
Isil Dillig
Serdar Tasiran (Eds.)

LN
CS

 1
15

61

31st International Conference, CAV 2019
New York City, NY, USA, July 15–18, 2019
Proceedings, Part I

Computer Aided
Verification

www.dbooks.org

https://www.dbooks.org/

Lecture Notes in Computer Science 11561

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7407

www.dbooks.org

http://www.springer.com/series/7407
https://www.dbooks.org/

Isil Dillig • Serdar Tasiran (Eds.)

Computer Aided
Verification
31st International Conference, CAV 2019
New York City, NY, USA, July 15–18, 2019
Proceedings, Part I

Editors
Isil Dillig
University of Texas
Austin, TX, USA

Serdar Tasiran
Amazon Web Services
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-25539-8 ISBN 978-3-030-25540-4 (eBook)
https://doi.org/10.1007/978-3-030-25540-4

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

www.dbooks.org

https://doi.org/10.1007/978-3-030-25540-4
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Preface

It was our privilege to serve as the program chairs for CAV 2019, the 31st International
Conference on Computer-Aided Verification. CAV 2019 was held in New York, USA,
during July 15–18, 2019. The tutorial day was on July 14, 2019, and the pre-conference
workshops were held during July 13–14, 2019. All events took place in The New
School in New York City.

CAV is an annual conference dedicated to the advancement of the theory and
practice of computer-aided formal analysis methods for hardware and software sys-
tems. The primary focus of CAV is to extend the frontiers of verification techniques by
expanding to new domains such as security, quantum computing, and machine
learning. This put CAV at the cutting edge of formal methods research, and this year’s
program is a reflection of this commitment.

CAV 2019 received a very high number of submissions (258). We accepted 13 tool
papers, two case studies, and 52 regular papers, which amounts to an acceptance rate of
roughly 26%. The accepted papers cover a wide spectrum of topics, from theoretical
results to applications of formal methods. These papers apply or extend formal methods
to a wide range of domains such as concurrency, learning, and industrially deployed
systems. The program featured invited talks by Dawn Song (UC Berkeley), Swarat
Chaudhuri (Rice University), and Ken McMillan (Microsoft Research) as well as
invited tutorials by Emina Torlak (University of Washington) and Ranjit Jhala (UC San
Diego). Furthermore, we continued the tradition of Logic Lounge, a series of discus-
sions on computer science topics targeting a general audience.

In addition to the main conference, CAV 2019 hosted the following workshops: The
Best of Model Checking (BeMC) in honor of Orna Grumberg, Design and Analysis of
Robust Systems (DARS), Verification Mentoring Workshop (VMW), Numerical
Software Verification (NSV), Verified Software: Theories, Tools, and Experiments
(VSTTE), Democratizing Software Verification, Formal Methods for ML-Enabled
Autonomous Systems (FoMLAS), and Synthesis (SYNT).

Organizing a top conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2019 consisted of 79 members, a
committee of this size ensures that each member has to review a reasonable number of
papers in the allotted time. In all, the committee members wrote over 770 reviews while
investing significant effort to maintain and ensure the high quality of the conference
program. We are grateful to the CAV 2019 Program Committee for their outstanding
efforts in evaluating the submissions and making sure that each paper got a fair chance.

Like last year’s CAV, we made artifact evaluation mandatory for tool submissions
and optional but encouraged for the rest of the accepted papers. The Artifact Evaluation
Committee consisted of 27 reviewers who put in significant effort to evaluate each
artifact. The goal of this process was to provide constructive feedback to tool devel-
opers and help make the research published in CAV more reproducible. The Artifact
Evaluation Committee was generally quite impressed by the quality of the artifacts,

and, in fact, all accepted tools passed the artifact evaluation. Among regular papers,
65% of the authors submitted an artifact, and 76% of these artifacts passed the eval-
uation. We are also very grateful to the Artifact Evaluation Committee for their hard
work and dedication in evaluating the submitted artifacts.

CAV 2019 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2019 a success. First, we would like to thank Yu Feng and Ruben Martins for chairing
the Artifact Evaluation Committee and Zvonimir Rakamaric for maintaining the CAV
website and social media presence. We also thank Oksana Tkachuk for chairing the
workshop organization process, Peter O’Hearn for managing sponsorship, and Thomas
Wies for arranging student fellowships. We also thank Loris D’Antoni, Rayna
Dimitrova, Cezara Dragoi, and Anthony W. Lin for organizing the Verification
Mentoring Workshop and working closely with us. Last but not least, we would like to
thank Kostas Ferles, Navid Yaghmazadeh, and members of the CAV Steering
Committee (Ken McMillan, Aarti Gupta, Orna Grumberg, and Daniel Kroening) for
helping us with several important aspects of organizing CAV 2019.

We hope that you will find the proceedings of CAV 2019 scientifically interesting
and thought-provoking!

June 2019 Isil Dillig
Serdar Tasiran

vi Preface

www.dbooks.org

https://www.dbooks.org/

Organization

Program Chairs

Isil Dillig The University of Texas at Austin, USA
Serdar Tasiran Amazon, USA

Workshop Chair

Oksana Tkachuk Amazon, USA

Publicity Chair

Zvonimir Rakamaric University of Utah, USA

Sponsorship Chair

Peter O’Hearn Facebook, USA

Fellowship Chair

Thomas Wies NYU, USA

CAV Award Committee

Natarajan Shankar SRI International, USA
Pierre Wolper Liege University, Belgium
Somesh Jha University of Wisconsin, USA
Parosh Abdulla Uppsala University, Sweden

Program Committee

Aws Albarghouthi University of Wisconsin-Madison, USA
Jade Alglave University College London, UK
Rajeev Alur University of Pennsylvania, USA
Christel Baier TU Dresden, Germany
Gilles Barthe Max Planck Institute for Security and Privacy,

Germany; IMDEA Software Institute, Spain
Osbert Bastani University of Pennsylvania, USA
Josh Berdine Facebook, USA
Per Bjesse Synopsys Inc., USA
Nikolaj Bjorner Microsoft, USA
Roderick Bloem Graz University of Technology, Austria

Marc Brockschmidt Microsoft, UK
Pavol Cerny University of Colorado Boulder, USA
Swarat Chaudhuri Rice University, USA
Wei-Ngan Chin National University of Singapore
Adam Chlipala Massachusetts Institute of Technology, USA
Hana Chockler King’s College London, UK
Eva Darulova Max Planck Institute for Software Systems, Germany
Cristina David University of Cambridge, UK
Dana Drachsler Cohen ETH Zurich, Switzerland
Cezara Dragoi Inria Paris, ENS, France
Constantin Enea IRIF, University of Paris Diderot, France
Azadeh Farzan University of Toronto, Canada
Grigory Fedyukovich Princeton University, USA
Yu Feng University of California, Santa Barbara, USA
Dana Fisman Ben-Gurion University, Israel
Milos Gligoric The University of Texas at Austin, USA
Patrice Godefroid Microsoft, USA
Laure Gonnord University of Lyon/Laboratoire d’Informatique du

Parallélisme, France
Aarti Gupta Princeton University, USA
Arie Gurfinkel University of Waterloo, Canada
Klaus Havelund Jet Propulsion Laboratory, USA
Chris Hawblitzel Microsoft, USA
Alan J. Hu The University of British Columbia, Canada
Shachar Itzhaky Technion, Israel
Franjo Ivancic Google, USA
Ranjit Jhala University of California San Diego, USA
Rajeev Joshi Automated Reasoning Group, Amazon Web Services,

USA
Dejan Jovanović SRI International, USA
Laura Kovacs Vienna University of Technology, Austria
Burcu Kulahcioglu Ozkan MPI-SWS, Germany
Marta Kwiatkowska University of Oxford, UK
Shuvendu Lahiri Microsoft, USA
Akash Lal Microsoft, India
Stephen Magill Galois, Inc., USA
Joao Marques-Silva Universidade de Lisboa, Portugal
Ruben Martins Carnegie Mellon University, USA
Ken McMillan Microsoft, USA
Vijay Murali Facebook, USA
Peter Müller ETH Zurich, Switzerland
Mayur Naik Intel, USA
Hakjoo Oh Korea University, South Korea
Oded Padon Stanford University, USA
Corina Pasareanu CMU/NASA Ames Research Center, USA
Ruzica Piskac Yale University, USA

viii Organization

www.dbooks.org

https://www.dbooks.org/

Nir Piterman University of Gothenburg, Sweden
Pavithra Prabhakar Kansas State University, USA
Sylvie Putot LIX, Ecole Polytechnique, France
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Dorsa Sadigh Stanford University, USA
Roopsha Samanta Purdue University, USA
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Koushik Sen University of California, Berkeley, USA
Sanjit A. Seshia University of California, Berkeley, USA
Natarajan Shankar SRI International, USA
Rahul Sharma Microsoft, USA
Natasha Sharygina Università della Svizzera italiana (USI Lugano),

Switzerland
Sharon Shoham Tel Aviv University, Israel
Alexandra Silva University College London, UK
Rishabh Singh Google, USA
Anna Slobodova Centaur Technology, USA
Marcelo Sousa University of Oxford, UK
Cesare Tinelli The University of Iowa, USA
Ufuk Topcu University of Texas at Austin, USA
Caterina Urban Inria, France
Margus Veanes Microsoft, USA
Yakir Vizel The Technion, Israel
Chao Wang USC, USA
Georg Weissenbacher Vienna University of Technology, Austria
Eran Yahav Technion, Israel
Hongseok Yang KAIST, South Korea

Artifact Evaluation Committee

Uri Alon Technion, Israel
Yaniv David Technion, Israel
Yufei Ding University of California, Santa Barbara, USA
Yu Feng (Co-chair) University of California, Santa Barbara, USA
Radu Grigore University of Kent, UK
Saurabh Joshi IIIT Hyderabad, India
William Hallahan Yale University, USA
Travis Hance Carnegie Mellon University, USA
Marijn Heule The University of Texas at Austin, USA
Antti Hyvärinen University of Lugano, Switzerland
Alexey Ignatiev Universidade de Lisboa, Portugal
Tianhan Lu University of Colorado Boulder, USA
Ruben Martins (Co-chair) Carnegie Mellon University, USA
Aina Niemetz Stanford University, USA
Filip Nikšić University of Pennsylvania, USA
Lauren Pick Princeton University, USA

Organization ix

Sorawee Porncharoenwase University of Washington, USA
Mathias Preiner Stanford University, USA
Talia Ringer University of Washington, USA
John Sarracino University of California San Diego, USA
Xujie Si University of Pennsylvania, USA
Calvin Smith University of Wisconsin-Madison, USA
Caleb Stanford University of Pennsylvania, USA
Miguel Terra-Neves INESC-ID/IST, Universidade de Lisboa, Portugal
Jacob Van Geffen University of Washington, USA
Xinyu Wang The University of Texas at Austin, USA
Wei Yang The University of Texas at Dallas, USA

Mentoring Workshop Organizing Committee

Loris D’Antoni (Chair) University of Wisconsin, USA
Anthony Lin Oxford University, UK
Cezara Dragoi Inria, France
Rayna Dimitrova University of Leicester, UK

Steering Committee

Ken McMillan Microsoft, USA
Aarti Gupta Princeton, USA
Orna Grunberg Technion, Israel
Daniel Kroening University of Oxford, UK

Additional Reviewers

Sepideh Asadi
Lucas Asadi
Haniel Barbosa
Ezio Bartocci
Sam Bartocci
Suda Bharadwaj
Erdem Biyik
Martin Biyik
Timothy Bourke
Julien Braine
Steven Braine
Benjamin Caulfield
Eti Chaudhary
Xiaohong Chaudhary
Yinfang Chen
Andreea Costea
Murat Costea

Emanuele D’Osualdo
Nicolas Dilley
Marko Dilley
Bruno Dutertre
Marco Eilers
Cindy Eilers
Yotam Feldman
Jerome Feret
Daniel Feret
Mahsa Ghasemi
Shromona Ghosh
Anthony Ghosh
Bernhard Gleiss
Shilpi Goel
William Goel
Mirazul Haque
Ludovic Henrio

x Organization

www.dbooks.org

https://www.dbooks.org/

Andreas Henrio
Antti Hyvärinen
Duligur Ibeling
Rinat Ibeling
Nouraldin Jaber
Swen Jacobs
Maximilian Jacobs
Susmit Jha
Anja Karl
Jens Karl
Sean Kauffman
Ayrat Khalimov
Bettina Khalimov
Hillel Kugler
Daniel Larraz
Christopher Larraz
Wonyeol Lee
Matt Lewis
Wenchao Lewis
Kaushik Mallik
Matteo Marescotti
David Marescotti
Dmitry Mordvinov
Matthieu Moy
Thanh Toan Moy
Victor Nicolet
Andres Noetzli
Abraham Noetzli
Saswat Padhi
Karl Palmskog

Rong Palmskog
Daejun Park
Brandon Paulsen
Lucas Paulsen
Adi Yoga Prabawa
Dhananjay Raju
Andrew Raju
Heinz Riener
Sriram Sankaranarayanan
Mark Sankaranarayanan
Yagiz Savas
Traian Florin Serbanuta
Fu Serbanuta
Yahui Song
Pramod Subramanyan
Rob Subramanyan
Sol Swords
Martin Tappler
Ta Quang Tappler
Anthony Vandikas
Marcell Vazquex-Chanlatte
Yuke Vazquex-Chanlatte
Min Wen
Josef Widder
Bo Widder
Haoze Wu
Zhe Xu
May Xu
Yi Zhang
Zhizhou Zhang

Organization xi

Contents – Part I

Automata and Timed Systems

Symbolic Register Automata . 3
Loris D’Antoni, Tiago Ferreira, Matteo Sammartino,
and Alexandra Silva

Abstraction Refinement Algorithms for Timed Automata 22
Victor Roussanaly, Ocan Sankur, and Nicolas Markey

Fast Algorithms for Handling Diagonal Constraints in Timed Automata. 41
Paul Gastin, Sayan Mukherjee, and B. Srivathsan

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion. . . 60
Suguman Bansal and Moshe Y. Vardi

Clock Bound Repair for Timed Systems . 79
Martin Kölbl, Stefan Leue, and Thomas Wies

Verifying Asynchronous Interactions via Communicating
Session Automata . 97

Julien Lange and Nobuko Yoshida

Security and Hyperproperties

Verifying Hyperliveness. 121
Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup

Quantitative Mitigation of Timing Side Channels . 140
Saeid Tizpaz-Niari, Pavol Černý, and Ashutosh Trivedi

Property Directed Self Composition. 161
Ron Shemer, Arie Gurfinkel, Sharon Shoham, and Yakir Vizel

Security-Aware Synthesis Using Delayed-Action Games 180
Mahmoud Elfar, Yu Wang, and Miroslav Pajic

Automated Hypersafety Verification . 200
Azadeh Farzan and Anthony Vandikas

Automated Synthesis of Secure Platform Mappings 219
Eunsuk Kang, Stéphane Lafortune, and Stavros Tripakis

www.dbooks.org

https://www.dbooks.org/

Synthesis

Synthesizing Approximate Implementations for Unrealizable Specifications . . . 241
Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah

Quantified Invariants via Syntax-Guided Synthesis 259
Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar,
and Aarti Gupta

Efficient Synthesis with Probabilistic Constraints . 278
Samuel Drews, Aws Albarghouthi, and Loris D’Antoni

Membership-Based Synthesis of Linear Hybrid Automata 297
Miriam García Soto, Thomas A. Henzinger, Christian Schilling,
and Luka Zeleznik

Overfitting in Synthesis: Theory and Practice . 315
Saswat Padhi, Todd Millstein, Aditya Nori, and Rahul Sharma

Proving Unrealizability for Syntax-Guided Synthesis 335
Qinheping Hu, Jason Breck, John Cyphert, Loris D’Antoni,
and Thomas Reps

Model Checking

BMC for Weak Memory Models: Relation Analysis for Compact
SMT Encodings . 355

Natalia Gavrilenko, Hernán Ponce-de-León, Florian Furbach,
Keijo Heljanko, and Roland Meyer

When Human Intuition Fails: Using Formal Methods to Find an Error
in the “Proof” of a Multi-agent Protocol . 366

Jennifer A. Davis, Laura R. Humphrey, and Derek B. Kingston

Extending NUXMV with Timed Transition Systems and Timed
Temporal Properties . 376

Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri,
and Stefano Tonetta

Cerberus-BMC: A Principled Reference Semantics and Exploration Tool
for Concurrent and Sequential C . 387

Stella Lau, Victor B. F. Gomes, Kayvan Memarian,
Jean Pichon-Pharabod, and Peter Sewell

xiv Contents – Part I

Cyber-Physical Systems and Machine Learning

Multi-armed Bandits for Boolean Connectives in Hybrid
System Falsification . 401

Zhenya Zhang, Ichiro Hasuo, and Paolo Arcaini

StreamLAB: Stream-based Monitoring of Cyber-Physical Systems 421
Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski,
Maximilian Schwenger, Marvin Stenger, Leander Tentrup,
and Hazem Torfah

VERIFAI: A Toolkit for the Formal Design and Analysis of Artificial
Intelligence-Based Systems. 432

Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim,
Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia

The Marabou Framework for Verification and Analysis of Deep
Neural Networks . 443

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian,
Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor,
Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,
and Clark Barrett

Probabilistic Systems, Runtime Techniques

Probabilistic Bisimulation for Parameterized Systems
(with Applications to Verifying Anonymous Protocols) 455

Chih-Duo Hong, Anthony W. Lin, Rupak Majumdar,
and Philipp Rümmer

Semi-quantitative Abstraction and Analysis of Chemical
Reaction Networks . 475

Milan Češka and Jan Křetínský

PAC Statistical Model Checking for Markov Decision Processes
and Stochastic Games . 497

Pranav Ashok, Jan Křetínský, and Maximilian Weininger

Symbolic Monitoring Against Specifications Parametric in Time and Data . . . 520
Masaki Waga, Étienne André, and Ichiro Hasuo

STAMINA: STochastic Approximate Model-Checker
for INfinite-State Analysis . 540

Thakur Neupane, Chris J. Myers, Curtis Madsen, Hao Zheng,
and Zhen Zhang

Contents – Part I xv

www.dbooks.org

https://www.dbooks.org/

Dynamical, Hybrid, and Reactive Systems

Local and Compositional Reasoning for Optimized Reactive Systems 553
Mitesh Jain and Panagiotis Manolios

Robust Controller Synthesis in Timed Büchi Automata:
A Symbolic Approach . 572

Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier,
and Ocan Sankur

Flexible Computational Pipelines for Robust Abstraction-Based
Control Synthesis . 591

Eric S. Kim, Murat Arcak, and Sanjit A. Seshia

Temporal Stream Logic: Synthesis Beyond the Bools 609
Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito

Run-Time Optimization for Learned Controllers Through
Quantitative Games . 630

Guy Avni, Roderick Bloem, Krishnendu Chatterjee,
Thomas A. Henzinger, Bettina Könighofer, and Stefan Pranger

Taming Delays in Dynamical Systems: Unbounded Verification of Delay
Differential Equations . 650

Shenghua Feng, Mingshuai Chen, Naijun Zhan, Martin Fränzle,
and Bai Xue

Author Index . 671

xvi Contents – Part I

Contents – Part II

Logics, Decision Procedures, and Solvers

Satisfiability Checking for Mission-Time LTL . 3
Jianwen Li, Moshe Y. Vardi, and Kristin Y. Rozier

High-Level Abstractions for Simplifying Extended String Constraints
in SMT . 23

Andrew Reynolds, Andres Nötzli, Clark Barrett, and Cesare Tinelli

Alternating Automata Modulo First Order Theories 43
Radu Iosif and Xiao Xu

Q3B: An Efficient BDD-based SMT Solver for Quantified Bit-Vectors 64
Martin Jonáš and Jan Strejček

CVC4SY: Smart and Fast Term Enumeration for Syntax-Guided Synthesis 74
Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett,
and Cesare Tinelli

Incremental Determinization for Quantifier Elimination
and Functional Synthesis . 84

Markus N. Rabe

Numerical Programs

Loop Summarization with Rational Vector Addition Systems 97
Jake Silverman and Zachary Kincaid

Invertibility Conditions for Floating-Point Formulas 116
Martin Brain, Aina Niemetz, Mathias Preiner, Andrew Reynolds,
Clark Barrett, and Cesare Tinelli

Numerically-Robust Inductive Proof Rules for Continuous Dynamical
Systems . 137

Sicun Gao, James Kapinski, Jyotirmoy Deshmukh, Nima Roohi,
Armando Solar-Lezama, Nikos Arechiga, and Soonho Kong

Icing: Supporting Fast-Math Style Optimizations in a Verified Compiler 155
Heiko Becker, Eva Darulova, Magnus O. Myreen, and Zachary Tatlock

Sound Approximation of Programs with Elementary Functions 174
Eva Darulova and Anastasia Volkova

www.dbooks.org

https://www.dbooks.org/

Verification

Formal Verification of Quantum Algorithms Using Quantum Hoare Logic . . . 187
Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu,
Yangjia Li, Mingsheng Ying, and Naijun Zhan

SECCSL: Security Concurrent Separation Logic. 208
Gidon Ernst and Toby Murray

Reachability Analysis for AWS-Based Networks. 231
John Backes, Sam Bayless, Byron Cook, Catherine Dodge,
Andrew Gacek, Alan J. Hu, Temesghen Kahsai, Bill Kocik,
Evgenii Kotelnikov, Jure Kukovec, Sean McLaughlin, Jason Reed,
Neha Rungta, John Sizemore, Mark Stalzer, Preethi Srinivasan,
Pavle Subotić, Carsten Varming, and Blake Whaley

Distributed Systems and Networks

Verification of Threshold-Based Distributed Algorithms by Decomposition
to Decidable Logics. 245

Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon,
and Sharon Shoham

Gradual Consistency Checking . 267
Rachid Zennou, Ahmed Bouajjani, Constantin Enea,
and Mohammed Erradi

Checking Robustness Against Snapshot Isolation . 286
Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea

Efficient Verification of Network Fault Tolerance
via Counterexample-Guided Refinement. 305

Nick Giannarakis, Ryan Beckett, Ratul Mahajan, and David Walker

On the Complexity of Checking Consistency for Replicated Data Types 324
Ranadeep Biswas, Michael Emmi, and Constantin Enea

Communication-Closed Asynchronous Protocols . 344
Andrei Damian, Cezara Drăgoi, Alexandru Militaru, and Josef Widder

Verification and Invariants

Interpolating Strong Induction. 367
Hari Govind Vediramana Krishnan, Yakir Vizel, Vijay Ganesh,
and Arie Gurfinkel

xviii Contents – Part II

Verifying Asynchronous Event-Driven Programs Using Partial Abstract
Transformers . 386

Peizun Liu, Thomas Wahl, and Akash Lal

Inferring Inductive Invariants from Phase Structures 405
Yotam M. Y. Feldman, James R. Wilcox, Sharon Shoham,
and Mooly Sagiv

Termination of Triangular Integer Loops is Decidable 426
Florian Frohn and Jürgen Giesl

AliveInLean: A Verified LLVM Peephole Optimization Verifier 445
Juneyoung Lee, Chung-Kil Hur, and Nuno P. Lopes

Concurrency

Automated Parameterized Verification of CRDTs . 459
Kartik Nagar and Suresh Jagannathan

What’s Wrong with On-the-Fly Partial Order Reduction. 478
Stephen F. Siegel

Integrating Formal Schedulability Analysis into a Verified OS Kernel 496
Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg,
and Zhong Shao

Rely-Guarantee Reasoning About Concurrent Memory Management
in Zephyr RTOS . 515

Yongwang Zhao and David Sanán

Violat: Generating Tests of Observational Refinement
for Concurrent Objects. 534

Michael Emmi and Constantin Enea

Author Index . 547

Contents – Part II xix

www.dbooks.org

https://www.dbooks.org/

Automata and Timed Systems

Symbolic Register Automata

Loris D’Antoni1, Tiago Ferreira2, Matteo Sammartino2(B),
and Alexandra Silva2

1 University of Wisconsin–Madison, Madison, WI 53706-1685, USA
loris@cs.wisc.edu

2 University College London, Gower Street, London WC1E 6BT, UK
me@tiferrei.com, {m.sammartino,a.silva}@ucl.ac.uk

Abstract. Symbolic Finite Automata and Register Automata are two
orthogonal extensions of finite automata motivated by real-world prob-
lems where data may have unbounded domains. These automata address
a demand for a model over large or infinite alphabets, respectively. Both
automata models have interesting applications and have been success-
ful in their own right. In this paper, we introduce Symbolic Register
Automata, a new model that combines features from both symbolic and
register automata, with a view on applications that were previously out
of reach. We study their properties and provide algorithms for emptiness,
inclusion and equivalence checking, together with experimental results.

1 Introduction

Finite automata are a ubiquitous formalism that is simple enough to model
many real-life systems and phenomena. They enjoy a large variety of theoret-
ical properties that in turn play a role in practical applications. For example,
finite automata are closed under Boolean operations, and have decidable empti-
ness and equivalence checking procedures. Unfortunately, finite automata have
a fundamental limitation: they can only operate over finite (and typically small)
alphabets. Two orthogonal families of automata models have been proposed to
overcome this: symbolic automata and register automata. In this paper, we show
that these two models can be combined yielding a new powerful model that can
cover interesting applications previously out of reach for existing models.

Symbolic finite automata (SFAs) allow transitions to carry predicates over
rich first-order alphabet theories, such as linear arithmetic, and therefore extend
classic automata to operate over infinite alphabets [12]. For example, an SFA can
define the language of all lists of integers in which the first and last elements are
positive integer numbers. Despite their increased expressiveness, SFAs enjoy the
same closure and decidability properties of finite automata—e.g., closure under
Boolean operations and decidable equivalence and emptiness.

This work was partially funded by NSF Grants CCF-1763871, CCF-1750965, a Face-
book TAV Research Award, the ERC starting grant Profoundnet (679127) and a Lev-
erhulme Prize (PLP-2016-129). See [10] for the full version of this paper.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-25540-4_1

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_1
https://www.dbooks.org/

4 L. D’Antoni et al.

Register automata (RA) support infinite alphabets by allowing input charac-
ters to be stored in registers during the computation and to be compared against
existing values that are already stored in the registers [17]. For example, an RA
can define the language of all lists of integers in which all numbers appearing in
even positions are the same. RAs do not have some of the properties of finite
automata (e.g., they cannot be determinized), but they still enjoy many useful
properties that have made them a popular model in static analysis, software
verification, and program monitoring [15].

In this paper, we combine the best features of these two models—first order
alphabet theories and registers—into a new model, symbolic register automata
(SRA). SRAs are strictly more expressive than SFAs and RAs. For example,
an SRA can define the language of all lists of integers in which the first and
last elements are positive rational numbers and all numbers appearing in even
positions are the same. This language is not recognizable by either an SFA nor
by an RA.

While other attempts at combining symbolic automata and registers have
resulted in undecidable models with limited closure properties [11], we show
that SRAs enjoy the same closure and decidability properties of (non-symbolic)
register automata. We propose a new application enabled by SRAs and imple-
ment our model in an open-source automata library.

In summary, our contributions are:

– Symbolic Register Automata (SRA): a new automaton model that can handle
complex alphabet theories while allowing symbols at arbitrary positions in the
input string to be compared using equality (Sect. 3).

– A thorough study of the properties of SRAs. We show that SRAs are closed
under intersection, union and (deterministic) complementation, and provide
algorithms for emptiness and forward (bi)simulation (Sect. 4).

– A study of the effectiveness of our SRA implementation on handling regular
expressions with back-references (Sect. 5). We compile a set of benchmarks
from existing regular expressions with back-references (e.g., (\d)[a-z]∗\1)
and show that SRAs are an effective model for such expressions and existing
models such as SFAs and RAs are not. Moreover, we show that SRAs are more
efficient than the java.util.regex library for matching regular expressions
with back-references.

2 Motivating Example

In this section, we illustrate the capabilities of symbolic register automata using
a simple example. Consider the regular expression rp shown in Fig. 1a. This
expression, given a sequence of product descriptions, checks whether the prod-
ucts have the same code and lot number. The reader might not be familiar with
some of the unusual syntax of this expression. In particular, rp uses two back-
references \1 and \2. The semantics of this construct is that the string matched
by the regular expression for \1 (resp. \2) should be exactly the string that
matched the subregular expression r appearing between the first (resp. second)

Symbolic Register Automata 5

C:(.{3}) L:(.) D:[^\s]+(C:\1 L:\2 D:[^\s]+)+
(a) Regular expression rp (with back-reference).

C:X4a L:4 D:bottle C:X4a L:4 D:jar

(b) Example text matched by rp.
C:X4a L:4 D:bottle C:X5a L:4 D:jar

(c) Example text not matched by rp.

C
1

: true/ r1 ‘ ’

D ^\s

true/ r2 true/ r3 L : true/ r4

2
: true/=r1 ‘ ’true/=r2 true/=r3 L : true/=r4 ‘ ’

 ^\s

^\s

 ^\s

:

D‘ ’ :

C

‘ ’

‘ ’

(d) Snippets of a symbolic register automaton Ap corresponding to rp.

Fig. 1. Regular expression for matching products with same code and lot number—i.e.,
the characters of C and L are the same in all the products.

two parenthesis, in this case (.{3}) (resp. (.)). Back-references allow regular
expressions to check whether the encountered text is the same or is different
from a string/character that appeared earlier in the input (see Figs. 1b and c for
examples of positive and negative matches).

Representing this complex regular expression using an automaton model
requires addressing several challenges. The expression rp:

1. operates over large input alphabets consisting of upwards of 216 characters;
2. uses complex character classes (e.g., \s) to describe different sets of characters

in the input;
3. adopts back-references to detect repeated strings in the input.

Existing automata models do not address one or more of these challenges. Finite
automata require one transition for each character in the input alphabet and
blow-up when representing large alphabets. Symbolic finite automata (SFA)
allow transitions to carry predicates over rich structured first-order alphabet
theories and can describe, for example, character classes [12]. However, SFAs
cannot directly check whether a character or a string is repeated in the input.
An SFA for describing the regular expression rp would have to store the charac-
ters after C: directly in the states to later check whether they match the ones of
the second product. Hence, the smallest SFA for this example would require bil-
lions of states! Register automata (RA) and their variants can store characters in
registers during the computation and compare characters against values already
stored in the registers [17]. Hence, RAs can check whether the two products have
the same code. However, RAs only operate over unstructured infinite alphabets
and cannot check, for example, that a character belongs to a given class.

The model we propose in this paper, symbolic register automata (SRA), com-
bines the best features of SFAs and RAs—first-order alphabet theories and
registers—and can address all the three aforementioned challenges. Figure 1d
shows a snippet of a symbolic register automaton Ap corresponding to rp. Each
transition in Ap is labeled with a predicate that describes what characters can

www.dbooks.org

https://www.dbooks.org/

6 L. D’Antoni et al.

trigger the transition. For example, ^\s denotes that the transition can be trig-
gered by any non-space character, L denotes that the transition can be triggered
by the character L, and true denotes that the transition can be triggered by any
character. Transitions of the form ϕ/→ ri denote that, if a character x satisfies
the predicate ϕ, the character is then stored in the register ri. For example, the
transition out of state 1 reads any character and stores it in register r1. Finally,
transitions of the form ϕ/= ri are triggered if a character x satisfies the pred-
icate ϕ and x is the same character as the one stored in ri. For example, the
transition out of state 2 can only be triggered by the same character that was
stored in r1 when reading the transition out state 1—i.e., the first characters in
the product codes should be the same.

SRAs are a natural model for describing regular expressions like rp, where
capture groups are of bounded length, and hence correspond to finitely-many
registers. The SRA Ap has fewer than 50 states (vs. more than 100 billion for
SFAs) and can, for example, be used to check whether an input string matches
the given regular expression (e.g., monitoring). More interestingly, in this paper
we study the closure and decidability properties of SRAs and provide an imple-
mentation for our model. For example, consider the following regular expression
rpC that only checks whether the product codes are the same, but not the lot
numbers:

C:(.{3}) L:. D:[^\s]+(C:\1 L:. D:[^\s]+)+

The set of strings accepted by rpC is a superset of the set of strings accepted by
rp. In this paper, we present simulation and bisimulation algorithms that can
check this property. Our implementation can show that rp subsumes rpC in 25 s
and we could not find other tools that can prove the same property.

3 Symbolic Register Automata

In this section we introduce some preliminary notions, we define symbolic register
automata and a variant that will be useful in proving decidability properties.

Preliminaries. An effective Boolean algebra A is a tuple (D, Ψ, � �,⊥,
�,∧,∨,¬), where: D is a set of domain elements; Ψ is a set of predicates
closed under the Boolean connectives and ⊥,� ∈ Ψ . The denotation func-
tion � � : Ψ → 2D is such that �⊥� = ∅ and ��� = D, for all ϕ,ψ ∈ Ψ ,
�ϕ ∨ ψ� = �ϕ� ∪ �ψ�, �ϕ ∧ ψ� = �ϕ� ∩ �ψ�, and �¬ϕ� = D \ �ϕ�. For ϕ ∈ Ψ ,
we write isSat(ϕ) whenever �ϕ� �= ∅ and say that ϕ is satisfiable. A is decidable
if isSat is decidable. For each a ∈ D, we assume predicates atom(a) such that
�atom(a)� = {a}.

Example 1. The theory of linear integer arithmetic forms an effective BA, where
D = Z and Ψ contains formulas ϕ(x) in the theory with one fixed integer variable.
For example, divk := (x mod k) = 0 denotes the set of all integers divisible by k.

Symbolic Register Automata 7

Notation. Given a set S, we write P(S) for its powerset. Given a function
f : A → B, we write f [a �→ b] for the function such that f [a �→ b](a) = b
and f [a �→ b](x) = f(x), for x �= a. Analogously, we write f [S �→ b], with
S ⊆ A, to map multiple values to the same b. The pre-image of f is the function
f−1 : P(B) → P(A) given by f−1(S) = {a | ∃b ∈ S : b = f(a)}; for readability,
we will write f−1(x) when S = {x}. Given a relation R ⊆ A × B, we write aRb
for (a, b) ∈ R.

Model Definition. Symbolic register automata have transitions of the form:

p
ϕ/E,I,U−−−−−→ q

where p and q are states, ϕ is a predicate from a fixed effective Boolean algebra,
and E, I, U are subsets of a fixed finite set of registers R. The intended inter-
pretation of the above transition is: an input character a can be read in state
q if (i) a ∈ �ϕ�, (ii) the content of all the registers in E is equal to a, and (iii)
the content of all the registers in I is different from a. If the transition succeeds
then a is stored into all the registers U and the automaton moves to q.

Example 2. The transition labels in Fig. 1d have been conveniently simplified to
ease intuition. These labels correspond to full SRA labels as follows:

ϕ/→r =⇒ ϕ/∅, ∅, {r} ϕ/=r =⇒ ϕ/{r}, ∅, ∅ ϕ =⇒ ϕ/∅, ∅, ∅ .

Given a set of registers R, the transitions of an SRA have labels over the following
set: LR = Ψ × {(E, I, U) ∈ P(R) × P(R) × P(R) | E ∩ I = ∅}. The condition
E ∩ I = ∅ guarantees that register constraints are always satisfiable.

Definition 1 (Symbolic Register Automaton). A symbolic register
automaton (SRA) is a 6-tuple (R,Q, q0, v0, F,Δ), where R is a finite set of reg-
isters, Q is a finite set of states, q0 ∈ Q is the initial state, v0 : R → D ∪ {�} is
the initial register assignment (if v0(r) = �, the register r is considered empty),
F ⊆ Q is a finite set of final states, and Δ ⊆ Q × LR × Q is the transition

relation. Transitions (p, (ϕ, �), q) ∈ Δ will be written as p
ϕ/�−−→ q.

An SRA can be seen as a finite description of a (possibly infinite) labeled tran-
sition system (LTS), where states have been assigned concrete register values,
and transitions read a single symbol from the potentially infinite alphabet. This
so-called configuration LTS will be used in defining the semantics of SRAs.

Definition 2 (Configuration LTS). Given an SRA S, the configuration LTS
CLTS(S) is defined as follows. A configuration is a pair (p, v) where p ∈ Q is
a state in S and a v : R → D ∪ {�} is register assignment; (q0, v0) is called the
initial configuration; every (q, v) such that q ∈ F is a final configuration. The
set of transitions between configurations is defined as follows:

p
ϕ/E,I,U−−−−−→ q ∈ Δ E ⊆ v−1(a) I ∩ v−1(a) = ∅

(p, v) a−→ (q, v[U �→ a]) ∈ CLTS(S)

www.dbooks.org

https://www.dbooks.org/

8 L. D’Antoni et al.

Intuitively, the rule says that a SRA transition from p can be instantiated to
one from (p, v) that reads a when the registers containing the value a, namely
v−1(a), satisfy the constraint described by E, I (a is contained in registers E
but not in I). If the constraint is satisfied, all registers in U are assigned a.

A run of the SRA S is a sequence of transitions in CLTS(S) starting from the
initial configuration. A configuration is reachable whenever there is a run ending
up in that configuration. The language of an SRA S is defined as

L (S) := {a1 . . . an ∈ Dn | ∃(q0, v0)
a1−→ . . .

an−−→ (qn, vn) ∈ CLTS(S), qn ∈ F}
An SRA S is deterministic if its configuration LTS is; namely, for every word
w ∈ D� there is at most one run in CLTS(S) spelling w. Determinism is important
for some application contexts, e.g., for runtime monitoring. Since SRAs subsume
RAs, nondeterministic SRAs are strictly more expressive than deterministic ones,
and language equivalence is undecidable for nondeterministic SRAs [27].

We now introduce the notions of simulation and bisimulation for SRAs, which
capture whether one SRA behaves “at least as” or “exactly as” another one.

Definition 3 ((Bi)simulation for SRAs). A simulation R on SRAs S1 and
S2 is a binary relation R on configurations such that (p1, v1)R(p2, v2) implies:

– if p1 ∈ F1 then p2 ∈ F2;
– for each transition (p1, v1)

a−→ (q1, w1) in CLTS(S1), there exists a transition
(p2, v2)

a−→ (q2, w2) in CLTS(S2) such that (q1, w1)R(q2, w2).

A simulation R is a bisimulation if R−1 is a also a simulation. We write S1 ≺ S2

(resp. S1 ∼ S2) whenever there is a simulation (resp. bisimulation) R such that
(q01, v01)R(q02, v02), where (q0i, v0i) is the initial configuration of Si, for i = 1, 2.

We say that an SRA is complete whenever for every configuration (p, v) and
a ∈ D there is a transition (p, v) a−→ (q, w) in CLTS(S). The following results
connect similarity and language inclusion.

Proposition 1. If S1 ≺ S2 then L (S1) ⊆ L (S2). If S1 and S2 are deterministic
and complete, then the other direction also holds.

It is worth noting that given a deterministic SRA we can define its completion
by adding transitions so that every value a ∈ D can be read from any state.

Remark 1. RAs and SFAs can be encoded as SRAs on the same state-space:

– An RA is encoded as an SRA with all transition guards �;
– an SFA can be encoded as an SRA with R = ∅, with each SFA transition

p
ϕ−→ q encoded as p

ϕ/∅,∅,∅−−−−−→ q. Note that the absence of registers implies that
the CLTS always has finitely many configurations.

SRAs are strictly more expressive than both RAs and SFAs. For instance, the
language {n0n1 . . . nk | n0 = nk, even(ni), ni ∈ Z, i = 1, . . . , k} of finite sequences
of even integers where the first and last one coincide, can be recognized by an
SRA, but not by an RA or by an SFA.

Symbolic Register Automata 9

Boolean Closure Properties. SRAs are closed under intersection and union.
Intersection is given by a standard product construction whereas union is
obtained by adding a new initial state that mimics the initial states of both
automata.

Proposition 2 (Closure under intersection and union). Given SRAs S1

and S2, there are SRAs S1∩S2 and S1∪S2 such that L (S1∩S2) = L (S1)∩L (S2)
and L (S1 ∪ S2) = L (S1) ∪ L (S2).

SRAs in general are not closed under complementation, because RAs are not.
However, we still have closure under complementation for a subclass of SRAs.

Proposition 3. Let S be a complete and deterministic SRA, and let S be the
SRA defined as S, except that its final states are Q\F . Then L (S) = D� \L (S).

4 Decidability Properties

In this section we will provide algorithms for checking determinism and emptiness
for an SRA, and (bi)similarity of two SRAs. Our algorithms leverage symbolic
techniques that use the finite syntax of SRAs to indirectly operate over the
underlying configuration LTS, which can be infinite.

Single-Valued Variant. To study decidability, it is convenient to restrict reg-
ister assignments to injective ones on non-empty registers, that is functions
v : R → D ∪ {�} such that v(r) = v(s) and v(r) �= � implies r = s. This is
also the approach taken for RAs in the seminal papers [17,27]. Both for RAs
and SRAs, this restriction does not affect expressivity. We say that an SRA is
single-valued if its initial assignment v0 is injective on non-empty registers. For
single-valued SRAs, we only allow two kinds of transitions:

Read transition: p
ϕ/r=

−−−→ q triggers when a ∈ �ϕ� and a is already stored in r.

Fresh transition: p
ϕ/r•
−−−→ q triggers when the input a ∈ �ϕ� and a is fresh, i.e.,

is not stored in any register. After the transition, a is stored into r.

SRAs and their single-valued variants have the same expressive power. Trans-
lating single-valued SRAs to ordinary ones is straightforward:

p
ϕ/r=

−−−→ q =⇒ p
ϕ/{r},∅,∅−−−−−−→ q p

ϕ/r•
−−−→ q =⇒ p

ϕ/∅,R,{r}−−−−−−→ q

The opposite translation requires a state-space blow up, because we need to
encode register equalities in the states.

Theorem 1. Given an SRA S with n states and r registers, there is a single-
valued SRA S′ with O(nrr) states and r+1 registers such that S ∼ S′. Moreover,
the translation preserves determinism.

www.dbooks.org

https://www.dbooks.org/

10 L. D’Antoni et al.

Normalization. While our techniques are inspired by analogous ones for non-
symbolic RAs, SRAs present an additional challenge: they can have arbitrary
predicates on transitions. Hence, the values that each transition can read, and
thus which configurations it can reach, depend on the history of past transitions
and their predicates. This problem emerges when checking reachability and sim-
ilarity, because a transition may be disabled by particular register values, and so
lead to unsound conclusions, a problem that does not exist in register automata.

Example 3. Consider the SRA below, defined over the BA of integers.

All predicates on transitions are satisfiable, yet L (S) = ∅. To go from 0 to 1, S

must read a value n such that div3(n) and n �= 0 and then n is stored into r. The
transition from 1 to 2 can only happen if the content of r also satisfies div5(n) and
n ∈ [0, 10]. However, there is no n satisfying div3(n)∧n �= 0∧div5(n)∧n ∈ [0, 10],
hence the transition from 1 to 2 never happens.

To handle the complexity caused by predicates, we introduce a way of normaliz-
ing an SRA to an equivalent one that stores additional information about input
predicates. We first introduce some notation and terminology.

A register abstraction θ for S, used to “keep track” of the domain of regis-
ters, is a family of predicates indexed by the registers R of S. Given a register
assignment v, we write v |= θ whenever v(r) ∈ �θr� for v(r) �= �, and θr = ⊥
otherwise. Hereafter we shall only consider “meaningful” register abstractions,
for which there is at least one assignment v such that v |= θ.

With the contextual information about register domains given by θ, we say

that a transition p
ϕ/�−−→ q ∈ Δ is enabled by θ whenever it has at least an instance

(p, v) a−→ (q, w) in CLTS(S), for all v |= θ. Enabled transitions are important when
reasoning about reachability and similarity.

Checking whether a transition has at least one realizable instance in the CLTS
is difficult in practice, especially when � = r•, because it amounts to checking
whether �ϕ� \ img(v) �= ∅, for all injective v |= θ.

To make the check for enabledness practical we will use minterms. For a set
of predicates Φ, a minterm is a minimal satisfiable Boolean combination of all
predicates that occur in Φ. Minterms are the analogue of atoms in a complete
atomic Boolean algebra. E.g. the set of predicates Φ = {x > 2, x < 5} over the
theory of linear integer arithmetic has minterms mint(Φ) = {x > 2∧x < 5, ¬x >
2 ∧ x < 5, x > 2 ∧ ¬x < 5}. Given ψ ∈ mint(Φ) and ϕ ∈ Φ, we will write ϕ � ψ
whenever ϕ appears non-negated in ψ, for instance (x > 2) � (x > 2 ∧ ¬x < 5).
A crucial property of minterms is that they do not overlap, i.e., isSat(ψ1 ∧ ψ2)
if and only if ψ1 = ψ2, for ψ1 and ψ2 minterms.

Lemma 1 (Enabledness). Let θ be a register abstraction such that θr is a

minterm, for all r ∈ R. If ϕ is a minterm, then p
ϕ/�−−→ q is enabled by θ iff:

Symbolic Register Automata 11

(1) if � = r=, then ϕ = θr; (2) if � = r•, then |�ϕ�| > E (θ, ϕ),
where E (θ, ϕ) = |{r ∈ R | θr = ϕ}| is the # of registers with values from �ϕ�.

Intuitively, (1) says that if the transition reads a symbol stored in r satisfying ϕ,
the symbol must also satisfy θr, the range of r. Because ϕ and θr are minterms,
this only happens when ϕ = θr. (2) says that the enabling condition �ϕ� \
img(v) �= ∅, for all injective v |= θ, holds if and only if there are fewer registers
storing values from ϕ than the cardinality of ϕ. That implies we can always
find a fresh element in �ϕ� to enable the transition. Registers holding values
from ϕ are exactly those r ∈ R such that θr = ϕ. Both conditions can be
effectively checked: the first one is a simple predicate-equivalence check, while the
second one amounts to checking whether ϕ holds for at least a certain number
k of distinct elements. This can be achieved by checking satisfiability of ϕ ∧
¬atom(a1) ∧ · · · ∧ ¬atom(ak−1), for a1, . . . , ak−1 distinct elements of �ϕ�.

Remark 2. Using single-valued SRAs to check enabledness might seem like a
restriction. However, if one would start from a generic SRA, the process to
check enabledness would contain an extra step: for each state p, we would have
to keep track of all possible equations among registers. In fact, register equalities
determine whether (i) register constraints of an outgoing transition are satisfi-
able; (ii) how many elements of the guard we need for the transition to happen,
analogously to condition 2 of Lemma 1. Generating such equations is the key
idea behind Theorem 1, and corresponds precisely to turning the SRA into a
single-valued one.

Given any SRA, we can use the notion of register abstraction to build an equiva-
lent normalized SRA, where (i) states keep track of how the domains of registers
change along transitions, (ii) transitions are obtained by breaking the one of the
original SRA into minterms and discarding the ones that are disabled according
to Lemma 1. In the following we write mint(S) for the minterms for the set of

predicates {ϕ | p
ϕ/�−−→ q ∈ Δ} ∪ {atom(v0(r)) | v0(r) ∈ D, r ∈ R}. Observe that

an atomic predicate always has an equivalent minterm, hence we will use atomic
predicates to define the initial register abstraction.

Definition 4 (Normalized SRA). Given an SRA S, its normalization N(S)
is the SRA (R,N(Q),N(q0), v0,N(F),N(Δ)) where:

– N(Q) = {θ | θ is a register abstraction over mint(S)∪{⊥} }×Q; we will write
θ � q for (θ, q) ∈ N(Q).

– N(q0) = θ0 � q0, where (θ0)r = atom(v0(r)) if v0(r) ∈ D, and (θ0)r = ⊥ if
v0(r) = �;

– N(F) = {θ � p ∈ N(Q) | p ∈ F}
– N(Δ) ={θ � p

θr/r=

−−−−→ θ � q | p
ϕ/r=

−−−→ q ∈ Δ,ϕ � θr} ∪
{θ � p

ψ/r•
−−−→ θ[r �→ ψ] � q | p

ϕ/r•
−−−→ q ∈ Δ,ϕ � ψ, |�ψ�| > E (θ, ψ)}

www.dbooks.org

https://www.dbooks.org/

12 L. D’Antoni et al.

The automaton N(S) enjoys the desired property: each transition from θ � p is
enabled by θ, by construction. N(S) is always finite. In fact, suppose S has n
states, m transitions and r registers. Then N(S) has at most m predicates, and
|mint(S)| is O(2m). Since the possible register abstractions are O(r2m), N(S) has
O(nr2m) states and O(mr223m) transitions.

Example 4. We now show the normalized version of Example 3. The first step is
computing the set mint(S) of minterms for S, i.e., the satisfiable Boolean combi-
nations of {atom(0), div3, [0, 10] ∧ div5, < 0∨ > 10}. For simplicity, we represent
minterms as bitvectors where a 0 component means that the corresponding pred-
icate is negated, e.g., [1, 1, 1, 0] stands for the minterm atom(0)∧ ([0, 10]∧div3)∧
div5 ∧ ¬(< 0∨ > 10). Minterms and the resulting SRA N(S) are shown below.

On each transition we show how it is broken down to minterms, and for each
state we show the register abstraction (note that state 1 becomes two states in
N(S)). The transition from 1 to 2 is not part of N(S) – this is why it is dotted. In
fact, in every register abstraction [r �→ m] reachable at state 1, the component
for the transition guard [0, 10]∧div5 in the minterm m (3rd component) is 0, i.e.,
([0, 10] ∧ div5) �� m. Intuitively, this means that r will never be assigned a value
that satisfies [0, 10]∧div5. As a consequence, the construction of Definition 4 will
not add a transition from 1 to 2.

Finally, we show that the normalized SRA behaves exactly as the original one.

Proposition 4. (p, v) ∼ (θ � p, v), for all p ∈ Q and v |= θ. Hence, S ∼ N(S).

Emptiness and Determinism. The transitions of N(S) are always enabled
by construction, therefore every path in N(S) always corresponds to a run in
CLTS(N(S)).

Lemma 2. The state θ�p is reachable in N(S) if and only if there is a reachable
configuration (θ � p, v) in CLTS(N(S)) such that v |= θ. Moreover, if (θ � p, v)
is reachable, then all configurations (θ � p,w) such that w |= θ are reachable.

Therefore, using Proposition 4, we can reduce the reachability and emptiness
problems of S to that of N(S).

Theorem 2 (Emptiness). There is an algorithm to decide reachability of any
configuration of S, hence whether L (S) = ∅.
Proof. Let (p, v) be a configuration of S. To decide whether it is reachable in
CLTS(S), we can perform a visit of N(S) from its initial state, stopping when a

Symbolic Register Automata 13

state θ � p such that v |= θ is reached. If we are just looking for a final state, we
can stop at any state such that p ∈ F . In fact, by Proposition 4, there is a run
in CLTS(S) ending in (p, v) if and only if there is a run in CLTS(N(S)) ending in
(θ � p, v) such that v |= θ. By Lemma 2, the latter holds if and only if there is a
path in N(S) ending in θ � p. This algorithm has the complexity of a standard
visit of N(S), namely O(nr2m + mr223m). ��

Now that we characterized which transitions are reachable, we define what it
means for a normalized SRA to be deterministic and we show that determinism
is preserved by the translation from SRA.

Proposition 5 (Determinism). N(S) is deterministic if and only if for all

reachable transitions p
ϕ1/�1−−−−→ q1, p

ϕ2/�2−−−−→ q2 ∈ N(Δ) the following holds: ϕ1 �= ϕ2

whenever either (1) �1 = �2 and q1 �= q2, or; (2) �1 = r•, �2 = s•, and r �= s;

One can check determinism of an SRA by looking at its normalized version.

Proposition 6. S is deterministic if and only if N(S) is deterministic.

Similarity and Bisimilarity. We now introduce a symbolic technique to
decide similarity and bisimilarity of SRAs. The basic idea is similar to sym-
bolic (bi)simulation [20,27] for RAs. Recall that RAs are SRAs whose transition
guards are all �. Given two RAs S1 and S2 a symbolic simulation between them
is defined over their state spaces Q1 and Q2, not on their configurations. For this
to work, one needs to add an extra piece of information about how registers of
the two states are related. More precisely, a symbolic simulation is a relation on
triples (p1, p2, σ), where p1 ∈ Q1, p2 ∈ Q2 and σ ⊆ R1 × R2 is a partial injective
function. This function encodes constraints between registers: (r, s) ∈ σ is an
equality constraint between r ∈ R1 and s ∈ R2, and (r, s) /∈ σ is an inequality
constraint. Intuitively, (p1, p2, σ) says that all configurations (p1, v1) and (p2, v2)
such that v1 and v2 satisfy σ – e.g., v1(r) = v2(s) whenever (r, s) ∈ σ – are in
the simulation relation (p1, v1) ≺ (p2, v2). In the following we will use v1 �� v2 to
denote the function encoding constraints among v1 and v2, explicitly: σ(r) = s
if and only if v1(r) = v2(s) and v1(r) �= �.

Definition 5 (Symbolic (bi)similarity [27]). A symbolic simulation is a rela-
tion R ⊆ Q1 ×Q1 ×P(R1 ×R2) such that if (p1, p2, σ) ∈ R, then p1 ∈ F1 implies
p2 ∈ F2, and if p1

�−→ q1 ∈ Δ1
1 then:

1. if � = r=:

(a) if r ∈ dom(σ), then there is p2
σ(r)=−−−−→ q2 ∈ Δ2 such that (q1, q2, σ) ∈ R.

(b) if r /∈ dom(σ) then there is p2
s•
−→ q2 ∈ Δ2 s.t. (q1, q2, σ[r �→ s]) ∈ R.

1 We will keep the � guard implicit for succinctness.

www.dbooks.org

https://www.dbooks.org/

14 L. D’Antoni et al.

2 if � = r•:
(a) for all s ∈ R2 \ img(σ), there is p2

s=

−−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→
s]) ∈ R, and;

(b) there is p2
s•
−→ q2 ∈ Δ2 such that (q1, q2, σ[r �→ s]) ∈ R.

Here σ[r �→ s] stands for σ \ (σ−1(s), s) ∪ (r, s), which ensures that σ stays
injective when updated.

Given a symbolic simulation R, its inverse is defined as R−1 = {t−1 | t ∈ R},
where (p1, p2, σ)−1 = (p2, p1, σ

−1). A symbolic bisimulation R is a relation such
that both R and R−1 are symbolic simulations.

Case 1 deals with cases when p1 can perform a transition that reads the register
r. If r ∈ dom(σ), meaning that r and σ(r) ∈ R2 contain the same value, then p2

must be able to read σ(r) as well. If r /∈ dom(σ), then the content of r is fresh
w.r.t. p2, so p2 must be able to read any fresh value—in particular the content
of r. Case 2 deals with the cases when p1 reads a fresh value. It ensures that p2

is able to read all possible values that are fresh for p1, be them already in some
register s – i.e., s ∈ R2 \ img(σ), case 2(a) – or fresh for p2 as well – case 2(b). In
all these cases, σ must be updated to reflect the new equalities among registers.

Keeping track of equalities among registers is enough for RAs, because the
actual content of registers does not determine the capability of a transition to
fire (RA transitions have implicit � guards). As seen in Example 3, this is no
longer the case for SRAs: a transition may or may not happen depending on the
register assignment being compatible with the transition guard.

As in the case of reachability, normalized SRAs provide the solution to this
problem. We will reduce the problem of checking (bi)similarity of S1 and S2 to
that of checking symbolic (bi)similarity on N(S1) and N(S2), with minor modifi-
cations to the definition. To do this, we need to assume that minterms for both
N(S1) and N(S2) are computed over the union of predicates of S1 and S2.

Definition 6 (N-simulation). A N-simulation on S1 and S2 is a relation R ⊆
N(Q1) × N(Q2) × P(R1 × R2), defined as in Definition 5, with the following
modifications:

(i) we require that θ1�p1
ϕ1/�1−−−−→ θ′

1�q1 ∈ N(Δ1) must be matched by transitions

θ2 � p2
ϕ2/�2−−−−→ θ′

2 � q2 ∈ N(Δ2) such that ϕ2 = ϕ1.
(ii) we modify case 2 as follows (changes are underlined):

2(a)’ for all s ∈ R2 \ img(σ) such that ϕ1 = (θ2)s, there is θ2 � p2
ϕ1/s=

−−−−→
θ′
2 � q2 ∈ N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R, and;

2(b)’ if E (θ1, ϕ1) + E (θ2, ϕ1) < |�ϕ1�|, then there is θ2 � p2
ϕ1/s•
−−−−→ θ′

2 � q2 ∈
N(Δ2) such that (θ′

1 � q1, θ
′
2 � q2, σ[r �→ s]) ∈ R.

A N-bisimulation R is a relation such that both R and R−1 are N-simulations.
We write S1

N≺ S2 (resp. S1
N∼ S2) if there is a N-simulation (resp. bisimulation)

R such that (N(q01),N(q02), v01 �� v02) ∈ R.

Symbolic Register Automata 15

The intuition behind this definition is as follows. Recall that, in a normalized
SRA, transitions are defined over minterms, which cannot be further broken
down, and are mutually disjoint. Therefore two transitions can read the same
values if and only if they have the same minterm guard. Thus condition (i) makes
sure that matching transitions can read exactly the same set of values. Analo-
gously, condition (ii) restricts how a fresh transition of N(S1) must be matched
by one of N(S2): 2(a)’ only considers transitions of N(S2) reading registers s ∈ R2

such that ϕ1 = (θ2)s because, by definition of normalized SRA, θ2 � p2 has no
such transition if this condition is not met. Condition 2(b)’ amounts to requiring
a fresh transition of N(S2) that is enabled by both θ1 and θ2 (see Lemma 1), i.e.,
that can read a symbol that is fresh w.r.t. both N(S1) and N(S2).

N-simulation is sound and complete for standard simulation.

Theorem 3. S1 ≺ S2 if and only if S1

N≺ S2.

As a consequence, we can decide similarity of SRAs via their normalized versions.
N-simulation is a relation over a finite set, namely N(Q1)×N(Q2)×P(R1 ×R2),
therefore N-similarity can always be decided in finite time. We can leverage
this result to provide algorithms for checking language inclusion/equivalence for
deterministic SRAs (recall that they are undecidable for non-deterministic ones).

Theorem 4. Given two deterministic SRAs S1 and S2, there are algorithms to
decide L (S1) ⊆ L (S2) and L (S1) = L (S2).

Proof. By Proposition 1 and Theorem 3, we can decide L (S1) ⊆ L (S2) by

checking S1

N≺ S2. This can be done algorithmically by iteratively building a
relation R on triples that is an N-simulation on N(S1) and N(S2). The algorithm
initializes R with (N(q01),N(q02), v01 �� v02), as this is required to be in R

by Definition 6. Each iteration considers a candidate triple t and checks the
conditions for N-simulation. If satisfied, it adds t to R and computes the next
set of candidate triples, i.e., those which are required to belong to the simulation
relation, and adds them to the list of triples still to be processed. If not, the
algorithm returns L (S1) �⊆ L (S2). The algorithm terminates returning L (S1) ⊆
L (S2) when no triples are left to process. Determinism of S1 and S2, and hence
of N(S1) and N(S2) (by Proposition 6), ensures that computing candidate triples
is deterministic. To decide L (S1) = L (S2), at each iteration we need to check
that both t and t−1 satisfy the conditions for N-simulation.

If S1 and S2 have, respectively, n1, n2 states, m1,m2 transitions, and r1, r2

registers, the normalized versions have O(n1r12m1) and O(n2r22m2) states. Each
triple, taken from the finite set N(Q1)×N(Q2)×P(R1×R2), is processed exactly
once, so the algorithm iterates O(n1n2r1r22m1+m2+r1r2) times. ��

5 Evaluation

We have implemented SRAs in the open-source Java library SVPALib [26]. In
our implementation, constructions are computed lazily when possible (e.g., the

www.dbooks.org

https://www.dbooks.org/

16 L. D’Antoni et al.

normalized SRA for emptiness and (bi)similarity checks). All experiments were
performed on a machine with 3.5 GHz Intel Core i7 CPU with 16 GB of RAM
(JVM 8 GB), with a timeout value of 300 s. The goal of our evaluation is to
answer the following research questions:

Q1: Are SRAs more succinct than existing models when processing strings over
large but finite alphabets? (Sect. 5.1)

Q2: What is the performance of membership for deterministic SRAs and how
does it compare to the matching algorithm in java.util.regex? (Sect. 5.2)

Q3: Are SRA decision procedures practical? (Sect. 5.3)

Benchmarks. We focus on regular expressions with back-references, therefore
all our benchmarks operate over the Boolean algebra of Unicode characters with
interval—i.e., the set of characters is the set of all 216 UTF-16 characters and
the predicates are union of intervals (e.g., [a-zA-Z]).2 Our benchmark set con-
tains 19 SRAs that represent variants of regular expressions with back-references
obtained from the regular-expression crowd-sourcing website RegExLib [23]. The
expressions check whether inputs have, for example, matching first/last name ini-
tials or both (Name-F, Name-L and Name), correct Product Codes/Lot number
of total length n (Pr-Cn, Pr-CLn), matching XML tags (XML), and IP addresses
that match for n positions (IPn). We also create variants of the product bench-
mark presented in Sect. 2 where we vary the numbers of characters in the code
and lot number. All the SRAs are deterministic.

5.1 Succinctness of SRAs vs SFAs

In this experiment, we relate the size of SRAs over finite alphabets to the size
of the smallest equivalent SFAs. For each SRA, we construct the equivalent
SFA by equipping the state space with the values stored in the registers at each
step (this construction effectively builds the configuration LTS). Figure 2a shows
the results. As expected, SFAs tend to blow up in size when the SRA contains
multiple registers or complex register values. In cases where the register values
range over small sets (e.g., [0-9]) it is often feasible to build an SFA equivalent
to the SRA, but the construction always yields very large automata. In cases
where the registers can assume many values (e.g., 216) SFAs become prohibitively
large and do not fit in memory. To answer Q1, even for finite alphabets, it is
not feasible to compile SRAs to SFAs. Hence, SRAs are a succinct model.

5.2 Performance of Membership Checking

In this experiment, we measure the performance of SRA membership, and we
compare it with the performance of the java.util.regex matching algorithm.
2 Our experiments are over finite alphabets, but the Boolean algebra can be infinite

by taking the alphabet to be positive integers and allowing intervals to contain ∞ as
upper bound. This modification does not affect the running time of our procedures,
therefore we do not report it.

Symbolic Register Automata 17

SRA SFA
states tr reg |reg| states tr

IP2 44 46 3 10 4,013 4,312
IP3 44 46 4 10 39,113 42,112
IP4 44 46 5 10 372,113 402,112
IP6 44 46 7 10 — —
IP9 44 46 10 10 — —

Name-F 7 10 2 26 201 300
Name-L 7 10 2 26 129 180
Name 7 10 3 26 3,201 4,500
XML 12 16 4 52 — —
Pr-C2 26 28 3 216 — —
Pr-C3 28 30 4 216 — —
Pr-C4 30 32 5 216 — —
Pr-C6 34 36 7 216 — —
Pr-C9 40 42 10 216 — —
Pr-CL2 26 28 3 216 — —
Pr-CL3 28 30 4 216 — —
Pr-CL4 30 32 5 216 — —
Pr-CL6 34 36 7 216 — —
Pr-CL9 40 42 10 216 — —

(a) Size of SRAs vs SFAs. (—) denotes the
SFA didn’t fit in memory. |reg| denotes how
many different characters a register stored.

SRA S1 SRA S2 L1=∅ L1=L1 L2 ⊆ L1
Pr-C2 Pr-CL2 0.125s 0.905s 3.426s
Pr-C3 Pr-CL3 1.294s 5.558s 24.688s
Pr-C4 Pr-CL4 13.577s 55.595s —
Pr-C6 Pr-CL6 — — —
Pr-CL2 Pr-C2 1.067s 0.952s 0.889s
Pr-CL3 Pr-C3 10.998s 11.104s 11.811s
Pr-CL4 Pr-C4 — — —
Pr-CL6 Pr-C6 — — —

IP-2 IP-3 0.125s 0.408s 1.845s
IP-3 IP-4 1.288s 2.953s 21.627s
IP-4 IP-6 18.440s 42.727s —
IP-6 IP-9 — — —

(b) Performance of decision procedures.
In the table Li = L (Si), for i = 1, 2.

101 102 103 104 105 106 107 108 109

10−3

10−2

10−1

100

101

102

Java SR
A

input length

m
em

be
rs

hi
p

ti
m

e
(s

)

(c) SRA membership and Java regex

matching performance. Missing data
points for Java are stack overflows.

Fig. 2. Experimental results.

For each benchmark, we generate inputs of length varying between approxi-
mately 100 and 108 characters and measure the time taken to check member-
ship. Figure 2c shows the results. The performance of SRA (resp. Java) is not
particularly affected by the size of the expression. Hence, the lines for different
expressions mostly overlap. As expected, for SRAs the time taken to check mem-
bership grows linearly in the size of the input (axes are log scale). Remarkably,
even though our implementation does not employ particular input processing
optimizations, it can still check membership for strings with tens of millions of
characters in less than 10 s. We have found that our implementation is more
efficient than the Java regex library, matching the same input an average of
50 times faster than java.util.regex.Matcher. java.util.regex.Matcher
seems to make use of a recursive algorithm to match back-references, which
means it does not scale well. Even when given the maximum stack size, the
JVM will return a Stack Overflow for inputs as small as 20,000 characters. Our
implementation can match such strings in less than 2 s. To answer Q2, deter-
ministic SRAs can be efficiently executed on large inputs and perform
better than the java.util.regex matching algorithm.

www.dbooks.org

https://www.dbooks.org/

18 L. D’Antoni et al.

5.3 Performance of Decision Procedures

In this experiment, we measure the performance of SRAs simulation and bisim-
ulation algorithms. Since all our SRAs are deterministic, these two checks cor-
respond to language equivalence and inclusion. We select pairs of benchmarks
for which the above tests are meaningful (e.g., variants of the problem discussed
at the end of Sect. 2). The results are shown in Fig. 2b. As expected, due to the
translation to single-valued SRAs, our decision procedures do not scale well in
the number of registers. This is already the case for classic register automata
and it is not a surprising result. However, our technique can still check equiva-
lence and inclusion for regular expressions that no existing tool can handle. To
answer Q3, bisimulation and simulation algorithms for SRAs only scale
to small numbers of registers.

6 Conclusions

In this paper we have presented Symbolic Register Automata, a novel class of
automata that can handle complex alphabet theories while allowing symbol com-
parisons for equality. SRAs encompass – and are strictly more powerful – than
both Register and Symbolic Automata. We have shown that they enjoy the same
closure and decidability properties of the former, despite the presence of arbi-
trary guards on transitions, which are not allowed by RAs. Via a comprehensive
set of experiments, we have concluded that SRAs are vastly more succinct than
SFAs and membership is efficient on large inputs. Decision procedures do not
scale well in the number of registers, which is already the case for basic RAs.

Related Work. RAs were first introduced in [17]. There is an extensive lit-
erature on register automata, their formal languages and decidability proper-
ties [7,13,21,22,25], including variants with global freshness [20,27] and totally
ordered data [4,14]. SRAs are based on the original model of [17], but are much
more expressive, due to the presence of guards from an arbitrary decidable
theory.

In recent work, variants over richer theories have appeared. In [9] RA over
rationals were introduced. They allow for a restricted form of linear arithmetic
among registers (RAs with arbitrary linear arithmetic subsume two-counter
automata, hence are undecidable). SRAs do not allow for operations on reg-
isters, but encompass a wider range of theories without any loss in decidability.
Moreover, [9] does not study Boolean closure properties. In [8,16], RAs allow-
ing guards over a range of theories – including (in)equality, total orders and
increments/sums – are studied. Their focus is different than ours as they are
interested primarily in active learning techniques, and several restrictions are
placed on models for the purpose of the learning process. We can also relate
SRAs with Quantified Event Automata [2], which allow for guards and assign-
ments to registers on transitions. However, in QEA guards can be arbitrary,
which could lead to several problems, e.g. undecidable equivalence.

Symbolic Register Automata 19

Symbolic automata were first introduced in [28] and many variants of them
have been proposed [12]. The one that is closer to SRAs is Symbolic Extended
Finite Automata (SEFA) [11]. SEFAs are SFAs in which transitions can read
more than one character at a time. A transition of arity k reads k symbols which
are consumed if they satisfy the predicate ϕ(x1, . . . , xk). SEFAs allow arbitrary
k-ary predicates over the input theory, which results in most problems being
undecidable (e.g., equivalence and intersection emptiness) and in the model not
being closed under Boolean operations. Even when deterministic, SEFAs are
not closed under union and intersection. In terms of expressiveness, SRAs and
SEFAs are incomparable. SRAs can only use equality, but can compare symbols
at arbitrary points in the input while SEFAs can only compare symbols within
a constant window, but using arbitrary predicates.

Several works study matching techniques for extended regular expres-
sions [3,5,18,24]. These works introduce automata models with ad-hoc features
for extended regular constructs – including back-references – but focus on effi-
cient matching, without studying closure and decidability properties. It is also
worth noting that SRAs are not limited to alphanumeric or finite alphabets.
On the negative side, SRAs cannot express capturing groups of an unbounded
length, due to the finitely many registers. This limitation is essential for
decidability.

Future Work. In [21] a polynomial algorithm for checking language equivalence
of deterministic RAs is presented. This crucially relies on closure properties of
symbolic bisimilarity, some of which are lost for SRAs. We plan to investigate
whether this algorithm can be adapted to our setting. Extending SRAs with
more complex comparison operators other than equality (e.g., a total order <)
is an interesting research question, but most extensions of the model quickly
lead to undecidability. We also plan to study active automata learning for SRAs,
building on techniques for SFAs [1], RAs [6,8,16] and nominal automata [19].

References

1. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: CAV, pp.
427–445 (2018)

2. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified
event automata: towards expressive and efficient runtime monitors. In: FM, pp.
68–84 (2012)

3. Becchi, M., Crowley, P.: Extending finite automata to efficiently match perl-
compatible regular expressions. In: CoNEXT, pp. 25 (2008)

4. Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data
words. In: AMW (2010)

5. Bispo, J., Sourdis, I., Cardoso, J.M.P., Vassiliadis, S.: Regular expression matching
for reconfigurable packet inspection. In: FPT, pp. 119–126 (2006)

6. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learning
register automata. In: DLT, pp. 118–130 (2013)

7. Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical
register automaton model. J. Log. Algebr. Meth. Program. 84(1), 54–66 (2015)

www.dbooks.org

https://www.dbooks.org/

20 L. D’Antoni et al.

8. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

9. Chen, Y., Lengál, O., Tan, T., Wu, Z.: Register automata with linear arithmetic.
In: LICS, pp. 1–12 (2017)

10. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
CoRR, abs/1811.06968 (2019). http://arxiv.org/abs/1811.06968

11. D’Antoni, L., Veanes, M.: Extended symbolic finite automata and transducers.
Formal Meth. Syst. Des. 47(1), 93–119 (2015)

12. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In:
CAV, pp. 47–67 (2017)

13. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log. 10(3), 16:1–16:30 (2009)

14. Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. Math.
Struct. Comput. Sci. 26(6), 993–1021 (2016)

15. Grigore, R., Distefano, D., Petersen, R.L., Tzevelekos, N.: Runtime verification
based on register automata. In: TACAS, pp. 260–276 (2013)

16. Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages
to program structures. Mach. Learn. 96(1–2), 65–98 (2014)

17. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

18. Komendantsky, V.: Matching problem for regular expressions with variables. In:
Loidl, H.-W., Peña, R. (eds.) TFP 2012. LNCS, vol. 7829, pp. 149–166. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40447-4 10

19. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: POPL, pp. 613–625 (2017)

20. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Bisimilarity in fresh-register
automata. In: LICS, pp. 156–167 (2015)

21. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Polynomial-time equivalence testing
for deterministic fresh-register automata. In: MFCS, pp. 72:1–72:14 (2018)

22. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)

23. RegExLib. Regular expression library (2017). http://regexlib.com/
24. Reidenbach, D., Schmid, M.L.: A polynomial time match test for large classes of

extended regular expressions. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010.
LNCS, vol. 6482, pp. 241–250. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18098-9 26

25. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231(2), 297–308 (2000)

26. SVPAlib: Symbolic automata library (2018). https://github.com/lorisdanto/
symbolicautomata

27. Tzevelekos, N.: Fresh-register automata. In: POPL, pp. 295–306 (2011)
28. Veanes, M., Halleux, P.D., Tillmann, N.: Rex: symbolic regular expression explorer.

In: ICST, pp. 498–507 (2010)

http://arxiv.org/abs/1811.06968
https://doi.org/10.1007/978-3-642-40447-4_10
http://regexlib.com/
https://doi.org/10.1007/978-3-642-18098-9_26
https://doi.org/10.1007/978-3-642-18098-9_26
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata

Symbolic Register Automata 21

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Abstraction Refinement Algorithms
for Timed Automata

Victor Roussanaly, Ocan Sankur,
and Nicolas Markey(B)

Univ Rennes, Inria, CNRS, IRISA, Rennes, France
nmarkey@irisa.fr

Abstract. We present abstraction-refinement algorithms for model
checking safety properties of timed automata. The abstraction domain
we consider abstracts away zones by restricting the set of clock con-
straints that can be used to define them, while the refinement procedure
computes the set of constraints that must be taken into consideration
in the abstraction so as to exclude a given spurious counterexample.
We implement this idea in two ways: an enumerative algorithm where
a lazy abstraction approach is adopted, meaning that possibly different
abstract domains are assigned to each exploration node; and a symbolic
algorithm where the abstract transition system is encoded with Boolean
formulas.

1 Introduction

Model checking [4,10,12,26] is an automated technique for verifying that the
set of behaviors of a computer system satisfies a given property. Model-checking
algorithms explore finite-state automata (representing the system under study)
in order to decide if the property holds; if not, the algorithm returns an explana-
tion. These algorithms have been extended to verify real-time systems modelled
as timed automata [2,3], an extension of finite automata with clock variables to
measure and constrain the amount of time elapsed between occurrences of transi-
tions. The state-space exploration can be done by representing clock constraints
efficiently using convex polyhedra called zones [8,9]. Algorithms based on this
data structure have been implemented in several tools such as Uppaal [7], and
have been applied in various industrial cases.

The well-known issue in the applications of model checking is the state-space
explosion problem: the size of the state space grows exponentially in the size
of the description of the system. There are several sources for this explosion:
the system might be made of the composition of several subsystems (such as
a distributed system), it might contain several discrete variables (such as in a
piece of software), or it might contain a number of real-valued clocks as in our
case.

This work was funded by ANR project Ticktac (ANR-18-CE40-0015) and by ERC
grant EQualIS (StG-308087).

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 22–40, 2019.
https://doi.org/10.1007/978-3-030-25540-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_2

Abstraction Refinement Algorithms for Timed Automata 23

Numerous attempts have been made to circumvent this problem. Abstrac-
tion is a generic approach that consists in simplifying the model under study,
so as to make it easier to verify [13]. Existential abstraction may only add extra
behaviors, so that when a safety property holds in an abstracted model, it also
holds in the original model; if on the other hand a safety property fails to hold,
the model-checking algorithms return a witness trace exhibiting the non-safe
behaviour: this either invalidates the property on the original model, if the trace
exists in that model, or gives information about how to automatically refine the
abstraction. This approach, named CEGAR (counter-example guided abstrac-
tion refinement) [11], was further developed and used, for instance, in software
verification (BLAST [20], SLAM [5], ...).

The CEGAR approach has been adapted to timed automata, e.g. in [14,
18], but the abstractions considered there only consist in removing clocks and
discrete variables, and adding them back during refinement. So for most well-
designed models, one ends up adding all clocks and variables which renders the
method useless. Two notable exceptions are [22], in which the zone extrapolation
operators are dynamically adapted during the exploration, and [29], in which
zones are refined when needed using interpolants. Both approaches define “exact”
abstractions in the sense that they make sure that all traces discovered in the
abstract model are feasible in the concrete model at any time.

In this work, we consider a more general setting and study predicate abstrac-
tions on clock variables. Just like in software model checking, we define abstract
state spaces using these predicates, where the values of the clocks and their
relations are approximately represented by these predicates. New predicates are
generated if needed during the refinement step. We instantiate our approach by
two algorithms. The first one is a zone-based enumerative algorithm inspired by
the lazy abstraction in software model checking [19], where we assign a possibly
different abstract domain to each node in the exploration. The second algorithm
is based on binary decision diagrams (BDD): by exploiting the observation that a
small number of predicates was often sufficient to prove safety properties, we use
an efficient BDD encoding of zones similar to one introduced in early work [28].

Let us explain the abstract domains we consider. Assume there are two clock
variables x and y. The abstraction we consider consists in restricting the clock

y

x

y

x

(a) Abstraction of zone 1 ≤ x, y ≤ 2

y

x

y

x

(b) Abstraction of zone y ≤ 1 ∧ 1 ≤ x− y ≤ 2

Fig. 1. The abstract domain is defined by the clock constraints shown in thick red
lines. In each example, the abstraction of the zone shown on the left (shaded area) is
the larger zone on the right. (Color figure online)

www.dbooks.org

https://www.dbooks.org/

24 V. Roussanaly et al.

constraints that can be used when defining zones. Assume that we only allow to
compare x with 2 or 3; that y can only be compared with 2, and x−y can only be
compared with −1 or 2. Then any conjunction of constraints one might obtain
in this manner will be delimited by the thick red lines in Fig. 1; one cannot
define a finer region under this restriction. The figure shows the abstraction
process: given a “concrete” zone, its abstraction is the smallest zone which is a
superset and is definable under our restriction. For instance, the abstraction of
1 ≤ x, y ≤ 2 is 0 ≤ x, y ≤ 2 ∧ −1 ≤ x − y (cf. Fig. 1a).

Related Works. We give more detail on zone abstractions in timed automata.
Most efforts in the literature have been concentrated in designing zone abstrac-
tion operators that are exact in the sense that they preserve the reachability
relation between the locations of a timed automaton; see [6]. The idea is to
determine bounds on the constants to which a given clock can be compared to
in a given part of the automaton, since the clock values do not matter outside
these bounds. In [21,22], the authors give an algorithm where these bounds are
dynamically adapted during the exploration, which allows one to obtain coarser
abstractions. In [29], the exploration tree contains pairs of zones: a concrete zone
as in the usual algorithm, and a coarser abstract zone. The algorithm explores
all branches using the coarser zone and immediately refines the abstract zone
whenever an edge which is disabled in the concrete zone is enabled. In [17], a
CEGAR loop was used to solve timed games by analyzing strategies computed
for each abstract game. The abstraction consisted in collapsing locations.

Some works have adapted the abstraction-refinement paradigm to timed
automata. In [14], the authors apply “localization reduction” to timed automata
within an abstraction-refinement loop: they abstract away clocks and discrete
variables, and only introduce them as they are needed to rule out spurious coun-
terexamples. A more general but similar approach was developed in [18]. In [31],
the authors adapt the trace abstraction refinement idea to timed automata where
a finite automaton is maintained to rule out infeasible edge sequences.

The CEGAR approach was also used recently in the LinAIG framework for
verifying linear hybrid automata [1]. In this work, the backward reachability algo-
rithm exploits don’t-cares to reduce the size of the Boolean circuits representing
the state space. The abstractions consist in enlarging the size of don’t-cares to
reduce the number of linear predicates used in the representation.

2 Timed Automata and Zones

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of R
C
≥0. For a

clock valuation v, a subset R ⊆ C, and a non-negative real d, we denote with
v[R ← d] the valuation w such that w(x) = v(x) for x ∈ C \ R and w(x) = d for
x ∈ R, and with v + d the valuation w′ such that w′(x) = v(x) + d for all x ∈ C.
We extend these operations to sets of valuations in the obvious way. We write 0
for the valuation that assigns 0 to every clock. An atomic guard is a formula of

Abstraction Refinement Algorithms for Timed Automata 25

the form x ≺ k or x−y ≺ k with x, y ∈ C, k ∈ N, and ≺ ∈ {<,≤, >,≥}. A guard
is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted
v |= g, if all atomic guards hold true when each x ∈ C is replaced with v(x).
Let [[g]] = {v ∈ R

C
≥0 | v |= g} denote the set of valuations satisfying g. We write

ΦC for the set of guards built on C.
A timed automaton A is a tuple (L, Inv, �0, C, E), where L is a finite set of

locations, Inv : L → ΦC defines location invariants, C is a finite set of clocks,
E ⊆ L×ΦC × 2C ×L is a set of edges, and �0 ∈ L is the initial location. An edge
e = (�, g, R, �′) is also written as �

g,R−−→ �′. For any location �, we let E(�) denote
the set of edges leaving �.

A configuration of A is a pair q = (�, v) ∈ L × R
C
≥0 such that v |= Inv(�).

A run of A is a sequence q1e1q2e2 . . . qn where for all i ≥ 1, qi = (�i, vi) is
a configuration, and either ei ∈ R>0, in which case qi+1 = (�i, vi + ei), or
ei = (�i, gi, Ri, �i+1) ∈ E, in which case vi |= gi and qi+1 = (�i+1, vi[Ri ← 0]).
A path is a sequence of edges with matching endpoint locations.

2.2 Zones and DBMs

Several tools for timed automata implement algorithms based on zones, which
are particular polyhedra definable with clock constraints. Formally, a zone Z is
a subset of R

C
≥0 definable by a guard in ΦC .

We recall a few basic operations defined on zones. First, the intersection Z∩Z ′

of two zones Z and Z ′ is clearly a zone. Given a zone Z, the set of time-successors
of Z, defined as Z↑ = {v + t ∈ R

C
≥0 | t ∈ R≥0, v ∈ Z}, is easily seen to be

a zone; similarly for time-predecessors Z↓ = {v ∈ R
C
≥0 | ∃t ≥ 0. v + t ∈ Z}.

Given R ⊆ C, we let ResetR(Z) be the zone {v[R ← 0] ∈ R
C
≥0 | v ∈ Z}, and

Freex(Z) = {v′ ∈ R
C
≥0 | ∃v ∈ Z, d ∈ R≥0, v

′ = v[x ← d]}.
Zones can be represented as difference-bound matrices (DBM) [8,15].

Let C0 = C ∪ {0}, where 0 is an extra symbol representing a special clock vari-
able whose value is always 0. A DBM is a |C0| × |C0|-matrix taking values in
(Z×{<,≤})∪{(+∞, <)}. Intuitively, cell (x, y) of a DBM M stores a pair (d,≺)
representing an upper bound on the difference x−y. For any DBM M , we let [[M]]
denote the zone it defines.

While several DBMs can represent the same zone, each zone admits a canon-
ical representation, which is obtained by storing the tightest clock constraints
defining the zone. This canonical representation can be obtained by comput-
ing shortest paths in a graph where the vertices are clocks and the edges
weighted by clock constraints, with natural addition and comparison of elements
of (Z×{<,≤})∪{(+∞, <)}. This graph has a negative cycle if, and only if, the
associated DBM represents the empty zone.

All the operations on zones can be performed efficiently (in O(|C0|3)) on their
associated DBMs while maintaining reduced form. For instance, the intersection
N = Z ∩ Z ′ of two canonical DBMs Z and Z ′ can be obtained by first com-
puting the DBM M = min(Z,Z ′) such that M(x, y) = min{Z(x, y), Z ′(x, y)}
for all (x, y) ∈ C0

2, and then turning M into canonical form. We refer to [8] for

www.dbooks.org

https://www.dbooks.org/

26 V. Roussanaly et al.

full details. By a slight abuse of notation, we use the same notations for DBMs
as for zones, writing e.g. M ′ = M↑, where M and M ′ are reduced DBMs such
that [[M ′]] = [[M]]↑. Given an edge e = (�, g, R, �′), and a zone Z, we define
Poste(Z) = Inv(�′) ∩ (g ∩ ResetR(Z))↑, and Pree(Z) = (g ∩ FreeR(Inv(�′) ∩ Z))↓.
For a path ρ = e1e2 . . . en, we define Postρ and Preρ by iteratively applying
Postei

and Preei
respectively.

2.3 Clock-Predicate Abstraction and Interpolation

For all clocks x and y in C0, we consider a finite set Dx,y ⊆ N×{≤, <}, and gather
these in a table D = (Dx,y)x,y∈C0 . D is the abstract domain which restricts zones
to be defined only using constraints of the form x − y ≺ k with (k,≺) ∈ Dx,y,
as seen earlier. Let us call D the concrete domain if Dx,y = N × {≤, <} for
all x, y ∈ C0. A zone Z is D-definable if there exists a DBM D such that Z = [[D]]
and D(x, y) ∈ Dx,y for all x, y ∈ C0. Note that we do not require this witness
DBM D to be reduced; the reduction of such a DBM might introduce additional
values. We say that domain D′ is a refinement of D if for all x, y ∈ C0, we have
Dx,y ⊆ D′

x,y.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 →

2R
C
≥0 where αD(Z) is the smallest D-definable zone containing Z. For any

reduced DBM D, αD([[D]]) can be computed by setting D′(x, y) = min{(k,≺)
∈ Dx,y | D(x, y) ≤ (k,≺)} (with min ∅ = (∞, <)).

An interpolant for a pair of zones (Z1, Z2) with Z1 ∩ Z2 = ∅ is a zone Z3

with Z1 ⊆ Z3 and Z3 ∩ Z2 = ∅1 [29]. We use interpolants to refine our
abstractions; in order not to add too many new constraints when refining,
our aim is to find minimal interpolants: define the density of a DBM D as
d(D) = #{(x, y) ∈ C0

2 | D(x, y) �= (∞, <)}. Notice that while any pair of dis-
joint convex polyhedra can be separated by hyperplanes, not all pairs of disjoint
zones admit interpolants of density 1; this is because not all (half-spaces delim-
ited by) hyperplanes are zones. Still, we can bound the density of a minimal
interpolant:

Lemma 1. For any pair of disjoint, non-empty zones (A,B), there exists an
interpolant of density less than or equal to |C0|/2.

By adapting the algorithm of [29] for computing interpolants, we can compute
minimal interpolants efficiently:

Proposition 2. Computing a minimal interpolant can be performed in O(|C|4).

3 Enumerative Algorithm

The first type of algorithm we present is a zone-based enumerative algorithm
based on the clock-predicate abstractions. Let us first describe the overall
1 It is sometimes also required that the interpolant only involves clocks that have

non-trivial constraints in both Z1 and Z2. We do not impose this requirement in our
definition, but it will hold true in the interpolants computed by our algorithm.

Abstraction Refinement Algorithms for Timed Automata 27

algorithm in Algorithm 1, which is a typical abstraction-refinement loop. We then
explain how the abstract reachability and refinement procedures are instantiated.

Algorithm 1. Enumerative
algorithm checking the reacha-
bility of a target location �T .

Input: A = (L, Inv, �0, C, E), �T

1 Initialize D0;
2 wait:= {node(�0,0↑, D0)};
3 passed:= ∅;
4 while do
5 π := AbsReach(A, wait,

passed, �T);
6 if π = ∅ then
7 return Not reachable;
8 else
9 if trace π is feasible then

10 return Reachable;

11 else
Refine(π, wait, passed);

12 return Not reachable;

Algorithm 2. AbsReach

Input: (L, Inv, l0, C, E), wait, passed,
�T

1 while wait �= ∅ do
2 n := wait.pop();
3 if n.� = �T then
4 return Trace from root to n;

5 if ∃n′ ∈ passed such that n.� =
n′.� ∧ n.Z ⊆ n′.Z then

6 n.covered := n′;
7 else
8 n.Z := α(n.Z, n);
9 passed.add(n);

10 for e = (�, g, R, �′) ∈ E(n.�)
s.t. Z′ := Poste(n.Z) �= ∅
do

11 D′ := choose-dom(n, e);
12 n′ := node(�′, Z′, D′);
13 n′.parent := n;
14 wait.add(n′);

15 return ∅;

The initialization at line 1 chooses an abstract domain for the initial state,
which can be either empty (thus the coarsest abstraction) or defined according
to some heuristics. The algorithm maintains the wait and passed lists that are
used in the forward exploration. As usual, the wait list can be implemented
as a stack, a queue, or another priority list that determines the search order.
The algorithm also uses covering nodes. Indeed if there are two node n and
n′, with n ∈ passed, n′ ∈ wait, n.� = n′.�, and n′.z ⊆ n.Z, then we know
that every location reachable from n′ is also reachable from n. Since we have
already explored n and we generated its successors, there is no need to explore
the successors of n′. The algorithm explicitly creates an exploration tree: line 2
creates a node containing location �0, zone 0↑, and the abstract domain D0 as the
root of our tree, and adds this to the wait list. More details on the tree are given
in the next subsection. Procedure AbsReach then looks for a trace to the target
location �T . If such a trace exists, line 9 checks its feasibility. Here π is a sequence
of node and edges of A. The feasibility check is done by computing predecessors
with zones starting from the final state, without using the abstraction function.
If the last zone intersects our initial zone, this means that the trace is feasible.
More details are given in Sect. 3.2.

www.dbooks.org

https://www.dbooks.org/

28 V. Roussanaly et al.

3.1 Abstract Forward Reachability: AbsReach

We give a generic algorithm independently from the implementations of the
abstraction functions and the refinement procedure.

Algorithm 2 describes the reachability procedure under a given abstract
domain D. It is similar to the standard forward reachability algorithm using
a wait-list and a passed-list. We explicitly create an exploration tree where the
leaves are nodes in wait, covered nodes, or nodes that have no non-empty succes-
sors. Each node n contains the fields �, Z which are labels describing the current
location and zone; field covered points to a node covering the current node (it is
undefined if the current node is not (known to be) covered); field parent points
to the parent node in the tree (it is undefined for the root); and field D is the
abstract domain associated with the node. Thus, the algorithm uses a possibly
different abstract domain for each node in the exploration tree.

The difference of our algorithm w.r.t. the standard reachability can be seen
at lines 8 and 11. At line 8, we apply the abstraction function to the zone taken
from the wait-list before adding it to the passed-list. The abstraction function α
is a function of a zone Z and a node n. This allows one to define variants with
different dependencies; for instance, α might depend on the abstract domain n.D
at the current node, but it can also use other information available in n or on
the path ending in n. For now, it is best to think of α simply as Z �→ αn.D(Z).
At line 11, the function choose-dom chooses an abstract domain for the node n′.
The domain could be chosen global for all nodes, or local to each node. A good
trade-off, which we used in our experiments, is to have domains associated with
locations of the timed automaton.

Remark 1. Note that we use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone
possible when we test whether the node is covered. We only need to use the
abstracted zone when we compute its successor and when we test whether the
node is covering. This allows us to store a unique zone.

As a first step towards proving correctness of our algorithm, we show that
the following property is preserved by Algorithm AbsReach:

For all nodes n in passed, for all edges e from n.�, if Poste(n.Z) �= ∅,
then n has a child n′ such that Poste(n.Z) ⊆ n′.Z. If n′ is in passed,
then we also have αn′.D(Poste(n.Z)) ⊆ n′.Z.

(1)

Lemma 3. Algorithm AbsReach preserves Property (1).

Note that although we use inclusion in Property (1), AbsReach would actually
preserve equality of zones, but we will not always have equality before running
AbsReach. This is because Refine might change the zones of some nodes without
updating the zones of all their descendants.

Abstraction Refinement Algorithms for Timed Automata 29

3.2 Refinement: Refine

We now describe our refinement procedure Refine. Let us now assume that
AbsReach returns π = A1

σ1−→ A2
σ2−→ . . .

σk−1−−−→ Ak, and write Di for the
domain associated with each Ai. We write C1 for the initial concrete zone, and
for i < k, we define Ci+1 = Postσi

(Ai). We also note Zk = Ak and for i < k,
Zi = Preσi

(Zi+1) ∩ Ai. Then π is not feasible if, and only if, Postσ1...σk
(C1) = ∅,

or equivalently Preσ1...σk
(Ak) ∩ C1 = ∅. Since for all i < k, it holds Ci ⊆ Ai+1,

we have that π is not feasible if, and only if, ∃i ≤ k. Ci ∩ Zi = ∅. We illustrate
this on Fig. 2.

Z1

C1

A1

Z2

C2

A2

C3

A3 = Z3

ost Post

Pre
Pre

Fig. 2. Spurious counter-example: Z1 ∩ C1 = ∅

Let us assume that π is not feasible. Let us denote by i0 the maximal index
such that Ci0 ∩ Zi0 = ∅. This index also has the property that for all j < i0,
we have Zj = ∅ and Zi0 �= ∅. Once we have identified this trace as spurious by
computing the Zj , we have two possibilities:

– if Zi0 ∩ αDi0
(Ci0) �= ∅: this means that we can reach Ak from αDi0

(Ci0) but
not from Ci0 . In other words, our abstraction is too coarse and we must add
some values to Di0 so that Zi0 ∩ αDi0

(Ci0) = ∅. Those values are found by
computing the interpolant of Zi0 and Ci0

– Otherwise it means that αDi0
(Ci0) cannot reach Ak and the only reason the

trace exists is because either Di0 or Ai0−1 has been modified at some point
and Ai0 was not modified accordingly.

We can then update the values of Ci for i > i0 and repeat the process until
we reach an index j0 such that Cj0 = ∅. We then have modified the nodes
ni0 , . . . , nj0 and knowing that nj0 .Z = ∅, we can delete it and all of its descen-
dants. Since some of the descendants of ni0 have not been modified, this might
cause some refinements of the first type in the future. In order to ensure termi-
nation, we sometimes have to cut a subtree from a node in ni0 , . . . , nj0−1 and
reinsert it in the wait list to restart the exploration from there. We call this
action cut, and we can use several heuristics to decide when to use it. In the
rest of this paper we will use the following heuristics: we perform cut on the first
node of ni0 ...nj0 that is covered by some other node. Since this node is covered,
we know that we will not restart the exploration from this node, or that the

www.dbooks.org

https://www.dbooks.org/

30 V. Roussanaly et al.

node was covered by one of its descendant. If none of these nodes are covered,
we delete nj0 and its descendants. Other heuristics are possible, for instance
applying cut on ni0 . We found that the above heuristics was the most efficient
in our experiments.

Lemma 4. Pick a node n, and let Y = n.Z. Then after running Refine, either
node n is deleted, or it holds n.Z ⊆ Y . In other words, the zone of a node can
only be reduced by Refine.

It follows that Refine also preserves Property (1), so that:

Lemma 5. Algorithm 1 satisfies Property (1).

We can then prove that our algorithm correctly decides the reachability prob-
lem and always terminates.

Theorem 6. Algorithm 1 terminates and is correct.

4 Symbolic Algorithm

4.1 Boolean Encoding of Zones

We now present a symbolic algorithm that represents abstract states using
Boolean formulas. Let B = {0, 1}, and V be a set of variables. A Boolean for-
mula f that uses variables from set X ⊆ V will be written f(X) to make the
dependency explicit; we sometimes write f(X,Y) in place of f(X ∪ Y). Such a
formula represents a set [[f]] = {v ∈ B

V | v |= f}. We consider primed versions
of all variables; this will allow us to write formulas relating two valuations. For
any subset X ⊆ V, we define X ′ = {p′ | p ∈ X}.

A literal is either p or ¬p for a variable p. Given a set X of variables, an X-
minterm is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of B

X . Given a vector of Boolean
formulas Y = (Yx)x∈X , formula f [Y /X] is the substitution of X by Y in f ,
obtained by replacing each x ∈ X with the formula Yx. The positive cofactor
of f(X) by x is ∃x. (x ∧ f(X)), and its negative cofactor is ∃x. (¬x ∧ f(X)).

Let us define a generic operator post that computes successors of a
set S(X,Y) given a relation R(X,X ′) (here, Y designates any set of variables
on which S might depend outside of X): postR(S(X,Y)) = (∃X.S(X,Y) ∧
R(X,X ′))[X/X ′]. Similarly, we set preR(S(X,Y)) = (∃X ′.S(X,Y)[X ′/X] ∧
R(X,X ′)), which computes the predecessors of S(X,Y) by the relation R [24].

Clock Predicate Abstraction. We fix a total order � on C0. In this section, abstract
domains are defined as D = (Dx,y)x�y∈C0 , that is only for pairs x � y. In fact,
constraints of the form x − y ≤ k with x � y are encoded using the negation of
y − x < −k since (x − y ≤ k) ⇔ ¬(y − x < −k). We thus define Dx,y = −Dy,x

for all x � y.

Abstraction Refinement Algorithms for Timed Automata 31

For x, y ∈ C0, let Px,y denote the set of clock predicates associated to Dx,y:

PD
x,y = {Px−y≺k | (k,≺) ∈ Dx,y}.

Let PD = ∪x,y∈C0Px,y denote the set of all clock predicates associated
with D (we may omit the superscript D when it is clear). For all (x, y) ∈
C0

2 and (k,≺) ∈ Dx,y, we denote by px−y≺k the literal Px−y≺k if x � y,
and ¬Py−x≺−1−k otherwise (where ≤−1 = < and <−1 = ≤). We also consider a
set B of Boolean variables used to encode locations. Overall, the state space is
described using Boolean formulas on these two types of variables, so states are
elements of B

P∪B.
Our Boolean encoding of clock constraints and semantic operations follow

those of [28] for a concrete domain. We define these however for abstract domains,
and show how successor computation and refinement operations can be per-
formed.

Let us define the clock semantics of predicate Px−y�k as [[Px−y�k]]C0 =
{ν ∈ R

C0
≥0 | ν(x) − ν(y) � k}. Since the set C of clocks is fixed, we may omit

the subscript and just write [[Px−y�k]]. We define the conjunction, disjunction,
and negation as intersection, union, and complement, respectively. Given a P-
minterm v ∈ B

P , we define [[v]]D =
⋂

p s.t. v(p)[[p]]D ∩⋂
p s.t. ¬v(p)[[p]]cD. Thus, nega-

tion of a predicate encodes its complement. For a Boolean formula F (P), we set
[[F]] =

⋃
v∈Minterms(F)[[v]]D. Intuitively, the minterms of P define smallest zones

of R
C
≥0 definable using P. A minterm v ∈ B

B∪P defines a pair [[v]]D = (l, Z)
where l is encoded by v|B and Z = [[v|P]]D. A Boolean formula F on B ∪ P
defines a set [[F]]D = ∪v∈Minterms(F)[[v]]D of such pairs. A minterm v is satisfiable
if [[v]]D �= ∅.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2B

P

with αD(Z) = {v | v ∈ B
P and [[v]]D ∩ Z �= ∅}, from the set of zones to the

set of subsets of Boolean valuations on P. We define the concretization function
as [[·]]D : 2B

P → 2R
C
≥0 . The pair (αD, [[·]]D) is a Galois connection, and [[αD(Z)]]D is

the most precise abstraction of Z in the domain induced by D. Notice that αD is
non-convex in general: for instance, if the clock predicates are x ≤ 2, y ≤ 2, then
the set defined by the constraint x = y maps to (px≤2 ∧py≤2)∨ (¬px≤2 ∧¬py≤2).

4.2 Reduction and Successor Computation

We now define the reduction operation, which is similar to the reduction of
DBMs. The idea is to eliminate unsatisfiable minterms from a given Boolean
formula. For example, we would like to make sure that in all minterms, if px−y≤1

holds, then so does px−y≤2, when both are available predicates. Another issue is
to eliminate minterms that are unsatisfiable due to triangle inequality. This is
similar to the shortest path computation used to turn DBMs in canonical form.

Example 1. Given predicates P = {px−y≤1, py−z≤1, px−z≤2}, the formula
px−y≤1 ∧ py−z≤1 is not reduced since it contains the unsatisfiable minterm

www.dbooks.org

https://www.dbooks.org/

32 V. Roussanaly et al.

px−y≤1 ∧ py−z≤1 ∧ ¬px−z≤2. However, the same formula is reduced if P =
{px−y≤1, py−z≤1}.

In this paper, we use limited reduction, since reductions are the most expen-
sive operations in our algorithms. The following formula corresponds to 2-
reduction, which intuitively amounts to applying shortest paths for paths of
lengths 1 and 2:

∧

(x,y)∈C0
2

(k,≺)∈Dx,y

[
px−y≺k ←

(∨

(l1,≺1)∈Dx,y

(l1,≺1)≤(k,≺)

px−y≺1l1 ∨
∨

z∈C0,(l1,≺1)∈Dx,z ,
(l2,≺2)∈Dz,y

(l1,≺1)+(l2,≺2)≤(k,≺)

px−z≺l ∧ pz−y≺′l′
)]

Lemma 7. For all formulas S(P), we have [[S]]D = [[reduce2
D(S)]]D and all

minterms of reduce2
D(S) are 2-reduced.

Since 2-reduction des not consider shortest paths of all lengths, there are, in
general, 2-reduced unsatisfiable minterms. Nevertheless, any abstraction can be
refined so that the updated 2-reduction eliminates a given unsatisfiable minterm:

Lemma 8. Let v ∈ B
PD

be a minterm such that v |= reduce2
D and [[v]] = ∅.

One can compute in polynomial time a refinement D′ ⊃ D such that v �|=
reduce2

D′ .

We now explain how successor computation is realized in our encoding. For a
guard g, assume we have computed an abstraction αD(g) in the present abstract
domain. For each transition σ = (�1, g, R, �2), let us define the formula Tσ =
�1 ∧αD(g). We show how each basic operation on zones can be computed in our
BDD encoding. In our algorithm, all formulas A(B,P) representing sets of states
are assumed to be reduced, that is, A(B,P) ⊆ reduce2

D(A(B,P)).
The intersection operation is simply logical conjunction:

Lemma 9. For all reduced formulas A(P) and B(P), we have A(P) ∧ B(P) =
αD([[A(P)]]D ∩ [[B(P)]]D).

For the time successors, we define Up(A(B,P)) = reduce(postSUp
(A(B,P)))

where

SUp =
∧

x∈C
(k,≺)∈Dx,0

(¬px−0≺k → ¬p′
x−0≺k)

∧

x,y∈C0,x
=0
(k,≺)∈Dx,y

(p′
x−y≺k ↔ px−y≺k).

Lemma 10. For any Boolean formula A(B,P), αD([[A]]↑) ⊆ Up(A). Moreover,
if D is the concrete domain and A is reduced, then this holds with equality.

Following similar ideas, we handle clock resets by defining Resetz(A) =
reduce(postSResetz

(A)), for a (complex) relation SResetz to encode how predicates
evolve (see the long version [27] of this article for more detailled explanations).

We get:

Lemma 11. For any Boolean formula A(B,P), and any clock z ∈ C, we have
αD(Resetz([[A]]D)) ⊆ Resetz(A). Moreover, if D is the concrete domain, and A
is reduced, then the above holds with equality.

Abstraction Refinement Algorithms for Timed Automata 33

Algorithm 3. Algorithm SymReach that checks the reachability of a target
location lT in a given abstract domain D.

Input: A = (L, Inv, �0, C, E), �T , D
1 ;
2 next := enc(l0) ∧ αD(∧x∈Cx = 0);
3 layers := [];
4 reachable := false;
5 while (¬reachable ∧ next) �= false do
6 reachable := reachable ∨ next;
7 next := ApplyEdges(Up(next)) ∧ ¬reachable;
8 layers.push(next);
9 if (next ∧ enc(lT)) �= false then

10 return ExtractTrace (layers);

11 return Not reachable;

4.3 Model-Checking Algorithm

Algorithm 3 shows how to check the reachability of a target location given an
abstract domain. The list layers contains, at position i, the set of states that
are reachable in i steps. The function ApplyEdges computes the disjunction of
immediate successors by all edges. It consists in looping over all edges e =
(l1, g, R, l2), and gathering the following image by e:

enc(�2) ∧ Resetrk
(Resetrk−1(. . . (Resetr1((((∃B.A(B,P) ∧ enc(�1)) ∧ αD(g))))))),

where R = {r1, . . . , rk}. We thus use a partitioned transition relation and do not
compute the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers)
returns a trace reaching the target location. This is standard and can be done by
computing backwards from the last element of layers, by finding which edge can
be applied to reach the current state. Since both reset and time successor opera-
tions are defined using relations, predecessors in our abstract system can be easily
computed using the operator preR. As it is standard, we omit the precise defini-
tion of this function (the reader can refer to the implementation) but assume that
it returns a trace of the form A1

σ1−→ A2
σ2−→ . . .

σn−1−−−→ An, where the Ai(B,P)
are minterms and the σi belong to the trace alphabet Σ = {up, r∅} ∪ {r(x)}x∈C ,
with the following meaning:

– if Ai
up−→ Ai+1 then Ai+1 = Up(Ai);

– if Ai
r∅−→ Ai+1 then Ai+1 = Ai;

– if Ai
r(x)−−→ Ai+1 then Ai+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.
The overall algorithm then follows a classical CEGAR scheme. We initialize D

by adding the clock constraints that appear syntactically in A, which is often

www.dbooks.org

https://www.dbooks.org/

34 V. Roussanaly et al.

a good heuristic. We run the reachability check of Algorithm 3. If no trace is
found, then the target location is not reachable. If a trace is found, then we check
for feasibility. If it is feasible, then the counterexample is confirmed. Otherwise,
the trace is spurious and we run the refinement procedure described in the next
subsection, and repeat the analysis.

4.4 Abstraction Refinement

Since we initialize D with all clock constraints appearing in guards, we can
assume that all guards are represented exactly in the considered abstractions.
Note that the algorithm can be easily extended to the general case; but this
simplifies the presentation.

The abstract transition relation we use is not the most precise abstraction of
the concrete transition relation. Therefore, it is possible to have abstract tran-
sitions A1

a−→ A2 for some action a while no concrete transition exists between
[[A1]] and [[A2]]. This requires care and is not a direct application of the standard
refinement technique from [11]. A second difficulty is due to incomplete reduction
of the predicates using reduce2

D. In fact, some reachable states in our abstract
model will be unsatisfiable. Let us explain how we refine the abstraction in each
of these cases.

Consider an algorithm interp which returns an interpolant of given
zones Z1, Z2. In what follows, by the refinement of D by interp(Z1, Z2), we mean
the domain D′ obtained by adding (k,≺) to Dx,y for all constraints x − y ≺ k
of interp(Z1, Z2). Observe that αD′(Z1) ∩ αD′(Z2) = ∅ in this case.

We define concrete successor and predecessor operations for the actions in Σ.
For each a ∈ Σ, let Prec

a denote the concrete predecessor operation on zones
defined straightforwardly, and similarly for Postca.

Consider domain D and the induced abstraction function αD. Assume that
we are given a spurious trace π = A1

σ1−→ A2
σ1−→ . . .

σn−1−−−→ An. Let B1 . . . Bn be
the sequence of concrete states visited along π in A, that is, B1 is the concrete
initial state, and for all 2 ≤ i ≤ n, let Bi = Postcπi−1

(Bi−1). This sequence can
be computed using DBMs.

The trace is realizable if Bn �= ∅, in which case the counterexample is con-
firmed. Otherwise it is spurious. We show how to refine the abstraction to elim-
inate a spurious trace π.

Let i0 be the maximal index such that Bi0 �= ∅. There are three possible
reasons explaining why Bi0+1 is empty:

1. first, if the abstract successor Ai0+1 is unsatisfiable, that is, if it contains
contradictory predicates; in this case, [[Ai0+1]] = ∅, and the abstraction is
refined by Lemma 8 to eliminate this case by strengthening reducek

D.
2. if there are predecessors of Ai0+1 inside Ai0 but none of them are in Bi0 , i.e.,

Prec
πi0

([[Ai0+1]]) ∩ [[Ai0]] �= ∅; in this case, we refine the domain by separating
these predecessors from the rest of Ai0 using interp(Prec

πi0
([[Ai0+1]]), Bi0−1),

as in [11].

Abstraction Refinement Algorithms for Timed Automata 35

3. otherwise, there are no predecessors of Ai0+1 inside Ai0 : we refine the abstrac-
tion according to the type of the transition from step i0 to i0 + 1:
(a) if πi0 = up: refine D by interp([[Ai0]]↑, [[Ai0+1]]↓).
(b) if πi0 = r(x): refine D by interp(Freex([[Ai0]]),Freex([[Ai0+1]])).

Note that the case πi0 = r∅ is not possible since this induces the identity
function both in the abstract and concrete systems.

Given abstraction αD and spurious trace π, let refine(αD, π) denote the
refined abstraction αD′ obtained as described above.

The following two lemmas justify the two subcases of the third case above.
They prove that the detected spurious transition disappears after refinement.
The reset and up operations depend on the abstraction, so we make this depen-
dence explicit below by using superscripts, as in Resetαx and Upα, in order to
distinguish the operations before and after a refinement.

Lemma 12. Consider (A1, A2) ∈ Upα with [[A1]]↑ ∩ [[A2]] = ∅. Then [[A1]]↑ ∩
[[A2]]↓ = ∅. Moreover, if α′ is obtained by refinement of α by interp([[A1]]↑, [[A2]]↓),
then for all (A′

1, A
′
2) ∈ Upα′

, [[A′
1]] ⊆ [[A1]] implies [[A′

2]] ∩ [[A2]] = ∅.

Lemma 13. Consider x ∈ C, and (A1, A2) ∈ Resetαx such that [[A1]][x ← 0] ∩
[[A2]] = ∅. Then Freex([[A1]]) ∩ Freex([[A2]]) = ∅. Moreover, if α′ is obtained
by refinement of α by interp(Freex([[A1]]),Freex([[A2]])), then for all (A′

1, A
′
2) ∈

Resetα
′

x with [[A′
1]] ⊆ [[A1]], we have [[A′

2]] ∩ [[A2]] = ∅.

5 Experiments

We implemented both algorithms. The symbolic version was implemented in
OCaml using the CUDD library2; the explicit version was implemented in C++
within an existing model checker using Uppaal DBM library. Both prototypes
2 http://vlsi.colorado.edu/∼fabio/.

www.dbooks.org

http://vlsi.colorado.edu/~fabio/
https://www.dbooks.org/

36 V. Roussanaly et al.

take as input networks of timed automata with invariants, discrete variables,
urgent and committed locations. The presented algorithms are adapted to these
features without difficulty.

We evaluated our algorithms on three classes of benchmarks we believe are
significant. We compare the performance of the algorithm with that of Uppaal [7]
which is based on zones, as well as the BDD-based model checker engine of
PAT [25]. We were unable to compare with RED [30] which is not maintained
anymore and not open source, and with which we failed to obtain correct results.
The tool used in [16] was not available either. We thus only provide a comparison
here with two well-maintained tools.

Two of our benchmarks are variants of schedulability-analysis problems
where task execution times depend on the internal states of executed processes,
so that an analysis of the state space is necessary to obtain a precise answer.

Monoprocess Scheduling Analysis. In this variant, a single process sequen-
tially executes tasks on a single machine, and the execution time of each cycle
depends on the state of the process. The goal is to determine a bound on the
maximum execution time of a single cycle. This depends on the semantics of the
process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined
by synchronous circuit models taken from the Synthesis Competition (http://
www.syntcomp.org). We assume that each latch of the circuit is associated with
a resource, and changing the state of the resource takes some amount of time.
So a subset of the latches have clocks associated with them, which measure
the time elapsed since the latest value change (latest moment when the value
changed from 0 to 1, or from 1 to 0). We provide two time positive bounds �0
and �1 for each latch, which determine the execution time as follows: if the value
of latch � changes from 0 to 1 (resp. from 1 to 0), then the execution time of the
present cycle cannot be less than �1 (resp. �0). The execution time of the step is
then the minimum that satisfies these constraints.

Multi-process Stateful Scheduling Analysis. In this variant, three processes
are scheduled on two machines with a round-robin policy. Processes schedule
tasks one after the other without any delay. As in the previous benchmarks,
a process executing a task (on any machine) corresponds to a step of the syn-
chronous circuit model. Each task is described by a tuple (C1, C2,D) which
defines the minimum and maximum execution times, and the relative deadline.
When a task finishes, the next task arrives immediately. The values in the tuple
depend on the state of the process. The goal is to check the absence of any dead-
line miss. Processes are also instantiated with AIG circuits from http://www.
syntcomp.org.

Asynchronous Computation. We consider an asynchronous network of
“threshold gates”, defined as follows: each gate is characterized by a tuple
(n, θ, [l, u]) where n is the number of inputs, 0 ≤ θ ≤ n is the threshold, and l ≤ u
are lower and upper bounds on activation time. Each gate has an output which
is initially undefined. The gate becomes active during the time period [l, u].

http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org
http://www.syntcomp.org

Abstraction Refinement Algorithms for Timed Automata 37

During this time, if all inputs are defined, and if at least θ of the inputs have
value 1, then it sets its output to 1. At the end of the time period, it becomes deac-
tivated and the output becomes undefined again, until the next period, which
starts l time units after the deactivation. The goal is to check whether the given
gate can output 1 within a given time bound T .

Results. Figure 3 displays the results of our experiments. All algorithms were
given 8 GB of memory and a timeout of 30 min, and the experiments were run
on laptop with an Intel i7@3.2 Ghz processor running Linux. The symbolic algo-
rithm performs best among all on the monoprocess and multiprocess scheduling
benchmarks. Uppaal is the second best, but does not solve as many benchmarks
as our algorithm. Our enumerative algorithm quickly fails on these benchmarks,
often running out of memory. On asynchronous computation benchmarks, our
enumerative algorithm performs remarkably well, beating all other algorithms.
We ran our tools on the CSMA/CD benchmarks (with 3 to 12 processes); Uppaal
performs the best but our enumerative algorithm is slightly behind. The symbolic
algorithm does not scale, while PAT fails to terminate in all cases.

The tool used for the symbolic algorithm is open source and can be found at
https://github.com/osankur/symrob along with all the benchmarks.

Fig. 3. Comparison of our enumerative and symbolic algorithms (referred to as Abs-
enumerative and Abs-symbolic) with Uppaal and PAT. Each figure is a cactus plot for
the set of benchmarks: a point (X, Y) means X benchmarks were solved within time
bound Y .

www.dbooks.org

https://github.com/osankur/symrob
https://www.dbooks.org/

38 V. Roussanaly et al.

6 Conclusion and Future Work

There are several ways to improve the algorithm. Since the choice of interpolants
determines the abstraction function and the number of refinements, we assumed
that taking the minimal interpolant should be preferable as it should keep the
abstractions as coarse as possible. But it might be better to predict which inter-
polant is the most adapted for the rest of the computation in order to limit
future refinements. The number of refinement also depends on the search order,
and although it has already been studied in [23], it could be interesting to study
it in this case. Generally speaking, it is worth noting that we currently cannot
predict which (variant of) our algorithms is better suited for which model.

Several extensions of our algorithms could be developed, e.g. combining our
algorithms with other methods based on finer abstractions as in [22], integrating
predicate abstraction on discrete variables, or developing SAT-based versions of
our algorithms.

References

1. Althaus, E., et al.: Verification of linear hybrid systems with large discrete states-
paces using counterexample-guided abstraction refinement. Sci. Comput. Program.
1(48), 123–160 (2017)

2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

3. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

4. Baier, Ch., Katoen, J.-P.: Principles of Model-Checking. MIT Press, Cambridge
(2008)

5. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4 25

6. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds
in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24730-2 25

7. Behrmann, G.: Uppaal 4.0. In: Proceedings of the 3rd International Conference on
Quantitative Evaluation of Systems (QEST 2006), pp. 125–126. IEEE Computer
Society Press, September 2006

8. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

9. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing time Petri
nets. In: Mason, R.E.A. (eds.) Information Processing–Proceedings of the 9th IFIP
World Computer Congress (WCC 1983), pp. 41–46. North-Holland/IFIP, Septem-
ber 1983

10. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/3-540-44585-4_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-24730-2_25
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774

Abstraction Refinement Algorithms for Timed Automata 39

11. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the 4th ACM Symposium on Principles of Programming Languages
(POPL 1977), pp. 238–252. ACM Press, January 1977

14. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement
for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75454-1 10

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8 17

16. Ehlers, R., Fass, D., Gerke, M., Peter, H.-J.: Fully symbolic timed model checking
using constraint matrix diagrams. In: Proceedings of the 31st IEEE Symposium
on Real-Time Systems (RTSS 2010), pp. 360–371. IEEE Computer Society Press,
November 2010

17. Ehlers, R., Mattmüller, R., Peter, H.-J.: Combining symbolic representations for
solving timed games. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010.
LNCS, vol. 6246, pp. 107–121. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15297-9 10

18. He, F., Zhu, H., Hung, W.N.N., Song, X., Gu, M.: Compositional abstraction
refinement for timed systems. In: 2010 4th IEEE International Symposium on
Theoretical Aspects of Software Engineering, pp. 168–176, August 2010

19. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Con-
ference Record of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2002). ACM Press, January 2002. ACM SIG-
PLAN Notices 37(1), 58–70

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–
239. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 17

21. Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approx-
imations for efficient analysis of timed automata. In: Chakraborty, S., Kumar, A.
(eds.) Proceedings of the 31st Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2011), volume 13 of Leibniz Inter-
national Proceedings in Informatics, pp. 78–89. Leibniz-Zentrumfür Informatik,
December 2011

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 71

23. Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 124–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 9

24. McMillan, K.L.: Symbolic model checking—an approach to the state explosion
problem. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
(1993)

www.dbooks.org

https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1007/978-3-642-15297-9_10
https://doi.org/10.1007/3-540-44829-2_17
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1007/978-3-319-22975-1_9
https://www.dbooks.org/

40 V. Roussanaly et al.

25. Nguyen, T.K., Sun, J., Liu, Y., Dong, J.S., Liu, Y.: Improved BDD-based discrete
analysis of timed systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 326–340. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9 28

26. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE
Computer Society Press, October–November 1977

27. Roussanaly, V., Sankur, O., Markey, N.: Abstraction refinement algorithms for
timed automata. Technical report arXiv:1905.07365 arXiv, May 2019

28. Seshia, S.A., Bryant, R.E.: Unbounded, fully symbolic model checking of timed
automata using boolean methods. In: Hun Jr., W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 154–166. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45069-6 16

29. Tóth, T., Majzik, I.: Lazy reachability checking for timed automata using inter-
polants. In: Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp.
264–280. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 15

30. Wang, F.: Symbolic verification of complex real-time systems with clock-restriction
diagram. In: Kim, M., Chin, B., Kang, S., Lee, D. (eds.) Proceedings of the 21st
IFIP TC6/WG6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE 2001), volume 197 of IFIP Conference Proceed-
ings, pp. 235–250. Chapman & Hall, August 2001

31. Wang, W., Jiao, L.: Trace abstraction refinement for timed automata. In: Cassez,
F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 396–410. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11936-6 28

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-32759-9_28
https://doi.org/10.1007/978-3-642-32759-9_28
http://arxiv.org/abs/1905.07365
https://doi.org/10.1007/978-3-540-45069-6_16
https://doi.org/10.1007/978-3-540-45069-6_16
https://doi.org/10.1007/978-3-319-65765-3_15
https://doi.org/10.1007/978-3-319-11936-6_28
http://creativecommons.org/licenses/by/4.0/

Fast Algorithms for Handling Diagonal
Constraints in Timed Automata

Paul Gastin1 , Sayan Mukherjee2 , and B. Srivathsan2(B)

1 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
paul.gastin@lsv.fr

2 Chennai Mathematical Institute, Chennai, India
{sayanm,sri}@cmi.ac.in

Abstract. A popular method for solving reachability in timed automata
proceeds by enumerating reachable sets of valuations represented as
zones. A naïve enumeration of zones does not terminate. Various ter-
mination mechanisms have been studied over the years. Coming up with
efficient termination mechanisms has been remarkably more challenging
when the automaton has diagonal constraints in guards.

In this paper, we propose a new termination mechanism for timed
automata with diagonal constraints based on a new simulation relation
between zones. Experiments with an implementation of this simulation
show significant gains over existing methods.

Keywords: Timed automata · Diagonal constraints · Reachability ·
Zones · Simulations

1 Introduction

Timed automata have emerged as a popular model for systems with real-time
constraints [2]. Timed automata are finite automata extended with real-valued
variables called clocks. All clocks are assumed to start at 0, and increase at the
same rate. Transitions of the automaton can make use of these clocks to disallow
behaviours which violate timing constraints. This is achieved by making use of
guards which are constraints of the form x ≤ 5, x − y ≥ 3, y > 7, etc. where x, y
are clocks. A transition guarded by x ≤ 5 says that it can be fired only when
the value of clock x is ≤ 5. Another important feature is the reset of clocks in
transitions. Each transition can specify a subset of clocks whose values become
0 once the transition is fired. The combination of guards and resets allows to
track timing distance between events. A basic question that forms the core of
timed automata technology is reachability : given a timed automaton, does there

This work is supported by UMI Relax. The first author is partly supported by ANR
project TickTac (ANR-18-CE40-0015) and third author by CEFIPRA project IoTTTA
(Indo-French program in ICST-DST/CNRS ref. 2016-01). The second and third authors
are partly supported by Infosys Foundation (India) and Tata Consultancy Services -
Innovation Labs (Pune, India).
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 41–59, 2019.
https://doi.org/10.1007/978-3-030-25540-4_3

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_3&domain=pdf
http://orcid.org/0000-0002-1313-7722
http://orcid.org/0000-0001-6473-3172
http://orcid.org/0000-0003-2666-0691
https://doi.org/10.1007/978-3-030-25540-4_3
https://www.dbooks.org/

42 P. Gastin et al.

exist an execution from its initial state to a final state. This question is known
to be decidable [2]. Various algorithms for this problem have been studied over
the years and have been implemented in tools [6,21,26,28,31,32].

Since the clocks are real valued variables, the space of configurations of a
timed automaton (consisting of a state and a valuation of the clocks) is infinite
and an explicit enumeration is not possible. The earliest solution to reachability
was to partition this space into a finite number of regions and build a region
graph that provides a finite abstraction of the behaviour of the timed automa-
ton [2]. However, this solution was not practical. Subsequent works introduced
the use of zones [14]. Zones are special sets of clock valuations with efficient
data structures and manipulation algorithms [6]. Within zone based algorithms,
there is a division: forward analysis versus backward analysis. The current indus-
try strength tool UPPAAL [28] implements a forward analysis approach, as this
works better in the presence of other discrete data structures used in UPPAAL
models [9]. We focus on this forward analysis approach using zones in this paper.

The forward analysis of a timed automaton essentially enumerates sets of
reachable configurations stored as zones. Some extra care needs to be taken
for this enumeration to terminate. Traditional development of timed automata
made use of extrapolation operators over zones to ensure termination. These are
functions which map a zone to a bigger zone. Importantly, the range of these
functions is finite. The goal was to come up with extrapolation operators which
are sound: adding these extra valuations should not lead to new behaviours.
This is where the role of simulations between configurations was studied and
extrapolation operators based on such simulations were devised [14]. A certain
extrapolation operation, which is now known as ExtraM [5] was proposed and
reachability using ExtraM was implemented in tools [14].

A seminal paper by Bouyer [9] revealed that ExtraM is not correct in the
presence of diagonal constraints in guards. These are constraints of the form
x − y � c where � is either < or ≤, and c is an integer. Moreover, it was proved
that no such extrapolation operation would be correct when there are diago-
nal constraints present. It was shown that for automata without diagonal con-
straints (henceforth referred to as diagonal-free automata), the extrapolation
works. After this result, developments in timed automata reachability focussed
on the class of diagonal-free automata [4,5,23,24], and diagonal constraints were
mostly sidelined. All these developments have led to quite efficient algorithms
for diagonal-free timed automata.

Diagonal constraints are a useful modeling feature and occur naturally in
certain problems, especially scheduling [3,17,20,27] and logic-automata transla-
tions [16,25], also in [29]. It is however known that they do not add any expres-
sive power: every timed automaton can be converted into a diagonal-free timed
automaton [7]. This conversion suffers from an exponential blowup, which was
later shown to be unavoidable: diagonal constraints could potentially give expo-
nentially more succinct models [10]. Therefore, a good forward analysis algorithm
that works directly on a timed automaton with diagonal constraints would be
handy. This is the subject of this paper.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 43

Related Work. The first attempt at such an algorithm was to split the (extrap-
olated) zones with respect to the diagonal constraints present in the automa-
ton [6]. This gave a correct procedure, but since zones are split, an enumeration
starts from each small zone leading to an exponential blow-up in the number
of visited zones. A second attempt was to do a more refined conversion into a
diagonal free automaton by detecting “relevant” diagonals [13,30] in an iterative
manner. In order to do this, special data structures storing sets of sets of diagonal
constraints were utilized. In [18] we extended the works [5] and [23] on diagonal-
free automata to the case of diagonal constraints. All the approaches suffer from
either a space or time bottleneck and are incomparable to the efficiency and
scalability of tools for diagonal-free automata.

Our Contributions. The goal of this paper is to come up with fast algorithms for
handling diagonal constraints. Since the extrapolation based approach is a dead
end, we work with simulation between zones directly, as in [23] and [18]. We
propose a new simulation relation between zones that is correct in the presence
of diagonal constraints (Sect. 3). We give an algorithm to test this simulation
between zones (Sect. 4). We have incorporated this simulation test in (an older
version of) the tool TChecker [21] checking reachability for timed automata, and
compared our results with the state-of-the-art tool UPPAAL. Experiments show
an encouraging gain, both in the number of zones enumerated and in the time
taken by the algorithm, sometimes upto four orders of magnitude (Sect. 6). The
main advantage of our approach is that it does not split zones, and furthermore
it leverages the optimizations studied for diagonal-free automata.

From a technical point of view, our presentation does not make use of regions
and instead works with valuations, zones and simulation relations. We think
that this presentation provides a clearer perspective - as a justification of this
claim, we extend our simulation to timed automata with general updates of
the form x := c and x := y + d in transitions (where x, y are clocks and c, d
are constants) in a rather natural manner (Sect. 5). In general, reachability for
timed automata with updates is undecidable [12]. Some decidable cases have
been proposed for which the algorithms are based on regions. For decidable
subclasses containing diagonal constraints, no zone based approach has been
studied. Our proposed method includes these classes, and also benefits from
zones and standard optimizations studied for diagonal-free automata.

Missing proofs can be found in the full version of this paper [19].

2 Preliminaries

Let N be the set of natural numbers, R≥0 the set of non-negative reals and Z the
set of integers. Let X be a finite set of variables ranging over R≥0, called clocks.
Let Φ(X) denote the set of constraints ϕ formed using the following grammar:
ϕ := x � c | c � x | x − y � d | ϕ ∧ ϕ, where x, y ∈ X, c ∈ N, d ∈ Z

and � ∈ {<,≤}. Constraints of the form x � c and c � x are called non-diagonal
constraints and those of the form x − y � c are called diagonal constraints. We
have adopted a convention that in non-diagonal constraints x � c and c � x, the

www.dbooks.org

https://www.dbooks.org/

44 P. Gastin et al.

constant c is restricted to N. A clock valuation v is a function which maps every
clock x ∈ X to a real number v(x) ∈ R≥0. A valuation is said to satisfy a guard
g, written as v |= g if replacing every x in g with v(x) makes the constraint
g true. For δ ∈ R≥0 we write v + δ for the valuation which maps every x to
v(x) + δ. Given a subset of clocks R ⊆ X, we write [R]v for the valuation which
maps each x ∈ R to 0 and each x �∈ R to v(x).

A timed automaton A is a tuple (Q,X, q0, T, F) where Q is a finite set of
states, X is a finite set of clocks, q0 ∈ Q is the initial state, F ⊆ Q is a set
of accepting states and T ∈ Q × Φ(X) × 2X × Q is a set of transitions. Each
transition t ∈ T is of the form (q, g,R, q′) where q and q′ are respectively the
source and target states, g is a constraint called the guard, and R is a set of
clocks which are reset in t. We call a timed automaton diagonal-free if guards
in transitions do not use diagonal constraints.

A configuration of A is a pair (q, v) where q ∈ Q and v is a valuation. The
semantics of a timed automaton is given by a transition system SA whose states
are the configurations of A. Transitions in SA are of two kinds: delay transitions
are given by (q, v) δ−→ (q, v + δ) for all δ ≥ 0, and action transitions are given by
(q, v) t−→ (q′, v′) for each t := (q, g,R, q′), if v |= g and v′ = [R]v. We write δ,t−→ for
a sequence of delay δ followed by action t. A run of A is an alternating sequence of
delay-action transitions starting from the initial state q0 and the initial valuation
0 which maps every clock to 0: (q0,0)

δ0,t0−−−→ (q1, v1)
δ1,t1−−−→ · · · (qn, vn). A run of

the above form is said to be accepting if the last state qn ∈ F . The reachability
problem for timed automata is the following: given an automaton A, decide if
there exists an accepting run. This problem is known to be PSPACE-complete [2].
Since the semantics SA is infinite, solutions to the reachability problem work with
a finite abstraction of SA that is sound and complete. Before we explain one of
the popular solutions to reachability, we state a result which allows to convert
every timed automaton into a diagonal-free timed automaton.

Theorem 1. [7] For every timed automaton A, there exists a diagonal-free
timed automaton Adf s.t. there is a bijection between runs of A and Adf . The
number of states in Adf is 2d · n where d is the number of diagonal constraints
and n is the number of states of A.

The above theorem allows to solve the reachability of a timed automaton A
by first converting it into the diagonal free automaton Adf and then checking
reachability on Adf . However, this conversion comes with a systematic exponen-
tial blowup (in terms of the number of diagonal constraints present in A). It was
shown in [10] that such a blowup is unavoidable in general. We will now recall
the general algorithm for analyzing timed automata, and then move into specific
details which depend on whether the automaton has diagonal constraints or not.

Zones and Simulations. Fix a timed automaton A with clock set X for the
rest of the discussion in this section. As the space of valuations of A is infinite,
algorithms work with sets of valuations called zones. A zone is set of clock
valuations given by a conjunction of constraints of the form x − y � c, x � c and

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 45

c � x where c ∈ Z and � ∈ {<,≤}, for example the solutions of x−y < 5∧y ≤ 10
is a zone. The transition relation over configurations (q, v) is extended to (q, Z)
where Z is a zone. We define the following operations on zones given a guard g

and a set of clocks R: time elapse
−→
Z = {v + δ | v ∈ Z, δ ≥ 0}; guard intersection

Z∧g := {v | v ∈ Z and v |= g} and reset [R]Z := {[R]v | v ∈ Z}. It can be shown
that all these operations result in zones. Zones can be efficiently represented and
manipulated using Difference Bound Matrices (DBMs) [15].

The zone graph ZG(A) of timed automaton A is a transition system whose
nodes are of the form (q, Z) where q is a state of A and Z is a zone. For
each transition t := (q, g,R, q′) of A, and each zone (q, Z) there is a transi-
tion (q, Z) ⇒t (q′, Z ′) where Z ′ =

−−−−−−−→
[R](Z ∧ g). The initial node is (q0, Z0) where

q0 is the initial state of A and Z0 = {0 + δ | δ ≥ 0} is the zone obtained by
elapsing an arbitrary delay from the initial valuation. A path in the zone graph
is a sequence (q0, Z0) ⇒t0 (q1, Z1) ⇒t1 · · · ⇒tn−1 (qn, Zn) starting from the
initial node. The path is said to be accepting if qn is an accepting state. The
zone graph is known to be sound and complete for reachability.

Theorem 2. [14] A has an accepting run iff ZG(A) has an accepting path.

This does not yet give an algorithm as the zone graph ZG(A) is still not
finite. Moreover, there are examples of automata for which the reachable part
of ZG(A) is also infinite: starting from the initial node, applying the successor
computation leads to infinitely many zones. Two different approaches have been
studied to get finiteness, both of them based on the usage of simulation relations.

A (time-abstract) simulation relation (�) between configurations of A is a
reflexive and transitive relation such that (q, v) � (q′, v′) implies q = q′ and (1)
for every δ ≥ 0, there exists δ′ ≥ 0 such that (q, v + δ) � (q, v′ + δ′) and (2)
for every transition t of A, if (q, v) t−→ (q1, v1) then (q, v′) t−→ (q1, v

′
1) such that

(q1, v1) � (q1, v
′
1).

We say v � v′, read as v is simulated by v′ if (q, v) � (q, v′) for all states
q. The simulation relation can be extended to zones: Z � Z ′ if for every v ∈ Z
there exists v′ ∈ Z ′ such that v � v′. We write ↓Z for {v | ∃v′ ∈ Z s.t. v � v′}.
The simulation relation � is said to be finite if the function mapping zones Z to
the down sets ↓Z has finite range. We now recall a specific simulation relation
�LU [5,23]. Current algorithms and tools for diagonal-free automata are based
on this simulation. The conditions required for v �LU v′ ensure that when all
lower bound constraints c � x satisfy c ≤ L(x) and all upper bound constraints
x � c satisfy c ≤ U(x), whenever v satisfies a constraint, v′ will also satisfy it.

Definition 1 (LU-bounds and the relation �LU [5,23]). An LU -bounds
function is a pair of functions L : X �→ N ∪ {−∞} and U : X �→ N ∪ {−∞} that
map each clock to either a non-negative constant or −∞. Given an LU -bounds
function, we define v �LU v′ for valuations v, v′ if for every clock x ∈ X:

v′(x) < v(x) implies L(x) < v′(x) and v(x) < v′(x) implies U(x) < v(x).

www.dbooks.org

https://www.dbooks.org/

46 P. Gastin et al.

Reachability in Diagonal-Free Timed Automata. A natural method to
get finiteness of the zone graph is to prune the zone graph computation through
simulations Z � Z ′: do not explore a node (q, Z) if there is an already visited
node (q, Z ′) such that Z � Z ′. Since these simulation tests need to be done often
during the zone graph computation, an efficient algorithm for performing this
test is crucial. Note that Z � Z ′ iff Z ⊆ ↓Z ′. However, it is known that the set
↓Z ′ is not necessarily a zone (this was proved for ↓LUZ ′ in [5]), and hence no
simple zone inclusions are applicable. The first algorithms for timed automata
followed a different approach, which we call the extrapolation approach. In this
approach, whenever a new zone Z is discovered by the algorithm, a new zone
Extra(Z)(⊇ Z) gets computed and stored in the place of Z.

Reachability Algorithm Using Zone Extrapolation. The input to the algorithm is
a timed automaton A. The algorithm maintains two lists, Passed and Waiting.
Initially, the node (q0,Extra(Z0)) is added to the Waiting list (recall that (q0, Z0)
is the initial node of the zone graph ZG(A)). Wlog. we assume that q0 is not
accepting. The algorithm repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else compute Ẑ1 := Extra(Z1) and check if there
exists a node (q1, Z

′
1) in Passed or Waiting such that Ẑ1 ⊆ Z ′

1: if yes, ignore
the node (q1, Ẑ1), otherwise add (q1, Ẑ1) to Waiting.

Several extrapolation operators (ExtraM , ExtraLU , Extra+
LU) were introduced

in [5]. The function Extra+
LU has nice properties - (1) Extra+

LU(Z) ⊆ ↓LUZ and (2)
Extra+

LU(Z) is a zone for all Z. These properties give an algorithm that performs
only efficient zone operations: successor computations and zone inclusions.

Reachability Algorithm Using Simulations. The initial node (q0, Z0) is added
to the Waiting list. Wlog. we assume that q0 is not accepting. The algorithm
repeatedly performs the following steps:

Step 1. If Waiting is empty, then return “A has no accepting run”; else pick
(and remove) a node (q, Z) from Waiting. Add (q, Z) to Passed.

Step 2. For each transition t := (q, g,R, q1), compute the successor (q, Z) ⇒t

(q1, Z1): if Z1 �= ∅ perform the following operations - if q1 is accepting, return
“A has an accepting run”; else check if there exists a node (q1, Z

′
1) in Passed

or Waiting such that Z1 � Z ′
1: if yes, ignore the node (q1, Z1), otherwise add

(q1, Z1) to Waiting.

An O(|X|2) algorithm for Z �LU Z ′ was proposed in [23]. The efficiency of
this simulation check makes it well suited for use in practice. Moreover, as
Extra+

LU(Z) ⊆ ↓LUZ, we expect to get more simulations (and hence quicker ter-
mination) through �LU .

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 47

Reachability in the Presence of Diagonal Constraints. The �LU relation
is no longer a simulation when diagonal constraints are present. Moreover, it was
shown in [9] that no extrapolation operator (along the lines of Extra+

LU) can work
in the presence of diagonal constraints. The first option to deal with diagonals is
to use Theorem 1 to get a diagonal free automaton and then apply the methods
discussed previously. One problem with this is the systematic exponential blowup
introduced in the number of states of the resulting automaton. Another problem
is to get diagnostic information: counterexamples need to be translated back to
the original automaton [6]. Various methods have been studied to circumvent
the diagonal free conversion and instead work on the automaton with diagonal
constraints directly. We recall the approach used in the state-of-the-art tool
UPPAAL below.

Zone Splitting [6]. The paper introducing timed automata gave a notion of equiv-
alence between valuations v �M v′ parameterized by a function M mapping each
clock x to the maximum constant M among the guards of the automaton that
involve x. This equivalence is a finite simulation for diagonal-free automata.
Equivalence classes of �M are called regions. This was extended to the diagonal
case by [6] as: v �d

M v′ if v �M v′ and for all diagonal constraints g present in
the automaton, if v |= g then v′ |= g. The �d

M relation splits the regions further,
such that each region is either entirely included inside g, or entirely outside g for
each g. The next step is to use this notion of equivalence in zones. The paper [6]
follows the extrapolation approach: to each zone Z, an extrapolation operation
ExtraM(Z) is applied; this adds some valuations which are �M equivalent to
valuations in Z; then it is further split into multiple zones, so that each small
zone is either inside g or outside g for each diagonal constraint g. If d is the
number of diagonal constraints present in the automaton, this splitting process
can give rise to 2d zones for each zone Z. From each small zone, the zone graph
computation is started. Essentially, the exponential blow-up at the state level
which appeared in the diagonal-free conversion now appears in the zone level.

In this paper, we propose a new simulation to handle diagonal constraints.
This has two advantages - using this avoids the blow-up in the number of nodes
arising due to zone splitting, and the simulation test between zones has an effi-
cient implementation and is significantly quicker than the simulation of [18].

3 A New Simulation Relation

We start with a definition of a relation between timed automata configurations,
which in some sense “declares” upfront what we need out of a simulation relation
that can be used in a reachability algorithm. As we proceed, we will make its
description more concrete and give an effective simulation algorithm between
zones, that can be implemented. Fix a clock set X. This generates constraints
Φ(X).

Definition 2 (the relation �G). Let G be a (finite or infinite) set of con-
straints. We say v �G v′ if for all ϕ ∈ G and all δ ≥ 0, v + δ |= ϕ implies
v′ + δ |= ϕ.

www.dbooks.org

https://www.dbooks.org/

48 P. Gastin et al.

Our goal is to utilize the above relation in a simulation (as defined in p. xx)
for a timed automaton. Directly from the definition, we get the following lemma
which shows that the �G relation is preserved under time elapse.

Lemma 1. If v �G v′, then v + δ �G v′ + δ for all δ ≥ 0.

The other kind of transformation over valuations is resets. Given sets of
guards G1, G and a set of clocks R, we want to find conditions on G1 and G so
that if v �G1 v′ then [R]v �G [R]v′. To do this, we need to answer this question:
what guarantees should we ensure for v, v′ (via G1) so that [R]v �G [R]v′. This
motivates the next definition.

Definition 3 (weakest pre-condition of �G over resets). For a constraint
ϕ and a set of clocks R, we define a set of constraints wp(�ϕ, R) as follows:
when ϕ is of the form x � c or c � x, then wp(�ϕ, R) is empty if x ∈ R and is
{ϕ} otherwise; when ϕ is a diagonal constraint x − y � c, then wp(�ϕ, R) is:

– {x − y � c} if {x, y} ∩ R = ∅
– {x � c} if y ∈ R, x �∈ R and c ≥ 0
– {−c � y} if x ∈ R, y �∈ R and −c ≥ 0
– empty, otherwise.

For a set of guards G, we define wp(�G, R) :=
⋃

ϕ∈G wp(�ϕ, R).

Note that the relation �G is parameterized by a set of constraints. Addi-
tionally, we desire this set to be finite, so that the relation can be used in an
algorithm. We need to first link an automaton A with such a set of constraints.
One way to do it is to take the set of all guards present in the automaton and
to close it under weakest pre-conditions with respect to all possible subsets of
clocks. A better approach is to consider a set of constraints for each state, as in
[4] where the parameters for extrapolation (the maximum constants appearing
in guards) are calculated at each state.

Definition 4 (State based guards). Let A = (Q,X, q0, T, F) be a timed
automaton. We associate a set of guards G(q) for each state q ∈ Q, which is the
least set of guards (for the coordinate-wise subset inclusion order) such that for
every transition (q, g,R, q1): the guard g and the set wp(�G(q1), R) are present
in G(q). More precisely, {G(q)}q∈Q is the least solution to the following set of
equations written for each q ∈ Q:

G(q) =
⋃

(q,g,R,q1)∈T

{g} ∪ wp(�G(q1), R)

All constraints present in the set wp(�G(q1), R) contain constants which are
already present in �G(q1). The least solution to the above set of equations can
therefore be obtained by a fixed point computation which starts with G(q) set to⋃

(q,g,R,q1)∈T {g} and then repeatedly updates the weakest-preconditions. Since
no new constants are generated in this process, the fixed point computation
terminates. We now have the ingredients to define a simulation relation over
configurations of a timed automaton with diagonal constraints.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 49

Definition 5 (A-simulation). Let A = (Q,X, q0, T, F) be a timed automaton
and let the set of guards G(q) of Definition 4 be associated to every state q ∈
Q. We define a relation �A between configurations of A as (q, v) �A (q, v′) if
v �G(q) v′.

Lemma 2. The relation �A is a simulation on the configurations of timed
automaton A.

As pointed before, Definition 2 gives a declarative description of the simula-
tion and it is unclear how to work with it algorithmically, even when the set of
constraints G is finite. The main issue is with the ∀δ quantification, which is not
finite. We will first provide a characterization that brings out the fact that this
∀δ quantification is irrelevant for diagonal constraints (essentially because value
of v(x) − v(y) does not change with time elapse). Given a set of constraints G,
let G− ⊆ G be the set of non-diagonal constraints in G.

Proposition 1. v �G v′ iff v �G− v′ and for all diagonal constraints ϕ ∈ G, if
v |= ϕ then v′ |= ϕ.

It now amounts to solving the ∀δ problem for non-diagonals. It turns out
that the �LU simulation achieves this, almost. We will see this in more detail in
the next section.

4 Algorithm for Z �G Z′

Fix a finite set of guards G. Restating the definition of �G extended to zones:
Z �G Z ′ if for all v ∈ Z there exists a v′ ∈ Z ′ such that v �G v′. In this
section, we will view the characterization of �G as in Proposition 1 and give an
algorithm to check Z �G Z ′ that uses as an oracle a test Z �G− Z ′. We discuss
the computation of Z �G− Z ′ later in this section. We start with an observation
following from Proposition 1.

Lemma 3. Let ϕ := x − y � c be a diagonal constraint in G. Then Z �G Z ′ if
and only if Z ∩ ϕ �G′ Z ′ ∩ ϕ and Z ∩ ¬ϕ �G′ Z ′ where G′ = G \ {ϕ}.

If G has no diagonal constraints, Z �G Z ′ if and only if Z �G− Z ′.

This leads to the following algorithm consisting of two mutually recursive
procedures. This algorithm is essentially an implementation of the above lemma,
with two optimizations:

– we start with the non-diagonal check in Line 6 of Algorithm 1 - if this is
already violated, then the algorithm returns false;

– suppose Z �G− Z ′, the next task is to perform the checks in the first statement
of Lemma 3 - this is done by Algorithm 2; note however that when Algorithm
2 is called, we already have Z �G− Z ′, hence Z ∩ ¬ϕ �G− Z ′. Therefore we
use an optimization in Line 7 by calling Algorithm 2 directly (as the check in
Line 6 of Algorithm 1 will be redundant).

www.dbooks.org

https://www.dbooks.org/

50 P. Gastin et al.

1 check Z �G Z ′:
2 if Z = ∅ :
3 return true

4 if Z ′ = ∅ :
5 return false

6 if Z ��G− Z ′ :
7 return false

8 return Z �∗
G Z ′

Algorithm 1

1 check Z �∗
G Z ′:

2 if G does not contain any
diagonal constraints :

3 return true

4 pick a diagonal constraint
ϕ = x − y � c from G

5 G′ ←− G \ {ϕ}
6 if Z ∩ ¬ϕ �= ∅ :
7 if Z ∩ ¬ϕ ��∗

G′ Z ′ :
8 return false

9 return Z ∩ ϕ �G′ Z ′ ∩ ϕ

Algorithm 2

Computing Z �G− Z′. We will use �LU to approximate �G− : in our imple-
mentation of the above algorithms, we replace Z �G− Z ′ with Z �LU Z ′. This
works because for an appropriate choice of LU (explained below), we have
Z �LU(G) Z ′ ⇒ Z �G− Z ′. The converse is not true as the LU bounds func-
tions cannot distinguish between guards with < and ≤ comparisons. Therefore,
the �LU simulation does not characterize v �G− v′ completely. Although we are
aware of the (rather technical) modifications to �LU simulation that are needed
for this characterization, we choose to use the existing �LU directly as it is safe
to do so and it has already been implemented in tools. This gives us a finer
simulation than v �G− v′.

Definition 6 (LU-bounds from G). Let G be a finite set of constraints. We
define LU(G) to denote the pair of functions LG and UG defined as follows:

LG(x) =

{
−∞ if there is no guard of the form c � x in G
max{c | c � x ∈ G} otherwise

UG(x) =

{
−∞ if there is no guard of the form x � c in G
max{c | x � c ∈ G} otherwise

Lemma 4. For every set of constraints G, v �LU(G) v′ implies v �G− v′.

The above observations call for the next definition and subsequent lemmas.

Definition 7 (approximating �G). Let G be a finite set of constraints. We
define a relation �LU

G as follows: v �LU
G v′ if v �LU(G) v′ and for all diagonal

constraints ϕ ∈ G, if v |= ϕ then v′ |= ϕ. Similarly, define �LU
A as (q, v) �LU

A
(q, v′) if v �LU

G(q) v′.

Lemma 5. The relation �LU
A is a finite simulation on the configurations of A.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 51

The above lemma and the fact that Z �LU(G) Z ′ can be checked in O(|X|2)
[23,33], imply the following theorem.

Theorem 3. When using Z �LU(G) Z ′ in the place of Z �G− Z ′, the algorithm
is correct and it terminates in O(2d · |X|2) where d is the number of diagonal
guards in G.

From a complexity viewpoint, this algorithm is not efficient since it makes
an exponential number of calls in the number of diagonal constraints (in fact
this may not be avoidable due to Lemma 6, which follows from the NP-hardness
result in [18]). Although the above algorithm does involve many calls, the internal
operations involved in each call are simple zone manipulations. Moreover, the
preliminary checks (for instance line 6 of Algorithm 1) cut short the number
of calls. This is visible in our experiments which are very good, especially with
respect to running time, as compared to other methods. A similar hardness was
shown for a different simulation in [18], but the implementation there indeed
witnessed the hardness, as the time taken by that algorithm was unsatisfactory.

Lemma 6. Deciding Z ��LU
G Z ′ is NP-complete.

5 Simulations for Updatable Timed Automata

In the timed automata considered so far, clocks are allowed to be reset to 0 along
transitions. We consider in this section more sophisticated transformations to
clocks in transitions. These are called updates. An update up : R

|X|
≥0 �→ R

|X| is a
function mapping non-negative |X|-dimensional reals (valuations) v to general
|X|-dimensional reals (which may apriori not be valuations as the coordinates
may be negative). The syntax of the update function up is given by a set of
atomic updates upx to each x ∈ X, which are of the form x := c or x := y + d
where c ∈ N, d ∈ Z and y ∈ X (possibly equal to x). Note that we want d to be
an integer, since we allow for decrementing clocks, and on the other hand c ∈ N

since we have non-negative clocks. Given a valuation v and an update up, the
valuation up(v) is:

up(v)(x) :=

{
c if upx is x := c

v(y) + d if upx is x := y + d

Note that in general, due to the presence of updates x := y+d, the update up(v)
may not yield a clock valuation. However, when it does give a valuation, it can
be used as a transformation in timed automata transitions. We say up(v) ≥ 0 if
up(v)(x) ≥ 0 for all clocks x ∈ X.

An updateable timed automaton (UTA) A = (Q,X, q0, T, F) is an extension
of a classic timed automaton with transitions of the form (q, g, up, q′) where up
is an update. Semantics extend in the natural way: delay transitions remain the
same, and for action transitions t := (q, g, up, q′) we have (q, v) t−→ (q′, v′) if v |= g,
up(v) ≥ 0, and v′ = up(v). We allow the transition only if the update results

www.dbooks.org

https://www.dbooks.org/

52 P. Gastin et al.

in a valuation. The reachability problem for these automata is known to be
undecidable in general [12]. Various subclasses with decidable reachability have
been discussed in the same paper. Decidability proofs in [12] take the following
flavour, for a given automaton A: (1) divide the space of all valuations into a
finite number of equivalence classes called regions (2) to build the parameters for
the equivalence, derive a set of diophantine equations from the guards of A; if
they have a solution then construct the quotient graph of the equivalence (called
region graph) parameterized by the obtained solution and check reachability on
it; if the equations have no solution, output that reachability for A cannot be
answered. Sufficient conditions on the nature of the updates that give a solution
to the diophantine equations have been tabulated in [12]. When the automaton
is diagonal-free, the “region-equivalence” can be used to build an extrapolation
operation which in turn can be used in a reachability algorithm with zones.
When the automaton contains diagonals, the region-equivalence is used to only
build a region graph - no effective zone based approach has been studied.

We use a similar idea, but we have two fundamental differences: (1) we want
to obtain reachability through the use of simulations on zones, and (2) we build
equations over sets of guards as in Definition 4. The advantage of this approach
is that this allows the use of coarser simulations over zones. Even for automata
with diagonal constraints and updates, we get a zone based algorithm, instead
of resorting to regions which are not efficient in practice.

The notion of simulations as in p. xx remains the same, now using the seman-
tics of transitions with updates. We will re-use the simulation relation �G. We
need to extend Definition 3 to incorporate updates. We do this below. Here is a
notation: for an update function up, we write up(x) to be c if upx is x := c, and
up(x) to be y + c if upx is x := y + c.

Definition 8 (weakest pre-condition of �G over updates).
Let up be an update.
For a constraint ϕ of the form x � c or c � x, we define wp(�ϕ, up) to be

respectively {up(x) � c} or {c � up(x)} if these resulting constraints are of the
form z � d or d � z with z ∈ X and d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a constraint ϕ : x−y � c, we define wp(�ϕ, up) to be {up(x)−up(y) � c}
if this constraint is either a diagonal using different clocks, or it is of the form
z � d or d � z with d ≥ 0, otherwise wp(�ϕ, up) is empty.

For a set of guards G, we define wp(�G, up) :=
⋃

ϕ∈G wp(�ϕ, up).

Some examples: wp(x ≤ 5, x := x + 10) is empty, since up(x) is x + 10, and
the guard x+10 ≤ 5 is not satisfiable; wp(x ≤ 5, x := x− 10) is x ≤ 15, wp(x ≤
5, x := c) is empty, wp(x−y ≤ 5, 〈x := z1, y := z2+10〉) will be z1−(z2+10) ≤ 5,
giving the constraint z1 − z2 ≤ 15, wp(x − y ≤ 5, 〈x := z + c1, y := z + c2〉) is
empty, wp(x − y ≤ 5, 〈x := c1, y := z + c2〉) is c = c1 − 5 − c2 ≤ z if c ≥ 0 and is
empty otherwise.

Definition 9 (State based guards). Let A = (Q,X, q0, T, F) be a UTA.
We associate a set of constraints G(q) for each state q ∈ Q, which is the least
set of constraints (for the coordinate-wise subset inclusion order) such that for

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 53

every transition (q, g, up, q1): the guard g and the set wp(�G(q1), up) are present
in G(q), and in addition constraints that allow the update to happen are also
present in G. The last condition is given by the weakest precondition of the set
of constraints {x ≥ 0 | x ∈ X}. Overall, {G(q)}q∈Q is the least solution to the
following set of equations, for each q ∈ Q:

G(q) =
⋃

(q,g,up,q1)∈T

({g} ∪ wp(�{x≥0|x∈X}, up) ∪ wp(�G(q1), up)
)

The least solution {G(q)}q∈Q is said to be finite if each G(q) is a finite set of
constraints.

In contrast to the simple reset case, the above set of equations may not have
a finite solution. Consider a self-looping transition: (q, x � c, x := x − 1, q). We
require x � c ∈ G(q). Now, wp(x � c, x := x − 1) is x � c + 1 which should be
in G(q) according to the above equation. Continuing this process, we need to
add x � d for every natural number d ≥ c. Indeed this is consistent with the
undecidability of reachability when subtraction updates are allowed. We deal
with the subject of finite solutions to the above equations later in this section.
On the other hand, when the above system does have a solution with finite G(q)
at every q, we can use the A simulation of Definition 5 and its approximation
�LU

A to get an algorithm.

Proposition 2. Let A = (Q,X, q0, T, F) be a UTA. Let {G(q)}q∈Q be the least
solution to the equations given in Definition 9. Then, the relation �A is a sim-
ulation on the configurations of A.

Lemma 7. For a UTA A, assume that the least solution {G(q)}q∈Q to the state-
based guards equations is finite. Then the relation �LU

A is a finite simulation on
the configurations of A.

Finite Solution to the State-Based Guards Equations. The least solution
to the equations of Definition 9 can be obtained by a standard Kleene iteration
for fixed points computation. For each i ≥ 0 and each state q, define:

G0(q) =
⋃

(q,g,up,q′)∈T

{g} ∪ wp(�{x≥0|x∈X}, up)

Gi+1(q) =
⋃

(q,g,up,q′)∈T

Gi(q) ∪ wp(�Gi(q′), up)

The iteration stabilizes when there exists a k satisfying Gk+1(q) = Gk(q) for all
q. At stabilization, the values Gk(q) satisfy the equations of Definition 9, and
give the required G(q). However, as we mentioned earlier, this iteration might
not stabilize at any k. We will now develop some observations that will help
detect after finitely many steps if the iteration will stabilize or not.

Suppose we colour the set Gi+1(q) to red if either there exists a diagonal
constraint x − y � c ∈ Gi+1(q) \ Gi(q) (a new diagonal is added) or there exists a

www.dbooks.org

https://www.dbooks.org/

54 P. Gastin et al.

non-diagonal constraint x � c or c � x in Gi+1(q) \ Gi(q) such that the constant
c is strictly bigger than c′ for respectively every non-diagonal x � c′ or c′ � x
in Gi(q) (a non-diagonal with a bigger constant is added). If this condition is
not applicable, we colour the set Gi+1(q) green. The next observations say that
the iteration terminates iff we reach a stage where all sets are green. Intuitively,
once we reach green, the only constraints that can be added are non-diagonals
having smaller (non-negative) constants and hence the procedure terminates.

Lemma 8. Let i > 0. If Gi(q) is green for all q, then Gi+1(q) is green for all q.

Lemma 9. Let K = 1+ |Q| · |X| · (|X|+1). If there is a state p such that GK(p)
is red, then there is no i such that Gi(q) is green for all q.

As to why the bound K = 1 + |Q| · |X| · (|X| + 1) in the lemma above: a red
state at stage i arises due to the addition of a constraint ϕi at state pi, which in
turn depends on a state pi−1 marked red at stage i−1 due to constraint ϕi−1. If
we iterate sufficiently long, we will hit a state p, a sequence of transitions from
p to p and a constraint ϕ such that computing the weakest precondition over
this loop will give a new constraint with the same set of clocks as ϕ but with a
different constant. This part can be iterated infinitely often.

Proposition 3. The least solution of the local constraint equations for a UTA
is finite iff GK(q) is green for all q and where K = 1 + |Q| · |X| · (|X| + 1).

Theorem 4. Let A be a UTA. It is decidable whether the equations in Defini-
tion 9 have a finite solution. When these equations do have a finite solution, zone
graph enumeration using �LU

A is a sound, complete and terminating procedure
for the reachability problem.

All decidable classes of [12] can be shown decidable with our approach, by
showing stabilization of the G(q) computation.

Lemma 10. Reachability is decidable in UTA where: guards are non-diagonals
and updates are of the form x := c, x := y, x := y + c where c ≥ 0 or, guards
include diagonal constraints and updates are of the form x := c, x := y.

6 Experiments

We have implemented the reachability algorithm for timed automata with diag-
onal constraints (and only resets as updates) based on the simulation approach
(p. xx) using the �LU

A simulation (Definition 7) for pruning zones. The algorithm
for Z �LU

G Z ′ comes from Sect. 4. Experiments are reported in Table 1. We take
model Cex from [8,30] and Fischer from [30]. We are not aware of any other
“standard” benchmarks containing diagonal constraints. In addition to these two
models, we introduce a new benchmark. This is an extension of the job-shop
scheduling using (diagonal-free) timed automata [1]. Here the tasks within a
job were logically independent. We add some timing dependency between them

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 55

Table 1. Experiments: the column #D gives the number of diagonal constraints. Four
methods have been reported in the table. First two methods, TChecker with our sim-
ulation relation �LU

G and UPPAAL engine for diagonals, have been run on A, the
automata containing diagonal constraints. Whereas, the third and fourth methods are
running diagonal-free engines of UPPAAL and TChecker on Adf , a diagonal-free equiv-
alent of A. Experiments were run on macOS X with 2.3 GHz Intel core i5 processor,
and 8 GB RAM. Time is reported in seconds. We set a timeout of 15min.

Model #D A: contains diagonals Adf : diagonal-free equivalent of A
TChecker + �LU

G UPPAAL UPPAAL TChecker

Time Nodes count Time Nodes count Time Nodes count Time Nodes count

Cex 2 4 0.047 241 0.026 2180 0.005 1039 0.067 1039

Cex 3 6 7.399 7111 111.168 182394 1.028 60982 40.092 60982

Cex 4 8 857.662 185209 Timeout - 734.543 3447119 Timeout -

Fischer 4 4 0.032 452 307.836 357687 0.009 1815 0.100 1815

Fischer 5 5 0.257 1842 Timeout - 0.116 12511 1.856 12511

Fischer 7 7 15.032 26812 Timeout - 174.560 693603 Timeout -

Job Shop 3 12 0.420 278 23.093 31711 0.003 845 0.312 845

Job Shop 5 20 285.421 10592 Timeout - 4.633 179607 150.811 179607

which gets naturally modeled using diagonal constraints. Each model considered
above is a product of a number of k timed automata. In the table we write the
name of the model and the number k of automata involved in the product. We
also report the number of diagonal constraints in each of them.

Experimental Results. We report the results of four methods of handling diago-
nal constraints, as mentioned in the caption of Table 1. Under each method, we
report on the number of zones enumerated and the time taken. The first method
gives a huge gain over the second one (upto four orders of magnitude in the
number of nodes, and even better for time) and gives a less marked, but still sig-
nificant, gain over the third and fourth methods. We provide a brief explanation
of this phenomenon. The performance of the reachability algorithm is dependent
on three factors:

– parameters of extrapolation or simulation: M -simulations which use the max-
imum constant appearing in the guards, versus the LU -simulations which
make a distinction between lower bound guards c � x and upper bound
guards x � c (refer to [5] for the exact definitions of extrapolations based
on these parameters, and [23] for simulations based on these parameters);
LU -simulations are superior to M -simulations.

– computation of the parameters: global parameters which associate a bound
to each clock versus the more local state based parameters as in Definition 4
which associate a set of bounds functions to each state [4]; local bounds are
superior to global bounds.

– when diagonal constraints are present, whether zones get split or not: each
time a zone gets split, new enumerations start from each of the new nodes;
clearly, a no-splitting-of-zones approach is superior to zone splitting.

www.dbooks.org

https://www.dbooks.org/

56 P. Gastin et al.

Algorithm of column 1 uses the superior heuristic in all the three optimiza-
tions above. The no-splitting-of-zones was possible thanks to our simulation app-
roach, which temporarily splits zones for checking Z �LU

G Z ′, but never starts a
new exploration from any of the split nodes. The algorithm of column 2, which is
implemented in the current version UPPAAL 4.1 uses the inferior heuristic in all
the three above. In particular, it is not clear how the extrapolation approach can
avoid the zone splitting in an efficient manner. The superiority of our approach
gets amplified (by multiplicative factors) when we consider bigger products with
many more diagonals. In the third and fourth methods, we give a diagonal free
equivalent of the original model (c.f. Theorem 1) and use the UPPAAL and
TChecker engines respectively, for diagonal free timed automata. The UPPAAL
diagonal free engine is highly optimized, and makes use of the superior heuristics
in the first two optimizations mentioned above (the third heuristic is not appli-
cable now as it is a diagonal free automaton). The third and fourth methods
can be considered as a good approximation of the zone splitting approach to
diagonal constraints using LU -abstractions and local guards.

The second and the third methods are the only possibilities of verifying timed
models coming with diagonal constraints in UPPAAL. Both these approaches
are in principle prone to a 2#D blowup compared to the first approach, where
#D gives the number of diagonal constraints. The table shows that a good
extent of this blowup indeed happens. The UPPAAL diagonal free engine uses
“minimal constraint systems” [6] for representing zones, whereas TChecker uses
DBMs [15]. This explains why even with the same number of nodes visited,
UPPAAL performs better in terms of time. We have not included in the table
the comparison with two other works dealing with the same problem: the refined
diagonal free conversion [30] and the extension of LU simulation for diagonals
[18]. However, our results are better than the tables reported in these papers.

7 Conclusion

We have proposed a new algorithm for handling diagonal constraints in timed
automata, and extended it to automata with general updates. Our approach
is based on a simulation relation between zones. From our preliminary exper-
iments, we can infer that the use of simulations is indispensable in the pres-
ence of diagonal constraints as zone-splitting can be avoided. Moreover, the fact
that the simulation approach stores the actual zones (as opposed to abstracted
zones in the extrapolation approach) has enabled optimizations for diagonal-free
automata that work with dynamically changing simulation parameters (LU -
bounds), which are learnt as and when the zones are expanded [22]. Working
with actual zones is also convenient for finding cost-optimal paths in priced timed
automata [11]. Investigating these in the presence of diagonal constraints is part
of future work. Currently, we have not implemented our approach for updateable
timed automata. This will also be part of our future work.

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 57

Working directly with a model containing diagonal constraints could be con-
venient (both during modeling, and during extraction of diagnostic traces) and
can also potentially give a smaller automaton to begin with. We believe that our
experiments provide hope that diagonal constraints can indeed be used.

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor.
Comput. Sci. 354(2), 272–300 (2006). https://doi.org/10.1016/j.tcs.2005.11.018

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

3. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES b— a tool
for modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0_32

4. Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed
automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 254–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_18

5. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006). https://
doi.org/10.1007/s10009-005-0190-0

6. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2,3),
145–182 (1998). https://doi.org/10.3233/FI-1998-36233

8. Bouyer, P.: Untameable timed automata!. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36494-3_54

9. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst.
Des. 24(3), 281–320 (2004). https://doi.org/10.1023/B:FORM.0000026093.21513.
31

10. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. J.
Autom. Lang. Comb. 10(4), 393–405 (2005). https://doi.org/10.25596/jalc-2005-
393

11. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4_28

12. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004). https://doi.org/10.1016/j.tcs.2004.04.003

13. Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed
automata: forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005). https://
doi.org/10.1007/11603009_10

14. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

www.dbooks.org

https://doi.org/10.1016/j.tcs.2005.11.018
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/3-540-46002-0_32
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/3-540-36577-X_18
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/s10009-005-0190-0
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.3233/FI-1998-36233
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.1023/B:FORM.0000026093.21513.31
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.25596/jalc-2005-393
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1016/j.tcs.2004.04.003
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/11603009_10
https://doi.org/10.1007/BFb0054180
https://www.dbooks.org/

58 P. Gastin et al.

15. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

16. Ferrère, T.: The compound interest in relaxing punctuality. In: Havelund, K.,
Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 147–164.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_9

17. Fersman, E., Pettersson, P., Yi, W.: Timed automata with asynchronous processes:
schedulability and decidability. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002.
LNCS, vol. 2280, pp. 67–82. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-46002-0_6

18. Gastin, P., Mukherjee, S., Srivathsan, B.: Reachability in timed automata with
diagonal constraints. In: Schewe, S., Zhang, L. (eds.) CONCUR 2018. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 118, pp. 28:1–28:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://
doi.org/10.4230/LIPIcs.CONCUR.2018.28

19. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. CoRR abs/1904.08590 (2019). http://arxiv.org/
abs/1904.08590

20. Hatvani, L., David, A., Seceleanu, C., Pettersson, P.: Adaptive task automata
with earliest-deadline-first scheduling. In: Proceedings of the 14th International
Workshop on Automated Verification of Critical Systems (AVoCS 2014), vol. 70.
Electronic Communications of the EASST (2014). https://doi.org/10.14279/tuj.
eceasst.70.975

21. Herbreteau, F., Point, G.: TChecker, April 2019 https://github.com/fredher/
tchecker (v02)

22. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed
automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
990–1005. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_71

23. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Better abstractions for timed
automata. Inf. Comput. 251, 67–90 (2016). https://doi.org/10.1016/j.ic.2016.07.
004

24. Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 124–139. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1_9

25. Ho, H.: Revisiting timed logics with automata modalities. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2019, pp. 67–76. ACM, New York (2019). https://doi.org/10.1145/
3302504.3311818

26. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

27. Krčál, P., Yi, W.: Decidable and undecidable problems in schedulability analysis
using timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS,
vol. 2988, pp. 236–250. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24730-2_20

28. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–
152 (1997). https://doi.org/10.1007/s100090050010

https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/978-3-319-95582-7_9
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.1007/3-540-46002-0_6
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.28
http://arxiv.org/abs/1904.08590
http://arxiv.org/abs/1904.08590
https://doi.org/10.14279/tuj.eceasst.70.975
https://doi.org/10.14279/tuj.eceasst.70.975
https://github.com/fredher/tchecker
https://github.com/fredher/tchecker
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1007/978-3-642-39799-8_71
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1016/j.ic.2016.07.004
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1007/978-3-319-22975-1_9
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1145/3302504.3311818
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/978-3-540-24730-2_20
https://doi.org/10.1007/s100090050010

Fast Algorithms for Handling Diagonal Constraints in Timed Automata 59

29. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 11:1–11:38
(2010). https://doi.org/10.1145/1734229.1734230

30. Reynier, P.A.: Diagonal constraints handled efficiently in UPPAAL. In: Research
report LSV-07-02. Laboratoire Spécification et Vérification, ENS Cachan, France
(2007)

31. Wang, F.: Efficient verification of timed automata with BDD-like data structures.
Int. J. Softw. Tools Technol. Transf. 6(1), 77–97 (2004). https://doi.org/10.1007/
s10009-003-0135-4

32. Yovine, S.: Kronos: a verification tool for real-time systems. (Kronos user’s manual
release 2.2). STTT 1, 123–133 (1997). https://doi.org/10.1007/s100090050009

33. Zhao, J., Li, X., Zheng, G.: A quadratic-time dbm-based successor algorithm for
checking timed automata. Inf. Process. Lett. 96(3), 101–105 (2005). https://doi.
org/10.1016/j.ipl.2005.05.027

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1145/1734229.1734230
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s10009-003-0135-4
https://doi.org/10.1007/s100090050009
https://doi.org/10.1016/j.ipl.2005.05.027
https://doi.org/10.1016/j.ipl.2005.05.027
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Safety and Co-safety Comparator
Automata for Discounted-Sum Inclusion

Suguman Bansal(B) and Moshe Y. Vardi

Rice University, Houston, TX 77005, USA
sugumanb@gmail.com

Abstract. Discounted-sum inclusion (DS-inclusion, in short) formalizes
the goal of comparing quantitative dimensions of systems such as cost,
resource consumption, and the like, when the mode of aggregation for the
quantitative dimension is discounted-sum aggregation. Discounted-sum
comparator automata, or DS-comparators in short, are Büchi automata
that read two infinite sequences of weights synchronously and relate their
discounted-sum. Recent empirical investigations have shown that while
DS-comparators enable competitive algorithms for DS-inclusion, they
still suffer from the scalability bottleneck of Büchi operations.

Motivated by the connections between discounted-sum and Büchi
automata, this paper undertakes an investigation of language-theoretic
properties of DS-comparators in order to mitigate the challenges of Büchi
DS-comparators to achieve improved scalability of DS-inclusion. Our
investigation uncovers that DS-comparators possess safety and co-safety
language-theoretic properties. As a result, they enable reductions based
on subset construction-based methods as opposed to higher complex-
ity Büchi complementation, yielding tighter worst-case complexity and
improved empirical scalability for DS-inclusion.

1 Introduction

The analysis of quantitative dimensions of computing systems such as cost,
resource consumption, and distance metrics [6,10,28] has been studied thoroughly
to design efficient computing systems. Cost-aware program-synthesis [14,16] and
low-cost program-repair [25] have found compelling applications in robotics [24,
29], education [22], and the like.Quantitative verification facilitates efficient system
design by automatically determining if a system implementation is more efficient
than a specification model. Investigations in quantitative verification have demon-
strated their high computational complexity and practically intractable [17,23].
This work addresses practical intractability of quantitative verification.

At the core of quantitative verification lies the problem of quantitative inclu-
sion which formalizes the goal of determining which of two given systems is more
efficient [17,23,31]. In quantitative inclusion, quantitative systems are abstracted
as weighted automata [7,21,32]. A run in a weighted automaton is associated
with a sequence of weights. The quantitative dimension of these runs is deter-
mined by the weight of runs, which is computed by taking an aggregate of the
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 60–78, 2019.
https://doi.org/10.1007/978-3-030-25540-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_4

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 61

run’s weight sequence. Quantitative inclusion can be thought of as the quanti-
tative generalization of (qualitative) language inclusion.

A commonly appearing mode of aggregation is that of Discounted-sum (DS)
aggregation which captures the intuition that weights incurred in the near future
are more significant than those incurred later on [19]. The convergence of DS
aggregation for all bounded infinite weight-sequences makes it a preferred mode
of aggregation across domains: Reinforcement learning [37], planning under
uncertainty [34], and game-theory [33]. This work examines the problem of
Discounted-sum inclusion or DS-inclusion that is quantitative inclusion when
discounted sum is the mode of aggregation.

In theory, DS-inclusion is PSPACE-complete [12]. Recent algorithmic
approaches have tapped into language-theoretic properties of discounted-sum
aggregate function [12,18] to design practical algorithms for DS-inclusion [11,12].
These algorithms use DS-comparator automata (DS-comparator, in short) as
their main technique, and are purely automata-theoretic. While these algorithms
outperform other existing approaches for DS-inclusion in runtime [15,17], even
these do not scale well on weighted-automata with more than few hundreds
of states [11]. This work contributes novel techniques and algorithms for DS-
inclusion to address the scalability challenge of DS-inclusion

An in-depth examination of the DS-comparator based algorithm exposes
their scalability bottleneck. DS-comparator is a Büchi automaton that relates
the discounted-sum aggregate of two (bounded) weight-sequences A and B by
determining the membership of the interleaved pair of sequences (A,B) in the
language of the comparator. As a result, DS-comparators reduce DS-inclusion to
language inclusion between (non-deterministic) Büchi automaton. In spite of the
fact that many techniques have been proposed to solve Büchi language inclusion
efficiently in practice [4,20], none of them can avoid at least an exponential blow-
up of 2O(n log n), for an n-sized input, caused by a direct or indirect involvement
of Büchi complementation [36,40].

This work meets the scalability challenge of DS-inclusion by delving deeper
into language-theoretic properties of discounted-sum aggregate functions [18] in
order to obtain algorithms for DS-inclusion that render both tighter theoretical
complexity and improved scalability. Specifically, we prove that DS-comparators
are expressed as safety automata or co-safety automata [26] (Sect. 3.1), and have
compact deterministic constructions (Sect. 3.2). Safety and co-safety automata
have the property that their complementation is performed by simpler and lower
2O(n)-complexity subset-construction methods [27]. As a result, they facilitate
a procedure for DS-inclusion that uses subset-construction based intermediate
steps instead of Büchi complementation, yielding an improvement in theoretical
complexity from 2O(n·log n) to 2O(n). Our subset-construction based procedure
has yet another advantage over Büchi complementation as they support efficient
on-the-fly implementations, yielding practical scalability as well (Sect. 4).

An empirical evaluation of our prototype tool QuIPFly for the proposed pro-
cedure against the prior DS-comparator algorithm and other existing approaches
for DS-inclusion shows that QuIPFly outperforms them by orders of magnitude
both in runtime and the number of benchmarks solved (Sect. 4).

www.dbooks.org

https://www.dbooks.org/

62 S. Bansal and M. Y. Vardi

2 Preliminaries and Related Work

A weight-sequence, finite or infinite, is bounded if the absolute value of all of its
elements are bounded by a fixed number.

Büchi Automaton: A Büchi automaton is a tuple A = (S , Σ, δ, sI , F), where
S is a finite set of states, Σ is a finite input alphabet, δ ⊆ (S × Σ × S) is the
transition relation, state sI ∈ S is the initial state, and F ⊆ S is the set of
accepting states [39]. A Büchi automaton is deterministic if for all states s and
inputs a, |{s′|(s, a, s′) ∈ δ for some s′}| ≤ 1. Otherwise, it is nondeterministic.
A Büchi automaton is complete if for all states s and inputs a, |{s′|(s, a, s′) ∈
δ for some s′}| ≥ 1. For a word w = w0w1 · · · ∈ Σω, a run ρ of w is a sequence of
states s0s1 . . . s.t. s0 = sI , and τi = (si, wi, si+1) ∈ δ for all i. Let inf (ρ) denote
the set of states that occur infinitely often in run ρ. A run ρ is an accepting run
if inf (ρ) ∩ F �= ∅. A word w is an accepting word if it has an accepting run.
The language of Büchi automaton A, denoted by L(A) is the set of all words
accepted by A. By abuse of notation, we write w ∈ A and ρ ∈ A if w and ρ are
an accepting word and an accepting run of A. Büchi automata are closed under
set-theoretic union, intersection, and complementation [39].

Safety and Co-safety Properties: Let L ⊆ Σω be a language over alphabet Σ.
A finite word w ∈ Σ∗ is a bad prefix for L if for all infinite words y ∈ Σω,
x · y /∈ L. A language L is a safety language if every word w /∈ L has a bad
prefix for L. A language L is a co-safety language if its complement language
is a safety language [5]. When a safety or co-safety language is an ω-regular
language, the Büchi automaton representing it is called a safety or co-safety
automaton, respectively [26]. Wlog, safety and co-safety automaton contain a
sink state from which every outgoing transitions loops back to the sink state
and there is a transition on every alphabet symbol. All states except the sink
state are accepting in a safety automaton, while only the sink state is accepting
in a co-safety automaton. Unlike Büchi complementation, complementation of
safety and co-safety automaton is conducted by simpler subset construction with
a lower 2O(n) blow-up. The complementation of safety automaton is a co-safety
automaton, and vice-versa. Safety automata are closed under intersection, and
co-safety automata are closed under union.

Comparator Automaton: For a finite-set of integers Σ, an aggregate function
f : Z

ω → R, and equality or inequality relation R ∈ {<,>,≤,≥,=, �=}, the
comparison language for f with relation R is a language of infinite words over the
alphabet Σ × Σ that accepts a pair (A,B) iff f(A) R f(B) holds. A comparator
automaton (comparator, in short) for aggregate function f and relation R is an
automaton that accepts the comparison language for f with R [12]. A comparator
is said to be regular if its automaton is a Büchi automaton.

Weighted Automaton: A weighted automaton over infinite words is a tuple
A = (M, γ, f), where M = (S , Σ, δ, sI ,S) is a complete Büchi automaton

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 63

with all states as accepting, γ : δ → N is a weight function, and f : N
ω → R

is the aggregate function [17,31]. Words and runs in weighted automata are
defined as in Büchi automata. The weight-sequence of run ρ = s0s1 . . . of word
w = w0w1 . . . is given by wtρ = n0n1n2 . . . where ni = γ(si, wi, si+1) for all i.
The weight of a run ρ, denoted by f(ρ), is given by f(wtρ). Here the weight of a
word w ∈ Σω in weighted automata is defined as wtA(w) = sup{f(ρ)|ρ is a run
of w in A}.

Quantitative Inclusion: Let P and Q be weighted automata with the same aggre-
gate function. The strict quantitative inclusion problem, denoted by P ⊂ Q, asks
whether for all words w ∈ Σω, wtP (w) < wtQ(w). The non-strict quantitative
inclusion problem, denoted by P ⊆ Q, asks whether for all words w ∈ Σω,
wtP (w) ≤ wtQ(w). Comparison language or comparator of a quantitative inclu-
sion problem refer to the comparison language or comparator of the associated
aggregate function.

Discounted-sum Inclusion: Let A = A0, A1, . . . be a weight sequence, d > 1 be a
rational number. The discounted-sum (DS in short) of A with integer discount-
factor d > 1 is DS (A, d) = Σ∞

i=0
Ai

di . DS-comparison language and DS-comparator
with discount-factor d > 1 are the comparison language and comparator obtained
for the discounted-sum aggregate function with discount-factor d > 1, respec-
tively. Strict or non-strict discounted-sum inclusion is strict or non-strict quan-
titative inclusion with the discounted-sum aggregate function, respectively. For
brevity, we abbreviate discounted-sum inclusion to DS-inclusion.

Related Work. The decidability of DS-inclusion is an open problem when the
discount-factor d > 1 is arbitrary. Recent work has established that DS-inclusion
is PSPACE-complete when the discount-factor is an integer [12]. This work inves-
tigates algorithmic approaches to DS-inclusion with integer discount-factors.

Two contrasting solution approaches have been identified for DS-inclusion.
The first approach is hybrid [17]. It separates out the language-theoretic aspects
of weighted-automata from the numerical aspects, and solves each separately
[15,17]. More specifically, the hybrid approach solves the language-theoretic
aspects by DS-determinization [15] and the numerical aspect is performed by
linear programming [8,9] sequentially. To the best of our knowledge, this pro-
cedure cannot be performed in parallel. As a result, this approach must always
incur the exponential cost of DS-determinization.

The second approach is purely-automata theoretic [12]. This approach uses reg-
ular DS-comparator to reduce DS-inclusion to language inclusion between non-
deterministic Büchi automata [11,12]. While the purely automata-theoretic app-
roach scales better than the hybrid approach in runtime [11], its scalability suf-
fers from fundamental algorithmic limitations of Büchi language inclusion. A key
ingredient of Büchi language-inclusion is Büchi complementation [36]. Büchi com-
plementation is 2O(n log n) in the worst-case, and is practically intractable [40].
These limitations also feature in the theoretical complexity and practical per-
formance of DS-inclusion. The complexity of DS-inclusion between weighted

www.dbooks.org

https://www.dbooks.org/

64 S. Bansal and M. Y. Vardi

automata P and Q with regular DS-comparator C for integer discount-factor d > 1
is |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)).

This work improves the worst-case complexity and practical performance of
the purely automata theoretic approach for DS-inclusion by a closer investiga-
tion of language-theoretic properties of DS-comparators. In particular, we iden-
tify that DS-comparator for integer discount-factor form a safety or co-safety
automata (depending on the relation R). We show that complementation advan-
tage of safety/co-safety automata not only improves the theoretical complexity
of DS-inclusion with integer discount-factor but also facilitate on-the-fly imple-
mentations that significantly improve practical performance.

3 DS-inclusion with Integer Discount-Factor

This section covers the core technical contributions of this paper. We uncover
novel language-theoretic properties of DS-comparison languages and utilize them
to obtain tighter theoretical upper-bound for DS-inclusion with integer discount-
factor. Unless mentioned otherwise, the discount-factor is an integer.

In Sect. 3.1 we prove that DS-comparison languages are either safety or
co-safety for all rational discount-factors. Since DS-comparison languages are ω-
regular for integer discount-factors [12], we obtain that DS-comparators for inte-
ger discount-factors form safety or co-safety automata. Next, Sect. 3.2 makes use
of newly obtained safety/co-safety properties of DS-comparator to present the
first deterministic constructions for DS-comparators. These deterministic con-
struction are compact in the sense that they match their non-deterministic coun-
terparts in number of states [11]. Section 3.3 evaluates the complexity of quan-
titative inclusion with regular safety/co-safety comparators, and observes that
its complexity is lower than the complexity for quantitative inclusion with regu-
lar comparators. Finally, since DS-comparators are regular safety/co-safety, our
analysis shows that the complexity of DS-inclusion is improved as a consequence
of the complexity observed for quantitative-inclusion with regular safety/co-
safety comparators.

We begin with formal definitions of safety/co-safety comparison languages
and safety/co-safety comparators:

Definition 1 (Safety and co-safety comparison languages). Let Σ be a
finite set of integers, f : Z

ω → R be an aggregate function, and R ∈ {≤, <
,≥, >,=, �=} be a relation. A comparison language L over Σ × Σ for aggregate
function f and relation R is said to be a safety comparison language (or a co-
safety comparison language) if L is a safety language (or a co-safety language).

Definition 2 (Safety and co-safety comparators). Let Σ be a finite set
of integers, f : Z

ω → R be an aggregate function, and R ∈ {≤, <,≥, >,=, �=}
be a relation. A comparator for aggregate function f and relation R is a safety
comparator (or co-safety comparator) is the comparison language for f and R
is a safety language (or co-safety language).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 65

A safety comparator is regular if its language is ω-regular (equivalently, if its
automaton is a safety automaton). Likewise, a co-safety comparator is regular if
its language is ω-regular (equivalently, automaton is a co-safety automaton).

By complementation duality of safety and co-safety languages, comparison
language for an aggregate function f for non-strict inequality ≤ is safety iff
the comparison language for f for strict inequality < is co-safety. Since safety
languages and safety automata are closed under intersection, safety comparison
languages and regular safety comparator for non-strict inequality renders the
same for equality. Similarly, since co-safety languages and co-safety automata
are closed under union, co-safety comparison languages and regular co-safety
comparators for non-strict inequality render the same for the inequality relation.
Therefore, it suffices to examine the comparison language for one relation only.

It is worth noting that for weight-sequences A and B and all relations R,
we have that DS (A, d) R DS (B, d) iff DS (A − B, d) R 0, where (A − B)i =
Ai − Bi for all i ≥ 0. Prior work [11] shows that we can define DS-comparison
language with upper bound μ, discount-factor d > 1, and relation R to accept
infinite and bounded weight-sequence C over {−μ, . . . , μ} iff DS (C, d) R 0 holds.
Similarly, DS-comparator with the same parameters μ, d > 1, accepts the DS-
comparison language with parameters μ, d and R. We adopt these definitions for
DS-comparison languages and DS-comparators

Throughout this section, the concatenation of finite sequence x with finite or
infinite sequence y is denoted by x · y in the following.

3.1 DS-comparison Languages and Their Safety/Co-safety
Properties

The central result of this section is that DS-comparison languages are safety
or co-safety languages for all (integer and non-integer) discount-factors (The-
orem 1). In particular, since DS-comparison languages are ω-regular for inte-
ger discount-factors [12], this implies that DS-comparators for integer discount-
factors form safety or co-safety automata (Corollary 1).

The argument for safety/co-safety of DS-comparison languages depends on
the property that the discounted-sum aggregate of all bounded weight-sequences
exists for all discount-factors d > 1 [35].

Theorem 1. Let μ > 1 be the upper bound. For rational discount-factor d > 1

1. DS-comparison languages are safety languages for relations R ∈ {≤,≥,=}
2. DS-comparison language are co-safety languages for relations R ∈ {<,>, �=}.
Proof (Proof sketch). Due to duality of safety/co-safety languages, it suffices to
show that DS-comparison language with ≤ is a safety language.

Let DS-comparison language with upper bound μ, rational discount-factor
d > 1 and relation ≤ be denoted by Lμ,d

≤ . Suppose that Lμ,d
≤ is not a safety

language. Let W be a weight-sequence in the complement of Lμ,d
≤ such that W

does not have a bad prefix. Then the following hold: (a). DS (W,d) > 0 (b).

www.dbooks.org

https://www.dbooks.org/

66 S. Bansal and M. Y. Vardi

For all i ≥ 0, the i-length prefix W [i] of W can be extended to an infinite and
bounded weight-sequence W [i] · Y i such that DS (W [i] · Y i, d) ≤ 0.

Note that DS (W,d) = DS (W [i], d) + 1
di · DS (W [i . . .], d) where W [i . . .] =

WiWi+1 . . . and DS (W [i], d) is the discounted-sum of the finite sequence W [i]
i.e. DS (W [i], d) = Σj=i−1

j=0
W [j]
dj . Similarly, DS (W [i] · Y i, d) = DS (W [i], d) + 1

di ·
DS (Y i, d). The contribution of tail sequences W [i . . .] and Y i to the discounted-
sum of W and W [i] · Y i, respectively, diminishes exponentially as the value of
i increases. In addition, since W and W [i] · Y i share a common i-length prefix
W [i], their discounted-sum values must converge to each other. The discounted
sum of W is fixed and greater than 0, due to convergence there must be a k ≥ 0
such that DS (W [k] · Y k, d) > 0. Contradiction to (b).

Therefore, DS-comparison language with ≤ is a safety language. ��
Semantically this result implies that for a bounded-weight sequence C and ratio-
nal discount-factor d > 1, if DS (C, d) > 0 then C must have a finite prefix Cpre

such that the discounted-sum of the finite prefix is so large that no infinite exten-
sion by bounded weight-sequence Y can reduce the discounted-sum of Cpre · Y
with the same discount-factor d to zero or below.

Prior work shows that DS-comparison languages are expressed by Büchi
automata iff the discount-factor is an integer [13]. Therefore:

Corollary 1. Let μ > 1 be the upper bound. For integer discount-factor d > 1

1. DS-comparators are regular safety for relations R ∈ {≤,≥,=}
2. DS-comparators are regular co-safety for relations R ∈ {<,>, �=}.
Lastly, it is worth mentioning that for the same reason [13] DS-comparators for
non-integer rational discount-factors do not form safety or co-safety automata.

3.2 Deterministic DS-comparator for Integer Discount-Factor

This section issues deterministic safety/co-safety constructions for DS-
comparators with integer discount-factors. This is different from prior works
since they supply non-deterministic Büchi constructions only [11,12]. An out-
come of DS-comparators being regular safety/co-safety (Corollary 1) is a
proof that DS-comparators permit deterministic Büchi constructions, since non-
deterministic and deterministic safety automata (and co-safety automata) have
equal expressiveness [26]. Therefore, one way to obtain deterministic Büchi con-
struction for DS-comparators is to determinize the non-deterministic construc-
tions using standard procedures [26,36]. However, this will result in exponen-
tially larger deterministic constructions. To this end, this section offers direct
deterministic safety/co-safety automata constructions for DS-comparator that
not only avoid an exponential blow-up but also match their non-deterministic
counterparts in number of states (Theorem 3).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 67

Key ideas. Due to duality and closure properties of safety/co-safety automata,
we only present the construction of deterministic safety automata for DS-
comparator with upper bound μ, integer discount-factor d > 1 and relation
≤, denoted by Aμ,d

≤ . We proceed by obtaining a deterministic finite automaton,
(DFA), denoted by bad(μ, d,≤), for the language of bad-prefixes of Aμ,d

≤ (Theo-
rem 2). Trivial modifications to bad(μ, d,≤) will furnish the coveted deterministic
safety automata for Aμ,d

≤ (Theorem 3).

Construction. We begin with some definitions. Let W be a finite weight-
sequence. By abuse of notation, the discounted-sum of finite-sequence W with
discount-factor d is defined as DS (W,d) = DS (W · 0ω, d). The recoverable-gap
of a finite weight-sequences W with discount factor d, denoted gap(W,d), is its
normalized discounted-sum: If W = ε (the empty sequence), gap(ε, d) = 0, and
gap(W,d) = d|W |−1 · DS (W,d) otherwise [15]. Observe that the recoverable-gap
has an inductive definition i.e. gap(ε, d) = 0, where ε is the empty weight-
sequence, and gap(W · v, d) = d · gap(W,d) + v, where v ∈ {−μ, . . . , μ}.

This observation influences a sketch for bad(μ, d,≤). Suppose all possible
values for recoverable-gap of weight sequences forms the set of states. Then, the
transition relation of the DFA can mimic the inductive definition of recoverable
gap i.e. there is a transition from state s to t on alphabet v ∈ {−μ, . . . , μ} iff
t = d · s + v, where s and v are recoverable-gap values of weight-sequences.
There is one caveat here: There are infinitely many possibilities for the values
of recoverable gap. We need to limit the recoverable gap values to finitely many
values of interest. The core aspect of this construction is to identify these values.

First, we obtain a lower bound on recoverable gap for bad-prefixes of Aμ,d
≤ :

Lemma 1. Let μ and d > 1 be the bound and discount-factor, resp. Let T = μ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight sequence W is a bad-prefix of Aμ,d

≤ iff gap(W,d) > T.

Proof. Let a finite weight-sequence W be a bad-prefix of Aμ,d
≤ . Then,

DS (W · Y , d) > 0 for all infinite and bounded weight-sequences Y . Since
DS (W · Y , d) = DS (W,d) + 1

d|W | · DS (Y, d), we get inf(DS (W,d) + 1
d|W | ·

DS (Y, d)) > 0 =⇒ DS (W,d) + + 1
d|W | · inf(DS (Y, d)) > 0 as W is a fixed

sequence. Hence DS (W,d) + −T
d|W |−1 > 0 =⇒ gap(W,d) − T > 0. Conversely,

for all infinite, bounded, weight-sequence Y , DS (W · Y , d)·d|W |−1 = gap(W,d)+
1
d · DS (Y, d). Since gap(W,d) > T , inf(DS (Y, d)) = −T · d, we get DS (W · Y , d)
> 0. ��
Since all finite and bounded extensions of bad-prefixes are also bad-prefixes,
Lemma 1 implies that if the recoverable-gap of a finite sequence is strinctly
lower that threshold T, then recoverable gap of all of its extensions also exceed
T. Since recoverable gap exceeding threshold T is the precise condition for bad-
prefixes, all states with recoverable gap exceeding T can be merged into a single
state. Note, this state forms an accepting sink in bad(μ, d,≤).

www.dbooks.org

https://www.dbooks.org/

68 S. Bansal and M. Y. Vardi

Next, we attempt to merge very low recoverable gap value into a single state.
For this purpose, we define very-good prefixes for Aμ,d

≤ : A finite and bounded
weight-sequence W is a very good prefix for language of Aμ,d

≤ if for all infinite,
bounded extensions of W by Y , DS (W · Y , d) ≤ 0. A proof similar to Lemma 1
proves an upper bound for the recoverable gap of very-good prefixes of Aμ,d

≤ :

Lemma 2. Let μ and d > 1 be the bound and discount-factor, resp. Let T = μ
d−1

be the threshold value. Let W be a non-empty, bounded, finite weight-sequence.
Weight-sequence W is a very-good prefix of Aμ,d

≤ iff gap(W,d) ≤ −T.

Clearly, finite extensions of very-good prefixes are also very-good prefixes. Fur-
ther, bad(μ, d,≤) must not accept very-good prefixes. Thus, by reasoning as
earlier we get that all recoverable gap values that are less than or equal to −T
can be merged into one non-accepting sink state in bad(μ, d,≤).

Finally, for an integer discount-factor the recoverable gap is an integer. Let
�x� denote the floor of x ∈ R e.g. �2.3� = 2, �−2� = −2, �−2.3� = −3. Then,

Corollary 2. Let μ be the bound and d > 1 an integer discount-factor. Let
T = μ

d−1 be the threshold. Let W be a non-empty, bounded, finite weight-sequence.

– W is a bad prefix of Aμ,d
≤ iff gap(W,d) > �T�

– W is a very-good prefix of Aμ,d
≤ iff gap(W,d) ≤ �−T�

So, the recoverable gap value is either one of {�−T� + 1, . . . , �T�}, or less than
or equal to �−T�, or greater than �T�. This curbs the state-space to O(μ)-many
values of interest, as T = μ

d−1 < μ·d
d−1 and 1 < d

d−1 ≤ 2. Lastly, since gap(ε, d) = 0,
state 0 must be the initial state.

Construction of bad(μ, d,≤). Let μ be the upper bound, and d > 1 be the integer
discount-factor. Let T = μ

d−1 be the threshold value. The finite-state automata
bad(μ, d,≤) = (S, sI , Σ, δ,F) is defined as follows:

– States S = {�−T� + 1, . . . , �T�} ∪ {bad, veryGood}
– Initial state sI = 0, Accepting states F = {bad}
– Alphabet Σ = {−μ,−μ + 1, . . . , μ − 1, μ}
– Transition function δ ⊆ S × Σ → S where (s, a, t) ∈ δ then:

1. If s ∈ {bad, veryGood}, then t = s for all a ∈ Σ
2. If s ∈ {�−T� + 1, . . . , �T�}, and a ∈ Σ

(a) If �−T� < d · s + a ≤ �T�, then t = d · s + a
(b) If d · s + a > �T�, then t = bad
(c) If d · s + a ≤ �−T�, then t = veryGood

Theorem 2. Let μ be the upper bound, d > 1 be the integer discount-factor.
bad(μ, d,≤) accepts finite, bounded, weight-sequence iff it is a bad-prefix of Aμ,d

≤ .

Proof (Proof sketch). First note that the transition relation is deterministic and
complete. Therefore, every word has a unique run in bad(μ, d,≤). Let last be

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 69

the last state in the run of finite, bounded, weight-sequence W in the DFA. Use
induction on the length of W to prove the following:

– last ∈ {�−T� + 1, . . . , �T�} iff gap(W,d) = last
– last = bad iff gap(W,d) > �T�
– last = veryGood iff gap(W,d) ≤ �−T�
Therefore, a finite, bounded weight-sequence is accepted iff its recoverable gap
is greater than �T�. In other words, iff it is a bad-prefix of Aμ,d

≤ . ��

Aμ,d
≤ is obtained from bad(μ, d,≤) by applying co-Büchi acceptance condition.

Theorem 3. Let μ be the upper bound, and d > 1 be the integer discount-factor.
DS-comparator for all inequalities and equality are either deterministic safety or
deterministic co-safety automata with O(μ) states.

As a matter of fact, the most compact non-deterministic DS-comparator con-
structions with parameters μ, d and R also contain O(μ) states [11].

3.3 Quantitative Inclusion with Safety/Co-safety Comparators

This section investigates quantitative language inclusion with regular safety/co-
safety comparators. Unlike quantitative inclusion with regular comparators,
quantitative inclusion with regular safety/co-safety comparators is able to cir-
cumvent Büchi complementation with intermediate subset-construction steps.
As a result, complexity of quantitative inclusion with regular safety/co-safety
comparator is lower than the same with regular comparators [12] (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety comparators, the
algorithm for quantitative inclusion with regular safety/co-safety comparators
applies to DS-inclusion yielding a lower complexity algorithm for DS-inclusion
(Corollary 5).

Key Ideas A run of word w in a weighted-automaton is maximal if its weight
is the supremum weight of all runs of w in the weighted-automaton. A run ρP

of w in P is a counterexample for P ⊆ Q (or P ⊂ Q) iff there exists a maximal
run supQ of w in Q such that wt(ρP) > wt(supQ) (or wt(ρP) ≥ wt(supQ)).
Consequently, P ⊆ Q (or P ⊂ Q) iff there are no counterexample runs in P .
Therefore, the roadmap to solve quantitative inclusion for regular safety/co-
safety comparators is as follows:

1. Use regular safety/co-safety comparators to construct the maximal automaton
of Q i.e. an automaton that accepts all maximal runs of Q (Corollary 3).

2. Use the regular safety/co-safety comparator and the maximal automaton to
construct a counterexample automaton that accepts all counterexample runs
of the inclusion problem P ⊆ Q (or P ⊂ Q) (Lemma 5).

www.dbooks.org

https://www.dbooks.org/

70 S. Bansal and M. Y. Vardi

3. Solve quantitative inclusion for safety/co-safety comparator by checking for
emptiness of the counterexample (Theorem 4).
Finally, since DS-comparators are regular safety/co-safety automaton (Corol-
lary 1), apply Theorem 4 to obtain an algorithm for DS-inclusion that uses
regular safety/co-safety comparators (Corollary 5).

Let W be a weighted automaton. Then the annotated automaton of W , denoted
by Ŵ , is the Büchi automaton obtained by transforming transition s

a−→ t with
weight v in W to transition s

a,v−−→ t in Ŵ . Observe that Ŵ is a safety automaton
since all its states are accepting. A run on word w with weight sequence wt in
W corresponds to an annotated word (w,wt) in Ŵ , and vice-versa.

Maximal Automaton. This section covers the construction of the maximal
automaton from a weighted automaton. Let W and Ŵ be a weighted automaton
and its annotated automaton, respectively. We call an annotated word (w,wt1)
in Ŵ maximal if for all other words of the form (w,wt2) in Ŵ , wt(wt1) ≥
wt(wt2). Clearly, (w,wt1) is a maximal word in Ŵ iff word w has a run with
weight sequence wt1 in W that is maximal. We define maximal automaton of
weighted automaton W , denoted Maximal(W), to be the automaton that accepts
all maximal words of its annotated automata Ŵ .

We show that when the comparator is regular safety/co-safety, the construc-
tion of the maximal automata incurs a 2O(n) blow-up. This section exposes the
construction for maximal automaton when comparator for non-strict inequality
is regular safety. The other case when the comparator for strict inequality is
regular co-safety has been deferred to the appendix.

Lemma 3. Let W be a weighted automaton with regular safety comparator for
non-strict inequality. Then the language of Maximal(W) is a safety language.

Proof (Proof sketch). An annotated word (w,wt1) is not maximal in Ŵ for one
of the following two reasons: Either (w,wt1) is not a word in Ŵ , or there exists
another word (w,wt2) in Ŵ s.t. wt(wt1) < wt(wt2) (equivalently (wt1, wt2) is
not in the comparator non-strict inequality). Both Ŵ and comparator for non-
strict inequality are safety languages, so the language of maximal words must
also be a safety language. ��
We now proceed to construct the safety automata for Maximal(W)

Intuition. The intuition behind the construction of maximal automaton follows
directly from the definition of maximal words. Let Ŵ be the annotated automa-
ton for weighted automaton W . Let Σ̂ denote the alphabet of Ŵ . Then an
annotated word (w,wt1) ∈ Σ̂ω is a word in Maximal(W) if (a) (w,wt1) ∈ Ŵ ,
and (b) For all words (w,wt2) ∈ Ŵ , wt(wt1) ≥ wt(wt2).

The challenge here is to construct an automaton for condition (b). Intuitively,
this automaton simulates the following action: As the automaton reads word
(w,wt1), it must spawn all words of the form (w,wt2) in Ŵ , while also ensuring
that wt(wt1) ≥ wt(wt2) holds for every word (w,wt2) in Ŵ . Since Ŵ is a safety

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 71

automaton, for a word (w,wt1) ∈ Σ̂ω, all words of the form (w,wt2) ∈ Ŵ can be
traced by subset-construction. Similarly since the comparator C for non-strict
inequality (≥) is a safety automaton, all words of the form (wt1, wt2) ∈ C can be
traced by subset-construction as well. The construction needs to carefully align
the word (w,wt1) with the all possible (w,wt2) ∈ Ŵ and (wt1, wt2) ∈ C.

Construction of Maximal(W). Let W be a weighted automaton, with annotated
automaton Ŵ and C denote its regular safety comparator for non-strict inequal-
ity. Let SW denote the set of states of W (and Ŵ) and SC denote the set of
states of C. We define Maximal(W) = (S, sI , Σ̂, δ,F) as follows:

– Set of states S consists of tuples of the form (s,X), where s ∈ SW , and
X = {(t, c)|t ∈ SW , c ∈ SC}

– Σ̂ is the alphabet of Ŵ
– Initial state sI = (sw, {(sw, sc)}), where sw and sc are initial states in Ŵ and

C, respectively.
– Let states (s,X), (s,X ′) ∈ S such that X = {(t1, c1), . . . , (tn, cn)} and X ′ =

{(t′1, c
′
1), . . . , (t

′
m, c′

m)} . Then (s,X)
(a,v)−−−→ (s′,X ′) ∈ δ iff

1. s
(a,v)−−−→ s′ is a transition in Ŵ , and

2. (t′j , c
′
j) ∈ X ′ if there exists (ti, ci) ∈ X, and a weight v′ such that ti

a,v′
−−→ t′j

and ci
v,v′
−−→ c′

j are transitions in Ŵ and C, respectively.

– (s, {(t1, c1), . . . , (tn, cn)}) ∈ F iff s and all ti are accepting in Ŵ , and all ci is
accepting in C.

Lemma 4. Let W be a weighted automaton with regular safety comparator C
for non-strict inequality. Then the size of Maximal(W) is |W | · 2O(|W |·|C|).

Proof (Proof sketch). A state (s, {(t1, c1), . . . , (tn, cn)}) is non-accepting in the
automata if one of s,ti or cj is non-accepting in underlying automata Ŵ and
the comparator. Since Ŵ and the comparator automata are safety, all outgoing
transitions from a non-accepting state go to non-accepting state in the underly-
ing automata. Therefore, all outgoing transitions from a non-accepting state in
Maximal(W) go to non-accepting state in Maximal(W). Therefore, Maximal(W)
is a safety automaton. To see correctness of the transition relation, one must
prove that transitions of type (1.) satisfy condition (a), while transitions of type
(2.) satisfy condition (b). Maximal(W) forms the conjunction of (a) and (b),
hence accepts the language of maximal words of W .

A similar construction proves that the maximal automata of weighted
automata W with regular safety comparator C for strict inequality contains
|W | · 2O(|W |·|C|) states. In this case, however, the maximal automaton may not
be a safety automaton. Therefore, Lemma 4 generalizes to:

Corollary 3. Let W be a weighted automaton with regular safety/co-safety com-
parator C. Then Maximal(W) is a Büchi automaton of size |W | · 2O(|W |·|C|).

www.dbooks.org

https://www.dbooks.org/

72 S. Bansal and M. Y. Vardi

Counterexample Automaton. This section covers the construction of the
counterexample automaton. Given weighted-automata P and Q, an annotated
word (w,wtP) in annotated automata P̂ is a counterexample word of P ⊆ Q
(or P ⊂ Q) if there exists (w,wtQ) in Maximal(Q) s.t. wt(wtP) > wt(wtQ)
(or wt(wtP) ≥ wt(wtQ)). Clearly, annotated word (w,wtP) is a counterexample
word iff there exists a counterexample run of w with weight-sequence wtP in P .

For this section, we abbreviate strict and non-strict to strct and nstrct,
respectively. For inc ∈ {strct, nstrct}, the counterexample automaton for inc-
quantitative inclusion, denoted by Counterexample(inc), is the automaton that
contains all counterexample words of the problem instance. We construct the
counterexample automaton as follows:

Lemma 5. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. For inc ∈ {strct, nstrct}, Counterexample(inc) is a Büchi automaton.

Proof. We construct Büchi automaton Counterexample(inc) for inc ∈
{strct, nstrct} that contains the counterexample words of inc-quantitative inclu-
sion. Since the comparator are regular safety/co-safety, Maximal(Q) is a Büchi
automaton (Corollary 3). Construct the product P̂ ×Maximal(Q) such that tran-
sition (p1, q1)

a,v1,v2−−−−→ (p1, q2) is in the product iff p1
a,v1−−→ p1 and q1

a,v2−−→ q2 are
transitions in P̂ and Maximal(Q), respectively. A state (p, q) is accepting if both
p and q are accepting in P̂ and Maximal(Q). One can show that the product
accepts (w,wtP , wtQ) iff (w,wtP) and (w,wtQ) are words in P̂ and Maximal(Q),
respectively.

If inc = strct, intersect P̂ × Maximal(Q) with comparator for ≥. If inc =
nstrct, intersect P̂ × Maximal(Q) with comparator for >. Since the comparator
is a safety or co-safety automaton, the intersection is taken without the cyclic
counter. Therefore, (s1, t1)

a,v1,v2−−−−→ (s2, t2) is a transition in the intersection iff
s1

a,v1,v2−−−−→ s2 and t1
v1,v2−−−→ t2 are transitions in the product and the appropriate

comparator, respectively. State (s, t) is accepting if both s and t are accepting.
The intersection will accept (w,wtP , wtQ) iff (w,wtP) is a counterexample of
inc-quantitative inclusion. Counterexample(inc) is obtained by projecting out the
intersection as follows: Transition m

a,v1,v2−−−−→ n is transformed to m
a,v1−−→ n. ��

Quantitative Inclusion and DS-inclusion. In this section, we give the final
algorithm for quantitative inclusion with regular safety/co-safety comparators.
Since DS-comparators are regular safety/co-safety comparators, this gives us an
algorithm for DS-inclusion with improved complexity than previous results.

Theorem 4. Let P , Q be weighted-automata with regular safety/co-safety com-
parators. Let C≤ and C< be the comparators for ≤ and <, respectively. Then

– Strict quantitative inclusion P ⊂ Q is reduced to emptiness checking of a
Büchi automaton of size |P ||C≤||Q| · 2O(|Q|·|C<|).

– Non-strict quantitative inclusion P ⊆ Q is reduced to emptiness checking of
a Büchi automaton of size |P ||C<||Q| · 2O(|Q|·|C<|).

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 73

Proof. Strict and non-strict are abbreviated to strct and nstrct, respectively.
For inc ∈ {strct, nstrct}, inc-quantitative inclusion holds iff Counterexample(inc)
is empty. Size of Counterexample(inc) is the product of size of P , Maximal(Q)
(Corollary 3), and the appropriate comparator as described in Lemma 5. ��

In contrast, quantitative inclusion with regular comparators reduces to empti-
ness of a Büchi automaton with |P | · 2O(|P ||Q||C|·log(|P ||Q||C|)) states [12]. The
2O(n log n) blow-up is unavoidable due to Büchi complementation. Hence, quan-
titative inclusion with regular safety/co-safety has lower worst-case complexity.

Lastly, we use the results of developed in previous sections to solve DS-
inclusion. Since DS-comparators are regular safety/co-safety (Corollary 1), an
immediate consequence of Theorem 4 is an improvement in the worst-case
complexity of DS-inclusion in comparison to prior results with regular DS-
comparators. Furthermore, since the regular safety/co-safety DS-comparators
are of the same size for all inequalities (Theorem 3), we get:

Corollary 4. Let P , Q be weighted-automata, and C be a regular safety/co-
safety DS-comparator with integer discount-factor d > 1. Strict DS-inclusion
reduces to emptiness checking of a safety automaton of size |P ||C||Q|·2O(|Q|·|C|).

Proof (Proof sketch). When comparator for non-strict inequality is safety-
automaton, as it is for DS-comparator, the maximal automaton is a safety
automaton (Lemma 3). One can then show that the counterexample automata
is also a safety automaton.

A similar argument proves non-strict DS-inclusion reduces to emptiness of a
weak-Büchi automaton [27] of size |P ||C||Q| · 2O(|Q|·|C|) (see Appendix).

Corollary 5 ([DS-inclusion with safety/co-safety comparator). Let P , Q be
weighted-automata, and C be a regular (co)-safety DS-comparator with integer
discount-factor d > 1.The complexity of DS-inclusion is |P ||C||Q| · 2O(|Q|·|C|).

4 Implementation and Experimental Evaluation

The goal of the empirical analysis is to examine performance of DS-inclusion
with integer discount-factor with safety/co-safety comparators against existing
tools to investigate the practical merit of our algorithm. We compare against (a)
Regular-comparator based tool QuIP, and (b) DS-determinization and linear-
programming tool DetLP.

QuIP is written in C++, and invokes state-of-the-art Büchi language
inclusion-solver RABIT [2]. We enable the -fast flag in RABIT, and tune its
Java-threads with Xss, Xms, Xmx set to 1GB, 1GB and 8GB, respectively. DetLP
is also written in C++, and uses linear programming solver GLPSOL provided
by GLPK (GNU Linear Prog. Kit) [1]. We compare these tools along two axes:
runtime and number of benchmarks solved.

www.dbooks.org

https://www.dbooks.org/

74 S. Bansal and M. Y. Vardi

Fig. 1. sP = sQ on x-axis, wt = 4, δ = 3, d = 3, P ⊂ Q

Implementation Details. The algorithm for strict-DS-inclusion with integer
discount factor d > 1 proposed in Corollary 4 and non-strict DS-inclusion checks
for emptiness of the counterexample automata. A naive algorithm will construct
the counterexample automata fully, and then check if they are empty by ensuring
the absence of an accepting lasso.

We implement a more efficient algorithm. In our implementation, we make
use of the fact that the constructions for DS-inclusion use subset-construction
intermediate steps. This facilitates an on-the-fly procedure since successor states
of state in the counterexample automata can be determined directly from input
weighted automata and the comparator automata. The algorithm terminates as
soon as an accepting lasso is detected. When an accepting lasso is absent, the
algorithm traverses all states and edges of the counterexample automata.

We implement the optimized on-the-fly algorithm in a prototype QuIPFly.
QuIPFly is written in Python 2.7.12. QuIPFly employs basic implementation-level
optimizations to avoid excessive re-computation.

Design and Setup for Experiments. Due to lack of standardized benchmarks
for weighted automata, we follow a standard approach to performance evaluation
of automata-theoretic tools [3,30,38] by experimenting with randomly generated
benchmarks, using random benchmark generation procedure described in [11].

The parameters for each experiment are number of states sP and sQ of
weighted automata, transition density δ, maximum weight wt, integer discount-
factor d, and inc ∈ {strct, nstrct}. In each experiment, weighted automata P and
Q are randomly generated, and runtime of inc-DS-inclusion for all three tools
is reported with a timeout of 900 s. We run the experiment for each parameter
tuple 50 times. All experiments are run on a single node of a high-performance
cluster consisting of two quad-core Intel-Xeon processor running at 2.83 GHz,

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 75

Fig. 2. sP = sQ = 75, wt = 4, δ = 3, d = 3, P ⊂ Q

with 8 GB of memory per node. We experiment with sP = sQ ranging from 0–
1500 in increments of 25, δ ∈ {3, 3.5, 4}, d = 3, and wt ∈ {d1 + 1, d3 − 1, d4 − 1}.

Observations and Inferences.1 For clarity of exposition, we present the obser-
vations for only one parameter-tuple. Trends and observations for other param-
eters were similar.

QuIPFly Outperforms. QuIP by at least an order of magnitude in runtime.
Figure 1 plots the median runtime of all 50 experiments for the given parameter-
values for QuIP and QuIPFly. More importantly, QuIPFly solves all of our bench-
marks within a fraction of the timeout, whereas QuIP struggled to solve at least
50% of the benchmarks with larger inputs (beyond sP = sQ = 1000). Primary
cause of failure is memory overflow inside RABIT. We conclude that regular
safety/co-safety comparators outperform their regular counterpart, giving credit
to the simpler subset-constructions vs. Büchi complementation.

QuIPFly Outperforms. DetLP comprehensively in runtime and in number of
benchmarks solved. We were unable to plot DetLP in Fig. 1 since it solved fewer
than 50% benchmarks even with small input instances. Figure 2 compares the
runtime of both tools on the same set of 50 benchmarks for a representative
parameter-tuple on which all 50 benchmarks were solved. The plot shows that
QuIPFly beats DetLP by 2–4 orders of magnitude on all benchmarks.

Overall Verdict. Overall, QuIPFly outperforms QuIP and DetLP by a significant
margin along both axes, runtime and number of benchmarks solved. This analysis
gives unanimous evidence in favor of our safety/co-safety approach to solving
DS-inclusion.
1 Figures are best viewed online and in color.

www.dbooks.org

https://www.dbooks.org/

76 S. Bansal and M. Y. Vardi

5 Concluding Remarks

The goal of this paper was to build scalable algorithms for DS-inclusion. To
this end, this paper furthers the understanding of language-theoretic proper-
ties of discounted-sum aggregate function by demonstrating that DS-comparison
languages form safety and co-safety languages, and utilizes these properties to
obtain a decision procedure for DS-inclusion that offers both tighter theoretical
complexity and improved scalability. All in all, the key insights of this work are:

1. Pure automata-theoretic techniques of DS-comparator are better for DS-
inclusion;

2. In-depth language-theoretic analysis improve both theoretical complexity and
practical scalability of DS-inclusion;

3. DS-comparators are compact deterministic safety or co-safety automata.

To the best of our knowledge, this is the first work that applies language-theoretic
properties such as safety/co-safety in the context of quantitative reasoning.

More broadly, this paper demonstrates that the close integration of language-
theoretic and quantitative properties can render novel algorithms for quantita-
tive reasoning that can benefit from advances in qualitative reasoning.

Acknowledgements. We thank anonymous reviewers for their comments. We thank
D. Fried, L. M. Tabajara, and A. Verma for their valuable inputs on initial drafts of
the paper. This work was partially supported by NSF Grant No. CCF-1704883.

References

1. GLPK. https://www.gnu.org/software/glpk/
2. Rabit-Reduce. http://www.languageinclusion.org/
3. Abdulla, P.A., et al.: Simulation subsumption in ramsey-based büchi automata

universality and inclusion testing. In: Proceedings of CAV, pp. 132–147. Springer
(2010)

4. Abdulla, P.A., et al.. Advanced ramsey-based büchi automata inclusion testing.
In: Proceedings of CONCUR, vol. 11, pp. 187–202. Springer (2011)

5. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput.
2(3), 117–126 (1987)

6. Alur, R., Mamouras, K.: An introduction to the streamqre language. Dependable
Softw. Syst. Eng. 50, 1 (2017)

7. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with
weighted automata. Trans. Algorithms 6(2), 28 (2010)

8. Andersen, G., Conitzer, V.: Fast equilibrium computation for infinitely repeated
games. In: Proceedings of AAAI, pp. 53–59 (2013)

9. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI
Student Session, pp. 91–98 (2006)

10. Baier, C.: Probabilistic model checking. In: Dependable Software Systems Engi-
neering, pp. 1–23 (2016)

11. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Automata vs linear-programming
discounted-sum inclusion. In: Proceedings of International Conference on
Computer-Aided Verification (CAV) (2018)

https://www.gnu.org/software/glpk/
http://www.languageinclusion.org/

Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion 77

12. Bansal, S., Chaudhuri, S., Vardi, M.Y. : Comparator automata in quantitative ver-
ification. In: Proceedings of International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS) (2018)

13. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative ver-
ification (full version). CoRR, abs/1812.06569 (2018)

14. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 14

15. Boker, U., Henzinger, T.A.: Exact and approximate determinization of discounted-
sum automata. LMCS 10(1), 1–13 (2014)

16. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.:
Verifying quantitative properties using bound functions. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 7

17. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Trans. Com-
putat. Logic 11(4), 23 (2010)

18. Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Pro-
ceedings of LICS, pp. 509–518 (2013)

19. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0 79

20. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12002-2 2

21. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer,
Berlin (2009)

22. D’Antoni, L., Samanta, R., Singh, R.: Qlose: program repair with quantitative
objectives. In: Proceedings of CAV, pp. 383–401. Springer (2016)

23. Filiot, E., Gentilini, R., Raskin, J.-F.: Quantitative languages defined by func-
tional automata. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol.
7454, pp. 132–146. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32940-1 11

24. He, K., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: Reactive synthesis for finite
tasks under resource constraints. In: 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5326–5332. IEEE (2017)

25. Hu, Q., DAntoni, L.: Syntax-guided synthesis with quantitative syntactic objec-
tives. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp.
386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 21

26. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Halbwachs,
N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 172–183. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48683-6 17

27. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. Trans.
Computat. Logic 2(3), 408–429 (2001)

28. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: Pro-
ceedings 6th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), pp. 449–458. ACM Press, September 2007

www.dbooks.org

https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1007/11560548_7
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-642-32940-1_11
https://doi.org/10.1007/978-3-319-96145-3_21
https://doi.org/10.1007/3-540-48683-6_17
https://www.dbooks.org/

78 S. Bansal and M. Y. Vardi

29. Lahijanian, M., Almagor, S., Fried, D., Kavraki, L.E., Vardi, M.Y.: This time the
robot settles for a cost: a quantitative approach to temporal logic planning with
partial satisfaction. In: AAAI, pp. 3664–3671 (2015)

30. Mayr, R., Clemente, L.: Advanced automata minimization. ACM SIGPLAN Not.
48(1), 63–74 (2013)

31. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.
(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, Berlin (2009). https://doi.org/10.1007/978-
3-642-01492-5 6

32. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recog-
nition. Comput. Speech Lang. 16(1), 69–88 (2002)

33. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT press, Cambridge
(1994)

34. Puterman, M.L.: Markov decision processes. Handbooks Oper. Res. Manag. Sci.
2, 331–434 (1990)

35. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York
(1964)

36. Safra, S.: On the complexity of ω-automata. In: Proceedings of FOCS, pp. 319–327.
IEEE (1988)

37. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol. 135. MIT
press, Cambridge (1998)

38. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191 28

39. Thomas, W., Wilke, T., et al.: Automata, Logics, and Infinite Games: A Guide to
Current Research, vol. 2500. Springer Science & Business Media, Berlin (2002)

40. Vardi, M.Y.: The büchi complementation saga. In: Annual Symposium on Theo-
retical Aspects of Computer Science, pp. 12–22. Springer (2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/11591191_28
http://creativecommons.org/licenses/by/4.0/

Clock Bound Repair for Timed Systems

Martin Kölbl1(B), Stefan Leue1(B), and Thomas Wies2(B)

1 University of Konstanz, Konstanz, Germany
{Martin.Koelbl,Stefan.Leue}@uni-konstanz.de

2 New York University, New York, NY, USA
wies@cs.nyu.edu

Abstract. We present algorithms and techniques for the repair of timed system
models, given as networks of timed automata (NTA). The repair is based on an
analysis of timed diagnostic traces (TDTs) that are computed by real-time model
checking tools, such as UPPAAL, when they detect the violation of a timed safety
property. We present an encoding of TDTs in linear real arithmetic and use the
MaxSMT capabilities of the SMT solver Z3 to compute possible repairs to clock
bound values that minimize the necessary changes to the automaton. We then
present an admissibility criterion, called functional equivalence, that assesses
whether a proposed repair is admissible in the overall context of the NTA. We
have implemented a proof-of-concept tool called TARTAR for the repair and
admissibility analysis. To illustrate the method, we have considered a number of
case studies taken from the literature and automatically injected changes to clock
bounds to generate faulty mutations. Our technique is able to compute a feasible
repair for 91% of the faults detected by UPPAAL in the generated mutants.

Keywords: Timed automata · Automated repair · Admissibility of repair ·
TARTAR tool

1 Introduction

The analysis of system design models using model checking technology is an important
step in the system design process. It enables the automated verification of system prop-
erties against given design models. The automated nature of model checking facilitates
the integration of the verification step into the design process since it requires no further
intervention of the designer once the model has been formulated and the property has
been specified.

Often it is sufficient to abstract from real time aspects when checking system proper-
ties, in particular when the focus is on functional aspects of the system. However, when
non-functional properties, such as response times or the timing of periodic behavior,
play an important role, it is necessary to incorporate real time aspects into the models
and the specification, as well as to use specialized real-time model checking tools, such
as UPPAAL [6], Kronos [31] or opaal [11] during the verification step.

Next to the automatic nature of model checking, the ability to return counterexam-
ples, in real-time model checking often referred to as timed diagnostic traces (TDT), is

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 79–96, 2019.
https://doi.org/10.1007/978-3-030-25540-4_5

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_5
https://www.dbooks.org/

80 M. Kölbl et al.

a further practical benefit of the use of model checking technology. A TDT describes a
timed sequence of steps that lead the design model from the initial state of the system
into a state violating a real-time property. A TDT neither constitutes a causal explana-
tion of the property violation, nor does it provide hints as to how to correct the model.

In this paper we describe an automated method that computes proposals for possible
repairs of a network of timed automata (NTA) that avoid the violation of a timed safety
property. Consider the TDT depicted as a time annotated sequence diagram [5] in Fig. 1.
This scenario describes a simple message exchange where the process dbServer
sends a message req to process db which, after some processing steps returns a mes-
sage ser to dbServer. Assume a requirement on the system to be that the time from
sending req to receiving ser is not to be more than 4 time units. Assume that the tim-
ing interval annotations on the sequence diagram represent the minimum and maximum
time for the message transmission and processing steps that the NTA, from which the
diagram has been derived, permits. It is then easy to see that it is possible to execute the
system in such a way that this property is violated.

Fig. 1. TDT represented as a sequence
diagram with timing annotations

Various changes to the underlying NTA
model, depicted in Fig. 2, may avoid this prop-
erty violation. For instance, the maximum time
it takes to transmit the req and ser messages
can be constrained to be at most 1 time unit,
respectively. Alternatively, it may be possible
to avoid the property violation by reducing two
of the three timings by 0.5 time units. In any
case, proposing such changes to the model may
either serve to correct clerical mistakes made
during the editing of the model, or point to nec-
essary changes in the dimensioning of its time
resources, thus contributing to improved design
space exploration.

The repair method described in this paper
relies on an encoding of a TDT as a constraint
system in linear real arithmetic. This encoding provides a symbolic abstract semantics
for the TDT by constraining the sojourn time of the NTA in the locations visited along
the trace. The constraint system is then augmented by auxiliary model variation vari-
ables which represent syntactic changes to the NTA model, for instance the variation
of a location invariant condition or a transition guard. We assert that the thus modi-
fied constraint system implies the non-reachability of a violation. At the same time, we
assert that the model variation variables have a value that implies that no change of the
NTA model will occur, for instance by setting a clock bound variation variable to 0.
This renders the resulting constraint system unsatisfiable.

In order to compute a repair, we derive a partial MaxSMT instance by turning the
constraints that disable any repair into soft constraints. We solve this MaxSMT instance
using the SMT solver Z3 [25]. If the MaxSMT instance admits a solution, the resulting
model provides values of the model variation variables. These values indicate a repair

Clock Bound Repair for Timed Systems 81

of the NTA model which entails that along the sequence of locations represented by the
TDT, the property violation will no longer be reachable.

In a next step it is necessary to check whether the computed repair is an admissi-
ble repair in the context of the full NTA. This is important since the repair was com-
puted locally with respect to only a single given TDT. Thus, it is necessary to define
a notion of admissibility that is reasonable and helpful in this setting. To this end, we
propose the notion of functional equivalence which states that as a result of the com-
puted repair, neither erstwhile existing functional behavior will be purged, nor will new
functional behavior be added. Functional behavior in this sense is represented by lan-
guages accepted by the untimed automata of the unrepaired and the repaired NTAs.
Functional equivalence is then defined as equivalence of the languages accepted by
these automata. We propose a zone-based automaton construction for implementing the
functional equivalence test that is efficient in practice.

We have implemented our proposed method in a proof-of-concept tool called TAR-
TAR1. Our evaluation of TARTAR is based on several non-trivial NTA models taken
from the literature, including the frequently considered Pacemaker model [19]. For each
model, we automatically generate mutants by injecting clock bound variations which we
then model check using UPPAAL and repair using TARTAR. The evaluation shows that
our technique is able to compute an admissible repair for 91% of the detected faults.

Related Work. There are relatively few results available on a formal treatment of TDTs.
The zone based approach to real-time model checking, which relies on a constraint-
based abstraction of the state space, is proposed in [14]. The use of constraint solving
to perform reachability analysis for NTAs is described in [30]. This approach ultimately
leads to the on-the-fly reachability analysis algorithm used in UPPAAL [7]. [12] defines
the notion of a time-concrete UPPAAL counterexample. Work documented in [27]
describes the computation of concrete delays for symbolic TDTs. The above cited
approaches address neither fault analysis nor repair for TDTs. Our use of MaxSMT
solvers for computing minimal repairs is inspired by the use MaxSAT solvers for fault
localization in C programs, which was first explored in the BugAssist tool [20,21]. Our
approach also shares some similarities with syntax-guided synthesis [2,28], which has
also been deployed in the context of program repair [22]. One key difference is how we
determine the admissibility of a repair in the overall system, which takes advantage of
the semantic restrictions imposed by timed automata.

Structure of the Paper. We will introduce the automata and real-time concepts needed
in our analysis in Sect. 2. In Sect. 3 we present the logical formalization of TDTs. The
repair and admissibility analyses are presented in Sects. 4 and 5, respectively. We report
on tool development, experimental evaluation and case studies in Sects. 6 and 7 con-
cludes.

1 TARTAR and links to all models used in this paper can be found at URL https://github.com/
sen-uni-kn/tartar.

www.dbooks.org

https://github.com/sen-uni-kn/tartar
https://github.com/sen-uni-kn/tartar
https://www.dbooks.org/

82 M. Kölbl et al.

2 Preliminaries

The timed automaton model that we use in this paper is adapted from [7]. Given a
set of clocks C, we denote by B(C) the set of all clock constraints over C, which are
conjunctions of atomic clock constraints of the form c ∼ n, where c ∈ C, ∼∈ {<,≤
,=,≥, >} and n ∈ N. A timed automaton (TA) T is a tuple T = (L, l0, C,Σ,Θ, I)
where L is a finite set of locations, l0 ∈ L is an initial location, C is a finite set of
clocks, Σ is a set of action labels, Θ ⊆fin L × B(C) × Σ × 2C × L is a set of actions,
and I : L → B(C) denotes a labeling of locations with clock constraints, referred to
as location invariants. For θ ∈ Θ with θ = (l, g, a, r, l′) we refer to g as the guard of θ
and to r as its clock resets.

The operational semantics of T is given by a timed transition system consisting of
states s = (l, u) where l is a location and u : C → R+ is a clock valuation. The initial
state s0 is (�, u0) where u0 maps all clocks to 0. For a clock constraint B we write
u |= B iff B evaluates to true in u. There are two types of transitions. An action tran-
sition models the execution of an action whose guard is satisfied. These transitions are
instantaneous and reset the specified clocks. The passing of time in a location is mod-
eled by delay transitions. Both types of transitions guarantee that location invariants are

satisfied in the pre and post state. Formally, we have (l, u) t−→ (l′, u′) iff

– (action transition) t = (l, g, a, r, l′) ∈ Θ, u |= I(l)∧ g, u′ |= I(l′) and for all clocks
c ∈ C, u′(c) = 0 if c ∈ r and u′(c) = u(c) otherwise; or

– (delay transition) t ∈ R+, u |= I(l), u′ |= I(l) and u′ = u + t.

Definition 1. A symbolic timed trace (STT) of T is a sequence of actions S = θ0, . . . ,
θn−1. A realization of S is a sequence of delay values δ0, . . . , δn such that there exists

states s0, . . . , sn, sn+1 with si
δi−→ θi−→ si+1 for all i ∈ [0, n) and sn

δn−→ sn+1. We
say that a STT is feasible if it has at least one realization.

Property Specification. We focus on the analysis of timed safety properties, which we
characterize by an invariant formula that has to hold for all reachable states of a TA.
These properties state, for instance, that there are certain locations in which the value of
a clock variable is not above, equal to or below a certain (integer) bound. Formally, let
T = (L, l0, C,Σ,Θ, I) be a TA. A timed safety property Π is a Boolean combination of
atomic clock constraints and location predicates @l where l ∈ L. A location predicate
@l holds in a state (l′, u) of T iff l′ = l. We say that a STT S witnesses a violation of
Π in T if there exists a realization of S whose induced final state does not satisfy Π .
We refer to such an STT as a timed diagnostic trace of T for Π .

T satisfies Π iff all its reachable states satisfy Π . This problem can be decided
using model checking tools such as Kronos [31] and UPPAAL [6]. UPPAAL in par-
ticular computes a finite abstraction of the state space of an NTA using a zone graph
construction. Reachability analysis is then performed by an on-the-fly search of the
zone graph. If the property is violated, the tool generates a feasible TDT that witnesses
the violation. The objective of our work is to analyze TDTs and to propose repairs for
the property violation that they represent. We use TDTs generated by the UPPAAL tool
in our implementation, but we maintain that our results can be adapted to any other tool
producing TDTs.

Clock Bound Repair for Timed Systems 83

We further note that UPPAAL takes a network of timed automata (NTA) as input,
which is a CCS [24] style parallel composition of timed automata T1 | . . . | Tn. Since
our analysis and repair techniques focus on timing-related errors rather than synchro-
nization errors, we use TAs rather than NTAs in our formalization. However, our imple-
mentation works on NTAs.

Example 1. The running example that we use throughout the paper consists of an NTA
of two timed automata, depicted in Fig. 2. As alluded to in the introduction, the TAs
dbServer and db synchronize via the exchange of messages modeled by the pairs of
send and receive actions req! and req?, respectively, ser! and ser?. The trans-
mission time of the req message is controlled by the clock variable x and can range
between 1 and 2 time units. This is achieved by the location invariant x<=2 on the
reqReceived location in db together with the transition guard x>=1 on the tran-
sition from reqReceived to reqProcessing. A similar mechanism using clock
variable z is used to constrain the timing of the transfer of message ser to be within
1 and 2 time units. The processing time in dbServer is constrained to exactly 1 time
unit by the location invariant y<=1 and the transition guard y>=1. In dbServer, a
transition to location timeout can be triggered when the guard z==2 is satisfied in
location serReceiving. The clock variable x, which is not reset until the next req
message is sent, is recording the time that has elapsed since sending req and is used
in location serReceiving in order to verify if more than 4 time units have passed
since req was sent. The timed safety property that we will consider for our example
is Π = ¬@dbServer.serReceiving ∨ (x < 4). For the violation of this property,
UPPAAL produces the TDT S = θ0 . . . θ3 where

θ0 = ((initial,reqAwaiting), ∅, τ, ∅, (reqCreate,reqAwaiting))
θ1 = ((reqCreate,reqAwaiting), ∅, τ, {x}, (reqSent,reqReceived))
θ2 = ((reqSent,reqReceived), {x ≥ 1}, τ, {y}, (reqSent,reqProc.))
θ3 = ((reqSent,reqProc.), {y ≥ 1}, τ, {z}, (serReceiving,reqAwait.)).

3 Logical Encoding of Timed Diagnostic Traces

Our analysis relies on a logical encoding of TDTs in the theory of quantifier-free linear
real arithmetic. For the remainder of this paper, we fix a TA T = (L, l0, C,Σ,Θ, I)
with a safety property Π and assume that S = θ0, . . . , θn−1 is an STT of T . We use
the following notation for our logical encoding where j ∈ [0, n + 1] is a position in a
realization of S and c ∈ C is a clock:

– lj denotes the location of the pre state of θj for j < n and the location of the post
state of θj−1 for j = n.

– cj denotes the value of clock variable c when reaching the state at position j.
– δj denotes the delay of the delay transition leaving the state at position j ≤ n.
– resetj denotes the set of clock variables that are being reset by action θj for j < n.
– ibounds(c, l) denotes the set of pairs (β,∼) such that the atomic clock constraint

c ∼ β appears in the location invariant I(l).

www.dbooks.org

https://www.dbooks.org/

84 M. Kölbl et al.

Fig. 2. Network of timed automata - running example

– gbounds(c, θ) denotes the set of pairs (β,∼) such that the atomic clock constraint
c ∼ β appears in the guard of action θ.

To illustrate the use of ibounds, assume location l to be labeled with invariants
x > 2 ∧ x ≤ 4 ∧ y ≤ 1, then ibounds(x, l) = {(2, >), (4,≤)}. The usage of gbounds
is accordingly.

Definition 2. The timed diagnostic trace constraint system associated with STT S is the
conjunction T of the following constraints:

C0 ≡
∧

c∈C

c0 = 0 (clock initialization)

A ≡
∧

j∈[0,n]

δj ≥ 0 (time advancement)

R ≡
∧

c∈resetj ,

cj+1 = 0 (clock resets)

D ≡
∧

c/∈resetj

cj+1 = cj + δj (sojourn time)

I ≡
∧

(β,∼)∈ibounds(c,lj)

cj ∼ β ∧ cj + δj ∼ β (location invariants)

G ≡
∧

(β,∼)∈gbounds(c,θj)

cj + δj ∼ β (transition guards)

L ≡ @ln ∧
∧

l �=ln

¬@l (location predicates)

Clock Bound Repair for Timed Systems 85

Let further Φ ≡ Π[cn+1/c] where Π[cn+1/c] is obtained from Π by substituting
all occurrences of clocks c ∈ C with cn+1. Then the Π-extended TDT constraint system
associated with S is defined as T Π = T ∧ ¬Φ.

To illustrate the encoding consider the transition Θ3 of the TDT in Example 1
corresponding to the transition from state (reqSent, reqProcessing) to state
(serReceiving, reqAwaiting) while resetting clock z in the NTA of Fig. 2. The
encoding for the constraints on the clocks x, y and z is as following: y3 + d3 ≥ 1,
z4 = 0, x4 = x3 + d3 and y4 = y3 + d3.

Lemma 1. δc
0, . . . , δ

c
n is a realization of an STT S iff there exists a satisfying variable

assignment ι for T such that for all j ∈ [0, n], ι(δj) = δc
j .

Theorem 1. An STT S witnesses a violation of Π in T iff T Π is satisfiable.

4 Repair

We propose a repair technique that analyzes the responsibility of clock bound values
occurring in a single TDT for causing the violation of a specification Π . The analysis
suggests possible syntactic repairs. In a second step we define an admissibility test
that assesses the admissibility of the repair in the context of the complete TA model.
Throughout this section, we assume that S is a TDT for T and Π .

Clock Bound Variation. We introduce bound variation variables v that stand for correc-
tion values that the repair will add to the clock bounds occurring in location invariants
and transition guards. The values are chosen such that none of the realizations of S in
the modified automaton still witnesses a violation of Π . This is done by defining a new
constraint system that captures the conditions on the variable v under which the viola-
tion of Π will not occur in the corresponding trace of the modified automaton. Using
this constraint system, we then define a maximum satisfiability problem whose solution
minimizes the number of changes to T that are needed to achieve the repair.

Recall that the clock bounds occurring in location invariants and in transition guards
are represented by the ibounds and gbounds sets defined for the TDT S. Notice that
each clock variable c may be associated with mc,l different clock bounds in the loca-
tion invariant of l, denoted by the set ibounds(c, l) = {(βc,l

1 ,∼c,l
1), . . . , (βc,l

mc,l
,∼c,l

mc,l
)}.

Similarly, we enumerate the bounds in gbounds(c, θ) as (βc,θ
k ,∼c,θ

k). To reduce nota-
tional clutter, we let the meta variable r stand for the pairs of the form c, l or c, θ. We
then introduce bound variation variables vr

k describing the possible static variation in
the TA code for the clock bound βr

k and modify the TDT constraint system accordingly.
A variation of the bounds only affects the location invariant constraints I and the tran-
sition guard constraints G. We thus define an appropriate invariant variation constraint
Ibv and guard variation constraint Gbv that capture the clock bound modifications:

Ibv ≡
∧

(βr
k,∼r

k)∈ibounds(c,lj)

cj ∼r
k (βr

k + vr
k) ∧ cj + δj ∼r

k (βr
k + vr

k)

Gbv ≡
∧

(βr
k,∼r

k)∈gbounds(c,θj)

cj + δj ∼r
k (βr

k + vr
k)

www.dbooks.org

https://www.dbooks.org/

86 M. Kölbl et al.

We also need constraints ensuring that the modified clock bounds remain positive:

Zbv ≡
∧

(βr
k,∼r

k)∈ibounds(c,lj) ∪ gbounds(c,θj)

βr
k + vr

k ≥ 0

Putting all of this together we obtain the bound variation TDT constraint system

T bv ≡ C0 ∧ A ∧ R ∧ D ∧ Ibv ∧ Gbv ∧ Zbv ∧ L

which captures all realizations of S in TAs T bv that are obtained from T by modifying
the clock bounds βr

k by some semantically consistent variations vr
k .

Consider the bound variation for the guard y ≥ 1 of transition Θ3 in Example 1. The
modified guard constraint, a conjunct in Gbv, is y3 + d3 ≥ 1 + vy

3 . The corresponding
non-negativity constraint from Zbv is 1 + vy

3 ≥ 0.

Repair by Bound Variation Analysis. The objective of the bound variation analysis is
to provide hints to the system designer regarding which minimal syntactic changes to
the considered model might prevent the violation of property Π . Minimality here is
considered with respect to the number of clock bound values in invariants and guards
that need to be changed.

We implement this analysis by using the bound variation TDT constraint system T bv

to derive an instance of the partial MaxSMT problem whose solutions yield candidate
repairs for the timed automaton T . The partial MaxSMT problem takes as input a finite
set of assertion formulas belonging to a fixed first-order theory. These assertions are
partitioned into hard and soft assertions. The hard assertions FH are assumed to hold
and the goal is to find a maximizing subset F ′ ⊆ FS of the soft assertions such that
F ′ ∪ FH is satisfiable in the given theory.

For our analysis, the hard assertions consist of the conjunction

Fbv
H ≡ (∃δj , cj . T bv) ∧ (∀δj , cj . T bv ⇒ Φ).

Note that the free variables of Fbv
H are exactly the bound variation variables vr

k . Given
a satisfying assignment ι for Fbv

H , let Tι be the timed automaton obtained from T by
adding to each clock bound βr

k the according variation value ι(vr
k) and let Sι be the

TDT corresponding to S in Tι. Then Fbv
H guarantees that

1. Sι is feasible, and
2. Sι has no realization that witnesses a violation of Π in Tι.

We refer to such an assignment ι as a local clock bound repair for T and S. To obtain a
minimal local clock bound repair, we use the soft assertions given by the conjunction

Fbv
S ≡

∧

(βr
k,)∈ibounds(c,lj) ∪ gbounds(c,θj)

vr
k = 0.

Clearly Fbv
H ∧ Fbv

S is unsatisfiable because T bv ∧ Fbv
S is equisatisfiable with T , and

T ∧ ¬Φ is satisfiable by assumption. However, if there exists at least one local clock

Clock Bound Repair for Timed Systems 87

bound repair for T and S, then Fbv
H alone is satisfiable. In this case, the MaxSMT

instance Fbv
H ∪ Fbv

S has at least one solution. Every satisfying assignment of such a
solution corresponds to a local repair that minimizes the number of clock bounds that
need to be changed in T .

Note that hard and soft assertions remain within a decidable logic. Using an SMT
solver such as Z3, we can enumerate all the optimal solutions for the partial MaxSMT
instance and obtain a minimal local clock bound repair from each of them.

Example 2. We have applied the bound variation repair analysis to the TDT from
Example 1, using TARTAR, which calls Z3. The following repairs were computed:

1. vz,l5
1 = −1. This corresponds to a variation of the location invariant

regarding clock z in location 5 of the TDT, corresponding to location
dbServer.serReceiving, to read z ≤ 1 instead of z ≤ 2. This indicates
that the violation of the bound on the total duration of the transaction, as indicated
by a return to the serReceiving location and a value greater than 4 for clock x,
can be avoided by ensuring that the time taken for transmitting the ser message to
the dbServer is constrained to take exactly 1 time unit.

2. A further computed repair is vx,l2
1 = −1. Interpreting this variation in the context

of Example 1 means that location db.reqReceived will be left when the clock
x has value 1. In other words, the transmission of the message req to the db takes
exactly one time unit, not between 1 and 2 time units as in the unrepaired model.

3. Another possible repair implies the modification of two clock bounds. This is no
longer an optimal solution and no further optimal solution exists. Notice that even
non-optimal solutions might provide helpful insight for the designer, for instance if
optimal repairs turn out not to be implementable, inadmissible or leading to a prop-
erty violation. It is therefore meaningful to allow a practical tool implementation to
compute more than just the optimal repairs.

5 Admissibility of Repair

The synthesized repairs that lead to a TA Tι change the original TA T in fundamen-
tal ways, both syntactically and semantically. This brings up the question whether the
synthesized repairs are admissible. In fact, one of the key questions is what notion of
admissibility is meaningful in this context.

A timed trace [7] is a sequence of timed actions ξ = (t1, a1), (t2, a2), . . . that is
generated by a run of a TA, where ti ≤ ti+1 for all i ≥ 1. The timed language for a TA
T is the set of all its timed traces, which we denote by LT (T). The untimed language
of T consists of words over T ’s alphabet Σ so that there exists at least one timed trace
of T forming this word. Formally, for a timed trace ξ = (t1, a1), (t2, a2) . . ., the untime
operator μ(ξ) returns an untimed trace ξμ = a1a2.... We define the untimed language
Lμ(T) of the TA T as Lμ(T) = {μ(ξ) | ξ ∈ LT (T)}.

Let B be a Büchi automaton (BA) [10] over some alphabet Σ. We write L(B) ⊆ Σω

for the language accepted by B. Similarly, we denote by Lf (B) ⊆ Σ∗ the language
accepted by B if it is interpreted as a nondeterministic finite automaton (NFA). Further,
we write pref(L(B)) to denote the set of all finite prefixes of words in L(B).

www.dbooks.org

https://www.dbooks.org/

88 M. Kölbl et al.

For a given NFA or BA M , the closure cl(M) denotes the automaton obtained from
M by turning all of its states into accepting states. We call M closed iff M = cl(M).
Notice that a Büchi automaton accepts a safety language if and only if it is closed [1].

Admissibility Criteria. From a syntactic point of view the repair obtained from a sat-
isfying assignment ι of the MaxSMT instance ensures that Tι is a syntactically valid
TA model by, for instance, placing non-negativity constraints on repaired clock bounds.
In case repairs alter right hand sides of clock constraints to rational numbers, this can
easily be fixed by normalizing all clock constraints in the TA.

From a semantic perspective, the impact of the repairs is more profound. Since the
repairs affect time bounds in location invariants and transition guards, as well as clock
resets, the behavior of Tι may be fundamentally different from the behavior of T .

– First, the computed repair for one property Π may render another property Π ′ vio-
lated. To check admissibility of the synthesized repair with respect to the set of all
properties Π̂ in the system specification, a full re-checking of Π̂ is necessary.

– Second, a repair may have introduced zenoness and timelock [4] into Tι. As dis-
cussed in [4], there exists both an over-approximating static test for zenoness as
well as a model checking based precise test for timelocks that can be used to verify
whether the repair is admissible in this regard.

– Third, due to changes in the possible assignment of time values to clocks, reachable
locations in the TA T may become unreachable in Tι, and vice versa. On the one
hand, this means that some functionalities of the system may no longer be provided
since part of the actions in T will no longer be executable in Tι, and vice versa.
Further, a reduction in the set of reachable locations in Tι compared to T may mean
that certain locations with property violations in T are no longer reachable in Tι,
which implies that certain property violations are masked by a repair instead of
being fixed. On the other hand, the repair leading to locations becoming reachable
in Tι that were unreachable in T may have the effect that previously unobserved
property violations become visible and that Tι possesses functionality that T does
not have, which may or may not be desirable.

It should be pointed out that we assess admissibility of a repair leading to Tι with respect
to a given TA model T , and not with respect to a correct TA model T ∗ satisfying Π .

Functional Equivalence. While various variants of semantic admissibility may be con-
sidered, we are focusing on a notion of admissibility that ensures that a repair does not
unduly change the functional behavior of the modeled system while adhering to the tim-
ing constraints of the repaired system. We refer to this as functional equivalence. The
functional capabilities of a timed system manifest themselves in the sets of action or
transition traces that the system can execute. For TAs T and Tι this means that we need
to consider the languages over the action or transition alphabets that these TAs define.
Considering the timed languages of T and Tι, we can state that LT (T) �= LT (Tι)
since the repair forces at least one timed trace to be purged from LT (T). This means
that equivalence of the timed languages cannot be an admissibility criterion ensuring
functional equivalence. At the other end of the spectrum we may relate the de-timed

Clock Bound Repair for Timed Systems 89

languages of T and Tι. The de-time operator α(T) is defined such that it omits all tim-
ing constraints and resets from any TA T . Requiring L(α(T)) = L(α(Tι)) is tempting
since it states that when eliminating all timing related features from T and from the
repaired Tι, the resulting action languages will be identical.

However, this admissibility criterion would be flawed, since the repair in Tι may
imply that unreachable locations in T will be reachable in Tι, and vice versa. This may
have an impact on the untimed languages, and even though L(α(T)) = L(α(Tι)) it
may be that Lμ(T) �= Lμ(Tι). To illustrate this point, consider the running example in
Fig. 2 and assume the invariant in location dbServer.reqReceiving to be mod-
ified from z ≤ 2 to z ≤ 1 in the repaired TA Tι. Applying the de-time operator to Tι

implies that the location dbServer.timeout, which is unreachable in Tι, becomes
reachable in the de-timed model. Since dbServer.timeout is reachable in T , the
TA T and Tι are not functionally equivalent, even though their de-timed languages are
identical. Notice that for the untimed languages Lμ(T) �= Lμ(Tι) holds since no timed
trace in LT (Tι) reaches location timeout, even though such a timed trace exists in
LT (T). In detail, Lμ(T) contains the untimed trace Θ0Θ1Θ2Θ3Θ4 that is missing in
Lμ(Ti) and where Θ4 is the transition towards the location dbServer.timeout. As
consequence, we resort to considering the untimed languages of T and Tι and require
Lμ(T) = Lμ(Tι). It is easy to see that Lμ(T) = Lμ(Tι) ⇒ L(α(T)) = L(α(Tι)). In
other words, the equivalence of the untimed languages ensures functional equivalence.

Admissibility Test. Designing an algorithmic admissibility test for functional equiv-
alence is challenging due to the computational complexity of determining the equiv-
alence of the untimed languages Lμ(T) and Lμ(Tι). While language equivalence is
decidable for languages defined by Büchi Automata, it is undecidable for timed lan-
guages [3]. For untimed languages, however, this problem is again decidable [3]. The
algorithmic implementation of the test for functional equivalence that we propose pro-
ceeds in two steps.

– First, the untimed languages Lμ(T) and Lμ(Tι) are constructed. This requires an
untime transformation of T and Tι yielding Büchi automata representing Lμ(T)
and Lμ(Tι). While the standard untime transformation for TAs [3] relies on a region
construction, we propose a transformation that relies on a zone construction [14].
This will provide a more succinct representation of the resulting untimed languages
and, hence, a more efficient equivalence test.

– Second, it needs to be determined whether Lμ(T) = Lμ(Tι). As we shall see, the
obtained Büchi automata are closed. Hence, we can reduce the equivalence prob-
lem for these ω-regular languages to checking equivalence of the regular languages
obtained by taking the finite prefixes of the traces in Lμ(T) and Lμ(Tι). This allows
us to interpret the Büchi automata obtained in the first step as NFAs, for which the
language equivalence check is a standard construction [15].

Automata for Untimed Languages. The construction of an automaton representing an
untimed language, here referred to as an untime construction, has so far been proposed
based on a region abstraction [3]. The region abstraction is known to be relatively inef-
ficient since the number of regions is, among other things, exponential in the number of

www.dbooks.org

https://www.dbooks.org/

90 M. Kölbl et al.

clocks [4]. We therefore propose an untime construction based on the construction of
a zone automaton [14] which in the worst case is of the same complexity as the region
automaton, but on the average is more succinct [7].

Definition 3 (Untimed Büchi Automaton). Assume a TA T and the corresponding
zone automaton �T �Z = (SZ , s0

Z , ΣZ , ΘZ). We define the untimed Büchi automaton
as the closed BA BT = (S,Σ,→, S0, F) obtained from �T �Z such that S = SZ ,
Σ = ΣZ \ {δ} and S0 = {s0

Z}. For every transition in ΘZ with a label a ∈ Σ we add

a transition to → created by the rule (l,z)
δ
�(l,z↑)

a
�(l′,z′)

(l,z)
a−→(l′,z′)

with z↑ = {v + d|v ∈ z, d ∈

R≥0}. In addition, we add self-transitions (l, z) τ−→ (l, z) to every state (l, z) ∈ SB .

The following observations justify this definition:

– A timed trace of T may remain forever in the same location after a finite number of
action transitions. In order to enable B to accept this trace, we add a self-transition
labeled with τ to → for each state s ∈ S in BT , and later define s as accepting.
These τ -self-transitions extend every finite timed trace t leading to a state in Sτ to
an infinite trace t.τω .

– The construction of the acceptance set F is more intricate. Convergent traces are
often excluded from consideration in real-time model checking [4]. As a conse-
quence, in the untime construction proposed in [3], only a subset of the states in S
may be included in F . A repair may render a subgraph of the location graph of T
that is only reachable by divergent traces, into a subgraph in Tι that is only reach-
able by convergent traces. However, excluding convergent traces is only meaning-
ful when considering unbounded liveness properties, but not when analyzing timed
safety properties, which in effect are safety properties. As argued in [7], unbounded
liveness properties appear to be less important than timed safety properties in timed
systems. This is due to the observation that divergent traces reflect unrealistic behav-
ior in the limit, but finite prefixes of infinite divergent traces, which only need to be
considered for timed safety properties, correspond to realistic behavior. This obser-
vation is also reflected in the way in which, e.g., UPPAAL treats reachability by
convergent traces. In conclusion, this justifies our choice to define the zone automa-
ton in the untime construction as a closed BA, i.e., F = S.

Theorem 2 (Correctness of Untimed Büchi Automaton Construction). For an
untimed Büchi automaton BT derived from a TA T according to Definition 3 it holds
that L(BT) = Lμ(T).

Equivalence Check for Untimed Languages. Given that the zone automaton construc-
tion delivers closed BAs we can reduce the admissibility test Lμ(T) = Lμ(Tι) defined
over infinite languages to an equivalence test over the finite prefixes of these languages,
represented by interpreting the zone automata as NFAs. The following theorem justifies
this reduction.

Theorem 3 (Language Equivalence of Closed BA). Given closed Büchi automata B
and B′, if Lf(B) = Lf(B′) then L(B) = L(B′).

Clock Bound Repair for Timed Systems 91

Discussion. One may want to adapt the admissibility test so that it only considers
divergent traces, e.g., in cases where only unbounded liveness properties need to be
preserved by a repair. This can be accomplished as follows. First, an overapproximat-
ing non-zenoness test [4] can be applied to T and Tι. If it shows non-zenoness, then
one knows that the respective TA does not include convergent traces. If this test fails,
a more expensive test needs to be developed. It requires a construction of the untimed
Büchi automata using the approach from [3], and subsequently a language equivalence
test of the untimed languages accepted by the untimed BAs using, for instance, the
automata-theoretic constructions proposed in [9].

6 Case Studies and Experimental Evaluation

We have implemented the repair computation and admissibility test in a proof-of-
concept tool called TARTAR. We present the architecture of TARTAR and then evaluate
the proposed method by applying TARTAR to several case studies.

Tool Architecture. The control loop of TARTAR, depicted in Fig. 3, computes repairs
for a given UPPAAL model and a given property Π using the following steps:

1. Counterexample Creation. TARTAR calls UPPAAL with parameters to compute and
store a shortest symbolic TDT in XML format, in case Π is violated.

2. Diagnostic Trace Creation. Parsing the model and the TDT, TARTAR creates Fbv
H ∧

Fbv
S as defined in Sect. 4. Z3 can only solve the MaxSMT problem for quantifier-free

linear real arithmetic. Hence, TARTAR first performs a quantifier elimination on the
constraints ∀δj , cj . T bv ⇒ Φ of Fbv

H .
3. Repair Computation. Next, TARTAR attempts to compute a repair, by using Z3 to

solve the generated quantifier-free MaxSMT instance. In case no solution is found,
TARTAR terminates. Otherwise, TARTAR returns the repair that has been computed
from the model of the MaxSMT solution.

4. Admissibility Check. Using adapted routines provided by the opaal model
checker [11], TARTAR checks the admissibility of the computed repair. To do so,
TARTAR modifies the constraints of the considered UPPAAL model as indicated
by the computed repair. It calls opaal in order to compute the timed transition sys-
tem (TTS) of the original and the repaired UPPAAL model. TARTAR then checks
whether the two TTS have equivalent untimed languages, in which case the repair
is admissible. This check is implemented using the library AutomataLib included in
the package LearnLib [16],

5. Iteration. TARTAR is designed to enumerate all repairs, starting with the minimal
ones, in an iterative loop. To accomplish this, at the end of each iteration i a new Vbv

i+1

is generated by forcing the bound variation variables that were used in the i-th repair
to 0. This excludes the repair computed in iteration i from further consideration.
Using Vbv

i+1, TARTAR iterates back to Step 3 to compute another repair.

www.dbooks.org

https://www.dbooks.org/

92 M. Kölbl et al.

Fig. 3. Control loop of TARTAR

Evaluation Strategy. The evaluation of our
analysis is based on ideas taken from muta-
tion testing [18]. Mutation testing evaluates
a test set by systematically modifying the
program code to be tested and computing
the ratio of modifications that are detected
by the test set. Real-time system models
that contain violations of timed safety prop-
erties are not available in significant num-
bers. We therefore need to seed faults in
existing models and check whether those can be found by our automated repair. An
objective of mutation testing is that testing a proportion of the possible modification
yields satisfactory results [18]. In order to evaluate repairs for erroneous clock bounds
in invariants and transition guards we seed modifications to all bounds of clock con-
straints by the amount of {−10,−1,+1,+0.1·M,+M}, where M is the maximal
bound a clock is compared against in a given model. If a thus seeded modification leads
to a syntactically invalid UPPAAL model, then UPPAAL returns an exception and we
ignore this modification. In analogy to mutation testing, we compute the count of TDTs
for which our analysis finds an admissible repair.

Experiments. We have applied this modification seeding strategy to eight UPPAAL
models (see Table 1). Not all of the models that we considered have been published
with a property that can be violated by mutating a clock constraint. For those models, we
suggest a suitable timed safety property specifying an invariant condition. In particular,
we add a property to the Bando [29] model which ensures that, for as long as the sender
is active, its clock never exceeds the value of 28,116 time units. In the FDDI token
ring protocol [29], the property that we use checks whether the first member of the ring
never remains for more than 140 time units in any given state. The Viking model is
taken from the set of test models of opaal [26]. For this model we use a property that
checks whether one of the Viking processes can only enter a safe state during the first
60 time units. Note that all of these properties are satisfied by the unmodified models.

The results of the clock bound repair computed by TARTAR for all considered mod-
els are summarized in Table 1. The seeded modifications are characterized quantita-
tively by the count #Seed of analyzed modified models, the count #TDT of modified
models that return a TDT for the considered property, the maximal time TUP UPPAAL
needs to create a TDT per analyzed model, and the length Len. of the longest TDT
found. For the computation of a repair we give the count #Rep. of all repairs that were
computed, the count #Adm. of computed admissible repairs, the count of TDTs #Sol. for
which an admissible repair was found, the maximal time TQE that the quantifier elimina-
tion required, the average time effort TR to compute a repair, the standard deviation SDR

for the computation time of a repair, the time effort TAdm for an admissibility check, the
maximal count of variables #Var, and the maximal count of constraints #Con. used in
Vbv

i+1. The maximal memory consumption was at most 17MB for the repair analysis and
478MB for the admissibility test. We performed all experiments on a computer with an
i7-6700K CPU (4.0GHz), 60 GB of RAM and a Linux operating system.

Clock Bound Repair for Timed Systems 93

We found 60 TDTs by seeding violations of the timed safety property and TARTAR

returned 204 repairs for these TDTs. TARTAR proposed an admissible repair for 55
(91%) TDTs and at least one repair for 57 (95%) TDTs. For 3 out of the total of 14 TDTs
found for the SBR model no repair was computed since the timeout of the quantifier
elimination was reached after 2 minutes. For all other models, no timeout occurred.

Space limitations do not permit us to describe all models and computed repairs
in detail, we therefore focus on the pacemaker case study. One of the modification
increases a location invariant of this model that controls the minimal heart period from
400 to 1,600. The modification allows the pacemaker to delay an induced ventricular
beat for too long so that this violates the property that the time between two ventric-
ular beats of a heart is never longer than the maximal heart period of 1,000. TARTAR

finds three repairs. Two repairs reduce the maximal time delay between two ventricular
or articular heart beats of the patient. The repairs are classified as inadmissible. In the
model context this appears to be reasonable since the repairs would restrict the environ-
ment of the pacemaker, and not the pacemaker itself. The third repair is admissible and
reduces the bound modified during the seeding of bound modifications by 600.5. The
minimal heart period is then below or equal to the maximal heart period of 1, 000.

Result Interpretation. Our repair strategy minimizes the number of repairs but does
not optimize the computed value. For instance, in the pacemaker model the computed
repair of 600.5 would be a correct and admissible repair even if the value was reduced
to 600, which would be the minimal possible repair value.

A comparison of the values TQE and TR reveals that, perhaps unsurprisingly, the
quantifier elimination step is computationally almost an order of magnitude more
expensive than the repair computation. Overall, the computational cost (TQE + TR) cor-
relates with the number of variables in the constraint system, which depends in turn on
the length of the TDT and the number of clocks referenced along the TDT. Consider, for
instance, that the pacemaker model has a TDT of maximal length 9 with 116 variables,
and the repair requires 0.193 s and 2.070 MB. On the other hand, the Bando model pro-
duces a longer maximal TDT of length 279 with 1,156 variables and requires 6.555 s
and 16.650 MB. The impact of the number of clock constraints and clock variables on
the computation costs can be seen, for instance, in the data for the pacemaker and FDDI
models. While the pacemaker model has a shorter TDT than the Viking model (9 vs.
18), the constraint counts (294 vs. 140) of the pacemaker model are higher than for

Table 1. Experimental results for clock bound repair computation using TARTAR

Model # Seed # TDT TUP Len. # Rep. # Adm. # Sol. TQE TR SDR TAdm # Var. # Con.

Repaired db Fig. 2 35 6 0.006 s 4 12 12 6 0.042 s 0.023 s 0.001 2.329 s 25 40

CSMA/CD [17] 90 6 0.012 s 2 36 16 6 0.020 s 0.021 s 0.000 3.060 s 16 36

Elevator [8] 35 3 0.004 s 1 6 6 3 0.071 s 0.028 s 0.005 2.374 s 6 16

Viking 85 3 0.009 s 18 6 6 3 0.032 s 0.042 s 0.002 2.821 s 120 140

Bando [29] 740 12 0.259 s 279 26 24 12 17.227 s 6.555 s 1.776 4.067 s 1,156 2,441

Pacemaker [19] 240 7 0.044 s 9 34 16 7 0.670 s 0.193 s 0.021 3.389 s 116 294

SBR [23] 65 14 0.066 s 81 42 26 9 20.776 s 2.568 s 0.441 34.120 s 256 410

FDDI [29] 100 9 0.025 s 5 42 30 9 0.046 s 0.029 s 0.001 2.493 s 59 93

www.dbooks.org

https://www.dbooks.org/

94 M. Kölbl et al.

the Viking model, which coincides with a higher computation time (0.193 s vs. 0.042 s)
and a higher memory consumption (2.070 MB vs. 0.910 MB) compared to the Viking
model.

We analyzed for every TDT the relationship between the length of the TDT and the
computation time for a repair (Tr = TQE + TR), as well as the relationship between #Var
and Tr by estimating Kendall’s tau [13]. Kendall’s tau is a measurement for the ordinal
association between two measured quantities. A correlation is considered significant
if the probability p that there is actually no correlation in a larger data set is below a
certain threshold. The length of a TDT is significantly related (τ1 = 0.673, p < .001)
to Tr. Also #Var is significantly related (τ2 = 0.759, p < .001) to Tr. #Var contains
clocks for every step of a TDT, hence the combination of trace length and clock count
tends to correlate higher than the trace length on its own. This supports our conjecture
that the computation time of a repair depends on the trace length and the clock count.

The admissibility test appears to be quite efficient, with a maximum computation
time of 34.120 s for the SBR model, which is one of the more complex models that
were considered. We observed that most models were action-deterministic, which has a
positive influence on the language equivalence test used during admissibility checking.

7 Conclusion

We have presented an approach to derive minimal repairs for timed reachability prop-
erties of TA and NTA models from TDTs in order to facilitate fault localization and
debugging of such models during the design process. Our approach includes a for-
malization of TDTs using linear real arithmetic, a repair strategy based on MaxSMT
solving, the definition of an admissibility criterion and test for the computed repairs,
the development of a prototypical analysis and repair tool, and the application of the
proposed method to a number of case studies of realistic complexity. To the best of our
knowledge, this is the first rigorous treatment of counterexamples in real-time model
checking. We are also not aware of any existing repair approaches for TA or NTA mod-
els. This makes a comparative experimental evaluation impossible. We have nonetheless
observed that our analysis computes a significant number of admissible repairs within
realistic computation time bounds and memory consumption.

Future research will address the development and implementation of repair strate-
gies for further syntactic features in TAs and NTAs, including false comparison opera-
tors in invariants and guards, erroneous clock variable references, superfluous or miss-
ing resets for clocks, and wrong urgent state choices. We will furthermore address the
interplay between different repairs and develop refined strategies to determine their
admissibility. Finally, we plan to extend the approach developed in this paper to derive
criteria for the actual causation of timing property violations in NTA models based on
the counterfactual reasoning paradigm for causation.

Acknowledgments. We wish to thank Nikolaj Bjorner and Zvonimir Pavlinovic for advice on
the use of Z3. We are grateful to Sarah Stoll for helping us with the statistical evaluation of the
experimental results. This work is in part supported by the National Science Foundation (NSF)
under grant CCF-1350574.

Clock Bound Repair for Timed Systems 95

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

2. Alur, R., et al.: Syntax-guided synthesis. In: Dependable Software Systems Engineering,
NATO Science for Peace and Security Series, D: Information and Communication Security,
vol. 40, pp. 1–25. IOS Press (2015). https://doi.org/10.3233/978-1-61499-495-4-1

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
5. Ben-Abdallah, H., Leue, S.: Timing constraints in message sequence chart specifications. In:

FORTE. IFIP Conference Proceedings, vol. 107, pp. 91–106. Chapman & Hall (1997)
6. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool suite for

automatic verification of real-time systems. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.)
HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0020949

7. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27755-2 3

8. Tiage Brito: Uppaal elevator example (2015). https://github.com/tfbrito/UPPAAL. Accessed
20 Jan 2019

9. Clarke, E.M., Draghicescu, I.A., Kurshan, R.P.: A unified approach for showing language
inclusion and equivalence between various types of omega-automata. Inf. Process. Lett.
46(6), 301–308 (1993)

10. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking.
Springer, Cham (2018)

11. Dalsgaard, A.E., et al.: A lattice model checker. In: Bobaru, M., Havelund, K., Holzmann,
G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 487–493. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 37

12. Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed
automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp.
114–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1 10

13. Field, A.: Discovering Statistics Using IBM SPSS Statistics: and Sex and Drugs and Rock
‘n’ Roll. Sage, London (2013)

14. Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time
systems. Inf. Comput. 111(2), 193–244 (1994)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation,
2nd edn. Addison-Wesley, Stanford (2000)

16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21690-4 32

17. Jensen, H.E., Larsen, K.G., Skou, A.: Modelling and analysis of a collision avoidance pro-
tocol using spin and uppaal. In: The Spin Verification System. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 32, pp. 33–50. DIMACS/AMS (1996)

18. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Software Eng. 37(5), 649–678 (2011)

19. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of
a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28756-5 14

www.dbooks.org

https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-27755-2_3
https://github.com/tfbrito/UPPAAL
https://doi.org/10.1007/978-3-642-20398-5_37
https://doi.org/10.1007/978-3-540-75454-1_10
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-642-28756-5_14
https://www.dbooks.org/

96 M. Kölbl et al.

20. Jose, M., Majumdar, R.: Bug-assist: assisting fault localization in ANSI-C programs. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 504–509. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 40

21. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: PLDI, pp. 437–446. ACM (2011)

22. Le, X.D., Chu, D., Lo, D., Le Goues, C., Visser, W.: S3: syntax- and semantic-guided repair
synthesis via programming by examples. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pp. 593–604. ACM (2017). https://
doi.org/10.1145/3106237.3106309

23. Liu, S.: Analysing Timed Traces using SMT Solving. Master’s thesis, University of Konstanz
(2018)

24. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidel-
berg (1980). https://doi.org/10.1007/3-540-10235-3

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

26. opaal: opaal test folder (2011). http://opaal-modelchecker.com/opaal-ltsmin/. Accessed 08
Nov 2018

27. Polsen, D.B., van Vliet, J.: Concrete Delays for Symbolic Traces. Master’s thesis, Depart-
ment of Computer Science, Aalborg University (2010). https://projekter.aau.dk/projekter/
files/32183338/report.pdf

28. Reynolds, A., Kuncak, V., Tinelli, C., Barrett, C., Deters, M.: Refutation-based synthesis
in SMT. Formal Methods in System Design (2017). https://doi.org/10.1007/s10703-017-
0270-2

29. Uppaal: Uppaal benchmarks (2017). http://www.it.uu.se/research/group/darts/uppaal/
benchmarks/#benchmarks. Accessed 20 Jan 2019

30. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communicating sys-
tems by constraint-solving. In: FORTE. IFIP Conference Proceedings, vol. 6, pp. 243–
258. Chapman & Hall (1994). http://www.it.uu.se/research/group/darts/papers/texts/wpd-
forte94-full.pdf

31. Yovine, S.: KRONOS: a verification tool for real-time systems. STTT 1(1–2), 123–133
(1997)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-642-22110-1_40
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://opaal-modelchecker.com/opaal-ltsmin/
https://projekter.aau.dk/projekter/files/32183338/report.pdf
https://projekter.aau.dk/projekter/files/32183338/report.pdf
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1007/s10703-017-0270-2
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks
http://www.it.uu.se/research/group/darts/uppaal/benchmarks/#benchmarks
http://www.it.uu.se/research/group/darts/papers/texts/wpd-forte94-full.pdf
http://www.it.uu.se/research/group/darts/papers/texts/wpd-forte94-full.pdf
http://creativecommons.org/licenses/by/4.0/

Verifying Asynchronous Interactions via
Communicating Session Automata

Julien Lange1(B) and Nobuko Yoshida2

1 University of Kent, Canterbury, UK
j.s.lange@kent.ac.uk

2 Imperial College London, London, UK

Abstract. This paper proposes a sound procedure to verify properties
of communicating session automata (csa), i.e., communicating automata
that include multiparty session types. We introduce a new asynchronous
compatibility property for csa, called k-multiparty compatibility (k-mc),
which is a strict superset of the synchronous multiparty compatibility
used in theories and tools based on session types. It is decomposed into
two bounded properties: (i) a condition called k-safety which guaran-
tees that, within the bound, all sent messages can be received and each
automaton can make a move; and (ii) a condition called k-exhaustivity
which guarantees that all k-reachable send actions can be fired within
the bound. We show that k-exhaustivity implies existential boundedness,
and soundly and completely characterises systems where each automaton
behaves equivalently under bounds greater than or equal to k. We show
that checking k-mc is pspace-complete, and demonstrate its scalability
empirically over large systems (using partial order reduction).

1 Introduction

Communicating automata are a Turing-complete model of asynchronous interac-
tions [10] that has become one of the most prominent for studying point-to-point
communications over unbounded first-in-first-out channels. This paper focuses
on a class of communicating automata, called communicating session automata
(csa), which strictly includes automata corresponding to asynchronous multi-
party session types [28]. Session types originated as a typing discipline for the
π-calculus [27,66], where a session type dictates the behaviour of a process wrt.
its communications. Session types and related theories have been applied to the
verification and specification of concurrent and distributed systems through their
integration in several mainstream programming languages, e.g., Haskell [44,55],
Erlang [49], F� [48], Go [11,37,38,51], Java [30,31,34,65], OCaml [56], C [52],
Python [16,47,50], Rust [32], and Scala [61,62]. Communicating automata and
asynchronous multiparty session types [28] are closely related: the latter can be
seen as a syntactical representation of the former [17] where a sending state cor-
responds to an internal choice and a receiving state to an external choice. This
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 97–117, 2019.
https://doi.org/10.1007/978-3-030-25540-4_6

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_6
https://www.dbooks.org/

98 J. Lange and N. Yoshida

correspondence between communicating automata and multiparty session types
has become the foundation of many tools centred on session types, e.g., for gener-
ating communication API from multiparty session (global) types [30,31,48,61],
for detecting deadlocks in message-passing programs [51,67], and for monitor-
ing session-enabled programs [5,16,47,49,50]. These tools rely on a property
called multiparty compatibility [6,18,39], which guarantees that communicating
automata representing session types interact correctly, hence enabling the iden-
tification of correct protocols or the detection of errors in endpoint programs.
Multiparty compatible communicating automata validate two essential require-
ments for session types frameworks: every message that is sent can be eventually
received and each automaton can always eventually make a move. Thus, they sat-
isfy the abstract safety invariant ϕ for session types from [63], a prerequisite for
session type systems to guarantee safety of the typed processes. Unfortunately,
multiparty compatibility suffers from a severe limitation: it requires that each
execution of the system has a synchronous equivalent. Hence, it rules out many
correct systems. Hereafter, we refer to this property as synchronous multiparty
compatibility (smc) and explain its main limitation with Example 1.

Example 1. The system in Fig. 1 contains an interaction pattern that is not sup-
ported by any definition of smc [6,18,39]. It consists of a client (c), a server (s),
and a logger (l), which communicate via unbounded fifo channels. Transition
sr!a denotes that sender puts (asynchronously) message a on channel sr; and
transition sr?a denotes the consumption of a from channel sr by receiver. The
client sends a request and some data in a fire-and-forget fashion, before waiting
for a response from the server. Because of the presence of this simple pattern,
the system cannot be executed synchronously (i.e., with the restriction that a
send action can only be fired when a matching receive is enabled), hence it is
rejected by all definitions of smc from previous works, even though the system
is safe (all sent messages are received and no automaton gets stuck).

Synchronous multiparty compatibility is reminiscent of a strong form of exis-
tential boundedness. Among the existing sub-classes of communicating automata
(see [46] for a survey), existentially k-bounded communicating automata [22]
stand out because they can be model-checked [8,21] and they restrict the model
in a natural way: any execution can be rescheduled such that the number of
pending messages that can be received is bounded by k. However, existential
boundedness is generally undecidable [22], even for a fixed bound k. This short-
coming makes it impossible to know when theoretical results are applicable.

To address the limitation of smc and the shortcoming of existential bound-
edness, we propose a (decidable) sufficient condition for existential boundedness,
called k-exhaustivity, which serves as a basis for a wider notion of new compati-
bility, called k-multiparty compatibility (k-mc) where k P Ną0 is a bound on the
number of pending messages in each channel. A system is k-mc when it is (i)
k-exhaustive, i.e., all k-reachable send actions are enabled within the bound, and
(ii) k-safe, i.e., within the bound k, all sent messages can be received and each
automaton can always eventually progress. For example, the system in Fig. 1 is k-
multiparty compatible for any k P Ną0, hence it does not lead to communication

Verifying Asynchronous Interactions via Communicating Session Automata 99

Mc :

cs!req

cs!datasc?ko

sc?err sc?ok

Ms : cs?req
sc!ko

cs?data

sc!ok cs?data

sl!log

Ml :
sl?log

Fig. 1. Client-Server-Logger example.

errors, see Theorem 1. The k-mc condition is a natural constraint for real-world
systems. Indeed any finite-state system is k-exhaustive (for k sufficiently large),
while any system that is not k-exhaustive (resp. k-safe) for any k is unlikely
to work correctly. Furthermore, we show that if a system of csa validates k-
exhaustivity, then each automaton locally behaves equivalently under any bound
greater than or equal to k, a property that we call local bound-agnosticity. We
give a sound and complete characterisation of k-exhaustivity for csa in terms of
local bound-agnosticity, see Theorem 3. Additionally, we show that the complex-
ity of checking k-mc is pspace-complete (i.e., no higher than related algorithms)
and we demonstrate empirically that its cost can be mitigated through (sound
and complete) partial order reduction.

In this paper, we consider communicating session automata (csa), which
cover the most common form of asynchronous multiparty session types [15] (see
Remark 3), and have been used as a basis to study properties and extensions of
session types [6,7,18,30,31,41,42,47,49,50]. More precisely, csa are determin-
istic automata, whose every state is either sending (internal choice), receiving
(external choice), or final. We focus on csa that preserve the intent of internal
and external choices from session types. In these csa, whenever an automaton
is in a sending state, it can fire any transition, no matter whether channels are
bounded; when it is in a receiving state then at most one action must be enabled.

Synopsis. In Sect. 2, we give the necessary background on communicating
automata and their properties, and introduce the notions of output/input bound
independence which guarantee that internal/external choices are preserved in
bounded semantics. In Sect. 3, we introduce the definition of k-multiparty com-
patibility (k-mc) and show that k-mc systems are safe for systems which vali-
date the bound independence properties. In Sect. 4, we formally relate existen-
tial boundedness [22,35], synchronisability [9], and k-exhaustivity. In Sect. 5 we
present an implementation (using partial order reduction) and an experimental
evaluation of our theory. We discuss related works in Sect. 6 and conclude in
Sect. 7.

See [43] for a full version of this paper (including proofs and additional exam-
ples). Our implementation and benchmark data are available online [33].

2 Communicating Automata and Bound Independence

This section introduces notations and definitions of communicating automata
(following [12,39]), as well as the notion of output (resp. input) bound indepen-
dence which enforces the intent of internal (resp. external) choice in csa.

www.dbooks.org

https://www.dbooks.org/

100 J. Lange and N. Yoshida

Fix a finite set P of participants (ranged over by p, q, r, s, etc.) and a
finite alphabet Σ. The set of channels is C def“ {pq | p, q P P and p �“ q},
A def“ C ˆ {!, ?} ˆ Σ is the set of actions (ranged over by �), Σ∗ (resp. A∗) is the
set of finite words on Σ (resp. A). Let w range over Σ∗, and φ, ψ range over A∗.
Also, ε (/P Σ ∪ A) is the empty word, |w| denotes the length of w, and w ·w′ is
the concatenation of w and w′ (these notations are overloaded for words in A∗).

Definition 1 (Communicating automaton). A communicating automaton
is a finite transition system given by a triple M “ (Q, q0, δ) where Q is a finite
set of states, q0 P Q is the initial state, and δ Ď QˆAˆQ is a set of transitions.

The transitions of a communicating automaton are labelled by actions in A of
the form sr!a, representing the emission of message a from participant s to r, or
sr?a representing the reception of a by r. Define subj (pq!a) “ subj (qp?a) “ p,
obj (pq!a) “ obj (qp?a) “ q, and chan(pq!a) “ chan(pq?a) “ pq. The projection
of � onto p is defined as πp(�) “ � if subj (�) “ p and πp(�) “ ε otherwise. Let †
range over {!, ?}, we define: π†

pq(pq † a) “ a and π†′
pq(sr † a) “ ε if either pq �“ sr

or † �“ †′. We extend these definitions to sequences of actions in the natural way.
A state q P Q with no outgoing transition is final ; q is sending (resp. receiv-

ing) if it is not final and all its outgoing transitions are labelled by send
(resp. receive) actions, and q is mixed otherwise. M “ (Q, q0, δ) is deter-
ministic if @(q, �, q′), (q, �′, q′′) P δ : � “ �′ “⇒ q′ “ q′′. M “ (Q, q0, δ)
is send (resp. receive) directed if for all sending (resp. receiving) q P Q and
(q, �, q′), (q, �′, q′′) P δ : obj (�) “ obj (�′). M is directed if it is send and receive
directed.

Remark 1. In this paper, we consider only deterministic communicating
automata without mixed states, and call them Communicating Session
Automata (csa). We discuss possible extensions of our results beyond this class
in Sect. 7.

Definition 2 (System). Given a communicating automaton Mp “ (Qp, q0p, δp)
for each p P P, the tuple S “ (Mp)pPP is a system. A configuration of S is a
pair s “ (q;w) where q “ (qp)pPP with qp P Qp and where w “ (wpq)pqPC
with wpq P Σ∗; component q is the control state and qp P Qp is the local state of
automaton Mp. The initial configuration of S is s0 “ (q0; ε) where q0 “ (q0p)pPP
and we write ε for the |C|-tuple (ε, . . . , ε).

Hereafter, we fix a communicating session automaton Mp “ (Qp, q0p, δp) for
each p P P and let S “ (Mp)pPP be the corresponding system whose initial
configuration is s0. For each p P P, we assume that @(q, �, q′) P δp : subj (�) “ p.
We assume that the components of a configuration are named consistently, e.g.,
for s′ “ (q′;w′), we implicitly assume that q′ “ (q′

p)pPP and w′ “ (w′
pq)pqPC .

Definition 3 (Reachable configuration). Configuration s′ “ (q′;w′) is
reachable from configuration s “ (q;w) by firing transition �, written s

�−→ s′

(or s −→ s′ when � is not relevant), if there are s, r P P and a P Σ such that
either:

Verifying Asynchronous Interactions via Communicating Session Automata 101

1. (a) � “ sr!a and (qs, �, q′
s) P δs, (b) q′

p “ qp for all p �“ s, (c) w′
sr “ wsr · a

and w′
pq “ wpq for all pq �“ sr; or

2. (a) � “ sr?a and (qr, �, q′
r) P δr, (b) q′

p “ qp for all p �“ r, (c) wsr “ a ·w′
sr,

and w′
pq “ wpq for all pq �“ sr.

Remark 2. Hereafter, we assume that any bound k is finite and k P Ną0.

We write −→∗ for the reflexive and transitive closure of −→. Configuration
(q;w) is k-bounded if @pq P C : |wpq| ď k. We write s1

�1···�n−−−−→ sn+1 when
s1

�1−→ s2 · · · sn
�n−→ sn+1, for some s2, . . . , sn (with n ě 0); and say that the

execution �1 · · · �n is k-bounded from s1 if @1 ď i ď n+1 : si is k-bounded. Given
φ P A∗, we write p /P φ iff φ “ φ0 · � · φ1 “⇒ subj (�) �“ p. We write s

φ−→k s′

if s′ is reachable with a k-bounded execution φ from s. The set of reachable
configurations of S is RS (S) “ {s | s0 −→∗s}. The k-reachability set of S is
the largest subset RSk(S) of RS (S) within which each configuration s can be
reached by a k-bounded execution from s0.

Definition 4 streamlines notions of safety from previous works [6,12,18,39]
(absence of deadlocks, orphan messages, and unspecified receptions).

Definition 4 (k-Safety). S is k-safe if the following holds @(q;w) P RSk(S):

(er) @pq P C, if wpq “ a · w′, then (q;w) −→k
∗ pq?a−−−→k.

(pg) @p P P, if qp is receiving, then (q;w) −→k
∗ qp?a−−−→k for q P P and a P Σ.

We say that S is safe if it validates the unbounded version of k-safety (8-safe).

Property (er), called eventual reception, requires that any sent message can
always eventually be received (i.e., if a is the head of a queue then there must
be an execution that consumes a), and Property (pg), called progress, requires
that any automaton in a receiving state can eventually make a move (i.e., it can
always eventually receive an expected message).

We say that a configuration s is stable iff s “ (q; ε), i.e., all its queues
are empty. Next, we define the stable property for systems of communicating
automata, following the definition from [18].

Definition 5 (Stable). S has the stable property (sp) if @s P RS (S) : D(q; ε) P
RS (S) : s −→∗(q; ε).

A system has the stable property if it is possible to reach a stable config-
uration from any reachable configuration. This property is called deadlock-free
in [22]. The stable property implies the eventual reception property, but not
safety (e.g., an automaton may be waiting for an input in a stable configuration,
see Example 2), and safety does not imply the stable property, see Example 4.

Example 2. The following system has the stable property, but it is not safe.

Ms : pq!bpq!a Mq : pq?a pq?b qr!c Mr : qr?c

www.dbooks.org

https://www.dbooks.org/

102 J. Lange and N. Yoshida

Next, we define two properties related to bound independence. They specify
classes of csa whose branching behaviours are not affected by channel bounds.

Definition 6 (k-obi). S is k-output bound independent (k-obi), if @s “
(q;w) P RSk(S) and @p P P, if s

pq!a−−→k, then @(qp, pr!b, q′
p) P δp : s

pr!b−−→k.

Mp :

pq!a1pq!a2

pr!c

qp?b
pq!y

pr!c qp?b

pq!a1

pq!a2qp?x

Mq :

pq?a1pq?a2

rq?d

qp!b
pq?y

rq?d qp!b

pq?a1

pq?a2qp!x

Mr : pr?c

rq!d

Fig. 2. Example of a non-ibi and non-safe system.

Definition 7 (k-ibi). S is k-input bound independent (k-ibi), if @s “ (q;w) P
RSk(S) and @p P P, if s

qp?a−−−→k, then @� P A : s
�−→k ^ subj (�) “ p “⇒ � “ qp?a.

If S is k-obi, then any automaton that reaches a sending state is able to
fire any of its available transitions, i.e., sending states model internal choices
which are not constrained by bounds greater than or equal to k. Note that the
unbounded version of k-obi (k “ 8) is trivially satisfied for any system due to
unbounded asynchrony. If S is k-ibi, then any automaton that reaches a receiving
state is able to fire at most one transition, i.e., receiving states model external
choices where the behaviour of the receiving automaton is controlled exclusively
by its environment. We write ibi for the unbounded version of k-ibi (k “ 8).

Checking the ibi property is generally undecidable. However, systems con-
sisting of (send and receive) directed automata are trivially k-ibi and k-obi for
all k, this subclass of csa was referred to as basic in [18]. We introduce larger
decidable approximations of ibi with Definitions 10 and 11.

Proposition 1. (1) If S is send directed, then S is k-obi for all k P Ną0. (2) If
S is receive directed, then S is ibi (and k-ibi for all k P Ną0).

Remark 3. csa validating k-obi and ibi strictly include the most common forms
of asynchronous multiparty session types, e.g., the directed csa of [18], and sys-
tems obtained by projecting Scribble specifications (global types) which need to
be receive directed (this is called “consistent external choice subjects” in [31]) and
which validate 1-obi by construction since they are projections of synchronous
specifications where choices must be located at a unique sender.

3 Bounded Compatibility for csa

In this section, we introduce k-multiparty compatibility (k-mc) and study its
properties wrt. Safety of communicating session automata (csa) which are k-obi
and ibi. Then, we soundly and completely characterise k-exhaustivity in terms
of local bound-agnosticity, a property which guarantees that communicating
automata behave equivalently under any bound greater than or equal to k.

Verifying Asynchronous Interactions via Communicating Session Automata 103

3.1 Multiparty Compatibility

The definition of k-mc is divided in two parts: (i) k-exhaustivity guarantees that
the set of k-reachable configurations contains enough information to make a
sound decision wrt. safety of the system; and (ii) k-safety (Definition 4) guaran-
tees that a subset of all possible executions is free of any communication errors.
Next, we define k-exhaustivity, then k-multiparty compatibility. Intuitively, a
system is k-exhaustive if for all k-reachable configurations, whenever a send
action is enabled, then it can be fired within a k-bounded execution.

Fig. 3. (Mp, Mq) is non-exhaustive, (Mp, Nq) is 1-exhaustive, (Mp, N
′
q) is 2-exhaustive.

Definition 8 (k-Exhaustivity). S is k-exhaustive if @(q;w) P RSk(S) and
@p P P, if qp is sending, then @(qp, �, q′

p) P δp : Dφ P A∗ : (q;w)
φ−→k

�−→k ^p /P φ.

Definition 9 (k-Multiparty compatibility). S is k-multiparty compatible
(k-mc) if it is k-safe and k-exhaustive.

Definition 9 is a natural extension of the definitions of synchronous multi-
party compatibility given in [18, Definition 4.2] and [6, Definition 4]. The com-
mon key requirements are that every send action must be matched by a receive
action (i.e., send actions are universally quantified), while at least one receive
action must find a matching send action (i.e., receive actions are existentially
quantified). Here, the universal check on send actions is done via the eventual
reception property (er) and the k-exhaustivity condition; while the existential
check on receive actions is dealt with by the progress property (pg).

Whenever systems are k-obi and ibi, then k-exhaustivity implies that k-
bounded executions are sufficient to make a sound decision wrt. safety. This is
not necessarily the case for systems outside of this class, see Examples 3 and 5.

Example 3. The system (Mp,Mq,Mr) in Fig. 2 is k-obi for any k, but not ibi
(it is 1-ibi but not k-ibi for any k ě 2). When executing with a bound strictly
greater than 1, there is a configuration where Mq is in its initial state and both
its receive transitions are enabled. The system is 1-safe and 1-exhaustive (hence
1-mc) but it is not 2-exhaustive nor 2-safe. By constraining the automata to
execute with a channel bound of 1, the left branch of Mp is prevented to execute
together with the right branch of Mq. Thus, the fact that the y messages are not
received in this case remains invisible in 1-bounded executions. This example can
be easily extended so that it is n-exhaustive (resp. safe) but not n+1-exhaustive
(resp. safe) by sending/receiving n+1 ai messages.

www.dbooks.org

https://www.dbooks.org/

104 J. Lange and N. Yoshida

Example 4. The system in Fig. 1 is directed and 1-mc. The system (Mp,Mq) in
Fig. 3 is safe but not k-mc for any finite k P Ną0. Indeed, for any execution
of this system, at least one of the queues grows arbitrarily large. The system
(Mp, Nq) is 1-mc while the system (Mp, N

′
q) is not 1-mc but it is 2-mc.

Mp :
pq!y

pq!v

ps!x

pr!u

ps!xpq!v

pr!w
Mq :

rq?z

pq?y

pq?v

Mr :

rs!b
rq!z

pr?upr?w

rs!a

rs!a

pr?upr?w

rq!z

Ms :
ps?x

rs?b

rs?a

Fig. 4. Example of a system which is not 1-obi.

Example 5. The system in Fig. 4 (without the dotted transition) is 1-mc, but not
2-safe; it is not 1-obi but it is 2-obi. In 1-bounded executions, Mr can execute
rs!b · rp!z , but it cannot fire rs!b · rs!a (queue rs is full), which violates the
1-obi property. The system with the dotted transition is not 1-obi, but it is
2-obi and k-mc for any k ě 1. Both systems are receive directed, hence ibi.

Theorem 1. If S is k-obi, ibi, and k-mc, then it is safe.

Remark 4. It is undecidable whether there exists a bound k for which an arbi-
trary system is k-mc. This is a consequence of the Turing completeness of com-
municating (session) automata [10,20,42].

Although the ibi property is generally undecidable, it is possible to identify
sound approximations, as we show below. We adapt the dependency relation
from [39] and say that action �′ depends on � from s “ (q;w), written s $ � ă �′,
iff subj (�) “ subj (�′) _ (chan(�) “ chan(�′) ^ wchan(�) “ ε). Action �′ depends
on � in φ from s, written s $ � ăφ �′, if the following holds:

s $ � ăφ �′ ⇐⇒
{

(s $ � ă �′′ ^ s $ �′′ ăψ �′) _ s $ � ăψ �′ if φ “ �′′ ·ψ
s $ � ă �′ otherwise

Definition 10. S is k-chained input bound independent (k-cibi) if @s “
(q;w) P RSk(S) and @p P P, if s

qp?a−−−→k s′, then @(qp, sp?b, q′
p) P δp : s �“

q “⇒ ¬(s
sp?b−−−→k) ^ (@φ P A∗ : s′ φ−→k

sp!b−−→k “⇒ s $ qp?a ăφ sp!b).

Definition 11. S is k-strong input bound independent (k-sibi) if @s “ (q;w) P
RSk(S) and @p P P, if s

qp?a−−−→k s′, then @(qp, sp?b, q′
p) P δp : s �“ q “⇒

¬(s
sp?b−−−→k _ s′ −→k

∗ sp!b−−→k).

Verifying Asynchronous Interactions via Communicating Session Automata 105

Definition 10 requires that whenever p can fire a receive action, at most
one of its receive actions is enabled at s, and no other receive transition from
qp will be enabled until p has made a move. This is due to the existence of a
dependency chain between the reception of a message (qp?a) and the matching
send of another possible reception (sp!b). Property k-sibi (Definition 11) is a
stronger version of k-cibi, which can be checked more efficiently.

Lemma 1. If S is k-obi, k-cibi (resp. k-sibi) and k-exhaustive, then it is ibi.

The decidability of k-obi, k-ibi, k-sibi, k-cibi, and k-mc is straightforward
since both RSk(S) (which has an exponential number of states wrt. k) and −→k

are finite, given a finite k. Theorem 2 states the space complexity of the proce-
dures, except for k-cibi for which a complexity class is yet to be determined. We
show that the properties are pspace by reducing to an instance of the reacha-
bility problem over a transition system built following the construction of Bollig
et al. [8, Theorem 6.3]. The rest of the proof follows from similar arguments in
Genest et al. [22, Proposition 5.5] and Bouajjani et al. [9, Theorem 3].

Theorem 2. The problems of checking the k-obi, k-ibi, k-sibi, k-safety, and
k-exhaustivity properties are all decidable and pspace-complete (with k P Ną0

given in unary). The problem of checking the k-cibi property is decidable.

3.2 Local Bound-Agnosticity

We introduce local bound-agnosticity and show that it fully characterises k-
exhaustive systems. Local bound-agnosticity guarantees that each communicat-
ing automaton behave in the same manner for any bound greater than or equal to
some k. Therefore such systems may be executed transparently under a bounded
semantics (a communication model available in Go and Rust).

Definition 12 (Transition system). The k-bounded transition system of S is
the labelled transition system (LTS) TSk(S) “ (N, s0,Δ) such that N “ RSk(S),
s0 is the initial configuration of S, Δ Ď NˆAˆN is the transition relation, and
(s, �, s′) P Δ if and only if s

�−→k s′.

Definition 13 (Projection). Let T be an LTS over A. The projection of T
onto p, written πε

p(T), is obtained by replacing each label � in T by πp(�).

Recall that the projection of action �, written πp(�), is defined in Sect. 2.
The automaton πε

p(TSk(S)) is essentially the local behaviour of participant p
within the transition system TSk(S). When each automaton in a system S
behaves equivalently for any bound greater than or equal to some k, we say
that S is locally bound-agnostic. Formally, S is locally bound-agnostic for k
when πε

p(TSk(S)) and πε
p(TSn(S)) are weakly bisimilar (≈) for each participant

p and any n ě k. For k-obi and ibi systems, local bound-agnosticity is a nec-
essary and sufficient condition for k-exhaustivity, as stated in Theorem 3 and
Corollary 1.

www.dbooks.org

https://www.dbooks.org/

106 J. Lange and N. Yoshida

Theorem 3. Let S be a system.

(1) If Dk P Ną0 : @p P P : πε
p(TSk(S))≈ πε

p(TSk+1(S)), then S is k-exhaustive.
(2) If S is k-obi, ibi, and k-exhaustive, then @p P P : πε

p(TSk(S))≈
πε
p(TSk+1(S)).

Corollary 1. Let S be k-obi and ibi s.t. @p P P : πε
p(TSk(S))≈ πε

p(TSk+1(S)),
then S is locally bound-agnostic for k.

Theorem 3 (1) is reminiscent of the (pspace-complete) checking procedure
for existentially bounded systems with the stable property [22] (an undecidable
property). Recall that k-exhaustivity is not sufficient to guarantee safety, see
Examples 3 and 5. We give an effective procedure (based on partial order reduc-
tion) to check k-exhaustivity and related properties in [43].

Fig. 5. Relations between k-exhaustivity, existential k-boundedness, and k-synchronis-
ability in k-obi and ibi csa (the circled numbers refer to Table 1).

4 Existentially Bounded and Synchronisable Automata

4.1 Kuske and Muscholl’s Existential Boundedness

Existentially bounded communicating automata [21,22,35] are a class of com-
municating automata whose executions can always be scheduled in such a way
that the number of pending messages is bounded by a given value. Traditionally,
existentially bounded communicating automata are defined on communicating
automata that feature (local) accepting states and in terms of accepting runs.
An accepting run is an execution (starting from s0) which terminates in a config-
uration (q;w) where each qp is a local accepting state. In our setting, we simply
consider that every local state qp is an accepting state, hence any execution φ
starting from s0 is an accepting run. We first study existential boundedness as
defined in [35] as it matches more closely k-exhaustivity, we study the “classical”
definition of existential boundedness [22] in Sect. 4.2.

Following [35], we say that an execution φ P A∗ is valid if for any prefix ψ
of φ and any channel pq P C, we have that π?

pq(ψ) is a prefix of π!
pq(ψ), i.e., an

execution is valid if it models the fifo semantics of communicating automata.

Verifying Asynchronous Interactions via Communicating Session Automata 107

Definition 14 (Causal equivalence [35]). Given φ, ψ P A∗, we define: φ�ψ
iff φ and ψ are valid executions and @p P P : πp(φ) “ πp(ψ). We write [φ]� for
the equivalence class of φ wrt. �.

Definition 15 (Existential boundedness [35]). We say that a valid execu-
tion φ is k-match-bounded if, for every prefix ψ of φ the difference between the
number of matched events of type pq! and those of type pq? is bounded by k,
i.e., min{|π!

pq(ψ)|, |π?
pq(φ)|} − |π?

pq(ψ)| ď k.
Write A∗|k for the set of k-match-bounded words. An execution φ is existentially
k-bounded if [φ]� X A∗|k �“ ∅. A system S is existentially k-bounded, written D-
k-bounded, if each execution in {φ | Ds : s0

φ−→s} is existentially k-bounded.

Example 6. Consider Fig. 3. (Mp,Mq) is not existentially k-bounded, for any k:
at least one of the queues must grow infinitely for the system to progress. Systems
(Mp, Nq) and (Mp, N

′
q) are existentially bounded since any of their executions

can be scheduled to an �-equivalent execution which is 2-match-bounded.

The relationship between k-exhaustivity and existential boundedness is
stated in Theorem 4 and illustrated in Fig. 5 for k-obi and ibi csa, where smc
refers to synchronous multiparty compatibility [18, Definition 4.2]. The circled
numbers in the figure refer to key examples summarised in Table 1. The strict
inclusion of k-exhaustivity in existential k-boundedness is due to systems that
do not have the eventual reception property, see Example 7.

Example 7. The system below is D-1-bounded but is not k-exhaustive for any k.

Mp : sp?c Ms :
sr!a

sp!b

Mr : sr?a

For any k, the channel sp eventually gets full and the send action sp!b can no
longer be fired; hence it does not satisfy k-exhaustivity. Note that each execution
can be reordered into a 1-match-bounded execution (the b’s are never matched).

Theorem 4. (1) If S is k-obi, ibi, and k-exhaustive, then it is D-k-bounded.
(2) If S is D-k-bounded and satisfies eventual reception, then it is k-exhaustive.

4.2 Existentially Stable Bounded Communicating Automata

The “classical” definition of existentially bounded communicating automata as
found in [22] differs slightly from Definition 15, as it relies on a different notion
of accepting runs, see [22, page 4]. Assuming that all local states are accepting,
we adapt their definition as follows: a stable accepting run is an execution φ
starting from s0 which terminates in a stable configuration.

Definition 16 (Existential stable boundedness [22]). A system S is exis-
tentially stable k-bounded, written DS-k-bounded, if for each execution φ in
{φ | D(q; ε) P RS (S) : s0

φ−→ (q; ε)} there is ψ such that s0
ψ−→k with φ� ψ.

www.dbooks.org

https://www.dbooks.org/

108 J. Lange and N. Yoshida

A system is existentially stable k-bounded if each of its executions leading to
a stable configuration can be re-ordered into a k-bounded execution (from s0).

Theorem 5. (1) If S is existentially k-bounded, then it is existentially stable
k-bounded. (2) If S is existentially stable k-bounded and has the stable property,
then it is existentially k-bounded.

We illustrate the relationship between existentially stable bounded commu-
nicating automata and the other classes in Fig. 5. The example below further
illustrates the strictness of the inclusions, see Table 1 for a summary.

Example 8. Consider the systems in Fig. 3. (Mp,Mq) and (Mp, N
′
q) are (triv-

ially) existentially stable 1-bounded since none of their (non-empty) executions
terminate in a stable configuration. The system (Mp, Nq) is existentially stable
2-bounded since each of its executions can be re-ordered into a 2-bounded one.
The system in Example 7 is (trivially) DS-1-bounded: none of its (non-empty)
executions terminate in a stable configuration (the b’s are never received).

Theorem 6. Let S be an D(S)-k-bounded system with the stable property, then
it is k-exhaustive.

Table 1. Properties for key examples, where direct. stands for directed, obi for k-obi,
sibi for k-sibi, er for eventual reception property, sp for stable property, exh. for k-
exhaustive, D(S)-b for D(S)-bounded, and syn. for n-synchronisable (for some n P Ną0).

System Ref. k direct. obi sibi safe er sp exh. DS-b D-b syn.

1 (Mc, Ms, Ml) Figure 1 1 yes yes yes yes yes yes yes yes yes yes

2 (Ms, Mq, Mr) Example 2 1 yes yes yes no yes yes yes yes yes yes

3 (Mp, Mq, Mr) Figure 2 ě 2 no yes no no no no no yes yes no

4 (Mp, Mq) Figure 3 any yes yes yes yes yes no no yes no no

5 (Mp, N
′
q) Figure 3 2 yes yes yes yes yes no yes yes yes no

6 (Mp, Mq, Mr, Ms) Figure 4 2 no yes yes yes yes no yes yes yes no

7 (Ms, Mr, Mp) Example 7 any yes yes yes no no no no yes yes yes

8 (Mp, Mq) Example 9 1 yes yes yes yes yes yes yes yes yes no

4.3 Synchronisable Communicating Session Automata

In this section, we study the relationship between synchronisability [9] and k-
exhaustivity via existential boundedness. Informally, communicating automata
are synchronisable if each of their executions can be scheduled in such a way
that it consists of sequences of “exchange phases”, where each phase consists of
a bounded number of send actions, followed by a sequence of receive actions.
The original definition of k-synchronisable systems [9, Definition 1] is based on

Verifying Asynchronous Interactions via Communicating Session Automata 109

communicating automata with mailbox semantics, i.e., each automaton has one
input queue. Here, we adapt the definition so that it matches our point-to-point
semantics. We write A! for A X (C ˆ {!} ˆ Σ), and A? for A X (C ˆ {?} ˆ Σ).

Definition 17 (Synchronisability). A valid execution φ “ φ1 · · · φn is a k-
exchange if and only if: (1) @1 ď i ď n : φi P A∗

! · A∗
? ^ |φi| ď 2k; and

(2) @pq P C : @1 ď i ď n : π!
pq(φi) �“ π?

pq(φi) “⇒ @i ă j ď n : π?
pq(φj) “ ε.

We write A∗‖k for the set of executions that are k-exchanges and say that
an execution φ is k-synchronisable if [φ]� X A∗ ‖k �“ ∅. A system S is k-
synchronisable if each execution in {φ | Ds : s0

φ−→s} is k-synchronisable.

Table 2. Experimental evaluation. |P| is the number of participants, k is the bound,
|RTS | is the number of transitions in the reduced TSk(S) (see [43]), direct. stands for
directed, Time is the time taken to check all the properties shown in this table, and
gmc is yes if the system is generalised multiparty compatible [39].

Example |P| k |RTS | direct. k-obi k-cibi k-mc Time gmc

Client-Server-Logger 3 1 11 yes yes yes yes 0.04 s no

4 Player game† [39] 4 1 20 no yes yes yes 0.05 s yes

Bargain [39] 3 1 8 yes yes yes yes 0.03 s yes

Filter collaboration [68] 2 1 10 yes yes yes yes 0.03 s yes

Alternating bit† [59] 2 1 8 yes yes yes yes 0.04 s no

TPMContract v2† [25] 2 1 14 yes yes yes yes 0.04 s yes

Sanitary agency† [60] 4 1 34 yes yes yes yes 0.07 s yes

Logistic† [54] 4 1 26 yes yes yes yes 0.05 s yes

Cloud system v4 [24] 4 2 16 no yes yes yes 0.04 s yes

Commit protocol [9] 4 1 12 yes yes yes yes 0.03 s yes

Elevator† [9] 5 1 72 no yes no yes 0.14s no

Elevator-dashed† [9] 5 1 80 no yes no yes 0.16s no

Elevator-directed† [9] 3 1 41 yes yes yes yes 0.07 s yes

Dev system [58] 4 1 20 yes yes yes yes 0.05 s no

Fibonacci [48] 2 1 6 yes yes yes yes 0.03 s yes

Sap-Negot. [48,53] 2 1 18 yes yes yes yes 0.04 s yes

sh [48] 3 1 30 yes yes yes yes 0.06 s yes

Travel agency [48,64] 3 1 21 yes yes yes yes 0.05 s yes

http [29,48] 2 1 48 yes yes yes yes 0.07 s yes

smtp [30,48] 2 1 108 yes yes yes yes 0.08 s yes

gen_server (buggy) [67] 3 1 56 no no yes no 0.03 s no

gen_server (fixed) [67] 3 1 45 no yes yes yes 0.03 s yes

Double buffering [45] 3 2 16 yes yes yes yes 0.01 s no

www.dbooks.org

https://www.dbooks.org/

110 J. Lange and N. Yoshida

Condition (1) says that execution φ should be a sequence of an arbitrary
number of send-receive phases, where each phase consists of at most 2k actions.
Condition (2) says that if a message is not received in the phase in which it is
sent, then it cannot be received in φ. Observe that the bound k is on the number
of actions (over possibly different channels) in a phase rather than the number
of pending messages in a given channel.

Example 9. The system below (left) is 1-mc and D(S)-1-bounded, but it is not
k-synchronisable for any k. The subsequences of send-receive actions in the �-
equivalent executions below are highlighted (right).

Mp : pq!a qp?c pq!b qp?d

Mq : qp!c qp!d pq?a pq?b

φ1 “ pq!a · qp!c · qp?c · qp!d · pq?a · pq!b · qp?d · pq?b
φ2 “ pq!a · qp!c · qp!d · qp?c · pq?a · pq!b · qp?d · pq?b

Execution φ1 is 1-bounded for s0, but it is not a k-exchange since, e.g., a is
received outside of the phase where it is sent. In φ2, message d is received outside
of its sending phase. In the terminology of [9], this system is not k-synchronisable
because there is a “receive-send dependency” between the exchange of message
c and b, i.e., p must receive c before it sends b. Hence, there is no k-exchange
that is �-equivalent to φ1 and φ2.

Theorem 7. (1) If S is k-synchronisable, then it is D-k-bounded. (2) If S is k-
synchronisable and has the eventual reception property, then it is k-exhaustive.

Figure 5 and Table 1 summarise the results of Sect. 4 wrt. k-obi and ibi csa.
We note that any finite-state system is k-exhaustive (and D(S)-k-bounded) for
sufficiently large k, while this does not hold for synchronisability, see Example 9.

5 Experimental Evaluation

We have implemented our theory in a tool [33] which takes two inputs: (i) a
system of communicating automata and (ii) a bound max. The tool iteratively
checks whether the system validates the premises of Theorem 1, until it succeeds
or reaches k “ max. We note that the k-obi and ibi conditions are required
for our soundness result (Theorem 1), but are orthogonal for checking k-mc.
Each condition is checked on a reduced bounded transition system, called
RTSk(S). Each verification procedure for these conditions is implemented in
Haskell using a simple (depth-first-search based) reachability check on the paths
of RTSk(S). We give an (optimal) partial order reduction algorithm to construct
RTSk(S) in [43] and show that it preserves our properties.

We have tested our tool on 20 examples taken from the literature, which are
reported in Table 2. The table shows that the tool terminates virtually instan-
taneously on all examples. The table suggests that many systems are indeed
k-mc and most can be easily adapted to validate bound independence. The last
column refers to the gmc condition, a form of synchronous multiparty compat-
ibility (smc) introduced in [39]. The examples marked with † have been slightly

Verifying Asynchronous Interactions via Communicating Session Automata 111

modified to make them csa that validate k-obi and ibi. For instance, we take
only one of the possible interleavings between mixed actions to remove mixed
states (taking send action before receive action to preserve safety), see [43].

We have assessed the scalability of our approach with automatically gener-
ated examples, which we report in Fig. 6. Each system considered in these bench-
marks consists of 2m (directed) csa for some m ě 1 such that S “ (Mpi)1ďiď2m,
and each automaton Mpi is of the form (when i is odd):

Mpi :
pipi+1!a1

pipi+1!an

pipi+1!a1

pipi+1!an

pi+1pi?a1

pi+1pi?an

pi+1pi?a1

pi+1pi?an

k times k times

Each Mpi sends k messages to participant pi+1, then receives k messages from
pi+1. Each message is taken from an alphabet {a1 , . . . , an} (n ě 1). Mpi has the
same structure when i is even, but interacts with pi−1 instead. Observe that any
system constructed in this way is k-mc for any k ě 1, n ě 1, and m ě 1. The
shape of these systems allows us to assess how our approach fares in the worst
case, i.e., large number of paths in RTSk(S). Figure 6 gives the time taken for
our tool to terminate (y axis) wrt. the number of transitions in RTSk(S) where
k is the least natural number for which the system is k-mc. The plot on the left
in Fig. 6 gives the timings when k is increasing (every increment from k “ 2 to
k “ 100) with the other parameters fixed (n “ 1 and m “ 5). The middle plot
gives the timings when m is increasing (every increment from m “ 1 to m “ 26)
with k “ 10 and n “ 1. The right-hand side plot gives the timings when n is
increasing (every increment from n “ 1 to n “ 10) with k “ 2 and m “ 1. The
largest RTSk(S) on which we have tested our tool has 12222 states and 22220
transitions, and the verification took under 17min.1 Observe that partial order
reduction mitigates the increasing size of the transition system on which k-mc
is checked, e.g., these experiments show that parameters k and m have only a
linear effect on the number of transitions (see horizontal distances between data
points). However the number of transitions increases exponentially with n (since
the number of paths in each automaton increases exponentially with n).

6 Related Work

Theory of communicating automata Communicating automata were introduced,
and shown to be Turing powerful, in the 1980s [10] and have since then been
studied extensively, namely through their connection with message sequence
charts (MSC) [46]. Several works achieved decidability results by using bag or
lossy channels [1,2,13,14] or by restricting the topology of the network [36,57].

Existentially bounded communicating automata stand out because they pre-
serve the fifo semantics of communicating automata, do not restrict the topol-
ogy of the network, and include infinite state systems. Given a bound k and
1 All the benchmarks in this paper were run on an 8-core Intel i7-7700 machine with

16GB RAM running a 64-bit Linux.

www.dbooks.org

https://www.dbooks.org/

112 J. Lange and N. Yoshida

Fig. 6. Benchmarks: increasing k (left), increasing m (middle), and increasing n (right).

an arbitrary system of (deterministic) communicating automata S, it is gen-
erally undecidable whether S is existentially k-bounded. However, the ques-
tion becomes decidable (pspace-complete) when S has the stable property.
The stable property is itself generally undecidable (it is called deadlock-freedom
in [22,35]). Hence this class is not directly applicable to the verification of mes-
sage passing programs since its membership is overall undecidable. We have
shown that k-obi, ibi, and k-exhaustive csa systems are (strictly) included in
the class of existentially bounded systems. Hence, our work gives a sound prac-
tical procedure to check whether csa are existentially k-bounded. To the best of
our knowledge, the only tools dedicated to the verification of (unbounded) com-
municating automata are McScM [26] and Chorgram [40]. Bouajjani et al. [9]
study a variation of communicating automata with mailboxes (one input queue
per automaton). They introduce the class of synchronisable systems and a pro-
cedure to check whether a system is k-synchronisable; it relies on executions con-
sisting of k-bounded exchange phases. Given a system and a bound k, it is decid-
able (pspace-complete) whether its executions are equivalent to k-synchronous
executions. Section 4.3 states that any k-synchronisable system which satisfies
eventual reception is also k-exhaustive, see Theorem 7. In contrast to existen-
tial boundedness, synchronisability does not include all finite-state systems. Our
characterisation result, based on local bound-agnosticity (Theorem 3), is unique
to k-exhaustivity. It does not apply to existential boundedness nor synchro-
nisability, see, e.g., Example 7. The term “synchronizability” is used by Basu
et al. [3,4] to refer to another verification procedure for communicating automata
with mailboxes. Finkel and Lozes [19] have shown that this notion of synchroniz-
ability is undecidable. We note that a system that is safe with a point-to-point
semantics, may not be safe with a mailbox semantics (due to independent send
actions), and vice-versa. For instance, the system in Fig. 2 is safe when executed
with mailbox semantics.

Multiparty Compatibility and Programming Languages. The first definition of
multiparty compatibility appeared in [18, Definition 4.2], inspired by the work
in [23], to characterise the relationship between global types and communicating
automata. This definition was later adapted to the setting of communicating
timed automata in [6]. Lange et al. [39] introduced a generalised version of mul-
tiparty compatibility (gmc) to support communicating automata that feature

Verifying Asynchronous Interactions via Communicating Session Automata 113

mixed or non-directed states. Because our results apply to automata without
mixed states, k-mc is not a strict extension of gmc, and gmc is not a strict
extension of k-mc either, as it requires the existence of synchronous executions.
In future work, we plan to develop an algorithm to synthesise representative
choreographies from k-mc systems, using the algorithm in [39].

The notion of multiparty compatibility is at the core of recent works that
apply session types techniques to programming languages. Multiparty compat-
ibility is used in [51] to detect deadlocks in Go programs, and in [30] to study
the well-formedness of Scribble protocols [64] through the compatibility of their
projections. These protocols are used to generate various endpoint APIs that
implement a Scribble specification [30,31,48], and to produce runtime monitor-
ing tools [47,49,50]. Taylor et al. [67] use multiparty compatibility and chore-
ography synthesis [39] to automate the analysis of the gen_server library of
Erlang/OTP. We can transparently widen the set of safe programs captured
by these tools by using k-mc instead of synchronous multiparty compatibility
(smc). The k-mc condition corresponds to a much wider instance of the abstract
safety invariant ϕ for session types defined in [63]. Indeed k-mc includes smc
(see [43]) and all finite-state systems (for k sufficiently large).

7 Conclusions

We have studied csa via a new condition called k-exhaustivity. The k-
exhaustivity condition is (i) the basis for a wider notion of multiparty compati-
bility, k-mc, which captures asynchronous interactions and (ii) the first practi-
cal, empirically validated, sufficient condition for existential k-boundedness. We
have shown that k-exhaustive systems are fully characterised by local bound-
agnosticity (each automaton behaves equivalently for any bound greater than
or equal to k). This is a key requirement for asynchronous message passing
programming languages where the possibility of having infinitely many orphan
messages is undesirable, in particular for Go and Rust which provide bounded
communication channels.

For future work, we plan to extend our theory beyond csa. We believe that it
is possible to support mixed states and states which do not satisfy ibi, as long as
their outgoing transitions are independent (i.e., if they commute). Additionally,
to make k-mc checking more efficient, we will elaborate heuristics to find optimal
bounds and off-load the verification of k-mc to an off-the-shelf model checker.

Acknowledgements. We thank Laura Bocchi and Alceste Scalas for their comments,
and David Castro and Nicolas Dilley for testing the artifact. This work is partially sup-
ported by EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1,
and EP/N028201/1.

www.dbooks.org

https://www.dbooks.org/

114 J. Lange and N. Yoshida

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with
unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 305–318. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0028754

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS
1993, pp. 160–170 (1993)

3. Basu, S., Bultan, T.: Automated choreography repair. In: Stevens, P., Wąsowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 13–30. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7_2

4. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: POPL
2012, pp. 191–202 (2012)

5. Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks
through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017)

6. Bocchi, L., Lange, J., Yoshida, N.: Meeting deadlines together. In: CONCUR 2015,
pp. 283–296 (2015)

7. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44584-6_29

8. Bollig, B., Kuske, D., Meinecke, I.: Propositional dynamic logic for message-passing
systems. Log. Methods Comput. Sci. 6(3) (2010). https://lmcs.episciences.org/
1057

9. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying mes-
sage passing programs under bounded asynchrony. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 372–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96142-2_23

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

11. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint APIs
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019)

12. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication. Inf.
Comput. 202(2), 166–190 (2005)

13. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Inf. Comput. 124(1), 20–31 (1996)

14. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating
automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6_20

15. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: A gentle introduc-
tion to multiparty asynchronous session types. In: Bernardo, M., Johnsen, E.B.
(eds.) SFM 2015. LNCS, vol. 9104, pp. 146–178. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18941-3_4

16. Demangeon, R., Honda, K., Hu, R., Neykova, R., Yoshida, N.: Practical interrupt-
ible conversations: distributed dynamic verification with multiparty session types
and Python. Form. Methods Syst. Des. 46(3), 197–225 (2015)

17. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_10

https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/978-3-662-49665-7_2
https://doi.org/10.1007/978-3-662-44584-6_29
https://lmcs.episciences.org/1057
https://lmcs.episciences.org/1057
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-642-28869-2_10

Verifying Asynchronous Interactions via Communicating Session Automata 115

18. Deniélou, P.-M., Yoshida, N.: Multiparty compatibility in communicating
automata: characterisation and synthesis of global session types. In: Fomin, F.V.,
Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp.
174–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-
2_18

19. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is
not decidable. In: ICALP 2017, pp. 122:1–122:14 (2017)

20. Finkel, A., McKenzie, P.: Verifying identical communicating processes is undecid-
able. Theor. Comput. Sci. 174(1–2), 217–230 (1997)

21. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algo-
rithms for existentially bounded communicating automata. Inf. Comput. 204(6),
920–956 (2006)

22. Genest, B., Kuske, D., Muscholl, A.: On communicating automata with bounded
channels. Fundam. Inform. 80(1–3), 147–167 (2007)

23. Gouda, M.G., Manning, E.G., Yu, Y.: On the progress of communications between
two finite state machines. Inf. Control 63(3), 200–216 (1984)

24. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, pp. 238–253. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33386-6_20

25. Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: SIGSOFT 2010, pp. 27–36 (2010)

26. Heußner, A., Le Gall, T., Sutre, G.: McScM: a general framework for the veri-
fication of communicating machines. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 478–484. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5_34

27. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

28. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284 (2008)

29. Hu, R.: Distributed programming using Java APIs generated from session types.
In: Behavioural Types: Trom Theory to Tools. River Publishers, June 2017

30. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 401–418.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7_24

31. Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types. In:
FASE 2017, pp. 116–133 (2017)

32. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for Rust. In:
WGP@ICFP 2015, pp. 13–22 (2015)

33. KMC tool (2019). https://bitbucket.org/julien-lange/kmc-cav19
34. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with

Mungo and StMungo. In: PPDP 2016, pp. 146–159 (2016)
35. Kuske, D., Muscholl, A.: Communicating automata (2014). http://eiche.theoinf.

tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
36. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent

queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78800-3_21

www.dbooks.org

https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-642-33386-6_20
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1007/978-3-642-28756-5_34
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://bitbucket.org/julien-lange/kmc-cav19
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/cfm-final.pdf
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://www.dbooks.org/

116 J. Lange and N. Yoshida

37. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: liveness and safety for
channel-based programming. In: POPL 2017, pp. 748–761 (2017)

38. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: ICSE 2018. ACM (2018)

39. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL 2015, pp. 221–232 (2015)

40. Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of
message-passing software. In: Behavioural Types: from Theory to Tools. River
Publishers, June 2017

41. Lange, J., Yoshida, N.: Characteristic formulae for session types. In: Chechik, M.,
Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 833–850. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-49674-9_52

42. Lange, J., Yoshida, N.: On the undecidability of asynchronous session subtyping.
In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 441–
457. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_26

43. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating ses-
sion automata. CoRR, abs/1901.09606 (2019). https://arxiv.org/abs/1901.09606

44. Lindley, S., Morris, J.G.: Embedding session types in Haskell. In: Haskell 2016, pp.
133–145 (2016)

45. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially com-
mutative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol.
5502, pp. 316–332. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00590-9_23

46. Muscholl, A.: Analysis of communicating automata. In: Dediu, A.-H., Fernau, H.,
Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 50–57. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-13089-2_4

47. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty
conversations. In: FAOC, pp. 1–34 (2017)

48. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider: compile-
time API generation for distributed protocols with interaction refinements in F�.
In: CC 2018. ACM (2018)

49. Neykova, R., Yoshida, N.: Let it recover: multiparty protocol-induced recovery. In:
CC 2017, pp. 98–108. ACM (2017)

50. Neykova, R., Yoshida, N.: Multiparty session actors. In: LMCS, pp. 13:1–30 (2017)
51. Ng, N., Yoshida, N.: Static deadlock detection for concurrent Go by global session

graph synthesis. In: CC 2016, pp. 174–184 (2016)
52. Ng, N., Yoshida, N., Honda, K.: Multiparty session C: safe parallel programming

with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0_15

53. Ocean Observatories Initiative. www.oceanobservatories.org
54. OMG: Business Process Model and Notation (2018). https://www.omg.org/spec/

BPMN/2.0/
55. Orchard, D.A., Yoshida, N.: Effects as sessions, sessions as effects. In: POPL 2016,

pp. 568–581 (2016)
56. Padovani, L.: A simple library implementation of binary sessions. J. Funct. Pro-

gram. 27, e4 (2017)
57. Peng, W., Purushothaman, S.: Analysis of a class of communicating finite state

machines. Acta Inf. 29(6/7), 499–522 (1992)
58. Perera, R., Lange, J., Gay, S.J.: Multiparty compatibility for concurrent objects.

In: PLACES 2016, pp. 73–82 (2016)

https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-54458-7_26
https://arxiv.org/abs/1901.09606
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-13089-2_4
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
www.oceanobservatories.org
https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/

Verifying Asynchronous Interactions via Communicating Session Automata 117

59. Introduction to protocol engineering (2006). http://cs.uccs.edu/~cs522/pe/pe.htm
60. Salaün, G., Bordeaux, L., Schaerf, M.: Describing and reasoning on web services

using process algebra. IJBPIM 1(2), 116–128 (2006)
61. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty

sessions for safe distributed programming. In: ECOOP 2017, pp. 24:1–24:31 (2017)
62. Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: ECOOP

2016, pp. 21:1–21:28 (2016)
63. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. PACMPL

3(POPL), 30:1–30:29 (2019)
64. Scribble Project homepage (2018). www.scribble.org
65. Sivaramakrishnan, K.C., Qudeisat, M., Ziarek, L., Nagaraj, K., Eugster, P.: Effi-

cient sessions. Sci. Comput. Program. 78(2), 147–167 (2013)
66. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-

ing system. In: Halatsis, C., Maritsas, D., Philokyprou, G., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58184-7_118

67. Taylor, R., Tuosto, E., Walkinshaw, N., Derrick, J.: Choreography-based analysis
of distributed message passing programs. In: PDP 2016, pp. 512–519 (2016)

68. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM
Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

http://cs.uccs.edu/~cs522/pe/pe.htm
www.scribble.org
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Security and Hyperproperties

Verifying Hyperliveness

Norine Coenen1(B), Bernd Finkbeiner1,
César Sánchez2, and Leander Tentrup1

1 Reactive Systems Group, Saarland University,
Saarbrücken, Germany

coenen@react.uni-saarland.de
2 IMDEA Software Institute, Madrid, Spain

Abstract. HyperLTL is an extension of linear-time temporal logic
for the specification of hyperproperties, i.e., temporal properties that
relate multiple computation traces. HyperLTL can express information
flow policies as well as properties like symmetry in mutual exclusion
algorithms or Hamming distances in error-resistant transmission pro-
tocols. Previous work on HyperLTL model checking has focussed on
the alternation-free fragment of HyperLTL, where verification reduces to
checking a standard trace property over an appropriate self-composition
of the system. The alternation-free fragment does, however, not cover
general hyperliveness properties. Universal formulas, for example, can-
not express the secrecy requirement that for every possible value of a
secret variable there exists a computation where the value is different
while the observations made by the external observer are the same. In
this paper, we study the more difficult case of hyperliveness properties
expressed as HyperLTL formulas with quantifier alternation. We reduce
existential quantification to strategic choice and show that synthesis algo-
rithms can be used to eliminate the existential quantifiers automatically.
We furthermore show that this approach can be extended to reactive
system synthesis, i.e., to automatically construct a reactive system that
is guaranteed to satisfy a given HyperLTL formula.

1 Introduction

HyperLTL [6] is a temporal logic for hyperproperties [7], i.e., for properties that
relate multiple computation traces. Hyperproperties cannot be expressed in stan-
dard linear-time temporal logic (LTL), because LTL can only express trace prop-
erties, i.e., properties that characterize the correctness of individual computa-
tions. Even branching-time temporal logics like CTL and CTL∗, which quantify

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300)., by Madrid Reg. Government project “S2018/TCS-4339 (BLOQUES-
CM)”, by EU H2020 project 731535 “Elastest” and by Spanish National Project
“BOSCO (PGC2018-102210-B-100)”.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 121–139, 2019.
https://doi.org/10.1007/978-3-030-25540-4_7

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_7
https://www.dbooks.org/

122 N. Coenen et al.

over computation paths, cannot express hyperproperties, because quantifying
over a second path automatically means that the subformula can no longer refer
to the previously quantified path. HyperLTL addresses this limitation with quan-
tifiers over trace variables, which allow the subformula to refer to all previously
chosen traces. For example, noninterference [21] between a secret input h and
a public output o can be specified in HyperLTL by requiring that all pairs of
traces π and π′ that always have the same inputs except for h (i.e., all inputs in
I \ {h} are equal on π and π′) also have the same output o at all times:

∀π.∀π′.
(∧

i∈I\{h}
iπ = iπ′

) ⇒ (oπ = oπ′)

This formula states that a change in the secret input h alone cannot cause any
difference in the output o.

For certain properties of interest, the additional expressiveness of HyperLTL
comes at no extra cost when considering the model checking problem. To check
a property like noninterference, which only has universal trace quantifiers, one
simply builds the self-composition of the system, which provides a separate copy
of the state variables for each trace. Instead of quantifying over all pairs of traces,
it then suffices to quantify over individual traces of the self-composed system,
which can be done with standard LTL. Model checking universal formulas is
NLOGSPACE-complete in the size of the system and PSPACE-complete in the
size of the formula, which is precisely the same complexity as for LTL.

Universal HyperLTL formulas suffice to express hypersafety properties like
noninterference, but not hyperliveness properties that require, in general, quanti-
fier alternation. A prominent example is generalized noninterference (GNI) [27],
which can be expressed as the following HyperLTL formula:

∀π.∀π′.∃π′′. (hπ = hπ′′) ∧ (oπ′ = oπ′′)

This formula requires that for every pair of traces π and π′, there is a third trace
π′′ in the system that agrees with π on h and with π′ on o. The existence of an
appropriate trace π′′ ensures that in π and π′, the value of o is not determined by
the value of h. Generalized noninterference stipulates that low-security outputs
may not be altered by the injection of high-security inputs, while permitting non-
determinism in the low-observable behavior. The existential quantifier is needed
to allow this nondeterminism. GNI is a hyperliveness property [7] even though
the underlying LTL formula is a safety property. The reason for that is that we
can extend any set of traces that violates GNI into a set of traces that satisfies
GNI, by adding, for each offending pair of traces π, π′, an appropriate trace π′′.

Hyperliveness properties also play an important role in applications beyond
security. For example, robust cleanness [9] specifies that significant differences in
the output behavior are only permitted after significant differences in the input:

∀π.∀π′.∃π′′.
(
iπ′ = iπ′′

) ∧ (
d̂(oπ, oπ′′) ≤ κo W d̂(iπ, iπ′′) > κi

)

The differences are measured by a distance function d̂ and compared to con-
stant thresholds κi for the input and κo for the output. The formula specifies

Verifying Hyperliveness 123

the existence of a trace π′′ that globally agrees with π′ on the input and where
the difference in the output o between π and π′′ is bounded by κo, unless the
difference in the input i between π and π′′ was greater than κi. Robust cleanness,
thus, forbids unexpected jumps in the system behavior that are, for example,
due to software doping, while allowing for behavioral differences due to nonde-
terminism.

With quantifier alternation, the model checking problem becomes much more
difficult. Model checking HyperLTL formulas of the form ∀∗∃∗ϕ, where ϕ is
a quantifier-free formula, is PSPACE-complete in the size of the system and
EXPSPACE-complete in the formula. The only known model checking algorithm
replaces the existential quantifier with the negation of a universal quantifier
over the negated subformula; but this requires a complementation of the system
behavior, which is completely impractical for realistic systems.

In this paper, we present an alternative approach to the verification of hyper-
liveness properties. We view the model checking problem of a formula of the form
∀π.∃π′. ϕ as a game between the ∀-player and the ∃-player. While the ∀-player
moves through the state space of the system building trace π, the ∃-player must
match each move in a separate traversal of the state space resulting in a trace π′

such that the pair π, π′ satisfies ϕ. Clearly, the existence of a winning strategy
for the ∃-player implies that ∀π.∃π′. ϕ is satisfied. The converse is not necessar-
ily true: Even if there always is a trace π′ that matches the universally chosen
trace π, the ∃-player may not be able to construct this trace, because she only
knows about the choices made by the ∀-player in the finite prefix of π that has
occurred so far, and not the choices that will be made by the ∀-player in the
infinite future. We address this problem by introducing prophecy variables into
the system. Without changing the behavior of the system, the prophecy vari-
ables give the ∃-player the information about the future that is needed to make
the right choice after seeing only the finite prefix. Such prophecy variables can
be provided manually by the user of the model checker to provide a lookahead
on future moves of the ∀-player.

This game-theoretic approach provides an opportunity for the user to reduce
the complexity of the model checking problem: If the user provides a strategy for
the ∃-player, then the problem reduces to the cheaper model checking problem for
universal properties. We show that such strategies can also be constructed auto-
matically using synthesis. Beyond model checking, the game-theoretic approach
also provides a method for the synthesis of systems that satisfy a conjunction
of hypersafety and hyperliveness properties. Here, we do not only synthesize the
strategy, but also construct the system itself, i.e., the game graph on which the
model checking game is played. While the synthesis from ∀∗∃∗ hyperproperties
is known to be undecidable in general, we show that the game-theoretic app-
roach can naturally be integrated into bounded synthesis, which checks for the
existence of a correct system up to a bound on the number of states.

Related Work. While the verification of general HyperLTL formulas has been
studied before [6,17,18], there has been, so far, no practical model checking
algorithm for HyperLTL formulas with quantifier alternation. The existing algo-
rithm involves a complementation of the system automaton, which results in an

www.dbooks.org

https://www.dbooks.org/

124 N. Coenen et al.

exponential blow-up of the state space [18]. The only existing model checker for
HyperLTL, MCHyper [18], was therefore, so far, limited to the alternation-
free fragment. Although some hyperliveness properties lie in this fragment,
quantifier alternation is needed to express general hyperliveness properties like
GNI. In this paper, we present a technique to model check these hyperliveness
properties and extend MCHyper to formulas with quantifier alternation.

The situation is similar in the area of reactive synthesis. There is a syn-
thesis algorithm that automatically constructs implementations from HyperLTL
specifications [13] using the bounded synthesis approach [20]. This algorithm is,
however, also only applicable to the alternation-free fragment of HyperLTL. In
this paper, we extend the bounded synthesis approach to HyperLTL formulas
with quantifier alternation. Beyond the model checking and synthesis problems,
the satisfiability [11,12,14] and monitoring [15,16,22] problems of HyperLTL
have also been studied in the past.

For certain information-flow security policies, there are verification tech-
niques that use methods related to our model checking and synthesis algorithms.
Specifically, the self-composition technique [2,3], a construction based on the
product of copies of a system, has been tailored for various trace-based security
definitions [10,23,28]. Unlike our algorithms, these techniques focus on specific
information-flow policies, not on a general logic like HyperLTL.

The use of prophecy variables [1] to make information about the future acces-
sible is a known technique in the verification of trace properties. It is, for example,
used to establish simulation relations between automata [26] or in the verification
of CTL∗ properties [8].

In our game-theoretic view on the model checking problem for ∀∗∃∗ hyper-
properties the ∃-player has an infinite lookahead. There is some work on finite
lookahead on trace languages [24]. We use the idea of finite lookahead as an
approximation to construct existential strategies and give a novel synthesis con-
struction for strategies with delay based on bounded synthesis [20].

2 Preliminaries

For tuples x ∈ Xn and y ∈ Xm over set X, we use x · y ∈ Xn+m to denote
the concatenation of x and y. Given a function f : X → Y and a tuple x ∈ Xn,
we define by f ◦ x ∈ Y n the tuple (f(x[1]), . . . , f(x[n])). Let AP be a finite set
of atomic propositions and let Σ = 2AP be the corresponding alphabet. A trace
t ∈ Σω is an infinite sequence of elements of Σ. We denote a set of traces by
Tr ⊆ Σω. We define t[i,∞] to be the suffix of t starting at position i ≥ 0.

HyperLTL. HyperLTL [6] is a temporal logic for specifying hyperproperties.
It extends LTL by quantification over trace variables π and a method to link
atomic propositions to specific traces. Let V be an infinite set of trace variables.
Formulas in HyperLTL are given by the grammar

ϕ ::= ∀π. ϕ | ∃π. ϕ | ψ , and
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ψ | ψ U ψ ,

Verifying Hyperliveness 125

where a ∈ AP and π ∈ V. We allow the standard boolean connectives ∧, →, ↔
as well as the derived LTL operators release ϕ R ψ ≡ ¬(¬ϕ U ¬ψ), eventually

ϕ ≡ true U ϕ, globally ϕ ≡ ¬ ¬ϕ, and weak until ϕW ψ ≡ ϕ∨ (ϕ U ψ).
We call a Q+Q′+ϕ HyperLTL formula (for Q,Q′ ∈ {∀,∃} and quantifier-free

formula ϕ) alternation-free iff Q = Q′. Further, we say that Q+Q′+ϕ has one
quantifier alternation (or lies in the one-alternation fragment) iff Q �= Q′.

The semantics of HyperLTL is given by the satisfaction relation �Tr over a
set of traces Tr ⊆ Σω. We define an assignment Π : V → Σω that maps trace
variables to traces. Π[π �→ t] updates Π by assigning variable π to trace t.

Π, i �Tr aπ iff a ∈ Π(π)[i]
Π, i �Tr ¬ϕ iff Π, i �Tr ϕ
Π, i �Tr ϕ ∨ ψ iff Π, i �Tr ϕ or Π, i �Tr ψ
Π, i �Tr ϕ iff Π, i + 1 �Tr ϕ
Π, i �Tr ϕ U ψ iff ∃j ≥ i.Π, j �Tr ψ ∧ ∀i ≤ k < j.Π, k �Tr ϕ
Π, i �Tr ∃π. ϕ iff there is some t ∈ Tr such that Π[π �→ t], i �Tr ϕ
Π, i �Tr ∀π. ϕ iff for all t ∈ Tr it holds that Π[π �→ t], i �Tr ϕ

We write Tr � ϕ for {}, 0 �Tr ϕ where {} denotes the empty assignment.
Every hyperproperty is an intersection of a hypersafety and a hyperliveness

property [7]. A hypersafety property is one where there is a finite set of finite
traces that is a bad prefix, i.e., that cannot be extended into a set of traces that
satisfies the hypersafety property. A hyperliveness property is a property where
every finite set of finite traces can be extended to a possibly infinite set of infinite
traces such that the resulting trace set satisfies the hyperliveness property.

Transition Systems. We use transition systems as a model of computation for
reactive systems. Transition systems consume sequences over an input alphabet
by transforming their internal state in every step. Let I and O be a finite set
of input and output propositions, respectively, and let Υ = 2I and Γ = 2O be
the corresponding finite alphabets. A Γ -labeled Υ -transition system S is a tuple
〈S, s0, τ, l〉, where S is a finite set of states, s0 ∈ S is the designated initial state,
τ : S ×Υ → S is the transition function, and l : S → Γ is the state-labeling func-
tion. We write s

υ−→ s′ or (s, υ, s′) ∈ τ if τ(s, υ) = s′. We generalize the transition
function to sequences over Υ by defining τ∗ : Υ ∗ → S recursively as τ∗(ε) = s0

and τ∗(υ0 · · · υn−1υn) = τ(τ∗(υ0 · · · υn−1), υn) for υ0 · · · υn−1υn ∈ Υ+. Given
an infinite word υ = υ0υ1 . . . ∈ Υω, the transition system produces an infinite
sequence of outputs γ = γ0γ1γ2 . . . ∈ Γω, such that γi = l(τ∗(υ0 . . . υi−1)) for
every i ≥ 0. The resulting trace ρ is (υ0 ∪ γ0)(υ1 ∪ γ1) . . . ∈ Σω where we have
AP = I ∪ O. The set of traces generated by S is denoted by traces(S). Fur-
thermore, we define ε = 〈{s}, s, τε, lε〉 as the transition system over I = O = ∅
that has only a single trace, that is traces(ε) = {∅ω}. For this transition sys-
tem, τε(s, ∅) = s and lε(s) = ∅. Given two transition systems S = 〈S, s0, τ, l〉
and S ′ = 〈S′, s′

0, τ
′, l′〉, we define S × S ′ = 〈S × S′, (s0, s

′
0), τ

′′, l′′〉 as the Γ 2-
labeled Υ 2-transition system where τ ′′((s, s′), (υ, υ′)) = (τ(s, υ), τ ′(s′, υ′)) and
l′′((s, s′)) = (l(s), l′(s′)). A transition system S satisfies a general HyperLTL
formula ϕ, if, and only if, traces(S) � ϕ.

www.dbooks.org

https://www.dbooks.org/

126 N. Coenen et al.

Automata. An alternating parity automaton A over a finite alphabet Σ is a tuple
〈Q, q0, δ, α〉, where Q is a finite set of states, q0 ∈ Q is the designated initial state,
δ : Q × Σ → B

+(Q) is the transition function, and α : Q → C is a function that
maps states of A to a finite set of colors C ⊂ N. For C = {0, 1} and C = {1, 2},
we call A a co-Büchi and Büchi automaton, respectively, and we use the sets
F ⊆ Q and B ⊆ Q to represent the rejecting (C = 1) and accepting (C = 2)
states in the respective automaton (as a replacement of the coloring function α).
A safety automaton is a Büchi automaton where every state is accepting. The
transition function δ maps a state q ∈ Q and some a ∈ Σ to a positive Boolean
combination of successor states δ(q, a). An automaton is non-deterministic or
universal if δ is purely disjunctive or conjunctive, respectively.

A run of an alternating automaton is a Q-labeled tree. A tree T is a subset
of N

∗
>0 such that for every node n ∈ N

∗
>0 and every positive integer i ∈ N>0, if

n · i ∈ T then (i) n ∈ T (i.e., T is prefix-closed), and (ii) for every 0 < j < i,
n · j ∈ T . The root of T is the empty sequence ε and for a node n ∈ T , |n|
is the length of the sequence n, in other words, its distance from the root.
A run of A on an infinite word ρ ∈ Σω is a Q-labeled tree (T, r) such that
r(ε) = q0 and for every node n ∈ T with children n1, . . . , nk the following holds:
1 ≤ k ≤ |Q| and {r(n1), . . . , r(nk)} � δ(q, ρ[i]), where q = r(n) and i = |n|. A
path is accepting if the highest color appearing infinitely often is even. A run is
accepting if all its paths are accepting. The language of A, written L(A), is the
set {ρ ∈ Σω | A accepts ρ}. A transition system S is accepted by an automaton
A, written S � A, if traces(S) ⊆ L(A).

Strategies. Given two disjoint finite alphabets Υ and Γ , a strategy σ : Υ ∗ → Γ
is a mapping from finite histories of Υ to Γ . A transition system S = 〈S, s0, τ, l〉
generates the strategy σ if σ(υ) = l(τ∗(υ)) for every υ ∈ Υ ∗. A strategy σ is
called finite-state if there exists a transition system that generates σ.

In the following, we use finite-state strategies to modify the inputs of tran-
sition systems. Let S = 〈S, s0, τ, l〉 be a transition system over input and out-
put alphabets Υ and Γ and let σ : (Υ ′)∗ → Υ be a finite-state strategy. Let
S ′ = 〈S′, s′

0, τ
′, l′〉 be the transition system implementing σ, then S || σ = S || S ′

is the transition system 〈S×S′, (s0, s
′
0), τ

||, l||〉 where τ || : (S×S′)×Υ ′ → (S×S′)
is defined as τ ||((s, s′), υ′) = (τ(s, l′(s′)), τ ′(s′, υ′)) and l|| : (S × S′) → Γ is
defined as l||(s, s′) = l(s) for every s ∈ S, s′ ∈ S′, and υ′ ∈ Υ ′.

Model Checking HyperLTL. We recap the model checking of universal Hyper-
LTL formulas. This case, as well as the dual case of only existential quantifiers,
is well-understood and, in fact, efficiently implemented in the model checker
MCHyper [18]. The principle behind the model checking approach is self-
composition, where we check a standard trace property on a composition of
an appropriate number of copies of the given system.

Let zip denote the function that maps an n-tuple of sequences to a single
sequence of n-tuples, for example, zip([1, 2, 3], [4, 5, 6]) = [(1, 4), (2, 5), (3, 6)], and
let unzip denote its inverse. Given S = 〈S, s0, τ, l〉, the n-fold self-composition of
S is the transition system Sn = 〈Sn, s′

0, τn, ln〉, where s′
0 := (s0, . . . , s0) ∈ Sn,

τn(s,υ) := τ◦zip(s,υ) and ln(s) := l◦s for every s ∈ Sn and υ ∈ Υn. If traces(S)

Verifying Hyperliveness 127

is the set of traces generated by S, then {zip(ρ1, . . . , ρn) | ρ1, . . . , ρn ∈ traces(S)}
is the set of traces generated by Sn. We use the notation zip(ϕ, π1, π2, . . . , πn) for
some HyperLTL formula ϕ to combine the trace variables π1, π2, . . . , πn (occur-
ring free in ϕ) into a fresh trace variable π∗.

Theorem 1 (Self-composition for universal HyperLTL formulas [18]).
For a transition system S and a HyperLTL formula of the form ∀π1.
∀π2. . . . ∀πn. ϕ it holds that S � ∀π1.∀π2. . . . ∀πn. ϕ iff Sn � ∀π∗.
zip(ϕ, π1, π2, . . . , πn).

Theorem 2 (Complexity of model checking universal formulas [18]).
The model checking problem for universal HyperLTL formulas is PSPACE-
complete in the size of the formula and NLOGSPACE-complete in the size of
the transition system.

The complexity of verifying universal HyperLTL formulas is exactly the same
as the complexity of verifying LTL formulas. For HyperLTL formulas with quan-
tifier alternations, the model checking problem is significantly more difficult.

Theorem 3 (Complexity of model checking formulas with one quan-
tifier alternation [18]). The model checking problem for HyperLTL formulas
with one quantifier alternation is in EXPSPACE in the size of the formula and
in PSPACE in the size of the transition system.

One way to circumvent this complexity is to fix the existential choice and
strengthen the formula to the universal fragment [9,13,18]. While avoiding the
complexity problem, this transformation requires deep knowledge of the system,
is prone to errors, and cannot be verified automatically as the problem of check-
ing implications becomes undecidable [11]. In the following section, we present a
technique that circumvents the complexity problem while still inheriting strong
correctness guarantees. Further, we provide a method that can, under certain
restrictions, derive a strategy for the existential choice automatically.

3 Model Checking with Quantifier Alternations

3.1 Model Checking with Given Strategies

Our first goal is the verification of HyperLTL formulas with one quantifier alter-
nation, i.e., formulas of the form ∀∗∃∗ϕ or ∃∗∀∗ϕ, where ϕ is a quantifier-free
formula. Note that the presented techniques can, similar to skolemization, be
extended to more than one quantifier alternation. Quantifier alternation intro-
duces dependencies between the quantified traces. In a ∀∗∃∗ϕ formula, the
choices of the existential quantifiers depend on the choices of the universal quan-
tifiers preceding them. In a formula of the form ∃∗∀∗ϕ, however, there has to
be a single choice for the existential quantifiers that works for all choices of
the universal quantifiers. In this case, the existentially quantified variables do
not depend on the universally quantified variables. Hence, the witnesses for the
existential quantifiers are traces rather than functions that map tuples of traces

www.dbooks.org

https://www.dbooks.org/

128 N. Coenen et al.

to traces. As established above, the model checking problem for HyperLTL for-
mulas with quantifier alternation is known to be significantly more difficult than
the model checking problem for universal formulas.

Our verification technique for formulas with quantifier alternation is to sub-
stitute strategic choice for existential choice. As discussed in the introduction,
the existence of a strategy implies the existence of a trace.

Theorem 4 (Substituting Strategic Choice for Existential Choice). Let
S be a transition system over input alphabet Υ .
It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if there is a strategy σ :
(Υn)∗ → Υm such that Sn × (Sm || σ) � ∀π∗.zip(ϕ, π1, π2, . . . πn, π′

1, π
′
2, . . . , π

′
m).

It holds that S � ∃π1∃π2 . . . ∃πm. ∀π′
1∀π′

2 . . . ∀π′
n. ϕ if there is a strategy σ :

(Υ 0)∗ → Υm such that (Sm || σ)×Sn � ∀π∗.zip(ϕ, π1, π2, . . . πm, π′
1, π

′
2, . . . , π

′
n).

Proof. Let σ be such a strategy, then we define a witness for the existential
trace quantifiers ∃π′

1∃π′
2 . . . ∃π′

m as the sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω

such that υi = σ(υ′
0υ

′
1 . . . υ′

i−1) for every i ≥ 0 and every υ′
i ∈ Υn; analogously,

we define a witness for the existential trace quantifiers ∃π1∃π2 . . . ∃πm as the
sequence of inputs υ = υ0υ1 . . . ∈ (Υm)ω such that υi = σ(υ′

0υ
′
1 . . . υ′

i−1) for
every i ≥ 0 and every υ′

i ∈ Υ 0. ��
An application of the theorem reduces the verification problem of a HyperLTL
formula with one quantifier alternation to the verification problem of a universal
HyperLTL formula. If a sufficiently small strategy can be found, the reduction
in complexity is substantial:

Corollary 1 (Model checking with Given Strategies). The model check-
ing problem for HyperLTL formulas with one quantifier alternation and given
strategies for the existential quantifiers is in PSPACE in the size of the formula
and NLOGSPACE in the size of the product of the strategy and the system.

Note that the converse of Theorem 4 is not in general true. The satisfaction
of a ∀∗∃∗ HyperLTL formula does not imply the existence of a strategy, because
at any given point in time the strategy only knows about a finite prefix of the
universally quantified traces. Consider the formula ∀π∃π′. aπ ↔ aπ′ and a
system that can produce arbitrary sequences of a and ¬a. Although the system
satisfies the formula, it is not possible to give a strategy that allows us to prove
this fact. Whatever choice our strategy makes, the next move of the ∀-player can
make sure that the strategy’s choice was wrong. In the following, we present a
method that addresses this problem.

Prophecy Variables. A classic technique for resolving future dependencies
is the introduction of prophecy variables [1]. Prophecy variables are auxiliary
variables that are added to the system without affecting the behavior of the
system. Such variables can be used to make predictions about the future.

We use prophecy variables to define strategies that depend on the future. In
the example discussed above, ∀π∃π′. aπ ↔ aπ′ , the choice of the value of aπ′ in

Verifying Hyperliveness 129

the first position depends on the value of aπ in the second position. We introduce
a prophecy variable p that predicts in the first position whether aπ is true in
the second position. With the prophecy variable, there exists a strategy that
correctly assigns the value of p whenever the prediction is correct: The strategy
chooses to set aπ′ if, and only if, p holds.

Technically, the proof technique introduces a set of fresh input variables P
into the system. For a Γ -labeled Υ -transition system S = 〈S, s0, τ, l〉, we define
the Γ -labeled (Υ ∪ P)-transition system SP = 〈S, s0, τ

P , l〉 including the inputs
P where τP : S×(Υ ∪P) → S. For all s ∈ S and υP ∈ Υ ∪P , τP (s, υP) = τ(s, υ)
for υ ∈ Υ obtained by removing the variables in P from υP (i.e., υ =\P υP).
Moreover, the proof technique modifies the specification so that the original
property only needs to be satisfied if the prediction is actually correct. We obtain
the modified specification ∀π∃π′.(pπ ↔ aπ) → (aπ ↔ aπ′) in our example.
The following theorem describes the general technique for one prophecy variable.

Theorem 5 (Model checking with Prophecy Variables). For a transition
system S and a quantifier-free formula ϕ, let ψ be a quantifier-free formula over
the universally quantified trace variables π1, π2 . . . πn and let p be a fresh atomic
proposition. It holds that S � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. ϕ if, and only if,
S{p} � ∀π1∀π2 . . . ∀πn. ∃π′

1∃π′
2 . . . ∃π′

m. (pπ1 ↔ ψ) → ϕ.

Note that ψ is restricted to refer only to universally quantified trace variables.
Without this restriction, the method would not be sound. In our example, ψ =
aπ′ would lead to the modified formula ∀π∃π′.(pπ ↔ aπ′) → (aπ ↔ aπ′),
which could be satisfied with the strategy that assigns aπ′ to true iff pπ is false,
and thus falsifies the assumption that the prediction is correct, rather than
ensuring that the original formula is true.

Proof. It is easy to see that the original specification implies the modified spec-
ification, since the original formula is the conclusion of the implication. Assume
that the modified specification holds. Since the prophecy variable p is a fresh
atomic proposition, and ψ does not refer to the existentially chosen traces, we
can, for every choice of the universally quantified traces, always choose the value
of p such that it guesses correctly, i.e., that p is true whenever ψ holds. In this
case, the conclusion and therefore the original specification must be true. ��

Unfortunately, prophecy variables do not provide a complete proof technique.
Consider a system allowing arbitrary sequences of a and b and this specification:

∀π∃π′.bπ′ ∧ (bπ′ ↔ ¬bπ′)
∧ (aπ′ → (aπ W (bπ′ ∧ ¬aπ)))
∧ (¬aπ′ → (aπ W (¬bπ′ ∧ ¬aπ)))

Intuitively, π′ has to be able to predict whether π will stop outputting a at
an even or odd position of the trace. There is no HyperLTL formula to be
used as ψ in Theorem 5, because, like LTL, HyperLTL can only express non-
counting properties. It is worth noting that in our practical experiments, the

www.dbooks.org

https://www.dbooks.org/

130 N. Coenen et al.

incompleteness was never a problem. In many cases, it is not even necessary to
add prophecy variables at all. The presented proof technique is, thus, practically
useful despite this incompleteness result.

3.2 Model Checking with Synthesized Strategies

We now extend the model checking approach with the automatic synthesis of
the strategies for the existential quantifiers. For a given HyperLTL formula of
the form ∀n∃mϕ and a transition system S, we search for a transition system
S∃ = 〈X,x0, μ, l∃〉, where X is a set of states, x0 ∈ X is the designated initial
state, μ : X ×Υn → X is the transition function, and l∃ : X → Υm is the labeling
function, such that Sn × (Sm || S∃) � zip(ϕ). (Since for formulas of the form
∃m∀nϕ the problem only differs in the input of S∃, we focus on ∀∃HyperLTL.)

Theorem 6. The strategy realizability problem for ∀∗∃∗ formulas is 2ExpTime-
complete.

Proof (Sketch). We reduce the strategy synthesis problem to the problem of
synthesizing a distributed reactive system with a single black-box process. This
problem is decidable [19] and can be solved in 2ExpTime. The lower bound
follows from the LTL realizability problem [30]. ��

The decidability result implies that there is an upper bound on the size of
S∃ that is doubly exponential in ϕ. Thus, the bounded synthesis approach [20]
can be used to search for increasingly larger implementations, until a solution is
found or the maximal bound is reached, yielding an efficient decision procedure
for the strategy synthesis problem. In the following, we describe this approach
in detail.

Bounded Synthesis of Strategies. We transform the synthesis problem into
an SMT constraint satisfaction problem, where we leave the representation of
strategies uninterpreted and challenge the solver to provide an interpretation.
Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free, the model checking
is based on the product of the n-fold self composition of the transition system
S, the m-fold self-composition of S where the strategy S∃ controls the inputs,
and the universal co-Büchi automaton Aϕ representing the language L(ϕ) of ϕ.

For a quantifier-free HyperLTL formula ϕ, we construct the universal co-
Büchi automaton Aϕ such that L(Aϕ) is the set of words w such that unzip(w) �
ϕ, i.e., the tuple of traces satisfies ϕ. We get this automaton by dualizing the
non-deterministic Büchi automaton for ¬ψ [6], i.e., changing the branching from
non-deterministic to universal and the acceptance condition from Büchi to co-
Büchi. Hence, S satisfies a universal HyperLTL formula ∀π1 . . . ∀πn. ϕ if the
traces generated by the self-composition Sn are a subset of L(Aϕ).

In more detail, the algorithm searches for a transition system S∃ =
〈X,x0, μ, l∃〉 such that the run graph of Sn, Sm || S∃, and Aϕ, written
Sn × (Sm || S∃) × Aϕ, is accepting. Formally, given a Γ -labeled Υ -transition

Verifying Hyperliveness 131

system S = 〈S, s0, τ, l〉 and a universal co-Büchi automaton Aϕ = 〈Q, q0, δ, F 〉,
where δ : Q × Υn+m × Γn+m → 2Q, the run graph Sn × (Sm || S∃) × Aϕ is the
directed graph (V,E), with the set of vertices V = Sn × Sm × X × Q, initial
vertex vinit = ((s0, . . . , s0), (s0, . . . , s0), x0, q0) and the edge relation E ⊆ V × V
satisfying ((sn , sm , x, q), (s′

n , s′
m , x′, q′)) ∈ E if, and only if

∃υ ∈ Υn.

(
sn

υ−→
τn

s′
n

)
∧

(
sm

l∃(x)−−−→
τm

s′
m

)
∧

(
x

υ−→
μ

x′
)

∧ q′ ∈ δ(q,υ · l∃(x), ln(sn) · lm(sm)).

Theorem 7. Given S, S∃, and a HyperLTL formula ∀n∃mϕ where ϕ is
quantifier-free. Let Aϕ be the universal co-Büchi automaton for ϕ. If the run
graph Sn × (Sm || S∃) × Aϕ is accepting, then S � ∀n∃mϕ.

Proof. Follows from Theorem 4 and the fact that Aϕ represents L(ϕ). ��
The acceptance of a run graph is witnessed by an annotation λ : V → N∪{⊥}

which is a function mapping every reachable vertex v ∈ V in the run graph to
a natural number λ(v), i.e., λ(v) �= ⊥. Intuitively, λ(v) returns the number of
visits to rejecting states on any path from the initial vertex vinit to v. If we can
bound this number for every reachable vertex, the annotation is valid and the
run graph is accepting. Formally, an annotation λ is valid, if (1) the initial state
is reachable (λ(vinit) �= ⊥) and (2) for every (v, v′) ∈ E with λ(v) �= ⊥ it holds
that λ(v′) �= ⊥ and λ(v) � λ(v′) where � is > if v′ is rejecting and ≥ otherwise.
Such an annotation exists if, and only if, the run graph is accepting [20].

We encode the search for S∃ and the annotation λ as an SMT constraint
system. Therefore, we use uninterpreted function symbols to encode S∃ and λ.
A transition system S is represented in the constraint system by two functions,
the transition function τ : S × Υ → S and the labeling function l : S → Γ . The
annotation is split into two parts, a reachability constraint λB : V → B indicating
whether a state in the run graph is reachable and a counter λ# : V → N that
maps every reachable vertex v to the maximal number of rejecting states λ#(v)
visited by any path from the initial vertex to v. The resulting constraint asserts
that there is a transition system S∃ with an accepting run graph. Note, that the
functions representing the system S (τ : S × Υ → S and l : S → Γ) are given,
that is, they are interpreted.

∃λB : Sn × Sm × X × Q → B.∃λN : Sn × Sm × X × Q → N.

∃μ : X × Υn → X.∃l∃ : X → Υm

∀υ ∈ Υn.∀sn , s′
n ∈ Sn.∀sm , s′

m ∈ Sm.∀q, q′ ∈ Q.∀x, x′ ∈ X.

λB((s0, . . . , s0), (s0, . . . , s0), x0, q0) ∧
(
λB(sn , sm , x, q) ∧ q′ ∈ δ(q, (υ · l∃(x)), (l ◦ (sn · sm))) ∧ x′ = μ(x,υ)

∧ s′
n = τn(sn ,υ) ∧ s′

m = τm(sm , l∃(x))
)

⇒ λB(s′
n , s′

m , x′, q′) ∧ λN(sn , sm , x, q) � λN(s′
n , s′

m , x′, q′)

www.dbooks.org

https://www.dbooks.org/

132 N. Coenen et al.

where � is > if q′ ∈ F and ≥ otherwise. The bounded synthesis algorithm
increases the bound of the strategy S∃ until either the constraints system
becomes satisfiable, or a given upper bound is reached. In the case the constraint
system is satisfiable, we can extract interpretations for the functions μ and l∃
using a solver that is able to produce models. These functions then represent
the synthesized transition system S∃.

Corollary 2. Given S and a HyperLTL formula ∀∗∃∗ϕ where ϕ is quantifier-
free. If the constraint system is satisfiable for some bound on the size of S∃ then
S � ∀∗∃∗ϕ.

Proof. Follows immediately by Theorem 7. ��
As the decision problem is decidable, we know that there is an upper bound on
the size of a realizing S∃ and, thus, the bounded synthesis approach is a decision
procedure for the strategy realizability problem.

Corollary 3. The bounded synthesis algorithm decides the strategy realizability
problem for ∀∗∃∗ HyperLTL.

Proof. The existence of such an upper bound follows from Theorem 6. ��

Approximating Prophecy. We introduce a new parameter to the strategy
synthesis problem to approximate the information about the future that can be
captured using prophecy variables. This bound represents a constant lookahead
into future choices made by the environment. In other words, for a given k ≥ 0,
the strategy S∃ is allowed to depend on choices of the ∀-player in the next k steps.
While constant lookahead is only an approximation of infinite clairvoyance, it
suffices for many practical situations as shown by prior case studies [9,18].

We present a solution to synthesizing transition systems with constant looka-
head for k ≥ 0 using bounded synthesis. To simplify the presentation, we
present the stand-alone problem with respect to a specification given as a uni-
versal co-Büchi automaton. The integration into the constraint system for the
∀∗∃∗ HyperLTL synthesis as presented in the previous section is then straight-
forward. First, we present an extension to the transition system model that
incorporates the notion of constant lookahead. The idea of this extension is to
replace the initial state s0 by a function init : Υ k → S that maps input sequences
of length k to some state. Thus, the transition system observes the first k inputs,
chooses some initial state based on those inputs, and then progresses with the
same pace as the input sequence. Next, we define the run graph of such a system
Sk = 〈S, init , τ, l〉 and an automaton A = 〈Q, q0, δ, F 〉, where δ : Q×Υ ×Γ → Q,
as the directed graph (V,E) with the set of vertices V = S × Q × Υ k, the initial
vertices (s, q0,υ) ∈ V such that s = init(υ) for every υ ∈ Υ k, and the edge
relation E ⊆ V × V satisfying ((s, q, υ1υ2 · · · υk), (s′, q′, υ′

1υ
′
2 · · · υ′

k)) ∈ E if, and
only if

∃υk+1 ∈ Υ. s
υk+1−−−→ s′ ∧ q′ ∈ δ(q, υ1, l(s)) ∧

∧

1≤i≤k

υ′
i = υi+1.

Verifying Hyperliveness 133

Lemma 1. Given a universal co-Büchi automaton A and a k-lookahead transi-
tion system Sk. Sk � A if, and only if, the run graph Sk × A is accepting.

Finally, synthesis amounts to solving the following constraint system:

∃λB : S × Q × Υ k → B.∃λN : S × Q × Υ k → N.

∃init : Υ k → S.∃τ : S × Υ → S.∃l : S → Γ.

(∀υ ∈ Υ k. λB(init(υ), q0,υ)) ∧
∀υ1υ2 · · · υk+1 ∈ Υ k+1.∀s, s′ ∈ S.∀q, q′ ∈ Q.
(
λB(s, q, υ1 · · · υk) ∧ s′ = τ(s, υk+1) ∧ q′ ∈ δ(q, υ1, l(s))

)

⇒ λB(s′, q′, υ2 · · · υk+1) ∧ λN(s, q, υ1 · · · υk) � λN(s′, q′, υ2 · · · υk+1)

Corollary 4. Given some k ≥ 0, if the constraint system is satisfiable for some
bound on the size of Sk then Sk � A.

4 Synthesis with Quantifier Alternations

We now build on the introduced techniques to solve the synthesis problem for
HyperLTL with quantifier alternation, that is, we search for implementations
that satisfy the given properties. In previous work [13], the synthesis problem for
∃∗∀∗ HyperLTL was solved by a reduction to the distributed synthesis problem.
We present an alternative synthesis procedure that (1) introduces the necessary
concepts for the synthesis of the ∀∗∃∗ fragment and that (2) strictly decomposes
the choice of the existential trace quantifier from the implementation.

Fix a formula of the form ∃m∀nϕ. We again reduce the verification problem to
the problem of determining whether a run graph is accepting. As the existential
quantifiers do not depend on the universal ones, there is no future dependency
and thus no need for prophecy variables or bounded lookahead. Formally, S∃ is
a tuple 〈X,x0, μ, l∃〉 such that X is a set of states, x0 ∈ X is the designated
initial state, μ : X → X is the transition function, and l∃ : X → Υm is the
labeling function. S∃ produces infinite sequences of (Υm)ω, without having any
knowledge about the behavior of the universally quantified traces. The run graph
is then (Sm || S∃) × Sn × Aϕ. The constraint system is built analogously to
Sect. 3.2, with the difference that the representation of the system S is now also
uninterpreted. In the resulting SMT constraint system, we have two bounds, one
for the size of the implementation S and one for the size of S∃.

Corollary 5. The bounded synthesis algorithm decides the realizability problem
for ∃∗∀1 HyperLTL and is a semi-decision procedure for ∃∗∀>1 HyperLTL.

The synthesis problem for formulas in the ∀∗∃∗ HyperLTL fragment uses the
same reduction to a constraint system as the strategy synthesis in Sect. 3.2,
with the only difference that the transition system S itself is uninterpreted. In
the resulting SMT constraint systems, we have three bounds, the size of the
implementation S, the size of the strategy S∃, and the lookahead k.

www.dbooks.org

https://www.dbooks.org/

134 N. Coenen et al.

Fig. 1. HyperLTL model checking with MCHyper

Corollary 6. Given a HyperLTL formula ∀n∃mϕ where ϕ is quantifier-free.
∀n∃mϕ is realizable if the SMT constraint system corresponding to the run graph
Sn × (Sm || S∃) × Aϕ is satisfiable for some bounds on S, S∃, and lookahead k.

5 Implementations and Experimental Evaluation

We have integrated the model checking technique with a manually provided
strategy into the HyperLTL hardware model checker MCHyper1. For the syn-
thesis of strategies and reactive systems from hyperproperties, we have developed
a separate bounded synthesis tool based on SMT-solving. In the following, we
describe these implementations and report on experimental results. All experi-
ments ran on a machine with dual-core Core i7, 3.3 GHz, and 16 GB memory.

Hardware Model Checking with Given Strategies. We have extended the
model checker MCHyper [18] from the alternation-free fragment to formulas
with one quantifier alternation. The input to MCHyper is a circuit description
as an And-Inverter-Graph in the Aiger format and a HyperLTL formula. Fig-
ures 1a and 1 show the model checking process in MCHyper without and with
quantifier alternation, respectively. For formulas with quantifier alternation, the
model checker now also accepts a strategy as an additional Aiger circuit Cσ.
Based on this strategy, MCHyper creates a new circuit where only the inputs of
the universal system copies are exposed and the inputs of the existential system

1 Try the online tool interface with the latest version of MCHyper: https://www.
react.uni-saarland.de/tools/online/MCHyper/.

https://www.react.uni-saarland.de/tools/online/MCHyper/
https://www.react.uni-saarland.de/tools/online/MCHyper/

Verifying Hyperliveness 135

Table 1. Experimental results for MCHyper on the software doping and mutual exclu-
sion benchmarks. All experiments used the IC3 option for abc. Model and property
names correspond to the ones used in [9] and [18].

Model #Latches Property Time[s]

EC 0.05 17 (10.a) + (10.b) 1.8

EC 0.00625 23 (10.a) + (10.b) 53.4

AEC 0.05 19 (¬10.a) + (¬10.b) 2.8

AEC 0.00625 25 (¬10.a) + (¬10.b) 160.1

Bakery.a.n.s 47 Sym5 50.6

Sym6 27.5

Bakery.a.n.s.5proc 90 Sym7 461.3

Sym8 472.3

copies are determined by the strategy. The new circuit is then model checked as
described in [18] with abc [4].

We evaluate our extension of MCHyper on formulas with quantifier alter-
nation based on benchmarks from software doping [9] and symmetry in mutual
exclusion algorithms [18]. Both considered problems have previously been ana-
lyzed with MCHyper; however, since the properties in both problems require
quantifier alternation, we were previously limited to a (manually obtained)
approximation of the properties as universal formulas. The correctness of manual
approximations is not given but has to be shown separately. By directly model
checking the formula with quantifier alternation we know that we are checking
the correct formula without needing any additional proof of correctness.

Software Doping. D’Argenio et al. [9] examined a clean and a doped version
of an emission control program of a car and used the previous version of
MCHyper to formally verify approximations of these properties. Robust clean-
ness is expressed in the one-alternation fragment using two ∀2∃1 HyperLTL for-
mulas (given in Prop. 19 in [9], cf. Sect. 1). In [9], the formulas were strength-
ened into alternation-free formulas that imply the original properties. Despite
the quantifier alternation, Table 1 shows that the new version of MCHyper
verifies the precise formulas in roughly the same time as the alternation-free
approximations [9] while giving stronger correctness guarantees.

Symmetry in Mutual Exclusion Protocols. ∀∗∃∗ HyperLTL allows us to specify
symmetry for mutual exclusion protocols. In such protocols, we wish to guar-
antee that every request is eventually answered, and the grants are mutually
exclusive. In our experiments, we used an implementation of the Bakery pro-
tocol [25]. Table 1 shows the verification results for the precise ∀1∃1 properties.
Comparing these results to the performance on the approximations of the sym-
metry properties [18], we, again, observe that the verification times are similar.
However, we gain the additional correctness guarantees as described above.

www.dbooks.org

https://www.dbooks.org/

136 N. Coenen et al.

Strategy and System Synthesis. For the synthesis of strategies for existen-
tial quantifiers and for the synthesis of reactive systems from hyperproperties,
we have developed a separate bounded synthesis tool based on SMT-solving with
z3 [29]. Our evaluation is based on two benchmark families, the dining cryptog-
raphers problem [5] and a simplified version of the symmetry problem in mutual
exclusion protocols discussed previously. The results are shown in Table 2. Obvi-
ously, synthesis operates at a vastly smaller scale than model checking with
given strategies. In the dining cryptographers example, z3 was unable to find an
implementation for the full synthesis problem, but could easily synthesize strate-
gies for the existential trace quantifiers when provided with an implementation.
With the progress of constraint solver that employ quantification over Boolean
functions [31] we expect scalability improvements of our synthesis approach.

Table 2. Summary of the experimental results on the benchmarks sets described in
Sect. 5. When no hyperproperty is given, only the LTL part is used.

Instance Hyperproperty |S| |S∃| Time [s]

Dining cryptographers distributed + deniability TO

distributed + deniability with given S (1) 1 1.2

Mutex — 2 – <1

symmetry 3 1 3.4

Mutex w/o spurious grants— 3 – <1

symmetry 3 1 3.9

wait-free 3 3 46

symmetry + wait-free 3 1 + 3840

6 Conclusions

We have presented model checking and synthesis techniques for hyperliveness
properties expressed as HyperLTL formulas with quantifier alternation. The
alternation makes it possible to specify hyperproperties such as generalized non-
interference, symmetry, and deniability. Our approach is the first method for the
synthesis of reactive systems from HyperLTL formulas with quantifier alterna-
tion and the first practical method for the verification of such specifications.

The approach is based on a game-theoretic view of existential quantifiers,
where the ∃-player reacts to decisions of the ∀-player. The key advantage is that
the complementation of the system automaton is avoided (cf. [18]). Instead, a
strategy must be found for the ∃-player. Since this can be done either manually or
through automatic synthesis, the user of the model checking or synthesis tool has
the opportunity to trade some automation for a significant gain in performance.

Acknowledgements. We would like to thank Sebastian Biewer for providing the
software doping models and formulas, Marvin Stenger for his advice on our synthesis
experiments, and Jana Hofmann for her helpful comments on a draft of this paper.

Verifying Hyperliveness 137

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991). https://doi.org/10.1016/0304-3975(91)90224-P

2. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

3. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of CSFW, pp. 100–114. IEEE Computer Society (2004). https://
doi.org/10.1109/CSFW.2004.17

4. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

5. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985). https://doi.org/10.
1145/4372.4373

6. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

8. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 13–29. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 2

9. D’Argenio, P.R., Barthe, G., Biewer, S., Finkbeiner, B., Hermanns, H.: Is your
software on dope? - formal analysis of surreptitiously “enhanced” programs. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 83–110. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1 4

10. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. J. Comput. Secur. 19(1), 101–138 (2011). https://doi.
org/10.3233/JCS-2010-0400

11. Finkbeiner, B., Hahn, C.: Deciding hyperproperties. In: Proceedings of CONCUR.
LIPIcs, vol. 59, pp. 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.13

12. Finkbeiner, B., Hahn, C., Hans, T.: MGHyper: checking satisfiability of HyperLTL
formulas beyond the ∃∗∀∗ fragment. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018.
LNCS, vol. 11138, pp. 521–527. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-01090-4 31

13. Finkbeiner, B., Hahn, C., Lukert, P., Stenger, M., Tentrup, L.: Synthesizing reac-
tive systems from hyperproperties. In: Chockler, H., Weissenbacher, G. (eds.) CAV
2018. LNCS, vol. 10981, pp. 289–306. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96145-3 16

www.dbooks.org

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.3233/JCS-2010-0400
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://www.dbooks.org/

138 N. Coenen et al.

14. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

15. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 12

16. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 11

17. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperproperties.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 144–
163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 8

18. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

19. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proceedings of LICS,
pp. 321–330. IEEE Computer Society (2005). https://doi.org/10.1109/LICS.2005.
53

20. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
https://doi.org/10.1007/s10009-012-0228-z

21. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of S&P, pp. 11–20. IEEE Computer Society (1982). https://doi.org/10.1109/SP.
1982.10014

22. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 7

23. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Proceedings of CSFW, p. 3. IEEE Computer Society
(2006). https://doi.org/10.1109/CSFW.2006.6

24. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 452–463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 36

25. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

26. Lynch, N.A., Vaandrager, F.W.: Forward and backward simulations: I. untimed
systems. Inf. Comput. 121(2), 214–233 (1995). https://doi.org/10.1006/inco.1995.
1134

27. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of S&P, pp. 177–186. IEEE Computer Society (1988). https://doi.org/
10.1109/SECPRI.1988.8110

28. van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference prop-
erties. Electr. Notes Theor. Comput. Sci. 168, 61–75 (2007). https://doi.org/10.
1016/j.entcs.2006.11.002

https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/s10009-012-0228-z
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1109/CSFW.2006.6
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1145/361082.361093
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1006/inco.1995.1134
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1016/j.entcs.2006.11.002
https://doi.org/10.1016/j.entcs.2006.11.002

Verifying Hyperliveness 139

29. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
POPL, pp. 179–190. ACM Press (1989). https://doi.org/10.1145/75277.75293

31. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce, I.
(eds.) SAT 2019. LNCS, vol. 11628, pp. 388–405. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-24258-9 27

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Quantitative Mitigation of Timing
Side Channels

Saeid Tizpaz-Niari(B), Pavol Černý,
and Ashutosh Trivedi

University of Colorado Boulder, Boulder, USA
Saeid.TizpazNiari@colorado.edu

Abstract. Timing side channels pose a significant threat to the security
and privacy of software applications. We propose an approach for mitigat-
ing this problem by decreasing the strength of the side channels as mea-
sured by entropy-based objectives, such as min-guess entropy. Our goal
is to minimize the information leaks while guaranteeing a user-specified
maximal acceptable performance overhead. We dub the decision version
of this problem Shannon mitigation, and consider two variants, deter-
ministic and stochastic. First, we show that the deterministic variant is
NP-hard. However, we give a polynomial algorithm that finds an opti-
mal solution from a restricted set. Second, for the stochastic variant, we
develop an approach that uses optimization techniques specific to the
entropy-based objective used. For instance, for min-guess entropy, we
used mixed integer-linear programming. We apply the algorithm to a
threat model where the attacker gets to make functional observations,
that is, where she observes the running time of the program for the
same secret value combined with different public input values. Existing
mitigation approaches do not give confidentiality or performance guar-
antees for this threat model. We evaluate our tool Schmit on a number
of micro-benchmarks and real-world applications with different entropy-
based objectives. In contrast to the existing mitigation approaches, we
show that in the functional-observation threat model, Schmit is scalable
and able to maximize confidentiality under the performance overhead
bound.

1 Introduction

Information leaks through timing side channels remain a challenging problem
[13,16,24,29,35,37,47]. A program leaks secret information through timing side
channels if an attacker can deduce secret values (or their properties) by observ-
ing response times. We consider the problem of mitigating timing side channels.
Unlike elimination techniques [7,31,46] that aim to completely remove timing
leaks without considering the performance penalty, the goal of mitigation tech-
niques [10,26,48] is to weaken the leaks, while keeping the penalty low.

We define the Shannon mitigation problem that decides whether there is
a mitigation policy to achieve a lower bound on a given security entropy-based
c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 140–160, 2019.
https://doi.org/10.1007/978-3-030-25540-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_8

Quantitative Mitigation of Timing Side Channels 141

measure while respecting an upper bound on the performance overhead. Consider
an example where the program-under-analysis has a secret variable with seven
possible values, and has three different timing behaviors, each forming a cluster
of secret values. It takes 1 second if the secret value is 1, it takes 5 seconds if
the secret is between 2 and 5, and it takes 10 seconds if the secret value is 6
or 7. The entropy-based measure quantifies the remaining uncertainty about the
secret after timing observations. Min-guess entropy [11,25,41] for this program
is 1, because if the observed execution time is 1, the attacker guesses the secret in
one try. A mitigation policy involves merging some timing clusters by introducing
delays. A good solution might be to introduce a 9 second delay if the secret is 1,
which merges two timing clusters. But, this might be disallowed by the budget
on the performance overhead. Therefore, another solution must be found, such
as introducing a 4 seconds delay when the secret is one.

We develop two variants of the Shannon mitigation problem: deterministic
and stochastic. The mitigation policy of the deterministic variant requires us
to move all secret values associated to an observation to another observation,
while the policy of the stochastic variant allows us to move only a portion of
secret values in an observation to another one. We show that the deterministic
variant of the Shannon mitigation problem is intractable and propose a dynamic
programming algorithm to approximate the optimal solution for the problem
by searching through a restricted set of solutions. We develop an algorithm
that reduces the problem in the stochastic variant to a well-known optimization
problem that depends on the entropy-based measure. For instance, with min-
guess entropy, the optimization problem is mixed integer-linear programming.

We consider a threat model where an attacker knows the public inputs
(known-message attacks [26]), and furthermore, where the public input changes
much more often than the secret inputs (for instance, secrets such as bank
account numbers do not change often). As a result, for each secret, the attacker
observes a timing function of the public inputs. We call this model functional
observations of timing side channels.

We develop our tool Schmit that has three components: side channel dis-
covery [45], search for the mitigation policy, and the policy enforcement. The
side channel discovery builds the functional observations [45] and measures the
entropy of secret set after the observations. The mitigation policy component
includes the implementation of the dynamic programming and optimization
algorithms. The enforcement component is a monitoring system that uses the
program internals and functional observations to enforce the policy at runtime.
To summarize, we make the following contributions:

– We formalize the Shannon mitigation problem with two variants and show
that the complexity of finding deterministic mitigation policy is NP-hard.

– We describe two algorithms for synthesizing the mitigation policy: one is
based on dynamic programming for the deterministic variant, that is in poly-
nomial time and results in an approximate solution, and the other one solves
the stochastic variant of the problem with optimization techniques.

www.dbooks.org

https://www.dbooks.org/

142 S. Tizpaz-Niari et al.

– We consider a threat model that results in functional observations. On a set
of micro-benchmarks, we show that existing mitigation techniques are not
secure and efficient for this threat model.

– We evaluate our approach on five real-world Java applications. We show that
Schmit is scalable in synthesizing mitigation policy within a few seconds and
significantly improves the security (entropy) of the applications.

Example(int high, int low) {

int t_high = high, t_low = low;

while (t_high > 0) {

if (t_high % 2 == 1) {

while (t_low > 0) {

if (t_low % 2 == 1) {

res += compute(t_low,t_high);}

t_low = t_low >> 1;}}

t_high = t_high >> 1;}

return res;}

Fig. 1. (a) The example used in Sect. 2. (b) The timing functions for each secret value
of the program.

2 Overview

First, we describe the threat model considered in this paper. Second, we
describe our approach on a running example. Third, we compare the results
of Schmit with the existing mitigation techniques [10,26,48] and show that
Schmit achieves the highest entropy (i.e., best mitigation) for all three entropy
objectives.

Threat Model. We assume that the attacker has access to the source code
and the mitigation model, and she can sample the run-time of the application
arbitrarily many times on her own machine. During an attack, she intends to
guess a fixed secret of the target machine by observing the mitigated running
time. Since we consider the attack models where the attacker knows the public
inputs and the secret inputs are less volatile than public inputs, her observations
are functional observations, where for each secret value, she learns a function
from the public inputs to the running time.

Example 2.1. Consider the program shown in Fig. 1(a). It takes secret and
public values as inputs. The running time depends on the number of set bits
in both secret and public inputs. We assume that secret and public inputs can
be between 1 and 1023. Figure 1(b) shows the running time of different secret
values as timing functions, i.e., functions from the public inputs to the running
time.

Quantitative Mitigation of Timing Side Channels 143

Side channel discovery. One can use existing tools to find the initial functional
observations [44,45]. In Example 2.1, functional observations are F = 〈y, 2y,
. . . , 10y〉 where y is a variable whose value is the number of set bits in the
public input. The corresponding secret classes after this observation is SF =
〈11, 12, 13, . . . , 110〉 where 1n shows a set of secret values that have n set bits.
The sizes of classes are B = {10, 45, 120, 210, 252, 210, 120, 45, 10, 1}. We use L1-
norm as metric to calculate the distance between the functional observations
F . This distance (penalty) matrix specifies extra performance overhead to move
from one functional observation to another. With the assumption of uniform
distributions over the secret input, Shannon entropy, guessing entropy, and the
min-guessing entropy are 7.3, 90.1, and 1.0, respectively. These entropies are
defined in Sect. 3 and measure the remaining entropy of the secret set after
the observations. We aim to maximize the entropy measures, while keeping the
performance overhead below a threshold, say 60% for this example.

Mitigation with Schmit. We use our tool Schmit to mitigate timing leaks of
Example 2.1. The mitigation policy for the Shannon entropy objective is shown
in Fig. 2(a). The policy results in two classes of observations. The policy requires
to move functional observations 〈y, 2y, . . . , 5y〉 to 〈6y〉 and all other observations
〈7y, 8y, 9y〉 to 〈10y〉. To enforce this policy, we use a monitoring system at run-
time. The monitoring system uses a decision tree model of the initial functional
observations. The decision tree model characterizes each functional observation
with associated program internals such as method calls or basic block invoca-
tions [43,44]. The decision tree model for the Example 2.1 is shown in Fig. 2(b).
The monitoring system records program internals and matches it with the deci-
sion tree model to detect the current functional observation. Then, it adds delays,
if necessary, to the execution time in order to enforce the mitigation policy. With
this method, the mitigated functional observation is G = 〈6y, 10y〉 and the secret

Fig. 2. (a) Mitigation policy calculation with deterministic algorithm (left). The obser-
vations x1 and x2 stands for all observations from C2−C5 and from C8−C9, resp.; (b)
Leaned discriminant decision tree (center): it characterizes the functional clusters of
Fig. 1(b) with internals of the program in Fig. 1(a); and (c) observations (right) after
the mitigation by Schmit results in two classes of observations.

www.dbooks.org

https://www.dbooks.org/

144 S. Tizpaz-Niari et al.

class is SG = 〈{11, 12, 13, 14, 15, 16}, {17, 18, 19, 110}〉 as shown in Fig. 2 (c). The
performance overhead of this mitigation is 43.1%. The Shannon, guessing, and
min-guess entropies have improved to 9.7, 459.6, and 193.5, respectively.

Comparison with state of the art. We compare our mitigation results to
black-box mitigation scheme [10] and bucketing [26]. Black-box double scheme
technique. We use the double scheme technique [10] to mitigate the leaks
of Example 2.1. This mitigation uses a prediction model to release events
at scheduled times. Let us consider the prediction for releasing the event
i at N -th epoch with S(N, i) = max(inpi, S(N, i−1))+p(N), where inpi is
the time arrival of the i-th request, S(N, i − 1) is the prediction for the
request i−1, and p(N) = 2N−1 models the basis for the prediction scheme
at N -th epoch. We assume that the request are the same type and the
sequence of public input requests for each secret are received in the begin-
ing of epoch N = 1. Figure 3(a) shows the functional observations after
applying the predictive mitigation. With this mitigation, the classes of obser-
vations are SG = 〈11, {12, 13}, {14, 15, 16, 17}, {18, 19, 110}〉. The number of
classes of observations is reduced from 10 to 4. The performance overhead
is 39.9%. The Shannon, guessing, and min-guess entropies have increased
to 9.00, 321.5, and 5.5, respectively. Bucketing. We consider the mitiga-
tion approach with buckets [26]. For Example 2.1, if the attacker does not
know the public input (unknown-message attacks [26]), the observations are
{1.1, 2.1, 3.3, · · · , 9.9, 10.9, · · · , 109.5} as shown in Fig. 3(b). We apply the buck-
eting algorithm in [26] for this observations, and it finds two buckets {37.5, 109.5}
shown with the red lines in Fig. 3(b). The bucketing mitigation requires to
move the observations to the closet bucket. Without functional observations,
there are 2 classes of observations. However, with functional observations, there
are more than 2 observations. Figure 3(c) shows how the pattern of observa-
tions are leaking through functional side channels. There are 7 classes of obser-
vations: SG = 〈{11, 12, 13}, {14}, {15}, {16}, {17}, {18}, {19}, {110}〉. The Shan-
non, guessing, and min-guess entropies are 7.63, 102.3, and 1.0, respectively.

Fig. 3. (a) The execution time after mitigation using the double scheme technique [10].
There are four classes of functional observations after the mitigation. (b) Mitiga-
tion with bucketing [26]. All observations require to move to the closet red line.
(c) Functional observations distinguish 7 classes of observations after mitigating with
bucketing.

Quantitative Mitigation of Timing Side Channels 145

Overall, Schmit achieves the higher entropy measures for all three objectives
under the performance overhead of 60%.

3 Preliminaries

For a finite set Q, we use |Q| for its cardinality. A discrete probability distri-
bution, or just distribution, over a set Q is a function d : Q→[0, 1] such that∑

q∈Q d(q) = 1. Let D(Q) denote the set of all discrete distributions over Q.
We say a distribution d ∈ D(Q) is a point distribution if d(q)=1 for a q ∈ Q.
Similarly, a distribution d ∈ D(Q) is uniform if d(q)=1/|Q| for all q ∈ Q.

Definition 1 (Timing Model). The timing model of a program P is a tuple
[[P]] = (X,Y,S, δ) where X = {x1, . . . , xn} is the set of secret-input variables,
Y = {y1, . . . , ym} is the set of public-input variables, S ⊆ R

n is a finite set of
secret-inputs, and δ : R

n × R
m → R≥0 is the execution-time function of the

program over the secret and public inputs.

We assume that the adversary knows the program and wishes to learn the
value of the secret input. To do so, for some fixed secret value s ∈ S, the
adversary can invoke the program to estimate (to an arbitrary precision) the
execution time of the program. If the set of public inputs is empty, i.e. m = 0, the
adversary can only make scalar observations of the execution time corresponding
to a secret value. In the more general setting, however, the adversary can arrange
his observations in a functional form by estimating an approximation of the
timing function δ(s) : R

m → R≥0 of the program.
A functional observation of the program P for a secret input s ∈ S is the

function δ(s) : R
m → R≥0 defined as y ∈ R

m �→ δ(s,y). Let F ⊆ [Rm → R≥0]
be the finite set of all functional observations of the program P. We define an
order ≺ over the functional observations F : for f, g ∈ F we say that f ≺ g if
f(y) ≤ g(y) for all y ∈ R

m.
The set F characterizes an equivalence relation ≡F , namely secrets with

equivalent functional observations, over the set S, defined as following: s ≡F s′

if there is an f ∈ F such that δ(s) = δ(s′) = f . Let SF = 〈S1, S2, . . . , Sk〉 be
the quotient space of S characterized by the observations F = 〈f1, f2, . . . , fk〉.
We write Sf for the secret set S ∈ SF corresponding to the observations f ∈ F .
Let B = 〈B1, B2, . . . , Bk〉 be the size of observational equivalence class in SF ,
i.e. Bi = |Sfi

| for fi ∈ F and let B = |S| =
∑k

i=1 Bi.
Shannon entropy, guessing entropy, and min-guess entropy are three preva-

lent information metrics to quantify information leaks in programs. Köpf and
Basin [25] characterize expressions for various information-theoretic measures on
information leaks when there is a uniform distribution on S given below.

Proposition 1 (Köpf and Basin [25]). Let F = 〈f1, . . . , fk〉 be a set of
observations and let S be the set of secret values. Let B = 〈B1, . . . , Bk〉 be the

www.dbooks.org

https://www.dbooks.org/

146 S. Tizpaz-Niari et al.

corresponding size of secret set in each class of observation and B =
∑k

i=1 Bi.
Assuming a uniform distribution on S, entropies can be characterized as:

1. Shannon Entropy: SE(S|F) def= (1
B)

∑
1≤i≤k Bi log2(Bi),

2. Guessing Entropy: GE(S|F) def= (1
2B)

∑
1≤i≤k B2

i + 1
2 , and

3. Min-Guess Entropy: mGE(S|F) def= min1≤i≤k {(Bi + 1)/2}.

4 Shannon Mitigation Problem

Our goal is to mitigate the information leakage due to the timing side channels
by adding synthetic delays to the program. An aggressive, but commonly-used,
mitigation strategy aims to eliminate the side channels by adding delays such
that every secret value yields a common functional observation. However, this
strategy may often be impractical as it may result in unacceptable performance
degradations of the response time. Assuming a well-known penalty function asso-
ciated with the performance degradation, we study the problem of maximizing
entropy while respecting a bound on the performance degradation. We dub the
decision version of this problem Shannon mitigation.

Adding synthetic delays to execution-time of the program, so as to mask
the side-channel, can give rise to new functional observations that correspond
to upper-envelopes of various combinations of original observations. Let F =
〈f1, f2, . . . , fk〉 be the set of functional observations. For I ⊆ 1, 2, . . . , k, let
fI = y ∈ R

m �→ supi∈I fi(y) be the functional observation corresponding
to upper-envelope of the functional observations in the set I. Let G(F) =
{fI : I �= ∅ ⊆ {1, 2, . . . , k}} be the set of all possible functional observations
resulting from the upper-envelope calculations. To change the observation of a
secret value with functional observation fi to a new observation fI (we assume
that i ∈ I), we need to add delay function f i

I : y ∈ R
m �→ fI(y) − fi(y).

Mitigation Policies. Let G ⊆ G(F) be a set of admissible post-mitigation obser-
vations. A mitigation policy is a function μ : F → D(G) that for each secret
s ∈ Sf suggests the probability distribution μ(f) over the functional observa-
tions. We say that a mitigation policy is deterministic if for all f ∈ F we have
that μ(f) is a point distribution. Abusing notations, we represent a deterministic
mitigation policy as a function μ : F → G. The semantics of a mitigation pol-
icy recommends to a program analyst a probability μ(f)(g) to elevate a secret
input s ∈ Sf from the observational class f to the class g ∈ G by adding
max {0, g(p) − f(p)} units delay to the corresponding execution-time δ(s, p) for
all p ∈ Y . We assume that the mitigation policies respect the order, i.e. for
every mitigation policy μ and for all f ∈ F and g ∈ G, we have that μ(f)(g) > 0
implies that f ≺ g. Let M(F→G) be the set of mitigation policies from the set of
observational clusters F into the clusters G.

For the functional observations F = 〈f1, . . . , fk〉 and a mitigation policy
μ ∈ M(F→G), the resulting observation set F [μ] ⊆ G is defined as:

F [μ] = {g ∈ G : there exists f ∈ F such that μ(f)(g) > 0} .

Quantitative Mitigation of Timing Side Channels 147

Since the mitigation policy is stochastic, we use average sizes of resulting obser-
vations to represent fitness of a mitigation policy. For F [μ] = 〈g1, g2, . . . , g�〉, we
define their expected class sizes Bμ = 〈C1, C2, . . . , C�〉 as Ci =

∑i
j=1 μ(fj)(fi)·Bj

(observe that
∑�

i=1 Ci = B). Assuming a uniform distribution on S, various
entropies for the expected class size after applying a policy μ ∈ M(F→G) can be
characterized by the following expressions:

1. Shannon Entropy: SE(S|F , μ) def= (1
B)

∑
1≤i≤� Ci log2(Ci),

2. Guessing Entropy: GE(S|F , μ) def= (1
2B)

∑
1≤i≤� C2

i + 1
2 , and

3. Min-Guess Entropy: mGE(S|F , μ) def= min1≤i≤� {(Ci + 1)/2}.

We note that the above definitions do not represent the expected entropies, but
rather entropies corresponding to the expected cluster sizes. However, the three
quantities provide bounds on the expected entropies after applying μ. Since
Shannon and Min-Guess entropies are concave functions, from Jensen’s inequal-
ity, we get that SE(S|F , μ) and mGE(S|F , μ) are upper bounds on expected
Shannon and Min-Guess entropies. Similarly, GE(S|F , μ), being a convex func-
tion, give a lower bound on expected guessing entropy.

We are interested in maximizing the entropy while respecting constraints on
the overall performance of the system. We formalize the notion of performance
by introducing performance penalties: there is a function π : F × G → R≥0

such that elevating from the observation f ∈ F to the functional observation
g ∈ G adds an extra π(f, g) performance overheads to the program. The expected
performance penalty associated with a policy μ, π(μ), is defined as the proba-
bilistically weighted sum of the penalties, i.e.

∑
f∈F,g∈G:f≺g |Sf |·μ(f)(g)·π(f, g).

Now, we introduce our key decision problem.

Definition 2 (Shannon Mitigation). Given a set of functional observations
F = 〈f1, . . . , fk〉, a set of admissible post-mitigation observations G ⊆ G(F),
set of secrets S, a penalty function π : F × G → R≥0, a performance penalty
upper bound Δ ∈ R≥0, and an entropy lower-bound E ∈ R≥0, the Shannon
mitigation problem ShanE(F ,G,S, π, E,Δ), for a given entropy measure E ∈
{SE,GE,mGE}, is to decide whether there exists a mitigation policy μ ∈ M(F→G)

such that E(S|F , μ) ≥ E and π(μ) ≤ Δ. We define the deterministic Shannon
mitigation variant where the goal is to find a deterministic such policy.

5 Algorithms for Shannon Mitigation Problem

5.1 Deterministic Shannon Mitigation

We first establish the intractability of the deterministic variant.

Theorem 1. Deterministic Shannon mitigation problem is NP-complete.

Proof. It is easy to see that the deterministic Shannon mitigation problem is in
NP: one can guess a certificate as a deterministic mitigation policy μ ∈ M(F→G)

www.dbooks.org

https://www.dbooks.org/

148 S. Tizpaz-Niari et al.

and can verify in polynomial time that it satisfies the entropy and overhead con-
straints. Next, we sketch the hardness proof for the min-guess entropy measure
by providing a reduction from the two-way partitioning problem [28]. For the
Shannon entropy and guess entropy measures, a reduction can be established
from the Shannon capacity problem [18] and the Euclidean sum-of-squares clus-
tering problem [8], respectively.

Given a set A = {a1, a2, . . . , ak} of integer values, the two-way partitioning
problem is to decide whether there is a partition A1�A2 = A into two sets A1 and
A2 with equal sums, i.e.

∑
a∈A1

a =
∑

a∈A2
a. W.l.o.g assume that ai ≤ aj for

i ≤ j. We reduce this problem to a deterministic Shannon mitigation problem
ShanmGE(FA,GA,SA, πA, EA,ΔA) with k clusters FA = GA = 〈f1, f2, . . . , fk〉
with the secret set SA = 〈S1, S2, . . . , Sk〉 such that |Si| = ai. If

∑
1≤i≤k ai

is odd then the solution to the two-way partitioning instance is trivially no.
Otherwise, let EA = (1/2)

∑
1≤i≤k ai. Notice that any deterministic mitigation

strategy that achieves min-guess entropy larger than or equal to EA must have
at most two clusters. On the other hand, the best min-guess entropy value can
be achieved by having just a single cluster. To avoid this and force getting
two clusters corresponding to the two partitions of a solution to the two-way
partitions problem instance A, we introduce performance penalties such that
merging more than k − 2 clusters is disallowed by keeping performance penalty
πA(f, g) = 1 and performance overhead ΔA = k − 2. It is straightforward to
verify that an instance of the resulting min-guess entropy problem has a yes
answer if and only if the two-way partitioning instance does. ��

Since the deterministic Shannon mitigation problem is intractable, we design
an approximate solution for the problem. Note that the problem is hard even if we
only use existing functional observations for mitigation, i.e., G = F . Therefore,
we consider this case for the approximate solution. Furthermore, we assume
the following sequential dominance restriction on a deterministic policy μ: for
f, g ∈ F if f ≺ g then either μ(f) ≺ g or μ(f) = μ(g). In other words, for
any given f ≺ g, f can not be moved to a higher cluster than g without having
g be moved to that cluster. For example, Fig. 4(a) shows Shannon mitigation
problem with four functional observations and all possible mitigation policies (we
represent μ(fi)(fj) with μ(i, j)). Figure 4(b) satisfies the sequential dominance
restriction, while Fig. 4(c) does not.

The search for the deterministic policies satisfying the sequential dominance
restriction can be performed efficiently using dynamic programming by effective
use of intermediate results’ memorizations.

Algorithm (1) provides a pseudocode for the dynamic programming solution
to find a deterministic mitigation policy satisfying the sequential dominance.
The key idea is to start with considering policies that produce a single cluster
for subclasses Pi of the problem with the observation from 〈f1, . . . , fi〉, and
then compute policies producing one additional cluster in each step by utilizing
the previously computed sub-problems and keeping track of the performance
penalties. The algorithm terminates as soon as the solution of the current step
respects the performance bound. The complexity of the algorithm is O(k3).

Quantitative Mitigation of Timing Side Channels 149

C4

C3

C2

C1µ(1, 1)

µ(1, 2)

µ(1, 3)

µ(1, 4)

µ(2, 2)

µ(2, 3)

µ(2, 4)

µ(3, 3)

µ(3, 4)

µ(4, 4) C4

C3

C2

C1

µ(1, 3) = 1.0

µ(2, 3) = 1.0

µ(3, 3) = 1.0

µ(4, 4) = 1.0 C4

C3

C2

C1µ(1, 1) = 0.6

µ(1, 3) = 0.4

µ(2, 4) = 1.0

µ(3, 3) = 1.0

µ(4, 4) = 1.0

Fig. 4. (a). Example of Shannon mitigation problem with all possible mitigation poli-
cies for 4 classes of observations. (b,c) Two examples of the mitigation policies that
results in 2 and 3 classes of observations.

5.2 Stochastic Shannon Mitigation Algorithm

Next, we solve the (stochastic) Shannon mitigation problem by posing it as
an optimization problem. Consider the stochastic Shannon mitigation problem
ShanE (F ,G = F ,SF , π, E,Δ) with a stochastic policy μ : F → D(G) and

Algorithm 1. Approximate Deterministic Shannon Mitigation

Input: The Shannon entropy problem ShanMGE(F ,G = F ,SF , π, E,Δ)
Output: The entropy table (T).

1 for i = 1 to k do

2 T (i, 1) = E(
i⋃

j=1

Sj)

3 if
∑

1≤j≤i

π(j, i)(Bj/B) ≤ Δ then Π(i, 1) =
∑

1≤j≤i

π(j, i)(Bj/B)

4 else Π(i, 1) = ∞
5 if Π(k, 1) < ∞ then return T ;
6 for r = 2 to k do
7 for i = 1 to k do
8 Ω(i, r) = {j : 1 ≤ j < i and Π(j, r −1)+

∑

j<q≤i

π(q, i)(Bq/B) ≤ Δ}

9 if Ω �=∅ then T (i, r)= max
j∈Ω(i,r)

(
min

(
T (j, r−1), E(

i⋃

q=j+1

Sq)
))

10 else T (i, r)= − ∞
11 Let j be the index that maximizes T (i, r)
12 if Ω �= ∅ then Π(i, r) =

(
Π(j, r − 1) +

∑

j<q≤i

π(q, i)(Bq/B)
)

13 else Π(i, r) = ∞
14 if Π(k, r) < ∞ then return T ;

15 return T ;

www.dbooks.org

https://www.dbooks.org/

150 S. Tizpaz-Niari et al.

SF = 〈S1, S2, . . . , Sk〉. The following program characterizes the optimization
problem that solves the Shannon mitigation problem with stochastic policy.

Maximize E , subject to:

1. 0 ≤ μ(fi)(fj) ≤ 1 for 1 ≤ i ≤ j ≤ k
2.

∑
i≤j≤k μ(fi)(fj) = 1 for all 1 ≤ i ≤ k.

3.
∑k

i=1

∑k
j=i |Si| · μ(fi)(fj) · π(fi, fj) ≤ Δ.

4. Cj =
∑j

i=1 |Si| · μ(fi)(fj) for 1 ≤ j ≤ k.

Here, the objective function E is one of the following functions:

1. Guessing Entropy EGE =
k∑

j=1

C2
j

2. Min-Guess Entropy EMGE = min
1≤j≤k

{Cj | Cj > 0}

3. Shannon Entropy ESE =
k∑

j=1

Cj · log2(Cj)

The linear constraints for the problem are defined as the following. The con-
dition (1) and (2) express that μ provides a probability distributions, condition
(3) provides restrictions regarding the performance constraint, and the condition
(4) is the entropy specific constraint. The objective function of the optimization
problem is defined based on the entropy criteria from E . For the simplicity, we
omit the constant terms from the objective function definitions. For the guessing
entropy, the problem is an instance of linearly constrained quadratic optimization
problem [33]. The problem with Shannon entropy is a non-linear optimization
problem [12]. Finally, the optimization problem with min-guess entropy is an
instance of mixed integer programming [32]. We evaluate the scalability of these
solvers empirically in Sect. 6 and leave the exact complexity as an open problem.
We show that the min-guess entropy objective function can be efficiently solved
with the branch and bound algorithms [36]. Figure 4(b,c) show two instantiations
of the mitigation policies that are possible for the stochastic mitigation.

6 Implementation Details

A. Environmental Setups. All timing measurements are conducted on an
Intel NUC5i5RYH. We switch off JIT Compilation and run each experiment
multiple times and use the mean running time. This helps to reduce the effects
of environmental factors such as the Garbage Collections. All other analyses are
conducted on an Intel i5-2.7 GHz machine.

B. Implementation of Side Channel Discovery. We use the technique pre-
sented in [45] for the side channel discovery. The technique applies the functional

Quantitative Mitigation of Timing Side Channels 151

data analysis [38] to create B-spline basis and fit functions to the vector of tim-
ing observations for each secret value. Then, the technique applies the functional
data clustering [21] to obtain K classes of observations. We use the number of
secret values in a cluster as the class size metric and the L1 distance norm
between the clusters as the penalty function.

C. Implementation of Mitigation Policy Algorithms. For the stochastic
optimization, we encode the Shannon entropy and guessing entropy with linear
constraints in Scipy [22]. Since the objective functions are non-linear (for the
Shannon entropy) and quadratic (for the guessing entropy), Scipy uses sequential
least square programming (SLSQP) [34] to maximize the objectives. For the
stochastic optimization with the min-guess entropy, we encode the problem in
Gurobi [19] as a mixed-integer programming (MIP) problem [32]. Gurobi solves
the problem efficiently with branch-and-bound algorithms [1]. We use Java to
implement the dynamic programming.

D. Implementation of Enforcement. The enforcement of mitigation pol-
icy is implemented in two steps. First, we use the initial timing functions and
characterize them with program internal properties such as basic block calls. To
do so, we use the decision tree learning approach presented in [45]. The decision
tree model characterizes each functional observations with properties of program
internals. Second, given the policy of mitigation, we enforce the mitigation pol-
icy with a monitoring system implemented on top of the Javassist [15] library.
The monitoring system uses the decision tree model and matches the properties
enabled during an execution with the tree model (detection of the current clus-
ter). Then, it adds extra delays, based on the mitigation policy, to the current
execution-time and enforces the mitigation policy. Note that the dynamic mon-
itoring can result in a few micro-second delays. For the programs with timing
differences in the order of micro-seconds, we transform source code using the
decision tree model. The transformation requires manual efforts to modify and
compile the new program. But, it adds negligible delays.

E. Micro-benchmark Results. Our goal is to compare different mitigation
methods in terms of their security and performance. We examine the computa-
tion time of our tool Schmit in calculating the mitigation policies. See appendix
for the relationships between performance bounds and entropy measures.

Applications: Mod Exp applications [30] are instances of square-and-multiply
modular exponentiation (R = yk mod n) used for secret key operations in
RSA [39]. Branch and Loop series consist of 6 applications where each appli-
cation has conditions over secret values and runs a linear loop over the public
values. The running time of the applications depend on the slope of the linear
loops determined by the secret input.

Computation time comparisons: Fig. 5 shows the computation time for
Branch and Loop applications (the applications are ordered in x-axis based
on the discovered number of observational classes). For the min-guess entropy,
we observe that both stochastic and dynamic programming approaches are effi-
cient and fast as shown in Fig. 5(a). For the Shannon and guessing entropies,

www.dbooks.org

https://www.dbooks.org/

152 S. Tizpaz-Niari et al.

T
a
b
le

1
.

M
ic

ro
-b

en
ch

m
a
rk

re
su

lt
s.

M
E

a
n
d

B
L

st
a
n
d

fo
r

M
o
d

E
x
p

a
n
d

B
ra

n
ch

a
n
d

L
o
o
p

a
p
p
li
ca

ti
o
n
s.

L
eg

en
d
:

#
S
:

n
o
.

o
f

se
cr

et
va

lu
es

,
#

P
:
n
o
.
o
f
p
u
b
li
c

va
lu

es
,
Δ

:
U

p
p
er

b
o
u
n
d

ov
er

p
er

fo
rm

a
n
ce

p
en

a
lt
y,

ε:
cl

u
st

er
in

g
p
a
ra

m
et

er
,
#

K
:
cl

a
ss

es
o
f
o
b
se

rv
a
ti

o
n
s

b
ef

o
re

m
it

ig
a
ti

o
n
,
#

K
X

:
cl

a
ss

es
o
f
o
b
se

rv
a
ti

o
n
s

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

te
ch

n
iq

u
e,

m
G

E
:
M

in
-g

u
es

s
en

tr
o
p
y

b
ef

o
re

m
it

ig
a
ti

o
n
,
m

G
E

X
:
M

in
-

g
u
es

s
en

tr
o
p
y

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

,
O

X
:
P
er

fo
rm

a
n
ce

ov
er

h
ea

d
a
d
d
ed

a
ft

er
m

it
ig

a
ti

o
n

w
it

h
X

.

In
it

ia
l
C

h
a
ra

ct
er

is
ti

cs
D

o
u
b
le

S
ch

em
e

B
u
ck

et
in

g
S
c
h
m
it

(D
et

er
m

.)
S
c
h
m
it

(S
to

ch
.)

A
p
p
(s

)
#

S
#

P
Δ

ε
#

K
m

G
E

#
K

D
S

m
G

E
D

S
O

D
S
(%

)
#

K
B

m
G

E
B

O
B

(%
)

K
D

#
m

G
E

D
O

D
(%

)
#

K
S

m
G

E
S

O
S
(%

)

M
E

1
3
2

3
2

0
.5

1
.0

1
1
6
.5

1
1
6
.5

0
.0

1
1
6
.5

0
.0

1
1
6
.5

0
.0

1
1
6
.5

0
.0

M
E

2
6
4

6
4

0
.5

1
.0

2
1
6
.5

1
3
2
.5

5
,2

2
1

1
3
2
.5

2
7
.6

1
3
2
.5

2
1
.4

1
3
2
.5

2
1
.4

M
E

3
1
2
8

1
2
8

0
.5

2
.0

2
3
2
.5

1
6
4
.5

5
,4

0
7

1
6
4
.5

3
3
.9

1
6
4
.5

2
2
.7

1
6
4
.5

2
2
.7

M
E

4
2
5
6

2
5
6

0
.5

2
.0

4
1
0
.5

1
1
2
8
.5

6
,6

7
9

1
1
2
8
.5

3
0
.7

1
1
2
8
.5

2
8
.3

1
1
2
8
.5

2
8
.3

M
E

5
5
1
2

5
1
2

0
.5

5
.0

2
3

1
.0

1
2
5
6
.5

7
,2

9
4

2
1
2
8
.5

5
0
.0

1
2
5
6
.5

3
1
.0

1
2
5
3
.0

3
0
.3

M
E

6
1
,0

2
4

1
,0

2
4

0
.5

8
.0

4
0

1
.0

1
5
1
2
.5

7
,8

2
2

2
0

1
.0

3
4
.5

2
2
7
.5

4
6
.7

5
8
5
.5

5
0
.0

B
L

1
2
5

5
0

0
.5

1
0
.0

4
3
.0

3
3
.0

7
3
.0

3
3
.0

1
7
.5

2
5
.5

2
6
.1

2
6
.5

3
4
.9

B
L

2
5
0

5
0

0
.5

1
0
.0

8
3
.0

4
3
.0

6
1
.3

5
3
.0

2
1
.9

2
1
0
.5

4
5
.3

2
1
3
.0

4
5
.3

B
L

3
1
0
0

5
0

0
.5

2
0
.0

1
6

3
.0

4
8
.0

4
2
.4

8
3
.0

3
3
.4

2
2
0
.5

4
8
.3

2
2
1
.5

5
0

B
L

4
2
0
0

5
0

0
.5

2
0
.0

3
2

3
.0

6
3
.0

3
6
.9

1
6

3
.0

2
8
.7

2
4
8
.0

4
8
.7

2
5
0
.5

4
9
.7

B
L

5
4
0
0

5
0

0
.5

2
0
.0

6
4

3
.0

8
3
.0

3
5
.4

3
2

3
.0

2
7
.2

3
6
5
.5

3
2
.0

2
1
0
0
.5

5
0
.0

B
L

6
8
0
0

5
0

0
.5

2
0
.0

1
2
5

3
.0

1
2

8
.0

3
7
.8

2
9

3
.0

5
2
.5

3
1
3
3
.0

3
4
.6

2
2
0
0
.5

4
9
.6

Quantitative Mitigation of Timing Side Channels 153

the dynamic programming is scalable, while the stochastic mitigation is compu-
tationally expensive beyond 60 classes of observations as shown in Fig. 5(b,c).

Mitigation Algorithm Comparisons: Table 1 shows micro-benchmark results that
compare the four mitigation algorithms with the two program series. Double
scheme mitigation technique [10] does not provide guarantees on the perfor-
mance overhead, and we can see that it is increased by more than 75 times
for mod exp 6. Double scheme method reduces the number of classes of obser-
vations. However, we observe that this mitigation has difficulty improving the
min-guess entropy. Second, Bucketing algorithm [26] can guarantee the perfor-
mance overhead, but it is not an effective method to improve the security of
functional observations, see the examples mod exp 6 and Branch and Loop 6.
Third, in the algorithms, Schmit guarantees the performance to be below a
certain bound, while it results in the highest entropy values. In most cases, the
stochastic optimization technique achieves the highest min-entropy value. Here,
we show the results with min-guess entropy measure. Also, we have strong evi-
dences to show that Schmit achieves higher Shannon and guessing entropies.
For example, in B L 5, the initial Shannon entropy has improved from 2.72 to
6.62, 4.1, 7.56, and 7.28 for the double scheme, the bucketing, the stochastic,
and the deterministic algorithms, respectively.

Fig. 5. Computation time for synthesizing mitigation policy over Branch and Loop
applications. Computation time for min-guess entropy (a) takes only few seconds. Com-
putation time for the Shannon entropy (b) and guessing entropy (c) are expensive using
Stochastic optimization. We set time-out to be 10 hours.

7 Case Study

Research Question. Does Schmit scale well and improve the security of appli-
cations (entropy measures) within the given performance bounds?

Methodology. We use the deterministic and stochastic algorithms for mitigat-
ing the leaks. We show our results for the min-guess entropy, but other entropy
measures can be applied as well. Since the task is to mitigate existing leakages,
we assume that the secret and public inputs are given.

Objects of Study. We consider four real-world applications:

In the inset table, we show the basic characteristics of these benchmarks.

www.dbooks.org

https://www.dbooks.org/

154 S. Tizpaz-Niari et al.

Application Num
methods

Num
secret

Num
public

ε Initial
clusters

Initial.
Min-guess

GabFeed 573 1,105 65 6.50 34 1.0

Jetty 63 800 635 0.1 20 4.5

Java Verbal Expressions 61 2,000 10 0.02 9 50.5

Password Checker 6 20 2,620 0.05 6 1.0

GabFeed is a chat server with 573 methods [4]. There is a side channel in the
authentication part of the application where the application takes users’ public
keys and its own private key, and generating a common key [14]. The vulnerabil-
ity leaks the number of set bits in the secret key. Initial functional observations
are shown in Fig. 6a. There are 34 clusters and min-guess entropy is 1. We aim
to maximize the min-guess entropy under the performance overhead of 50%.

Jetty. We mitigate the side channels in util.security package of Eclipse Jetty
web server. The package has Credential class which had a timing side channel.
This vulnerability was analyzed in [14] and fixed initially in [6]. Then, the devel-
opers noticed that the implementation in [6] can still leak information and fixed
this issue with a new implementation in [5]. However, this new implementation
is still leaking information [45]. We apply Schmit to mitigate this timing side
channels. Initial functional observations is shown in Fig. 6d. There are 20 classes
of observations and the initial min-guess entropy is 4.5. We aim to maximize the
min-guess entropy under the performance overhead of 50%.

Java Verbal Expressions is a library with 61 methods that construct regular
expressions [2]. There is a timing side channel in the library similar to password
comparison vulnerability [3] if the library has secret inputs. In this case, start-
ing from the initial character of a candidate expression, if the character matches
with the regular expression, it slightly takes more time to respond the request
than otherwise. This vulnerability can leak all the regular expressions. We con-
sider regular expressions to have a maximum size of 9. There are 9 classes of
observations and the initial min-guess entropy is 50.5. We aim to maximize the
min-guess entropy under the performance overhead of 50%.

Password Checker. We consider the password matching example from loginBad
program [9]. The password stored in the server is secret, and the user’s guess is a
public input. We consider 20 secret (lengths at most 6) and 2,620 public inputs.
There are 6 different clusters, and the initial min-guess entropy is 1.

Findings for GabFeed. With the stochastic algorithm, Schmit calculates the
mitigation policy that results in 4 clusters. This policy improves the min-guess
entropy from 1 to 138.5 and adds an overhead of 42.8%. With deterministic
algorithm, Schmit returns 3 clusters. The performance overhead is 49.7% and
the min-guess entropy improves from 1 to 106. The user chooses the deterministic
policy and enforces the mitigation. We apply CART decision tree learning and
characterizes the classes of observations with GabFeed method calls as shown in

Quantitative Mitigation of Timing Side Channels 155

Fig. 6. Initial functional observations, decision tree, and the mitigated observations
from left to right for Gabfeed, Jetty, and Verbal Expressions from top to bottom.

Fig. 6b. The monitoring system uses the decision tree model and automatically
detects the current class of observation. Then, it adds extra delays based on
the mitigation policy to enforce it. The results of the mitigation is shown in
Fig. 6c. Answer for our research question. Scalability : It takes about 1 second
to calculate the stochastic and the deterministic policies. Security : Stochastic
and deterministic variants improve the min-guess entropy more than 100 times
under the given performance overhead of 50%, respectively.

Findings for Jetty. The stochastic algorithm and the deterministic algorithm
find the same policy that results in 1 cluster with 39.6% performance over-
head. The min-guess entropy improves from 4.5 to 400.5. For the enforcement,
Schmit first uses the initial clusterings and specifies their characteristics with
program internals that result in the decision tree model shown in Fig. 6e. Since
the response time is in the order of micro-seconds, we transform the source code
using the decision tree model by adding extra counter variables. The results of

www.dbooks.org

https://www.dbooks.org/

156 S. Tizpaz-Niari et al.

the mitigation is shown in Fig. 6f. Scalability : It takes less than 1 second to cal-
culate the policies for both algorithms. Security : Stochastic and deterministic
variants improve the min-guess entropy 89 times under the given performance
overhead.

Findings for Java Verbal Expressions. For the stochastic algorithm, the
policy results in 2 clusters, and the min-guess entropy has improved to 500.5. The
performance overhead is 36%. For the dynamic programming, the policy results
in 2 clusters. This adds 28% of performance overhead, while it improves the
min-guess entropy from 50.5 to 450.5. The user chooses to use the deterministic
policy for the mitigation. For the mitigation, we transform the source code using
the decision tree model and add the extra delays based on the mitigation policy.

Findings for Password Matching. Both the deterministic and the stochastic
algorithms result in finding a policy with 2 clusters where the min-guess entropy
has improved from 1 to 5.5 with the performance overhead of 19.6%. For the
mitigation, we transform the source code using the decision tree model and add
extra delays based on the mitigation policy if necessary.

8 Related Work

Quantitative theory of information have been widely used to measure how much
information is being leaked with side-channel observations [11,20,25,41]. Miti-
gation techniques increase the remaining entropy of secret sets leaked through
the side channels, while considering the performance [10,23,26,40,48,49].

Köpf and Dürmuth [26] use a bucketing algorithm to partition programs’
observations into intervals. With the unknown-message threat model, Köpf and
Dürmuth [26] propose a dynamic programming algorithm to find the optimal
number of possible observations under a performance penalty. The works [10,48]
introduce different black-box schemes to mitigate leaks. In particular, Askarov
et al. [10] show the quantizing time techniques, which permit events to release at
scheduled constant slots, have the worst case leakage if the slot is not filled with
events. Instead, they introduce the double scheme method that has a schedule of
predictions like the quantizing approach, but if the event source fails to deliver
events at the predicted time, the failure results in generating a new schedule in
which the interval between predictions is doubled. We compare our mitigation
technique with both algorithms throughout this paper.

Elimination of timing side channels is a common technique to guarantee the
confidentiality of software [7,17,27,30,31,46]. The work [46] aims to eliminate
side channels using static analysis enhanced with various techniques to keep the
performance overheads low without guaranteeing the amounts of overhead. In
contrast, we use dynamic analysis and allow a small amount of information to
leak, but we guarantee an upper-bound on the performance overhead.

Machine learning techniques have been used for explaining timing differences
between traces [42–44]. Tizpaz-Niari et al. [44] consider performance issues in
softwares. They also cluster execution times of programs and then explain what

Quantitative Mitigation of Timing Side Channels 157

program properties distinguish the different functional clusters. We adopt their
techniques for our security problem.

Acknowledgements. The authors would like to thank Mayur Naik for shepherding
our paper and providing useful suggestions. This research was supported by DARPA
under agreement FA8750-15-2-0096.

References

1. Branch and bound algorithm for mip problems. http://www.gurobi.com/
resources/getting-started/mip-basics

2. Verbal expressions library. https://github.com/VerbalExpressions/
JavaVerbalExpressions

3. Timing attack in google keyczar library (2009). https://rdist.root.org/2009/05/
28/timing-attack-in-google-keyczar-library/

4. Gabfeed application (2016). https://github.com/Apogee-Research/STAC/tree/
master/Engagement Challenges/Engagement 2/gabfeed 1

5. Timing side-channel on the length of password in eclipse jetty May 2017.
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed-
367466a1a62ea

6. Timing side-channel on the password in eclipse jetty May 2017. https://github.
com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58

7. Agat, J.: Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 40–
53. ACM (2000)

8. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: Np-hardness of euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

9. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.:
Decomposition instead of self-composition for proving the absence of timing chan-
nels. In: PLDI, pp. 362–375. ACM (2017)

10. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 297–307. ACM (2010)

11. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: 2009 30th IEEE Symposium on Security and Privacy, pp.
141–153. IEEE (2009)

12. Bertsekas, D.P.: Nonlinear programming. Athena Scientific, 2016. Tech. rep., ISBN
978-1-886529-05-2

13. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

14. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using
quantitative cartesian hoare logic. In: CCS, pp. 875–890 (2017)

15. Chiba, S.: Javassist - a reflection-based programming wizard for java. In: Proceed-
ings of OOPSLA 1998 Workshop on Reflective Programming in C++ and Java,
vol. 174 (1998)

16. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J., Willems, J.-
L.: A practical implementation of the timing attack. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 167–182. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064 15

www.dbooks.org

http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
https://github.com/VerbalExpressions/JavaVerbalExpressions
https://github.com/VerbalExpressions/JavaVerbalExpressions
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/gabfeed_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/gabfeed_1
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58
https://github.com/eclipse/jetty.project/commit/f3751d70787fd8ab93932a51c60514c2eb37cb58
https://doi.org/10.1007/10721064_15
https://www.dbooks.org/

158 S. Tizpaz-Niari et al.

17. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel
attacks. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 8

18. Fallgren, M.: On the complexity of maximizing the minimum shannon capacity in
wireless networks by joint channel assignment and power allocation. In: 2010 IEEE
18th International Workshop on Quality of Service (IWQoS), pp. 1–7 (2010)

19. Gurobi, L.: Optimization: Gurobi optimizer reference manual (2018). http://www.
gurobi.com

20. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceed-
ings of the 26th Annual Computer Security Applications Conference, pp. 261–269.
ACM (2010)

21. Jacques, J., Preda, C.: Functional data clustering: a survey. Adv. Data Anal. Clas-
sif. 8(3), 231–255 (2014)

22. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for
Python (2001). http://www.scipy.org/

23. Kadloor, S., Kiyavash, N., Venkitasubramaniam, P.: Mitigating timing based infor-
mation leakage in shared schedulers. In: 2012 Proceedings IEEE Infocom, pp. 1044–
1052. IEEE (2012)

24. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

25. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 286–296. CCS 2007, ACM, New York (2007)

26. Köpf, B., Dürmuth, M.: A provably secure and efficient countermeasure against
timing attacks. In: 22nd IEEE Computer Security Foundations Symposium, 2009,
CSF 2009, pp. 324–335. IEEE (2009)

27. Köpf, B., Mantel, H.: Transformational typing and unification for automatically
correcting insecure programs. Int. J. Inf. Secur. 6(2–3), 107–131 (2007)

28. Korf, R.E.: A complete anytime algorithm for number partitioning. AI 106, 181–
203 (1998)

29. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

30. Mantel, H., Starostin, A.: Transforming out timing leaks, more or less. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 447–467.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 23

31. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: automatic detection and removal of control-flow side channel attacks. In:
Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 156–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/11734727 14

32. Nemhauser, G.L., Wolsey, L.A.: Integer programming and combinatorial opti-
mization. In: Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.S. (1992).
Constraint Classification for Mixed Integer Programming Formulations. COAL
Bulletin, vol. 20, pp. 8–12. Wiley, Chichester (1988)

33. Nocedal, J., Wright, S.J.: Numerical Optimization 2nd (2006)
34. Nocedal, J., Wright, S.J.: Sequential Quadratic Programming. Springer, New York

(2006)
35. Padlipsky, M., Snow, D., Karger, P.: Limitations of End-to-End Encryption in

Secure Computer Networks. Tech. rep, MITRE CORP BEDFORD MA (1978)
36. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and

Complexity. Courier Corporation, North Chelmsford (1998)

https://doi.org/10.1007/978-3-319-08867-9_8
http://www.gurobi.com
http://www.gurobi.com
http://www.scipy.org/
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-24174-6_23
https://doi.org/10.1007/11734727_14

Quantitative Mitigation of Timing Side Channels 159

37. Phan, Q.S., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of
adaptive side-channel attacks. In: 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pp. 328–342. IEEE (2017)

38. Ramsay, J., Hooker, G., Graves, S.: Functional Data Analysis with R and
MATLAB. Springer Science & Business Media, Berlin (2009)

39. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

40. Schinzel, S.: An efficient mitigation method for timing side channels on the web.
In: 2nd International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE) (2011)

41. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 21

42. Song, L., Lu, S.: Statistical debugging for real-world performance problems. In:
Proceedings of the 2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, pp. 561–578. OOPSLA 2014 (2014).
https://doi.org/10.1145/2660193.2660234

43. Tizpaz-Niari, S., Černý, P., Chang, B.-Y.E., Sankaranarayanan, S., Trivedi, A.:
Discriminating traces with time. In: Legay, A., Margaria, T. (eds.) TACAS 2017.
LNCS, vol. 10206, pp. 21–37. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54580-5 2

44. Tizpaz-Niari, S., Černý, P., Chang, B.E., Trivedi, A.: Differential performance
debugging with discriminant regression trees. In: 32nd AAAI Conference on Arti-
ficial Intelligence (AAAI), pp. 2468–2475 (2018)

45. Tizpaz-Niari, S., Černý, P., Trivedi, A.: Data-driven debugging for functional side
channels. arXiv preprint. arXiv:1808.10502 (2018)

46. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks
using program repair. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 15–26. ACM (2018)

47. Yarom, Y., Genkin, D., Heninger, N.: Cachebleed: a timing attack on openssl
constant-time rsa. J. Cryptographic Eng. 7(2), 99–112 (2017)

48. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels in
interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 563–574. ACM (2011)

49. Zhang, D., Askarov, A., Myers, A.C.: Language-based control and mitigation of
timing channels. PLDI 47(6), 99–110 (2012)

www.dbooks.org

https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1145/2660193.2660234
https://doi.org/10.1007/978-3-662-54580-5_2
https://doi.org/10.1007/978-3-662-54580-5_2
http://arxiv.org/abs/1808.10502
https://www.dbooks.org/

160 S. Tizpaz-Niari et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Property Directed Self Composition

Ron Shemer1(B), Arie Gurfinkel2, Sharon Shoham1, and Yakir Vizel3

1 Tel Aviv University, Tel Aviv, Israel
ronsheme@mail.tau.ac.il

2 University of Waterloo, Waterloo, Canada
3 The Technion, Haifa, Israel

Abstract. We address the problem of verifying k-safety properties: properties
that refer to k interacting executions of a program. A prominent way to verify
k-safety properties is by self composition. In this approach, the problem of check-
ing k-safety over the original program is reduced to checking an “ordinary” safety
property over a program that executes k copies of the original program in some
order. The way in which the copies are composed determines how complicated it
is to verify the composed program. We view this composition as provided by a
semantic self composition function that maps each state of the composed program
to the copies that make a move. Since the “quality” of a self composition func-
tion is measured by the ability to verify the safety of the composed program, we
formulate the problem of inferring a self composition function together with the
inductive invariant needed to verify safety of the composed program, where both
are restricted to a given language. We develop a property-directed inference algo-
rithm that, given a set of predicates, infers composition-invariant pairs expressed
by Boolean combinations of the given predicates, or determines that no such pair
exists. We implemented our algorithm and demonstrate that it is able to find self
compositions that are beyond reach of existing tools.

1 Introduction

Many relational properties, such as noninterference [12], determinism [21], service
level agreements [9], and more, can be reduced to the problem of k-safety. Namely,
reasoning about k different traces of a program simultaneously. A common approach
to verifying k-safety properties is by means of self composition, where the program
is composed with k copies of itself [4,32]. A state of the composed program consists
of the states of each copy, and a trace naturally corresponds to k traces of the original
program. Therefore, k-safety properties of the original program become ordinary safety
properties of the composition, hence reducing k-safety verification to ordinary safety.
This enables reasoning about k-safety properties using any of the existing techniques
for safety verification such as Hoare logic [20] or model checking [7].

While self composition is sound and complete for k-safety, its applicability is ques-
tionable for two main reasons: (i) considering several copies of the program greatly
increases the state space; and (ii) the way in which the different copies are com-
posed when reducing the problem to safety verification affects the complexity of
the resulting self composed program, and as such affects the complexity of verify-
ing it. Improving the applicability of self composition has been the topic of many
c© The Author(s) 2019

I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 161–179, 2019.
https://doi.org/10.1007/978-3-030-25540-4_9

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_9
https://www.dbooks.org/

162 R. Shemer et al.

works [2,14,18,26,30,33]. However, most efforts are focused on compositions that are
pre-defined, or only depend on syntactic similarities.

In this paper, we take a different approach; we build upon the observation that by
choosing the “right” composition, the verification can be greatly simplified by leverag-
ing “simple” correlations between the executions. To that end, we propose an algorithm,
called PDSC, for inferring a property directed self composition. Our approach uses a
dynamic composition, where the composition of the different copies can change during
verification, directed at simplifying the verification of the composed program.

Compositions considered in previous work differ in the order in which the copies
of the program execute: either synchronously, asynchronously, or in some mix of the
two [3,14,34]. To allow general compositions, we define a composition function that
maps every state of the composed program to the set of copies that are scheduled in
the next step. This determines the order of execution for the different copies, and thus
induces the self composed program. Unlike most previous works where the composition
is pre-defined based on syntactic rules only, our composition is semantic as it is defined
over the state of the composed program.

To capture the difficulty of verifying the composed program, we consider verifi-
cation by means of inferring an inductive invariant, parameterized by a language for
expressing the inductive invariant. Intuitively, the more expressive the language needs
to be, the more difficult the verification task is. We then define the problem of inferring
a composition function together with an inductive invariant for verifying the safety of
the composed program, where both are restricted to a given language. Note that for a
fixed language L, an inductive invariant may exist for some composition function but
not for another1. Thus, the restriction to L defines a target for the inference algorithm,
which is now directed at finding a composition that admits an inductive invariant in L.

Example 1. To demonstrate our approach, consider the program in Fig. 1. The program
inserts a new value into an array. We assume that the array A and its length len are
“low”-security variables, while the inserted value h is “high”-security. The first loop
finds the location in which h will be inserted. Note that the number of iterations depends
on the value of h. Due to that, the second loop executes to ensure that the output i (which
corresponds to the number of iterations) does not leak sensitive data. As an example, we
emphasize that without the second loop, i could leak the location of h in A. To express
the property that i does not leak sensitive data, we use the 2-safety property that in any
two executions, if the inputs A and len are the same, so is the output i.

To verify the 2-safety property, consider two copies of the program. Let the language
L for verifying the self composition be defined by the predicates depicted in Fig. 1. The
most natural self composition to consider is a lock-step composition, where the copies
execute synchronously. However, for such a composition the composed program may
reach a state where, for example, i1 = i2 +1. This occurs when the first copy exists the
first loop, while the second copy is still executing it. Since the language cannot express
this correlation between the two copies, no inductive invariant suffices to verify that
i1 = i2 when the program terminates.

1 See the extended version [29] for an example that requires a non-linear inductive invariant with
a composition that is based on the control structure but has a linear invariant with another.

Property Directed Self Composition 163

Fig. 1. Constant-time insert to an array.

In contrast, when verifying the 2-safety property, PDSC directs its search towards a
composition function for which an inductive invariant in L does exist. As such, it infers
the composition function depicted in Fig. 1, as well as an inductive invariant in L. The
invariant for this composition implies that i1 = i2 at every state.

As demonstrated by the example, PDSC focuses on logical languages based on pred-
icate abstraction [17], where inductive invariants can be inferred by model checking. In
order to infer a composition function that admits an inductive invariant in L, PDSC starts
from a default composition function, and modifies its definition based on the reasoning
performed by the model checker during verification. As the composition function is
part of the verified model (recall that it is defined over the program state), different
compositions are part of the state space explored by the model checker. As a result, a
key ingredient of PDSC is identifying “bad” compositions that prevent it from finding
an inductive invariant in L. It is important to note that a naive algorithm that tries all
possible composition functions has a time complexity O(22|P|

), where P is the set of
predicates considered. However, integrating the search for a composition function into
the model checking algorithm allows us to reduce the time complexity of the algorithm
to 2O(|P|), where we show that the problem is in fact PSPACE-hard.2

We implemented PDSC using SEAHORN [19], Z3 [25] and SPACER [22] and evalu-
ated it on examples that demonstrate the need for nontrivial semantic compositions. Our
results clearly show that PDSC can solve complex examples by inferring the required
composition, while other tools cannot verify these examples. We emphasize that for
these particular examples, lock-step composition is not sufficient. We also evaluated
PDSC on the examples from [26,30] that are proven with the trivial lock-step composi-
tion. On these examples, PDSC is comparable to state of the art tools.

Related Work. This paper addresses the problem of verifying k-safety properties (also
called hyperproperties [8]) by means of self composition. Other approaches tackle the
problem without self-composition, and often focus on more specific properties, most
noticeably the 2-safety noninterference property (e.g. [1,33]). Below we focus on works
that use self-composition.

2 Proofs of the claims made in this paper can be found in the extended version [29].

www.dbooks.org

https://www.dbooks.org/

164 R. Shemer et al.

Previous work such as [2–4,14,15,32] considered self composition (also called
product programs) where the composition function is constant and set a-priori, using
syntax-based hints. While useful in general, such self compositions may sometimes
result in programs that are too complex to verify. This is in contrast to our approach,
where the composition function is evolving during verification, and is adapted to the
capabilities of the model checker.

The work most closely related to ours is [30] which introduces Cartesian Hoare
Logic (CHL) for verification of k-safety properties, and designs a verification frame-
work for this logic. This work is further improved in [26]. These works search for a
proof in CHL, and in doing so, implicitly modify the composition. Our work infers the
composition explicitly and can use off-the-shelf model checking tools. More impor-
tantly, when loops are involved both [30] and [26] use lock-step composition and align
loops syntactically. Our algorithm, in contrast, does not rely on syntactic similarities,
and can handle loops that cannot be aligned trivially.

There have been several results in the context of harnessing Constraint Horn Clauses
(CHC) solvers for verification of relational properties [11,24]. Given several copies of
a CHC system, a product CHC system that synchronizes the different copies is created
by a syntactical analysis of the rules in the CHC system. These works restrict the syn-
chronization points to CHC predicates (i.e., program locations), and consider only one
synchronization (obtained via transformations of the system of CHCs). On the other
hand, our algorithm iteratively searches for a good synchronization (composition), and
considers synchronizations that depend on program state.

Equivalence Checking and Regression Verification. Equivalence checking is another
closely related research field, where a composition of several programs is considered.
As an example, equivalence checking is applied to verify the correctness of compiler
optimizations [10,18,28,34]. In [28] the composition is determined by a brute-force
search for possible synchronization points. While this brute-force search resembles our
approach for finding the correct composition, it is not guided by the verification process.
The works in [10,18] identify possible synchronization points syntactically, and try to
match them during the construction of a simulation relation between programs.

Regression verification also requires the ability to show equivalence between dif-
ferent versions of a program [15,16,31]. The problem of synchronizing unbalanced
loops appears in [31] in the form of unbalanced recursive function calls. To allow syn-
chronization in such cases, the user can specify different unrolling parameters for the
different copies. In contrast, our approach relies only on user supplied predicates that
are needed to establish correctness, while synchronization is handled automatically.

2 Preliminaries

In this paper we reason about programs by means of the transition systems defining
their semantics. A transition system is a tuple T = (S,R, F), where S is a set of states,
R ⊆ S×S is a transition relation that specifies the steps in an execution of the program,
and F ⊆ S is a set of terminal states F ⊆ S such that every terminal state s ∈ F has
an outgoing transition to itself and no additional transitions (terminal states allow us to

Property Directed Self Composition 165

reason about pre/post specifications of programs). An execution or trace π = s0, s1, . . .
is a (finite or infinite) sequence of states such that for every i ≥ 0, (si, si+1) ∈ R. The
execution is terminating if there exists 0 ≤ i ≤ |π| such that si ∈ F . In this case, the
suffix of the execution is of the form si, si, . . . and we say that π ends at si.

As usual, we represent transition systems using logical formulas over a set of vari-
ables, corresponding to the program variables. We denote the set of variables by V . The
set of terminal states is represented by a formula over V and the transition relation is
represented by a formula over V � V ′, where V represents the pre-state of a transition
and V ′ = {v′ | v ∈ V} represents its post-state. In the sequel, we use sets of states and
their symbolic representation via formulas interchangeably.

Safety and Inductive Invariants. We consider safety properties defined via pre/post
conditions.3 A safety property is a pair (pre, post) where pre, post are formulas over V ,
representing subsets of S, denoting the pre- and post-condition, respectively. T satisfies
(pre, post), denoted T |= (pre, post), if every terminating execution π of T that starts
in a state s0 such that s0 |= pre ends in a state s such that s |= post. In other words, for
every state s that is reachable in T from a state in pre we have that s |= F → post.

A prominent way to verify safety properties is by finding an inductive invariant.
An inductive invariant for a transition system T and a safety property (pre, post) is a
formula Inv such that(1) pre ⇒ Inv (initiation), (2) Inv ∧ R ⇒ Inv ′ (consecution),
and (3) Inv ⇒ (F → post) (safety), where ϕ ⇒ ψ denotes the validity of ϕ → ψ,
and ϕ′ denotes ϕ(V ′), i.e., the formula obtained after substituting every v ∈ V by the
corresponding v′ ∈ V . If there exists such an inductive invariant, then T |= (pre, post).

k-safety. A k-safety property refers to k interacting executions of T . Similarly to an
ordinary property, it is defined by (pre, post), except that pre and post are defined over
V1 � . . . � Vk where Vi = {vi | v ∈ V} denotes the ith copy of the program variables.
As such, pre and post represent sets of k-tuples of program states (k-states for short):
for a k-tuple (s1, . . . , sk) of states and a formula ϕ over V1 � . . . � Vk, we say that
(s1, . . . , sk) |= ϕ if ϕ is satisfied when for each i, the assignment of Vi is determined
by si. We say that T satisfies (pre, post), denoted T |=k (pre, post), if for every k
terminating executions π1, . . . , πk of T that start in states s1, . . . , sk, respectively, such
that (s1, . . . , sk) |= pre, it holds that they end in states t1, . . . , tk, respectively, such
that (t1, . . . , tk) |= post.

For example, the non interference property may be specified by the following 2-
safety property: pre =

∧
v∈LowIn v1 = v2, post =

∧
v∈LowOut v1 = v2 where LowIn

and LowOut denote subsets of the program inputs, resp. outputs, that are considered
“low security” and the rest are classified as “high security”. This property asserts that
every 2 terminating executions that start in states that agree on the “low security” inputs
end in states that agree on the low security outputs, i.e., the outcome does not depend
on any “high security” input and, hence, does not leak secure information.

Checking k-safety properties reduces to checking ordinary safety properties by cre-
ating a self composed program that consists of k copies of the transition system, each

3 Our results can be extended to arbitrary safety (and k-safety) properties by introducing
“observable” states to which the property may refer.

www.dbooks.org

https://www.dbooks.org/

166 R. Shemer et al.

with its own copy of the variables, that run in parallel in some way. Thus, the self com-
posed program is defined over variables V‖k = V1� . . .�Vk, where Vi = {vi | v ∈ V}
denotes the variables associated with the ith copy. For example, a common compo-
sition is a lock-step composition in which the copies execute simultaneously. The
resulting composed transition system T ‖k = (S‖k, R‖k, F ‖k) is defined such that
S‖k = S × . . . × S, F ‖k =

∧k
i=1 F (Vi) and R‖k =

∧k
i=1 R(Vj ,Vj ′). Note that

R‖k is defined over V‖k � V‖k′
(as usual). Then, the k-safety property (pre, post) is

satisfied by T if and only if an ordinary safety property (pre, post) is satisfied by T ‖k.
More general notions of self composition are investigated in Sect. 3.

3 Inferring Self Compositions for Restricted Languages of
Inductive Invariants

Any self-composition is sufficient for reducing k-safety to safety, e.g., lock-
step, sequential, synchronous, asynchronous, etc. However, the choice of the self-
composition used determines the difficulty of the resulting safety problem. Different
self composed programs would require different inductive invariants, some of which
cannot be expressed in a given logical language.

In this section, we formulate the problem of inferring a self composition function
such that the obtained self composed program may be verified with a given language of
inductive invariants. We are, therefore, interested in inferring both the self composition
function and the inductive invariant for verifying the resulting self composed program.
We start by formulating the kind of self compositions that we consider.

In the sequel, we fix a transition system T = (S,R, F) with a set of
variables V .

3.1 Semantic Self Composition

Roughly speaking, a k self composition of T consists of k copies of T that execute
together in some order, where steps may interleave or be performed simultaneously.
The order is determined by a self composition function, which may also be viewed as
a scheduler that is responsible for scheduling a subset of the copies in each step. We
consider semantic compositions in which the order may depend on the states of the
different copies, as well as the correlations between them (as opposed to syntactic com-
positions that only depend on the control locations of the copies, but may not depend
on the values of other variables):

Definition 1 (Semantic Self Composition Function). A semantic k self composition
function (k-composition function for short) is a function f : Sk → P({1..k}), mapping
each k-state to a nonempty set of copies that are to participate in the next step of the
self composed program4.

4 We consider memoryless composition functions. Compositions that depend on the history of
the (joint) execution are supported via ghost state added to the program to track the history.

Property Directed Self Composition 167

We represent a k-composition function f by a set of logical conditions, with a
condition CM for every nonempty subset M ⊆ {1..k} of the copies. For each such
M ⊆ {1..k}, the condition CM is defined over V‖k = V1 � . . . � Vk, and hence it
represents a set of k-states, with the meaning that all the k-states that satisfy CM are
mapped to M by f :

f(s1, . . . , sk) = M if and only if (s1, . . . , sk) |= CM .

To ensure that the function is well defined, we require that (
∨

M CM) ≡ true, which
ensures that every k-state satisfies at least one of the conditions. We also require that
for every M1 �= M2, CM1 ∧ CM2 ≡ false, hence every k-state satisfies at most one
condition. Together these requirements ensure that the conditions induce a partition of
the set of all k-states. In the sequel, we identify a k-composition function f with its
symbolic representation via conditions {CM}M and use them interchangeably.

Definition 2 (Composed Program). Given a k-composition function f , represented
via conditions CM for every nonempty set M ⊆ {1..k}, we define the k self composition
of T to be the transition system T f = (S‖k, Rf , F ‖k) over variables V‖k = V1 � . . . �
Vk defined as follows: F ‖k =

∧k
i=1 F i, where F i = F (Vi), and

Rf =
∨

∅�=M⊆{1..k}
(CM ∧ ϕM) where ϕM =

∧

j∈M

R(Vj ,Vj ′
) ∧

∧

j �∈M

Vj = Vj ′

Thus, in T f , the set of states consists of k-states (S‖k = S × . . . × S), the ter-
minal states are k-states in which all the individual states are terminal, and the tran-
sition relation includes a transition from (s1, . . . , sk) to (s′

1, . . . , s
′
k) if and only if

f(s1, . . . , sk) = M and (∀i ∈ M. (si, s
′
i) ∈ R) ∧ (∀i �∈ M. si = s′

i). That is,
every transition of T f corresponds to a simultaneous transition of a subset M of the
k copies of T , where the subset is determined by the self composition function f . If
f(s1, . . . , sk) = M , then for every i ∈ M we say that i is scheduled in (s1, . . . , sk).

Example 2. A k self composition that runs the k copies of T sequentially, one after the
other, corresponds to a k-composition function f defined by f(s1, . . . , sk) = {i} where
i ∈ {1..k} is the minimal index of a non-terminal state in {s1, . . . , sk}. If all states in
{s1, . . . , sk} are terminal then i = k (or any other index). This is encoded as follows:
for every 1 ≤ i < k, C{i} = ¬F i ∧ ∧

j<i F j , C{k} =
∧

j<k F j and CM = false for
every other M ⊆ {1..k}.

Example 3. The lock-step composition that runs the k copies of T synchronously cor-
responds to a k-self composition function f defined by f(s1, . . . , sk) = {1, . . . , k},
and encoded by C{1,...,k} = true and CM = false for every other M ⊆ {1..k}.

In order to ensure soundness of a reduction of k-safety to safety via self composi-
tion, one has to require that the self composition function does not “starve” any copy
of the transition system that is about to terminate if it continues to execute. We refer to
this requirement as fairness.

www.dbooks.org

https://www.dbooks.org/

168 R. Shemer et al.

Definition 3 (Fairness). A k-self composition function f is fair if for every k terminat-
ing executions π1, . . . , πk of T there exists an execution π‖ of T f such that for every
copy i ∈ {1..k}, the projection of π‖ to i is πi.

Note that by the definition of the terminal states of T f , π‖ as above is guaranteed
to be terminating. We say that the ith copy terminates in π‖ if π‖ contains a k-state
(s1, . . . , sk) such that si ∈ F . Fairness may be enforced in a straightforward way by
requiring that whenever f(s1, . . . , sk) = M , the set M includes no index i for which
si ∈ F , unless all have terminated. Since we assume that terminal states may only
transition to themselves, a weaker requirement that suffices to ensure fairness is that M
includes at least one index i for which si �∈ F , unless there is no such index.

The following claim is now straightforward:

Lemma 1. Let T be a transition system, (pre, post) a k-safety property, and f a fair
k-composition function for T and (pre, post). Then

T |=k (pre, post) iff T f |= (pre, post).

Proof (sketch). Every terminating execution of T f corresponds to k terminating execu-
tions of T . Fairness of f ensures that the converse also holds.

To demonstrate the necessity of the fairness requirement, consider a (non-fair) self
composition function f that maps every state to {1}. Then, regardless of what the actual
transition system T does, the resulting self composition T f satisfies every pre-post
specification vacuously, as it never reaches a terminal state.

Remark 1. While we require the conditions {CM}M defining a self composition func-
tion f to induce a partition of S‖k in order to ensure that f is well defined as a (total)
function, the requirement may be relaxed in two ways. First, we may allow CM1 and
CM2 to overlap. This will add more transitions and may make the task of verifying
the composed program more difficult, but it maintains the soundness of the reduction.
Second, it suffices that the conditions cover the set of reachable states of the composed
program rather than the entire state space. These relaxations do not damage sound-
ness. Technically, this means that f represented by the conditions is a relation rather
than a function. We still refer to it as a function and write f(s1, . . . , sk) = M to indi-
cate that (s1, . . . , sk) |= CM , not excluding the possibility that (s1, . . . , sk) |= M ′

for M ′ �= M as well. We note that as long as the language used to describe com-
positions is closed under Boolean operations, we can always extract from the con-
ditions {CM}M a function f ′. This is done as follows: First, to prevent the overlap
between conditions, determine an arbitrary total order < on the sets M ⊆ {1..k} and
set C ′

M := CM ∧ ∧
N<M ¬CN . Second, to ensure that the conditions cover the entire

state space, set C ′
{1..k} := C ′

{1..k} ∨ ¬(
∨

M CM). It is easy to verify that f ′ defined by
{C ′

M}M is a total self composition function and that if f is fair, then so is f ′.

3.2 The Problem of Inferring Self Composition with Inductive Invariant

Lemma 1 states the soundness of the reduction of k-safety to ordinary safety. Together
with the ability to verify safety by means of an inductive invariant, this leads to a verifi-
cation procedure. However, while soundness of the reduction holds for any self compo-
sition, an inductive invariant in a given language may exist for the composed program

Property Directed Self Composition 169

resulting from some compositions but not from others. We therefore consider the self
composition function and the inductive invariant together, as a pair, leading to the fol-
lowing definition.

Definition 4. Let T be a transition system and (pre, post) a k safety property. For a
formula Inv over V‖k and a self composition function f represented by conditions
{CM}M , we say that (f, Inv) is a composition-invariant pair for T and (pre, post) if
the following conditions hold:

– pre =⇒ Inv (initiation of Inv),
– for every ∅ �= M ⊆ {1..k}, Inv ∧ CM ∧ ϕM =⇒ Inv ′ (consecution of Inv for

Rf),
– Inv =⇒ (

(
∧k

j=1 F j) → post
)

(safety of Inv),
– Inv =⇒ ∨

M CM (f covers the reachable states),
– for every ∅ �= M ⊆ {1..k}, CM ∧ (

∨k
j=1 ¬F j) =⇒ ∨

j∈M ¬F j (f is fair).

As commented in Remark 1, we relax the requirement that (
∨

M CM) ≡ true to
Inv =⇒ ∨

M CM , thus ensuring that the conditions cover all the reachable states.
Since the reachable states of T f are determined by {CM}M (which define f), this
reveals the interplay between the self composition function and the inductive invariant.
Furthermore, we do not require that CM1 ∧ CM2 ≡ false for M1 �= M2, hence a
k-state may satisfy multiple conditions. As explained earlier, these relaxations do not
damage soundness. Furthermore, if we construct from f a self composition function f ′

as described in Remark 1, Inv would be an inductive invariant for T f ′
as well.

Lemma 2. If there exists a composition-invariant pair (f, Inv) for T and (pre, post),
then T |=k (pre, post).

If we do not restrict the language in which f and Inv are specified, then the converse
also holds. However, in the sequel we are interested in the ability to verify k-safety with
a given language, e.g., one for which the conditions of Definition 4 belong to a decidable
fragment of logic and hence can be discharged automatically.

Definition 5 (Inference in L). Let L be a logical language. The problem of inferring a
composition-invariant pair in L is defined as follows. The input is a transition system T
and a k-safety property (pre, post). The output is a composition-invariant pair (f, Inv)
for T and (pre, post) (as defined in Definition 4), where Inv ∈ L and f is represented
by conditions {CM}M such that CM ∈ L for every ∅ �= M ⊆ {1..k}. If no such pair
exists, the output is “no solution”.

When no solution exists, it does not necessarily mean that T �|=k (pre, post). Instead, it
may be that the language L is simply not expressive enough. Unfortunately, for expres-
sive languages (e.g., quantified formulas or even quantifier free linear integer arith-
metic), the problem of inferring an inductive invariant alone is already undecidable,
making the problem of inferring a composition-invariant pair undecidable as well:

Lemma 3. Let L be closed under Boolean operations and under substitution of a vari-
able with a value, and include equalities of the form v = a, where v is a variable and
a is a value (of the same sort). If the problem of inferring an inductive invariant in L is
undecidable, then so is the problem of inferring a composition-invariant pair in L.

www.dbooks.org

https://www.dbooks.org/

170 R. Shemer et al.

For example, linear integer arithmetic satisfies the conditions of the lemma. This
motivates us to restrict the languages of inductive invariants. Specifically, we con-
sider languages defined by a finite set of predicates. We consider relational predicates,
defined over V‖k = V1 � . . . � Vk. For a finite set of predicates P , we define LP to be
the set of all formulas obtained by Boolean combinations of the predicates in P .

Definition 6 (Inference using predicate abstraction). The problem of inferring a
predicate-based composition-invariant pair is defined as follows. The input is a tran-
sition system T , a k-safety property (pre, post), and a finite set of predicates P . The
output is the solution to the problem of inferring a composition-invariant pair for T
and (pre, post) in LP .

Remark 2. It is possible to decouple the language used for expressing the self com-
position function from the language used to express the inductive invariant. Clearly,
different sets of predicates (and hence languages) can be assigned to the self compo-
sition function and to the inductive invariant. However, since inductiveness is defined
with respect to the transitions of the composed system, which are in turn defined by the
self composition function, if the language defining f is not included in the language
defining Inv , the conditions CM themselves would be over-approximated when check-
ing the requirements of Definition 4 and therefore would incur a precision loss. For this
reason, we use the same language for both.

Since the problem of invariant inference in LP is PSPACE-hard [23], a reduc-
tion from the problem of inferring inductive invariants to the problem of inferring
composition-invariant pairs (similar to the one used in the proof of Lemma 3) shows
that composition-invariant inference in LP is also PSPACE-hard:

Theorem 1. Inferring a predicate-based composition-invariant pair is PSPACE-hard.

4 Algorithm for Inferring Composition-Invariant Pairs

In this section, we present Property Directed Self-Composition, PDSC for short—our
algorithm for tackling the composition-invariant inference problem for languages of
predicates (Definition 6). Namely, given a transition system T , a k-safety property
(pre, post) and a finite set of predicates P , we address the problem of finding a pair
(f, Inv), where f is a self composition function and Inv is an inductive invariant for
the composed transition system T f obtained from f , and both of them are in LP , i.e.,
defined by Boolean combinations of the predicates in P .

We rely on the property that a transition system (in our case T f) has an inductive
invariant in LP if and only if its abstraction obtained using P is safe. This is because,
the set of reachable abstract states is the strongest set expressible in LP that satisfies ini-
tiation and consecution. Given T f , this allows us to use predicate abstraction to either
obtain an inductive invariant in LP for T f (if the abstraction of T f is safe) or determine
that no such inductive invariant exists (if an abstract counterexample trace is obtained).
The latter indicates that a different self composition function needs to be considered.
A naive realization of this idea gives rise to an iterative algorithm that starts from an

Property Directed Self Composition 171

1 f ← lockstep , E ← ∅, Unreach ← false
2 while (true) do
3 (res, Inv , cex) ← Abs Reach(P, T f , pre, post, Unreach)
4 if res = safe then return (f, Inv(P))
5 (ŝ, M) ← Last Step(cex)
6 E ← E ∪ {(ŝ, M)}
7 while (All Excluded Or Starving(ŝ, E)) do
8 Unreach ← Unreach ∨ ŝ
9 if Unreach ∧ ϕpre(B) �≡ false then return “no solution in LP”

10 cex ← Remove Last Step(cex)
11 (ŝ, M) ← Last Step(cex)
12 E ← E ∪ {(ŝ, M)}
13 f ← Modify SC(f, ŝ, E)

Algorithm 1. PDSC: Property-Directed Self-Composition.

arbitrary initial composition function and in each iteration computes a new composition
function. At the worst case such an algorithm enumerates all self composition functions
defined in LP , i.e., has time complexity O(22|P|

). Importantly, we observe that, when
no inductive invariant exists for some composition function, we can use the abstract
counterexample trace returned in this case to (i) generalize and eliminate multiple com-
position functions, and (ii) identify that some abstract states must be unreachable if
there is to be a composition-invariant pair, i.e., we “block” states in the spirit of prop-
erty directed reachability [5,13]. This leads to the algorithm depicted in Algorithm 1
whose worst case time complexity is 2O(|P|). Next, we explain the algorithm in detail.

Finding an Inductive Invariant for a Given Composition Function Using Predicate
Abstraction. We use predicate abstraction [17,27] to check if a given candidate com-
position function has a corresponding inductive invariant. This is done as follows. The
abstraction of T f using P , denoted AP(T f), is a transition system (Ŝ, R̂) defined over
variables B, where B = {bp | p ∈ P} (we omit the terminal states). Ŝ = {0, 1}B, i.e.,
each abstract state corresponds to a valuation of the Boolean variables representing P .
An abstract state ŝ ∈ Ŝ represents the following set of states of T f :

γ(ŝ) = {s‖ ∈ S‖k | ∀p ∈ P. s‖ |= p ⇔ ŝ(bp) = 1}

We extend γ to sets of states and to formulas representing sets of states in the usual
way. The abstract transition relation is defined as usual:

R̂ = {(ŝ1, ŝ2) | ∃s‖
1 ∈ γ(ŝ1) ∃s‖

2 ∈ γ(ŝ2). (s‖
1, s

‖
2) ∈ Rf}

Note that the set of abstract states in AP(T f) does not depend on f .

Notation. We sometimes refer to an abstract state ŝ ∈ Ŝ as the formula
∧

ŝ(bp)=1 bp ∧
∧

ŝ(bp)=0 ¬bp. For a formula ψ ∈ LP , we denote by ψ(B) the result of substituting each
p ∈ P in ψ by the corresponding Boolean variable bp. For the opposite direction, given

www.dbooks.org

https://www.dbooks.org/

172 R. Shemer et al.

a formula ψ over B, we denote by ψ(P) the formula in LP resulting from substituting
each bp ∈ B in ψ by p. Therefore, ψ(P) is a symbolic representation of γ(ψ).

Every set defined by a formula ψ ∈ LP is precisely represented by ψ(B) in the sense
that γ(ψ(B)) is equal to the set of states defined by ψ, i.e., ψ(B) is a precise abstraction
of ψ. For simplicity, we assume that the termination conditions as well as the pre/post
specification can be expressed precisely using the abstraction, in the following sense:

Definition 7. P is adequate for T and (pre, post) if there exist ϕpre, ϕpost, ϕF i ∈ LP
such that ϕpre ≡ pre, ϕpost ≡ post and ϕF i ≡ F i (for every copy i ∈ {1..k}).

The following lemma provides the foundation for our algorithm:

Lemma 4. Let T be a transition system, (pre, post) a k safety property, and P a finite
set of predicates adequate for T and (pre, post). For a self composition function f
defined via conditions {CM}M in LP , there exists an inductive invariant Inv in LP
such that (f, Inv) is a composition-invariant pair for T and (pre, post) if and only if
the following three conditions hold:

S1 All reachable states of AP(T f) from ϕpre(B) satisfy (
∧k

i=1 ϕF i(B)) → ϕpost(B),
S2 All reachable states of AP(T f) from ϕpre(B) satisfy

∨
M CM (B), and

S3 For every ∅ �= M ⊆ {1..k}, CM (B) ∧ (
∨k

j=1 ¬ϕF j (B)) =⇒ ∨
j∈M ¬ϕF j (B).

Furthermore, if the conditions hold, then the symbolic representation of the set of
abstract states of AP(T f) reachable from ϕpre(B) is a formula Inv over B such that
(f, Inv(P)) is a composition-invariant pair for T and (pre, post).

Algorithm 1 starts from the lock-step self composition function (Line 1), which
is fair5, and constructs the next candidate f such that condition S3 in Lemma 4
always holds (see discussion of Modify SC). Thus, condition S3 need not be checked
explicitly.

Algorithm 1 checks whether conditions S1 and S2 hold for a given candidate
composition function f by calling Abs Reach (Line.3) – both checks are per-
formed via a (non-)reachability check in AP(T f), checking whether a state violating
(
∧k

i=1 ϕF i(B)) → ϕpost(B) or
∨

M CM (B) is reachable from ϕpre(B). Algorithm 1
maintains the abstract states that are not in

∨
M CM (B) by the formula Unreach defined

over B, which is initialized to false (as the lock-step composition function is defined for
every state) and is updated in each iteration of Algorithm 1 to include the abstract states
violating

∨
M CM (B). If no abstract state violating S1 or S2 is reachable, i.e., the con-

ditions hold, then Abs Reach returns the (potentially overapproximated) set of reach-
able abstract states, represented by a formula Inv over B. In this case, by Lemma 4,
(f, Inv(P)) is a composition-invariant pair (line 4). Otherwise, an abstract counterex-
ample trace is obtained. (We can of course apply bounded model checking to check if
the counterexample is real; we omit this check as our focus is on the case where the
system is safe.)

Remark 3. In practice, we do not construct AP(T f) explicitly. Instead, we use the
implicit predicate abstraction approach [6].

5 Any fair self composition can be chosen as the initial one; we chose lock-step since it is a good
starting point in many applications.

Property Directed Self Composition 173

Eliminating Self Composition Candidates Based on Abstract Counterexamples.
An abstract counterexample to conditions S1 or S2 indicates that the candidate com-
position function f has no corresponding Inv . Violation of S1 can only be resolved by
changing f such that the abstract trace is no longer feasible. Violation of S2 may, in
principle, also be resolved by extending the definition of f such that it is defined for all
the abstract states in the counterexample trace.

However, to prevent the need to explore both options, our algorithm maintains the
following invariant for every candidate self composition function f that it constructs:

Claim. Every abstract state that is not in
∨

M CM (B) is not reachable w.r.t. the abstract
composed program of any composition function that is part of a composition-invariant
pair for T and (pre, post).

This property clearly holds for the lock-step composition function, which the algorithm
starts with, since for this composition,

∨
M CM (B) ≡ true. As we explain in Corol-

lary 2, it continues to hold throughout the algorithm.
As a result of this property, whenever a candidate composition function f does not

satisfy condition S1 or S2, it is never the case that
∨

M CM (B) needs to be extended
to allow the abstract states in cex to be reachable. Instead, the abstract counterexample
obtained in violation of the conditions needs to be eliminated by modifying f .

Let cex = ŝ1, . . . , ŝm+1 be an abstract counterexample of AP(T f) such that ŝ1 |=
ϕpre(B) and ŝm+1 |= (

∧k
i=1 ϕF i(B)) ∧ ¬ϕpost(B) (violating S1) or ŝm+1 |= Unreach

(violating S2). Any self composition f ′ that agrees with f on the states in γ(ŝi) for every
ŝi that appears in cex has the same transitions in Rf and, hence, the same transitions
in R̂. It, therefore, exhibits the same abstract counterexample in AP(T f ′

). Hence, it
violates S1 or S2 and is not part of any composition-invariant pair.

Notation. Recall that f is defined via conditions CM ∈ LP . This ensures that for every
abstract state ŝ, f is defined in the same way for all the states in γ(ŝ). We denote the
value of f on the states in γ(ŝ) by f(ŝ) (in particular, f(ŝ) may be undefined). We get
that f(ŝ) = M if and only if ŝ |= CM (B).

Using this notation, to eliminate the abstract counterexample cex , one needs to elimi-
nate at least one of the transitions in cex by changing the definition of f(ŝi) for some
1 ≤ i ≤ m. For a new candidate function f ′ this may be encoded by the disjunctive
constraint

∨m
i=1 f ′(ŝi) �= f(ŝi). However, we observe that a stronger requirement may

be derived from cex based on the following lemma:

Lemma 5. Let f be a self composition function and cex = ŝ1, . . . , ŝm+1 a coun-
terexample trace in AP(T f) such that ŝ1 |= ϕpre(B) but ŝm+1 |= (

∧k
i=1 ϕF i(B)) ∧

¬ϕpost(B) or ŝm+1 |= Unreach. Then for any self composition function f ′ such that
f ′(ŝm) = f(ŝm), if ŝm is reachable in AP(T f ′

) from ϕpre(B), then a counterexample
trace to S1 or S2 exists.

Corollary 1. If there exists a composition-invariant pair (f ′, Inv ′), then there is also
one where f ′(ŝm) �= f(ŝm).

www.dbooks.org

https://www.dbooks.org/

174 R. Shemer et al.

Therefore, we require that in the next self composition candidates the abstract state
ŝm must not be mapped to its current value in f , i.e., f ′(ŝm) �= M , where f(ŝm) = M 6.

Algorithm 1 accumulates these constraints in the set E (Line 6). Formally, the con-
straint (ŝ,M) ∈ E asserts that C ′

M must imply ¬(
∧

ŝ(bp)=1 p∧∧
ŝ(bp)=0 ¬p), and hence

f ′(ŝ) �= M .

Identifying Abstract States that Must Be Unreachable. A new candidate self com-
position is constructed such that it satisfies all the constraints in E (thus ensuring that no
abstract counterexample will re-appear). In the construction, we make sure to satisfy S3
(fairness). Therefore, for every abstract state ŝ, we choose a value f ′(ŝ) that satisfies the
constraints in E and is non-starving: a value M is starving for ŝ if ŝ |= ∨k

j=1 ¬ϕF j (B)
but ŝ �|= ∨

j∈M ¬ϕF j (B), i.e., some of the copies have not terminated in ŝ but none of
the non-terminating copies is scheduled. (Due to adequacy, a value M is starving for ŝ
if and only if it is starving for every s‖ ∈ γ(ŝ).)

If for some abstract state ŝ, all the non-starving values have already been excluded
(i.e., (ŝ,M) ∈ E for every non-starving M), we conclude that there is no f ′ such that
ŝ is reachable in AP(T f ′

) and f ′ is part of a composition-invariant pair:

Lemma 6. Let ŝ ∈ Ŝ be an abstract state such that for every ∅ �= M ⊆ {1..k} either
M is starving for ŝ or (ŝ,M) ∈ E. Then, for every f ′ that satisfies S3, if AP(T f ′

)
satisfies S1 and S2, then ŝ is unreachable in AP(T f ′

).

Corollary 2. If there exists a composition-invariant pair (f ′, Inv ′), then ŝ is unreach-
able in AP(T f ′

).

This is because no matter how the self composition function f ′ would be defined, ŝ is
guaranteed to have an outgoing abstract counterexample trace in AP(T f ′

).
We, therefore, turn f ′(ŝ) to be undefined. As a result, condition S2 of Algorithm 4

requires that ŝ will be unreachable in AP(T f ′
). In Algorithm 1, this is enforced by

adding ŝ to Unreach (Line 8).
Every abstract state ŝ that is added to Unreach is a strengthening of the safety prop-

erty by an additional constraint that needs to be obeyed in any composition-invariant
pair, where obtaining a composition-invariant pair is the target of the algorithm. This
makes our algorithm property directed.

If an abstract state that satisfies ϕpre(B) is added to Unreach, then Algorithm 1 deter-
mines that no solution exists (Line 9). Otherwise, it generates a new constraint for E
based on the abstract state preceding ŝ in the abstract counterexample (Line 12).

Constructing the Next Candidate Self Composition Function. Given the set of con-
straints in E and the formula Unreach, Modify SC (Line 13) generates the next candi-
date composition function by (i) taking a constraint (ŝ,M) such that ŝ �|= Unreach (typ-
ically the one that was added last), (ii) selecting a non-starving value Mnew for ŝ (such

6 If the conditions {CM}M defining f may overlap, we consider the condition CM by which
the transition from ŝm to ŝm+1 was defined.

Property Directed Self Composition 175

a value must exist, otherwise ŝ would have been added to Unreach), and (iii) updating
the conditions defining f ′ as follows:

C ′
M = CM ∧ ¬ŝ(P) C ′

Mnew
= (CMnew ∨ ŝ(P))

The conditions of other values remain as before. This definition is facilitated by the fact
that the same set of predicates is used both for defining f ′ and for defining the abstract
states ŝ ∈ Ŝ (by which Inv is obtained). Note that in practice we do not explicitly
turn f ′ to be undefined for γ(Unreach). However, these definitions are ignored. The
definition ensures that f ′ is non-starving (satisfying condition S3) and that no two con-
ditions C ′

M1
�= C ′

M2
overlap. While the latter is not required, it also does not restrict

the generality of the approach (since the language we consider is closed under Boolean
operations).

Theorem 2. Let T be a transition system, (pre, post) a k-safety property and P a set of
predicates over V‖k. If Algorithm 1 returns “no solution” then there is no composition-
invariant pair for T and (pre, post) in LP . Otherwise, (f, Inv(P)) returned by Algo-
rithm 1 is a composition-invariant pair in LP , and thus T |=k (pre, post).

Complexity. Each iteration of Algorithm 1 adds at least one constraint to E, excluding
a potential value for f over some abstract state ŝ. An excluded values is never re-used.
Hence, the number of iterations is at most the number of abstract states, 2|P|, multiplied
by the number of potential values for each abstract state, n = 2k. Altogether, the num-
ber of iterations is at most O(2|P| · 2k). Each iteration makes one call to Abs Reach
which checks reachability via predicate abstraction, hence, assuming that satisfiability
checks in the original logic are at most exponential, its complexity is 2O(|P|). Therefore,
the overall complexity of the algorithm is 2O(|P|)+k. Typically, k is a small constant,
hence the complexity is dominated by 2O(|P|).

5 Evaluation and Conclusion

Implementation. We implemented PDSC (Algorithm 1) in Python on top of Z3 [25]. Its
input is a transition system encoded by Constrained Horn Clauses (CHC) in SMT2 for-
mat, a k-safety property and a set of predicates. The abstraction is implicitly encoded
using the approach of [6], and is parameterized by a composition function that is mod-
ified in each iteration. For reachability checks (Abs Reach) we use SPACER [22],
which supports LRA and arrays. For the set of predicates used by PDSC, we imple-
mented an automatic procedure that mines these predicates from the CHC. Additional
predicates may be added manually.

Experiments. To evaluate PDSC, we compare it to SYNONYM [26], the current state of
the art in k-safety verification.

To show the effectiveness of PDSC, we consider examples that require a nontrivial
composition (these examples are detailed in [29]). We emphasize that the motivation for
these example is originated in real-life scenarios. For example, Fig. 1 follows a pattern
of constant-time execution. The results of these experiments are summarized in Table 1.

www.dbooks.org

https://www.dbooks.org/

176 R. Shemer et al.

Table 1. Examples that require semantic compositions

Program PDSC SYNONYM

Time(s) Iteations

DoubleSquareNI 7 33 fail

HalfSquareNI 3.4 28 fail

ArrayIntMod 58.2 168 fail

SquaresSum 2.8 4 fail

ArrayInsert 19.5 102 fail

Fig. 2. Runtime comparison (in sec.):
PDSC (x-axis) and SYNONYM (y-axis).

PDSC is able to find the right composition function and prove all of the examples, while
SYNONYM cannot verify any of them. We emphasize that for these examples, lock-step
composition is not sufficient. However, PDSC infers a composition that depends on the
programs’ state (variable values), rather than just program locations.

Next we consider Java programs from [26,30], which we manually converted to C,
and then converted to CHC using SEAHORN [19]. For all but 3 examples, only 2 types
of predicates, which we mined automatically, were sufficient for verification: (i) rela-
tional predicates derived from the pre- and post-conditions, and (ii) for simple loops that
have an index variable (e.g., for iterating over an array), an equality predicate between
the copies of the indices. These predicates were sufficient since we used a large-step
encoding of the transition relation, hence the abstraction via predicates takes effect only
at cut-points. For the remaining 3 examples, we manually added 2–4 predicates. With
the exception of 1 example where a timeout of 10 seconds was reached, all examples
were solved with a lock-step composition function. Yet, we include them to show that
on examples with simple compositions PDSC performs similarly to SYNONYM. This
can be seen in Fig. 2.

Conclusion and Future Work. This work formulates the problem of inferring a self
composition function together with an inductive invariant for the composed program,
thus capturing the interplay between the self composition and the difficulty of verify-
ing the resulting composed program. To address this problem we present PDSC– an
algorithm for inferring a semantic self composition, directed at verifying the composed
program with a given language of predicates. We show that PDSC manages to find non-
trivial self compositions that are beyond reach of existing tools. In future work, we are
interested in further improving PDSC by extending it with additional (possibly lazy)
predicate discovery abilities. This has the potential to both improve performance and
verify properties over wider range of programs. Additionally, we consider exploring
further generalization techniques during the inference procedure.

Acknowledgements. This publication is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No [759102-SVIS]). The research was partially sup-
ported by Len Blavatnik and the Blavatnik Family foundation, the Blavatnik Interdisciplinary

Property Directed Self Composition 177

Cyber Research Center, Tel Aviv University, the Israel Science Foundation (ISF) under grant No.
1810/18 and the United States-Israel Binational Science Foundation (BSF) grant No. 2016260.

References

1. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition
instead of self-composition for proving the absence of timing channels. In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18–23, 2017. pp. 362–375 (2017). https://doi.org/10.
1145/3062341.3062378

2. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs. In: Pro-
ceedings of the FM 2011: Formal Methods - 17th International Symposium on Formal Meth-
ods, Limerick, Ireland, June 20–24, 2011, pp. 200–214 (2011). https://doi.org/10.1007/978-
3-642-21437-0 17

3. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product programs for rela-
tional program verification. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734,
pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35722-0 3

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In:
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28–30 June 2004,
Pacific Grove, CA, USA. pp. 100–114 (2004). https://doi.org/10.1109/CSFW.2004.17

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-18275-4 7

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit predicate
abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 46–61.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 4

7. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model Checking.
Springer, Cham (2018)

8. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: Proceedings of the 21st IEEE Com-
puter Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania, USA, 23–25
June 2008, pp. 51–65 (2008). https://doi.org/10.1109/CSF.2008.7

9. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210
(2010)

10. Dahiya, M., Bansal, S.: Black-box equivalence checking across compiler optimizations. In:
Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 127–147. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71237-6 7

11. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification through
horn clause transformation. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 147–169.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 8

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow. Com-
mun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712

13. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed
reachability. In: International Conference on Formal Methods in Computer-Aided Design,
FMCAD 2011, Austin, TX, USA, October 30 - November 02, 2011, pp. 125–134 (2011).
http://dl.acm.org/citation.cfm?id=2157675

14. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.) ESOP 2018.
LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89884-1 18

www.dbooks.org

https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-319-71237-6_7
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1145/359636.359712
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://www.dbooks.org/

178 R. Shemer et al.

15. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression
verification. In: ACM/IEEE International Conference on Automated Software Engineering,
ASE 2014, Vasteras, Sweden - September 15–19, 2014, pp. 349–360 (2014). https://doi.org/
10.1145/2642937.2642987

16. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Design
Automation Conference, DAC 2009, San Francisco, CA, USA, July 26–31, 2009. pp. 466–
471 (2009). https://doi.org/10.1145/1629911.1630034

17. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63166-6 10

18. Gupta, S., Saxena, A., Mahajan, A., Bansal, S.: Effective use of SMT solvers for program
equivalence checking through invariant-sketching and query-decomposition. In: Beyersdorff,
O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 365–382. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8 22

19. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 20

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

21. Karimpour, J., Isazadeh, A., Noroozi, A.A.: Verifying observational determinism. In: Feder-
rath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 82–93. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18467-8 6

22. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive pro-
grams. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

23. Lahiri, S.K., Qadeer, S.: Complexity and algorithms for monomial and clausal predicate
abstraction. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 214–229.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 18

24. Mordvinov, D., Fedyukovich, G.: Synchronizing constrained Horn clauses. In: LPAR-21,
21st International Conference on Logic for Programming, Artificial Intelligence and Rea-
soning, Maun, Botswana, May 7–12, 2017, pp. 338–355 (2017). http://www.easychair.org/
publications/paper/340359

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

26. Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in relational ver-
ification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 164–
182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 9

27. Saı̈di, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled,
D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48683-6 38

28. Sharma, R., Schkufza, E., Churchill, B.R., Aiken, A.: Data-driven equivalence checking.
In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26–31, 2013. pp. 391–406 (2013). https://doi.org/10.1145/
2509136.2509509

29. Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composition. CoRR
abs/1905.07705 (2019). http://arxiv.org/abs/1905.07705

https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-319-94144-8_22
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-18467-8_6
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-02959-2_18
http://www.easychair.org/publications/paper/340359
http://www.easychair.org/publications/paper/340359
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_9
https://doi.org/10.1007/3-540-48683-6_38
https://doi.org/10.1007/3-540-48683-6_38
https://doi.org/10.1145/2509136.2509509
https://doi.org/10.1145/2509136.2509509
http://arxiv.org/abs/1905.07705

Property Directed Self Composition 179

30. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2016, Santa Barbara, CA, USA, June 13–17, 2016, pp. 57–69 (2016). https://
doi.org/10.1145/2908080.2908092

31. Strichman, O., Veitsman, M.: Regression verification for unbalanced recursive functions. In:
Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp.
645–658. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6 39

32. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin, C.,
Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg (2005).
https://doi.org/10.1007/11547662 24

33. Yang, W., Vizel, Y., Subramanyan, P., Gupta, A., Malik, S.: Lazy self-composition for secu-
rity verification. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 136–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 11

34. Zaks, A., Pnueli, A.: CoVaC: compiler validation by program analysis of the cross-product.
In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-0 5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

www.dbooks.org

https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1007/978-3-319-48989-6_39
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-319-96142-2_11
https://doi.org/10.1007/978-3-540-68237-0_5
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Security-Aware Synthesis Using
Delayed-Action Games

Mahmoud Elfar(B) , Yu Wang , and Miroslav Pajic

Duke University, Durham, NC 27708, USA
{mahmoud.elfar,yu.wang094,miroslav.pajic}@duke.edu

Abstract. Stochastic multiplayer games (SMGs) have gained attention
in the field of strategy synthesis for multi-agent reactive systems. How-
ever, standard SMGs are limited to modeling systems where all agents
have full knowledge of the state of the game. In this paper, we intro-
duce delayed-action games (DAGs) formalism that simulates hidden-
information games (HIGs) as SMGs, where hidden information is cap-
tured by delaying a player’s actions. The elimination of private vari-
ables enables the usage of SMG off-the-shelf model checkers to implement
HIGs. Furthermore, we demonstrate how a DAG can be decomposed into
subgames that can be independently explored, utilizing parallel compu-
tation to reduce the model checking time, while alleviating the state
space explosion problem that SMGs are notorious for. In addition, we
propose a DAG-based framework for strategy synthesis and analysis.
Finally, we demonstrate applicability of the DAG-based synthesis frame-
work on a case study of a human-on-the-loop unmanned-aerial vehicle
system under stealthy attacks, where the proposed framework is used to
formally model, analyze and synthesize security-aware strategies for the
system.

1 Introduction

Stochastic multiplayer games (SMGs) are used to model reactive systems where
nondeterministic decisions are made by multiple players [4,13,23]. SMGs extend
probabilistic automata by assigning a player to each choice to be made in the
game. This extension enables modeling of complex systems where the behavior of
players is unknown at design time. The strategy synthesis problem aims to find a
winning strategy, i.e., a strategy that guarantees that a set of objectives (or win-
ning conditions) is satisfied [6,21]. Algorithms for synthesis include, for instance,
value iteration and strategy iteration techniques, where multiple reward-based
objectives are satisfied [2,9,17]. To tackle the state-space explosion problem,
[29] presents an assume-guarantee synthesis framework that relies on synthesiz-
ing strategies on the component level first, before composing them into a global
winning strategy. Mean-payoffs and ratio rewards are further investigated in [3]

This work was supported by the NSF CNS-1652544 grant, as well as the ONR N00014-
17-1-2012 and N00014-17-1-2504, and AFOSR FA9550-19-1-0169 awards.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 180–199, 2019.
https://doi.org/10.1007/978-3-030-25540-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_10&domain=pdf
http://orcid.org/0000-0002-5579-1255
http://orcid.org/0000-0002-0431-1039
http://orcid.org/0000-0002-5357-0117
https://doi.org/10.1007/978-3-030-25540-4_10

Security-Aware Synthesis Using Delayed-Action Games 181

to synthesize ε-optimal strategies. Formal tools that support strategy synthesis
via SMGs include PRISM-games [7,19] and Uppaal Stratego [10].

SMGs are classified based on the number of players that can make choices
at each state. In concurrent games, more than one player is allowed to concur-
rently make choices at a given state. Conversely, turn-based games assign one
player at most to each state. Another classification considers the information
available to different players across the game [27]. Complete-information games
(also known as perfect-information games [5]) grant all players complete access
to the information within the game. In symmetric games, some information is
equally hidden from all players. On the contrary, asymmetric games allow some
players to have access to more information than the others [27].

This work is motivated by security-aware systems in which stealthy adversar-
ial actions are potentially hidden from the system, where the latter can proba-
bilistically and intermittently gain full knowledge about the current state. While
hidden-information games (HIGs) can be used to model such systems by using
private variables to capture hidden information [5], standard model checkers can
only synthesize strategies for (full-information) SMGs; thus, demanding for alter-
native representations. The equivalence between turn-based semi-perfect infor-
mation games and concurrent perfect-information games was shown [5]. Since
a player’s strategy mainly rely on full knowledge of the game state [9], using
SMGs for synthesis produces strategies that may violate synthesis specifica-
tions in cases where required information is hidden from the player. Partially-
observable stochastic games (POSGs) allow agents to have different belief states
by incorporating uncertainty about both the current state and adversarial plans
[15]. Techniques such as active sensing for online replanning [14] and grid-based
abstractions of belief spaces [24] were proposed to mitigate synthesis complex-
ity arising from partial observability. The notion of delaying actions has been
studied as means for gaining information about a game to improve future strate-
gies [18,30], but was not deployed as means for hiding information.

To this end, we introduce delayed-action games (DAGs)—a new class of
games that simulate HIGs, where information is hidden from one player by
delaying the actions of the others. The omission of private variables enables the
use of off-the-shelf tools to implement and analyze DAG-based models. We show
how DAGs (under some mild and practical assumptions) can be decomposed
into subgames that can be independently explored, reducing the time required
for synthesis by employing parallel computation. Moreover, we propose a DAG-
based framework for strategy synthesis and analysis of security-aware systems.
Finally, we demonstrate the framework’s applicability through a case study of
security-aware planning for an unmanned-aerial vehicle (UAV) system prone to
stealthy cyber attacks, where we develop a DAG-based system model and further
synthesize strategies with strong probabilistic security guarantees.

The paper is organized as follows. Section 2 presents SMGs, HIGs, and prob-
lem formulation. In Sect. 3, we introduce DAGs and show that they can sim-
ulate HIGs. Section 4 proposes a DAG-based synthesis framework, which we
use for security-aware planning for UAVs in Sect. 5, before concluding the paper
in Sect. 6.

www.dbooks.org

https://www.dbooks.org/

182 M. Elfar et al.

2 Stochastic Games

In this section, we present turn-based stochastic games, which assume that all
players have full information about the game state. We then introduce hidden-
information games and their private-variable semantics.

Notation. We use N0 to denote the set of non-negative integers. P(A) denotes
the powerset of A (i.e., 2A). A variable v has a set of valuations Ev (v), where
η (v) ∈ Ev (v) denotes one. We use Σ∗ to denote the set of all finite words over
alphabet Σ, including the empty word ε. The mapping Eff :Σ∗×Ev (v)→Ev (v)
indicates the effect of a finite word on η (v). Finally, for general indexing, we use
si or s(i), for i ∈ N0, while PLγ denotes Player γ.

Turn-Based Stochastic Games (SMGs). SMGs can be used to model reac-
tive systems that undergo both stochastic and nondeterministic transitions from
one state to another. In a turn-based game,1 actions can be taken at any state
by at most one player. Formally, an SMG can be defined as follows [1,28,29].

Definition 1 (Turn-Based Stochastic Game). A turn-based game (SMG)
with players Γ = {I, II,©} is a tuple G = 〈S, (SI, SII, S©), A, s0, δ〉, where

– S is a finite set of states, partitioned into SI, SII and S©;
– A=AI ∪ AII ∪ {τ} is a finite set of actions where τ is an empty action;
– s0 ∈ SII is the initial state; and
– δ : S × A × S → [0, 1] is a transition function, such that δ(s, a, s′) ∈ {1, 0},

∀s ∈ SI ∪ SII, a ∈ A and s′ ∈ S, and δ(s, τ, s′) ∈ [0, 1] , ∀s ∈ S© and
s′ ∈ SI ∪ SII, where

∑
s′∈SI∪SII

δ(s, τ, s′) = 1 holds.

For all s∈ SI ∪SII and a ∈ AI ∪AII, we write s
a �� s′ if δ(s, a, s′)=1. Similarly, for

all s∈S© we write s
p
�� s′ if s′ is randomly sampled with probability p=δ(s, τ, s′).

Hidden-Information Games. SMGs assume that all players have full knowl-
edge of the current state, and hence provide perfect-information models [5]. In
many applications, however, this assumption may not hold. A great example
are security-aware models where stealthy adversarial actions can be hidden from
the system; e.g., the system may not even be aware that it is under attack.
On the other hand, hidden-information games (HIGs) refer to games where one
player does not have complete access to (or knowledge of) the current state.
The notion of hidden information can be formalized with the use of private vari-
ables (PVs) [5]. Specifically, a game state can be encoded using variables vT and
vB, representing the true information, which is only known to PLI, and PLII

belief, respectively.
1 The term turn-based indicates that at any state only one player can play an action.

It does not necessarily imply that players take fair turns.

Security-Aware Synthesis Using Delayed-Action Games 183

Definition 2 (Hidden-Information Game). A hidden-information stochas-
tic game (HIG) with players Γ = {I, II, ©} over a set of variables V = {vT , vB}
is a tuple GH = 〈S, (SI, SII, S©), A, s0, β, δ〉, where

– set of states S ⊆ Ev (vT)×Ev (vB)×P (Ev (vT))×Γ , partitioned in SI, SII, S©;
– A=AI∪AII∪{τ, θ} is a finite set of actions, where τ denotes an empty action,

and θ is the action capturing PLII attempt to reveal the true value vT ;
– s0 ∈ SII is the initial state;
– β : AII → P(AI) is a function that defines the set of available PLI actions,

based on PLII action; and
– δ : S × A × S → [0, 1] is a transition function such that δ(sI, a, s©) =

δ(s©, a, sI) = 0, and δ(sII, θ, s©), δ(sII, a, sI), δ(sI, a, sII) ∈ {0, 1} for all
sI ∈ SI, sII ∈ SII, s© ∈ S© and a ∈ A, where

∑
s′∈SII

δ(s©, τ, s′)=1.

In the above definition, δ only allows transitions sI to sII, sII to sI or s©,
with sII to s© conditioned by action θ, and probabilistic transitions s© to sII.
A game state can be written as s = (t, u,Ω, γ), but to simplify notation we use
sγ (t, u,Ω) instead, where t ∈ Ev (vT) is the true value of the game, u ∈ Ev (vB)
is PLII current belief, Ω ∈ P(Ev (vT)) \ {∅} is PLII belief space, and γ ∈ Γ is
the current player’s index. When the truth is hidden from PLII, the belief space
Ω is the information set [27], capturing PLII knowledge about the possible true
values.

A

C DB

Fig. 1. The UAV belief (solid square)
vs. the true value (solid diamond) of
its location.

Example 1 (Belief vs. True Value). Our
motivating example is a system that con-
sists of a UAV and a human operator. For
localization, the UAV mainly relies on a
GPS sensor that can be compromised to
effectively steer the UAV away from its
original path. While aggressive attacks can
be detected, some may remain stealthy by
introducing only bounded errors at each
step [16,20,22,26]. For example, Fig. 1 shows a UAV (PLII) occupying zone A
and flying north (N). An adversary (PLI) can launch a stealthy attack targeting
its GPS, introducing a bounded error (NE, NW) to remain stealthy. The set of
stealthy actions available to the attacker depends on the preceding UAV action,
which is captured by the function β, where β(N)={NE,N,NW}. Being unaware
of the attack, the UAV believes that it is entering zone C, while the true new
location is D due to the attack (NE). Initially, η (vT)=η (vB)=zA, and Ω={zA}
as the UAV is certain it is in zone zA. In s2, η (vB) = zC , yet η (vT) = zD.
Although vT is hidden, PLII is aware that η (vT) is in Ω={zB, zC , zD}.

HIG Semantics. GH semantics is described using the rules shown in Fig. 2,
where H2 and H3 capture PLII and PLI moves, respectively. The rule H4 specifies
that a PLII attempt θ to reveal the true value can succeed with probability pi

where PLII belief is updated (i.e., u′ = t), and remains unchanged otherwise.

www.dbooks.org

https://www.dbooks.org/

184 M. Elfar et al.

Fig. 2. Semantic rules for an HIG.

Example 2 (HIG Semantics). Continuing Example 1, let us assume that the set
of actions AI = AII = {N,S,E,W,NE,NW,SE,SW}, and that θ=GT is a geolo-
cation task that attempts to reveal the true value of the game.2 Now, consider
the scenario illustrated in Fig. 3. At the initial state s0, the UAV attempts to
move north (N), progressing the game to the state s1, where the adversary takes
her turn by selecting an action from the set β(N) = {NE,N,NW}. The players
take turns until the UAV performs a geolocation task GT, moving from the state
s4 to s5. With probability p = δ(s5, τ, s6), the UAV detects its true location
and updates its belief accordingly (i.e., to s6). Otherwise, the belief remains the
same (i.e., equal to s4).

N

0-1 1

0

-1

1

2

WNE NW pGT

Fig. 3. An example of the UAV motion in a 2D-grid map, modeled as an HIG. Solid
squares represent the UAV belief, while solid diamonds represent the ground truth.
The UAV action GT denotes performing a geolocation task.

Problem Formulation. Following the system described in Example 2, we
now consider the composed HIG GH = Madv‖Muav‖Mas shown in Fig. 4; the
HIG-based model incorporates standard models of a UAV (Muav), an adver-
sary (Madv), and a geolocation-task advisory system (Mas) (e.g., as introduced
in [11,12]). Here, the probability of a successful detection p(vT , vB) is a function
of both the location the UAV believes to be its current location (vB) as well

2 A geolocation task is an attempt to localize the UAV by examining its camera feed.

Security-Aware Synthesis Using Delayed-Action Games 185

as the ground truth location that the UAV actually occupies (vT). Reasoning
about the flight plan using such model becomes problematic since the ground
truth vT is inherently unknown to the UAV (i.e., PLII), and thus so is p(vT , vB).
Furthermore, such representation, where some information is hidden, is not sup-
ported by off-the-shelf SMG model checkers. Consequently, for such HIGs, our
goal is to find an alternative representation that is suitable for strategy synthesis
using off-the-shelf SMG model-checkers.

fly

idle

locate

fail

geo
task

a ack

Fig. 4. An example of an HIG-based system model comprised of the UAV (Muav), the
adversary (Madv), and the AS (Mas). Framed information is hidden from the UAV-AS.

3 Delayed-Action Games

In this section, we provide an alternative representation of HIGs that eliminates
the use of private variables—we introduce Delayed-Action Games (DAGs) that
exploit the notion of delayed actions. Furthermore, we show that for any HIG,
a DAG that simulates the former can be constructed.

Delayed Actions. Informally, a DAG reconstructs an HIG such that actions
of PLI (the player with access to perfect information) follow the actions of PLII,
i.e., PLI actions are delayed. This rearrangement of the players’ actions provides
a means to hide information from PLII without the use of private variables,
since in this case, at PLII states, PLI actions have not occurred yet. In this
way, PLII can act as though she has complete information at the moment she
makes her decision, as the future state has not yet happened and so cannot
be known. In essence, the formalism can be seen as a partial ordering of the
players’ actions, exploiting the (partial) superposition property that a wide class
of physical systems exhibit. To demonstrate this notion, let us consider DAG
modeling on our running example.

Example 3 (Delaying Actions). Figure 5 depicts the (HIG-based) scenario from
Fig. 3, but in the corresponding DAG, where the UAV actions are performed first
(in ŝ0, ŝ1, ŝ2), followed by the adversary delayed actions (in ŝ3, ŝ4). Note that,
in the DAG model, at the time the UAV executed its actions (ŝ0, ŝ1, ŝ2) the
adversary actions had not occurred (yet). Moreover, ŝ0 and ŝ6 (Fig. 5) share
the same belief and true values as s0 and s6 (Fig. 3), respectively, though the
transient states do not exactly match. This will be used to show the relationship
between the games.

www.dbooks.org

https://www.dbooks.org/

186 M. Elfar et al.

N W GT pNE NW

0-1 1

0

-1

1

2 p

1-p

1-p

1-p

Fig. 5. The same scenario as in Fig. 3, modeled as a DAG. Solid squares represent UAV
belief, while solid diamonds represent the ground truth. The UAV action GT denotes
performing a geolocation task.

The advantage of this approach is twofold. First, the elimination of private
variables enables simulation of an HIG using a full-information game. Thus,
the formulation of the strategy synthesis problem using off-the-shelf SMG-based
tools becomes feasible. In particular, a PLII synthesized strategy becomes depen-
dent on the knowledge of PLI behavior (possible actions), rather than the specific
(hidden) actions. We formalize a DAG as follows.

Definition 3 (Delayed-Action Game). A DAG of an HIG GH = 〈S, (SI,
SII, S©), A, s0, β, δ〉, with players Γ = {I, II,©} over a set of variables V =
{vT , vB} is a tuple GD = 〈Ŝ, (ŜI, ŜII, Ŝ©), A, ŝ0, β, δ̂〉 where

– Ŝ ⊆ Ev (vT) × Ev (vB) × A∗
II × N0 × Γ is the set of states, partitioned into

ŜI, ŜII and Ŝ©;
– ŝ0 ∈ ŜII is the initial state; and
– δ̂ : Ŝ × A × Ŝ → [0, 1] is a transition function such that δ̂(ŝII, a, ŝ©) =

δ̂(ŝI, a, ŝII) = δ̂(ŝ©, a, ŝI) = 0, and δ̂(ŝII, a, ŝII) ∈ {0, 1}, δ̂(ŝII, θ, ŝI) ∈ {0, 1},
δ̂(ŝI, a, ŝI) ∈ {0, 1}, δ̂(ŝI, a, ŝ©) ∈ {0, 1}, for all ŝI ∈ ŜI, ŝII ∈ ŜII, ŝ© ∈ Ŝ©
and a ∈ A, where

∑
ŝ′∈ŜII

δ(ŝ©, a, ŝ′)=1.

Note that, in contrast to transition function δ in HIG GH, δ̂ in DAG GD only
allows transitions ŝII to ŝII or ŝI, as well as ŝI to ŝI or ŝ©, and probabilistic
transitions ŝ© to ŝII; also note that ŝII to ŝI is conditioned by the action θ.

DAG Semantics. A DAG state is a tuple ŝ=
(
t̂, û, w, j, γ

)
, which for simplicity

we shorthand as ŝγ

(
t̂, û, w, j

)
, where t̂ ∈ Ev (vT) is the last known true value,

û ∈ Ev (vB) is PLII belief, w ∈ A∗
II captures PLII actions taken since the last

known true value, j ∈ N0 is an index on w, and γ ∈ Γ is the current player
index. The game transitions are defined using the semantic rules from Fig. 6.
Note that PLII can execute multiple moves (i.e., actions) before executing θ to
attempt to reveal the true value (D2), moving to a PLI state where PLI executes
all her delayed actions before reaching a ‘revealing’ state ŝ© (D3). Finally, the
revealing attempt can succeed with probability pi where PLII belief is updated
(i.e., û′ = t̂), or otherwise remains unchanged (D4).

Security-Aware Synthesis Using Delayed-Action Games 187

Fig. 6. Semantic rules for DAGs.

In both GH and GD, we label states where all players have full knowledge of
the current state as proper. We also say that two states are similar if they agree
on the belief, and equivalent if they agree on both the belief and ground truth.

Definition 4 (States). Let sγ(t, u,Ω) ∈ S and ŝγ̂(t̂, û, w, j) ∈ Ŝ. We say:

– sγ is proper iff Ω = {t}, denoted by sγ ∈ Prop(GH).
– ŝγ̂ is proper iff w = ε, denoted by ŝγ̂ ∈ Prop(GD).
– sγ and ŝγ̂ are similar iff û = u, t̂ ∈ Ω, and γ = γ̂, denoted by sγ ∼ ŝγ̂ .
– sγ , ŝγ̂ are equivalent iff t = t̂, u = û, w = ε, and γ = γ̂, denoted by sγ ŝγ̂ .

From the above definition, we have that s ŝ =⇒ s ∈ Prop(GH), ŝ ∈ Prop(GD).
We now define execution fragments, possible progressions from a state to another.

Definition 5 (Execution Fragment). An execution fragment (of either an
SMG, DAG or HIG) is a finite sequence of states, actions and probabilities

 = s0a1p1s1a2p2s2 . . . anpnsn such that (si

ai+1
�� si+1)∨(si

〈pi+1〉
�� si+1),∀i ≥ 0.3

We use first() and last() to refer to the first and last states of , respectively. If
both states are proper, we say that is proper as well, denoted by ∈ Prop(GH).4

Moreover, is deterministic if no probabilities appear in the sequence.

Definition 6 (Move). A move mγ of an execution from state s ∈ , denoted
by moveγ(s,), is a sequence of actions a1a2 . . . ai ∈ A∗

γ that player γ performs
in starting from s.

By omitting the player index we refer to the moves of all players. To simplify
notation, we use move() as a short notation for move(first(),). We write
(m)(first()) = last() to denote that the execution of move m from the first()
leads to the last(). This allows us to now define the delay operator as follows.

3 For deterministic transitions, p = 1, hence omitted from � for readability.
4 An execution fragment lives in the transition system (TS), i.e., � ∈ Prop(TS(G)).

We omit TS for readability.

www.dbooks.org

https://www.dbooks.org/

188 M. Elfar et al.

Definition 7 (Delay Operator). For an GH, let m = move() =
a1b1 . . . anbnθ be a move for some deterministic ∈ TS(GH), where a1...an ∈
A∗

II, b1...bn ∈ A∗
I . The delay operator, denoted by m, is defined by the rule

m = a1 . . . anθb1 . . . bn.

Intuitively, the delay operator shifts PLI actions to the right of PLII actions up
until the next probabilistic state. For example,

if ρ = s
(0)
II

a1 �� s
(1)
I

b2 �� s
(2)
II

θ �� s
(3)
©

p3 �� s
(4)
II

a4 �� s
(5)
I

b5 �� s
(6)
II

a6 �� s
(7)
I

b7 �� s
(8)
II

then m = a1 b2 θ τ a4 b5 a6 b7,

and m = a1 θ b2 τ a4 a6 b5 b7.

Simulation Relation. Given an HIG GH, we first define the corresponding
DAG GD.

Definition 8 (Correspondence). Given an HIG GH, a corresponding DAG
GD = D[GH] is a DAG that follows the semantic rules displayed in Fig. 7.

Fig. 7. Semantic rules for HIG-to-DAG transformation.

For the rest of this section, we consider GD = D[GH], and use ∈ TS(GH) and
̂ ∈ TS(GD) to denote two execution fragments of the HIG and DAG, respec-
tively. We say that and ̂ are similar, denoted by ∼ ̂, iff first() first(̂),
last() ∼ last(̂), and move() = move(̂).

Definition 9 (Game Proper Simulation). A game GD properly simulates
GH, denoted by GD � GH, iff ∀ ∈ Prop(GH), ∃̂ ∈ Prop(GD) such that ∼ ̂.

Before proving the existence of the simulation relation, we first show that if a
move is executed on two equivalent states, then the terminal states are similar.

Lemma 1 (Terminal States Similarity). For any s0 ŝ0 and a determin-
istic ∈TS(GH) where first()= s0, last() ∈ SII, then last()∼

(
move()

)
(ŝ0)

holds.

Security-Aware Synthesis Using Delayed-Action Games 189

Proof. Let last(i) = s
(i)
γi (ti, ui, Ωi) and

(
move(i)

)
(ŝ0) = ŝ

(i)
γ̂i

(t̂i, ûi, wi, ji),

where move(i) = a1b1...aibiθ. We then write move() = a1...aiθb1...bi. We use
induction over i as follows:

– Base (i=0): 0 =s0 =⇒ s(0) ŝ(0) where u0 = û0 and t0 = t̂0.
– Induction (i > 0): Assume that the claim holds for move(i−1) = a1

b1...ai−1bi−1θ, i.e., ui−1 = ûi−1 and t̂i−1 ∈ Ωi−1. For i we have that
ui = Eff(ai, ui−1) and ûi = Eff(ai, ûi−1). Also, ti = Eff(bi, ti−1) ∈ Ωi and
t̂i = Eff

(
bi, t̂i−1

)
. Hence, ui = ûi, t̂i ∈ Ωi and γ̂i = γi = ©. Thus, s(i) ∼ ŝ(i)

holds. The same can be shown for move() = a1b1...aibi where no θ
occurs. ��

Theorem 1 (Probabilistic Simulation). For any s0 ŝ0 and ∈ Prop(GH)
where first() = s0, it holds that

Pr [last() = s′] = Pr
[(

move()
)

(ŝ0) = ŝ′
]

∀s′, ŝ′ s.t. s′ ŝ′.

Proof. We can rewrite as = 0
p1 �� 1 · · · n−1

pn �� s
(n)
II , where 0, 1, . . . , n−1

are deterministic. Let first(i) = s
(i)
II (ti, ui, Ωi), last(i) = s

(i)
© (t′i, u

′
i, Ω

′
i), and

(
move()

)
(ŝ0)= ŝ(n)(t̂n, ûn, wn, jn). We use induction over n as follows:

– Base (n=0): for to be deterministic and proper, =0 =s(0) holds.
– Case (n = 1): p1 = p(t′0, u

′
0). From Lemma 1, û1 = u1 and t̂1 = t1. Hence,

Pr
[
last()=s

(1)
II

]
= Pr

[(
move()

)
(ŝ0)= ŝ

(1)
II

]
=p(t′0, u

′
0) and s

(1)
II ŝ

(1)
II .

– Induction (n>1): It is straightforward to infer that pn =p
(
t′n−1, u

′
n−1

)
, hence

Pr
[
last()=s

(n)
II

]
= Pr

[(
move()

)(
ŝ(0)

)
= ŝ(n)

]
= P , and s

(n)
II ŝ

(n)
II . ��

Note that in case of multiple θ attempts, the above probability P satisfies

P =
n∏

i=1

mi∑

j=1

pi

(
t′i−1, u

′
i−1

) (
1 − pi−1

(
t′i−1, u

′
i−1

))(j−1)
,

where mi is the number of θ attempts at stage i. Finally, since Theorem 1 imposes
no constraints on move(), a DAG can simulate all proper executions that exist
in the corresponding HIG.

Theorem 2 (DAG-HIG Simulation). For any HIG GH there exists a DAG
GD = D[GH] such that GD � GH (as defined in Definition 9).

4 Properties of DAG and DAG-based Synthesis

We here discuss DAG features, including how it can be decomposed into sub-
games by restricting the simulation to finite executions, and the preservation of
safety properties, before proposing a DAG-based synthesis framework.

www.dbooks.org

https://www.dbooks.org/

190 M. Elfar et al.

Transitions. In DAGs, nondeterministic actions of different players under-
line different semantics. Specifically, PLI nondeterminism captures what is
known about the adversarial behavior, rather than exact actions, where PLI

actions are constrained by the earlier PLII action. Conversely, PLII nondeter-
minism abstracts the player’s decisions. This distinction reflects how DAGs can
be used for strategy synthesis under hidden information. To illustrate this, sup-
pose that a strategy πII is to be obtained based on a worst-case scenario. In that
case, the game is explored for all possible adversarial behaviors. Yet, if a strat-
egy πI is known about PLI, a counter strategy πII can be found by constructing
GπI

D .
Probabilistic behaviors in DAGs are captured by PL©, which is character-

ized by the transition function δ̂ : Ŝ© × ŜII → [0, 1]. The specific definition
of δ̂ depends on the modeled system. For instance, if the transition function
(i.e., the probability) is state-independent, i.e., δ̂(ŝ©, ŝII) = c, c ∈ [0, 1], the
obtained model becomes trivial. Yet, with a state-dependent transition func-
tion, i.e., δ̂(ŝ©, ŝII) = p(t̂, û), the probability that PLII successfully reveals the
true value depends on both the belief and the true value, and the transition
function can then be realized since ŝ© holds both t̂ and û.

Decomposition. Consider an execution ̂∗ = ŝ0a1ŝ1a2ŝ2 . . . that describes a
scenario where PLII performs infinitely many actions with no attempt to reveal
the true value. To simulate ̂∗, the word w needs to infinitely grow. Since we
are interested in finite executions, we impose stopping criteria on the DAG,
such that the game is trapped whenever |w| = hmax is true, where hmax ∈ N

is an upper horizon. We formalize the stopping criteria as a deterministic finite
automaton (DFA) that, when composed with the DAG, traps the game whenever
the stopping criteria hold. Note that imposing an upper horizon by itself is not a
sufficient criterion for a DAG to be considered a stopping game [8]. Conversely,
consider a proper (and hence finite) execution ̂ = ŝ0a1 . . . ŝ′, where ŝ0, ŝ

′ ∈
Prop(GD). From Definition 9, it follows that a DAG initial state is strictly proper,
i.e., ŝ0 ∈ Prop(GD). Hence, when ŝ′ is reached, the game can be seen as if it is
repeated with a new initial state ŝ′. Consequently, a DAG game (complemented
with stopping criteria) can be decomposed into a (possibly infinite) countable
set of subgames that have the same structure yet different initial states.

Definition 10 (DAG Subgames). The subgames of a GD are defined by the
set

{
Ĝi

∣
∣
∣ Ĝi =

〈
Ŝ(i), (Ŝ(i)

I , Ŝ
(i)
II , Ŝ

(i)
©), A, ŝ

(i)
0 , δ̂(i)

〉
, i ∈ N0

}
, where Ŝ =

⋃
i Ŝ(i);

Ŝγ =
⋃

i Ŝ
(i)
γ ∀γ ∈ Γ ; and ŝ

(i)
0 = ŝ

(i)
II s.t. ŝ

(i)
II ∈ Prop(G(i)

D) , ŝ
(i)
II �= ŝ

(j)
II ∀i, j ∈ N0.

Intuitively, each subgame either reaches a proper state (representing the ini-
tial state of another subgame) or terminates by an upper horizon. This decompo-
sition allows for the independent (and parallel) analysis of individual subgames,
drastically reducing both the time required for synthesis and the explored state
space, and hence improving scalability. An example of this decompositional app-
roach is provided in Sect. 5.

Security-Aware Synthesis Using Delayed-Action Games 191

Preservation of Safety Properties. In DAGs, the action θ denotes a transi-
tion from PLII to PLI states and thus the execution of any delayed actions. While
this action can simply describe a revealing attempt, it can also serve as a what-if
analysis of how the true value may evolve at stage i of a subgame. We refer to an
execution of the second type as a hypothetical branch, where Hyp(̂, h) denotes
the set of hypothetical branches from ̂ at stage h ∈ {1, . . . , n}. Let Lsafe(s) be
a labeling function denoting if a state is safe. The formula Φsafe := [G safe] is
satisfied by an execution in HIG iff all s(t, u,Ω) ∈ are safe.

Now, consider ̂ of the DAG, with ̂ ∼ . We identify the following three cases:

(a) Lsafe(s) depends only on the belief u, then |= Φsafe iff all ŝII ∈ ̂ are safe;
(b) Lsafe(s) depends only on the true value t, then |= Φsafe iff all ŝI ∈ Hyp(̂, n)

are safe; and
(c) Lsafe(s) depends on both the true value t and belief u, then |=

Φsafe iff last(̂h) is safe for all ̂h ∈ Hyp(̂, h), h ∈ {1, ..., n}, where n is
the number of PLII actions.

Taking into account such relations, both safety (e.g., never encounter a hazard)
and distance-based requirements (e.g., never exceed a subgame horizon) can be
specified when using DAGs for synthesis, to ensure their satisfaction in the orig-
inal model. This can be generalized to other reward-based synthesis objectives,
which will be part of our future efforts that we discuss in Sect. 6.

Synthesis Framework. We here propose a framework for strategy synthe-
sis using DAGs, which is summarized in Fig. 8. We start by formulating the
automata MI, MII and M©, representing PLI, PLII and PL© abstract behav-
iors, respectively. Next, a FIFO memory stack (mi)n

i=1 ∈ An
II is implemented

using two automata Mmrd and Mmwr to perform reading and writing opera-
tions, respectively.5 The DAG GD is constructed by following Algorithm 1. The
game starts with PLII moves until she executes a revealing attempt θ, allowing
PLI to play her delayed actions. Once an end criterion is met, the game ter-
minates, resembling conditions such as ‘running out of fuel’ or ‘reaching map
boundaries’.

Model Refinement

Primary Components

Auxiliary Components
DAG Construc on

(Algorithm 1)

Strategy Synthesis

(Model Checker,)

Composi on Strategy Analysis
(Model Checker,)

Fig. 8. Synthesis and analysis framework based on the use of DAGs.

5 Specific implementation details are described in Sect. 5.

www.dbooks.org

https://www.dbooks.org/

192 M. Elfar et al.

Algorithm 1. Procedure for DAG construction
Input: Components MI, MII, M©, Mmwr, Mmrd; initial state ŝ0

Result: DAG GD

1 while ¬(end criterion) do
2 while a �= θ do � PLII plays until a revealing attempt
3 MII.vB ← Eff(a, vB), Mmwr.write(a, ++wr)

4 while rd � wr do � PLI plays all delayed actions
5 Mmrd.read(a, ++rd), MI.vT ← Eff(β(a), vT)

6 if draw x ∼ Brn(p(vT , vB)) then � PL© plays successful attempt
7 MII.vB ← MI.vT , wr ← 0, rd ← 0
8 else rd ← 0 � Unsuccessful attempt, forget PLI actions

Algorithm 2 describes the procedure for strategy synthesis based on the
DAG GD, and an rPATL [6] synthesis query φsyn that captures, for example,
a safety requirement. Starting with the initial location, the procedure checks
whether φsyn is satisfied if action θ is performed at stage h, and updates the set
of feasible strategies Πi for subgame Ĝi until hmax is reached or φsyn is not satis-
fied.6 Next, the set Πi is used to update the list of reachable end locations � with
new initial locations of reachable subgames that should be explored. Finally, the
composition of both GH and Π∗

II resolves PLII nondeterminism, where the result-
ing model GΠ∗

II
H is a Markov Decision Process (MDP) of complete information

that can be easily used for further analysis.

5 Case Study

In this section, we consider a case study where a human operator supervises
a UAV prone to stealthy attacks on its GPS sensor. The UAV mission is to
visit a number of targets after being airborne from a known base (initial state),
while avoiding hazard zones that are known a priori. Moreover, the presence
of adversarial stealthy attacks via GPS spoofing is assumed. We use the DAG
framework to synthesize strategies for both the UAV and an operator advisory
system (AS) that schedules geolocation tasks for the operator.

Modeling. We model the system as a delayed-action game GD, where PLI and
PLII represent the adversary and the UAV-AS coalition, respectively. Figure 9
shows the model primary and auxiliary components. In the UAV model Muav,
xB =(xB, yB) encodes the UAV belief, and Auav = {N,S,E,W,NE,NW,SE,SW}
is the set of available movements. The AS can trigger the action activate
to initiate a geolocation task, attempting to confirm the current location.
The adversary behavior is abstracted by Madv where xT = (xT , yT) encodes
the UAV true location. The adversarial actions are limited to one directional
6 Failing to find a strategy at stage i implies the same for all horizons of size j > i.

Security-Aware Synthesis Using Delayed-Action Games 193

Algorithm 2. Procedure for strategy synthesis
Input: Initial location (x0, y0), synthesis query φsyn

Output: PLII strategies Π∗
II

1 � ← [(x0, y0)] , i ← 0
2 while i < |�| do � Explore all reachable subgames
3 ŝ0 ← (�[i], �[i], ε, 0, II), h ← 1, stop ← ⊥ � Construct initial state
4 while h � hmax ∧ ¬stop do � Explore subgame till upper horizon

5 (πII, ϕ) ← Synth
(
Ĝπh

ŝ0
, φsyn

)
� Synthesize strategy for horizon h

6 if πII �= ∅ then
7 Πi ← Πi ∪ (πII, πh, ϕ), h++ � Save synthesized strategy
8 else stop ←

9 Prune (Πt), Π∗

II ← Π∗
II ∪ Πt � Prune subgame strategies

10 � ← � · (Reachable (Πt) \ �), i++ � update reachability

load a ack

locate

fail

geo
taskidle

fly save

Fig. 9. Primary DAG components: UAV (Muav), adversary (Madv), and AS (Mas).
Auxiliary DAG components: memory write (Mmwr) and memory read (Mmrd) mod-
els, capturing the DAG representation. At stage i, the next memory location to
write/read is mi.

increment at most.7 If, for example, the UAV is heading N, then the adver-
sary set of actions is β(N)={N,NE,NW}. The auxiliary components Mmwr and
Mmrd manage a FIFO memory stack (mi)n−1

i=0 ∈ An
uav. The last UAV move-

ment is saved in mi by synchronizing Mmwr with Muav via write, while Mmrd

synchronizes with Madv via read to read the next UAV action from mj . The
subgame terminates whenever action write is attempted and Mmwr is at state
n (i.e., out of memory).

The goal is to find strategies for the UAV-AS coalition based on the following:

– Target reachability. To overcome cases where targets are unreachable due to
hazard zones, the label reach is assigned to the set of states with acceptable
checkpoint locations (including the target) to render the objective incremen-

7 To detect aggressive attacks, techniques from literature (e.g., [16,25,26]) can be
used.

www.dbooks.org

https://www.dbooks.org/

194 M. Elfar et al.

tally feasible. The objective for all encountered subgames is then formalized
as Prmax [F reach] � pmin for some bound pmin.

– Hazard Avoidance. Similar to target reachability, the label hazard is assigned
to states corresponding to hazard zones. The objective Prmax [G ¬hazard] �
pmin is then specified for all encountered subgames.

By refining the aforementioned objectives, synthesis queries are used for both
the subgames and the supergame. Specifically, the query

φsyn(k) :=〈〈uav〉〉Prmax=?

[¬hazard U�k (locate ∧ reach)
]

(1)

is specified for each encountered subgame Ĝi, where locate indicates a successful
geolocation task. By following Algorithm 2 for a q number of reachable subgames,
the supergame is reduced to an MDP G{πi}q

i=1
D (whose states are the reachable

subgames), which is checked against the query

φana(n) :=〈〈adv〉〉Prmin,max=?

[
F�n target

]
(2)

to find the bounds on the probability that the target is reached under a maximum
number of geolocation tasks n.

Experimental Results. Figure 10(a) shows the map setting used for imple-
mentation. The UAV’s ability to actively detect an attack depends on both its
belief and the ground truth. Specifically, the probability of success in a geolo-
cation task mainly relies on the disparity between the belief and true locations,
captured by fdis : Ev (xB) × Ev (xT) → [0, 1], obtained by assigning probabili-
ties for each pair of locations according to their features (e.g., landmarks) and
smoothed using a Gaussian 2D filter. A thorough experimental analysis where
probabilities are extracted from experiments with human operators is described
in [11]. The set of hazard zones include the map boundaries to prevent the UAV
from reaching boundary values. Also, the adversary is prohibited from launching
attacks for at least the first step, a practical assumption to prevent the UAV
model from infinitely bouncing around the target location.

We implemented the model in PRISM-games [7,19] and performed the exper-
iments on an Intel Core i7 4.0 GHz CPU, with 10 GB RAM dedicated to the tool.
Figure 10(b) shows the supergame obtained by following the procedure in Algo-
rithm 2. A vertex Ĝxy represents a subgame (composed with its strategy) that
starts at location (x, y), while the outgoing edges points to subgames reachable
from the current one. Note that each edge represents a probabilistic transition.
Subgames with more than one outgoing transition imply nondeterminism that
is resolved by the adversary actions. Hence, the directed graph depicts an MDP.

The synthesized strategy for (hadv = 2, h = 4) is demonstrated in Fig. 10(c).
For the initial subgame, Fig. 11(a) shows the maximum probability of a suc-
cessful geolocation task if performed at stage h, and the remaining distance to
target. Assuming the adversary can launch attacks after stage hadv = 2, the
detection probability is maximized by performing the geolocation task at step 4,

Security-Aware Synthesis Using Delayed-Action Games 195

target

landmark

hazard

UAV
seascape

landscape

urban

(a) Environment setup. (b) Supergame GD.

Subgame ini al loca on
Path plan
Geoloca on task

(c) Protocols.

Fig. 10. (a) The environment setup used for the case study; (b) the induced supergame
MDP, where the subgames form its states; and (c) the synthesized protocols.

and hazard areas can still be avoided up till h = 6. For hadv = 1, however,
h = 3 has the highest probability of success, which diminishes at h = 6 as
no possible flight plan exists without encountering a hazard zone. The effect of
the maximum number of geolocation tasks (n) on target reachability is studied
by analyzing the supergame against φana as shown in Fig. 11(b). The minimum
number of geolocation tasks to guarantee a non-zero probability of reaching the
target (regardless of the adversary strategy) is 3 with probability bounds of
(33.7%, 94.4%).

0 1 2 3 4 5 6 7
0

2

4

6

8

10

(a) Geolocation task at stage h

D
is

ta
nc

e
to

ta
rg

et

hadv =2

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b.
of

su
cc

es
s

φ
sy

n

hadv =2
hadv =1

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

(b) Max. no. of geolocation tasks n

R
ea

ch
ab

ili
ty

bo
un

ds
φ

an
a

φana,max

φana,min

Δφana,min

Δφana,max

Fig. 11. Analysis results for (a) subgame Ĝ51 and (b) supergame GD.

The experimental data obtained for this case study are listed in Table 1. For
the same grid size, more complex maps require more time for synthesis while the
state space size remains unaffected. The state space grows exponentially with
the explored horizon size, i.e., O (

(|Auav||Aadv|)h
)
, and is typically slowed by,

e.g., the presence of hazard areas, since the branches of the game transitions
are trimmed upon encountering such areas. Interestingly, for h = 6 and h = 7,

www.dbooks.org

https://www.dbooks.org/

196 M. Elfar et al.

while the model construction time (size) for hadv = 1 is almost twice (quadruple)
as those for hadv = 2, the time for checking φsyn declines in comparison. This
reflects the fact that, in case of hadv = 1 compared to hadv = 2, the UAV has
higher chances to reach a hazard zone for the same k, leading to a shorter time
for model checking.

Table 1. Results for strategy synthesis using queries φsyn and φana.

Subgame Ĝ51 Model size Time (sec)

Map tadv k States Transitions Choices Model φsyn φana

8 × 8 1 4 11,608 17,397 15,950 2.810 0.072 –

5 57,129 87,865 83,267 14.729 0.602 –

6 236,714 366,749 359,234 62.582 1.293 –

7 876,550 1,365,478 1,355,932 231.741 6.021 –

2 4 6,678 9,230 8,394 2.381 0.042 –

5 33,904 48,545 45,354 10.251 0.367 –

6 141,622 204,551 198,640 37.192 1.839 –

7 524,942 763,144 754,984 145.407 8.850 –

Supergame GD 6,212 8,306 6,660 2.216 – 2.490

6 Discussion and Conclusion

In this paper, we introduced DAGs and showed how they can simulate HIGs
by delaying players’ actions. We also derived a DAG-based framework for strat-
egy synthesis and analysis using off-the-shelf SMG model checkers. Under some
practical assumptions, we showed that DAGs can be decomposed into indepen-
dent subgames, utilizing parallel computation to reduce the time needed for
model analysis, as well as the size of the state space. We further demonstrated
the applicability of the proposed framework on a case study focused on synthe-
sis and analysis of active attack detection strategies for UAVs prone to cyber
attacks.

DAGs come at the cost of increasing the total state space size as Mmrd and
Mmwr are introduced. This does not present a significant limitation due to the
compositional approach towards strategy synthesis using subgames. However,
the synthesis is still limited to model sizes that off-the-shelf tools can handle.

The concept of delaying actions implicitly assumes that the adversary knows
the UAV actions a priori. This does not present a concern in the presented
case study as an abstract (i.e., nondeterministic) adversary model is analogous
to synthesizing against the worst-case attacking scenario. Nevertheless, strate-
gies synthesized using DAGs (and SMGs in general) are inherently conservative.
Depending on the considered system, this can easily lead to no feasible solution.

Security-Aware Synthesis Using Delayed-Action Games 197

The proposed synthesis framework ensures preservation of safety properties.
Yet, general reward-based strategy synthesis is to be approached with care. For
example, rewards dependent on the belief can appear in any state, and exploring
hypothetical branches is not required. However, rewards dependent on a state’s
true value should only appear in proper states, and all hypothetical branches are
to be explored. A detailed investigation of how various properties are preserved
by DAGs, along with multi-objective synthesis, is a direction for future work.

References

1. Baier, C., Brazdil, T., Grosser, M., Kucera, A.: Stochastic game logic. In: Fourth
International Conference on the Quantitative Evaluation of Systems, QEST 2007,
pp. 227–236. IEEE (2007). https://doi.org/10.1109/QEST.2007.38

2. Basset, N., Kwiatkowska, M., Topcu, U., Wiltsche, C.: Strategy synthesis for
stochastic games with multiple long-run objectives. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 256–271. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0 22

3. Basset, N., Kwiatkowska, M., Wiltsche, C.: Compositional strategy synthesis
forstochastic games with multiple objectives. Information and Computation (2017).
https://doi.org/10.1016/j.ic.2017.09.010

4. Brázdil, T., Chatterjee, K., Křet́ınský, J., Toman, V.: Strategy representation by
decision trees in reactive synthesis. In: Beyer, D., Huisman, M. (eds.) TACAS 2018.
LNCS, vol. 10805, pp. 385–407. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89960-2 21

5. Chatterjee, K., Henzinger, T.A.: Semiperfect-information games. In: Sarukkai, S.,
Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 1–18. Springer, Heidelberg
(2005). https://doi.org/10.1007/11590156 1

6. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Form. Methods Syst. Des. 43(1), 61–92
(2013). https://doi.org/10.1007/s10703-013-0183-7

7. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

8. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 266–277. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40313-2 25

9. Chen, T., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: Synthesis for multi-
objective stochastic games: an application to autonomous urban driving. In: Joshi,
K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol.
8054, pp. 322–337. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40196-1 28

10. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: UPPAAL
STRATEGO. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp.
206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 16

www.dbooks.org

https://doi.org/10.1109/QEST.2007.38
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1016/j.ic.2017.09.010
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/978-3-319-89960-2_21
https://doi.org/10.1007/11590156_1
https://doi.org/10.1007/s10703-013-0183-7
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-662-46681-0_16
https://doi.org/10.1007/978-3-662-46681-0_16
https://www.dbooks.org/

198 M. Elfar et al.

11. Elfar, M., Zhu, H., Cummings, M.L., Pajic, M.: Security-aware synthesis of human-
UAV protocols. In: Proceedings of 2019 IEEE International Conference on Robotics
and Automation (ICRA). IEEE (2019)

12. Feng, L., Wiltsche, C., Humphrey, L., Topcu, U.: Synthesis of human-in-the-loop
control protocols for autonomous systems. IEEE Trans. Autom. Sci. Eng. 13(2),
450–462 (2016). https://doi.org/10.1109/TASE.2016.2530623

13. Fremont, D.J., Seshia, S.A.: Reactive control improvisation. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 307–326. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 17

14. Fu, J., Topcu, U.: Integrating active sensing into reactive synthesis with temporal
logic constraints under partial observations. In: 2015 American Control Conference
(ACC), pp. 2408–2413. IEEE (2015). https://doi.org/10.1109/ACC.2015.7171093

15. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially
observable stochastic games. AAAI 4, 709–715 (2004)

16. Jovanov, I., Pajic, M.: Relaxing integrity requirements for attack-resilient cyber-
physical systems. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/
TAC.2019.2898510

17. Kelmendi, E., Krämer, J., Křet́ınský, J., Weininger, M.: Value iteration for simple
stochastic games: stopping criterion and learning algorithm. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 623–642. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 36

18. Klein, F., Zimmermann, M.: How much lookahead is needed to win infinite games?
In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 452–463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 36

19. Kwiatkowska, M., Parker, D., Wiltsche, C.: Prism-games: verification and strategy
synthesis for stochastic multi-player games with multiple objectives. Int. J. Softw.
Tools Technol. Transf. 20(2), 195–210 (2018)

20. Lesi, V., Jovanov, I., Pajic, M.: Security-aware scheduling of embedded control
tasks. ACM Trans. Embed. Comput. Syst. (TECS) 16(5s), 188:1–188:21 (2017).
https://doi.org/10.1145/3126518

21. Li, W., Sadigh, D., Sastry, S.S., Seshia, S.A.: Synthesis for human-in-the-loop con-
trol systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 470–484. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 40

22. Mo, Y., Sinopoli, B.: On the performance degradation of cyber-physical systems
under stealthy integrity attacks. IEEE Trans. Autom. Control 61(9), 2618–2624
(2016). https://doi.org/10.1109/TAC.2015.2498708

23. Neider, D., Topcu, U.: An automaton learning approach to solving safety games
over infinite graphs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 204–221. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 12

24. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic real-time systems. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 240–255. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-22975-1 16

25. Pajic, M., Lee, I., Pappas, G.J.: Attack-resilient state estimation for noisy dynami-
cal systems. IEEE Trans. Control Netw. Syst. 4(1), 82–92 (2017). https://doi.org/
10.1109/TCNS.2016.2607420

https://doi.org/10.1109/TASE.2016.2530623
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1109/ACC.2015.7171093
https://doi.org/10.1109/TAC.2019.2898510
https://doi.org/10.1109/TAC.2019.2898510
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1007/978-3-662-47666-6_36
https://doi.org/10.1145/3126518
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1007/978-3-642-54862-8_40
https://doi.org/10.1109/TAC.2015.2498708
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-662-49674-9_12
https://doi.org/10.1007/978-3-319-22975-1_16
https://doi.org/10.1007/978-3-319-22975-1_16
https://doi.org/10.1109/TCNS.2016.2607420
https://doi.org/10.1109/TCNS.2016.2607420

Security-Aware Synthesis Using Delayed-Action Games 199

26. Pajic, M., Weimer, J., Bezzo, N., Sokolsky, O., Pappas, G.J., Lee, I.: Design and
implementation of attack-resilient cyberphysical systems: with a focus on attack-
resilient state estimators. IEEE Control Syst. 37(2), 66–81 (2017). https://doi.
org/10.1109/MCS.2016.2643239

27. Rasmusen, E., Blackwell, B.: Games and Information, vol. 15. MIT Press, Cam-
bridge (1994)

28. Svoreňová, M., Kwiatkowska, M.: Quantitative verification and strategy synthesis
for stochastic games. Eur. J. Control 30, 15–30 (2016). https://doi.org/10.1016/j.
ejcon.2016.04.009

29. Wiltsche, C.: Assume-guarantee strategy synthesis for stochastic games. Ph.D.
thesis, Ph.D. dissertation, Department of Computer Science, University of Oxford
(2015)

30. Zimmermann, M.: Delay games with WMSO+ U winning conditions. RAIRO
Theor. Inform. Appl. 50(2), 145–165 (2016). https://doi.org/10.1051/ita/2016018

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1109/MCS.2016.2643239
https://doi.org/10.1109/MCS.2016.2643239
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1051/ita/2016018
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Automated Hypersafety Verification

Azadeh Farzan(B) and Anthony Vandikas

University of Toronto, Toronto, Canada
azadeh@cs.toronto.edu

Abstract. We propose an automated verification technique for hyper-
safety properties, which express sets of valid interrelations between mul-
tiple finite runs of a program. The key observation is that constructing
a proof for a small representative set of the runs of the product pro-
gram (i.e. the product of the several copies of the program by itself),
called a reduction, is sufficient to formally prove the hypersafety property
about the program. We propose an algorithm based on a counterexample-
guided refinement loop that simultaneously searches for a reduction and
a proof of the correctness for the reduction. We demonstrate that our
tool Weaver is very effective in verifying a diverse array of hypersafety
properties for a diverse class of input programs.

1 Introduction

A hypersafety property describes the set of valid interrelations between multiple
finite runs of a program. A k-safety property [7] is a program safety property
whose violation is witnessed by at least k finite runs of a program. Determinism
is an example of such a property: non-determinism can only be witnessed by
two runs of the program on the same input which produce two different outputs.
This makes determinism an instance of a 2-safety property.

The vast majority of existing program verification methodologies are geared
towards verifying standard (1-)safety properties. This paper proposes an app-
roach to automatically reduce verification of k-safety to verification of 1-safety,
and hence a way to leverage existing safety verification techniques for hypersafety
verification. The most straightforward way to do this is via self-composition [5],
where verification is performed on k memory-disjoint copies of the program,
sequentially composed one after another. Unfortunately, the proofs in these cases
are often very verbose, since the full functionality of each copy has to be captured
by the proof. Moreover, when it comes to automated verification, the invariants
required to verify such programs are often well beyond the capabilities of modern
solvers [26] even for very simple programs and properties.

The more practical approach, which is typically used in manual or auto-
mated proofs of such properties, is to compose k memory-disjoint copies of the
program in parallel (instead of in sequence), and then verify some reduced pro-
gram obtained by removing redundant traces from the program formed in the
previous step. This parallel product program can have many such reductions.

c© The Author(s) 2019
I. Dillig and S. Tasiran (Eds.): CAV 2019, LNCS 11561, pp. 200–218, 2019.
https://doi.org/10.1007/978-3-030-25540-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25540-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-25540-4_11

Automated Hypersafety Verification 201

For example, the program formed from sequential self-composition is one such
reduction of the parallel product program. Therefore, care must be taken to
choose a “good” reduction that admits a simple proof. Many existing approaches
limit themselves to a narrow class of reductions, such as the one where each copy
of the program executes in lockstep [3,10,24], or define a general class of reduc-
tions, but do not provide algorithms with guarantees of covering the entire class
[4,24].

We propose a solution that combines the search for a safety proof with the
search for an appropriate reduction, in a counterexample-based refinement loop.
Instead of settling on a single reduction in advance, we try to verify the entire
(possibly infinite) set of reductions simultaneously and terminate as soon as some
reduction is successfully verified. If the proof is not currently strong enough to
cover at least one of the represented program reductions, then an appropriate
set of counterexamples are generated that guarantee progress towards a proof.

Our solution is language-theoretic. We propose a way to represent sets of
reductions using infinite tree automata. The standard safety proofs are also
represented using the same automata, which have the desired closure properties.
This allows us to check if a candidate proof is in fact a proof for one of the
represented program reductions, with reasonable efficiency.

Our approach is not uniquely applicable to hypersafety properties of sequen-
tial programs. Our proposed set of reductions naturally work well for concurrent
programs, and can be viewed in the spirit of reduction-based methods such
as those proposed in [11,21]. This makes our approach particularly appealing
when it comes to verification of hypersafety properties of concurrent programs,
for example, proving that a concurrent program is deterministic. The parallel
composition for hypersafety verification mentioned above and the parallel com-
position of threads inside the multi-threaded program are treated in a uniform
way by our proof construction and checking algorithms. In summary:

– We present a counterexample-guided refinement loop that simultaneously
searches for a proof and a program reduction in Sect. 7. This refinement loop
relies on an efficient algorithm for proof checking based on the antichain
method of [8], and strong theoretical progress guarantees.

– We propose an automata-based approach to representing a class of program
reductions for k-safety verification. In Sect. 5 we describe the precise class of
automata we use and show how their use leads to an effective proof checking
algorithm incorporated in our refinement loop.

– We demonstrate the efficacy of our approach in proving hypersafety properties
of sequential and concurrent benchmarks in Sect. 8.

2 Illustrative Example

We use a simple program Mult, that computes the product of two non-negative
integers, to illustrate the challenges of verifying hypersafety properties and the
type of proof that our approach targets. Consider the multiplication program in
Fig. 1(i), and assume we want to prove that it is distributive over addition.

www.dbooks.org

https://www.dbooks.org/

202 A. Farzan and A. Vandikas

Fig. 1. Program Mult (i) and the parallel composition of three copies of it (ii).

In Fig. 1(ii), the parallel composition of Mult with two copies of itself is illus-
trated. The product program is formed for the purpose of proving distributivity,
which can be encoded through the postcondition x1 = x2 + x3. Since a, b, and
c are not modified in the program, the same variables are used across all copies.
One way to prove Mult is distributive is to come up with an inductive invariant
φijk for each location in the product program, represented by a triple of program
locations (�i, �j , �k), such that true =⇒ φ111 and φ666 =⇒ x1 = x2 + x3. The
main difficulty lies in finding assignments for locations such as φ611 that are
points in the execution of the program where one thread has finished executing
and the next one is starting. For example, at (�6, �1, �1) we need the assignment
φ611 ← x1 = (a + b) ∗ c which is non-linear. However, the program given in
Fig. 1(ii) can be verified with simpler (linear) reasoning.

i1 0, i2 0, i3 0
x1 0, x2 0, x3 0
while i2 < a

x1 x1 + c
x2 x2 + c
i1 i1 + 1
i2 i2 + 1

while i3 < b
x1 x1 + c
x3 x3 + c
i1 i1 + 1
i3 i3 + 1

The program on the right is a semantically
equivalent reduction of the full composition of
Fig. 1(ii). Consider the program P = (Copy 1 ||
(Copy 2; Copy 3)). The program on the right is
equivalent to a lockstep execution of the two par-
allel components of P . The validity of this reduc-
tion is derived from the fact that the statements
in each thread are independent of the statements
in the other. That is, reordering the statements of
different threads in an execution leads to an equiva-
lent execution. It is easy to see that x1 = x2 + x3 is
an invariant of both while loops in the reduced pro-
gram, and therefore, linear reasoning is sufficient to
prove the postcondition for this program. Conceptually, this reduction (and its
soundness proof) together with the proof of correctness for the reduced program
constitute a proof that the original program Mult is distributive. Our proposed
approach can come up with reductions like this and their corresponding proofs
fully automatically. Note that a lockstep reduction of the program in Fig. 1(ii)
would not yield a solution for this problem and therefore the discovery of the
right reduction is an integral part of the solution.

Automated Hypersafety Verification 203

3 Programs and Proofs

A non-deterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F) where
Q is a finite set of states, Σ is a finite alphabet, δ ⊆ Q × Σ × Q is the transition
relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. A
deterministic finite automaton (DFA) is an NFA whose transition relation is a
function δ : Q × Σ → Q. The language of an NFA or DFA A is denoted L(A),
which is defined in the standard way [18].

3.1 Program Traces

St denotes the (possibly infinite) set of program states. For example, a program
with two integer variables has St = Z × Z. A ⊆ St is a (possibly infinite)
set of assertions on program states. Σ denotes a finite alphabet of program
statements. We refer to a finite string of statements as a (program) trace. For
each statement a ∈ Σ we associate a semantics �a� ⊆ St × St and extend �−�
to traces via (relation) composition. A trace x ∈ Σ∗ is said to be infeasible if
�x�(St) = ∅, where �x�(St) denotes the image of �x� under St. To abstract away
from a particular program syntax, we define a program as a regular language of
traces. The semantics of a program P is simply the union of the semantics of
its traces �P � =

⋃
x∈P �x�. Concretely, one may obtain programs as languages

by interpreting their edge-labelled control-flow graphs as DFAs: each vertex in
the control flow graph is a state, and each edge in the control flow graph is a
transition. The control flow graph entry location is the initial state of the DFA
and all its exit locations are final states.

3.2 Safety

There are many equivalent notions of program safety; we use non-reachability.
A program P is safe if all traces of P are infeasible, i.e. �P �(St) = ∅. Standard
partial correctness specifications are then represented via a simple encoding.
Given a precondition φ and a postcondition ψ, the validity of the Hoare-triple
{φ}P{ψ} is equivalent to the safety of [φ] ·P · [¬ψ], where [] is a standard assume
statement (or the singleton set containing it), and · is language concatenation.

Example 3.1. We use determinism as an example of how k-safety can be encoded
in the framework defined thus far. If P is a program then determinism of P is
equivalent to safety of [φ] · (P1 � P2) · [¬φ] where P1 and P2 are copies of P
operating on disjoint variables, � is a shuffle product of two languages, and [φ]
is an assume statement asserting that the variables in each copy of P are equal.

A proof is a finite set of assertions Π ⊆ A that includes true and false. Each
Π gives rise to an NFA ΠNFA = (Π,St, δΠ , true, {false}) where δΠ(φpre, a) =
{φpost | �a�(φpre) ⊆ φpost}. We abbreviate L(ΠNFA) as L(Π). Intuitively, L(Π)

www.dbooks.org

https://www.dbooks.org/

204 A. Farzan and A. Vandikas

consists of all traces that can be proven infeasible using only assertions in Π.
Thus the following proof rule is sound [12,13,17]:

∃Π ⊆ A. P ⊆ L(Π)
P is safe

(Safe)

When P ⊆ L(Π), we say that Π is a proof for P . A proof does not uniquely
belong to any particular program; a single Π may prove many programs correct.

4 Reductions

The set of assertions used for a proof is usually determined by a particular
language of assertions, and a safe program may not have a (safety) proof in that
particular language. Yet, a subset of the program traces may have a proof in
that assertion language. If it can be proven that the subset of program runs that
have a safety proof are a faithful representation of all program behaviours (with
respect to a given property), then the program is correct. This motivates the
notion of program reductions.

Definition 4.1 (semantic reduction). If for programs P and P ′, P ′ is safe
implies that P is safe, then P ′ is a semantic reduction of P (written P ′
 P).

The definition immediately gives rise to the following proof rule for proving
program safety:

∃P ′
 P,Π ⊆ A. P ′ ⊆ L(Π)
P is safe

(SafeRed1)

This generic proof rule is not automatable since, given a proof Π, verifying
the existence of the appropriate reduction is undecidable. Observe that a program
is safe if and only if ∅ is a valid reduction of the program. This means that
discovering a semantic reduction and proving safety are mutually reducible to
each other. To have decidable premises for the proof rule, we need to formulate
an easier (than proving safety) problem in discovering a reduction. One way to
achieve this is by restricting the set of reductions under consideration from all
reductions (given in Definition 4.1) to a proper subset which more amenable to
algorithmic checking. Fixing a set R of (semantic) reductions, we will have the
rule:

∃P ′ ∈ R. P ′ ⊆ L(Π) ∀P ′ ∈ R. P ′
 P

P is safe
(SafeRed2)

Proposition 4.2. The proof rule SafeRed2 is sound.

Automated Hypersafety Verification 205

The core contribution of this paper is that it provides an algorithmic solution
inspired by the above proof rule. To achieve this, two subproblems are solved:
(1) Given a set R of reductions of a program P and a candidate proof Π, can
we check if there exists a reduction P ′ ∈ R which is covered by the proof Π? In
Sect. 5, we propose a new semantic interpretation of an existing notion of infinite
tree automata that gives rise to an algorithmic check for this step. (2) Given a
program P , is there a general sound set of reductions R that be effectively
represented to accommodate step (1)? In Sect. 6, we propose a construction of
an effective set of reductions, representable by our infinite tree automata, using
inspirations from existing partial order reduction techniques [15].

5 Proof Checking

Given a set of reductions R of a program P , and a candidate proof Π, we want
to check if there exists a reduction P ′ ∈ R which is covered by Π. We call this
proof checking. We use tree automata to represent certain classes of languages
(i.e sets of sets of strings), and then use operations on these automata for the
purpose of proof checking.

Fig. 2. Language {a} as an
infinite tree.

The set Σ∗ can be represented as an infinite tree.
Each x ∈ Σ∗ defines a path to a unique node in the
tree: the root node is located at the empty string ε,
and for all a ∈ Σ, the node located at xa is a child
of the node located at x. Each node is then iden-
tified by the string labeling the path leading to it.
A language L ⊆ Σ∗ (equivalently, L : Σ∗ → B)
can consequently be represented as an infinite tree
where the node at each x is labelled with a boolean
value B ≡ (x ∈ L). An example is given in Fig. 2.

It follows that a set of languages is a set of infi-
nite trees, which can be represented using automata
over infinite trees. Looping Tree Automata (LTAs)
are a subclass of Büchi Tree Automata where all states are accept states [2].
The class of Looping Tree Automata is closed under intersection and union, and
checking emptiness of LTAs is decidable. Unlike Büchi Tree Automata, emptiness
can be decided in linear time [2].

Definition 5.1. A Looping Tree Automaton (LTA) over |Σ|-ary, B-labelled
trees is a tuple M = (Q,Δ, q0) where Q is a finite set of states, Δ ⊆ Q×B×(Σ →
Q) is the transition relation, and q0 is the initial state.

Intuitively, an LTA M = (Q,Δ, q0) performs a parallel and depth-first traversal
of an infinite tree L while maintaining some local state. Execution begins at the
root ε from state q0 and non-deterministically picks a transition (q0, B, σ) ∈ Δ
such that B matches the label at the root of the tree (i.e. B = (ε ∈ L)). If no
such transition exists, the tree is rejected. Otherwise, M recursively works on

www.dbooks.org

https://www.dbooks.org/

206 A. Farzan and A. Vandikas

each child a from state q′ = σ(a) in parallel. This process continues infinitely,
and L is accepted if and only if L is never rejected.

Formally, M ’s execution over a tree L is characterized by a run δ∗ :
Σ∗ → Q where δ∗(ε) = q0 and (δ∗(x), x ∈ L, λa. δ∗(xa)) ∈ Δ for all
x ∈ Σ∗. The set of languages accepted by M is then defined as L(M) = {L |
∃δ∗. δ∗ is a run of M on L }.

Theorem 5.2. Given an LTA M and a regular language L, it is decidable
whether ∃P ∈ L(M). P ⊆ L.

The proof, which appears in [14], reduces the problem to deciding whether
L(M)∩P(L) �= ∅. LTAs are closed under intersection and have decidable empti-
ness checks, and the lemma below is the last piece of the puzzle.

Lemma 5.3. If L is a regular language, then P(L) is recognized by an LTA.

Counterexamples. Theorem 5.2 effectively states that proof checking is decid-
able. For automated verification, beyond checking the validity of a proof, we
require counterexamples to fuel the development of the proof when the proof does
not check. Note that in the simple case of the proof rule safe, when P �⊆ L(Π)
there exists a counterexample trace x ∈ P such that x /∈ L(Π).

With our proof rule SafeRed2, things get a bit more complicated. First,
note that unlike the classic case (safe), where a failed proof check coincides
with the non-emptiness of an intersection check (i.e. P ∩ L(Π) �= ∅), in our
case, a failed proof check coincides with the emptiness of an intersection check
(i.e. R ∩ P(L(Π)) = ∅). The sets R and P(L(Π)) are both sets of languages.
What does the witness to the emptiness of the intersection look like? Each
language member of R contains at least one string that does not belong to any
of the subsets of our proof language. One can collect all such witness strings to
guarantee progress across the board in the next round. However, since LTAs can
represent an infinite set of languages, one must take care not end up with an
infinite set of counterexamples following this strategy. Fortunately, this will not
be the case.

Theorem 5.4. Let M be an LTA and let L be a regular language such that
P �⊆ L for all P ∈ L(M). There exists a finite set of counterexamples C such
that, for all P ∈ L(M), there exists some x ∈ C such that x ∈ P and x /∈ L.

The proof appears in [14]. This theorem justifies our choice of using LTAs instead
of more expressive formalisms such as Büchi Tree Automata. For example, the
Büchi Tree Automaton that accepts the language {{x} | x ∈ Σ∗} would give rise
to an infinite number of counterexamples with respect to the empty proof (i.e.
Π = ∅). The finiteness of the counterexample set presents an alternate proof
that LTAs are strictly less expressive than Büchi Tree Automata [27].

Automated Hypersafety Verification 207

6 Sleep Set Reductions

We have established so far that (1) a set of assertions gives rise to a regular lan-
guage proof, and (2) given a regular language proof and a set of program reduc-
tions recognizable by an LTA, we can check the program (reductions) against
the proof. The last piece of the puzzle is to show that a useful class of program
reductions can be expressed using LTAs.

Recall our example from Sect. 2. The reduction we obtain is sound because,
for every trace in the full parallel-composition program, an equivalent trace exists
in the reduced program. By equivalent, we mean that one trace can be obtained
from the other by swapping independent statements. Such an equivalence is the
essence of the theory of Mazurkiewicz traces [9].

We fix a reflexive symmetric dependence relation D ⊆ Σ×Σ. For all a, b ∈ Σ,
we say that a and b are dependent if (a, b) ∈ D, and say they are independent
otherwise. We define ∼D as the smallest congruence satisfying xaby ∼D xbay
for all x, y ∈ Σ∗ and independent a, b ∈ Σ. The closure of a language L ⊆ Σ∗

with respect to ∼D is denoted [L]D. A language L is ∼D-closed if L = [L]D. It is
worthwhile to note that all input programs considered in this paper correspond
to regular languages that are ∼D-closed.

An equivalence class of ∼D is typically called a (Mazurkiewicz) trace. We
avoid using this terminology as it conflicts with our definition of traces as strings
of statements in Sect. 3.1. We assume D is sound, i.e. �ab� = �ba� for all inde-
pendent a, b ∈ Σ.

Definition 6.1 (D-reduction). A program P ′ is a D-reduction of a program
P , that is P ′
D P , if [P ′]D = P .

Note that the equivalence relation on programs induced by ∼D is a refinement
of the semantic equivalence relation used in Definition 4.1.

Lemma 6.2. If P ′
D P then P ′
 P .

Ideally, we would like to define an LTA that accepts all D-reductions of a
program P , but unfortunately this is not possible in general.

Proposition 6.3 (corollary of Theorem 67 of [9]). For arbitrary regular
languages L1, L2 ∈ Σ∗ and relation D, the proposition ∃L
D L1. L ⊆ L2 is
undecidable.

The proposition is decidable only when D is transitive, which does not hold for
a semantically correct notion of independence for a parallel program encoding
a k-safety property, since statements from the same thread are dependent and
statements from different program copies are independent. Therefore, we have:

Proposition 6.4. Assume P is a ∼D-closed program and Π is a proof. The
proposition ∃P ′
D P. P ′ ⊆ L(Π) is undecidable.

www.dbooks.org

https://www.dbooks.org/

208 A. Farzan and A. Vandikas

In order to have a decidable premise for proof rule SafeRed2 then, we
present an approximation of the set of D-reductions, inspired by sleep sets [15].
The idea is to construct an LTA that recognizes a class of D-reductions of an
input program P , whose language is assumed to be ∼D-closed. This automaton
intuitively makes non-deterministic choices about what program traces to prune
in favour of other ∼D-equivalent program traces for a given reduction. Different
non-deterministic choices lead to different D-reductions.

Fig. 3. Exploring from x
with sleep sets.

Consider two statements a, b ∈ Σ where (a, b) �∈
D. Let x, y ∈ Σ∗ and consider two program runs xaby
and xbay. We know �xbay� = �xaby�. If the automa-
ton makes a non-deterministic choice that the suc-
cessors of xa have been explored, then the successors
of xba need not be explored (can be pruned away)
as illustrated in Fig. 3. Now assume (a, c) ∈ D, for
some c ∈ Σ. When the node xbc is being explored,
we can no longer safely ignore a-transitions, since the
equality �xbcay� = �xabcy� is not guaranteed. There-
fore, the a successor of xbc has to be explored. The
nondeterministic choice of what child node to explore
is modelled by a choice of order in which we explore
each node’s children. Different orders yield different
reductions. Reductions are therefore characterized as
an assignment R : Σ∗ → Lin(Σ) from nodes to lin-
ear orderings on Σ, where (a, b) ∈ R(x) means we
explore child xa after child xb.

Given R : Σ∗ → Lin(Σ), the sleep set sleepR(x) ⊆ Σ at node x ∈ Σ∗ defines
the set of transitions that can be ignored at x:

sleepR(ε) = ∅ (1)
sleepR(xa) = (sleepR(x) ∪ R(x)(a)) \ D(a) (2)

Intuitively, (1) no transition can be ignored at the root node, since nothing has
been explored yet, and (2) at node x, the sleep set of xa is obtained by adding
the transitions we explored before a (R(x)(a)) and then removing the ones that
conflict with a (i.e. are related to a by D). Next, we define the nodes that are
ignored. The set of ignored nodes is the smallest set ignoreR : Σ∗ → B such that

x ∈ ignoreR =⇒ xa ∈ ignoreR (1)
a ∈ sleepR(x) =⇒ xa ∈ ignoreR (2)

Intuitively, a node xa is ignored if (1) any of its ancestors is ignored (ignoreR(x)),
or (2) a is one of the ignored transitions at node x (a ∈ sleepR(x)).

Finally, we obtain an actual reduction of a program P from a characterization
of a reduction R by removing the ignored nodes from P , i.e. P \ ignoreR.

Lemma 6.5. For all R : Σ∗ → Lin(Σ), if P is a ∼D-closed program then
P \ ignoreR is a D-reduction of P .

Automated Hypersafety Verification 209

The set of all such reductions is reduceD(P) = {P \ignoreR | R : Σ∗ → Lin(Σ)}.

Theorem 6.6. For any regular language P , reduceD(P) is accepted by an LTA.

Interestingly, every reduction in reduceD(P) is optimal in the sense that each
reduction contains at most one representative of each equivalence class of ∼D.

Theorem 6.7. Fix some P ⊆ Σ∗ and R : Σ∗ → Lin(Σ). For all (x, y) ∈
P \ ignoreR, if x ∼D y then x = y.

7 Algorithms

Fig. 4. Counterexample-guided refinement loop.

Figure 4 illustrates
the outline of our
verification algo-
rithm. It is a
counterexample-
guided abstraction
refinement loop in
the style of [12,
13,17]. The key
difference is that
instead of check-
ing whether some
proof Π is a
proof for the pro-
gram P , it checks
if there exists a
reduction of the program P that Π proves correct.

The algorithm relies on an oracle Interpolate that, given a finite set of
program traces C, returns a proof Π ′, if one exists, such that C ⊆ L(Π ′). In
our tool, we use Craig interpolation to implement the oracle Interpolate. In
general, since program traces are the simplest form of sequential programs (loop
and branch free), any automated program prover that can handle proving them
may be used.

The results presented in Sects. 5 and 6 give rise to the proof checking sub
routine of the algorithm in Fig. 4 (i.e. the light grey test). Given a program
DFA AP = (QP , Σ, δP , qP0, FP) and a proof DFA AΠ = (QΠ , Σ, δΠ , qΠ0, FΠ)
(obtained by determinizing ΠNFA), we can decide ∃P ′ ∈ reduceD(L(AP)). P ′ ⊆
L(AΠ) by constructing an LTA MPΠ for reduceD(L(AP)) ∩ P(L(AΠ)) and
checking emptiness (Theorem 5.2).

7.1 Progress

The algorithm corresponding to Fig. 4 satisfies a weak progress theorem: none
of the counterexamples from a round of the algorithm will ever appear in a

www.dbooks.org

https://www.dbooks.org/

210 A. Farzan and A. Vandikas

future counterexample set. This, however, is not strong enough to guarantee
termination. Alternatively, one can think of the algorithm’s progress as follows.
In each round new assertions are discovered through the oracle Interpolate,
and one can optimistically hope that one can finally converge on an existing
target proof Π∗. The success of this algorithm depends on two factors: (1) the
counterexamples used by the algorithm belong to L(Π∗) and (2) the proof that
Interpolate discovers for these counterexamples coincide with Π∗. The latter
is a typical known wild card in software model checking, which cannot be guar-
anteed; there is plenty of empirical evidence, however, that procedures based on
Craig Interpolation do well in approximating it. The former is a new problem
for our refinement loop.

In a standard algorithm in the style of [12,13,17], the verification proof rule
dictates that every program trace must be in L(Π∗). In our setting, we only
require a subset (corresponding to some reduction) to be in L(Π∗). This means
one cannot simply rely on program traces as appropriate counterexamples. The-
orem 5.4 presents a solution to this problem. It ensures that we always feed
Interpolate some counterexample from Π∗ and therefore guarantee progress.

Theorem 7.1 (Strong Progress). Assume a proof Π∗ exists for some reduc-
tion P ∗ ∈ R and Interpolate always returns some subset of Π∗ for traces in
L(Π∗). Then the algorithm will terminate in at most |Π∗| iterations.

Theorem 7.1 ensures that the algorithm will never get into an infinite loop
due to a bad choice of counterexamples. The condition on Interpolate ensures
that divergence does not occur due to the wrong choice of assertions by Interpo-
late and without it any standard interpolation-based software model checking
algorithm may diverge. The assumption that there exists a proof for a reduction
of the program in the fixed set R ensures that the proof checking procedure can
verify the target proof Π∗ once it is reached. Note that, in general, a proof may
exist for a reduction of the program which is not in R. Therefore, the algorithm
is not complete with respect to all reductions, since checking the premises of
SafeRed1 is undecidable as discussed in Sect. 4.

7.2 Faster Proof Checking Through Antichains

The state set of MPΠ , the intersection of program and proof LTAs, has size
|QP × B × P(Σ) × QΠ |, which is exponential in |Σ|. Therefore, even a linear
emptiness test for this LTA can be computationally expensive. Antichains have
been previously used [8] to optimize certain operations over NFAs that also suffer
from exponential blowups, such as deciding universality and inclusion tests. The
main idea is that these operations involve computing downwards-closed and
upwards-closed sets according to an appropriate subsumption relation, which
can be represented compactly as antichains. We employ similar techniques to
propose a new emptiness check algorithm.

Antichains. The set of maximal elements of a set X with respect to some
ordering relation � is denoted max(X). The downwards-closure of a set X with

Automated Hypersafety Verification 211

respect to � is denoted �X�. An antichain is a set X where no element of X is
related (by �) to another. The maximal elements max(X) of a finite set X is an
antichain. If X is downwards-closed then �max(X)� = X.

The emptiness check algorithm for LTAs from [2] computes the set of inactive
states (i.e. states which generate an empty language) and checks if the initial
state is inactive. The set of inactive states of an LTA M = (Q,Δ, q0) is defined
as the smallest set inactive(M) satisfying

∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ inactive(M)
q ∈ inactive(M)

(Inactive)

Alternatively, one can view inactive(M) as the least fixed-point of a monotone
(with respect to ⊆) function FM : P(Q) → P(Q) where

FM (X) = {q | ∀(q,B, σ) ∈ Δ.∃a. σ(a) ∈ X}.

Therefore, inactive(M) can be computed using a standard fixpoint algorithm.
If inactive(M) is downwards-closed with respect to some subsumption relation

(�) ⊆ Q × Q, then we need not represent all of inactive(M). The antichain
max(inactive(M)) of maximal elements of inactive(M) (with respect to �) would
be sufficient to represent the entirety of inactive(M), and can be exponentially
smaller than inactive(M), depending on the choice of relation �.

A trivial way to compute max(inactive(M)) is to first compute inactive(M)
and then find the maximal elements of the result, but this involves doing strictly
more work than the baseline algorithm. However, observe that if FM also pre-
serves downwards-closedness with respect to �, then

max(inactive(M)) = max(lfp(FM))
= max(lfp(FM ◦ �−� ◦ max)) = lfp(max ◦FM ◦ �−�)

That is, max(inactive(M)) is the least fixed-point of a function Fmax
M :

P(Q) → P(Q) defined as Fmax
M (X) = max(FM (�X�)). We can calculate

max(inactive(M)) efficiently if we can calculate Fmax
M (X) efficiently, which is

true in the special case of the intersection automaton for the languages of our
proof P(L(Π)) and our program reduceD(P), which we refer to as MPΠ .

We are most interested in the state space of MPΠ , which is QPΠ = (QP ×
B × P(Σ)) × QΠ . Observe that states whose B part is � are always active:

Lemma 7.2. ((qP ,�, S), qΠ) /∈ inactive(MPΠ) for all qP ∈ QP , qΠ ∈ QΠ , and
S ⊆ Σ.

The state space can then be assumed to be QPΠ = (QP × {⊥} × P(Σ)) × QΠ

for the purposes of checking inactivity. The subsumption relation defined as the
smallest relation �PΠ satisfying

S ⊆ S′ =⇒ ((qP ,⊥, S), qΠ) �PΠ ((qP ,⊥, S′), qΠ)

for all qP ∈ QP , qΠ ∈ QΠ , and S, S′ ⊆ Σ, is a suitable one since:

www.dbooks.org

https://www.dbooks.org/

212 A. Farzan and A. Vandikas

Lemma 7.3. FMP Π
preserves downwards-closedness with respect to �PΠ .

The function Fmax
MP Π

is a function over relations

Fmax
MP Π

: P((QP × {⊥} × P(Σ)) × QΠ) → P((QP × {⊥} × P(Σ)) × QΠ)

but in our case it is more convenient to view it as a function over functions

Fmax
MP Π

: (QP × {⊥} × QΠ → P(P(Σ))) → (QP × {⊥} × QΠ → P(P(Σ)))

Through some algebraic manipulation and some simple observations, we can
define Fmax

MP Π
functionally as follows.

Lemma 7.4. For all qP ∈ QP , qΠ ∈ QΠ , and X : QP × {⊥} × QΠ →
P(P(Σ)),

Fmax
MP Π

(X)(qP ,⊥, qΠ) =

⎧
⎪⎨

⎪⎩

{Σ} if qP ∈ FP ∧ qΠ /∈ FΠ
�

R∈Lin(Σ)

⊔

a∈Σ
S∈X(q′

P ,⊥,q′
Π)

S′ otherwise

where

q′
P = δP (qP , a) X � Y = max{x ∩ y | x ∈ X ∧ y ∈ Y }

q′
Π = δΠ(qΠ , a) X � Y = max(X ∪ Y)

S′ =

{
{(S ∪ D(a)) \ {a}} if R(a) \ D(a) ⊆ S

∅ otherwise

function Check(AP , AΠ , D)

(QP , Σ, δP , q0P , FP) ← AP

(QΠ , Σ, δΠ , q0Π , FΠ) ← AΠ

function FMax(X)((qP , ⊥, qΠ))
if qP ∈ FP ∧ qΠ /∈ FΠ

return {Σ}
X� ← {Σ}
for R ∈ Lin(Σ)

X� ← ∅
for a ∈ Σ, S ∈ X((δP (qP , a), ⊥, δΠ(qΠ , a)))

if R(a) \ D(a) ⊆ S
X� ← X� � {(S ∪ D(a)) \ {a}}

X� ← X�
 X�

return X�

return Fix(FMax)((q0P , ⊥, q0Π)) �= ∅
Algorithm 1. Proof checking algorithm

Automated Hypersafety Verification 213

A full justification appears in [14]. Formulating Fmax
MP Π

as a higher-order func-
tion allows us to calculate max(inactive(MPΠ)) using efficient fixpoint algo-
rithms like the one in [22]. Algorithm 1 outlines our proof checking routine.
Fix : ((A → B) → (A → B)) → (A → B) is a procedure that computes the
least fixpoint of its input. The algorithm simply computes the fixpoint of the
function Fmax

MP Π
as defined in Lemma 7.4, which is a compact representation of

inactive(MPΠ) and checks if the start state of MPΠ is in it.

Counterexamples. Theorem 5.4 states that a finite set of counterexamples
exists whenever ∃P ′ ∈ reduceD(P). P ′ ⊆ L(Π) does not hold. The proof of
emptiness for an LTA, formed using rule Inactive above, is a finite tree. Each
edge in the tree is labelled by an element of Σ (obtained from the existential
in the rule) and the paths through this tree form the counterexample set. To
compute this set, then, it suffices to remember enough information during the
computation of inactive(M) to reconstruct the proof tree. Every time a state q
is determined to be inactive, we must also record the witness a ∈ Σ for each
transition (q,B, σ) ∈ Δ such that σ(a) ∈ inactive(M).

In an antichain-based algorithm, once we determine a state q to be inactive,
we simultaneously determine everything it subsumes (i.e. � q) to be inactive as
well. If we record unique witnesses for each and every state that q subsumes,
then the space complexity of our antichain algorithm will be the same as the
unoptimized version. The following lemma states that it is sufficient to record
witnesses only for q and discard witnesses for states that q subsumes.

Lemma 7.5. Fix some states q, q′ such that q′ �PΠ q. A witness used to prove
q is inactive can also be used to prove q′ is inactive.

Note that this means that the antichain algorithm soundly returns potentially
fewer counterexamples than the original one.

7.3 Partition Optimization

The LTA construction for reduceD(P) involves a nondeterministic choice of lin-
ear order at each state. Since |Lin(Σ)| has size |Σ|!, each state in the automa-
ton would have a large number of transitions. As an optimization, our algo-
rithm selects ordering relations out of Part(Σ) (instead of Lin(Σ)), defined as
Part(Σ) = {Σ1 × Σ2 | Σ1 � Σ2 = Σ} where � is disjoint union. This leads to a
sound algorithm which is not complete with respect to sleep set reductions and
trades the factorial complexity of computing Lin(Σ) for an exponential one.

8 Experimental Results

To evaluate our approach, we have implemented our algorithm in a tool called
Weaver written in Haskell. Weaver accepts a program written in a simple
imperative language as input, where the property is already encoded in the
program in the form of assume statements, and attempts to prove the program

www.dbooks.org

https://www.dbooks.org/

214 A. Farzan and A. Vandikas

correct. The dependence relation for each input program is computed using a
heuristic that ensures ∼D-closedness. It is based on the fact that the shuffle
product (i.e. parallel composition) of two ∼D-closed languages is ∼D-closed.

Weaver employs two verification algorithms: (1) The total order algorithm
presented in Algorithm 1, and (2) the variation with the partition optimization
discussed in Sect. 7.3. It also implements multiple counterexample generation
algorithms: (1) Naive: selects the first counterexample in the difference of the
program and proof language. (2) Progress-Ensuring: selects a set of counterex-
amples satisfying Theorem 5.4. (3) Bounded Progress-Ensuring: selects a few
counterexamples (in most cases just one) from the set computed by the progress-
ensuring algorithm. Our experimentation demonstrated that in the vast majority
of the cases, the bounded progress ensuring algorithm (an instance of the par-
tition algorithm) is the fastest of all options. Therefore, all our reports in this
section are using this instance of the algorithm.

For the larger benchmarks, we use a simple sound optimization to reduce
the proof size. We declare the basic blocks of code as atomic, so that internal
assertions need not be generated for them as part of the proof. This optimization
is incomplete with respect to sleep set reductions.

Benchmarks. We use a set of sequential benchmarks from [24] and include
additional sequential benchmarks that involve more interesting reductions in
their proofs. We have a set of parallel benchmarks, which are beyond the scope
of previous hypersafety verification techniques. We use these benchmarks to
demonstrate that our technique/tool can seamlessly handle concurrency. These
involve proving concurrency specific hypersafety properties such as determinism
and equivalence of parallel and sequential implementations of algorithms. Finally,
since the proof checking algorithm is the core contribution of this paper, we have
a contrived set of instances to stress test our algorithm. These involve proving
determinism of simple parallel-disjoint programs with various numbers of threads
and statements per thread. These benchmarks have been designed to cause a
combinatorial explosion for the proof checker and counterexample generation
routines. More information on the benchmarks can be found in [14].

Evaluation

Due to space restrictions, it is not feasible to include a detailed account of all
our experiments here, for over 50 benchmarks. A detailed table can be found in
[14]. Table 1 includes a summary in the form of averages, and here, we discuss
our top findings.

Proof construction time refers to the time spent to construct L(Π) from
a given set of assertions Π and excludes the time to produce proofs for the
counterexamples in a given round. Proof checking time is the time spent
to check if the current proof candidate is strong enough for a reduction of the
program. In the fastest instances (total time around 0.01 s), roughly equal time
is spent in proof checking and proof construction. In the slowest instances, the
total time is almost entirely spent in proof construction. In contrast, in our stress

Automated Hypersafety Verification 215

Table 1. Experimental results averages for benchmark groups.

Benchmark group Group

count

Proof size Number of

refinement

rounds

Proof

construction

time

Proof

checking

time

Total

time

Looping programs of [24]

2-safety properties

5 63 12 46.69 s 0.1 s 47.03 s

Looping programs of [24]

3-safety properties

8 155 22 475.78 s 11.79 s 448.36 s

Loop-free programs of [24] 27 5 2 0.13 s 0.0004 s 0.15 s

Our sequential benchmarks 13 30 9 14.27 s 2.5 s 17.94 s

Our parallel benchmarks 7 31 8 17.95 0.56 s 18.63 s

tests (designed to stress the proof checking algorithm) the majority of the time
is spent in proof checking. The time spent in proving counterexamples correct
is negligible in all instances. Proof sizes vary from 4 assertions to 298 for the
most complicated instance. Verification times are correlated with the final proof
size; larger proofs tend to cause longer verification times.

Numbers of refinement rounds vary from 2 for the simplest to 33 for the
most complicated instance. A small number of refinement rounds (e.g. 2) implies
a fast verification time. But, for the higher number of rounds, a strong positive
correlation between the number of rounds and verification time does not exist.

For our parallel programs benchmarks (other than our stress tests), the
tool spends the majority of its time in proof construction. Therefore, we designed
specific (unusual) parallel programs to stress test the proof checker. Stress test
benchmarks are trivial tests of determinism of disjoint parallel programs, which
can be proven correct easily by using the atomic block optimization. However,
we force the tool to do the unnecessary hard work. These instances simulate the
worst case theoretical complexity where the proof checking time and number of
counterexamples grow exponentially with the number of threads and the sizes of
the threads. In the largest instance, more than 99% of the total verification time
is spent in proof checking. Averages are not very informative for these instances,
and therefore are not included in Table 1.

Finally, Weaver is only slow for verifying 3-safety properties of large loop-
ing benchmarks from [24]. Note that unlike the approach in [24], which starts
from a default lockstep reduction (that is incidentally sufficient to prove these
instances), we do not assume any reduction and consider them all. The extra
time is therefore expected when the product programs become quite large.

9 Related Work

The notion of a k-safety hyperproperty was introduced in [7] without consider-
ation for automatic program verification. The approach of reducing k-safety to
1-safety by self-composition is introduced in [5]. While theoretically complete,
self-composition is not practical as discussed in Sect. 1. Product programs gener-
alize the self-composition approach and have been used in verifying translation

www.dbooks.org

https://www.dbooks.org/

216 A. Farzan and A. Vandikas

validation [20], non-interference [16,23], and program optimization [25]. A prod-
uct of two programs P1 and P2 is semantically equivalent to P1 · P2 (sequential
composition), but is made easier to verify by allowing parts of each program to
be interleaved. The product programs proposed in [3] allow lockstep interleav-
ing exclusively, but only when the control structures of P1 and P2 match. This
restriction is lifted in [4] to allow some non-lockstep interleavings. However, the
given construction rules are non-deterministic, and the choice of product pro-
gram is left to the user or a heuristic.

Relational program logics [6,28] extend traditional program logics to allow
reasoning about relational program properties, however automation is usually
not addressed. Automatic construction of product programs is discussed in [10]
with the goal of supporting procedure specifications and modular reasoning,
but is also restricted to lockstep interleavings. Our approach does not support
procedure calls but is fully automated and permits non-lockstep interleavings.

The key feature of our approached is the automation of the discovery of
an appropriate program reduction and a proof combined. In this case, the only
other method that compares is the one based on Cartesian Hoare Logic (CHL)
proposed in [24] along with an algorithm for automatic verification based on
CHL. Their proposed algorithm implicitly constructs a product program, using
a heuristic that favours lockstep executions as much as possible, and then priori-
tizes certain rules of the logic over the rest. The heuristic nature of the search for
the proof means that no characterization of the search space can be given, and
no guarantees about whether an appropriate product program will be found. In
contrast, we have a formal characterization of the set of explored product pro-
grams in this paper. Moreover, CHL was not designed to deal with concurrency.

Lipton [19] first proposed reduction as a way to simplify reasoning about
concurrent programs. His ideas have been employed in a semi-automatic set-
ting in [11]. Partial-order reduction (POR) is a class of techniques that reduces
the state space of search by removing redundant paths. POR techniques are
concerned with finding a single (preferably minimal) reduction of the input pro-
gram. In contrast, we use the same underlying ideas to explore many program
reductions simultaneously. The class of reductions described in Sect. 6 is based
on the sleep set technique of Godefroid [15]. Other techniques exist [1,15] that
are used in conjunction with sleep sets to achieve minimality in a normal POR
setting. In our setting, reductions generated by sleep sets are already optimal
(Theorem 6.7). However, employing these additional POR techniques may pro-
pose ways of optimizing our proof checking algorithm by producing a smaller
reduction LTA.

References

1. Abdulla, P.A., Aronis, S., Jonsson, B., Sagonas, K.: Source sets: a foundation for
optimal dynamic partial order reduction. J. ACM (JACM) 64(4), 25 (2017)

Automated Hypersafety Verification 217

2. Baader, F., Tobies, S.: The inverse method implements the automata approach
for modal satisfiability. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001.
LNCS, vol. 2083, pp. 92–106. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45744-5 8

3. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 17

4. Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: asymmetric product pro-
grams for relational program verification. In: Artemov, S., Nerode, A. (eds.) LFCS
2013. LNCS, vol. 7734, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-35722-0 3

5. Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Math. Struct. Comput. Sci. 21(6), 1207–1252 (2011)

6. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: ACM SIGPLAN Notices, vol. 39, pp. 14–25. ACM (2004)

7. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 21st IEEE Computer Secu-
rity Foundations Symposium, pp. 51–65. IEEE (2008)

8. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: a new algo-
rithm for checking universality of finite automata. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 17–30. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 5

9. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 457–533. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 8

10. Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 502–529. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1 18

11. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: ACM SIGPLAN
Notices, vol. 44, pp. 2–15. ACM (2009)

12. Farzan, A., Kincaid, Z., Podelski, A.: Inductive data flow graphs. In: ACM SIG-
PLAN Notices, vol. 48, pp. 129–142. ACM (2013)

13. Farzan, A., Kincaid, Z., Podelski, A.: Proof spaces for unbounded parallelism. In:
ACM SIGPLAN Notices, vol. 50, pp. 407–420. ACM (2015)

14. Farzan, A., Vandikas, A.: Reductions for automated hypersafety verification (2019)
15. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-

tems: An Approach to the State-Explosion Problem, vol. 1032. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60761-7

16. Goguen, J.A., Meseguer, J.: Security policies and security models. In: 1982 IEEE
Symposium on Security and Privacy, p. 11. IEEE (1982)

17. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 7

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.
Inc., Boston (2006)

19. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

20. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

www.dbooks.org

https://doi.org/10.1007/3-540-45744-5_8
https://doi.org/10.1007/3-540-45744-5_8
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/978-3-642-35722-0_3
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-642-03237-0_7
https://doi.org/10.1007/BFb0054170
https://doi.org/10.1007/BFb0054170
https://www.dbooks.org/

218 A. Farzan and A. Vandikas

21. Popeea, C., Rybalchenko, A., Wilhelm, A.: Reduction for compositional verifica-
tion of multi-threaded programs. In: Formal Methods in Computer-Aided Design
(FMCAD), 2014, pp. 187–194. IEEE (2014)

22. Pottier, F.: Lazy least fixed points in ML (2009)
23. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.

Areas Commun. 21(1), 5–19 (2003)
24. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In:

ACM SIGPLAN Notices, vol. 51, pp. 57–69. ACM (2016)
25. Sousa, M., Dillig, I., Vytiniotis, D., Dillig, T., Gkantsidis, C.: Consolidation of

queries with user-defined functions. In: ACM SIGPLAN Notices, vol. 49, pp. 554–
564. ACM (2014)

26. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005). https://doi.org/10.1007/11547662 24

27. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

28. Yang, H.: Relational separation logic. Theor. Comput. Sci. 375(1–3), 308–334
(2007)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11547662_24
http://creativecommons.org/licenses/by/4.0/

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Automata and Timed Systems
	Symbolic Register Automata
	1 Introduction
	2 Motivating Example
	3 Symbolic Register Automata
	4 Decidability Properties
	5 Evaluation
	5.1 Succinctness of SRAs vs SFAs
	5.2 Performance of Membership Checking
	5.3 Performance of Decision Procedures

	6 Conclusions
	References

	Abstraction Refinement Algorithms for Timed Automata
	1 Introduction
	2 Timed Automata and Zones
	2.1 Timed Automata
	2.2 Zones and DBMs
	2.3 Clock-Predicate Abstraction and Interpolation

	3 Enumerative Algorithm
	3.1 Abstract Forward Reachability: AbsReach
	3.2 Refinement: Refine

	4 Symbolic Algorithm
	4.1 Boolean Encoding of Zones
	4.2 Reduction and Successor Computation
	4.3 Model-Checking Algorithm
	4.4 Abstraction Refinement

	5 Experiments
	6 Conclusion and Future Work
	References

	Fast Algorithms for Handling Diagonal Constraints in Timed Automata
	1 Introduction
	2 Preliminaries
	3 A New Simulation Relation
	4 Algorithm for Z GZ'
	5 Simulations for Updatable Timed Automata
	6 Experiments
	7 Conclusion
	References

	Safety and Co-safety Comparator Automata for Discounted-Sum Inclusion
	1 Introduction
	2 Preliminaries and Related Work
	3 DS-inclusion with Integer Discount-Factor
	3.1 DS-comparison Languages and Their Safety/Co-safety Properties
	3.2 Deterministic DS-comparator for Integer Discount-Factor
	3.3 Quantitative Inclusion with Safety/Co-safety Comparators

	4 Implementation and Experimental Evaluation
	5 Concluding Remarks
	References

	Clock Bound Repair for Timed Systems
	1 Introduction
	2 Preliminaries
	3 Logical Encoding of Timed Diagnostic Traces
	4 Repair
	5 Admissibility of Repair
	6 Case Studies and Experimental Evaluation
	7 Conclusion
	References

	Verifying Asynchronous Interactions via Communicating Session Automata
	1 Introduction
	2 Communicating Automata and Bound Independence
	3 Bounded Compatibility for csa
	3.1 Multiparty Compatibility
	3.2 Local Bound-Agnosticity

	4 Existentially Bounded and Synchronisable Automata
	4.1 Kuske and Muscholl's Existential Boundedness
	4.2 Existentially Stable Bounded Communicating Automata
	4.3 Synchronisable Communicating Session Automata

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Security and Hyperproperties
	Verifying Hyperliveness
	1 Introduction
	2 Preliminaries
	3 Model Checking with Quantifier Alternations
	3.1 Model Checking with Given Strategies
	3.2 Model Checking with Synthesized Strategies

	4 Synthesis with Quantifier Alternations
	5 Implementations and Experimental Evaluation
	6 Conclusions
	References

	Quantitative Mitigation of Timing Side Channels
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Shannon Mitigation Problem
	5 Algorithms for Shannon Mitigation Problem
	5.1 Deterministic Shannon Mitigation
	5.2 Stochastic Shannon Mitigation Algorithm

	6 Implementation Details
	7 Case Study
	8 Related Work
	References

	Property Directed Self Composition
	1 Introduction
	2 Preliminaries
	3 Inferring Self Compositions for Restricted Languages of Inductive Invariants
	3.1 Semantic Self Composition
	3.2 The Problem of Inferring Self Composition with Inductive Invariant

	4 Algorithm for Inferring Composition-Invariant Pairs
	5 Evaluation and Conclusion
	References

	Security-Aware Synthesis Using Delayed-Action Games
	1 Introduction
	2 Stochastic Games
	3 Delayed-Action Games
	4 Properties of DAG and DAG-based Synthesis
	5 Case Study
	6 Discussion and Conclusion
	References

	Automated Hypersafety Verification
	1 Introduction
	2 Illustrative Example
	3 Programs and Proofs
	3.1 Program Traces
	3.2 Safety

	4 Reductions
	5 Proof Checking
	6 Sleep Set Reductions
	7 Algorithms
	7.1 Progress
	7.2 Faster Proof Checking Through Antichains
	7.3 Partition Optimization

	8 Experimental Results
	9 Related Work
	References

	Automated Synthesis of Secure Platform Mappings
	1 Introduction
	2 Mapping Composition
	3 Synthesis Problems
	4 Synthesis Technique
	5 Implementation and Case Studies
	5.1 Implementation
	5.2 Case Studies: OAuth Protocols
	5.3 Formal Modeling
	5.4 Results

	6 Related Work
	7 Conclusions
	References

	Synthesis
	Synthesizing Approximate Implementations for Unrealizable Specifications
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Synthesis of Lasso-Precise Implementations
	4.1 Lasso-Precise Implementations
	4.2 Automata-Theoretic Synthesis of Lasso-Precise Implementations

	5 Bounded Synthesis of Lasso-Precise Implementations
	6 Synthesis of Approximate Implementations
	6.1 Symbolic Approach

	7 Experimental Results
	8 Conclusion
	References

	Quantified Invariants via Syntax-Guided Synthesis
	1 Introduction
	2 Background
	2.1 Programs as Constrained Horn Clauses
	2.2 Illustrating Example

	3 Invariants via Enumerative Search
	3.1 Quantifier-Free Invariants
	3.2 Quantified Candidates from Quantifier-Free Grammars

	4 Design Choices
	4.1 Discovery of Progress Lemmas
	4.2 SMT-Based Inductiveness Checking
	4.3 Strategy of Lemma Propagation
	4.4 Weakening Strategy
	4.5 Learning from Sub-ranges

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Efficient Synthesis with Probabilistic Constraints
	1 Introduction
	2 An Overview of DIGITS
	2.1 Probabilistic Synthesis Problem
	2.2 A Naive DIGITS Algorithm
	2.3 Convergence Guarantees
	2.4 Understanding Convergence

	3 The Efficiency of Trie-Based Search
	3.1 The Trie-Based Search Strategy of DIGITS
	3.2 Polynomial Bound on the Number of Synthesis Queries

	4 Property-Directed -DIGITS
	4.1 Algorithm Description
	4.2 Analyzing Failure Probability with Thresholding
	4.3 Adaptive Threshold

	5 Evaluation
	5.1 Synthetic Benchmarks
	5.2 Original DIGITS Benchmarks
	5.3 Thermostat Controller

	6 Related Work
	References

	Membership-Based Synthesis of Linear Hybrid Automata
	1 Introduction
	2 Preliminaries
	3 Synthesis of Linear Hybrid Automata
	3.1 Synchronous Switching Specification
	3.2 Asynchronous Switching Specification

	4 Membership-based Synthesis Approach
	4.1 Membership-based Synthesis Algorithm
	4.2 Discussion
	4.3 Theoretical Properties of the Membership-based Synthesis

	5 Experimental Results
	6 Conclusion
	References

	Overfitting in Synthesis: Theory and Practice*-12pt
	1 Introduction
	2 Motivation
	2.1 Grammar Sensitivity of SyGuS Tools
	2.2 Evidence for Overfitting

	3 SyGuS Overfitting in Theory
	3.1 Preliminaries
	3.2 Learnability and No Free Lunch
	3.3 Overfitting

	4 Mitigating Overfitting
	4.1 Parallel SyGuS on Multiple Grammars
	4.2 Hybrid Enumeration

	5 Experimental Evaluation
	5.1 Robustness of PLearn
	5.2 Performance of Hybrid Enumeration
	5.3 Competition Performance

	6 Related Work
	7 Conclusion
	References

	Proving Unrealizability for Syntax-Guided Synthesis
	1 Introduction
	2 Illustrative Example
	3 SyGuS, Realizability, and CEGIS
	3.1 Background
	3.2 CEGIS and Unrealizability

	4 From Unrealizability to Unreachability
	4.1 Reachability Problems
	4.2 Reduction to Reachability

	5 Implementation and Evaluation
	6 Related Work
	References

	Model Checking
	BMC for Weak Memory Models: Relation Analysis for Compact SMT Encodings
	1 Introduction
	2 Input, Functionality, and Implementation
	3 Relation Analysis
	4 Experiments
	References

	When Human Intuition Fails: Using Formal Methods to Find an Error in the ``Proof'' of a Multi-agent Protocol
	1 Introduction
	2 Decentralized Perimeter Surveillance System (DPSS)
	3 Formal Models
	4 Formal Analysis Results
	5 Discussion and Conclusions
	References

	Extending nuXmv with Timed Transition Systems and Timed Temporal Properties
	1 Introduction
	2 Software Architecture
	3 Language Extensions
	4 Extending Traces
	5 Related Work
	6 Experimental Evaluation
	7 Conclusions
	References

	Cerberus-BMC: A Principled Reference Semantics and Exploration Tool for Concurrent and Sequential C
	1 Introduction
	2 Examples
	3 Implementation
	4 Validation
	References

	Cyber-Physical Systems and Machine Learning
	Multi-armed Bandits for Boolean Connectives in Hybrid System Falsification
	1 Introduction
	2 Preliminaries: Hill Climbing-Guided Falsification
	2.1 Robust Semantics for STL
	2.2 Hill Climbing-Guided Falsification

	3 Our Multi-armed Bandit-Based Falsification Algorithm
	3.1 Conjunctive and Disjunctive Safety Properties
	3.2 The Multi-Armed Bandit (MAB) Problem
	3.3 Our MAB-Guided Algorithm I: Conjunctive Safety Properties
	3.4 Our MAB-Guided Algorithm II: Disjunctive Safety Properties

	4 Experimental Evaluation
	4.1 Evaluation

	5 Conclusion and Future Work
	References

	StreamLAB: Stream-based Monitoring of Cyber-Physical Systems
	1 Introduction
	2 Real-Time Lola
	2.1 Examples

	3 Performance Guarantees via Static Analysis
	3.1 Type System
	3.2 Sliding Windows
	3.3 Memory Analysis

	4 Processing Engine
	5 Experiments
	6 Outlook
	References

	VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems
	1 Introduction
	2 VerifAI Structure and Operation
	3 Features and Case Studies
	3.1 Falsification and Fuzz Testing
	3.2 Data Augmentation and Error Table Analysis
	3.3 Model Robustness and Hyperparameter Tuning

	4 Conclusion
	References

	The Marabou Framework for Verification and Analysis of Deep Neural Networks
	1 Introduction
	2 Design of Marabou
	2.1 Simplex Core (Tableau and BasisFactorization Classes)
	2.2 Piecewise-Linear Constraints (PiecewiseLinearConstraint Class)
	2.3 Constraint- and Network-Level Reasoning (RowBoundTightener, ConstraintBoundTightener and SymbolicBoundTightener Classes)
	2.4 The Engine (Engine and SmtCore Classes)
	2.5 The Divide-and-Conquer Mode and Concurrency (DnC.py)
	2.6 Input Interfaces (AcasParser class, maraboupy Folder)

	3 Evaluation
	4 Conclusion
	References

	Probabilistic Systems, Runtime Techniques
	Probabilistic Bisimulation for Parameterized Systems
	1 Introduction
	2 Preliminaries
	3 Framework of Regular Relations
	4 Probabilistic Bisimilarity Within Regular Relations
	4.1 Specifying a Probabilistic Transition System
	4.2 Proof Rules for Probabilistic Bisimulation
	4.3 Proof of Theorem 1

	5 Application to Anonymity Verification
	6 Learning Probabilistic Bisimulations
	References

	Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks
	1 Introduction
	2 Chemical Reaction Networks
	3 Semi-quantitative Abstraction
	3.1 Over-Approximation by Interval Abstraction and Acceleration
	3.2 Operational Semantics: Concretisation to a Representative

	4 Semi-quantitative Analysis
	5 Experimental Evaluation and Discussion
	5.1 Gene Expression Model
	5.2 Goutsias's Model
	5.3 Viral Infection

	References

	PAC Statistical Model Checking for Markov Decision Processes and Stochastic Games
	1 Introduction
	2 Preliminaries
	2.1 Stochastic Games
	2.2 Reachability Objective
	2.3 Bounded and Asynchronous Value Iteration

	3 Algorithm
	3.1 Model-Based
	3.2 Safe Updates with Confidence Intervals Using Distributed Error Probability
	3.3 Improved EC Detection
	3.4 Adapting to Games: Deflating MSECs
	3.5 Guidance and Statistical Guarantee
	3.6 Utilizing the Additional Information of Grey Box Input

	4 Experimental Evaluation
	5 Conclusion
	References

	Symbolic Monitoring Against Specifications Parametric in Time and Data
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Parametric Timed Data Automata
	5 Symbolic Monitoring Against PTDA Specifications
	5.1 Problem Definition
	5.2 Online Algorithm
	5.3 Encoding Parametric Timed Pattern Matching

	6 Experiments
	6.1 Benchmark 1: Copy
	6.2 Benchmark 2: Dominant
	6.3 Benchmark 3: Periodic
	6.4 Discussion

	7 Conclusion and Perspectives
	References

	STAMINA: STochastic Approximate Model-Checker for INfinite-State Analysis
	1 Introduction
	2 STAMINA
	2.1 State Space Approximation
	2.2 Property Based State Space Exploration

	3 Results
	4 Conclusions
	References

	Dynamical, Hybrid, and Reactive Systems
	Local and Compositional Reasoning for Optimized Reactive Systems
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	3 Theory of Skipping Refinement
	3.1 Algebraic Properties
	3.2 Skipping Refinement

	4 Mechanised Reasoning
	5 Case Study (Event Processing System)
	6 Related Work
	7 Conclusion and Future Work
	References

	Robust Controller Synthesis in Timed Büchi Automata: A Symbolic Approach
	1 Introduction
	2 Timed Automata: Reachability and Robustness
	3 Reachability Relation of a Path
	4 Robust Iterability of a Lasso
	5 Synthesis of Robust Controllers
	6 Case Study
	7 Conclusion
	References

	Flexible Computational Pipelines for Robust Abstraction-Based Control Synthesis
	1 Introduction
	1.1 Bottlenecks in Abstraction-Based Control Synthesis
	1.2 Methodology
	1.3 Contributions
	1.4 Notation

	2 Control Synthesis for a Motivating Example
	3 Relational Interfaces
	3.1 Atomic and Composite Operators
	3.2 Constructing Control Synthesis Pipelines
	3.3 Modifying the Control Synthesis Pipeline

	4 Interface Abstraction via Quantization
	4.1 Theory of Abstract Interfaces
	4.2 Dynamically Coarsening Interfaces

	5 Refining System Dynamics
	5.1 Constructing Finite Interfaces Through Shared Refinement

	6 Decomposed Control Predecessor
	7 Conclusion
	References

	Temporal Stream Logic: Synthesis Beyond the Bools
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Temporal Stream Logic
	5 TSL Properties
	6 TSL Synthesis
	7 Experimental Results
	8 Related Work
	9 Conclusions
	References

	Run-Time Optimization for Learned Controllers Through Quantitative Games
	1 Introduction
	1.1 Related Work

	2 Definitions and Problem Statement
	2.1 Plants, Controllers, and Shields
	2.2 Quantitative Objectives for Shields
	2.3 Examples

	3 A Game-Theoretic Approach to Quantitative Shield Synthesis
	4 Case Study
	5 Discussion and Future Work
	References

	Taming Delays in Dynamical Systems
	1 Introduction
	2 Problem Formulation
	3 Linear Dynamics
	3.1 Identifying the Rightmost Roots
	3.2 Constructing K

	4 Nonlinear Dynamics
	5 Implementation and Experimental Results
	6 Conclusion
	References

	Author Index

