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Different Views on the Finger—
Score-Level Fusion in Multi-Perspective
Finger Vein Recognition
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Abstract In finger vein recognition, the palmar view of the finger is used almost
exclusively, with some exceptions where the dorsal view is utilised. Only little atten-
tion has been paid to all other views around the finger’s longitudinal axis. We estab-
lished a multi-perspective finger vein dataset comprising of views all around the fin-
ger’s longitudinal axis, captured using our self-developed rotating multi-perspective
finger vein capture device. The performance of the single views is evaluated using
common finger vein recognition algorithms. Based on these single view scores, sev-
eral score-level fusion experiments involving different fusion strategies are carried
out in order to determine the best performing set of views and feature extraction
methods to be fused in terms of recognition accuracy while minimising the number
of views involved. Our experimental results show that the recognition performance
can be significantly improved over the best performing single view one with as few
as two views and two-feature extraction methods involved.
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10.1 Introduction

Finger vein recognition as one representative of vascular pattern biometrics deals
with the vascular pattern inside the fingers of a human. Since one of the first men-
tions of finger veins as a biometric trait in academia by Kono [1] in 2000, they have
received much attention not only from academia but also from industry. Commercial
off-the-shelf (COTS) finger vein capture devices, as well as most research papers
solely, use the palmar (front side of the finger) view in combination with light trans-
mission (the light source and the image sensor are placed on opposite sides of the
finger) as illumination source. Multi-perspective finger vein recognition deals with
two or more arbitrary perspectives around the finger’s longitudinal axis. Despite the
advantages of multi-perspective finger vein biometrics over single view ones, these
additional perspectives have not got much attention so far. Moreover, there is no
publicly available multi-perspective finger vein dataset yet.

This chapter is based on our previous work [2] where we designed a novel, multi-
perspective finger vein capture device in order to establish the first multi-perspective
finger vein data set. This dataset comprises of images captured all around the finger’s
longitudinal axis in 1◦ steps. Based on this dataset, each of the different views has been
evaluated individually and some simple fusion experiments have been conducted.
The main focus of this chapter is on the fusion of multiple perspectives and feature
extraction methods in order to determine the best performing combination in terms of
recognition accuracy by employing a more advanced multi-sample score-level fusion
scheme as well as by applying further fusion strategies in terms of view and feature
combinations. We analyse all possible pairs and triples of perspectives and all possible
combinations of the used feature extraction methods. In addition, we combine the
best results of our multi-perspective and multi-algorithm fusion experiments to one
single combined fusion. Our main goal is to minimise the number of views and
feature extraction methods involved, while maximising the recognition accuracy. A
typical multi-perspective finger vein capture device contains one image sensor and
one light source situated at the right position per desired view. The more views are
to be captured, the more camera and illumination modules have to be equipped, thus
increasing the production costs, the complexity and the overall size of the finger
vein capture device. If the number of desired perspectives is further increased, the
construction of a suitable capture device is no longer feasible without the need of
rotating parts. Our current multi-perspective finger vein capture device is such a
rotating device, making it more susceptible to malfunctions and external influences
than a capture device containing no rotating parts. Moreover, the capturing time
is increased as the capture device has to rotate all around the finger. Hence, it is
beneficial to reduce the number of different views to be captured to a minimum in
order to reduce the complexity and production costs of the biometric capture device
and to avoid the need for a rotating device while still preserving the advantages of a
multi-perspective capture device.

The rest of this chapter is structured as follows: Sect. 10.2 starts with a description
of multi-perspective finger vein biometrics including related work regarding other
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views than the palmar and dorsal one in finger vein recognition. Our multi-perspective
finger vein capture device design is described in Sect. 10.3. Section 10.4 introduces
our multi-perspective finger vein dataset captured with the aforementioned device.
Section 10.5 gives an overview of biometric fusion in general followed by related
work on biometric fusion in finger vein recognition. Section 10.6 explains our exper-
imental set-up, including the finger vein recognition tool chain as well as the fusion
framework we utilised and lists the experimental results, followed by a results dis-
cussion. Section 10.7 concludes this paper an gives and outlook on future work.

10.2 Multi-perspective Finger Vein Biometrics

The majority of the available finger vein recognition schemes as well as all available
COTS finger vein capture devices deal with the palmar (also called ventral) view of
the finger. There are only some exceptions where the dorsal view is used. Raghaven-
dra and Busch [3] proposed the first dorsal finger vein acquisition and a complete
recognition tool chain including several different feature extraction schemes. In the
scope of the PROTECT project (http://www.projectprotect.eu), we acquired the first
publicly available dorsal finger vein dataset [4] using the predecessor of our open-
source finger vein capture device. In [5], we established a larger dorsal finger vein
dataset captured using both of our proposed open-source finger vein capture devices,
which design is decribed in Chap. 3 of this book [6].

There are more views around the finger than the palmar and dorsal one that can
be captured. A single finger is an elliptical cylinder-shaped object, hence, there are
all possible views around its longitudinal axis (360◦ of rotation) available. Multi-
perspective finger vein recognition describes the use of two or more of these per-
spectives around the finger’s longitudinal axis. Multi-perspective finger vein recog-
nition has several advantages over the single perspective one: The vein patterns of
the palmar and dorsal view as well as of the perpendicular views are independent
from each other [7]. By fusing more than one perspective that is independent enough
from each other (i.e. the rotation angle between the single perspectives has to differ
enough for the perspectives to be independent of each other), the overall recognition
performance can be increased easily. Tome et al. [8, 9] showed that finger vein and
hand vein recognition systems are susceptible to a simple type of presentation attack.
By using a paper printout of the vein pattern, they were able to successfully spoof
several finger vein capture devices. This paper printout is a flat, 2D representation
of the vein pattern. If a biometric capture device takes finger vein images from dif-
ferent perspectives, such simple 2D printout attack finger vein presentation will not
be identified as bona fide finger vein presentation. Thus, a multi-perspective finger
vein capture device is successfully able to prevent this kind of presentation attack.
However, multi-perspective finger vein recognition bears some disadvantages too:
The biometric capture devices get more complex, either more than one camera and
illumination module are needed, or the capture device has to be build in a rotating
manner. This leads to higher production costs of multi-perspective capture devices

www.dbooks.org

http://www.projectprotect.eu
http://dx.doi.org/10.1007/978-3-030-27731-4_3
https://www.dbooks.org/


264 B. Prommegger et al.

and especially rotating capture devices are more error prone due to the moving parts.
Another disadvantage is the bigger size of a multi-perspective capture device com-
pared to single perspective ones. The multiple image sensors/illuminator modules or
the rotating parts need more space than just a single image sensor in combination
with one illumination module.

Lu et al. [10] proposed a multi-perspective finger vein recognition system using
two cameras. The cameras are placed at an angle of 60◦ next to each other, each
camera is located 30◦ apart from the palmar view. They applied feature—as well as
score-level fusion using the two views captured simultaneously by the two cameras
and were able to improve the recognition performance of the single view ones.
Zhang et al. [11] employed a binocular stereoscopic vision device to do 3D point
cloud matching of hand veins and knuckle shape. Their capture device set-up consist
of two cameras, placed in a relative position of about 45◦ next to each other, each one
equipped with an NIR-pass filter. There is only a single light transmission illuminator
placed underneath the palm of the hand. The 3D point clouds are generated by
extracting information from the edges of the hand veins and knuckle shapes and then
compared utilising a kernel correlation method, especially designed for unstructured
3D point clouds. The authors claim that their proposed method is faster and more
accurate compared to 2D vein recognition schemes. In [12] the authors propose a 3D
hand vein capturing system based on a rotating platform and a fixed NIR camera. The
camera is located above the hand, the hand is put on a handle with an integrated light
transmission illuminator. This handle is mounted on a rotating plate. Then the plate
rotates around the z-axis. However, the degree of rotation is limited due to the limited
movement of the hand in this position. A 3D point cloud is generated from the single
view images and matched using kernel correlation. This should help to overcome
hand registration and posture change problems present in hand vein recognition if
only 2D vein patterns/images are available.

Nevertheless, true multi-perspective finger vein recognition (evaluating more than
two different views around the finger) has not been investigated so far, except for
our previous work [2]. One reason herefore might be the lack of available multi-
perspective finger vein datasets. In order to acquire such a dataset a suitable biomet-
ric capture device, able to capture the different views to be acquired, is essential.
Capturing these additional perspectives could be done by utilising either a COTS
capture device or one of the capture devices proposed in other works by simply
turning the finger around its longitudinal axis. However, it is difficult to position the
finger in the correct rotational angle. Thus, rotating the finger itself implies the dis-
advantage of an inaccurate rotation angle and deviations in the rotation angle across
different iterations, leading to a low repeatability and a low quality dataset. In order
to acquire a suitable multi-perspective finger vein dataset comprising of images cap-
tured in several, defined perspectives, either a biometric capture device comprising
of several cameras and illumination modules, able to capture more than one view
simultaneously, or a rotating biometric capture device able to capture these views
consecutively, is necessary. If only a limited number of perspectives are involved, a
suitable biometric capture device can be built without any rotating parts, just by equip-
ping an individual image sensor and an associated illumination module per desired
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Fig. 10.1 Multi-perspective finger vein set-up exhibiting three different perspectives based on three
image sensors and three illuminator modules

view (an example with three different views is shown in Fig. 10.1). The illumination
intensity has to be adjusted per view as the path to penetrate the finger is different
for each individual view, requiring a stronger or weaker illumination depending on
the distance. If more perspectives are desired, rotating the capture device around the
finger while the finger remains in a fixed position during the acquisition process is
the only feasible option.

The design and construction of a practicable biometric capture device is a com-
plex task. Furthermore, the actual data acquisition is a tedious and time-consuming
work. In our previous paper [2], we proposed a rotating multi-perspective finger vein
capture device that is able to capture the finger all around its longitudinal axis (360◦).
We established a multi-perspective finger vein dataset consisting of 252 individual
fingers. Based on this dataset, we evaluated the different views around the finger in 5◦
steps and concluded that the palmar followed by the dorsal one achieve the best sin-
gle view recognition performance. Moreover, we applied a simple score-level fusion
strategy and showed that the recognition performance can be improved by fusing
more than one view. This chapter is an extension of our previous work. Based on
our proposed multi-perspective finger vein capture device, we refine and extend our
previous results by the following:

• Improving the recognition tool chain to improve the single view results, espe-
cially the ROI extraction and by including a new recognition scheme proposed by
Matsuda et al. [13].

• Employing an advanced score-level fusion framework (BOSARIS [14]).
• Exploring different fusion strategies in terms of which views to include in the

fusion.
• Evaluating multi-algorithm fusion per view (fusion is done at score level).
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• Combining multi-perspective and multi-algorithm fusion.

The purpose of our evaluations is to maximise the recognition performance while
minimising the number of single views involved. If only a limited number of views is
involved, the capture device can be built without the need for any rotating parts just by
equipping an individual image sensors and an illumination modules per desired view.
A biometric capture device which relies on rotating parts is more error prone and
more susceptible to external influences, the rotation speed can vary due to increased
friction or it can be completely blocked if the finger is not properly inserted. The
rotating parts exhibit a higher wear than non-moving parts and are thus more prone
to failures. Moreover, the acquisition time of a rotating capture device is higher
compared to a non-rotating one as the device needs to rotate around the finger in
order to capture the different views. Furthermore, a capturing device exhibiting a
closed box design, where the capture subject has to put his finger into a “black
hole” poses psychological disadvantages and leads to discomfort. Hence, in practical
applications of multi-perspective finger vein biometrics only a capture device built
in a non-rotating and open manner is feasible. Consequently, we aim to identify the
best combination of two or three views to include in the fusion in order to build
such a multi-perspective finger vein capture device based on fixed, non-moving parts
only. Figure 10.1 shows the schematic principle of such a capture device for three
perspectives: it consists of three independent image capturing pairs, each consisting
of its own NIR illumination module and NIR camera.

10.3 Multi-perspective Finger Vein Capture Device

In order to acquire a multi-perspective finger vein dataset, we designed a custom
finger vein capture device tailored to this purpose. For more details on the general
principle of a finger vein scanner and the vascular pattern recognition basics, the
interested reader is referred to our open finger vein scanner chapter [6] and the
introductory chapter [15] of this book, respectively. Our multi-perspective finger vein
capture device is able to capture images from all around the finger’s longitudinal axis
(360◦). An illustration of the unwrapped finger vein capture device with all its parts
labelled can be seen in Fig. 10.2. Its outside dimensions (of the aluminium frame
including the rotating part) are 258 × 325 × 455 mm (width × height × depth).
The rotating part (rotator) has a diameter of 380 mm. The device consists of an
aluminium frame, where the rotation motor and the control board are located and a
rotator, which rotates around the finger. The rotating part is connected to a stepping
motor by two cogwheels. These cogwheels have a gear ratio of 1:5/3 (motor to rotor).
The stepping motor (SY42STH47-1684A [16]) which drives the rotator has 200 steps
per full rotation (1.8◦ per single step). We use a micro-stepping of 1/16, thus one
step corresponds to 0.0675◦. Hence, it is possible to capture a maximum of 5333
different perspectives of the finger. Located on the right side of the device is the
image sensor, an IDS Imaging UI-1240ML-NIR industrial NIR-enhanced camera
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[17]. It has a max. resolution of 1280 × 1024 pixels, a max. frame rate of 25 fps
and is equipped with a Fujiflim HF9HA-1b 9 mm 2/3" wide-angle lens [18]. To
reduce the influence of ambient light, an additional NIR long-pass filter (MIDOPT
LP780 [19], with a cut-off wavelength of about 750 nm and a useful range of 780–
1000 nm) is mounted on top of the camera lens. The illumination module is located
on the opposite side of the image sensor (the left side in Fig. 10.2). Our multi-
perspective finger vein capture device is based on the light transmission principle.
Instead of typical NIR LEDs the illumination module consists of five NIR laser
modules with a peak emission wavelength of 808 nm placed in a strip. Laser diodes
have several advantages over LEDs, especially, if the finger is not placed directly
on top of the illumination module as mentioned in Chapter [6]. Due to the rotating
principle of the biometric capture device, it is not possible for the finger to touch
the illumination module, which prevents the use of LEDs without impacting the
image quality. Each laser module consists of a NIR laser diode, a control PCB for
the laser diode and a housing with a focus-adjustable lens. The plane of focus of
the laser modules is set at the axis of rotation where the finger is placed, leading
to the highest possible amount of illumination at the position of the finger. Each of
the laser modules can be brightness controlled separately (by adjusting the operating
current) and independently, enabling a uniform illumination along the whole finger.
The finger is put into the capture device at its axis of rotation (in the centre of the
image in Fig. 10.2). A fingertip stabiliser (a custom 3D printed part which inside is
shaped like the outside of a fingertip) is located at the inside bottom of the rotating
part and a height-adjustable finger trunk stabiliser, which is basically a wooden plate
with a hole in the middle is located above the rotating part. These finger stabilisers
help to reduce finger movements during one acquisition run to a minimum. The finger
is put into the capture device so that its tip is inside the fingertip stabiliser, pushing
the height-adjustable plate down. Afterwards, this individual finger height is fixed
using four screws on the top of the scanner and remains fixed until a new finger is
to be captured. All parts except the stepping motor, the camera including the lens
and NIR long-pass filter) are self-designed and manufactured by ourselves, including
several 3D printed parts, the wooden housing of the rotating part, the housing of the
control board, the control board itself and the aluminium frame.

The acquisition process is semi-automated. At first, the subject has to put the finger
into the device. Then the height of the finger trunk stabiliser plate has to be adjusted
and the operator initiates one capturing run (360◦ around the finger’s longitudinal
axis), starting the automated part of the acquisition process.

During this automated data acquisition part, the illumination for each laser module
is set automatically by the help of an automated brightness control algorithm. This
algorithm tries to achieve a sufficient and uniform illumination along the finger in
order to obtain an optimal image contrast. It evaluates the average grey level of the
image area around the centre of each laser module i (GLi

current) and compares this
value to a predefined target grey level (GLi

target). If there is a deviation between these
two values, the operating current of the corresponding laser module is adjusted:

I i
corr = GLi

target−GLi
current

GLmax
· Imax

2·n , where GLmax is the maximum grey value (255 for 8 bit

www.dbooks.org

https://www.dbooks.org/


268 B. Prommegger et al.

Fig. 10.2 Self-designed multi-perspective finger vein capture device (image originally published
in [2], c©2018 IEEE)

images) and n is the number of the current iteration. Initially, all laser modules are
set to half of their maximum operating current Imax (corresponding to its maximum
intensity). The algorithm finishes in at most log2(Imax) steps.

After the optimal intensity level for each laser module is set, the video sequence
recording is started. The rotator starts to rotate around the finger and an indicator
LED is turned on to synchronise the video stream. The rotation is stopped when the
rotator reaches its start position again and at this point the indicator LED is turned
off. A few frames later the video sequence recording is stopped too. The videos are
recorded in the MP4 container format using the MJPG video codec with a frame rate
of 15 fps and YUV colour space. The speed of the rotation and the video frame rate
are synchronised such that a defined resolution (in degree) of images per full rotation
(video frames) is met and the desired degree steps can later be extracted from single,
individual frames without the need for temporal interpolation. The set illumination
intensity remains the same for the whole capturing run until all perspectives are
captured. This ensures the compatibility and comparability of the single, individual
perspectives to each other. The different projections in 1◦ steps corresponding to
single video frames are then extracted out of the video sequence. The capture device’s
indicator LED is utilised to synchronise the video frames with the beginning and the
end of the rotation. In theory, there should be 361 images per full rotation run (0◦
and 360◦ is captured separately). Due to slight variations in the rotation speed and
the video frame rate, there are between 357 and 362 frames instead of 361. Thus, it
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became necessary to map the frame with the minimum deviation from the desired
rotational angle to the corresponding perspective, resulting in a maximum deviation
of 0.5◦ from the desired rotation angle.

10.4 Multi-perspective Finger Vein Dataset

With the help of our self-designed multi-perspective finger vein capture device, we
established a multi-perspective finger vein dataset in order to be able to conduct our
multi-perspective score-level fusion experiments. This dataset currently consists of
63 subjects, 4 fingers per subject (index and middle finger of the left and right hand)
and 5 runs per finger. The thumb and the pinky finger were not included as they are
too short compared to the index and middle. The ring finger was skipped as well as
it turned out to be too uncomfortable for the subjects to put it in the capture device
for the whole capturing process. The finger was removed and inserted in the device
again after each run. During each run, a video sequence of a full 360◦ rotation with a
target resolution of 1◦ (each frame corresponds to a 1◦ step) is captured. Figure 10.3
shows the capture device during the data acquisition process. The acquisition process
takes approximately 45 s per capture attempt, hence it takes about 15 min to capture a
single subject, including all four fingers, 5 runs per finger. The whole dataset consists
of 63 × 4 × 5 × 361 = 454,860 images in total. The extracted video frames have a
resolution of 1024 × 1280 pixels and are 8-bit greyscale images stored in png format.

Fig. 10.3 Data acquisition with the multi-perspective finger vein capture device (image originally
published in [2], c©2018 IEEE)
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Fig. 10.4 Age (left, image originally published in [2], c©2018 IEEE) and country of origin distri-
bution (right) for the multi-perspective finger vein dataset

Fig. 10.5 Multi-perspective finger vein dataset example images, from left to right: 0◦, 60◦, 120◦,
180◦, 240◦, 300◦ (image originally published in [2], c©2018 IEEE)

The finger is always located in the centre area of the image, thus the images are then
cropped to 650 × 1280 pixels to retain the usable finger area only. Figure 10.5 shows
some example images in different perspectives from 0◦ to 300◦. It can be clearly
seen that the visible vein lines vary among the different perspectives. The black part
at the centre top area in the images results from the finger trunk stabilisation plate,
which is pushed in further or less depending on the length of the finger.

The gender distribution of the 63 subjects is almost balanced with 27 (42.7%)
female and 36 (57.3%) male subjects. The subjects represent a good cross section
among all different age groups, as the age distribution, depicted in Fig. 10.4 left,
shows. There is only a slight overhang among the 20–40 year old subjects. The
youngest subject was 18 and the oldest one 79 years old. The subjects are from
11 different countries (Austria, Brazil, China, Ethiopia, Hungary, Iran, Italy, Russia,
Slovenia, USA) while the majority of subjects are white Europeans (73%). The origin
country distribution is depicted in Fig. 10.4 right. The dataset is available for research
purposes and can be downloaded at http://wavelab.at/sources/PLUSVein-FR/.

10.5 Biometric Fusion

Like every typical biometric recognition system, a finger vein recognition system
consists of five steps/modules: image acquisition, preprocessing, feature extraction,
comparison and the final decision. This recognition tool chain is depicted in Fig. 10.6.

http://wavelab.at/sources/PLUSVein-FR/
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Fig. 10.6 Basic components of a biometric recognition system including the different levels of
fusion by taking the example of finger veins (second row)

There are two modes, enrolment and authentication. Authentication includes both,
verification as well as identification. During enrolment one or several finger vein
images are captured and the extracted biometric templates are stored in a database.
During authentication a new template is extracted from a newly captured image
and compared against one or more templates stored in the database. The result is
a comparison score. Finally the decision module outputs for the capture subject an
“accept” or “reject” depending on the evaluation of the comparison score against a
threshold.

According to the ISO/IEC TR 24722:2015 standard [20], biometric fusion can
be regarded as a combination of information from multiple sources, i.e. sensors,
characteristic types, algorithms, instances or presentations in order to improve the
overall system’s performance and to increase the systems robustness.1 Biometric
fusion can be categorised according to the level of fusion and the origin of input
data. The different levels of fusion correspond to the components of a biometric
recognition system:

• Sensor-level fusion: is also called multisensorial fusion and describes using multi-
ple sensors for capturing samples of one biometric instance [20]. This can either be
done by the sensor itself or during the biometric processing chain. An example of
sensor-level fusion are finger vein images that have been captured using different
wavelength of near-infrared light and fused by merging the different wavelength
bands to obtain one single output image. This can be done by a single biomet-

1Recognition performance is just one aspect. PAD performance (robustness against presentation
attacks) is another aspect to keep in mind.
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ric capture device. Another example is the acquisition and fusion of fingerprint
images captured using optical, electrostatic and acoustic sensors.

• Image-level fusion: during data acquisition, the biometric capture device itself
might be able to capture multiple samples of the same biometric trait and combine
those samples to a single output sample. Image-level fusion corresponds to fusing
several images captured from the same biometric trait but not necessarily within
the sensor device. Image-level fusion can also be applied after preprocessing so
the input to the fusion module is the preprocessed images. One example of image-
level fusion is a finger vein capture device that captures more than one finger
simultaneously and combines the images from the individual fingers into a single
output image, which is also called multi-instance.

• Feature-level fusion: during template creation, several meaningful features,
describing the biometric trait’s properties, are extracted from the preprocessed
images and stored in a feature vector, commonly denoted as biometric template.
Feature-level fusion combines several such feature vectors to form a new, higher
dimensional feature vector which should represent a subject’s biometric traits in a
different and more discriminant way. Dimensionality reduction methods are ben-
eficial in combination with feature-level fusion to extract the most significant and
discriminative features and to save storage space.

• Score-level fusion: during the comparison step, two templates are compared
against each other and a similarity or dissimilarity score is calculated. Score-
level fusion combines two or more of those scores into a new, single score. The
input scores can originate from different comparison modules. They should either
be compatible with each other (e.g. all are similarity scores exhibiting the same
range of possible values) or else a score normalisation technique has to be applied
during the fusion.

• Decision-level fusion: the output of the decision module is a binary one, which
can be interpreted as match/non-match or accept/reject. Decision-level fusion com-
bines two or more of these binary output decisions to a single output one. Usually,
majority of voting schemes are employed at decision-level fusion. Note that at the
decision level, the least information is available (only a binary decision), compared
to the other levels of fusion.

Regarding the origin of the input data, biometric fusion can be categorised into:

• Multi-modal fusion: multiple different types of biometric traits from the same
subject is fused together. A popular example is the fusion of information from
fingerprints and finger veins or iris and periocular.

• Multi-instance fusion: multiple instances of the same type of biometric trait are
fused together. For example, several finger vein images from different fingers of
the same subject or information from both irises of one subject are fused together.

• Multi-presentation fusion: multiple samples of the same instance of biometric trait
is captured and fused, e.g. several finger veins of the same finger is captured and
fused together.
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• Multi-algorithmic fusion: multiple feature representations are generated using the
same input data, e.g. several different finger vein features are extracted with dif-
ferent algorithms from the same input image and fused together.

There is no direct dependency between the origin of the input data and the level of
fusion that is employed.

10.5.1 Fusion in Finger Vein Recognition

This subsection provides an overview of related work in biometric fusion involving
finger veins. The first subsection discusses several single modality fusion approaches.
The second subsection lists multi-modality fusion approaches which include finger
veins among other biometric traits.

10.5.1.1 Single Modality (Finger Vein Only) Fusion

Table 10.1 gives an overview of related work on single modality fusion in finger
vein recognition, i.e. only data from finger veins is utilised during fusion at different
levels. The table lists the level of fusion applied, the origin of the input data to the
fusion, the number of images and subjects contained in the used dataset, the reported
biometric performance (EER if not stated otherwise) and the year of publication,
sorted according to fusion level and year of publication. All the related works listed
in Table 10.1 are described in the following.

Yang and Jia [21] presented a multispectral finger vein fusion approach by fusing
enhanced finger vein images captured in different wavelengths. They applied an
image denoising method followed by image registration and a brightness adjustment
prior to the image-level fusion of images captured in six different wavelength bands.
Their image-level fusion strategy operates pixel-wise and is based on an improved
regional energy integration method in the spatial domain. The comparison scores are
obtained by phase-only correlation. They achieved a minimum EER of 11.02% by
fusing all six bands.

Guan et al. [22] applied feature-level fusion to Wavelet transform based vein
image features. The high- and low-frequency Wavelet features are obtained indepen-
dently and then fused by a simple nearest-neighbour rule. They did several experi-
ments using different training set sizes and arrived at a maximum recognition rate
of 94.35%. Yang and Zhang [23] proposed a feature-level scheme using global and
local features. The local features are extracted using a Gabor filter framework and
the global ones using 2D invariant moments. The fusion itself is performed by a
weighted fusion strategy based on canonical correlation analysis. They reported a
lowest FAR of 1.15% and a FRR of 2.47% for their fused features. Gupta and Gupta
[24] proposed a feature-level fusion approach of two distinct binary vein features (the
features are binary vein images). The first type of features is extracted using repeated
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Table 10.1 Related work in single modality finger vein fusion, ordered according to fusion level
and year of publication

Reference Fusion
level

Origin Images/subjects Performance
(EER)

Year

[21] Image Multi-sample 5760/60 11.02% 2012

[22] Feature Single-sample 2044/292
(fingers)

Recognition
rate: 94.35%

2009

[23]
Single-sample 640/64 FAR: 1.15%,

FRR: 2.47%
2010

[24]
Single-sample 3132/156 2.98% 2015

[26]
Single-sample 1440/60 0.19% 2016

[27]
Score Single-sample 1200/100 0.28% 2010

[28]
Multi-instance 1440/80 0.83% (fusion

of 3 fingers)
2012

[29]
Single-sample 4000/50 0.011% 2012

[30]
Single-sample 4080/30 1.56% 2013

[31]
Single-sample 4260/71

(680/85)
2.63%/0.78% 2013

[32]
Single-sample 3804/634

(fingers)
2.84% 2013

[33]
Single-sample 1440/60 0.27% 2014

[2]
Multi-sample 454860/63 0.04% 2018

[35]
Decision Single-sample 1620/54 FAR: 0.0086%

at 1% FRR
2009

line tracking [25]. The second type of features is obtained by multi-scale matched
filtering. A variational approach is proposed to fuse both feature extraction methods.
The score calculation is conducted by first aligning the two input images with the
help of an affine transformation. The affine transformation matrix is found using
a gradient descent optimisation based on a sum of squared differences cost func-
tion. The authors report a minimum EER of 2.98%. Kauba et al. [26] used different
binary vein feature extraction schemes and applied several advanced feature-level
fusion schemes (COLLATE, STAPLE, STAPLER), which were originally proposed
for segmentation of magnetic resonance imaging (MRI) brain images together with
simple average and majority voting based fusion in the finger vein domain. They
conducted two different sets of experiments exhibiting two different fusion strate-
gies. In the first one, only a single feature extraction scheme was used with a set of
several different feature extraction parameters per input image. The output features
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obtained for the individual parameters where then fused together. In the second set,
different feature extraction schemes were applied per input image and their outputs
were fused. The authors showed that both strategies (single feature extractor as well
as multiple feature extractors) lead to an improvement in the recognition accuracy.
The best EER achieved for the first strategy was 0.29% and for the second one 0.19%
compared to the best EER for the single features of 0.47%.

Zhou and Kumar [27] proposed a score-level fusion scheme for palm vein recogni-
tion based on multiple representations. They extracted four different kinds of features,
two based on their proposed representations. The first ones are using Hessian phase
information from the vein images, the second ones using localised Radon transform
to generate a kind of orientation encoding. The other two ones are based on Ordinal
Code and a Laplacian representation, respectively. These four feature representations
are compared individually to get the output scores which are then fused by apply-
ing a heuristic fusion rule. The authors arrived at a minimum EER of 0.28%. Yang
et al. [28] did a score-level fusion of extracted features from multiple fingers of the
same subject. They used LBP based features and a Hamming distance based com-
parison module to generate the scores. These scores are then fused using a simple
sum rule in combination with triangular norm. Their best reported EER of 0.83%
was achieved by fusion ring, middle and index finger using Frank’s t-norm. In [29]
Kang Park used local as well as global vein features in combination with score-level
fusion. The local features are extracted by the help of LBP and compared using the
Hamming distance. The global ones are Wavelet transform based features which are
compared using the Euclidean distance. The comparison scores are then fused with
the help of a radial basis function based support vector machine. Park reported a
best achieved EER of 0.0011%. Liu et al. [30] proposed a score-level fusion scheme
including pixel as well as super-pixel based finger vein features. LBP, vein pattern
structure based and vein minutiae based features form the pixel based features. The
super-pixel based image segmentation is done using the SLIC method. Histogram,
gradient and entropy features extracted from the super-pixel based segmentation
are then combined and form the super-pixel based features. An Euclidean distance
based comparison of both individual features is performed to calculate the compar-
ison scores. These scores are normalised and fused by using the weighted average
fusion strategy. The weights are tuned to achieve an optimal EER. They reported a
minimum EER of 1.56%. Qin et al. [31] applied score-level fusion to multiple rep-
resentations of the same finger vein pattern. The vein pattern is represented by three
different types of features: finger vein shape based, finger vein orientation based
and SIFT feature point based features. The former two are subregion partitioned
and subregion compared with the help of the SIFT based features, which are treated
individually, leading to three comparison scores. The scores are normalised using
the Z-score normalisation and then fused by applying a weighted-sum rule based
fusion as well as a support vector machine based fusion. They achieved minimum
EERs of 2.63 and 0.78%. Lu et al. [32] proposed a score-level fusion scheme based on
Gabor features. Usually, the individual filter responses obtained from the Gabor filter
bank are weighted and/or directly combined into a single output feature. Instead, the
authors extract and compare the output of each single Gabor filter channel separately.
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The corresponding comparison scores are then fused using a simple weighted-sum
rule. The authors were able to get an EER of 2.84% using their proposed method.
Kauba et al. [33] tested different preprocessing cascades in order to improve the indi-
vidual performance of the single finger vein feature extraction schemes. Binary and
SIFT/SURF based features were compared individually to obtain the output scores.
These scores were normalised using Min-Max normalisation and then fused using
weighted sum/product/average/minimum/maximum fusion rule. The best fusion rule
in terms of lowest EER was chosen accordingly. They were able to achieve a min-
imum EER of 0.27% with the help of score-level fusion compared to a minimum
EER of 0.47% for the single features. In our previous work [2], we performed a
multi-sample score-level fusion of several different perspectives around the finger.
Therefore, we established a multi-perspective finger vein dataset with the help of
our self-designed multi-perspective finger vein capture device, described in Sects.
10.4 and 10.3, respectively. Several different perspectives starting from 2 up to 72
were fused at score-level for 4 different kinds of extracted features using a simple
sum-rule based fusion. We achieved a best overall EER of 0.039% for the fusion of
18 different views and Maximum Curvature [34] features.

Yang et al. [35] proposed a decision-level fusion approach based on three differ-
ent finger vein feature representations. They extracted a topological feature, a local
moment based feature and a vein shape based feature. These features were compared
individually by means of a nearest cosine classifier outputting the class which the
input feature belongs to. These output decisions were then fused by the help of the
Dempster–Shafer algorithm. The authors reported a lowest FAR of 0.0086% at a
FRR of 1%.

10.5.1.2 Multi-modality Fusion Including Finger Veins

In addition to the single modality fusion approaches, several multi-modality fusion
approaches including finger veins as one of the involved biometric traits were pro-
posed. Table 10.2 gives an overview of these approaches, including the reference to
the original publication, the fusion level, the involved biometric traits, the number of
subjects in the dataset used, the reported performance (EER if not stated otherwise)
and the year of publication. Most approaches fuse finger-related biometrics, includ-
ing fingerprint, finger texture, finger shape, finger knuckle and finger veins. There
are only two approaches involving other biometrics than finger-related ones. Razzak
et al. [36] fused face and finger veins and He et al. [37] fused face, fingerprints and
finger veins. Both applied score-level fusion. The number of involved traits varies
between at least two and at most four. Fingerprint is the most prominent one [37–46]
besides finger veins that is included in the fusion followed by finger texture [38, 43,
45, 47–49] as the second most prominent one and finger shape [42, 43, 50–52] as
the third one. The majority of the approaches is based on feature-level and score-
level fusion, there are only two decision-level fusion approaches compared to eight
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Table 10.2 Related work in finger vein fusion, multi-modality fusion involving finger veins, ordered
according to fusion level and year of publication

References Fusion level Involved traits Subjects Performance
(EER)

Year

[40] Feature Fingerprint,
finger veins

40 1.85% FRR
and 0.97%
FAR

2011

[44]
Fingerprint,
finger veins

64 1.35% FAR at
0% FRR

2012

[46]
Fingerprint,
finger veins

40 1.485% 2012

[48]
Finger texture,
finger veins

220 0.45% 2012

[49]
Finger texture,
finger veins

220 0.435% 2014

[43]
Finger texture,
finger shape,
fingerprint,
finger veins

100 0.00796% 2015

[45]
Finger texture,
fingerprint,
finger veins

300 0.415% 2016

[51]
Score Finger shape,

finger veins
816 0.075% 2010

[37]
Face,
fingerprint,
finger veins

510 99.8% GAR
at 0.01% FAR

2010

[36]
Face, finger
veins

35 5% FAR and
92.4% GAR

2010

[47]
Finger texture,
finger veins

312 0.08% 2012

[52]
Finger shape,
finger veins

120 4% 2013

[50]
Finger shape,
finger veins

492 1.78% 2014

[42]
Finger shape,
fingerprint,
finger
knuckle,
finger veins

100 0.0319% 2014

[38]
Finger texture,
fingerprint,
finger veins

378 0.109% 2015

[41]
Decision Fingerprint,

finger veins
33 1.86% 2011

[39]
Feature/decision Fingerprint,

finger
knuckle,
finger veins

165 0.04% 2016
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feature-level and eight score-level ones. All proposed fusion approaches showed a
significant improvement in the recognition accuracy of the fusion compared to using
finger veins only.

10.6 Experimental Analysis

This section describes the experimental part of this chapter. At first, the used subset of
the dataset introduced in Sect. 10.4 is explained. Afterwards, the finger vein recogni-
tion tool chain which is employed during the experimental analysis is described. This
is followed by a presentation of the fusion strategy and the applied score-level fusion
framework. Afterwards, the experimental protocol to determine the FAR and FRR
and consequently the recognition performance in terms of EER/FMR1000/ZeroFMR
is explained. Then the results of the individual fusion strategies are given and dis-
cussed. Finally, this section is concluded with an overall results discussion.

10.6.1 Finger Vein Dataset

To reduce the amount of data during the fusion, we used a subset of the multi-
perspective finger vein dataset [2] only. Not all 360 different perspectives are eval-
uated, but only each fifth one is considered. Thus, there is a total of 73 different
perspectives ( 360◦

5◦/step = 72 plus the last one which is 360◦ = 0◦ again results in 73).
All 63 capture subjects, 4 fingers per subject and 5 images per view and finger are
considered. This results in a total of 73 × 63 × 4 × 5 = 91,980 images instead of
454,860 for the total dataset.

10.6.2 Finger Vein Recognition Tool chain

The finger vein recognition tool chain includes all steps of a biometric recognition
system starting with the extraction of the Region of Interest (ROI) to preprocessing,
feature extraction and comparison. The input data are the images of the different
individual perspectives acquired from the 3D capture device, the output is a com-
parison score that can be used to determine whether the provided finger belongs to
a certain (enrolled) data subject or not.

ROI Extraction

Prior to the ROI extraction, the finger is aligned and normalised. The alignment
should place the finger always in the same position in the image, independent of the
relative position of the finger during the acquisition. To achieve this, the finger lines
(edge between finger and the background of the image) are detected and the centre
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Fig. 10.7 ROI extraction process (images originally published in [2], c©2018 IEEE)

line (in the middle of the two finger lines) is determined. Afterwards, the centre line
of the finger is rotated and translated in a way that it is placed in the middle of the
image and the image region outside of the finger is masked by setting the pixels to
black. The final step is to extract a rectangular ROI of a fixed size (1100 × 300 pixel)
from a fixed position. The three steps are visualised in Fig. 10.7. The implementation
used is based on the method proposed in [53].

Preprocessing

Preprocessing tries to enhance the low contrast and improve the image quality. In the
following the preprocessing methods, we employed in our finger vein recognition
tool chain are explained.

Simple CLAHE [54] or other local histogram equalisation techniques are most
prevalent according to the literature for this purpose. A localised contrast enhance-
ment technique like CLAHE is a suitable baseline tool to enhance the vein images
as they exhibit unevenly distributed contrast. CLAHE has an integrated contrast
limitation (clip limit) which should avoid the amplification of noise.

High-Frequency Emphasis Filtering (HFEF) [55], originally proposed for hand
vein image enhancement tries to enhance the vein images in the frequency domain. At
first, the discrete Fourier transform of the image is computed, followed by the appli-
cation of a Butterworth high-pass filter of order n. The authors originally proposed
to use a global histogram equalisation but we decided to apply CLAHE instead.

Circular Gabor Filter (CGF) as proposed by Zhang and Yang [56] is another
finger vein image enhancement technique which is rotation invariant and achieves an
optimal joint localisation in both, the spatial and the frequency domain. The authors
originally suggested to use grey level grouping for contrast enhancement but we
again apply CLAHE instead.

Furthermore, the images were resized to half of their original size, which not only
speeded up the comparison process but also improved the results. For more details on
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the preprocessing methods, the interested reader is referred to the authors’ original
publications.

Feature Extraction

We used five different feature extraction methods. The first three techniques discussed
aim to extract the vein pattern from the background resulting in a binary image (vein
pattern based methods) followed by a comparison of these binary images using
a correlation measure. All algorithms are well-established finger vein recognition
algorithms. We used the publicly available implementations published in [5].

Maximum Curvature (MC [34]) aims to emphasise only the centre lines of
the veins and is therefore insensitive to varying vein widths. The first step is the
extraction of the centre positions of the veins by determining the local maximum
curvature in cross-sectional profiles obtained in four directions: horizontal, vertical
and the two oblique directions. The cross-sectional profile is determined based on
the first and second derivates. Then each profile is classified as either being concave
or convex, where only the local maxima belonging to a concave profile indicate a
vein line. Afterwards, a score according to the width and curvature of the vein region
is assigned to each centre position and recorded in a matrix called locus space. Due
to noise or other distortions, some pixels may not have been classified correctly at
the first step, thus the centre positions of the veins are connected using a filtering
operation in all four directions taking the 8-neighbourhood of pixels into account.
The final binary output image is obtained by thresholding of the locus space using
the median as a threshold.

Principal Curvature (PC [57]): At first the gradient field of the image is cal-
culated. In order to prevent the unwanted amplification of small noise components,
a hard thresholding which filters out small gradients by setting their values to zero
is done. Then the gradient at each pixel is normalised to a magnitude of 1 to get a
normalised gradient field. This normalised gradient field is smoothed by applying a
Gaussian filter. The next step is the actual principal curvature calculation. The cur-
vatures are obtained from the Eigenvalues of the Hessian matrix at each pixel. The
two Eigenvectors of the Hessian matrix represent the directions of the maximum and
minimum curvature and the corresponding Eigenvalues are the principal curvatures.
Only the bigger Eigenvalue which corresponds to the maximum curvature among
all directions is used. The last step is a threshold based binarisation of the principal
curvature values to arrive at the binary vein output image.

Gabor Filter (GF [47]): Gabor filters are inspired by the human visual system’s
multichannel processing of visual information and have been widely used in biomet-
rics. A Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane
wave. Kumar and Zhou [47] proposed a Gabor filter based finger vein extraction
approach. Therefore, a filter bank consisting of several 2D even symmetric Gabor
filters with different orientations (in π

k steps where k is the number of orientations) is
created. k feature images are extracted by filtering the vein image using the different
filter kernels contained in the Gabor filter bank. The final feature image is obtained
by summing all the single feature images from the previous step and thresholding
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the resulting feature image. This image is then post-processed using morphological
operations to remove noise to get the final binary vein output image.

In contrast to the vein pattern based techniques described above, two key-point
based techniques were used. Key-point based techniques try to use information from
the most discriminative points as well as considering the neighbourhood and context
information around these points by extracting key-point locations and assigning a
descriptor to each detected key-point location.

The first one is a Scale-Invariant Feature Transform (SIFT [58]) based tech-
nique with additional key-point filtering along the finger boundaries to suppress
information originating from the finger shape instead of the vascular pattern. This
technique was originally proposed by Kauba et al. [33].

Deformation-Tolerant Feature Point Matching (DTFPM [13]): The second
key-point based technique replaces the conventional SIFT descriptor and key-point
detector by vascular pattern tailored ones. This method is robust against irregular
shading and vein deformations due to posture changes. At first, the authors apply a
technique originally proposed by Yang and Yang [59] for enhancing the vein images.
Then a minimum-curvature map is calculated from the enhanced vein images based
on Eigenvalue analysis. The feature point locations are determined from this curva-
ture image (smaller Eigenvalue) at any point where the vein shape is non-linear. The
feature descriptor takes the vein shape around the key-point location into account
and is extracted from the so-called vein pattern map (larger Eigenvalue). The feature
vector contains a quantification of the different vein directions inside a variable-sized
window around the key-point location. The descriptor is normalised with the help
of a finger shape model in a way that the descriptor area becomes smaller the closer
the key-point location is to the finger boundaries. The authors claim that their pro-
posed method is tolerant against several different types of finger posture changes,
e.g. longitudinal finger rotation, translations and bending of the finger.

Comparison

For the comparison of the binary feature images we extended the approach in [25]
and [34]. As the input images are neither registered to each other nor aligned, the
correlation between the input image and in x- and y-direction shifted versions of the
reference image is calculated. The maximum of these correlation values is normalised
and then used as the final comparison score.

The SIFT features are compared by finding their nearest neighbours/best corre-
spondences and calculating a score based on the distances between the corresponding
key-points.

DTFPM employs a deformation tolerant comparison strategy by using non-rigid
registration. At first, the correspondences between the key-points in the two images
for comparison are found. These correspondences are filtered using a local and global
histogram technique based on the relative distances between the corresponding key-
points. After this filtering step, the key-point coordinates of one of the involved
feature vectors are transformed by applying a non-rigid transformation based on an
outlier-robust thin-plate spline model as proposed in [60]. Afterwards, the corre-
spondences between the adjusted key-points are determined again. These updated
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correspondences are filtered by a comparison of the descriptor distances with fixed
thresholds. The final comparison score is determined as the ratio of the matched
points and the sum of the number of detected key-points in both images.

10.6.3 Score-Level Fusion Strategy and Toolkit

We applied three different fusion strategies. The first strategy involves the fusion of
all possible combinations of pairs of distinct views (which are

(N
k

) = (73
2

) = 2628
combinations, 73 different views are considered) as well as all possible three tuples
of distinct views (which are

(73
3

) = 62196 combinations) for each of the five-feature
extraction methods. As motivated in the introduction, it is beneficial if the number
of involved views is as little as possible to reduce the complexity and the production
costs of the biometric capture device and to be able to build such a device without
any moving parts. Thus, only pairs and three tuples are considered here. The sec-
ond strategy employs the fusion of all possible combinations of feature extraction
methods per view. There are

(5
2

) + (5
3

) + (5
4

) + (5
5

) = 26 combinations per perspec-
tive, resulting in a total of 10,830 different fusion combinations. Here, our aim is to
identify the best combination of features for each individual view which does not
necessarily have to be the same across all the different views. The third strategy is a
combination (fusion) of the best results obtained during the first and second one.

All three fusion strategies are applied at score-level. The second strategy could be
applied at feature-level too, but not for all the involved feature extraction types as they
are not compatible with each other. The feature-level fusion of MC, PC and GF is
possible while the fusion of DTFPM and SIFT with any of the other feature extraction
types is not possible. Feature-level fusion is not possible for the first strategy at all,
as there is no meaningful way to combine the features of different perspectives, e.g.
by merging the extracted vein lines or using majority voting as the visible vein lines
differ for each view. Score-level fusion usually performs better than decision-level
fusion, as there is more information available at the score level and there are more
variants to fuse the individual scores. Hence, we decided to apply score-level fusion
in all three fusion strategies.

In our previous work [2], a simple sum based fusion rule, without any weights
for the input scores, was applied. In this work, a more advanced score-level fusion
approach, namely the BOSARIS toolkit [14] is utilised. BOSARIS provides a MAT-
LAB based framework for calibrating, fusing and evaluating scores from binary
classifiers and has originally been developed for automatic speaker recognition. It
can be applied to any biometric trait where two alternate classes are distinguished
(genuine/impostor). The toolkit provides several functionalities, e.g. a normalised
Bayes error rate plot, ROC and DET plots, including efficient algorithms to gen-
erate these plots for large score files, logistic regression solutions for the fusion of
several subsystems, solutions for calibration (mapping scores to likelihood ratios),
a logistic regression optimiser and an efficient binary score file format. During this
work, we only harness the fusion capabilities of BOSARIS though. BOSARIS needs
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a supervised training phase where combination weights are trained based on logistic
regression in order to fuse multiple input systems into a single output one providing
well-calibrated log-likelihood-ratios. This is achieved by employing a general pur-
pose, unconstrained convex optimisation algorithm, which is used to train the logistic
regression fusion and calibration methods. Hence, BOSARIS needs a training set of
data to find the optimal combination of weights for the actual fusion in order to min-
imise the classification error and thus to maximise the recognition performance based
on the fused output scores. BOSARIS has the option to set a target prior according
to the costs of a miss and a false alarm for the training phase of the fusion. We set
this target prior to 0.5 assuming that the costs of a miss and a false alarm are both
weighted equally.

10.6.4 Evaluation Protocol

The experiments are split into four parts: in the first part, we analyse the recognition
performance of all single perspectives. Every perspective is considered as a separate
dataset. Here, we do not perform any cross-projection comparison. The images are
processed as described in Sect. 10.6.2 and 73 projections all around the finger in 5°
steps are extracted. The recognition performance is quantified in terms of the EER
as well as the FMR1000 (the lowest FNMR for FMR = 0.1%) and the ZeroFMR
(the lowest FNMR for FMR = 0%). The performance values are calculated for each
single perspective. For the parameter optimisation, the data set is divided into two
roughly equal-sized subsets. The division is based on the contained subjects, i.e.
all fingers of the same person are in one subset. Each subset is used to determine
the parameters which are then applied to the other subset. This ensures a 100%
separation of the data used for determining the optimal parameters and the actual
test set. The necessary comparison scores for the FAR/FRR calculation, which is
the basis for the EER/FMR1000/ZeroFMR calculation, are determined according to
the test protocol of the FVC2004 [61]: to compute the genuine scores, all possible
genuine comparisons are done. Instead of computing all possible impostor scores
only the first image of a finger is compared against the first image of all other
fingers. The final results are evaluated based on the combined scores (genuine and
impostor) of both test runs. The parameter optimisation is executed only for the
palmar dataset. The same parameter settings are also applied for the experiments
on the other perspectives. The resulting number of comparisons for both subsets are
listed in Table 10.3. All performance-related result values are given in percentage
terms, e.g. 0.04 means 0.04%.

In the second part of our experiments, we fuse different features originating
from the same feature extraction method but extracted from different perspectives as
described in Sect. 10.6.3. The third part of the experiments is dedicated to a multi-
algorithm fusion. We fuse all possible combinations of the five employed feature
extraction methods at score level based on the scores obtained during the first part
of the experiments, resulting in 2-, 3-, 4- and 5-tuples. In the last part, we com-
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Table 10.3 Number of comparisons for each subset

Name Subjects Genuine Impostor Total

Subset 1 32 1280 8128 9408

Subset 2 31 1240 7626 8866

Total 63 2520 15,754 18,274

bine the two strategies of multi-perspective and multi-algorithm fusion. Based on
the results from the two individual fusion strategies we determine the best possible
combinations/fusion of perspectives and feature extraction methods. All four parts
are evaluated using the same protocol to determine the performance figures. For
all fusion experiments, the input data are the comparison scores generated during
the single perspective experiments. We apply a fivefold cross-validations procedure,
where we use every fold once for the training of the fusion module. The determined
fusion parameters are applied to the test data consisting of the four remaining folds.
The final results are evaluated based on the combined scores (genuine and impostor)
of all five test runs.

We provide the scores files for each individual perspective and feature extraction
methods as well as a script to run BOSARIS and generate all the fused scores files
and performance figures we used during our experiments. These files and the scripts
can be downloaded at http://www.wavelab.at/sources/Prommegger19b/.

10.6.5 Single Perspective Performance Results

The single perspective analysis for MC, PC, GF and SIFT have already been carried
out in our previous work [2]. We added DTFPM as an additional key-point based
recognition scheme. We had to change our ROI extraction to make the ROIs compat-
ible with DTFPM. Our previous ROI approach selected a fixed size rectangle placed
at the centre of the finger, independent of the finger’s width. DTFPM is sensitive
to parts of the finger outline and background areas that are contained in the input
images and expects the finger width normalised to the ROI height. Thus, we updated
our ROI extraction scheme as described in Sect. 10.6.2 and recalculated the results
for the already evaluated algorithms based on the new ROIs. Note that due to the
new ROIs these updated results are different from our previous work. Figure 10.8 top
shows the results in terms of EER. There are two lines for every method: the thin line
shows the actual EER value, the thicker line is a smoothed version calculated based
on the EER using a moving average filter of size 5, which should highlight the trend
of the recognition performance. The images captured of neighbouring views contain
quite a similar vein structures (note that our step-width is 5°), thus the recognition
performance is similar too. The best results are obtained around the palmar (0°, 360°)
and dorsal (180°) region. The results of the perspectives in-between are inferior. This

http://www.wavelab.at/sources/Prommegger19b/
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Fig. 10.8 Recognition performance for different projections: EER (top) and relative performance
degradation in relation to the best performing view (bottom)

is due to the fact, that they contain fewer visible vein lines and thus fewer vein infor-
mation than the palmar and dorsal view. Figure 10.9 shows the original ROI, the ROI
after preprocessing and the extracted features (using MC) for the views 0°, 90°, 180°
and 270°. It reveals that the 90° and 270° views contain less vein information than
the palmar and dorsal view. Moreover, the vein extraction algorithms include some
features related with the texture of the finger. This is especially visible at 180° where
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Fig. 10.9 ROI (first row), enhanced images (second row) and extracted MC features (third row)
for different projections (originally published in [2], c©2018 IEEE). Note that there are less vein
lines visible for 90° and 270° compared to 0° and 180°

some of the features are related with the finger knuckles instead of veins. These
features are visible as horizontal lines in the feature image.

For the key-point based algorithms, especially SIFT, the palmar region exhibits
a better performance than the other perspectives as well, but the best performance
is achieved around the dorsal region. For SIFT this can be explained based on the
employed preprocessing: only image (vein) enhancement and no vein extraction
(binarisation) ahead of the SIFT key-point calculation is applied. Hence, the non-
vein finger texture information is not suppressed in the input images of SIFT. Espe-
cially, the structure of finger knuckles seem to contain a lot of additional information
which SIFT is able to exploit during feature extraction. Finger knuckles have been
introduced by Zhang et al. [62] as an independent biometric characteristic. Yang
et al. [63] experienced a similar behaviour. They fused the finger texture of the dor-
sal view with the vein structure of the palmar view which leads to an improvement in
the recognition performance. Consequently, the additional information originating
from the finger knuckles and the finger texture present at the dorsal view leads to the
superior performance of SIFT for the dorsal view compared to the palmar one.

Table 10.4 lists the information regarding the best and worst perspective for each
feature extraction method. MC, PC and GF perform best around the palmar view
(note that 360° = 0°), while SIFT and DTFPM perform best around the dorsal view.
The overall best result was achieved for MC at 0° with an EER of 0.44% (±0.15)
where the number in brackets is the confidence interval. For all feature extraction
methods, the worst results can be reported around 270°. The Relative Performance
Degradation (RPD) of the different perspectives is visualised in Fig. 10.8 bottom. The
RPD, stated in Eq. (10.1), is calculated with respect to the minimum EER (EERFT

min)
reached for a certain feature extraction method, where EERFT

perspective is the EER of
the current perspective. The maximum performance degradation across the different
algorithms is between 200 and 800%.

RPDFT
perspective = EERFT

perspective − EERFT
min

EERFT
min

(10.1)
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Fig. 10.10 Recognition performance among the different projections: FMR1000 (top), ZeroFMR
(bottom)

The FMR1000 and ZeroFMR are visualised in Fig. 10.10 top and bottom, respec-
tively. They follow the same trend as the EER: a good performance around the palmar
and dorsal region and an inferior one for the views in between.
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Table 10.4 Best/worst single perspective results per feature extraction method and single perspec-
tive

Feature
type

Best perspective Worst perspective

View EER FMR1000 ZeroFMR View EER FMR1000 ZeroFMR

MC 0◦ 0.44
(±0.15)

0.76 1.15 260◦ 2.67
(±0.37)

4.46 7.69

PC 10◦ 0.60
(±0.18)

0.87 1.35 280◦ 2.47
(±0.36)

5.02 9.79

GF 0◦ 1.55
(±0.28)

2.54 5.13 275◦ 8.87
(±0.65)

18.76 22.54

SIFT 180◦ 0.55
(±0.17)

1.35 6.98 265◦ 5.33
(±0.53)

20.67 42.98

DTFPM 160◦ 0.56
(±0.17)

1.31 3.13 285◦ 2.87
(±0.38)

8.51 12.56

10.6.6 Multi-perspective Fusion Results

In the second part of our experiments, we analyse the impact of fusing the extracted
features of the same feature extraction method from multiple perspectives (MPF). In
detail, we evaluate the fusion of all possible pairs and three tuples.

The first part of this section deals with the fusion of all possible pairs. Figure 10.11
shows heat maps of the EER for all combinations per feature extraction method (top
row: MC, PC, bottom row: GF, SIFT and DTFPM). The perspectives involved in
the fusion are plotted on x- and y-axis, whereas the performance in terms of EER is
visualised using a colour scheme from light/white which corresponds to a low EER
(good performance) to dark/red which corresponds to a high EER (bad performance).
The actual logarithmic scale is given in the colour bar on the right side of the plots.
Note that the results are symmetric with regard to the main diagonal (45°). This
diagonal corresponds to the single perspective performance results and is visible as
dark line (high EER) in all five plots.

According to the performance analysis of the single perspectives (Sect. 10.6.5),
the palmar and dorsal region perform best. Although, there are slight variations
among the different feature extraction methods, the results obtained from the single
perspectives are confirmed by the two-perspective fusion: a combination of two
perspectives including the palmar (close to 0°, 360°) or dorsal (close to 180°) region
always results in a good recognition performance. A fusion of two views in-between
those two regions result in an inferior performance. For MC, PC and GF the EER
for all fusion combinations including the palmar (area along the outer edges of the
plot) and dorsal view (cross lines in the centre) perform better (light, white to yellow
colours) than fusion combinations without these views (dark, orange to red colours),
achieving the best results when both regions are fused (light, white colour).
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Fig. 10.11 Recognition performance for two-view fusion. Top row: MC (left), PC (right), bottom
row: GF (left), SIFT (middle) and DTFPM (right)

Both key-point based methods show a different behaviour. The fusion of the
palmar and dorsal region is still superior to all other fusion combinations, but SIFT
and DTFPM perform well if the dorsal perspective is included in the fusion in general.
This can also be seen in the plots as the 180° cross shows light, white to yellow colours
which indicates a good performance. For SIFT, this is even more pronounced than
for DTFPM.

Table 10.5 lists the best results in terms of EER, FMR1000 and ZeroFMR for
each feature extraction method in detail. MC when fusing 0° and 180° achieves the
overall best performance with an EER of 0.12%. For the evaluation of the results, the
single perspective baseline EER and the relative performance increase (RPI) with
respect to the baseline EER, as calculated in Eq. (10.2), are stated. The performance
increase compared to the best single view result is between 110% (PC) and 270%
(MC), which corresponds to a 2–3.5 times lower EER than the single perspective
performance, respectively.

RPI = EERBaseline − EERFusion

EERFusion
(10.2)

In addition to all pairs, all possible triples are evaluated. Table 10.6 shows the five
best performing combinations per feature extraction method. Again the single per-
spective baseline EER and the relative performance increase is included. The highest
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Table 10.5 Best two-perspective fusion results per feature extraction method. Best result is high-
lighted bold font. For comparability also the single perspective baseline EER and the relative
performance improvement (based on the single perspective performance) is included

Feature
type

2 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 EER FMR1000 ZeroFMR View EER Incr. [%]

MC 0◦ 180◦ 0.12
(±0.08)

0.12 0.16 0◦ 0.44 264.90

PC 10◦ 190◦ 0.28
(±0.12)

0.36 0.56 10◦ 0.60 113.14

GF 140◦ 360◦ 0.60
(±0.18)

0.80 1.56 0◦ 1.55 156.48

SIFT 165◦ 205◦ 0.17
(±0.09)

0.36 1.63 180◦ 0.55 229.72

DTFPM 0◦ 160◦ 0.24
(±0.11)

0.32 1.55 160◦ 0.56 132.27

recognition performance improvement is between 150% for PC and 1100% for MC
which is in any case better than the best two-perspective fusion (see Table 10.5). The
overall best result with an EER of 0.036% is achieved using MC when fusing the 5°,
170° and 235° view.

Table 10.6 also includes the perspectives of interest. It is striking, that once again
a lot of combinations include perspectives close to the palmar (0°, 360°) and dorsal
(180°) regions. Thus, we additionally analysed the occurrence of the palmar and
dorsal view in the top 25 results for each feature extraction method. All angles
within a certain range around 0° and 180° are mapped to the palmar and dorsal
region, respectively. Three different mapping ranges are evaluated: ±15° (345°−15°,
165°−195°), ± 20° (340°−20°, 160°−200°) and ± 25° (335°−25°, 155°−205°).
The results are presented in Table 10.7. It turns out that the best performing individual
region (palmar for MC, PC, GF and dorsal for SIFT and DTFPM) is present in most
of the top 25 fusion combinations. At a mapping range of ±25° it is even included
in at least 96% of the top 25 results. For this mapping range also the opposite region
is part of at least 80% of the combinations, except for GF (only 24%). For GF, this
can be explained by the big performance difference of palmar (~1.5%) and dorsal
region (~3.6%).

In order to be able to decide whether a three-perspective fusion is beneficial com-
pared to a two-perspective approach, one way is to calculate the significance of the
recognition performance improvement. We use the method proposed in [64] to cal-
culate a boundary for the significance from the achieved EERs. Table 10.8 lists the
χ2 values in detail. The following translations of χ2 values into pv values can be used
to interpret the values stated in the table: χ2 = 6.6 corresponds to pv = 0.01(≡1%),
χ2 = 7.9 to pv = 0.005(≡0.5%) and χ2 = 10.8 to pv = 0.001(≡0.1%). Thus, all
performance improvements exhibiting χ2 > 6.6 are regarded as significant. The
resulting χ2 values indicate that a fusion of two and three perspectives lead to



10 Different Views on the Finger—Score-Level Fusion … 291

Table 10.6 Recognition performance for three-view fusion: five best results per feature extraction
method. Best result per feature extraction method is highlighted bold font. For comparability also
the single perspective baseline EER and the relative performance improvement (based on the single
perspective performance) is included
Feature
type

3 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 View 3 EER FMR1000 ZeroFMR View EER Impr.
[%]

MC 5◦ 170◦ 235◦ 0.036
(±0.04)

0.040 0.240 0◦ 0.44 1111.78

0◦ 210◦ 235◦ 0.036
(±0.04)

0.040 0.120 1107.27

10◦ 165◦ 215◦ 0.039
(±0.05)

0.040 0.159 1019.25

20◦ 160◦ 235◦ 0.039
(±0.05)

0.040 0.040 1014.94

165◦ 235◦ 355◦ 0.039
(±0.05)

0.040 0.159 1014.94

PC 10◦ 175◦ 200◦ 0.238
(±0.11)

0.401 0.602 10◦ 0.60 150.21

20◦ 205◦ 235◦ 0.239
(±0.11)

0.319 0.638 149.65

175◦ 235◦ 360◦ 0.239
(±0.11)

0.399 0.518 149.65

140◦ 190◦ 360◦ 0.239
(±0.11)

0.282 0.524 149.59

155◦ 210◦ 360◦ 0.239
(±0.11)

0.399 0.839 149.45

GF 125◦ 225◦ 360◦ 0.284
(±0.12)

0.401 1.325 0◦ 1.55 446.48

90◦ 205◦ 360◦ 0.313
(±0.13)

0.638 1.794 394.98

75◦ 140◦ 360◦ 0.321
(±0.13)

0.442 1.165 383.32

120◦ 220◦ 355◦ 0.321
(±0.13)

0.758 1.475 383.09

120◦ 200◦ 360◦ 0.321
(±0.13)

0.481 0.882 382.82

SIFT 165◦ 205◦ 350◦ 0.058
(±0.05)

0.040 0.635 180◦ 0.55 857.58

20◦ 170◦ 210◦ 0.075
(±0.06)

0.040 0.714 643.62

170◦ 205◦ 350◦ 0.081
(±0.06)

0.079 0.476 585.30

170◦ 205◦ 335◦ 0.081
(±0.06)

0.079 0.635 585.30

140◦ 205◦ 350◦ 0.081
(±0.06)

0.079 0.714 585.30

(continued)
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Table 10.6 (continued)
Feature
type

3 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 View 3 EER FMR1000 ZeroFMR View EER Impr.
[%]

DTFPM 5◦ 160◦ 280◦ 0.159
(±0.09)

0.559 1.837 160◦ 0.56 249.88

0◦ 180◦ 295◦ 0.162
(±0.09)

0.439 1.276 243.31

15◦ 160◦ 295◦ 0.162
(±0.09)

0.439 1.637 243.04

0◦ 180◦ 185◦ 0.165
(±0.09)

0.437 1.033 237.24

0◦ 180◦ 245◦ 0.169
(±0.09)

0.439 2.396 228.78

Table 10.7 Analysis of the occurrence of palmar and dorsal views per feature extraction method
in the 25 best three-perspective fusions. Both means that palmar and dorsal are present at the same
combination.

Feature
type
(%)

Max distance ±15◦ Max distance ±20◦ Max distance ±25◦

Palmar Dorsal Both Palmar Dorsal Both Palmar Dorsal Both

MC 84.0 52.0 40.0 92.0 76.0 68.0 100.0 84.0 84.0

PC 92.0 68.0 68.0 100.0 68.0 68.0 100.0 80.0 80.0

GF 100.0 8.0 8.0 100.0 16.0 16.0 100.0 24.0 24.0

SIFT 80.0 88.0 68.0 84.0 88.0 72.0 92.0 96.0 88.0

DTFPM 92.0 60.0 56.0 100.0 100.0 100.0 100.0 100.0 100.0

a significant improvement compared to the single view performance, whereas the
improvement for a three perspective fusion compared to fusing two views is lower
but still significant for MC, GF and SIFT.

10.6.7 Multi-algorithm Fusion Results

This time different feature extraction methods per perspective are fused (MAF)
instead of perspectives per feature extraction method. We evaluate all possible pairs,
triples, quadruples and the combination of all five- feature extraction methods, result-
ing in 26 different combinations per perspective. Figure 10.12 shows the best fusion
result per number of fused feature extraction methods. The best result, for example,
two-feature extraction methods included in the fusion at 0° means that the best per-
forming pair of features in terms of EER of all pairs calculated at 0° is depicted. It
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Table 10.8 Estimated χ2 from the EER for multi-perspective fusion. Best results per number of
involved views is highlighted bold font

Feature
extraction
method

Best EER for [n] involved views Significance n1 → n2 (χ2 value)

n = 1 n = 2 n = 3 n = 1→n = 2 n = 1→n = 3 n = 2→n = 3

MC 0.44
(±0.15)

0.12
(±0.08)

0.036
(±0.04)

33.415 62.660 8.265

PC 0.60
(±0.18)

0.28
(±0.12)

0.238
(±0.11)

21.264 28.576 0.622

GF 1.55
(±0.28)

0.60
(±0.18)

0.284
(±0.12)

76.708 159.698 20.642

SIFT 0.55
(±0.17)

0.17
(±0.09)

0.058
(±0.05)

36.650 72.755 10.054

DTFPM 0.56
(±0.17)

0.24
(±0.11)

0.159
(±0.09)

23.391 140.869 3.005

Fig. 10.12 Recognition performance for multi-algorithm fusion: best result in terms of EER per
number of feature extraction methods fused is depicted for each perspective

can be seen that even the fusion of two-feature extraction methods increases the per-
formance remarkably. Adding the third feature extraction method further improves
the result, whereas fusing four- or five-feature extraction methods does not further
improve the recognition performance significantly.

Table 10.9 lists the results of the MAF in more detail. The column occurrence
states how often in terms of perspectives a feature extraction method combination
performs superior to all other combinations of the same number of included feature
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Table 10.9 Multi-algorithm fusion results per number of included features. Occurrence indicates
the numbers of perspectives for which the specified combination achieves the best score, the given
EER values are calculated over all perspectives. The two view columns state at which view the best
and worst performance has been achieved. The best result per number of included feature extraction
methods is highlighted bold face

# Features
included

Feature types Occurrences Best Avg Worst

EER View EER EER View

1 MC 34 (46.58%) 0.44
(±0.15)

0◦ 1.46 2.67
(±0.37)

260◦

PC 19 (26.03%) 0.60
(±0.18)

10◦ 1.47 2.47
(±0.36)

280◦

DTFPM 16 (21.92%) 0.56
(±0.17)

160◦ 1.71 2.87
(±0.38)

285◦

SIFT 4 (5.48%) 0.55
(±0.17)

180◦ 2.75 5.33
(±0.53)

265◦

GF – 1.55
(±0.28)

0◦ 4.89 8.87
(±0.65)

275◦

2 PC, DTFPM 31 (42.47%) 0.20
(±0.10)

180◦ 0.66 1.32
(±0.26)

205◦

MC, DTFPM 22 (30.14%) 0.13
(±0.08)

185◦ 0.68 1.47
(±0.28)

285◦

MC, SIFT 11 (15.07%) 0.12
(±0.08)

170◦ 0.78 1.83
(±0.31)

265◦

SIFT, DTFPM 8 (10.96%) 0.16
(±0.09)

175◦ 1.04 2.08
(±0.33)

265◦

MC, PC 1 (1.37%) 0.32
(±0.13)

10◦ 0.95 1.95
(±0.32)

285◦

PC, SIFT – 0.24
(±0.11)

180◦ 0.92 1.88
(±0.31)

265◦

GF, DTFPM – 0.32
(±0.13)

180◦ 1.17 2.32
(±0.35)

265◦

GF, SIFT – 0.40
(±0.14)

170◦ 1.63 3.56
(±0.43)

265◦

MC, GF – 0.44
(±0.15)

0◦ 1.39 2.54
(±0.36)

300◦

PC, GF – 0.51
(±0.16)

360◦ 1.28 2.32
(±0.35)

265◦

(continued)
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Table 10.9 (continued)

# Features
included

Feature types Occurrences Best Avg Worst

EER View EER EER View

3 MC, SIFT,
DTFPM

33 (45.21%) 0.04
(±0.05)

170◦ 0.50 0.99
(±0.23)

285◦

MC, PC, DTFPM 23 (31.51%) 0.12
(±0.08)

185◦ 0.52 1.23
(±0.25)

205◦

PC, SIFT,
DTFPM

11 (15.07%) 0.12
(±0.08)

165◦ 0.53 0.96
(±0.22)

270◦

PC, GF, DTFPM 3 (4.11%) 0.23
(±0.11)

245◦ 0.62 1.31
(±0.26)

205◦

MC, GF, DTFPM 2 (2.74%) 0.16
(±0.09)

185◦ 0.66 1.47
(±0.28)

285◦

MC, PC, SIFT 1 (1.37%) 0.12
(±0.08)

170◦ 0.64 1.31
(±0.26)

265◦

MC, GF, SIFT – 0.12
(±0.08)

170◦ 0.77 1.76
(±0.30)

265◦

GF, SIFT,
DTFPM

– 0.12
(±0.08)

175◦ 0.82 1.68
(±0.30)

265◦

PC, GF, SIFT – 0.25
(±0.11)

170◦ 0.82 1.71
(±0.30)

265◦

MC, PC, GF – 0.32
(±0.13)

0◦ 0.94 1.91
(±0.31)

285◦

4 MC, PC, SIFT,
DTFPM

51 (69.86%) 0.04
(±0.05)

170◦ 0.42 0.88
(±0.21)

265◦

MC, PC, GF,
DTFPM

10 (13.70%) 0.12
(±0.08)

185◦ 0.51 1.23
(±0.25)

205◦

MC, GF, SIFT,
DTFPM

9 (12.33%) 0.04
(±0.05)

170◦ 0.50 1.07
(±0.24)

275◦

PC, GF, SIFT,
DTFPM

3 (4.11%) 0.11
(±0.08)

185◦ 0.50 1.00
(±0.23)

265◦

MC, PC, GF,
SIFT

– 0.09
(±0.07)

170◦ 0.63 1.32
(±0.26)

265◦

5 MC, PC, GF,
SIFT, DTFPM

73 (100.00%) 0.04
(±0.05)

170◦ 0.41 0.84
(±0.21)

265◦

extraction methods. The minimum, average and maximum EER are determined based
on the results for all perspectives of the given feature extraction method combination.
Considering single feature extraction methods, MC or PC are included in more than
70% of the best results. GF is not included in any combination that performs best for
any perspective. The results of fusing feature extraction method pairs clearly show
that it is beneficial to fuse a vein pattern based algorithm (MC, PC, GF) to a key-point
based one (SIFT, DTFPM). The combinations of either MC/PC and SIFT/DTFPM
are leading to 98% of the best results in two-feature extraction methods fusion.
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Table 10.10 Estimated χ2 from the EER for multi-algorithm fusion

Nr of features
EER

n = 1
0.44 (±0.15)

n = 2
0.12 (±0.08)

n = 3
0.04 (±0.05)

n = 4
0.04 (±0.05)

n = 5
0.04 (±0.05)

n = 1 – 33.42 60.91 60.91 60.91

0.44 (±0.15)

n = 2 33.42 – 7.31 7.31 7.31

0.12 (±0.08)

n = 3 60.91 7.31 – 0 0

0.04 (±0.05)

n = 4 60.91 7.31 0 – 0

0.04 (±0.05)

n = 5 60.91 7.31 0 0 –

0.04 (±0.05)

DTFPM (83%) is involved more often than SIFT (26%). Again, GF is not present
in any of the best combinations. The overall best result with an EER of 0.04% is
achieved when fusing MC, PC, SIFT and DTFPM. Once again, the analysis of the
perspective, at which the best result is achieved, confirms, that views from the palmar
(0°, 360°) and dorsal (180°) region perform best.

Same as for the two-perspective fusion, we also check the performance increase
of three-perspective fusion on its significance. Table 10.10 lists the results in detail.
The resulting χ2 values indicate, that a fusion of two or more feature extraction
methods is always beneficial compared to a single feature extraction method. The
same holds true when comparing a two-feature extraction method fusion to a three,
four or five one. However, applying a four or five feature-type fusion instead of a
three feature-type one leads to no significant improvements anymore.

10.6.8 Combined Multi-perspective and Multi-algorithm
Fusion

In this section, we combine multiple perspectives and multiple feature extraction
methods into one combined fusion method (CMPMAF). For the selection of the
relevant perspectives and feature extraction methods we considered the results for
multi-perspective fusion (Sect. 10.6.6) and feature extraction method fusion (Sect.
10.6.7). Although the χ2 values for the multi-perspective fusion in Table 10.8 are
only boundaries, they still indicate that the performance increase from two to three
perspectives is significant for MC, GF and SIFT. The drawback of adding addi-
tional perspectives is the added cost/complexity to the system (additional camera
and illumination module, higher computational costs). Therefore, we decided that
the significance of the improvement is not high enough to justify the extra effort. As
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Table 10.11 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR

MC, SIFT 0◦, 180◦ 0.04 (±0.05) 0.04 0.64

MC, DTFPM 0◦, 180◦ 0.08 (±0.07) 0.08 0.12

PC, SIFT 0◦, 180◦ 0.16 (±0.09) 0.16 0.32

PC, DTFPM 0◦, 180◦ 0.16 (±0.09) 0.16 0.24

GF, SIFT 0◦, 180◦ 0.20 (±0.10) 0.20 0.60

GF, DTFPM 0◦, 180◦ 0.20 (±0.10) 0.20 0.28

a result of this, we only consider the two perspective fusion. The results presented in
Fig. 10.11 and Table 10.5 show that the best results are achieved when fusing palmar
and dorsal view. This behaviour can be confirmed when analysing the occurrence of
certain perspectives of the three-perspective fusion: Table 10.7 states that the palmar
and dorsal region is part of most of the top 25 results. Therefore, we selected 0° and
180° for our combined fusion.

For MAF, the significance analysis (see Table 10.10) indicates that the perfor-
mance increase from a two to a three feature extraction method fusion is significant
but would lead to additional computational costs (for score-level fusion, every fea-
ture extraction method needs to be processed by the whole processing chain up to the
comparison). Thus, we decided to include the two-feature extraction method MAF
into our combined fusion strategy only. Furthermore, the results listed in 10.9 state
that 88% of the best two-feature extraction method fusion combinations include one
vein pattern based (MC, PC, GF) and one key-point based (SIFT, DTFPM) feature.
Therefore, we analysed all possible combinations of those feature extraction methods
using both, palmar and dorsal view. Table 10.11 lists the results of the CMPMAF.
We evaluated all six possible combinations and arrived at a best EER of 0.04% with
a confidence interval of 0.05% for the combined fusion of MC and SIFT for palmar
and dorsal view. This result is 11 times better than the best single perspective result
(MC at 0° with an EER of 0.44%). All other combinations also perform well. The
worst result with an EER of 0.20% is achieved when fusing GF with either SIFT
or DTFPM. This is still more than two times better than the best single perspective
result. For the sake of completeness, we also calculated the results of the best 3-,
4- and 5-MAF combinations with the palmar and dorsal view. These results, listed
in Table 10.12, show that the EER can be further improved. The best result with an
EER of 0 is achieved when fusing the scores of all five feature types.

Table 10.13 compares the performance of the best combined two-perspective two-
algorithm fusion with the best results of all other fusion strategies. One can see that
the calculated χ2 indicates a significant performance improvement with respect to
the single perspective, the 2-MPF and the 2-MAF strategy. All other fusion strategies
achieved about the same EER.
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Table 10.12 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR

MC, SIFT,
DTFPM

000◦, 180◦ 0.04 (±0.04) 0.00 0.36

MC, PC, SIFT,
DTFPM

000◦, 180◦ 0.01 (±0.01) 0.00 0.12

MC, PC, GF,
SIFT, DTFPM

000◦, 180◦ 0.00 (±0.00) 0.00 0.00

Table 10.13 Comparison of the best two-perspective two-algorithm fusion combination to the best
result of the other fusion strategies including the relative performance improvement, the factor, by
which the EER decreased and the boundary χ2 for significance

Fusion
strategy

EER EER
CMPMAF

Rel. Perf.
Impr. [%]

Factor χ2

Single
perspective

0.44 (±0.15) 1000 11 60.91

2-MPF 0.12 (±0.08) 200 3 7.31

3-MPF 0.04 (±0.04) 0 1 0.00

2-MAF 0.12 (±0.08) 0.04 (±0.05) 200 3 7.31

3-MAF 0.04 (±0.05) 0 1 0.00

4-MAF 0.04 (±0.05) 0 1 0.00

5-MAF 0.04 (±0.05) 0 1 0.00

10.6.9 Results Discussion

The evaluation of the independent recognition performances for different projections
revealed, that indeed the widely used palmar perspective performed best, followed by
the dorsal one performing second best. The views in-between exhibit a slightly worse
performance, which is still acceptable. Our results indicate that the presence of finger
texture and finger knuckles has a positive influence on the recognition performance.
Figure 10.9 shows, that the well-established feature extraction algorithms not only
extract features resulting from the finger veins but also from the skin texture of the
finger and therefore inherently fuse texture and vein structure. The best single view
result was achieved using MC features at the palmar view with an EER of 0.44%.

However, the main objective of this work was to find a suitable trade-off between
the number of involved views and feature extraction methods and the recognition
performance. In order to arrive at a design decision for a multi-perspective finger
vein capture device, several aspects have to be considered: first of all, the gain in
recognition accuracy, followed by the production costs and complexity of the bio-
metric capture device which is directly related to the number of involved views and
finally the computational complexity of the finger vein recognition system including
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the capturing time, i.e. the total processing time, which is related to both, the number
of different views and the number of different feature extraction methods involved.
Adding more perspectives or feature extraction methods increases the complexity
of the finger vein sensor and the recognition tool chain. For every feature extraction
method, all steps of the recognition tool chain from preprocessing to comparison
need to be executed. Adding further perspectives additionally increases the cost and
complexity of the capture device’s hardware by the need of either adding more cam-
era/illumination modules (one per perspective) or a rotator that moves camera and
illumination module into position. Ideally, the number of perspectives and feature
extraction methods are kept to a minimum. Furthermore, additional aspects like an
improved resistance against presentation attacks and an increased robustness against
environmental influences should be included too. Therefore, the decision on how
many perspectives and feature extraction methods are used has to be a trade-off
between added cost/complexity and improvement of the recognition performance.
Our proposed design is based on the findings during the fusion evaluations.

The multi-perspective fusion results showed that by fusing two independent
views, in particular, the palmar and dorsal view, a significant performance gain can
be achieved. Adding a second perspective improved the recognition performance
between a factor 2–3.5, depending on the feature extraction method. The best result
with an EER of 0.12% was achieved using MC features fusing the palmar and dorsal
view. Adding a third view still improves the performance compared to two perspec-
tives, but not to the same extent (significance) as from a single perspective to the
2-MPF. In this case, the best result of 0.036% EER was achieved using MC when fus-
ing 5°, 170° and 235°. A biometric capture device able to capture the palmar and the
dorsal view simultaneously can be built without any moving parts. Two cameras and
two illumination modules are sufficient. Each additional view poses noticeable extra
costs in terms of hardware (camera and illumination modules) and complexity of the
capture device construction. Therefore, one must decide whether the improvement
in accuracy justifies the extra effort. As our results show, the performance improve-
ment from a 2-MPF to a 3-MPF is not as significant as from a single perspective
to a 2-MPF, a two-perspective capture device, capturing the vein structure from the
palmar and dorsal region is the best choice.

For MAF, a single perspective capturing device is sufficient. Such a biometric
capture device can be built in a more compact and less expensive manner than a multi-
perspective one. Moreover, existing finger vein capture devices acquiring images of
the palmar view, can be utilised to apply multi-algorithm fusion too. However, adding
an additional feature type to the MAF increases the computational cost. The MAF
results showed, that the fusion of different feature extraction methods per single view
improves the overall performance remarkably as well. The best results were obtained
when fusing vein pattern based algorithms (especially MC and PC) with key-point
based methods (SIFT, DTFPM). The best MAF result with an EER of 0.04% was
achieved when fusing MC, SIFT and DTFPM in the dorsal region. Including more
feature types does not improve the performance compared to the 3-MAF. As the
computational complexity for the calculation and comparison of DTFPM features
are higher than for the other features types, and the performance increase compared
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to the best 2-MAF utilising MC and SIFT (EER = 0.12%) features is not as significant
as from a single perspective to the 2-MAF, the best MAF option is a 2-MAF including
MC and SIFT features.

In a third step, we combined MPF and MAF. By using the best performing per-
spectives of the two-perspective approach (palmar and dorsal) and combining them
with a vein pattern based (MC, PC or GF) and a key-point based method (SIFT
or DTFPM), we were able to achieve an EER of 0.04% utilising MC and SIFT.
This corresponds to an improvement by a factor of 11 compared to the best single
perspective performance, while achieving similar results as for the best MPF and
MAF strategies. Adding more feature types to the combined fusion strategy further
improved the result. Combining palmar and dorsal view together with all five feature
types resulted in a perfect result with EER, FMR1000 and ZeroFMR of 0%.

A multi-perspective finger vein capture device is more resistant against presen-
tation attacks, especially against simple paper printout based attacks. Depending on
the actual construction of the multi-perspective capture device, it might also be more
robust against contamination (e.g. dust and dirt, sun protection lotion or hand cream
on the finger surface) of the finger due to the fact that more than one perspective is
captured. Hence, the two-perspective capture device is the preferred option over the
single perspective, multi-algorithm fusion one regarding these additional aspects.

Taking all the above-mentioned considerations into account, especially the addi-
tional advantages provided by a multi-perspective capture device in terms of resis-
tance against presentation attack and robustness against external influences, the most
preferable option is to design a two-perspective capture device capturing the palmar
and the dorsal view applying a two-algorithm fusion including MC and SIFT features,
whereas by including only one view the advantages of multi-perspective recognition
can not be retained. The second feature extraction method can be included without
involving additional hardware costs just by extending the recognition tool chain and
putting up with the extended processing time, which makes the two-feature version
beneficial in any case. This proposed finger vein capture device set-up arrives at
an EER of 0.04%, which is a performance gain by a factor of 11 compared to the
best single-view, single feature performance. Hence, this option provides an optimal
trade-off between recognition accuracy, construction costs and processing time.

10.7 Conclusion and Future Work

In this chapter, we introduced multi-perspective finger vein recognition. For most
work reported in the literature, only the palmar view is used in finger vein recognition.
However, as the finger is an elliptically shaped cylinder, there are several other views
available all around the finger’s longitudinal axis. In order to be able to exploit
these additional views, a suitable biometric capture device able to capture these
different views is necessary. This chapter is based on our previous work [2], where we
constructed a rotating, multi-perspective finger vein capture device which was then
utilised to capture a multi-perspective finger vein data set. Based on this dataset, the
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recognition performance of each view was evaluated individually. Then we applied
three different score-level fusion strategies, the first one fusing all possible pairs and
triples of distinct views, the second one fusing all different feature combinations
per each single view and the third one combining the first two approaches. The first
strategy was employed to find out the best performing pairs and three tuples of views
in terms of recognition performance. The more views are desired to be captured, the
higher the complexity and production costs of a suitable biometric capture device.
At some point (a certain number of desired views), only a rotating device is able
to capture the desired views. A rotating capture device bears several disadvantages,
e.g. it is more prone to failures and has an increased capturing time. If only a limited
number of views is involved, the production costs and the complexity of the biometric
capture device are kept low. The second strategy was applied to investigate the best
feature extraction method combination per view. The third strategy, which combines
the first two approaches, was applied to find out if the recognition results can be
further improved.

The single view evaluation results confirmed that the widely used palmar per-
spective, followed by the dorsal one (not taking views which are only a few degrees
off from the palmar and dorsal view into account), achieves the best performance in
finger vein recognition. All the perspectives in-between the palmar and dorsal one
exhibit an inferior recognition performance to the palmar and dorsal one. Regarding
the multi-perspective score-level fusion it turned out that a fusion of only two per-
spectives increases the recognition performance significantly, where a fusion of the
palmar and the dorsal view performed best. Adding a third perspective still improves
the results over the two perspective ones, but not to the same extent as the two
perspective ones. The multi-algorithm fusion achieves similar results to the multi-
perspective one, arriving at an EER of 0.04% for the combination of three-feature
extraction methods. A pure multi-algorithm fusion is preferable in terms of hard-
ware costs and capture device’s complexity but does not exhibit the advantages of a
multi-perspective recognition in regards to resistance against presentation attacks and
increased robustness against external influences. By applying both fusion approaches
at the same time for the best performing two perspectives (palmar and dorsal) and the
best performing two distinct feature extraction methods (MC, a vein pattern based
one and SIFT, a key-point based one), we were able to improve the recognition per-
formance by a factor of 11 compared to the best single view result, achieving an EER
of 0.04%.

Regarding recognition performance, hardware costs, processing time and robust-
ness against presentation attacks and external influences the overall best option is to
go for the combined multi-perspective and multi-algorithm fusion. In particular, a
finger vein capture device capturing the palmar and the dorsal view including MC
and SIFT features in a combined fusion provides the best trade-off between the above
mentioned considerations and is, therefore, our preferred design decision.

Future Work

The first step will be the construction of a combined multi-perspective and multi-
algorithm type fusion finger vein capture device to prove its applicability in real-life
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applications of finger vein recognition. We plan to do extended tests with this device,
regarding presentation attacks, robustness against external influences like changing
ambient conditions as well as subject-related influences.

Besides the capture device construction, our future work will include further anal-
ysis using our multi-perspective finger vein dataset. There are several other aspects
besides the single perspective performance and the fusion of multiple perspectives
which can be evaluated based on this dataset. One example is the robustness evalua-
tion of different finger vein recognition algorithms against longitudinal finger rota-
tion, which we already performed in a separate work [65]. We showed that this kind
of rotation poses a severe problem for most algorithms. Since for our dataset the lon-
gitudinal rotation angle is known, we will test different techniques to compensate the
finger rotation, either by estimating the rotation angle based on the captured images
only or by using the known rotation angle and then applying a rotation compensating
transform.

Another interesting question is if the best performing view is consistent across
different subjects/fingers. To perform this analysis we will extend our dataset to
contain at least 100+ subjects and then conduct a subject/finger based analysis to
find out if the palmar perspective is the best one for all or at least a majority of the
subjects/fingers or if there are significant differences.

Another field of interest is finger vein recognition in the 3D space. Therefore,
we want to reconstruct a 3D model of the finger vein structure based on multiple
images captured in different perspectives and apply different feature extraction and
comparison strategies.
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Chapter 11
Retinal Vascular Characteristics

Lukáš Semerád and Martin Drahanský

Abstract This chapter begins with a description of eye anatomy followed by the
anatomy of retinas as well as the acquisition methods for obtaining retinal images.
Our own device for capturing the vascular pattern of the retina is introduced in the
following text. This chapter presents our aim to estimate the information present in
human retina images. The next section describes the search for diseases found in
retinal images, and the last section is devoted to our method for generating synthetic
retinal images.

Keywords Synthetic retinal images · Vascular bed · Diabetic retinopathy · Hard
exudates · Age-related macular degeneration · Druses · Exudates · Bloodstream
mask · Information amounts · Bifurcations and crossings · Neural network ·
Human eye · Retina · Fundus camera · Slit lamp · Blind spot · Fovea · Device
EYRINA · Retina recognition

11.1 Introduction

Just like several other biometric characteristics, our eyes are completely unique and,
thus, can be used for biometric purposes. There are two core parts in our eyes that
even show high biometric entropy. The first is the iris and the second is the retina,
which is located at the backside of the eyeball and not observable by the naked eye.
Recognition based on these two biometric characteristics is a relatively new method
and little effort has been invested by industries.

The iris and the retina as elements inside the eye are very well protected against
damage. The iris and retina patterns are unique to every individual (this also applies to
monozygotic twins) and the structure is as follows (see Fig. 11.1) [1, 2]. The cornea
is located at the front of the eye. It is a transparent connective tissue that, along with
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Fig. 11.1 Anatomy of the human eye [42]

the lens, allows the light to break into the eye. The iris has the shape of an annulus;
it is a circularly arranged musculature that narrows/enlarges the pupil. The pupil is
an opening in the middle of the iris, regulating the amount of light coming into the
eye. The sclera is a white visible layer covering the entire eyeball, which passes into
the cornea in the front. The retina is the inner part containing cells sensitive to light.
It shows the image, much like a camera. The optic nerve carries many nerve fibres
that enter the central nervous system.

There are two scientific disciplines that deal with eye characteristics—those are
ophthalmology and biometrics. Ophthalmology is a medical discipline aimed at
analysing and treating the health of the eye and its associated areas. In the field
of biometrics (recognising an individual based on the unique biometric characteris-
tics of the human body), the unique properties of the eye are not subject to change
in time, and they are also so unique that it is possible to unequivocally identify two
distinct individuals apart from each other in order to verify the identity of that person.

11.1.1 Anatomy of the Retina

The retina is considered to be a part of the Central Nervous System (CNS) [1, 2].
This is the only part of the CNS that can be observed noninvasively. It is a light-
sensitive layer of cells located in the back of the eye with a thickness of 0.2–0.4 mm.
It is responsible for sensing the light rays that hit it through the pupil, and a lens
that turns and inverts the image. The only neurons that react directly to light are
photoreceptors. These are divided into two main types: cones and rods. For adults,
the retina covers approximately 72% of the inner eye. The entire surface of the retina
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contains about 7 million cones and 75–150 million rods. This would compare the
eye to a 157-megapixel camera. Rods are used to detect light and are capable of
responding to the impact of one to two photons by providing black-and-white vision.
Cones are used to detect colours and are divided into three types depending on which
base colour they are sensitive to (red, green, blue), but these are less sensitive to light
intensity [1, 2].

We can observe the two most distinctive points on an eye’s retina—see Fig. 11.2.
It is a blind spot (or an optical disc) and a macula (yellow spot) [1, 2]. A blind spot
is the point where the optic nerve enters the eye; it has a size of about 3 mm2 and
lacks all receptors. So if the image falls into the blind spot, it will not be visible to a
person. The brain often “guesses” how the image should look in order to fill in this
place. On the other hand, the macula (yellow spot) [1, 2] is referred to as the sharpest
vision area; it has a diameter of about 5 mm and the cones predominate it (it is less
sensitive to light). This area has the highest concentration of light-sensitive cells,
whose density decreases towards the edges. The centre of the macula is fovea, which
is the term describing receptor concentration and visual acuity. Our direct view is
reflected in this area. Interestingly enough, the macula (yellow spot) is not really
yellow, but slightly redder than the surrounding area. This attribute, however, was
given by the fact that yellow appears after the death of an individual.

The retina vessel’s apparatus is similar to the brain, where the structure and venous
tangle remain unchanged throughout life. The retina has two main sources of blood:
the retinal artery and the vessels. Larger blood flow to the retina is through the blood
vessel that nourishes its outer layer with photoreceptors. Another blood supply is
provided by the retinal artery, which primarily nourishes the inside of the retina.
This artery usually has four major branches.

Blind spot

Macula
(yellow spot)

Fig. 11.2 A snapshot of the retina taken by the fundus camera

www.dbooks.org

https://www.dbooks.org/


312 L. Semerád and M. Drahanský

The retina located inside the eye is well protected from external influences. Dur-
ing life, the vessel pattern does not change and is therefore suitable for biometric
purposes.

The retina acquires an image similar to how a camera does. The beam passing
through the pupil appears in the focus of the lens on the retina, much like the film.
In the medical field, specialised optical devices are used for the visual examination
of the retina.

The iris is beyond the scope of this chapter, however, some interesting works
include [3–5].

11.1.2 History of Retinal Recognition

In 1935, ophthalmologists Carleton Simon and Isidore Goldstein discovered eye
diseases where the image of the bloodstream in two individuals in the retina was
unique for each individual. Subsequently, they published a journal article on the use
of vein imaging in the retina as a unique pattern for identification [6]. Their research
was supported by Dr. Paul Tower, who in 1955 published an article on studying
monozygotic twins [7]. He discovered that retinal vessel patterns show the least
resemblance to all the other patterns examined. At that time, the identification of the
vessel’s retina was a timeless thought.

With the concept of a simple, fully automated device capable of retrieving a snap-
shot of the retina and verifying the identity of the user, Robert Hill, who established
EyeDentify in 1975, devoted almost all of his time and effort to this development.
However, functional devices did not appear on the market for several years after [8,
9].

Several other companies attempted to use the available fundus cameras and mod-
ify them to retrieve the image of the retina for identification purposes. However, these
fundus cameras had several significant disadvantages, such as the relatively compli-
cated alignment of the optical axis, visible light spectra, making the identification
quite uncomfortable for the users, and last but not least, the cost of these cameras
was very high.

Further experiments led to the use of Infrared (IR) illumination, as these beams
are almost transparent to the choroid that reflect this radiation to create an image of
the eye’s blood vessels. IR illumination is invisible to humans, so there is also no
reduction in the pupil diameter when the eye is irradiated.

The first working prototype of the device was built in 1981. The device with an eye-
optic camera used to illuminate the IR radiation was connected to an ordinary personal
computer for image capture analysis. After extensive testing, a simple correlation
comparison algorithm was chosen to be the most appropriate.

After another four years of hard work, EyeDentify Inc. launched EyeDentification
System 7.5, where verification is performed based on the retina image and the PIN
entered by the user with the data is stored in the database [8, 9].
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The last known retinal scanning device to be manufactured by EyeDentify Inc.
was the ICAM 2001. This device might be able to store up to 3,000 subjects, having
a storage capacity of up to 3,300 history transactions [8]. Regrettably, this product
was withdrawn from the market because of user acceptance and its high price. Some
other companies like Retica Systems Inc. were working on a prototype of retinal
acquisition devices for biometric purposes that might be much easier to implement
into commercial applications and might be much more user friendly. However, even
this was a failure and the device did not succeed in the market.

11.1.3 Medical and Biometric Examination and Acquisition
Tools

First of all, we will start with the description of existing medical devices for retinal
examination and acquisition, followed by biometric devices. The medical devices
provide high-quality scans of the retina, however, the two major disadvantages are
predetermining these devices to fail within the biometric market—first, because of
their very high price, which ranges from the thousands (used devices) to the tens
of thousands of EUR; second, because of their manual or semi-automatic mode,
where medical staff is required. So far, there is no device on the market that can scan
the retina without user intervention, i.e. something that is fully automatic. We are
working on this automatic device, but its price is not yet acceptable for the biometric
market.

11.1.3.1 Medical Devices

The most commonly used device for examining the retina is a direct ophthalmoscope.
When using an ophthalmoscope, the patient’s eye is examined from a distance of
several centimetres through the pupil. Several types of ophthalmoscopes are currently
known, but the principle is essentially the same: the eye of the investigated data
subject and the investigator is in one axis, and the retina is illuminated by a light source
from a semipermeable mirror, or a mirror with a hole located in the observation axis
at an angle of 45° [10]. The disadvantage of a direct ophthalmoscope is a relatively
small area of investigation, the need for skill when handling, and patient cooperation.

For a more thorough examination of the eye background, the so-called fundus
camera is used (as shown in Fig. 11.3), which is currently most likely to have the
greatest importance in retina examinations. It allows colour photography to capture
almost the entire surface of the retina, as can be seen in Fig. 11.2. The optical principle
of this device is based on so-called indirect ophthalmoscopy [10]. Fundus cameras
are equipped with a white light source (i.e. a laser) to illuminate the retina and then
scan it with a CCD sensor. Some types can also find the centre of the retina and
automatically focus it, using a frequency analysis of the scanned image.
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Fig. 11.3 (Left) Slit lamp example [43]; (right) example of a non-mydriatic fundus camera [44]

The main ophthalmoscopic examination methods of the anterior and posterior
parts of the eye include direct and indirect ophthalmoscopy as well as the most
widely used examination, a slit lamp (see Fig. 11.3 on the left), which makes it
possible to examine the anterior segment of the eye using so-called biomicroscopy.
A fundus camera, sometimes referred to as a retinal camera, is a special device
for displaying the posterior segment of the optic nerve, the yellow spots and the
peripheral part of the retina (see Fig. 11.3 on the right). It works on the principle
of indirect ophthalmoscopy where a source of primary white light is built inside the
instrument. The light can be modified by different types of filters, and the optical
system is focused on the data subject’s eye, where it is reflected from the retina and
points back to the fundus camera lens. There are mydriatic and non-mydriatic types
that differ in whether or not the subject’s eye must be taken into mydriasis. The
purpose of mydriasis is to extend the human eye’s pupil so that the “inlet opening” is
larger, allowing one to be able to read a larger portion of the retina. Of course, non-
mydriatic fundus cameras are preferred because the data subject can immediately
leave after the examination and can drive a motor vehicle, which is not possible
in the case of mydriasis. However, mydriasis is necessary for some subjects. The
price of these medical devices is in the order of tens of thousands of EUR, which is
determined only by medically specialised workplaces.

The mechanical construction of the optical device is a rather complex matter. It is
clear that the scanning device operates on the principle of medical eye-optic devices.
These so-called retinoscopes, or fundus cameras, are relatively complicated devices
and the price for them is quite high as well.

The principle is still the same as it is for a retinoscope, where a beam of light is
focused on the retina and the CCD camera scans the reflected light. The beam of light
from the retinoscope is adjusted so that the eye lens focuses on the surface of the
retina. This reflects a portion of the transmitted light beam back to the ophthalmic



11 Retinal Vascular Characteristics 315

Eye iris

Visual axis

Pupil

Macula

Blind spot

Scan area

Vessels

Fig. 11.4 The functional principle for obtaining a retinal image of the eye background

lens that then readjusts it, the beam leaving the eye at the same angle below which
the eye enters (return reflection). In this way, an image of the surface of the eye can
be obtained at about 10° around the visual axis, as shown in Fig. 11.4. The device
performed a circular snapshot of the retina, mainly due to the reflection of light from
the cornea, which would be unusable during raster scanning.

11.1.3.2 Biometric Devices

The first products from EyeDentify Inc. used a relatively complicated optical system
with rotating mirrors to cover the area of the retina—this system is described in U.S.
Pat. No. 4,620,318 [11]. To align the scan axis and the visual axis, the so-called
UV-IR cut filters (Hot Mirrors—reflect infrared light and passes through the visible
light) are used in the design. A schematic drawing of the patent is in Fig. 11.5.
The distance between the eye and the lens was about 2–3 cm from the camera. The
alignment system on the optical axis of the instrument is an important issue, and it
is described in more detail in U.S. Pat. No. 4,923,297 [12].

Newer optical systems from EyeDentify Inc. were much easier and had the benefits
of repairing optical axes with less user effort than the previous systems. The key part

Fig. 11.5 The first version of the EyeDentification System 7.5 optical system [12]
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Fig. 11.6 (Left) EyeDentify [9]; (right) EyeDentificationSystem [45]

was a rotating scanning disc that carried multifocal Fresnel lenses. This construction
is described in U.S. Pat. No. 5,532,771 [13].

A pioneer in developing these identification systems is primarily EyeDentify Inc.,
who designed and manufactured the EyeDentification System 7.5 (see Fig. 11.6)
and its latest ICAM 2001 model, which was designed in 2001. Other companies
are Retinal Technologies, known since 2004 as Retica Systems, but details of their
system are not known. The company TPI (Trans Pacific Int.) has recently offered an
ICAM 2001-like sensor, but there is no longer any information about it available.

11.1.3.3 Device EYRINA

At the end of this subsection, we will devote our attention to our own construction of
an interesting and nonexistent device that can be used in both the field of biometric
systems and in the field of ophthalmology—we call it EYRINA. This device is a fully
automatic non-mydriatic fundus camera. Many years ago, we started with a simple
device (see Fig. 11.7 on the left), but over time, we came to the third generation of
the device (see Fig. 11.7 on the right). We are now working on the fourth generation

Fig. 11.7 A non-mydriatic fundus camera—first generation left, second generation middle and
third generation right
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of this device that will be completely automatic. The original concept was focused
only on the retina (a direct view in the optical axis of the eye), then we arrived
(second generation) to retrieve the retina and the iris of the eye in one device, while
the third and fourth generation is again focused solely on the retina of the eye. The
third generation can already find the eye in the camera, move the optical system to
the centre of the image (alignment of the optical axis of the eye and the camera)
and take pictures of the eye retina (in the visible spectrum) to shoot a short video
(in the infrared spectrum). The fourth generation will be able to capture almost the
entire ocular background (not just a direct view in the optical axis of the eye) and
combine the image into one file. This will, of course, be associated with software
that can already find the macula and blind spot, arteries and vessels, detect and
extract bifurcations and crossings and find areas with potential pathological findings
while we can detect exudates/druses and haemorrhages, including the calculation
of their overall area. In the future, we will focus on the reliability and accuracy of
detectors and extractors, including other types of illnesses that will be in the interest
of ophthalmologists.

The central part of the third generation built two tubes with optics that can com-
pensate the diopter distortion approx. ±10 D. The left tube is connected to the motion
screw and the NEMA motor, i.e. we were able to move the frontal (left) tube. The
eye is very close to the eyebrow holder. Between these two tubes, we have a semiper-
meable mirror. Under this mirror is an LED for making the look of the patient to be
fixed on a concrete position. The illumination unit is placed behind the mirror on
the covering unit. Behind the background (right) tube is a high-resolution camera.
The mainboard and PCBs are placed in the back of the fundus camera, where the
connectors and cables are placed as well. The connection is done using a USB cable
to the computer.

The image of a real eye from the second version of EYRINA could be found in
Fig. 11.8. Now, we just used an ophthalmologic eye phantom for version 3.

Version 3 was able to automatically capture a direct view to the eye, i.e. pupil
detection, focusing and taking pictures automatically; however, it is not possible to

Fig. 11.8 Retinal image of a real retina from the second version of EYRINA
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Fig. 11.9 Model of the construction of a fourth-generation device

capture images for retinal images stitching, and if the user has not centred the optical
axis of his/her eye with the optical axis of the camera system, the view to the eye is
not correct. The new version 4 has a 5-axes manipulator, which is able to find the
centred position of both optical axes (eye and camera) automatically. The other new
parts are the compensation of diopter distortion ±12 D (with additional rings for
up to ±30 D), automatic composition of scanned images, automatic recognition of
the optic disc, macula and selected pathologies, and a Wi-Fi/USB connection. The
model of the fourth version of this fundus camera is visible in Fig. 11.9. This camera
should be ready for laboratory installation in Autumn 2019.

11.1.4 Recognition Schemes

In the introductory chapter is an overview about the existing work on retina recog-
nition. There are several schemes that could be used for the recognition of retinal
images. For example, there are different approaches for retina image biometric recog-
nition. Farzin [8] and Hill [9] segment the blood vessels, from which it generates
features and stores up to 256 12-bit samples reduced to a reference record of 40 bytes
for each eye. Contrast information is stored in the time domain. Fuhrmann and Uhl
[14] extract vessels, from which the retina code is obtained. This is a binary code
that describes the vessels around the optical disc.

The first idea for recognition (described in Chap. 3.1) is based on the work of
Arakala et al. [15], where the biometric entropy of retina and recognition based on
area around the optical disc is calculated. We have extended this area and started using
it for identification. Our idea of localisation points to the retinal vascular bed and is
based on the similarity of the structure with the papillary lines in the fingerprints.
There, bifurcation, termination, position and direction of the minutiae are detected.
In retinas, blood vessels are not as severely terminated as in fingerprints, gradually
diminishing until lost. Therefore, we do not detect termination. On the contrary, the
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bifurcation here is terminated. In addition, the complicated structure of the several
layers of blood vessels over one another is virtually crossing the vessels in the image.
It is not easy to know what is crossing and what is bifurcation, so we detect these
features together. We then base biometric recognition on these points.

We are also looking for the centre of the blind spot and the fovea. We created a
coordinate system with the centre in the middle of abscissa between the centre of
the blind spot and the centre of the fovea. The individual points are then represented
by the angle and distance in these units, i.e. the results are a set of vectors showing
the concrete place in the retinal image. Thus, we are invariant to the different way
of acquiring the retina, since the optical axes of the eye and the sensing device may
not always be unified.

In the retina, the situation is relatively simple because the algorithms are search-
ing the image for bifurcations and crossings of the retinal vascular system, whose
positions clearly define the biometric instance (i.e. the retina pattern). An example is
shown in Fig. 11.10. Recognition becomes problematic when a stronger pathological
phenomenon (e.g. a haemorrhage) occurs in the retina that affects the detection and
extraction of bifurcations and crossings. For biometric systems, it should be noted
that their use also includes the disclosure of information about their own health sta-
tus since, as mentioned above, a relatively large amount of information on human
health can be read from the image of an iris, and that is, especially, the case for a
retina as well. It is therefore up to each of us in regard to how much we will protect
this private information and whether or not we will use the systems. However, if the
manufacturer guarantees that the health information does not get stored, and only
the unique features are stored (not the image), then the system may be used based
on data protection legislation (e.g. GDPR).

Fig. 11.10 Extracted features (bifurcations and crossings, incl. the connection of macula and blind
spot) in the retina [37]

www.dbooks.org

https://www.dbooks.org/


320 L. Semerád and M. Drahanský

11.1.5 Achieved Results Using Our Scheme

The aim of this work was to compare manually marked and automatically found
bifurcations/crossings using our application, RetinaFeatureExtractor, and find out
the success of the automatic search. First, we created a Python extract_features.py
script that reads retina images from the selected folder and uses RetinaFeatureEx-
tractor to find bifurcations/crossings for each image and save them into text files in
the same hierarchy as the source images. After obtaining a set of automatically found
bifurcations/crossings, we designed an algorithm for comparing them to manually
selected bifurcations/crossings (ground truth). We then created a Python compari-
son.py script that compares the found bifurcations.

The algorithm automatically finds bifurcations/crossings that are paired with the
manually found bifurcations/crossings. The algorithm works as follows:

• Converts the found bifurcations/crossings to the same coordinate system.
• For each manually found bifurcation/crossing, it locates around the size t candi-

dates for pairing and remembers their distance.
• If the number of manually found bifurcations/crossings and candidates for pairing

is not the same, the smaller of the sets is completed with placeholders.
• Builds a complete bipartite graph where one disjunctive set of vertices is created

by the manually found bifurcations/crossings, and the second by the candidates.
It also set the price of edges between the manually found bifurcations/crossings
and their corresponding candidates and computes the distance. For other edges, it
sets the value from the interval <t+1, ∞).

• Finds the minimum matching in the bipartite graph.
• From paired pairs, it removes those where one of the bifurcations/crossings is a

placeholder, or those pairs of them where the distance is greater than t.
• Calculates the percentage of the manually marked points that have been paired.

In both sets, the positions of the blind and yellow spot are given. It is in files
with manually marked bifurcations/crossings and the blind spot is marked with a
rectangle, and in automatically found bifurcations/crossings it is a circle. The yellow
spot is in both file types marked with a circle. Bifurcations/crossings are expressed
by r and ψ . The r is the distance from centre of the blind spot, but it is recalculated
so that the distance from the centre of blind spot to the centre of the yellow spot is
1. The ψ stands for the angle from the blind spot with zero value to the centre of
yellow spot.

We decided to convert the found bifurcations/crossings into a Cartesian coordinate
system. We needed to calculate the distance between the centre of the blind spot
(hereafter CBS) and yellow spot (hereafter CYS). In the file with manually marked
bifurcations/crossings, only the centre of the rectangle indicating the blind spot had to
be calculated; in the expression of the circles, their centre was already contained. We
then calculated their Euclidean distance (hereinafter d). Afterwards, we calculated
the angle between the centres of both spots (hereafter α) according to Eq. (1.1).

α = arctg2((y.CYS − y.CBS), (x.CYS − x.CBS)). (1.1)
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Using Eq. (1.2), we calculated the bifurcation/crossing distance from the blind
spot:

v = r · d (1.2)

Then, using Eqs. (1.3) and (1.4), we calculated the coordinates dx and dy:

dx = d · cos(ψ + α), (1.3)

dy = d · sin(ψ + α). (1.4)

The resulting point of bifurcation/crossing in the Cartesian system is obtained as[
dx + x.CBS; dy + y.CBS

]
.

We saved the converted points to the list and used their position in the list that
we could use as ID to compile disjunctive sets. We assigned a placeholder ID with a
value of −1. To calculate the minimum pairing we used the fact that this problem can
be converted to the problem of integer programming [16]. After the calculation, we
obtained the edges between the individual vertices of the graphs and we could cal-
culate how many manually found bifurcations/crossings were paired. The resulting
image for the comparison is shown in Fig. 11.11.

We used three publicly available databases: Drions [17], Messidor [18] and HRF
(High-Resolution Fundus Image Database) [19].

Fig. 11.11 The resulting image for the comparison of manually and automatically found bifurca-
tions/crossings
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Table 11.1 The summarised results for manual and automatic bifurcation/crossing detection

Database Average success rate
[%]

Average marking
error [%]

Average point spacing
[px]

Drions images 62 47 5.25

HRF 66 31 4.55

Messidor (Base12) 74 65 4.25

Messidor (Base13) 79 63 5.01

Messidor (Base22) 61 45 4.65

Messidor (Base3) 82 72 4.95

Average 70.67 53.83 4.78

The Drions database consists of 110 colourised digital retinal images from the
Ophthalmology Service at Miguel Servet Hospital, Saragossa (Spain). Images are
in RGB JPG format, and the resolution is 600 × 400 with 8 bits/pixel [17]. The
Messidor database originally contains 1,200 eye fundus colour numerical images
of the posterior pole. Images were acquired by 3 ophthalmologic departments. The
images were captured using 8 bits per colour plane at 440 × 960, 240 × 488 or 304
× 536 pixels. The HRF database contains 15 images of healthy patients, 15 images
of patients with diabetic retinopathy and 15 images of glaucomatous patients.

We used images from these databases to compare our manually selected and
automatically marked bifurcations and crossings in them.

The results are summarised in Table 11.1.
At the same time, we have modified and improved our algorithm that we tested

on the VARIA database [20], which contains 233 images from 139 individuals. We
conducted a classic comparison of found bifurcations/crossings that correspond to
the fingerprint method. The DET curve is shown in Fig. 11.12.

ALG-1 is an elementary algorithm that only shrinks images to one-fifth, smoothes
them, and equalises the histogram.

ALG-3 processes images as follows: after processing ALG-1, it detects an optical
disc and fovea and then aligns the images to a uniform plane. Next, it highlights the
vessels in the image and crops the compared area around the optical disc.

ALG-2 compared to ALG-3 does not cut the image, only on the optical disc area.
Moreover, the resulting image is applied to edge detection.

Source code of algorithms is available on [21].

11.1.6 Limitations

There are some limitations in retinal biometrics that discourage greater use in bio-
metric systems. There is currently no system that can remove these shortcomings to
a greater extent [9]:
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Fig. 11.12 The DET curve for our three versions of the algorithm RetinaFeatureExtractor

• Fear of eye damage—The low level of infrared illumination used in this type of
device is completely harmless to the eye, but there is a myth among the lay public
that these devices can damage the retina. All users need to be familiar with the
system in order to gain confidence in it.

• Outdoor and indoor use—Small pupils can increase the false rejection rate. Since
the light has to pass through the pupil twice (once in the eye, then outward), the
return beam can be significantly weakened if the user’s pupil is too small.

• Ergonomics—The need to come close to the sensor may reduce the comfort of
using the device.

• Severe astigmatism—Data subjects with visual impairments (astigmatism) are
unable to focus the eye onto the point (a function comparable to measuring the
focusing ability of the eye for an ophthalmologist), thus avoiding the correct gen-
eration of the template.

• High price—It can be assumed that the price of the device, especially the retro-
viral optical device itself, will always be greater than, for example, the price of
fingerprint or voice recognition capture devices.

The use of retinal recognition is appropriate in areas with high-security require-
ments, such as nuclear development, arms development, as well as manufacturing,
government and military facilities and other critical infrastructure.

11.2 Eye Diseases

The main focus of this chapter is on ophthalmology in regard to examining the retina
of the eye, taking into account, of course, the overall health of the eye (e.g. cataracts or
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increased intraocular pressure). Within the retina is a relatively large line of diseases
and damages that interest medical doctors, but they are detailed in an encyclopaedia
of ophthalmology consisting of hundreds of pages (e.g. [22] (1,638 pages) or [23]
(2,731 pages)). The largest group is diabetes and Age-related Macular Degeneration
(ARMD). Occasionally exudates/druses or haemorrhages (bleeding or blood clots)
appear in the retina; however, as mentioned above, potential damage (e.g. perforation
or retinal detachment) or retinal disease is such a matter.

In comparison with other biometric characteristics (e.g. fingerprints, the vascular
patterns of the hand or finger), the role of diseases connected to a concrete biometric
information career (e.g. finger, hand) plays a very important role. It is not only the
ageing factor, which can bring some changes into the retinal image sample, but the
pathologies on the retina can disable the subject, making them unable to use the
biometric system. The most common disease manifestations are related to diabetes
mellitus and ARMD, whereas these pathologies (e.g. haemorrhages and aneurisms)
can change the quality of the image so much that the vascular pattern is partially
covered or completely invisible. Therefore, a short description of the most important
and the most widespread retinal diseases are mentioned and shortly described to
get the feeling of how much they can decrease the biometric performance of the
recognition algorithms. These diseases are expected to influence recognition scheme
described in the Sect. 11.1.4. The impact on biometric recognition is based on our
observations and has no empirical evidence.

Diabetes mellitus (DM, diabetes) [24] is a disease characterised by elevated blood
glucose (hyperglycemia) due to the relative or absolute lack of insulin. Chronic
hyperglycemia is associated with long-lasting damage, dysfunction and failure of
various organs in the human body—especially, the eyes, kidneys, heart and blood
vessels. Most types of diabetes [24] fall into two broader categories: type 1 and type
2.

While diabetes mellitus (diabetes) has been described in ancient times, diabetic
retinopathy [25, 26] is a disease discovered relatively late. Diabetic Retinopathy
(DR) is the most common vascular disease of the retina. It is a very common late
complication of diabetes and usually occurs after more than 10 years of having
diabetes.

Diabetic retinopathy occurs in several stages. The first stage can only be detected
by fluorophotometry. The next stage is called simple, incipient or Non-proliferative
Diabetic Retinopathy (NPDR). This is characterised by the formation of small micro-
aneurysms (vessel bulging), which often crack and result in another typical symp-
tom—the formation of small intrarethral or pre-renal haemorrhages. Because the
micro-aneurysms and haemorrhages include blood, their colour is very similar to the
vessel pattern colour, i.e. if larger areas in the eye are affected by these diseases, it is
expected to the biometric recognition performance drops down, because the recogni-
tion of retinal images is based on the comparison of vessel structures for both images.
Microinfarcts have a white colour, a fibrous structure, and are referred to as “cotton
stains”. If the capillary obliteration is repeated at the same site, heavy exudates arise.
These are a sign of chronic oxygen deficiency. They are yellow, sharply bounded,
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and formed by fat-filled cells. This stage is called Proliferative Diabetic Retinopathy
(PDR) [25, 26].

Micro-aneurysms (MA) [25, 26] are considered to be basic manifestations of dia-
betic retinopathy. Although micro-aneurysms are characteristic of diabetic retinopa-
thy, they cannot be considered a pathologic finding for this disease. They can, how-
ever, manifest in many other diseases. MAs are the first lesions of the DR that
are proven by biomicroscopic examination. The flowing MA leads to the forma-
tion of edema and annularly deposited exudates. Their size is between 12 μm and
100 μm. These are round dark red dots, which are very difficult to distinguish from
a micro-haemorrhage. Unlike these, they should have more bordered edges. If their
size is greater than 125 μm, it must be taken into account that they may be micro-
haemorrhages. As mentioned above, their colour is similar to the vascular pattern
and it is expected that they influence biometric recognition performance.

Depending on the location within the retina, we can distinguish haemorrhage
intraretinally and sub-retinally [25, 26]. Haemorrhages occur secondarily as a result
of the rupture of micro-aneurysms, veins and capillaries. Spotted haemorrhages are
tiny, round red dots kept at the level of capillaries and only exceptionally deeper (see
Fig. 11.13 right). Their shape is dependent on their location, but also on the origin of
the bleeding. Spontaneous haemorrhages have the characteristic appearance of stains
and their colour is light red to dark. As mentioned above, their colour is similar to
a vascular pattern and it is expected that they influence the biometric recognition
performance.

Hard exudates (Fig. 11.13 left) [25, 26] are not only characteristic of diabetic
retinopathy. They are also found in many other diseases. Hard-dotted exudates are
round, clear yellow dots. They create different clusters with a pronounced tendency
to migrate. Stubborn hard exudates are predominantly surface-shaped and have the
shape of a hump. The colour of this pathology is different from the vascular structure,
so it does not affect biometric recognition performance, but it can affect the ability
of preprocessing algorithms to prepare the image for venous structure extraction.

Soft exudates (Fig. 11.13 left) [25, 26] are considered to be a typical manifestation
of diabetic retinopathy, but it can also be found in other diseases. They result from

Fig. 11.13 (Left) Hard and soft exudates [46] and (right) haemorrhage and micro-aneurysms [47]
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arteriolar occlusions (closures) in the nervous retinal layer. They are often accom-
panied by a plague-like haemorrhage. There are often extended capillaries along
the edges. The colour of this pathology is different from the venous structure, so
it does not affect biometric recognition performance, but it can affect the ability of
preprocessing algorithms to prepare the image for venous structure extraction.

Age-related Macular Degeneration (ARMD) [27–29] is a multifactorial disease.
The only reliably proven cause of ARMD development is age. ARMD is characterised
by a group of lesions, among which we classically include the accumulation of
deposits in the depth of the retina—drunia, neovascularisation, fluid bleeding, fluid
accumulation and geographic atrophy.

Based on clinical manifestations, we can distinguish between dry (atrophic, non-
exudative) and wet (exudative, neovascular) disease [27–29]. The dry form affects
less than 90% of patients and is about 10% moist.

Dry form—This is caused by the extinction of the capillaries. Clinical findings
found that in the dry form of ARMD druses, there are changes in pigmentation and
some degree of atrophy. The terminal stage is called geographic atrophy. The druses
are directly visible yellowish deposits at the depth of the retina, corresponding to the
accumulation of pathological material in the inner retinal layers. The druses vary in
size, shape, appearance. Depending on the type, we can distinguish between soft and
hard druses. Soft druses are larger and have a “soft look”. They also have a distinct
thickness and a tendency to collapse. Druses that are less than half the diameter of
the vein at the edge of the target, and they are referred to as small (up to 63 μm)
and respond to hard druses. Druses ≥125 μm are large and respond to soft druses.
Hard druses are not ophthalmoscopically trapped up to 30–50 μm [30]. Geographic
atrophy is the final stage of the dry, atrophic form of ARMD—see Figs. 11.14 and
11.15. It appears as a sharp, borderline oval or a circular hypopigmentation to depig-
mentation or direct absence of retinal pigment epithelium. Initially, the atrophy is
only light, localised, and gradually spreading often in the horseshoe shape around
the fovea. The development of atrophy is related to the presence of druses and, in
particular, their collapse or disappearance [27–29].

Fig. 11.14 (Left) ARMD—soft druses [48]; (right) ARMD—hard druses [28]
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Fig. 11.15 (Left) Geographic atrophy [28]; (right) wet form with edema [49]

Moist form—This is caused by the growth of newly formed vessels from the
vasculature that spread below the Bruch membrane. Within the Bruch membrane,
cracks are created by which the newly created vessels penetrate under the pigment
tissue and later under the retina. The newly created vessels are fragile and often bleed
into the sub-retinal space [27–29].

In this case, soft and hard druses are not comparable in colour and shape with
the vascular pattern in retinal images; however, they can influence the image pre-
processing algorithms, which are preparing the image for extraction of the vascular
pattern. Herewith the biometric recognition performance can dropdown. However,
this is not a big change. All of the algorithms for retinal image preprocessing should
be adopted to treat such diseases to be able to reliably extract the vascular pattern.

The retinal detachment (see Fig. 11.16 left) of the eye occurs when a variety of
cracks appear in the retina, causing the vitreous fluid to get under the retina and lift
it up. Oftentimes, this detachment occurs at the edge of the retina, but from there it
slowly moves to the centre of vision when untreated. The ageng process can result
in small deposits within the retina, which can create a new connection between the

Fig. 11.16 (Left) Retinal detachment [48]; (right) retinal (lacquer) crack [50]
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vitreous and the retina [29, 31]. This disease completely destroys the concrete (up
the complete) parts of the retina, whereas the vascular pattern is lifted and moved in
space, i.e. the original structure before and after this disease is so different that the
subject is not be recognised when using a biometric system based on retinal images.

The retina can crack (see Fig. 11.16 right) in the eye of a person for various
reasons. This may be due to the complications of another eye disease, a degenerative
form of eye disease, or it can also occur when eye or brain injury occurs. This
cracking usually occurs if the retina is not properly perfused for a long time [29,
31]. This means that the venous system beneath the top layer of the retina begins to
intermingle, i.e. a new venous structure appears in the retinal image that is difficult
to distinguish from the top layer, disabling recognition from the originally stored
biometric template. However, it is possible to create a new biometric template in the
actual status of the disease that is adapted to the current status after every successful
biometric verification.

Retinal inflammation is also known as retinitis. Inflammation of the retina of
the eye can cause viruses and parasites, but the most common cause is bacteria.
In many cases, inflammation of the retina is not isolated and is accompanied by
the inflammation of the blood vessel, which holds the retina with blood [29, 31].
Retinitis creates new and distinctive patterns, mostly dark in colour, which greatly
complicate the extraction of the venous structure. It is expected to thus have a very
strong influence on biometric recognition performance.

Swelling of the retina, or diabetic macular edema, affects diabetics as the name
suggests. This swelling occurs after leakage of the macula by the fluid. This swelling
may occur for data subjects who suffer from long-term diabetes, or if they have too
high glucose levels during treatment. Swelling is caused by damage to the retina
and its surroundings. These catheters then release the fluid into the retina, where it
accumulates, causing swelling [29, 31]. The influence to biometric recognition per-
formance is comparable with the manifestation of retinal detachment—the structure
is changed within the space, thus having an impact on the position of vascular system
in the retinal layer.

Relatively frequent diseases of the retina are circulatory disorders, where the
retinal vessel closes. These closures arise mostly as a result of arteriosclerosis, which
is a degenerative vascular disease where it is narrowing and a lower blood supply to
tissues [29, 31].

Central vision artery occlusion causes a sudden deterioration in vision. On the
ocular background there is a narrowed artery, retinal dyspnea and swelling. Drugs
for vascular enlargement, thrombus dissolving medicines and blood clotting drugs
are applied [29, 31].

The closure of the central retinal vein is manifested by the rapid deterioration
of vision; the thrombus causes vein overpressure, vein enlargement is irregular and
retinal bleeding occurs. Drugs are used to enlarge the blood vessels and after a time,
the thrombi are absorbed, or the circulatory conditions in the retina are improved via
laser [29, 31].

Circulatory disorders always have a very significant effect on the colour of the car-
diovascular system, making the veins and arteries very difficult to detect, especially
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when the vessel is combined with its haemorrhage. In this case, it is not possible
to reliably detect and extract the venous system, thereby dramatically reducing bio-
metric recognition performance. Even image preprocessing algorithms will not cope
with this problem.

11.2.1 Automatic Detection of Druses and Exudates

The disease occurring in the retina may occasionally prevent the proper evaluation
of biometric features. Retinal disease can significantly affect the quality and per-
formance of the recognition. The subject can be warned that the quality of his/her
retina is changing and artefacts (warn to go to an ophthalmologist) appear, i.e. they
are making recognition difficult. Large areas of the retina image impacted by disease
or any disorder will lower the recognition performance, and thus retina image qual-
ity counts by rating the concepts of ISO/IEC 29794-1. At the present time, we are
focusing on detecting and delimiting the exudates/druses and haemorrhages in the
image, automatically detecting the position of the macula and blind spot. These are
the reference points by which we determine the location of pathological findings. We
associate the centre of gravity of the blind spot with the centre of gravity of the mac-
ula (yellow spot). Afterwards, we locate the centre of a given point on this abscissa,
which is the reference point for comparing and positioning not only the biometric
features in the image, but also the diseases and disorders. The greatest negative con-
sequence of vision is spread to the part called the fovea centralis, where the sharpest
vision is located. Once this area is damaged, it has a very significant impact on sight.
It is also relevant to detect the quality of blood flow within the retina. There is still a
lot to do in all areas of imaging and video processing for medical purposes, as input
data is very different.

Due to the lack of images with ARMD in the creation of this work, the images
with exudates will be used as well. Druses arising from ARMD are very similar
to those exudates that occur in diabetic retinopathy. For this reason, it is possible to
detect these findings with the same algorithm. In both cases, there are fatty substances
deposited in the retina, which have a high-intensity yellow colour (see Fig. 11.20).
Their number, shape, size and position on the retina differ from patient to patient.

The detection of droplets and exudates works with the green channel of the default
image (Fig. 11.17 left). A normalised blur with a mask of 7 × 7 pixels is used.
This is due to the exclusion of small, unmarked areas that are sometimes difficult
to classify by an experienced ophthalmologist. This Gaussian adaptive threshold is
then superimposed on this fuzzy image, which is very effective in defining suspicious
areas. The threshold for Gauss’s adaptive threshold is calculated individually for each
pixel where this calculation is obtained by the weighted sum of the adjacent pixels of
a given pixel from which a certain constant is subtracted. In this case, the surrounding
area is 5 pixels, and the reading constant is 0, so nothing is deducted. The result of
this threshold can be seen in Fig. 11.17 middle. Only now a mask containing the
areas of the bloodstream and optical disc that have already been detected earlier
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Fig. 11.17 (Left) Original image; (middle) thresholding; (right) obtained suspicious areas

can be applied. If this mask was used at the beginning, it would adversely affect
this threshold because it would create too much contrast in the image between the
excluded areas and the rest of the retina. This would cause the contours of the blood
vessels and the optical disc to be included in suspicious areas, which is undesirable.
After the mask is applied, the image is then subjected to a median smoothing with
a 5 × 5 matrix size to remove the noise. The resulting suspicious areas are captured
in Fig. 11.17 right.

Retinal images, whose bloodstream contrasts very well with the retina, cause
the contours of these vessels to be included in suspicious areas. To prevent this, it is
necessary to adjust the bloodstream mask before it is used. Editing is a dilation of this
mask in order to enlarge the blood vessels. The difference between the original and the
dilated mask is shown in Fig. 11.18 left and right. As soon as this mask is applied,
unwanted contours are excluded from the image being processed. A comparison
between suspicious areas using an untreated and modified mask can be seen in
Fig. 11.19 left and right.

The final step is to determine which of the suspected areas are druses or exu-
dates and which not. For this purpose, the HSV colour model is used, to which the
input image is converted. The HSV colour model consists of three components: hue,
saturation and value, or the amount of white light in the image.

First, the contours of the suspicious areas are determined in order to calculate their
contents. If the content of a given area is greater than 3 pixels, the corresponding

Fig. 11.18 (Left) Original mask; (right) mask after dilatation
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Fig. 11.19 (Left) Suspicious areas with untreated mask; (right) suspicious areas with a modified
mask

Table 11.2 Overview of HSVs for classification of suspicious areas

Value Limit 1 Limit 2 Limit 3

H 30–12 30–15 30–19

S 255–170 255–120 255–187

V 255–120 255–84 255–75

area in the HSV image is located. From this, the average colour tone, saturation and
brightness of this area can be calculated. Experimenting on the different images set
out the limits set out in Table 11.2. If one of the areas falls within one of these limits,
it is a druse or exudate.

Once a region has been classified as a finding, its centre of gravity is calculated
using the mathematical moments, which represents the centre from which a circle is
created to indicate the finding. Labelling is first performed on a blank image, from
which external contours are selected after checking all areas. These are plotted in the
resulting image so that individual circles do not overlap the detected findings. The
result of the detection can be seen in Fig. 11.20 (see Fig. 11.21).

11.2.2 Testing

The algorithm has been primarily designed to detect findings in Diaret databases, but
we also use images from the HRFIDB, DRIVE, and four frames from the bottom of a
camera located in the biometric laboratory at the Faculty of Information Technology,
Brno University of Technology, to test the robustness. These databases differ in image
quality, which greatly affects the accuracy of detection. Table 11.3 shows their basic
characteristics. In the initial testing of other databases, the algorithm seemed entirely
unusable. After analysng the problem of incorrect detection, the parameters were
modified and the algorithm achieved better results.
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Fig. 11.20 Detection result

Fig. 11.21 Haemorrhage (left), detection of suspected areas (centre) and haemorrhage (right)

Table 11.3 Database characteristics

Database Number of frames Format Size Camera FOV

DIARETDB 0 89 PNG 1,500 × 1,152 – 50°

DIARETDB 1 130 PNG 1,500 × 1,152 – 50°

HRFIDB 16 JPG 3,504 × 2,336 Canon CR-1 45°

DRIVE 20 TIF 565 × 584 Canon CR5 45°

BUT retinal
database

4 PNG 3,888 × 2,592 Canon CR-1 –
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To evaluate the success of detecting the background mask, optical disc and fovea,
an ophthalmologist is not required. These parts of the retina may also be determined
by a layman after initial training on the basic anatomy of the retina. However, to
evaluate the accuracy of detection, it is necessary to compare these results with the
actual results, where detection was performed by a manual physician, optimally
an ophthalmologist. These findings are relatively difficult to identify and detection
requires practice. Evaluating images is also time consuming. Determination of the
findings was carried out manually on the basis of a test program in the presence of a
student at the Faculty of Medicine at the Masaryk University in Brno. In addition, the
DIARETBD0 and DIARETDB1 databases are attached to diaretdb0_groundtruths
and diaretdb1_groundtruths, where there is information about what symptoms are
found in the image (red small dots, haemorrhages, hard exudates, soft exudates,
neovascularisation).

In order to detect micro-aneurysms, haemorrhages, exudates and druses, a test
program has been developed to speed up and automatically evaluate this process.
The test program will display two windows to the user. The first window will display
an original image with automatically marked holes through which the matrix is
placed. On this matrix, you can click through the cursor to pixels (30 × 30) that
we want to mark as finds. In the second window there is an original image from the
database—see Fig. 11.22.

The output from the test program provides four types of data: true positive, false
positive, true negative, false negative. We obtain these values by comparing ground
truth and automatically evaluated areas for each frame. The resulting values are
averaged from all images in order to determine overall sensitivity and specificity.
Sensitivity for us, in this case, represents the percentage of the actually affected parts
of the retina classified by automatic detection as affected. The true positive rate is
obtained using the formula:

TPR = TP

TP + FN
. (2.1)

Fig. 11.22 Making ground truths of diseases
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Specificity, or true negative rate in our case, means the percentage of healthy parts
classified by automatic detection as a healthy retina. We will calculate it according
to this relationship:

TNR = TN

TN + FP
. (2.2)

As we can see in Table 11.4, the optical disc was misidentified in eight cases.
Incorrect optical disc detection is caused by poor image quality; these shots contain
shadows or light reflections from the bottom of the camera. In one case, incorrect
detection causes an exudate of the same size and intensity as the optical disc.

The following two tables show the results of individual flaw detection tests
(Tables 11.5 and 11.6).

To test the possibility of using the algorithm for other fundus cameras, we use
images from the HRFIDB [19] and DRIVE [32] databases, along with four frames
from the BUT retinal database. In the first test, the algorithm over these databases
showed zero usability. This result causes a different image quality. Table 11.7 shows
the success of optical disc detection. The best results were obtained over the HRFIDB
database and on the pictures from the BUT database. These pictures are of good
quality and do not contain significant disease manifestations.

The following tables show the success of detecting findings: exudates, druses,
micro-aneurysms, haemorrhages (Tables 11.8 and 11.9).

There were no signs in the pictures taken from the school camera (Table 11.10).

Table 11.4 Optical disc

Database True positive False positive Success rate [%]

DIARETDB0 85 4 95.29

DIARETDB1 126 4 96.82

Table 11.5 Results of DIARETDB0

Diaretdb0 Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 94.26 99.41 99.65

Microanalysis and haemorrhage 92.66 99.24 99.24

Table 11.6 Results of DIARETDB1

Diaretdb1 Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 90.28 99.32 99.65

Microanalysis and haemorrhage 91.46 99.35 99.42
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Table 11.7 Results of OD detection

Database True positive False positive Success rate [%]

HRFIDB 16 0 100.00

DRIVE 19 1 94.73

BUT retinal database 4 0 100.00

Table 11.8 Results of HRFIDB

HRFIDB Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 69.81 98.76 98.36

Micro-aneurysm and haemorrhage 18.30 99.87 99.51

Table 11.9 Results—DRIVE

Drive Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses 63.63 99.70 99.70

Micro-aneurysm and haemorrhage NA 98.63 98.53

Table 11.10 Results—BUT retinal database

BUT retinal database Sensitivity [%] Specificity [%] Success rate [%]

Exudates and druses NA 99.93 99.93

Micro-aneurysm and haemorrhage NA 99.97 99.95

11.3 Biometric Information Amounts in the Retina

The third part of this chapter summarises our research in computing the amount of
information in retinal images. We analysed the available databases on the Internet
and on our own, we computed the amount of bifurcations and crossings there are,
and made a first model of the occurrence of these points in the retina. Based on this
result we are working on computing a theoretical model for estimating the amount
of information (the maximum amount of embedded information in the retina). The
grid with occurrence probability distribution is shown in the figures as the end of this
section.

In the future, we want to start determining entropy in retina images. Entropy is
sometimes also referred to as a system disorder. It is one of the basic concepts in
many scientific fields. Information entropy is also called Shannon entropy. In the
following lines, the entropy term will always mean information entropy. We will
count entropy as a combination of possible variants. For example, fingerprinting
methods can be used to calculate retinal biometric entropy. The entropy counting
of the biological properties of the eye itself is limited by the sensing device. The
resulting entropy is then related to the available resolution. The reason why we want
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to estimate the maximum, average and minimal entropy is to get the idea of how
precise the recognition could be and how many people we can use this technology
for. It is believed that the retinal biometric entropy is corresponding to 10 times more
then our population has, however, this has not been proven until today.

Estimations for eye biometric entropy were done by several researchers. Daug-
man [33] analysed binary iris features, on which the Hamming distance is used for
comparing all subjects of a database to each other. He related the score distribution
to a Bernoulli Experiment having N = μ(1−μ)

σ 2 degrees of freedom, where μ is the
observed Hamming distance mean value and σ 2 is the variance, respectively.

Adler et al. [34] referred to the biometric information as biometric uniqueness
measurement. The approaches are based on a brute force estimate of collision, esti-
mating the number of independent bits on binarised feature vectors and the relative
entropy between genuine and impostor subspaces.

Nauch et al. [35] analysed the entropy of i-vector feature spaces in speaker
recognition. They compared the duration-variable p subspaces (Gaussian distri-
bution p(x) ∼ N

(−→μp, �p
)
) with the full-duration q spaces (Gaussian distribution

q(x) ∼ N
(−→μq, �q

)
), simulating the automatic recognition case for the analytic pur-

poses of estimating the biometric information of state-of-the-art speaker recognition
in a duration-sensitive manner.

Arakala et al. [15] used an enrollment scheme based on individual vessels around
the blind spot. Each vein line is represented by a triple position thickness angle,
where the position is the angle in degrees to the centre of the blind spot, the thick-
ness of the vessel is again in degrees and the angle is the slope of the vessel against
the thought line passing through the centre of the blind spot. It was found that the
position attribute corresponds to a uniform distribution of probability, the distribu-
tion of the angles corresponded to a normal distribution with a centre at 90° and a
mean deviation of 7.5°. Two peaks appeared in thickness, so the description of the
probability distribution was divided into peak and normal distributions. The study
resulted in an approximate entropy value of 17 bits.

11.3.1 Theoretical Determination of Biometric Information
in Retina

Based on the previously mentioned work [15], we try to count biometric entropy
in a wider area around the blind spot. First, we mark the ring area with a radius of
distance between the blind spot and fovea and cut off the blind spot. Then we mark
crossings and bifurcations. The resulting region we unfold from polar coordinates to
Cartesian ones. The resulting rectangle is then used for easier indexing of the place.

Using this principle, we expect deployment at any point of area. Then, using the
combinatorial Eq. (3.1), we calculate the maximum (theoretical) number of feature
points. We simulate all combinations of points in area. In this equation, we are
particularly interested in the position of the points, then the angle at which the
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Fig. 11.23 Unfolding interest area

individual vessels are at the centre of the blind spot, and finally their thickness.

� =
(

p · r
n

)
·
(

ω + 2
3

)
·
(

t + 1
2

)
, (3.1)

where r is the width of the ring in pixels, p is the width in pixels of the expanded ring
around the blind spot, n is the average number of features (crossings and bifurcations)
in the image, ω is the number of possible angles that the vessels enclose with each
other and t (in the Fig. 11.23) is the maximum vessel thickness. The first part of
the formula expresses the possible location of features. It is a combination without
repetition—two features cannot occur in the same place. The angles ω usually have
a value of about 120°, as their sum will always be 360°. Angles can be repeated, so
a repeat combination is used in the formula. Likewise for the last part. The vessel
thicknesses of two out of three will be used for their resolution. The third thickness
is usually the same as one of the two previous ones.

When adding derived parameters from several retina samples, we can approxi-
mately calculate how many combinations of all parameters are within their limits.

� =
(

p · r

n

)

·
(

ω + 2
3

)

·
(

t + 1
2

)

=
(

360 · 120
20

)

·
(

60 + 2
3

)

·
(

12 + 1
2

)

= 6.2×1080. (3.2)

11.3.2 Used Databases and Applications

For the purpose described at the beginning of this section, we used three pub-
licly available databases: Messidor [18], e-ophtha [36] and High-Resolution Fun-
dus (HRF) [19]. The Messidor database contains 1,200 eye fundus colour numerical
images of the posterior pole. Images were acquired by three ophthalmologic depart-
ments using a colour video 3CCD camera on a Topcon TRC NW6 non-mydriatic
retinograph with a 45° field of view. The images were captured using 8 bits per colour
plane, at 440 × 960, 240 × 488 or 304 × 536 pixels. 800 images were captured with
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pupil dilation (one drop of Tropicamide at 0.5%) and 400 without dilation. The e-
ophtha database contains 47 images with exudates and 35 images with no lesions.
The HRF database contains 15 images of healthy patients, 15 images of patients with
diabetic retinopathy and 15 images of glaucomatous patients. Binary gold standard
vessel segmentation images are available for each image. Additionally, the masks
determining Field of View (FOV) are provided for particular datasets. The gold stan-
dard data is generated by a group of experts working in the field of retinal image
analysis and medical staff from the cooperating ophthalmology clinics.

We randomly selected 460 images from Messidor, 160 images from e-ophtha and
50 images from HRF. In the selected retinal images, both left and right eye images
were available. Images were reduced to a resolution of about 1 Mpx in order to fit
images on screen.

We developed three application software modules (marked as SW1, SW2 and
SW3). SW1 was developed for manually marking blind spots, yellow spots and
features as well as determining their polar coordinates. We marked all retinal images
via SW1 one by one. At first, we marked the boundary of the blind spot and then
the centre of the yellow spot. SW1 considered the blind spot as the pole and the
line between the blind spot to the yellow spot as the polar axis. Therefore, the angle
between the two spots was 0°. SW1 considered the distance between two spots as the
unit distance. Usually, the distance in pixels was not equal for two different retinal
images. However, SW1 considered distance as one unit for each image. Therefore,
the position of the yellow spot in every image was (1, 0°) in polar coordinates. After
marking two spots, we marked each feature by a single click. SW1 estimated the
polar coordinates of each feature by increasing clockwise and scaling distance.

SW2 was developed to conduct the marking process automatically and to com-
pare its detection accuracy with the manually marked-up results. The details of this
software were summarised in one master thesis [37].

SW3 was developed to estimate the number of features in different regions as
shown in Fig. 11.23. SW3 loaded all marked retinal images one by one and mapped the
polar coordinates of features to Cartesian coordinates. After that, SW3 presented the
intensity of occurring features in the area of 5 × 5 pixels by a range of varying shades
of grey. The darker shade represented the higher occurrence of features, whereas the
lighter shade represented a lower occurrence. Then SW3 drew two circles in order to
show the boundary of the location of features, where the inner circle covered a 90%
area of the outer circle. Two circles were split up into four sectors by a horizontal
line and a vertical line. Radiuses were drawn every 18°, which split each sector into
five regions. The percentage of the occurrence of features in each region was written
outside of the outer circle. SW3 also drew two ellipses, Eblind and Eyellow, in order
to show the region surrounding the blind spot and the yellow spot, respectively. The
sizes of the ellipses were dependent on a threshold value δ1. That means the size
of a single ellipse was increased until the number of features inside that ellipse did
not cross the δ1 value. SW3 also drew an arc along the x-axis. The width of the arc
was decided by a threshold value of δ2. We set δ1 to 10 and δ2 to 500, based on the
number of labelled points in all retinae.
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11.3.3 Results

On average, we found 48 features on each image. The success rates of locating blind
spots and the yellow spot automatically were 92.97% and 94.05%, respectively. The
wrong localisation of spots was caused primarily because of spots that were too bright
or too dark. The average deviation of a feature marked by SW1 and SW2 was about
5 pixels [37]. Eblind occupied 2.040% of the retina area, whereas Eyellow occupied
2.728% of the retina area, as shown in Fig. 11.24. The number of features is very
low inside Eblind and Eyellow, especially inside Eyellow. Therefore, Eyellow was bigger
than Eblind. On the real retinal image, near the yellow spot, the branches were so
small and the blood vessels were so thin that they were not captured by the fundus
camera. Therefore, a wide empty space can be seen near Eyellow in Fig. 11.24. We
also noticed that the major blood vessels often directed to four main directions from
the blind spot.

By creating a bifurcation and crossings scheme, we can now start generating
formulas for calculating the biometric entropy of retinal images using our biometric
recognition method. In the Fig. 11.24, there are areas around the blind spot and the
fovea where almost no markers are present. The area between the maximum edge
(grey in the picture) of the points and the (green) inner circle is eliminated from the
calculation. It’s a part that did not have to be seen in most of the pictures.

Fig. 11.24 Merged all bifurcations and crossings from the marked images

www.dbooks.org

https://www.dbooks.org/


340 L. Semerád and M. Drahanský

11.4 Synthetic Retinal Images

The last section of this chapter will be devoted to our generator of synthetic reti-
nal images. We are able to generate a synthetic retinal image, including the blind
spot, macula and vascular patterns with randomly generated or predefined features
(crossings and bifurcations). Now we are working on the additional features that will
decrease the quality of such images, e.g. reflections, diseases. We are also working
on supplementing that with something that will generate diseases and damage on the
image of retina, so we can create a unique database for deep learning.

The main reason for a such generator is that it is very difficult to get a large-
scale database(s) with thousands of retinal images. To collect retinal images from
subjects, you need the appropriate equipment (minimally digital ophthalmoscope or
even better a fundus camera) and you need to find the volunteers who will be willing
to let their retinas get acquired. The best way, comparably with fingerprint areas in
biometric systems (synthetic image generators SFinGe, Anguli and SyFDaS), is to
use a generator of synthetic images. With that it is possible to generate any large-
scale database, where you can predefine (in a configuration file) the setting, i.e. how
many images with which background, distortions and features should be generated.
Therefore, this part is very important for biometric systems, because with this way
the training and testing of algorithms for biometric retinal recognition could be done
on large-scale databases. It is important that the quality of the images correspond to
the real images, i.e. some work is still ahead of us.

First, a basic idea of how the generator will work and how its main parts are identi-
fied is described. Furthermore, the designs of the individual parts of the generator are
described in greater detail and are intended to create partial sections of the resulting
image. The aim is to design the generator so that it generates images as close as
possible to real images of the retina. Real images often have a very different look in
terms of colour distribution or detail. One of the test options which we compare the
reality of created images is using the bifurcation and crossing searching described
in Sect. 11.1.4.

The generator is able to create the desired number of randomly generated synthetic
retinal images at the selected resolution and the selected general properties, such as
the image angle or the zoom rate according to the specified parameters.

The generator can then generate a large number of images of the retina, where it
is possible to train and test various algorithms. If we add a disease creation module
to the generator, we can also test algorithms for further detection.

11.4.1 Vascular Bed Layer

The retinal vasculature of the retina consists of the arterial and venous channels.
Both of these beds can be divided into upper and lower branches, which are further
divided into nasal and temporal branches.
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When generating the texture of this layer, the generator uses pre-generated branch-
ing positions for the arterial and vein branches. The method for generating these
positions is described in Sect. 11.4.4. Generally, the generator first creates separate
textures of the arterial and venous channels, which then merge into one final tex-
ture (see Fig. 11.25). This division is necessary due to the way the vascular bed is
rendered. It counts that blood vessels do not cross each other.

Partial textures are merged so that when the artery and vein are in the same position,
a new value of the colour and transparency of the texture is calculated at that position.
In this calculation, both original colours are used with respect to transparency, with
the unified textured vein being drawn above the artery. If only the artery or vein is at
the given position, it will be redrawn into the resulting texture unchanged. If there is
no vessel in the position, this position remains transparent on the resulting texture.

Partial textures then arise through the gradual plotting of the individual branches
of the arterial or venous passages.

In order for a natural resulting vessel shape, it is necessary that the connectors
between the individual branches of the branch take the form of a curve without
significant sharp breaks at the branching points. Because the curve is the link between
the sequences of points, it cannot be divided into several parts at one point. Therefore,
the branched tree of the given branch is plotted sequentially, as shown in Fig. 11.26.
A description of this plotting is given in Chap. 4.4.

Gradual rendering takes place by gradually forming a curve from the initial point
of the branch of the vascular stream, which passes through the following branches
of branching, where it continues with a wider vessel at any one of the endpoints of
the vascular bed. As soon as the vessel is drawn from the beginning to the end, a

Fig. 11.25 (Left) Arterial fluid texture; (middle) vein texture; (right) resulting vascular fluid texture

Fig. 11.26 Gradual rendering of the upper temporal branch
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Fig. 11.27 Connecting the new vessel to the already depicted vessel at the branch point

new starting point is chosen as one of the already drawn branch points, in which the
beginning has the widest still unrefined vessel. The vessel with this starting point
will be drawn in the same way as the first vessel. This procedure is repeated until all
the blood vessels of the branch are drawn. To plot the vessel the cubic Bézier curve
is used: see [38].

The vessel is plotted sequentially from the starting point to the endpoint following
the pair of branching points running consecutively. For each point’s pair and the
relevant control points that affect the shape of the curve between them, the partial
points of the curve are then calculated.

Calculated Bézier curve points are then linked by lines whose points are calculated
using the Bresenham algorithm. A texture of the blood vessel is drawn around this
curve, consisting of partial segments. For each point of the curve, a semicircle is
drawn in the direction of the line below which the point belongs. The Bresenham
algorithm is also used to draw this semicircle, with the radius of the circle (line
length) equal to half the width of the vessel at that point. In this rendering process,
all points belonging to the texture of the vessel are rendered, but for one point its
colour is calculated several times with different parameters. The resulting colour
is selected as the colour whose individual components have the highest value. The
lightest and least transparent colour corresponds to the smallest distance from the
centre of the vessel.

This method of selecting the resulting point colour is the reason why arteries and
veins have to be plotted separately and then combined into one texture in another
way. However, it is used when plotting a new vessel to connect this vessel to the
already drawn vessel at the branch point: see Fig. 11.27.

The basic RGB colour of the texture is in the artery (160, 15, 15) and in the
vein (150, 5, 15). The individual colour components are adjusted for each frame by
multiplying by rand (0.99, 1.01).

11.4.2 Layers

When looking at the real images of retinas, it is possible to easily identify four
different parts of the image that can be generated separately and then be combined
into a final image. These subparts are represented as image layers in the generator,
where the lowermost layer contains the background texture of the retina. Here, the
layer containing the texture of the optic nerve target overlaps. Both of these layers
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are covered by another layer containing the texture of the vascular bed. All layers
then overlay the textured frame layer. Figure 11.28 shows the plot of the individual
layers in the given order.

The layer has the shape of a square surface on which the texture is applied. The
side size of this area is equal to the shorter side of the rendering window, which
is multiplied by two scaling parameters. The centre of the layer is aligned to the
centre of the rendering window, with only the parts of the generated text within the
rendering window being included in the resulting image.

Because of the layer size and texture variable applied to it, the generator uses a
custom coordinate system to create textures, where it then maps the individual pixels
of the texture.

Scaling, shifting and rotating the layer and the texture are designed to be inde-
pendent of texture generation. While scaling modifies the layer size and does not
manipulate the coordinate system, rotation and displacement do not change the posi-
tion of the layer but are applied to the coordinate system.

As can be seen in the real frames shown in the earlier sections of this work, the
images of the retina do not always occupy the whole area of the image, or sometimes
they are partially cut-off. Therefore, we resize the layer so that the size of the rendering
window does not change, as well as the resolution of the resulting image.

As with the first case, but this time without changing the frame texture layer size,
it is possible to choose how much of the retina is presented in the image, so be sure to
choose the pixel size of the fundus camera that would capture such a frame. Different
settings for this parameter are shown in Fig. 11.29.

Real motion capture is not always ideal. The image is more or less rotated and
possibly slightly shifted. The displacement may also be deliberate if another part
of the retina is being captured. For this reason, these transformations also allow the
proposed generator. Both transformations are applied to the coordinate system, not
to the layer itself. First, a shift is made followed by rotation. For each layer, it is
possible to set the own rotation and displacement size with both layers transforming
over layers. Thus, when the background is rotated and shifted, the target of the optic
nerve and the vascular bed is shifted. Further transformation at the optic nerve target
layer can then change its position relative to the background. Likewise, the position of
the vascular bed can be changed to the lower two layers. Since these transformations

Fig. 11.28 A gradual render of layers. (left) Background layer; (left middle) adding a layer of the
optic nerve target; (right middle) adding a vascular bed layer; (right) adding a layer of frame
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Fig. 11.29 The different sizes of the retrieved part of the retina: (left) maximal zoom; (middle)
central zoom; (right) no zoom

are intended to simulate a different eye position when capturing the retina, they are
not applied to the frame layer.

11.4.3 Background Layers

The retina background is mostly reddish; the fovea and ex-macular periphery are
darker. The area between the fovea and the border of the macular area is then lighter.
In a more detailed view, smaller objects of different colours and intensities are visible
throughout the area, creating a dense vascular network of the cavity.

The generated background texture is opaque to basic RGB colour (200, 60, 40).
Figure 11.30 shows the resulting background texture.

This function describes the randomness of the background texture and is generated
by the shadowing choroid. It uses Perlin noise, which has three octaves, frequency
and amplitude set to 1, and returning values from interval <−1;1>. Perlin noise is
also initialised by a random number, making it different for each frame.

Fig. 11.30 (Left) The resulting background texture without a noise function; (right) with a noise
function
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Graphically, the function is depicted in Fig. 11.31 where the dark areas indicate
the positive values of the noise and the light areas of the negative values. When the
dark area is getting lighter, the closer value of the function is to 1 and when the light
area is getting lighter, the function’s value is closer to −1. At the transition of dark
and light areas, the function has a value of 0.

The texture of the Optic Disc (OD) target is largely transparent except the ellipse-
shaped area that contains the texture of the OD target itself. When generating a
texture inside this ellipse, the base colour of the RGB value is again returned (250,
250, 150). Each folder is multiplied by the function rand (0.98, 1.02), as well as
background textures to ensure the variability of the base colour for different images.

Figure 11.32 shows the resultant texture of the OD target (cut from the overall
layer texture) together with the individual colour components from which it was
composed. However, the colour of the texture still changes in the final rendering, and
because of its partial transparency, its colour also affects the colour of the background
texture beneath it.

For each image, the final position of the OD is slightly different due to accidental
slight rotation and displacement. When the left-eye image is generated, the rotation
is 180°.

Fig. 11.31 Noise function

Fig. 11.32 The texture of the optic nerve target and its parts: (left) red texture colour component;
(left middle) green; (middle) blue; (right middle) texture transparency; (right) resulting texture
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11.4.4 Generating a Vascular Bed

Before drawing a vascular bed, it is first necessary to generate the branch positions of
the blood vessels and properties of these points needed for plotting. These points are
generated separately for each of the major branches of the artery and vein. Branching
points are generated for all branches by the same algorithm with different values of
some parameters. Their generation is divided into two parts. First, a tree of branch
points is generated, and then the positions of individual points are gradually cal-
culated with respect to the already calculated positions of the other points in the
tree.

Each branch point has several properties that need to be generated:

• Point position (counted later),
• Distance from previous point—length of line between these two points,
• Vessel width—value from interval <0;1> , where 1 has a vessel at the starting

point of a given branch, and a value of 0 has the endpoints of a given branch.
• Point type

– Y-branching—the vessel is divided into two approximately equally wide vessels,
– T-branching—the vessel is divided into a wide and narrow vessel,
– no branching—the vessel is not split, just passing through the point,
– end of vessel.

• Types of vessel (see Fig. 11.33)

Fig. 11.33 Colour illustration of different types of vessels
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– left and right strong blood vessels (blue),
– left/right wider weak blood vessel emerging from the left/right strong blood

vessel (green),
– other blood vessels (red).

The root of the branch tree is the point located at the centre of the optic nerve
target. It creates one of the following branching points, and then generates the tree
recursively so that each new branching point generates the following two branch
points. Generation ends when the vessel’s width at the newly created point is ≤0.
The properties of the following branch points are also calculated, and the design of
the method of calculating some of them was based on the information published in
[39].

The distance from the previous point d is calculated for the following two points
according to the vessel width wa at the current point as follows:

d =
{

rand(0.15, 0.05) for wa > 0.15
rand(0.05, 0.02) else

. (4.1)

This has the consequence of the narrow blood vessels having more branches.
First, depending on the type of branch of the current point, the ratio is calculated

to which the right and left successor are divided. If it is the current point Y-branch,
the ratio of right and left successors is calculated as r: (1 – r), where r = rand (0.45,
0.55). In case of T-branching, it is 50% probability r = rand (0.95, 0.99), otherwise
r = rand (0.01, 0.05).

If the current point is a part of the leftmost or rightmost strong blood vessel, this
probability is altered in the T-branch, such that the weaker T-branch branches are
generated towards the boundary of the quadrant. In the beginning, there is a 70%
probability that the weaker vessel is generated towards the boundary of the quadrant.
If this happens, this probability will decrease by 10% for the type of vessel (left or
right); if not, the probability will increase by 10%.

The value of the vessel’s width is then calculated for both of the following branch
points using their distance from the actual point, the vessel width at the current point,
and the division ratio as follows:

wr = (
wa × √

r
) −

(
wa × dr

10

)
− dr

20
, (4.2)

wl =
(

wa × √
1 − r

)
−

(
wa × dl

10

)
− dl

20
. (4.3)

If the width of the calculated vessel at the next point is not positive, this point
is marked as the vessel endpoint. If the calculated width is negative, the distance of
that point from the previous point is adjusted to the width of the vessel, which at that
point is equal to zero.

In other cases, it is decided whether the following point will be a Y-branch or a
T-branch. One of the auxiliary features of a point is the probability of selecting the
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Y-Branch for its following branching points, that is, at the starting point, set to 20%.
If the selected branch type of the next branch is the Y-branch, then this probability
is set to 0% at this next point. If the T-branch is selected and the next point is the
weaker T-branch of the current point, the probability for this next point is set to 40%.
Otherwise, the probability is increased by 25%.

First, the position of the leftmost and rightmost points of thick blood vessels
(type 1) is calculated, then it points the position of the left/right wider weak blood
vessels resulting from vascular type 1 (type 2) and finally, the position of the other
vessel (type 3). Within these types of vessels, the order of points in the calculation of
the positions is given by the width of the vessel at a given point, with the positions
of the wider vessels being counted first. Point positions are counted in this order
because not all tree branch points generated will eventually be used.

When calculating the position of a particular branch point, the set of positions
on which this point may be located is first determined. From the beginning, these
are the positions around the previous branch point at the distance that this particular
point has generated as a property. Then, depending on the direction of the vessel at
the previous point, this set is limited by the interval of angles in which the position
of the point may be. For each of the remaining positions, the weight of the position
is calculated based on the deviation from the centre of the interval.

On the real images, the observed part of the retina is circular and the rest of
square image is black. A majority of the right-hand portion of the image tends to see
a smaller part of the retina in the shape of a semicircle or rectangle. This is to know
where the picture is; for example, if it is not turned.

The generator allows you to choose which quadrant the mark will be in, and also
whether the mark will have the shape of a semicircle or rectangle. The generated
texture has a black colour and, depending on the coordinates, only the transparency
of the texture changes.

11.4.5 Testing

We are now comparing the created synthetic retinal images with our ground truth.
We use manually marked, real retinal images to create a density map, where there
are the most bifurcation and crossing points. Using the same procedure, we want to
automatically create a density map for synthetic retinal images and compare both
results.

We developed the applications SW1 and SW2 (see Sect. 11.3.2). SW1 was devel-
oped for manually marking blind spots, yellow spots and features, as well as deter-
mining their polar coordinates. We marked all retinal images via SW1 one by one.

SW2 was developed to estimate the number of feature points in different regions.
SW2 loaded all marked retinal images one by one and mapped polar coordinates of
feature points to Cartesian coordinates. After that, SW2 presented the intensity of
occurring features in 5 × 5 pixels by a range of shades of grey. The darker shade
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Fig. 11.34 (Left) Density occurrence of summarised real retinas; (right) density in synthetically
generated retinas

represented higher occurrence of features, whereas the lighter shade represented
lower occurrence.

Using the application described in the previous chapters, 1,000 images were gener-
ated in which the crossover and bifurcation were found. The occurrence frequencies
were merged with the SW2 described in Sect. 11.2.2 and graphically represented
result seen in Fig. 11.34 left.

It was then possible to visually compare the results of synthetic and real retinal
images. In Fig. 11.34 right, there are visible features on the blind spot. It’s a side
effect. On real retinas, there were no marked features inside the blind spot.

Figure 11.34 shows the summarised occurrences of crosses and bifurcations for
real (left) and synthetic (right) retinal images. Picture (left) is marked manually and
picture (right) is marked automatically. Both pictures are made up of about a thousand
retinas. The shades’ range of the right picture is expanded because automated search
for markers included features inside the blind spot. Features inside the blind spot
in the left image were removed during manual labelling. Although the application
generates blood vessels in the synthetic retina symmetrically, some similarities with
the summation from the real retina can be traced.

The application is composed only of basic algorithms. As a result, there could
be regular shapes seen in Fig. 11.34 right. We assume that, based on real retinas
research, we can better specify the distribution of crossings and bifurcations in the
model.

11.4.6 Generating Synthetic Images Via Neural Network

In another application, we first generate healthy images, where we can train algo-
rithms for detection and extraction of the optical disc and fovea. Furthermore, we
generate diseased retinal images with manifestations of ARMD and diabetes, e.g.
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Fig. 11.35 Comparison of synthetic image and the closest training image from the database

haemorrhages, exudates. The neural network learns such images, which we have in
the training set. At the moment, we only have images only for ARMD and diabetes;
however, new images are stored in the database, i.e. it is possible to add new features
representing new ophthalmologic diseases.

In biometric systems, it is often the case that a damaged image does not pass
through the recognition. However, there is often not enough training data for detecting
algorithms. Therefore, it is advisable to create large databases of synthetic meshes
damaged by disease.

We have trained Generative Adversarial Networks (GANs) [40] to generate syn-
thesised retinal images. A GANs-based retinal image synthesiser consists of two
neural networks: a Generator (G) and a Discriminator (D). We have not used any
extra information (such as blood vessel trees) to generate retinal images using GANs.
However, we have emphasised maintaining a balance between the two competitors
(i.e. G) and (D) during training. We have found that if this balance is not kept, G
may end up generating only blurry retina images without high-level structures, such
as blood vessel trees, optic discs, macula, etc.

Algorithm of GANs-based Retinal Synthesiser is as follows:

• For k times

– Prepare a mini-batch of retinal images
{(

x, x̂
)m

i=1

}kn
where m is the mini-batch

size.
– Update D using

{(
x, x̂

)m

i=1

}kn
.

• For r times

– Prepare a mini-batch of noise vectors,
{
(z)m

i=1

}rn
.

– Update G using
{
(z)m

i=1

}rn
.

We have used 1,200 images from the public database Messidor [18]. These images
were acquired by three ophthalmologic departments using a colour video 3CCD
camera on a Topcon TRC NW6 non-mydriatic retinograph with a 45-degree field of
view. The images were captured using 8 bits per colour plane. Among these 1,200
images, 588 images were 960 × 1440, 400 images were 1488 × 2240 and 212 images
were 1536 × 2304. In our experiments, we resized all of the images to the same size
(i.e. 256 × 256) by bicubic interpolation.
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Fig. 11.36 Examples of generated synthetic retinal images

We have followed the deep convolutional neural network-based architecture sug-
gested in [41] with minor modifications. Table 2 shows the model architecture for 256
× 256-sized images. The mini-batch size was set to 32 (i.e. m = 32). Noise vectors
were drawn from the uniform distribution. As a loss function, binary cross-entropy
was used. As an optimiser, RMSProp with a learning rate of 0:0001 and a decay of
3e−8 was used. The dropout value was set to 0:5. For batch normalisation, momen-
tum was set to 0:5 instead of default value 0:99. For LeakyReLU, it was set to 0.2
instead of the default value of 0:3. For all convolutional and transposed convolutional
layers, stride = 2, kernel size = 5 and padding = same was used. l2 regularisation
was applied only for weights and biases of the transposed convolutional layers. For
all other settings, the default values of Tensor Flow’s Keras API were used.

After training, the generator is used to generate synthesised retinal images from
noise vectors. The Structural SIMilarity (SSIM) measure shows how similar the
synthesised images are to the training data. SSM = 0 means there is no similarity
and SSIM = 1 means that two images are the same. You can see some achieved
results from this GAN generator of synthetic retinal images in Figs. 11.35 and 11.36.
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A sample database of generated images is available at https://strade.fit.vutbr.cz/
databases/synthetic_retina.

The database is separated into two parts: healthy images and disease-affected
images, which is especially diabetes and ARMD.
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19. Kohler T, Budai A, Kraus M, Odstrčilík J, Michelson G, Hornegger J (2013) Automatic no-
reference quality assessment for retinal fundus images using vessel segmentation. In: 26th
IEEE international symposium on computer-based medical systems. pp 95–100

https://strade.fit.vutbr.cz/databases/synthetic_retina
https://doi.org/10.1155/2008/280635
http://web.media.mit.edu/%7eraskar/Eye/TheDirectOphthalmoscope.pdf
http://www.freepatentsonline.com/4620318.pdf
http://www.freepatentsonline.com/4923297.pdf
http://www.freepatentsonline.com/5532771.pdf


11 Retinal Vascular Characteristics 353

20. Ortega M, Penedo MG, Rouco J, Barreira N, Carreira MJ (2009) Retinal verification using a fea-
ture points based biometric pattern. EURASIP J Adv Signal Proc 2009. Article ID 235746:13 pp

21. https://github.com/Lukass2/RetinaFeatureVectorExtractor.git
22. Albert DM, Miller JW et al (2008) Principles and practice of ophthalmology, 3rd edn. ISBN

978-1-4160-0016-7
23. Ryan SJ (2006) Retina. Elsevier Mosby. ISBN 0323043232
24. Diagnosis and classification of diabetes mellitus. Diabetes Care, American Diabetes Associa-

tion, Issue 33, 2010, pp 62–69. https://doi.org/10.2337/dc10-s062
25. Scanlon PH, Wilkinson CP, Aldington SJ, Matthews DR (2009) A practical manual of diabetic

retinopathy management. Wiley-Blackwell. ISBN 978-1-405-17035-2
26. Sosna T (2016) Diabetická retinopatie (Diabetic retinopathy), 2nd edn. Prague, Axonite CZ.

ISBN 9788088046059
27. Cavallotti CAP, Cerulli L (2008) Age-related changes of the human eye. Humana Press, p 400
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Chapter 12
Vascular Biometric Graph Comparison:
Theory and Performance

Arathi Arakala, Stephen Davis and K. J. Horadam

Abstract Vascular biometric templates are gaining increasing popularity due to
simple and contact free capture and resilience to presentation attacks. We present
the state of the art in Biometric Graph Comparison, a technique to register and
compare vascular biometric templates by representing them as formal graphs. Such
graphs consist of a set of vertices, representing the branch, termination and crossover
points in the vascular pattern, and a set of edges. An edge represents the relationship
between a pair of feature points that are directly connected by a vessel segment in a
vascular biometric image. We summarise how this information has been successfully
used over the past 8 years to improve registration and recognition performance for
the vasculature under the palm, wrist, hand and retina. The structural properties of
biometric graphs from these modalities differ, with retina graphs having the largest
number of vertices on average and the most complex structure, and hand graphs
having the smallest number of vertices on average and being the least connected. All
vascular graphs have similarities to trees, with the ratio of edges to vertices being
close to 1. We describe our most recent algorithms for biometric graph registration
and comparison, and our performance results. We are interested in the possibility
of using biometric graphs in a template protection scheme based on the paradigm
of dissimilarity vectors. As a first step, we wish to improve registration. Certain
modalities like retina have an intrinsic reference frame that makes registration more
straightforward. Other modalities may not have an intrinsic reference frame. To
overcome this, we introduce the notion of anchors—subgraphs of a biometric graph,
having between 5 and 10 vertices, that occur consistently in samples from the same
individual—that would enable the dissimilarity vector scheme to be applied to any
vascular modality. Experiments on palm and wrist databases show that all individuals
had at least some sets of 6 captures which could be used to identify an anchor,
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and anchors were identified in 94% and 88% for the palm and wrist databases,
respectively.

Keywords Biometric graphs · Graph comparison · Dissimilarity vector
representation · Vascular graphs

12.1 Introduction

The purpose of this Chapter is to provide a single resource for biometric researchers
to learn and use the current state of the art in Biometric Graph Comparison1 for
vascular modalities.

Vascular biometric recognition is the process of identifying and verifying an indi-
vidual using the intricate vascular pattern in the body. Sources of vascular patterns for
personal identification and verification are the palm, dorsal hand, wrist, retina, finger
and face. Traditionally, vascular patterns have been compared using feature-based or
image-based templates. Here we work with feature-based templates only. The basic
feature points in a vascular network are vessel terminations (where the vessels leave
the image frame of reference or become too fine to be captured in the image), vessel
bifurcations (where one vessel splits into two) or (in two-dimensional images) vessel
crossovers, where two vessels appear to intersect.

Biometric Graph Comparison (BGC) is a feature-based process, which enhances
and improves on traditional point pattern matching methods for many vascular modal-
ities. Its key idea is the replacement of a feature point based representation of a bio-
metric image by a spatial graph based representation, where the graph edges provide
a formal and concise representation of the vessel segments between feature points,
thus incorporating connectivity of feature points into the biometric template. This
added dimension makes the concepts and techniques of graph theory newly available
to vascular biometric identification and verification.

In particular, the comparison process is treated as a noisy graph comparison prob-
lem, involving local minimisation of a graph editing algorithm. From this, we can
extract a Maximum Common Subgraph (MCS), the noisily matched part found to
be common to the two graphs being compared. Part of the fascination and value of
working with BGC has been to investigate the topology of the MCS: MCSs from
two vascular images from the same biometric instance usually look very different
from those from different instances.

Over the years since its introduction, BGC has been shown by ourselves and
colleagues to improve recognition accuracy, and if more of the topology of the MCS
is used to discriminate between genuine and impostor comparisons, this improvement
can be quite dramatic. It is also possible to exploit specific graphical characteristics
of different modalities to speed up the recognition process.

1Previously we used the non-standard term Biometric Graph Matching (BGM).
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The Chapter is organised as follows. In Sect. 12.2, we define the vascular Biomet-
ric Graph and explain its background and context. A very brief description is given
of its extraction from a vascular image. Section 12.3 outlines the formal description
of the two components, registration and comparison, of BGC, with some history
of its development from its earliest form in [7] to its newest form presented here.
(Pseudocode for our Algorithms appears in the Appendix.) In Sect. 12.4, we sum-
marise the body of results in [6–8, 20, 21]. We compare the graph topology of the
public retina, hand, palm and wrist databases we use, and describe the topological
features of MCSs we have identified from which to derive comparison scores. We
provide the supporting evidence for our view that the Biometric Graph representa-
tion increases the speed and accuracy of registration, accuracy of comparison, and
that using multiple graph structures in the MCS can improve comparison scores over
single structures.

Section 12.5 presents one stage of an application of BGC to the problem of pri-
vacy protection of vascular templates. The key idea is a feature transformation using
a dissimilarity vector approach. Preliminary investigation of the comparison perfor-
mance of this approach has given encouraging results for retina databases, where
an intrinsic alignment exists in the images [5]. A new problem is faced if no such
alignment exists. Here we present our first results on a potential solution to this prob-
lem, where we look for small but characteristic structures we call “anchors”, which
appear in sufficiently many of an individual’s samples to be used for registration.

12.2 The Biometric Graph

This section presents the Biometric Graph we use for application to vascular biomet-
ric modalities. We describe our motivation for using a spatial graph representation
over more traditional feature point based templates. We provide a formal definition
of a vascular Biometric Graph and give a brief overview of the extraction process.

12.2.1 The Biometric Graph

Biometric Graphs, as we define them, were first introduced in 2011 [17] for the fin-
gerprint modality. Extraction of ridge bifurcations and terminations as feature points
is a fundamental technique in a ridge-based modality, and usually, ridge skeletons
are also extracted from images. The novelty of the Biometric Graph concept lies in
constructing a formal spatial graph from these extracted feature points only. Each
feature point is represented as a vertex (also called a node). An edge (also called a
link) is a straight line drawn between adjacent pairs of feature points on the skeleton.
The edge preserves, in summary form, the connectivity relationship between feature
points typically found by tracing along the ridge skeleton. (This differs from the
earlier ISO/IEC 19794–8:2006 standard, in which additional “virtual minutiae” and

www.dbooks.org

https://www.dbooks.org/


358 A. Arakala et al.

“continuation minutiae” are inserted along the skeleton, to facilitate piecewise-linear
representation of the connecting ridgeline.) A disadvantage of our representation is
that more detailed information held by a ridgeline curving between feature points
is lost, particularly in regions of high curvature where an edge forms a shortcut
between feature points. Figure 12.9 in Appendix 1 demonstrates this. An advantage
of our spatial graph representation which can outweigh this loss of information is
computational efficiency. An edge can be represented in code concisely by its two end
vertices. Furthermore, the full repertoire of graph theoretical techniques is available
for data analysis.

12.2.1.1 Vascular Graphs

Direct observation of two-dimensional images of vessel-based modalities shows the
physical branching and crossing network of vessels strongly resembles a formal spa-
tial graph drawn in the plane. For example, there is some visible similarity between
the pattern of the principal retinal vessels and a rooted tree (with the root vertex in
the optic disc), and some visible similarity between the pattern of the principal wrist
vessels and a ladder graph or lattice. These similarities to spatial graphs are more
pronounced to the naked eye for vascular modalities than in the ridge-based modal-
ities for which we first studied Biometric Graphs. Fundamentally, this is because
blood vessels do not often exhibit high curvature, so in most cases the vessel seg-
ment between adjacent feature points is quite well represented by a straight line. This
was our motivation in [7] for introducing Biometric Graphs and Biometric Graph
Comparison into vascular biometric modalities.

The idea of a vascular graph has arisen independently (and at approximately the
same time) in the biomedical literature. Drechsler and Laura [13], working with
three-dimensional hepatic vessel CT (computed tomography) images of the liver,
extract a three-dimensional vascular graph from the vessel skeleton (using voxels not
pixels—crossovers do not occur). They classify voxels into three classes: regular, end
(terminations) and branch (bifurcations). Branch and end voxels are represented by
vertices in the graph, while regular voxels are grouped and represented by edges. The
vascular graph provides data for further image recognition, registration and surgical
planning. Deng et al. [12] extract a vascular graph (which they term a vascular
structure graph model) from the skeleton of the vessel tree in two-dimensional retinal
fundus images, to register the images for clinical diagnosis and treatment of retina
diseases.

Definition 12.1 A vascular graph extracted from a vascular image is a spatial graph
with the vessel features of terminations and bifurcations (and crossovers if the image
is two-dimensional) forming the graph vertices. A pair of vertices will have an edge
between them if and only if we can trace along a vessel from one feature to another,
without encountering any other feature in between. More formally, if I is a vascular
image then its vascular graph is g = (V, E, μ, ν, A), where V is a set of vertices
representing the feature points extracted from I , E is a set of edges between those
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pairs of vertices representing feature points which are adjacent in I , μ is the vertex
labelling function, ν is the edge labelling function and A is the attribute set (which
may be empty) comprising a set of vascular attributes that apply to feature points or
to the vessel segments connecting them. The order of g is the number of vertices |V |
and the size of g is the number of edges |E |. If the vascular image I is of a biometric
modality then g is a (vascular) Biometric Graph (BG).

For the BGs in our research, μ associates each vertex with its unique two-
dimensional spatial coordinates (x, y) while ν associates each edge with its two-
dimensional Euclidean length � and slope θ .

12.2.2 Biometric Graph Extraction

To construct the Biometric Graph from a two-dimensional biometric image, the
vessel skeleton is extracted from the image and the feature points are found. The
feature points are labelled to form the vertex set, and their coordinates are recorded.
The existence of an edge between vertices is determined by tracing the skeleton from
each feature point until another is encountered. The length and slope of each edge
is calculated and recorded. Other feature point and vessel segment attributes can be
calculated at the same time.

Differences in image capture device and lighting source require different image
processing techniques for different modalities to reduce noise. There are some com-
mon image processing steps in skeleton extraction for any vascular modality, includ-
ing grayscale conversion, Region-of-Interest (ROI) selection, noise reduction, bina-
risation and skeleton thinning. Those we employed for palm, dorsal hand, wrist and
retina images are described in [6, 8, 20, 21] and the references therein, and will not
be further detailed here. For skeleton extraction from finger images, see [23].

A specific problem encountered with extracted skeletons has been the existence of
genuine short spurs due to tiny vessels and spurious short spurs due to noise [6, 8, 13,
23]. This is overcome in post-processing by pruning the skeleton of branches shorter
than a heuristically selected threshold such as 5, 10 or 15 pixels. For palm vessels, an
additional complication has been the inclusion of short to medium length spurs in the
skeleton which correspond to skin ridges or flexion creases. Palm principal ridges
and creases can be considered as part of the biometric pattern and are difficult to
remove completely. However, our experiments have shown that removing the short
to medium spurs after the detection of vertices and edges improves the process of
registration and comparison. See [8] for details. Wrist vessel skeletons often have
segments running perpendicular to the main direction of the vessels, some of which
are due to flexion creases, but as some are vessels, these segments are not removed [6].

Feature points are extracted from the 1-pixel-wide skeleton by counting neigh-
bouring pixels in a standard 3 × 3 pixel window moving across the skeleton. One
neighbour indicates a termination pixel, two neighbours indicate a vessel pixel,
three neighbours indicate a bifurcation pixel and four or more neighbours indicate a
crossover pixel. As a consequence of image noise, neighbouring pixels in the same
3 × 3 pixel region may be labelled as bifurcation points. To handle this, if a central
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pixel is a bifurcation point and there are two or more neighbours which are bifurca-
tion points on different sides of the central pixel, then only the central pixel is listed
as the bifurcation point.

A much faster method of extracting feature points from the vessel skeleton, which
may be preferable to the above, is the use of convolutional kernels as in [1].

The vertex and edge labels form the basic biometric template. Additional attributes
can be extracted from the skeleton to create richer templates. Vertex attributes can
include type (termination, branching or crossover). Edge attributes can include the
length (as a pixel count) of the skeleton segment between two feature points and the
vessel segment average width (or calibre) which can be measured before thinning
the skeleton.

Figure 12.1 shows typical vascular pattern images from the databases of each of
the four modalities we have investigated and their corresponding Biometric Graphs,
extracted as above.

Biometric Graphs have been similarly extracted from skeletons of finger vessels
by Nibbelke [23] and from skeletons of face vessels by Gouru [16]. Whilst skeleton
tracing is probably the best technique in current use for identifying adjacent feature
points in the image skeleton, it is possible that alternatives may prove useful. Khakzar
and Pourghassem [19], working with retina images, determine for each pair of feature
points whether they are adjacent or not by deleting the two points from the skeleton
and checking if the remaining connected components of the skeleton all contain
feature points. Existence of a component without feature points means the two points
are connected in the skeleton, otherwise they are not. Connectivity is recorded in (the
upper half of) an adjacency matrix. However, edge attributes aren’t extracted in this
approach, and since the adjacency matrix can be found immediately from the edges
found by skeleton tracing, it is not clear if the approach has advantages over skeleton
tracing.

(a) Palm Image (b) Wrist Image (c) Hand Image (d) Retina Image

(e) Palm Graph (f) Wrist Graph (g) Hand Graph (h) Retina Graph

Fig. 12.1 Vascular patterns from four modalities a Palm b Wrist c Hand and d Retina vessels and
their corresponding spatial graphs in (e–h)
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12.3 The Biometric Graph Comparison Algorithm

In this section, we present a formal description of the Biometric Graph Comparison
Algorithm. The algorithm has two parts: BGR (Registration) which requires 4 steps;
and BGC (Comparison), in which the 3 steps are finding the graph edit distance,
identifying the Maximum Common Subgraph (MCS) and scoring comparisons using
graph-based difference measures.

In our opinion, graph registration is the key component of the algorithm, and
is more critical than the graph comparison component. Although it can often be
assumed that the capture mechanism enforces an approximate alignment of biometric
images in the first place, experience tells us that alignment is seldom ideal, and large
differences can occur between captures from the same person, particularly as the
time between captures increases. Unless two extracted BGs from the same biometric
instance can be aligned well, comparison cannot be effective. Essentially this is
because we need a good similarity score for a genuine match, in order to minimise
the number of false non-matches. The variance of genuine similarity scores across a
population tends to be higher than the variance of impostor similarity scores, which
have a distribution of low scores that is roughly independent of registration.

Alignment on a point pattern, such as the set of vertices in a BG, is a standard
matching technique. Commonly used methods are the Iterative Closest Point (ICP)
algorithm and the Modified Hausdorff Distance (MHD) algorithm. Registration using
point pattern alignment algorithms has been previously studied for hand and palm
vasculature. In 2009, Chen et al. [10] showed that ICP provided better alignment
and consequently superior recognition results than either MHD or point-to-point
comparison for palm veins.

In 2014, we showed [21] that for hand veins, registering on edges of BGs using
our Biometric Graph Registration (BGR) algorithm gives as good or better recogni-
tion performance than either ICP or MHD applied to the point patterns of vertices,
especially when the BGs are small. Subsequently, we have modified BGR to permit
registration on structures larger than single edges.

12.3.1 BGR-Biometric Graph Registration

Our registration algorithm, in essence, a greedy RANSAC algorithm, looks for struc-
tural similarities in a pair of graphs on which to align them, so that the two graphs
are in the same spatial frame, free from the effects of translation and rotation of their
images during capture.

There is no restriction on what type of structure (i.e. subgraph) can be used for
alignment within a particular modality and database. For instance, the algorithm
could be tested on a database for different choices of alignment structure, so that
the structure giving the best performance could be identified. Or, the frequency of
occurrence of different types of structure within the database could be used to select
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a preferred structure. Or, if a particular structure was found to be characteristic of
a database, appearing more frequently than might be expected in a random spatial
graph with comparable numbers of vertices and edges such a “motif” structure could
be identified and chosen to align on. Or, it is possible that for a particular modality,
each biometric instance exhibits a characteristic structure in most of its images, and
such an “anchor” structure could be used for registration.

If the modality possesses an intrinsic coordinate system which can be identified
in each database image, registration by the structure might not be required.

To take advantage of the additional structural information in a BG, we align on
an edge, or a more complex subgraph such as a claw2 (a degree 3 vertex plus its 3
adjacent edges and 3 neighbouring vertices), a pair of claws joined by a common edge
(which we call a two-claw), or we could choose a cycle of length 3 or 4. In theory
there is no restriction to the type of subgraph chosen for alignment, but computational
limits, time constraints and the smaller number of more complex structures present
in a BG usually dictate that simpler structures are preferable.

The BGR algorithm is described in more detail in Appendix 2. The algorithm is
flexible so that any structure could be used for alignment. It has four steps which
are outlined in the following subsection. The four design parameters in the BGR
algorithm are a structure S, a similarity score function f depending on the structure
selected, a structure pair shortlist length L and a vertex comparison tolerance ε. The
structures S we have used are: Edges (E), Claws (C) and Two-claws (T). If we need
to specify the parameters we denote the algorithm by BGR (S, f, L , ε).

Our initial implementation of BGR in 2011 was for BGR (E, f, L , ε) [7]. This has
undergone some modification in the intervening years, so that in 2015 we introduced
an improved shortlisting mechanism [8] for edge pairs in Step 3 of BGR rather than
simply selecting the L highest scoring pairs. We discovered that most edge pairs
(in palm BGs) were short and often scored a high rank compared to longer pairs.
This prevented longer pairs that gave a better registration from appearing in the top
L shortlist. To overcome this, for BGR (E, f, L , ε) we split the set of edge pairs
into long and short edge pairs. The mean of the medians of the edge lengths in the
two graphs is selected as the threshold. If both edges of an edge pair are longer
than this threshold, the edge pair is categorised as long. All other edge pairs are
labelled as short. The shortlist consists of the L/2 top scoring long edge pairs and
the L/2 top scoring short edge pairs. This modification ensures that long edge pairs
that potentially give better alignment can be included in the shortlist to get a better
registration of the graphs. This modification implies that lines 13–19 in the general
algorithm in Appendix 2 are run twice, once each for the L/2 long and L/2 short
edges.

In our earlier work [5–8, 20, 21] we assumed that the images in a database
are roughly pre-aligned. Here, to provide the most generally applicable registration
algorithm, we have modified the similarity scoring of edge pairs in Step 2 of BGR
to remove any dependence on pre-alignment. This modification means that in lines

2Previously we called this a star, inaccurately, as it is formally a 3-star: an n-star is a vertex of
degree n ≥ 1, plus its adjacent edges and neighbouring vertices.
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29–31 of the algorithm in Appendix 2, only the edge lengths are used and edge slopes
are not.

12.3.1.1 BGR Algorithm Outline

Step 1: Initialisation Select S, f , L and ε. The two graphs g and g′ to be registered
are inputs to the algorithm. The registration process begins by identifying and
listing all the structures of the selected type S in each graph.

Step 2: Similarity scoring structure pairs Each structure in the first graph g and
structure in the second graph g′ is compared using f to obtain a similarity score.
The similarity function chosen depends on the structure. For example, when edge
pairs are compared they are scored based on the similarity of their lengths only (if
no pre-alignment is assumed) or of their lengths and slopes (if some pre-alignment
is assumed). When claw pairs are compared they are scored based on the similarity
of the lengths of their three edges and two included angles. When two-claw pairs
are compared, the similarity of the corresponding claw structures and connecting
edges determines the score.

Step 3: Shortlisting structure pairs and aligning on them The structure pairs
are ordered based on decreasing order of similarity score. The top L high scoring
structure pairs (for S = C or S = T ) or the top L/2 short and top L/2 long edges
(for S = E) are shortlisted for further processing. For every shortlisted structure
pair, the two graphs are translated and rotated so that a specific part of the structure
becomes the origin of the reference frame. For example, if edges are used, the
vertex with smaller x coordinate becomes the centre of the coordinate system and
the other vertex defines the direction of the positive x-axis. If claws are used, the
centre of the claw becomes the origin while the longest edge defines the direc-
tion of the positive x-axis. If two-claws are used, the connecting edge defines the
coordinate system, again taking the vertex with smaller x coordinate as the origin
of the reference frame.

Step 4: Pair alignment scoring and graph registration With both graphs in the
same coordinate system, aligned on a shortlisted pair, each vertex in the first graph
g is matched to a vertex in the second graph g′ by finding the first vertex in g′
that is within ε pixels from it. If a vertex in g does not find a corresponding vertex
in g′ within ε pixels of it, it will not be matched. The total number of matched
vertices is normalized by the geometric mean of the number of vertices in the two
graphs to provide a rough measure of alignment we call QuickScore (QS). That
is, if g has n vertices, g′ has n′ vertices and the aligned graphs have c matched
vertices within tolerance ε, the distance between g and g′ is calculated to be

QS(g, g′) = 1 − c√
n × n′ . (12.1)

The pair of structures that gives the smallest score is chosen to register g and g′.
The resulting registered graphs are denoted ga and g′

a .
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12.3.1.2 Other Approaches to Registration of BGs

Deng et al. [12] in 2010, working with retina BGs, used a two-stage process for regis-
tration, also based on edge-to-edge correspondence. Their first (global) registration
stage is also a RANSAC variant, where a vertex plus its neighbours in g is com-
pared in g′. In practice, they restrict to degree 2 and 3 vertices, which corresponds
to us choosing 2-stars and claws, respectively, as the structure (Their second stage
registers vessel shape so is not in the scope of BGR). Using the BG vertex set, they
compare the registration performance of several spatial topological graph structures
commonly used in computer vision and graph-matching research: the Delaunay tri-
angulation graph (DT), the minimum spanning tree of the DT graph, the k-nearest
neighbour graph (KNN) and the minimum spanning tree of the KNN graph. They
show that the BG technique substantially outperforms these other topological graph
structures in graph registration, and state this is because BG characterises anatomical
properties of the retinal vessels while the others do not.

Lupascu et al. [22], working with manually extracted retina BGs and S = E ,
enlarge the feature vector describing each edge from 2 to 9 dimensions by adding
further spatial information relating to end vertices and midpoint of the edge, and
vary f to be the Euclidean distance in 9-dimensional space. They set L = 30 to test
g against g′ and also test g′ against g, choosing only the edge pairs which appear
in both lists. Then they use a quadric model to estimate the global transformation
between the images using the endpoints of the matched edges.

Nibbelke [23], works with the earlier version of BGR (E, f, L , ε) for finger
vessel BGs. He systematically tests alternatives to steps 2 and 3 of the algorithm.
First, he tries to improve the rough pre-orientation of images provided by the capture
system by testing if the midline of the finger provides an intrinsic reference frame,
but finds this not to be robust, leading to worse recognition performance than BGR
in several experiments. Orienting all edges in the same direction before comparison
does improve performance, as does sorting edge pairs using only their 1-dimensional
difference in slope (i.e. using f = Δθ and ignoring their difference in length). He
also varies f to include weighting the difference in slope, to overcome the same
problem of not finding the best edges for registration in the top L . His best results
are found for f = Δθ .

If an intrinsic reference frame does exist for pre-alignment in a particular vascular
modality, it can be used to register the BGs. We have used this approach effectively
with retina BGs in [5] (see Sect. 12.5) taking the centre of the optic disc as the centre
of the graph coordinate system while the frame orientation is kept the same.

If no intrinsic reference frame exists for pre-alignment in a particular vascular
modality, and we cannot even assume rough pre-alignment by virtue of the capture
mechanism, then the BG may provide topological information we can use instead.
We investigate this approach in our search for “anchors” in Sect. 12.5.
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12.3.2 BGC-Biometric Graph Comparison

The second part of our algorithm is noisy graph comparison, to quantify the similarity
between a pair ga and g′

a of registered BGs. If we take advantage of the topology of
the BGs in both the registration and noisy graph comparison algorithms, the speed
and accuracy of graph comparison can be greatly enhanced.

The algorithm we use is based on using edges as structures as in [20], which
is generalised in [6], and further generalised here. The BGC algorithm is flexible,
so that any structure can be used. It has three steps: determination of the minimum
graph edit path between ga and g′

a , construction of the Maximum Common Subgraph
(MCS) of ga and g′

a , and finally, measurement of the difference between ga and g′
a

using the MCS.
We have previously demonstrated that the topology of MCSs generated from pairs

of graphs from the same biometric instance (mated comparison) is different from that
of MCSs generated from graphs from different instances (non-mathed comparison)
[6, 21].

The four design parameters in the BGC algorithm are: a structure S, cost matrix
weights α1 and α2 used in the edit distance computation and measure d for scoring
the distinctiveness or difference of ga and g′

a . The structures S we have used are
Vertices (V), Edges (E), Claws (C) and Two-claws (T). If we need to specify the
parameters, we denote the algorithm by BGC(S, α1, α2, d).

12.3.2.1 BGC Algorithm Outline

Step 1: Graph Edit Distance The comparison process assumes that we have
identified and listed all the structures of the selected type S in each registered
graph. The registered graphs are compared using an inexact graph matching tech-
nique that computes the minimum cost graph edit path that converts ga to g′

a . To
do this, we use the Hungarian algorithm based method proposed by Riesen and
Bunke [26]. One graph can be converted to another by 3 types of edit operations—
insertions, deletions and substitutions. Each edit operation will incur a cost and
the graph edit distance is the sum of the edit costs.
Selection of the right costs for these operations is critical to getting a meaningful
measure of edit distance. The form of cost matrix we use is

C =
[

C1 C2

C3 C4

]
(12.2)

and depends on the choice of S. If the number of structures in ga is m and in g′
a is m ′,

C is a (m + m ′) × (m ′ + m) square matrix, C1 = [ci j |1 ≤ i ≤ m, 1 ≤ j ≤ m ′]
and ci j represents the the cost of substituting structure ui of ga with structure
v j of g′

a . The sub-matrices C2 and C3 are square m × m and m ′ × m ′ matrices,
respectively, with all elements outside the main diagonal equal to ∞. The diagonal
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elements, ciδ of C2 and cδ j of C3 indicate the cost of deleting structure i from ga

and inserting structure j into g′
a , respectively. C4 is an all zero matrix.

Cost matrix C is fed into the suboptimal optimisation algorithm, which finds a
local minimum edit cost. Output will be this lowest cost of converting ga to g′

a
and the list of edit operations that achieve it. The larger the number of structures
in each pair of graphs, the bigger the matrices will be and the longer it will take
the Hungarian algorithm to compute the optimum result.

The cost matrix entries we use depend on structure S and two weights α1 and α2.
The case S = V appears below as Example 12.1. Cost matrices for other structures
are defined on similar lines (see Appendix 3) , where α2 will be weighted by the
sum of the degrees of all the vertices in the structures.

Example 12.1 (Vertex-based cost matrix, i.e. m = |V |, m ′ = |V ′|.) Denote the
degree of a vertex by D(.) and the Euclidean distance between two vertex labels
(spatial coordinates) by ||.||. The cost of substituting a vertex vi of ga with a vertex
v′

j of g′
a is given by

ci j = ||vi , v′
j || + 	i j . (12.3)

where 	i j is the cheapest cost obtained as output when applying the Hungarian
algorithm on a cost matrix for subgraphs gvi and g′

v′
j

(see [7] for details). These

subgraphs are constructed from the vertices vi and v′
j and their first-hop neighbour-

hoods, respectively. The total cost of deleting a vertex will be the sum of the cost of
deleting the vertex itself (α1) and the cost of deleting its neighbourhood vertices (α2

for each neighbouring vertex),

ciδ = α1 + (α2 × D(vi )) . (12.4)

Similarly, the cost of inserting a vertex is

cδ j = α1 + (α2 × D(v′
j )) . (12.5)

Step 2: Maximum Common Subgraph We use the locally optimal edit path out-
put by the Hungarian algorithm to define a subgraph of g′

a . It includes all those
structures of g′

a that are included in the list of substitutions. The structures deleted
from ga and the structures inserted into g′

a are excluded, but any additional cor-
responding edges are included. This subgraph is called the Maximum Common
Subgraph (MCS) of ga and g′

a as it represents all those structures in g′
a that are

“matched” to structures in ga . We also call it an S-induced subgraph of g′
a as

the subgraph is induced by the substituted structures in g′
a (Note that defining the

MCS as a subgraph of ga is equivalent.).

Definition 12.2 Assume BGC(S, α1, α2,−) has been applied to registered graphs
ga and g′

a in Step 1 above. Their (S-induced) Maximum Common Subgraph (MCS)
is the subgraph of g′

a consisting of all structures in g′
a that are included in the list of
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Fig. 12.2 This figure shows
the Maximum Common
Subgraph between the palm
vessel graphs in a and b
resulting from applying BGC
with the structure S to be c
vertices, d edges, e claws
and f two-claws. Vertex- and
edge-induced MCSs are
bigger than claw- and
two-claw-induced MCSs as
the conditions for the
structures to match in the
former cases are not as strict
as in the latter

(a) Palm graph 1 (b) Palm graph 2

(c) Vertex induced MCS (d) Edge induced MCS

(e) Claw induced MCS (f) Two-claw induced MCS

substitutions, together with any edges that exist between these substituted structures
in g′

a , for which a corresponding edge exists in ga .

Depending on the structure used, the MCS can be vertex induced, edge induced, claw
induced or two-claw induced. Figure 12.2 shows each type of MCS for a typical pair
of palm BGs from the same biometric instance. The edge induced MCS is the most
connected with the richest structure of the four. As S gets more complex than E ,
the corresponding MCS will be sparser, but the nodes and edges that form part of
the MCS will be more reliable. In our experience, the node-induced subgraph tends
to miss out on some of the structure that is present in the edge-induced subgraph.
Therefore, overall for the biometric graphs in the databases we studied, we prefer S
to be edges.
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Table 12.1 Difference measures between g1 and g2, determined by counts of structures in their
MCS

d dv de dt dc1c2 ρc1

M |Vm | |Em | |Tm | |Vc1 | + |Vc2 | |Ec1 |
Ni or N |Vi | |Ei | |Ti | |Vi | |Vc1 |

Step 3: Difference Measures The MCS topology is used to define difference mea-
sures between ga and g′

a . There are many potential score functions to separate
genuine and impostor comparisons. We have tested 20 which are described in
Sect. 12.4.3. A selection of 5, that have proved the most effective, is presented in
Table 12.1. One of them, the Bunke–Shearer metric dv , is already known [9].
Call the two aligned graphs being compared g1 = (V1, E1) and g2 = (V2, E2),
with gm = (Vm, Em) as their MCS. All sets from gi , i ∈ {1, 2, m}, are sub-
scripted with i . Corresponding sets used to define the measures are the vertex
set Vi , the edge set Ei and the set of two-claws Ti . We are also interested in
ci = (Vci , Eci ), i = 1, 2, the first and second largest connected components of
gm . The measures have two forms, a distance

d = 1 − M√
N1 × N2

(12.6)

or density
ρ = M/N (12.7)

as detailed in Table 12.1.

The previous Sections have dealt with the formal aspects of vascular Biometric
Graph Comparison. In the next Section, we summarise the performance and practical
advantages and disadvantages already discovered using BGC.

12.4 Results

This section will describe the public vascular databases used for BGC so far and
compare key BG statistics across them. We summarise experimental results we have
obtained by applying BGC to BGs from databases of the four modalities we have
studied. The important outcomes from this work are

• that using graph structure in the registration algorithm can increase the speed and
accuracy of registration;

• that graph structure in the MCS can be exploited to increase recognition accuracy;
and

• that using multiple graph structures can improve similarity scores over single
structures.
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12.4.1 Vascular Databases

To our knowledge, the BGC algorithm has been tested on five vascular modalities:
Palm vessels representing the vascular pattern under the palm of the hand; Wrist
vessels representing the vascular pattern on the inside of the wrists; Hand vessels
representing the vascular pattern under the skin on the back (dorsal surface) of the
hand; Retina vessels representing the vascular pattern supplying blood to the retina;
and Finger vessels representing the vascular pattern under the skin of the finger.
We have tested the first four modalities. Finger vessel has been tested by Nibbelke
[23], who found that in this case BGC was not competitive with standard point
pattern comparison techniques. Gouru [16] in his work on Face vessels representing
the vascular pattern under the skin of the face, uses a database collected by the
University of Houston and extracts BGs. He claims to test BGC but no details are
given in [16].

Details of the databases used are summarised in Table 12.2. All are either avail-
able for download or on request from the researchers who collected them. The palm
and wrist image databases are obtainable from the Poznan University of Technology
(PUT) [18] and can be downloaded at http://biometrics.put.poznan.pl/vein-dataset.
The hand image databases are from Singapore’s Nanyang Technical University [27]
with images captured in the near-infrared (SNIR) and far-infrared (SFIR) wave-
lengths over three sessions each separated by a week. This database exemplifies the
kind of variation that can be expected in captures taken across sessions. This is typical
of a biometric scenario, where translation and rotation of the images occur between
captures due to human factors. Access to this database was obtained by emailing the
authors of [27]. Retina images are from the publicly available VARIA database [24]
accessible at http://www.varpa.es/research/biometrics.html. In Sect. 12.5 we also
refer to the ESRID retina database collected by RMIT University (c.f. [2]). This
database can be accessed by emailing the second author of [2]. The finger image
database used by Nibbelke [23] is from the University of Twente (UT) and can be
accessed by emailing the lead author of [23].

12.4.2 Comparison of Graph Topology Across Databases

In principle, there is no restriction on the structure used by the BG registration
and comparison algorithms. In practice, there are restrictions imposed by both the
physical form of the vasculature and by the limitations of image resolution and image
processing. How do we know what range of options is available?

We have already noted the visible similarity of vascular graphs to trees or lad-
ders. This results from the way the vasculature forms physically. Its purpose is to
deliver blood to and from tissues, with the capillaries forming the very fine vessels
connecting the arterial system to the venous system. Capillaries are so fine that this
interconnection is lost in many images, and vessels appear to terminate rather than
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Table 12.2 Vessel image databases used for BGC

Database Subjects ×
instances

No. of sessions Samples/session Total samples

PUT palm 50 × 2 (left,
right)

3 4 600

PUT wrist 50 × 2 (left,
right)

3 4 600

SFIR handa 34 1 ≥2 173

SNIR handa 123 1 ≥2 732

VARIA retinaa 37 1 ≥2 97

ESRID retina 46 1 9 414

UT finger 60 × 6 (different
fingers)

2 2 1440

aSubset obtained after removal of subjects who had only 1 sample present

rejoin. Typically, vessels do not branch into more than two sub-branches at the same
point. As well, while distinct principal veins and arteries might enter the biometric
ROI at separate points, all of the vasculature derived from each such vessel will be
connected. No sub-branches will actually be disconnected from a parent vessel.

Consequently, in a BG that is perfectly extracted from a high-quality two-
dimensional vascular image, there will be relatively few cycles, which will mostly
result from vessel crossovers. Vertices will have a low degree (most likely ≤4 with
maximum degree 4 occurring at crossovers). There will be no isolated vertices (i.e.
minimum degree will be 1) and the ratio of edges to vertices (the density of the BG)
will be similar to that of a tree and so, close to 1. The BG will be connected.

In practice, the image quality will affect the connectivity of the BG, as the image
processing algorithm will be unable to extract features from poor quality regions
of the image. The more complex the structure of interest, the greater the chance
that an occurrence of it will not be extracted in the BG from a particular image,
because a component vertex or edge is missing as a result of noise in the image, or
suboptimal sensing or image processing. For this reason we are also interested in the
largest connected component C1 of the BG. The size of the largest component is an
indication of the amount of noise in the image that has not been compensated for by
the image processing.

12.4.2.1 BG Statistics

A very basic question is how much the underlying BG statistics vary for different
databases for the same modality, as well as how much they vary for different modal-
ities. In Table 12.3, we record fundamental statistics for different BG databases:
numbers of vertices, edges, claws and two-claws, density and number of vertices in
the largest connected component C1 of the BG.
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Table 12.3 Mean (standard deviation) of BG topologies for each database. All data except for the
last row appear in [6]. Here V is the vertex set, E the edge set, C the claw set, V C1 the vertex set
of the largest connected component C1, and T the two-claw set
Database |V | |E | |E |/|V | |V C1| |C | |T |
Palm Left 103 (27.9) 109.9 (19.47) 1.05 (0.03) 93.7 (21.68) 37.6 (7.97) 28.21 (8.39)

Palm Right 98.5 (18.8) 104.1 (20.75) 1.05 (0.03) 89.5 (21.35) 35.4 (8.3) 26.39 (8.53)

Wrist Left 83.07 (16.66) 86.2 (18.61) 1.03 (0.04) 72.1 (19.76) 27.01 (7.85) 19.18 (8.14)

Wrist Right 81.4 (16.11) 83.9 (17.82) 1.02 (0.04) 70.5 (19.43) 25.6 (7.31) 17.66 (7.54)

Hand SFIR 51.7 (9.38) 48.8 (9.6) 0.94 (0.06) 34.6 (12.94) 21.6 (5.35) 19.94 (6.59)

Hand SNIR 39.4 (13.07 ) 37.6 (13.1) 0.95 (0.03) 27.9 (11.76) 17.3 (6.38) 15.36 (6.47)

Ret. VARIA 70.3 (27.9) 67.1 (29.23) 0.94 (0.07) 48.6 (20.98) 28.9 (13.7) 29.65 (15.28)

Ret. ESRID 146.2 (86.7) 152.6 (92.7) 1.03 (0.04) 109 (68.9) 73.3 (45.1) 75.4 (48.7)

Table 12.3 shows some interesting differences and similarities between the dif-
ferent vascular graphs. All the graphs have density quite close to 1, reflecting their
similarity to trees, as expected. The maximum degree of a vertex for each BG was
also determined but not recorded here as for every database the mode of the maxi-
mum degrees is 3. Between 30 and 40% of vertices in the BGs on average in every
database form claws. This indicates that bifurcations are commonplace in our vas-
cular modalities while crossovers are not as commonly seen.

Within modalities, the far-infrared images (SFIR) for hand vessels are superior
to the near-infrared (SNIR) as far as being able to extract BGs with usable structure
is concerned. With retina, the ESRID graphs are much larger and more connected
than VARIA graphs. There is also a large variation across the sizes of the graphs in
ESRID when compared to VARIA. The probability of finding a two-claw structure
in a retina BG is higher on average than for the other modalities.

The hand BGs are, nonetheless, the smallest and least structured of all modalities,
with lower connectivity evidenced by only 70% of their vertices belonging to the
largest component. The palm BGs are the second largest (after retina BGs) and most
structured, with a higher connectivity than the other graphs demonstrated both by
density and the fact that over 90% of the vertices belong to the largest component.

12.4.2.2 Proximity Graphs

Another topological measure we use to characterise the different BG modalities is
the distance a BG is from a proximity graph on the same vertex set. Proximity graphs
were defined by Davis et al. [11]. A proximity graph pε on spatial vertex set V is one
where a pair of vertices in V have an edge between them if and only if they are less
than ε units apart. That is, for a proximity graph, the edges are completely defined
by the spatial arrangement of its vertices. The closer a graph is to a proximity graph,
the more predictable its edges are.
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Table 12.4 [6] The mean
(standard deviation) distance
of a BG to its nearest
proximity graph

Database Proximity graph distance

Palm 0.017 (0.004)

Wrist 0.022 (0.006)

Hand SFIR 0.032 (0.007)

Hand SNIR 0.046 (0.018)

Retina VARIA 0.031 (0.010)

Thus, if g = (V, E, μ, ν, A) is a BG there is a family of proximity graphs
{pε , ε ≥ 0} defined by V . For each ε, a normalised distance between g and pε

can be determined from their adjacency matrices, using formulas described in [11].
The value of the proximity graph distance varies from 0 to 1, where zero implies that
the graph is a proximity graph. The minimum of these distances over the available
range of ε decides the specific value of the bound ε and the closest proximity graph
pε to g. Table 12.4 shows the average and standard deviation of this distance from a
BG to its nearest proximity graph, for each of the databases.

The BGs from palm and wrist vessels have the lowest average distances to a
proximity graph, implying that their edges are more predictable than the other BG
modalities. Edges are more likely to occur between nearby vertices in palm and wrist
BGs than for other modalities, which suggests that the relational information in the
graph representation is less surprising (has lower entropy). In principle, the higher
the distance, the more promising the vascular pattern is as a biometric modality.

12.4.3 Comparison of MCS Topology in BGC

In previous work [6–8, 20, 21], we have investigated many potential structures and
graph statistics in MCSs for their usefulness in BGC for finding information that
will satisfactorily separate genuine MCSs from impostor MCSs. Genuine MCSs
usually look quite different from impostor MCSs, the latter appearing fragmented
and broken as seen in Fig. 12.3. We have attempted in numerous ways to find measures
that capture this visually striking difference.

Here, we summarise our findings and discuss reasons for restricting to the struc-
tures and corresponding similarity score measures we now use.

Our initial application of BGC [7] was to the retina modality, which has been
repeatedly shown (on very small databases) to have high accuracy, with complete
separation of genuine and impostor scores typically being demonstrated for vertex
comparison approaches. In [7], with manually extracted BGs from the VARIA retina
database, we introduced the original BGC (with S = V in the comparison step). We
tested 8 measures based on the MCSs for both genuine and impostor comparisons.
The 6 normalised quantities were dv, de and the differences n2, n3, p2, p3 using
Eq. (12.6) corresponding to numbers of vertices of degree ≥2, vertices of degree
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Fig. 12.3 This is an example of the BGC algorithm when two samples from the same retina instance
are compared (genuine comparison) versus when two samples from different retina instances are
compared (impostor comparison). Note the MCSs are visually different, with the genuine MCS
having more vertices and a more complex structure than the impostor MCS

≥3, paths of length 2 and paths of length 3 in g1, g2 and gm , respectively. The 2 un-
normalised quantities were the density ρm = |Em |/|Vm | of gm and the variance σ 2

D of
the degree distribution of gm . Of these, the score distances for genuine comparisons
using vertices of degree ≥3 and paths of length 3 were too high to warrant further
use. Vertices of degree ≥2 and paths of length 2 were also not further considered, as
they correlated too highly with either dv or de.

Score fusion using dv and de gave better, but not significantly better, performance
than either single measure, probably because these measures are highly correlated.
In fact the least correlated measures are dv, ρm and σ 2

D . These measures completely
separated scores in two or three dimensions, an improvement on separation in one
dimension which is expected to become significant in larger retina databases.

In [20], we developed the first full BGC system to automatically extract retina
BGs and compare them, again using the VARIA database. Our intention was to see if
the results of [7] could be improved using automatic extraction of BGs. We retained
the measure dv, introduced dc1c2 based on the two largest connected components of
gm , and replaced σ 2

D by the maximum degree Dmax of a vertex in gm (another un-
normalised quantity). Again we showed that using dv alone gave complete separation
in the training set. Using two or all three measures in a combination of an SVM
classifier and KDE curves [20] or surfaces gave dramatic improvements in False
Match rate (FMR) (up to several orders of magnitude), when False Non-Match Rate
(FNMR) was very low.

For hand vessel BGs using the SNIR and SFIR databases in [21], we tested the
7 measures dv, de, |Vc1 |, |Vc1 | + |Vc2 |, σ 2

D , Dmax and, for the first time, the average
degree μD of the vertices in the MCS. The best-separating individual measures
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were dv, de and |Vc1 | + |Vc2 |, but as dv and de are highly correlated, the relatively
uncorrelated measures dv, |Vc1 | + |Vc2 | and σ 2

D were tested to see if multidimensional
scoring would improve performance over individual measures. In contrast to the case
for retina, we found little advantage in increasing the number of measures used. We
attribute this to the fact that hand BGs are appreciably smaller and more fragmented
than retina BGs (see Table 12.3 and [21, Fig. 3]) and will have correspondingly less
available topology in their MCSs to exploit.

As a consequence of these experiments, the measures we focussed on were dv,
de, dc1c2 , ρm ; and dc1 and dc2 , the measures using Eq. (12.6) corresponding to the
number of vertices in c1 and c2, respectively.

For the larger palm vessel BGs, in [8] we test these 6 measures3 and a further 4:
ρc1 ; the ratio of the number of isolated vertices I to the number of connected vertices;
the normalised total length d� of the edges in c1; and the ratio n4 of the number of
vertices with degree ≥4 in gm , to |Vm |. Equal Error rates using single measures were
competitive (under 5%) for within session comparisons for the measures dv, de, dc1 ,
dc1c2 , ρ and d�, with three of these, dv, de and dc1c2 , having competitive EERs across
sessions as well. The measure de outperformed all others. Testing score pairs showed
that pairing de with any of dc1 , dc1c2 and d� improved performance over the single
score de, with (de, d�) having the maximum gain.

In [6], we tested our ideas on all four modalities using a uniform approach. Our
results are outlined in the Sect. 12.4.4, which explains the selection of difference
measures in Table 12.1.

• Our attempts to quantify our observation that higher degree vertices occur more
frequently in genuine MCSs than in impostor MCSs (n2, n3, μD , σ 2

D , n4) coalesced
in the single measure dC of claws (i.e. of degree 3 vertices).

• Our efforts to quantify our observation that connected components are larger in
genuine MCSs than in impostor MCSs led to the measures dc1 , dc2 , dc1c2 , dI .

• Our wish to capture some spatial information rather than counts alone resulted
in d� and a new measure da found using Eq. (12.6) from the area of the smallest
rectangle containing the entire graph.

• Our efforts to quantify our observation that genuine MCSs have higher complexity
than impostor MCSs led us to use ρm , ρc1 , Dmax and a new measure dt using Eq.
(12.6) for the number of two-claws.

For convenience this subsection is summarised in Table 12.5. Measures that we have
only tested once before 2017 (p2, p3, μD , n4) are not included. Plainly this topic is
by no means exhausted.

12.4.4 Comparison of BGC Performance Across Databases

In this subsection, we outline the results and conclusions of our paper [6], in which we
evaluated the performance of BGC for the databases of Sect. 12.4.1. The individuals

3In fact the corresponding similarity measure 1 − d was used for the normalised measures.
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Table 12.5 Difference measures used in BGC
Year Mode dv de dC dc1c2 dc1 dc2 ρm ρc1 σ2

D Dmax dI d� da dt

2011 [7] Retina � � �a � �
2013
[20]

Retina � � �

2014
[21]

Hand � � �b �b � �

2015 [8] Palm � � � � � � � �c �
2017 [6] Alld � � � � � � � � � � � � �

an2 and n3 count the degree ≥2 and ≥3 vertices. dC counts the degree 3 vertices (or claws)
bUn-normalised counts used
cRatio of I to number of connected vertices, rather than normalised using Eq. (12.6)
dRetina, hand, palm, wrist

in each of the five databases (2 for hand) were divided in two, with BGs for one half
used for training and the other for testing, to maintain independence. For full details
of the experiments, see [6].

The first training experiment was to tune for BGR: to identify the best structure
S ∈ {E, C, T } for graph registration for each database, the optimal pair shortlist
length L and the tolerance ε. This list was selected based on observation. For each S, L
was varied by steps of 40 through the range [20, 220]. Because accurate registration is
crucial to the performance of BGC, we selected the L leading to highest registration
accuracy. There is a consequent trade-off in speed versus accuracy, as Table 12.6
demonstrates.

The second training experiment was to tune the parameters of BGC: the structure
S ∈ {V, E, C, T } and parameters α1, α2 for the graph edit computations and the
difference measure d for scoring MCSs. The parameters were each stepped by 2 in
the range [3, 9]. For each database, a subset of 1000 genuine and 1000 impostor
comparisons was selected at random and their MCSs computed and scored with the
13 graph measures (see Table 12.5) to find the values giving optimal separation. To
check if any combination of measures would improve separation, we combined all
13 measures and used LDA to check this, but found no significant improvement over
single measures. For all databases, selecting V for the cost matrix structure and dv

Table 12.6 [6] The chosen registration structures S and shortlist values L for each database and
the average registration times

Database S L Time (s)

Palm E 220 20

Wrist E 60 7

Hand SFIR T 60 0.8

Hand SNIR E 60 1.9

Retina VARIA T 100 1.8
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Table 12.7 [6] The graph matching parameters chosen based on best performance on the training
set

Database α1 α2 Best d 2nd best d 3rd best d

Palm 5 3 de dv ρc1

Wrist 3 7 de dv ρc1

SFIR Hand 3 7 dv de dt

SNIR Hand 3 5 dv de ρc1

Retina VARIA 3 9 dv de dc1c2

Table 12.8 [6] Comparison performance using BGC on the test set at 2 specific thresholds obtained
from the training set experiments—FMR100 and FMR1000

Threshold Palm Wrist Hand—SFIR Hand—SNIR Retina

FNMR % FNMR % FNMR % FNMR % FNMR %

FMR100 3.63 26.9 4.39 0.54 0.07

FMR1000 6.242 44.06 8.79 99.72 0.86

or de gave the best separation. Table 12.7 summarises the results. The five graph
measures on the MCS that we found to be the best difference measures, are dv, de,
ρc1 , dc1c2 and dt .

After tuning, we tested BGC on the remaining half of the individuals and deter-
mined FMR and FNMR of comparisons at three distance thresholds chosen from the
training experiments—EER, FMR100 and FMR1000. ROCs for the SNIR Handvein
database training set do not appear in [6] and are given in Appendix 4. All databases
other than the wrist, gave error rates under 5% at the EER threshold. Those for
palm, hand and retina were comparable with our previous results or the literature.
Table 12.8 records our results.

We have already shown for hand vessels [21] that including edge information in
BGC improves recognition performance over point pattern comparison. Our final
experiment was to apply ICP to register graph pairs, then apply Step 4 of BGR
to count matched vertices in the two graphs, again scoring using QuickScore (Eq.
(12.1)) for consistency. In all cases, BGC outperformed point pattern comparison
using ICP registration. See Table 6 of [6] for exact values.

12.5 Anchors for a BGC Approach to Template Protection

The purpose of biometric authentication is to link a subject unequivocally to the
authentication token. The biometric template used to form the token comprises per-
sonal and sensitive information and is often encrypted when stored. However, as
biometric data is noisy, comparison with an incoming biometric sample cannot be
done in the encrypted domain using cryptographic hash functions as these require
exactness of data. Consequently, most authentication systems decrypt the stored bio-
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metric data, compare the unencrypted templates and make an authentication decision.
This makes the biometric template vulnerable during comparison.

Thus, finding a template protection scheme which permits direct comparison
of protected templates is desirable. In any such scheme, performance degradation
over unprotected comparison must be marginal. Further, the ISO/IEC 24745:2011
standard [25] states the following two criteria to protect biometric information: (a)
Irreversibility where the biometric raw data cannot be retrieved from the template
or token, and (b) Unlinkability where multiple independent instances of a subject
cannot be linked to identify the subject.

We are interested in the possibility of using biometric graphs in a template pro-
tection scheme based on a dissimilarity vector model.

12.5.1 Dissimilarity Vector Templates for Biometric Graphs

We want to investigate the feasibility of protecting a BG template by representing
it as a vector of dissimilarities from a fixed set of reference BGs extracted from a
separate, external set of instances. Such reference graphs are termed “cohorts”. The
reason that cohort-based dissimilarity vectors may be a solution to having template-
protected biometric comparison for automatic identity authentication is that the bio-
metric sample data need not be stored. Only the cohort graphs and the dissimilarity
vector are required for authentication. On the face of it, neither of these reveal any
direct information about the biometric sample data of enrolled individuals.

In preliminary work [5], we use retina as an example to conduct the first step of
this investigation: to test if the comparison performance of the dissimilarity vector
templates is similar to that of unprotected template comparison.

Cohorts are typically not used in existing dissimilarity vector implementations
because of the expectation that graphs which are not a member of any class will be
dissimilar to all classes and hence not useful for classification. Contrary to this, we
found that when retina graphs are registered on the optic disc then graphs extracted
from images of the same retina are surprisingly and consistently dissimilar, or similar,
to other retina graphs external to the classification set, when the dissimilarity is
defined by the BGC algorithm with slack graph comparison parameters.

Figure 12.4 shows an example of a dissimilarity vector for a retina graph.
We have shown that the dissimilarity vector approach is accurately able to compare

and verify samples with only a small loss in performance over direct comparison using
BGC. Once performance is established, the next step would be to establish rigorous
security bounds on irreversability and unlinkability as conducted by Gomez-Barrero
et al. [14, 15]. This is an area of future work.

12.5.2 Anchors for Registration

Amongst the modalities presented here, retinae have an intrinsic reference frame
defined by the location of optic disk and fovea. Palm vein patterns have a reference
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Fig. 12.4 An example of a dissimilarity vector for a retina graph g in ESRID from a set of cohort
graphs in VARIA. The dissimilarity vector v = (d1, d2, · · · , dN ) is the vector of dissimilarities from
the ordered set of cohort graphs (r1, r2, · · · , rN ). Each di ∀1 ≤ i ≤ N is calculated as di = de(g, ri ),
where de is some measure of dissimilarity between graphs g and ri

frame defined by the hand contour. For other vascular patterns, an intrinsic reference
frame has not been identified (for finger graphs, the midline of the finger was found by
Nibbelke [23] not to be robust), and because of the noise associated with presentation
of a biometric sample and graph extraction, graphs extracted from images from the
same individual do not consistently register with reference graphs in the same way
when using BGR and are not consistently dissimilar. The retina graphs in both the
ESRID and VARIA databases are roughly pre-aligned because the presentation of
the retina is always with the head upright, and so a common reference frame for a pair
of retina graphs extracted from these images can be found by centring each graph on
the centre of the optic disk (also extracted from the associated retina image).

Hence, a barrier to generalising the dissimilarity vector approach to template
protection to other vascular graphs is the ability to register presentations of a vascular
pattern from the same individual in the same way so that their dissimilarity from a
set of reference graphs has the possibility to be consistent. The alternative, which is
to use BGR, gives a set of scores that are essentially drawn from a distribution of
impostor comparison scores and are different from one sample to the next.

In an attempt to achieve consistent registration, we consider identifying subgraphs
of a smaller size that are consistently extracted in multiple presentations of a subject’s
biometric data despite the noise in the image presentation and extraction process. We
term this small subgraph, should it exist, the anchor for a set of biometric graphs
from an individual.

Definition 12.3 A BG anchor for an individual is a small connected subgraph that
appears consistently in BGs extracted from multiple good samples from the individual
and that does not by itself reveal identifying information about the individual.
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Whether such an anchor exists for every enrolled subject is the first question,
which we attempt to answer here for two of the databases we have studied. Whether
registration on such an anchor then leads to dissimilarity vectors that can be used for
accurate classification is a separate question and is future work.

12.5.3 The Search for Anchors

The BGC algorithm can be used recursively to find anchors. Let g1, g2, . . . , gn be
the BGs of the n samples of a subject for which we need to find an anchor.

The first step is to use the BGC algorithm to find the MCS between a pair of
graphs. Let m12 be the MCS of the graphs g1 and g2. BGC is then used to find the
MCS between m12 and the third graph in the list g3. Let this be denoted by m123. This
is the common graph between g1, g2 and g3. If we continue this process, the common
graph between the n graphs g1, g2, . . . , gn is the MCS between m123···n−1 and gn

and is denoted by m123...n . This graph represents the graph structure that is common
to the n samples from a subject. If the graph samples are of high quality, we often
find this common graph to be large with significant amount of structure. Therefore,
the entire common graph would be inappropriate to use as an anchor associated with
a template protection scheme. On the basis of observation and experimentation, we
have isolated two criteria to derive an anchor from m123...n:

• It is the largest connected component of m123···n that has a minimum of at least 5
vertices and maximum of 10 vertices. This criteria ensures that the anchor is not
so large as to reveal significant structure of a subject’s BG.

• This connected component must have at least one claw. In cases where there was
an absence of a claw (i.e. the component was a path) we observed that the anchor
was not uniquely found.

One way to satisfy the above two criteria is to vary the weights α1 and α2 in
the cost matrix C of the BGC algorithm used when finding anchors. When α1 and
α2 are small, the MCS returned will be very small and sparse. As we want to have
recursively generated MCSes to have a bit more structure, we found it beneficial to
recursively slacken α2 until we find a common graph of the n graphs that will give
an anchor that satisfies the above two conditions.

To study the possibility of finding anchors and the various factors that impact this
for a database, we need a database that has multiple samples of the same subject. The
PUT datasets of palm and wrist vessels had 12 samples per subject across 3 sessions
and were satisfactory for our experiments.

For both databases we chose n, the number of graphs of a subject used to find
an anchor, as n = 6. We used the remaining 6 samples as test samples to determine
if an anchor can be found in a new incoming sample. We set α1 = 1 in the cost
matrix C and recursively increased α2 from 4 to 16 in steps of 2 in the anchor-finding
algorithm.
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(a) m12 (b) m123 (c) m1234

(d) m12345 (e) m123456 (f) Anchor

Fig. 12.5 This figure shows the common graphs and the final anchor obtained when BGC is used
recursively, pairwise on a set of BGs from an individual in the PUT palm database to create the
anchor for that individual. Observe that as expected, the size of the common graph as we increase
the number of BGs gets smaller. f shows the extracted anchor (Graphs are not on the same scale)

Figure 12.5a–e shows the process of recursively applying the BGC algorithm to
obtain a common graph among 6 BGs of a subject in the PUT Palm database. We
observe that as the number of samples used increases, the common graph tends to get
smaller and sparser compared to previous common graphs. For a graph to become
part of the common graph it must exist in all the BGs used to form it. The criteria get
harder to satisfy as the number of BGs increase. Figure 12.5f and shows the anchor,
a subgraph of m123456 in Fig. 12.5e, which is the largest connected component of
maximum order 10 with at least one claw.

12.5.4 Queries and Discoveries for Anchors

To understand if the use of anchors is practical for registering BGs, we used the palm
and wrist databases to investigate the following questions:

1. How likely is it that an anchor cannot be found for a subject in the database and
what are the possible reasons for failure to find an anchor?

2. If an anchor is generated using a few samples of a subject, how do we determine
if it exists in a new probe sample of the same subject. How reliable is this anchor?
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3. How often will an anchor fail to be found in a new probe sample of an enrolled
subject? If this happens, what are the causes?

For both databases, we chose 6 BGs from the 12 BGs of each subject in 4 ways
giving 4 different attempts at finding an anchor. As the PUT database had 50 subjects,
we had 200 trials to find an anchor and we noted the number of trials that failed to
find an anchor (first column of Table 12.9).

Once an anchor is found, it needs to be reliably found in a new sample of the
same subject. The existence of an anchor in a larger graph can be determined using
the BGR algorithm described in Sect. 12.3.1.1. The BGR algorithm will attempt to
find an aligning edge between the anchor and a BG of an individual. Anchor overlap
is defined as the fraction of vertices in the anchor that found a comparison vertex
in the BG. 100% overlap indicates the anchor has been exactly found in the BG
and can be reliably used to establish a coordinate frame of registration. Figure 12.6
shows an anchor and its overlap in a new probe sample for the palm and wrist BGs.
Figure 12.6b, d show an example where the anchor overlap is less than 50%. These
are both situations when the anchor has not been found as the anchor just did not
exist in the BG. The mean and standard deviation anchor overlap for the palm and
wrist databases is shown in column 2 of Table 12.9.

Based on the distribution of anchor overlap in a database, it is possible to choose
a minimum value Ot for the anchor overlap to consider an anchor to be reliable.
Choosing a specific Ot for each database, we measure for each individual, the number
of times in the 6 BGs where the anchor is reliably found. This result is shown in
column 3 of Table 12.9.

The distributions of anchor overlap and success rates of finding an anchor reliably
for both databases is shown in Fig. 12.8. The source code for the anchor-finding
algorithms are available at [3].

12.5.5 Results

Column 1 of Table 12.9 shows that BGs of an individual in the palm database had
a greater chance of generating an anchor than BGs of an individual in the wrist
database. Anchors are not generated when the BGs from the samples of the individual
fail to find a common subgraph among all of them. This happens if even one BG
does not have enough common area of capture amongst the six. Figure 12.7a shows
an example where 6 BGs from the wrist vein graph could not generate an anchor.
Figure 12.7b shows the BGC applied recursively to get a common graph that did not
satisfy the two conditions for an anchor, i.e. there was no component of size between
5 and 10 that had at least one claw.

We next wanted to test, if for every failure in getting an anchor, when the selection
of BGs changed, would we be able to get an anchor for the individual? We found that
out of the 10 individuals whose trials failed to give an anchor in the palm database,
only 2 of the individuals failed again when the selection of BGs changed. For the
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Table 12.9 Results from experiments on finding anchors in the PUT palm and wrist databases

Database PUT Trials that failed to
generate anchors (%)

Anchor overlap across
the database (%)

Number of reliable
anchor registrations
per person

Palm 6 75.17 (16.94) 3.68 (1.96)

Wrist 14 76.6 (14.6) 3.96 (1.64)

(a) Palm BG with 100% anchor overlap (b) Palm BG with 44% anchor overlap

(c) Wrist BG with 100% anchor overlap (d) Wrist BG with 44% anchor overlap

Fig. 12.6 This figure shows examples of Palm and Wrist BGs where the overlap is 100% (a) and
(c), and where the overlap is less than 50% (b) and (d). The anchors are in green and the BGs are
in blue

wrist database, 21 individuals failed in a trial to get an anchor, out of them only 3
failed again when the BGs selected were changed. This shows that in practice, if an
anchor is not found in a set of samples, it is possible to get an individual to re-enrol
until their set of enrolled BGs can give an anchor.

Figure 12.8a, c show the distribution of the anchor overlap measure in the palm
and wrist databases. Table 12.9 shows that the mean value of the overlap is over 75%
for both. Based on this distribution, we choose Ot to be 70% and measure the number
of times we could reliably find an anchor among the remaining 6 BGs that were not
used to get the anchor. Figure 12.8b, d show the distribution of number of times the
anchor is found reliably in the remaining samples of an individual in the palm and
wrist databases, when Ot is set to be 70%. Table 12.9 shows that while the palm
BGs were more successful overall in finding anchors, once anchors were found, the
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(a) Set of 6 wrist BGs that failed to give an anchor

(b) BGC recursively applied to get common graphs

Fig. 12.7 This figure illustrates how 6 wrist BGs can fail to give an anchor. The final common
graph did not have a component of maximum size 10 with at least one claw

wrist BGs had a greater chance of finding the anchor in the remaining BGs from the
individual. In practice, it would be possible to request resubmission of the biometric
sample if the previously identified anchor wasn’t found.

12.5.6 Conclusion

This chapter has explained the basic foundations of representing vascular biometric
samples as formal graphs. It has generalised the graph registration and compari-
son algorithms, BGR and BGC, respectively, and summarised our findings from
testing the efficiency and effectiveness of BGR and BGC on 4 different modalities–
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(a) Anchor overlap in palm database
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(c) Anchor overlap in wrist database
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Fig. 12.8 This figure shows the histograms of the anchor overlap in the palm and wrist databases.
Once an anchor is found, the number of reliable registrations of the anchor per subject, when
Ot = 70% is also shown for both databases. Here test set denotes those 6 BGs not used to get the
anchor

palm, wrist, hand and retina. The results show that the relational information in
BGs provides better recognition accuracy compared to point pattern approaches. We
introduced a modification of BGC with the potential to create a template protection
scheme using dissimilarity vectors. We also introduced the concept of anchors, a
method to register a BG with a consistent reference frame when, unlike retina, there
is no intrinsic reference frame. The choice of anchor and structural restrictions are
necessary for them to be used to implement biometric template protection using the
dissimilarity vector paradigm. We tested the ease of finding anchors and the likeli-
hood for one to be found reliably in BGs that were not used to identify the anchor.
The results show us that with proper selection of BGs, we can always find an anchor
for an individual.

In the future we want to apply the concept of anchors to test the accuracy of the
dissimilarity vector representation for other modalities like palm vein and hand vein.
We also plan to conduct a thorough security analysis of the dissimilarity vector rep-
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Fig. 12.9 The extraction of a Biometric Graph from a section of fingerprint image. Note that the BG
edges represent the ridgeline connectivity relationships between pairs of minutiae, not the ridgeline
itself

resentation as a template protection scheme by establishing empirical and theoretical
bounds on the irreversibility and unlinkability of the templates on the lines of work
conducted by Gomez et al. [14, 15].
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Appendix 1

Here is an example of the original Biometric Graph, as introduced in [17] (Fig. 12.9).

Appendix 2

This section gives the pseudocode for the BGR algorithm described in Sect. 12.3.1.
It is a corrected and updated version of the algorithm in [6]. The source code for the
BGR and BGC algorithms is available at [4].
Require: Graphs g and g′ with vertex sets V ={v1 , v2, · · · ,vm} and V′ ={v′

1, v′
2, · · · ,

v′
m ′} and vertex sets E ={e1, e2, · · · , en} and E′ ={e′

1, e′
2, · · · , e′

n′}, respectively.
Let L be the number of structure pairs to shortlist and let ε be the tolerance to
match vertex pairs.

Ensure: Aligned graphs ga and g′
a having same edge links as g and g′ but with new

spatial coordinates.
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1: ga ← ∅ and g′
a ← ∅. 
 Initialise the registered graphs that will be returned at

the end of the algorithm

2: S = { s1, s2, · · · , sn } is the list of structures in g.
3: S’ = { s ′

1, s ′
2, · · · , s ′

n′ } is the list of structures in g′.
4: Mdist ← 0 
 Initialise a matrix of size n × n′ with zeros.
5: for a = 1 to n do
6: for b = 1 to n′ do
7: dab = StructDist(sa , sb, F) 
 This

function returns the distance between the two structures. The flag F indicates if
the structure is an edge, claw or two-claw.

8: Mdist [a, b] ← dab

9: end for
10: end for

11: Sort the contents of Mdist in increasing order.
12: Mshortlist is a matrix with 3 columns.

Every row mi stores the 3-tuple (dabi , ai , bi ).
dabi is taken from the sorted Mdist with the first row of Mshortlist , m1 having dab1,
the smallest distance.
ai and bi indicate the corresponding row and column of dabi in Mdist .

13: dstruct ← (0, 0, · · · , 0)1×L 
 A vector to store the distances between graphs
when aligned on each of the shortlisted structure pairs

14: for i = 1 to L do
15: a = ai , b = bi where mi ∈ Mshortlist

16: go = TransRot(g, ea). 
 Translate and rotate g with respect to the
specific edge in the shortlisted structure

17: g′
o = TransRot(g′, e′

b).
18: dstruct [i] = QuickScore( go, g′

o, ε ) 
 Compute a distance based on vertex
correspondence between the translated and rotated graphs

19: end for

20: dmin = MIN (dstruct ).
21: amin and bmin are the row and column in Mshortlist corresponding to dmin .
22: ga = TransRot(g, eamin ).
23: g′

o = TransRot(g′, e′
bmin

).
return ga , g′

a and dmin .

24: function EucDist( A = (a1, a2, · · · , az) , B = (b1, b2, · · · , bz) )
25: d = √

(a1 − b1)2 + (a2 − b2)2 + .....(az − bz)2 return d
26: end function

27: function StructDist(sa , sb, F) dstruct Pair ← ∅

28: if F ==“edge” then 
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29: Ea ← (la, θa) 
 The length and slope of the edge
30: Eb ← (l ′b, θ

′
b)

31: dstruct Pair = 1
0.5(la+l ′b)

EucDist(Ea , Eb) 
 The Euclidean distance

between the lengths l and l ′ and slopes θ and θ ′ of the vertex pair.
32: end if
33: if F ==“claw” then
34: La ← (l1a, l2a, l3a) 
 The three edges of the claw in decreasing order of

edge length
35: �a ← (θ12a, θ23a) 
 The angles between first and second vertex and the

second and third vertex.
36: L ′

b ← (l ′1b, l ′2b, l ′3b)

37: �b ← (θ ′
12b, θ

′
23b)

38: lδ ← EucDist(La , L ′
b)

39: aδ ← EucDist(�a , �′
b)

40: d = lδ + aδ

41: dstruct Pair = d
42: end if
43: if F ==“two-claw” then 
 A two-claw has two-claw structures connected

by a common edge
44: La ← (l1a, l2a, l3a, l4a, l5a, l6a)


 l1 and l4 are the longest edges of the first and second claw structures. The
other two edges follow the longest edge in decreasing order of length.

45: �a ← (θ12a, θ23a, θ45a, θ56a) 
 The four internal angles, two each from
each of the two-claws.

46: l∗a is the length of the connecting edge between the two-claws in structure
a where ∗ ∈ {1, 2, 3, 4, 5, 6}.

47: L ′
b ← (l ′1b, l ′2b, l ′3b, l ′4b, l ′5b, l ′6b)

48: �′
b ← (θ ′

12b, θ
′
23b, θ

′
45b, θ

′
56b)

49: l ′∗b is the length of the connecting edge between the two-claws in structure
b where ∗ ∈ {1, 2, 3, 4, 5, 6}.

50: d1 = EucDist( La[1 : 3] , L ′
b[1 : 3]) + EucDist(�a[1 : 3] , �′

b[1 : 3] )
51: d2 = EucDist( La[4 : 6] , L ′

b[4 : 6] ) + EucDist(�a[4 : 6] , �′
b[4 : 6])

52: d3 = EucDist( l∗a , l ′∗b ).
53: dstruct Pair = d1 + d2 + d3

54: end if
return dstruct Pair

55: end function

56: function TransRot(g, e )
57: go ← g
58: The vertex of e with the smaller x coordinate will be the origin of the coor-

dinate system.
59: The edge e will be define the positive direction of the x-axis.
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60: Recalculate all the vertex attributes of go in the new coordinate system.
return go.

61: end function

62: function QuickScore(g, g′, ε)
63: Label all vertices of g and g′ as unmatched.
64: C = 0 
 Counter for number of vertex pair matches between g and g′
65: for i = 1 to m do
66: for j = 1 to m ′ do
67: if vi is labelled unmatched and v′

j is labelled unmatched and EU-
CDIST( qi , q ′

j ) ≤ ε then
68: C = C + 1. 
 vi matches with v′

j .
69: Label vi and v′

j as matched. 
 qi = (q1i , q2i ) is the vertex
attribute of vi and q ′

i is the vertex attribute of v′
i .

70: end if
71: end for
72: end for
73: d = 1 − C√

m×m ′ . return d.
74: end function

Appendix 3

This section presents details of the cost matrices that use complex structures like
edges (E), claws (C) and two-claws (T ) as structures, as described in Sect. 12.3.2.

Edge-based cost matrix:

Let ui , vi be the start and end vertices of ei in g and u′
i , v′

i be the start and end vertices
of e′

j in g′. The cost of substituting ei with e′
j given by

ci j = ||ui , u′
j || + ||vi , v′

j || (12.8)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting ei is

ciδ = α1 + (α2 × (D(ui ) + D(vi ))) (12.9)

The cost of inserting e′
j is

cδ j = α1 + (α2 × (D(u′
i ) + D(v′

i ))) (12.10)
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where D() denotes vertex degree. α1 denotes the cost for deleting or inserting an
vertex. α2 denotes the cost for deleting or inserting the vertices neighbouring the
start and end vertices of the vertex. The cost matrix will have size |E | × |E ′|, where
|.| denotes cardinality of the set.

Claw-based cost matrix:

Let ci and c′
j be the centres of the claws si and s ′

j in g and g′. Let ui , vi , wi and
u′

j , v′
j , w′

j be the end vertices of the three vertices ordered in decreasing order of
length for each of the claw structures.

The cost of substituting si with s ′
j given by

ci j = ||ci , c′
j || + ||ui , u′

j || + ||vi , v′
j || + ||wi , w′

j || (12.11)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting si is

ciδ = α1 + (α2 × (D(ui ) + D(vi ) + D(wi ))) (12.12)

The cost of inserting s ′
j is

cδ j = α1 + (α2 × (D(u′
i ) + D(v′

i ) + D(w′
i ))) (12.13)

where D() denotes vertex degree. α1 denotes the cost for deleting or inserting a claw.
α2 denotes the cost for deleting or inserting the vertices neighbouring the end vertices
of the claw. The cost matrix will have size |S| × |S′|, where |.| denotes cardinality
of the set.

Two-claw-based cost matrix:

Let ti and t ′
j be two-claw structures in g and g′. Each two-claw structures has two-

claws connected by a common vertex. Let bi and ci be the centre vertices of ti and
ui , vi , wi , xi , yi , zi be the 6 end vertices of two-claw structures ordered on vertex
length. ui and xi will represent the longest vertices of the claw structures cen-
tred on bi and ci . Similarly let b′

j and c′
j represent the centres of the claws and

u′
j , v′

j , w′
j , x ′

j , y′
j z

′
j represent the end vertices of the vertices belonging t ′

j . The cost
of substituting ti with t ′

j given by

ci j = ||bi , b′
j || + ||ci , c′

j || + ||ui , u′
j || + ||vi , v′

j || + ||wi , w′
j || + ||xi , x ′

j || + ||yi , y′
j || + ||zi , z′

j ||
(12.14)

where ||.|| denotes Euclidean distance between the spatial coordinates of the vertices.
The cost of deleting ti is

ciδ = α1 + (α2 × (D(ui ) + D(vi ) + D(yi ) + D(zi ))) (12.15)

where the ui , vi , yi , zi represent the vertices that do not connect the two-claw centres.
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The cost of inserting t ′
j is

cδ j = α1 + (α2 × (D(u′
i ) + D(v′

i ) + D(y′
i ) + D(z′

i ))) (12.16)

where D() denotes vertex degree. u′
j , v′

j , y′
j , z′

j represent the vertices that do not
connect b′

j and c′
j . α1 denotes the cost for deleting or inserting a two-claw. α2 denotes

the cost for deleting or inserting the vertices neighbouring the end vertices of the two-
claw vertices. The cost matrix will have size |T | × |T ′|, where |.| denotes cardinality
of the set.

Appendix 4

In [6] we compared the performance of BGC with standard point pattern based
comparison algorithms. Each vascular database was divided into a training and

Fig. 12.10 DET curve for the top 3 best performing distance measures in the SNIR handvein
training dataset. The performance of each distance measure is compared to that obtained when
combining the 3 features using an LDA classifier. Results showed that combining the features did
not cause a significant improvement in performance over the best performing measure dv
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testing set. The training set was used to determine the best structure for registration,
parameters for the graph comparison algorithm and the best distance measure. Once
these parameters were picked they were used to test the performance on the testing
database at three thresholds corresponding to three specific points from the training
database Detection Error Tradeoff (DET) curves—EER, FMR100 and FMR1000.
Figure 12.10 shows the DET curves from the SNIR Handvein training dataset. This
was not published in [6]. The DETs for all other modalities are available in Fig. 7
in [6].
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Chapter 13
Deep Sclera Segmentation
and Recognition

Peter Rot, Matej Vitek, Klemen Grm, Žiga Emeršič, Peter Peer
and Vitomir Štruc

Abstract In this chapter, we address the problem of biometric identity recognition
from the vasculature of the human sclera. Specifically, we focus on the challenging
task of multi-view sclera recognition, where the visible part of the sclera vasculature
changes from image to image due to varying gaze (or view) directions. We pro-
pose a complete solution for this task built around Convolutional Neural Networks
(CNNs) and make several contributions that result in state-of-the-art recognition
performance, i.e.: (i) we develop a cascaded CNN assembly that is able to robustly
segment the sclera vasculature from the input images regardless of gaze direction,
and (ii) we present ScleraNET, a CNN model trained in a multi-task manner (com-
bining losses pertaining to identity and view-direction recognition) that allows for
the extraction of discriminative vasculature descriptors that can be used for identity
inference. To evaluate the proposed contributions, we also introduce a new dataset of
ocular images, called the Sclera Blood Vessels, Periocular and Iris (SBVPI) dataset,
which represents one of the few publicly available datasets suitable for research
in multi-view sclera segmentation and recognition. The datasets come with a rich
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set of annotations, such as a per-pixel markup of various eye parts (including the
sclera vasculature), identity, gaze-direction and gender labels. We conduct rigorous
experiments on SBVPI with competing techniques from the literature and show that
the combination of the proposed segmentation and descriptor-computation models
results in highly competitive recognition performance.

Keywords Ocular biometrics · Vascular biometrics · Deep learning · Sclera
segmentation · Sclera recognition · Dataset · Eye recognition

13.1 Introduction

With the growing need for secure authentication systems, forensic applications and
surveillance software, biometric recognition techniques are attracting interest from
research groups and private companies trying to improve the current state of the
technology and exploit its immense market potential. Among the existing biometric
characteristics used in automated recognition systems, ocular traits offer a num-
ber of advantages over other modalities such as contactless data acquisition, high
recognition accuracy and considerable user acceptance. While iris recognition is the
predominant technology in this area, recent research [1, 2] is looking increasingly
at additional ocular characteristics that can complement iris-based features and con-
tribute towards more secure and less-spoofable authentication schemes within this
branch of biometrics [3].

One trait that presents itself as a particularly viable option in this context is the
vasculature of the sclera. The eye’s sclera region contains a rich vascular structure
that is considered unique for each individual, is relatively stable over time [4] and can
hence be exploited for recognition and authentication purposes, as also evidenced by
recent research efforts [1, 5]. As suggested in [6], the vascular patterns also exhibit
other desirable properties that make them appealing for recognition systems, e.g.
the patterns are discernible despite potential eye redness and also in the presence of
contact lenses that may adversely affect iris recognition systems. Despite the potential
of the sclera vasculature for biometric recognition, research on this particular trait
is still in its infancy and several research problems need to be addressed before the
technology can be deployed in commercial systems, e.g.:

• The sclera vasculature contains distinct, but also finer blood vessels that need to be
segmented from the input ocular images to ensure competitive recognition perfor-
mance. As emphasised in the introductory chapter of the handbook, these vessels
feature very different border types and have a complex texture that is difficult to
model, which makes vasculature segmentation highly challenging. To approach
this problem, existing solutions typically adopt a two-stage procedure, where the
sclera region is first identified in the ocular images and the vasculature structure
is then extracted using established (typically unsupervised) algorithms based, for
example, on Gabor filters, wavelets, gradient operators and alike [1, 7–9]. While
these approaches have shown promise, recent research suggests that supervised
techniques result in much better segmentation performance [5, 10], especially
if challenging off-angle ocular images need to be segmented reliably. However,
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next to the difficulty of sclera vasculature segmentation task itself, the lack of
dedicated and suitably annotated datasets for developing supervised techniques
has so far represented one of the major roadblocks in the design of competitive
sclera recognition systems.

• Due to the particularities (and potentially unconstrained nature) of the image acqui-
sition procedure, ocular images are in general not aligned well with respect to a
reference position. Additionally, as the gaze direction may vary from image to
image, not all parts of the sclera vasculature are necessarily visible in every cap-
tured image. To efficiently compare sclera images and facilitate recognition, dis-
criminative features need to be extracted from the segmented vasculature. These
features have to be robust with respect to variations in position, scale and rotation
and need to allow for comparisons with only parts of the located vascular structure.
Existing solutions, therefore, commonly rely on hand-crafted image descriptors,
such as Scale-Invariant Feature Transforms (SIFTs), Histograms of Oriented Gra-
dients (HOGs), Local Binary Patterns (LBPs) and related descriptors from the
literature [5, 8, 9]. These local descriptor-based approaches have dominated the
field for some time, but, as indicated by recent trends in biometrics [11–14], are
typically inferior to learned image descriptors based, for example, on Convolu-
tional Neural Networks (CNNs).

In this chapter, we try to address some of the challenges outlined above and present
a novel solution to the problem of sclera recognition built around deep learning
and Convolutional Neural Networks (CNNs). Specifically, we first present a new
technique for segmentation of the vascular structure of the sclera based on a cascaded
SegNet [15] assembly. The proposed technique follows the established two-stage
approach to sclera vasculature segmentation and first segments the sclera region from
the input images using a discriminatively trained SegNet model and then applies a
second SegNet to extract the final vascular structure. As we show in the experimental
section, the technique allows for accurate segmentation of the sclera vasculature
from the input images even under different gaze directions, thus facilitating feature
extraction and sclera comparisons in the later stages.

Next, we present a deep-learning-based model, called ScleraNET, that is able to
extract discriminative image descriptors from the segmented sclera vasculature. To
ensure that a single (learned) image descriptor is extracted for every input image
regardless of the gaze direction and amount of visible sclera vasculature, we train
ScleraNET within a multi-task learning framework, where view-direction recogni-
tion is treated as a side task for identity recognition. Finally, we incorporate the
segmentation and descriptor-computation approaches into a coherent sclera recog-
nition pipeline.

To evaluate the proposed segmentation and descriptor-computation approaches,
we also introduce a novel dataset of ocular images, called Sclera Blood Vessels,
Periocular and Iris (SBVPI) and make it publicly available to the research commu-
nity. The dataset represents one of the few existing datasets suitable for research in
(multi-view) sclera segmentation and recognition problems and ships with a rich set
of annotations, such as a pixel-level markup of different eye parts (including the sclera
vasculature) or identity, gaze-direction and gender labels. Using the SBVPI dataset,
we evaluate the proposed segmentation and descriptor-computation techniques in
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rigorous experiments with competing state-of-the-art models from the literature.
Our experimental results show that the cascaded SegNet assembly achieves com-
petitive segmentation performance and that the ScleraNET model generates image
descriptors that yield state-of-the-art recognition results.

In summary, we make the following contributions in this chapter:

• We propose a novel model for sclera vasculature segmentation based on a cascaded
SegNet assembly. To the best of our knowledge, the model represents the first
attempt to perform sclera vasculature segmentation in a supervised manner and is
shown to perform well compared to competing solutions from the literature.

• We present ScleraNET, a CNN-based model able to extract descriptive image
representations from ocular images with different gaze directions. Different from
existing techniques, the model allows for the description of the vascular structure
of the sclera using a single high-dimensional image descriptor even if the charac-
teristics (position, scale, translation, visibility, etc.) of the vascular patterns vary
from image to image.

• We introduce the Sclera Blood Vessels, Periocular and Iris (SBVPI) dataset—a
dataset of ocular images with a distinct focus on research into sclera recognition.
We make the dataset publicly available: http://sclera.fri.uni-lj.si/.

The rest of the chapter is structured as follows: In Sect. 13.2, we survey the relevant
literature and discuss competing methods. In Sect. 13.3, we introduce our sclera
recognition pipeline and elaborate on the segmentation procedure and ScleraNET
models. We describe the novel dataset and its characteristics in Sect. 13.4. All parts
of our pipeline are evaluated and discussed in rigorous experiments in Sect. 13.5. The
chapter concludes with a brief summary and directions for future work in Sect. 13.6.

13.2 Related Work

In this section, we survey the existing research work relevant to the proposed segmen-
tation and descriptor-computation approaches. The goal of this section is to provide
the necessary context for our contributions and motivate our work. The reader is
referred to some of the existing surveys on ocular biometrics for a more complete
coverage of the field [8, 16–18].

13.2.1 Ocular Biometrics

Research in ocular biometrics dates back to the pioneering work of Daugman [19–
21], who was the first to show that the texture of the human iris can be used for identity
recognition. Daugman developed an iris recognition system that used Gabor filters to
encode the iris texture and to construct a discriminative template that could be used
for recognition. Following the success of Daugman’s work, many other hand-crafted
feature descriptors were proposed [22–25] to encode the texture of the iris.
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With recent research on iris recognition moving towards unconstrained image
acquisition settings and away from the Near-Infrared (NIR) spectrum towards vis-
ible light (VIS) imaging, more powerful image features are needed that can better
model the complex non-linear deformations of the iris typically seen under non-ideal
lightning conditions and with off-angle ocular images. Researchers are, therefore,
actively trying to solve the problem of iris recognition using deep learning methods,
most notably, with Convolution Neural Networks (CNNs). The main advantage of
using CNNs for representing the iris texture (compared to the more traditional hand-
crafted image descriptors) is that features can be learned automatically from training
data typically resulting in much better recognition performance for difficult input
samples. Several CNN-based approaches have been described in the literature over
the last few years with highly promising results, e.g. [26–30].

Despite the progress in this area and the introduction of powerful (learned) image
descriptors, there are still many open research question related mostly to uncon-
strained image acquisition conditions (e.g. the person is not looking straight into the
camera, eyelashes cover the iris, reflections appear in the images, etc.). To improve
robustness of ocular biometric systems in such settings, additional ocular traits can be
integrated into the recognition process, such as the sclera vasculature [1] or informa-
tion from the periocular region [31, 32] . These additional modalities have received
significant attention from the research community and are at the core of many ongo-
ing research projects—see, for example, [1, 16, 33–40].

The work presented in this chapter adds to the research outlined above and intro-
duces a complete solution to the problem of multi-view sclera recognition with
distinct contributions for vasculature segmentation and descriptor computation from
the segmented vascular structure.

13.2.2 Sclera Recognition

Recognition systems based on the vasculature of the sclera typically consist of mul-
tiple stages, which in the broadest sense can be categorised into a (i) a vasculature
segmentation stage that extracts the vascular structure of the sclera from the image,
and (ii) a recognition stage, where the vascular structure is represented using suitable
image descriptors and the descriptors are then used for comparisons and subsequent
identity inference.

The first stage (aimed at vasculature segmentation) is commonly subdivided into
two separate steps, where the first step locates the sclera in the image and the sec-
ond extracts the vasculature needed for recognition . To promote the development
of automated segmentation techniques for sclera segmentation (the first step), sev-
eral competitions were organised in the scope of major biometric conferences [5,
10, 41, 42]. The results of these competitions suggest that supervised segmenta-
tion techniques, based on CNN-based models represent the state of the art in this
area and significantly outperform competing unsupervised techniques. Particularly
successful here are Convolutional Encoder–Decoder (CED) networks (such as Seg-
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Net [15]) , which represent the winning techniques from the 2017 and 2018 sclera
segmentation competitions—see [5, 10] for details. In this chapter, we build on these
results and incorporate multiple CED models into a cascaded assembly that is shown
in the experimental section to achieve competitive performance for both sclera and
vasculature segmentation.

To extract the vascular structure from the segmented sclera region, image operators
capable of emphasising gradients and contrast changes are typically used. Solutions
to this problem, therefore, include standard techniques based, for example, on Gabor
filters, wavelets, maximum curvature, gradient operators (e.g. Sobel) and others [1,
7–9]. As suggested in the sclera recognition survey in [8], a common aspect of
these techniques is that they are unsupervised and heuristic in nature. In contrast to
the outlined techniques, our approach uses (typically better performing) supervised
segmentation models, which are possible due to the manual markup of the sclera
vasculature that comes with the SBVPI dataset (introduced later in this chapter) and,
to the best of our knowledge, is not available with any of the existing datasets of
ocular images.

For the recognition stage, existing techniques usually use a combination of image
enhancement (e.g. histogram equalisation, Contrast-Limited Adaptive Histogram
Equalization (CLAHE) or Gabor filtering [1, 43]) and feature extraction techniques,
with a distinct preference towards local image descriptors, e.g. SIFT, LBP, HOG,
Gray-level Co-occurrence Matrices, wavelet features or other hand-crafted repre-
sentations [6, 8, 44–46]. Both dense and sparse (keypoint) image descriptors have
already been considered in the literature. With ScleraNET, we introduce a model
for the computation of the first learned image descriptor for sclera recognition. We
also make the model publicly available to facilitate reproducibility and provide the
community with a strong baseline for future research in this area.

13.2.3 Existing Datasets

A variety of datasets is currently available for research in ocular biometrics [16] with
the majority of existing datasets clearly focusing on the most dominant of the ocu-
lar modalities—the iris [5, 9, 47, 48, 48–55]. While these datasets are sometimes
used for research into sclera recognition as well, a major problem with the listed
datasets is that they are commonly captured in the Near-Infrared (NIR) spectrum,
where most of the discriminative information contained in the sclera vasculature is
not easily discernible. Furthermore, existing datasets are not captured with research
on vascular biometrics in mind and, therefore, often contain images of insufficient
resolution or images, where the Region-Of-Interest (ROI) needed for sclera recog-
nition purposes is not well visible. While some datasets with characteristics suitable
for sclera recognition research have been introduced recently (e.g. MASD [5]), these
are, to the best of our knowledge, not publicly available.

Table 13.1 shows a summary of some of the most popular datasets of ocular
images and also lists the main characteristics of the SBVPI dataset introduced in this
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Table 13.1 Comparison of the main characteristics of existing datasets for ocular biometrics. Note
that most of the datasets have been captured with research in iris recognition in mind, but have
also been used for experiments with periocular (PO) and sclera recognition techniques. The dataset
introduced in Sect. 13.4 of this chapter is the first publicly available dataset dedicated to sclera
recognition research

Dataset Modality Public NIR/VIS Image
size

# Sub-
jects

#
Images

SC-
M‡

VS-
M∗

Gaze

CASIA
Iris v1
[47]

Iris Yes NIR 320 ×
280

54 756 No No Static

CASIA
Iris v2
[47]

Iris Yes NIR 640 ×
480

60 2400 No No Static

CASIA
Iris v3
[47]

Iris Yes NIR 640 ×
480

> 700 22034 No No Static

CASIA
Iris v4
[47]

Iris Yes NIR 640 ×
480

>

2800
54601 No No Static

ND-IRIS-
0405 [49]

Iris Yes NIR 640 ×
480

356 64980 No No Static

UTIRIS
[50]

Sclera,
iris

Yes Both 2048 ×
1360

79 1540 No No Static

UBIRIS
v1 [48]

Sclera,
iris

Yes VIS 800 ×
600

241 1877 No No Static

UBIRIS
v2 [52]

Sclera,
PO†, iris

Yes VIS 400 ×
300

261 11102 No No Variable

IITD [51] Iris Yes NIR 320 ×
240

224 1120 No No Static

MICHE-I
[53]

Sclera,
PO, iris

Yes VIS 2048 ×
1536

92 3732 No No Static

UBIPr
[54]

PO Yes VIS 500 ×
400

261 10950 No No Variable

IMP [55] PO Yes Both 260 ×
270

62 930 No No Static

IUPUI [9] Sclera,
PO, iris

No Both n/a 44 352 No No Variable

MASD [5] Sclera No VIS 7500 ×
5000

82 2624 Partial No Variable

SBVPI
(ours)

Sclera,
PO, iris

Yes VIS 3000 ×
1700

55 1858 Full Partial Variable

†PO—periocular, ‡SC-M—sclera markup, ∗VS-M—vasculature markup
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chapter. While researchers commonly resort to the UBIRISv1 [48], UBIRISv2 [52],
UTIRIS [56], or MICHE-I [53] datasets when conducting experiments on sclera
recognition, their utility is limited, as virtually no sclera-specific metadata (e.g. sclera
markup, vasculature markup, etc.) is available with any of these datasets. SBVPI
tries to address this gap and comes with a rich set of annotations that allow for the
development of competitive segmentation and descriptor-computation models.

13.3 Methods

In this section, we present our approach to sclera recognition. We start with a high-
level overview of our pipeline and then describe all of the individual components.

13.3.1 Overview

A high-level overview of the sclera recognition pipeline proposed in this chapter is
presented in Fig. 13.1. The pipeline consist of two main parts: (i) a cascaded SegNet
assembly used for Region-Of-Interest (ROI) extraction and (ii) a CNN model (called
ScleraNET) for image-representation (or descriptor) computation.

The cascaded SegNet assembly takes an eye image as input and generates a
probability map of the vascular structure of the sclera using a two-step segmentation
procedure. This two-step procedure first segments the sclera from the input image and
then identifies the blood vessels within the sclera region using a second segmentation
step.

The CNN model of the second part of the pipeline, ScleraNET, takes a probability
map describing the vascular patterns of the sclera as input and produces a discrimi-
native representation that can be used for matching purposes. We describe both parts
of our pipeline in detail in the next sections.

13.3.2 Region-Of-Interest (ROI) Extraction

One of the key steps of every biometric system is the extraction of the Region-Of-
Interest (ROI) . For sclera-based recognition systems, this step amounts to segmenting
the vascular structure from the input image. This structure is highly discriminative
for every individual and can, hence, be exploited for recognition. As indicated in the
previous section, we find the vasculature of the sclera in our approach using a two-
step procedure built around a cascaded SegNet assembly. In the remainder of this
section, we first describe the main idea behind the two-step segmentation procedure,
then briefly review the main characteristics of the SegNet model and finally describe
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Sclera
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Blood Vessel
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Feature
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Region of Interest (ROI) extraction
(Cascaded SegNet assembly)

R
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Initial segmentation Segmented vasculature

x m y
z

Fig. 13.1 Block diagram of the proposed sclera recognition approach. The vascular structure of the
sclera is first segmented from the input image x using a two-step procedure. A probability map of
the vascular structure y is then fed to a CNN model (called ScleraNET) to extract a discriminative
feature representation that can be used for sclera comparisons and ultimately recognition. Note that
m denotes the intermediate sclera region (or masks) generated by the first segmentation step and z
represent the learned vasculature descriptor extracted by ScleraNET

Fig. 13.2 Illustration of the two-step segmentation procedure. In the initial segmentation step, a
binary mask of the sclera region is generated by a SegNet model. The mask is used to conceal
irrelevant parts of the input image for the second step of the segmentation procedure, where the
goal is to identify the vascular structure of the sclera by a second SegNet model. To be able to
capture fine details in the vascular structure the second step is implemented in a patch-wise manner
followed by image mosaicing. Please refer to the text for an explanation of the symbols used in the
image

the training procedure used to learn the parameters of the cascaded segmentation
assembly.

13.3.2.1 The Two-Step Segmentation Procedure

The cascaded SegNet assembly used for ROI extraction in our pipeline is illustrated
in Fig. 13.2. It consists of two CNN-based segmentation models, where the first tries
to generate a binary mask of the sclera region from the input image and the second
aims to extract the vascular structure from within the located sclera. The segmenta-
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tion models for both steps are based on the recently introduced SegNet architecture
from [15]. SegNet was chosen as the backbone model for our segmentation assembly,
because of its state-of-the-art performance for various segmentation tasks, competi-
tive results achieved in the recent sclera segmentation competitions [5, 10] and the
fact that an open- source implementation is publicly available.1

Note that our two-step procedure follows existing unsupervised approaches to
sclera vasculature segmentation, where an initial sclera segmentation stage is used
to simplify the segmentation problem and constrain the segmentation space for the
second step, during which the vasculature is extracted. Our segmentation procedure
is motivated by the fact that CNN-based processing does not scale well with image
size. Thus, to be able to process high-resolution input images, we initially locate
the sclera region from down-sampled images in the first segmentation step and then
process image patches at the original resolution in the second segmentation step
with the goal of capturing the fine-grained information on the vascular structure of
the sclera. Note that this information would otherwise get lost if the images were
down-sampled to a size manageable for CNN-based segmentation.

If we denote the input RGB ocular image as x and the binary mask of the sclera
region generated by the first SegNet model as m, then the first (initial) segmentation
step can formally be described as follows:

m = fθ1 (x) , (13.1)

where fθ1 denotes the mapping from the input x to the segmentation result m by
the first CNN model and θ1 stands for the model parameters that need to be learned
during training.

Once the sclera is segmented, we mask the input image x with the generated
segmentation output m and, hence, exclude all image pixels that do not belong to the
sclera from further processing, i.e.:

xm = x � m, (13.2)

where � denotes the Hadamard product. The masked input image xm is then used as
the basis for the second segmentation step.

Because the vasculature of the sclera comprises large, but also smaller (finer)
blood vessels, we use a patch-wise approach in the second segmentation step. This
patch-wise approach allows us to also locate large blood vessels within the sclera
region, but also the finer ones that would get lost (or overseen) within a holistic
segmentation approach due to poor contrast and small spatial area these vessels
occupy. Towards this end, we split the masked input image xm into M non-overlapping
patches {x̂i }M

i=1 and subject them to a second segmentation model fθ2 that locates the
vascular structure ŷi within each patch:

ŷi = fθ2

(
x̂i

)
, for i = 1, . . . , M. (13.3)

1SegNet on GitHub: https://github.com/alexgkendall/caffe-segnet.
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Here, θ2 denotes the model parameters of the second SegNet model that again need
to be learned on some training data.

The final map of the vascular structure y is generated by re-assembling all gener-
ated patches ŷi using image mosaicing. Note that different from the first segmentation
step, where a binary segmentation mask m is generated by the segmentation model,
y represents a probability map, which was found to be better suited for recognition
purposes than a binary mask of the vasculature (details on possible segmentation
outputs are given in Sects. 13.3.2.2 and 13.3.2.3).

To ensure robust segmentation results when looking for the vascular structure of
the sclera in the second segmentation step, we use a data augmentation procedure
at run-time. Thus, the masked image xm is randomly rotated, cropped and shifted
to produce multiple versions of the masked sclera. Here, the run-time augmentation
procedure selects all image operations with a probability of 0.5 and uses rotations
in the range of ±8◦, crops that reduce the image size by up to 1% of the spatial
dimensions, and shifts up to ±20 pixels in the horizontal and up to ±10 pixels in the
vertical direction. Each of the generated images is then split into M patches which
are fed independently to the segmentation procedure. The output patches ŷi are then
reassembled and all generated maps of the vascular structure are averaged to produce
the final segmentation result.

As indicated above, the basis for the ROI extraction procedure is the SegNet
architecture, which is used in the first, but also the second segmentation step. We,
therefore, briefly describe the main SegNet characteristics in the next section.

13.3.2.2 The SegNet Architecture

SegNet [15] represents a recent convolutional encoder–decoder architecture pro-
posed specifically for the task of semantic image segmentation. The architecture
consists of two high-level building blocks: an encoder and a decoder. The goal of the
encoder is to compress the semantic content of the input and generate a descriptive
representation that is fed to the decoder to produce a segmentation output [57, 58].

SegNet’s encoder is inspired by the VGG-16 [59] architecture, but unlike VGG-
16, the encoder uses only convolutional and no fully connected layers. The encoder
consists of 13 convolutional layers (followed by batch normalisation and ReLU acti-
vations) and 5 pooling layers. The decoder is another (inverted) VGG-16 model again
without fully connected layers, but with a pixel-wise softmax layer at the top. The
softmax layer generates a probability distribution for each image location that can be
used to classify pixels into one of the predefined semantic target classes. During train-
ing, the encoder learns to produce low-resolution semantically meaningful feature
maps, whereas the decoder learns filters capable of generating high-resolution seg-
mentation maps from the low-resolution feature maps produced by the encoder [57].

A unique aspect of SegNet are so-called skip-connections that connect the pooling
layers of the encoder with the corresponding up-sampling layers of the decoder. These
skip-connections propagate spatial information (pooling indices) from one part of
the model to the other and help avoid information loss throughout the network.
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Consequently, SegNet’s output probability maps have the same dimensions (i.e. width
and height) as the input images, which allows for relatively precise segmentation.
The number of output probability maps is typically equal to the number of semantic
target classes—one probability map per semantic class [57]. The reader is referred
to [15] for more information on the SegNet model.

13.3.2.3 Model Training and Output Generation

To train the two SegNet models, fθ1 and fθ2 , and learn the model parameters θ1 and
θ2 needed by our segmentation procedure, we use categorical cross-entropy as our
training objective. Once the models are trained, they return a probability distribution
over the C = 2 target classes (i.e. sclera vs. non-sclera for the first SegNet and
blood vessels vs. other for the second SegNet in the cascaded assembly) for each
pixel location. This is, for every location s = [x, y]T in the input image, the model
outputs a distribution ps = [psC1 , psC2 ]T ∈ R

C×1, where psCi denotes the probability
that the pixel at location s belongs to the i th target class Ci and

∑C
i=1 psCi = 1 [57].

In other words, for each input image the model returns two probably maps, which,
however are only inverted versions of each other, because psC1 = 1 − psC2 .

When binary segmentation results are needed, such as in the case of our sclera
region m, the generated probability maps are thresholded by comparing them to a
predefined segmentation threshold Δ.

13.3.3 ScleraNET for Recognition

For the second part of our pipeline, we rely on a CNN model (called ScleraNET)
that serves as a feature extractor for the vasculature probability maps. It needs to
be noted that recognition techniques based on the vascular structure of the sclera
are sensitive to view (or gaze) direction changes, which affect the amount of visi-
ble vasculature and consequently the performance of the final recognition approach.
As a consequence, the vasculature is typically encoded using local image descrip-
tors that allow for parts-based comparisons and are to some extent robust towards
changes in the appearance of the vascular structure. Our goal with ScleraNET is to
learn a single discriminative representation of the sclera that can directly be used
for comparison purposes regardless of the given gaze direction. We, therefore, use a
Multi-Task Learning (MTL) objective that takes both identity, but also gaze direc-
tion into account when learning the model parameters. As suggested in [60], the
idea of MTL is to improve learning efficiency and prediction accuracy by consid-
ering multiple objectives when learning a shared representation. Because domain
information is shared during learning due to the different objectives (pertaining to
different tasks), the representations learned by the model offer better generalization
ability than representations that rely only on a single objective during training. Since
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we try to jointly learn to recognise gaze direction and identity from the vascular
structure of the sclera with ScleraNET, the intermediate layers of the model need to
encode information on both tasks in the generated representations.

In the following sections, we elaborate on ScleraNET and discuss its architecture,
training procedure and deployment as a feature (or descriptor) extractor.

13.3.3.1 ScleraNET Architecture

The ScleraNET model architecture builds on the success of recent CNN models for
various recognition tasks and incorporates design choices from the AlexNet [61] and
VGG models [59]. We design the model as a (relatively) shallow network with a
limited number of trainable parameters that can be learned using a modest amount
of training data [11], but at the same time aim for a network topology that is able to
generate powerful image representations for recognition. Consequently, we built on
established architectural design choices that have proven to work well for a variety
of computer vision tasks.

As illustrated in Fig. 13.3 and summarised in Table 13.2, the architecture consists
of 7 convolutional layers (with ReLU activations) with multiple max-pooling layers
in between followed by a global average pooling layer, one dense layer and two
softmax classifiers at the top.

The first convolutional layer uses 128 reasonably large 7 × 7 filters with a stride of
2 to capture sufficient spatial context and reduce the dimensionality of the generated
feature maps. The layer is followed by a max-pooling layer that further reduces the
size of the feature maps by 2× along each dimension. Next, three blocks consisting
of two convolutional and one max-pooling layer are utilised in the ScleraNET model.
Due to the max-pooling layers, the spatial dimensions of the feature maps are halved
after each block. To ensure a sufficient representational power of the feature maps,
we double the number filters in the convolutional layers after each max-pooling
operation. The output of the last of the three blocks is fed to a global average pooling
layer and subsequently to a 512-dimensional Fully Connected (FC) layer. Finally,
the FC layer is connected to two softmax layers, upon which an identity-oriented
and a view-direction-oriented loss is defined for the MTL training procedure. The
softmax layers are not used during run-time.

13.3.3.2 Learning Objective and Model Training

We define a cross-entropy loss over each of the two softmax classifiers at the top
of ScleraNET for training. The first cross-entropy loss L1 penalises errors when
classifying subjects based on the segmented vasculature, and the second L2 penalises
errors when classifying different gaze directions. The overall training loss is a Multi-
Task Learning (MTL) objective:

Ltotal = L1 + λL2. (13.4)
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convolutional layer max-pooling layer global average layer

identity
recognition

gaze direction
recognition

softmax layer

Fig. 13.3 Overview of the ScleraNET model architecture. The model incorporates design choices
from the AlexNet [61] and VGG [59] models and relies on a Multi-Task Learning (MTL) objec-
tive that combines an identity and gaze-direction-related loss to learn discriminative vasculature
representations for recognition

Table 13.2 Summary of the ScleraNET model architecture

No. Layer type # Filters Description

1. conv 128 7 × 7 (stride of 2)

2. max-pooling 2 × 2

3. conv 128 3 × 3 (stride of 1)

4. conv 128 3 × 3 (stride of 1)

5. max-pooling 2 × 2

6. conv 256 3 × 3 (stride of 1)

7. conv 256 3 × 3 (stride of 1)

8. max-pooling 2 × 2

9. conv 512 3 × 3 (stride of 1)

10. conv 512 3 × 3 (stride of 1)

11. max-pooling 2 × 2

12. global average pooling

13. dense 512

14. softmax (2×) Multi-task objective

To learn the parameters θ of ScleraNET, we minimise the combined loss over some
training data and when doing so give equal weights to both loss terms, i.e. λ = 1.

As suggested earlier, the intuition behind the MTL objective is to learn feature rep-
resentations that are useful for both tasks and, thus, contribute to (identity) recognition
performance as well as to the accuracy of gaze-direction classification. Alternatively,
one can interpret the loss related to gaze-direction classification as a regularizer for
the identity recognition process [62]. Hence, the additional term helps to learn (to
a certain extent) view-invariant representations of the vasculature, or to put it dif-
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ferently, it contributes towards more discriminative feature representations across
different views.

13.3.3.3 Identity Inference with ScleraNET

Once the ScleraNET model is trained, we make it applicable to unseen identities by
performing network surgery on the model and removing both softmax layers. We
then use the 512-dimensional output from the fully connected layer as the feature
representation of the vascular structure fed as input to the model.

If we again denote the probability map of the vascular structure produced by
our two-step segmentation procedure as y then the feature representation calculation
procedure implemented by ScleraNET can be described as follows:

z = gθ (y) , (13.5)

where gθ again denotes the mapping from the vascular structure y to the feature
representation z by the ScleraNET model and θ stands for the model’s parameters.
The feature representation can ultimately be used with standard similarity measures
to generate comparison scores for recognition purposes.

13.4 The Sclera Blood Vessels, Periocular and Iris (SBVPI)
Dataset

In this section, we describe a novel dataset for research on sclera segmentation and
recognition called Sclera Blood Vessels, Periocular and Iris (SBVPI) , which we
make publicly available for research purposes from http://sclera.fri.uni-lj.si/. While
images of the dataset contain complete eyes, including the iris and periocular region,
the focus is clearly on the sclera vasculature, which makes SBVPI the first pub-
licly available dataset dedicated specifically to sclera (segmentation and) recognition
research. As emphasised in the introductory chapter of the handbook, currently there
exists no dataset designed specifically for sclera recognition, thus, SBVPI aims to
fill this gap.

In the remainder of this section, we describe the main characteristics of the intro-
duced dataset, discuss the acquisition procedure and finally elaborate on the available
annotations.

13.4.1 Dataset Description

The SBVPI (Sclera Blood Vessels, Periocular and Iris) dataset consists of two sep-
arate parts. The first part is a dataset of periocular images dedicated to research in
periocluar biometrics and the second part is a dataset of sclera images intended for
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Fig. 13.4 An example image from the SVBPI dataset with a zoomed in region that shows the
vascular patterns of the sclera

research into vascular biometrics. We focus in this chapter on the second part only,
but a complete description of the data is available from the webpage of SBVPI.

The sclera-related part of SBVPI contains 1858 RGB images of 55 subjects.
Images for the dataset were captured during a single recording session using a Digital
Single-Lens Reflex camera (DSLR) (Canon EOS 60D) at the highest resolution and
quality setting. Macro lenses were also used to capitalise on the quality and details
visible in the captured images. The outlined capturing setup was chosen to ensure
high-quality images, on which the vascular patterns of the sclera are clearly visible,
as shown in Fig. 13.4.

During the image capturing process, the camera was positioned at a variable
distance between 20 and 40 centimetres from the subjects. Before acquiring a sclera
sample, the camera was always randomly displaced from the previous position by
moving it approximately 0–30 cm left/right/up/down. During the camera-position
change, the subjects also slightly changed the eyelid position and direction of view.
With this acquisition setup, we ensured that the individual samples of the same eye
looking at the same direction is always different from all other samples of the same
eye looking in the same direction. It is known that the small changes in view direction
cause complex non-linear deformations in the appearance of the vascular structure
of the sclera [7] and we wanted our database to be suitable for the development of
algorithms robust to such kind of changes.

The captured samples sometimes contained unwanted facial parts (e.g. eyebrows,
parts of the nose, etc.). We, therefore, manually inspected and cropped (using a fixed
aspect ratio) the captured images to ensure that only a relatively narrow periocluar
region was included in the final images as shown in the samples in Fig. 13.5. The
average size of the extracted Region-Of-Interest (ROI) was around 1700 × 3000
pixels, which is sufficient to also capture the finer blood vessels of the sclera in
addition to the more expressed vasculature. Thus, 1700 × 3000 px was selected as the
target size of the dataset and all samples were rescaled (using bicubic interpolation)
to this target size to make the data uniform in size.

The image capturing process was inspired by the MASD dataset [5]. Each subject
was asked to look in one of four directions at the time, i.e. straight, left, right and
up. For each view direction, one image was captured and stored for the dataset. This
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Fig. 13.5 Sample images from the SVBP dataset. The dataset contains high-quality samples with
a clearly visible sclera vasculature. Each subject has at least 32 images covering both eyes and 4
view directions, i.e. up, left, right and straight. The top two rows show 8 sample images of a male
subject and the bottom two rows show 8 sample images of a female subject from the dataset

process was repeated four times, separately for the left and right eye, and resulted
in a minimum of 32 images per subject (i.e. 4 repetitions × 4 view directions × 2
eyes)—some subjects were captured more than four times. The images were manu-
ally inspected for blur and focus and images not meeting subjective quality criteria
were excluded during the recording sessions. A replacement image was taken if an
image was excluded. Subjects with sight problems were asked to remove prescrip-
tion glasses, while contact lenses, on the other hand, were allowed. Care was also
taken that no (or minimal) reflections caused by the camera’s flash were visible in
the images.

The final dataset is gender balanced and contains images of 29 female and 26 male
subjects all of Caucasian origin. The age of the subjects varies from 18 to 80 with
the majority of subjects being below 35-year old. SBVP contains eyes of different
colours, which represents another source of variability in the dataset. A summary
of the main characteristics of SBVP is presented in Table 13.3. For a high-level
comparison with other datasets of ocular images, including those used for research
in sclera recognition, please refer to Table 13.1.

13.4.2 Available Annotations

The dataset is annotated with identity (one of 55 identities), gender (male or female),
eye class (left eye or right eye) and view/gaze-direction labels (straight, left, right,
up), which are available for each of the 1858 SVBPI sclera images. Additionally,
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Table 13.3 Main characteristics of the SVBP dataset

Characteristic Description

Acquisition device DSLR camera, Canon EOS 60D + macro lenses

Number of images 1858

Number of subjects 55

Number of images per subject 32 minimum, but variable

Image size 1700 × 3000 px

Available annotations Identity, gender, view direction, eye markup (segmentation
masks)

Fig. 13.6 Examples of the markups available with the SBVPI dataset. All images contain manually
annotated irises and sclera regions and a subset of images has a pixel-level markup of the sclera
vasculature. The images show (from left to right): a sample image from SBVPI, the iris markup,
the sclera markup and the markup of the vascular structure

ground truth information about the location of certain eye parts is available for images
in the dataset. In particular, all 1858 images contain a pixel-level markup of the sclera
and iris regions, as illustrated in Fig. 13.6. The vascular structure and pupil area are
annotated for a subset of the dataset i.e. 130 images. The segmentation masks were
generated manually using the GNU Image Manipulation Program (GIMP) and stored
as separate layers for all annotated images. The markups are included in SBVPI in
the form of metadata.

The available annotations make our dataset suitable for research work on sclera
recognition, but also segmentation techniques, which is not the case with competing
datasets. Especially the manual pixel-level markup of the sclera vasculature is a
unique aspect of the sclera-related part of SBVPI.

13.5 Experiments and Results

In this section, we evaluate our sclera recognition pipeline. We start the section
with a description of the experimental protocol and performance metrics used, then
discuss the training procedure for all parts of our pipeline and finally proceed to the
presentation of the results and corresponding discussions. To allow for reproducibility
of our results, we make all models, data, annotations and experimental scripts publicly
available through http://sclera.fri.uni-lj.si/.
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13.5.1 Performance Metrics

The overall performance of our recognition pipeline depends on the performance of
the segmentation part used to extract the vascular structure from the input images
and on the discriminative power of the feature representation extracted from the
segmented vasculature. In the experimental section we, therefore, conduct separate
experiments for the segmentation and feature extraction parts of our pipeline. Next,
we describe the performance metrics used to report results for these two parts.

Performance metrics for the segmentation experiments: We measure the per-
formance of the segmentation models using standard performance metrics, such as
precision, recall and the F1-score, which are defined as follows [57, 58, 63]:

precision = T P

T P + F P
, (13.6)

recall = T P

T P + F N
, (13.7)

F1-score = 2 · precision · recall

precision + recall
, (13.8)

where T P denotes the number of true positive pixels, F P stands for the number of
false positive pixels and F N represents the number of false negative pixels.

Among the above measures, precision measures the proportion of correctly seg-
mented pixels with respect to the overall number of true pixels of the target class
(e.g. the sclera region) and, hence, provides information about how many segmented
pixels are in fact relevant. Recall measures the proportion of correctly segmented
pixels with respect to the overall number of pixels assigned to the target class and,
hence, provides information about how many relevant pixels are found/segmented.
Precision and recall values are typically dependent—it is possible to increase one at
the expense of the other and vice versa by changing segmentation thresholds. If a
simple way to compare two segmentation models is required, it is, therefore, conve-
nient to combine precision and recall into a single metric called F1-score, which is
also used as an additional performance metric in this work [57].

Note that when using a fixed segmentation threshold Δ, we obtain fixed precision
and recall values for the segmentation outputs, while the complete trade-off between
precision and recall can be visualised in the form of precision–recall curves by
varying the segmentation threshold Δ over all possible values. This trade-off shows
a more complete picture of the performance of the segmentation models and is also
used in the experimental section [57].

Performance metrics for the recognition experiments: We measure the perfor-
mance of the feature extraction (and recognition) part of our pipeline in verification
experiments and report performance using standard False Acceptance (FAR) and
False Rejection error Rates (FRR). FAR measures the error over the illegitimate
verification attempts and FRR measures the error over the legitimate verification
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attempts. Both error rates, FAR and FRR, depend on the value of a decision thresh-
old (similar to the precision and recall values from the previous section) and selecting
a threshold that produces low FAR values contributes towards high FRR scores and
vice versa, selecting a threshold that produced low FRR values generates high FAR
scores. Both error rates are bounded between 0 and 1. A common practice in biomet-
ric research is to report Verification Rates (VER) instead of FRR scores, where VER
is defined as 1-FRR [11, 64–66]. We also adopt this practice in our experiments.

Toshow the complete trade-off between FAR and FRR (or VER), we generate
Receiver Operating Characteristic (ROC) curves by sweeping over all possible values
of the decision threshold. We then report on several operating points from the ROC
curve in the experiments, i.e. the verification performance at a false accept rate of
0.1% (VER@0.1FAR), the verification performance at a false accept rate of 1%
(VER@1FAR) and the so-called Equal Error Rate (EER), which corresponds to the
ROC operating point, where FAR and FRR are equal. Additionally, we provide Area
Under the ROC Curve (AUC) scores for all recognition experiments, which is a
common measure of the accuracy of binary classification tasks, such as biometric
identity verification.

13.5.2 Experimental Protocol and Training Details

We conduct experiments on the SBVPI dataset introduced in Sect. 13.4 and use
separate experimental protocols for the segmentation and recognition parts of our
pipeline. The protocols and details on the training procedures are presented below.

13.5.2.1 Segmentation Experiments

The segmentation part of our pipeline consists of two components. The first generates
an initial segmentation result and locates the sclera region in the input image, whereas
the second segments the vasculature from the located sclera.

Sclera segmentation: To train and test the segmentation model for the first com-
ponent of our pipeline, we split the sclera-related SBVPI data into two (image and
subject) disjoint sets:

• A training set consisting of 1160 sclera images. These images are further par-
titioned into two subsets. The first, comprising 985 images, is used to learn the
model parameters and the second, comprising 175 images, is employed as the
validation set and used to observe the generalization abilities of the model during
training and stop the learning stage if the model starts to over-fit.

• A test set consisting of 698 sclera images. This set is used to test the final perfor-
mance of the trained segmentation model and compute performance metrics for
the experiments.
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To avoid over-fitting, the training data (i.e. 985 images) is augmented by a factor of
40 by left–right flipping, cropping, Gaussian blurring, changing the image brightness
and application of affine transformations such as scale changes, rotations (up to ±35◦)
and shearing.

Training of the SegNet model for the initial segmentation step (for sclera seg-
mentation) is conducted on a GTX 1080 Ti with 11GB of RAM. We use the Caffe
implementation of SegNet made available by the authors2 for the experiments. The
input images are rescaled to fixed size of 360 × 480 pixels for the training procedure.
The model weights are learned using Stochastic Gradient Descent (SGD) and Xavier
initialization [67]. The learning rate is set to 0.001, the weight decay to 0.0005,
the momentum to 0.9 and the batch size to 4. The model converges after 26, 000
iterations.

Vasculature segmentation: The second component of our pipeline requires a
pixel-level markup of the vascular structure of the sclera for both the training and the
testing procedure. The SBVP dataset contains a total of 130 such images, which are
used to learn the SegNet model for this part and assess its performance. We again
partition the data into two (image and subject) disjoint sets:

• A training set of 98 images, which we split into patches of manageable size, i.e.
360 × 480 pixels. We generate a total of 788 patches by sampling from the set
of 98 training images and randomly select 630 of these patches for learning the
model parameters and use the remaining 158 patches as our validation set during
training. To avoid over-fitting, we again augment the training patches 40-fold using
random rotations, cropping and colour manipulations.

• A test set consisting of 32 images. While the test images are again processed patch-
wise, we report results over the complete images and not the intermediate patch
representations.

To train the segmentation model for the vascular structure of the sclera, we use
the same setup as described above for the sclera segmentation model.

13.5.2.2 Recognition Experiments

The vascular structure of the sclera is an epigenetic biometric characteristic with high
discriminative power that is known to differ between the eyes of the same subject.
We, therefore, treat the left and right eye of each subject in the SBVPI dataset as a
unique identity and conduct recognition experiments with 110 identities. Note that
such a methodology is common for epigenetic biometric traits and has been used
regularly in the literature, e.g. [68, 69].

For the recognition experiments, we split the dataset into subject disjoint training
and test sets, where the term subject now refers to one of the artificially generated 110
identities. The training set that is used for the model learning procedure consists of
1043 images belonging to 60 different identities. These images are divided between

2Available from: https://github.com/alexgkendall/caffe-segnet.
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the actual training data (needed for the learning model parameters) and the validation
data (needed for the early stopping criterion) in a ratio of 70% versus 30%. The
remaining 815 images belonging to 50 subjects are used for testing purposes.

For the training procedure, we again use a GTX 1080 Ti GPU. We implement our
ScleraNET model in Keras and initialize its weights in accordance with the method
from [67]. We use the Adam optimizer with a learning rate of 0.001, beta1 equal
to 0.9 and beta2 equal to 0.999 to learn the model parameters. We augment the
available training data on the fly to avoid over-fitting and to ensure sufficient training
material. We use random shifts (±20 pixels in each direction) and rotations (±20◦)
for the augmentation procedure. The model reaches stable loss values after 70 epochs.
As indicated in Sect. 13.3.3.3, once trained, the model takes 400 × 400 px images
as input and returns a 512-dimensional feature representation at the output (after
network surgery). The input images to the model are complete probability maps of
the sclera vasculature down-sampled to the target size expected by ScleraNET. Note
that because the down-sampling is performed after segmentation of the vasculature,
information on the smaller veins is not completely lost when adjusting for the input
size of the descriptor-computation model.

13.5.3 Evaluation of Sclera Segmentation Models

We start our experiments with an evaluation of the first component of the sclera
recognition pipeline, which produces the initial segmentation of the sclera region.
The goal in this series of experiments is to show how the trained SegNet architecture
performs for this task and how it compares to competing deep models and existing
sclera segmentation techniques. We need to note that while the error from this stage
is propagated throughout the entire pipeline to some extent, these errors are not as
critical as long as the majority of the sclera region is segmented from the input images.
Whether the segmentation is precise (and able to find the exact border between the
sclera region and fine details such as the eyelashes, eyelids, etc.) is not of paramount
importance at this stage.

To provide a frame of reference for the performance of SegNet, we implement 4
additional segmentation techniques and apply them to our test data. Specifically, we
implement 3 state-of-the-art CNN-based segmentation models and one segmentation
approach designed specifically for sclera segmentation. Note that these techniques
were chosen, because they represent the top performing techniques from the sclera
segmentation competitions of 2017 and 2018. Details on the techniques are given
below:

• RefineNet-50 and RefineNet-101: RefineNet [70] is recent deep segmentation
model built around the concept of residual learning [71]. The main idea of
RefineNet is to exploit features from multiple levels (i.e. from different layers)
to produce high-resolution semantic feature maps in a coarse-to-fine manner.
Depending on the depth of the model, different variants of the model can be trained.
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In this work, we use two variants, one with 50 model layers (i.e. RefineNet-50)
and one with 101 layers (i.e. RefineNet-101). We train the models on the same
data and with the same protocol as SegNet (see Sect. 13.5.2.1) and use a publicly
available implementation for the experiments.3 Note that RefineNet was the top
performer of the sclera 2018 segmentation competition held in conjunction with
the 2018 International Conference on Biometrics (ICB) [10].

• UNet: The UNet [72] model represents a popular CNN architecture particularly
suited for data-scarce image translation tasks such as sclera segmentation. Simi-
larly to SegNet, the model uses an encoder–decoder architecture but ensures infor-
mation flow from the encoder to the decoder by concatenating feature maps from
the encoder with the corresponding outputs of the decoder. We train the models on
the same data and with the same protocol as SegNet. For the experiments we use
our own Keras (with TensorFlow backend) implementation of UNet and make it
publicly available to the research community.4

• Unsupervised Sclera Segmentation (USS) [73]: Different from the models above,
USS represents an unsupervised segmentation technique, which does not rely on
any prior knowledge. The technique operates on greyscale images and is based
on an adaptive histogram normalisation procedure followed by clustering and
adaptive thresholding. Details on the method can be found in [73]. The technique
was ranked second in the 2017 sclera segmentation competition. Code provided
by the author of USS was used for the experiments to ensure a fair comparison
with our segmentation models.

Note that the three CNN-based models produce probability maps for the sclera vas-
culature, whereas the USS approach returns only binary masks. In accordance with
these characteristics we report precision, recall and F1-scores for all tested methods
(the CNN models are thresholded with a value of Δ that ensures the highest possible
F1-score) in Table 13.4 and complete precision–recall curves only for the CNN-based
methods in Fig. 13.7. For both the quantitative results and the performance graphs,
we also report standard deviations to have a measure of dispersion across the test set.

The results show that the CNN-based models perform very similarly (there is
no statistical difference in performance between the models). The unsupervised
approach USS, on the other hand, performs somewhat worse, but the results are
consistent with the ranking reported in [5]. Overall, the CNN models all achieve
near-perfect performance and are able to ensure F1-scores of around 0.95. Note
that such high results suggest that performance for this task is saturated and fur-
ther improvements would likely be a consequence of over-fitting to the dataset and
corresponding manual annotations.

The average processing time per image (calculated over a test set of 100 images)
is 1.2s for UNet, 0.6s for RefineNet-50, 0.8s for RefineNet-101, 0.15s for SegNet
and 0.34s for USS. In our experiments, SegNet is the fastest of the tested models.

We show some examples of the segmentation results produced by the tested seg-
mentation models in Fig. 13.8. Here, the first column shows the original RGB ocular

3Available from https://github.com/guosheng/refinenet.
4Available from: http://sclera.fri.uni-lj.si/.
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Table 13.4 Segmentation results generated based on binary segmentation masks. For the CNN-
based models, the masks are produced by thresholding the generated probability maps with a value
of Δ that ensures the highest possible F1-score, whereas the USS approach is designed to return a
binary mask of the sclera region only. Note that all CNN perform very similarly with no statistical
difference in segmentation performance, while the unsupervised USS approach performs somewhat
worse. The reported performance scores are shown in the form μ ± σ , computed over all test images

Algorithm Precision Recall F1-score

UNet [72] (ours) 0.936 ± 0.044 0.930 ± 0.037 0.933 ± 0.037

RefineNet-50 [70]
(ours)

0.959 ± 0.020 0.959 ± 0.020 0.959 ± 0.018

RefineNet-101 [70]
(ours)

0.953 ± 0.025 0.951 ± 0.023 0.952 ± 0.021

SegNet [5, 57] (ours,
this chapter)

0.949 ± 0.024 0.949 ± 0.022 0.949 ± 0.021

USS [5, 73] 0.729 ± 0.041 0.718 ± 0.039 0.723 ± 0.036

Fig. 13.7 Precision–recall curves for the tested CNN models. USS is not included here, as it returns
only binary masks of the sclera region. The left graph shows the complete plot generated by varying
the segmentation threshold Δ over all possible values, whereas the right graph shows a zoomed in
region to highlight the minute differences between the techniques. The marked points stand for the
operating points with the highest F1-Score. The dotted lines show the dispersion (σ ) of the precision
and recall scores over the test images

images, the second shows the manually annotated ground truth and the remain-
ing columns show results generated by (from left to right): USS, RefineNet-50,
RefineNet-101, SegNet and UNet. These results again confirm that all CNN-based
models ensure similar segmentation performance. All models segment the sclera
region well and differ only in some finer details, such as eyelashes, which are not
really important for the second segmentation step, where the vasculature needs to be
extracted from the ocular images.

Consequently, any of the tested CNN-based segmentation models could be used
in our sclera recognition pipeline for the initial segmentation step, but we favour
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Fig. 13.8 Visual examples of the segmentation results produced by the tested segmentation models.
The first column shows the input RGB ocular images, the second the manually annotated ground
truth and the remaining columns show the results generated by (from left to right): USS, RefineNet-
50, RefineNet-101, SegNet and UNet. Note that the CNN models (last four columns) produce
visually similar segmentation results and differ only in certain fine details

SegNet because of the fast prediction time, which is 4 times faster the second fastest
CNN model, i.e. RefineNet-50.

13.5.4 Evaluation of Vasculature Segmentation Models

In the next series of experiments, we evaluate the performance of the second segmen-
tation step of our pipeline, which aims to locate and segment the vascular structure of
the sclera from the input image. The input to this step is again an RGB ocular image
(see Fig. 13.9), but masked with the segmentation output produced by the SegNet
model evaluated in the previous section.
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Fig. 13.9 Examples of vasculature segmentation results. Each of the two image blocks shows
(from left to right and top to bottom): the input RGB ocular image, the input image masked with
the sclera region produced by the initial segmentation step, the ground truth markup, results for the
proposed cascaded SegNet assembly, and results for the Adaptive Gaussian Thresholding (AGT),
and the NMC, NRLT, Coye and B-COSFIRE approaches. The results show the generated binary
masks corresponding to the operating point used in Table 13.5. Note that the proposed approach
most convincingly captures the characteristics of the manual vasculature markup. Best viewed
electronically and zoomed in
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As emphasised earlier, we conduct segmentation with our approach in a patch-wise
manner to ensure that information about the finer details of the sclera vasculature
is not lost. Because the second SegNet model of the cascaded assembly outputs
probability maps, we use adaptive Gaussian thresholding [74] to generate binary
masks to compare with the manually annotated ground truth. To assess performance,
we compute results over the binary masks and again report fixed precision, recall and
F1-score values in this series of experiments. The performance scores are computed
for the operating point on the precision–recall curve that corresponds to the maximum
possible F1-score. We again report standard deviations in addition to the average
scores to have a measure of dispersion for the results of the test data.

For comparison purposes, we implement a number of competing techniques from
the literature that are regularly used for vessel segmentation in the field of vascu-
lar biometrics, i.e. (i) Adaptive Gaussian Thresholding (AGT) [74], (ii) Normal-
ized Maximum Curvature (NMC) [75], (iii) Normalized Repeated Line Tracking
(NRLT) [76], (iv)) Coye filtering [77] and (v) the B-COSFIRE approach from [78,
79]. The NMC and NRLT approaches represent a modified version of the origi-
nal segmentation techniques and are normalised to return continuous probability
maps rather than binarized segmentation results. The hyper-parameters of all base-
line techniques (if any) are selected to maximise performance. The techniques are
implemented using publicly available source code.5 We note again that no supervised
approach to sclera vasculature segmentation has been presented in the literature so
far. We focus, therefore, exclusively on unsupervised segmentation techniques in our
comparative assessment.

The results of the experiments are presented in Table 13.5. As can be seen, SegNet
ensures the best overall results by a large margin with an average F1-score of 0.727.
The B-COSFIRE techniques, regularly used for vasculature segmentation in retina
images, is the runner-up with an average F1-score of 0.393, followed closely by AGT
thresholding with an F1-score of 0.306. The NMC, NRLT and Coye filter approaches
result in worse performance with F1-scores below 0.25. While the performance dif-
ference between the SegNet model and the competing techniques is considerable, it
is also expected, as SegNet is trained on the manually annotated vasculature, while
the remaining approaches rely only on local image characteristics to identify the vas-
cular structure of the sclera. As a result, the vasculature extracted by the unsupervised
techniques (NMC, NRLT, Coye filter and B-COSFIRE) does not necessarily corre-
spond to the markup generated by a human annotator. However, the low-performance
scores of the unsupervised techniques do not indicate that the extracted vasculature
is useless for recognition, but only that there is low correspondence with the man-
ual markup. To investigate the usefulness of the extracted vascular patterns of these

5Code for the techniques is available from: AGT from OpenCV: https://opencv.org/, NMC and
NRLT from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-
et-al-vein-extraction-methods
Coye filter from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/50839-
novel-retinal-vessel-segmentation-algorithm-fundus-images
B-COSFIRE from Mathworks: https://www.mathworks.com/matlabcentral/fileexchange/49172-
trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images.

https://opencv.org/
https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods
https://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods
https://www.mathworks.com/matlabcentral/fileexchange/50839-novel-retinal-vessel-segmentation-algorithm-fundus-images
https://www.mathworks.com/matlabcentral/fileexchange/50839-novel-retinal-vessel-segmentation-algorithm-fundus-images
https://www.mathworks.com/matlabcentral/fileexchange/49172-trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images
https://www.mathworks.com/matlabcentral/fileexchange/49172-trainable-cosfire-filters-for-curvilinear-structure-delineation-in-images
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Table 13.5 Comparison of vasculature segmentation techniques. Results are presented for the
proposed cascaded SegNet assembly, as well as for five competing unsupervised segmentation
approaches from the literature. The probability maps generated by the techniques have been thresh-
olded to allow for comparisons with the annotated binary vasculature markup. Note that the proposed
approach achieves the best overall performance by a large margin

Algorithm Precision Recall F1-score

SegNet [15] + AGT
(ours, this chapter)

0.806 ± 0.155 0.675 ± 0.131 0.727 ± 0.120

Adaptive Gaussian
thresholding (AGT)

0.308 ± 0.119 0.372 ± 0.201 0.306 ± 0.120

Normalized maximum
curvature (NMC)

0.240 ± 0.097 0.247 ± 0.044 0.232 ± 0.062

Normalized repeated
line tracking (NRLT)

0.145 ± 0.055 0.314 ± 0.114 0.191 ± 0.066

Coye filter 0.143 ± 0.070 0.376 ± 0.085 0.198 ± 0.078

B-COSFIRE 0.351 ± 0.142 0.480 ± 0.083 0.393 ± 0.116

techniques for recognition, we conduct a series of recognition experiments in the
next section.

To put the reported results into perspective and show what the scores mean visually,
we present in Fig. 13.9 some qualitative segmentation results. Here, each of the two
image blocks shows (from left to right and top to bottom): the input ocular image,
the masked sclera region, the ground truth annotation and results for the proposed
cascaded SegNet assembly, the Adaptive Gaussian Thresholding (AGT), and the
NMC, NRLT, Coye and B-COSFIRE techniques. It is interesting to see what level
of detail the SegNet-based model is able to recover from the input image. Despite
the relatively poor contrast of some of the finer veins, the model still successfully
segments the sclera vasculature from the input images. The B-COSFIRE results are
also convincing when examined visually, but as emphasised earlier do not result in
high-performance scores when compared to the manual markup. Other competing
models are less successful and generate less precise segmentation results. However,
as suggested above, the competing models use no supervision to learn to segment the
vascular structures and therefore generate segmentation results that do not correspond
well to the manual markup.

To further highlight the quality of the segmentation ensured by the SegNet-based
model, we show a close up of the vascular structure of an eye and the corresponding
segmentation output in Fig. 13.10. We see that the model successfully segments
most of the vascular structure, but also picks up on the eyelashes, which very much
resemble the vein patterns of the sclera even from a human perspective. In the area
where reflections are visible, the model is not able to recover the vascular structure
from the input image. Furthermore, despite the patch-wise processing used with
the cascaded SegNet segmentation approach, we observe no visible artifacts caused
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Fig. 13.10 Visualisation of the fine vascular structure recovered by our segmentation model. The
image shows a zoomed in region of the vascular structure of the eye (on the left) and the corre-
sponding binarized output of our model (on the right)

by the re-assembly procedure. We assume this is a consequence of the run-time
augmentation step that smooths out such artifacts.

Because the segmentation is performed in a patch-wise manner, the average time
needed to process one input image with the proposed model in this part is 5.6 seconds
when using a single GPU (please note that this step can be parallelised using multiple
GPUs, because patch predictions can be calculated independently). For comparison,
the average processing time for AGT is 1.2 s, for NMC it is 32.5 s, for NRLT the
processing time is 7.9 s, for Coye it is 1.2 s and for the B-COSFIRE the processing
time is 13.9 s. However, note that different programming languages were used for
the implementation of the segmentation methods, so the processing times need to
be interpreted accordingly. For the proposed cascaded SegNet assembly, the entire
region-of-interest extraction step (which comprises the initial sclera segmentation
and vascular structure segmentation steps), takes around 6 s using a single GPU for
one input image on average.

Overall, these results suggest that the trained segmentation model is able to pro-
duce good quality segmentation results that can be used for recognition purposes.
We evaluate the performance of our recognition approach with the generated seg-
mentation outputs next.
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Fig. 13.11 Example of an input image and the corresponding probability map generated by the
SegNet model. The probability mask on the left is used as input to the ScleraNET model

13.5.5 Recognition Experiments

In the last series of experiments, we assess the performance of the entire recognition
pipeline and feed the segmented sclera vasculature into our ScleraNET model for
feature extraction. Note again that we use the probability output of the segmentation
models as input to ScleraNET (marked y in Fig. 13.2) and not the generated binary
masks of the vasculature. An example of the probability map generated with the
SegNet model is shown in Fig. 13.11. Once a feature representation is computed from
the input image, it is used with the cosine similarity to compute similarity scores and
to ultimately conduct identity inference. The feature computation procedure takes
0.1 s per image on average.

To evaluate the recognition performance of ScleraNET, we conduct verification
experiments using the following experimental setup:

• We first generate user templates by randomly selecting four images of each subject
in the test set. We sample the test set in a way that ensures that each template
contains all four gaze directions (i.e. up, down, left and right). Since each subject
has at least 4 images of each gaze direction, we are able to generate multiple
templates for each subject in the test set.

• Next, we use all images in the test set and compare them to the generated user tem-
plates. The comparison is conducted by comparing (using the cosine similarity)
the query vasculature descriptor to the descriptors of each image in the template.
The highest similarity score is kept as the score for the query-to-template compar-
ison. If the query image is also present in the template, we exclude the score from
the evaluation.

• We repeat the entire process 5-times to estimate average performance scores as
well as standard deviations. The outlined setup results in a total of 1228 legitimate
and 121572 illegitimate verification attempts in each of the 5 repetitions.

Becausethe ocular images are not aligned, we implement multiple descriptor-
based approaches for comparison. Specifically, we implement the dense SIFT (dSIFT
hereafter) approach from [8] and several keypoint based techniques. For the latter, we
compute SIFT [80], SURF [81] and ORB [82] descriptors using their corresponding
keypoint detectors. For each image-pair comparison, we use the average Euclidean
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Table 13.6 Results of the recognition experiments. The table shows performance scores for five
different descriptor-computation strategies and five approaches to vasculature segmentation. For
each performance metric, the best overall result is coloured red and the best results for a given
segmentation approach is coloured blue. The proposed ScleraNET model ensures competitive per-
formance significantly outperforming the competing models when applied on the segmentation
results generated by the proposed cascaded SegNet assembly

Segment. Algorithm VER@0.1FAR VER@1FAR EER AUC

C. SegNet
(ours)

ScleraNET
(ours)

0.181 ± 0.009 0.459 ± 0.009 0.145 ± 0.002 0.933 ± 0.002

SIFT 0.184 ± 0.076 0.452 ± 0.040 0.176 ± 0.005 0.903 ± 0.005

SURF 0.023 ± 0.007 0.126 ± 0.010 0.286 ± 0.004 0.782 ± 0.005

ORB 0.017 ± 0.004 0.080 ± 0.011 0.351 ± 0.003 0.704 ± 0.005

Dense SIFT 0.326 ± 0.016 0.507 ± 0.010 0.221 ± 0.004 0.865 ± 0.002

NMC ScleraNET 0.002 ± 0.001 0.023 ± 0.003 0.425 ± 0.004 0.596 ± 0.004

SIFT 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.000 0.500 ± 0.000

SURF 0.017 ± 0.024 0.031 ± 0.016 0.488 ± 0.013 0.535 ± 0.010

ORB 0.000 ± 0.000 0.005 ± 0.005 0.504 ± 0.006 0.497 ± 0.006

Dense SIFT 0.063 ± 0.014 0.184 ± 0.028 0.371 ± 0.012 0.683 ± 0.010

NRLT ScleraNET 0.112 ± 0.011 0.311 ± 0.006 0.196 ± 0.008 0.888 ± 0.004

SIFT 0.000 ± 0.000 0.014 ± 0.005 0.500 ± 0.001 0.500 ± 0.002

SURF 0.000 ± 0.000 0.021 ± 0.013 0.492 ± 0.008 0.509 ± 0.005

ORB 0.000 ± 0.000 0.021 ± 0.010 0.502 ± 0.005 0.499 ± 0.007

Dense SIFT 0.047 ± 0.004 0.153 ± 0.010 0.362 ± 0.008 0.701 ± 0.004

Coye ScleraNET 0.067 ± 0.008 0.215 ± 0.007 0.267 ± 0.006 0.812 ± 0.004

SIFT 0.000 ± 0.000 0.036 ± 0.014 0.496 ± 0.001 0.507 ± 0.002

SURF 0.000 ± 0.000 0.000 ± 0.000 0.500 ± 0.005 0.497 ± 0.005

ORB 0.002 ± 0.001 0.023 ± 0.005 0.451 ± 0.005 0.568 ± 0.006

Dense SIFT 0.091 ± 0.005 0.234 ± 0.018 0.300 ± 0.004 0.772 ± 0.004

B-COSFIRE ScleraNET 0.042 ± 0.004 0.140 ± 0.008 0.337 ± 0.005 0.723 ± 0.006

SIFT 0.000 ± 0.000 0.012 ± 0.005 0.488 ± 0.002 0.522 ± 0.003

SURF 0.000 ± 0.000 0.000 ± 0.000 0.494 ± 0.005 0.513 ± 0.003

ORB 0.000 ± 0.000 0.008 ± 0.002 0.467 ± 0.003 0.539 ± 0.004

Dense SIFT 0.110 ± 0.011 0.242 ± 0.011 0.325 ± 0.006 0.748 ± 0.005

distance between matching descriptors as the similarity score for recognition. Since
the descriptor-based approaches are local and rely on keypoint correspondences,
they are particularly suitable for problems such as sclera recognition, where (par-
tially visible) unaligned vascular structures under different views need to be matched
against each other. We conduct experiments with the vasculature extracted with the
proposed cascaded SegNet assembly, so we are able to evaluate our complete pro-
cessing pipeline, but also with the segmentation results produced by the competing
segmentation approaches evaluated in the previous section, i.e. NMC, NRLT, Coye
and B-COSFIRE.

From the results in Table 13.6 and Fig. 13.12 (results for ScleraNET in the figures
are marked as CNN), we see that the proposed pipeline (cascaded SegNet assembly +
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(a) Recognition results based on vasculature extracted with the SegNet assembly.

(b) NMC-based ROC curves. (c) NRLT-based ROC curves.

(d) Coye-filter-based ROC curves. (e) B-COSFIRE-based ROC curves.

Fig. 13.12 Results of the verification experiments. The graphs show recognition results for several
feature extraction techniques and multiple approaches to vasculature segmentation. The pipeline
proposed in this chapter results in the best overall performance
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ScleraNET) ensures an average AUC of 0.933 for the verification experiments com-
pared to the average AUC of 0.903 for the runner-up, the SIFT-based approach.
Interestingly, the dSIFT approach is very competitive at the lower FAR values,
but becomes less competitive at the higher values of FAR—see Fig. 13.12a. This
behaviour can likely be ascribed to the dense nature of the descriptor, which makes
it difficult to reliably compare images when there is scale and position variability
present in the samples. The remaining three descriptors, SIFT, SURF and ORB, are
less competitive and result in lower performance scores.

The segmentation results generated by the proposed cascaded SegNet assembly
appear to be the most suitable for recognition purposes, as can be seen by comparing
the ROC curves from Fig. 13.12b–e, to the results in Fig. 13.12a, or examining the
lower part of Table 13.6. While the NMC, NRLT, Coye and B-COSFIRE segmen-
tation results (in the form of probability maps) result in above-random verification
performance with the ScleraNET and dSIFT descriptors, the performance is at chance
for the keypoint-descriptor-based methods—SIFT, SURF and ORB. The reason for
this is the difficulty of finding matching descriptors in the images, which leads to
poor performance. The ScleraNET model, on the other hand, seems to generalise
reasonably well to segmentation outputs with characteristics different from those
produced by the cascaded SegNet assembly. It achieves the best performance with
the NRLT and Coye segmentation techniques, it is comparable in performance to
dSIFT on B-COSFIRE segmented vasculature and is second only to dSIFT with the
NMC approach. This is surprising, as it was not trained on vascular images produced
by these methods. Nonetheless, it seems to be able to extract useful descriptors for
recognition from these images as well.

Overall, the results achieved with the proposed pipeline are very encouraging and
present a good foundation for further research, also in the context of multi-modal
biometric systems built around (peri-)ocular information.

13.6 Conclusion

We have presented a novel approach to sclera recognition built around convolutional
neural networks. Our approach uses a two-step procedure that first locates the vas-
cular structure of the sclera from the input image and then extracts a discriminative
representation from the segmented vasculature that can be used for image compar-
isons and ultimately recognition. The two-step segmentation procedure is based on
cascaded SegNet assembly, the first supervised approach to sclera vasculature seg-
mentation presented in the literature, while the descriptor-computation procedure
is based on a novel CNN-based model, called ScleraNET, trained in a multi-task
manner. We evaluated our approach on a newly introduced and publicly available
dataset of annotated sclera images and presented encouraging comparative results
with competing methods. As part of our future work, we plan to integrate the pre-
sented pipeline with other ocular traits into a multi-modal recognition system.
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Chapter 14
Presentation Attack Detection for Finger
Recognition

Jascha Kolberg, Marta Gomez-Barrero, Sushma Venkatesh,
Raghavendra Ramachandra and Christoph Busch

Abstract Whereas other biometric characteristics, such as the face, are readily avail-
able for an eventual attacker through social media or easy to capture with a conven-
tional smartphone, vein patterns can only be acquired with dedicated sensors. This
fact makes them relevant not only for recognition purposes but especially for Presen-
tation Attack Detection (PAD), for instance, in combination with fingerprint recogni-
tion. In this chapter, we make use of this combination and present a finger vein-based
PAD algorithm to detect presentation attacks targeting fingerprint recognition. The
experiments are carried out on a newly collected database, comprising 32 species of
Presentation Attack Instruments ranging from printed artefacts to more sophisticated
fingerprint overlays. The results show that our method preserves a convenient usage
while detecting around 90% of the attacks. However, thin and transparent fingerprint
overlays remain very challenging.

Keywords Presentation attack detection · Fingerprint recognition

14.1 Introduction

In spite of the many advantages offered by biometric recognition with respect to
other traditional authentication methods (the well-known Lema “forget about PINs or
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passwords, you are your own key”), biometric systems are also vulnerable to external
attacks. As a consequence, the security and privacy offered by biometric recognition
systems can be undermined. Given its serious implications, the vulnerabilities of
biometric systems to different types of attacks have been the subject of numerous
studies in the last decades for different characteristics, including fingerprint [9, 18,
64], face [1], iris [23, 26, 27], voice [3] or multimodal systems [2, 10, 28].

Among other possible points of attack [64], the biometric capture device is prob-
ably the most exposed one: the attacker does not need to know any details about
the inner modules of the biometric system in order to attack the sensor. To fool
the biometric system, he can present the capture device with a Presentation Attack
Instrument (PAI), such as a 3D mask [16], a printed finger vein image [76] or a
fingerprint overlay [18]. These attacks are known in the literature as Presentation
Attacks (PA) [38].

In order to prevent such attacks, Presentation Attack Detection (PAD) methods
have been recently developed to automatically distinguish between bona fide (i.e. real,
live or genuine) presentations and access attempts carried out by means of PAIs [49].
Incorporating such countermeasures in biometric systems are crucial, especially in
unattended scenarios. Given the importance of increasing the robustness of biometric
systems to these attacks, and hence the systems’ security, this area of research has
attracted a considerable attention within the biometric community in the last decade.
In fact, several international projects like the European Tabula Rasa [70] and BEAT
[48], or the more recent US Odin research program [55], deal with these security
concerns. In addition, the LivDet liveness detection competition series on iris [79]
and fingerprint [80] have been running since 2009. In turn, these initiatives have
led to a wide number of publications on PAD methodologies for several biometric
characteristics, including iris [19], fingerprint [47, 67], or face [20].

Compared to other biometric characteristics, such as fingerprint or handwritten
signature, the use of finger vein for recognition purposes are relatively new: the first
commercial applications date back to 2005 by Hitachi Ltd [45]. The first studies
on the vulnerability of finger vein recognition systems to presentation attacks were
carried out only in 2014 [76]. In this work, Tome et al. showed how a simple print out
of a finger vein image could successfully fool the system in up to 86% of the attempts.
A similar evaluation was carried out by Tome and Marcel [74] in 2015 for palm vein
images, where the success rate of the attacks reached figures as high as 75%. It is hence
crucial to protect vein-based systems from these presentation attacks, which, given
their simplicity, can be carried out by potentially any individual. This is especially
relevant for finger vein, due to the extended use of the corresponding sensors in ATMs
(i.e. unsupervised scenario) in countries as diverse as China,1 Turkey,2 Taiwan,3 or
Poland.4

These facts call for a joint effort within the biometrics community to develop PAD
techniques for vein-based systems. In this context, the first approach based on Fourier

1https://findbiometrics.com/finger-vein-authentication-atms-china-502087/.
2http://www.hitachi.com/New/cnews/120206b.pdf.
3http://www.hitachi-omron-ts.com/news/201607-001.html.
4http://edition.cnn.com/2010/WORLD/europe/07/05/first.biometric.atm.europe/index.html.

https://findbiometrics.com/finger-vein-authentication-atms-china-502087/
http://www.hitachi.com/New/cnews/120206b.pdf
http://www.hitachi-omron-ts.com/news/201607-001.html
http://edition.cnn.com/2010/WORLD/europe/07/05/first.biometric.atm.europe/index.html
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and wavelet transforms was proposed in 2013 by Nguyen et al. [51]. Two years later,
the first competition on finger vein PAD was organised [75], where three different
teams participated. Since then, different PAD approaches have been presented, based
on either a video sequence and motion magnification [60], texture analysis [44, 61,
71], image quality metrics [7], or more recently, neural networks [52, 59, 63] and
image decomposition [58].

All the aforementioned works are focused on the detection of printed finger vein
images, or, in some cases, of replay attacks carried out with digital displays [61]. In all
cases, almost perfect error rates are achieved, thereby indicating that such PAIs can
be easily detected with the current techniques. However, the applications of finger
vein-based PAD are not limited to finger vein recognition. In fact, the development
of multimodal capture devices which are able to acquire both finger vein images or
videos, and finger photos, opens new lines of research [62]: biometric recognition
can be based on fingerprints extracted from the photos, and PAD techniques can be
developed for the finger vein data. This approach is being currently followed in the
BATL project [6] within the US Odin research program [55]: among other sensors,
finger vein images are used to detect fingerprint presentation attacks. As with the
aforementioned finger vein print outs, it has already been shown that fingerprints can
be recovered even from the stored ISO templates [18], and then be transformed into
a PAI, which is recognised as a fingerprint. However, most fingerprint PAIs do not
take into account the blood flow, which is also harder to simulate. On the other hand,
the finger vein printed images analysed in the finger vein PAD literature will not be
able to fool the fingerprint scanner, as it contains no fingerprint. We can therefore
also include a finger vein PAD module in multimodal finger sensors designed for
fingerprint recognition, thereby making it harder for an eventual attacker to design a
PAI which is able to bypass both sensors.

In this chapter, we will first summarise in Sect. 14.2 the main concepts and evalu-
ation metrics for biometric PAD defined in the recent ISO/IEC 30107 standard [38,
39]. The state of the art in fingervein and fingerprint PAD is subsequently reviewed
in Sect. 14.3. We will then describe the multimodal sensor developed in the BATL
project and the proposed approach to finger vein-based PAD to detect fingerprint PAIs
(Sect. 14.4). The proposed method is evaluated according to the ISO/IEC 30107 stan-
dard [39] in Sect. 14.5. The chapter ends with the final discussion and conclusions
in Sect. 14.6.

14.2 Presentation Attack Detection

Presentation attacks are defined within the ISO/IEC 30107 standard on biometric
presentation attack detection [38] as the “presentation to the biometric data capture
subsystem with the goal of interfering with the operation of the biometric system”.
The attacker may aim at impersonating someone else (i.e. impostor) or avoiding
being recognised due to black-listing (i.e. identity concealer).
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In the following, we include the main definitions presented within the ISO/IEC
30107-3 standard on biometric presentation attack detection—part 3: testing and
reporting [39], which will be used throughout the chapter:

• Bona fide presentation: “interaction of the biometric capture subject and the bio-
metric data capture subsystem in the fashion intended by the policy of the biometric
system”. That is, a normal or genuine presentation.

• Attack presentation/presentation attack: “presentation to the biometric data cap-
ture subsystem with the goal of interfering with the operation of the biometric
system”. That is, an attack carried out on the capture device to either conceal your
identity or impersonate someone else.

• Presentation Attack Instrument (PAI): “biometric characteristic or object used in
a presentation attack”. For instance, a silicone 3D mask or an ecoflex fingerprint
overlay.

• PAI species: “class of presentation attack instruments created using a common
production method and based on different biometric characteristics”.

In order to evaluate the vulnerabilities of biometric systems to PAs, the following
metrics should be used:

• Impostor Attack Presentation Match Rate (IAPMR): “proportion of impostor
attack presentations using the same PAI species in which the target reference
is matched”.

• Attack Presentation Classification Error Rate (APCER): “ proportion of attack
presentations using the same PAI species incorrectly classified as bona fide pre-
sentations in a specific scenario”.

• Bona Fide Presentation Classification Error Rate (BPCER): “ proportion of bona
fide presentations incorrectly classified as presentation attacks in a specific sce-
nario”.

Derived from the aforementioned metrics, a global measure can be computed for
an easier benchmark across different systems: the Detection Equal Error Rate (D-
EER). It is defined as the error rate at the operating point where APCER = BPCER.

14.3 Related Works

In addition to the initial review of the existing works on finger vein PAD presented
in the introductory chapter, we first survey those works in detail, further discussing
the PAI species analysed and the detection performance achieved (see Sect. 14.3.1).
We subsequently summarise in Sect. 14.3.2 the most relevant works on fingerprint
PAD, since our main aim is to detect fingerprint PAIs with finger vein images. For
more details and a more extensive survey on fingerprint PAD, the reader is referred
to [47, 67].
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14.3.1 Finger Vein Presentation Attack Detection

A summary of the most relevant works in finger vein PAD is presented in Table 14.1,
classified according to the feature types extracted (handcrafted versus deep learning)
and the publication year. In addition, the main performance metrics over the selected
database is reported.

As mentioned in Sect. 14.1, research on finger vein recognition is relatively new.
As a direct consequence, the pioneering work on finger vein PAD was published
as recent as in 2013 [51]. Nguyen et al. proposed the combination of features in
both spatial and frequency domains through the Fourier and two different wavelet
transforms (i.e. Haar and Daubechies). They achieved a D-EER as low as 1.5% in
their experiments on a self-acquired database comprising both bona fides and a single
PAI species: printed finger vein images.

One year later, in 2014, Tome et al. analysed in-depth the vulnerabilities of fin-
ger vein recognition systems to PAs, revealing an alarming IAPMR up to 86% for
simple print outs of vein images [76]. This study motivated Tome et al. to organise
the first competition on finger vein PAD in 2015 [75]. In addition to the baseline
system developed at Idiap,5 three teams participated, proposing different approaches
to detect the PAs, namely: (i) Binarised Statistical Image Features (BSIF), (ii) a
monogenic global descriptor to capture local energy and local orientation at coarse
level and (iii) a set of local descriptors including Local Binary Patterns (LBP), Local
Phase Quantisation (LPQ), a patch-wise Short-time Fourier transform (STFT) and a
Weber Local Descriptor (WLD). In all cases, the final classification was carried out
with Support Vector Machines (SVMs), achieving remarkable detection rates with a
low complexity. Another byproduct of the competition was the establishment of the
Idiap Research Institute VERA Fingervein Database [77] as a benchmark for finger
vein PAD (see Table 14.1) with a single PAI species: printed images. This, in turn,
motivated the biometrics community to pursue the development of more efficient
PAD techniques.

Also in 2015, Raghavendra et al. [60] analysed short video sequences with the aid
of Eulerian video magnification [78]. The goal was to amplify the blood flow and
thus detect the printed artefacts. They compared the newly proposed method with
reimplementations of the algorithms presented in [75] over a self-acquired database:
the ACER was reduced 5 to 23 times, thus proving the soundness of the proposed
approach. In the same year, Tirunagari et al. proposed the use of Dynamic Mode
Decomposition (DMD), which is a mathematical method developed to extract infor-
mation from non-linear complex fluid flows [71]. They designed a windowed DMD
technique in order to extract micro-texture information from a single image, which
is decomposed into its maximum variance at column level, and the corresponding
residual or noise image. Using SVMs for classification over the VERA DB, they
achieved D-EERs outperforming other texture descriptors.

As for other biometric characteristics, texture patterns have been extensively
analysed for finger vein PAD. In addition to the approaches presented in [71, 75],

5http://www.idiap.ch/en/scientific-research/biometrics-security-and-privacy.
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Raghavendra and Busch included a new PAI species in a subsequent work [61]: a
smartphone display. In this case, they considered the residual high frequency band
extracted from steerable pyramids and a SVM, achieving again ACERs around 3%.
The following year, Kocher et al. thoroughly analysed different LBP extensions in
[44], to finally conclude that the baseline LBP technique performs as good as its
“improvements”. Finally, in a combined approach, Qiu et al. used total variation
decomposition to divide the finger vein sample into its structural and noise compo-
nents [58]. Using again LBP descriptors and SVMs, they achieved a perfect detection
accuracy with APCER = BPCER = 0% over the VERA DB.

Another approach followed for PAD, in general, is based on the use of image qual-
ity assessment [21]. This technique was also analysed by Bhogal et al. in [7] for finger
vein. In particular, they considered six different measures and their combinations,
achieving a detection accuracy over 99%.

Finally, in the last years, Deep Learning (DL) has become a thriving topic [33],
allowing computers to learn from experience and understand the world in terms
of a hierarchy of simpler units. This way, DL has enabled significant advances in
complex domains such as natural language processing [69], computer vision [81],
biometric recognition in general, and finger vein PAD in particular. In this context,
in 2017, Qiu et al. designed a new Convolutional Neural Network (CNN) for finger
vein PAD, which they named FPNet [59]. This network achieved a perfect detection
accuracy over the VERA DB. In the same year, Nguyen et al. used two different
pre-trained models (i.e. AlexNet [46] and VGG-16 [66]) for the same task. After
extracting the features with these nets, Nguyen et al. reduced their dimensionality
with Principal Component Analysis (PCA) and used SVMs for final classification.
Again, a perfect detection rate over the VERA DB was reported. In a similar fashion,
Raghavendra et al. analysed in [63] the use of AlexNet with Linear Discriminant
Analysis (LDA) and SVMs for classification purposes, also achieving perfect error
rates over a self-acquired database.

14.3.2 Fingerprint Presentation Attack Detection

The excellent performance of the finger vein PAD methods described above has
motivated us to also use finger vein images to detect fingerprint PAIs. However, let
us first review the state of the art in fingerprint PAD. Given the vast number of articles
studying this problem, we will summarise the most relevant ones for the present study
and refer the reader to [47, 67, 72] for more comprehensive reviews.

In general, PAD approaches can be broadly classified into two categories:
software-based methods perform a deeper analysis of the captured data to distin-
guish between bona fide and attack presentations, hardware-based setups make use
of information captured by additional sensors. In contrast to the younger finger vein
PAD research field, where only the former have been studied so far, for fingerprint
PAD both approaches have been followed. Tables 14.2 and 14.3 provide a summary
of the reviewed works, classified into soft- and hardware-based approaches. In addi-
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Table 14.2 Summary of the most relevant methodologies for software-based fingerprint presen-
tation attack detection. For performance evaluation, the metrics are the ones reported in the articles,
where CCR stands for correct classification rate and ACER for average classification error rate
Year References Description Performance #PAI Database

2007 [11] Score fusion of pore spacing,
noise, and statistical
properties

CCR = 85.2% 1 Own DB

2008 [53] LBP texture and wavelet
energy fusion

CCR = 97.4% 2 Own DB

2011 [17] Closed sweat pore extraction APCER = 21.2% 4 Own DB

BPCER = 8.3%

[50] Active sweat pore
localisation

N/A 0 BFBIG-DB1

2014 [22] 25 image quality metrics APCER < 13% 3 LivDet 2009

BPCER ≤ 14%

[40] Multiscale LBP D-EER = 7.52% 7 LivDet 2011

2016 [54] Pre-trained CNNs (Best:
VGG)

ACER = 2.90% 8 LivDet 2009-13

2017 [32] Bag of Words and SIFT APCER = 5% 7 LivDet 2011

BPCER = 4.3%

2018 [41] LBP extracted from
Gaussian pyramids (PLBP)

ACER = 21.21% 7 LivDet 2013

[12] Minutiae-centred CNN
several different scenarios

APCER < 7.3% 12 LivDet 2011-15,
MSU-FPAD,
PBSKD

BPCER = 1%

[13] Minutiae-centred CNN
generalisation

APCER = 4.7% 12 MSU-FPAD,
PBSKD

BPCER = 0.2%

tion, the number of PAI species and the main performance metrics over the selected
databases are reported.

A typical example of software-based approaches is the detection of sweat pores
in high-resolution fingerprint images [11, 17, 50]. Sweat pores are not visible in
latent fingerprints and, because of their tiny size, it is challenging to include them in
artefacts. Therefore, the existence of sweat pores can be utilised as an indicator of a
bona fide sample.

Another classical approach, widely applied not only to fingerprint but to other
biometric characteristics, is the extraction of textural information. Nikam and Agar-
wal [53] were among the first ones in 2008 to analyse this kind of approaches. On
the one hand, they extracted Local Binary Pattern (LBP) histograms to capture tex-
tural details. On the other hand, the ridge frequency and orientation information
were characterised using wavelet energy features. Both feature sets were fused and
the dimensionality reduced with the Sequential Forward Floating Selection (SFFS)
algorithm. For classification, the authors utilised a hybrid classifier, formed by fusing
three classifiers: a neural network, SVMs and K-nearest neighbours. Over a self-
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Table 14.3 Summary of the most relevant methodologies for hardware-based fingerprint pre-
sentation attack detection. For performance evaluation, the metrics are the ones reported in the
articles

Year References Description Performance #PAI Database

2011 [34] Multi-spectral blanching
effect, pulse

APCER = 0% 4 Own DB

BPCER = 0%

2013 [15] Optical methods pulse,
pressure, skin reflections

APCER = 10% N/A Own DB

BPCER < 2%

2018 [29] SWIR spectral signatures
+ SVM

APCER = 5.7% 12 Own DB

BPCER = 0%

[73] SWIR + CNN APCER = 0% 12 Own DB

BPCER = 0%

[43] LSCI + SVM APCER = 15.5% 32 Own DB

BSIF, LBP, HOG,
histogram

BPCER = 0.2%

[37] SWIR, LSCI +
patch-based CNN

APCER = 0% 17 Own DB

BPCER = 0%

[30] Weighted score fusion +
SVM SWIR, LSCI, vein

APCER = 6.6% 35 Own DB

BPCER = 0.2%

2019 [72] SWIR + CNN fusion
(pre-trained and from
scratch)

APCER ≈ 7% 35 Own DB

BPCER = 0.1%

[31] Fusion of: SWIR + CNN
and LSCI + hand-crafted
features

APCER ≤ 3% 35 Own DB

BPCER ≤ 0.1%

acquired database comprising two different PAI fabrication materials and several
mould materials, an overall classification rate up to 97.4% is reported.

In 2009, the LivDet competition series on fingerprint and iris started in a bi-
annual basis [25]. The datasets provided quickly became the de facto standard for
fingerprint PAD evaluations. For instance, Jia et al. [40] continued the research line
based on texture information and proposed the use of two different variants of multi-
scale LBP in combination with SVMs. Over the LivDet 2011 dataset, their method
achieved a D-EER of 7.52%. More recently, Jiang et al. presented another approach to
extract LBP features from multiple scales in [41]. In particular, a Gaussian pyramid
was constructed from the input samples and the corresponding LBP histograms,
extracted from three different levels, were classified using an SVM. Achieving an
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ACER of 21% over the LivDet 2013 dataset, this method outperformed the algorithms
presented in the competition.

In a more general approach, Galbally et al. [22] use 25 complementary image
quality features to detect presentation attacks for face, iris and fingerprint on legacy
data. Regarding fingerprint, they compare their approach with other state-of-the-art
methods on the LivDet 2009 fingerprint database, which includes three different PAI
species. Their results are competitive for 2014 and even outperform some previously
published PAD algorithms on the same dataset. Their main advantage is its indepen-
dency of the modality, and, additionally, the method is “simple, fast, non-intrusive,
user-friendly, and cheap”.

All the aforementioned approaches focus on the basic scenario where all PAI
species in the test set are also included in the training test. However, a more realis-
tic, and challenging, scenario should include additional “unknown attacks”, or PAI
species only used for testing purposes. In such a case, the detection performance
usually decreases. To tackle this issue, Gonzalez-Soler et al. analysed in [32] the
use of the Bag of Words feature encoding approach applied to local keypoint-based
descriptors (dense Scale Invariant Feature Transform, SIFT). They compare their
detection performance with other existing methods using feature descriptors, with
no encoding schemes, and show a relative 25% improvement on the average Average
Classification Error Rate (ACER, the performance metric used in the LivDet com-
petitions) over the LivDet 2011 with respect to the state of the art. In addition, they
present a fully compliant ISO evaluation in terms of APCER and BPCER for the first
time for the LivDet datasets.

In contrast to the handcrafted approaches mentioned above, most of the newest
approaches rely on deep learning. One of the first works directly related to fingerprint
PAD based on conventional capture devices (i.e. a software-based method), was
carried out by Nogueira et al. [54]. In more details, the following three CNNs were
tested: (i) the pre-trained VGG [66], (ii) the pre-trained Alexnet [46] and (iii) a CNN
with randomly initialised weights and trained from scratch. The authors benchmarked
the ACER obtained with the networks over the LivDet 2009, 2011 and 2013 databases
to a classical state of the art algorithm based on LBP. The best detection performance
is achieved using a VGG pre-trained model and data augmentation (average ACER
= 2.9%), with a clear improvement with respect to LBP (average ACER = 9.6%).
It should be also noted that the ACER decreased between 25% and 50% (relative
decrease) for all three networks tested when data augmentation was used.

More recently, Chugh et al. presented the current state of the art for the LivDet
datasets in [12], and they evaluated it on multiple publicly available datasets including
three LivDet datasets (2011, 2013, 2015), as well as their own collected and published
MSU-FPAD and Precise Biometric Spoof-Kit datasets (PBSKD), which include
in total 12 PAI species and more than 20000 samples. The so-called Fingerprint
Spoof Buster [12] is a convolutional neural network (CNN) based on MobileNet [35],
which is applied to minutiae-centred patches. Splitting the CNN input into patches
allows them to train the network from scratch without over-fitting. They evaluate
several different test scenarios and outperform other state-of-the-art approaches on
the LivDet datasets. In a subsequent work [13], the Fingerprint Spoof Buster’s gen-
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eralisation capability is analysed by applying a leave-one-out protocol on all 12 PAI
species from the MSU-FPAD and PBSKD datasets. They observe that some materi-
als are harder to detect when not included during training and specify an optimised
training set comprising six of twelve PAIs. The testing results in an APCER of 4.7%
at a BPCER of 0.2%.

Even if the aforementioned works manage to achieve remarkably low error rates,
PAD can also benefit from information captured by additional sensors, as any other
pattern recognition task. To that end, some hardware-based approaches utilise dif-
ferent illumination techniques or capture the pulse frequencies. Hengfoss et al. [34]
analysed in 2011 the reflections for all wavelengths between 400 and 1650 nm on
the blanching effect. This effect appears when the finger is pressed against a surface
and the blood is squeezed out due to the compression of the tissue. Furthermore,
they utilise pulse oximetry but admit that this approach takes more time and thus is
less desirable for PAD. They manage to correctly distinguish living fingers, cadaver
fingers and three PAIs for both methods, and conclude that those dynamic effects
(i.e. blanching and pulse) only occur for living fingers. Two years later, Drahansky
et al. [15] proposed new optical handcrafted PAD methods for pulse, colour change
under pressure and skin reflection for different wavelengths (470, 550 and 700 nm).
These methods are evaluated on a database comprising 150 fingerprints, achieving
the best results for the wavelength approach. Additionally, they analyse 11 differ-
ent skin diseases that could occur on the fingertip. However, the influence on the
detection performance was not tested.

Over the last five years, it has been shown that the skin reflection within the
Short-wave Infrared (SWIR) spectrum of 900–1700 nm are independent from the
skin tone. This fact was first analysed by NIST [14] and later on confirmed by Steiner
et al. [68] for face PAD. Building upon the work of [68], Gomez-Barrero et al. [29]
apply the spectral signature concept first developed for facial images to fingerprint
PAD. Their preliminary experiments, over a rather small database, show that most
materials, except for orange play doh, respond different than human skin in the SWIR
wavelengths of 1200, 1300, 1450 and 1550 nm. However, with the use of fine-tuned
CNNs, also the orange play doh is correctly classified in a subsequent work [73]. In a
follow-up study [72], Tolosana et al. benchmark both pre-trained CNN models, and
design and train a new residual CNN from scratch for PAD purposes for the same
SWIR data. Over a larger dataset including 35 different PAI species and more than
4700 samples, they show that a combination of two different CNNs can achieve a
remarkable performance: an APCER around 7% for a BPCER of 0.1%. In addition,
the evaluation protocol includes 5 PAI species considered only for testing, thereby
proving the soundness of their approach even in the presence of unknown attacks.

Additionally, it has been shown that Laser Speckle Contrast Imaging (LSCI)
can be used for PAD purposes [43]. The LSCI technique comes from biomedical
applications, where it has been applied to visualise and monitor microvascular blood
flow in biological tissues, such as skin and retina [65]. Keilbach et al. capture the blood
movement beneath the skin to differentiate living fingers from presentation attacks in
[43]. However, the utilised laser also penetrates thin transparent fingerprint overlays,
thereby detecting the underlying blood flow and falsely classifying the presentation
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as a bona fide one. Therefore, for a BPCER of 0.2% (system focused on the user
convenience), the APCER increases to 15.5%.

Combining SWIR and LSCI, Hussein et al. [37] use a patch-based CNN to classify
multi-spectral samples from both domains. For both techniques, low error rates are
reported and a combined fusion achieves a perfect detection performance over a
database compromising 551 bona fides and 227 PAs, including 17 different PAI
species.

Further research by Gomez-Barrero et al. [30] applies a score-level fusion method
based on handcrafted features to benefit from different domains, including SWIR,
LSCI and vein images. Their training set comprises only 136 samples in order to
evaluate the approach on 4531 samples in the test set containing 35 different PAI
species. The weights for the fusion are computed on 64 samples of the development
set. An APCER < 10% for a BPCER = 0.1% is reported, as well as an APCER of
6.6% for a BPCER = 0.2%, thus yielding secure systems even for very low BPCERs.

Lastly, in a subsequent work by Gomez-Barrero et al. [31], the SWIR CNN
approaches proposed in [72] are combined with an enhancement of the handcrafted
features extracted from the LSCI data in [43]. This combined approach, tested on
the same database comprising 35 different PAI species, shows a clear improvement
on the detection capabilities of the proposed method, even if only 2 sets of images
are used (i.e. reduced capture device cost): the D-EER is reduced from 2.7 to 0.5%.

14.4 Proposed Finger Vein Presentation Attack Detection

As indicated in Sect. 14.1, we will now focus on the development of PAD techniques
based on finger vein data, in order to detect fingerprint PAIs. It should be noted that
the PAD algorithm can process data that is captured simultaneously with a single
capture device from both the finger vein and the fingerprint. Otherwise, if the capture
with both sensors was done sequentially, the attacker might exchange the PAI used
for fingerprint verification with his bona fide finger for the PAD capture process.
Therefore, in this section, we first describe a multimodal capture device which is able
to acquire both fingerprint and finger vein images (Sect. 14.4.1). We subsequently
present an efficient PAD method applied to the finger vein data in Sect. 14.4.2. Given
that some fingerprint overlays may still reveal part of the vein structure, we will focus
on texture analysis to detect PAs in a real-time fashion using a single image.

14.4.1 Multimodal Finger Capture Device

Given the requirement to capture both fingerprint and finger veins, a contact-less mul-
timodal capture device is used to acquire photos of fingerprints as well as finger veins.
A diagram of the inner components of the capture device is depicted in Fig. 14.1. As
it may be observed, the camera and illumination boards are placed inside a closed
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Fig. 14.1 Sensor diagram: a box, with a slot in the middle to place the finger, encloses all the
components: a single camera, two sets of LEDs for visible (VIS) and NIR illumination and the light
guide necessary for the finger vein capture (more details in Sect. 14.4.1.2)

(a) Finger vein (NIR) sample. (b) Finger photo (VIS) sample.

Fig. 14.2 Full bona fide samples as they are captured by the camera

box, which includes an open slot in the middle. When the finger is placed there, all
ambient light is blocked and therefore only the desired wavelengths are used for the
acquisition of the images. In particular, we have used a Basler acA1300-60gm Near-
infrared (NIR) camera, which captures 1280 × 1024 px. images, with an Edmunds
Optics 35mm C Series VIS-NIR Lens. This camera is used for both frontal visible
(VIS) light images and NIR finger vein samples (see the following subsections for
more details on each individual sensor).

An example finger photo as it is captured by the camera is shown in Fig. 14.2,
for both the finger vein and the finger photo acquisition. As it can be seen, the
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(a) (b) (c)

Fig. 14.3 Bona fide finger photos: a visible (VIS) light image, b minutiae extracted with Verifinger
and c fingerprint enrolled with Verifinger

central Region of Interest (ROI) corresponding to the open slot where the finger is
placed needs to be extracted from the background before the images can be further
processed. Given that the finger is always placed over the open slot, and the camera
does not move, a simple fixed size cropping can be applied.

14.4.1.1 Finger Photo Sensor

The most important requirement for the design of the finger photo sensor is its
compatibility with legacy (optical) sensors. In other words, we need to make sure
that fingerprints can be extracted from the finger photos captured within the visible
wavelengths and be subsequently used for verification with Commercial off-the-shelf
(COTS) systems. In order to fulfil this requirement, the resolution and focus of the
selected camera and lens combination need to be high enough to yield fingerprints
with at least the equivalence to 500 dpi resolution. We have therefore chosen the
aforementioned Basler and Edmunds Optics components.

To illustrate how the finger photos can be used for fingerprint recognition, Fig. 14.3
shows the captured bona fide sample (Fig. 14.3a). Next to it, the minutiae extracted
with Neurotechnology VeriFinger SDK6 (Fig. 14.3b), which has been defined as the
standard fingerprint recognition SDK within the Odin program, and the correspond-
ing enrolled fingerprint (Fig, 14.3c) are depicted. As it may be observed, the minutiae
are correctly detected within the fingerprint area. It should be noted that, if this sys-
tem should be used in combination with optical sensors, the finger photo needs to be
flipped (left-to-right) before enrolment or comparison.

6https://www.neurotechnology.com/verifinger.html.

https://www.neurotechnology.com/verifinger.html


14 Presentation Attack Detection for Finger Recognition 449

Fig. 14.4 Bona fide finger
vein ROI, of size 830 × 240
px

14.4.1.2 Finger Vein Sensor

The finger vein capture device comprises three main components, namely: (i) a NIR
light source behind the finger with 20 LEDs of 940 nm, (ii) the corresponding NIR
camera and lens and (iii) an elevated physical structure to obtain the adequate amount
of light.

It should be noted that, in order to capture high-quality finger vein samples, it is
vital to let only the right amount of light intensity penetrate through the finger. To
achieve the correct amount of light transmission, a physical structure with elevation is
placed to concentrate the light intensity to the specified area, referred to in Fig. 14.1
as “light guide”. The subject interacts with the sensor by placing a finger on the
small gap provided between the NIR light source and the camera. The NIR spectral
light is placed facing the camera in a unique way, so that the light emitting from the
NIR spectrum penetrates through the finger. Since the haemoglobin blocks the NIR
illumination, the veins appear as darker areas in the captured image. A sample image
is depicted in Fig. 14.4, where the veins are clearly visible even before preprocessing
the sample.

14.4.2 Presentation Attack Detection Algorithm

As mentioned at the beginning of this Section, we will focus on texture analysis of
the finger vein samples in order to discriminate bona fide samples from presentation
attacks. To that end, we have chosen a combination of Gaussian pyramids and Local
Binary Patterns (LBP), referred to as PLBP, which was proposed in [57] as a general
descriptor. The main advantage of this texture descriptor lies on the fact that, by
extracting the LBP features from the hierarchical spatial pyramids, texture informa-
tion at different resolution levels can be considered. In fact, the PLBP approach was
used in [41] for fingerprint PAD over the LivDet 2013 DB [24], achieving results
within the state of the art for only three pyramid levels. In order to analyse the influ-
ence of the different pyramid levels, we compare the results using up to 16 pyramid
levels.

The flowchart of the proposed method is shown in Fig. 14.5. First, the Gaussian
pyramids are computed from the original cropped image or ROI (see Fig. 14.4).
Subsequently, LBP images are generated for every pyramid level, resulting in the
PLBP images. Then, histograms are computed from the PLBP images and classified
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Fig. 14.5 General diagram of the proposed PAD algorithm. From the finger vein photo, the Gaussian
pyramid is computed first, then LBP is applied and the corresponding histogram serves as input to
the SVM classifier

(a) (b)

Fig. 14.6 Illustration of example pyramids for: a Gaussian pyramid of vein images and b LBP
images of this Gaussian pyramid

with a Support Vector Machine (SVM). Each step is described in more detail in the
following paragraphs.

Gaussian pyramids. For multi-resolution analysis, lowpass pyramid transforms
are widely used [8]. In particular, the Gaussian blur lowpass filter can be used to
down-sample the original image. This step can be repeated to get continuously smaller
images, resembling a pyramid, as depicted in Fig. 14.6. In practice, one pixel of the
down-sampled image corresponds to a fixed size area of the previous pyramid level,
thereby losing information the further up we go into the pyramid. However, in our
implementation, all levels of the pyramid have the same size, which is obtained by
up-sampling the output image in each iteration. As a consequence, the higher level
images appear blurrier.

It should be highlighted that, in our implementation, different pyramids with up to
16 levels are created. This allows us to determine how the PAD performance change
when more levels of the pyramid are used.

Local Binary Patterns (LBP). Local binary patterns were introduced in [56] as
a simple but efficient texture descriptor. Its computational simplicity and greyscale
invariance are the most important properties of LBP. The algorithm compares neigh-
bouring pixels and returns the result as a binary number, which is in turn stored as
a decimal value. The process is illustrated in Fig. 14.7 for a radius of 1 pixel (3 × 3
block). It should be noted that the binary representation can also be flipped and the
direction and starting point of reading the binary number does not matter as long
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182 179 186

179 181 192

176 180 183

1 0 1
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0 0 1

101110002 18410

Fig. 14.7 LBP computation: Comparing the central pixel (orange) to each neighbouring pixel
results in a binary representation. The binary values are converted to a decimal number, which is
stored in the resulting LBP image instead of the original central pixel

(a) 1st Pyramid level (b) 6th Pyramid level

(c) 11th Pyramid level (d) 16th Pyramid level

Fig. 14.8 Resulting bona fide LBP images of different Gaussian pyramid levels (i.e. PLBP images)

as it is fixed for the whole system (otherwise, the extracted feature would not be
comparable). An example of the four selected PLBP images of the bona fide sample
shown in Fig. 14.4 is presented in Fig. 14.8.

Classification. In order to reduce the dimensionality of the feature vector, a
greyscale histogram is computed from the resulting LBP images. Subsequently, lin-
ear SVMs are used to classify the extracted histograms. These SVMs rely on a main
parameter, C , which can be tuned for an optimal performance. Intuitively, the C
parameter trades off misclassification of training examples against simplicity of the
decision surface. A low C makes the decision surface smooth, while a high C aims
at classifying all training examples correctly by giving the model freedom to select
more samples as support vectors.

In addition, we benchmark two SVM approaches, as shown in Fig. 14.9 for the
simple case of three pyramid levels. On the one hand, we use separate SVMs for
each pyramid level (Fig. 14.9a). On the other hand, we utilise a single SVM for all
pyramid levels (Fig. 14.9b). Both setups produce one label per pyramid level and
then apply a majority vote on the corresponding SVM outputs in order to reach a
final decision.
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Finger vein
PLBP

histograms SVM

SVM

SVM

Majority Vote
(mean) BF

PA

(a) Separate SVMs for 3 pyramid levels.

Finger vein
PLBP

histograms SVM
Majority Vote

(mean) BF

PA

(b) Single SVM for 3 pyramid levels.

Fig. 14.9 Diagram of the two SVM approaches on the example of 3 pyramid levels

14.5 Experimental Evaluation

With the aim of analysing the suitability of the proposed method for finger vein-based
PAD, several experiments were carried out using an identical experimental protocol.
Our training and test sets are completely disjoint in order to avoid biased results.
Furthermore, in order to allow reproducibility of the experiments, preprocessing and
feature extraction are based on the bob toolkit [4, 5].

14.5.1 Experimental Set-Up

The captured dataset comprises 766 samples including 542 bona fides and 224 pre-
sentation attacks, stemming from 32 different PAI species. The PAs can be classified
into three categories, namely: (i) 2D printouts, (ii) full fingers and (iii) overlays,
whereby 2D printouts can also be used as an overlay during the presentation. A
detailed listing of all PAIs from the database is presented in Table 14.4.

All samples were captured within the BATL project with our project partners at
the University of Southern California. Note that the project sponsor has indicated that
they will make the complete dataset available in the near future such that research
results presented in this work can be reproduced.

We have additionally considered two test scenarios (see Table 14.5). The first one
uses the same number of bona fides and PAs in the training set (69 samples each). To
increase the robustness on the detection of bona fide presentations (i.e. minimise the
BPCER), the second scenario adds additional 35 bona fide samples to the training set,
thus reducing the test set. The partitioning for both scenarios is shown in Table 14.5.
Both approaches, using a single SVM or separated SVMs, are compared using the
same training and test sets for each scenario.

In more details, the training set comprises all different PAIs except from dragon-
skin overlays, since this thin and transparent material does not block NIR illumination
as known from previous experiments [30]. As a consequence, all veins are visible
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Table 14.4 Listing of all PAI species and the number of samples in parenthesis

2D printouts Matte paper (10)

Transparent (8)

Full fingers 3D printed (24)

3D printed + silver coating (9)

dragon-skin (6)

dragon-skin + conductive paint (9)

dragon-skin + conductive paint + nanotips (9)

dragon-skin + graphite coating (9)

latex + gold coating (8)

play doh (28)

in black, blue, green, orange, pink, purple, red,
teal (3 each) and yellow (4)

silicone (7)

silicone + bare paint (13)

silicone + graphite coating (9)

silicone + nanotips (6)

silly putty (3)

silly putty metallic (6)

silly putty “glowing in the dark” (6)

wax (6)

Overlays dragon-skin (9)

monster latex (10)

school glue (6)

silicone (13)

urethane (6)

wax (4)

Table 14.5 Partitioning of training and test data

# Samples # PA samples # Bona fide
samples

Scenario 1 Train set 138 69 (50%) 69 (50%)

Test set 628 155 (25%) 473 (75%)

Scenario 2 Train set 173 69 (40%) 104 (60%)

Test set 593 155 (26%) 438 (74%)

and the sample has the same appearance as a bona fide. Using such samples to train
the SVM would thus have a negative impact on its detection accuracy, increasing the
BPCER. These PAIs are therefore used only for testing purposes.

In the first scenario, cross-validation is used during the training to automatically
select a best-fitting C value as SVM parameter. As suggested by Hsu et al. [36], expo-
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nential growing sequences for C (2x ) were tested within the range x = {−20, ..., 20}.
However, due to the increased number of training samples for the second scenario,
and consequently, the training time required, only the range x = {−20, ..., 8} has
been used to cross-validate scenario 2.

Finally, all results are reported in terms of the APCER and BPCER over the test
set (see Sect. 14.2), in compliance with the ISO/IEC 30107-3 standard on biometric
presentation attack detection - part 3: testing and reporting [39].

It should be noted that establishing a fair benchmark with previous works in the
state of the art are difficult since this is the first approach to carry out fingerprint PAD
based on finger vein samples.

14.5.2 Results

The results in terms of APCER (dashed) and BPCER (solid) for scenario 1 are plotted
in Fig. 14.10, in order to facilitate the visualisation and comparison across different
pyramid levels. On the x-axis, the range of pyramid levels are given while the y-axis
shows the error rates (in %). For the single SVM approach (Fig. 14.10a), both error
rates reach a minimum when using 6 pyramid levels, namely, BPCER = 3.38% and
APCER = 5.81%. On the other hand, for the separate SVM approach (Fig. 14.10b),
the minimum of both error rates is reached at different levels, namely, BPCER =
2.54% for the fifth level and APCER = 6.45% for the fourth level. This means that,
depending on the application at hand (i.e. which error rate should be optimised),
different levels may be selected. As it may be observed from Fig. 14.10, the error
rates of the separate SVMs somewhat stabilise for using five or more pyramid levels,
whereas the single SVMs show much more peaks and no stabilisation.

Regarding the aforementioned decision of prioritising one error rate over the other
one, it should be taken into account that a low BPCER results in user convenience (i.e.
a low number of bona fide presentation will be wrongly rejected). On the other hand,
a low APCER will grant a more secure system (i.e. the number of non-detected
attacks will be minimised). One of the aims of the Odin program is achieving a
low BPCER. To that end, we analyse the second scenario, for which more training
samples for the bona fide class are utilised in order to make the classifier more robust.
The corresponding plots with the APCER and BPCER for every pyramid level are
presented in Fig. 14.11.

We can observe that the BPCER is significantly lower for all pyramid levels when
compared to scenario 1, reaching minimum values of 0.68% for the single SVM and
2.28% for the separate SVMs. At the same time, the APCER stays similar to that
of scenario 1, thereby showing the soundness of increasing the number of bona fide
samples for training. Additionally, we can see that using only the first four levels
produces higher peaks and higher error rates, thus making it unsuitable for PAD
purposes. In turn, increasing the number of levels results in a decreasing BPCER, as
can be seen for the levels greater than four. Taking into account the pyramid levels
five to sixteen, the average APCER is slightly lower for the single SVM approach
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Fig. 14.10 Percentage of APCER and BPCER of scenario 1 for both SVM classifiers
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Fig. 14.11 Percentage of APCER and BPCER of scenario 2 for both SVM classifiers

(10.32–11.50%), while the average BPCER improves significantly for the single
SVM (1.12–2.87%). Therefore, we may conclude that the single SVM approach
achieves a better PAD performance than the separate SVMs since the training set of
the latter is not big enough to train one pyramid level independently of the others.
The single SVM gets complimentary information when seeing all levels together and
is thus able to reach a higher detection performance.

A comparison for both scenarios of the single SVM approach (level 7) to other
handcrafted state-of-the-art implementations is given in Table 14.6. The Luminosity
and MC mean algorithms operate on a very convenient threshold but classify only a
fraction of presentation attacks correctly (APCER = 68.39% and APCER = 43.87%,
respectively). The other algorithms use a support vector machine for classification
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Table 14.6 Comparison of the proposed method to state-of-the-art implementations

Algorithm Scenario 1 Scenario 2

APCER BPCER APCER BPCER

Luminosity [30] 68.39 0.00 68.93 0.00

MC mean [30] 43.87 0.21 43.87 0.23

MC
histogram [30]

13.55 9.51 12.90 8.22

BSIF [42] 28.39 5.71 26.45 4.57

LBP [56] 10.32 1.90 11.61 1.14

Proposed PLBP
(lvl 7)

10.32 4.02 11.61 0.68

and present lower APCERs. However, in some cases, the BPCER raises to nearly
10%. In particular, the MC histogram achieves an APCER between 12 and 14%while
the BPCER is between 8 and 10%. In contrast, the BSIF implementation results in
a BPCER of around 5% at the cost of a higher APCER (26–29%). The results of
the plain LBP implementation and the proposed PLBP implementation are identical
regarding APCER but differ in the BPCER. Whereas for scenario 1 LBP provides a
better BPCER of 1.9% compared to 4.02%, the proposed PLBP approach reduces
its BPCER in scenario 2 to 0.68% in contrast to 1.14% for LBP. Therefore, we
can see that our PLBP algorithm achieves the best results for scenario 2 while it is
outperformed by LBP in scenario 1. The score files from all tests in this chapter are
freely available.7

Even if the results are promising, reaching an APCER ≈ 10% for BPCER ≈ 1%,
where also unknown attacks (i.e. only used for testing and not seen by the classifier at
training) are considered, there is still room for improvement. In particular, a deeper
analysis of the results shows that a remarkable number of misclassified PAIs are
transparent overlays made of dragon-skin, silicone, monster latex, school glue or
wax. In addition, two types of full fake fingers also managed to deceive the PAD
algorithm in some cases, namely, glow-in-the-dark silly putty, and one of the samples
acquired from a teal play doh finger. Some samples that were not detected are shown
in Fig. 14.12. As we may observe, especially for the dragon-skin (c) and the school
glue (f) overlays, the samples are very similar to the bona fide sample shown in
Fig. 14.4. In particular, the vein structure can be clearly seen.

Finally, Fig. 14.13 shows the 11th level of PLBP images for (a) a dragon-skin
overlay, (b) a teal play doh finger, (c) a school glue overlay and (d) a 3D printed
finger with silver coating. Comparing these samples with the bona fide one from
Fig. 14.8, we can see the high similarities for the transparent overlays in (a) and (c).
However, the teal play doh and the 3D printed finger have different patterns (i.e. the
3D printed finger does not block the NIR light at all, only the silver-coated part is

7https://dasec.h-da.de/research/biometrics/presentation-attack-detection-for-finger-recognition/.
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(a) Teal play doh (b) Silly putty (glows) (c) Dragon-skin overlay

(d) Silicone overlay (e) Monster latex overlay (f) School glue overlay

Fig. 14.12 Examples of undetected PAI species

(a) Dragon-skin overlay (b) Teal play doh

(c) School glue overlay (d) 3D print + Ag

Fig. 14.13 Resulting LBP images of different PAIs for 11th Gaussian pyramid level (i.e. PLBP
images)

visible). Hence, the SVMs always correctly classify the 3D printed PAIs, and only
one error occurred for the teal play doh samples.

To sum up the findings in this section, we can state that the APCERs of around 10%
show the limitations of vein-based still image PAD: thin transparent overlays cannot
be detected since the extracted features look far too similar to the bona fide ones.
However, this PAD technique already allows to successfully detect a wide range of
PAIs, including full fake fingers and overlays fabricated from materials which block
NIR light to a bigger extent than human flesh.

14.6 Summary and Conclusions

Although being relatively new in comparison with other biometric characteristics,
such as fingerprints or handwritten signatures, finger vein recognition has enjoyed
a considerable attention within the last decade. As with any other security-related
technology, a wider deployment also implies an increase in security and privacy
related concerns. This has, in turn, lead to the development of countermeasures to
prevent, among others, presentation attacks.
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In particular, the biometric community has focused on detecting finger vein images
or videos presented to the capture device, in contrast to bona fide fingers. Highly
accurate PAD methods have been developed in the literature, able to detect these
PAIs with perfect error rates.

In parallel, multimodal capture devices able to acquire both finger vein and fin-
gerprint images have been proposed and implemented. In contrast to the finger vein,
which is harder to imitate, multiple recipes are available to an eventual attacker in
order to carry out a PA and fool a fingerprint-based recognition system. These facts
have motivated us to present in this chapter a novel approach to protect fingerprint
sensors: finger vein PAD methods which are able to detect fingerprint PAIs.

In more details, due to the remarkable performance shown by LBP for different
tasks, including PAD for several biometric characteristics, we chose this texture
descriptor for our work. Even for some challenging PAIs, we can observe with the
naked eye that the texture captured has a different appearance from the bona fide
finger. In addition, different texture details were analysed utilising Gaussian pyramids
and extracting the LBP features from each level of the pyramid. Subsequently, SVMs
were utilised for classification purposes.

With a sensor developed for the Odin program, a database comprising 32 different
PAIs was acquired and used for the present evaluation. After an extensive experimen-
tal evaluation, we found that using a single SVM for a concatenation of the features
extracted from all the levels of the pyramid is the best performing approach. This sce-
nario leads to operation points with BPCERs under 1% and an APCER around 10%.
The latter shows the main limitation of vein-based still image PAD: thin transparent
overlays cannot be detected. However, this PAD technique still allows to successfully
detect a wide range of PAIs.

We thus believe that finger vein can be effectively used with fingerprint for both
a more accurate recognition performance, as shown in previous works, and also for
PAD purposes. In the end, an attacker who needs to deceive both the fingerprint and
the vein sensors will face harder challenges in his path. In the forthcoming months,
we will focus on improving the finger vein-based PAD, and on developing combined
approaches with the finger photos captured with the sensor.
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Chapter 15
On the Recognition Performance
of BioHash-Protected Finger Vein
Templates

Vedrana Krivokuća and Sébastien Marcel

Abstract This chapter contributes towards advancing finger vein template protec-
tion research by presenting the first analysis on the suitability of the BioHashing tem-
plate protection scheme for finger vein verification systems, in terms of the effect on
the system’s recognition performance. Our results show the best performance when
BioHashing is applied to finger vein patterns extracted using the Wide Line Detector
(WLD) and Repeated Line Tracking (RLT) feature extractors, and the worst perfor-
mance when the Maximum Curvature (MC) extractor is used. The low recognition
performance in the Stolen Token scenario is shown to be improvable by increasing
the BioHash length; however, we demonstrate that the BioHash length is constrained
in practice by the amount of memory required for the projection matrix. So, WLD
finger vein patterns are found to be the most promising for BioHashing purposes
due to their relatively small feature vector size, which allows us to generate larger
BioHashes than is possible for RLT or MC feature vectors. In addition, we also pro-
vide an open-source implementation of a BioHash-protected finger vein verification
system based on the WLD, RLT and MC extractors, so that other researchers can
verify our findings and build upon our work.

Keywords BioHashing · Finger veins · Biometric template protection · Wide
Line Detector · Repeated Line Tracking · Maximum Curvature · EU General Data
Protection Regulation (GDPR) · UTFVP

15.1 Introduction

As our world is transforming into an interconnected network of individuals and
devices, we are beginning to realise that current data protection mechanisms are
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becoming inadequate to meet our growing security needs. Traditional security mech-
anisms, such as passwords and access cards, are no longer sufficient for establishing
an individual’s true identity, which is why we are turning to biometrics for stronger
identity assurance. While the unique link between an individual and their biometric
characteristics is the very fact that makes biometric authentication so reliable, it is
this same aspect of biometrics that makes this authentication factor vulnerable. For
this reason, the past decade has seen the emergence of a new field of research into
developing effective biometric template protection strategies to secure biometric fea-
tures during storage and transmission in an authentication system.1 Research in this
area is particularly important in light of the recent EU General Data Protection Reg-
ulation (GDPR),2 which legally obliges users of biometric data to exercise caution
in processing and storing this data to protect individuals’ digital identities.

A recent review paper on biometric template protection by Sandhya and Prasad [1]
shows that, between the years 2005 to 2016, the smallest amount of effort has been
invested into developing protection mechanisms for finger veins. Nevertheless, finger
vein recognition has increased in popularity over the past few years, with several
companies having already deployed finger vein recognition systems for public use,
e.g. M2SYS, Idemia, Hitachi and NEC. This suggests that there is an urgent need to
direct our attention towards researching effective mechanisms for protecting finger
vein templates.

Although the finger vein template protection field is still in its infancy, a number
of methods have been proposed in the literature. For example, in one of the earliest
approaches towards finger vein template protection [2], the finger vein pattern image
is first transformed using the Number Theoretic Transform,3 after which the trans-
formed template is masked by a random filter. Image-based transformations are also
applied towards protecting the finger vein template in [3], where block re-mapping
and mesh warping are (separately) applied to the finger vein image to derive two
versions of a cancellable finger vein template. Random projection is the template
protection method of choice in [4], where the finger vein template consists of end
points and intersections. Hybrid template protection strategies have been proposed
for finger veins in [5, 6]. In [5], the finger vein image is first transformed into a
template where the number of black (background) and white (vein) pixels is approx-
imately equal, and then the Fuzzy Commitment scheme is applied to this template.
In [6], the authors propose generating two BioHashes from the same finger vein tem-
plate, then encrypting one BioHash using Fuzzy Commitment and the other using
Fuzzy Vault, after which the two encrypted BioHashes are combined. Finally, [7–
9] have focused on multi-biometric systems. More specifically, in [7], finger vein,
fingerprint, finger knuckle print and finger shape features are fused, and then the

1https://www.iso.org/standard/52946.html.
2https://ec.europa.eu/commission/priorities/justice-and-fundamental-rights/data-protection/
2018-reform-eu-data-protection-rules_en.
3This is essentially the Fourier transform, constrained to a finite field.
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resulting feature vector is secured via Fuzzy Commitment. A similar approach is
presented in [8], except here the authors also consider score-level and decision-level
fusion, whereby Fuzzy Commitment is used to secure each individual feature vector,
then the scores or decisions, respectively, of the resulting biometric cryptosystems
are fused. In [9], the finger vein feature vector is protected using the Bloom filter
approach, and the authors also investigate a multi-biometric system whereby the
Bloom filter-protected finger vein template is fused with a Bloom filter-protected
face template.

This chapter contributes towards research on finger vein template protection by
investigating whether the BioHashing template protection strategy [10] is suitable for
protecting finger vein templates, in terms of its effect on the recognition performance
of the underlying recognition system. BioHashing is one of the most widely studied
biometric template protection schemes in the literature. It involves the projection
of a biometric feature vector into a random subspace defined by a user-specific
seed, followed by binarisation of the resulting projected vector to produce a so-
called BioHash. Although BioHashing has been applied to a number of biometric
characteristics (e.g. fingerprints [10], face [11], palm prints [12], and iris [13]), the
only mention of BioHashing on finger vein templates that we have come across is
the BioHashing/Fuzzy Vault and BioHashing/Fuzzy Commitment hybrid scheme in
[6], mentioned earlier. To the best of our knowledge, there does not yet exist any
published research on applying BioHashing on its own to finger vein templates. This
is where our contribution lies. We also provide an open-source BioHash-protected
finger vein verification system, which can be used by other researchers to verify and
build upon our work.

We have chosen to focus on BioHashing for three main reasons. First, one of
the biggest and most well-known advantages of BioHashing is that, theoretically,
there is the possibility of achieving a 0% error rate. While low error rates may be
characteristic of two-factor template protection schemes in general, BioHashing is
currently the most popular in this category. Second, finger vein images tend to be
fairly large, so we were interested in seeing whether BioHashing could be used to
produce significantly smaller finger vein templates. Finally, since BioHashing is one
of the most well-known template protection schemes in the literature, we wished
to provide an open-source implementation of this method for comparison purposes
against other template protection techniques developed for finger vein templates.

Note that the new standard4 for the evaluation of biometric template protection
schemes, ISO/IEC 30136:2018, specifies a number of requirements that should be
considered when assessing the robustness of a biometric template protection scheme.
These include the recognition performance of a biometric system employing tem-
plate protection compared to that of the same system without template protection;
the irreversibility of a template protection scheme, which refers to the difficulty
of recovering information about the underlying biometric characteristic from its
protected template; diversity, renewability (or cancellability), and unlinkability, all
of which relate to the possibility of generating multiple protected templates from

4https://www.iso.org/standard/53256.html.
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the same biometric characteristic, such that the protected templates are effectively
seen as different identities and can thus be used to (i) replace a compromised pro-
tected template, and (ii) enroll into multiple applications using the same biometric
characteristic without the risk of cross-matching the protected reference templates.
The standard also specifies the need to evaluate the possibility of impersonating an
enrolled individual using information about their underlying biometric characteristic
leaked from one or more of their protected templates, which may largely be attributed
to the template protection scheme’s compliance with the irreversibility and unlinka-
bility properties. A thorough evaluation of a biometric template protection scheme
must, therefore, take into account all of the aforementioned requirements. While the
evaluation of recognition performance is relatively established, there are currently
no solid, agreed-upon methods for assessing requirements such as irreversibility and
diversity/cancellability/unlinkability (despite some guidelines provided by the new
standard). Consequently, a thorough evaluation of a biometric template protection
scheme necessitates a dedicated treatise of each requirement, which, in many cases,
may involve the development and justification of new evaluation methodologies. In
light of these reasons, this chapter focuses on evaluating only the recognition per-
formance of BioHash-protected finger vein templates, and we reserve the analysis
of the remaining requirements for future work.

The remainder of this chapter is structured as follows. Section 15.2 briefly
describes the implementation of our BioHash-protected finger vein verification sys-
tem. Section 15.3 presents experimental results on the recognition performance of
this system and discusses memory constraints that should be considered when apply-
ing BioHashing to finger veins. Section 15.4 concludes the chapter and suggests areas
for future work.

15.2 BioHash-Protected Finger Vein Verification System

Our BioHash-protected finger vein verification system5 is an adaptation of the base-
line finger vein verification system implemented in the PyPI package.6 Our adapted
system consists of four modules, as illustrated in Fig. 15.1.

The preprocessor locates, crops and horizontally aligns the finger in each finger
vein image, as per [14, 15].

The extractor extracts the vein pattern from the cropped finger image. We used
three well-known extractors: Wide Line Detector (WLD) [15], Repeated Line Track-
ing (RLT) [16] and Maximum Curvature (MC) [17]. The output of each extractor is a
binary image, in which white pixels represent the finger vein pattern and black pixels
represent the background. For each binary image, we then concatenate its rows to
generate a finger vein feature vector.

5Code available at the following link: https://gitlab.idiap.ch/bob/bob.chapter.
fingerveins_biohashing.
6https://pypi.python.org/pypi/bob.bio.vein.
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Fig. 15.1 Enrolment (blue arrows) and verification (red arrows) stages in our BioHash-protected
finger vein verification system. IR and IP denote the reference and probe finger images, respectively.
Similarly, BR and BP denote the reference and probe BioHashes, respectively

The finger vein feature vector obtained from the feature extraction stage is next
BioHashed. Our implementation is based on the original BioHash method proposed
in [10]. The steps are summarised below:

1. Generate a user-specific7 random projection matrix of size n × l for each unique
finger8 in the database, where n represents the dimensionality of the finger vein
feature vector and l denotes the desired BioHash length. To ensure that the same
matrix can be generated for a specific finger during every verification attempt, the
random matrix generation is seeded with a user-specific seed. (This seed should
be stored on an external token, separately from the BioHash.)

2. Orthonormalise the random matrix.
3. Compute the dot product between the finger vein feature vector and each column

of the orthonormalised random matrix. The result is an l-dimensional projected
vector.

4. Binarise the projected vector using the mean of the vector as the binarisation
threshold, such that all values greater than the mean are set to 1 and all values
less than or equal to the mean are set to 0. The result is an l-dimensional binary
vector, referred to as the “BioHash”.

For the unprotected (without BioHashing) templates in our baseline finger vein
verification system, comparison is performed on the extracted finger vein features
separately for each of the three extractors (WLD, RLT and MC), using the comparison
algorithm proposed in [16]. This method is based on a cross-correlation between
the enrolled (reference) finger vein template and the probe template obtained during
verification. For the protected (with BioHashing) templates in our BioHash-protected
finger vein verification system, comparison is done by computing the Hamming
distance between the reference and probe BioHashes.

7Note that “user” refers to an individual using the finger vein verification system. While the stan-
dardised term would be “biometric data subject” or “individual”, we have chosen to retain the term
“user” for consistency with [10].
8Each finger represents a different identity or “user”.
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15.3 Recognition Performance of BioHash-Protected
Finger Vein Verification System

This section presents the results of the experiments we conducted to determine the
recognition performance of our BioHash-protected finger vein verification system.

For the experiments reported in this paper, we employed the publicly available
finger vein database UTFVP.9 This database consists of four images for each of
60 subjects’ left and right index, ring and middle fingers, which makes up 1,440
images in total. Each image has a height of 380 pixels and a width of 672 pixels.
Associated with the database are a number of different evaluation protocols. We
used the “nom” protocol,10 for which the database is split into three sets (“world”,
“dev”, and “eval”). We employed the “eval” set, which consists of fingers 29–60.
The comparison protocol involved using the first two finger vein images from each
finger for enrolment and the last two as probes.

We chose this database for two reasons. First, it is publicly available, which means
that our results can be easily verified by other researchers. Second, it has been shown
[18] that an EER of as low as 0.4% is achievable on this database, so we wanted to
investigate the effects of BioHashing on such remarkable recognition performance.

15.3.1 Baseline Recognition Performance

To determine how effective our BioHash-protected finger vein verification system
is for finger verification purposes, it was necessary to first establish the recognition
performance of our baseline verification system, i.e. using unprotected finger vein
features. We had three baselines, one for each of the three extractors.

Figure 15.2 illustrates the outputs of each of the three feature extractors on a finger
image from UTFVP, and Table 15.1 shows the dimensionalities of the finger vein
feature vectors from each extractor. Although the images in Fig. 15.2 have all been
scaled to the same size for easier visual comparison of the extracted patterns, the three
extractors actually produce images of different sizes, as is evident from Table 15.1.
The MC extractor is the only one that outputs a binary image of the same size as
the original image from the database, plus a little extra background padding for
comparison purposes. On the other hand, both the WLD and RLT extractors output
binary images that are much smaller than the original image. Our adopted WLD
extractor reduces the image to a quarter of its original size in each dimension prior
to feature extraction to speed up the processing, and the RLT extractor reduces each
dimension of the image to a third of its original size. These dimensionalities will be
shown to play an important role in the practical feasibility of applying BioHashing
to finger vein patterns, a point which will be discussed further in Sect. 15.3.3.

9http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/.
10Defined by Idiap Research Institute. See https://www.beat-eu.org/platform/databases/utfvp/1/
for more details.
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(a)WLD (b)RLT (c)MC

Fig. 15.2 Finger vein patterns extracted using three different feature extractors on the same finger
image from UTFVP

Table 15.1 Sizes of the extracted binary finger vein pattern images and corresponding finger vein
feature vectors

Extractor Image size (pixels) Feature vector dimensionality

WLD 94 × 164 15,416

RLT 234 × 409 95,706

MC 390 × 682 265,980

Figure 15.3 presents a visual comparison of the recognition performance of the
three extractors in terms of Receiver Operating Characteristic (ROC) plots. We refer
to this as the baseline recognition performance (i.e. the performance of the finger
vein recognition systems prior to incorporating BioHashing).

Considering the recognition performance of the three extractor baselines in
Fig. 15.3, it is evident that the MC extractor has the best performance. Looking at
Fig. 15.2, this makes sense, because the MC extractor seems to produce the cleanest,
thinnest finger vein patterns, which would be expected to contribute to more accu-
rate recognition. The fact that the recognition performance of the WLD and RLT
extractors is very similar may be attributed to the fact that the two extractors produce
finger vein patterns of similar quality (thick, with a fairly noisy background), even

Fig. 15.3 Comparing
baseline ROCs across the
three feature extractors on
the UTFVP database
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though the RLT-extracted pattern in Fig. 15.2 appears cleaner than the WLD-extracted
pattern.

15.3.2 BioHashing Recognition Performance

This section presents experimental results on the recognition performance of our
BioHash-protected finger vein verification system. We consider two scenarios: the
Normal scenario and the Stolen Token scenario. The Normal scenario refers to the
scenario where each user of the verification system employs their own secret seed
and associated random projection matrix in the generation of their BioHash. This is
the expected scenario for most cases in practice. The Stolen Token scenario refers to
the scenario where a genuine user’s secret seed is stolen and used with the impostor’s
own finger vein template to generate the impostor’s BioHash. While it is hoped that
such a scenario would not occur in practice, the fact that the user-specific seed is a
valuable secret means that we must consider the scenario where that secret is leaked.

To determine the recognition performance of our BioHash-protected finger vein
verification system in both the Normal and Stolen Token scenarios, we generated
BioHashes of lengths l = {100, 200, 300, 400, 500} (number of bits) for finger vein
feature vectors resulting from each of our three feature extractors (WLD, RLT and
MC). For the Normal scenario, the unique ID of the finger image was used as the
seed,11 and for the Stolen Token scenario, the same seed (seed = 100) was used
to generate the BioHashes for all fingers. Table 15.2 indicates the dimensionality
reduction resulting from applying BioHashing to the finger vein feature vectors (refer
to Table 15.1 for the original finger vein feature vector dimensionality). Figure 15.4
shows the recognition performance of the three finger vein extractors in both the
Normal and Stolen Token scenarios, in terms of ROC plots.

From Table 15.2, it is evident that generating BioHashes of 100–500 bits from
finger vein feature vectors results in a significant dimensionality reduction for all
three feature extractors. The greatest dimensionality reduction is observed for the
MC extractor, and the WLD extractor shows the smallest dimensionality reduction.
This makes sense, since MC finger vein feature vectors have the largest dimen-
sionality and WLD finger vein feature vectors the smallest (see Table 15.1). While
“dimensionality” does not necessarily equal “information”, and thus “dimensionality
reduction” does not necessarily imply “information loss”, the size of the dimension-
ality reductions noted in Table 15.2 makes it highly probable that mapping finger
vein feature vectors to BioHashes does result in some information loss. In particular,
from the results in Table 15.2, we would conclude that BioHashing on MC finger vein
feature vectors would incur the largest information loss and WLD feature vectors
the smallest. This should be evident when comparing the recognition performance
of the BioHash-protected finger vein recognition system to the baseline system (i.e.
the system without BioHashing). We refer to Fig. 15.4 for this purpose.

11In practice, the seed should be randomly generated. We only used the finger ID as the seed so that
our results are more easily reproducible.
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Table 15.2 Dimensionality reduction (percentage of dimensionality lost) as a result of converting
finger vein feature vectors to BioHashes of different lengths (l)

Extractor l = 100 l = 200 l = 300 l = 400 l = 500

WLD (%) 99.35 98.70 98.05 97.41 96.76

RLT (%) 99.90 99.79 99.69 99.58 99.48

MC (%) 99.96 99.92 99.89 99.85 99.81

Fig. 15.4 Recognition performance of our BioHash-protected finger vein verification system in
the Normal and Stolen Token scenarios
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There a number of important observations from Fig. 15.4. First, in the Normal
scenario, the BioHash-protected finger vein recognition performance for the WLD
and RLT extractors is generally better than the baseline and has an error rate of
approximately 0% at all FMR values, for l > 100. This is interesting, since the
BioHashes are significantly smaller than the original finger vein feature vectors, as
noted in Table 15.2. However, the additional entropy introduced by the user-specific
projection matrices makes the resulting BioHashes more discriminative than the
original finger vein feature vectors, so the superior performance of BioHashes is
not surprising. The fact that the BioHashed MC finger vein patterns struggle to
reach the baseline recognition performance as quickly as WLD or RLT BioHashes
is probably because BioHashing on MC finger vein feature vectors results in the
largest dimensionality reduction (see Table 15.2). It is interesting to note, however,
that although the dimensionality reduction for both RLT and MC is greater than 99%
for all BioHash lengths tested (refer to Table 15.2), RLT BioHashes perform much
better than MC BioHashes. So, perhaps such a large dimensionality reduction is too
severe for MC finger vein patterns. Nevertheless, we can see that the recognition
performance improves as the BioHash length increases, and for all three extractors,
the Normal scenario recognition performance in the BioHashed domain equalises or
surpasses the baseline recognition performance as the FMR approaches 10−1.

As for the Stolen Token scenario, from Fig. 15.4 we can see that the recognition
performance for all three extractors is significantly worse than the baseline. Such a
trend has been shown for other biometric characteristics in the literature (e.g. [19]),
and it makes sense because in the Stolen Token scenario we are essentially performing
a huge dimensionality reduction using the same projection matrix for each finger.12

So, here we see the “real” effect (i.e. without the additional entropy introduced
by the user-specific projection matrix in the Normal scenario) of the significant
dimensionality reduction reported in Table 15.2. Since we cannot, in general, expect
better recognition performance than the baseline when the dimensionality of our
feature vectors is reduced via random projection, the best we can hope for is that the
performance of our BioHash-protected finger vein verification system in the Stolen
Token scenario is as close as possible to our baseline. From Fig. 15.4, we can see that,
as in the Normal scenario, the recognition performance in the Stolen Token scenario
approaches that of the baseline as the BioHash length increases.

If we were to rank our three extractors in the Normal scenario based on Fig. 15.4,
we would place WLD and RLT first equal, followed by MC. This is an interesting
turn of events, since the baseline ranking in Fig. 15.3 is the opposite. Our suspicion
is that this is due to the thinness of the finger veins extracted by MC, which means
that the MC feature vector may need a much higher resolution than the WLD or RLT
feature vectors. So, a BioHash in the range of 100–500 bits might just be too small
to represent the MC features.

Ranking the three extractors in the Stolen Token scenario, once again MC takes
last place, with WLD and RLT fighting for first. It seems as if WLD has slightly
better recognition performance than RLT for all but a BioHash length of 500, where

12Recall that each finger corresponds to a different identity.
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RLT marginally takes over. We would expect that the smallest feature vector, that
produced by WLD, would incur the smallest information loss as a result of the small-
est dimensionality reduction in the projection to a 100–500 bit BioHash, while the
greatest information loss would be incurred by the largest feature vector, that pro-
duced by MC. So, we would predict that the WLD extractor recognition performance
would be closest to its baseline and MC furthest from its baseline in the Stolen Token
scenario. This is, more or less, what we observe in Fig. 15.4.

If we had to draw a conclusion about the suitability of applying BioHashing to
a finger vein verification system based on the recognition performance observed in
Fig. 15.4 alone, we would probably have to say that BioHashing is not a suitable
template protection scheme in this case. While we would assume that the system
would operate in the Normal scenario most of the time, in which case BioHashing
would be great for achieving a 0% error rate with the WLD or RLT feature extractors
(or even the MC extractor, depending on what FMR the system needs to operate at),
unfortunately we cannot ignore the possibility of the Stolen Token scenario. Since
the recognition performance of all three extractors in the Stolen Token scenario is
significantly worse than the baseline for the BioHash lengths tested, it seems too
risky to recommend incorporating BioHashing into a finger vein verification system.

However, we have observed that the recognition performance of the BioHash-
protected finger vein verification system improves as the BioHash length increases.
So, this brings to mind a possible solution: Why not just try larger lengths? We
discuss this point in Sect. 15.3.3.

15.3.3 Memory Constraints

This section investigates the possibility of increasing the BioHash length to gain better
recognition performance for our BioHash-protected finger vein verification system
in the Stolen Token scenario. Since we know that, theoretically, we cannot achieve
better recognition performance than the baseline in the Stolen Token scenario, our
first approach might be to choose the MC extractor, since Fig. 15.3 shows that it
has the best baseline out of the three extractors tested. Even though the recognition
performance of the BioHashed MC finger vein features in Fig. 15.4 was shown to be
worse than the performance of the WLD and RLT features, our hope might be that if
we choose a large enough BioHash length then perhaps it would be possible to push
the performance of our BioHashed MC features up to the MC baseline performance.
The question is, how large would this BioHash need to be in order for us to achieve
such an improvement in the recognition performance?

Figure 15.5 shows a plot of the amount of memory required, in bytes, to generate
the projection matrix for a single feature vector for each of our three extractors, as the
BioHash length increases from 100 to 2,000. Remember that the projection matrix
consists of n rows by l columns, where n denotes the number of bits in the binary
feature vector (see Table 15.1) and l represents the BioHash length.
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Fig. 15.5 Amount of memory required for the projection matrix as the BioHash length increases.
Note that memory ranges from 0 to just over 4 GB in this plot

From Fig. 15.5, we can see that the amount of memory required for a projection
matrix corresponding to a WLD feature vector grows quite gradually as the BioHash
length increases, that for an RLT feature vector grows faster, and that for an MC
feature vector the fastest. For example, it seems that for a 1,000-bit BioHash we
would require less than 0.1 GB for a WLD projection matrix, about 0.75 GB for RLT,
and over 2 GB for MC! This immediately suggests that anything close to or larger than
a 1,000-bit BioHash would probably be impractical for MC features, possibly doable
for RLT features but not for a much larger l, and manageable for larger BioHashes
on WLD features.

We attempted 1,000-bit BioHashes for our three extractors. As expected, the result
was a memory error for our MC feature vectors (i.e. insufficient memory available).
This confirms our suspicion that, although MC has the best baseline, it may be
impractical for BioHashing. We might consider re-scaling the MC-extracted finger
vein pattern image so that we have a smaller feature vector to work with, but this is
currently not a characteristic of our adopted MC extractor implementation. As for
the WLD and RLT extractors, Fig. 15.6 compares their recognition performance on
1,000-bit BioHashes in the Stolen Token scenario (note that both extractors had an
error rate of 0% in the Normal scenario, so this is not shown).

As expected from the Stolen Token plots in Fig. 15.4, the recognition performance
of the two extractors in Fig. 15.6 is fairly close, with RLT doing slightly better at the
larger BioHash length. Overall, however, this recognition performance may still be
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Fig. 15.6 WLD versus RLT
when BioHash length is
1,000

Fig. 15.7 1,000-bit versus
5,000-bit BioHashes on
WLD compared to the
baseline recognition
performance

impractically low, so we might need to consider an even larger BioHash length to try
to improve the performance.

We attempted a BioHash length of 5,000 for our WLD and RLT features. As
expected, the RLT-based BioHash generation resulted in a memory error. This means
that, with our current implementation of the RLT extractor, we cannot expect to gain
a significant improvement in the recognition performance of RLT-based BioHashes
in the Stolen Token scenario. The WLD-based BioHashes, on the other hand, had no
memory issues. Figure 15.7 compares the recognition performance of our BioHash-
protected finger vein verification system for 1,000-bit and 5,000-bit BioHashes on
the WLD finger vein features in the Stolen Token scenario to the WLD baseline (note
that both BioHash lengths had an error rate of 0% in the Normal scenario, so this is
not shown).

Figure 15.7 confirms our previously observed trend (in Fig. 15.4) that the recog-
nition performance of our WLD-based BioHash-protected finger vein verification
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system approaches the performance of the corresponding baseline in the Stolen
Token scenario as the BioHash length increases. The final length will depend on
how much of a drop in recognition performance is acceptable in the Stolen Token
scenario. Technically, we can expect the BioHash recognition performance to be
approximately the same as the baseline performance when the BioHash length is
the same as the length of the original feature vector. The issue here is that, in this
case, the BioHash is more or less fully invertible, meaning that it would be possible
to recover the original feature vector if the user’s secret seed and thus their projec-
tion matrix is leaked to an attacker. So, it is important to try to find a large enough
BioHash length to ensure we have reasonable recognition performance in both the
Normal and Stolen Token scenarios, while keeping the length small enough to ensure
that the resulting BioHash is sufficiently privacy-preserving. The privacy-preserving
properties of our BioHash-protected finger vein verification system must be investi-
gated before we can fully justify any conclusions on whether or not BioHashing is a
suitable template protection scheme for finger veins.

15.4 Conclusions and Future Work

This chapter presented the first investigation into the suitability of BioHashing as a
finger vein template protection scheme for finger vein verification systems based on
three feature extractors (WLD, RLT and MC), in terms of recognition performance
only. Our experiments showed that, in the Normal scenario, it is possible to achieve
a 0% error rate for BioHashes that are significantly smaller than the original finger
vein feature vectors. BioHashes generated from WLD and RLT finger vein feature
vectors were found to perform the best, while BioHashed MC features were shown
to approach the baseline recognition performance as the FMR approached 10−1. As
expected, the recognition performance for all three extractors was worse than the
baseline in the Stolen Token scenario due to the huge dimensionality reduction that
is incurred in projecting a finger vein feature vector to a relatively small BioHash.
While the recognition performance was shown to improve by increasing the length
of the BioHash vectors, it was also demonstrated that the choice of length is con-
strained in practice by the amount of memory required for the projection matrix.
Consequently, the WLD extractor was found to be the most promising for BioHash-
ing purposes, since the relatively small size of WLD feature vectors allows for much
larger BioHashes than would be possible for RLT or MC feature vectors. One issue
with generating large BioHashes, however, is that, the larger the BioHash length,
the easier it becomes to invert the BioHash to recover the original feature vector,
thereby jeopardising the privacy of the verification system’s users. To determine an
optimal BioHash length that would ensure a reasonable balance between recognition
performance and privacy preservation, we would need to conduct a full security and
privacy analysis for the BioHashed WLD finger vein patterns. This will form part
of our future work. Another area for future work could be to investigate the effect
on BioHashing recognition performance when the three extractors are modified to
produce feature vectors of the same size.
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Chapter 16
Cancellable Biometrics for Finger Vein
Recognition—Application in the Feature
Domain

Simon Kirchgasser, Christof Kauba and Andreas Uhl

Abstract Privacy preservation is a key issue that has to be addressed in biometric
recognition systems. Template protection schemes are a suitable way to tackle this
task. Various template protection approaches originally proposed for other biometric
modalities have been adopted to the domain of vascular pattern recognition. Can-
cellable biometrics are one class of these schemes. In this chapter, several cancellable
biometrics methods like block re-mapping and block warping are applied in the fea-
ture domain. The results are compared to previous results obtained by the use of the
same methods in the image domain regarding recognition performance, unlinkabil-
ity and the level of privacy protection. The experiments are conducted using several
well-established finger vein recognition systems on two publicly available datasets.
Furthermore, an analysis regarding subject- versus system-dependent keys in terms
of security and recognition performance is done.

Keywords Finger vein recognition · Template protection · Cancellable
biometrics · Biometric performance evaluation · Block re-mapping · Warping

16.1 Introduction

Various methods exist to protect the subject-specific information contained in bio-
metric samples and/or templates. According to several studies, e.g. Maltoni et al.
[16], and ISO/IEC Standard 24745 [7] each method should exhibit four properties:
Security, Diversity, Revocability and Performance. These shall ensure that the capture
subject’s privacy is protected and at the same time a stable and sufficient recognition
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performance during the authentication process is achieved. The first aspect deals
with the computational hardness to derive the original biometric template from the
protected one (security-irreversability). Diversity is related to the privacy enhance-
ment aspect and should ensure that the secured templates cannot be matched across
different databases (unlinkability). The third aspect, revocability, should ensure that
a compromised template can be revoked without exposing the biometric information,
i.e. the original biometric trait/template remains unaltered and is not compromised.
After removing the compromised data, a new template representing the same biomet-
ric instance can be generated. Finally, applying a certain protection scheme should not
lead to a significant recognition performance degradation of the whole recognition
system (performance).

One possibility to secure biometric information, cancellable biometrics, are intro-
duced and evaluated on face and fingerprint data by Ratha et al. in [22]. The applied
template protection schemes, block re-mapping and warping, have also been applied
in the image domain and evaluated on iris [5, 14] and finger vein [20] datasets,
respectively. Opposed to the latter study we want to investigate these schemes not
in the image domain, but in the feature domain as several advantages and disadvan-
tages exist in both spaces. These positive and negative aspects will be described in
Sect. 16.2.

A detailed discussion on finger vein related template protection schemes, that can
be found in literature, is given in Chap. 1 [26]. Thus, the interested reader is referred
to this part of the handbook.

The rest of this chapter is organised as follows: The considered experimental
questions are discussed in Sects. 16.2, 16.3 and 16.4 respectively. The employed non-
invertible transform techniques are described in Sect. 16.5. Section 16.6 introduces
the datasets utilised during the experimental evaluation, the finger vein recognition
tool-chain as well as the evaluation protocol. The performance and unlinkability
evaluation results are given and discussed in Sect. 16.7. Section 16.8 concludes this
chapter and gives an outlook on future work.

16.2 Application in the Feature or Image Domain

If a template protection scheme is applied in the image/signal domain immediately
after the image acquisition, the main advantage is that the biometric features extracted
from the transformed sample do not correspond to those features computed from the
original image/signal. So, the “real” template is never computed and does occur
at no stage in the system and further, the sample is never processed in the system
except at the sensor device. This provides the highest level of privacy protection for
the capture subject. The main disadvantage of the application in the image/signal
domain is that the feature extraction based on the protected image/signal might
lead to incorrect features and thus, to inferior recognition performance. Especially
in finger vein recognition, most of the well-established feature extraction schemes
rely on tracking the vein lines, e.g. based on curvature information. By applying
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template protection methods like block re-mapping in the image domain right after
the sample is captured, connected vein structures will become disconnected. These
veins are then no longer detected as continuous vein segments which potentially
causes problems during the feature extraction and might lead to an incomplete or
faulty feature representation of the captured image. Consequently, the recognition
performance of the whole biometric system can be negatively influenced by the
application of the template protection scheme.

On the contrary, if template protection is conducted in the feature domain, the fea-
ture extraction is finished prior to the application of the template protection approach.
Thus, the extracted feature vector or template is not influenced by the template pro-
tection scheme at this stage and represents the biometric information of the capture
subject in an optimal way.

16.3 Key Selection: Subject- Versus System-Specific

There are two different types of key selection, subject- and system-specific keys. In
the subject-specific key approach, the template of each subject is generated by a key
which is specific for each subject while for a system-specific key, the templates of
all subjects are generated by the same key.

Subject dependent keys have advantages in terms of preserving the capture sub-
jects’ privacy compared to system-dependent keys. Assigning an individual key to
each capture subject ensures that if an adversary gets to know the key of one of the
capture subjects, he can not compromise the entire database as each key is individ-
ual. A capture subject-specific key also ensures that insider attacks performed by
legitimate registered subjects can not be performed straight forward. Such an attack
involves a registered capture subject, who is been granted access to the system and
has access to the template database as well. This adversary capture subject wants to
be legitimated as one of the other capture subjects of the same biometric system. So
he/she could just try to copy one of his/her templates over the template belonging
to another capture subject and claim that this is his/her identity, thus trying to get
authenticated as this other, genuine capture subject. If capture subject-specific keys
are used, this is not easily possible as each of the templates stored in the database has
been generated using an individual key. However, it remains questionable if such an
insider attack is a likely one. In fact, it would probably be easier for an advisory who
has access to the entire template database to simply create and store a new genuine
capture subject that exhibits his/her biometric information together with a key he
sets in order to get the legitimation he wants to acquire. Another advantage of cap-
ture subject-specific keys is that the system’s recognition performance in enhanced
by introducing more inter-subject variabilities and thus impacting the performed
impostor comparisons. The additional variability introduced by the subject-specific
key in combination with the differences between different biometric capture subjects
leads to a better separation of genuine and impostor pairs which enhances the overall
system’s performance.
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One drawback of using capture subject-specific keys is that the system design gets
more complex, depending on how the capture subject-specific keys are generated and
stored. In contrast to a system-specific key, which is valid for all capture subjects
and throughout all components of the biometric recognition system, the individual
capture subject-specific keys have to be generated and/or stored somehow. One pos-
sibility is to generate the key based on the capture subject’s biometric trait every
time the capture subject wants to get authenticated. This methodology refers to the
basic idea of Biometric Cryptosystems (BCS), which have originally been developed
for either securing a cryptographic key applying biometric features or generating a
cryptographic key based on the biometric features [9]. Thus, the objective to employ
a BCS is different but the underlying concept is similar to the one described earlier.
The second option can be used to generate the capture subject specific key once and
then store this key which is later retrieved during the authentication process. This
key can either be stored in a separate key database or with the capture subject itself.
Storing the keys in a key database of course poses the risk of the key database getting
attacked and eventually the keys getting disclosed to an adversary. Storing the keys
with the capture subject is the better option in terms of key security, however it lowers
the convenience of the whole system from the capture subjects’ perspective as they
have to be aware of their key, either by remembering the key or by using smart cards
or similar key storage devices.

16.4 Unlinkability

The ISO/IEC Standard 24745 [7] defines that irreversibility is not sufficient for
protected templates, as they also need to be unlinkable. Unlinkability guarantees that
stored and protected biometric information can not be linked across various different
applications or databases. The standard defines templates to be fully linkable if a
method exists which is able to decide if two templates protected using a different
key were extracted from the same biometric sample with a certainty of 100%. The
degree of linkability depends on the certainty of the method which decides if two
protected templates originate from the same capture subject. However, the standard
only defines what unlinkability means but gives no generic way of quantifying it.
Gomez-Barrero et al. [4] present a universal framework to evaluate the unlinkability
of a biometric template protection system based on the comparison scores. They
proposed the so-called Dsys measurement as a global measure to evaluate a given
biometric recognition and template protection system. Further details are given in
Sect. 16.6.3 where the experimental protocol is introduced.

The application of the proposed framework [4] allows a comparison to previous
work done on the aspect of key-sensitivity using the same protection schemes by
Piciucco et al. [20]. Protected templates generated from the same biometric data
by using different keys should not be comparable. Thus, the authors of [20] used
the so-called Renewable Template Matching Rate (RTMR) to prove a low matching
rate between templates generated using different keys on both protection schemes.

www.dbooks.org

https://www.dbooks.org/


16 Cancellable Biometrics for Finger Vein Recognition … 485

This can also be interpreted as a high amount of unlinkability as the RTMR can be
interpreted as a restricted version of the Dsys measure.

16.5 Applied Cancellable Biometrics Schemes

The two investigated non-invertible transforms, block re-mapping and warping, are
both based on a regular grid. Some variants of them have been investigated and
discussed in [21, 22]. The input (regardless if a binary matrix or image) is subdivided
into non-overlapping blocks using a predefined block size. The constructed blocks
are processed individually, generating an entire protected template or image. As
we aim to utilise the same comparison module for the unprotected and protected
templates, there is one preliminary condition that must be fulfilled for the selected
schemes: The protected template must exhibit a structure similar to the original input
template. In particular, we interpret the feature vector (template) as binary image,
representing vein patterns as 1s and background information as 0s. Based on this
representation, each x-/y-coordinate position (each pixel) in the input image can be
either described as background pixel or as vein pattern pixel. Thus, our approach
can be used in the signal domain as well as in the feature domain and the template
protection performance results obtained in image domain can be directly compared
to results obtained in the feature domain. Note that in the signal domain the input as
well as the protected output images are no binary but greyscale ones, which does not
change the way the underlying cancellable biometrics schemes are applied (as they
only change positions of pixels and do not relate single pixel values to each other). In
the following, the basic block re-mapping scheme as well as the warping approach
are described.

16.5.1 Block Re-mapping

In block re-mapping [22], the number of predefined blocks is separated into two
classes, where the total number of blocks remains unaltered. The blocks belonging
to the first class are randomly placed at different positions to the ones they have been
located in the original input. This random allocation is done by assigning random
numbers generated by a number generator according to a predefined key. This key
must be stored, such that a new image acquired during authentication can be pro-
tected using the same number generator specification. The blocks belonging to the
second class are dismissed and do not appear in the output. This aspect ensures the
irreversibility property of the block re-mapping scheme. The percentage of blocks
belonging to each of the two classes is set by a predefined value. The more blocks
in the second class, the less biometric information is present in the output. Usually,
the percentage of blocks in the first class is between 1/4 and 3/4 of the total blocks.
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Fig. 16.1 Schematic block re-mapping scheme

Figure 16.1 shows the block re-mapping scheme which has been implemented
in a slightly adopted version compared to the original one done by Piciucco et al.
[20]. The main difference is the randomised block selection: We introduce an addi-
tional parameter, which controls the number of blocks that remain in the transformed
template. To enable comparable results, we fixed the number of blocks that remain
in the transformed templates to be at 75% of the original blocks. The required key
information consists of the two set-up keys for the random generator and the block-
size information for the grid construction. By comparing Fig. 16.1 (a) and (b) the
following can be observed: While the blocks 4, 6 and 8 are present in (a) they do not
occur in the protected, re-mapped image. All the other blocks are used to construct
the re-mapped version (b) that has the same size as the original unprotected image or
feature representation (a). It also becomes obvious that the blocks 3 and 5 are inserted
multiple times into (b) in order to compensate for the absence of the non-considered
blocks 6 and 8.

Due to the random selection, it is possible that some blocks are used more than once
and others are never used. Otherwise, the re-mapping would resemble a permutation
of all blocks, which could be reverted by applying a brute-force-attack testing all
possible permutations or some more advanced attacks based on square jigsaw puzzle
solver algorithms, e.g. [2, 19, 23].

The bigger the block size, the more biometric information is contained per block
and thus, the higher the recognition performance is assumed to be after the applica-
tion of block re-mapping. Of course, this argument also might depend on the feature
extraction and comparison method as well as if it is done in signal or feature domain.
Block re-mapping creates discontinuities at the block boundaries which influences
the recognition performance if applied in the image domain as several of the fea-
ture extraction schemes try to follow continuous vein lines, which are not there any
longer. This gets worse with decreasing block sizes. If block re-mapping is applied
in the feature domain, this is not an issue as the feature extraction was done prior
to applying the block re-mapping. However, due to the shifting process involved
during comparison, the re-mapping of blocks can cause problems as a normalised
region-of-interest is considered, especially for blocks that are placed at the bound-
aries of the protected templates. This might eventually lead to a degradation in the
biometric systems performance because the information contained in those blocks
is then “shifted out” of the image and the vein lines present in the blocks do not
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Fig. 16.2 Finger vein templates displaying the variations that can occur during the re-mapping
process using a block size of 64 × 64 pixel and MC as feature extraction method. The red dashed
lines represent the grid

contribute to the comparison score anymore. In addition, blocks that share a com-
mon vein structure in the original template might be separated after performing the
block re-mapping, posing a more severe problem due to the shifting applied during
the comparison step. The vein structures close to the block borders are then shifted
to completely different positions and cannot be compared any longer, leading to a
decrease in the genuine comparison scores. Furthermore, it can also happen that the
block re-mapping introduces new vein structures by combining two blocks that orig-
inally do not belong to each other. Both of the aforementioned possibilities have a
potentially negative influence on the recognition performance. These problems due
to the shifting applied during the comparison step are visualised in Fig. 16.2. It clearly
can be seen that most of the vein structures visible in the original—left template, are
not present in the protected—right template, but other structures have been newly
introduced.

On the other hand, the larger the block size, the more of the original biometric
information is contained per single block, lowering the level of privacy protection.
Hence, we assume that a suitable trade-off between loss of recognition accuracy
and level of privacy protection has to be found. Furthermore, the block size also
corresponds to the irreversibility property of the transformation. The bigger the block
size, the more information is contained per single block and the lower is the total
number of blocks. The lower the number of blocks and the higher the information per
block, the more effective are potential attacks on this protection scheme as discussed
in the literature, e.g. [2, 19, 23].

16.5.2 Block Warping

Another non-invertible transformation in the context of cancellable biometrics is
the so called “warping” (originally named “mesh warping” [27]). Warping can be
applied in the image as well as in the template domain. Using this transformation, a
function is applied to each pixel in the image which maps the pixel of the input at a
given position to a certain position in the output (can also be the same position as in
the input again). Thus, this mapping defines a new image or template containing the
same information as the original input but in a distorted representation. The warping
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Fig. 16.3 Block Warping scheme including resize enhancement displayed schematically

Fig. 16.4 Finger vein templates displaying the variations that can occur during the warping process
using a block size of 32 × 32 pixel and PC as feature extraction method

approach utilised in this chapter is a combination of using a regular grid, as in the
block re-mapping scheme, and a distortion function based on spline interpolation.
The regular grid is deformed per each block and adjusted to the warped output grid.
The number of blocks in the output is the same as in the input, but the content of
each individual block is distorted in the warped output.

This distortion is introduced by randomly altering the edge positions of the regular
grid, leading to a non-predictable deformation of the regular grid. Spline based inter-
polation of the input information/pixels is applied to adopt the area of each block with
respect to the smaller or larger block area obtained after the deformation application
(warping might either stretch or shrink the area of the block as the edge positions
are changed). This distortion is key dependent and the key defines the seed value
for the random generator responsible for the replacement of the grid edges. This key
needs to be protected by some cryptographic encryption methods and stored in a safe
place. However, if the key gets disclosed, it is not possible to reconstruct all of the
original biometric data in polynomial time due to the applied spline based interpola-
tion. Figure 16.3 shows the basic warping scheme, while in Fig. 16.4 an example of
a original—left template and its protected—right template is given.

The application of interpolation does increase the template protection degree as
the relation between original vein structures is distorted. However, these transfor-
mations might destroy dependencies between the vein lines which are necessary in
the feature extraction step in order to enable the same recognition performance as on
the original, unprotected data. On the one hand, the application of warping transfor-
mations increases the capture subject’s privacy but on the other hand the recognition
performance is likely to decrease. For more information about other warping meth-
ods, the interested reader is referred to [3], where a review of several different possible
solutions including the use of parametric and non-parametric functions can be found.
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16.6 Experimental Set-Up

In the following, the experimental set-up, including the datasets, the finger vein
recognition tool-chain as well as the experimental protocol are explained.

16.6.1 Finger Vein Datasets

The experiments are conducted on two datasets: The first one is the University of
Twente Finger Vascular Pattern Database (UTFVP) [25]. It consists of 1440 images,
which were acquired from 60 subjects in a single session. Six fingers were captured,
including the index, ring and middle finger of both hands with 4 images per finger.
The finger vein images have a resolution of 672 × 380 pixels and a density of 126
pixels/cm, resulting in a width of 4–20 pixels for the visible blood vessels.

The second dataset we utilise here is the PLUSVein-FV3 Dorsal–Palmar finger
vein dataset and which has been introduced in [10] and is partly discussed in Chap. 3
[12]. To enable a meaningful comparison with the UTFVP results, we only use the
palmar subset. Region-Of-Interest (ROI) images containing only the centre part of
the finger where most of the vein pattern information is located have been extracted
from the captured images as well. Some example images of the PLUSVein-FV3
subsets are given in Fig. 16.5.

16.6.2 Finger Vein Recognition Tool-Chain

In this subsection an overview of the most important parts of a typical finger vein
recognition tool-chain is given. There are several studies about finger vein recognition

Fig. 16.5 Finger vein images of the PLUSVein-FV3 finger vein laser (first two rows) and LED
subset (last two rows) showing 8 different fingers

http://dx.doi.org/10.1007/978-3-030-27731-4_3
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systems, e.g. [8], that present and discuss different designs, but they all include
a few common parts or modules. These main modules consist of: the finger vein
scanner (image acquisition), the preprocessing module (preprocessing), the feature
extraction module (feature extractor), the template comparison module (matcher) and
the decision module (final decision). The system may contain an optional template
protection module, either after the preprocessing module (image domain) or after
the feature extraction module (feature domain). As the main focus of this chapter
is on template protection applied in the feature domain, the system used during
the experiments contains the template protection as part of the feature extractor. For
feature extraction we selected six different methods: Gabor Filter (GF) [13], Isotropic
Undecimated Wavelet Transform (IUWT) [24], Maximum Curvature (MC) [18],
Principal Curvature (PC) [1], Repeated Line Tracking (RLT) [17] and Wide Line
Detector (WLD) [6].

To calculate the final comparison scores an image correlation based comparison
scheme as introduced by Miura et al. in [17] is applied to the baseline (unprotected)
templates (features) as well as to the templates protected by block re-mapping and
block warping. As the comparison scheme is correlation based, including a necessary
pixel wise shifting, we selected a shift range of 80 pixels in x- and 30 pixels in y-
direction, respectively. Further details on the deployed recognition tool-chain can be
found in Chap. 4 [11] of this handbook.

16.6.3 Experimental Protocol and Types of Experiments

The necessary comparison scores are calculated using the correlation based com-
parison scheme described before and the comparison to be performed are based
on the Fingerprint Verification Contests’ (FVC) protocol [15]. To obtain the gen-
uine scores, all possible comparisons are performed, i.e. the number of genuine
scores is 60 ∗ 6 ∗ 4∗3

2 = 2160 (UTFVP) and 60 ∗ 6 ∗ 5∗4
2 = 3600 (PLUSVein-FV3),

respectively. For the impostor scores, only a subset of all possible comparisons is
performed. The first image of each finger is compared against the first image of
all other fingers. This results in 60∗6∗(60∗6−1)

2 = 64,620 impostor comparisons for
each dataset (as both of them contain 60 subjects and 6 fingers per capture subject).
As the employed comparison scheme is a symmetric measure, no symmetric com-
parisons (e.g. 1–2 and 2–1) are performed. The FVC protocol reduces the number
of impostor comparisons in order to keep the computation time low for the whole
performance evaluation while ensuring that every finger is compared against each
other finger at least once. To quantify the recognition performance, several well-
known measures are utilised: The equal error rate (EER, point where the FMR and
the FNMR are equal), FMR100 (the lowest false Non-Match Rate (FNMR) for false
match rate (FMR) ≤ 1%), FMR1000 (the lowest FNMR for FMR ≤ 0.1%) as well as
the ZeroFMR (the FNMR for FMR = 0%).
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We conduct four sets of experiments:

1. In the first set of experiments the unprotected templates are considered. The first
experiments provide a baseline to compare the recognition performance of the
protected templates to

2. The second set of experiments deals with the protected templates, generated by
applying one of the aforementioned cancellable biometrics schemes to the same
templates that have been used during the first set of experiments. For score cal-
culation, these protected templates are compared against each other. For both
employed cancellable schemes, 10 runs using different system keys are per-
formed to assess the recognition performance variability and key dependency
of the recognition performance.

3. The third set of experiments compares capture subject specific and system-specific
keys. Therefore, a different key (note: the key is controlling the random selection
of blocks or the repositioning of the grid) is assigned to each finger, thus resulting
in 360 virtual subjects (not only the 60 physical ones). Again, 10 runs with
different keys per run are performed and averaged afterwards. These capture
subject-specific key results are then compared to the system-specific key ones as
obtained in the second set of experiments.

4. The last set of experiments is committed to the unlinkability analysis. The
approach by Gomez et al. [4], introduced in Sect. 16.4 describes the extent of
linkability in the given data, with a range of Dsys from [0, 1]. The higher the
value, the more linkable are the involved templates. Thus, the resulting measure
represents a percentage of linkability that is present. Of course, full unlinkability
is given if the score is 0. Dsys is based on the local D(s) value, which is calculated
based on the comparison scores of several mated (genuine) as well as non-mated
(impostor) comparison between templates protected by the same template protec-
tion system but using different keys, thus originating from different applications
or systems. We utilise this measure to assess the unlinkability of the presented
cancellable biometric schemes for finger vein recognition (block re-mapping and
warping).

To comply with the principles of reproducible research we provide all experimental
details, results as well as the used vein recognition SDK, settings files and scripts to
run the experiments for download on our website: http://www.wavelab.at/sources/
Kirchgasser19b/. The used datasets are publicly available as well, hence it is possible
to reproduce our results for anyone who is interested to do so.

16.6.4 Selecting the Processing Level to Insert Template
Protection

If template protection is done in the signal domain cancellable biometrics schemes
are applied directly after the image acquisition and before the feature extraction.
Otherwise, template protection is applied to the extracted binary vein features in

http://www.wavelab.at/sources/Kirchgasser19b/
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order to protect the contained private biometric information right after the feature
extraction is finished (feature domain).

The main purpose of this chapter and the experiments performed here is to provide
a recognition performance comparison to the previous results obtained by Piciucco
et al. [20]. The authors used the same cancellable methods on the UTFVP finger
vein images, but as opposed to this chapter, not in the feature domain, but in the
image domain. To ensure that our results are comparable with the previous ones by
Piciucco et al. [20], we use the same block sizes during our experiments and select the
same maximum offset for the block warping approach. Thus, we select block sizes of
16 × 16, 32 × 32, 48 × 48, and 64 × 64 for block re-mapping and block warping.
For block warping, maximum offset values of 6, 12, 18, and 24 pixel are considered.
In the following result tables block re-mapping is abbreviated using remp_16 (block
size: 16 × 16) till remp_64 (block size: 64 × 64), while all warping experiments
correspond to warp_16_6 (block size: 16 × 16, offset: 6) till warp_64_24 (block
size: 64 × 64, offset: 24).

In contrast to the work of Piciucco et al. [20], we do not perform an analysis
of the renewability and the key-sensitivity of the employed cancellable biometrics
schemes. The key-sensitivity and renewability are expected to be similar for the
schemes applied in the feature domain and in the image domain. Instead, we consider
different issues like the comparison of capture subject vs. system-depended keys, and
a thorough unlinkability analysis.

16.7 Experimental Results

This section presents and discusses all relevant results concerning the various tem-
plate protection methods’ impact on the recognition performance and unlinkability
in the four sets of experiments that have been considered. As we aim to compare the
experimental results to the corresponding results reported in [20], we first summarise
their main results:

(a) The best performance results regarding EER were found for the block re-mapping
scheme using a block size of 64 × 64.

(b) The best achieved EER was 1.67% for the protected data and 1.16% for the
unprotected templates of the UTFVP dataset (using GF features).

(c) Block re-mapping outperformed block warping.

16.7.1 Baseline Experiments

Table 16.1 lists the performance results of the baseline experiments in percentage
terms for the UTFVP and the PLUSVein-FV3 dataset. Overall, the performance on
the UTFVP dataset is slightly superior compared to the PLUSVein-FV3 dataset for
most of the evaluated recognition schemes.
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Table 16.1 Baseline performance on the UTFVP and PLUSVein-FV3 database in terms of EER,
FMR100, FMR1000 and ZeroFMR. The best performing results are highlighted in bold numbers

Features GF IUWT MC PC RLT WLD

UTFVP

EER (%) 0.64 0.36 0.09 0.14 0.60 0.46

FMR100 (%) 0.60 0.27 0.04 0.13 0.32 0.27

FMR1000 (%) 1.00 0.55 0.09 0.13 1.15 0.60

ZeroFMR (%) 1.00 1.34 0.23 0.87 1.89 1.43

PLUSVein-FV3 Laser

EER(%) 0.74 1.49 0.33 1.47 1.71 1.38

FMR100 0.63 1.66 0.22 1.50 1.91 1.44

FMR1000 1.47 2.08 0.44 2.19 2.52 1.75

ZeroFMR 1.75 2.77 0.72 2.75 3.77 1.94

PLUSVein-FV3 LED

EER(%) 0.61 0.63 0.28 0.35 0.79 0.53

FMR100 0.52 0.52 0.27 0.33 0.72 0.52

FMR1000 0.63 0.97 0.27 0.38 1.16 0.55

ZeroFMR 1.00 3.05 0.30 0.66 1.77 0.69

On the UTFVP, the best recognition performance result with an EER of 0.09%
is achieved by MC, followed by PC with an EER of 0.14%, then IUWT, WLD and
RLT while GF has the worst performance with an EER of 0.64%. On both subsets
of the PLUSVein-FV3 the best results are achieved by using MC as well, with an
EER of 0.28% and 0.33% on the LED and laser subset, respectively. RLT performed
worst compared to the other schemes on both subsets. Nevertheless, each of the
evaluated recognition schemes achieves a competitive performance on all of the
tested datasets. The other performance figures, i.e. FMR100, FMR1000 and ZeroFMR
are in line with the EER values and support the general trend that most of the applied
feature extraction methods perform reasonably well on the given data sets using the
baseline, unprotected templates.

16.7.2 Set 2—Protected Template Experiments (System Key)

As mentioned before, there are several parameters that have an essential influence on
the recognition performance results obtained by applying the different cancellable
biometrics schemes.

Table 16.2—feature domain and 16.3—signal domain, respectively, present the
EER by using the mean (x̄) and the standard deviation (σ ) for both datasets. These
results are calculated by randomly choosing 10 different keys and running the exper-
iments first before the presented results are obtained by calculating x̄ and σ of the
performed computations.
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Table 16.2 Recognition performance results (%) for template protection in the feature domain
using system keys. The best performing results for each template protection method are highlighted
in bold numbers
tempProt EER

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 13.76 1.58 6.29 0.51 8.41 1.09 8.31 0.56 5.77 0.71 6.71 0.37

remp_32 9.12 2.08 4.85 1.25 4.52 1.46 4.79 1.54 5.06 0.94 4.34 1.34

remp_48 7.18 4.20 4.07 2.33 3.62 2.61 4.55 3.38 4.26 2.07 3.59 1.98

remp_64 8.43 2.23 3.94 0.77 3.27 0.83 3.81 0.97 4.68 0.89 3.72 0.67

warp_16_6 3.36 0.74 0.74 0.18 0.78 0.23 0.71 0.21 1.20 0.24 1.16 0.25

warp_32_12 3.00 1.11 1.24 0.60 0.96 0.47 1.01 0.46 1.56 0.42 1.52 0.66

warp_48_18 2.45 1.15 1.15 0.60 0.87 0.42 0.92 0.47 1.44 0.45 1.34 0.67

warp_64_24 3.38 1.51 1.30 0.65 1.02 0.58 1.00 0.55 1.55 0.64 1.28 0.63

PLUSVein-FV3 Laser

remp_16 14.29 0.80 9.00 0.34 9.63 0.27 15.50 0.96 11.87 0.61 9.43 0.52

remp_32 12.02 1.12 7.72 0.97 10.24 0.57 12.38 2.07 11.54 1.42 6.60 0.94

remp_48 11.55 3.47 6.86 1.71 10.45 2.03 14.10 3.42 12.51 3.41 5.52 2.04

remp_64 10.79 5.10 7.20 2.19 10.60 0.88 14.82 6.78 15.90 11.24 5.60 2.90

warp_16_6 6.33 0.99 2.21 0.20 8.78 0.10 3.30 0.41 4.27 0.39 2.02 0.18

warp_32_12 6.20 2.26 3.00 0.75 8.80 0.10 4.29 1.38 5.09 1.67 2.66 0.70

warp_48_18 4.38 1.38 2.50 0.61 8.75 0.15 3.53 1.13 4.22 1.10 2.20 0.58

warp_64_24 4.59 1.59 2.86 0.73 8.73 0.30 3.76 1.38 4.16 1.22 2.32 0.68

PLUSVein-FV3 LED

remp_16 14.03 1.03 10.01 0.47 14.57 0.62 16.50 1.10 12.64 0.73 10.67 0.57

remp_32 11.84 1.68 8.12 1.14 9.72 2.00 12.81 2.51 12.18 1.85 6.79 1.05

remp_48 10.32 3.08 6.68 1.57 7.71 2.47 13.43 4.00 12.21 2.92 4.42 1.27

remp_64 10.08 5.76 7.21 2.20 9.73 8.87 14.48 7.78 16.11 11.32 5.14 3.08

warp_16_6 5.27 0.99 1.33 0.17 2.01 0.52 2.30 0.53 3.88 0.58 1.00 0.17

warp_32_12 5.67 2.29 2.51 0.92 3.32 1.92 3.76 1.66 4.87 1.86 1.84 0.72

warp_48_18 3.95 1.45 1.81 0.72 2.23 1.11 3.05 1.39 3.84 1.36 1.36 0.57

warp_64_24 4.07 1.69 2.48 1.15 2.27 1.06 3.51 1.66 3.90 1.65 1.55 0.90

At first we will discuss the results given by Table 16.2. Not surprisingly, the worst
performance is observed for block re-mapping (remp_16, remp_32, remp_48 and
remp_64) using 16 × 16 as smallest block size while GF was applied (UTFVP). This
trend is in line with the findings of Piciucco et al. [20], which have been observed
in the signal domain. It has to be mentioned that the observed results are strongly
depending on the particular feature extraction method. As in [20] only the GF method
was used for feature extraction, a direct comparison can only be done based on the GF
results using the UTFVP dataset. This direct comparison shows that our best results
on GF are worse compared to the results presented in [20] as we used a different
implementation of the scheme. However, the best results using UTFVP are obtained
by MC using a block size of 64 × 64 (EER 3.27). In general remp_48 and remp_64
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always resulted in the best performance for all datasets and not only on UTFVP (best
EER of 5.52/4.42 for Laser/LED was achieved by applying WLD and remp_48).
The only exception to this trend is given by RLT on the Laser/LED dataset. In this
particular case, remp_64 was performing worst, but this is a feature extraction type
based observation.

In contrast to the block re-mapping based methods, the recognition performance
of the warping based experiments (warp_16_6 till warp_64_24) is better as observed
for block re-mapping. This is in line with results reported for warping based experi-
ments done in other biometric applications, e.g. [22] but opposed to the result of [20].
The best result on UTFVP is obtained for using PC and warp_16_6 (EER 0.71). Nev-
ertheless, there is not a big difference to the EER given by warp_32_12, warp_48_18
and warp_64_24. It seems that the parameter choice has not a very high influence
on the reported performance. For the other two datasets using WLD is resulting in
the best EER values (Laser: 2.02, LED: 1.00).

As we want to compare the recognition performance of the feature domain tem-
plate protected data to the same experiments which have been considering the trans-
formations in the signal domain we will discuss the corresponding results now. The
EER values applying template protection in the signal domain using system based
keys are presented in Table 16.3.

The most important aspect using block re-mapping in the signal domain instead
of applying the template protection schemes in the feature domain is a quite high-
performance degradation in most of the conducted experiments. As mentioned in
Sect. 16.2 it is likely that the feature extraction of the vein patterns after the template
protection done in the signal domain might cause problems. This overall trend is
confirmed by the observed EER results presented in Table 16.3. On UTFVP data,
IUWT and PC resulted in the same trend that bigger block sizes are favourable in
terms of performance (best average EER, 12.84, is given by IUWT using remp_64).
For all other extraction schemes the EER values for remp_16 or remp_32 are better
compared to remp_64. However, the performance difference is quite small.

Using warping, the influence on extracting the finger vein based features in the
signal domain as compared to conducting the extraction in the feature domain is
not so high as reported for block re-mapping. Hence, the overall performance trend
using warping regardless of which dataset is considered, is similar to the results
given in Table 16.2 (feature domain). IUWT again performs best in terms of EER.
For warp_16_6 the best performance can be reported. Surprisingly, the best average
EER, 1.08, and the other performance values which are achieved applying IUWT
on the template protected images are very similar for UTFVP and the LED dataset
among each other.



496 S. Kirchgasser et al.

Table 16.3 Recognition performance results (%) for template protection in the signal domain using
system keys. The best performing results for each template protection method are highlighted in
bold numbers
tempProt EER

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 14.66 0.66 15.43 0.80 15.04 0.58 15.67 0.62 16.09 1.04 15.02 0.58

remp_32 15.14 1.35 13.75 1.54 14.67 1.65 14.17 1.32 14.25 1.54 14.58 1.31

remp_48 17.88 1.63 13.24 1.16 16.03 1.25 13.91 1.16 15.29 1.37 15.34 1.31

remp_64 17.68 1.52 12.84 1.11 16.33 1.46 13.01 1.06 15.27 1.79 14.95 1.51

warp_16_6 4.13 0.48 1.08 0.16 2.28 0.39 1.23 0.20 1.35 0.16 2.00 0.34

warp_32_12 3.49 0.64 2.31 0.55 3.35 0.62 2.70 0.64 1.81 0.29 3.04 0.53

warp_48_18 3.93 0.81 2.53 0.72 3.44 0.84 2.79 0.82 2.33 0.61 3.05 0.76

warp_64_24 3.40 0.83 2.15 0.67 2.66 0.95 2.11 0.82 2.04 0.40 2.47 0.72

PLUSVein-FV3 Laser

remp_16 9.87 0.54 9.43 0.49 9.74 0.41 10.61 0.38 10.47 0.62 9.24 0.45

remp_32 9.44 0.77 8.30 0.60 8.46 0.35 10.07 0.71 9.53 0.60 8.42 0.59

remp_48 10.36 1.05 9.14 0.89 9.04 0.85 10.15 0.69 10.49 0.75 9.17 0.99

remp_64 11.40 0.87 9.67 0.81 9.04 0.76 11.16 1.28 10.78 0.63 9.38 0.99

warp_16_6 6.94 0.82 2.61 0.20 7.01 0.19 5.84 0.95 4.80 0.62 2.72 0.20

warp_32_12 8.38 1.01 3.99 0.52 6.63 0.19 9.37 0.92 6.58 0.67 3.83 0.56

warp_48_18 6.12 1.49 3.49 0.66 6.84 0.26 7.71 1.49 5.70 1.17 3.38 0.79

warp_64_24 6.00 1.60 3.39 0.65 6.96 0.27 7.52 1.66 5.67 1.39 3.07 0.70

PLUSVein-FV3 LED

remp_16 14.99 0.89 15.29 0.71 15.27 0.57 16.24 1.05 16.79 1.37 15.02 0.58

remp_32 15.88 1.43 13.75 1.54 15.49 1.60 15.20 1.34 15.28 1.60 14.58 1.31

remp_48 18.97 2.18 13.21 1.23 17.01 1.86 14.51 1.77 16.49 1.73 15.34 1.31

remp_64 19.15 2.51 12.84 1.11 17.23 2.31 13.90 1.77 15.46 2.59 14.95 1.51

warp_16_6 4.85 0.51 1.08 0.16 3.13 0.46 2.04 0.26 2.59 0.22 2.00 0.34

warp_32_12 5.06 0.86 2.33 0.58 4.63 1.02 4.05 0.86 3.09 0.38 3.04 0.53

warp_48_18 5.05 0.94 2.53 0.72 4.71 0.88 4.49 0.69 3.56 0.65 3.05 0.76

warp_64_24 4.46 0.92 2.15 0.67 3.93 1.09 3.71 0.82 3.38 0.51 2.47 0.72

16.7.3 Set 3—Subject Dependent Versus System-Dependent
Key

In this subsection, the capture subject-specific key experiments and their results are
described and compared to the performance values obtained by using a system-
dependent key. For the capture subject specific key experiments, a different and
unique key for each finger is selected, compared to only one system-specific key,
which is the same for all fingers. This should lead to a better differentiation of
single capture subjects as the inter-subject variability is increased. Considering the
subject dependent template protection experiments the results are summarised in
Tables 16.4—feature domain, and 16.5—signal domain, respectively. As expected,
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Table 16.4 Recognition performance results (%) for template protection in the feature domain
using subject-specific keys. The best performing results for each template protection method are
highlighted in bold numbers
tempProt EER

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 3.28 0.20 4.82 0.38 4.70 0.29 7.68 0.47 3.19 0.24 5.79 0.31

remp_32 2.83 0.35 3.49 0.29 2.63 0.30 4.65 0.40 2.74 0.20 3.31 0.24

remp_48 2.93 0.28 3.18 0.41 2.27 0.25 3.41 0.36 2.90 0.33 2.31 0.15

remp_64 4.35 0.41 2.28 0.27 2.09 0.27 2.35 0.29 2.27 0.41 1.90 0.27

warp_16_6 2.74 0.23 0.72 0.18 0.68 0.20 0.82 0.13 1.00 0.10 1.24 0.16

warp_32_12 3.01 0.26 1.35 0.16 1.12 0.13 1.23 0.15 1.54 0.15 1.63 0.24

warp_48_18 2.20 0.24 1.16 0.19 0.90 0.16 1.08 0.16 1.26 0.20 1.33 0.15

warp_64_24 2.72 0.26 1.39 0.18 0.99 0.29 1.37 0.27 1.33 0.18 1.45 0.30

PLUSVein-FV3 Laser

remp_16 12.83 0.53 5.58 0.30 3.44 0.17 14.95 0.52 6.58 0.27 6.11 0.37

remp_32 9.50 0.40 3.46 0.28 3.60 0.23 10.96 0.45 6.58 0.38 3.81 0.21

remp_48 8.30 0.43 3.27 0.22 3.94 0.14 12.53 0.53 7.72 0.52 3.31 0.27

remp_64 5.15 0.31 1.84 0.17 3.93 0.26 11.09 0.93 6.93 0.62 2.52 0.15

warp_16_6 5.14 0.19 1.81 0.10 6.04 0.15 2.78 0.15 3.82 0.16 1.95 0.12

warp_32_12 6.07 0.28 2.41 0.16 5.83 0.12 4.54 0.33 5.02 0.27 2.41 0.15

warp_48_18 4.31 0.33 2.12 0.18 6.05 0.10 3.63 0.32 3.93 0.30 2.02 0.17

warp_64_24 4.42 0.35 2.26 0.24 4.71 0.23 4.35 0.22 3.96 0.40 2.18 0.19

PLUSVein-FV3 LED

remp_16 12.23 0.54 5.90 0.32 13.13 0.43 15.30 0.46 6.85 0.27 6.70 0.37

remp_32 9.08 0.42 3.67 0.36 8.02 0.38 11.00 0.65 6.79 0.28 3.81 0.25

remp_48 7.61 0.31 3.58 0.16 5.65 0.34 12.69 0.64 8.01 0.39 2.95 0.29

remp_64 4.64 0.33 1.93 0.15 5.51 0.40 10.35 0.80 7.32 0.73 2.15 0.26

warp_16_6 4.10 0.22 0.90 0.09 1.42 0.14 1.78 0.23 3.18 0.29 0.85 0.09

warp_32_12 5.85 0.41 2.00 0.21 3.36 0.28 4.22 0.27 4.83 0.19 1.65 0.23

warp_48_18 3.83 0.43 1.54 0.17 2.39 0.32 3.44 0.26 3.69 0.44 1.32 0.24

warp_64_24 3.88 0.30 1.85 0.29 2.54 0.43 4.00 0.31 3.66 0.33 1.50 0.44

it becomes apparent that the overall performance of all experiments using subject
dependent keys is much better compared to the system-specific key results. This can
be explained as the usage of subject dependent keys provides a better separation of
genuine and impostor score distributions after applying the transformation.

The best feature domain based performance (see Table 16.4) is obtained on
UTFVP using WLD during remp_64 (EER 1.90) and MC during warp_16_6
(EER 0.68), on the Laser dataset using IUWT (EER 1.84 for remp_64, EER
1.81 for warp_16_6) and finally on the LED dataset using IUWT/WLD (EER
1.93/0.85) applying remp_64/warp_16_6. According to the EER values highlighted
in Table 16.5 (signal domain) the overall best recognition performance is achieved by
applying the template protection schemes in the signal domain using subject-specific
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Table 16.5 Recognition performance results (%) for template protection in the signal domain
using subject-specific keys. The best performing results for each template protection method are
highlighted in bold numbers
tempProt EER

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 0.98 0.15 0.59 0.09 0.78 0.10 0.98 0.13 1.13 0.13 0.53 0.04

remp_32 0.50 0.09 0.48 0.07 0.69 0.12 0.86 0.18 0.96 0.18 0.41 0.09

remp_48 0.39 0.04 0.46 0.07 0.54 0.05 0.77 0.14 0.52 0.10 0.45 0.08

remp_64 0.48 0.12 0.44 0.15 0.57 0.13 0.60 0.13 0.57 0.10 0.41 0.08

warp_16_6 1.39 0.16 0.57 0.07 0.64 0.12 0.42 0.09 0.80 0.06 0.43 0.10

warp_32_12 2.16 0.22 1.31 0.28 1.65 0.19 1.66 0.17 1.22 0.20 1.47 0.16

warp_48_18 2.15 0.19 1.55 0.14 1.64 0.20 1.70 0.15 1.51 0.14 1.76 0.16

warp_64_24 1.80 0.23 1.64 0.25 1.50 0.20 1.68 0.31 1.44 0.18 1.77 0.17

PLUSVein-FV3 Laser

remp_16 3.44 0.17 0.96 0.11 0.69 0.06 3.04 0.16 3.6 0.25 1.08 0.10

remp_32 3.21 0.33 1.29 0.20 0.96 0.08 4.29 0.26 4.34 0.29 1.38 0.20

remp_48 3.95 0.33 1.47 0.20 1.09 0.12 4.71 0.27 5.48 0.20 1.68 0.16

remp_64 4.09 0.31 1.88 0.19 1.11 0.10 5.45 0.40 4.89 0.38 2.17 0.24

warp_16_6 5.62 0.24 2.35 0.06 2.82 0.14 5.65 0.15 4.57 0.21 2.12 0.10

warp_32_12 6.74 0.27 2.87 0.10 2.88 0.12 8.46 0.26 5.74 0.26 2.65 0.11

warp_48_18 6.23 0.26 3.02 0.19 3.23 0.14 8.17 0.31 5.76 0.28 2.77 0.23

warp_64_24 5.71 0.30 2.81 0.14 3.87 0.20 7.61 0.31 5.54 0.34 2.45 0.12

PLUSVein-FV3 LED

remp_16 1.93 0.20 0.59 0.09 1.54 0.10 1.93 0.21 2.27 0.19 0.53 0.04

remp_32 1.06 0.16 0.48 0.07 1.51 0.20 2.53 0.27 2.14 0.21 0.41 0.09

remp_48 1.08 0.09 0.46 0.07 1.76 0.13 2.50 0.25 1.25 0.18 0.45 0.08

remp_64 0.88 0.16 0.44 0.15 1.46 0.23 1.87 0.25 1.21 0.21 0.41 0.08

warp_16_6 3.64 0.23 0.57 0.07 2.7 0.27 1.78 0.22 2.25 0.25 0.43 0.10

warp_32_12 4.81 0.28 1.31 0.28 4.05 0.22 3.95 0.24 2.83 0.23 1.47 0.16

warp_48_18 4.07 0.22 1.55 0.14 3.61 0.33 3.89 0.25 3.03 0.32 1.76 0.16

warp_64_24 3.72 0.30 1.64 0.25 3.37 0.25 3.77 0.29 3.06 0.13 1.77 0.17

keys. This observation is interesting because it seems that in most cases subject-
specific keys have a more positive effect on the protected features’ performance if
the corresponding transformation was applied in the signal domain. However, there
are also some cases where the subject-specific keys’ signal domain performance is
lower compared to the best results obtained in the feature domain, e.g. Laser dataset
using WLD and warp_16_6. Compared to [20] the recognition performance pre-
sented in Table 16.5 using GF is outperforming the findings stated by Piciucco et al.
no matter if block re-mapping or warping is considered. All other results obtained
for UTFVP are better as well.
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16.7.4 Set 4—Unlinkability Analysis

The unlinkability analysis is performed to ensure that the applied template protec-
tion schemes meet the principles established by the ISO/IEC 24745 standard [7], in
particular the unlinkability requirements. If there is a high amount of linkability for a
certain template protection scheme, it is easy to match two protected templates from
the same finger among different applications using different keys. In that case, it is
easy to track the capture subjects across different applications, which poses a threat to
the capture subjects’ privacy. The unlinkability is likely to be low (linkability high)
if there is too little variation between protected templates based on two different
keys (i.e. the key-sensitivity is low) or the unprotected and the protected template in
general. Tables 16.6, 16.7, 16.8 and 16.9 lists the global unlinkability scores, Dsys,

Table 16.6 Dsys unlinkability scores for the selected template protection schemes applied in feature
domain using system dependent keys. The best results (low values, representing unlinkability) for
each template protection method are highlighted in bold numbers
tempProt Dsys

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 3.43 0.52 3.02 0.58 3.91 0.97 2.90 0.32 3.09 0.46 4.35 0.53

remp_32 13.96 13.89 10.32 16.79 15.83 16.09 9.34 17.09 8.21 5.88 16.71 19.25

remp_48 18.72 22.27 14.92 23.90 21.49 25.76 13.86 23.66 10.65 17.60 18.54 26.33

remp_64 25.67 18.69 20.03 21.95 29.72 22.93 20.81 22.36 16.32 19.89 27.24 22.93

warp_16_6 56.35 8.94 85.01 6.92 82.61 6.31 79.54 8.02 81.66 6.00 74.87 8.19

warp_32_12 37.54 17.97 40.18 21.74 55.86 17.66 40.18 21.45 44.37 18.8 43.19 19.43

warp_48_18 36.15 22.52 39.08 27.65 52.76 22.89 37.17 26.75 42.92 25.3 41.56 25.20

warp_64_24 42.43 29.21 41.21 32.14 53.13 28.26 48.81 32.36 44.68 31.45 43.43 21.12

PLUSVein-FV3 Laser

remp_16 4.07 0.50 2.73 0.44 3.42 0.70 2.79 0.53 2.64 0.49 4.28 0.81

remp_32 20.16 17.10 13.77 18.96 21.00 20.97 10.40 18.23 8.80 9.95 17.13 21.00

remp_48 14.00 17.39 9.18 17.69 14.53 20.09 7.18 16.55 5.26 8.39 12.75 20.81

remp_64 19.58 22.01 14.37 22.48 24.51 22.42 10.06 18.07 7.38 10.77 17.77 21.53

warp_16_6 63.42 10.55 81.26 10.17 86.37 4.36 83.99 6.77 68.19 9.82 82.1 8.65

warp_32_12 34.62 17.86 35.90 20.96 53.34 17.51 44.14 18.82 29.83 13.38 46.36 18.48

warp_48_18 44.30 21.56 42.61 23.67 58.42 18.86 47.80 21.23 34.44 18.93 52.10 20.69

warp_64_24 33.33 26.48 35.28 28.94 43.99 28.59 34.27 27.20 28.83 24.97 47.23 17.95

PLUSVein-FV3 LED

remp_16 3.81 0.42 2.86 0.46 3.34 0.62 2.55 0.35 2.34 0.45 4.04 0.65

remp_32 19.67 17.36 13.07 18.9 21.71 20.47 10.62 18.32 8.69 10.20 17.03 21.01

remp_48 14.06 17.78 9.18 17.51 14.99 20.62 7.42 16.15 5.56 9.35 13.23 21.38

remp_64 19.44 22.26 13.58 22.05 23.53 22.61 10.13 17.94 7.71 10.23 16.91 21.19

warp_16_6 67.02 10.53 81.95 10.31 86.66 6.62 84.38 7.23 67.51 10.59 82.58 8.37

warp_32_12 37.51 17.38 35.27 20.74 56.52 16.52 44.58 18.94 28.62 12.99 47.66 18.31

warp_48_18 45.41 22.65 42.56 24.21 60.46 19.33 48.14 21.48 34.10 19.43 52.99 21.83

warp_64_24 32.81 26.35 32.99 28.49 45.09 28.34 33.88 27.47 27.70 24.25 48.52 19.11
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Table 16.7 Dsys unlinkability scores for the selected template protection schemes applied in signal
domain using system dependent keys. The best results (low values, representing unlinkability) for
each template protection method are highlighted in bold numbers
tempProt Dsys

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 2.97 0.63 2.97 0.66 3.05 0.59 2.77 0.33 2.86 0.51 3.34 0.81

remp_32 6.03 12.42 6.17 12.76 6.07 12.19 5.80 12.48 5.84 12.55 6.46 12.39

remp_48 6.74 12.04 6.70 13.94 6.91 12.34 6.93 13.81 6.00 13.35 7.58 13.07

remp_64 6.43 11.24 6.56 13.61 6.37 11.53 6.63 13.79 6.16 12.94 7.30 13.04

warp_16_6 73.00 4.02 87.21 2.49 82.97 3.05 84.81 2.82 83.14 2.60 84.17 2.89

warp_32_12 42.85 14.28 50.90 14.94 52.36 12.40 47.03 15.45 55.01 12.49 49.88 14.39

warp_48_18 32.64 17.20 33.24 19.71 42.26 16.50 33.26 20.97 36.79 18.98 37.10 18.63

warp_64_24 26.00 17.83 17.92 11.65 28.71 14.28 23.11 20.41 26.72 19.19 26.40 18.45

PLUSVein-FV3 Laser

remp_16 2.68 0.44 2.30 0.34 2.41 0.40 2.25 0.32 2.57 0.38 3.59 1.03

remp_32 8.83 16.19 6.96 16.48 7.20 16.63 6.32 16.16 6.74 16.63 9.66 16.12

remp_48 9.12 15.05 7.27 15.86 8.52 14.69 6.71 15.86 6.30 16.13 8.90 15.21

remp_64 9.78 15.43 7.76 15.97 8.88 15.36 7.83 16.08 7.43 15.97 10.50 15.92

warp_16_6 76.36 5.87 89.06 2.95 87.14 1.66 77.23 2.55 80.01 2.64 86.3 1.51

warp_32_12 42.37 20.44 44.63 12.57 51.05 12.38 35.13 14.56 42.47 14.04 53.03 7.96

warp_48_18 29.59 16.50 31.37 18.84 41.96 18.63 24.50 16.14 27.83 19.52 47.16 23.77

warp_64_24 27.99 20.84 25.37 21.61 37.85 20.00 20.92 17.16 23.03 18.72 21.00 4.95

PLUSVein-FV3 LED

remp_16 2.97 0.63 3.00 0.5 3.00 0.56 2.80 0.60 2.86 0.51 3.34 0.81

remp_32 6.20 12.78 6.37 13.12 6.07 12.19 6.02 12.44 2.88 0.44 6.46 12.39

remp_48 6.74 12.04 7.05 14.79 6.91 12.34 6.99 13.62 6.38 14.16 7.58 13.07

remp_64 6.43 11.24 6.56 13.61 6.37 11.53 6.74 13.87 6.16 12.94 7.30 13.04

warp_16_6 78.42 5.77 90.04 3.05 88.48 1.96 78.32 3.05 81.22 3.46 88.02 1.94

warp_32_12 41.32 21.14 45.32 12.85 52.04 11.89 36.03 15.06 44.86 15.21 53.97 8.69

warp_48_18 30.55 17.05 31.34 19.79 41.58 19.25 23.99 15.12 28.66 20.12 48.86 24.97

warp_64_24 27.89 21.00 25.27 20.99 37.92 19.53 21.45 18.10 24.26 19.27 20.95 6.01

for all datasets using block re-mapping and warping, similar to the tables that have
been used to describe the recognition performance. The Dsys ranges normally from 0
to 1, where 0 represents the best achievable unlinkability score. We shifted the range
from [0, 1] to values in [0, 100] to improve the readability of the results.

The Dsys ranges reveal that there are several block re-mapping configurations
leading to a low linkability score, indicating that the protected templates cannot be
linked across different applications (high unlinkability). This can be observed not
only for applying block re-mapping in the feature domain using system-specific keys
but also for the application in all other feature spaces and key selection strategies.
The lowest Dsys scores can be detected for the usage of remp_16. For most block sizes
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Table 16.8 Dsys unlinkability scores for the selected template protection schemes applied in feature
domain using subject dependent keys. The best results (low values, representing unlinkability) for
each template protection method are highlighted in bold numbers
tempProt Dsys

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 3.43 0.52 3.02 0.58 3.95 0.96 2.90 0.32 3.09 0.46 4.35 0.53

remp_32 13.93 13.48 10.32 16.79 15.83 16.09 9.34 17.09 8.21 5.88 15.75 17.80

remp_48 18.72 22.27 14.92 23.90 21.49 25.76 13.86 23.66 11.82 17.72 18.78 25.23

remp_64 24.41 18.90 20.03 21.95 30.95 22.85 20.81 22.36 15.54 19.52 25.92 22.94

warp_16_6 58.04 1.07 83.14 0.75 82.94 0.85 79.15 0.62 79.77 0.73 74.92 1.05

warp_32_12 31.73 11.71 35.67 11.85 49.61 8.56 33.63 12.28 38.96 1.45 37.93 11.00

warp_48_18 39.17 10.46 41.63 10.63 53.54 7.86 40.12 10.94 44.94 1.53 44.28 9.66

warp_64_24 35.15 11.68 32.15 12.61 44.85 9.88 37.82 11.54 36.36 1.57 36.56 10.85

PLUSVein-FV3 Laser

remp_16 4.07 0.50 2.73 0.44 3.41 0.75 2.79 0.53 2.65 0.51 4.29 0.84

remp_32 20.38 17.60 13.77 18.96 21.00 20.97 10.40 18.23 9.08 10.21 17.95 21.35

remp_48 14.61 17.73 9.18 17.69 14.53 20.09 7.18 16.55 5.26 8.39 12.75 20.81

remp_64 19.58 22.01 14.37 22.48 24.51 22.42 10.48 18.53 7.38 10.77 17.77 21.53

warp_16_6 67.33 0.71 84.02 0.88 87.14 0.92 85.30 0.67 70.99 0.97 83.39 0.93

warp_32_12 32.71 12.16 34.82 13.06 49.23 9.01 41.37 10.71 29.76 0.94 44.48 10.19

warp_48_18 38.73 11.35 39.00 11.80 50.29 9.14 40.83 11.08 34.65 1.93 46.5 10.38

warp_64_24 31.46 13.65 32.65 13.16 41.79 11.84 31.79 13.04 28.76 1.34 43.25 10.12

PLUSVein-FV3 LED

remp_16 3.81 0.42 2.86 0.46 3.34 0.62 2.55 0.35 2.34 0.45 4.04 0.65

remp_32 19.67 17.36 13.07 18.90 21.71 20.47 10.62 18.32 8.69 10.20 17.03 21.01

remp_48 14.06 17.78 9.18 17.51 14.99 20.62 7.42 16.15 5.56 9.35 13.23 21.38

remp_64 19.44 22.26 13.58 22.05 23.53 22.61 10.13 17.94 7.71 10.23 16.91 21.19

warp_16_6 71.08 0.81 83.99 0.87 88.52 0.64 86.55 0.66 70.93 1.10 84.96 0.80

warp_32_12 34.39 11.73 33.42 12.73 51.79 8.49 41.2 10.74 28.42 0.75 45.48 9.75

warp_48_18 39.69 11.23 38.46 11.82 51.87 8.79 40.85 11.3 34.03 1.65 46.56 9.92

warp_64_24 31.96 12.91 31.72 13.33 43.29 10.78 31.66 13.12 28.79 1.73 44.34 9.68

48 × 48 or 64 × 64 the unlinkability values are higher compared to the schemes
using lower block sizes. Thus, the linkability is increased.

For warping the situation is different. First, the obtained Dsys is mostly quite high
which indicates a high linkability regardless the choice of key selection strategy or the
domain. Second, warp_32_12 or warp_48_18 exhibit the lowest unlinkability scores,
clearly the highest amount of linkability detected for warp_16_6. The reason for this
is given by the applied warping scheme. If small block sizes are used the offset, which
is responsible for the amount of introduced degradation during the transformation, is
small as well. Thus, for an offset of 6 only a little amount of variation in the original
image (signal domain) or extracted template (feature domain) is caused. Of course,
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Table 16.9 Dsys unlinkability scores for the selected template protection schemes applied in signal
domain using subject dependent keys. The best results (low values, representing unlinkability) for
each template protection method are highlighted in bold numbers
tempProt Dsys

GF IUWT MC PC RLT WLD

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

UTFVP

remp_16 2.97 0.63 2.97 0.66 3.05 0.59 2.77 0.33 2.86 0.51 3.34 0.81

remp_32 6.16 12.79 6.17 12.76 6.07 12.19 5.80 12.48 5.84 12.55 6.67 12.74

remp_48 6.74 12.04 6.70 13.94 6.91 12.34 6.93 13.81 6.00 13.35 7.58 13.07

remp_64 6.43 11.24 6.56 13.61 6.37 11.53 6.63 13.79 6.16 12.94 7.30 13.04

warp_16_6 75.41 0.56 88.16 0.35 84.89 0.55 87.22 0.52 85.51 0.53 85.8 0.43

warp_32_12 46.76 8.57 54.42 7.20 55.75 6.54 51.39 7.64 58.88 6.22 54.15 6.97

warp_48_18 33.87 12.06 33.68 12.37 41.34 10.28 32.58 12.28 38.74 11.10 36.49 11.48

warp_64_24 29.82 13.06 25.12 14.42 34.74 12.11 25.41 14.21 30.16 13.12 29.96 13.16

PLUSVein-FV3 Laser

remp_16 2.68 0.44 2.30 0.34 2.41 0.40 2.25 0.32 2.57 0.38 3.59 1.03

remp_32 8.83 16.19 6.96 16.48 7.20 16.63 6.32 16.16 6.74 16.63 9.66 16.12

remp_48 9.12 15.05 7.27 15.86 8.52 14.69 6.71 15.86 6.30 16.13 8.90 15.21

remp_64 9.78 15.43 7.76 15.97 8.88 15.36 7.83 16.08 7.43 15.97 10.50 15.92

warp_16_6 78.38 0.56 90.26 0.46 87.71 0.51 78.41 0.58 80.34 0.48 88.56 0.43

warp_32_12 42.94 0.86 49.98 1.11 54.95 1.50 36.00 0.99 42.75 1.14 56.58 1.22

warp_48_18 29.25 0.95 29.10 0.97 37.86 1.20 21.38 0.70 25.02 1.17 37.98 1.07

warp_64_24 23.59 1.18 19.47 1.44 31.20 1.64 15.97 0.98 18.19 1.08 29.28 1.29

PLUSVein-FV3 LED

remp_16 2.97 0.63 3.00 0.5 3.00 0.56 2.80 0.60 2.86 0.51 3.34 0.81

remp_32 6.03 12.42 6.17 12.76 6.07 12.19 6.02 12.44 5.84 12.55 6.46 12.39

remp_48 6.74 12.04 7.05 14.79 6.91 12.34 6.99 13.62 6.38 14.16 7.58 13.07

remp_64 6.43 11.24 6.56 13.61 6.37 11.53 6.74 13.87 6.16 12.94 7.30 13.04

warp_16_6 79.05 0.78 91.02 0.59 88.45 0.89 79.88 0.75 81.45 0.75 89.16 0.66

warp_32_12 43.65 1.22 50.25 1.89 55.66 1.87 36.99 1.36 43.83 2.04 57.39 1.77

warp_48_18 29.85 1.36 30.02 1.48 38.58 1.67 22.22 1.12 26.28 1.99 38.75 1.39

warp_64_24 24.58 1.77 20.23 2.06 32.52 2.24 16.28 1.25 19.12 1.89 30.42 1.58

this results in a high linkability score as the transformed biometric information is
minimally protected.

In Fig. 16.6 4 examples exhibiting score distributions and corresponding Dsys

values are shown for block re-mapping: First row—remp_16 (a) and remp_54 (b), and
warping: Second row—warp_16_6 (c) and warp_64_24 (d). The blue line represents
the process of Dsys for all threshold selections done during the computation (see [4]).
The green distribution corresponds to the so called mated samples scores. These
comparison scores are computed from templates extracted from samples of a single
instance of the same subject using different keys [4]. The red coloured distribution
describes the non-mated samples scores, which are yielded by templates generated
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Fig. 16.6 Example images which display unlinkability scores. In all four examples signal domain,
PC features on the PLUSVein-FV3 Laser dataset and subject-specific key selection was applied

from samples of different instances using different keys. According to [4] a fully
unlinkable scenario can be observed if both coloured distributions are identical,
while full linkability is given if mated and non-mated distributions can be fully
separated from each other. For block re-mapping, (a) and (b) almost full unlinkability
is achieved in both cases, while for the warping examples, (c) and (d) the distributions
can be partly separated from each other. The worst result regarding the ISO/IEC
Standard 24745 [7] property of unlinkability is exhibited by example (c) as both
distributions are separated quite well, which leads to a high amount of linkability.
Thus, in warp_16_6 it is possible to decide with high probability to which dataset a
protected template belongs. Furthermore, from a security point of view warping is
not really a suitable template protection scheme using the given parameters. As the
amount of linkability decreases using bigger block sizes and more importantly larger
offsets it seems to be possible to select a parameter set-up that is providing both a
good recognition performance and a quit low linkability at the same time.

According to these results, it is possible to summarise the findings taking the
recognition performance and unlinkability evaluation into account:
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(a) Only a very low amount of capture subject’s privacy protection for configurations
exhibiting a low EER is obtained for the application of warping schemes.

(b) A high EER is observed for the configurations that exhibit a high unlinkability
(e.g. detected during the application of block re-mapping schemes in most cases).

Additionally, it must be mentioned that the template protection application in feature
or signal domain shows differences regarding the unlinkability aspect. For both, block
re-mapping and warping, it is better to apply template protection in the signal domain
as the Dsys values are lower for almost all cases. If the recognition performance is
taken into account as well the best obtained experimental setting is the template
protection application in the signal domain using subject-specific keys.

However, the provided level of privacy protection, especially if it comes to unlink-
ability is clearly not enough for a practical application of warping based cancellable
schemes in the feature domain and several signal domain settings using the selected
parameters. Furthermore, the worse recognition performance restricts the use of block
re-mapping schemes for real-world biometric systems in the most cases as well.

16.8 Conclusion

In this chapter, template protection schemes in finger vein recognition with a focus
on cancellable schemes and their application in the feature domain were presented
and evaluated. The focus was hereby on cancellable schemes that can be applied
in both the signal and the feature domain in the context of finger vein recognition.
Two well-known representatives of those schemes, namely, block re-mapping and
block warping were evaluated in signal and feature domain on two different publicly
available finger vein data sets: the UTFVP and the palmar subsets of the PLUSVein-
FV3. These schemes are the same ones that have been applied in the image domain
in the previous work of Piciucco et al. [20].

Compared to the previous results obtained in [20], none of the block re-mapping
methods performed well in the feature and signal domain using system-specific keys.
The experiments considering a capture subject-specific key instead of a system spe-
cific one lead to an improvement regarding the recognition performance, especially
in the signal domain. Warping performed much better in both domains but further
results on the unlinkability revealed that the privacy protection amount is very lim-
ited. Thus, an application in real-world biometric systems is restricted for the most
experimental settings according to the fact that it is possible to track a subject across
several instances generated with various keys.

Nevertheless, it was possible to observe the following trend that leads to an opti-
mistic conclusion. Of course, both template protection schemes have their weak-
nesses, block re-mapping exhibits recognition performance problems, while warping
lacks in terms of unlinkability, but according to the results it seems that the selec-
tion of a larger offset could reduce the unlinkability issue for warping in the signal
domain. In particular, the larger the offset was selected the better the unlinkability
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performed, while the recognition performance was hardly influenced. According to
this observation, we claim that warping is a suitable cancellable template protec-
tion scheme for finger vein biometrics if it is applied in the signal domain using
subject-specific keys and a large offset to achieve sufficient unlinkability.
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Chapter 17
Towards Measuring the Amount of
Discriminatory Information in Finger
Vein Biometric Characteristics Using a
Relative Entropy Estimator

Vedrana Krivokuća, Marta Gomez-Barrero, Sébastien Marcel,
Christian Rathgeb and Christoph Busch

Abstract This chapter makes the first attempt to quantify the amount of discrimina-
tory information in finger vein biometric characteristics in terms of Relative Entropy
(RE) calculated on genuine and impostor comparison scores using a Nearest Neigh-
bour (NN) estimator. Our findings indicate that the RE is system-specific, meaning
that it would be misleading to claim a universal finger vein RE estimate. We show,
however, that the RE can be used to rank finger vein recognition systems (tested on
the same database using the same experimental protocol) in terms of their expected
recognition accuracy, and that this ranking is equivalent to that achieved using the
EER. This implies that the RE estimator is a reliable indicator of the amount of
discriminatory information in a finger vein recognition system. We also propose a
Normalised Relative Entropy (NRE) metric to help us better understand the signifi-
cance of the RE values, as well as to enable a fair benchmark of different biometric
systems (tested on different databases and potentially using different experimental
protocols) in terms of their RE. We discuss how the proposed NRE metric can be
used as a complement to the EER in benchmarking the discriminative capabilities of
different biometric systems, and we consider two potential issues that must be taken
into account when calculating the RE and NRE in practice.
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Keywords Finger veins · Relative entropy · Nearest neighbour estimator ·
Biometric template protection · Security · Privacy · Discriminatory information ·
Kullback–Leibler divergence · VERA · UTFVP · Wide Line Detector · Repeated
Line Tracking · Maximum Curvature

17.1 Introduction

There is no doubt that biometrics are fast becoming ubiquitous in response to a grow-
ing need for more robust identity assurance. A negative consequence of this increasing
reliance on biometrics is the looming threat of serious privacy and security concerns
in the event that the growing biometric databases are breached.1 Fortunately, the past
decade has seen notable efforts in advancing the field of biometric template protec-
tion, which is dedicated to protecting the biometric data that is collected and used
for recognition purposes, thereby safeguarding the privacy of the data subjects and
preventing “spoofing” attacks using stolen biometric templates. Unfortunately, we
are still lacking solid methods for evaluating the effectiveness of the proposed solu-
tions. An important missing ingredient is a measure of the amount of discriminatory
information in a biometric system.

A few approaches, for example, [1–3], have focused on estimating the “individu-
ality” (or discrimination capability) of biometric templates in terms of the inter-class
variation alone (i.e. the False Match Rate or False Accept Rate). Along the same
lines, the best-known attempt to measure the amount of information in a biometric
system is probably the approach proposed by Daugman [4]. This method computes
the Hamming distance between every pair of non-mated IrisCodes, and the resulting
distance distribution is then fitted to a binomial distribution. The number of degrees
of freedom of the representative binomial distribution approximates the number of
independent bits in each binary IrisCode, which in turn provides an estimate for the
discrimination entropy of the underlying biometric characteristic. This approach was
adopted to measure the entropy of finger vein patterns in [5]. However, as explained
in [5], while this method of measuring entropy is correct from the source coding point
of view, the issue with calculating the entropy in this way is that it only provides
a reasonable estimate of the amount of biometric information if there is no vari-
ation between multiple samples captured from the same biometric instance. Since
this intra-class variation is unlikely to be zero in practice, the discrimination entropy
would probably overestimate the amount of available biometric information [6, 7].

In an attempt to extend the idea of using entropy as a measure of biometric
information while more practically incorporating both inter- and intra-class variation,
several authors have adopted the relative entropy approach. Adler et al. [8] defined
the term “biometric information” as the decrease in uncertainty about the identity

1For a real-life example, see: http://money.cnn.com/2015/09/23/technology/opm-fingerprint-hack.
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of a person due to a set of biometric measurements. They proposed estimating the
biometric information via the relative entropy or Kullback–Leibler (KL) Divergence
between the intra-class and inter-class biometric feature distributions. Takahashi and
Murakami [6] adopted a similar approach to [8], except that they used comparison
score distributions instead of feature distributions, since this ensures that the whole
recognition pipeline is considered when estimating the amount of discriminative
biometric information in the system. Around the same time, Sutcu et al. [9] adopted
the same method as that employed in [6], with an important difference: they used
a Nearest Neighbour (NN) estimator for the KL divergence, thereby removing the
need to establish models for the comparison score distributions prior to computing
the relative entropy.

This paper adopts the approach proposed in [9] to estimate the amount of discrimi-
natory information in finger vein biometrics. We show that the Relative Entropy (RE)
metric is equivalent to the Equal Error Rate (EER) in terms of enabling us to rank
finger vein biometric systems according to their expected recognition accuracy. This
suggests that the RE metric can provide a reliable estimation of the amount of dis-
criminatory information in finger vein recognition systems. We additionally propose
a Normalised Relative Entropy (NRE) metric to help us gain a more intuitive under-
standing of the significance of RE values and to allow us to fairly benchmark the
REs of different biometric systems. The new metric can be used in conjunction with
the EER to determine the best-performing biometric system.

The remainder of this chapter is structured as follows. Section 17.2 explains the
adopted RE metric in more detail. Section 17.3 presents our results for the RE of finger
vein patterns and shows how this metric can be used to rank finger vein recognition
systems in comparison with the EER. Section 17.4 proposes the new NRE metric
and presents NRE results on various finger vein recognition systems. Section 17.5
discusses how the NRE could be a useful complement to the EER in benchmarking
the discrimination capabilities of different biometric systems, and we also present
two issues that must be considered when calculating the RE and NRE in practice.
Section 17.6 concludes this chapter and proposes a primary direction for future work.

17.2 Measuring Biometric Information via Relative
Entropy

Let us say that G(x) represents the probability distribution of genuine (mated) com-
parison scores in a biometric recognition system, and I (x) represents the probability
distribution of impostor (non-mated) comparison scores. The RE between these two
distributions is then defined in terms of the KL divergence as follows:

D(G||I ) =
n∑

i=1

G(xi ) log2
G(xi )

I (xi )
(17.1)
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Fig. 17.1 Examples of G and I relationships producing lower and higher D(G||I ) values

In information-theoretic terms, D(G||I ) tells us the number of extra bits that we
would need to encode samples from G when using a code based on I, compared
to simply using a code based on G itself. Relating this to our biometric system,
we can think of D(G||I ) as providing some indication of how closely our genuine
score distribution corresponds to our impostor score distribution. The worse the
match, the higher the D(G||I ) value and the easier it is to tell the two distributions
apart. Consequently, the higher the RE, the easier it should be for our biometric
recognition system to differentiate between genuine users and impostors based on
their corresponding comparison scores, and thus the better the expected recognition
accuracy. Figure 17.1 shows a simple illustration of what the relationship between
G and I might look like for lower and higher D(G||I ) values.

One issue with using Eq. (17.1) to estimate the RE is evident when we consider
what is represented by n. Technically, n is meant to denote the total number of
comparison scores, and it is expected that the G and I distributions extend over
the same range of scores. This, however, is not usually the case, since the overlap
between the two distributions should only be partial. One consequence of this is that
we will have at least one division by 0, for the range where I (x) = 0 but G(x) �= 0.
The result will be D(G||I ) = ∞. This makes sense theoretically, since if a score
does not exist in I then it is impossible to represent it using a code based on I. For
our purposes, however, an RE of ∞ does not tell us much, since we already expect
only partial overlap between G and I. So, we would like our RE metric to generate
a finite number to represent the amount of information in our biometric recognition
system.

Another issue with Eq. (17.1) is that this approach requires us to produce models
for the genuine and impostor score distributions, G and I. Since the number of scores
we have access to is generally not very large (this is particularly likely to be the case
for genuine scores), it may be difficult to generate accurate models for the underlying
score distributions.

In light of the issues mentioned above, Sutcu et al. [9] proposed approximating the
RE using the NN estimator from [10]. Let s1

g , . . . , s
Ng
g and s1

i , . . . , s Ni
i represent the

comparison scores from the sets of genuine and impostor scores, respectively. Further,
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let dgg(i) = min j �=i ||si
g − s j

g || represent the distance between the genuine score si
g

and its nearest neighbour in the set of genuine scores, and let dgi (i) = min j ||si
g − s j

i ||
denote the distance between the genuine score si

g and its nearest neighbour in the set
of impostor scores. Then the NN estimator of the KL divergence is defined as

D̂(G||I ) = 1

Ng

Ng∑

i=1

log2
dgi (i)

dgg(i)
+ log2

Ni

Ng − 1
(17.2)

Using Eq. (17.2), we can estimate the RE of a biometric system using the genuine
and impostor comparison scores directly, without establishing models for the under-
lying probability densities. Moreover, using the proposed KL divergence estimator,
we can circumvent the issue of not having complete overlap between the genuine
and impostor score distributions. For these reasons, this is the approach we adopted
to estimate the amount of information in finger vein patterns.

17.3 Relative Entropy of Finger Vein Patterns

We used the NN estimator approach from [9] to estimate the RE of finger vein
patterns.2 Section 17.3.1 describes our adopted finger vein recognition systems, and
Sect. 17.3.2 presents our RE results for finger vein patterns.

17.3.1 Finger Vein Recognition Systems

We used two public finger vein databases for our investigation: VERA3 [11] and
UTFVP4 [12]. VERA consists of two images for each of 110 data subjects’ left and
right index fingers, which makes up 440 samples in total. UTFVP consists of four
images for each of 60 data subjects’ left and right index, ring and middle fingers,
which makes up 1,440 samples in total. Both databases were captured using the same
imaging device, but with slightly different acquisition conditions. Figure 17.2 shows
an example of a finger image from each database.

Finger vein patterns were extracted and compared using the bob.bio.vein
PyPI package.5 To extract the vein patterns from the finger images in each database,
the fingers were first cropped and horizontally aligned as per [13, 14]. Next, the finger
vein pattern was extracted from the cropped finger images using three well-known

2Code available at https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_relative_entropy.
3https://www.idiap.ch/dataset/vera-fingervein.
4http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/.
5https://pypi.python.org/pypi/bob.bio.vein.

https://gitlab.idiap.ch/bob/bob.chapter.fingerveins_relative_entropy
https://www.idiap.ch/dataset/vera-fingervein
http://scs.ewi.utwente.nl/downloads/show,Finger%20Vein/
https://pypi.python.org/pypi/bob.bio.vein
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(a) VERA (b) UTFVP

Fig. 17.2 Examples of finger images from the VERA and UTFVP databases. Note that the UTFVP
images are larger in size, as shown in this figure

feature extractors: Wide Line Detector (WLD) [14], Repeated Line Tracking (RLT)
[15] and Maximum Curvature (MC) [16].

The comparison between the extracted finger vein patterns was performed sepa-
rately for each extractor, using the algorithm proposed in [15]. This method is based
on a cross-correlation between the enrolled finger vein template and the probe tem-
plate obtained during verification. The resulting comparison scores lie in the range
[0, 0.5], where 0.5 represents maximum cross-correlation and thus a perfect match.

17.3.2 Relative Entropy of Finger Veins

We used Eq. (17.2) to calculate the RE of finger vein patterns6 for each of the three
feature extractors (WLD, RLT, and MC) on both the VERA and UTFVP databases.
One issue we faced when implementing this equation was dealing with the case where
the dgg(i) and/or dgi (i) terms were zero. If dgi (i) = 0 (regardless of what value dgg(i)
takes), this would result in D̂(G||I ) = −∞, whereas dgg(i) = 0 (regardless of what
value dgi (i) takes) would result in D̂(G||I ) = ∞. This is one of the issues we wanted
to circumvent by using the NN estimator in the first place! Neither the paper that
proposed the NN estimator for KL divergence [10], nor the paper that proposed
using this estimator to calculate the RE of biometrics [9], suggests how to proceed
in this scenario. So, we decided to add a small value (ε) of 10−10 to every dgg(i) and
dgi (i) term that turned out to be 0. The choice of ε was based on the fact that our
comparison scores are rounded to 8 decimal places, so we wanted to ensure that ε

would be smaller than 10−8 to minimise the impact on the original score distribution.7

6Note: RE = D̂(G||I ).
7This choice of ε may not necessarily be optimal, but it seems sensible.
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Table 17.1 Relative Entropy (RE) and Equal Error Rate (EER) for different extractors on the
VERA and UTFVP databases. The RE and EER ranks refer to the rankings of the three extractors
(separately for each database) in terms of the highest RE and lowest EER, respectively

DB Extractor RE EER (%) RE rank EER rank

VERA WLD 11.8 9.5 2 2

VERA RLT 4.2 24.3 3 3

VERA MC 13.2 4.3 1 1

UTFVP WLD 18.9 2.7 2 2

UTFVP RLT 18.0 3.2 3 3

UTFVP MC 19.5 0.8 1 1

Fig. 17.3 Genuine and impostor score distributions corresponding to the lowest (left) and highest
(right) RE values for the VERA database from Table 17.1

For this experiment, a comparison score was calculated between a finger vein
template and every other finger vein template in the database. The resulting RE
values are summarised in Table 17.1, along with the corresponding EERs.8

We can interpret the RE results in Table 17.1 as providing an indication of how
many bits of discriminatory information are contained in a particular finger vein
recognition system. For example, we can see that using the RLT extractor on the
VERA database results in a system with only 4.2 bits of discriminatory information,
while the MC extractor on the same database contains 13.2 bits of discriminatory
information. Figure 17.3 illustrates the genuine and impostor score distributions for
these two RE results.

Since our results show the RE to be dependent upon both the feature extractor
and database adopted, it would be misleading to claim a universal finger vein RE
estimate; rather, it makes more sense for the RE to be system-specific.

8Note that we have chosen to compare the RE to the EER, because the EER is a widely used
metric for evaluating the overall recognition accuracy (in terms of the trade-off between the False
Match Rate (FMR) and False Non-Match Rate (FNMR)) of a biometric recognition system. The
comparison seems appropriate, since RE aims to provide us with an idea of a biometric system’s
overall discrimination capability.



514 V. Krivokuća et al.

Intuitively, we can see that, the higher the RE, the greater the amount of discrim-
inatory information, and thus the greater the expected recognition capabilities of the
underlying system. This intuition is confirmed when we compare the REs and EERs
of the different systems in Table 17.1, in terms of the RE-based versus EER-based
rankings. From this analysis, it is evident that the ranking of the three extractors for
each database is the same regardless of whether that ranking is based on the RE or
the EER. In particular, MC has the highest RE and lowest EER, while RLT has the
lowest RE and highest EER. This implies that the most discriminatory information
is contained in finger vein patterns that have been extracted using the MC extrac-
tor, and the least discriminatory information is contained in RLT-extracted finger
veins. These results suggest the possibility of using the REs of different finger vein
recognition systems to rank the systems according to the amount of discriminatory
information and thus their expected recognition accuracies. Consequently, it appears
reasonable to conclude that the RE estimator is a reliable indicator of the amount of
discriminatory information in a finger vein recognition system.

While RE quantifies the amount of discriminatory information in a biometric sys-
tem, it is difficult to gauge what exactly this number, on its own, means. For example,
what exactly does x bits of discriminatory information signify, and is a y-bit differ-
ence in the REs of two biometric systems significant? Furthermore, benchmarking
different biometric systems in terms of their RE is not straightforward, since the RE
estimate depends on both the comparison score range as well as on the number of
genuine (Ng) and impostor scores (Ni ) for each database and experimental protocol.
Consequently, REs reported for different biometric systems usually do not lie in the
same [REmin, REmax] range.9 To help us better understand the meaning of the RE
metric in the context of a biometric system, as well as to enable fair cross-system
RE benchmarking, Sect. 17.4 adapts Eq. (17.2) to propose a normalised RE metric.

17.4 Normalised Relative Entropy

This section proposes a normalised version of the RE (NRE), based on the NN
estimator in Eq. (17.2). The reason for this normalisation is to help us interpret the
RE in a more intuitive way, and to enable fair benchmarking of different biometric
systems in terms of their RE.

We propose using the well-known “min–max” normalisation formulated by Eq.
(17.3):

NRE = RE − REmin

REmax − REmin
(17.3)

9For the finger vein systems we used, the comparison scores for both the VERA and UTFVP
databases lie in the same range of [0, 0.5]. However, the Ng values across the two databases are
different as are the Ni values. Consequently, the [REmin, REmax] range is not the same for both
databases, meaning that we cannot fairly compare the RE results across the two databases.
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In Eq. (17.3), REmin and REmax refer to the minimum and maximum possible
RE values, respectively, for a particular biometric system. Thus, we need to begin
by establishing REmin and REmax. In this formulation, we assume that comparison
scores are similarity values, such that small scores indicate low similarity and large
scores indicate high similarity. Keeping this in mind, the minimum RE would occur
when all dgi values are zero and all dgg values are as large as possible. Therefore, for
each genuine score, there would need to be at least one impostor score with exactly
the same value, and all the genuine scores would need to be spread apart as far as
possible. Let us say that all scores lie in the range [smin, smax], and that the number of
genuine scores for a particular database and experimental protocol is denoted by Ng .
Then, the maximum possible dgg value would be smax−smin

Ng
. By adapting Eq. (17.2),

our equation for the minimum RE thus becomes

REmin = 1

Ng

Ng∑

i=1

log2
0

smax−smin
Ng

+ log2
Ni

Ng − 1
(17.4)

If we now tried to solve Eq. (17.4), we would get REmin = −∞, because of the
0 dgi term. Since this is an impractical result for measuring the (finite) amount of
information in a biometric system, we replace the 0 with ε. Furthermore, we can see
that the division by Ng gets cancelled out by the summation across Ng , so we can
simplify Eq. (17.4) as follows:

REmin = log2
ε

smax−smin
Ng

+ log2
Ni

Ng − 1
(17.5)

Equation (17.5) thus becomes the final REmin equation.
The maximum RE would occur when all dgi values are as large as possible and

all dgg values are zero. The only way this could occur would be if all the genuine
scores took on the largest possible value, smax, and all the impostor scores took on
the smallest possible value, smin. In this case, the genuine and impostor score sets
would be as different as possible. By adapting Eq. (17.2), we thus get the following
equation for the maximum RE:

REmax = 1

Ng

Ng∑

i=1

log2
smax − smin

0
+ log2

Ni

Ng − 1
(17.6)

If we tried to solve Eq. (17.6), we would get REmax = ∞ due to the 0 term in
the denominator. So, once again we replace the 0 term with ε. Furthermore, just like
we did for Eq. (17.4), we can simplify Eq. (17.6) by removing the Ng division and
summation. Our final equation for REmax thus becomes

REmax = log2
smax − smin

ε
+ log2

Ni

Ng − 1
(17.7)
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We can now use Eq. (17.3), with Eq. (17.5) for REmin and Eq. (17.7) for REmax,
to calculate the NRE of a particular biometric system.

Due to the “min–max” operation in Eq. (17.3), the NRE will lie in the range
[0.00, 1.00]. We can thus interpret the NRE as follows. An NRE of 0.00 would
suggest that the system in question contains zero discriminative information (i.e.
recognition would actually be impossible), whereas an NRE of 1.00 would indicate
that the system contains the maximum amount of discriminative information possible
for that system (i.e. the recognition accuracy would be expected to be perfect).

Figure 17.4 illustrates what the impostor and genuine comparison score distribu-
tions might look like for a minimum NRE system and a maximum NRE system,
when the comparison score range is [0, 0.5] (i.e. the score range corresponding to
our finger vein recognition systems).

In general, therefore, we can look at the NRE as providing an indication of the
proportion of the maximum amount of discriminatory information that the corre-
sponding biometric system contains. An NRE of 0.50, for example, would indicate
that the biometric system achieves only 50% of the maximum attainable recogni-
tion accuracy. Therefore, the higher the NRE, the better the expected recognition
accuracy of the biometric system we are measuring.

Table 17.2 shows the NRE results for our aforementioned finger vein recognition
systems. Note that, for these finger vein systems: smin = 0; smax = 0.5; Ng = 440
for VERA; Ng = 4, 320 for UTFVP; Ni = 192, 720 for VERA; Ni = 2, 067, 840
for UTFVP.

Note that the first column of Table 17.2 refers to the finger vein recognition system
constructed using the specified database and feature extractor. We have pooled the
databases and extractors into “systems” now to indicate that the NRE values can
be benchmarked across systems (as opposed to, for example, in Table 17.1, where
the databases were separate to indicate that RE-based benchmarking of the different
extractors should be database-specific).

Fig. 17.4 Illustration of impostor and genuine score distributions for a minimum and a maximum
NRE system, when the comparison score range is [0, 0.5]
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Table 17.2 Relative Entropy (RE) and Normalised Relative Entropy (NRE) for different finger
vein recognition systems

System RE NRE

VERA-WLD 11.8 0.48

VERA-RLT 4.2 0.34

VERA-MC 13.2 0.50

UTFVP-WLD 18.9 0.58

UTFVP-RLT 18.0 0.56

UTFVP-MC 19.5 0.59

As an example of how the NRE results from Table 17.2 can be interpreted, let
us compare the NRE of VERA-RLT to that of UTFVP-MC. The NRE of 0.34 for
VERA-RLT tells us that this system achieves only 34% of the maximum attainable
discrimination capability. Comparatively, the UTFVP-MC system contains 59% of
the maximum amount of discriminative information. So, we could conclude that
the UTFVP-MC finger vein recognition system contains 25% more discriminatory
information than the VERA-RLT system.

Using the NRE also helps us gauge the significance of the differences in the REs
across different biometric systems. For example, if we look at the RE on its own
for the UTFVP-WLD and UTFVP-MC systems in Table 17.2, we can see that the
latter system’s RE is 0.6 bits larger than the former system’s RE. It is difficult to
tell, however, whether or not this is a significant difference. If we then look at the
NREs of the two systems, we can see that their difference is only 0.01. This indicates
that the 0.6-bit difference between the two systems’ REs is not too significant in
terms of the proportion of the maximum discriminatory information the two systems
contain. On the other hand, the 15.3-bit difference in the REs between the VERA-
RLT and UTFVP-MC systems seems much more significant, and we may be tempted
to conclude that the latter system contains about five times more discriminative
information than the former system. Looking at the two systems’ NREs, we do see
a fairly significant difference, but we would have to conclude that the UTFVP-MC
system contains not five times, but two times, more discriminative information than
the VERA-RLT system.

In this section, we have shown how the NRE can be used for RE-based bench-
marking of different finger vein recognition systems, for which comparison scores
were evaluated on different databases. The main reason for using the NRE in our case
was thus to conduct fair cross-database system benchmarking. Our proposed NRE
metric, however, can also be used to fairly benchmark the REs of systems based on
different biometric modalities, tested on different databases using different experi-
mental protocols. For example, part of our future work will involve benchmarking
the NRE of our best finger vein recognition system, UTFVP-MC, against NREs of
systems based on different types of biometrics. This makes the proposed NRE metric
a flexible tool for both quantifying and benchmarking the amount of discriminative
information contained in different biometric systems.
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17.5 Discussion

In this section, we begin by presenting a discussion on an important aspect of the
NRE, which supports its adoption in the biometrics community. We then discuss two
potential issues that may arise when calculating the NRE, and we suggest the means
of dealing with them. Sections 17.5.1, 17.5.2 and 17.5.3, respectively, tackle these
three discussion points.

17.5.1 NRE as a Complement to EER

So far, we have shown how the RE can be used to measure the amount of dis-
criminatory information in finger vein recognition systems. We also proposed the
NRE metric to fairly benchmark the REs across different biometric systems. In this
section, we discuss how an NRE estimate could complement the EER to provide a
more complete picture of the performance of a biometric recognition system.

In Sect. 17.2, we explained how, in the context of a biometric recognition system,
the RE metric provides some indication of how closely our genuine score distribu-
tion matches our impostor score distribution. Let us explore the meaning of this by
considering Eq. (17.2). Equation (17.2) tells us that we are attempting to estimate the
relative entropy of a set of genuine comparison scores (G) in terms of a set of impostor
comparison scores (I). In other words, we wish to quantify the “closeness” of these
two sets10 of scores. The dgi and dgg terms represent the distance between a genuine
score and its closest score in the set of impostor and genuine scores, respectively.
Larger dgi values will result in larger RE results, whereas larger dgg values will result
in smaller RE results.11 We can thus see that larger REs favour a larger inter-class
variance (i.e. greater separation between genuine comparison trials and impostor
trials) and a smaller intra-class variance (i.e. smaller separation between multiple
biometric samples from the same biometric instance). This makes the RE suitable as
a measure of the performance of a biometric recognition system: the larger the RE
value, the better the recognition accuracy. The best (highest) RE would, therefore,
be obtained in the case where all the dgi values are as large as possible, while the dgg

values are as small as possible, and vice versa for the worst (lowest) RE.
The RE metric thus informs us about two things: how far genuine scores are from

impostor scores, and how far genuine scores are from each other. Consider the case
where we have a set of impostor scores, I, and a set of genuine scores, G. The larger
the intersection between I and G, the smaller the dgi values and thus the lower the
RE. Conversely, the smaller the intersection between the two sets, the greater the dgi

values and thus the higher the RE. So far, the RE metric appears to tell us the same
thing as the EER, since a smaller EER indicates less overlap between genuine and

10Note: We are purposely using the word “set” as opposed to “distribution”, since the NN estimator
in Eq. (17.2) works directly on the scores as opposed to distributions representing the scores.
11Assume constant Ng and Ni values.
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Fig. 17.5 Two biometric systems with the same EER of 0%, but where the system on the right has
greater separation between the impostor and genuine comparison scores, and thus a higher NRE
than the system on the left

impostor comparison scores, while a larger EER indicates more overlap. Where the
two metrics differ, however, is in the scenario where I and G are completely separated.
In this case, the further apart the two sets of scores are the higher the resulting RE.
The EER, however, would be 0% regardless of whether the separation is small or
large. Imagine if we had to benchmark two biometric systems, both of which had
complete separation between the genuine and impostor comparison scores, but where
for one system the separation was much larger than for the other, as illustrated12 in
Fig. 17.5. If we considered only the EER, it would indicate that the two systems
are the same (i.e. both have an EER of 0%). The NRE,13 however, would clearly
indicate that the system with greater separation is better in terms of distinguishing
genuine trials from impostors, since the NRE value would be higher for that system.
In this case, complementing the EER with an NRE estimate would provide a more
complete picture of the system comparison. This could come in useful particularly
in situations where the data used for testing the biometric system was collected in a
constrained environment, in which case an EER of 0% could be expected. The NRE,
on the other hand, would provide us with more insight into the separation between
the genuine and impostor score distributions.

Another example of a scenario in which the NRE metric would be a useful com-
plement to the EER is when we have two biometric systems for which I is the same
and the separation (or overlap) between I and G is the same, but G differs. In par-
ticular, in the first system the genuine scores are closer together, while in the second
system the genuine scores are further apart from each other. Figure 17.6 illustrates

12Note: The only reason for using probability density plots in this figure is to present a cleaner
illustration of our point. Probability density functions are not used to represent genuine and impostor
score distributions for the NRE calculation.
13When benchmarking different biometric systems, the NRE should be used instead of the RE to
ensure that the benchmarking is fair. The only exception to this rule would be in the case where the
different systems had the same comparison score range, and the same Ng and Ni values, in which
case the resulting REs would lie in the same [REmin, REmax] range.
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Fig. 17.6 Two biometric systems with the same I, the same separation between I and G and thus
the same EER, but with different G. In particular, G for the system on the right has a larger variance,
and thus the NRE is lower to reflect this

this scenario.14 In this case, since the separation between I and G for both systems
is the same, the EER would also be the same, thereby indicating that one system is
just as good as the other. The NRE, however, would be smaller for the second system
due to the larger dgg values. The NRE would thus indicate that the larger intra-class
variance in the second system makes this system less preferable in terms of biomet-
ric performance when compared to the first system, for which the genuine scores
are closer together and thus the intra-class variance is smaller. Using both NRE and
EER together, we could thus conclude that, although both systems can be expected
to achieve the same error rate, the system with the smaller intra-class variance would
be a superior choice.

When choosing between the EER and NRE metrics for evaluating the performance
of a biometric system, we would still recommend using the EER as the primary one,
since it is more practical in providing us with a solid indication of our system’s
expected error rate. The NRE, however, would be a useful complement to the EER
when we are trying to decide on the best of n biometric systems that have the same
EER.

17.5.2 Selecting the ε Parameter

As mentioned in the introductory paragraph of Sect. 17.3.2, ε is a parameter chosen
to deal with zero score differences (i.e. dgg = 0 or dgi = 0) in order to avoid an
RE of ±∞ (which would be meaningless in the context of measuring the amount of
discriminatory information in a biometric system). It is clear from Eqs. (17.2), (17.3),
(17.5) and (17.7), however, that the choice of ε could potentially have a significant
effect on the resulting RE and, therefore, NRE, particularly if the number of zero score

14Note: In Fig. 17.6, the EER for both systems is 0%; however, it could also be possible for both
systems to have the same non-zero EER. In this case, I and G would partially overlap.
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differences is large. While the number of zero score differences will be dependent on
the biometric system in question and this number is, therefore, difficult to generalise,
we wished to see what effect the choice of ε would have on the RE and NRE of our
best finger vein recognition system, that obtained when using MC-extracted finger
veins from the UTFVP database. Figure 17.7 shows plots of the RE and NRE versus
ε, when ε is selected to lie in the range [10−12, 10−8]. For convenience, Table 17.3
summarises the RE and NRE values from Fig. 17.7.

From Fig. 17.7 and Table 17.3, we can see that, while the choice of ε does affect
the RE and NRE to some degree (more specifically, the RE and NRE decrease as
ε decreases15), this effect does not appear to be significant. So, we may conclude
that, as long as the ε parameter is sensibly chosen (i.e. smaller than the comparison
scores, but not so small that it is effectively zero), then the RE and NRE estimates
should be reasonable.

Fig. 17.7 RE versus ε and NRE versus ε, when ε takes on different values in the range
[10−12, 10−8], for MC-extracted finger vein patterns in the UTFVP database

Table 17.3 RE and NRE for MC-extracted finger veins from UTFVP, when ε is varied in the range
[10−12, 10−8]. Note that, for consistency with Table 17.2, RE and NRE values are rounded to 1 d.p.
and 2 d.p., respectively

ε RE NRE

10−8 19.5 0.62

10−9 19.5 0.60

10−10 19.5 0.59

10−11 19.5 0.58

10−12 19.5 0.57

15In general, the RE, and thus the NRE, would be expected to decrease with a decrease in ε when
there are more dgi than dgg zero score differences. Alternatively, the RE, and thus the NRE, would
be expected to increase with a decrease in ε when there are more dgg than dgi zero score differences.
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17.5.3 Number of Nearest Neighbours

The method proposed in [9] to estimate the RE of biometrics uses only the first
nearest genuine and impostor neighbours of each genuine score. An issue with this
approach is that it makes the RE estimate highly dependent on any single score, even
if that score is an outlier. This might be particularly problematic if we do not have a
large number of scores to work with, which is often the case.

It seems that a safer approach would be to use k nearest neighbours, where k > 1,
then average the resulting dgg(i) and dgi (i) values over these k neighbours prior to
estimating the RE. This would introduce some smoothing to the underlying score
distributions, thereby stabilising the RE estimates. While the effect of k on the RE,
and therefore NRE, is difficult to generalise since it would, in practice, be dependent
on the biometric system in question, we wished to test the effect of the choice of k on
the RE and NRE of our best finger vein recognition system, that obtained when using
MC-extracted finger veins from the UTFVP database. Figure 17.8 shows plots of the
RE and NRE versus k, when k increases from 1 to 5. For convenience, Table 17.4
summarises the RE and NRE values from Fig. 17.8. Note that, for this experiment,
ε = 10−10, as for the RE and NRE experiments in Sects. 17.3 and 17.4.

Fig. 17.8 RE versus k and NRE versus k, when k increases from 1 to 5, for MC-extracted finger
vein patterns in the UTFVP database

Table 17.4 RE and NRE for MC-extracted finger veins from UTFVP, when k increases from 1 to
5. Note that, for consistency with Tables 17.2 and 17.3, RE and NRE values are rounded to 1 d.p.
and 2 d.p., respectively

k RE NRE

1 19.5 0.59

2 18.8 0.57

3 18.5 0.57

4 18.2 0.56

5 17.9 0.56
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From Fig. 17.8 and Table 17.4, it is evident that increasing k tends to decrease
both the RE and NRE, but the decrease is not drastic for k ≤ 5. This decrease makes
sense, since a larger k means a greater degree of smoothing, which decreases the
effects of individual comparison scores. Another consequence of using a larger k
would be that the effect of the ε parameter on RE and NRE would be expected
to be less pronounced. This is because a larger k means that a larger number of
neighbouring scores are averaged when calculating the RE and NRE, so we are less
likely to encounter zero average scores than in the scenario where only one nearest
neighbouring score is considered. Keeping the aforementioned points in mind, it is
important to sensibly tune the k and ε parameters depending on the biometric system
in question (e.g. if there are outlier scores, use k > 1, and select ε based on the score
precision, as discussed in Sect. 17.5.2). Furthermore, we urge researchers adopting
the RE and NRE measures to be transparent about their selection of these parameters
to ensure fair system comparisons across the biometrics community.

Note that the NN estimator on which Eq. (17.2) is based [10] is actually a k-
NN estimator, where k denotes the number of nearest neighbours. It is not clear,
however, whether the proposed k-NN estimator is based on averaging the k nearest
neighbouring scores, as we have done for Fig. 17.8 and Table 17.4, or whether the
authors meant that only the kth neighbour should be used. If their intention is the
latter, then our averaging approach represents an effective new way of stabilising the
k-NN estimator for RE measures.

17.6 Conclusions and Future Work

This chapter represents the first attempt at estimating the amount of information in
finger vein biometrics in terms of score-based Relative Entropy (RE), using the previ-
ously proposed Nearest Neighbour estimator. We made five important contributions.

First, we showed that the RE estimate is system-specific. In our experiments,
the RE differed across finger vein recognition systems employing different feature
extractors and different testing databases. For this reason, we refrain from claiming
a universal finger vein RE estimate, since this would be misleading.

Second, we showed that the RE can be used to rank different finger vein recognition
systems, which are tested on the same database using the same experimental protocol
(in our case, the difference was the feature extractor employed), in terms of the
amount of discriminative biometric information available. The ranking was shown
to be comparable to an EER-based ranking, which implies that the RE estimate
is a reliable indicator of the amount of discriminatory information in finger vein
recognition systems.

Third, we proposed a new metric, the Normalised Relative Entropy (NRE), to help
us gauge the significance of individual RE scores as well as to enable fair bench-
marking of different biometric systems (in particular, systems tested on different
databases using different experimental protocols) in terms of their RE. The NRE lies
in the range [0.00, 1.00] and represents the proportion of the maximum amount of
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discriminatory information that is contained in the biometric system being measured.
The higher the NRE, the better the system is expected to be at distinguishing genuine
trials from impostors.

Fourth, we discussed how the NRE metric could be a beneficial complement
to the EER in ranking different biometric systems in terms of their discrimination
capabilities. The NRE would be particularly useful in choosing the best of n biometric
systems that have the same EER.

Finally, we discussed two potential issues in calculating the RE and NRE, namely,
the effects of the ε parameter and the number of nearest neighbours (k) used for
computing the genuine–genuine and genuine–impostor score differences. We showed
that, as long as ε is sensibly selected, its effect on the RE and NRE is unlikely to be
significant. We also showed that increasing the number of nearest score neighbours
may be expected to slightly decrease the RE and NRE, but the upside is that using a
larger number of nearest neighbours would help to dilute the effects of outliers among
the genuine and impostor comparison scores. We concluded by suggesting that ε and
k be tuned according to the biometric system being evaluated and that researchers
be transparent in terms of reporting their selection of these two parameters.

At the moment, our primary aim for future work in this direction is to use our
proposed NRE metric to benchmark finger vein recognition systems against sys-
tems based on other biometric modalities, in terms of the amount of discriminatory
information contained in each system.
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