

The process of converting from analog to digital. Digitalization
means a shift in focus from products, hardware, and mechanics
towards software and services and possibly disruptive business
models.

Drivers

The key priorities a company’s management board would look
for the software organization to address to cope with the digital

of drivers and equals to the goals of the software organization.
These drivers are the rationale for why we need to change the
software organization.

Inabilities

Inabilities are the abilities that currently hinder us from achieving
the drivers. The inabilities are mostly visible outside of the orga-
nization, by other entities within a company or outside a compa-
ny such as by customers.

Organization domain

The organization domain includes all organization and business
processes including, but not limited to, how to structure the or-
ganization, culture and leadership, people management and how
to drive improvement work.

Process domain
The process domain covers all aspects of how a product or a ser-
vice is developed and tested. We have chosen to divide this into
two subcategories: engineering and project management.

www.dbooks.org

https://www.dbooks.org/

262

Product domain

The product domain covers the products and services that we
offer on the market. This domain deals with aspects like the soft-
ware architecture, how we structure the product or service, the
infrastructure and our distribution channels.

Scale
Software companies have to scale, which is another way of say-
ing change with the digital transformation.

Scenario

A condensed set of lessons learned extracted from case stud-
ies with similar drivers. A scenario is lessons learned by several
companies with hands-on experiences from similar digital trans-
formation.

SMF

The SMF (Software Management Framework) helps companies
with one of the key challenges of European Industry: how do
we transform our organization when software is becoming a
critical part of our offering and asset? The digital transformation
that comes can partly be driven by the technological evolution
and partly by the business. The SMF is distinctive in the sense
that it explains the transformation in three domains – organi-
zation, products and processes – in the same model. The SMF
consist of the map, the compass, the travel brochures, and the
travel stories.

SMF canvas
A graphical tool for understanding and describing the transitions
needed for the software organization to carry out a digital trans-
formation.

263

Software organization
A software organization can be an IT department and/or a soft-
ware R&D department.

The compass
-

formation journey. They will guide you through the map and
help you to pin down your own digital transformation journey.

The journeys

A database of industrial best practices and tools to support
enterprises in their digital transformations. The database contains
travel stories and travel brochures to be used at the digitalization
journey.

The map
The SMF canvas is used as the map of the transformation and it
helps in creating a digitalization strategy.

The travel brochure A scenario can be seen as a travel brochure for the journey.

The travel story Case studies give the reader the concrete travel stories.

Transformation
A process of radical change that orients an organization in a new
direction.

Transition

One or more transitions are needed to make the digital transfor-
mation in a company. A transition is the key activities needed to
go from the current characteristics to the desired characteristics.
In the SMF canvas, this is graphically represented as going from
one or several yellow post-its on the current side to one or sever-
al yellow post-its on the desired side.

www.dbooks.org

https://www.dbooks.org/

264

Desired abilities

The desired abilities are the desired state that we want to reach

will indicate if we have reached our goals with the transforma-
tion performed or not.

Desired organization which enable us to achieve the desired abilities, which turn is the
end goal for our drivers.

Desired process enable us to achieve the desired abilities, which turn is the end
goal for our drivers.

Desired product enable us to achieve the desired abilities, which turn is the end
goal for our drivers.

Your journey
When a company uses the map, the compass, the travel bro-

-
mation journey.

265

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

www.dbooks.org

https://www.dbooks.org/

	Proven ways to scale a business
	SCALARE
	The SCALARE team's objectives
	Co-created by industry and academia professionals

	It’s in the software
	Hello world

	Common challenges with software
	1 2 3
	Not to waste time

	The map
	Drivers
	Software abilities
	Software model set-up
	Product domain
	Process domain
	Organization domain
	Transitions
	It all fits together
	How the canvas can be used

	The compass
	Two ways to read this book
	Journey 1 – Co-operate in a community
	Journey 2 – Building ecosystems
	Journey 3 – Add supplementary services
	Journey 4 – Deliver 24/7
	Journey 5 – Pump up the volume
	Journey 6 – Agile and disciplined
	Journey 7 – Outside the box
	Journey 8 – First things first

	The journeys
	Co-develop in a community
	One more thing
	Get inspired
	Sharing is caring
	A thriving Open Source culture behind the wall
	Keeping the doors open

	Sharing is caring
	R & D and Legal, hand in hand
	Sony Mobile Open Source Maturity and Strategy model
	Engineering Driven
	Business Driven

	Advices & take aways

	A thriving Open Source culture behind the wall
	Advices & take aways

	Keeping the doors open

	Building ecosystems
	Get inspired
	Pushing the boundaries

	Servitization
	Pushing the boundaries
	Sources and more reading
	Netflix Open Source software downloads

	Add supplementary services
	servitization
	Get insights
	Adding Internet to things
	Boosting product sales by services

	One more thing

	Adding Internet to things
	Boosting product sales by services

	Deliver 24/7
	About Agile
	Companies that succeed with the scaling Agile process are characterized by three things
	Co-located, cross-functional teams
	Delegative style leadership
	Iterative approach with short feedback loops

	Scaling agile
	Delivering continuously
	Maintaining stability
	When scaling Agile, avoid these common pitfalls
	Get inspired
	Pruning a bush
	Ensuring prima deliveries

	Pruning a bush
	Ensuring prima deliveries

	Pump up the volume
	Get inspired
	Global R&D goes agile with SAFe
	Multi-site development

	Global R&D goes agile with SAFe
	Multi-site development

	Agile and disciplined
	Drivers
	Architecture
	Working code, short development cycles and continuous integration
	Minimum of documentation and functionality
	Quality and verification by agile means
	Visualized system and work in progress
	Customer needs
	Improvements in small steps

	Get inspired
	Scaling Agile in Automotive
	Scaling Agile in Life Sciences

	One more thing
	Scaling Agile in Automotive
	Scaling Agile in Life sciences
	Lessons Learned

	Outside the box
	The unforeseen costs
	We’re only human
	Due diligence
	Our strategy
	Get inspired
	Efficient communication in a global delivery model
	Outsourcing Strategy at Sony Mobile
	Not so shore anymore
	Play it again, Sam, backwards

	Efficient communication in a global delivery model
	Observations
	Recommendation on how to succeed

	Outsourcing Strategy at Sony Mobile
	Not so shore anymore
	Play it again, Sam, backwards

	First things first
	Get inspired
	Robotic growing pains
	Softhouse reflects on architecture changes
	From mobile to platform

	One more thing
	Robotic growing pains
	Softhouse reflects on architecture changes
	From mobile to platform

	Your journey
	Good old post-its
	Setting up the workshop
	Let’s start! Why are we here?
	What is our strategy? - What are the drivers?
	Start with the external drivers
	Good things we want to keep
	Continue with internal drivers

	Desired abilities and current inabilities
	Iterative process

	Explain current abilities with domain capabilities
	Find a solution
	Use the body of knowledge and experiences to be creative
	Decision time

	Done – let’s get on with the real work

	The real work
	Agile change center

	SMF
	Alphabetical list of terms and definitions

