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Preface

The VISCERAL project1 organized Benchmarks for analysis and retrieval of 3D
medical images (CT and MRI) at a large scale. VISCERAL used an innovative
cloud-based evaluation approach, where the image data were stored centrally on a
cloud infrastructure, while participants placed their programs in virtual machines on
the cloud. This way of doing evaluation will become increasingly important as
evaluation of algorithms on increasingly large and potentially sensitive data that
cannot be distributed will be done.

This book presents the points of view of both the organizers of the VISCERAL
Benchmarks and the participants in these Benchmarks. The practical experience and
knowledge gained in running such benchmarks in the new paradigm is presented by
the organizers, while the participants report on their experiences with the evaluation
paradigm from their point of view, as well as giving a description of the approaches
submitted to the Benchmarks and the results obtained.

This book is divided into five parts. Part I presents the cloud-based bench-
marking and Evaluation-as-a-Service paradigm that the VISCERAL Benchmarks
used. Part II focusses on the datasets of medical images annotated with ground truth
created in VISCERAL that continue to be available for research use, covering also
the practical aspects of getting permission to use medical data and manually
annotating 3D medical images efficiently and effectively. The VISCERAL
Benchmarks are described in Part III, including a presentation and analysis of
metrics used in the evaluation of medical image analysis and search. Finally,
Parts IV and V present reports of some of the participants in the VISCERAL
Benchmarks, with Part IV devoted to the Anatomy Benchmarks, which focused on
segmentation and detection, and Part V devoted to the Retrieval Benchmark.

This book has two main audiences: Medical Imaging Researchers will be most
interested in the actual segmentation, detection and retrieval results obtained for the
tasks defined for the VISCERAL Benchmarks, as well as in the resources (anno-
tated medical images and open source code) generated in the VISCERAL project,

1http://visceral.eu
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while eScience and Computational Science Reproducibility Advocates will gain
from the experience described in using the Evaluation-as-a-Service paradigm for
evaluation and benchmarking on huge amounts of data.

Vienna, Austria Allan Hanbury
Sierre, Switzerland Henning Müller
Vienna, Austria Georg Langs
September 2016
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Chapter 1
VISCERAL: Evaluation-as-a-Service
for Medical Imaging

Allan Hanbury and Henning Müller

Abstract Systematic evaluation has had a strong impact on many data analysis
domains, for example, TREC and CLEF in information retrieval, ImageCLEF in
image retrieval, and many challenges in conferences such as MICCAI for medical
imaging and ICPR for pattern recognition. With Kaggle, a platform for machine
learning challenges has also had a significant success in crowdsourcing solutions.
This shows the importance to systematically evaluate algorithms and that the impact
is far larger than simply evaluating a single system. Many of these challenges also
showed the limits of the commonly used paradigm to prepare a data collection and
tasks, distribute these and then evaluate the participants’ submissions. Extremely
large datasets are cumbersome to download, while shipping hard disks containing
the data becomes impractical. Confidential data can often not be shared, for example
medical data, and also data from company repositories. Real-time data will never be
available via static data collections as the data change over time and data preparation
often takes much time. The Evaluation-as-a-Service (EaaS) paradigm tries to find
solutions for many of these problems and has been applied in the VISCERAL project.
In EaaS, the data are not moved but remain on a central infrastructure. In the case of
VISCERAL, all data were made available in a cloud environment. Participants were
provided with virtual machines on which to install their algorithms. Only a small
part of the data, the training data, was visible to participants. The major part of the
data, the test data, was only accessible to the organizers who ran the algorithms in
the participants’ virtual machines on the test data to obtain impartial performance
measures.

A. Hanbury (B)
TU Wien, Institute of Software Technology and Interactive Systems,
Favoritenstraße 9-11/188, 1040 Vienna, Austria
e-mail: allan.hanbury@tuwien.ac.at

H. Müller
Information Systems Institute, HES-SO Valais,
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4 A. Hanbury and H. Müller

1.1 Introduction

Scientific progress can usually be measured via clear and systematic experiments
(Lord Kelvin: “If you can not measure it, you can not improve it.”). In the past,
scientific benchmarks, such as TREC (Text REtrieval Conference) and CLEF (Con-
ference and Labs of the Evaluation Forum), have given a platform for such scientific
comparisons and have had a significant impact [15, 17, 18]. Commercial platforms
such as Kaggle1 have also shown that there is a market for a comparison of techniques
based on real problems that companies can propose.

Much data are available and can potentially be exploited for generating new
knowledge based on data, including notably medical imaging, where extremely large
amounts have been produced for many years [1]. Still, constraints are often that data
need to be manually anonymized or can only be used in restricted settings, which
does not work well for very large datasets.

Several of the problems encountered in traditional benchmarking that often relies
on the paradigm of creating a dataset and sending it to participants can be summarized
in the following points:

• very large datasets can only be distributed with very much effort, usually by
sending hard disks through the post;

• confidential data are extremely hard to distribute, and they can usually only be
used in a closed environment, in a hospital or inside the company firewalls;

• quickly changing datasets cannot be used for benchmarking if it is necessary to
package the data and send them around.

To answer these problems and challenges, the VISCERAL project proposed a change
in the way that benchmarking has been organized by proposing to keep the data in a
central space and move the algorithms to the data [3, 10].

Other benchmarks equally realized these difficulties in running benchmarks and
came up with a variety of propositions for running benchmarks without fixed data
packages that are distributed. These ideas were discussed in a workshop organized
around this topic and named Evaluation-as-a-Service (EaaS) [6]. Based on the dis-
cussions at the workshop, a detailed White Paper was written [4], which outlines
the roles involved in this process and also the benefits that researchers, funding
organizations and companies can gain from such a shift in scientific evaluations.

This chapter highlights the role of VISCERAL in the EaaS area, in which the
benchmarks were organized and how the benchmarks helped advance this field and
gain concrete experience with running scientific evaluations in the cloud.

1http://www.kaggle.com.

www.dbooks.org
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1 VISCERAL: Evaluation-as-a-Service For Medical Imaging 5

1.2 VISCERAL Benchmarks

The VISCERAL project organized a series of medical imaging Benchmarks described
below:

1.2.1 Anatomy Benchmarks

A set of medical imaging data in which organs are manually annotated is provided
to the participants. The data contain segmentations of several different anatomical
structures and positions of landmarks in different image modalities, e.g. CT and MRI.
Participants in the Anatomy Benchmarks have the task of submitting software that
automatically segments the organs for which manual segmentations are provided, or
detecting the locations of the landmarks. After submission, this software is tested
on images which are inaccessible to the participants. Three rounds of the Anatomy
Benchmark have been organized, and this Benchmark is continuing beyond the end
of the VISCERAL project. These benchmarks are described in more detail in Chap.
7. In Chaps. 9–12 are reports of some participants in the Anatomy Benchmarks.

1.2.2 Detection Benchmark

A set of medical imaging data that contains various lesions manually annotated in
anatomical regions such as the bones, liver, brain, lung or lymph nodes is distributed
to the participants. Participants in the Detection Benchmark have the task of sub-
mitting software that will automatically detect these lesions. The software is tested
on detecting lesions on images that the participants have not seen. The Benchmark
data and ground truth continue to be available beyond the end of the VISCERAL
project as the Detection2 Benchmark. As this was the most challenging benchmark
that was organized, no solutions were submitted. There is therefore no chapter on this
benchmark included, although the data and ground truth continue to be available.

1.2.3 Retrieval Benchmark

One of the challenges of medical information retrieval is similar case retrieval in the
medical domain based on multimodal data, where cases refer to data about specific
patients (used in an anonymized form), such as medical records, radiology images
and radiology reports, or to cases described in the literature or teaching files. The
Retrieval Benchmark simulates the following scenario: a medical professional is
assessing a query case in a clinical setting, e.g. a CT volume, and is searching for

http://dx.doi.org/10.1007/978-3-319-49644-3_7
http://dx.doi.org/10.1007/978-3-319-49644-3_9
http://dx.doi.org/10.1007/978-3-319-49644-3_12


6 A. Hanbury and H. Müller

cases that are relevant in this assessment. The participants in the Benchmark have
the task of developing software that finds clinically relevant (related or useful for
differential diagnosis) cases given a query case (imaging data only or imaging and
text data), but not necessarily the final diagnosis. The Benchmark data and relevance
assessments continue to be available beyond the end of the VISCERAL project as the
Retrieval2 Benchmark. This benchmark is described in more detail in Chap. 8, and
Chapters 13 and 14 give reports of two of the participants in the Retrieval Benchmark.

1.3 Evaluation-as-a-Service in VISCERAL

Evaluation-as-a-Service is an approach to the evaluation of data science algorithms,
in which the data remain centrally stored, and participants are given access to these
data in some controlled way.

The access to the data can be provided through various mechanisms, including an
API to access the data, or virtual machines on which to install and run the processing
algorithms. Mechanisms to protect sensitive data can also be implemented, such
as running the virtual machines in sandboxed mode (all access out of the virtual
machine is blocked) while the sensitive data are being processed, and destroying the
virtual machine after extracting the results to ensure that no sensitive data remains in
a virtual machine [13]. An overview of the use of Evaluation-as-a-Service is given
in [4, 6].

We now give two examples of Evaluation-as-a-Service in use, illustrating the dif-
ferent types of data for which EaaS is useful. In the TREC Microblog task [11],
search on Twitter was evaluated. As it is not permitted to redistribute tweets, an
API (application programming interface) was created, allowing access to the tweets
stored centrally. In the CLEF NewsREEL task [5], news recommender systems were
evaluated. In this case, an online news recommender service sent requests for rec-
ommendations in real time based on actual requests from users, and the results were
evaluated based on the clicks of the recommendations by the users of the online
recommender service. As this was real-time data from actual users of a system, a
platform, the Open Recommendation Platform [2], was developed to facilitate the
communication between the news recommender portal and the task participants.

In the VISCERAL project, we were dealing with sensitive medical data. Even
though the data had been anonymized by removing potentially personal metadata
and blurring the facial regions of the images, it was not possible to guarantee that
the anonymization tools had completely anonymized the images. We were therefore
required to keep a large proportion of images, the test set, inaccessible to participants.
Training images were available to participants as they had undergone a more thorough
control of the anonymization effectiveness. The EaaS approach allowed this to be
done in a straightforward way.

The training and test data are stored in the cloud in two separate storage containers.
When each participant registers, he/she is provided with a virtual machine on the

www.dbooks.org

http://dx.doi.org/10.1007/978-3-319-49644-3_8
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Test DataTraining Data

Participants Organiser

Cloud

Registra on 
System

Analysis 
System

Participant 
Virtual 
Machines

Fig. 1.1 Training Phase. The participants register, and each get their own virtual machine in the
cloud, linked to a training dataset of the same structure as the test data. The software for carrying
out the competition objectives is placed in the virtual machines by the participants. The test data
are kept inaccessible to participants

cloud that has access to the training data container, as illustrated in Fig. 1.1. During
the Training Phase, the participant should install the software that carries out the
benchmark task on the virtual machine, following the specifications provided, and
can train algorithms and experiment using the training data as necessary. Once the
participant is satisfied with the performance of the installed software, the virtual
machine is submitted to the organizers. Once a virtual machine is submitted, the
participant loses access to it, and the Test Phase begins. The organizers link the
submitted virtual machine to the test data, as shown in Fig. 1.2, run the submitted
software on the test data and calculate metrics showing how well the submitted
software performs.

For the initial VISCERAL benchmarks, the organizers set a deadline by which
all virtual machines must be submitted. The values of the performance metrics were
then sent to participants by email. This meant that a participant had only a single
possibility to get the results of their computation on the test data. For the final round
of the Anatomy Benchmark (Anatomy3), a continuous evaluation approach was
adopted. Participants have the possibility to submit their virtual machine multiple
times for the assessment of the software on the test set (there is a limit on how
often this can be done to avoid “training on the test set”). The evaluation on the
test set is carried out automatically, and participants can view the results on their
personal results page. Participants can also choose to make results public on the
global leaderboard.

Chapter 2 presents a detailed description of the VISCERAL cloud environment.

http://dx.doi.org/10.1007/978-3-319-49644-3_2
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Fig. 1.2 Test Phase. On the Benchmark deadline, the organizer takes over the virtual machines
containing the software written by the participants, links them to the test dataset, performs the
calculations and evaluates the results

1.4 Main Outcomes of VISCERAL

As a result of running the Benchmarks, the VISCERAL project generated data and
software that will continue to be useful to the medical imaging community. The first
major data outcomes are manually annotated MR and CT images, which we refer to as
the Gold Corpus. The use of the EaaS paradigm also gave the possibility to compute
a Silver Corpus by fusing the results of the participant submissions. One of the
challenges in creating datasets for use in medical imaging benchmarks is obtaining
permission to use the image data for this purpose. In order to provide guidelines
for researchers intending to obtain such permission, we present an overview of the
processes necessary at the three institutes that provided data for the VISCERAL
Benchmarks in Chap. 3. All data created during the VISCERAL project are described
in detail in Chap. 5. Finally, particular attention was paid to ensuring that the metrics
comparing segmentations were correctly calculated, leading to the release of new
open source software for efficient metric calculation.

1.4.1 Gold Corpus

The VISCERAL project produced a large corpus of manually annotated radiology
images, called the Gold Corpus. An innovative manual annotation coordination sys-
tem was created, based on the idea of tickets, to ensure that the manual annotation
was carried out as efficiently as possible. The Gold Corpus was subjected to an exten-
sive quality control process and is therefore small but of high quality. Annotation

www.dbooks.org
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Fig. 1.3 Examples of lesion annotations

in VISCERAL served as the basis for all three Benchmarks. For each Benchmark,
training data were distributed to the participants and testing data were kept for the
evaluation.

For the Anatomy Benchmark series [8], volumes from 120 patients were manually
segmented by the end of VISCERAL by radiologists, where the radiologists trace out
the extent of each organ. The following organs were manually segmented: left/right
kidney, spleen, liver, left/right lung, urinary bladder, rectus abdominis muscle, 1st
lumbar vertebra, pancreas, left/right psoas major muscle, gallbladder, sternum, aorta,
trachea and left/right adrenal gland. The radiologists also manually marked land-
marks in the volumes, where the landmarks include lateral end of clavicula, crista
iliaca, symphysis below, trochanter major, trochanter minor, tip of aortic arch, trachea
bifurcation, aortic bifurcation and crista iliaca.

For the Detection Benchmark, overall 1,609 lesions were manually annotated in
100 volumes of two different modalities, in five different anatomical regions selected
by radiologists: brain, lung, liver, bones and lymph nodes. Examples of the manual
annotation of lesions are shown in Fig. 1.3.

For the Retrieval Benchmark [7], more than 10,000 medical image volumes were
collected, from which about 2,000 were selected for the Benchmark. In addition,
terms describing pathologies and anatomical regions were extracted from the corre-
sponding radiology reports.

Detailed descriptions of the methods used in creating the Gold Corpus are
described in Chap. 4.

1.4.2 Silver Corpus

In addition to the Gold Corpus of expert annotated imaging data described in the
previous section, the use of the EaaS approach offered the possibility to generate a
far larger Silver Corpus, which is annotated by the collective ensemble of participant
algorithms. In other words, the Silver Corpus is created by fusing the outputs of all

http://dx.doi.org/10.1007/978-3-319-49644-3_4
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participant algorithms for each image (inspired by e.g. [14]). Even though this Silver
Corpus annotation is less accurate than expert annotations, the fusion of participant
algorithm results is more accurate than individual algorithms and offers a basis
for large-scale learning. It was shown by experiments that the accuracy of a Silver
Corpus annotation obtained by label fusion of participant algorithms is higher than
the accuracy of individual participant annotations. Furthermore, this accuracy can
be improved by injecting multi-atlas label fusion estimates of annotations based on
the Gold Corpus-annotated dataset.

In effect, the Silver Corpus is large and diverse, but not of the same annotation
quality as the Gold Corpus. The final Silver Corpus of VISCERAL Anatomy Bench-
marks contains 264 volumes of four modalities (CT, CTce, MRT1 and MRT1cefs),
containing 4193 organ segmentations and 9516 landmark annotations. Techniques
for the creation of the Silver Corpus are described in [9].

1.4.3 Evaluation Metric Calculation Software

In order to evaluate the segmentations generated by the participants, it is necessary to
compare them objectively to the manually created ground truth. There are many ways
in which the similarity between two segmentations can be measured, and at least 22
metrics have each been used in more than one paper in the medical segmentation
literature. We implemented these 22 metrics in the EvaluateSegmentation software
[16], which is available as open source on GitHub,2 and can read all image formats
(2D and 3D) supported by the ITK Toolkit. The software is specifically optimized
to be efficient and scalable, and hence can be used to compare segmentations on
full body volumes. Chapter 6 goes beyond [16] by discussing the extension to fuzzy
metrics and how well rankings based on similarity to the ground truth of organ
segmentations by various metrics correlate with rankings of these segmentations by
human experts.

1.5 Experience with EaaS in VISCERAL

Based on the examples given, there are several experiences to be gained from EaaS
in general and VISCERAL more particularly. Some of the experiences, particularly
in the medical domain, are also discussed in [12].

Initially, the idea to run an evaluation in the cloud was seen by the medical imaging
community with some skepticism. Several persons mentioned that they would not
participate if they cannot see the data and there definitely was a feeling of control
loss. It is definitely additional work to install the required environment on a new
virtual machine in the cloud. Furthermore, VISCERAL provided only a limited set

2https://github.com/Visceral-Project/EvaluateSegmentation.

www.dbooks.org
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of operating systems under Linux and Windows. There were also concrete questions
regarding hardware such as GPU (graphical processing units) that are widely used
for deep learning but that were not available in Azure at the time and prevented a
potential participant from participating. These techniques are now easily available,
so such problems are often removed quickly with the fast pace in the development
of cloud infrastructures. Several participants who did not participate mentioned that
they did so because it was additional work to set up the software in the cloud.

Other challenges were regarding the feedback when the algorithm completely
failed for a specific image or when the script crashed. We had a few such cases and
provided assistance to participants to remove the errors, but this is obviously only
possible if the number of participants is relatively small.

In this respect, the system also created more work for the organizers than simply
making data available for download and receiving calculated results from partici-
pants. Once infrastructures that are easier to use and a skeleton for evaluations are
available, this will also reduce the additional work. The CodaLab3 software is one
such system that makes running a challenge in the cloud much easier, and a deeper
integration between cloud and executed algorithms could help even further.

On the positive side are several important aspects. First, the three problems men-
tioned above regarding very large datasets, confidential data and quickly changing
data are solved with the given approach. It is also important that all participants take
part under the same conditions, so that there is no advantage with a fast Internet con-
nection where data download takes minutes and not days. All participants also had
the same environment, hence the same computing power, and there was no difference
between computing resources available to participants, also removing a bias. The fact
that all participating groups were compared based on the same infrastructure also
allowed to compare run-time and thus efficiency of algorithms, which is impossible
to compare otherwise. In terms of reproducibility, the system is extremely good as
no one can optimize the techniques based on the test data.

The fact that the executables of all participants were available also allowed the
creation of the Silver Corpus on new, non-annotated data, done by running all sub-
mitted algorithms on the new data and then performing a label fusion. This has shown
to deliver much better results than even the best submitted algorithm. Availability
of executables can also be used to run the code on new data that has become avail-
able or on modified data when errors were detected, something that did happen in
VISCERAL.

The cloud-based evaluation workshop [12] also showed that there are several
ongoing developments that will make the creation of such challenges and use of
code much easier. Docker is, for example, much lighter than virtual machines, and
submitting Docker containers can be both faster and reduce the amount of work
necessary to create the container for participants. Code sharing among participants
might also be supported in a more straightforward way, so participants can combine
components of other research groups with their own components to optimize results
systematically.

3https://github.com/codalab/.
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1.6 Conclusion

The VISCERAL project made a number of useful contributions not only to the
medical imaging field, but also to the organization of data science evaluations in
general through advancing the Evaluation-as-a-Service approach. The techniques
developed and lessons learned will be useful for the evaluation in machine learning,
information retrieval, data mining and related areas, allowing the evaluation tasks to
be done on huge, non-distributable, private or real-time data. This should not only
allow the evaluation tasks to become more realistic and closer to practice, but should
also increase the level of reproducibility of the experimental results.

In the area of medical imaging, the VISCERAL project contributed large datasets
of annotated CT and MRI images. The annotations have been done by qualified radi-
ologists in the creation of the Gold Corpus, but a form of crowdsourcing based on
participant submissions allowed the much larger Silver Corpus to be built. Further-
more, a thorough analysis of metrics used in the evaluation of image segmentation
was contributed, along with an efficient and scalable implementation of the calcula-
tion of these metrics.
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Chapter 2
Using the Cloud as a Platform for Evaluation
and Data Preparation

Ivan Eggel, Roger Schaer and Henning Müller

Abstract This chapter gives a brief overview of the VISCERAL Registration Sys-
tem that is used for all the VISCERAL Benchmarks and is released as open source on
GitHub. The system can be accessed by both participants and administrators, reducing
the direct participant–organizer interaction and handling the documentation avail-
able for each of the benchmarks organized by VISCERAL. Also, the upload of the
VISCERAL usage and participation agreements is integrated, as well as the attribu-
tion of virtual machines that allow participation in the VISCERAL Benchmarks. In
the second part, a summary of the various steps in the continuous evaluation chain
mainly consisting of the submission, algorithm execution and storage as well as the
evaluation of results is given. The final part consists of the cloud infrastructure detail,
describing the process of defining requirements, selecting a cloud solution provider,
setting up the infrastructure and running the benchmarks. This chapter concludes with
a short experience report outlining the encountered challenges and lessons learned.

Source code is available at:
https://github.com/Visceral-Project/registration-system
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2.1 Introduction

Over the past few years, medical imaging data have been steadily growing at a
fast pace. In 2013, for instance, the Geneva University Hospitals produced around
300,000 images per day on average [8]. Working with increasingly big amounts of
data has become difficult for researchers as the download of such big data would
require a significant amount of time, especially in areas with slow Internet connec-
tions.

In the context of the VISCERAL Benchmarks where big data need to be shared
with the participants, we decided to make use of a cloud infrastructure to host the
data as well as to run the participants’ code. On the one hand, this removes the neces-
sity to download the data, and on the other hand, the participants are provided with
equal-powered virtual machines in the cloud to run their code on, which makes the
algorithms highly comparable in terms of performance. The evaluation infrastructure
allows the Benchmarks to be carried out efficiently and effectively, along with a con-
tinuous evaluation allowing regular submission of virtual machines for evaluation.
In order to register and administer the participants, but also to provide an interface
between the participants and the cloud infrastructure, the VISCERAL Registration
System has been developed.

2.2 VISCERAL Registration System

The VISCERAL project [5] has as a main goal to create an evaluation infrastructure
for medical imaging tasks such as segmentation [7], lesion detection and retrieval
[4]. An important part of the project was to create an innovative infrastructure for
evaluating research algorithms on large image datasets and thus bringing the algo-
rithms to the data instead of the data to the algorithms [2]. This is necessary when
data grow large and image data have been identified as one of the main areas of large
datasets [1].

In order for participants to have access to the cloud infrastructure provided by
VISCERAL, participants have to register in the VISCERAL Registration System.1

This system’s purpose however is not restricted to registration of participants but also
has the role of participant management system and additionally provides an interface
between the participant and the cloud infrastructure, which hosts virtual machines
and storage for the datasets. Figure 2.1 offers a simplified overview of the system for
all steps needed from the registration process until the ability to view the participant’s
results. The approach of using such an integrated system for running benchmarks or
competitions is highly recommended, significantly reducing administrative overhead
regarding organizer–participant interaction as well as manual cloud configuration by
the organizer, particularly if there is a large number of registering participants. Such

1http://visceral.eu:8080/register/Login.xhtml.

http://visceral.eu:8080/register/Login.xhtml
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Fig. 2.1 Registration and
subsequent processes from
participant’s and
administrator’s / system’s
point of view

a system can also be used for continuous evaluation, allowing the participants to
evaluate their algorithms at any time.

2.2.1 Registration

In the registration form, participants are asked to fill in their contact information
including the affiliation and the benchmark in which they would like to participate.
After receiving an email, the participants need to confirm their registration in order
to obtain access to their personal dashboard. From there, the VISCERAL end-user
agreement needs to be downloaded, printed and signed. An upload function allows
for an upload of a scanned copy of the end-user agreement which, upon approval by
the organizer, grants access to the VISCERAL dataset and the login credentials for
a virtual machine (VM) in the cloud.

www.dbooks.org
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Fig. 2.2 VISCERAL Registration System participant dashboard

2.2.2 Participant Dashboard

After a successful registration and verification process, the participants are given an
extended view on their dashboard as shown in Fig. 2.2, mainly providing:

• Access details for VM and dataset A VM, depending on the operating system
(OS) platform, is accessed with a specific protocol (SSH for Linux, RemoteDesk-
top for Windows) and the credentials. In order for the participants to access the
dataset (read-only), a specific data key is provided.

• Start/stop VM Starting/stopping a VM from the dashboard was implemented due
to the fact that running a VM in the cloud causes financial costs, especially if it is
never turned off during an extended period of time. Like this, participants who are
not executing code are able to turn off their machines without requiring a direct
access to the cloud management system. It needs to be mentioned that during
the first benchmark, several participants left their VMs active over many weeks
without executing code, resulting in unnecessary costs. In order to partially resolve
this problem, an automatic shutdown of all VMs was introduced, scheduled every
Friday evening, unless a participant excludes their VM from this shutdown using
the option in the dashboard.
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• Download of benchmark files Benchmark files are files that provide additional
information on a specific benchmark. This can represent information such as URLs
of files in the dataset that can be accessed from a VM, cloud usage guidelines or a
data handling tutorial. The goal of these files is to give useful and clear information
to the participant on how to use the system, the cloud and the dataset, significantly
reducing email exchange between the participant and organizer by preventing
simple recurring questions.

• Submit VM After the installation of necessary libraries and algorithms inside the
provided VM, the participant can submit their VM from their dashboard in order
for the algorithm to be evaluated for its performance. Exact instructions on how
to submit a VM and on what exactly must be provided in the VM are provided in
the form of a benchmark file.

• View results As soon as the evaluation has completed, the participant is able to
view the results in the dashboard by modality, body region, organ and configura-
tion. Results explicitly granted to be published by participants are shown in the
publicly visible leaderboard.

2.2.3 Management of Participants

System administrators have access to the administration dashboard (Fig. 2.3) that
displays all registered users relative to a selected Benchmark. In order to facilitate
the participant management, different colours highlight the participant’s status. A
grey background is used to indicate that a participant has registered but has not yet

Fig. 2.3 VISCERAL Registration System administrator dashboard
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uploaded the VISCERAL end-user agreement. A blue background suggests that a
participant is waiting for administrator verification and account activation after the
upload of the VISCERAL end-user agreement. A yellow background is shown upon
activation of the participant account, meaning that the participant is ready to be
assigned a VM, whereas a green background indicates that all previous steps have
been successfully carried out. It is also possible for an administrator to create new
benchmarks as well as to manage existing ones (Benchmark Manager), e.g. by editing
starting and ending dates. In order to administer the files with additional information
for each benchmark (benchmark files, Sect. 2.2.2), the File Manager is used. Besides
that, administrators are also able to access and edit the information for the VM of each
participant by consulting the VM Manager. Various tasks relative to the management
of VMs, such as starting/stopping a VM and monitoring the current status of all VMs,
are done in this place. The Leaderboard Manager is used for viewing/editing results
for a specific organ that participants explicitly made available for the public (as
described in Sect. 2.2.2).

2.2.4 Open Source Software Release

The registration system was built with the Java EE2 platform and Git3 was used
for the software management. On GitHub, the project source is publicly available4

under GNU General Public License for anyone to review and extend as they wish.
Committing changes on the original codebase is not possible and requires the relevant
privileges to be given. The aim in writing this code was to demonstrate the concept
of cloud-based evaluation through having a working registration and administration
system for the benchmarks. Due to this being the first version of the registration
system that interacts so closely with the Microsoft Azure cloud, the code is only
scarcely documented and contains many workarounds and solutions that should be
improved in the future. The code is therefore not well suited for easy installation;
nevertheless, it has been made available so that the work in the VISCERAL project
remains available for further development beyond the project.

2.3 Continuous Evaluation in the Cloud

This section mainly deals with the internals of the system interacting with the cloud
after the participant has pressed theSubmit VM button in the VISCERAL Registra-
tion System participant dashboard (Sect. 2.2.2). A brief explanation of the different

2Java Platform, Enterprise Edition: http://www.oracle.com/technetwork/java/javaee/overview/
index.html.
3https://git-scm.com/.
4https://github.com/Visceral-Project/registration-system.
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steps in the partly automated approach for the evaluation of segmentations on the
test set generated by software submitted by participants is given. The high level of
automation permits participants to submit their software multiple times to obtain
results during a benchmark.

2.3.1 Submission

Before submitting a VM, the participant is asked to provide an executable in a specific
directory, which takes a set of parameters defined by the organizer. The participant
has to make sure that the executable properly calls their algorithms and is able to work
with data in the cloud. In order to do so, participants have to accurately follow the
instructions provided in the benchmark files. Clearer instructions generally mean that
fewer problems occur when running the executable during the evaluation, resulting
in less administrative overhead on the organizers’ side.

2.3.2 Isolation of the VM

In order to prevent the participants from accessing and manipulating the VM after the
submission, i.e. during the test phase, a Web service is called from the VISCERAL
Registration System as soon as a participant submits the VM. This Web service
isolates the VM by creating a firewall rule in the cloud, blocking all remote access
from outside the cloud. A second rule is created to explicitly allow certain ranges
of IP addresses for the organizers. These rules are removed after the test phase has
terminated.

2.3.3 Initial Test

Letting participants run their own code on a VM can be error-prone, as the first
benchmark organized has shown. Submitted code often contains bugs or unhandled
exceptions that make the evaluation fail. In order to prevent such situations in a limited
way, the system tests the participant’s executable prior to the final evaluation. For
this test, both a batch script and a list of URLs of the test set files are downloaded
to the VM. The script calls the participant’s executable for a single test volume and
ensures the match between output files and those expected by the participant. In case
the test fails, the VM is automatically shut down and returned to the participant in
order to fix the faults present in their code.
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2.3.4 Executing Algorithms and Saving the Results

After the initial test, the batch script is called in order to execute the participant’s
executable for every volume contained in the test set as well as for each of the allowed
configurations. A temporary drive in the VM is used in order to store the output files.
The batch scripts require to provide the test set URL list, the output directory, the
participant ID and the benchmark as arguments.

In order to make the results public and persistent, after the generation of each out-
put file they are automatically uploaded to the cloud storage account and removed
from the VM’s temporary drive in order to ensure sufficient storage space for subse-
quent files. The process of storing the output file to the cloud storage is performed
with a secure Web service (HTTPS) connecting to the cloud provider’s API. The
files are stored in a folder dedicated to the participants’ results inside the storage
container.

2.3.5 Evaluation of Results

The results are evaluated using the EvaluateSegmentation5 [6] software developed
during the VISCERAL project. As soon as the output files are generated and stored
in the cloud storage as described in Sect. 2.3.4, a script is called in order to evaluate
and save the results in two steps:

• For each output file (segmentation), the EvaluateSegmentation tool is called in
order to compare the segmentation with its corresponding ground truth. This results
in an XML file with 20 evaluation metrics.

• After this, the XML file is parsed and the metrics are inserted into a database in
which each dataset contains all information corresponding to a single metric value,
e.g. metric id, participant id, volume, modality, and organ. These data are then
displayed to the participant in the result dashboard or optionally in the leaderboard
(Sect. 2.2.2).

2.4 Cloud-Based Evaluation Infrastructure

This section details the technical and administrative aspects of setting up a cloud-
based evaluation infrastructure, such as analysing the requirements, choosing a cloud
provider and estimating the costs. The basic concept consists of storing large amounts
of data in the cloud and providing participants in benchmarks with virtual machines
(VMs) where they can access these data, install software and test their algorithms
for a given task (illustrated in Fig. 2.4).

5https://github.com/codalab/EvaluateSegmentation.
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Fig. 2.4 Overview of the VISCERAL Cloud Framework. In the upper part (red rectangle), the
process of data creation is described. Radiologists manually annotate images on locally installed
clients and then submit their data to the annotation management system. From there, the training
and testing sets are generated. Subsequently, participants who have registered and obtained a virtual
machine can access their instance and optimize their algorithms and methods on the training data.
Finally, the virtual machine is submitted by the participants, and the control is given to the organizer,
who can then run the participant’s executable on the testing set and perform the evaluation of the
results while the participant has no access

2.4.1 Setting up a Cloud Environment

Selecting and configuring a cloud environment require the analysis of several points,
which are detailed in this section. The analysis of requirements as well as the evalu-
ation of costs and logistical aspects are investigated.

2.4.1.1 Requirements

Cloud-based solution providers offer many products, including:

• Data storage, both structured (database) and unstructured (files);
• Computation with virtual machines;
• Authentication and security mechanisms;
• Application-specific features:
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– distributed computing (e.g. Hadoop6);
– high-performance computing;
– media services (e.g. video transcoding);
– monitoring tools;
– content caching.

The first step in setting up an environment is to determine which features are needed
and to compare the availability, pricing and usage modalities of these features with
different cloud providers. Another important step is to determine whether there are
any restrictions concerning the region of the world in which the data and services
are hosted. Sample questions include the following:

• Can the data be hosted anywhere in the world or only within a specific region
(USA, Europe, ...)?

• If there is a region restriction, are all the required services available in this region?
• What are the costs of moving data between different regions?

Carefully reviewing the usage modalities of various cloud providers is an important
step that can potentially impact the ease with which the infrastructure can be put into
place. Once the required features are identified and a suitable provider is selected,
the next step is planning the set-up of the environment.

2.4.1.2 Costs and Logistics

When planning the set-up of a cloud environment, it is important to evaluate the
needs in terms of required resources, both to have a clear idea of the administrative
workload (managing virtual machines, storage containers, access rights, etc.) and
to estimate the costs of maintaining the infrastructure. All major cloud providers
have cost-calculating tools, making it easier to make an accurate approximation of
monthly costs. Depending on the provider, different components can add to the total
cost:

• Storage

– Data stored (usually billed as Gigabytes per month);
– Incoming / outgoing data traffic (usually billed per Gigabyte, incoming traffic

is typically free);
– Storage requests (PUT/COPY/POST/LIST/GET HTTP requests);

• Virtual Machines

– Running virtual machines (usually billed by the hour);
– Virtual machine attached storage;
– Data transfer to and from the virtual machines;
– Additional IP addresses.

6http://hadoop.apache.org.
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The costs also depend on the usage scenarios:

• Are data stored only for short periods and then removed, or do they need to be
available for months or years?

• Are virtual machines required to be running 24/7 or are they used periodically for
heavy computation and then turned off?

• Are Windows virtual machines required? (they are generally more expensive than
Linux-based instances because of licensing costs).

Making cost projections for several months or a year can help in managing the
resources more efficiently and making adjustments before the costs exceed expecta-
tions. Another aspect of the planning phase is to think about the resource management
tasks involved. Any manual tasks can quickly become daunting when they need to be
performed on a multitude of virtual machines. Properly configuring the base images
used for future virtual machine instances can save much time and help in avoiding
technical problems. Initial configuration tasks include the following:

• Setting sensible values for password expiration and complexity requirements;
• Disabling unscheduled reboots on automatic update installation;
• Configuring the system’s firewall if any ports need to be accessible from the out-

side.

2.4.2 Setting up a Benchmark in the Cloud

Once the cloud provider is selected and the infrastructure requirements are defined, a
workflow for an evaluation benchmark needs to be created. This workflow includes
at least the following elements:

• Description of the different phases of the benchmark:

– examples: dataset creation, training phase and test phase;
– define what should happen in each phase and who is responsible for which task;

• Required security measures:

– geographic location of the data and infrastructure;
– access control for participants and administrators: time restrictions for accessing

the data, user rights, etc;
– create security protocols: firewall software, antivirus, end-user agreement;

• Creation of the required resources for the various phases:

– storage containers for the data
· different containers for the phases (training, test) are recommended. It makes

locating and data management easier;
– virtual machines for computation
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· creation of preconfigured machine templates (images) is recommended; it
allows avoiding additional manual configuration on each machine after cre-
ation;

· the variety of operating systems provided to the participants impacts the
administrative workload involved in setting up the infrastructure; manag-
ing both Linux and Windows instances can make administrative tasks and
automation more difficult, requiring at least two variants of all used scripts or
tools;

• Definition of data exchange protocols between the participants and the cloud
infrastructure:

– how can participants upload / download data to and from the cloud;
– Are there additional data needed for the benchmark located outside the cloud

(registration system, documentation...)?

2.4.3 Cloud Set-Up for the VISCERAL Benchmarks

The VISCERAL project was hosted in the Microsoft Azure cloud. The usage of a
public cloud platform such as Microsoft Azure enabled virtually unlimited scalability,
in terms of both storage space and computation power. The Microsoft Azure platform
provides a framework for the creation and management of virtual machines and data
storage containers, among a large offer of services. The platform’s Web management
portal was used for the VISCERAL project to simplify the administrative tasks. A
large amount of documentation and tools used for the different administrative tasks
and technical aspects of the project are described on the Microsoft Azure Website.
Provision and management of VMs, as well as data storage, were the main cloud
services used during the project. In the following paragraphs, a brief description of
these services is given.

2.4.3.1 Storing Datasets

Initially, the full dataset with both the medical data and the additional annotations
created by expert radiologists was uploaded to a cloud storage container. Other cloud
storage containers were then created in each benchmark to store the training and test
datasets, participant output files and evaluations. Time-restricted read-only access
keys were distributed securely to the participants for accessing the training datasets.
Participants had no access to the test set and subsequent evaluation results. Over the
course of the project, new images and their annotations were added to the storage
containers when required.
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2.4.3.2 Participant VMs

In order to run the VISCERAL benchmarks, the participants needed access to the
stored data and computing instances to execute their algorithms. Virtual machines
running on the Microsoft Azure cloud infrastructure were preconfigured to run these
tasks. Different templates were configured for five operating systems including both
Windows and Linux. A virtual machine was provided to each participant, allowing
them to access the training dataset and upload their algorithms. Each VM has a
temporary storage space where the participant output files are stored during the test
phase. These temporary data are deleted each time the VM is shut down. All the
participant VM instances have the same computing specifications and capabilities.
Participants can remotely access their VMs during the training phase. Moreover, they
can install all the tools and libraries needed to run their algorithms. At this stage, they
can optimize their approaches with the available training set. Specification guidelines
were written by the administrators for each benchmark on the usage and permissions
applying to the VMs. Through the participant dashboard in the VISCERAL regis-
tration and management system, participants received the private access credentials
for the their VM and had the option to start it or shut it down during the training
phase. All the benchmark specifications and usage guidelines were also available in
the dashboard.

2.4.4 Cloud Infrastructure Setup and Management
Experience Report

The VISCERAL project organized the first series of benchmarks with a large-scale
3D radiology image dataset using an innovative cloud-based evaluation approach.
Having the data stored centrally yields legal, administrative and practical solutions
to organizing benchmarks with large datasets:

• The data can be allocated in a private storage container that complies with the legal
requirements from the data providers (also HIPAA compliant—Health Insurance
Portability and Accountability Act).

• Better control over the project costs, since a cloud platform is flexible enough to
increase or reduce the number of VMs and storage containers according to the
shifting challenge needs.

• The scalability and storage capacity of a cloud platform are virtually unlimited.
This feature opens up the possibility to run benchmarks on big datasets with a high
number of participants.

• Different access permissions to the data are defined by the organizers with the
option to make some information inaccessible to the participants (e.g. test set).

• The submitted algorithms can be evaluated by the administrators without the inter-
vention from the participants. This generates an objective evaluation of the exe-
cution and results.
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2.4.4.1 Lessons Learned

In retrospective, the following steps were highlighted due to their favourable influence
in the benchmark success:

• Planning must consider every component of the platform and how to seamlessly
connect them when running the benchmarks. Some early decisions in the project
can have a decisive effect in the long term of the evaluation process.

• Clear specifications are paramount and should be defined in great detail from the
beginning. Both organizers and participants need to rely on these specifications
throughout the project.

• Continuous assessment of the infrastructure needs to be based on the participant
feedback. The updates coming from these assessments need to be well documented
and transparent to the participants.

2.4.4.2 Current Challenges

Running benchmarks in the cloud is a significant paradigm shift [3] and requires
an adaptation period, both from the benchmark organizers and from the participant
perspective. It can be challenging to move away from the classic model of providing
the data to the participants (i.e. downloading the datasets via traditional file transfer
protocols such as FTP) and towards the new way of bringing the participants to
the data (i.e. giving the participants data access through a virtual machine in the
cloud). Outlined in this section are some pending challenges to consider for future
benchmark organizers:

• Narrow time frame for planning, setting up the infrastructure and running
benchmarks: Access and usage of a cloud platform requires a learning period
for most of the participants. Strict timelines for isolated benchmarks can limit the
number of participants that go through the process of registering, training their
algorithms and submitting their VMs. Having a continuous cycle of benchmarks
(e.g. annual events) might attract more participants to adapt their algorithms in
the cloud and eventually submit the results for the benchmarks. This is not always
possible because of the strict timelines to run the benchmarks and analyse the
participants’ results for a finite number of competitions.

• Freedom to adapt the cloud platform: Apart from data security and confiden-
tiality considerations, using a public cloud environment can impact the level of
customization available to administrators. The provided management tools need
to be used “as is”, and little to no possibilities exist to adapt them to more specific
needs. Scheduled maintenance operations can also make the platform unavailable
or cause disruptions in the benchmark workflow. A private cloud may provide a
more flexible environment to develop an evaluation framework. On the other hand,
a public cloud simplifies setting up and maintaining the backbone of the platform
and theoretically allows for limitless scalability. Choosing the right cloud com-
puting option depends on the initial objectives of the benchmark.
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• Some of the components of the VISCERAL infrastructure were implemented
outside the Azure cloud platform: This was mainly due to the limited time frame
to set up the needed infrastructure for running and preparing the benchmarks in the
cloud. Technical limitations, such as reduced Internet connection speed, as well as
unfamiliarity of the users with the cloud environment were also hurdles in setting
up the benchmarks. Having all the system components in the cloud would have
allowed for a more streamlined benchmark organization process.

• No uniform participant working environments: Managing different operating
systems and heterogeneous participant prototyping languages and tools increased
the workload of setting up the infrastructure: compilation of evaluation tools for
different platforms, handling OS differences in the automation process (Windows,
Linux), VM maintenance, etc. Using a single family of OS could harmonize the
infrastructure management tasks. However, this might result in less participation
overall.

2.5 Conclusion

With a high number of participants in an evaluation benchmark, the administrative
tasks for organizers represent a large amount of work. Using a system providing
a high level of automation, the amount of work by organizers as well participants
can be significantly reduced. In order to achieve this, the VISCERAL Registration
System, which is a platform that provides participant management and an interface
between participants and organizers as well as between participants and the cloud,
was developed. Participants in the VISCERAL benchmarks have used this system
not only to register for the various benchmarks but also to indirectly interact with
the organizers and the cloud infrastructure. The main functionalities of the system
included the handling of the registration process, the account activation, the man-
agement of end-user agreements, the assignment and the submission of the VMs
as well as the evaluation and the storage / provision of results. The development of
such a system helped us to greatly reduce the time spent on administrative tasks such
as email exchange with participants and manual cloud interaction. Using a similar
approach for running future competitions or benchmarks in the cloud can thus be
highly recommended.

The use of a cloud-based infrastructure allowed straightforward scaling up of
the VISCERAL benchmarks in terms of storage space and computation power (i.e.
number of participants). Centralizing the data and providing standardized virtual
machine instances to participants allowed us to streamline the management of the
evaluation procedure. Certain crucial aspects that should be taken into consideration
when setting up an Evaluation-as-a-Service platform were highlighted during the
project, such as the importance of exhaustive planning and definition of clear spec-
ifications. Minimizing manual tasks and parts of the platform running outside the
cloud infrastructure can help save large amounts of time, especially as the number
of participants increases. Cloud-based evaluation platforms certainly represent the
future and will become more used as researchers get familiar with this new paradigm.
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Medical Image Data
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Abstract This chapter describes the ethical and privacy aspects of using medical
data in the context of the VISCERAL project. The project had as main goals the
creation of a benchmark for organ segmentation, landmark detection, lesion detection
and similar case retrieval. The availability of a large amount of imaging data was
extremely important for the project goals, and thus, we present an analysis of the
procedures that were followed for getting access to the data from IRB (internal review
board) approval to data extraction and usage. This chapter details the requirements
stated by medical ethics committees in three partner countries that supplied data.
The exact procedure from request to data distribution is explained. The specific
requirements of each data provider (each from a different country) are described
in detail. The final data collection was made available in anonymized form in the
Microsoft Azure cloud with the restriction of having it on servers that are located
inside the European Union.
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3.1 Introduction

The VISCERAL project developed a cloud-based infrastructure for evaluation of
analysis and search tasks on large medical image data sets and organized benchmarks
to exploit and compare multiple state-of-the-art solutions designed for segmentation,
landmark localization and search [1, 2]. The main Benchmarks focused on automatic
identification, localization and segmentation of organs in imaging (Anatomy Bench-
marks) [3]. Through VISCERAL, different computational algorithms are brought to
large medical imaging datasets to support the evaluation of novel tools for the clinical
diagnostic image assessment and workflow. VISCERAL resulted in two types of data-
bases as an open resource: the Gold Corpus with expert manual annotations and the
Silver Corpus with data computed from benchmark participants’ algorithms [4]. This
chapter describes the aspects related to ethics, privacy and the legal basis of the data
use, and how the project consortium dealt with them during the project. This chapter
gives an overview of the common aspects and highlights the aspects depending on

Fig. 3.1 An outline of the steps for data preparation
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the country that provided the data. Figure 3.1 shows the data preparation outline to
demonstrate the process from getting ethics approval to transferring the data to the
cloud platform, where it is harmonized, e.g. transferred to the NIfTI (Neuroimag-
ing Informatics Technology Initiative) format, annotated and quality controlled (see
Chap. 4 for a detailed description of the latter steps).

3.2 Ethical and Privacy Aspects for Data Access

The data used in the project consisted of human medical imaging data and their cor-
responding meta-information. Therefore, its use was subject to specific regulations
on both the European Union (EU) and national level that controlled the collection,
use, distribution of human data and its inclusion in research studies. There were three
data providers in the project:

1. Universitätsklinikum Heidelberg (UKL-HD), Germany
2. Agència d’Informació, Avaluació i Qualitat en Salut (GENCAT), Spain
3. Medizinische Universität Wien (MUW), Austria

Each data provider was responsible for handling the ethical, legal and privacy aspects
relevant to the data provided by their group. This typically involves the following:

1. Review of the data collection plan by the local competent medical ethics com-
mittee (MEC) / institutional review board (IRB).

2. Handling of informed consent procedures.
3. Anonymization of the data prior to any use or distribution.

Relevant points from these procedures are addressed in more detail in the following
sections.

3.2.1 Review by the Medical Ethics Committee

When applying for ethical approval from the competent local/national Ethics
Committees, detailed information is provided regarding the following:

• The procedures that are used for the recruitment of participants (e.g. number of par-
ticipants, inclusion/exclusion criteria, direct/indirect incentives for participation,
and the risks and benefits for the participants).

• The nature of the material that will be collected (e.g. imaging data or additional
structure data or free text reports).

• It must be explicitly stated if children or adults unable to give informed consent
will be involved and, if so, justification for their participation must be provided.

• Detailed information on the informed consent procedures that are implemented.

Before the inclusion of data into the study, the review by the competent local MEC
has to be concluded, and the study plan has to be approved by the MEC.

http://dx.doi.org/10.1007/978-3-319-49644-3_4
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3.2.2 Handling of Informed Consent Procedures

Free informed consent by participants in a medical study is a prime aspect of the
ethical considerations concerning medical research. The Declaration of Helsinki
states that: “The World Medical Association (WMA) has developed the Declaration
of Helsinki as a statement of ethical principles for medical research involving human
subjects, including research on identifiable human material and data”, and “After
ensuring that the potential subject has understood the information, the physician
or another appropriately qualified individual must then seek the potential subject’s
freely-given informed consent, preferably in writing.” [5]. More detailed discussions
are given in [6, 7]. To fulfil the requirements of free informed consent, a participant
has to have the right:

• to know that participation is voluntary;
• to ask questions and receive understandable answers before making a decision;
• to know the degree of risk and burden involved in participation;
• to know who will benefit from participation;
• to know the procedures that are implemented in the case of incidental findings;
• to receive assurance that appropriate insurance cover is in place;
• to withdraw themselves, their samples and data from the project at any time;
• to know how their biological samples and data are collected, protected during the

project and destroyed at the end; and
• to know of any potential commercial exploitation of the research.

In the context of retrospective studies using data acquired prior to study start, and
where the collection of informed consent is not feasible or possible, benefits and
risks have to be weighted by the competent MEC. There is a discussion regard-
ing research on biological material in the context of biobanks in Tassé et al. [8].
The authors note “If it is not possible to recontact participants for reconsent, some
guidelines allow for waived consent for the use of biological material, if certain
conditions are met [9]. However, these conditions are not harmonized among inter-
national guidelines.” The authors conclude further “As stated in the Declaration
of Helsinki, ethical principles apply to ‘medical research involving human subjects,
including research on identifiable human material or identifiable data’. It follows
that research using anonymised or anonymous data does not create an obligation
to obtain informed consent, as the study does not involve identifiable individuals”,
taking [5, 10] into account. In [10] the relevant paragraphs emphasize the role of the
local competent MEC in the decision of whether consent or reconsent is necessary
if anonymized data are used:

• “11. Under certain conditions, personal health information may be included in
a database without consent, for example where this conforms with applicable
national law that conforms to the requirements of this statement, or where ethical
approval was given by a specifically appointed ethical review committee. In these
exceptional cases, patients should be informed about the potential uses of their
information, even if they have no right to object.”
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• “14. Approval from a specifically appointed ethical review committee must be
obtained for all research using patient data, including for new research not envis-
aged at the time the data were collected. An important consideration for the com-
mittee in such cases is whether patients need to be contacted to obtain consent,
or whether it is acceptable to use the information for the new purpose without
returning to the patient for further consent. The committee’s decisions must be in
accordance with applicable national law and conform to the requirements of this
statement.”

VISCERAL involved the analysis of very large datasets of previously acquired and
anonymized data, i.e. of already acquired datasets so that the above-mentioned prob-
lems for retrospective studies apply to the VISCERAL project. No additional pro-
cedures were conducted linked to the VISCERAL study, and all data were fully
anonymized. The decision regarding the requirement of free informed consent pro-
cedures was dealt with by each local MEC, according to the relevant legislation.

3.2.3 Anonymization

All data used in the benchmarks are anonymized. Radiology reports were anonymized
by removing all patient names, physician names, hospital and institution names and
other identifying information. Radiology images were anonymized by blurring face
regions in images/volumes that include this body area, removing any embedded text
in the image, and locating and removing other identifying information such as serial
numbers on implants.

3.2.4 Data Distribution During and After the Benchmarks

All medical data are sensitive by nature. In the context of VISCERAL, it is assured
that all data are only available for non-commercial research use and only after signa-
ture of a user agreement that assures the use of the data in its given environment and
for its research purpose. In VISCERAL, only registered participants can access the
data and local copies of the data need to be destroyed after their use for research. The
clauses of three ethics committees in Vienna, Barcelona and Heidelberg were taken
into account to assure that data treatment is in line with all ethical guidelines. In VIS-
CERAL, only anonymized data are shared in any case and thus all necessary steps
are taken into account to assure privacy. The benchmarking campaigns are run in the
cloud, in our case the cloud of Microsoft, called Azure (See also Chap. 2). Participants
obtain a virtual machine and access to a data source after signing the user agreement
with detailed user conditions and rules. All accesses to the virtual machines can be
logged as can accesses to the data. Participants in the benchmark have access only

http://dx.doi.org/10.1007/978-3-319-49644-3_2
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to a small, manually controlled anonymous dataset. Very small subsets can also be
made available for download in connection with the user agreement to get used to the
data format and image types. The large test dataset, where the anonymization is less
carefully controlled, is only accessible by the organizers. Clouds allow for storage of
data in chosen geographical regions such as in Europe. This allows making sure that
local storage and access rules can be verified and correspond to European legislation.

3.3 Relevant Legislation

All work on data collection of humans is conducted under the rules and legislation in
place within the respective countries of the partners, which are based on the following:

• the Declaration of Helsinki (Informed consent for participation of human subjects
in medical and scientific research, 2004) and the IHC (International conference
on harmonization of technical requirements of pharmaceuticals for human use,
Guideline for Good Clinical Practice (1996),

• European Directive 2001/20/EC (April 4, 2001) on Good Clinical Practice for
clinical trials,

• Directive 95/46/EC of the European Parliament and of the Council of 24 October
1995 (amended 2003) on the protection of individuals with regard to the processing
of personal data and on the free movement of such data,

• Regulation (CE) No 45/2001 of the European Parliament and of the Council of
18 December 2001, on the protection of individuals with regard to the processing
of personal data by the institutions and bodies of the community and on the free
movement of such data.

Furthermore, the Opinions of the European Group on Ethics in Science and New tech-
nologies (EGE) (specficially Opinion Nr.13 30/07/1999—Ethical issues of healthcare
in the information society) are taken into account.

3.4 Procedures Implemented by Data Providers

Every partner who is data provider (GENCAT, MUW, and UKL-HD) is responsible
for the compliance regarding the data contributed by this partner and informs for
approval the local medical ethics committee (MEC)/institutional review board (IRB).
These committees operate in accordance with international ethical guidelines and the
national laws on medical research and protection of the human rights of subjects and
privacy.
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3.4.1 Agencia D’Informació, Avaluació i Qualitat
en Salut, Spain

3.4.1.1 Requirements

Imaging data provided by the Agency to the VISCERAL project are a subset of
an electronic health record, “Registre d’informaci sanitria de pacients” (Record of
patient health information). Patient care is one of the reasons that allow recollec-
tion of personal health data, according to data protection laws. Additionally, the
health record was declared by the Catalonian Health Department to the data protec-
tion authority (Declaration to the Data Protection Agency of Catalunya of the file
“Registre d’informació sanitària de pacients”, Record of patient health information).
Research activities are included among the planned health record usage, and data
may be submitted to research groups in the manner provided by the applicable laws.
The main laws to be considered in order to transfer personal health information for
research projects are as follows:

• ORGANIC LAW 15/1999 of 13 December on the Protection of Personal Data,
• Llei 21/2000, de 29 de desembre, sobre els drets d’informació concernent la salut

i l’autonomia del pacient, i la documentació clínica (Patient’s rights and clinical
records), and

• LEY 14/2007, de 3 de julio, de Investigación biomédica (Biomedical Research).

According to these laws, in the absence of informed consent from patients, data
may be submitted provided that it is effectively anonymized. If obtaining informed
consent is not feasible, imaging data can be delivered after an anonymization process.

3.4.1.2 Final Status

The data transfer request was processed by the Department of Health in order to
review the legal and ethical questions. No difficulties arose as a result of this reviewing
process. Considering the amount of information in image files that could identify an
individual or make him/her identifiable, a detailed analysis of the requirements for
an effective anonymization of this information was carried out.

3.4.2 Medizinische Universität Wien (Austria)

3.4.2.1 Requirements

The Medical University of Vienna (MUW) provides anonymized medical imaging
data to the project. As a general regulation, any study that involves human data
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such as VISCERAL conducted at MUW has to be approved by the medical ethics
committee (Ethikkomission der Medizinischen Universität Wien,1 EKMUW).

3.4.2.2 Final Status

At this point, EKMUW has approved the retrospective collection and the publication
of anonymized medical imaging data in the course of the VISCERAL project and
the involved evaluation. The basis for this decision was a study protocol providing
detailed information regarding the study, the anonymization, the assurance of privacy
and the data handling. The study protocol was an amendment to an existing protocol
that covered the use of anonymized medical imaging data in the KHRESMOI project
(Study protocol EK Nr.804/2010-Amendment December 2012). The amendment
adds the collection of radiology report data and the publication of anonymized data
for evaluation campaign purposes.

3.4.3 Universitätsklinikum Heidelberg (Germany)

3.4.3.1 Requirements

The Medical University of Heidelberg (UKL-HD) provides anonymized medical
imaging data and corresponding reports to the project. As a general regulation,
a study conducted at the UKL-HD has to be approved by the local ethics board
(Ethikkomission der medizinischen Fakultät der Universität Heidelberg,2 EKUKL-
HD). The study must be conducted in accordance with Baden-Württemberg’s Med-
ical Association’s professional code of conduct (Berufsordnung für Ärztinnen und
Ärzte der Landesärztekammer Baden-Württemberg) in its current version. Patient
names and all other confidential information are subject to the medical professional
secrecy and the provisions of the Federal Data Privacy Act (Bundesdatenschutzge-
setzes (BDSG)). A transfer of patient data happens only in anonymized form. Third
persons get no insight into the original patient documents.

3.4.3.2 Final Status

The EKUKL-HD was consulted, and a study plan and an ethics proposal were
reviewed. The retrospective collection and publication of anonymized medical imag-
ing data in the course of the VISCERAL project and the involved evaluation are
accepted under the following conditions:

1http://ethikkommission.meduniwien.ac.at/.
2http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Ethikkommission.106025.0.html.
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• Only datasets of patient of the age 18 or older are used.
• Retrospective datasets used are of the years 2005–2008, and an informed consent of

these patients is not needed, because a retrospective obtention of informed consent
would be extremely complex and elaborated without being certainly successful:
probably, many patients are already deceased or cannot be contacted.

• In order to maintain further prospective datasets, medical imaging data collected
during the clinical routine can be used only of patients (>18 years) that signed an
informed consent to agree with the use of their images for the VISCERAL project.

The basis for the decision of the EKUKL-HD is the positive approval of the
EKMUW, including a study protocol providing detailed information regarding
the study, the anonymization, the assurance of privacy and the data handling,
as well as a study protocol that covered the use of anonymized medical imag-
ing data in the KHRESMOI project (Study protocol EK Nr.804/2010-Amendment
December 2012).

3.5 Aspects, Recommendations and Conditions for
Obtaining Approval from Ethical Committees

Out of the experience with the process of applying for an approval of the ethical boards
of the UKL-HD and MUW, we gathered several aspects and recommendations that
may help in similar future projects to deal with privacy questions and obtaining
approval from ethical committees:

• Age of patients included: It may be helpful to only include datasets of patients
of the age 18 or older.

• Usage of retrospective versus prospective datasets: In Germany, an informed
consent by patients is needed. This means to contact every patient by telephone
and/or by letter. In Heidelberg, there was the problem that we planned to use
retrospective older datasets and that a retrospective obtention of informed consent
was extremely complex and elaborated without being certainly successful, since
it was probable that many patients were already deceased or moved because of
the fact that the image data were out of a sample of patients being severely ill
(cancer). Because of this, we obtained the approval to use retrospective older
datasets (2005–2009) without informed consent of patients. Usage of prospective
or current datasets is only permitted if an informed consent is signed, agreeing
with the usage of the patient images and anonymized data for the project.

• Anonymization of all data: All selected image datasets were anonymized indi-
vidually and locally by the three data providers. For anonymization, the follow-
ing items were removed from the DICOM headers: date of birth (only age was
preserved), institution name, patient name, patient ID, examination number and
study date. A key of the patient ID and the referring pseudonym is held by the
data provider and stored individually. Other metadata, such as clinical questions
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and radiology reports, were anonymized, using only extracted RadLex terms (and
their negations) from the reports. Additionally, whole-body CT scans were defaced
(image data of the face were partly blurred), in order to ensure that no identification
of a patient is possible.

• End-User Agreement: In order to ensure the correct and only scientific usage of
the data, benchmark participants have to sign an end-user agreement. The signed
agreements were checked and approved individually by Benchmark organizers.

• Safe storage in the cloud: VISCERAL Benchmarks are run on cloud servers,
provided by Microsoft (Azure). Only authorized participants who signed the end-
user agreements have access to the stored data. The data access closes when a
benchmark is finished. Participants only have access to a small, well-chosen and
anonymized dataset for training their algorithms. Since the cloud servers had to
be in Europe, they are subject to European law. Access regulation and local data
storage are secure and protected by European law.

• Long-term usage of data: A central element of sustainable, deep-impacting eval-
uation campaigns in developing new methods is the long-term availability of the
data. VISCERAL aims at providing the data over a long period of time. Compa-
rable datasets are the BRATS dataset for computer-based segmentation of brain
lesions.3 A deletion of the data after the end of the project would mean that the
results of VISCERAL are not reproducible and can no longer be verified. In order
to maintain the results and the scientific progress achieved through the project,
the EKUKL-HD agreed to provide the data three more years after the end of the
project. If further usage of the data is needed, an additional amendment for the
corresponding study protocol will be provided.

3.6 Conclusion

Acquiring medical imaging research data in multicentre studies is not an easy process.
All data acquisition requires that data privacy be respected and needs to be agreed
upon by medical ethics commissions of the participating institutions. This chapter
describes the steps that were taken in the VISCERAL project and some lessons
learned to avoid delays in data acquisition that can also be useful for similar future
projects. Safe storage and access of data in the cloud has a promising future for
medical data analysis, as the risks of data misuse can be reduced in a straightforward
way.

Acknowledgements The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 318068 (VIS-
CERAL).

3http://www2.imm.dtu.dk/projects/BRATS2012,https://vsd.unibe.ch/WebSite/BRATS2012/Start.
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Chapter 4
Annotating Medical Image Data
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Abstract This chapter describes the annotation of the medical image data that were
used in the VISCERAL project. Annotation of regions in the 3D images is non-
trivial, and tools need to be chosen to limit the manual work and have semi-automated
annotation available. For this, several tools that were available free of charge or with
limited costs were tested and compared. The GeoS tool was finally chosen for the
annotation based on the detailed analysis, allowing for efficient and effective anno-
tations. 3D slice was chosen for smaller structures with low contrast to complement
the annotations. A detailed quality control was also installed, including an automatic
tool that attributes organs to annotate and volumes to specific annotators, and then
compares results. This allowed to judge the confidence in specific annotators and
also to iteratively refine the annotation instructions to limit the subjectivity of the
task as much as possible. For several structures, some subjectivity remains and this
was measured via double annotations of the structure. This allows the judgement of
the quality of automatic segmentations.
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4.1 Introduction

Since during clinical routine, only a very small portion of the increasing amounts
of medical imaging data are used for helping diagnosis, the VISCERAL (Visual
Concept Extraction Challenge in Radiology) project aimed at providing the nec-
essary data for developing clinical image assessment algorithms. An objective
was to conduct Benchmarks for identifying successful computational strategies.
The VISCERAL project developed a cloud-based infrastructure for the evalua-
tion of detection, analysis and retrieval algorithms on large medical image datasets
[8, 9]. VISCERAL organized benchmarks to exploit and compare multiple state-
of-the-art solutions designed for image segmentation, landmark localization and
retrieval [13]. The VISCERAL Anatomy Benchmarks focused on automatic identi-
fication, localization and segmentation of organs in image volumes. An anatomical
reference annotation dataset, the Gold Corpus, was created for these Benchmarks
using CT (computed tomography) and MRI (magnetic resonance imaging) volumes
annotated with up to 20 organs and 53 landmarks each.

One goal of the VISCERAL project was to create a large dataset containing
high-quality expert annotations in medical imaging data (i.e. organ segmentations,
landmark localizations and lesion annotations). For this purpose, various manual and
semi-automatic segmentation tools were evaluated in the search for fast and effective
3D annotation software interfaces that can reduce the time spent and workload of
the radiologist making the manual segmentations and annotations of the structures.
A ticketing framework was also developed to facilitate the management of multiple
annotation types, the distribution of annotation tickets to multiple annotators and
the implementation of a quality control procedure to ensure consistent annotation
quality across annotators. This chapter describes the two selected annotation tools,
the framework that was built to monitor and distribute annotation tickets, the typical
life cycle of an annotation ticket, detailed annotation guidelines for the annotators
and the procedure of determining the inter-annotator agreement.

4.2 3D Annotation Software

With the ever-increasing amount of patient data generated in hospitals and the need
to support a patient diagnosis with these data, computerized automatic and semi-
automatic algorithms are a promising option in the clinical field [6]. An initial step
in the development of such systems for diagnosis aid is to have manually annotated
datasets that are used to train and implement machine-learning methods to mimic a
human annotator. The manual segmentation of the patients’ 3D volumes is commonly
used for radiology imaging in order to separate various structures in the images and
allow processing tissue of the structures separately. Manual segmentation, on the
other hand, demands an intensive and time-consuming labour from the radiologists.
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Variation and errors in the segmentations are common, depending on the experience
of the annotator [12].

Several tools have been developed for the manual and semi-automatic segmenta-
tion of anatomical structures and annotation of pathologies present in medical imag-
ing [3, 4, 10, 12, 14]. The implemented segmentation methods range from simple
manual outlining in 2D cross sections to more elaborated solutions, like deformable
registration that finds spatial correspondences between 3D images and a labelled
atlas [12]. An important feature of manual or semi-automatic segmentation methods
is that they assist the radiologists in the final decision of the resulting 3D structures [7].
Some of these tools are added to application frameworks that provide visualization
and image analysis for an integral medical image computing experience.

An objective of the VISCERAL project was to take advantage of effective user-
friendly annotation tools that can reduce the time necessary for annotations and
segmentations in a multimodal imaging dataset (MRI, CT). Visualization frame-
works are also available that reduce the time to develop new applications through the
combinations of algorithms, which is usually faster than writing code [1, 2]. Various
available tools were explored for the selection of the tool used for the annotation
tasks in the VISCERAL project. The selected annotation tool had to make annota-
tions in CT and MRI images acquired with a variety of scanners and in different
MR sequences such as T1 weighted and T2 FLAIR, and with a resolution of the
annotated voxels of 1 cm or lower. To ensure sustainability, tools with at least a min-
imum of support were preferred. These requirements further include adaptability of
the included segmentation method to overcome the differences in image contrast and
resolution in the dataset.

A brief description of the medical annotation functionality of the evaluated tools
is presented in the following sections. The criteria used for selecting the definitive
tool are also mentioned. Finally, the description of the methods and use of the pro-
posed tools are discussed. The selected tools allowed the radiologists to segment 20
relevant structures of 15 organs in the human body, identify up to 53 landmarks and
detect pathological lesions in full-body patient scans. Both individual voxels and
homogeneous regions were labelled in the 3D volumes of the dataset. Medical raw
data to be annotated were in the DICOM (Digital Imaging and Communications in
Medicine) format. The raw DICOM files were converted into NIfTI (Neuroimaging
Informatics Technology Initiative) format, because this is a widely used and accepted
format that significantly reduces the file size in case of large 3D data. Both the image
data and the resulting volume annotations were used in the NIfTI format.

4.2.1 Evaluation Criteria

A list of ten criteria was defined for the comparison between the tools. The goal
was to evaluate their main functionality applied to the annotation tasks needed for
the creation of the VISCERAL Gold Corpus. The criteria chosen to compare the
available annotation tools were as follows:
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• ability to perform 3D annotation in CT and MRI volumes;
• flexibility to segment different structures and points of interest;
• user-friendly segmentation method;
• optimal visualization of the medical images and segmentations;
• effectiveness of the segmentation;
• interactive user corrections in the semi-automatic output;
• time spent in a complete structure segmentation;
• adaptability to data obtained from different scanners and image contrasts;
• format of the output segmentations;
• upgrading of the tool with minimum technical support during and after the project

has ended.

4.2.2 Reviewed Annotation Tools

For the selection of the VISCERAL annotation tool, the visualization and application
frameworks that are already available free of charge were evaluated. The frameworks
had to contain a semi-automatic segmentation tool that could reduce the time required
for making manual annotations of 3D structures and points of interest. Six frame-
works with no license fees: GeoS [4], ITK-SNAP [14], ImageJ, MeVisLab, MITK
and 3D Slicer [11], were included in the study. Some Web-based applications with
annotation functionality available such as [10] are limited to a specific application
or image analysis type, making them unfit to be used for the VISCERAL project
multistructure annotation task. Other available frameworks such as SciRun,1 Osirix2

and Volview3 were also reviewed but were discarded early in the selection process.

4.2.2.1 3D Slicer

3D Slicer4 is a module-based software where each module performs a particular
image processing task. There are two modules that can be useful for segmenting
and annotating medical 3D images. The first is called Simple Region Growing Seg-
mentation and it is based on intensity statistics. After choosing a desired number
of fiducials in the region of interest, it applies ITK filters for curvature flow and
connected confidence producing a 2-class segmentation. The segmentations can be
improved by increasing the number of iterations, the multiplier and the neighbour-
hood radius options. More than one fiducial or seed is allowed for refinement of
the output. The other module included is EMSegment Easy that performs a quick
intensity-based image segmentation on MRI. The user defines the volumes to be

1http://www.sci.utah.edu/cibc-software/scirun.html.
2http://www.osirix-viewer.com.
3http://www.kitware.com/opensource/volview.html.
4http://www.slicer.org.
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segmented, specifies the number of structures and can add additional subclasses of
the structures. Samples are taken from the structures of interest to define the inten-
sity distribution and the weighting of a node in the tree. Once the algorithm is run,
the target images are segmented and the label map with corresponding statistics is
returned [11].

4.2.2.2 GeoS

The Microsoft medical image analysis project InnerEye focuses on the automatic
analysis of the patients’ scans. Its annotation tool GeoS5 has an algorithm to effi-
ciently segment 3D images using a geodesic symmetric filter with contrast-sensitive
spatial smoothness. Its behaviour is comparable to that of graph cut algorithms but
with a much faster implementation. The segmentation method is based on a gener-
alized geodesic distance transform (GGDT). A geodesic distance map is initialized
from a soft seed mask. The seed region is determined interactively. It uses different
brush strokes to quickly indicate a foreground object and the background that sur-
rounds it. In this matter, geodesic distance is described as the distance between two
points in an image that takes into account image contents such as intensity gradients.
One of the most sought-after requirements is edge-sensitivity whereby the image
processing system is able to change its behaviour depending on the local image
contrast. This tool is able to perform contrast-sensitive image editing or process-
ing. It shares some of the image processing tasks unifying previously diverse image
techniques in such a manner that at least some processing may be shared so that
computational resource requirements can be reduced.

4.2.2.3 ITK-SNAP

ITK-SNAP6 is a software application that provides a set of tools for segmenting
medical images’ volumetric data. The software provides both an algorithm referred
to as “Snake evolution” and a visualization interface for 3D image segmentation.
The contour evolution on which its algorithm is based uses the image gradient infor-
mation and the global intensity to expand or constrain the contour with respect to
user given seed points. It provides a segmentation pipeline in three steps with three
modifiable parameters that influence the output of the segmentation: balloon force,
curvature force and advection force. These three parameters regulate the region grow-
ing expansion of the segmentation and the smoothness of the output borders. The
framework includes a wizard for image upload and also a polygon tool that allows the
user to perform freehand annotation. The freehand annotation tool can be expressed
in either a continuous curve or piecewise linear with an adjustable segment length.

5http://research.microsoft.com/en-us/projects/geos.
6http://www.itksnap.org.
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4.2.2.4 ImageJ

ImageJ7 contains several image segmentation algorithms based on intensity range
thresholds. In particular, the Robust Automatic Threshold Selection (RATS) performs
a threshold on previously established regions using a recursive quad-tree architecture.
It calculates the sum of the original voxels weighted by the gradient pixels. Other
plug-ins such as the watershed algorithm are available for segmenting images but
they mostly rely on histogram thresholding and Gaussian modelling of the intensity
values in the images, which can provide an initial estimate but has to be completed
by the user with freehand 2D slice-by-slice manual annotation.

4.2.2.5 MeVisLab

MeVisLab8 is an integrated development environment with a modular framework
that allows developing image processing algorithms and visualization and interaction
methods. It is possible to create an end-user application with a network composed
of modules based on Open Inventor scene graphs, OpenGL, ITK, VTK and SDK.
It supports DICOM files as well as NIfTI formats. Conversion of one format to
the other is also included within the available modules. Although there are few
segmentation algorithms outside those available in the ITK and VTK libraries, the
user can use LiveWire combined with freehand manual annotation on a slice-by-
slice basis. LiveWire is a graph cut algorithm where the user can adjust the gradient,
Laplacian and directional weighting. There is also a “bulge” module that can easily
bend, expand and contract manual annotations with the mouse.

4.2.2.6 MITK

The Medical Imaging Interaction Toolkit (MITK)9 was created as a software system
for development of interactive medical image processing software. It implements
both ITK and VTK libraries but also offers additional development and interactive
features of its own like 3D-synchronized multiviewer layout. It contains various
segmentation methods based on threshold functions such as the Otsu segmentation
where it is possible to define a number of regions based on a Gaussian modelling of
the intensity value image histograms. It is also possible to apply a region growing
algorithm with a user-given seed. The framework only allows one seed per region and
freehand wiping, correction and filling of the created segmentation. Another option
when manual 2D slice segmentations are available is to interpolate the missing slices
and create a surface of a structure of interest.

7http://rsb.info.nih.gov/ij.
8http://www.mevislab.de.
9http://www.mitk.org.

http://rsb.info.nih.gov/ij
http://www.mevislab.de
http://www.mitk.org
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Table 4.1 Report on the evaluation criteria for each of the frameworks or annotation tools

4.2.3 Tool Comparison

In this section, we discuss how each of the considered tools satisfies the evaluation
criteria. Table 4.1 summarizes the evaluation of the frameworks and annotation tools
for each of the evaluation criteria listed in Sect. 4.2.1.

4.2.3.1 Compatible 3D Annotation on CT and MRI Volumes

ITK-SNAP and ImageJ ask for a greyscale or RGB image when they upload and ITK-
SNAP uses a wizard for loading a file. Intensity values with an intensity precision
larger than 16-bit are approximated. MeVisLab can upload DICOM volumes and
Analyze-formatted files but NIfTI files are not supported. Both MITK and 3D Slicer
can upload a wide range of different image formats and contain converting format
functions. GeoS does not support DICOM files but works with NIfTI files as well as
other image formats such as Analyze and Tagged Image File Format.

4.2.3.2 Flexibility to Segment Different Structures
and Points of Interest

Tools that allow freehand annotation such as MeVisLab, ImageJ and MITK can be
adapted to structures with different shapes and make modifications on 2D views of
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the generated volumes. ITK-SNAP and region growing algorithms like the ones in 3D
Slicer and GeoS depend on the number of seeds for their adaptation to the particular
shape features of the organs. All of the selected frameworks are not limited to a
particular application and can perform segmentations on different organs and points
of interest.

4.2.3.3 User-Friendly Segmentation Method Usage

The semi-automatic segmentation method sought by VISCERAL needs to be easy to
apply and must be performed in real time in order to allow for optimal user interaction.
Segmentation methods like those used in ImageJ and ITK-SNAP require an initial
trial and error user interaction to define the best values of the parameters involved.
It can take the users some time to understand the functionality of these parameters
when they are not familiar with them, as is likely the case for the annotators of the
Gold Corpus. The GeoS tool has a fast, straightforward algorithm that can easily be
used by the users, and the default parameters given by the tool can be used without
need for modification for most of the structures. Adding seed points in the MeVisLab
and 3D Slicer region growing algorithms is also a simple task once it is combined
with freehand manual corrections.

4.2.3.4 Optimal Visualization of Segmentation and Medical Images

The ImageJ framework has an independent window visualization that requires the
handling of multiple open windows and manual interaction for the user to navigate
in 3D medical images. MITK and 3D Slicer have a better visualization of the data
with the three views visible at the same time and a multiplanar 3D representation
or volume rendering that the user can zoom in and out, rotate and navigate with the
mouse. One drawback in MITK is that changing between images can cause losing
the defined orientation of the image requiring the user to reset the desired image
location for visualization. The GeoS tool has a simple, easy-to-use interface with
the three views in which it is possible to make annotations. Unfortunately, volume
rendering is still not supported and the segmentations can only be visualized in 2D
in each view.

4.2.3.5 Effectiveness of the Segmentation

The purpose of selecting frameworks with semi-automatic segmentation methods
is to reduce the amount of work when making the annotations and allowing the
radiologists to add their experience and input in the segmentations. Since all of the
selected tools are not application oriented to a single type of anatomical structure, they
can obtain accurate segmentations with enough user feedback. ImageJ and MeVisLab
have the least evolved segmentation methods while ITK-SNAP, 3D Slicer and GeoS
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are the best annotation tools to perform semi-automatic segmentations in medical
images.

4.2.3.6 Easy Interaction with the User for Corrections in the
Semi-automatic Output

Most of the application frameworks contain the option to cut or add new voxels to the
segmentation output in 2D slices if the segmentation has leakage or a part is missing.
Other tools such as GeoS can improve the segmentations by adding more strokes
either in the background or in the foreground from the structure of interest. Once
the algorithm is run again, it provides a new segmentation incorporating user input
influencing the full 3D volume of the segmentation. This is useful for rapid visual
inspection of the results and minor user interaction in any of the views for corrections
in the output. Updating small changes however still requires the algorithm to be run
fully, even though it has a fast implementation for the whole structure and no freehand
correction tool is available in the current GeoS version.

4.2.3.7 Time Required for Complete Structure Segmentation

The GeoS annotation tool is the fastest tool for segmenting a complete structure
because of its “lazy annotation” implementation, the good data visualization and the
annotation in the three views at the same time. ITK-SNAP and multiple seed algo-
rithms like those in MeVisLab and 3D Slicer can also provide quick segmentations
that may need user interaction to correct some leakage or missing parts in the seg-
mented volume. For the other available options, there are efficient algorithms to start
the segmentation process but eventually they require manual freehand improvements
to refine the segmentations and this can take some time, especially for structures with
low intensity contrast and soft edges.

4.2.3.8 Segmentation Method Flexibility to Data Obtained
from Different Scanners and Image Contrasts

Some of the segmentation methods that involve thresholding can be very sensitive
to image noise and full image contrast of the different structures. A more local
definition of the contrast is desired, particularly in MRI where field inhomogeneities
are common and intensity values can change significantly even within the same
structure. An advantage of the GeoS tool and the ITK-SNAP methods is their local
approach that limits the expansion of the segmentations to a specific region. One
limitation in the ITK-SNAP method is that it is limited to changes in the image
gradient and it can also be affected by image noise and poor soft tissue contrast.
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4.2.3.9 Output Format of the Annotations

MeVisLab generates contour segmentation object lists from the segmentation results
that have to be converted to a different format for their inclusion in the annotation
analysis backend. With 3D Slicer, the user can decide the label of each structure and
add subclasses of it. Only in the GeoS tool and the MITK framework, the output
of the segmentations can be saved in a NIfTI format without additional plug-ins
in accordance with the data format definition for the Gold Corpus annotation for
VISCERAL. In addition, the RadLex terminology is expected to already be included
in the final version of the GeoS prototype, which makes the annotations comparable
and provides a better set-up for long-term use of the annotations.

4.2.3.10 Upgrading of the Tool with Minimum User Support
for Its Availability During and After the Project Has Ended

Due to the close collaboration with Microsoft and their interest in supporting medical
imaging projects, the GeoS tool was adapted and improved based on various requests.
Other frameworks such as MITK, 3D Slicer, and ImageJ can be upgraded using
freely available plug-ins. However, their maintenance and specific adaptation for the
VISCERAL requirements would have involved significantly more effort from the
project consortium.

4.2.4 Selected Software and Technical Aspects

The final decision was made in collaboration with physicians evaluating the con-
sidered tools and comparing their usefulness. The Microsoft GeoS annotation tool
was selected as the principal annotation tool mainly because of its efficiency and
accuracy in the segmentations, which require only a few brush strokes from the user
to run segmentations in 3D volumes respecting strong edges. Other advantages over
the remaining tools are the tool simplicity and easy-to-use annotation interface with
the learning of only a few key presses needed to start using the tool for annotations.
3D Slicer was selected as the secondary annotation tool.

For the organ annotations, in general the GeoS software was used, providing means
to an interactive, semi-automated segmentation. Nevertheless, for whole-body MRI
(T1w and T2w), where structures such as the vertebrae, the kidneys, the pancreas
or certain muscles are only visible from a few coronal slices, the 3D Slicer software
was used, since GeoS does not support the annotation of point-like structures. In the
following sections, we briefly describe the annotation process in GeoS and 3D Slicer.
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Fig. 4.1 Segmentation method: with only a foreground stroke for the kidney (yellow) and two
background strokes for the surrounding organs (red, left image), an initial segmentation of the
kidney is obtained (right image). This segmentation can be further refined with more strokes

4.2.4.1 GeoS

By clicking “LoadVolume” on the initial screen, the user selects the assigned image
file to be annotated. The segmentation can be started with only a few strokes in
the desired structure (foreground) pressing Shift and a left mouse drag (Fig. 4.1,
marked yellow). To limit the extension of the segmentation, strokes outside the
structure (background) were created with Shift and right mouse drag (Fig. 4.1, marked
red). For better automated segmentation, foreground strokes were put in all three
views. The segmentation process is then started. The created segment could then
be improved by adding more strokes in the structure and in the background and by
running the segmentation process again. Five-to-ten iterations were needed to have a
good match of the created segmentation with the anatomical structure in the volume.
The segmentation tool has five modifiable parameters: iterations, margin, gamma,
pre-smoothing and post-smoothing. For most of the segmentations, a margin of 10
and a gamma of 1 were used. For large organs, such as the liver or the lung, the margin
was reduced. For the other parameters, the default presets were used. Finally, the
created annotations were saved in separate NIfTI files without modifying the original
images. In this way, the annotation for one whole-body volume was completed in
3–4 h. A few examples of segmented annotations from various organs are shown in
Fig. 4.2.

4.2.4.2 3D Slicer

The DICOM volumes are loaded into the software and the Annotation Module is
used to annotate structures of interest. The landmarks within the patient coordinate
system are then saved and exported in text files.
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Fig. 4.2 Annotation example of different structures in an abdominal CT

4.3 VISCERAL Ticketing Tool/Framework

Manually annotating organs or landmarks in images is a complex process involving
many participants, including the administrators of the process, the experts that do
the annotation and the experts responsible for quality control. In the VISCERAL
project, a system was developed to simplify the management of the manual annotation
process. It is based on the commonly used process from software engineering of
assigning tickets to people for tasks that should be done, where the status of the
completion of each assigned task can be tracked. For medical image annotation, an
annotation ticket is assigned to an annotator requesting the segmentation of a specific
organ or identification of landmarks in a specific image. The VISCERAL ticketing
framework is designed to monitor and manage the full life cycle of an annotation
ticket, to provide an interface for annotators and quality control (QC) team members
for ticket submission. The framework consists of three main components:

1. Ticketing Database: A MySQL database that stores information of volumes to
annotate, annotators, annotation types, tickets and their states (pending, submit-
ted, QC passed and QC failed).

2. Backend: A backend implemented in MATLAB, to manage volumes, annotators,
ticket types and annotation tickets. The backend is used to distribute tickets,
to perform automated quality checks and to distribute QC tickets of submitted
annotations.

3. Frontend: A Web interface that is used by annotators and QC team members to
receive their assigned tickets and to submit annotations and QC results.
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Fig. 4.3 Workflow overview of the VISCERAL ticketing framework

Figure 4.3 provides an overview of the ticketing system implemented within the
VISCERAL project. The framework source code is available,10 which provides create
statements for the ticketing DB, the source of the Web interface, getter and setter
functions of the backend implemented in Matlab including a tutorial and installation
guidelines to set up the framework. The interface is designed using Java.

4.3.1 Ticketing System Database

The database (DB) of the ticketing system is created by SQL scripts provided in the
ticketing repository. All relevant information is stored in five DB tables:

• Annotator: Identified by an AnnotatorID, holds next to contact information, name
and password (for login) a flag indicating if the annotator is currently available
and an additional flag if the annotator is considered a QC team member.

• Volume: A volume is identified by its PatientID and VolumeID. Additionally, the
modality, body region and the filename are stored.

• AnnotationType: Entries in this table define which types of annotations can be
managed by the ticketing system. Each entry is identified by its AnnotationTypeID.
Additionally, the name, the file extension of the submitted files, the remote upload

10https://github.com/Visceral-Project/annotationTicketingFramework.
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directory, the category (segmentation, landmarks,...) and an optional string describ-
ing the files prefix are stored. Exemplary entries of this table are created within
the given SQL scripts.

• Status: Defines all states a ticket can have during its life cycle. A status is identified
by its StatusID and stores its name and description as well as to which type of
annotators (QC and normal annotators) the status option is available in the ticketing
Web interface. Default entries of this table are created within the given SQL scripts.

• Annotation: This table represents an annotation ticket. An annotation entry is
identified by its PatientID and VolumeID, the AnnotationTypeID, the StatusID
and the AnnotatorID of the annotator to whom a ticket is assigned. Additionally,
the filename, a timestamp, the ID of the annotator who performs the QC of the
ticket and a QC comment are stored for each ticket.

Figure 4.4 illustrates the ER (entity relationship) diagram of the resulting database.

4.3.2 Annotation Ticket Life Cycle

The typical life cycle of an annotation ticket within the VISCERAL project can be
outlined as follows:

1. Creation of an annotation list with the annotations that need to be done (tickets)
and its upload to the Web interface.

2. The Web interface has a login user name and password for each of the annotators.
3. The annotator ID is used in the naming of the tickets:

subjectXX acquisitionZZ[modalityYY] RadLexID annotatorID:nii
4. The annotators upload their files next to the ticket and the name of the file is

implemented to be the same as the ticket for their backend analysis.
5. All the annotations are saved in the same folder to download them and use them

in the analysis.
6. The annotation backend produces a new list of tickets for the new annotations

needed and from which annotators.
7. The list in the interface is updated.
8. Depending on the type of annotation, an automated quality check is performed

to detect common annotation errors, such as empty label volumes, incorrect file
extensions or wrong naming of landmarks.

9. If the annotation passes the automated quality check, the ticket is assigned to a
quality control (QC) annotator; otherwise, it is reassigned to the annotator for
corrections to the annotation.

10. The QC annotator receives the QC ticket through the Web interface, performs the
QC and submits the QC result (including textual feedback if the QC is negative)
through the Web interface.
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11. The ticket reaches its final state if the QC is positive; otherwise, the annotator
receives textual feedback and the ticket is reassigned for annotation.

12. The annotators receive their new set of tickets when they login.

4.3.3 Manual Annotation Instructions

In order to ensure reproducible annotations from multiple annotators, detailed
instructions on the annotation of each organ were created. These annotation instruc-
tions describe the specificities of performing the anatomical structure segmentations
and landmark locations of the Gold Corpus, complete with illustrations. To reduce
the probability of misunderstandings, the instructions were written in the native lan-
guage of the radiologists doing the annotation (in this case Hungarian). Below, we
describe some aspects that need to be made explicit in the annotation instructions
and show some of the example images.

4.3.3.1 Organ Segmentation

When delineating the organs, we face the problem of defining the outer extensions
of the structure, requiring a definition of what part of a connected structure is still

Fig. 4.5 Instructions for segmenting the aorta beginning in whole-body CTs: in the above left
window, an axial slice is shown and the cross wires are centred at the aortic bulb in the height of
the aortic valve. The below right window shows a coronary slice. The cross wire is located in the
aortic bulb. You should segment until you see the diameter of aorta in the axial slices being in the
region of aortic bulb and you could control that on the coronary slice
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Fig. 4.6 Coronal whole-body MRI T1 weighted of the head/neck demonstrating the beginning of
the trachea: the anatomical beginning of the trachea is under the cricoids, but that is not suitable
for manual segmentation, so we define the beginning of trachea for segmentation under the vocal
cord. Trachea (purple) and thyroid gland (blue)

“within” the organ and what is already “outside” of the organ, belonging to a different
structure (that may or may not be in the list of annotated organs). Some organs, such
as the lungs, liver and kidneys, have a hilum, which is a depression or indentation
where vessels and nerves enter. It must be explicitly specified how to handle the
hilum in the manual annotation — we specified that the hilum has to be cut off
during the segmentation process. It is also often useful to provide an “algorithm” for
the annotator to follow, as illustrated in Figs. 4.5 and 4.6. Some examples of organ
segmentations are shown in Fig. 4.7.

4.3.3.2 Landmark Location

Anatomical landmarks are the locations of selected anatomical structures that can
be identified in images of multiple modalities, such as CT or MRI, unenhanced or
enhanced scans, whole-body images or with limited field of view. Their universal
nature makes them important as a first step in parsing image content, or for triangu-
lating other more specific anatomical structures. Overall, 40 landmarks were selected
to be identified. Examples of annotated landmarks are shown in Fig. 4.8.
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Fig. 4.7 Examples of organ segmentation in MRI T1w and T1w. a Kidney: Marked grey is the
foreground stroke for the liver. Marked red is the background stroke defining the border of the
organ. b Spleen. c Liver. d Lung (left). f M. rectus abdominis (right). k M. psoas major. n Aorta.
o Adrenal gland. p Trachea



4 Annotating Medical Image Data 63

Fig. 4.8 Landmark examples. From right top to left bottom: right and left lateral end of the clavicle,
tip of aortic arch, symphysis below, tracheal bifurcation, trochanter major at the tip and trochanter
minor (most medal part), aortic bifurcation, Crista iliaca (at the top)

4.4 Inter-annotator Agreement

To analyse the reliability of Gold Corpus annotations, the agreement of different
experts was investigated by comparing multiple annotations of a specific structure
obtained from multiple annotators. The similarity of two annotations for this purpose
is measured using the Dice coefficient [5], which is a spatial overlap measure that
is 1 for perfect overlap and 0 if no overlap of two segmentations is present. The
Dice coefficient, also called the overlap index, is the most frequently used metric in
validating medical volume segmentations. Zou et al. [15] used the Dice coefficient
as a measure of the reproducibility as a statistical validation of manual annotation
where segmentors repeatedly annotated the same image [13]. In this context, inter-
annotator agreements are reported independently for each structure in each modality
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Table 4.2 Inter-annotator agreements of structures and modalities addressed within VISCERAL

Structure CT Wb CT-ce Thx/Abd MRT1 Wb MRT1 cefs-Abd

Lung R 0.974 0.946 0.925

Lung L 0.971 0.945 0.902

Kidney R 0.889 0.937 0.917 0.908

Kidney L 0.921 0.929 0.909 0.865

Liver 0.950 0.965 0.891 0.932

Spleen 0.946 0.934 0.685 0.925

Urinary Bladder 0.875 0.933 0.842 0.819

Psoas Major R 0.840 0.854 0.836 0.823

Psoas Major L 0.847 0.848 0.849 0.802

Trachea 0.894 0.877 0.768

Aorta 0.884 0.856 0.849 0.768

Sternum 0.891 0.810

1st Lumbar
Vertebra

0.811 0.914 0.744 0.546

Muscle Body of
Rectus
Abdominis R

0.811 0.709

Muscle Body of
Rectus
Abdominis L

0.734 0.637

Pancreas 0.615 0.785 0.486 0.639

Gallbladder 0.689 0.857 0.742

Thyroid Gland 0.658 0.781

Adrenal Gland R 0.347 0.671 0.465 0.305
Adrenal Gland L 0.485 0.743 0.545 0.338

of the Gold Corpus and are obtained by comparing Gold Corpus segmentations from
different annotators to additionally performed segmentations of the same structures in
the same volumes (double annotations). Inter-annotator agreement is finally derived
by averaging the Dice coefficients of all double annotations performed for a specific
structure and modality and are shown in Table 4.2. Missing values are due to the
structure being out of field such as the trachea in MRT1cefs-abdominal volumes
(MRT T1 weighted contrast-enhanced sequence with fat saturation of the abdomen)
or bad contrast of the addressed structure in a certain modality.

Organs such as the adrenal glands show, depending on the annotated modality, a
Dice coefficient smaller than 0.5 (see the bold values in Table 4.2). The reason for
this is probably that the adrenal glands have the best contrast in contrast-enhanced
CT compared to other sequences. The CT volumes have overall the best average
Dice coefficients also in small anatomical structures such as the adrenal glands. The
adrenal glands, the thyroid gland, the pancreas and the bodies of the rectus abdominis
muscles have the smallest average Dice coefficients which are smaller and/or equal
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than 0.8 in all four modalities: in whole-body CT and MRI (T1 weighted), in contrast-
enhanced CT of thorax and abdomen and in contrast-enhanced and fat-saturated
T1-weighted MRI. The contrast-enhanced CT sequence is the best for the adrenal
glands, the thyroid gland and the pancreas. The reason for that is a worse contrast
in the other sequences at the adrenal gland regions, especially at the right one in a
small window between liver, right kidney and vertebral column in the fatty tissue.
For the bodies of the rectus abdominis muscle, the native whole-body CT sequence
is ahead, probably due to a better contrast for this structure without contrast media.
If the muscle bodies of the rectus abdominis are small, the contrast between fatty
tissue and muscle is also not sufficient to reliably and repeatably segment these
structures. The difference of the pancreatic tissue and the fat-surrounding tissue is
not high enough without contrast media and therefore difficult to annotate. Figure
4.9 visualizes the agreement between two annotators based on a liver segmentation
in a contrast-enhanced CT volume of the thorax and abdomen and shows that for this
structure the discrepancy is only marginal.

Fig. 4.9 Visualization of the agreement of two annotators based on a liver segmentation in a
contrast-enhanced CT volume of the thorax and abdominal region
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4.5 Conclusion

This chapter described the annotation of medical images that was performed in the
VISCERAL project. Both the selection of the tool to annotate the 3D images and
the quality management of the annotations are extremely important. A good choice
of an annotation tool can significantly limit the amount of work required to do the
annotations. Semi-automatic solutions like the ones chosen allow to rapidly achieve
good segmentation results.

The quality management also showed that this process can be automated to opti-
mize the outcomes. Not only is a detailed description of the structures to anno-
tate important, but also regular controls and manual checks to compare the written
description with the actual practice. There is always subjectivity in annotations, so
double annotations are essential to judge the subjectivity of a task. However, only if
the control is systematic can the subjectivity be limited and estimated well.
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Chapter 5
Datasets Created in VISCERAL

Markus Krenn, Katharina Grünberg, Oscar Jimenez-del-Toro,
András Jakab, Tomàs Salas Fernandez, Marianne Winterstein,
Marc-André Weber and Georg Langs

Abstract In the VISCERAL project, several Gold Corpus datasets containing med-
ical imaging data and corresponding manual expert annotations have been created.
These datasets were used for training and evaluation of participant algorithms in the
VISCERAL Benchmarks. In addition to Gold Corpus datasets, the architecture of
VISCERAL enables the creation of Silver Corpus annotations of far larger datasets,
which are generated by the collective ensemble of submitted algorithms. In this
chapter, three Gold Corpus datasets created for the VISCERAL Anatomy, Detection
and Retrieval Benchmarks are described. Additionally, we present two datasets that
have been created as a result of the anatomy and retrieval challenge.
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https://github.com/Visceral-Project/silverCorpusFramework
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5.1 Introduction

One of the main objectives of the VISCERAL project has been to provide substantial
Gold Corpus datasets to the medical image analysis research community containing
medical imaging data complemented with manual annotations performed by experi-
enced radiologists. For each benchmark organized within the project, a Gold Corpus
dataset was created in order to train and evaluate the participants’ algorithms.

In addition to the Gold Corpus of expert-annotated imaging data, the architecture
of the VISCERAL Benchmarks offers the possibility to generate far larger Silver
Corpus data that are annotated by the collective ensemble of algorithms submitted by
Benchmark participants. Even though these Silver Corpus annotations are expected
to be less accurate than Gold Corpus annotations, we encourage the idea of their
creation since they can be generated automatically and therefore created on larger
scales than is feasible to achieve with expert annotations. Furthermore, experiments
showed that the pooling of algorithm results did provide enhanced annotations over
individual algorithms [1].

The following sections describe Gold Corpus and Silver Corpus datasets created
as part of VISCERAL.

5.2 Anatomy Gold Corpus

The Anatomy Gold Corpus was created to provide substantial training and test data
for the Anatomy Benchmarks 1–3, in which participants have been challenged with
the tasks of labelling anatomical structures (segmentation) on the one hand and
detecting landmarks (localization) in medical imaging data on the other hand.

The dataset contains 120 3D medical images (volumes) acquired during daily clin-
ical routine and cover four different imaging modalities. Table 5.1 lists and describes
the modalities, their fields of view and voxel dimensions.

Each volume carries two types of anatomical reference annotations performed by
experienced radiologists that serve as gold standard references:

Table 5.1 Imaging modalities covered by the VISCERAL Anatomy Gold Corpus

Identifier Modality Field of view Voxel dimensions (in mm)

CT-Wb CT whole body 0.8 − 0.9 × 0.8 − 0.9 × 1.5

CTce-ThAb contrast-enhanced
CT

thorax and
abdomen

0.6 − 0.7 × 0.6 − 0.7 × 1.2 − 1.5

MRT1-Wb MRI - T1
weighted

whole body 1.1 − 1.3 × 1.1 − 1.3 × 6 − 7

MRT1cefs-Ab contrast-enhanced
fat-saturated MRI
- T1 weighted

abdomen 1.2 − 1.3 × 1.2 − 1.3 × 3
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Table 5.2 Overview of the VISCERAL Anatomy Gold Corpus

Category # Volumes # Structures # Landmarks

CT-Wb 30 573 1574

CTce-ThAb 30 583 1244

MRT1-Wb 30 442 1447

MRT1-ThAb 30 322 595
∑

120 1920 4860

1. Segmentation labels: A labelling of up to 20 anatomical structures such as kid-
neys, lungs, liver, urinary bladder, pancreas, adrenal glands, thyroid glands, aorta
and some muscles.

2. Landmark labels: Up to 53 anatomical landmarks including the lateral end of
the clavicula, crista iliaca, symphysis, trochanter major/minor, tip of aortic arch,
trachea/aortic bifurcation, crista iliaca and the vertebrae.

An anatomical structure annotation is given in the form of a 3D image, where the
value 0 in a voxel indicates absence (background) and a value > 0 indicates presence
(foreground) of a specific structure. All annotated landmarks of an image are given
as a list where an entry holds the landmark name and its x-, y- and z- coordinates.

In VISCERAL, the Neuroimaging Informatics Technology Initiative (NIfTI)1 file
format is used to store medical imaging data. In contrast to the slice-based Digital
Imaging and Communications in Medicine (DICOM)2 standard, the full volume is
stored as a single self-contained file. This facilitates file management considerably,
since transfer and storage of thousands of large files instead of millions of small files
are typically more efficient.

Table 5.2 lists the number of volumes, annotated structures and landmarks that
build the VISCERAL Anatomy Gold Corpus. Overall, 30 volumes of each modality
have been annotated, resulting in a dataset that consists of 120 volumes with 1920 cor-
responding structures and 4860 landmark annotations. Detailed breakdowns of anno-
tations per structure and landmark in each modality are given in Tables 5.3 and 5.4,
where Table 5.3 provides a breakdown of manually annotated anatomical structures
per modality in volumes of the Anatomy Gold Corpus dataset, and Table 5.4 lists
landmark annotations that have been annotated by radiology experts and are avail-
able in volumes of the Gold Corpus. Missing annotations are due to poor visibility
of the structures in certain image modalities or due to such structures being outside
of the field of view. Figure 5.1 illustrates Gold Corpus annotations in one volume of
each modality.

1Neuroimaging Informatics Technology Initiative: http://nifti.nimh.nih.gov/.
2Digital Imaging and Communications in Medicine: http://dicom.nema.org/.

http://nifti.nimh.nih.gov/
http://dicom.nema.org/
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Table 5.3 Manual annotations of anatomical structures performed by experienced radiologists
available in the Anatomy Gold Corpus

Structure CT-Wb Ctce-ThAb MRT1-Wb MRT1cefs-Ab
∑

Adrenal gland (L) 24 28 17 16 85
Adrenal gland (R) 21 28 14 8 71
Aorta 30 30 30 10 100
First lumbar vertebra 30 30 29 22 111
Gallbladder 25 29 9 14 77
Kidney (L) 29 30 30 28 117
Kidney (R) 30 30 30 28 118
Liver 30 30 28 30 118
Lung (L) 30 30 30 7 97
Lung (R) 30 30 30 7 97
M. b. rectus abdominis (L) 30 30 4 7 71
M. b. rectus abdominis (R) 30 30 4 6 70
Pancreas 30 28 9 21 88
Psoas major (L) 30 30 30 29 119
Psoas major (R) 30 30 30 30 120
Spleen 30 30 30 29 119
Sternum 30 30 7 67
Thyroid gland 25 20 21 66
Trachea 30 30 30 90
Urinary bladder 29 30 30 30 119
∑

573 583 442 322 1920

Table 5.4 Annotated landmarks per modality available in volumes of the Anatomy Gold Corpus

Landmark CT-Wb Ctce-ThAb MRT1-Wb MRT1cefs-Ab
∑

Aorta bifurcation 30 30 29 30 119
Aortic arch 30 30 29 2 91
Aortic valve 29 30 24 83
Bronchus (L) 30 28 25 83
Bronchus (R) 30 28 27 85
C2 28 29 57
C3 29 29 58
C4 29 29 58
C5 29 29 58
C6 29 6 29 64
C7 29 22 29 80
Clavicle (L) 30 13 30 30 103
Clavicle (R) 30 13 30 30 103

(continued)
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Table 5.4 (continued)

Landmark CT-Wb Ctce-ThAb MRT1-Wb MRT1cefs-Ab
∑

Coronaria 23 22 1 46
Crista iliaca (L) 30 30 30 90
Crista iliaca (R) 30 30 30 90
Eye (L) 30 5 35
Eye (R) 30 5 35
Ischiadicum (L) 30 30 29 24 113
Ischiadicum (R) 30 30 29 24 113
L1 30 30 30 30 120
L2 30 30 30 30 120
L3 30 30 30 30 120
L4 30 31 30 30 121
L5 30 30 30 30 120
Renalpelvis (L) 29 30 29 27 115
Renalpelvis (R) 30 30 30 27 117
Sternoclavicular (L) 30 30 27 87
Sternoclavicular (R) 30 30 27 87
Symphysis 30 30 29 30 119
Th1 30 30 30 90
Th2 30 30 31 91
Th3 30 30 28 88
Th4 30 30 29 89
Th5 30 30 29 89
Th6 30 30 29 1 90
Th7 30 30 30 3 93
Th8 30 30 30 5 95
Th9 30 30 30 9 99
Th10 30 30 30 19 109
Th11 30 30 30 25 115
Th12 30 30 29 28 117
Trachea bifurcation 30 29 29 88
Trochanter major (L) 30 30 30 22 112
Trochanter major (R) 30 30 30 24 114
Trochanter minor (L) 30 29 30 20 109
Trochanter minor (R) 30 29 30 20 109
Tuberculum (L) 30 17 30 77
Tuberculum (R) 30 17 30 77
Vci bifurcation 30 30 27 87
Ventricle (L) 30 29 59
Ventricle (R) 30 29 30 89
Xyphoideus 30 30 9 15 84
∑

1574 1244 1447 595 4860
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CT-Wb MRT1-Wb MRT1cefs-Ab CTce-ThAb

Fig. 5.1 Anatomical structure annotations in CT, MRT1 and a MRT1cefs volume (a-c) and visu-
alization of annotated landmarks in a CTce volume (d)

5.3 Anatomy Silver Corpus

The Anatomy Silver Corpus was created based on the data and results available
from the segmentation tasks of Anatomy 2 and 3 Benchmarks [2, 3]. Here, seg-
mentations of all organs addressed within the benchmark were created by fusing
multiple segmentation estimates originating from (1) the submitted algorithms and
(2) Gold Corpus annotations transformed by medical image registration methods.
The process to derive a Silver Corpus annotation of a specific structure in a novel
volume is described and discussed in detail in [1] and can be summarized as follows:

1. Compute algorithmic segmentation estimates by applying all submitted algo-
rithms to the target image.

2. Transfer manual annotations of Gold Corpus volumes to the target image by a
preregistration selection, image registration and label propagation approach.

3. Build consensus of all segmentation estimates (algorithmic and atlas based) using
the SIMPLE [4] segmentation approach.

This procedure has been applied to 264 additional volumes of the modalities
covered by the Gold Corpus, resulting in up to 20 automatically generated Silver

Table 5.5 Overview of the VISCERAL Anatomy Silver Corpus dataset

Category # Volumes # Structures # Landmarks

CT-Wb 62 1122 3169

CTce-ThAb 65 1227 2600

MRT1-Wb 66 1095 3136

MRT1-ThAb 71 879 1342
∑

264 4323 10247
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Corpus segmentations per volume. In addition to the segmentation of organs, each
volume is complemented with manually performed landmark annotations similar to
those of the Gold Corpus. This results in the VISCERAL Anatomy Silver Corpus that
contains over 4.000 automatically generated segmentations of anatomical structures
and more than 10.000 annotated landmarks.

Table 5.5 outlines the number of volumes, structure segmentations and landmark
annotations in each modality available in the Silver Corpus. Detailed breakdowns of
segmentations per structure and landmarks for each modality are given in Tables 5.6
and 5.7. Table 5.6 lists the number of computed segmentations (#) per structure and
modality together with average segmentation performances (μ) and corresponding
standard deviations (σ ) of Silver Corpus segmentations computed and compared
to Gold Corpus annotations of 40 volumes. These results serve as structure- and
modality-specific segmentation performance estimates of generated Silver Corpus
annotations. Table 5.7 lists annotated landmarks per modality of the VISCERAL
Anatomy Silver Corpus.

For reference, Fig. 5.2 shows average Dice coefficients [5] obtained by comparing
Silver Corpus segmentations computed in 10 volumes per modality of the Gold

Table 5.7 Annotated landmarks per modality of the Anatomy Silver Corpus

Landmark CT-Wb Ctce-ThAb MRT1-Wb MRT1cefs-Ab
∑

Aorta bifurcation 62 63 64 70 259
Aortic arch 51 57 54 162
Aortic valve 48 57 34 139
Bronchus (L) 62 63 51 176
Bronchus (R) 62 63 55 180
C2 61 3 65 129
C3 62 3 65 130
C4 62 3 65 130
C5 62 4 65 131
C6 62 13 65 140
C7 62 52 65 179
Clavicle (L) 62 20 65 147
Clavicle (R) 62 22 64 148
Coronaria 12 36 1 49
Crista iliaca (L) 62 61 63 70 256
Crista iliaca (R) 62 61 64 70 257
Eye (L) 63 23 86
Eye (R) 61 23 84
Ischiadicum (L) 62 62 65 54 243
Ischiadicum (R) 62 62 63 54 241

(continued)
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Table 5.7 (continued)

Landmark CT-Wb Ctce-
ThAb

MRT1-
Wb

MRT1cefs-
Ab

∑

L1 62 63 65 68 258
L2 62 63 65 70 260
L3 62 63 64 71 260
L4 61 63 65 71 260
L5 60 63 63 71 257
Renalpelvis (L) 61 62 64 69 256
Renalpelvis (R) 61 62 64 66 253
Sternoclavicular (L) 62 63 59 184
Sternoclavicular (R) 62 63 59 184
Symphysis 62 64 64 68 258
Th1 62 63 65 190
Th2 62 63 65 190
Th3 62 64 65 191
Th4 62 63 65 190
Th5 61 63 65 189
Th6 62 63 65 190
Th7 62 63 65 190
Th8 62 63 65 8 198
Th9 62 63 65 15 205
Th10 62 63 65 33 223
Th11 62 63 65 50 240
Th12 62 63 65 60 250
Trachea bifurcation 62 62 64 188
Trochanter major (L) 62 64 65 60 251
Trochanter major (R) 62 64 65 59 250
Trochanter minor (L) 61 63 64 52 240
Trochanter minor (R) 61 62 64 52 239
Tuberculum (L) 61 31 61 153
Tuberculum (R) 62 38 63 163
Vci bifurcation 60 63 64 65 252
Ventricle (L) 48 62 110
Ventricle (R) 48 63 111
Xyphoideus 60 62 10 16 148
∑

3169 2600 3136 1342 10247

Corpus to the corresponding manual ground truth annotation. These results can be
interpreted as structure and modality-specific segmentation performance estimates
of generated Silver Corpus annotations. Average segmentation accuracy (μ) and
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Fig. 5.2 Accuracy (DICE) of Silver Corpus segmentations evaluated on 10 volumes of the Anatomy
Gold Corpus

CT-Wb MRT1-Wb MRT1cefs-Ab CTce-ThAb

Fig. 5.3 Illustrations of generated Silver Corpus annotations in one volume of each modality.
Figures taken from [1]

corresponding standard deviations (σ ) are provided in Table 5.6. Figure 5.3 illustrates
computed Silver Corpus segmentations in one volume of each modality. The software
for creating the Silver Corpus is available.3

3https://github.com/Visceral-Project/silverCorpusFramework.
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5.4 Detection Gold Corpus

In the VISCERAL Detection Benchmark, participants have been challenged to
develop algorithms that automatically detect and identify lesions in medical imaging
data. The Gold Corpus created for test and training purposes in this context thus
consists of a set of medical images in which lesions have been manually annotated
by the experienced radiologists.

The dataset includes volumes of two modalities (CT-Wb & MRT2-Wb) in which
all lesions of five predefined target structures (bones, brain, liver, lung and lymph
nodes) have been annotated. A lesion is identified by one point that indicates the
centre of a lesion and two additional points on the perimeter to give an estimate of
the diameter. Since lesions are not spherical, this is an estimate, but in the context
of the Detection Benchmark still is clinically relevant. All lesion annotations of a
volume are given in an fcsv file containing a list of annotated points and their x-, y-
and z-coordinates labelled according to the following naming convention:

structure_counter_identifier, where

• structure indicates in which anatomical structure the lesion is located (bones BO,
brain BR, liver LI, lungs LU and lymph nodes LN),

• counter depicts the index of a lesion within an anatomical structure and
• identifier defines if the annotated point represents the centre (C) or diameter esti-

mate (D1, D2) of a specific lesion.

Figure 5.4 gives an example of a lesion annotation file and shows the three points
(C, D1 and D2) that represent a bone lesion annotation in a MRT2 image. In total,
1609 lesions have been annotated in 100 volumes. Table 5.8 gives an overview of
volumes and lesions annotated per modality and target structure. Example lesion
annotations in all target structures of both modalities are shown in Fig. 5.5.

Fig. 5.4 Example of a lesion annotation file and illustration of an annotated bone lesion
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Table 5.8 Number of volumes and lesions annotated in the VISCERAL detection Gold Corpus

# Annotated lesions
Modality # Volumes Bone Lungs Liver Lymph nodes Brain

∑

CT - WB 50 911 24 27 48 2 1012

MRT2 - WB 50 541 5 44 1 6 597
∑

100 1452 29 71 49 8 1609

Fig. 5.5 Exemplary lesion annotations in all target structures of both modalities annotated

5.5 Retrieval Gold Corpus

Participants of the VISCERAL Retrieval Benchmark were challenged to find clini-
cally relevant or similar cases to a given query case in a large multimodal dataset.
For this purpose, a Gold Corpus has been created that contains:

1. Medical images from multiple modalities, covering different parts of the human
body.

2. Anatomy–Pathology (AP) terms exported from corresponding radiology reports
that describe which pathological findings occur in which anatomical regions of
an image.

Annotations of findings in an image are given in the form of AP term files that list
terms describing pathologies that occur in the radiology report of an image together
with its anatomy. Both entities are described textually and with their corresponding
RadLex ID4 (RID). RadLex is a unified terminology of radiology terms that can be
used for standardized indexing and retrieval of radiology information resources. AP
term files furthermore indicate whether a pathology has been explicitly negated in the
report. Figure 5.6 shows an example of an AP term file. This file indicates for instance

4http://rsna.org/RadLex.aspx.
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Fig. 5.6 Example of an AP term file

Table 5.9 Number of volumes and available AP term files of the VISCERAL retrieval Gold Corpus

Modality Field of view # Volumes # AP term files

CT Abdomen 336 213

Thorax & Abdomen 86 86

Thorax 971 699

Unknown 211 211

Whole body 410 410

MRT1 Abdomen 167 114

Unknown 24 24

MRT2 Abdomen 68 18

Unknown 38 38
∑

2311 1813

that volume 123456_MRT1_Ab does not contain the pathological finding Oedem in
Ductus choledochus but contains Raumforderung in the anatomical structure Leber.

The dataset consists of 2311 volumes originated from three different modalities
(CT, MRT1, and MRT2) which have been acquired during clinical routine. For 1813
cases of the dataset, AP term files are available and thus part of the retrieval Gold
Corpus. Table 5.9 gives a detailed overview of the number of volumes per modality
and field of view and lists available AP term files that form the VISCERAL Retrieval
Gold Corpus.

5.6 Retrieval Silver Corpus

Participants of the VISCERAL Retrieval Benchmark have been challenged to find
clinically relevant cases in the Retrieval Gold Corpus for given queries. For this
purpose, ten query cases (illustrated in Fig. 5.7) have been created, where each query
in this scenario has been defined by:
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Fig. 5.7 Illustration of the query cases of the Detection Benchmark

• The AP term that defines the topic of a query, i.e. liver – cyst,
• The 3D medical image data (CT, MRT1 and MRT2),
• A 3D bounding box of the region that contains radiological signs of the pathology,
• A binary mask of the organ affected and
• The AP term list extracted from the volumes report.

During evaluation, medical experts performed relevance judgements of the top-
ranked cases submitted to each query to judge the quality of retrieval of each partici-
pant’s approach. This process results in a set of clinically relevant and irrelevant cases
from the Gold Corpus for each given query, which builds the VISCERAL Retrieval
Silver Corpus.

In total, 6240 relevance judgements have been performed in this context from
which 2462 cases are clinically relevant and 3778 are not relevant to one of the given
queries. Table 5.10 shows the corresponding numbers of relevant and not relevant
cases of the Gold Corpus for each query.

www.dbooks.org
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Table 5.10 Retrieval Silver Corpus. Number of clinically relevant and not relevant cases of the
Gold Corpus for each query

Query Relevant Not relevant
∑

Gallbladder sludge 118 194 312

Liver cirrhosis 1 428 395 823

Liver cirrhosis 2 428 395 823

Lung bronchiectasis 161 453 614

Mediastinal lymphadenopathy 248 342 590

Liver cyst 339 264 603

Pulmonary bullae 333 258 591

Kidney cyst 336 263 599

Pericardial effusion 24 696 720

Rib fracture 47 518 565
∑

2462 3778 6240

5.7 Summary

During the VISCERAL project, we have generated datasets of medical imaging
data together with annotations. The purpose of the VISCERAL Gold Corpora is to
serve as training set for algorithm development and for evaluation of algorithms.
The VISCERAL Silver Corpora use the results of algorithms to create algorithmic
annotations on far larger datasets.

Three so-called Gold Corpus datasets have been created containing medical imag-
ing data and corresponding gold standard annotations:

1. The VISCERAL Anatomy Gold Corpus consists of 120 medical images of four
modalities and carries (1) 1920 voxel-wise annotations of up to 20 anatomical
structures per volume and (2) 4860 annotated landmarks of up to 53 predefined
points of interest per volume.

2. The VISCERAL Detection Gold Corpus contains 100 medical images of two
modalities and provides annotations of 1609 lesions in five anatomies (bones,
lungs, liver lymph nodes and brain).

3. The VISCERAL Retrieval Gold Corpus includes 2311 medical images of three
modalities, where for 1813 cases the corresponding radiology report-extracted
AP terms are available that describe occurring pathological findings and their
anatomy.

Furthermore, two Silver Corpus datasets have been generated based on the data
and results available from Anatomy and Retrieval Benchmarks:

1. The VISCERAL Anatomy Silver Corpus provides automatically generated sil-
ver standard segmentations of up to 20 anatomical structures in 264 volumes
(4323 in total) and additionally manual landmark annotations in each of these
volumes (>10.000 annotations).
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2. The VISCERAL Retrieval Silver Corpus provides a list of relevant and irrel-
evant cases of the Retrieval Gold Corpus to each query case of the Retrieval
Benchmark.
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VISCERAL Benchmarks



Chapter 6
Evaluation Metrics for Medical Organ
Segmentation and Lesion Detection

Abdel Aziz Taha and Allan Hanbury

Abstract This chapter provides an overview of the metrics used in the VISCERAL
segmentation benchmarks, namely Anatomy 1, 2 and 3. In particular, it provides an
overview of 20 evaluation metrics for segmentation, from which four metrics were
selected to be used in VISCERAL benchmarks. It also provides an analysis of these
metrics in three ways: first by analysing fuzzy implementations of these metrics
using fuzzy segmentations produced either synthetically or by fusing participant
segmentations and second by comparing segmentation rankings produced by these
metrics with rankings performed manually by radiologists. Finally, a metric selection
is performed using an automatic selection framework, and the selection result is
validated using the manual rankings. Furthermore, this chapter provides an overview
of metrics used for the Lesion Detection Benchmark.

Source code is available at:
https://github.com/visceral-project/EvaluateSegmentation

6.1 Introduction

The importance of using suitable metrics in evaluation stems from the fact that there
are different metrics, and each of them has particular sensitivities and thus mea-
sures particular aspects of similarity/discrepancy between the objects being evaluated
and the corresponding ground truth. Poorly defined metrics may lead to inaccurate
conclusions about the state-of-the-art algorithms, which negatively impacts system
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development. This chapter provides an overview of metrics used for the Anatomy
and Detection Benchmarks of the VISCERAL project [1].

Segmentation methods with high accuracy and high reproducibility are a main
goal in medical image processing. Therefore, assessing the accuracy and the quality
of segmentation algorithms is of great importance, which is a matter of the evaluation
methodology. Segmentation evaluation is the task of comparing two segmentations
by measuring the distance or similarity between them, where one is the segmentation
to be evaluated and the other is the corresponding ground truth segmentation. In
this chapter, we provide an overview of a metric pool consisting of twenty metrics
for evaluating medical image segmentations and a subset of four metrics that were
considered in the VISCERAL segmentation benchmarks.

The knowledge about the metrics in terms of their strength, weakness, sensitivities,
bias, as well as their ability to deal with fuzzy segmentation, is essential for taking
the decision about which metrics are to be used in the evaluation. In this chapter, we
provide an analysis of metrics with respect to their fuzzy definitions and discussion
about selecting suitable metrics for evaluating segmentation from a metric pool.

Apart from segmentation, the VISCERAL project had also the Lesion Detection
Benchmark, where lesions are to be localized by detection algorithms. In this chapter,
we provide an overview of the metrics and evaluation methodologies that were used
for the Detection Benchmark.

The remainder of this chapter is organized as follows: in Sect. 6.2, we provide an
overview of the metrics that were used in the VISCERAL Anatomy and Detection
Benchmarks. In Sect. 6.3, we validate a subset of the segmentations of the Anatomy
2 Benchmark against synthetic fuzzy variants of the ground truth and discuss the
results. In Sect. 6.4, we present an analysis based on the comparison between rankings
produced by the segmentation metrics and manual rankings made by radiologists.
Finally, this chapter is concluded in Sect. 6.5.

6.2 Metrics for VISCERAL Benchmarks

In this section, we provide an overview of the metrics that were used in the
VISCERAL benchmarks. In particular, we provide a pool of metrics for evaluating
medical image segmentation, from which four metrics were selected for the VIS-
CERAL Anatomy Benchmarks. Furthermore, we provide an overview of metrics
that were used for the Detection Benchmark.

6.2.1 Metrics for Segmentation

Medical image segmentation assigns each voxel of a medical image to a class, e.g. an
anatomical structure. While this assignment is crisp in binary segmentation, it takes
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Table 6.1 Overview of evaluation metrics for 3D image segmentation. The symbols in the second
column are used to denote the metrics throughout the chapter. The column “category” assigns each
metric to one of the categories above. The column “Fuzzy” indicates whether a fuzzy implementation
of the metric is available

Metric Symbol Category Fuzzy

Dice coefficient DICE Spatial overlap based yes

Jaccard index JAC Spatial overlap based yes

True-positive rate (sensitivity, recall) TPR Spatial overlap based yes

True-negative rate (specificity) TNR Spatial overlap based yes

False-positive rate (= 1-specificity, fallout) FPR Spatial overlap based yes

False-negative rate (= 1-sensitivity) FNR Spatial overlap based yes

F-measure (F1-measure = Dice) FMS Spatial overlap based yes

Global consistency error GCE Spatial overlap based no

Volumetric similarity V S Volume based yes

Rand index RI Pair counting based yes

Adjusted Rand index ARI Pair counting based yes

Mutual information MI Information theoretic based yes

Variation of information V OI Information theoretic based yes

Interclass correlation ICC Probabilistic based no

Probabilistic distance PBD Probabilistic based yes

Cohen’s kappa KAP Probabilistic based yes

Area under ROC curve AUC Probabilistic based yes

Hausdorff distance HD Spatial distance based no

Average distance AV D Spatial distance based no

Mahalanobis distance MHD Spatial distance based no

other forms in fuzzy segmentation, e.g. the degree of membership or the probability
that a particular voxel belongs to a particular class. An automatic segmentation is
validated by comparing it with the corresponding ground truth segmentation using
an evaluation metric.

We describe the metrics for validating medical segmentation in Table 6.1, which
were selected based on a literature review of papers in which medical volume seg-
mentations are evaluated. Only metrics with at least two references (papers) of use
are considered. These metrics were implemented in the EvaluateSegmentation1 tool
for evaluating medical image segmentation. Taha and Hanbury [4] provide defini-
tions and a comprehensive analysis of these metrics as well as guidelines for metric
selection based on the properties of the segmentations being evaluated and the seg-
mentation goal.

1EvaluateSegmentation is open source software for evaluating medical image segmentation avail-
able at https://github.com/visceral-project/EvaluateSegmentation.
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Based on the relations between the metrics, their nature and their definition, we
group them into six categories, namely:

• Spatial overlap based (Category 1): These are metrics defined based on the
spatial overlap between the two segmentations being compared, namely the four
basic overlap cardinalities—true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN).

• Volume based (Category 2): Metrics from this category are based on comparing
the volume of the segmented region, i.e. they aim to measure the number of voxels
segmented compared with the number of voxels in the true segmentation (ground
truth).

• Pair counting based (Category 3): Metrics from this category are based on
(n

2

)

tuples that represent all possible voxel pairs in the image. These tuples can be
grouped into four categories depending on where the voxels of each pair are placed
according to each of the segmentations being compared. These four groups are
Group I: if both voxels are placed in the same segment in both segmentations;
Group II: if both voxels are placed in the same segment in the first segmentation
but in different segments in the second; Group III: if both voxels are placed in the
same segment in the second segmentation but in different segments in the first; and
Group IV: if both voxels are placed in different segments in both segmentations.

• Information theoretic based (Category 4): Metrics of this category are based on
basic values of information theory such as entropy and mutual information.

• Probabilistic based (Category 5): These metrics consider the segmentations
being compared as two distributions. Under this consideration, the metrics are
defined based on the classic comparison methods of statistics of these distribu-
tions.

• Spatial distance based (Category 6): These metrics aim to summarize distances
between all pairs of voxels in the two segmentations being compared, i.e. they
provide a one-value measure that represents all pairwise distances.

The aim of this grouping is to enable a reasonable selection when a subset of metrics
is to be used, i.e. selecting metrics from different groups to avoid biased results.

For the evaluation of medical image segmentation in the VISCERAL Anatomy
Benchmarks, four metrics were selected from the 20 metrics presented in Table 6.1.
The following criteria were considered:

• The metrics were selected so that they cover as many different categories as pos-
sible from those categories described above.

• From those metrics that meet the criteria above, metrics were selected that have
the highest correlation with the rest of the metrics in each category.

Based on these criteria, the following metrics were considered for validating seg-
mentations in all the segmentation benchmarks of the VISCERAL project: the Dice
coefficient (DICE), the average distance (AVD), the interclass correlation (ICC) and
the adjusted Rand index (ARI).
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6.2.2 Metrics for Lesion Detection

The Detection Benchmark considered pathology instead of anatomy. The goal of the
benchmark is to automatically detect lesions in images acquired in clinical routine.

In the Detection Benchmark, an annotated lesion, Li, is represented by three points,
namely the centre of the lesion, Ci, and two other points, D1i and D2i, indicating the
diameter of the lesion. Participating algorithms are expected to provide per lesion
exactly one point, Pi, as near as possible to the centre of the lesion, Ci.

As mentioned above, it is expected that exactly one point per lesion is retrieved
by each participating algorithm. To penalize algorithms that may try to improve the
evaluation results by providing many points per lesion, all other points retrieved are
considered as false positives. However, annotators have looked at specific regions
of the volume, which means that one cannot be sure that other regions are free of
lesions. In other words, participating algorithms could detect lesions that were not
annotated. To avoid penalizing such lesions, binary masks are used for each volume,
which mask only those regions that were manually annotated. Retrieved points that
lie outside the mask are not considered in the confusion matrix.

The evaluation of the Detection Benchmark takes place at three different levels:

1. Lesion level: For each annotated lesion, two values are measured, namely

• Minimum Euclidean distance, min(di): For each annotated lesion, the dis-
tance to the nearest point retrieved by the participating algorithm is measured
as shown in Fig. 6.1. This distance is provided for each annotated lesion,
regardless of whether the lesion is considered as detected or not.

• Detection: A lesion is considered as detected if the point Pi, provided by the
algorithm, is within the sphere centred on Ci and has the diameter given by
the points D1i and D2i. In particular, a radius of the sphere, r, is considered,
which is equal to the distance between the centre Ci and the farthest of the
points D1i and D2i. That is, a lesion is detected iff min(d) < r. In Fig. 6.1,
the lesion is detected by the point P1i, but not by P2i.

Fig. 6.1 Schematic
representation of a lesion
annotated by the centre Ci
and the two diameter points
D1i and D2i. The points P1i
and P2i are retrieved by
participating algorithms. P1i
lies within the detection
sphere and is thus considered
as detected in contrast to the
point P2i
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2. Volume level: The confusion matrix (true positives, false positives, true negatives
and false negatives) is calculated per volume, based on the detection values cal-
culated at lesion level. From this confusion matrix, the precision (percentage of
correctly detected lesions) and the recall (percentage of total lesions detected)
are calculated for each volume and participating algorithm. As it is expected that
algorithms provide exactly one point per lesion, all further points provided by an
algorithm for the same lesion are considered as false positives.

3. Anatomical structure (organ) average level: To test whether the scores of lesion
detection are generally dependent on the anatomical structure in which the lesions
are, we calculate the score averages (the averages of the Euclidean distances
between lesion centres and detection points) over each organ.

6.3 Analysis of Fuzzy Segmentation Metrics

Sometimes, medical volume segmentations are fuzzy. Such segmentations can be
the result of averaging annotations done by different annotators. Fuzzy segmentation
can also be the result of fusing automatic segmentations, which results in a silver
corpus [2]. Depending on the approach used, automatic segmentations generated
by segmentation algorithms can also be fuzzy. In contrast to binary segmentation,
fuzzy segmentations are represented as memberships of voxels in classes (anatom-
ical structures). Instead of a binary association, a voxel is rather associated with a
class with a probability specifying the degree of membership to this class. Note that
binary segmentation is just a special case of fuzzy segmentation, where the degree
of memberships to a particular class can be either zero or one.

In this section, we analyse the impact of using fuzzy metrics in evaluating medical
image segmentation. This is done by analysing the rankings produced by binary and
fuzzy metrics of segmentations as well as segmentation algorithms. Segmentation
ranking here means ordering segmentations according to their similarities to their
corresponding ground truth segmentations. We analyse this from several sides trying
to answer the following questions: (1) considering the case when the segmentations
being evaluated/ranked are of mixed types (fuzzy and binary), which of the following
two evaluation methods is to be used: (a) evaluating both types using fuzzy metrics
based on the fact that binary segmentation is a special case of fuzzy segmentation,
or (b) cutting fuzzy segmentations at a particular threshold and then using binary
evaluation metrics? (2) The same question holds for the case when the ground truth
segmentations and the segmentations being evaluated are of different types?

In the following, we define some notations and settings to be used in this section.
Since binary segmentation is a special case of fuzzy segmentation, in which proba-
bilities are either 0 or 1, this implies that fuzzy metrics can be used to compare the
following combinations of segmentations, which we will denote as evaluation cases
throughout this section:
Case i: binary segmentation evaluated against binary ground truth
Case ii: binary segmentation evaluated against fuzzy ground truth
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Case iii: fuzzy segmentation evaluated against binary ground truth
Case iv: fuzzy segmentation evaluated against fuzzy ground truth

We define two types of evaluation that can be used for each of the evaluation cases
above. The first type is threshold evaluation. Here, the ground truth segmentation,
as well as the segmentation being evaluated, is cut at a threshold of 0.5 as a first step
and then compared using an evaluation metric. The second type is fuzzy evaluation
in which the segmentations are compared directly using fuzzy metrics.

The aim of this analysis is to infer how sensitive metrics are against image fuzzi-
fication. This analysis is motivated by the following: on the one hand, if there is
fuzzy ground truth available and the segmentations being evaluated are fuzzy as well
(Case iv), then metrics with high fuzzification sensitivity are required to distinguish
the accuracy of the systems. On the other hand, when binary segmentations are to
be compared with fuzzy ones (Case ii and Case iii), the question to be answered is,
which type of evaluation (threshold evaluation or fuzzy evaluation) should be used?

In the Anatomy 1 and 2 Benchmarks, only binary ground truth segmentation
has been used. Most of the participating algorithms provided binary segmentation,
i.e. from Case i. However, only one of the participating algorithms produced fuzzy
segmentations, i.e. Case iii. This algorithm is denoted as Algorithm A throughout this
section. To complete the analysis, the other cases (Case ii and Case iv) and different
types of segmentations are involved, which are described in the following:

• Binary ground truth (BGT): This is the official binary ground truth, used for vali-
dating the challenge.

• Synthetic fuzzy ground truth (FGT): Since there are only binary ground truth
segmentations available, the fuzzy ground truth was generated synthetically: from
each of the ground truth segmentations, a fuzzy variant was produced by smoothing
the corresponding ground truth using a mean filter.

• Fuzzy silver ground truth (FSGT): In another variant, a fuzzy silver corpus is
generated by fusing all the automatic segmentations.

• Binary silver ground truth (BSGT) [2]: The silver corpus was generated by fusing
all the automatic segmentations and then cutting them at threshold 0.5, i.e. BSGT
is FSGT cut at 0.5.

• Fuzzy automatic segmentation (FAS): These are the fuzzy segmentations produced
by one of the participating algorithms, namely Algorithm A.

• Binary automatic segmentations (BAS): These are the automatic segmentations
produced by all of the participating algorithms except Algorithm A.

Metrics considered in this analysis are those metrics in Table 6.1 that have fuzzy
implementation (column “Fuzzy”). More about the fuzzy implementation of the
metrics is available in [4].

In the remainder of this section, two experiments regarding fuzzy metrics are
presented. In Sect. 6.3.1, the sensitivity of metrics to fuzzification is investigated by
considering for each metric the discrepancy of similarities measured in two cases:
the first is when binary segmentations are compared, and the second is when fuzzy
representations of the same segmentation are compared. In Sect. 6.3.2, the impact
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of comparing segmentations of different types (fuzzy and binary) on the evaluation
results is investigated, e.g. it is tested whether using binary ground truth to validate
the fuzzy segmentation using fuzzy metrics has a negative impact on the evaluation
result compared with using a binary representation of the segmentations by cutting
them at a threshold of 0.5 as a prior step.

6.3.1 Metric Sensitivity Against Fuzzification

The aim of this experiment is to infer how invariant metrics are against fuzzification
of images. To this end, we compare each binary volume in the silver corpus (BSGT)
with its corresponding volume from the fuzzy silver corpus (FSGT) using each of
the 16 metrics for which fuzzy implementations exist. This results in 16 metric
values (similarities and distances) per comparison (segmentation pair), which are
then averaged over all pairs to get 16 average metric values, presented in Fig. 6.2.
The assumption is that metrics that measure less average discrepancy between the
binary volumes and their fuzzy variants are more invariant against fuzzification.

Results in Fig. 6.2 show that metrics are differently invariant against fuzzification,
that is, they have different capabilities in discovering changes due to fuzzification.
Metrics that include the true negatives (TN) in their definitions (e.g. ARI, ACU
and TNR) are in general less sensitive to fuzzification, in contrast to other metrics
not considering the TN, such as DICE, KAP and JAC. Also, one can observe that
the discrepancy metrics FPR, PBD and VOI are also invariant against fuzzification
because they provide very small distances (<< 0.02 voxel) between binary images
and their corresponding smoothed images.

Fig. 6.2 The average similarity between binary volumes and their corresponding fuzzy variant
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6.3.2 Ranking Systems Using Binary/Fuzzy Ground Truth

The aim of this experiment is to infer how system rankings, using metrics, change
when using fuzzy instead of binary ground truth in two cases: when the segmentations
being evaluated are binary (Case i and Case ii) and when they are fuzzy (Case iii and
Case iv). The segmentations that were used in this experiment are BGT, FGT, BAS
and FAS. Figures 6.3, 6.4 and 6.5 show the results of the experiment performed for
three selected metrics, namely Dice coefficient (DICE), interclass correlation (ICC)
and adjusted Rand index (ARI), respectively. The three metrics are selected to repre-
sent three different metric categories in Table 6.1 for which fuzzy implementations
exist. There are seven systems (Systems A to L) to be ranked according to their per-
formance, which is measured by average quality of the segmentations produced by
these systems, i.e. the metric values resulting from comparing these segmentations
with the corresponding ground truth. The averages are built separately for each of
the seven organs (left kidney, right kidney, liver, left lung, right lung, left psoas major
muscle and right psoas major muscle), which means the systems are ranked for each
organ separately. The participating algorithms B to L produce only binary volumes,
whereas Algorithm A produces only fuzzy segmentations.

The ranking is performed in three different configurations: in the first, which we
denote by “binary GT”, the ground truth is binary (BGT) and the segmentations are
unchanged (fuzzy for Algorithm A and binary otherwise). This covers Case i and Case
iii. In the second configuration, which we denote by “fuzzy GT”, the ground truth
is fuzzy (FGT) and the segmentations are unchanged. This covers Case ii and Case
iv. In the third configuration, denoted by “threshold at 0.5”, the fuzzy segmentations
of Algorithm A are cut at a 0.5 threshold to get binary representations. The other
binary segmentations and the ground truth are unchanged; thus, all images involved in
this case are binary. In the first and second configurations, fuzzy evaluation metrics
are used, whereas in the third configuration, binary evaluation metrics (threshold
evaluation) are used.

In the figures, we included standard deviation columns and a standard deviation
row to indicate the discrepancy (deviation) between the algorithms as well as between
the three cases.

The first observation is regarding Algorithm A, which produces fuzzy segmenta-
tions. Here, Algorithm A has the best ranking when the corresponding segmentations
are evaluated using a 0.5 threshold or against a fuzzy ground truth, but it has a con-
siderable disadvantage when using the binary ground truth. Thus, it is strongly rec-
ommended to use a threshold option when the segmentations/ground truth is mixed
in terms of binary and fuzzy modes. The second observation is that the sensitivity
in the resulting rankings is dependent on the deviations between the average scores
of the systems; the lower the deviation, the more the rankings change between the
three cases. That is, if the algorithms are similar in their performance, then using a
binary instead of a fuzzy ground truth, or the opposite, has a considerable impact on
the system ranking. For example, the average scores of the systems have the highest
deviation with kidney and liver, so the rankings of the systems are exactly the same

www.dbooks.org

https://www.dbooks.org/


96 A.A. Taha and A. Hanbury

Fig. 6.3 a Validating segmentations using the DICE in three different combinations of binary/fuzzy
segmentations. The standard deviations of the scores are to show the quality variance between the
algorithms and the score variance between the combinations. b The resulting system ranking. c
Score details of the right lung as a selected case. d The resulting system ranking for the right lung
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Fig. 6.4 The results of the same experiment as in Fig. 6.3, but performed using the interclass
correlation (ICC) as an evaluation metric

in the three cases. On the contrary, system average scores have low deviations with
lungs and psoas major muscles; therefore, the rankings of the systems considerably
change between the three cases. We recommend therefore to take the score deviations
into account when there are mixed fuzzy and binary segmentations/ground truth.
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Fig. 6.5 The results of the same experiment as in Fig. 6.3, but performed using the adjusted Rand
index (ARI) as an evaluation metric
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6.4 Analysis of Metrics Using Manual Rankings

In this section, we provide an analysis of the metrics based on the two manual rankings
of segmentations, done by two medical experts. Manual rankings provide a reference
for judging metrics and evaluation methods. That is, when evaluating segmentations
by comparing them with the corresponding ground truth using distance or similarity
metrics, one gets scores denoting how similar or different the segmentations are
from the ground truth. However, since different metrics provide different scores,
which produce different rankings, the aim of this analysis is to find the metric(s)
with the highest correlation with the manual rankings. Another aim of this analysis
is to validate the selection of the subset of four metrics from Table 6.1 used for the
evaluation of medical image segmentation in the VISCERAL Anatomy 1, 2 and 3
Benchmarks.

In Sect. 6.4.1, we describe the dataset that has been manually ranked and the
ranking methodology used. We then analyse the correlation between the manual
ranking and the rankings produced by metrics: in Sect. 6.4.2, the ranking is done at
segmentation level, while in Sect. 6.4.3, the ranking is done at system level. Finally,
we discuss the results of the manual ranking analysis in Sect. 6.4.4.

6.4.1 Dataset

To provide a manual ranking, 483 segmentations were selected by medical experts
from the output of the Anatomy 2 Benchmark participant algorithms. This segmen-
tation set has the following properties:

• The segmentations correspond to six organs/structures, namely liver, pancreas,
urinary bladder, aorta, left lung and right kidney. These structures were selected
by medical experts so that they cover different sizes, shapes and boundary com-
plexities.

• The segmentations correspond to 110 different volumes each representing a med-
ical case, where a medical case is defined as an anatomical structure in a particular
ground truth volume (e.g. the liver in each ground truth is considered a different
medical case).

• The segmentations were produced by seven participating algorithms. However,
different volumes (medical cases) were segmented by different numbers of algo-
rithms. This means that for some volumes, seven segmentations are available, but
for other volumes, there are fewer than seven. For the ranking analysis, only those
volumes were considered for which at least three segmentations are available.
These are only 92 volumes.

The segmentations described above have been ranked by two different radiologists
separately, resulting in two different rankings, which we call Manual Ranking 1
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Table 6.2 Criteria for the subjective scoring system used for manual ranking

Score Ranking criteria

1 Severe deviation to other organs, no connection with expected organ segmentation

2 Evident crossing of organ border, organ parts missing from segmentation

3 Irregular segmentation with respect to manual segmentation guidelines

4 Minor deviations from segmentation guidelines

5 Optimal segmentation, organ borders and adherence to segmentation guidelines

(MRK1) and Manual Ranking 2 (MRK2). The ranking was performed in a double-
blind way. The ranking criteria in Table 6.2 have been considered.

In each of the manual rankings, all segmentations corresponding to the same
medical case were considered as one group, within which these segmentations are
ranked using the criteria in Table 6.2.

Note that according to this ranking system, different segmentations may have the
same rank. For example, it is common with manual ranking that five segmentations
are ranked with 1, 2, 2, 2, 3, which is not common in case of ranking based on metric
values except if the metric values are discretized.

In order to test how the two manual rankers agree, the Pearson correlation coeffi-
cient between the two manual rankings was measured. The correlation between the
manual rankings, RNK1 and RNK1, is 0.62. This is a moderate correlation, which
means that there is a non-negligible discrepancy between the manual rankings.

6.4.2 Manual Versus Metric Rankings at Segmentation Level

We analyse the correlation between rankings of groups of segmentations produced
by each of the metrics in Table 6.1 and rankings of the same segmentations based
on the manual rankings (MRK1 and MRK2). This analysis is to infer which metrics
have the most correlation with the manual ranking.

The rankings in this experiment are at segmentation level, which means that
individual segmentations corresponding to the same medical case are ranked. To
this end, the segmentations were grouped so that each group consists of a medical
case and the corresponding segmentations. The segmentations in each group are then
ranked using each of the metrics by comparing each of the segmentations with its
corresponding ground truth. The segmentation with the lowest match is given the
lowest rank, and the best match is given the highest rank. This is in order to get a
ranking that is comparable with the manual ranking.

Table 6.3 shows the correlations between each of the metrics presented in Table
6.1 and each of the manual rankings, RNK1 and RNK2. The metrics are sorted
according to the correlation with RNK1. Note that the highest correlation value (0.64)
is a moderate correlation, and many of the metrics have weak correlation. This is
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Table 6.3 Pearson correlation coefficient (CORR.) between each of the metrics presented in
Table 6.1 and the manual rankings MRK1 and MRK2 at segmentation level. The metrics are sorted
according to the decreasing correlation

Manual Ranking 1 (MRNK 1) Manual Ranking 2 (MRNK 2)

Metric CORR. Metric CORR.

Average distance AVD 0.57 Rand index RI 0.56

Adjusted Rand index ARI 0.54 Variation of information VOI 0.56

Dice DICE 0.54 Average distance AVD 0.56

F-measure FMS 0.54 Accuracy ACU 0.56

Interclass correlation ICC 0.54 Global consistency error GCE 0.55

Cohen’s kappa KAP 0.54 Adjusted Rand index ARI 0.52

Probabilistic distance PBD 0.54 Dice DICE 0.52

Rand index RI 0.54 F-measure FMS 0.52

Jaccard index JAC 0.54 Interclass correlation ICC 0.52

Accuracy ACU 0.53 Cohen’s kappa KAP 0.52

Variation of information VOI 0.53 Jaccard index JAC 0.52

Global consistency error GCE 0.53 Probabilistic distance PBD 0.51

Mutual information MI 0.47 Mutual information MI 0.46

Mahalanobis distance MHD 0.44 Mahalanobis distance MHD 0.41

Hausdorff distance HD 0.43 Hausdorff distance HD 0.40

Area under ROC curve AUC 0.39 Positive predictive value PPR 0.38

True-positive rate
(sensitivity)

TPR 0.39 Area under ROC curve AUC 0.36

Volumetric similarity VS 0.27 True-positive rate
(sensitivity)

TPR 0.36

Positive predictive value PPR 0.27 Volumetric similarity VS 0.30

Fallout FPR 0.17 Fallout FPR 0.26

True-negative rate
(specificity)

TNR 0.17 True-negative rate
(specificity)

TNR 0.26

expected, since ranking at segmentation level using the metrics considers very small
changes, which do not necessarily reflect an improvement, e.g. differences caused
by chance. For this reason, we provide another correlation analysis at system level,
in Sect. 6.4.3, that uses significance testing to decide whether one system has better
performance than another.

6.4.3 Manual Versus Metric Rankings at System Level

In this experiment, the evaluation metrics in Table 6.1 are validated by considering the
system (algorithm) rankings produced by these metrics. In contrast to the ranking at
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segmentation level in Sect. 6.4.2, here the systems are ranked based on averages of the
metrics of segmentations produced by these systems. In particular, for each metric, (i)
we build a system ranking by comparing metric values of the segmentations produced
by the systems using significance testing, and (ii) we calculate the correlation between
this ranking and a system ranking based on the manual ranks. The resulting correlation
for each metric is used as a quality measure of the metric, i.e. the best metrics are
those having the highest correlation with the manual ranking. In the remainder of
this section, the experiment is described and discussed in detail.

Validating a particular metric using a manual ranking goes in the following steps:
Separately for each organ, the average of the metric values for each system is calcu-
lated, i.e. the metric values of all segmentations corresponding to a particular organ
and produced by a particular system are averaged. We denote the resulting average
by the system score for the organ considered. This system score is used to build
a system ranking as discussed below. Note that although each organ is considered
separately, it is different from the experiment in Sect. 6.4.2 (at segmentation level)
because here we are averaging the metric values of more than one medical case, all
of them corresponding to the same organ, but in different volumes.

Based on these system scores, the systems are ranked using a significance test (the
sign test) to ensure that the difference between the system scores is significant. To this
end, the systems are sorted according to their average scores ascending. Then, the
ranks are given as follows: starting with the first system S1 having the lowest system
score, it is given the rank 1. Then, for each next system Si, if there is a significant
difference to the previous system Si−1, according to a sign test, then Si is assigned
the next rank; otherwise, it is assigned the same rank as Si−1.

Now, we want to judge the resulting ranking using each of the manual rankings
as ground truth. However, the manual rankings available are at segmentation level.
Therefore, the manual ranks are averaged analogously over all segmentations pro-
duced by a particular system corresponding to the organ considered. The resulting
averages of the manual ranks are used to build a ground truth system ranking using
the same method as with the metric ranking (i.e. significance sign test). Now, the
correlation between the two rankings (system ranking based on the metrics and sys-
tem ranking based on the manual ranks) is calculated. Since each organ is considered
separately, we get a correlation value per organ for each metric, which are averaged
to get the overall correlation of the metric.

Table 6.4 shows, for each metric, the overall correlation (correlation averaged
over all organs). The same experiment is performed separately for each of the manual
rankings (MNRK 1 and MNRK 2).

6.4.4 Discussion of the Manual Ranking Analysis

The following conclusions can be inferred from the results of the analysis using the
manual rankings (results presented in Tables 6.3 and 6.4).
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Table 6.4 Pearson correlation coefficient between each of the metrics presented in Table 6.1 and
the manual rankings MRK1 and MRK2 at system level. The metrics are sorted according to the
decreasing correlation

Manual Ranking 1 (MNRK 1) Manual Ranking 2 (MNRK 2)

Metric CORR. Metric CORR.

Volumetric similarity VS 0.81 Mahalanobis distance MHD 0.75

Jaccard index JAC 0.81 Hausdorff distance HD 0.66

Dice DICE 0.81 Adjusted Rand index ARI 0.65

F-measure FMS 0.81 Dice DICE 0.64

Interclass correlation ICC 0.81 F-measure FMS 0.64

Cohen’s kappa KAP 0.81 Interclass correlation ICC 0.64

Adjusted Rand index ARI 0.80 Cohen’s kappa KAP 0.64

Area under ROC curve AUC 0.72 Jaccard index JAC 0.62

True-negative rate
(specificity)

TNR 0.72 Accuracy ACU 0.56

Accuracy ACU 0.71 Global consistency error GCE 0.56

Global consistency error GCE 0.71 Rand index RI 0.56

Rand index RI 0.71 Variation of information VOI 0.56

Variation of information VOI 0.71 Average distance AVD 0.54

Positive predictive value PPR 0.64 Positive predictive value PPR 0.53

Mahalanobis distance MHD 0.47 Fallout FPR 0.48

Probabilistic distance PBD 0.41 True-positive rate
(sensitivity)

TPR 0.48

Average distance AVD 0.39 Volumetric similarity VS 0.47

Hausdorff distance HD 0.38 Probabilistic distance PBD 0.36

Fallout FPR 0.23 Area under ROC curve AUC 0.34

True-positive rate
(sensitivity)

TPR 0.23 True-negative rate
(specificity)

TNR 0.34

Mutual information MI 0.19 Mutual information MI 0.14

Table 6.4 shows the correlations at system level that are significantly stronger
than the correlations of rankings at segmentation level (Table 6.3). Actually, this is
intuitive because the errors (differences from the manual ranking) in the ranking at
segmentation level are higher than in rankings at system level. This stems from the
fact that ranking single segmentations using metrics is sensitive to small differences in
the metrics, i.e. a segmentation with a higher similarity is ranked as better, regardless
of how small the similarity difference is. This is in contrast to manual rankings,
where small differences in the quality are ignored. Using significance testing in
ranking at system level solves the problem, since the ranking becomes similar to
the manual ranking: only systems that have significant performance difference are
assigned different rankings, otherwise the same rank. The results of this experiment
show the necessity of using significance tests for ranking.
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The four metrics selected for evaluating segmentation in the VISCERAL project,
namely the Dice coefficient (DICE), the interclass correlation (ICC), the average
Hausdorff distance (AVD) and the adjusted Rand index (ARI), are in general (except
for the AVG in Ranking 1) ranked at the top, which means they have strong correlation
with expert ranking. These four metrics have been selected from the 20 metrics based
on a correlation analysis on brain tumour segmentations from the BRATS challenge
[3], using the automatic metric selection method proposed in [5].

One observation is interesting for a further analysis, namely the differences in
how the metrics are placed in Table 6.4 for MNRK 1 and MNRK 2. For example,
the volumetric similarity (VS) is placed at the top for MNRK 1, but at the bottom in
MNRK 2. This is also the case for many other metrics. This can be explained by the
weak correlation between the two rankers, namely 0.62 (Sect. 6.4.1). However, these
differences should be related to the criteria considered in the manual ranking by each
of the rankers, i.e. the subjective rating of the different qualities of the segmentations.

6.5 Conclusion

We provide an overview of 20 evaluation metrics for medical volume segmentation
that have been implemented in the evaluation tool EvaluateSegmentation. From these
metrics, we select four metrics to be used for evaluating the segmentation tasks of
the VISCERAL benchmarks. We show in an analysis on synthetic fuzzy segmenta-
tions, generated using smoothing functions, that using binary ground truth to evaluate
fuzzy segmentations or the opposite (fuzzy ground truth to evaluate binary segmen-
tations) has a considerable impact on the system ranking, if the systems are similar in
their performance. Therefore, it is strongly recommended to always evaluate using
a threshold of 0.5 if the segmentations/ground truth is mixed in terms of fuzzy and
binary modes. Furthermore, we show that different metrics are differently invariant
against fuzzification, i.e. differently sensitive to the combinations of fuzzy/binary vol-
umes. In an analysis using manual rankings provided by two radiologists, compared
to the rankings produced by the 20 evaluation metrics, we show that the correlation
between metric rankings and manual rankings is significantly stronger when using
significance tests, since small performance differences are mostly ignored by manual
rankers. We also provide an evaluation methodology and metrics for evaluating the
VISCERAL Detection Benchmark.
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Chapter 7
VISCERAL Anatomy Benchmarks
for Organ Segmentation and Landmark
Localization: Tasks and Results

Orcun Goksel and Antonio Foncubierta-Rodríguez

Abstract While a growing number of benchmark studies compare the performance
of algorithms for automated organ segmentation or lesion detection in images with
restricted fields of view, few efforts have been made so far towards benchmarking
these and related routines for the automated identification of bones, inner organs
and relevant substructures visible in an image volume of the abdomen, the trunk
or the whole body. The VISCERAL project has organized a series of benchmark
editions designed for segmentation and landmark localization in medical images of
multiple modalities, resolutions and fields of view acquired during daily clinical
routine work. Participating groups are provided with data and computing resources
on a cloud-based framework, where they can develop and test their algorithms, the
submitted executables of which are then run and evaluated on unseen test data by the
VISCERAL organizers.

7.1 Introduction

While a growing number of benchmark studies compare the performance of algo-
rithms for automated organ segmentation or lesion detection in images with restricted
fields of view, few efforts have been made so far towards benchmarking these and
related routines for the automated identification of bones, inner organs and rele-
vant substructures visible in an image volume of the abdomen, the trunk or even the
whole body. The VISual Concept Extraction challenge in RAdioLogy (VISCERAL1)
project established a cloud-based infrastructure for the evaluation of medical image
analysis techniques in computed tomography (CT) and magnetic resonance (MR)
imaging. The aim of VISCERAL was to create a single, large and multipurpose

1http://www.visceral.eu.
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medical image dataset and infrastructure, on which research groups can test their
specific applications and solutions. The Anatomy Benchmark of the VISCERAL
project with its two tasks, landmark localization and segmentation of bones, inner
organs and other relevant structures, has a series of cycles. Anatomy1 and Anatomy2
(where the latter includes an ISBI challenge as an early teaser) Benchmarks have
been completed, and the last Benchmark Anatomy3 is an ongoing open benchmark,
to which any research group can still submit new methods for their evaluation to be
included in the online leader board. In this chapter, the Anatomy Benchmark tasks
and results are described.

7.2 Data and Data Format

This section gives a brief overview of the data used in the Anatomy Benchmarks, as
well as a discussion of the choice of data format for these Benchmarks.

7.2.1 Data

The datasets used for the Benchmarks have been acquired during daily clinical rou-
tine work. Whole-body MRI and CT scans or examinations of the whole trunk are
used. Furthermore, imaging of the abdomen in MRI and contrast-enhanced CT for
oncological staging purposes are also included in the benchmark dataset, since there
is a higher resolution for segmentation especially of smaller inner organs, such as the
adrenal glands. Accordingly, these four image-anatomy combinations are available:

1. Abdomen/thorax contrast-enhanced CT (ThAb/CTce)
2. Whole-body CT (Wb/CT)
3. Whole-body MR T1 (Wb/MRT1)
4. Abdomen contrast-enhanced fat-saturated MR T1 (Ab/MRT1cefs).

We call the image data together with its manual annotations as the Gold Corpus;
this is in contrast to Silver Corpus that was generated by the VISCERAL consortium
by fusing the results of several automatic methods to (approximately and automat-
ically) annotate a large set of images. The Gold Corpus is the reference annotation
to train and evaluate the algorithms for segmenting and localizing anatomical struc-
tures. The Anatomy Benchmarks focus on labelling large-field-of-view 3D medical
imaging data. For the Gold Corpus, manual annotations were performed and the
quality was checked by trained and experienced radiologists. The Gold Corpus was
built up during the cycle of Anatomy Benchmarks, as described below. The final
Gold Corpus is described in detail in Chap. 5.
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7.2.2 Gold Corpus: Training Set

The training Gold Corpus comprises 28 fully annotated volumes in Anatomy1 (seg-
mentations of organs/structures and landmarks). Although the MR annotations were
only manually performed in one MR sequence (T1-weighted), the T2-weighted MR
volumes from the same patients were also made available to the participants in
the training set. In total, 42 volumes were available to the participants during the
Anatomy1 benchmark. For Anatomy2, 80 volumes were fully annotated and 120
volumes were in total distributed to the participants. The total volumes included the
corresponding 40 MR T2-weighted volumes not annotated for each annotated MR
T1-weighted volume. For the ISBI VISCERAL Challenge that took place during
the Anatomy2 Benchmark, a subset of the Anatomy2 training set was available to
participants (60 annotated volumes, 90 volumes distributed in total). Once the ISBI
Challenge concluded, the test set used for this challenge was added to the Anatomy2
training set. Table 7.1 provides a summary of the volumes annotated for each of the
Benchmarks from the different modalities and regions.

Since not all structures are visible in all images, the total number of annotations
are not a simple multiple of images and structures; e.g. for Anatomy2-ISBI, for 6
volumes, there are only 946 annotated segmentations (instead of 60 × 20=1200). As
an example, Fig. 7.1 shows a breakdown of structures and landmarks segmented for
the Anatomy2-ISBI challenge. Similarly, Fig. 7.2 shows the breakdown of segmented
structures for Anatomy3.

Table 7.1 Summary of the training Gold Corpus volumes annotated for each of the Benchmarks

Benchmark Vol. Wb/CT ThAb/
CTce

Ab/
MRT1cefs

Wb/MRT1 Segmentations Landmarks

Anatomy1 42 7 7 7 7 491 42
volumes

Anatomy2
ISBI

90 15 15 15 15 946 60
volumes

Anatomy2
Main

120 20 20 20 20 1295 80
volumes

Anatomy3 120 20 20 20 20 1295 N/A

Fig. 7.1 Number of segmented structures (left) and annotated landmarks (right) for Anatomy2-
ISBI
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Fig. 7.2 Number of segmented structures per image modality for Anatomy3

Table 7.2 Summary of test Gold Corpus volumes annotated for each of the Benchmarks

Benchmark Vol. Wb/CT ThAb/
Ctce

Ab/
MRT1ce

Wb/MRT1 Structures Landmarks

Anatomy1 48 12 12 12 12 761 48 volumes

Anatomy2
ISBI

20 5 5 5 5 305 20 volumes

Anatomy2
Main

40 10 10 10 10 643 40 volumes

Anatomy3 40 10 10 10 10 643 N/A

7.2.3 Gold Corpus: Test Set

Overall, 48 volumes were included in the Gold Corpus test set for Anatomy1 (12 CT
whole-body datasets, 12 CT contrast-enhanced Thorax/Abdomen datasets, 12 MRT1
whole body, 12 MRT1 contrast-enhanced Abdomen). For Anatomy2 and Anatomy3,
40 volumes were evaluated in the Gold Corpus test set, as summarized in Table 7.2.

7.2.4 Data Format

Clinical medical imaging is dominated by the Digital Imaging and Communications
in Medicine (DICOM) file format. It is ubiquitous in hospital image management sys-
tems such as picture archiving and communication systems (PACS), and its standard
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has facilitated clinical integration and widespread deployment of medical informatics
frameworks substantially. Notably, the DICOM standard was developed in a time of
significantly different information technology environments than we typically face
today. One example is the slower data transfer times that made the splitting of large
amounts of data sensible, which is no more required considering current data storage
and transfer capabilities.

In the VISCERAL project, we revisited the choice between image format alter-
natives and decided for the Neuroimaging Informatics Technology Initiative (NIfTI)
format. The NIfTI format was established by the NIfTI Data Format Working Group
(NIfTI-DFWG) as part of an effort to enhance and disseminate neuroimaging infor-
matics tools. NIfTI-1 was adapted from the ANALYZE 7.5 format, and NIfTI-2 was
updated to support 64 bits. Our reasons for choosing NIfTI were as follows:

1. NIfTI files are easier to handle and to exchange, since each imaging volume (or
volume+time information) is stored as a single self-contained file (in contrast
to DICOM format), together with the header information for dimensions and
coordinate transformations that establish the link between image and physical
spaces.

2. In computer science research scenarios, data are typically managed by individ-
uals and not by central image management systems such as PACS in hospitals.
Dealing with a single file (instead of hundreds of files) facilitates file manage-
ment considerably, since file naming allows for a straightforward identification
of files—in contrast to DICOM directory information.

3. Transferring and storing of these compact large files (which also support addi-
tional ZIP compression) is typically more efficient in newer file systems.

4. Read and write functionality for NIfTI files exists for most of the popular com-
puting frameworks, such as MATLAB, Python and R.

5. Despite the relative ease of reading DICOM files, writing them for annotations
is significantly complicated and prone to compatibility errors, and it is a major
limitation for the development environments that can be used.

Feedback from benchmark participants also corroborated these points; data trans-
fer was reported to be swift and easy to manage, and no complaints were raised on
the choice of data format.

7.3 Tasks

There were two tasks in the Anatomy Benchmarks:

1. Segmentation of anatomical structures (lung, liver, kidney, …) in the given image
modalities, where participants could choose which organs to segment, and

2. Localization of anatomical landmarks.

Considering semi-automatic algorithms that can segment organs accurately only
once they are localized (e.g. given a seed point), we also established a third challenge
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category, the participants of which were provided with initialization information as
organ centroids (computed from the manual segmentations of the test set). We call this
the half-run segmentation segmentation task, as opposed to the full-run segmentation
task, where no initialization is provided. No groups have participated in the half-run
segmentation task.

During the Training Phase (Fig. 7.3), the training image data together with anno-
tations for the benchmark tasks above were made available to all participants. Par-
ticipants then developed algorithms on the provided virtual machines (VM) and
submitted their executables tailored for our predefined input–output convention. In
the Test Phase, we took over the VM to run the participant algorithms, where the
algorithms (not the participants) were given access to the test data (Fig. 7.4). This
is fundamentally different from typical benchmark set-ups, where the participants

Fig. 7.3 During the development phase, annotated data are available to the participants

Fig. 7.4 During the evaluation phase, participant algorithms perform localization and/or segmen-
tation tasks and are evaluated against Gold Corpus test set that is never released publicly
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themselves are given the test images, where it becomes infeasible to control how
much manual participant input is provided. Such release of test data also limits its
repeatable use in further benchmarks or for evaluating future participants.

7.4 Results

This section presents the results of the Anatomy1, Anatomy2 (intermediate and final)
and Anatomy3 Benchmarks.

7.4.1 Anatomy1

For the first Anatomy Benchmark, the following seven participants submitted algo-
rithms, with their scores shown in Tables 7.3 and 7.4:

Dabbah et al. (P1A1) use a voxel-level trained solution based on classification
forests for landmark detection. Datasets are first aligned and downsampled to an
isotropic resolution of 4 mm per voxel. Features are the Hounsfield units at chosen
random offsets from each landmark.

Gass et al. (P2A1) use multiatlas-based techniques for both segmentation and
landmark detection, focusing on modality- and anatomy-independent techniques
to be applied in a wide range of image modalities, in contrast to methods cus-
tomized to a specific anatomy or modality. For segmentation, label propagation
from several atlases to a target image is proposed. For landmark localization,
consensus-based fusion of location estimates from several atlases identified by a
customized template-matching approach is used.

Huang et al. (P3A1) propose an automatic and robust coarse-to-fine liver image
segmentation method. The workflow can be divided into four steps: liver local-
ization, shape model fitting, appearance profile fitting and free-form deformation.

Jiménez del Toro et al. (P4A1) use a multiatlas-based segmentation approach.
Multiple atlases identify the location of one or more structures in the patient
volume. The label volumes of the atlases are transformed using the image registra-
tions of each atlas to the target volume. A stochastic gradient descent optimization
is performed for the desired metric during the process.

Kechichian et al. (P5A1) present an automatic multiple organ segmentation
method based on a multilabel graph cuts using prior information of organ spa-
tial relationships and shape. The former is derived from shortest-path pairwise
constraints defined on a graph model of structure adjacency relations, and the
latter is represented by probabilistic organ atlases learned from a training dataset.

Spanier et al. (P6A1) describe a new generic method for the automatic rule-based
segmentation of multiple organs from 3D CT scans. The rules determine the order
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Table 7.4 Anatomy1 landmark localization scores as average Euclidean distances in ThAb/CTce
and Ab/MRT1cefs images

Avg Error [mm] CTce MRce

P1A1 P2A1 P2A1

Aorta bifurcation 16.34 33.65 48.65

Aortic arch 9.70 16.05 -

Left clavicle 18.50 8.21 -

Right clavicle 20.65 9.36 -

Left crista iliaca 11.19 9.50 74.6

Right crista iliaca 7.80 9.35 55.92

Symphysis 7.13 9.38 52.25

Trachea bifurcation 3.90 4.51 -

Left trochanter major 7.44 4.74 66.69

Right trochanter major 7.03 4.17 77.79

Left trochanter minor 9.88 6.32 98.11

Right trochanter major 8.88 5.41 39.63

in which the organs are isolated and detected from simple to difficult. Following
the isolation of the body, first respiratory structures are segmented, the trachea
and the left/right lungs. Next, the organs with high blood content are segmented:
the spleen, the liver and the left/right kidneys.

Wang et al. (P7A1) propose multiorgan segmentation using fast model-based level
set method and hierarchical shape priors. Segmentation starts with stripping the
body of skin and subcutaneous fat using threshold-based level set methods. After
registering the image to be processed against a standard subject picked from the
training datasets, a series of model-based level set segmentation operations are
carried out guided by hierarchical shape priors.

7.4.2 Anatomy2: Intermediate Results at the ISBI Challenge

Participants in Anatomy2 were given the opportunity to submit intermediate results
for the Anatomy Challenge co-located with the IEEE International Symposium in
Biomedical Imaging (ISBI) 2014. Five participants submitted their algorithms, with
their scores shown in Tables 7.5 and 7.6. Methods used by participating groups are
described in these references:

Gass et al. (P1a2) Segmentation and Landmark Localization Based on Multiple
Atlases [3].

Huang et al. (P2a2) Automatic Liver Segmentation using Multiple Prior Knowl-
edge Models and Free-Form Deformation [6].

Jiménez del Toro et al. (P3a2) Hierarchical Multistructure Segmentation Guided
by Anatomical Correlations [8].
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Spanier et al. (P4a2) Rule-based ventral cavity multiorgan automatic segmenta-
tion in CT scans [14].

Wang et al. (P5a2) Automatic multiorgan segmentation using fast model-based
level set method and hierarchical shape priors [16].

7.4.3 Anatomy2: Main Benchmark

Eight groups submitted algorithms for the final Anatomy2 Benchmark, with scores
reported in Tables 7.7 and 7.8. Approaches used are described in the following
references:

Gass et al. (P1A2) submitted a multiatlas-based segmentation and landmark local-
isation method in images with large field of view [2].

Jiménez del Toro et al. (P2A2) submitted an algorithm based on hierarchical
multiatlas-based segmentation for anatomical structures [7].

Kéchichian et al. (P3A2) submitted a generic multilabel graph cut method, which
uses location likelihood and spatial relationships between organs [12].

Li et al. (P4A2) submitted an automatic and robust coarse-to-fine liver image seg-
mentation method [13].

Mai et al. (P5A2) submitted an approach for landmark detection in volumetric
images based on the popular Histograms of Oriented Gradients Descriptor (HOG)
and linear support vector machines (SVM).

Spanier et al. (P6A2) submitted a rule-based algorithm [14, 15].
Vincent et al. (P7A2) submitted a specific, automatic model-based framework for

segmenting the aorta, kidneys, liver, lungs and the psoas major muscles in Wb/CT
and ThAb/CTce images.

Wang et al. (P8A2) submitted the method described in [16].

7.4.4 Anatomy3

Five participants submitted algorithms to the Anatomy3 Benchmark before an initial
kick-off deadline, with their scores reported in Table 7.9. Results from subsequent
and more recent submissions can be found in the online leaderboard.2 The approaches
submitted are described in the following references:

2http://visceral.eu:8080/register/Leaderboard.xhtml.

www.dbooks.org
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Table 7.6 Anatomy2-ISBI challenge landmark localization scores as average Euclidean distances
in Wb/CT, ThAb/CTce, Wb/MRT1 and Ab/MRT1cefs images

Avg Error [mm] CT CTce MR MRce

P1a2 P1a2 P1a2 P1a2

Aorta bifurcation 19.05 36.22 252.49 61.28

Aortic arch 17.68 16.18 43.67 -

Left clavicle 9.27 16.26 13.05 -

Right clavicle 5.69 32.35 23.31 -

Left crista iliaca 7.7 13.93 23.29 88.92

Right crista iliaca 6.12 10.38 19.21 57.65

Symphysis 8.01 15.59 122.45 50.86

Trachea bifurcation 3.99 3.35 61.2 -

Left trochanter major 34.37 37.84 29.57 30.49

Right trochanter major 36.18 38.31 44.4 59.81

Left trochanter minor 5.16 11.22 18.51 28.54

Right trochanter major 4.06 12.64 62.4 34.84

Dicente Cid et al. (P1A3) participated with a fully automatic method for the seg-
mentation of the lung volumes in CT [1].

He et al. (P2A3) submitted an automatic multiorgan segmentation based on multi-
boost learning and statistical shape model search [4].

Heinrich et al. (P3A3) submitted a discrete medical image registration framework
to multiorgan segmentation in different modalities [5].

Jiménez del Toro et al. (P4A3) contributed a hierarchical multiatlas multi
structure segmentation approach guided by anatomical correlations (AnatSeg-
Gspac) [9].

Kahl et al. (P5A3) proposed a method for multiorgan segmentation in whole-body
CT images based on a multiatlas approach [11].

7.4.5 Discussion

Participation in the various editions of the Anatomy Benchmarks allows us to answer
questions regarding popularity of tasks and image modalities, potentially also relating
to the (perceived) difficulty of each task/modality. Specifically, the popular modal-
ity in Anatomy1 and Anatomy2 editions was contrast-enhanced CT, followed by
standard CT. Magnetic resonance imaging did not attract more than a single partic-
ipant for the segmentation tasks, and only in the Anatomy2 landmark localization
task, was able to attract two participants, potentially due to the relative difficulty
of automatic analysis using this modality. Some algorithms were organ or modal-
ity specific, so were only submitted for that anatomy, whereas other methods were

www.dbooks.org
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Table 7.8 Anatomy2 Benchmark landmark localization scores as average Euclidean distances in
Wb/CT, ThAb/CTce, Wb/MRT1 and Ab/MRT1cefs images

Avg Error [mm] CT CTce MR MRce

P1A2 P5A2 P1A2 P5A2 P1A2 P5A2 P1A2 P5A2

Aorta bifurcation 35.48 79.44 - 5.83 91.83 429.13 56 17.06

Aortic arch 14.67 8.55 - 10.98 37.12 10.78 - -

Aortic valve 54.25 7.73 - 6.48 189.02 117.64 192.35 -

Left bronchus 6.98 2.81 - 6.12 74.45 850.85 - -

Right bronchus 16.85 3.34 - 3.87 95.08 116.19 - -

Cervical vertebra 2 36.43 9.21 - - 16.54 14.11 - -

Cervical vertebra 3 17.82 12.41 - - 127.65 11.21 - -

Cervical vertebra 4 21.29 8.36 - - 282.72 15.15 - -

Cervical vertebra 5 11.33 11.04 - - 127.35 15.32 - -

Cervical vertebra 6 7.63 11.94 - - 125.01 11.74 - -

Cervical vertebra 7 9.56 15.77 - 16.7 328.86 14.63 - -

Left clavicle 5.86 5.09 - 5.53 9.81 12.53 - -

Right clavicle 11.09 11.27 - 8.25 17.56 19.07 - -

Coronaria 20.33 10.34 - 8.16 - - - -

Left crista iliaca 10.63 13.27 - 13.77 59.92 63.94 68.54 64.85

Right crista iliaca 10.72 11.31 - 14.84 19.28 13.44 37.35 38.16

Left eye 81.68 3.31 - - 193.16 12.01 - -

Right eye 75.66 2.82 - - 192.99 1.99 - -

Left ischiadicum 10 3.31 - 14.18 46.87 11.24 60.01 35.89

Right ischiadicum 10.08 3.89 - 13.7 40.57 9.52 70.15 35.59

Lumbar vertebra 1 33.9 24.3 - 14.62 40.67 20.28 49.57 16.38

Lumbar vertebra 2 21.34 120.4 - 6.16 55.68 9.03 43.27 11.85

Lumbar vertebra 3 28.47 23.75 - 16.4 95.44 28.07 62.16 11.75

Lumbar vertebra 4 22.14 15.48 - 16.17 89.66 23.02 56.83 20.01

Lumbar vertebra 5 23.2 11.92 - 18.2 35.43 11.94 45.07 29.68

Left renal pelvis 58.57 56.18 - 6.77 48.75 51.95 72.45 22.3

Right renal pelvis 71.83 85.01 - 20.55 53.31 50.99 45.46 43.96

Left sternoclavicular
joint

11.51 3.36 - 3.34 118.18 204.31 - -

Right
sternoclavicular joint

4.89 2.52 - 3.77 143.15 122.02 - -

Symphysis 10.73 7.23 - 4.41 191.88 13.19 48.19 53.87

Thoracic vertebra 1 14.04 14.15 - 11.1 216.69 12.81 - -

Thoracic vertebra 2 19.86 14.62 - 9.86 36.27 60.55 - -

Thoracic vertebra 3 12.29 11.76 - 7.07 46.46 13.84 - -

Thoracic vertebra 4 24.66 9.51 - 9.17 81.69 14.1 - -

Thoracic vertebra 5 21.08 39.36 - 13.21 165.64 75.8 - -

Thoracic vertebra 6 33.18 4.82 - 15.77 137.01 9.8 178.79 -

Thoracic vertebra 7 38.44 7.04 - 17.27 145.01 55.59 156.32 -

(continued)
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Table 7.8 (continued)

Avg Error [mm] CT CTce MR MRce

Thoracic vertebra 8 55.84 12.35 - 11.85 184.15 13.35 187.26 309.45

Thoracic vertebra 9 55.86 12.44 - 19.19 139.07 20.19 168.7 163.17

Thoracic vertebra 10 66.8 12.58 - 25.32 188.43 67.44 84.32 36.62

Thoracic vertebra 11 38.77 26.55 - 22.96 140.11 15.57 85.63 18.85

Thoracic vertebra 12 32.68 20.75 - 26.6 51.38 18.93 61.47 8.04

Trachea bifurcation 4.68 2.6 - 4.94 17 9.94 - -

Left trochanter
major

4.44 4.58 - 6.27 37.06 38.84 127.11 85.97

Right trochanter
major

4.77 6.19 - 3.7 64.89 97.45 68.21 71.75

Left trochanter
minor

8.53 4.97 - 2.82 55.54 7.47 125.94 131.36

Right trochanter
minor

6.57 4.49 - 2.67 157.91 9.13 30.6 41.91

Left tuberculum 8.45 120.91 - 12.68 17.5 53.16 - -

Right tuberculum 11.59 7.69 - 83.16 17.6 20.11 - -

Inferior vena cava
bifurcation

16.14 10.19 - 14.14 88.35 239.12 80.31 19.99

Left ventricle 6.32 4.72 - - 129.68 803.14 - -

Right ventricle 7.14 5.28 - - 116.43 1076.85 - -

Xyphoid process 28.76 122.47 - 14.32 217.86 154.09 210.03 39.69

more general. Some participants with such generic methods seemingly pre-tested
their methods on different inputs and only submitted them for the organs/modalities
where these methods could actually provide a value (i.e. satisfactory results), whereas
other participants simply submitted their method for all organs/modalities, whether
they generalized successfully or not.

Regarding the tasks, segmentation gathered a vast majority of the submissions.
Most popular organs attempted in these benchmarks were liver, lungs, spleen, kidneys
and urinary bladder. Some structures were segmented by very few methods, e.g. rectus
abdominis muscles.

In terms of segmentation results, the organs that obtained the highest DICE coef-
ficient values for each modality were the lungs and the liver in CT and the kidneys
and the liver in MRI. Other structures that achieved relatively accurate segmentation
across different Anatomy benchmarks include trachea, aorta, urinary bladder, psoas
major muscles and spleen, with DICE coefficients ranging between 0.80 and 0.95.
On the other hand, thyroid, adrenal glands, rectus abdominis muscles and gall blad-
der have been shown to be the most difficult structures for segmentation, with DICE
coefficients below 0.5.

The landmark localization tasks have shown a large variation in performance even
for the same method, but accurate results with average localization errors below 3
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voxels could be achieved, e.g. for the eyes and the trachea bifurcation. Modality also
had a strong impact, with some structures being much easier to localize in CT (for
instance, sternoclavicular joints), whereas others in MRI (e.g. aorta bifurcation and
the coronaria).

Additional discussion and further information on the organization and the results
of the Anatomy benchmarks can be found in [10].

7.5 Conclusion

During the VISCERAL Anatomy Benchmarks, segmentation and landmark localiza-
tion methods on large medical image datasets have been evaluated. Organization of
these benchmarks led to the creation of large amounts of annotated medical imaging
data, which continue to be available beyond the end of the VISCERAL project (see
Chap. 5). The use of a cloud-based evaluation not only represents an opportunity
for larger datasets, but also impacts the number of participants. However, the series
has shown that yearly cycles of evaluation can attract larger numbers of participants,
when sufficient data are provided for training and testing.
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Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 318068 (VIS-
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Chapter 8
Retrieval of Medical Cases for Diagnostic
Decisions: VISCERAL Retrieval Benchmark

Oscar Jimenez-del-Toro, Henning Müller, Antonio Foncubierta-Rodriguez,
Georg Langs and Allan Hanbury

Abstract Health providers currently construct their differential diagnosis for a given
medical case most often based on textbook knowledge and clinical experience. Data
mining of the large amount of medical records generated daily in hospitals is only
very rarely done, limiting the reusability of these cases. As part of the VISCERAL
project, the Retrieval benchmark was organized to evaluate available approaches
for medical case-based retrieval. Participant algorithms were required to find and
rank relevant medical cases from a large multimodal dataset (including semantic
RadLex terms extracted from text and visual 3D data) for common query topics. The
relevance assessment of the cases was done by medical experts who selected cases
that are useful for a differential diagnosis for the given query case. The approaches
that integrated information from both the RadLex terms and the 3D volumes (mixed
techniques) obtained the best results based on five standard evaluation metrics. The
benchmark set up, dataset description and result analysis are presented.
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8.1 Introduction

The majority of diagnostic and treatment decisions taken by clinicians in their daily
routine are based on acquired textbook knowledge and their experience [13]. Going
through additional resources such as medical image repositories and interpatient
radiology reports for medical case-based retrieval is currently inefficient and is not
generally performed in clinical practice. Moreover, developing search and access
technologies for information retrieval in the medical domain is still a challenging
task for the information research community [3].

The VISual Concept Extraction challenge in RAdioLogy (VISCERAL) project
was oriented towards improving medical image analysis tools through the evaluation
on big datasets [11], and by running benchmarks in the cloud it aims to bring the
algorithms and computation to the data [8]. The VISCERAL Retrieval Benchmark1

was particularly designed to evaluate and promote improvements in the state of the
art for this field. The benchmark provides a large dataset of multimodal clinical data
(text and images) for the evaluation of medical retrieval and analysis approaches. In
this chapter, the 2015 Retrieval Benchmark dataset, evaluated task and results from
the submitted approaches are presented.

8.2 Dataset

The VISCERAL Retrieval dataset includes 2311 patient volumes obtained from com-
puted tomography (CT) scans and T1- or T2-weighted magnetic resonance (MR)
imaging. These volumes were selected from a pool of 2544 studies generated in
two different clinical institutions. Only one volume per study was included in the
dataset from a total of 10595 volumes in order to promote the inclusion of multiple
independent clinical cases. For a subset of these scans, a list of anatomy-pathology
RadLex terms (APterms) is also provided (1813 medical cases). These terms were
extracted from German reports utilizing a natural language processing (NLP) frame-
work described in [5] for automatic extraction of terms characterizing pathological
findings and their anatomy in radiology reports. The German RadLex version is an
older version than the English counterpart with fewer terms and a slightly different
structure but many terms can be mapped from one to the other and are thus language
independent. More details on the VISCERAL Retrieval datasets are given in Chap.
5.

1http://www.visceral.eu/benchmarks/retrieval-benchmark, as of 9 July 2016.

http://dx.doi.org/10.1007/978-3-319-49644-3_5
http://www.visceral.eu/benchmarks/retrieval-benchmark
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8.3 Medical Case-Based Retrieval

The general Benchmark task was to evaluate the retrieval ranking of relevant medical
cases from the dataset having a query case as reference. The defined use case resem-
bles a clinician assessing a query case in a medical practice setting, for example a CT
volume, and is searching for cases that are relevant for the assessment in terms of a
differential diagnosis. Ten query topics (Table 8.1) were judged by medical experts to
generate the gold standard against which the algorithms were evaluated. Each topic
(query case) included the following (Fig. 8.1):

• List of RadLex anatomy-pathology terms from the radiology report
• 3D patient scan (CT or MRT1/MRT2)
• Manually annotated 3D mask of the main organ affected
• Manually annotated 3D region of interest (ROI) from the radiologist’s perspective

The participants then had to develop an algorithm that finds clinically relevant
(related) cases given a query case (imaging and text data), but with no information
about the final diagnosis of the case.

Fig. 8.1 Graphic representation of the provided data per query case. Each query topic included
text information as a list of RadLex anatomy-pathology terms and a 3D volume of the patient. The
manually annotated organ mask with the target diagnosis was a binary mask volume (red). The
yellow block represents the region of interest (ROI) for the given case. The ROI contained either
the full organ or only a region of it depending on the radiologic diagnosis
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8.4 Evaluation

This section describes how the relevance judgements were obtained, as well as the
metrics used for the evaluation.

8.4.1 Relevance Judgements

The submitted results by the participants were evaluated with an interface using the
CrowdFlower platform.2 This choice was made following the suggestions of [2, 4] as
the interface can be used internally both without payment or with paid crowd workers.
The evaluation task was divided into two parts: a task based on RadLex terms before
the participant submissions and a task based on pooling after the submissions.

Relevance judgements in this benchmark needed to be performed by medical
doctors, which is an expensive and time-consuming task. Therefore, a simplified
preliminary task was designed in order to gather as many relevance judgements
as possible before the participants submitted their runs. The task is based on the
assumption that if, given a topic (diagnosis and case description), the assessors can
identify a set of RadLex terms that are always relevant for this topic, then there is no
need to individually evaluate all the retrieved cases that contain this term. This can
produce a reduction in the number of full cases that need to be judged after the runs
are submitted, when results need to be quickly computed following the benchmark.
In addition, since the decision is based only on pairs of diagnosis–RadLex terms
with a limited possibility to check details in the images, there is a gain also in terms
of judging speed. After analysing the number of judgements received during the
preliminary task, the average decision time for each pair of diagnosis–RadLex terms
is 5 s.

The second task consisted in judging the relevance of the cases retrieved by the
participants. A pooling strategy creates a subset of cases with the top k results of
the rankings from the runs submitted by the different retrieval algorithms. The rest
of the cases that are not retrieved by the participant algorithms are removed and
considered as non-relevant for the corresponding run [12]. A pool with the top 100
retrieved cases by each of the submitted runs was built. The cases previously judged
as non-relevant in the preliminary task were removed from the pool. In this case,
each individual judgement required an average of 11–29 s depending on the topic.

The relevance criterion for the judgements was the usefulness of a case as a
differential diagnosis for a given query case.

2http://www.crowdflower.com/, as of 9 July 2016.

http://www.crowdflower.com/
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Table 8.1 Query topics of the VISCERAL Retrieval benchmark. For each topic, the following
features are shown as follows: imaging modality, diagnosis, main affected organ or region, size of
region of interest (ROI) in voxels, number of RadLex terms in list and number of cases considered
as relevant for diagnosis by medical experts during the relevance judgements

Topic Modality Diagnosis Organ ROI RadTerms Relevant

01 MRT1_Ab Gall bladder
sludge

Gall bladder 93 × 93 × 52 18 118

02 CT_undefined Liver cirrho-
sis

Liver 258 × 351 × 284 12 428

03 CT_undefined Liver cirrho-
sis

Liver 326 × 271 × 212 10 428

04 CT_Th Lung
bronchiecta-
sis

Lung 124 × 137 × 132 14 161

05 CT_Th Mediastinal
lym-
phadenopa-
thy

Mediastinum 194 × 273 × 80 8 248

06 CT_ThAb Liver cyst Liver 250 × 262 × 102 20 339

07 CT_Th Pulmonary
bullae

Lung 108 × 107 × 35 28 333

08 CT_ThAb Kidney cyst Kidney 125 × 107 × 57 16 336

09 CT_Th Pericardial
effusion

Heart 273 × 57 × 155 8 24

10 CT_Th Rib fracture Rib 56 × 147 × 39 26 47

8.4.2 Metrics

The standard NIST (US National Institute of Standards and Technology) evaluation
procedures used in the Text Retrieval Conference (TREC) [15] were revised for
selecting the Retrieval Benchmark evaluation metrics. The trec_eval tool3 was used
to compute several evaluation metrics from the results of the participant algorithms.
Although multiple evaluation metrics were computed with trec_eval, the five main
evaluation metrics considered for the Retrieval Benchmark were as follows:

• Mean average precision (MAP): mean average fraction of retrieved cases that are
relevant.

• Geometric mean average precision (GM-MAP): mean average fraction of retrieved
cases that are relevant, using the product of their values.

• Binary preference (bpref): top number of relevant cases judged as non-relevant.
• Precision after 10 cases retrieved (P10): fraction of retrieved cases that are relevant

in the top 10 cases retrieved.

3http://trec.nist.gov/trec_eval, as of 9 July 2016.
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• Precision after 30 cases retrieved (P30): fraction of retrieved cases that are relevant
in the top 30 cases retrieved.

8.5 Participants

There were 30 participants registered in the VISCERAL registration system. Thirteen
groups had access to the data by signing the license agreement with finally four
research groups submitting results for the benchmark.

Choi [1] submitted runs for text, visual and mixed (multimodal) queries. The
text retrieval is based on a heuristic approach that measures case similarity with a
list of conditions addressing the paired anatomy-pathology RadLex terms lists. For
the image retrieval, the group used key point detection using Speeded Up Robust
Features (SURF) from different sets of voxels in the images (e.g. region of interest
vs. rest of the image). They then ranked the dataset images with an applied query-
specific support vector machine classifier. The fusion of text and visual rankings was
performed with the weighted Borda-fuse method.

Jiménez del Toro et al. [6] submitted a semi-automatic retrieval approach that
generates weighting rules based on the textual and visual similarities from the query
case. The main component in the final ranking is the similarity between the APterm
lists of the cases, with a predefined set of rules based on clinical correlations such as
same anatomy, same pathology or same imaging modalities. For the visual analysis,
the images are compared using an indirect location of the region of interest from
the query in a common spatial domain with the previously registered dataset. By
combining 3D Riesz wavelet-based texture features with covariance descriptors, the
local visual image similarity is added to the text information as an additional weight.

Spanier et al. [14] proposed a retrieval method that evaluates the similarity between
cases generating an augmented RadLex graph with case-specific relations from the
provided RadLex APterms lists. The sum of the link distance between term nodes
from the augmented RadLex graph of each query topic is established as the similarity
measure. The main organ affected is determined with the segmentation of anatomical
structures in the images, and the main pathologies can be flagged by the user for
the search query. This group submitted six runs using a mixed retrieval technique,
differentiated by the type of imaging used in the database cases, pathologic findings,
region of interest or using all these features together.

Zhang et al. [16] participated with five runs in all query types (text, visual and
mixed). A co-occurrence matrix was built between the APterms and the cases for the
text-only approaches. The terms were weighted by computing the term frequency–
inverse document frequency (TF-IDF) or with probabilistic Latent Semantic Analysis
(pLSA) to generate a probability distribution of the terms. For the visual approach,
the scale-invariant feature transform (SIFT) was used to generate content descriptors
for a Bag of Visual Words and was refined with relevance feedback for one of their
runs. The sum combination of all text and visual retrieval results was also submitted
as a mixed query method.
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Table 8.2 Submitted runs of the VISCERAL Retrieval benchmark. The Type column mentions the
data used in the run. A mixed type includes both text and visual data. The Input column describes
how the algorithms generate a ranking of relevant cases. The Topics column shows the topics for
which the runs submitted a ranking of cases

RunID Group Type Input Topics

Choi_1 SNUMedinfo Visual Automatic 01-10

Choi_2 SNUMedinfo Visual Automatic 01-10

Choi_3 SNUMedinfo Visual Automatic 01-10

Choi_4 SNUMedinfo Text Automatic 01-10

Choi_5 SNUMedinfo Mixed Automatic 01-10

Choi_6 SNUMedinfo Mixed Automatic 01-10

Choi_7 SNUMedinfo Mixed Automatic 01-10

Choi_8 SNUMedinfo Mixed Automatic 01-10

Choi_9 SNUMedinfo Mixed Automatic 01-10

Choi_10 SNUMedinfo Mixed Automatic 01-10

Jiménez_1 MedGIFT Mixed Semi-auto 01-10

Spanier_1 HebrewUniv Mixed Automatic 03-10

Spanier_2 HebrewUniv Mixed Automatic 03-10

Spanier_3 HebrewUniv Mixed Automatic 03-10

Spanier_4 HebrewUniv Mixed Automatic 03-10

Spanier_5 HebrewUniv Mixed Automatic 03-10

Spanier_6 HebrewUniv Mixed Automatic 03-10

Zhang_BoVW USYD Visual Automatic 01-10

Zhang_fusion USYD Mixed Automatic 01-10

Zhang_iter USYD Visual Automatic 01-10

Zhang_plsa USYD Text Automatic 01-10

Zhang_tfidf USYD Text Automatic 01-10

The information that the participants provided about their techniques is summa-
rized in Table 8.2.

8.6 Results

The results of the Retrieval Benchmark were originally presented at the Multimodal
Retrieval in the Medical Domain (MRMD) 2015 workshop, as part of the 37th Euro-
pean Conference on Information Retrieval (ECIR) 2015 [7]. In this chapter, a more
detailed analysis of the Benchmark results is presented. Participants could submit
a maximum of 10 runs and a ranked list of up to 300 cases per query topic. The
300 case threshold was defined based on experience from the previous ImageCLEF
benchmarks [4], where no more than 200 results were selected as relevant in the
relevance judgements. In this VISCERAL Benchmark, a few runs did have more
relevant results. However, as all the participant algorithms shared this submission
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*

Fig. 8.2 Mean average precision (MAP) of the 22 runs in the Retrieval Benchmark. Each run is
represented by a box that is extended from the first to the third quartile of the query topic MAP.
The median MAP is shown as a horizontal line inside the box. The minimum and maximum MAP
obtained on individual query topics are shown as asterisks below and above their corresponding
boxes. The runs are grouped by technique (only text, only visual and mixed). The colour of the
boxes is defined by the submitting group as shown in the upper right legend. The colour is striped
in text-only runs, visual-only runs are checkered and mixed runs are in solid colour

Fig. 8.3 P30 score obtained by the best run of each group, including text, visual and mixed, in the
various query topics. The colour from text-only runs is striped, visual-only runs are checkered and
mixed runs are in solid colour bars. The name of the selected runs is shown below the corresponding
bar

restriction, no bias was generated towards any method. The relative performance,
when algorithms are compared to other participants, was therefore the main target
of the evaluation.
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Topic_01 
Top match 

100435_MRT1_Ab 

101159_MRT1_Ab 

Topic_04 Top match 

102758_CT_Th 
101223_CT_Th 

Fig. 8.4 Four sample query topics (left column) and the corresponding top match (right column)
obtained in the ranking of relevant cases from the algorithm with the best MAP for this topic in the
Retrieval Benchmark. A sample 2D slice from the patient scan includes the affected organ together
with a subset or full list of the RadLex anatomy-pathology terms
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Topic_09 Top match 
102423_CT_Th 102423_CT_Th 

Topic_10 Top match 
100471_CT_Th 101688_CT_Th 

Fig. 8.4 (continued)
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A box plot chart with the MAP scores for all the individual runs is shown in Fig.
8.2, and a box plot chart with the P30 scores is presented in Fig. 8.3. Sample query
topics and their corresponding top match from the algorithm with the best MAP
score in the Benchmark for the corresponding topic are shown in Fig. 8.4. The runs
are divided into three subtasks according to the techniques used for the query: text,
visual and mixed. The scores from the individual runs for each of the subtasks are
presented in Tables 8.3, 8.4 and 8.5, respectively. A table with the top participant
scores for individual runs per metric per topic is shown in Table 8.6.

The four participating research groups submitted a total of 22 runs: 3 text, 5 visual
and 14 mixed. Five evaluation metrics computed with the trec_eval tool are provided
as the mean average score of all the topics (10 in total) for each run. Each run contained
results for the 10 query topics, except for the approaches from Spanier et al. which
submitted results only for 8 query topics (3–10). The results from this participant are
also shown as the mean of 10 query topics just like the other participants. A score of 0
was given to the 2 missing query topics of this participant. The results computing the
mean of only the 8 query topics in which Spanier et al. participated were presented
in [7].

From the techniques that used only text, the run Choi_4 with a heuristic ranking
function based on the RadLex terms obtained the best scores. This algorithm had the
highest AP score (0.2198) in the benchmark for topic 9–Pericardial effusion among
all the techniques. This topic had the lowest number of cases (24) marked as relevant
during the relevance judgements from the 10 query topics evaluated in the Retrieval
Benchmark. The run by Choi, using only text data, was able to find the best features
to characterize this diagnosis among the participants. Topic 10–Rib fracture had the
lowest scores with only text techniques. The number of relevant cases for this topic
was also low (47). Still, the results were better overall than techniques using only
visual features (see Fig. 8.2).

Only visual techniques obtained the lowest scores in the benchmark. The most
promising algorithm was Zhang_iter that reached 0.33 precision after the first 30
cases retrieved (P30, see Table 8.4). Topic 01–Gall bladder sludge obtained the
highest scores from only visual techniques. This was the only topic using MR images,
which suggest that differentiating between imaging modalities can already improve
the retrieval of cases when only visual features are considered. On the contrary, a poor
performance was achieved with only visual retrieval techniques when an uncommon
disease, such as topic 09–Pericardial effusion, is present in a recurrent imaging
modality (i.e. thorax CT). The challenge of successfully detecting and selecting
purely visual biomarkers for general medical retrieval is still an unsolved problem
in the literature [9].

There were two groups (Jiménez–del–Toro et al. and Spanier et al.) who sub-
mitted only mixed runs, using text and visual information in the same run. It is not
straightforward to compare the influence of the visual or textual features based only
on these results to the other algorithms (by Choi and Zhang et al.) who contributed
also with results using only textual or only visual features. Nevertheless, it should
be highlighted that these last two groups obtained overall higher scores using only
textual features than their mixed runs. The overall highest MAP was obtained by
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Table 8.3 Scores from the runs using only text retrieval techniques

Text

RunID Type MAP GM-MAP bpref P10 P30

Choi_4 Text 0.1942 0.1806 0.3221 0.5700 0.4967

Zhang_plsa Text 0.0944 0.0697 0.1830 0.4100 0.3800

Zhang_tfidf Text 0.0810 0.0582 0.1623 0.3700 0.2767

Table 8.4 Scores from the runs using only visual retrieval techniques

Visual

RunID Type MAP GM-MAP bpref P10 P30

Zhang_iter Visual 0.0828 0.0541 0.1881 0.3300 0.3300

Zhang_BoVW Visual 0.0783 0.0572 0.1900 0.0000 0.0333

Choi_3 Visual 0.0672 0.0474 0.1647 0.2700 0.3267

Choi_2 Visual 0.0661 0.0485 0.1671 0.2200 0.2633

Choi_1 Visual 0.0462 0.0188 0.1430 0.1400 0.1867

Table 8.5 Scores from the runs using mixed (text and visual) retrieval techniques

Mixed

RunID Type MAP GM-MAP bpref P10 P30

Jiménez_1 Mixed 0.2367 0.2016 0.3664 0.5700 0.5533

Spanier_6 Mixed 0.2295 0.2137 0.3157 0.5500 0.5100

Spanier_5 Mixed 0.2265 0.2109 0.3118 0.5500 0.5100

Spanier_2 Mixed 0.2100 0.1967 0.2976 0.5100 0.4967

Spanier_1 Mixed 0.2088 0.1954 0.2952 0.5500 0.5033

Choi_5 Mixed 0.1875 0.1722 0.3082 0.5400 0.4600

Choi_8 Mixed 0.1867 0.1721 0.3099 0.5300 0.4533

Choi_9 Mixed 0.1861 0.1700 0.3143 0.4300 0.4700

Choi_6 Mixed 0.1858 0.1697 0.3102 0.4500 0.4633

Choi_7 Mixed 0.1857 0.1688 0.3097 0.3900 0.4567

Choi_10 Mixed 0.1845 0.1681 0.3110 0.3900 0.4500

hNcmJn_fusion Mixed 0.1101 0.0766 0.2070 0.4200 0.3533

BxcvfH_3 Mixed 0.0467 0.0444 0.0604 0.2900 0.2600

BxcvfH_4 Mixed 0.0225 0.0220 0.0584 0.0000 0.0167
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Table 8.6 Top scores obtained by participant runs per topic for four evaluation metrics: MAP, bpref,
P_10 and P_30. When more than 1 run obtained the highest score in the Retrieval Benchmark, all
the runs with the same score are shown

the mixed technique of Jiménez–del–Toro et al. This method also obtained the best
AP score in 6 out of the 10 query topics. However, the runs from Spanier et al.,
especially those using both imaging modalities and all the pathological findings in
the RadLex term lists (i.e. Spanier_6), obtained high scores for the majority of
the query topics. This was best exemplified in Topic 10–Rib fracture, where the algo-
rithms by Spanier et al. obtained the highest MAP scores from the whole benchmark
(0.6758) and a P30 of 0.8. Jiménez del Toro et al. included the visual information in
a late fusion with the textual features as an additional weighting in the final ranking
score. On the other hand, Spanier et al. included the visual information early in their
method for the selection of the main RadLex terms in the lists from the query cases.

8.7 Conclusion

The Retrieval Benchmark was the first medical case-based retrieval benchmark using
a large dataset of 3D volumes and anatomy-pathology RadLex term lists. The dataset
was hosted in a cloud infrastructure with the objective to provide access to a large
number of medical cases to the participants. Four research groups submitted a variety
of techniques (22 in total) for the tasks. The results were compared using standard
retrieval evaluation metrics. Multimodal techniques (mixed) obtained the best results

www.dbooks.org

https://www.dbooks.org/


140 O. Jimenez-del-Toro et al.

when compared to the gold standard relevance judgements performed by clinical
experts. The organization and result analysis from the benchmark helps address the
current challenges in medical information retrieval and target the development of
future benchmarks with common goals in this field.

Acknowledgements The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007–2013) under grant agreement 318068 (VIS-
CERAL).

References

1. Choi S (2015) Multimodal medical case-based retrieval on the radiology image and report:
SNUMedinfo at VISCERAL retrieval benchmark. In: Müller H, Jimenez del Toro OA, Hanbury
A, Langs G, Foncubierta Rodríguez A (eds) Multimodal retrieval in the medical domain. LNCS,
vol 9059. Springer, Cham, pp 124–128. doi:10.1007/978-3-319-24471-6_11

2. Foncubierta-Rodríguez A, Müller H (2012) Ground truth generation in medical imaging: a
crowdsourcing based iterative approach. In: Workshop on crowdsourcing for multimedia. ACM
Multimedia, New York, pp 9–14

3. García Seco de Herrera A (2015) Use case oriented medical visual information retrieval &
system evaluation. Ph.D. thesis, University of Geneva

4. García Seco de Herrera A, Foncubierta-Rodríguez A, Markonis D, Schaer R, Müller, H (2014)
Crowdsourcing for medical image classification. In: Annual congress SGMI 2014

5. Hofmanninger J, Krenn M, Holzer M, Schlegl T, Prosch H, Langs G (2016) Unsupervised
identification of clinically relevant clusters in routine imaging data. In: Ourselin S, Joskowicz
L, Sabuncu MR, Unal G, Wells W (eds) MICCAI 2016. LNCS, vol 9900. Springer, Cham, pp
192–200. doi:10.1007/978-3-319-46720-7_23

6. Jiménez-del-Toro OA, Cirujeda P, Cid YD, Müller H (2015) RadLex terms and local texture
features for multimodal medical case retrieval. In: Müller H, Jimenez del Toro OA, Hanbury A,
Langs G, Foncubierta Rodríguez A (eds) Multimodal retrieval in the medical domain. LNCS,
vol 9059. Springer, Cham, pp 144–152. doi:10.1007/978-3-319-24471-6_14

7. Jiménez-del-Toro OA, Hanbury A, Langs G, Foncubierta-Rodríguez A, Müller H (2015)
Overview of the VISCERAL Retrieval Benchmark 2015. In: Müller H, Jimenez del Toro
OA, Hanbury A, Langs G, Foncubierta Rodríguez A (eds) Multimodal retrieval in the medical
domain. LNCS, vol 9059. Springer, Cham, pp 115–123. doi:10.1007/978-3-319-24471-6_10

8. Jimenez-del-Toro O, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I,
Foncubierta-Rodríguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze B, Salas
Fernandez T, Schaer R, Walleyo A, Weber MA, Dicente Cid Y, Gass T, Heinrich M, Jia F, Kahl
F, Kechichian R, Mai D, Spanier AB, Vincent G, Wang C, Wyeth D, Hanbury A (2016) Cloud-
based evaluation of anatomical structure segmentation and landmark detection algorithms:
VISCERAL anatomy benchmarks. IEEE Trans Med Imaging 35(11):2459–2475

9. Kurtz C, Beaulieu CF, Napel S, Rubin DL (2014) A hierarchical knowledge-based approach
for retrieving similar medical images described with semantic annotations. J Biomed Inform
49:227–244

10. Langlotz CP (2006) Radlex: a new method for indexing online educational materials. Radi-
ographics 26(6):1595–1597

11. Langs G, Hanbury A, Menze B, Müller H (2013) VISCERAL: towards large data in medical
imaging — challenges and directions. In: Greenspan H, Müller H, Syeda-Mahmood T (eds)
MCBR-CDS 2012. LNCS, vol 7723. Springer, Heidelberg, pp 92–98. doi:10.1007/978-3-642-
36678-9_9

http://dx.doi.org/10.1007/978-3-319-24471-6_11
http://dx.doi.org/10.1007/978-3-319-46720-7_23
http://dx.doi.org/10.1007/978-3-319-24471-6_14
http://dx.doi.org/10.1007/978-3-319-24471-6_10
http://dx.doi.org/10.1007/978-3-642-36678-9_9
http://dx.doi.org/10.1007/978-3-642-36678-9_9


8 Retrieval of Medical Cases for Diagnostic Decisions … 141

12. Peters C, Braschler M, Clough P (2012) Multilingual information retrieval: from research to
practice. Springer, New York, pp 129–169

13. Quellec G, Lamard M, Bekri L, Cazuguel G, Roux C, Cochener B (2010) Medical case retrieval
from a committee of decision trees. IEEE Trans Inform Technol Biomed 14(5):1227–1235

14. Spanier AB, Joskowicz L (2015) Medical case-based retrieval of patient records using the
RadLex hierarchical lexicon. In: Müller H, Jimenez del Toro OA, Hanbury A, Langs G, Fon-
cubierta Rodríguez A (eds) Multimodal retrieval in the medical domain. LNCS, vol 9059.
Springer, Cham, pp 129–138. doi:10.1007/978-3-319-24471-6_12

15. Voorhees EM, Ellis A (eds) (2015) In: Proceedings of the twenty-fourth text REtrieval confer-
ence, TREC, Gaithersburg, Maryland, USA, 17–20 Nov 2015, vol Special Publication 500–319.
National Institute of Standards and Technology (NIST)

16. Zhang F, Song Y, Cai W, Depeursinge A, Müller H (2015) USYD/HES-SO in the VISCERAL
retrieval benchmark. In: Müller H, Jimenez del Toro OA, Hanbury A, Langs G, Foncubierta
Rodríguez A (eds) Multimodal retrieval in the medical domain. LNCS, vol 9059. Springer,
Cham, pp 139–143. doi:10.1007/978-3-319-24471-6_13

Open Access This chapter is licensed under the terms of the Creative Commons Attribution- Non-

Commercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which

permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

www.dbooks.org

http://dx.doi.org/10.1007/978-3-319-24471-6_12
http://dx.doi.org/10.1007/978-3-319-24471-6_13
http://creativecommons.org/licenses/by-nc/2.5/
https://www.dbooks.org/


Part IV
VISCERAL Anatomy Participant Reports



Chapter 9
Automatic Atlas-Free Multiorgan
Segmentation of Contrast-Enhanced
CT Scans

Assaf B. Spanier and Leo Joskowicz

Abstract Automatic segmentation of anatomical structures in CT scans is an essen-
tial step in the analysis of radiological patient data and is a prerequisite for large-
scale content-based image retrieval (CBIR). Many existing segmentation methods
are tailored to a single structure and/or require an atlas, which entails multistructure
deformable registration and is time-consuming. We present a fully automatic atlas-
free segmentation of multiple organs of the ventral cavity in contrast-enhanced CT
scans of the whole trunk (CECT). Our method uses a pipeline approach based on
the rules that determine the order in which the organs are isolated and how they are
segmented. Each organ is individually segmented with a generic four-step proce-
dure. Our method is unique in that it does not require any predefined atlas or a costly
registration step and in that it uses the same generic segmentation approach for all
organs. Experimental results on the segmentation of seven organs—liver, left and
right kidneys, left and right lungs, trachea, and spleen—on 20 CECT scans of the
VISCERAL Anatomy training dataset and 10 CECT scans of the test dataset yield
an average DICE volume overlap similarity score of 90.95 and 88.50%, respectively.

Source code is available at:
http://www.cs.huji.ac.il/~caslab

https://bitbucket.org/shpanier/cbir_anatomy3

A.B. Spanier (B) · L. Joskowicz
The Rachel and Selim Benin School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: assaf.spanier@mail.huji.ac.il

L. Joskowicz
e-mail: leo.josko@mail.huji.ac.il

© The Author(s) 2017
A. Hanbury et al. (eds.), Cloud-Based Benchmarking
of Medical Image Analysis, DOI 10.1007/978-3-319-49644-3_9

145

www.dbooks.org

http://www.cs.huji.ac.il/~caslab
https://bitbucket.org/shpanier/cbir_anatomy3
https://www.dbooks.org/


146 A.B. Spanier and L. Joskowicz

9.1 Introduction

Volumetric medical images, including computed tomography (CT) and magnetic
resonance imaging (MRI) are pervasive in routine clinical practice. Worldwide, the
number of these images reaches into the hundreds of millions per year and is growing
at a fast pace [19]. Radiologists and physicians rely upon these images for diagnosis,
treatment strategy and follow-up evaluation. Currently, these medical images and the
patient records associated with them are used primarily for diagnosis and follow-up
of the primary condition without further analysis between and across the patients.
The vast amount of information in these valuable clinical datasets represents an
untapped gold mine that could support a wide variety of clinical tasks, such as the
retrieval of patient cases with similar radiology images, image-based retrospective
incidental findings, large-scale radiological population and epidemiological studies,
and preventive medicine by early radiological detection. Indeed, the application of
big data analytics to the field of medical imaging has been largely absent despite
the fact that clinical imaging represents the largest single component of the medical
health record.

Radiology content-based image retrieval (CBIR) is a key enabler for the utilization
of previously acquired imaging data to assist radiologists in the decision-making
process [11, 24, 31]. A CBIR system is an image search engine that retrieves medical
records of patients with similar images from large archives. CBIR systems rely on
the automatic extraction of imaging features from a non-annotated medical images
database. The features include specific properties of anatomical structures, such as
organ volume, shape and texture, which are automatically computed from the image
and are used to compare images.

Today, most of the CBIR systems are based on global feature extraction [4]. Global
features are extracted from the images with no prior knowledge regarding the con-
tent of the image, the organs and/or the pathologies and their location in the image.
However, there is a discrepancy between the low-level features that are automatically
extracted by the computer and the high-level concepts of human vision and image
understanding: this gap is known as the semantic gap [8]. The isolation and delin-
eation of individual structures in the images—referred to as segmentation—provides
a strong shape and location prior that is expected to improve the quality of the auto-
matic feature extraction process, thereby significantly improving the performance of
CBIR systems [25, 27].

The automatic segmentation of anatomical structures in volumetric medical
images is widely recognized as a difficult and time-consuming task. Anatomical
structures are numerous and complex: each has unique, distinctive characteristics and
shows extensive biological variability across the patients [22]. In volumetric images,
many structures have similar radiological tissue properties—attenuation coefficients
in CT and relaxation times in MRI—which result in very low or no contrast between
adjacent structures. Volumetric images also show great variability due to a plethora of
CT/MRI scanners and scanning protocols, which produce scans with very different
image properties, e.g. resolution, contrast and noise.
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Numerous segmentation algorithms have been developed in the past three decades.
These include region growing, ray casting [16], energy active contours [3], graph
cut [2], level sets [30], statistical shape model [10], rule-based methods [26] and
hybrid methods [5, 9]. Additionally, a large variety of methods for segmentation
of nearly all anatomical structures, organs and pathologies in CT scans have been
proposed. Examples of reviews of the existing approaches for some of the main
organs include Mharib et al. [18] for liver segmentation, Sluimer et al. [28] for lungs
segmentation and Freiman et al. [6] for kidney segmentation.

Most of the segmentation algorithms require prior models in the form of parameter
values, intensity thresholds, shape priors, atlases and a database of previous cases.
Some rely on user inputs such as seeds, regions of interest and/or initial delineations
to produce the segmentation. In addition, most of the segmentation algorithms are
optimized for a single structure and require significant effort to transfer/adapt to
new structures. Also, single structure segmentation methods usually do not take into
account the contextual information of the adjacent structures which may be exploited
for the identification task.

Multistructure segmentation methods have been recently proposed to exploit this
contextual information [23]. They usually require an atlas of the structures of inter-
est, which consists of parametric shape models of the structures and their relative
location in the body. This approach is currently the state of the art in brain structure
segmentation [1]. More recently, atlas-based methods have been developed for organ
segmentation of body CT scans [29, 33]. These methods require the construction of
atlases, which usually relies on the manual segmentation of the structures of interest
in the CT/MRI scans and their alignment to a reference scan. To obtain a segmenta-
tion of the structures of interest in a new scan, the atlas is matched to the scan and
the structure models using deformable registration techniques [21]. The drawbacks
of this approach are that the atlas construction is laborious, biased to the cases that
are used to construct it and thus may suffer from low specificity (the generality of
such a model may hamper the segmentation of a specific target image due to the large
intersubject variability in the learning cases). In addition, multiatlas-based methods
require deformable registration and incur a high computational cost.

To summarize, although many segmentation algorithms have been developed,
they are unlikely to be useful for radiology CBIR either due to their focus on a
single organ, their need for a predefined atlas, their lack of robustness and/or their
prohibitive computational cost.

In this paper, we present a robust multiorgan fully automatic atlas-free segmenta-
tion method for the organs of the ventral cavity in contrast-enhanced CT scans of the
whole trunk (CECT). Our method is specifically designed for radiology CBIR. It uses
a pipeline approach based on the rules that determine the order in which the organs
are isolated and how they are segmented. Each organ is individually segmented with
a generic four-step procedure. Our method is unique in that it does not require any
predefined atlas or registration and in that it uses the same generic segmentation
approach for all organs.
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Fig. 9.1 The CECT field of
view starts at about the
corpus mandibulae (i.e. in
between the skull base and
the neck) and ends at the
pelvis. The scan is enhanced
by an iodine-containing
contrast agent commonly
administered to improve
tissue contrast, in order to
detect pathological lymph
nodes or organ affection of
the lymphoma

We evaluate our method using the VISCERAL [17] publicly available database
and make our source code openly available for the benefit of the community.1 Exper-
imental results on the 20 CECT scans of the VISCERAL Benchmark training dataset
and 10 CECT scans of the test dataset yield an average DICE volume overlap simi-
larity score of 90.95 and 88.50%, respectively.

9.2 Method

We describe next a new robust, multiorgan, fully automatic, atlas-free segmentation
method of the organs of the ventral cavity in CECT scans. The input is CECT scans
of the whole trunk (Fig. 9.1), with the patient properly positioned on their back. The
field of view starts between the skull base and the neck and ends at the pelvis, and
with none of the seven organs to be segmented missing. The output of our method
is a segmentation of the seven organs of the ventral cavity: the trachea, both lungs,
both kidneys, the spleen and the liver. Our method consists of two processes: the
first is a scan-specific characterization process that determines the grey values of
the high blood content organs (i.e. kidneys, spleen, and liver), and a localization of
six cross sections of interest in the scan. The second is a generic four-step pipeline

1http://www.cs.huji.ac.il/~caslab.

http://www.cs.huji.ac.il/~caslab
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Fig. 9.2 Our method consists of two processes: (1) a scan-specific characterization process that
locates six cross sections of interest in the scan along with the grey-level values of the high blood
content organs (Process 1) and (2) a four-step pipeline segmentation process for segmenting each
organ (Process 2)

segmentation process followed by a fine-tuning post-processing step. The method is
illustrated in Fig. 9.2 and summarized in Table 9.1.

Next, we describe the two processes, followed by details of the implementation
for seven ventral cavity organs: the trachea, the left and right lungs, the left and right
kidneys, the spleen and the liver.

9.2.1 Process 1: Scan-Specific Characterization

The goal of the scan-specific characterization process is to locate six cross sections of
interest in the CECT scan along with the grey-level values of the high blood content
organs. There are three steps in this process: (1) isolation of the bone skeleton and
the breathing system (lungs and trachea), (2) localization of six cross sections of
interest inside the body and (3) identification of the grey-level values of the high
blood content organs (i.e. kidneys, spleen and liver). Below is a detailed description
of each step.

1. Bone Skeleton and Breathing System Isolation: We start by isolating the
patient’s body from the background (air and scan gantry) based on the location
and intensity values. We then identify the bone skeleton and the breathing sys-
tem (lungs and trachea). Next, we isolate the largest connected components that
contain grey levels above 250 HU for the skeleton and the largest connected com-
ponents that contain grey levels between −1000 and −500 HU for the breathing
system.

2. Cross-Sectional Localization: We define six cross sections of interest, which
will be used to define the ROI of the various organs, they are marked by labels
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Fig. 9.3 Localization of six cross sections: AA—the narrowest slice of bones in the beginning of the
lumbar region; BB—the inferior slice of the breathing system; CC—the widest slice of the breathing
system; and DD—the superior slice of the breathing system (which is also the narrowest slice of the
breathing system). EE—the sagittal symmetrical plane; FF—a plane bisecting the spinal column
at 45◦

AA through FF in Fig. 9.3. Four of the cross sections are axial, one is sagittal and
one is diagonal. The cross sections are: (1) the narrowest slice of bones in the
beginning of the lumbar region (marked by AA), hereinafter the narrowest slice
and widest slice are defined by measuring the perimeter of the 2D convex hull
in the axial slice; (2) the inferior slice of the breathing system (marked by BB);
(3) the widest slice of the breathing system (marked by CC); (4) the superior slice
of the breathing system, which is also the narrowest slice of the breathing system
(marked by DD); (5) the sagittal plane through the middle of the spinal column
(marked by EE); and (6) the plane that passes through the centre of the spinal
column at 45◦ (marked by FF). Slice AA is found by starting at slice BB and
moving inferiorly slice by slice along the axial planes, when the bone perimeter
increases by over 200%, that slice is defined as AA. To define planes EE and FF,
we construct a bounding box around the bone cross section at slice BB; EE is the
sagittal symmetrical plane bisecting it; and FF is the plane bisecting it at 45◦.

3. Grey-Level-Value Identification: We first identify the grey level of the lungs’
blood vessels by isolating all voxels with values that are greater than zero inside
the lungs (Fig. 9.4). We denote the average and the standard deviation of these
blood vessels’ grey-level values as μBV and σBV , respectively. Next, we apply
the k-means clustering algorithm with k = 2 on all voxels confined by slices
AA, CC and to the left of EE and that have grey-level values between zero and
μBV + 3σBV . We denote the average of those two cluster centres as μkmean. These
values will be used to define the thresholds that differentiate between the kidneys,
the spleen and the liver.
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Fig. 9.4 Illustration of
grey-level values estimation:
Inside the breathing system
(blue), all voxels that contain
grey-level values greater
than zero (red) are the lungs’
blood supply. The grey-level
values of other organs in the
scan are estimated by
computing the average and
standard deviation of those
voxels

9.2.2 Process 2: Generic Four-Step Segmentation

In the generic four-step segmentation process, organs are isolated and segmented,
from the simplest one to the most difficult one. Using the cross sections and the grey-
level values identified by the first process, the four-step framework is applied to the
organs in the following order. First, the breathing system organs (i.e. the trachea and
the lungs) are segmented. Next, the high blood content organs (i.e. kidneys, spleen,
and liver) are segmented, first those on the left, which are better separated, then
those on the right. For each organ, the process starts with a coarse segmentation that
is refined along the further steps until the final segmentation is obtained. The organ
segmentation order prevents the ambiguous assignment of the same image region to
multiple organs, as previously segmented image regions are excluded from the later
segmentation process. We describe next the four successive steps. In addition, Table
9.1 summarizes the details and parameters for this process.

1. ROI Identification—The region of interest (ROI) is extracted and constitutes a
coarse initial segmentation. This step is organ-dependent and is based on the
location of the organ in the ventral cavity in the current scan.

2. Thresholding—After ROI identification, we threshold the CECT scan to fine-tune
the coarse segmentation of the organ based on its unique grey-level characteristics.
Note that the thresholding value derived in Process 1 is organ specific and scan
specific.

3. 2D Seed Identification—A representative 2D axial slice of the organ in the CECT
scan is identified. This slice serves as the set of seeds for the region-growing step.

4. Slice Region Growing—Organ segmentation by 3D region growing starting from
the 2D seed (2D axial slice) to obtain the final segmentation of the organ.

Figure 9.5 illustrates each of the four steps for the segmentation of the lungs.
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Fig. 9.5 Illustration of the
four steps of Process 2 on the
lungs: (1) The breathing
system (lungs and trachea)
ROI, (2) thresholding it with
a scan-specific and
structure-specific value,
(3) 2D axial slice that serves
as the set of seeds for region
growing, (4) 3D region
growing starting from the 2D
seed upwards and
downwards inside the ROI

9.2.3 Process 2: Implementation details

Below are the details of the implementation of the four-step segmentation process
for seven ventral cavity organs: the trachea, the left and right lungs, the left and right
kidneys, the spleen and the liver.

Step 1: ROI Identification

The ROI of each organ is obtained as follows:

Lungs and Trachea: The lungs and trachea are located within the region confined
by slices BB and DD, as illustrated in Fig. 9.5, Step 1.

Left Kidney and Spleen: The left kidney and spleen are located within the region
defined by slices AA, CC and the area to the left of FF, as illustrated in Fig. 9.6.

Right Kidney and Liver: The right kidney and the liver are located within the region
defined by slices AA, CC and the area to the right of FF as illustrated in Figs. 9.6
and 9.7.
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Fig. 9.6 Two views of the kidneys’ and spleen’s ROI. The ROI is defined by slices AA, CC and
the area to the left of FF for the left kidney and spleen and the area to the right of FF for the right
kidney

Fig. 9.7 Two views of the same liver ROI. Slices AA, CC and the area to the right of FF define
the ROI

Step 2: Thresholding

We threshold the CECT scan to refine the coarse segmentation obtained from the
ROI.

Lungs and Trachea: Inside the ROI, a threshold is applied to include all voxels
in the range [−1000HU, −500HU], and then, the largest connected component is
selected (Fig. 9.5, Step 2).
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Fig. 9.8 Illustration of the location of the organs’ 2D seed (green plane): Inside the ROI, the axial
slice with the widest perimeter is selected for (a) the lungs, (d) left kidney and (e) the right kidney.
The axial slice with the narrowest perimeter is selected for the trachea (b). The first slice above the
left kidney is selected for the spleen (c) and the liver (f)

Kidney, Liver and Spleen: For the kidneys, we threshold inside the ROI by including
only the voxels in the range [μkmean, μBV + 3σBV ]. For the liver and spleen, we
only include the voxels in the range [μBV − 0.5σBV , μkmean]. We use μkmean as the
threshold to separate the kidneys, which are significantly richer in blood vessels,
from the spleen and liver.

Step 3: 2D Seed Identification

The 2D axial slice selection is organ specific and is performed as follows:

Lungs and Trachea: Inside the lungs and trachea ROIs (Fig. 9.5, Step 1), the axial
slice with the narrowest perimeter (DD) is selected as the 2D seed for the trachea. The
axial slice with the widest perimeter (CC) is selected as the 2D seed for the lungs.
Note that the widest axial slice of the lungs contains two connected components, for
the left and right lungs (Fig. 9.8a, b).

Kidneys: Inside the kidneys’ ROI, the axial slice with the widest perimeter is selected
as the 2D seed for the kidneys (Fig. 9.8d, e).

Liver and Spleen: The first slice above the left kidney is selected as the 2D seed for
the liver and spleen (Fig. 9.8c, f).
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Fig. 9.9 Axial slice showing the results of the spectral cluster algorithm to isolate each lung

Step 4: Slice Region Growing

For each organ, we perform the region growing from the axial 2D seed. The seed is
extended slice by slice along the axial planes, within the coarse segmentation obtained
in Step 3, to include the entire organ. The unique segmentation characteristics for
each organ are as follows:

Lungs: Inevitably, in the lungs, some axial slices might appear as a single connected
component. To avoid this and to isolate each lung on those slices, we use the spectral
clustering algorithm [20] with two clusters. Figure 9.9 illustrates the result of using
the spectral clustering algorithm.

Note that the widest axial slice of the lungs, used as the 2D seeds at Step 3, occurs
around the heart, which pushes the lungs out of its way, thus acting as a natural
separator, so the lungs do not appear as a single connected component.

Trachea: The region growing is performed upwards to the top of the ROI and down-
wards to the first bifurcation.

Kidneys, Liver, Spleen: The region growing is performed upwards and downwards
from the seed slice within the ROI. Between each pair of slices, the region growing
continues only into the largest connected component that intersects with the current
slice. All smaller intersected components are removed, as ventral cavity organs are
relatively smooth, so two adjacent voxels of the same organ cannot exceed some
level of variability (Fig. 9.10). This process is repeated throughout the slices inside
the ROI.

9.2.4 Post-processing at the End of Process 2

A final post-processing fine-tuning sequence is performed on the kidneys, liver and
spleen in order to finalize their segmentation. This post-processing sequence is dif-
ferent for each organ.

Kidneys: First, holes in the image are filled. Next, all connected components that
have fewer than 50 pixels are removed. Then, the largest 3D connected component
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Fig. 9.10 Schematic illustration of the liver, spleen and kidneys region growing between two adja-
cent slices. The current slice contains a single component. The next slice contains two components.
The region growing proceeds into the largest component (blue) that intersects with the current slice,
where the smaller intersected components are removed (red)

is selected. And finally, a closing operation with a disc-shaped structuring element
with a radius of 3 pixels is performed.

Liver: First, all connected components that have fewer than 50 pixels are removed.
Next, the largest 3D-connected component is selected. And finally, holes in the image
are filled.

Spleen: A closing operation with a disc-shaped structuring element with a radius of
4 pixels is performed.

Note that the morphological operators are 2D and are applied to the axial slices.

To further increase the overall accuracy and the robustness of our method, we use
a simple control mechanism to detect major failures in the segmentation process.
When the volume of a segmented organ is less than 30% of the mean volume for that
organ from the 20 ground truths of the training set, we classified the segmentation as
a failure. We exclude failure cases for two reasons. First, we follow the VISCERAL
Benchmark guidelines for the results. The guidelines exclude empty files from the
evaluation, so we added a quality-assurance step with a rigorous threshold to filter
out these cases. Second, note that the segmentation algorithm is the first step of a
content-based image retrieval (CBIR) system, the goal is to retrieve the 10–30 most
relevant scans. Those failure cases are marked with N/A in Table 9.2.

9.3 The VISCERAL Benchmark

The VISCERAL Anatomy2 Benchmark dataset [17] consists of four modalities: CT
and MR scans of the whole body (wb), CECT scans of the whole trunk and T1
contrast-enhanced MR scans of the abdomen. Each modality has 30 clinical scans (a
training dataset of 20 scans was made available to participants before the benchmark,
and a test dataset of 10 scans used only by the organizers). All scans were acquired
between 2004 and 2008. Our method was submitted for the CECT whole trunk
modality.
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Fig. 9.11 Multiorgan segmentation results of four representative CECT scans of the VISCERAL
Challenge

The CECT whole trunk scans were acquired from adult patients with malignant
lymphoma. Their field of view starts between the skull base and the neck and ends
at the pelvis. In-plane resolution is 0.604 − 0.793 mm; the in-between plane res-
olution is 3 mm. A VISCERAL team radiologist manually produced ground truth
segmentation for each scan.

The VISCERAL training and test datasets were uploaded to the Azure cloud
framework. The training dataset was made available to all registered benchmark
participants. In this unique cloud-based evaluation benchmark [14], the participants
were required to submit their source code and the testing was conducted by the orga-
nizers. The participants received a virtual cloud computing 8-core CPU instance with
16-GB RAM. Both the executable and the required libraries were installed by the
participants in the virtual machines. The test dataset was not accessible to the partic-
ipants. The organizers ran the virtual machines with the participants’ segmentation
software on the test data. The goal of this framework is to generate an objective and
unbiased evaluation of the different algorithms with the same test dataset and the
same computing capabilities for all the participants.

9.4 Results and Discussion

Table 9.2 shows the results for the training dataset; Table 9.3 summarizes the results
for the test dataset. The high values of DICE similarity coefficients demonstrate the
reliability of our method. In the recent VISCERAL Challenge, for air-containing
organs, our method was ranked as one of the top [13]. Figure 9.11 shows four repre-
sentative examples of the multiorgan segmentation results.

Note that the only organ for which our segmentation averages below 90% accuracy
is the liver. This stems from the fact that the liver is the most complex organ in
the body, with very high variance among the individuals, and varying grey levels
according to the phase in which the scan was obtained.

Our approach throughout the paper is based on the anatomical analysis. The aim
of the ROIs is to identify the location of the organs defined by medical-anatomical
knowledge. The thresholds for separating the kidneys from the spleen/liver are based
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Table 9.2 DICE similarity score per organ for the training dataset (20 CECT scans)

Subject
id

Trachea Left lung Right
lung

Right
kidney

Left
kidney

Liver Spleen

10000100 0.96 0.97 0.97 0.88 0.82 0.91 0.94

10000104 0.83 0.98 0.97 0.90 0.92 N/A 0.78

10000105 N/A 0.93 0.92 0.86 0.90 0.94 0.94

10000106 0.89 0.98 0.97 0.92 0.94 0.90 0.89

10000108 0.89 0.98 0.98 0.89 0.93 0.92 0.81

10000109 0.94 0.96 0.95 0.90 0.91 0.87 0.92

10000110 0.84 0.98 0.98 0.95 0.95 0.85 0.92

10000111 0.95 0.96 0.97 0.92 0.91 N/A 0.94

10000112 0.91 0.97 0.94 N/A 0.92 0.74 0.83

10000113 0.91 0.97 0.98 0.95 0.95 0.91 0.96

10000127 0.82 0.97 0.97 N/A N/A 0.73 N/A

10000128 0.85 0.96 0.98 0.89 0.91 0.87 0.93

10000129 0.84 0.98 0.98 N/A N/A 0.93 N/A

10000130 0.85 0.96 0.96 0.91 0.91 0.86 0.95

10000131 0.96 0.96 0.95 0.93 0.94 0.86 0.91

10000132 0.96 0.77 0.95 0.91 0.92 0.92 0.94

10000133 0.87 0.97 0.95 0.92 0.92 0.90 0.78

10000134 0.92 0.99 0.98 0.90 0.92 0.85 0.92

10000135 0.94 0.98 0.95 0.89 0.91 0.92 0.85

10000136 N/A 0.98 0.97 0.93 0.91 0.84 0.95

Average .90 0.96 0.96 0.91 0.92 0.87 0.90

on the fact that the kidneys are significantly richer in blood vessels. The fact that
the widest axial slice of the lungs occurs around the heart, which acts as a natural
separator, ascertains the lungs do not appear as a single connected component at that
point.

An advantage of the cloud-based evaluation framework is that it required us to
develop robust and portable software, which we published as open source that can
be integrated in different platforms such as the clinical environment.

If one of the organ segmentations failed during the pipeline process, all following
organs will fail too. This is because of the dependency between segmentation steps.
Such a scenario occurred for subjects 10000127 and 10000129 (Table 9.2), for the
segmentation of the left kidney failed and as a result segmentation of all succeeding
organs—spleen and the right kidney—failed. This could also happen in cases of
nephrectomy (kidney removal).

Table 9.3 Results: Average DICE similarity score per organ for the test dataset (10 CECT scans)

Test
dataset

Trachea Left lung Right lung Right kidney Left kidney Spleen
85.1 97.0 96.8 87.0 82.9 82.2
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Fig. 9.12 The enlarged
spleen of subject 1000112:
In some rare cases, organs
might extend outside the
ROI; this happens in cases of
enlarged organs

Note that segmentations 10000127 and 10000129 were tagged as failure by our
control mechanism which excludes any segmentation result if it is below 30% of
the average volume calculated for the organ. Working in the field of big data, we
consider it much more preferable to retrieve fewer cases, but be more assured they
are highly relevant cases, than to risk retrieving less relevant cases, because they
were mis-segmented.

Another limitation can come from the construction of the ROI. There are some
rare cases where the organs extend outside the ROI; this happens in cases of enlarged
organs that vary from the standard shape. Such an example is shown in Fig. 9.12.

9.5 VISCERAL Benchmark Perspective

Five other groups participated in the VISCERAL Anatomy2 Benchmark for the
CECT modality. Below is a short description of their methods, followed by a short
discussion.

Kechichian et al. [15] propose a generic method based on a multilabel graph cut
optimization approach that uses location likelihood of organs and prior information
of spatial relationships between them. Organ atlases are mapped and used. To derive
organ intensity likelihoods, prior and likelihood models are then introduced in a
joint centroidal Voronoi image clustering and graph cut multiobject segmentation
framework. Wang et al. [32] segmented 10 anatomical structures in CT contrast-
enhanced and non-enhanced scans. Their multiorgan segmentation pipeline follows
a top-down approach based on the level set segmentation of the ventral cavity. After
dividing the cavity into the thoracic and abdominal cavities, the major structures are
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segmented based on statistical shape and their location information is used to seg-
ment the lower-level structures. Jimenez del Toro et al. [12] segment structures in CT
contrast-enhanced and non-enhanced scans with a hierarchical multiatlas approach.
Based on the spatial anatomical correlations between the organs, the bigger and
higher-contrast organs are segmented first. These initial volume transformations form
the basis for identifying the smaller structures with less defined boundaries. Goksel
et al. [7] describe segmentation methods for both CT and MR anatomical structures.
They use a multiatlas-based technique that uses Markov random fields to guide the
registrations. A multiatlas template-based approach fuses the different deformable
registrations to detect the segmentation. Xuhui et al. [34] propose a coarse liver seg-
mentation using prior models for the shape, appearance and contextual information
of the liver. An AdaBoost voxel-based classifier creates a liver probability map that
is augmented in the last step with freeform deformation with a gradient appearance
model. Next, we describe and compare these methods according to the different
characteristics.

The methods of [7, 12, 15] are based on the registration to an atlas while the
methods of [32, 34] require registration to a statistical shape model. Registration
requires a presegmented dataset and is a time-consuming process and subject to
inaccuracies. Only our work obviates the need for costly registration.

Most of the methods, including [12, 15, 32, 34] and our method, are based on
a hierarchical process—organs are segmented in a predefined order to minimize
segmentation errors and that of [7] segments all organs at once by image registration
to a multiorgan atlas. We believe that hierarchical-based methods yield better results
when compared to the method of [7] because they allow mutual information sharing
between the segmentation processes of different organs.

While the VISCERAL Challenge is aimed at both enhanced and non-enhanced CT
scans, our method is currently applicable only for enhanced CTs. Other methods are
also applicable for non-enhanced CTs, thanks to the use of atlas/shape information.
Currently, we are working on adapting our approach for non-enhanced CTs as well.

9.6 Conclusion

We have presented a new fully automatic atlas-free segmentation method of multiple
organs of the ventral cavity in CT scans. Our method is unique in that it obviates
the need for a predefined atlas and/or costly registration and in that it uses the same
generic segmentation approach for all organs. Experimental results on 20 CECT scans
of the VISCERAL Anatomy2 training dataset and 10 CECT scans of the Anatomy2
test dataset yield an average DICE volume overlap similarity score of 90.95 and
88.50%, respectively.

Automatic segmentation of anatomical structures in CT scans is an essential step
in the analysis of radiological patient data and is a prerequisite for large-scale content-
based image retrieval (CBIR) systems. Worldwide, the number of volumetric medical
images (CT, MRI, etc.) reaches into the hundreds of millions per year and represents
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the largest single component of the medical health record. This untapped gold mine
of medical data awaits the application of big data analytics, such as CBIR, to enable
large-scale population and epidemiological studies, preventive medicine by early
detection and assist radiologists in the decision-making process. The cloud-based
evaluation framework of the VISCERAL Benchmarks [14] required source code
to be submitted for testing by the organizers, the code was independently tested
and we published it online2—it is now freely available for the benefit of the CBIR
community. Future work consists of extending our approach to additional imaging
modalities such as non-enhanced CT, handling scans of patients with organs missing,
and testing the applicability of our method in an end-to-end CBIR scheme.
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Chapter 10
Multiorgan Segmentation Using Coherent
Propagating Level Set Method Guided
by Hierarchical Shape Priors and Local
Phase Information

Chunliang Wang and Örjan Smedby

Abstract In this chapter, we introduce an automatic multiorgan segmentation
method using a hierarchical-shape-prior-guided level set method. The hierarchical
shape priors are organized according to the anatomical hierarchy of the human body,
so that the children structures are always contained by the parent structure. This
hierarchical approach solves two challenges of multiorgan segmentation. First, it
gradually refines the prediction of the organs’ position by locating and segmenting
the larger parent structure. Second, it solves the ambiguity of boundary between
two attaching organs by looking at a large scale and imposing the additional shape
constraint of the higher-level structures. To improve the segmentation accuracy, a
model-guided local phase term is introduced and integrated with the conventional
region-based energy function to guide the level set propagation. Finally, a novel
coherent propagation method is implemented to speed up the model-based level set
segmentation. In the VISCERAL Anatomy challenge, the proposed method delivered
promising results on a number of abdominal organs.
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10.1 Introduction

Shape-prior-guided image segmentation methods are popular choices for various
challenging segmentation tasks [4, 5, 7, 13, 18]. This is because the constraint
from shape priors substantially reduces the risk of region leaking that could occur
often if the segmentation algorithm merely relies on image features. However, in our
experience, this constraint is no guarantee for successful segmentation, as undesired
segmentation errors can still occur due to non-ideal model initialization or weak
organ edge discrimination, which often happens when two neighbouring organs have
similar intensity. Figure 10.1b shows an example of such failed shape-prior-guided
segmentation. In this non-contrast CT scan, the liver model is misled towards the
heart and chest wall by the similar intensity of these organs and the lack of gradient
at the organ boundaries. This error could potentially be corrected if the segmentation
algorithm incorporates some more sophisticated edge filters/detectors to enhance the
vague borders between organs [9, 25]. However, such efforts often result in unstable
solutions that will only work for a certain type of image and are sensitive to image
quality and intensity variations. On the other hand, when asking a medical expert
to perform the same task, such “absurd” errors will never happen, as the human
observer has already identified the heart area and chest wall using his/her anatomical
knowledge. In other words, the expert is doing a multiorgan segmentation even
when he/she is asked to perform a single-organ segmentation. This led us to a simple
philosophy: when it is difficult to tell whether a voxel belongs to organ A or not, it is
probably easier to check whether it belongs to organ B or C. Based on this philosophy
and the hierarchical nature of the human anatomy, we developed a hierarchical-shape-
prior-guided multiorgan segmentation method. In the hierarchical shape model, the
major structures with less population variation are at the top and smaller structures

Fig. 10.1 A comparison between the conventional single-organ segmentation method (b) and the
proposed hierarchical multiorgan approach (c–f). a Coronal view of a non-enhanced CT scan (note
that the intensities of the liver, chest wall and heart are almost identical). b Failed liver segmentation
with a single-organ shape prior. c Shape-prior-based ventral cavity segmentation. d Abdominopelvic
cavity segmentation (yellow) on top of the ventral cavity (red). e Liver segmentation (brown) on
top of ventral and abdominopelvic cavity segmentation. f Final multiorgan segmentation result.
(Images are from our previous publication [17])
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with higher irregularities are linked at a lower level. As shown in Fig. 10.1c–e, the
segmentation starts from a large scale, so that the border between the ventral cavity
and the chest and abdominal wall (Fig. 10.1c) is delineated, and then, at a smaller
scale the, border between the thoracic and abdominal cavity (Fig. 10.1d) is identified.
At the finest scale, individual organs are segmented (Fig. 10.1e).

The proposed top-down approach solves two major challenges of organ segmen-
tation. The first one is to locate the anatomical structures within the dataset. Due to
respiratory motion and anatomical variation, even for the scans with similar scanning
range, the location of the same organ can still vary considerably. In the proposed mul-
tiorgan segmentation framework, the location information of the major structures is
first detected with higher confidence and then passed down to the lower-level struc-
tures to initialize their segmentation. This process is similar to a multi-resolution
registration approach. However, the benefit of using statistical shape models at each
level is that the negative influence of anatomical and appearance variation of finer
structures is eliminated to a large extent. The other major challenge that the proposed
method solves is to delineate the boundary between two closely attached organs. Such
delineation can be difficult in certain places where the contrast between organs is
very vague or vanishes. In addition to the local features, the proposed method also
utilizes the shape information of larger structures to guide the segmentation, i.e. the
boundary information from higher-level structures provides extra cues to guide the
segmentation of the lower-level structures. Such a hierarchical framework has proved
to be very robust and performed relatively well even on non-contrast-enhanced CT
image when using only region-based energy based on image intensity [16, 17].

To further improve the segmentation accuracy of the hierarchical model-based
method, a model-guided edge-based energy term is proposed and combined with
the region-based energy term to guide the level set evolution [19]. Unlike the con-
ventional edge-based energy terms, which ignore the orientation of the edge-related
features, the model-guided edge-based energy term uses the normal direction of the
shape model to suggest the searching orientation of the local structures. This makes
it possible to distinguish the black-to-white edges from white-to-black edges, which
generate the same edge responses when using conventional gradient and local phase
measurements. As such ambiguity often exists in the area where two organs’ borders
approach each other, there is a greater chance for the segmentation region to leak to
the nearby organ when using conventional edge-based energy terms.

Finally, to improve segmentation speed, a novel coherent propagating level set
algorithm was implemented. The new algorithm forces the contour to move monoton-
ically according to a predicted developing trend which makes the level set functions
converge faster. It also makes it possible to detect local convergence, so that the
parts of the boundary that have reached their final position can be excluded in subse-
quent iterations, thus significantly reducing computation time [20, 22]. The proposed
method was tested using the VISCERAL benchmark database, and promising results
were delivered within reasonable processing time without any user intervention.
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10.2 Statistical Shape-Prior-Guided Level Set
Segmentation

As a member of the active contour family, the level set method segments the targeted
object in an image by propagating an initial contour towards the object’s border. The
movement of the contour is usually guided by two types of forces: the external and
internal forces. While the external force is often designed to drive the contour towards
the object’s border, the internal force is commonly designed to keep the contour
smooth. To generate these forces, the segmentation problem is often formulated as
an energy minimization problem, as demonstrated in Eq. 10.1, where φ is the level
set function, and α, β are weighting factors.

E (φ) = αEin (φ) + βEex (φ) (10.1)

The most common external energy functions include region-based image energy
and gradient-based image energy; examples are given in Eqs. 10.2 and 10.3, respec-
tively. The former converts the input image intensity into probability functions of a
pixel/voxel belonging to the object or the background [3], while the latter utilizes the
image gradient to guide the movement of the contour so that the contour is attracted
to areas with higher gradient [2].

Eregion (φ) = −
∫

log
[
pA (I (x))

]
H (φ (x)) dx −

∫
log

[
pB (I (x))

]
(1 − H (φ (x))) dx

(10.2)

Eedge (φ) =
∫

(|∇I (x)| + 1)−1 φ′ (x) dx (10.3)

Ein (φ) =
∫

|∇H (φ (x))| dx (10.4)

Here, H is the Heaviside function, and pA and pB are probability functions of a
pixel belonging to the object region and the background region, respectively. The
internal energy is often connected with local curvature of the contour, which means it
is minimized when the contour becomes smooth (e.g. Eq. 10.4). The local smoothness
character of active contours makes them resistant to noise. The internal force can
also, to some extent, prevent the segmentation region leaking to a neighbouring object
through small “holes” that connect two regions with similar appearance. However, as
the curvature is a local measurement, if the connecting “holes” are larger than the scale
at which the smoothness is measured, leaking problems may still occur. To obtain
the right segmentation results in such cases, we need to impose a stronger constraint
on the shape of the contour. While there is no general solution to avoid the leaking
problem for all cases, in medical images, we can often use the prior knowledge of the
anatomical shape of the targeted structures. The statistical shape model-guided level
set method proposed by Leventon et al. is an example of incorporating such shape
prior knowledge into the image segmentation [13]. In this framework, a shape-based
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energy term is added to penalize the differences between the evolving contour and
the shape prior (Eq. 10.5):

Emode (φ) =
∫

(φ (x) − m (t (x)))2 dx (10.5)

where m represents the statistical shape model, and t is a rigid transformation func-
tion.

How to represent the shape prior knowledge using mathematical models is still
an active research field; a relatively complete review can be found in [5, 7]. In
general, there are two types of statistical shape models that are commonly used for
medical image segmentation. One is the mesh-based representations, such as the
active shape models (ASMs) [4], where shapes are expressed as 2D contours or 3D
meshes, and the variation of shapes is constrained by the distribution of the vertexes.
Another type of shape models is region-based where the shapes are embedded in
distance maps created from binary patterns. The latter is often used in the level set-
based framework, since the level set function itself is also a distance map. For the
mesh-based representations, it is less straightforward to define a transform function
t relating the meshes with the level set function. To create the region-based statistical
model, manually created segmentation masks are first aligned using rigid registration;
i.e., only translation, rotation and isotropic scaling are allowed. Then, these aligned
binary masks are converted into signed distance maps via a distance transform. The
prominent variations of these distance maps can be obtained via principal component
analysis (PCA). Finally, the statistical model is represented by combining the mean
of the signed distance maps (m) and a weighted combination of the variation maps
(mσ1, mσ2, . . . mσn) (Eq. 10.6).

M = m + ω1mσ1 + ω2mσ2 + · · · + ωnmσn (10.6)

It should be pointed out that the PCA process mentioned above does not guarantee
the algorithm to fully recover the population variation of the targeted shape. This is
because the distance transform is a nonlinear process. It has been shown that in some
cases, the shape variation is highly nonlinear [5]. This limits these types of methods
to shapes that do not vary in a too complicated manner. Fortunately, this is often not
a big problem for anatomical structures in medical applications.

Combining the region-based term and the model-based term as the external energy
leads us to the level set equation minimizing Eq. 10.1:

∂φ

∂t
=

[
αdiv

( ∇φ

|∇φ|
)

+ β (log (pB) − log (pA)) + γ m (t)

]
|∇φ| (10.7)

The optimization of the level set function and the model fitting is usually per-
formed iteratively in parallel; i.e., the model is re-estimated after one or several
iterations of the level set evolution. The transformation t and the weighting factors

www.dbooks.org

https://www.dbooks.org/


170 C. Wang and Ö. Smedby

ωi are usually solved by minimizing the squared distance between the model and the
level set function, which is also a signed distance map.

10.3 Multiorgan Segmentation Using Hierarchical Shape
Priors

Although using shape priors prevents the leaking problem in many medical applica-
tion, in some challenging cases, a single-organ model is still insufficient to generate
a satisfactory segmentation result. Such failure can often be seen in cases where
the connecting area between two organs of similar intensity is relatively large. An
example is given in Fig. 10.1b. In this non-enhanced CT scan, the liver model was
confused by the similar intensity between the liver and other surrounding organs.
Even though there are visible gaps between them, such small local minima cannot
prevent the model-based segmentation method to reach a global minimum when
minimizing Eq. 10.1. While the connecting areas are relatively large for the liver,
they become smaller when looking at a higher scale. For example, when looking
at the ventral cavity (union of thoracic cavity and abdominopelvic cavity), there is
no longer ambiguity of telling which is the chest wall and which is the liver (Fig.
10.1c). It is the same for the border between the heart and the liver when looking
at the separation of the thoracic and abdominal cavity (Fig. 10.1d). Therefore, it
is advantageous to use hierarchical shape priors that are organized according to the
scale and shape complexity of different anatomical structures; i.e., the large organs of
more regular shape with less interobject variation are located at the higher level, and
the smaller structures of more complex appearance and variation are introduced at a
lower level. During the segmentation, higher-level structures’ location information
will influence the lower-level structures’ location, and the higher-level structures’
border will also limit the area of the lower-level structures as the latter are assumed
to be contained by their upper-level structures.

10.3.1 Building Hierarchical Shape Priors

The major structures of the proposed hierarchical shape priors are listed in Fig. 10.2.
Building hierarchical shape priors consists of two major steps: building individual
shape models and linking them together in a common space. The individual statistical
shape model generation is not much different from the traditional statistical shape
generation process described in Sect. 10.2. However, to make sure that the relative
scale between different structures is preserved, a “standard patient” is selected in the
beginning via a visual comparison. Organs that are manually segmented from other
patients are all registered towards the corresponding organ of this standard patient.
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Fig. 10.2 An overview of the hierarchical organization of the shape priors

To link different organs and structures to a common space, the children-level struc-
tures are projected into their parent-level structure’s space using the transformation
matrices that align the upper-level structures. For example, after the ventral cavity
masks of all other subjects are registered towards the picked subject’s ventral cavity,
the children-level structures of those subjects, i.e. lungs, heart and abdominopelvic
cavity, are projected to the mean shape of the ventral cavity using the same rigid
transform as the ventral cavities. These structures will not be perfectly aligned, but
the sum of the masks will form a probability map that suggests the likelihood of
the corresponding organ appearing at a certain place of the ventral cavity. A binary
trust zone of the lower-level organ is created by setting a threshold on the probability
map. Finally, the mean shapes of these children structures are registered towards the
corresponding trust zones. Through these chains of transformation, we establish a
rigid transform from the mean shape of a children structure to its parent structure.
These transformation matrices are used to initialize the position of the children struc-
ture models, once the segmentation of their parent structures is finished. Figure 10.3
shows the mean shapes of all structures used in our hierarchical shape model and
their relative positions determined using the approach describe here.
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Fig. 10.3 The mean shape of different anatomical structures and their relative positions

Fig. 10.4 The processing pipeline of the proposed multiorgan segmentation framework

10.3.2 Multiorgan Segmentation Using Hierarchical Shape
Priors

Figure 10.4 summarizes the processing pipeline of the proposed segmentation frame-
work. In a preprocessing step, we try to remove the skin and subcutaneous fat from the
patient’s image data using a threshold-based level set method combined with math-
ematical morphological operations. Because these tissues vary considerably from
patient to patient, if present, they may mislead the following registration between
the unseen patient and the standard patient mentioned above. This registration step
is designed to initialize the ventral cavity model’s position in the unseen patient. The
segmentation steps are performed in a top-down fashion guided by the hierarchical
shape model; i.e., the ventral cavity is first segmented and then divided into thoracic
cavity and abdominopelvic cavity. At a third stage, the individual organs such as liver,
spleen and kidneys are segmented. Within the same level, structures are segmented
sequentially from left to right in the order listed in Fig. 10.2.
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The segmentation process for individual structures is very similar to the model-
guided level set method described in Sect. 10.2, except that an additional energy term
is added to let the parent structure regulate the children structures’ segmentation. The
new energy function is given in Eq. 10.8.

Eparent_mode (φ) =
∫ (

1 − H
(
φp (x)

) − H (φ (x))
)2

dx (10.8)

Here, φp is the segmentation result of the parent structure. For the ventral cavity,
φp is set to be the level set function of the subcutaneous fat stripping step. Note that
as long as the children structure is inside its parent, the latter has no influence on the
lower-level structure segmentation. Besides this regulation force, the segmentation
of the parent structure also provides the initial position of the children structures
using the relative transformation matrix obtained in the hierarchical shape model
training phase.

10.3.3 Region-Based External Speed Function

Besides the model terms, the image term of the level set function is another important
factor of the multiorgan framework. As presented in Sect. 10.2, common external
speed functions include region-based methods and gradient-based methods. In our
preliminary implementation of the proposed hierarchical-shape-prior-guided level
set framework, we chose to use the region-based approach, where the external speed
function is an intensity mapping function. Like the threshold-based level set method
proposed by Lefohn et al. [12], the mapping function outputs a positive speed if the
CT value is close to the mean intensity of a selected organ, but a negative speed
when the CT value is unlikely to be seen in that organ. For non-contrast-enhanced
CT scans, the intensity distribution of most parenchymal organs is relatively con-
sistent from patient to patient, which allows us to use the same sets of parameters
to guide the segmentation of the same organ in different subjects. Some examples
are plotted in Fig. 10.5. Note that as the intensity distribution of some neighbouring
organs/structures may overlap with the targeted organ, the ceiling and floor of the
mapping function are manually tuned to avoid leaking into the neighbouring struc-
tures. This results in an asymmetric intensity mapping function, like for the ventral
cavity. For contrast-enhanced CT scans, the intensity distribution of some organs
may vary significantly depending on the circulation rate and acquisition timing, and
an iterative intensity range estimation approach is then used for segmenting the heart,
liver, kidney and spleen. Using the imperfect initial segmentation, we estimate the
mean intensity (M) and its standard deviation (σ ) of the targeted organ. The organ’s
upper and lower thresholds are then set to be M + 1.5σ and M − 1.5σ , respectively.
To avoid the influence of undesired tissue included in these preliminary segmenta-
tions, all voxels with intensity lower than 30HU are excluded from the calculation
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Fig. 10.5 Example
thresholding functions for
the image term

of M and σ . The intensity estimation is repeated during the model fitting process.
The iterative intensity estimation stops when the changing rates of M and σ are both
lower than a threshold (5 HU).

10.4 Improving Segmentation Accuracy Using
Model-Guided Local Phase Analysis

Although the region-based speed function alone can generate relatively good seg-
mentation results, in complicated cases where the organ is attached to several neigh-
bouring structures with various intensity ranges, it is advantageous to rely not only
on the image intensity but also on the edge information. Therefore, combining the
region-based and gradient-based speed function is a natural way to improve the seg-
mentation accuracy. However, conventional gradient-based edge delineation cannot
distinguish between black-to-white and white-to-black edges. In medical images, we
often see two organs approaching each other in some areas. As both edges generate
high gradient measurements, the contour may be attracted to either side depending
on the initial position of the contour. To avoid such ambiguity, we have proposed a
model-guided local phase analysis that is able to distinguish between these two types
of edges and avoid the segmentation region leaking into another organ.

10.4.1 Quadrature Filters and Model-Guided Local Phase
Analysis

So-called quadrature filters are pairs of filters designed to measure whether the under-
lying image structure is similar to a ridge-like pattern or an edge-like pattern. An
example of a two-dimensional quadrature pair set is shown in Fig. 10.6a, b. The
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Fig. 10.6 An example of quadrature filter pairs in 2D. a The ridge-picking filter. b The edge-picking
filter. c The quadrature filter’s response in the complex plane

output of this pair of filters is represented by a complex number where the real part
is the output of the ridge-picking filter and the imaginary part is the output of the
edge-picking filter. The argument of this complex number in the complex plane is
referred to as the local phase [10], θ in Fig. 10.6c. The magnitude (q) of the com-
plex number is called local energy [10]. Local phase is often used as a promising
alternative to image gradient for image segmentation [1, 11, 18]. This is because the
phase measure measurement changes monotonically when moving from one side of
the edge to the other side, which makes it easier to design a speed function. However,
like gradient measurements, local phase is also orientation-dependent. In practice,
the local phase is often estimated using the local orientation estimated from the local
gradient or eigenvectors of the local structure tensor. These types of solutions will
produce the same phase for black-to-white and white-to-black edges. When used for
segmentation, the local phase still cannot prevent the contour from leaking to the
edge of a neighbouring organ.

Here, we propose to use the evolving statistical shape model, instead of the input
image, to generate the reference direction for local phase measurement. This is done
by converting the shape model into a signed distance map. When measuring the local
phase at a point, the principle orientation of the quadrature filters is then aligned
with the gradient of the signed distance map. Note that the reference orientation
is perpendicular to the shape surface. More importantly, the gradient also indicates
which direction is inside and outside. Unlike conventional local phase analysis, the
output of the model-based phase analysis is π/2 on a black-to-white edge and −π/2
on a white-to-black edge. An example of applying the proposed phase analysis in a
brain MRI volume is shown in Fig. 10.7h. Compared with the phase map produced
by Läthén’s method [11] (Fig. 10.7d), the proposed solution (Fig. 10.2h) makes a
clear distinction between the inner boundary of the skull (blue) and the outer surface
of the brain (yellow).
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Fig. 10.7 a Input image: the green contour represents the cross section of the brain model; b the
gradient magnitude; c, d local energy and phase maps using Läthén’s method [11]; e, f, g, h the
real and imaginary parts of the model-guided quadrature filter and corresponding local energy and
phase maps. (d, h were created using the colour lookup table shown in Fig. 10.6c)

10.4.2 Integrating Region-Based and Edge-Based Energy
in the Level Set Method

To use the phase information to guide the level set propagation, we propose an energy
function as described in Eq. 10.9.

E (∂R) =
∫ 1

0
g [θ (I (∂RA (c))) − τ ]2 |RA (c)| dc (10.9)

Here, I is the input image, RA is the segmented region, and θ is the estimated
local phase (0 ≤ θ < 2π) at any given location. τ is the targeted phase (e.g. π/2 for
a black-to-white edge and 3π/2 for a white-to-black edge). The function g is simply
a period-fixing function that ensures that the phase difference θ − τ falls in the range
from −π to π (Eq. 10.10).

g (δ) =
⎧⎨
⎩

δ

δ − 2π

δ + 2π

if − π < δ ≤ π

if δ > π

if δ ≤ −π

(10.10)

Note that Eq. 10.9 is very similar to the conventional geodesic active contours
given in Eq. 10.3, except that θ(I) replaces ∇I , and the period-fixing function g
replaces the gradient magnitude inverse function. To combine the phase-based energy
and the region-based energy, we propose an integrated energy function:
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Fig. 10.8 a An axial view of an input volume (green contour shows the current shape model), (b)
the region-based speed terms based on the image intensity, c the phase-based term estimated using
the model, d the combined external speed map. Note that the connection between liver and kidney
is removed

E (∂R) = α

∫ 1

0
g [θ (I (∂RA (c))) − τ ]2 |RA (c)| dc−

∫
RA

∫
w(x, y) log

[
pA (I (x, y))

]
dxdy −

∫
RB

∫
w(x, y) log

[
pB (I (x, y))

]
dxdy

(10.11)

Here, pA and pB are the probability functions of a given pixel/voxel belonging to
the region A/B. Function w is a weighting function that weights the fitting energy
using the local energy output (q) from the quadrature filter, as described in Eq. 10.12:

w (x, y) = 1

1 + q (I (x, y))
(10.12)

The energy function is minimized by solving the following descent equation:

∂φ

∂t
=

[
αg(θ − τ)2div

( ∇φ

|∇φ|
)

+ αg(θ − τ) + w log (pB) − w log (pA) + m (t)

]
|∇φ|
(10.13)

Figure 10.8 shows an example of integrated speed in a liver segmentation case.
The region-based and phase-based components of the speed function are also shown
side by side. In practice, the first component on the right side can be replaced by

α′div
(

∇φ

|∇φ|
)

, where α′ is a weighting factor, as it is just a regulation term that corre-

sponds to the curvature force in the conventional level set methods.
Since the filter orientation varies across the image, the filtering is made via local

resampling by rotating a given kernel grid to align with the local reference direction.
This step can also be carried out using a steerable filter, which synthesizes a filter
with arbitrary orientation from a linear combination of basis filters [6]. The latter
may be faster if the local phase analysis needs to be performed for all pixels/voxels.
However, in practice, the computation on points that are far away from the model
surface can be skipped, as will be further explained in the next section.
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10.5 Speeding up Level Set Segmentation Using Coherent
Propagation

Level set methods are computationally intensive, and many efforts have been made to
speed up level set-based segmentation. One common approach is to limit the compu-
tation to a narrow band around the zero level set. The most popular implementation
of this type is the sparse field level set, which only updates the level set function on a
1-pixel wide band that the zero level set passes through [24]. However, the process-
ing time is still in the range of 10–30 min to segment a single organ from a voxel
image [22]. To speed up level set segmentation, we proposed a fast level set method
using coherent propagation [20, 22]. The new method not only limits the compu-
tation to a narrow band, but also eliminates the points that have reached the object
border. This local convergence detection is enabled by synchronizing local points on
the contour to move outwards or inwards together monotonically in a period instead
of letting different points on a contour move outwards or inwards simultaneously.
The speed function of the coherent propagating level set can be written as in Eq.
10.14.

∂φ

∂t
= W (Vt) where W (Vt) =

{
Vt (x) if Vt (x) Tr (x) > 0
0 if Vt (x) Tr (x) ≤ 0

(10.14)

Here, Vt is the conventional level set speed function (e.g. Eq. 10.7), and the func-
tion Tr represents a trend direction suggesting whether the local contour is expanding
or shrinking. Within a single period, its value is fixed to 1 or −1. The initial value
of Tr can be either estimated using the average external speed in a neighbourhood
[22] or assigned via user interaction, such as dragging the contour inwards or out-
wards [23]. In the latter case, the trend of the whole contour is synchronized, meaning
that the contour is designed to only expand or shrink in the first period. A period
ends when no points on the contour can move towards the trend direction. When
entering the next period, the Tr function will switch sign at all points, and all points
will propagate in the opposite direction until they stop again. The final segmentation
result can be obtained after repeating the coherent propagation for a small number
of periods (4–6). Within a single period, once W (x) returns 0, at point x, then this
point is excluded from the further computation, until at least one of its neighbours’
level set value has changed. The ability to detect the converged points helps the new
level set method to achieve at least 10 times speedup in various segmentation tasks
when compared with the sparse field level set algorithm [22].

Moving from level set segmentation to statistical shape model-guided level set
segmentation, the computational burden becomes even greater. While simply plug-
ging Eq. 10.7 as vt into Eq. 10.14 can already speed up the segmentation process
considerably, another time-consuming part of model-based level set segmentation is
to update the statistical model iteratively as the level set propagates. Although the
narrowband strategy can also be applied here, i.e. using the voxel on the zero level
set to drive the statistical shape fitting, the computation can still be slow if the fitting
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has to be repeated frequently. To reduce the frequency of updating the shape model,
we limit the maximum travel distance of the active contour from the previous shape
model by normalizing the image terms in Eq. 10.3 and tuning the weighting factors.
This maximum travel distance is often set to be relatively small (3–5 mm), which
means that the model fitting need not be repeated before the level set converges.
When using the conventional level set method, it is not possible to know when the
level set function will converge, and the level set evolution is often repeated a redun-
dant number of iterations, which may outweigh the benefit of reducing the number
of registrations. On the other hand, the coherent propagation method is capable of
detecting the convergence by itself, thereby avoiding such redundant computations.
In our preliminary experience of the new framework, the model fitting rarely needs
to be repeated more than 20 times, given a relatively good initialization. The reduced
model updating frequency will also directly benefit the model-guided phase compu-
tation, which can be very time-consuming, too. Moreover, since the contour is not
allowed to move further than the maximum travel distance, we only need to compute
the local phase for the points on the narrow band.

10.6 Experiments and Results

The proposed method was tested for multiorgan segmentation using the data from the
VISCERAL multiorgan segmentation Benchmark.1 Our method was trained using
7 non-enhanced CT (CT) and 7 contrast-enhanced CT (CECT) datasets (the 14
training datasets from the VISCERAL Anatomy 1 challenge [8]) and tested on 8
non-enhanced and 10 enhanced CT datasets. In our experiments, we tested three
implementations of the proposed method:

Implementation 1: Hierarchical model-guided multiorgan segmentation uses
only the region-based speed function described in Sect. 10.3.3. The segmentation
was made at a single resolution of 3 mm isotropic voxel size.

Implementation 2: Hierarchical model-guided multiorgan segmentation uses the
combined local phase- and intensity-based speed function described in Sect. 10.4.2.
The segmentation was done at a single resolution of 3 mm isotropic voxel size.

Implementation 3: Hierarchical model-guided multiorgan segmentation uses the
combined local phase- and intensity-based speed function described in Sect. 10.4.2.
The segmentation was done using a multi-resolution strategy, and the finest resolution
was same as the input image.

Detailed results and comparison of these three implementations are listed in Table
10.1. We further tested the influence of two key parameters in the preprocessing
step on the segmentation accuracy: the Gaussian smoothing kernel size and the
downsample spacing. The results are plotted in Fig. 10.9. All these experiments
were done using Implementation 1.

1VISCERAL Benchmark, http://www.visceral.eu/closed-benchmarks/anatomy2/anatomy2-
results/.
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Table 10.1 Multiorgan segmentation in CT and CECT datasets (mean Dice coefficient)

Data Method Liver Right
Kidney

Left
Kidney

Spleen Right
Lung

Left
Lung

CT (8 cases) Implementation 1 93.3% 77.9% 87.6% 90.1% 96.0% 95.9%

Implementation 2 93.2% 71.7% 88.8% 91.0% 96.3% 95.9%

Implementation 3 93.6% 79.6% 89.6% 91.0% 97.0% 96.1%

CECT (10 cases) Implementation 1 92.9% 92.2% 92.6% 87.0% 96.6% 96.6%

Implementation 2 93.9% 92.2% 92.4% 88.9% 96.7% 96.7%

Implementation 3 94.9% 95.9% 94.5% 90.9% 97.1% 97.2%

Fig. 10.9 a, b Plot of the segmentation accuracy measured with Dice coefficient against the size
of the smoothing kernel (measured in voxels). c, d Plot of the segmentation accuracy against the
image resolution used for the segmentation (measured in mm)

The average processing time for segmenting 10 selected organs was about 15 min
for Implementation 1, 25 min for Implementation 2 and 55 min for Implementation 3,
when running on a PC with Intel i7 (1.9 GHz). A 7 × 7 × 7 quadrature filter with a
central frequency of π/2 and a bandwidth of 6 octaves was used for the experiments.

10.7 Discussion and Conclusion

In the VISCERAL Anatomy Segmentation Benchmark [8], the proposed method
outperformed conventional methods in terms of accuracy for brain stripping and
liver, spleen and kidney segmentation tasks. Compared with other registration-based
multi-atlas approaches that delivered superior results on some other structures [8],
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the proposed method has the advantage of being more computationally efficient. It is
also interesting to note that some single-organ approaches fall behind the multiorgan
approaches in terms of accuracy. This, to some extent, proves our hypothesis that
it is easier to tell the membership of voxel in a multiorgan setup than looking at a
single organ.

In our experience, image smoothing is an inevitable step for our method to be
able to work on non-contrast-enhanced CT, as these images are very noisy. Using a
large smoothing kernel may help the active contours to avoid stopping prematurely.
However, when the organs’ intensities are very similar, using a large smoothing
kernel may destroy the vague edges between two organs and lead to total failure.
This could partly explain the relatively random results plotted in Fig. 10.9a. When
dealing with contrast-enhanced CT images with high signal-to-noise ratio (SNR), the
smoothing kernel applied before the image segmentation in general has a negative
effect on the segmentation accuracy.

The downsampling rate is another key parameter to consider when balancing
the segmentation accuracy and the processing time. As suggested by Fig. 10.9d,
higher downsampling rates often lead to worse segmentation results. This can also
be seen when comparing the results from Implementation 1 and Implementation 2.
However, for non-contrast-enhanced CT images, the downsampling itself will have
some smoothing effect, and therefore, unpredicted sharp performance jumps/drops
may be observed (e.g. Fig. 10.9c).

In this preliminary study, the training samples that were used to create the statis-
tical shape models were arbitrarily chosen without carefully investigating the proper
training sample selection strategy or variation enlarging methods mentioned in [7].
This is partly due to the fact that the current implementation of the training pipeline
is not fully automated. Manual adjustment is involved in the registration and position
linking steps. Although the segmentation results seem to be relatively accurate on the
18 testing datasets, we expect the results to degrade when applying the current shape
models to a larger population. To implement a more sophisticated training sample
selection strategy and build better statistical shape models using a larger training
sample group have been planned.

So far, the proposed solution can only selectively segment 10 anatomical struc-
tures. While extending the current framework to segment more structures is rela-
tively easy, it may not deliver satisfactory results for all of them. Two challenges
are expected on some of the other smaller structures: great position variation and
great shape variation. The proposed method relies on the initial position of the shape
model being relatively close to the target organ. If the relative position of the par-
ent structure is far from the child structure, the proposed method may, in extreme
cases, miss the targeted organ entirely. We plan to solve this problem by introduc-
ing machine-learning-based organ detectors [14]. These detectors could also help us
handle heterogeneous cases with varying scan ranges. On the other hand, the distance
map-based statistical shape model used here may not be an ideal representation for
all anatomical structures, in particular for those structures with high anatomical vari-
ation. Changing the statistical shape model to skeleton-based models may be more
suitable for segmenting such structures, as suggested in [15, 21].
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In conclusion, the hierarchical shape model-guided multiorgan segmentation
method is a promising approach to solve the ambiguity between two attaching organs.
By introducing a model-based local phase term into the energy function and solv-
ing the minimization problem using our novel coherent propagation algorithm, we
have demonstrated that the proposed multiorgan segmentation method can deliver
accurate results using relatively short processing times.
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Chapter 11
Automatic Multiorgan Segmentation Using
Hierarchically Registered Probabilistic
Atlases

Razmig Kéchichian, Sébastien Valette and Michel Desvignes

Abstract We propose a generic method for the automatic multiple-organ segmenta-
tion of 3D images based on a multilabel graph cut optimization approach which uses
location likelihood of organs and prior information of spatial relationships between
them. The latter is derived from shortest-path constraints defined on the adjacency
graph of structures and the former is defined by probabilistic atlases learned from a
training dataset. Organ atlases are mapped to the image by a fast (2+1)D hierarchical
registration method based on SURF keypoints. Registered atlases are also used to
derive organ intensity likelihoods. Prior and likelihood models are then introduced
in a joint centroidal Voronoi image clustering and graph cut multiobject segmen-
tation framework. Qualitative and quantitative evaluation has been performed on
contrast-enhanced CT and MR images from the VISCERAL dataset.

11.1 Introduction and Related Work

Clinical practice today, especially whole-body CT and MR imaging, often generates
large numbers of high-resolution images, which makes tasks of efficient data access,
transfer, analysis and visualization challenging. This is especially true in distributed
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computing environments which have seen a growing use of hand-held terminals for
interactive data access and visualization of anatomy. Therefore, there is great interest
in efficient and robust medical image segmentation algorithms for the purposes of
creating patient-specific anatomical models, clinical applications, medical research
and education, and visualization and semantic navigation of full-body anatomy
[3, 26].

Traditionally, single-object- or pathology-oriented, recent image processing meth-
ods [9, 12, 14, 15, 19, 23, 25, 27] have made the analysis and the segmentation of
multiple anatomical structures increasingly possible. However, CT and MR images
have intrinsic characteristics that render their automatic segmentation challenging.
They are commonly degraded by various noise sources and artefacts due to limited
acquisition time and resolution, and patient motion which all reduce the prominence
of intensity edges in images. In addition, MR images suffer from spatial distor-
tion of tissue intensity due to main magnetic field inhomogeneity. Regardless of the
imaging modality and related artefacts, many anatomically and functionally distinct
structures, especially those corresponding to soft tissues, have similar intensity lev-
els in images and, furthermore, blend into surrounding tissues which have intensities
close to their own. It is impossible to identify and segment such structures automati-
cally on the basis of intensity information only. Hence, most advanced segmentation
methods exploit some form of prior information on structure location [12, 19, 27]
or interrelations [9, 14, 23, 25] to achieve greater robustness and precision. Hierar-
chical approaches to segmentation [23, 25, 32] rely on hierarchical organizations of
prior information and algorithms that proceed in a coarse-to-fine manner according
to anatomical level of detail.

Graph cut methods, which have been widely applied to single-object segmentation
problems [4], rely on a maximum-flow binary optimization scheme of a discrete
cost function on the image graph. For a particular class of cost functions which
frequently arises in segmentation applications [16], these methods produce provably
good approximate solutions in multiobject [5] and global optima in single-object
segmentation. In addition, simultaneous multiobject segmentation approaches are
superior to their sequential counterparts in that they raise questions neither on the
best segmentation sequence to follow nor on how to avoid the propagation of errors
of individual segmentations [9].

While widely used by the computer vision community, keypoint-based image
description and matching methods, such as SIFT [20] and SURF [2], have found
relatively few application proposals in medical image processing. These methods
proceed by first detecting some points of interest (edges, ridges, blobs, etc.) within
the image, then compute vectors describing local neighbourhoods around these points
and use them as content descriptors. The approach has been successfully applied to
image indexing, content-based image retrieval, object detection and recognition, and
image registration [30]. In medical imaging, 3D versions of SIFT have been used in
brain MR image matching [6], linear registration of radiation therapy data [1], and
nonlinear (deformable) registration of thoracic CT [31] and brain MR [22] images.
A SURF-based method [10] has also been successfully applied to the intermodality
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registration of 2D brain images. A review of keypoint-based medical image registra-
tion can be found in [28].

We propose a generic method for the automatic multiple-organ segmentation
of 3D images based on multilabel graph cut optimization which uses location and
intensity likelihoods of organs and prior information of their spatial configuration.
The spatial prior is derived from shortest-path pairwise constraints defined on the
adjacency graph of structures [14], and the organ location likelihood is defined by
probabilistic atlases [24] learned from the VISCERAL training dataset [11]. We reg-
ister organ atlases to the image prior to segmentation using a fast (2+1)D registration
method based on SURF keypoints. Registered atlases are also used to derive organ
intensity likelihoods. Prior and likelihood models are then introduced in a joint cen-
troidal Voronoi image clustering and graph cut multiobject segmentation framework.
We present the results of qualitative and quantitative evaluation of our method on
contrast-enhanced CT and MR images from the VISCERAL dataset.

11.2 Methods

In the following, we present the different elements of our approach in detail, namely
the keypoint-based image registration method and its use in organ atlas construction
as well as its hierarchical application in segmentation. Image clustering and segmen-
tation methods are detailed next, followed by a presentation of evaluation results in
the subsequent section.

11.2.1 SURF Keypoint-Based Image Registration

We first outline our fast (2+1)D algorithm for the rigid registration of 3D medical
images using content features. Our method has the following properties:

• Features are extracted in 2D volume slices. This has the advantage of being fast
and easily parallelizable. Another advantage is that medical data are usually stored
in a picture archiving and communication system (PACS) in the form of volume
slices as opposed to full 3D volumes. Our method easily fits into such medical
environments. Note that while feature extraction is done in 2D images, registration
is still performed in 3D, hence the (2+1)D definition.

• Partial matching is well handled, thus making our algorithm suitable for general
medical data.

• Total processing time is on the order of seconds.
• The (2+1)D paradigm currently restricts our method to image volumes with consis-

tent orientations. A pair of images featuring patients with orthogonal orientations
cannot be registered for now.
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11.2.1.1 2D Feature Extraction and Matching

As previously mentioned, we extract features from 2D slices of the image volume.
We currently use the SURF image descriptor [21]; however, our method is generic
and would work with other descriptors as well. To reduce computation time, we
first downsample the input volume to a user-specified size. As a rule of thumb, we
isotropically resample each volume so that its second longest dimension is equal
to the desired resolution R. For example, with R = 100, the VISCERAL training
dataset image 10000108_1_CTce_ThAb of dimensions 512 × 512 × 468 and
spacing 0.7 mm × 0.7 mm × 1.5 mm is resampled to a 100 × 100 × 198 volume
with an isotropic spacing of 3.54 mm.

Next, we extract 2D SURF features from each slice. As these operations are com-
pletely independent, this step is carried out in a parallel manner. Figure 11.1 shows
feature extraction results on a pair of axial slices from VISCERAL training dataset
images 10000108_1_CTce_ThAb (left) and 10000109_1_CTce_ThAb
(right). The top row shows all features extracted from these slices. The number
of extracted features is 11500 and 9400, respectively.

Once all features are extracted, they are matched using the widely used second
closest ratio criterion [20]. If the first volume V1 contains n1 slices and the second
volume V2 contains n2 slices, we have to compute n1 × n2 image matches, which
again is easily carried out in a parallel fashion. The bottom row of Fig. 11.1 shows
the nine matching couples (pairs of keypoints) found in both slices.

The output of the matching step is a similarity matrix S of n1 × n2 of, possibly
empty, matching couple sets Hi, j . Figure 11.2 illustrates the 2D matching procedure
on test images 10000108_1_CTce_ThAb and 10000109_1_CTce_ThAb.
Figure 11.3 shows similarity matrices reflecting the number of matching couples
between any pair of slices for three settings of downsampling resolution R (grey
level is inversely proportional to the number of matching couples). Matrix diagonals
are clearly visible, confirming the fact that input volumes contain similar struc-
tures. In total, 2561 matching couples were found between this pair of volumes with
R = 100.

11.2.1.2 (2+1)D Registration

Once 2D matches are found, we are able to proceed with volume registration. For
robustness purposes, we use a simple “scale + translation” transformation model:

⎡
⎣

x ′
y′
z′

⎤
⎦ = s

⎡
⎣

x
y
z

⎤
⎦ +

⎡
⎣

tx

ty

tz

⎤
⎦ . (11.1)

We estimate the four parameters s, tx , ty and tz in similar spirit to the RANSAC
method [8], using the set of matching couples between the slices of the pair of
volumes, computed as indicated in the previous subsection. RANSAC is an iterative
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Fig. 11.1 Matching two slices of images. a 10000108_1_CTce_ThAb and b
10000109_1_CTce_ThAb from the VISCERAL training dataset. a, b Show all features
found in both slices (a feature is represented by a circle). c, d Show the nine matching features
between the two slices. Blue and red circles correspond to positive and negative Laplacian values [2]

parametric model estimation method known to be very efficient in the presence
of outliers. One RANSAC iteration usually consists in randomly picking a small
number of samples to estimate the model parameters, then counting the number
of data samples consistent with the model, rejecting outliers. After performing all
iterations, the model providing the highest number of consistent data samples is kept
as the solution. In our case, we carry out parameter estimation in a two-stage fashion;
first, we fix the parameters s and tz which allow us to work only on a subset of S,
then we estimate the remaining parameters tx and ty . More specifically, we carry out
the nth RANSAC iteration as follows:
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(a) (b) (c) (d)

Fig. 11.2 Feature matching. The two input volumes (a, b) are sliced (c, d), and each slice from the
first volume is compared against every slice from the second volume

Fig. 11.3 Similarity matrices of test volumes 10000108_1_CTce_ThAb and
10000109_1_CTce_ThAb for different values of downsampling resolution R

• Randomly pick a line Ln crossing S. This fixes half of the transform parameters,
that is, the parameters s and tz . The top row of Fig. 11.4 shows three different
randomly picked lines on S.

• Build the couple set Mn as the union of all couple sets Hi, j in S within a distance
dL to Ln . In our experiments, we set dL to 2.5. For the three cases illustrated in
the top row of Fig. 11.4, couple sets Mn correspond to image pixels covered by
the red lines.

• Randomly pick one couple from Mn , which allows to estimate the remaining
transform parameters tx and ty .

• Count the number of couples Nn in Mn which are consistent with the transform,
excluding outliers and forbidding any keypoints to appear in multiple matching
couples. If f1 and f2 are the coordinates of a couple, consistency checking is done
by transforming the coordinates of f1 into f ′

1 using Eq. 11.1, and verifying that f ′
1

is within a fixed distance dc from f2. In practice, we set dc to 20 mm.
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Fig. 11.4 (2+1)D registration of test volumes 10000108_1_CTce_ThAb and
10000109_1_CTce_ThAb. The top row shows three randomly picked lines Ln on the
similarity matrix and their respective numbers of matching couples. The bottom row shows the
corresponding registrations of test volumes, showing only patient body envelopes

In all experiments, we perform 2 × 105 iterations to register a pair of vol-
umes. The bottom row of Fig. 11.4 illustrates the final registration of test images
10000108_1_CTce_ThAb and10000109_1_CTce_ThAb showing only respec-
tive patient body envelopes.

11.2.2 Organ Atlas Construction

Using contrast-enhanced CT and MR images and available ground-truth annotations
from the VISCERAL training dataset, we construct modality-specific probabilis-
tic atlases for the following 20 structures: thyroid; trachea; sternum; liver; spleen;
pancreas; gall bladder; first lumbar vertebra; aorta; urinary bladder; right and left
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lungs, kidneys, adrenal glands, psoas major and rectus abdominis muscle bodies. In
addition, we create atlases for three additional image and body regions: background
(BKG), thorax and abdomen (THAB) and a body envelope (ENV) from annotations
generated automatically as follows. BKG is created by thresholding the image fol-
lowed by morphological processing in order to isolate the background from the body
region. THAB is created as the dilated union of the aforementioned 20 structures and
their bounding 3D ellipse, from which the structures are subtracted after dilation.
Finally, ENV is defined as the image minus BKG and THAB. Note that ENV is a
crude body envelope that comprises skin, fat, muscle and bone structures. Figure
11.8c, f illustrate the additional annotations.

To create probabilistic atlases, we choose a representative image per modality
from the dataset and use it as a reference onto which we register all remaining
images in the modality via the method described in Sect. 11.2.1. We register each
structure separately in a bounding box of a given margin in the intensity image,
defined according to the corresponding annotation image, and apply the obtained
transform subsequently to the annotation image. We accumulate annotations thus
registered in a 3D histogram of reference image dimensions which is normalized to
produce the corresponding probability map. Refer to Fig. 11.6a for an illustration of
probabilistic atlases.

11.2.3 Image Clustering

The full-resolution voxel representation is often redundant because objects usually
comprise many similar voxels that could be grouped. Therefore, we simplify the
image prior to segmentation by an image-adaptive centroidal Voronoi tessellation
(CVT), which strikes a good balance between cluster compactness and object bound-
ary adherence and helps to place subsequent segmentation boundaries precisely. We
have shown that the clustering step improves the overall run-time and memory foot-
print of the segmentation process up to an order of magnitude without compromising
the quality of the result [14].

Let us define a greyscale image as a set of voxels I = {v | v = (x, y, z)} and
associate with each voxel v ∈ I a grey level Iv from some range I ⊂ R. Given a
greyscale image I and n sites ci ∈ I , a CVT partitions I into n disjoint clusters
Ci associated with each centroid ci and minimizes the following energy:

F(v; ci ) =
n∑

i=1

⎛
⎝∑

v∈Ci

ρ(v)
(‖v − ci‖2 + α‖Iv − Ii‖2

)
⎞
⎠ . (11.2)

In Eq. 11.2, ρ(v) is a density function defined according to the intensity gradient
magnitude at voxel v, ρ(v) = |∇ Iv|, α is a positive scalar and Ii is the grey level
of the cluster Ci defined as the mean intensity of its voxels. Intuitively, minimizing
Eq. 11.2 corresponds to maximizing cluster compactness in terms of both geometry
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Fig. 11.5 An image-adaptive CVT clustering and its dual graph for a circle image

and grey level. Refer to Fig. 11.5 for an illustration in 2D. To minimize Eq. 11.2, we
apply a variant of the clustering algorithm in [7], which approximates a CVT in a
computationally efficient manner, involving only local queries on voxels located on
boundaries of pairs of clusters.

For referral in later sections, we shall define the graph of a CVT, illustrated in Fig.
11.5b. Denote the surface of a cluster Ci by ∂Ci . Given a CVT clustering C , let the set
S index its clusters, and let G = 〈S ,E 〉 be an undirected graph on cluster centroids
where pairs of clusters having nonzero area common surface define the set of edges
E = {{i, j} | i, j ∈ S , |∂Ci ∩ ∂C j | 
= 0

}
. Consequently, the neighbourhood of a

node i ∈ S is defined as Ni = {
j | j ∈ S , ∃ {i, j} ∈ E

}
.

11.2.4 Multiorgan Image Segmentation

We formulate image segmentation as a labelling problem, defined as the assignment
of a label from a set of labels L representing the structures to be segmented to
each of the variables in a set of n variables, indexed by S , corresponding to the
clusters of a CVT-clustered image. Assume that each variable i ∈ S is associated
with the corresponding node in the graph G of the CVT defined in Sect. 11.2.3.
An assignment of labels to all variables is called a configuration and is denoted by
� ∈ L . An assignment of a label to a single variable is denoted by �i . We cast the
labelling problem in a maximum a posteriori estimation framework and solve it by
minimizing the following energy function of label configurations via the expansion
moves multilabel graph cut algorithm [5], which has been shown to outperform
popular multilabel optimization algorithms in terms of both speed and quality of
obtained solutions [29]:
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E(�) = t1
∑
i∈S

Di (�i ) + t2
∑
i∈S

Pi (�i ) + 1

2

∑
i∈S

∑
j∈Ni

Vi, j (�i , � j ) . (11.3)

In Eq. 11.3, t1 and t2 are temperature hyperparameters, and Ni is the neighbourhood
of the variable i ∈ S . The first and second sums in Eq. 11.3 correspond, respectively,
to organ intensity and location (atlas) likelihood energies, and the third is the energy
of a prior distribution of label configurations expressed as a Markov random field [18]
with respect to the graph G . We shall define these terms in detail.

11.2.4.1 Spatial Configuration Prior

Pairwise terms of Eq. 11.3 encode prior information on interactions between labels
assigned to pairs of neighbouring variables encouraging the spatial consistency of
labelling with respect to a reference model. We define these terms according to
the piecewise-constant vicinity prior model proposed in [14], which, unlike the
standard Potts model, incurs multiple levels of penalization capturing the spatial
configuration of structures in multiobject segmentation. It is defined as follows.
Let R be the set of symmetric adjacency relations on pairs of distinct labels
(corresponding to image structures), R = {r | a r b, a, b ∈ L , a 
= b}. R can be
represented by a weighted undirected graph on L , A = 〈L , W 〉, with the set of
edges W = {{a, b} | ∃r ∈ R, a r b, a 
= b

}
, where edge weights are defined by

w ({a, b}) = 1, such that w ({a, b}) = ∞ if �r ∈ R, a r b.
Given the graph A , we define the pairwise term in Eq. 11.3 as follows:

Vi, j
(
�i , � j

) = |∂Ci ∩ ∂C j | ω
(
a, b

)
, �i = a, � j = b . (11.4)

where ω
(
a, b

)
is the shortest-path weight from a to b in A . The adjacency graph

of structures according to which we define the spatial prior in our experiments is
given in Fig. 11.6b. In Eq. 11.4, the area of the common surface of adjacent clusters
|∂Ci ∩ ∂C j | is introduced, so that ∀a, b ∈ L the sum of pairwise energies in (11.3) is
equal to the area of the common surface between the corresponding pair of structures
multiplied by the shortest-path weight. This definition ensures that the segmentation
energy is independent of the CVT clustering resolution [13].

11.2.4.2 Intensity and Location Likelihoods

Unary terms of Eq. 11.3 measure the cost of assigning labels to variables. They are
defined as negative log-likelihood functions derived from organ observed intensity
and location probabilities:
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(a) (b)

Fig. 11.6 a Registered organ atlases overlaid on a CT image and b the adjacency graph used to
define the spatial prior

Di (�i ) = − ln
∏
v∈Ci

Pr(Iv | �i ) , (11.5a)

Pi (�i ) = − ln
∏
v∈Ci

Pr(Xv | �i ) . (11.5b)

In Eq. 11.5b, Xv denotes the object-space coordinates of the voxel v. Conditional
probabilities in Eq. 11.5a and 11.5b correspond, respectively, to those of voxel inten-
sity and location given the structure �i . To estimate the conditional probability distri-
bution Pr(I | l) for a given label l ∈ L , we first register the corresponding organ atlas
to the image, then estimate the conditional probability as a Gauss-smoothed and nor-
malized intensity histogram derived from voxels in high-probability regions of the
registered atlas according to a threshold value. Conditional probability distributions
Pr(X | L) are defined directly from registered atlases. The next section outlines our
hierarchical registration method which maps organ atlases to an image prior to its
segmentation.

11.2.4.3 Hierarchical Registration of Organ Atlases

We register probabilistic organ atlases, constructed as described in Sect. 11.2.2, to
an image in a three-step hierarchical fashion starting at the full image scale, then on
an intermediate level corresponding to the THAB region and finally on individual
organs. After performing registration on each scale, we apply the obtained transform
to the corresponding atlas as well as to those of organs contained in the registered
region. As in Sect. 11.2.2, we register each structure separately in a bounding box of
a given margin in the intensity image, defined according to the corresponding atlas.
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Fig. 11.7 An illustration of the proposed hierarchical registration procedure

Figure 11.7 illustrates the hierarchical registration procedure, and Fig. 11.6a gives
an example of registered organ atlases overlaid on the CT image to which they have
been registered.

11.3 Evaluation Results and Discussion

We have carried out qualitative evaluation on several contrast-enhanced CT and MR
images from the VISCERAL training dataset. Figure 11.8 shows a pair of segmenta-
tions on images10000109_1_CTce_ThAb and10000324_4_MRT1cefs_Ab.
Their dimensions, respectively, are 512 × 512 × 428 and 312 × 72 × 384. For this
pair of images, the number of CVT clusters is set, respectively, to 3 and 20% of
image voxel count. In all experiments, we set temperature parameters t1 and t2 so
that intensity and location likelihood-based unary terms have the same magnitude
in Eq. 11.3. Likewise, for intensity likelihood estimation in all experiments, we fix
the probability threshold mentioned in Sect. 11.2.4.2 to 0.9 times that of the maxi-
mum probability of the registered probabilistic atlas. The spatial configuration prior
is defined according to the adjacency graph given in Fig. 11.6b. We note that, due to
a smaller field of view, VISCERAL dataset contrast-enhanced MR images exclude
thoracic organs, namely the pair of lungs, the trachea, the sternum and the thyroid.
Naturally, we do not construct probabilistic atlases for these structures nor do we
take them into account for the segmentation of MR images.

Table 11.1 presents the results of quantitative evaluation of our segmentation
method on contrast-enhanced CT images during the VISCERAL Anatomy 2 Bench-
mark and those of its more recent evaluation on contrast-enhanced MR images. We
report results corresponding to the best setting of temperature parameters out of the
allowed five. For CT images, the settings for t1 are as follows: 0.15, 0.20, 0.25, 0.30
and 0.40. For MR images, tested settings of this parameter are as follows: 0.6, 0.8,
1.0, 1.2 and 1.4. The parameter t2 was set to 0.2 t1 in both cases. These ranges of
parameter values were experimentally found to give the best results in offline evalua-
tions on the VISCERAL training dataset. For each structure, the Table 11.1 gives the
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Fig. 11.8 Segmentation of VISCERAL training dataset images 10000109_1_CTce_ThAb (top
row) and 10000324_4_MRT1cefs_Ab (bottom row). Coronal sections correspond to a, d the
image, b, e its segmentation and c, f the associated ground truth with additional labels for BKG,
ENV and THAB regions

number of produced segmentations out of an attempted 10, mean Dice and average
distance (in millimeters) measurements. “N/A” indicates an absent structure, while a
dash “–” indicates one for which the segmentation was missed or was not attempted.

Mean run-time and memory footprint figures of our algorithm are given in Table
11.2. These measurements are taken on the 20 contrast-enhanced CT images in the
VISCERAL training dataset, the average dimension of which is 512 × 512 × 426.
The number of CVT clusters is set to 5% of image voxel count. The algorithm is
run on a cluster computer of heterogeneous nodes with an average CPU speed of 2.1
GHz, an average number of cores of 20 and an average memory size of 87 GB.
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Table 11.1 Quantitative evaluation results of the proposed method on contrast-enhanced CT and
MR images

CT MR
Structures # Dice Avg. Dist. # Dice Avg. Dist.

Trachea 9 0.62 18.56 N/A N/A N/A

Lung (R) 10 0.95 0.30 N/A N/A N/A

Lung (L) 10 0.96 0.20 N/A N/A N/A

Pancreas 7 0.35 11.45 6 0.37 11.99

Gall bladder 2 0.14 21.82 1 0.30 1.90

Urinary bladder 10 0.77 1.08 10 0.40 3.67

Sternum 10 0.63 6.59 N/A N/A N/A

Lumbar vertebra 10 0.49 9.74 7 0.26 6.65

Kidney (R) 10 0.81 1.81 10 0.80 3.90

Kidney (L) 10 0.86 0.89 8 0.74 1.69

Adrenal gland (R) – – – – – –

Adrenal gland (L) – – – – – –

Psoas major muscle (R) 10 0.71 2.70 10 0.69 1.73

Psoas major muscle (L) 10 0.79 1.22 10 0.66 2.28

Rectus abdominis muscle (R) 9 0.26 30.25 – – –

Rectus abdominis muscle (L) 10 0.13 24.43 – – –

Aorta 10 0.58 5.43 3 0.27 17.40

Liver 10 0.93 0.34 10 0.77 1.91

Thyroid 3 0.04 13.77 N/A N/A N/A

Spleen 10 0.84 1.29 9 0.53 3.31

Table 11.2 Mean memory footprint and run-time figures of proposed algorithms measured on 20
contrast-enhanced CT images from the VISCERAL training dataset

Memory (MB) Registration (s) Clustering (s) Segmentation (s) Total run-time (m)

10520.87 4294.60 8995.20 2598.48 264.80

From these results, we can readily see that our method performs better on CT
than on MR images. This is due to the fact that tissues in CT images have consis-
tent appearances, whereas in MR images, they suffer intensity inhomogeneity. In
addition, MR images in the VISCERAL dataset have lower resolution compared
to CT images. We can observe furthermore that our method performs better on
larger, well-contrasted structures than on smaller, low-contrasted ones such as the
gall bladder, the thyroid and the adrenal glands. This is mainly due to the inaccu-
rate localization of these structures by our registration method and the subsequent
flawed estimation of the structure intensity likelihood. For most structures however,
even though our hierarchical approach of mapping atlases to the image relies on
a rigid registration method, unlike many hierarchical methods which use non-rigid
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deformable registration [17], it helps localizing structure boundaries in segmentation
quite well. This is because location information roughly registered atlases provide is
complemented by intensity similarity and spatial consistency criteria. Furthermore,
full-body modelling by the introduction of BKG, ENV and THAB annotations not
only complements location information and allows for hierarchical registration, but
also increases the discriminative power of the spatial prior by a higher penalization
of inconsistent configurations.

11.4 Concluding Remarks and Future Work

It should not go without notice that without the VISCERAL platform and the dataset,
we would not have been able to test and understand the limits and the properties of
our algorithms, to improve them and to develop new ones. We hope that our active
participation in benchmarks and our regular feedback on software and data have been
valuable for the VISCERAL project.

We are currently scrutinizing our hierarchical registration method in view of
multiresolution extensions, possibly bypassing anatomical hierarchy, which would
help better localize structures, especially small, low-contrasted ones. We are also
investigating the introduction of a better, more robust intensity likelihood estimation
method. If an inaccurate registration could be detected and quantified, then it may
be possible to “correct” it. Otherwise, with a large training dataset to draw upon,
techniques from machine learning could easily be used. Another interesting venue
for future research is the extension of the spatial prior model to express other types
of relations, such as spatial directionality, and the possibility of taking into account
the uncertainty of relations.
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Chapter 12
Multiatlas Segmentation Using Robust
Feature-Based Registration

Frida Fejne, Matilda Landgren, Jennifer Alvén, Johannes Ulén,
Johan Fredriksson, Viktor Larsson, Olof Enqvist and Fredrik Kahl

Abstract This paper presents a pipeline which uses a multiatlas approach for
multiorgan segmentation in whole-body CT images. In order to obtain accurate reg-
istrations between the target and the atlas images, we develop an adapted feature-
based method which uses organ-specific features. These features are learnt during
an offline preprocessing step, and thus, the algorithm still benefits from the speed
of feature-based registration methods. These feature sets are then used to obtain
pairwise non-rigid transformations using RANSAC followed by a thin-plate spline
refinement or NiftyReg. The fusion of the transferred atlas labels is performed using
a random forest classifier, and finally, the segmentation is obtained using graph cuts
with a Potts model as interaction term. Our pipeline was evaluated on 20 organs in
10 whole-body CT images at the VISCERAL Anatomy Challenge, in conjunction
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with the International Symposium on Biomedical Imaging, Brooklyn, New York, in
April 2015. It performed best on majority of the organs, with respect to the Dice
index.

12.1 Introduction

Segmentation of anatomical structures is a fundamental task in medical image analy-
sis. It has several applications such as localization of organs, detection of tumours
or other pathological structures, and the results can, for example, serve as input to
computer-aided diagnosis (CAD) systems. Multiorgan segmentation is useful, e.g.
in radiotherapy planning [25], where not only the location of the tumour is of most
interest, but also the location of the surrounding (vital) organs. Furthermore, it can
also be used in the preparation of and during computer-assisted surgery [30]. Auto-
mated methods are preferable due to the time-consuming task to do the segmentations
manually and the need of a skilled expert.

In this paper, we propose a pipeline that uses a multiatlas approach for an auto-
matic multiorgan segmentation for CT images. The segmentation of each organ is
independent of the others and we show that very reliable organ localization can be
obtained using (i) robust optimization techniques for registration, (ii) learned feature
correspondences and (iii) refinement with a random forest classifier and graph cut
segmentation.

12.1.1 Related Work

Multiatlas methods for segmentation, which were first introduced in [11, 18, 26],
have become a very popular choice in medical image analysis due to their excellent
performance. The methods have been extensively used on brain MR images [6, 12,
31], on cardiac CTA data [17], for thoracic CT segmentation [10, 33] and multiorgan
segmentation in CT images [35]. Multiatlas methods generally produce robust results
but rely on multiple image registrations as each atlas image is registered to the target
image. Image registration can be divided into two different approaches: feature-based
and intensity-based registrations, see the surveys [16, 28]. Feature-based methods are
generally very fast, but may have a risk of failing due to many outlier correspondences
between the images. The intensity-based methods are on the contrary capable of
producing accurate registrations but may be slow and are sensitive to initialization.

Multiatlas segmentation is a further development from single-atlas segmenta-
tion [21] and works as follows. In order to capture more anatomical variations and
reduce the effect of registration errors, several single-atlas segmentations are com-
bined in the multiatlas approach. At first, pairwise registrations are computed between
each atlas image and the target image, and thereafter, the single-atlas segmentation
labels are transferred to the target image according to the registrations. Next, a seg-
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mentation proposal is obtained by fusing the transferred labels. The label fusion can
be performed using several different methods, whereof the simplest one is major-
ity voting for each voxel, see [11, 18, 26]. However, there exist more sophisticated
methods, for instance weighted voting [32], probabilistic reasoning using, e.g. the
STAPLE algorithm [34] and different types of machine-learning approaches [27].
The fused segmentation proposal can be further refined into a final segmentation by
using graph cut [3, 22] or random forest-based methods [9]. For a comprehensive
survey of multiatlas segmentation methods and their applications, see [13].

As mentioned previously, multiatlas methods are often used to perform multiorgan
segmentation. In the work of Wolz et al. [35], a hierarchical atlas is refined at three
levels: global, organ and voxel levels. Instead of utilizing all the available atlases, the
authors choose the most suitable ones. Similar to our paper, their final segmentation
is obtained using graph cuts, and the evaluation of the algorithm results in relatively
high Dice index on the liver, kidneys, pancreas and spleen.

Another example of multiorgan segmentation is the probabilistic multiatlas used
by Chu et al. [4] for abdominal segmentation. They divide the image space into
N subspaces and compute weights for the probabilistic atlas at both for a global
level (N = 1) and for each subspace. The organ segmentation is then obtained by a
maximum a posteriori estimation and graph cuts. The method is evaluated on different
numbers of subspaces, where the best performance is obtained for N = 64.

Furthermore, another variant of multiatlas segmentation of abdominal organs was
used in a recent paper by Xu et al. [36]. Atlas selection and label fusion were done
using a reformulation of the selective and iterative method for performance-level
estimation (SIMPLE) method. The authors developed a method for atlas selection,
which was regularized by a Bayesian prior, learnt from context information. When
evaluating the proposed method, it outperformed the compared methods, among
them [35], on 11 out of 12 organs.

In [23], Okada et al. present an approach to multiorgan segmentation that uses
conditional shape-location combined with unsupervised intensity priors. In their
work, an organ correlation graph is used to steer the order for which the organs are
segmented by utilizing spatial correlation. In addition, the authors also developed a
method for modelling conditional shape-location priors.

12.1.2 Our Approach

In this paper, we propose a pipeline for segmentation of 20 different organs in whole-
body CT images. The algorithm uses standard multiatlas segmentation for initial
spatial localization. For the pairwise registrations between the target image and all
the atlas images, we use an adapted feature-based method that has been designed to
reduce the risk of establishing incorrect point-to-point correspondences between the
image pairs. The main contribution of this paper is a method to identify reliable organ-
specific feature points among the atlas images. The speed of general feature-based
registration methods is beneficial to the algorithm, especially since this identification
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is done in an offline preprocessing step. We fuse the transferred labels by training a
random forest classifier, and the final segmentation is then obtained with graph cuts.
The pipeline is described in detail in Sect. 12.2. In Sect. 12.3, we present the results
from the VISCERAL Anatomy Challenge [15], as well as a detailed evaluation of
the different steps in the pipeline for some of the organs.

12.2 Methods

Our pipeline for multiorgan segmentation contains the following three main steps:

1. Pairwise Registration. For a particular organ, the atlases are registered to the target
image in two steps: first, subsets of the features in each atlas image are selected
and matched to the features in the target image. Next, a non-rigid transformation
between the atlases and the target image is estimated using RANSAC followed by
a thin-plate spline (TPS) refinement or an intensity-based free-form deformation
using NiftyReg. See Sect. 12.2.1.

2. Label Fusion with a Random Forest Classifier. The pairwise registrations give
us a rough estimate of the location of the target organ. However, the accuracy
of the solution after the registration can be further improved by taking the local
appearance surrounding the target organ into account. In order to do this, we train
a random forest classifier that is used to fuse the transferred atlas labels after the
registration. See Sect. 12.2.2.

3. Graph Cut Segmentation with a Potts Model. The segmentation is further refined
by encouraging spatial smoothness between neighbouring pixels. For this, we
formulate the labelling problem as an optimization problem and solve it using
graph cuts. See Sect. 12.2.3.

These steps of our pipeline will be presented in detail in the following sections. Each
organ is segmented individually in our multiatlas approach.

12.2.1 Pairwise Registration

12.2.1.1 Determination of Organ-Specific Feature Sets

For each organ and atlas image Ii ∈ I = {I1, . . . , In}, a subset of features that is
designed to produce a reliable registration of the organ of interest is determined.
The basic idea is to evaluate how well the extracted feature points in an atlas image
match to other feature points in the remaining atlas images. In order to quantify the
quality of a matched feature correspondence, we first establish the so-called golden
transformations between the two atlas images around the organ of interest, based on
precomputed (ground truth) landmark correspondences. Hence, if a feature point is
matched to a feature point in another image, then this point-to-point correspondence
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should be consistent with the golden transformation, provided the correspondence
is correct. Otherwise, it is likely to be an outlier. Feature points that always form
inlier correspondences are good candidates for reliable registration, and these points
determine the organ-specific feature sets.

Establishing golden transformations. For each atlas image, we compute golden
transformations between Ii and the other atlas images in I \ Ii . This is done by
applying TPS to precomputed landmark correspondences using the method proposed
in [5]. The landmark correspondences are computed through accurate non-rigid reg-
istrations between a randomly chosen reference atlas in the atlas set and each of the
remaining atlases. The registration uses two channels, the image intensity and the
ground truth mask of the organ of interest, and maximizes the similarity between these
according to the normalized mutual information (NMI) measure using NiftyReg [1,
24]. With the obtained displacement field, the mesh points of a triangular mesh of the
ground truth surfaces are transformed to the coordinate system of the reference atlas.
For each mesh point (landmark) of the triangulation of the reference ground truth
surface, the closest point on each transformed triangulated surface is found using an
algorithm based on [8] and chosen as the corresponding landmark.

Feature extraction. For each atlas image, Ii ∈ I , we calculate sparse features
according to the method proposed by Svärm et al. [29]. A feature point is denoted
f = (i, x, d) where i is the index of the image, and x and d are the coordinates and the
description vector for the point, respectively. Only the features that lie sufficiently
close to the organ are considered; that is, we keep features with distance to the organ,
δ, less than a predefined threshold, Dmax. For the whole atlas I , we thus obtain
F = {F1, . . . , Fn}, where Fi is the set of feature points for Ii . For each atlas image
Ii , the points in Fi are matched to the other feature sets in F \ Fi using a symmetric
neighbour approach, thus establishing point-to-point correspondences between Ii

and the other atlas images.
Computation of organ-specific feature sets. Next, we proceed by applying the

golden transformations to the feature points in F \ Fi that have been matched to
points in Fi , in order to transform them into the same coordinate system. Furthermore,
we calculate the residuals between the coordinates of the feature points for Ii and
the corresponding feature points for the other atlas images after the transformation.
If feature point fk ∈ Fi is matched to f k̃ ∈ Fj , the residual is defined as

rk̃ = ‖xk − T̂
G

j,i ◦ xk̃‖2, (12.1)

where T̂
G

j,i denotes the golden transformation between Ii and I j . Each feature in
Fi receives a score that is a weighted sum of the normalized residuals for all the
corresponding points in the other atlas images and the normalized distance from the
organ. More precisely, the score for fk ∈ Fi is

Score[fk] = sδ + ωr

∑

k̃∈R

sk̃, (12.2)
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Fig. 12.1 Two CT slices of a target image (left) and an atlas image (right) with corresponding
features after RANSAC for lumbar vertebra 1

where
sδ = (Dmax − δk)/Dmax,

sk̃ = max(T − rk̃, 0)/T .
(12.3)

Here, ωr is the importance weight for the residuals; T is a predefined threshold; and R
is the set of feature points for the atlas images I \ Ii , which have been matched to fk .
The features are ranked according to their score, and those with the highest scores are
kept and used in the registration step. This procedure is relatively time-consuming,
but it is an offline process and thus only done once.

12.2.1.2 Pairwise Registration with RANSAC

At run-time, we estimate pairwise affine transformations between the target image
It and all the images in the atlas set, using the feature sets obtained in the previous
section. We apply RANSAC with the truncated l2 norm as a cost function for outlier
removal. An example of inlier feature correspondences for the lumbar vertebra 1 is
illustrated in Fig. 12.1. Furthermore, for about half of the organs, the final coordinate
transforms between I and It are obtained by TPS interpolation between the remaining
correspondences. For the rest of the organs, we find that the best transformations are
obtained by using NiftyReg, with the affine transformation as initialization. These
transformations are then used to transfer the labels of the atlas images into the same
coordinate system as the target image, see Fig. 12.2.

12.2.2 Label Fusion with a Random Forest Classifier

We use the pairwise registrations to obtain a rough estimate of where the organ is
located. This is done by fusing the transferred labels from each atlas into a so-called
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Fig. 12.2 Example of a registration of lumbar vertebra 1. Left the atlas ground truth mask. Middle
the warped target mask after the registration. Right the masks overlaid in the same coordinate system

voxel map, P , in which each voxel can be interpreted as a measure of the likelihood
of that voxel belonging to the organ, according to the pairwise registrations. More
precisely, the map P is the normalized average of the warped target masks of each
of the atlas images, so if half of the atlas images think that voxel i is organ, then
P(i) = 0.5.

However, the map P largely ignores the local appearance around the target organ
and in order to further improve the results, a random forest classifier is trained in an
offline process. The classifier is then used to obtain a refined estimate of P , which
will be denoted Pr . We implement this using Sherwood [7], which allows us to train
and evaluate large random forest instances efficiently. The voxel map, P , and the
target image, I , are used to compute a set of features for each voxel, which will be
used as input to the random forest classifier. By smoothing I and P using a Gaussian
kernel, we obtain two new volumes, which we refer to as Is and Ps . Furthermore,
for each organ we determine a threshold level, τ , for P and use this to construct
a distance map, DP , where each voxel in DP equals the (signed) distance to the
boundary surface of the binary volume P > τ . For each voxel i , in each volume I ,
we thus obtain five features: I (i), Is(i), P(i), Ps(i) and DP(i).

12.2.3 Graph Cut Segmentation with a Potts Model

The refined estimate, Pr , gives us a better estimation of the segmentation, but there
is room for further improvement. The decision of whether voxel i should be classi-
fied as belonging to the organ or not is taken without considering the classification
of neighbouring voxels, which may cause noisy and inaccurate estimates along the
boundaries of the target organ. Thus, we can improve the segmentation by incor-
porating this information into the model, and in order to do so, we formulate our
voxel labelling problem as an energy minimization problem and solve it using graph
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cuts [2]. More precisely, let xi ∈ L = {0, 1} be a Boolean indicator variable for voxel
i , that is, 1 if xi is classified as belonging to the organ (foreground), and 0 if it belongs
to the background. We are now seeking the labelling x� that minimizes the energy
function of the form

E(x�) =
n∑

i=1

Di (xi ) +
∑

i, j∈N

Vi, j (xi , x j ), (12.4)

where the data term, Di (xi ), measures how well the label xi suits voxel i , given the
target image It , and Vi, j (xi , x j ) is an interaction term that regularizes the solution
by assigning different costs to neighbouring voxels, which depend on the labels
they take. Furthermore, n is the number of voxels in the image, and N defines the
neighbourhood system of the voxels.

The output from the random forest classifier is used for the data term, in which
voxel i is set to take the value 1/2 − Pr (i) if xi = 1, and zero otherwise, i.e.
Di (xi ) = xi (

1
2 − Pr (i)). Thus, this model makes it more likely that voxel i is clas-

sified as foreground if Pr (i) ∈ [0.5, 1], and background if Pr (i) ∈ [0, 0.5]. As inter-
action term, we use Potts model, which regularizes the resulting segmentation by
penalizing neighbouring voxels if they receive different labels. It assigns a cost to
two neighbouring voxels, i and j , according to λ[xi �= x j ], where λ is a regularization
weight, and xi and x j are the labels for voxels i and j , respectively. This interaction
cost can also be expressed as Vi, j (xi , x j ) = λ(xi (1 − x j ) + x j (1 − xi )).

Thus, the final segmentation, x�, is obtained by solving the following minimization
problem:

x� = argmin
x∈{0,1}n

n∑

i=1

xi

(1

2
− Pr (i)

)
+ λ

n∑

i=1

∑

j∈N(i)

μi j xi (1 − x j ), (12.5)

where μi j is a variable that compensates for anisotropic resolution [19], and N(i) is
the set of voxels in the neighbourhood of voxel i , which is set to be 6-connected for
all the organs, i.e. each voxel that touches a side of a voxel is a neighbour. Since the
cost function in (12.5) is submodular, it can be minimized efficiently using graph
cuts [20] with the implementation of [14]. During the minimization, we process a
smaller volume, that is, a cut-out around the zero level of the thresholded voxel map
P > τ , which allows us to save memory and speed up the calculations.

A comparison between the resulting segmentation of the spleen with graph cuts,
using the initial voxel map, P , and the refined probability map after the random forest
step, Pr , is illustrated in Fig. 12.3.
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Fig. 12.3 Example of the resulting probability estimates and segmentation of the spleen for one
CT slice; in each image, the ground truth (GT) is indicated. Left the initial probability, P . Middle
the probability given by random forest, Pr . Right the resulting segmentation x�

P using P and x�
Pr

using Pr overlaid on the original image

12.3 Experimental Evaluation

The different steps in the pipeline involve some tuning parameters and these have
been set as follows. The 20 whole-body CT images that are available in the challenge
are split into one training and validation (atlas) set consisting of the first 15 images,
while the remaining five serve as a test set. For the registration, the parameters are
determined by leave-one-out cross-validation of the atlas images, while the remaining
ones are used as validation images for the random forest classification and graph cut
segmentation.

For the computation of the organ-specific feature sets, the same parameter settings
are used for all organs. At first, around 8,000–10,000 features are extracted from a
whole-body CT image in less than 30 s. When ranking the features, the maximal
distance is set to Dmax = 100 mm, the threshold T = 15, and the importance weight
for the residuals, ω, is set to 10. We have found empirically that the 300 features with
the highest score can be used to provide robust and reliable registration. RANSAC is
run 500,000 iterations, and the truncation threshold for the l2 cost function is set to 30
mm. The value of the standard deviation, σ , for the Gaussian kernel in the smoothing
of P for the random forest classifier is 1. Table 12.1 lists parameters and settings
for each individual organ. Note that in the segmentation of some of the organs, we
do not use a random forest classifier. This is either because the organ has a very
large volume, which makes the computations heavy, or because the classifier does
not improve the results at all. Furthermore, we do not use the learned features for the
lungs. In our experience, very simple methods yield accurate segmentations of the
lungs and that is also the case when we use ordinary features.

The single most time-consuming online part of the algorithm is the registration
and the time needed strongly depends on the size of the organ and the choice of
registration method. NiftyReg takes around 100–200 s per registration compared
to TPS for which a registration takes less than 10s regardless of the organ type.
However, we have found empirically that NiftyReg performs a lot better for ten of
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Table 12.1 Parameters used in the pipeline

Organ Registration
method

RANSAC
threshold

Random
forest

τ λ

Trachea NiftyReg 20 Yes 0.25 0.35

Right lung TPS 30 No 0.35

Left lung TPS 30 No 0.35

Pancreas TPS 20 Yes 0.15 0.25

Gall bladder TPS 25 No 0.15

Urinary bladder TPS 50 Yes 1.45 0.35

Sternum NiftyReg 20 Yes 0.05 0.30

Lumbar vertebra 1 NiftyReg 7 Yes 0.05 0.30

Right kidney NiftyReg 25 Yes 1.00 0.35

Left kidney NiftyReg 20 Yes 1.50 0.35

Right adrenal gland TPS 30 No 0.20

Left adrenal gland TPS 20 No 0.20

Right psoas major NiftyReg 40 Yes 0.45 0.40

Left psoas major NiftyReg 30 Yes 0.30 0.40

Muscle body of right
rectus abdominis

NiftyReg 40 Yes 0.05 0.30

Muscle body of left
rectus abdominis

NiftyReg 40 Yes 0.05 0.25

Aorta NiftyReg 30 Yes 0.20 0.35

Liver TPS 50 Yes 0.90 0.40

Thyroid gland TPS 20 Yes 0.10 0.25

Spleen TPS 30 Yes 0.85 0.30

the organs, see Table 12.1. If more images are added to the training set, the process of
determining the organ-specific features, the registration of the atlas images in order
to obtain the voxel map, P , and the training of the random forest classifier would
have to be run again from start. The only difference for the online process is that we
would have to perform one extra registration per added image.

12.3.1 Challenge Results

In our contribution to the VISCERAL Anatomy Challenge, all the 20 images avail-
able for training formed the atlas set in the final submission. The algorithm was
evaluated on a test set consisting of 10 new whole-body CT images that only
were available to the organizers of the challenge, and the evaluation took place
at ISBI 2015. The results are measured using the Dice index, which is defined as
Dice(S, G) = 2|S ∩ G|/(|S| + |G|), where S and G are the computed segmentation
and ground truth, respectively. Thus, a perfect segmentation would yield Dice index
1, while a segmentation with no ground truth overlap would receive a Dice index of
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Table 12.2 Final results measured in Dice index for whole-body CT images. Here, “*” means that
no segmentation was provided

Organ Our CMIV HES-SO SIAT

Left kidney 0.934 0.896 0.784 *

Right kidney 0.915 0.796 0.790 *

Spleen 0.870 0.910 0.703 0.874

Liver 0.921 0.936 0.866 0.923

Left lung 0.972 0.961 0.972 0.952

Right lung 0.975 0.970 0.975 0.957

Urinary bladder 0.763 0.713 0.698 *

Muscle body of left rectus
abdominis

0.746 * 0.551 *

Muscle body of right rectus
abdominis

0.679 * 0.519 *

Lumbar vertebra 1 0.775 * 0.718 *

Thyroid 0.424 * 0.549 *

Pancreas 0.383 * 0.408 *

Left psoas major muscle 0.861 0.828 0.806 *

Right psoas major muscle 0.847 0.817 0.787 *

Gall bladder 0.190 * 0.276 *

Sternum 0.847 * 0.761 *

Aorta 0.830 * 0.753 *

Trachea 0.931 * 0.92 *

Left adrenal gland 0.282 * 0.373 *

Right adrenal gland 0.220 * 0.355 *

Average 0.718 * 0.678 *

0. Our results are reported in Table 12.2 together with the results from the strongest
participants:

• CMIV - “Centre for Medical Image Science and Visualization, Linköping Univer-
sity”,

• HES-SO - “University of Applied Sciences Western Switzerland”
• SIAT - “Shenzhen Institutes of Advanced Technology, Chinese Academy of Sci-

ences”.

In summary, our algorithm provides the best results for 13 of the 20 organs.

12.3.2 Detailed Evaluation

In this section, we evaluate what kinds of benefits specific parts of the pipeline
provide for lumbar vertebra 1, the left kidney and the spleen. Dice scores after
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Table 12.3 Results for three organs after different steps in the pipeline, measured in Dice index.
Here, OF indicates that ordinary feature sets were used instead of the organ-specific ones. x�

P is the
map P , thresholded at τ and x� is the graph cut segmentation after the random forest step

Organ x�
P (OF) x� (OF) x�

P x�

Lumbar vertebra 1 0.730 0.682 0.858 0.884

Left kidney 0.891 0.901 0.891 0.896

Spleen 0.688 0.814 0.686 0.808

different steps in the pipeline, when using both organ-specific and ordinary feature
sets, are presented in Table 12.3. We denote the segmentation that can be obtained
after fusing the transferred labels from the registration with x�

P and it is the map P ,
thresholded at τ . The values in the table are the average results for the five images that
formed the test set when using the 15 first as atlas set as described in the introduction
to this section. Note that these values are not comparable with the ones in Table 12.2
since those were obtained with a different amount of training data and evaluated on
images that are not accessible to us. The results in Table 12.3 should be compared
among themselves in order to determine the contribution of different parts of the
pipeline for the selected organs.

Clearly, the organ-specific features improve the results significantly for the seg-
mentation of lumbar vertebra 1, which is demonstrated in Fig. 12.4. The left and
the middle pictures in Fig. 12.5 show the segmentation of the spleen for CT image
19 before and after the graph cut part in the pipeline, respectively. It is clear from
both the figures and the table that the random forest classifier improves the results a
lot. However, note that the segmentation in the middle picture of Fig. 12.5 is not a
valid spleen shape. The right picture of Fig. 12.5 illustrates the final segmentation for
the left kidney. This segmentation is obtained using organ-specific features, and the
result is quite accurate. However, the random forest classifier and the graph cut seg-
mentation do not seem to further improve the Dice index for the left kidney according
to the results in the table. Note that this does not necessarily mean that the segmenta-
tion is not improved. It is still possible that the produced solution is more regularized

Fig. 12.4 Segmentation of lumbar vertebra 1. Here, the ground truth is red and our segmentation
is blue. Left segmentation using ordinary features. The registration fails to find the correct vertebra
as it is confused by a nearby vertebra. Right segmentation using organ-specific features. Now the
correct vertebra is located
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Fig. 12.5 Ground truth (red) and computed segmentation (blue) for some of the organs after
different steps in the pipeline. Organ-specific features are used for all the segmentations. Left
warped ground truth mask of the spleen after the registration. Middle graph cut segmentation of the
spleen. Right graph cut segmentation of the left kidney

and accurate, just not according to the Dice index. Furthermore, the Dice scores for
the left kidney and the spleen are more or less the same when using organ-specific
features compared to when using ordinary features. In our experience, with a lot
of training data the organ-specific features generally perform a little better than the
ordinary features although that may not be the case for all the organs. It is, however,
worth mentioning that there are certain limitations regarding the performance of the
organ-specific features. It requires accurate landmark correspondences in order to
establish reliable golden transformations, see Sect. 12.2.1. If this is not the case, it
may not be advantageous to use organ-specific features.

12.4 Conclusions

In this paper, we have described an algorithm that uses a feature-based approach
to multiatlas segmentation of organs in whole-body CT images. The results clearly
demonstrate that this method manages to locate and segment the organs with the state-
of-the-art results, and our approach outperforms the participants at the VISCERAL
Anatomy Challenge on segmentation at ISBI 2015 for 13 out of 20 organs.

However, some parts of the algorithm could benefit from further work. For
instance, incorporating prior information about the organ shapes into the pipeline
would help to guarantee that the algorithm produces feasible organ shapes. A more
thorough evaluation of the organ-specific feature sets could help determine individ-
ual parameter settings for the organs, as well as help in explaining why the method
improves the results for some organs but not for all. Furthermore, adding additional
features to the random forest classifier would likely yield better results. Moreover, the
calculations could be sped up, e.g. by considering alternative registration methods.

www.dbooks.org

https://www.dbooks.org/


216 F. Fejne et al.

References

1. Alvén J, Norlén A, Enqvist O, Kahl F (2016) Überatlas: fast and robust registration for multi-
atlas segmentation. Pattern Recognit Lett. doi:10.1016/j.patrec.2016.05.001

2. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts.
IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

3. Candemir S, Jaeger S, Palaniappan K, Musco J, Singh R, Xue Z, Karargyris A, Antani S, Thoma
G, McDonald C (2014) Lung segmentation in chest radiographs using anatomical atlases with
nonrigid registration. IEEE Trans Med Imaging 33(2):577–590

4. Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori
K (2013) Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D
abdominal CT images. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds) MICCAI
2013. LNCS, vol 8150. Springer, Heidelberg, pp 165–172. doi:10.1007/978-3-642-40763-5_
21

5. Chui H, Rangarajan A (2000) A new algorithm for non-rigid point matching. In: IEEE confer-
ence on computer vision and pattern recognition, vol 2, pp 44–51

6. Chupin M, Gérardin E, Cuingnet R, Boutet C, Lemieux L, Lehéricy S, Benali H, Garnero L,
Colliot O (2009) Fully automatic hippocampus segmentation and classification in Alzheimer’s
disease and mild cognitive impairment applied on data from adni. Hippocampus 19(6):579–587

7. Criminisi A, Shotton J, Konukoglu E (2011) Decision forests: a unified framework for classifi-
cation, regression, density estimation, manifold learning and semi-supervised learning. Found
Trends® Comput Graph Vis 7:81–227

8. Eberly D (2008) Distance between point and triangle in 3D. Geometric Tools, LLC. http://
www.geometrictools.com/

9. Han X (2013) Learning-boosted label fusion for multi-atlas auto-segmentation. In: Wu G,
Zhang D, Shen D, Yan P, Suzuki K, Wang F (eds) MLMI 2013. LNCS, vol 8184. Springer,
Cham, pp 17–24. doi:10.1007/978-3-319-02267-3_3

10. Han X, Hoogeman MS, Levendag PC, Hibbard LS, Teguh DN, Voet P, Cowen AC, Wolf
TK (2008) Atlas-based auto-segmentation of head and neck CT images. In: Metaxas D, Axel
L, Fichtinger G, Székely G (eds) MICCAI 2008. LNCS, vol 5242. Springer, Heidelberg, pp
434–441. doi:10.1007/978-3-540-85990-1_52

11. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatom-
ical brain MRI segmentation combining label propagation and decision fusion. NeuroImage
33(1):115–126

12. Heckemann RA, Keihaninejad S, Aljabar P, Rueckert D, Hajnal JV, Hammers A (2010) Improv-
ing intersubject image registration using tissue-class information benefits robustness and accu-
racy of multi-atlas based anatomical segmentation. Neuroimage 51(1):221–227

13. Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med
Image Anal 24(1):205–219

14. Jamriška O, Sýkora D, Hornung A (2012) Cache-efficient graph cuts on structured grids. In:
IEEE conference on computer vision and pattern recognition, pp 3673–3680

15. Jiménez-del-Toro OA, Müller H, Krenn M, Gruenberg K, Taha AA, Winterstein M, Eggel I,
Foncubierta-Rodríguez A, Goksel O, Jakab A, Kontokotsios G, Langs G, Menze B, Fernandez
TS, Schaer R, Walleyo A, Weber M, Cid YD, Gass T, Heinrich M, Jia F, Kahl F, Kechichian R,
Mai D, Spanier AB, Vincent G, Wang C, Wyeth D, Hanbury A (2016) Cloud-based evaluation
of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy
benchmarks. IEEE Trans Med Imaging 35(11):2459–2475

16. Khalifa F, Beache G, Gimel’farb G, Suri J, El-Baz A (2011) State-of-the-art medical image
registration methodologies: a survey. In: El-Baz AS, Rajendra Acharya U, Mirmehdi M, Suri
JS (eds) Multi modality state-of-the-art medical image segmentation and registration method-
ologies. Springer, Heidelberg, pp 235–280

17. Kirisli HA, Schaap M, Klein S, Neefjes LA, Weustink AC, van Walsum T, Niessen WJ (2010)
Fully automatic cardiac segmentation from 3D CTA data: a multi-atlas based approach. In:
SPIE medical imaging, San Diego, USA

http://dx.doi.org/10.1016/j.patrec.2016.05.001
http://dx.doi.org/10.1007/978-3-642-40763-5_21
http://dx.doi.org/10.1007/978-3-642-40763-5_21
http://www.geometrictools.com/
http://www.geometrictools.com/
http://dx.doi.org/10.1007/978-3-319-02267-3_3
http://dx.doi.org/10.1007/978-3-540-85990-1_52


12 Multiatlas Segmentation Using Robust Feature-Based Registration 217

18. Klein A, Mensh B, Ghosh S, Tourville J, Hirsch J (2005) Mindboggle: automated brain labeling
with multiple atlases. BMC Med Imaging 5(1):7

19. Kolmogorov V, Boykov Y (2005) What metrics can be approximated by geo-cuts, or global
optimization of length/area and flux. In: IEEE international conference on computer vision,
vol 1, pp 564–571

20. Kolmogorov V, Zabin R (2004) What energy functions can be minimized via graph cuts? IEEE
Trans Pattern Anal Mach Intell 26(2):147–159

21. Kurkure U, Le Y, Ju T, Carson J, Paragios N, Kakadiaris I (2011) Subdivision-based deformable
model for geometric atlas fitting. In: IEEE international conference on computer vision,
Barcelona, Spain

22. Lee JG, Gumus S, Moon CH, Kwoh CK, Bae KT (2014) Fully automated segmentation of
cartilage from the MR images of knee using a multi-atlas and local structural analysis method.
Med Phys 41(9)

23. Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2015) Abdominal
multi-organ segmentation from CT images using conditional shape-location and unsupervised
intensity priors. Med Image Anal 26(1):1–18

24. Ourselin S, Roche A, Subsol G, Pennec X, Ayache N (2001) Reconstructing a 3D structure
from serial histological sections. Image Vis Comput 19(1–2):25–31

25. Pekar V, McNutt TR, Kaus MR (2004) Automated model-based organ delineation for radio-
therapy planning in prostatic region. Int J Radiat Oncol Biol Phys 60(3):973–980

26. Rohlfing T, Brandt R, Menzel R, Maurer CR Jr (2004) Evaluation of atlas selection strategies
for atlas-based image segmentation with application to confocal microscopy images of bee
brains. NeuroImage 21(4):1428–1442

27. Sanroma G, Wu G, Gao Y, Shen D (2014) Learning-based atlas selection for multiple-atlas
segmentation. In: IEEE conference on computer vision and pattern recognition, Columbus,
USA

28. Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey.
IEEE Trans Med Imaging 32(7):1153–1190

29. Svärm L, Enqvist O, Kahl F, Oskarsson M (2015) Improving robustness for inter-subject
medical image registration using a feature-based approach. In: International symposium on
biomedical imaging

30. Taylor R, Stoianovici D (2003) Medical robotics in computer-integrated surgery. IEEE Trans
Robot Autom 19(5):765–781

31. van der Lijn F, den Heijer T, Breteler MM, Niessen WJ (2008) Hippocampus segmenta-
tion in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage
43(4):708–720

32. Wang H, Suh J, Dass SR, Pluta J, Craige C, Yushkevich P (2013) Multi-atlas segmentation
with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35(3):611–623

33. Wang L, Chen KC, Gao Y, Shi F, Liao S, Li G, Shen SGF, Yan J, Lee PKM, Chow B, Liu
NX, Xia JJ, Shen D (2014) Automated bone segmentation from dental CBCT images using
patch-based sparse representation and convex optimization. Med Phys 41(4):043503

34. Warfield S, Zou K, Wells W (2004) Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging
27(3):903–921

35. Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal
multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging
32(9):1723–1730

36. Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA (2015)
Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context
learning. Med Image Anal 24(1):18–27

www.dbooks.org

https://www.dbooks.org/


218 F. Fejne et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution- Non-

Commercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which

permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by-nc/2.5/


Part V
VISCERAL Retrieval Participant Reports

www.dbooks.org

https://www.dbooks.org/


Chapter 13
Combining Radiology Images and Clinical
Metadata for Multimodal Medical
Case-Based Retrieval

Oscar Jimenez-del-Toro, Pol Cirujeda and Henning Müller

Abstract As part of their daily workload, clinicians examine patient cases in the
process of formulating a diagnosis. These large multimodal patient datasets stored
in hospitals could help in retrieving relevant information for a differential diagnosis,
but these are currently not fully exploited. The VISCERAL Retrieval Benchmark
organized a medical case-based retrieval algorithm evaluation using multimodal (text
and visual) data from radiology reports. The common dataset contained patient CT
(Computed Tomography) or MRI (Magnetic Resonance Imaging) scans and RadLex
term anatomy–pathology lists from the radiology reports. A content-based retrieval
method for medical cases that uses both textual and visual features is presented. It
defines a weighting scheme that combines the anatomical and clinical correlations
of the RadLex terms with local texture features obtained from the region of interest
in the query cases. The visual features are computed using a 3D Riesz wavelet
texture analysis performed on a common spatial domain to compare the images
in the analogous anatomical regions of interest in the dataset images. The proposed
method obtained the best mean average precision in 6 out of 10 topics and the highest
number of relevant cases retrieved in the benchmark. Obtaining robust results for
various pathologies, it could further be developed to perform medical case-based
retrieval on large multimodal clinical datasets.
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13.1 Introduction

As part of their daily workload, clinicians have to visualize and interpret a large
number of medical images and radiology reports [17]. In recent years, the volume
of images in medical records has increased due to the continuous development of
imaging modalities and storage capabilities in hospitals [18]. Going through these
large amounts of data is time-consuming and not scalable with the current trend of
big data analysis [16]. Therefore, the challenge to make an efficient use of these large
datasets and to provide useful information for the diagnostic decisions of clinicians
is of high relevance [19]. It is of particular significance to effectively combine the
information contained both in the patients’ medical imaging and the clinical metadata
from their reports [14].

It is now common for research groups to test their retrieval algorithms on a private
dataset, impeding the repeatability of their results and comparison to other algo-
rithms [7]. The Visual Concept Extraction Challenge in Radiology (VISCERAL)
project was developed as a cloud-based infrastructure for the evaluation of medical
image analysis techniques on large datasets [16]. Through evaluation campaigns,
challenges, benchmarks and competitions, tasks of general interest can be selected
to compare the algorithms on a large scale. One of these tasks is the Retrieval Bench-
mark, which aims to find cases with similar anomalies based on query cases [11].

In this paper, a multimodal (text and visual) approach for medical case-based
retrieval is presented. It uses the RadLex [15] terminology and the 3D texture fea-
tures extracted from medical images to objectively compare and rank the relevance
of medical cases for a differential diagnosis. Via an estimation of anatomical regions
of interest in the spatial domain delineated in medical images, it exploits the visual
similarities in the 3D patient scans to improve the baseline text rankings [10]. The
implementation of the method, set up and results in the VISCERAL Retrieval Bench-
mark and lessons learned are explained in the following sections.

13.2 Materials and Methods

The proposed approach to retrieve relevant medical cases was based on a weighting
score scheme that combined RadLex terms’ anatomical and pathological correlations
with local visual information.

The VISCERAL Retrieval dataset on which this method was implemented
and tested is initially addressed. The clinical metadata weighting scheme is then
explained. Afterwards, the various image processing techniques used for the visual
feature extraction approach are shown. Finally, the fusion of both data, RadLex term
lists and 3D patient scans, is explained in the multimodal fusion section.
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13.2.1 Dataset

The Retrieval benchmark dataset was composed of patient scans (3D volumes) and
RadLex anatomy–pathology term lists. The 2311 images in the dataset were obtained
during clinical routine from two data providers.1 The dataset had a heterogeneous
collection of images including computed tomography (CT) and magnetic resonance
imaging (MRI) T1- and T2-weighted imaging, enhanced and unenhanced, in differ-
ent fields of view (e.g. abdomen, whole body). For 1813 cases, RadLex anatomy–
pathology term lists were generated automatically from the radiology reports of the
images. They included the affected anatomical structures and their RadLex term ID,
the pathologies and their Radlex term ID, and whether the findings were negated or
not in the report. The number of findings and anatomical structures involved varied
from case to case.

13.2.2 VISCERAL Retrieval Benchmark Evaluation Setup

Ten query topics, not included in the dataset, were distributed to the participants for
the evaluation of their retrieval algorithms. The goal of the benchmark was to detect
and rank relevant cases in the dataset that could potentially aid in the process of
diagnosing the query cases. Each query topic was composed of the following data:

• List of RadLex anatomy–pathology terms from the radiology report
• 3D patient scan (CT or MRT1/MRT2)
• Manually annotated 3D mask of the main organ affected
• Manually annotated 3D region of interest (ROI) from the radiologist’s perspective

Participants submitted their rankings and medical experts performed relevance judge-
ments on the submitted cases to determine if they were relevant for the diagnosis of
each of the query topics.

13.2.3 Multimodal Medical Case Retrieval

13.2.3.1 Text Retrieval

Given a set of N medical cases C = 〈R1, . . . , RN ; V1, . . . , VN ; M1, . . . , MN ;
F1, . . . , FN 〉 where the textual information from a radiological report Rn contains a
list L of the anatomies A and pathologies P present in the medical case Cn. The visual
information (Vn, Mn, Fn) includes a triple of 3D volumes, containing the patient vol-
ume Vn, binary label organ mask (annotation) Mn and binary label region of interest
(annotation) Fn.

1http://www.visceral.eu/benchmarks/retrieval-benchmark/, as of 15 July 2016.
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The aim is to create a ranking S of relevant cases S = 〈C1, . . . CS〉 useful for a
differential diagnosis with the target case CT . Each case Cn is evaluated according
to its radiology report Rn and visual information (Vn, Mn, Fn), and a final score A
ranks the set of cases according to their relevance weight w.

S′
T = (C1(w1), C2(w2), . . . , Cn(wn)) (13.1)

The correlations were computed with the RadLex term lists provided from the radi-
ology reports. Each similarity feature had a different weight in the final decision for
the differential diagnosis and retrieval of cases. The textual similarity between two
cases was computed according to the following correlations and their correspondent
weighting score (in brackets):

1. Same anatomy with same pathology [0.6]
2. Same anatomy with same pathology negated [0.55]
3. Same anatomy present multiple times [0.2]
4. Same anatomy mentioned once [0.1]
5. Same pathology with different anatomy [0.05]
6. Similar anatomies [0.05]
7. Same imaging modality [0.02]

The similarity features were defined using a heuristic approach, after a medical
expert reviewed a subset of the RadLex term lists from randomly selected cases in
the Retrieval dataset. The selected criteria were optimized on the subset cases and
the clinical expertise of the medical expert. The aim of the weightings is to identify
and highlight clinical features that could be relevant for a differential diagnosis and
incorporate a priori knowledge of the types of image scans contained in the dataset.
The ranking was performed by adding all the weights from the different similarity
features for each case based on their corresponding RadLex term list. An independent
score was generated for each case in the Retrieval dataset. To define similar anatomies,
a list of correlating RadLex terms (e.g. lung, superior lobe, pleura...) was manually
generated by a medical expert from the standard RadLex term hierarchy on the subset
of randomly selected cases.2 These lists were generated for each of the query topics
in the benchmark.

13.2.3.2 Helping Multimodal Retrieval with Visual Texture Features

Multimodal retrieval can be influenced by common image processing techniques used
in template matching or visual likelihood metrics for content-based image retrieval.
Computer vision research areas such as image classification and pattern recognition
from visible features such as colour, contours or texture have been present in recent
approaches for the retrieval of medical cases with likely affected organs, image
modalities or diagnosis [6].

2http://www.RadLex.org, as of 15 July 2016.
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Fig. 13.1 Second-order Riesz kernels R(n1,n2,n3) convolved with isotropic Gaussian kernels G(x)

This section defines a methodology for content-based image retrieval via a simi-
larity measurement from texture-based visual cues. First, a region of interest from a
query image is characterized, thanks to its computed 3D Riesz wavelet coefficients.
In order to deal with 3D structure and also to provide a more compact representa-
tion, these features are translated into a particular descriptor space which arises from
modelling the covariance matrices of the coefficient observations within a volumetric
region, instead of keeping the whole set of feature values. This compact data repre-
sentation is of crucial interest as it allows to translate both learning image templates
and unknown testing image candidates to a common space which can be used in a
dictionary-seeking fashion for visual-based retrieval.

13.2.3.3 3D Riesz Transform for Texture Features

Riesz filterbanks are used in order to characterize the 3D texture of regions of interest
in CT images. In previous work, 3D Riesz wavelets have demonstrated successful
performance in the modelling task of subtle local 3D texture properties with high
reproducibility compared to other methods [8, 9].

The N th order Riesz transform R(N) of a three-dimensional signal f (x) is defined
in the Fourier frequency domain as:

̂R(n1,n2,n3)f (ω) =
√

n1 + n2 + n3

n1!n2!n3!
(−jω1)

n1(−jω2)
n2(−jω3)

n3

||ω||n1+n2+n3
f̂ (ω), (13.2)

for all combinations of (n1, n2, n3) with n1 + n2 + n3 = N and n1,2,3 ∈ N.
Equation 13.2 yields

(N+2
2

)
templates R(n1,n2,n3) and forms multi-scale filterbanks

when coupled with a multi-resolution framework.
In order to achieve a three-dimensional representation, the second-order Riesz

filterbank (depicted in Fig. 13.1) is used and rotation invariance is obtained by locally
aligning the Riesz components R(n1,n2,n3) of all scales based on the locally prevailing
orientation as presented in [3].
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13.2.3.4 Invariant Representation via 3D Covariance Descriptors

The choice of a particular set of features for an accurate texture description is as
important as a representation that is able to yield invariance to scale, rotation or
other spatial changes of the described region of interest. Riesz features are used in
conjunction with a representation that takes into account their statistical distribution,
leading to a compact and discriminative notation with several benefits for pattern
recognition.

First, a spatial homogenization baseline is achieved by an indirect 3D spatial
registration, where a reference image is used to register all the images from the
dataset and generate a common space domain for visual comparison. The reference
image is obtained from a control case of a complete patient scan in order to provide
a complete alignment frame. Once a new image is provided as a query, it is first
registered to the reference image and included in this rough alignment of the dataset
images. Then, a set of derived regions of interest is determined for each of the images
in the dataset by directly transforming the same coordinates from the ROI in the query
image. See Fig. 13.2 for a scheme of this workflow.

      Affine 
  registration

Reference image Query image 

x 

Retrieval data set 

Fig. 13.2 Finding the region of interest (ROI) from the query image in the dataset. The image with
the biggest size from the dataset was selected as the reference image. In order to have a common
spatial domain to compare the images, all the images from the dataset were registered in advance
to this reference image using affine registration (dashed blue arrows). With a new query, the query
images were also registered to the reference image, and the provided binary mask for the ROI
(yellow borders) was transformed using the coordinate transformation from the affine registration
of the query image. This procedure defined an indirect ROI (dashed yellow borders) in each of the
dataset images to compare the visual similarities with the query image
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The required registrations for this step were computed using the image registra-
tion implementation from the Elastix software3 [13]. The quality of the registration
is iteratively evaluated in each optimization of a cost function that aims to minimize
the normalized cross correlation from the voxel intensities of the transformed mov-
ing image to the fixed target image. Using affine registration, the 3D volumes are
globally aligned through an iterative stochastic gradient descent optimizer with a
multi-resolution approach [12].

The steerability property [21] of Riesz features asserts that voxel intensity values
are projected to the direction of maximum variability within the region of interest,
thus providing a common reference space for all the observable tissue patterns.
Therefore, features are guaranteed to be directionality invariant which, added to the
rotation-invariant representation explained below, adds an additional robustness to
spatial changes in the proposed covariance descriptor framework.

By their construction, covariance descriptors are suitable for unstructured, abstract
texture characterization inside a region, regardless of spatial rigid transformations
such as rotation, scale or translations [2]. This is due to a statistics-based represen-
tation in which covariance is used as a measure of how several random variables
change together (3D Riesz texture features in this case) and used as a discriminative
signature of a region of interest. This notion translates the absolute feature space,
which is sparse and high dimensional, to a meaningful lower dimensional space
of feature covariances where regions with similar texture variabilities lie clustered
and differentiated. Furthermore, the construction of covariance descriptors in their
natural shape as symmetric positive definite matrices adds an inherent analytical
methodology: these matrices form a manifold which can be analysed by its own
defined Riemannian metrics [1] for the comparison of descriptor samples.

In order to formally define the 3D Riesz-covariance descriptors, a feature selection
function Φ(ct, v) is denoted for a given 3D CT volume v (in this approach, a single
96 × 96 × 96 block generated using the centre of the bounding box surrounding the
manually annotated mask of the main organ affected in each the query topics) as:

Φ(v) = {
R(n1,n2,n3)

x,y,z , ∀x, y, z ∈ v
}
, (13.3)

which denotes the set of 6-dimensional Riesz feature vectors, as defined in Eq. 13.2,
obtained at each one of the coordinates {x, y, z} contained in the volume cube v.

Then, for a given region v of the CT image, the associated covariance descriptor
can be obtained as:

Cov (Φ(v)) = 1

N − 1

N∑
i=1

(Φ − μ) (Φ − μ)T , (13.4)

where μ is the vector mean of the set of feature vectors {Φx,y,z} within the volumetric
neighbourhood made of N = 963 samples. Figure 13.3 shows the construction of a
sample 3D Riesz-covariance descriptor.

3http://elastix.isi.uu.nl, as of 20th October 2015.

http://elastix.isi.uu.nl
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Fig. 13.3 Cues involved in the descriptor calculation for a given CT cubic region. The initial cube
depicts the values within a 96 × 96 × 96 pixel volume with its CT intensities; the 6 central cubes
depict the 2nd order 3D-Riesz wavelet responses, and the Riesz norm is included as well. The matrix
in the right sub-figure depicts the resulting covariance descriptor, encoding the different correlations
between the distributions of the observed cues

13.2.3.5 Pattern Matching in the Sym+
d Manifold

The resulting 6 × 6 covariance descriptors are symmetric matrices in which the
diagonal elements represent the variance of each Riesz feature, and the non-diagonal
elements represent their pairwise covariance. As previously stated, these descriptors
are used as discriminative signatures of the texture patterns found in the block v.
3D Riesz-based covariance descriptors do not only provide a representative entity,
but they also lie in the Riemannian manifold of symmetric definite positive matrices
Sym+

d . The spatial distribution of the descriptor space is geometrically meaningful as
3D regions sharing similar texture characteristics remain clustered when descriptor
similarity is computed by means of the Riemannian metrics defined for this non-
Euclidean spatial distribution, as defined below. This is depicted in Fig. 13.4, where
multi-dimensional scaling is used for projecting the descriptor space into a two-
dimensional plot for visualization. The same notion can be used for feature selection
or dimensionality reduction in the nonlinear descriptor space.

According to [1], the Sym+
d Riemannian manifold constituting the covariance

descriptor space can be approximated in close neighbourhoods by the Euclidean
metric in its tangent space, TY , where the symmetric matrix Y is a reference projection
point in the manifold. TY is formed by a vector space of d × d symmetric matrices,
and the tangent mapping of a manifold element X to x ∈ TY is made by the point-
dependent logY operation:

x = logY (X) = Y
1
2 log

(
Y− 1

2 XY− 1
2

)
Y

1
2 . (13.5)
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Fig. 13.4 Set of image descriptors obtained from 5 organ textures, belonging to 200 different
cubic samples from various patient CT scans. The descriptors for each class are plotted in different
colours in the embedded two-dimensional space, via the multi-dimensional scaling dimensionality
reduction technique, according to the descriptor similarity metric defined in Eq. 13.8. This plot
demonstrates geometrical coherence as the class distribution is correlated in the descriptor space:
areas with different texture features, such as liver, lung or urinary bladder, appear clustered in the
descriptor space. Some areas that share texture features, such as pancreas appear more overlapped to
other regions. In any case, this descriptor space can be used in linear or nonlinear machine learning
classification methods for texture modelling

As a computational approximation in certain classification problems, the projec-
tion point can be established in a common point such as the Identity matrix, and
therefore, the tangent mapping becomes:

log(X) = Ulog(D)U ′, (13.6)

where U and D are the elements of the single value decomposition (SVD) of
X ∈ Sym+

d .
One property of the projected symmetric matrices in the tangent space TY is

that they contain only d(d + 1)/2 independent coefficients, in their upper or lower
triangular parts. Therefore, it is possible to apply the vectorization operation in order
to obtain a linear orthonormal space for the independent coefficients:

x̂ = vect(x) = (x1,1, x1,2, . . . , x1,d, x2,2, x2,3, . . . , xd,d), (13.7)

where x is the mapping of X ∈ Sym+
d to the tangent space, resulting from Eq. 13.5.

The obtained vector x̂ lies in the Euclidean space R

m, where m = d(d + 1)/2. This
can be used for efficient template storage in cases of big data volumes.
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This set of operations is useful for data visualization, feature selection and for
developing machine learning and classification techniques on top of the particular
geometric space of the proposed covariance descriptors. The tangent mapping oper-
ator can be taken into account leading to the following Riemannian metric, which
expresses the geodesic distance between two points X1 and X2 on Sym+

d [1]:

δ(X1, X2) =
√

Trace

(
log

(
X

− 1
2

1 X2X
− 1

2
1

)2
)

, (13.8)

or more simply δ(X1, X2) =
√∑d

i=1 log(λi)2, where λi are the positive eigenvalues

of X
− 1

2
1 X2X

− 1
2

1 .
Therefore, in a similarity retrieval application in which a query region obtained

covariance descriptor Q has to be matched against a set of template region descriptors
{Ti} belonging to different classes, this distance can be used as a supporting metric
for a weighted scoring system for multimodal retrieval:

class(Q) = argmin
i

{δ(Q, Ti) ∀i ∈ T} , (13.9)

since the dimensionality of the proposed descriptors is very compact, this scoring
function is computationally feasible for datasets of reasonable sizes.

13.2.3.6 Multimodal Fusion

It is known from previous medical case-based retrieval benchmarks that the text
queries obtain much better results than the visual queries [4, 5]. This has been
attributed to the currently much more consistent representation of clinical signs in
medical images by text labels than by their visual features that are not always very
specific. Therefore, it is of high interest to the retrieval information community to
find robust visual features that can be combined with semantic terms [14]. To include
the information obtained from the visual ranking of the cases into the semantic text
weighting scheme, we give an additional weighting if the visual similarity score is
high. The additional weight [0.05] is added to the total sum from the textual score
of the case, if it is in the top 20% of the ranking obtained from the similarity score
of the covariance descriptor. These parameters were manually optimized using a
small subset of the dataset. A medical expert provided a list of correlation-based
similarities that are of interest for finding relevant cases in the dataset. For each of
the query topics, a single main combination of anatomy and pathology RadLex terms
was manually selected from RadLex term list. This decision was based on the region
of interest and organ mask provided in the benchmark to the participants.

www.dbooks.org
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13.3 Results

Only one run was submitted for the VISCERAL Retrieval benchmark 2015, which
combined both the RadlexID weighting score scheme and the visual texture features.
This run contained a ranking of 300 cases for each of the ten query topics in the
benchmark. The cases were ranked in descending order according to the computed
similarity to the query topic.

The proposed approach obtained the highest mean average precision (MAP) scores
in 6 out of the 10 query topics [11]. The topic with the highest MAP was topic 08—
kidney cyst—with 0.5131, and the lowest was topic 10—rib fracture—with 0.0467.
The mean MAP was 0.2367 which was the second best MAP score of the benchmark.

Although the precision from 10 (P_10), 20 (P_20) and 30 (P_30) documents
retrieved is lower than the method by Spanier et al. [20], our method presented a more
stable decline of precision scores obtaining the benchmark top scores for 100 (P_100)
and 200 (P_200) documents retrieved (see Fig. 13.5). Moreover, the proposed method
obtained the highest total of relevant documents retrieved (num_rel_ret): 1077 out
of a maximum of 2462. In 7 of the 10 query topics, it obtained the top number
of total documents retrieved out of all the different 21 runs in the benchmark (see
Fig. 13.6). The mean average precision (MAP), precision after query relevant cases
retrieved (Rprec), binary preference (bpref), precision after 10 cases retrieved (P_10)
and precision after 30 cases retrieved (P_30) from our method are shown per query
topic in Table 13.1. These results take special interest when compared against the
other retrieval methods proposed in order to identify which components receive a
particular benefit when a multimodal-based scoring is introduced. There is a clear
advantage of the method by Spanier et al. in query topic 10 when compared to our
method. This topic, with radiological diagnosis of rib fracture, had only 47 cases

Fig. 13.5 Line graph showing the mean precision scores over all the topics at varying number of
cases retrieved: 10–200. The best run was selected per participant considering all possible tech-
niques: only text, only visual or mixed. A maximum of 300 cases could be included in each of the
submitted rankings per topic
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Fig. 13.6 Box plot chart with the total number of relevant cases retrieved (num_rel_ret) per topic
in the VISCERAL Retrieval benchmark. The method proposed in this paper is represented with red
solid bars. The results of the other participants, including text, visual and mixed runs are shown
as white boxes. The horizontal lines inside the boxes mark the median number of relevant cases
retrieved. Each box extends from the first to the third quantile of the run results

considered as relevant by the relevance judgements. This is one of the topics in the
Retrieval Benchmark with fewer relevant cases, making it harder to select only a few
relevant cases from the complete dataset. On the other hand, our method was the
only run with a mixed technique (text and visual) that produced a ranking for all of
the query topics available, unlike the approach from Spanier et al.

13.3.1 Lessons Learned

Having a common dataset is fundamental to make objective comparisons between
different retrieval methods. There were two topics (07 and 09), where techniques
using only text data performed better than the mixed techniques. Otherwise, multi-
modal techniques in the benchmark overall obtained the best scores.

An advantage of scanning a large dataset of patient cases is that, like in a real
clinical scenario, the distribution of diseases is not uniform. This requires a robust
selection of relevant features for a successful retrieval, particularly for those diseases
with few cases in the dataset.

Visual retrieval is still a complementary technique that is best used with a strong
baseline of text-related similarities between medical cases. Further research is needed
to detect the most relevant region of interest in the images as well as the best visual
features per topic. Manual annotation of the regions of interest in the medical images
can be useful to improve even further this technique by obtaining more targeted
visual features related to a specific medical case. This would avoid sampling large
regions in the image and generate a more robust training set on which to build
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retrieval algorithms. However, this implies a significant increase in the workload of
the clinicians when handling these datasets.

Although this method was developed for the VISCERAL Retrieval Benchmark
tasks and dataset, both the clinical correlations and the general approach for obtaining
relevant visual features can be implemented for similar clinical tasks. Nevertheless,
the results obtained during the VISCERAL Retrieval Benchmark showed the advan-
tage of combining multimodal information in the search for differential diagnosis
medical cases. The semi-automatic method obtained the highest scores for the major-
ity of topics when compared to the other runs submitted in the Benchmark. It includes
both textual and visual information in the queries and managed to index a dataset
of >2000 medical cases with radiology reports and 3D patient scans.

13.4 Conclusions

A semi-automatic multimodal (using text and visual information) medical case-based
retrieval approach is presented. A rule-based weighting of the anatomical and clin-
ical RadLex term correlations from radiology reports is used as a baseline to find
useful clinical features from the cases. The results of the processing only text data
(RadLex IDs) are further improved with state-of-the-art techniques (Riesz wavelets,
image registration and covariance descriptors) to compute a visual similarity score
between the medical images in the cases. The method was implemented and tested
in the VISCERAL Retrieval Benchmark 2015, with overall promising results for the
retrieval of relevant cases for differential medical diagnosis. More work is needed to
address the scalability of this approach and the inclusion of new clinical cases.
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Chapter 14
Text- and Content-Based Medical Image
Retrieval in the VISCERAL Retrieval
Benchmark

Fan Zhang, Yang Song, Weidong Cai, Adrien Depeursinge
and Henning Müller

Abstract Text- and content-based retrieval are the most widely used approaches
for medical image retrieval. They capture the similarity between the images from
different perspectives: text-based methods rely on manual textual annotations or
captions associated with images; content-based approaches are based on the visual
content of the images themselves such as colours and textures. Text-based retrieval
can better meet the high-level expectations of humans but is limited by the time-
consuming annotations. Content-based retrieval can automatically extract the visual
features for high-throughput processing; however, its performance is less favourable
than the text-based approaches due to the gap between low-level visual features and
high-level human expectations. In this chapter, we present the participation from our
joint research team of USYD/HES-SO in the VISCERAL retrieval task. Five different
methods are introduced, of which two are based on the anatomy–pathology terms,
two are based on the visual image content and the last one is based on the fusion of
the aforementioned methods. The comparison results, given the different methods
indicated that the text-based methods outperformed the content-based retrieval and
the fusion of text and visual contents, generated the best performance overall.
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14.1 Introduction

Medical image data produced has been growing rapidly in quantity, content and
dimension, due to an enormous increase in the number of diverse clinical exami-
nations performed in digital form and to the large range of image modalities and
protocols available [1–5]. Retrieving a set of images that are clinically relevant to the
query from a large image database has been the focus of medical research and clin-
ical practice [6–9]. The relevance between the images is normally computed in two
manners, i.e. text and content based. The text-based approach is performed given the
manual clinical / pathological descriptions, which require that the experts manually
index the images with alphanumerical keywords if no text is already available with
the images. The content-based retrieval is based on the image visual content informa-
tion, which automatically extracts the rich visual properties / features to characterize
the images [10–12]. While the text-based retrieval is the more common method, the
content-based approach is attracting more interest due to the fact that medical image
data have expanded rapidly in the past two decades [13, 15–17]. The combination
of the two approaches suggests a potential direction of medical image retrieval for
performance improvement [18].

In the VISCERAL Retrieval Benchmark, 1we conducted medical image retrieval
based on multimodal and multidimensional data [20]. The similarities between med-
ical cases are computed based on the extracts of the medical records, radiology images
and radiology reports. The VISCERAL Retrieval dataset consists of 2311 volumes
originated from three different modalities of CT, MRT1 and MRT2. The volumes are
from different human body regions such as the abdomen, thorax and the whole body.
Within the whole dataset, 1815 volumes are provided with anatomy–pathology terms
extracted from the radiology reports. A total of 10 topics with diagnosis and case
description were used as queries (see [20] for details). Each of them was annotated
with the 3D bounding box of the region of interest (ROI), binary mask of the main
organ affected and the corresponding anatomy–pathology terms. A brief introduction
of our participation has been reported in [19] and more on the VISCERAL data in
general, and the evaluation approach can be found in [20]. Our experimental results
are reported with text-based retrieval that utilized the anatomy–pathology terms, with
visual content-based retrieval that made use of the visual content features, and with
information fusion that combined the above results.

The structure is as follows: in Sect. 14.2, we introduce the text, visual content and
fusion retrieval methods that were used in our participation; in Sect. 14.3, we present
the experimental results and discussion; and we provide the conclusion in Sect. 14.4.

1http://www.visceral.eu/benchmarks/retrieval2-benchmark/.

www.dbooks.org

http://www.visceral.eu/benchmarks/retrieval2-benchmark/
https://www.dbooks.org/


14 Text- and Content-Based Medical Image Retrieval … 239

14.2 Methods

A general framework of image retrieval consists of the following steps [13, 14]:
feature extraction, similarity calculation and relevance feedback, as illustrated in Fig.
14.1. For our methods, the feature extraction is conducted by analysing the anatomy–
pathology term (Sects. 14.2.1 and 14.2.2) and the image content information (Sect.
14.2.3). The similarity is computed by measuring the Euclidean distance between
the feature vectors. The relevance feedback is extracted based on the neighbourhood
information among the cases for retrieval result refinement (Sect. 14.2.4).

14.2.1 Term Weighting Retrieval

Medical image retrieval is conventionally performed with text-based approaches,
which rely on manual annotation with alphanumerical keywords. The anatomy–
pathology term files provided in the VISCERAL Retrieval Benchmark list the pathol-
ogy terms and affected anatomies that were extracted from the German radiology
reports and mapped to RadLex. The co-occurence of different anatomy–pathology
terms on the same cases can be used to evaluate the terms’ effectiveness of finding
the similarity between subjects, for example, of some “stop words” that occur widely
but have little influence on describing the similarities. Our text-based methods are
based on the co-occurrence matrix between the terms and cases.

For our first text-based method, we used term frequency inverse document (case)
frequency (TF-IDF) [21] to weight the terms for each case. TF-IDF can find the rare
terms that carry more information than the frequent ones and is thus widely applied
in term weighting problems. Formally, a case-term co-occurrence matrix OCCNT×NC

is constructed according to the anatomy–pathology terms on different cases, where
the element occ(t, c) refers to the number of occurrences of term Tt on case Cc,

Fig. 14.1 Image retrieval pipeline in this study: (1) feature extraction from the anatomy–pathology
terms and image content information; (2) similarity computation to measure the similarity between
the cases in terms of feature vectors; (3) result refinement to rerank the candidate cases according
to the feedbacks extracted from the neighbourhood information among the cases
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NC is the number of cases and NT is the number of terms. Term frequency TF(t, c)
evaluates the frequency of the term Tt occurred on the case Cc, which is

TF(t, c) = occ(t, c)
∑

t∈[1,NT ] occ(t, c)
. (14.1)

Inverse document (case) frequency IDF(t) indicates whether the term Tt is common
or rare across all cases, which is

IDF(t) = log(

∑
c∈[1,NC] occ(t, c)

1 + occ(t, c)
). (14.2)

TF-IDF measure of Tt for Cc is then computed as

TF-IDF(t, c) = TF(t, c) × IDF(t). (14.3)

Case Cc is finally formulated as a vector of TF-IDF measures of all terms as

VTF-IDF(c) = (TF-IDF(1, c), ..., TF-IDF(NT , c)). (14.4)

The Euclidean distance between the vectors is then computed. We conducted a k-NN
method for retrieval, which means selecting the cases that have the closest feature
vectors to the one of the queries VTF-IDF(q) in terms of Euclidean distance.

14.2.2 Semantics Retrieval

While the TF-IDF method merely utilizes the direct co-occurrence relationship
between the terms and cases, this relationship can be further used to infer the seman-
tic information and can provide a more discriminative description of these terms for
similarity computation. The latent semantic topic model is one of the most repre-
sentative methods that can automatically extract the semantic information based on
the co-occurrence relationship. It assumes that each image can be considered as a
mixture of latent topics, and the latent topic is a probability distribution of terms. In
this study, we applied probabilistic latent semantic analysis (pLSA) [22], which is a
widely used latent topic extraction technique, for learning the latent semantics.

The schema of pLSA is shown in Fig. 14.2. pLSA considers that the observed
probability of a term Tt occurring on a case Cc can be expressed with a latent or
unobserved set of latent topics Z = {zh|h ∈ [1, H]}, where H is the number of latent
topics, as:

P(t|c) =
∑

h

P(t|zh) · P(zh|c). (14.5)
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Fig. 14.2 Latent topic generation with pLSA

The probability P(zh|c) describes the distribution of latent topics given a certain
case. The latent topics Z can be learnt by fitting the model with the expectation–
maximization (EM) [25] algorithm that maximizes the likelihood function L:

L =
∏

t

∏

c

P(t|c)occ(t,c). (14.6)

After the latent topic extraction, each case is represented as the probability vector of
the extracted latent topics,

VpLSA(c) = (P(z1|c), ..., P(zH |c)), (14.7)

where each element is the probability of the latent topic given this case. The similarity
between different cases is then measured by the Euclidean distance between the
probability vectors, followed by the k-NN method for retrieval as introduced in Sect.
14.2.1. During the experiments, we empirically fixed the number of latent topics to
20, i.e. H = 20.

14.2.3 BoVW Retrieval

Unlike the aforementioned text-based methods, the visual content-based retrieval
computes the similarity between the images based on their visual characteristics,
such as the texture and colour. In the literature, there are many methods that can
automatically extract the visual features to characterize the medical images [2, 26–
28]. The Bag of Visual Words (BoVW) [29, 30] method, which is one of the popular
methods for visual content-based image retrieval, is applied as our first content-based
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retrieval method. The BoVW model represents an image with a visual word frequency
histogram that is obtained by assigning the local visual features to the closest visual
words in the dictionary. Rather than matching the visual feature descriptors directly,
the BoVW-based approaches compare the images according to the visual words that
are assumed to have higher discriminative power [29].

Specifically, the scale invariant feature transform (SIFT) [31] descriptors are
extracted from the image to obtain a collection of local patch features for each
image/case. The entire patch feature set computed from all images in the database is
then grouped into clusters, e.g. with k-means method. Each cluster is regarded as a
visual word W , and the whole cluster collection is considered as the visual dictionary
D = {Wd |d ∈ [1, ND]}, where ND is the size of dictionary. Following that, all patch
features in one image are assigned to the visual words, generating a visual word
frequency histogram to represent this image (case) as,

VBoVW (c) = (fre(1, c), ..., fre(ND, c)), (14.8)

where fre(d, c) is the frequency of visual word Wd on case Cc. Finally, the similarity
between images is computed based on these frequency histograms for retrieval.

In our experiments, the SIFT [31] descriptors were extracted from each scan of
the 3D volume from the axial view. A visual dictionary of size 100, i.e. ND = 100
that could be sufficient for capturing local visual details and does not introduce too
much noise based on our previous study in medical image analysis [23, 24], was
computed with k-means. During the retrieval, given the ROI of a query case, we
traversed all possible subregions (of the same size as the ROI in terms of the pixels)
in a candidate volume in sliding window manner. Two subregions can be overlapped
with an interval of 10 pixels at X/Y/Z directions. The subregion that has the smallest
Euclidean distance from the query ROI in terms of visual word frequency histograms
was regarded as the most similar area of the candidate to the query ROI, while the
other subregions were not used. The distance between the two regions represented the
similarity between the query and candidate images in our study. The k-NN method
was applied for retrieval considering the obtained similarities.

14.2.4 Retrieval Result Refinement

While the first two steps form a basic retrieval process, relevance feedback refines the
retrieval results if the top-ranked items are not fully satisfactory. Relevance feedback
is based on the preferences upon the initial retrieval results, which can be provided
by the users. However, providing manual feedback can be quite challenging due to
the huge amount of image data. The relevance can also be affected since manual
interpretation sometimes could be error-prone. The neighbourhood among images
on the other hand can be used as a form of relevance feedback and is expected to be
beneficial for image retrieval.

www.dbooks.org
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Algorithm 1 Pseudo code for preference and relativity computation
Input: Number of iterations T , neighborhood matrix A.
Output: Preference and relativity values.
1: initialize rel0 = 1 and pref0 = 1.
2: for each it in [1, IT ] do
3: for each Ccr do
4: Compute prefit(Ccr) based on relit−1(Ccc) using Eq.(14.9);
5: end for;
6: for each Ccc do
7: Compute relit(Ccc) based on prefit(Ccr) using Eq.(14.10);
8: end for;
9: L2-normalize prefit of all retrieved items.
10: L2-normalize relit of all candidates.
11: end for;
12: return prefit and relit .

Based on the results of the BoVW method, we further conducted a retrieval result
refinement process based on our recent work [32]. In our method, we assume that
the similarity relationship between the initial retrieved results and the remaining
candidates can be used as a relevance feedback for result refinement. For a given
query image, we first get a ranked list of initial retrieval results based on the BoVW
model. Then, the similarities between the retrieved items and all candidates are used
to evaluate their preference and relativity.

Formally, a preference score pref (Ccr) for the retrieved item Ccr is defined to
evaluate the preference upon Ccr with regard to the query, i.e. relevance and irrele-
vance. A relativity score rel(Ccc) is appointed to the candidate image Ccc, indicating
the similarity of Ccc to the query. The two values are computed conditioned on each
other regarding the query case Ccq: the relativity score rel(Ccc) of Ccc would be high
if it is similar to the highly preferred retrieved item Ccr , and the preference score
pref (Ccr) of Ccr would be high if it is close to the more relevant candidate Ccc. The
relativity score of Ccc is formulated as the sum of preference scores of its neighbour-
ing retrieved items, similar to the preference score of Ccr . Denoting rel and pref as
the vectors of relativity and preference scores, we have the following formulations:

pref (Ccr) =
∑

Ccc:A(Ccc,Ccr)=1

rel(Ccc), (14.9)

rel(Ccc) =
∑

Ccr :A(Ccc,Ccr)=1

pref (Ccr), (14.10)

where A is a matrix indicating the bipartite neighbourhood relationship between the
retrieved items and the candidates, i.e. A(Ccc, Ccr) = 1 if Ccc is the neighbour of Ccr ;
otherwise, A(Ccc, Ccr) = 0. Equation (14.9) and (14.10) can be alternatively solved
iteratively to obtain the relativity and preference scores as shown in Algorithm 1.
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We then ranked all candidate images based on their relativity scores, in which
the top-ranked ones were regarded as the most similar cases to the query. For our
experiments, we selected the top 30 volumes based on the BoVW outputs as the
initial results Ccr . Then, a bipartite relationship between the initial results Ccr and the
remaining candidates Ccc, which represented the neighbourhood, was constructed by
keeping the top 30 candidates for each initial result. The iterative ranking method [32]
was applied to recompute the similarity score of each candidate with an iteration
number IT of 20, after which the relativity and preference scores tended to be stable
and have insignificant influence on the ranking orders of the candidates.

14.2.5 Fusion Retrieval

It is often suggested that the combination of textual and visual features can improve
the retrieval performance [18]. Many fusion strategies have been proposed in the
past such as maximum combination [34], sum combination [34] and Condorcet
fusion [35].

Given the results from the text- and content-based retrievals, we conducted the
fusion retrieval by using the sum combination method, which has been effective for
textual and visual feature fusion [33]. To do this, a normalization step was firstly
incorporated to normalize the similarity scores obtained from the aforementioned
results, as:

S′ = S − Smin

Smax − Smin
, (14.11)

where Smin and Smax are the lowest and highest similarity scores obtained within a
certain method. The sum combination was then adopted to compute a fusion score
for each candidate, as:

SF =
∑

r∈[1,4]
S′

r, (14.12)

where r ∈ [1, 4] represents the first four methods. The ones with the higher scores
were for the results of fusion retrieval.

14.3 Results and Discussion

To evaluate the performance of retrieval results, medical experts were invited to
perform relevance assessment of the top-ranked cases for each run. Various evaluation
measures were used considering the top-ranked X cases, including the precision for
top-ranked 10 and 30 cases (P@10, P@30), mean uninterpolated average precision
(MAP), bpref measure and the R-precision.

Figure 14.3 displays the retrieval result for each of the topics given the aforemen-
tioned measures. The performances were diverse across the cases. It can be generally
observed that better results were obtained for topics 1 and 7 when compared to the
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Fig. 14.3 Retrieval results of the 10 topics given different evaluation measures

Table 14.1 Average results of the different measures across the 10 queries

P@10 P@30 MAP bpref

TFIDF 0.370 0.277 0.081 0.162

pLSA 0.410 0.380 0.094 0.183

BoVW 0.250 0.283 0.078 0.190

Refinement 0.330 0.330 0.083 0.188

Fusion 0.420 0.353 0.110 0.207

Text 0.570 0.497 0.194 0.322

Image 0.330 0.330 0.083 0.188

Mixed 0.688 0.638 0.283 0.340

other topics, but the results for topics 9 and 10 were unfavourable. The differences
were due to the different affected regions. Our methods computed the similarity
between cases using the entire volumes, instead of focusing on the local details.
Therefore, for cases that have relatively smaller annotated regions (the 3D bounding
box of the ROI) compared to the others, e.g. case 10, the retrieval performance tended
to be less favourable.

Table 14.1 shows the average results of the measures across the 10 queries,
with the first five rows from our results and the last three rows showing the best
results from all participants of the VISCERAL retrieval benchmark. Within our
text-based approaches, pLSA generated better performance when compared to the
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TF-IDF method, by further using the latent semantic information inferred from the
co-occurrence relationship between cases and terms. Regarding the content-based
retrieval, we obtained better results when applying the result refinement. Across the
four methods, better performance was obtained from the text-based retrieval when
compared to the content-based retrieval. The content-based methods use the visual
content characteristics that may have large variation between the relevant cases but
small difference between the irrelevant ones. The SIFT feature used in our exper-
iments is widely known for capturing the local image content information, but it
sometimes can be hard for SIFT to recognize the subtle visual difference between
different images. In addition, while the size of the dictionary was set to 100 in our
experiments, it can be varied for different datasets and potentially affect the retrieval
performance. The text-based approaches on the other hand compare the different
cases directly based on the pathology terms and affected anatomies. Thus, the text-
based retrieval obtained the more favourable retrieval results. While the anatomy–
pathology terms provide an overall description for the similarity computation, the
visual content feature can better capture the local anatomical differences between
cases. Therefore, the fusion approach achieved the overall best result, which is in
accordance with the findings in the literature. Regarding the comparisons across all
VISCERAL Retrieval Benchmark participations, we had the best performance with
the result refinement among all image-based methods. The results from the text and
fusion methods were less favourable since only co-occurrence information between
the terms were used. Further analysis of the terms in the benchmark relating to the
entire anatomy–pathology RadLex term collection would be helpful for retrieval
improvements.

14.4 Conclusion

In this chapter, we introduced the approaches from our joint research team of
USYD/HES-SO to address the VISCERAL Retrieval Benchmark, including the TF-
IDF and pLSA methods for text-based retrieval, the BoVW and its result refinement
for content-based retrieval, and the fusion retrieval of the above methods. The exper-
imental results are in accordance with the findings in the literature, i.e. the text-based
approaches typically perform better than purely visual content-based methods, and
the combination of text- and content-based retrieval can achieve improved retrieval
performance.

A further potential exploration could be the parameter selection. In this study, we
empirically selected the settings of the parameters based on our previous work on
other medical image retrieval tasks, such as the number of topics in the semantic
retrieval, the size of dictionary in the BoVW retrieval and the number of initial
retrieved items in the retrieval result refinement. It would be interesting to learn the
parameters within the VISCERAL Retrieval Benchmark dataset but can be difficult
due to the large amount of image data and the current lack of ground truth annotations.
Another direction can be investigating a better way to combine the textual and image
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content information. While the fusion retrieval tended to generate better performance
in our study in general, we can also observe that the semantic retrieval overperformed
the fusion method, e.g. the precision for top-ranked 30 cases (P@30). We expected
a better performance if the feature extraction could utilize both textual- and image-
content information rather than analysing them individually.
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