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Abstract. We present VERIFAI, a software toolkit for the formal design and
analysis of systems that include artificial intelligence (AI) and machine learning
(ML) components. VERIFAI particularly addresses challenges with applying for-
mal methods to ML components such as perception systems based on deep neural
networks, as well as systems containing them, and to model and analyze system
behavior in the presence of environment uncertainty. We describe the initial ver-
sion of VERIFAI, which centers on simulation-based verification and synthesis,
guided by formal models and specifications. We give examples of several use
cases, including temporal-logic falsification, model-based systematic fuzz test-
ing, parameter synthesis, counterexample analysis, and data set augmentation.
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1 Introduction

The increasing use of artificial intelligence (AI) and machine learning (ML) in systems,
including safety-critical systems, has brought with it a pressing need for formal meth-
ods and tools for their design and verification. However, AI/ML-based systems, such as
autonomous vehicles, have certain characteristics that make the application of formal
methods very challenging. We mention three key challenges here; see Seshia et al. [23]
for an in-depth discussion. First, several uses of AI/ML are for perception, the use of
computational systems to mimic human perceptual tasks such as object recognition and
classification, conversing in natural language, etc. For such perception components,
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writing a formal specification is extremely difficult, if not impossible. Additionally, the
signals processed by such components can be very high-dimensional, such as streams
of images or LiDAR data. Second, machine learning being a dominant paradigm in
AI, formal tools must be compatible with the data-driven design flow for ML and also
be able to handle the complex, high-dimensional structures in ML components such as
deep neural networks. Third, the environments in which AI/ML-based systems oper-
ate can be very complex, with considerable uncertainty even about how many (which)
agents are in the environment (both human and robotic), let alone about their intentions
and behaviors. As an example, consider the difficulty in modeling urban traffic envi-
ronments in which an autonomous car must operate. Indeed, AI/ML is often introduced
into these systems precisely to deal with such complexity and uncertainty! From a for-
mal methods perspective, this makes it very hard to create realistic environment models
with respect to which one can perform verification or synthesis.

In this paper, we introduce the VERIFAI toolkit, our initial attempt to address
the three core challenges—perception, learning, and environments—that are outlined
above. VERIFAI takes the following approach:

• Perception: A perception component maps a concrete feature space (e.g. pixels) to
an output such as a classification, prediction, or state estimate. To deal with the lack
of specification for perception components, VERIFAI analyzes them in the context
of a closed-loop system using a system-level specification. Moreover, to scale to
complex high-dimensional feature spaces, VERIFAI operates on an abstract feature
space (or semantic feature space) [10] that describes semantic aspects of the envi-
ronment being perceived, not the raw features such as pixels.

• Learning: VERIFAI aims to not only analyze the behavior of ML components but
also use formal methods for their (re-)design. To this end, it provides features to
(i) design the data set for training and testing [9], (ii) analyze counterexamples to
gain insight into mistakes by the ML model, as well as (iii) synthesize parameters,
including hyper-parameters for training algorithms and ML model parameters.

• Environment Modeling: Since it can be difficult, if not impossible, to exhaus-
tively model the environments of AI-based systems, VERIFAI aims to provide
ways to capture a designer’s assumptions about the environment, including distri-
bution assumptions made by ML components, and to describe the abstract feature
space in an intuitive, declarative manner. To this end, VERIFAI provides users with
SCENIC [12,13], a probabilistic programming language for modeling environments.
SCENIC, combined with a renderer or simulator for generating sensor data, can pro-
duce semantically-consistent input for perception components.

VERIFAI is currently focused on AI-based cyber-physical systems (CPS), although
its basic ideas can also be applied to other AI-based systems. As a pragmatic choice, we
focus on simulation-based verification, where the simulator is treated as a black-box,
so as to be broadly applicable to the range of simulators used in industry.1 The input to

1 Our work is complementary to the work on industrial-grade simulators for AI/ML-based CPS.
In particular, VERIFAI enhances such simulators by providing formal methods for modeling
(via the SCENIC language), analysis (via temporal logic falsification), and parameter synthesis
(via property-directed hyper/model-parameter synthesis).
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VERIFAI is a “closed-loop” CPS model, comprising a composition of the AI-based CPS
system under verification with an environment model, and a property on the closed-loop
model. The AI-based CPS typically comprises a perception component (not necessar-
ily based on ML), a planner/controller, and the plant (i.e., the system under control).
Given these, VERIFAI offers the following use cases: (1) temporal-logic falsification;
(2) model-based fuzz testing; (3) counterexample-guided data augmentation; (4) coun-
terexample (error table) analysis; (5) hyper-parameter synthesis, and (6) model param-
eter synthesis. The novelty of VERIFAI is that it is the first tool to offer this suite of use
cases in an integrated fashion, unified by a common representation of an abstract feature
space, with an accompanying modeling language and search algorithms over this fea-
ture space, all provided in a modular implementation. The algorithms and formalisms
in VERIFAI are presented in papers published by the authors in other venues (e.g., [7–
10,12,15,22]). The problem of temporal-logic falsification or simulation-based verifi-
cation of CPS models is well studied and several tools exist (e.g. [3,11]); our work was
the first to extend these techniques to CPS models with ML components [7,8]. Work
on verification of ML components, especially neural networks (e.g., [14,26]), is com-
plementary to the system-level analysis performed by VERIFAI. Fuzz testing based on
formal models is common in software engineering (e.g. [16]) but our work is unique in
the CPS context. Similarly, property-directed parameter synthesis has also been studied
in the formal methods/CPS community, but our work is the first to apply these ideas to
the synthesis of hyper-parameters for ML training and ML model parameters. Finally,
to our knowledge, our work on augmenting training/test data sets [9], implemented in
VERIFAI, is the first use of formal techniques for this purpose. In Sect. 2, we describe
how the tool is structured so as to provide the above features. Sect. 3 illustrates the use
cases via examples from the domain of autonomous driving.

2 VERIFAI Structure and Operation

VERIFAI is currently focused on simulation-based analysis and design of AI compo-
nents for perception or control, potentially those using ML, in the context of a closed-
loop cyber-physical system. Figure 1 depicts the structure and operation of the toolkit.

Inputs and Outputs: Using VERIFAI requires setting up a simulator for the domain
of interest. As we explain in Sect. 3, we have experimented with multiple robotics
simulators and provide an easy interface to connect a new simulator. The user then con-
structs the inputs to VERIFAI, including (i) a simulatable model of the system, including
code for one or more controllers and perception components, and a dynamical model
of the system being controlled; (ii) a probabilistic model of the environment, specifying
constraints on the workspace, the locations of agents and objects, and the dynamical
behavior of agents, and (iii) a property over the composition of the system and its envi-
ronment. VERIFAI is implemented in Python for interoperability with ML/AI libraries
and simulators across platforms. The code for the controller and perception component
can be arbitrary executable code, invoked by the simulator. The environment model
typically comprises a definition in the simulator of the different types of agents, plus a
description of their initial conditions and other parameters using the SCENIC probabilis-
tic programming language [12]. Finally, the property to be checked can be expressed

www.dbooks.org

https://www.dbooks.org/


VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 435

Fig. 1. Structure and operation of VERIFAI.

using Metric Temporal Logic (MTL) [2,24], objective functions, or arbitrary code mon-
itoring the property. The output of VERIFAI depends on the feature being invoked. For
falsification, VERIFAI returns one or more counterexamples, simulation traces violat-
ing the property [7]. For fuzz testing, VERIFAI produces traces sampled from the dis-
tribution of behaviors induced by the probabilistic environment model [12]. Error table
analysis involves collecting counterexamples generated by the falsifier into a table, on
which we perform analysis to identify features that are correlated with property failures.
Data augmentation uses falsification and error table analysis to generate additional data
for training and testing an ML component [9]. Finally, the property-driven synthesis of
model parameters or hyper-parameters generates as output a parameter evaluation that
satisfies the specified property.

Tool Structure: VERIFAI is composed of four main modules, as described below:

• Abstract Feature Space and SCENIC Modeling Language: The abstract feature space
is a compact representation of the possible configurations of the simulation. Abstract
features can represent parameters of the environment, controllers, or of ML compo-
nents. For example, when analyzing a visual perception system for an autonomous
car, an abstract feature space could consist of the initial poses and types of all vehi-
cles on the road. Note that this abstract space, compared to the concrete feature space
of pixels used as input to the controller, is better suited to the analysis of the overall
closed-loop system (e.g. finding conditions under which the car might crash).

VERIFAI provides two ways to construct abstract feature spaces. They can be con-
structed hierarchically, combining basic domains such as hyperboxes and finite sets
into structures and arrays. For example, we could define a space for a car as a struc-
ture combining a 2D box for position with a 1D box for heading, and then create an
array of these to get a space for several cars. Alternatively, VERIFAI allows a feature
space to be defined using a program in the SCENIC language [12]. SCENIC provides
convenient syntax for describing geometric configurations and agent parameters,
and, as a probabilistic programming language, allows placing a distribution over the
feature space which can be conditioned by declarative constraints.
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• Searching the Feature Space: Once the abstract feature space is defined, the next
step is to search that space to find simulations that violate the property or pro-
duce other interesting behaviors. Currently, VERIFAI uses a suite of sampling meth-
ods (both active and passive) for this purpose, but in the future we expect to also
integrate directed or exhaustive search methods including those from the adver-
sarial machine learning literature (e.g., see [10]). Passive samplers, which do not
use any feedback from the simulation, include uniform random sampling, simu-
lated annealing, and Halton sequences [18] (quasi-random deterministic sequences
with low-discrepancy guarantees we found effective for falsification [7]). Distribu-
tions defined using SCENIC are also passive in this sense. Active samplers, whose
selection of samples is informed by feedback from previous simulations, include
cross-entropy sampling and Bayesian optimization. The former selects samples and
updates the prior distribution by minimizing cross-entropy; the latter updates the
prior from the posterior over a user-provided objective function, e.g. the satisfaction
level of a specification or the loss of an analyzed model.

• Property Monitor: Trajectories generated by the simulator are
evaluated by the monitor, which produces a score for a given property or
objective function. VERIFAI supports monitoring MTL properties using the
py-metric-temporal-logic [24] package, including both the Boolean and
quantitative semantics of MTL. As mentioned above, the user can also specify a cus-
tom monitor as a Python function. The result of the monitor can be used to output
falsifying traces and also as feedback to the search procedure to direct the sampling
(search) towards falsifying scenarios.

• Error Table Analysis: Counterexamples are stored in a data structure called the error
table, whose rows are counterexamples and columns are abstract features. The error
table can be used offline to debug (explain) the generated counterexamples or online
to drive the sampler towards particular areas of the abstract feature space. VERIFAI
provides different techniques for error table analysis depending on the end use (e.g.,
counter-example analysis or data set augmentation), including principal component
analysis (PCA) for ordered feature domains and subsets of the most recurrent values
for unordered domains (see [9] for further details).

The communication between VERIFAI and the simulator is implemented in a client-
server fashion using IPv4 sockets, where VERIFAI sends configurations to the simulator
which then returns trajectories (traces). This architecture allows easy interfacing to a
simulator and even with multiple simulators at the same time.

3 Features and Case Studies

This section illustrates the main features of VERIFAI through case studies demonstrat-
ing its various use cases and simulator interfaces. Specifically, we demonstrate model
falsification and fuzz testing of an autonomous vehicle (AV) controller, data augmenta-
tion and error table analysis for a convolutional neural network, and model and hyper-
parameter tuning for a reinforcement learning-based controller.
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3.1 Falsification and Fuzz Testing

VERIFAI offers a convenient way to debug systems through systematic testing. Given
a model and a specification, the tool can use active sampling to automatically search
for inputs driving the model towards a violation of the specification. VERIFAI can also
perform model-based fuzz testing, exploring random variations of a scenario guided
by formal constraints. To demonstrate falsification and fuzz testing, we consider two
scenarios involving AVs simulated with the robotics simulator Webots [25]. For the
experiments reported here, we used Webots 2018 which is commercial software.

In the first example, we falsify the controller of an AV which is responsible for
safely maneuvering around a disabled car and traffic cones which are blocking the
road. We implemented a hybrid controller which relies on perception modules for
state estimation. Initially, the car follows its lane using standard computer vision (non-
ML) techniques for line detection [20]. At the same time, a neural network (based on
squeezeDet [27]) estimates the distance to the cones. When the distance drops below
15 m, the car performs a lane change, afterward switching back to lane-following.

The correctness of the AV is characterized by an MTL formula requiring the vehi-
cle to maintain a minimum distance from the traffic cones and avoid overshoot while
changing lanes. The task of the falsifier is to find small perturbations of the initial scene
(generated by SCENIC) which cause the vehicle to violate this specification. We allowed
perturbations of the initial positions and orientations of all objects, the color of the dis-
abled car, and the cruising speed and reaction time of the ego car.

Our experiments showed that active samplers driven by the robustness of the MTL
specification can efficiently discover scenes that confuse the controller and yield faulty
behavior. Figure 2 shows an example, where the neural network detected the orange car
instead of the traffic cones, causing the lane change to be initiated too early. As a result,
the controller performed only an incomplete lane change, leading to a crash.

Fig. 2. A falsifying scene automatically discovered by VERIFAI. The neural network misclassifies
the traffic cones because of the orange vehicle in the background, leading to a crash. Left: bird’s-
eye view. Right: dash-cam view, as processed by the neural network.

In our second experiment, we used VERIFAI to simulate variations on an actual
accident involving an AV [5]. The AV, proceeding straight through an intersection, was
hit by a human turning left. Neither car was able to see the other because of two lanes of
stopped traffic. Figure 3 shows a (simplified) SCENIC program we wrote to reproduce
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Fig. 3. Left: Partial SCENIC program for the crash scenario. Car is an object class defined in the
Webots world model (not shown), on is a SCENIC specifier positioning the object uniformly at
random in the given region (e.g. the median line of a lane), (-0.5, 0.5) indicates a uniform
distribution over that interval, and X @ Y creates a vector with the given coordinates (see [12]
for a complete description of SCENIC syntax). Right: (1) initial scene sampled from the program;
(2) the red car begins its turn, unable to see the green car; (3) the resulting collision. (Color figure
online)

the accident, allowing variation in the initial positions of the cars. We then ran simu-
lations from random initial conditions sampled from the program, with the turning car
using a controller trying to follow the ideal left-turn trajectory computed from Open-
StreetMap data using the Intelligent Intersections Toolbox [17]. The car going straight
used a controller which either maintained a constant velocity or began emergency break-
ing in response to a message from a simulated “smart intersection” warning about the
turning car. By sampling variations on the initial conditions, we could determine how
much advance notice is necessary for such a system to robustly avoid an accident.

3.2 Data Augmentation and Error Table Analysis

Fig. 4. This image generated by our renderer was
misclassified by the NN. The network reported
detecting only one car when there were two.

Data augmentation is the process of
supplementing training sets with the
goal of improving the performance
of ML models. Typically, datasets
are augmented with transformed ver-
sions of preexisting training examples.
In [9], we showed that augmentation
with counterexamples is also an effec-
tive method for model improvement.

VERIFAI implements a counterexample-guided augmentation scheme, where a fal-
sifier (see Sect. 3.1) generates misclassified data points that are then used to augment the
original training set. The user can choose among different sampling methods, with pas-
sive samplers suited to generating diverse sets of data points while active samplers can
efficiently generate similar counterexamples. In addition to the counterexamples them-
selves, VERIFAI also returns an error table aggregating information on the misclassifi-
cations that can be used to drive the retraining process. Figure 4 shows the rendering of
a misclassified sample generated by our falsifier.

www.dbooks.org

https://www.dbooks.org/


VERIFAI: A Toolkit for the Formal Design and Analysis of AI-Based Systems 439

For our experiments, we implemented a renderer that generates images of road sce-
narios and tested the quality of our augmentation scheme on the squeezeDet convolu-
tional neural network [27], trained for classification. We adopted three techniques to
select augmentation images: (1) randomly sampling from the error table, (2) selecting
the top k-closest (similar) samples from the error table, and (3) using PCA analysis to
generate new samples. For details on the renderer and the results of counterexample-
driven augmentation, see [9]. We show that incorporating the generated counterexam-
ples during re-training improves the accuracy of the network.

3.3 Model Robustness and Hyperparameter Tuning

In this final section, we demonstrate how VERIFAI can be used to tune test parameters
and hyperparameters of AI systems. For the following case studies, we use OpenAI
Gym [4], a framework for experimenting with reinforcement learning algorithms.

First, we consider the problem of testing the robustness of a learned controller for
a cart-pole, i.e., a cart that balances an inverted pendulum. We trained a neural net-
work to control the cart-pole using Proximal Policy Optimization algorithms [21] with
100k training episodes. We then used VERIFAI to test the robustness of the learned
controller, varying the initial lateral position and rotation of the cart as well as the mass
and length of the pole. Even for apparently robust controllers, VERIFAI was able to
discover configurations for which the cart-pole failed to self-balance. Figure 5 shows
1000 iterations of the falsifier, where sampling was guided by the reward function used
by OpenAI to train the controller. This function provides a negative reward if the cart
moves more than 2.4 m or if at any time the angle maintained by the pole is greater than
12◦. For testing, we slightly modified these thresholds.

Fig. 5. The green dots represent model parameters for which the cart-pole controller behaved
correctly, while the red dots indicate specification violations. Out of 1000 randomly-sampled
model parameters, the controller failed to satisfy the specification 38 times. (Color figure online)

Finally, we used VERIFAI to study the effects of hyperparameters when training a
neural network controller for a mountain car. In this case, the controller must learn to
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exploit momentum in order to climb a steep hill. Here, rather than searching for coun-
terexamples, we look for a set of hyperparameters under which the network correctly
learns to control the car. Specifically, we explored the effects of using different training
algorithms (from a discrete set of choices) and the size of the training set. We used the
VERIFAI falsifier to search the hyperparameter space, guided again by the reward func-
tion provided by OpenAI Gym (here the distance from the goal position), but negated
so that falsification implied finding a controller which successfully climbs the hill. In
this way VERIFAI built a table of safe hyperparameters. PCA analysis then revealed
which hyperparameters the training process is most sensitive or robust to.

4 Conclusion

We presented VERIFAI, a toolkit for the formal design and analysis of AI/ML-based
systems. Our implementation, plus the examples described in Sect. 3, are available in
the tool distribution [1], including detailed instructions and expected output.

In future work, we plan to explore additional applications of VERIFAI, and to
expand its functionality with new algorithms. Towards the former, we have already
interfaced VERIFAI to the CARLA driving simulator [6], for more sophisticated exper-
iments with autonomous cars, as well as to the X-Plane flight simulator [19], for testing
an ML-based aircraft navigation system. More broadly, although our focus has been
on CPS, we note that VERIFAI’s architecture is applicable to other types of systems.
Finally, for extending VERIFAI itself, we plan to move beyond directed simulation by
incorporating symbolic methods, such as those used in finding adversarial examples.
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Abstract. Deep neural networks are revolutionizing the way complex
systems are designed. Consequently, there is a pressing need for tools and
techniques for network analysis and certification. To help in addressing
that need, we present Marabou, a framework for verifying deep neural
networks. Marabou is an SMT-based tool that can answer queries about
a network’s properties by transforming these queries into constraint sat-
isfaction problems. It can accommodate networks with different activa-
tion functions and topologies, and it performs high-level reasoning on the
network that can curtail the search space and improve performance. It
also supports parallel execution to further enhance scalability. Marabou
accepts multiple input formats, including protocol buffer files generated
by the popular TensorFlow framework for neural networks. We describe
the system architecture and main components, evaluate the technique
and discuss ongoing work.

1 Introduction

Recent years have brought about a major change in the way complex systems are
being developed. Instead of spending long hours hand-crafting complex software,
many engineers now opt to use deep neural networks (DNNs) [6,19]. DNNs are
machine learning models, created by training algorithms that generalize from a
finite set of examples to previously unseen inputs. Their performance can often
surpass that of manually created software as demonstrated in fields such as image
classification [16], speech recognition [8], and game playing [21].

Despite their overall success, the opacity of DNNs is a cause for concern,
and there is an urgent need for certification procedures that can provide rig-
orous guarantees about network behavior. The formal methods community has
c© The Author(s) 2019
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taken initial steps in this direction, by developing algorithms and tools for neural
network verification [5,9,10,12,18,20,23,24]. A DNN verification query consists
of two parts: (i) a neural network, and (ii) a property to be checked; and its
result is either a formal guarantee that the network satisfies the property, or a
concrete input for which the property is violated (a counter-example). A verifica-
tion query can encode the fact, e.g., that a network is robust to small adversarial
perturbations in its input [22].

A neural network is comprised of neurons, organized in layers. The network
is evaluated by assigning values to the neurons in the input layer, and then using
these values to iteratively compute the assignments of neurons in each succeeding
layer. Finally, the values of neurons in the last layer are computed, and this is the
network’s output. A neuron’s assignment is determined by computing a weighted
sum of the assignments of neurons from the preceding layer, and then applying
to the result a non-linear activation function, such as the Rectified Linear Unit
(ReLU) function, ReLU(x) = max (0, x). Thus, a network can be regarded as a
set of linear constraints (the weighted sums), and a set of non-linear constraints
(the activation functions). In addition to a neural network, a verification query
includes a property to be checked, which is given in the form of linear or non-
linear constraints on the network’s inputs and outputs. The verification problem
thus reduces to finding an assignment of neuron values that satisfies all the
constraints simultaneously, or determining that no such assignment exists.

This paper presents a new tool for DNN verification and analysis, called
Marabou. The Marabou project builds upon our previous work on the Reluplex
project [2,7,12,13,15,17], which focused on applying SMT-based techniques to
the verification of DNNs. Marabou follows the Reluplex spirit in that it applies an
SMT-based, lazy search technique: it iteratively searches for an assignment that
satisfies all given constraints, but treats the non-linear constraints lazily in the
hope that many of them will prove irrelevant to the property under consideration,
and will not need to be addressed at all. In addition to search, Marabou performs
deduction aimed at learning new facts about the non-linear constraints in order
to simplify them.

The Marabou framework is a significant improvement over its predecessor,
Reluplex. Specifically, it includes the following enhancements and modifications:

– Native support for fully connected and convolutional DNNs with arbitrary
piecewise-linear activation functions. This extends the Reluplex algorithm,
which was originally designed to support only ReLU activation functions.

– Built-in support for a divide-and-conquer solving mode, in which the solver is
run with an initial (small) timeout. If the timeout is reached, the solver par-
titions its input query into simpler sub-queries, increases the timeout value,
and repeats the process on each sub-query. This mode naturally lends itself
to parallel execution by running sub-queries on separate nodes; however, it
can yield significant speed-ups even when used with a single node.

– A complete simplex-based linear programming core that replaces the exter-
nal solver (GLPK) that was previously used in Reluplex. The new simplex
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core was tailored for a smooth integration with the Marabou framework and
eliminates much of the overhead in Reluplex due to the use of GLPK.

– Multiple interfaces for feeding queries into the solver. A query’s neural net-
work can be provided in a textual format or as a protocol buffer (protobuf )
file containing a TensorFlow model; and the property can be either compiled
into the solver, provided in Python, or stored in a textual format. We expect
these interfaces will simplify usage of the tool for many users.

– Support for network-level reasoning and deduction. The earlier Reluplex tool
performed deductions at the level of single constraints, ignoring the input
network’s topology. In Marabou, we retain this functionality but also include
support for reasoning based on the network topology, such as symbolic bound
tightening [23]. This allows for efficient curtailment of the search space.

Marabou is available online [14] under the permissive modified BSD license.

EngineMarabou

SAT

UNSAT

Search:
Simplex Core

Piecewise-Linear Constraints

Deduction:
Constraint-Level Reasoning
Network-Level Reasoning

Input
Interfaces

Divide and
Conquer

Query

Fig. 1. The main components of Marabou.

2 Design of Marabou

Marabou regards each neuron in the network as a variable and searches for a
variable assignment that simultaneously satisfies the query’s linear constraints
and non-linear constraints. At any given point, Marabou maintains the current
variable assignment, lower and upper bounds for every variable, and the set of
current constraints. In each iteration, it then changes the variable assignment
in order to (1) correct a violated linear constraint, or (2) correct a violated
non-linear constraint.

The Marabou verification procedure is sound and complete, i.e. the afore-
mentioned loop eventually terminates. This can be shown via a straightforward
extension of the soundness and completeness proof for Reluplex [12]. However,
in order to guarantee termination, Marabou only supports activation functions
that are piecewise-linear. The tool already has built-in support for the ReLU
function and the Max function max (x1, . . . , xn), and it is modular in the sense
that additional piecewise-linear functions can be added easily.
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Another important aspect of Marabou’s verification strategy is deduction—
specifically, the derivation of tighter lower and upper variable bounds. The moti-
vation is that such bounds may transform piecewise-linear constraints into lin-
ear constraints, by restricting them to one of their linear segments. To achieve
this, Marabou repeatedly examines linear and non-linear constraints, and also
performs network-level reasoning, with the goal of discovering tighter variable
bounds.

Next, we describe Marabou’s main components (see also Fig. 1).

2.1 Simplex Core (Tableau and BasisFactorization Classes)

The simplex core is the part of the system responsible for making the variable
assignment satisfy the linear constraints. It does so by implementing a variant
of the simplex algorithm [3]. In each iteration, it changes the assignment of some
variable x, and consequently the assignment of any variable y that is connected
to x by a linear equation. Selecting x and determining its new assignment is
performed using standard algorithms—specifically, the revised simplex method
in which the various linear constraints are kept in implicit matrix form, and the
steepest-edge and Harris’ ratio test strategies for variable selection.

Creating an efficient simplex solver is complicated. In Reluplex, we delegated
the linear constraints to an external solver, GLPK. Our motivation for imple-
menting a new custom solver in Marabou was twofold: first, we observed in
Reluplex that the repeated translation of queries into GLPK and extraction of
results from GLPK was a limiting factor on performance; and second, a black
box simplex solver did not afford the flexibility we needed in the context of DNN
verification. For example, in a standard simplex solver, variable assignments are
typically pressed against their upper or lower bounds, whereas in the context of
a DNN, other assignments might be needed to satisfy the non-linear constraints.
Another example is the deduction capability, which is crucial for efficiently ver-
ifying a DNN and whose effectiveness might depend on the internal state of the
simplex solver.

2.2 Piecewise-Linear Constraints (PiecewiseLinearConstraint
Class)

Throughout its execution, Marabou maintains a set of piecewise-linear con-
straints that represent the DNN’s non-linear functions. In iterations devoted to
satisfying these constraints, Marabou looks for any constraints that are not sat-
isfied by the current assignment. If such a constraint is found, Marabou changes
the assignment in a way that makes that constraint satisfied. Alternatively, in
order to guarantee eventual termination, if Marabou detects that a certain con-
straint is repeatedly not satisfied, it may perform a case-split on that constraint:
a process in which the piecewise-linear constraint ϕ is replaced by an equivalent
disjunction of linear constraints c1 ∨ . . . ∨ cn. Marabou considers these disjuncts
one at a time and checks for satisfiability. If the problem is satisfiable when ϕ is
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replaced by some ci, then the original problem is also satisfiable; otherwise, the
original problem is unsatisfiable.

In our implementation, piecewise-linear constraints are represented by
objects of classes that inherit from the PiecewiseLinearConstraint abstract class.
Currently the two supported instances are ReLU and Max, but the design is mod-
ular in the sense that new constraint types can easily be added. PiecewiseLin-
earConstraint defines the interface methods that each supported piecewise-linear
constraint needs to implement. Some of the key interface methods are:

– satisfied(): the constraint object needs to answer whether or not it is satisfied
given the current assignment. For example, for a constraint y = ReLU(x) and
assignment x = y = 3, satisfied() would return true; whereas for assignment
x = −5, y = 3, it would return false.

– getPossibleFixes(): if the constraint is not satisfied by the current assignment,
this method returns possible changes to the assignment that would correct the
violation. For example, for x = −5, y = 3, the ReLU constraint from before
might propose two possible changes to the assignment, x ← 3 or y ← 0, as
either would satisfy y = ReLU(x).

– getCaseSplits(): this method asks the piecewise-linear constraint ϕ to return
a list of linear constraints c1, . . . , cn, such that ϕ is equivalent to c1 ∨ . . .∨ cn.
For example, when invoked for a constraint y = max (x1, x2), getCaseSplits()
would return the linear constraints c1 : (y = x1 ∧ x1 ≥ x2) and c2 : (y =
x2 ∧ x2 ≥ x1). These constraints satisfy the requirement that the original
constraint is equivalent to c1 ∨ c2.

– getEntailedTightenings(): as part of Marabou’s deduction of tighter variable
bounds, piecewise-linear constraints are repeatedly informed of changes to the
lower and upper bounds of variables they affect. Invoking getEntailedTight-
enings() queries the constraint for tighter variable bounds, based on current
information. For example, suppose a constraint y = ReLU(x) is informed of
the upper bounds x ≤ 5 and y ≤ 7; in this case, getEntailedTightenings()
would return the tighter bound y ≤ 5.

2.3 Constraint- and Network-Level Reasoning
(RowBoundTightener, ConstraintBoundTightener
and SymbolicBoundTightener Classes)

Effective deduction of tighter variable bounds is crucial for Marabou’s perfor-
mance. Deduction is performed at the constraint level, by repeatedly examin-
ing linear and piecewise-linear constraints to see if they imply tighter variable
bounds; and also at the DNN-level, by leveraging the network’s topology.

Constraint-level bound tightening is performed by querying the piecewise-
linear constraints for tighter bounds using the getEntailedTightenings() method.
Similarly, linear equations can also be used to deduce tighter bounds. For exam-
ple, the equation x = y + z and lower bounds x ≥ 0, y ≥ 1 and z ≥ 1
together imply the tighter bound x ≥ 2. As part of the simplex-based search,
Marabou repeatedly encounters many linear equations and uses them for bound
tightening.
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Several recent papers have proposed verification schemes that rely on DNN-
level reasoning [5,23]. Marabou supports this kind of reasoning as well, by stor-
ing the initial network topology and performing deduction steps that use this
information as part of its iterative search. DNN-level reasoning is seamlessly
integrated into the search procedure by (1) initializing the DNN-level reasoners
with the most up-to-date information discovered during the search, such as vari-
able bounds and the state of piecewise-linear constraints; and (2) feeding any
new information that is discovered back into the search procedure. Presently
Marabou implements a symbolic bound tightening procedure [23]: based on net-
work topology, upper and lower bounds for each hidden neuron are expressed
as a linear combination of the input neurons. Then, if the bounds on the input
neurons are sufficiently tight (e.g., as a result of past deductions), these expres-
sions for upper and lower bounds may imply that some of the hidden neurons’
piecewise-linear activation functions are now restricted to one of their linear
segments. Implementing additional DNN-level reasoning operations is work in
progress.

2.4 The Engine (Engine and SmtCore Classes)

The main class of Marabou, in which the main loop resides, is called the Engine.
The engine stores and coordinates the various solution components, including
the simplex core and the piecewise-linear constraints. The main loop consists,
roughly, of the following steps (the first rule that applies is used):

1. If a piecewise-linear constraint had to be fixed more than a certain number
of times, perform a case split on that constraint.

2. If the problem has become unsatisfiable, e.g. because for some variable a
lower bound has been deduced that is greater than its upper bound, undo a
previous case split (or return UNSAT if no such case split exists).

3. If there is a violated linear constraint, perform a simplex step.
4. If there is a violated piecewise-linear constraint, attempt to fix it.
5. Return SAT (all constraints are satisfied).

The engine also triggers deduction steps, both at the neuron level and at the
network level, according to various heuristics.

2.5 The Divide-and-Conquer Mode and Concurrency (DnC.py)

Marabou supports a divide-and-conquer (D&C ) solving mode, in which the
input region specified in the original query is partitioned into sub-regions. The
desired property is checked on these sub-regions independently. The D&C mode
naturally lends itself to parallel execution, by having each sub-query checked
on a separate node. Moreover, the D&C mode can improve Marabou’s overall
performance even when running sequentially: the total time of solving the sub-
queries is often less than the time of solving the original query, as the smaller
input regions allow for more effective deduction steps.
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Given a query φ, the solver maintains a queue Q of 〈query, timeout〉 pairs. Q is
initialized with one element 〈φ, T 〉, where T , the initial timeout, is a configurable
parameter. To solve φ, the solver loops through the following steps:

1. Pop a pair 〈φ′, t′〉 from Q and attempt to solve φ′ with a timeout of t′.
2. If the problem is UNSAT and Q is empty, return UNSAT.
3. If the problem is UNSAT and Q is not empty, return to step 1.
4. If the problem is SAT, return SAT.
5. If a timeout occurred, split φ′ into k sub-queries φ′

1, . . . , φ
′
k by partitioning

its input region. For each sub-query φ′
i, push 〈φ′

i,m · t′〉 into Q.

The timeout factor m and the splitting factor k are configurable parameters.
Splitting the query’s input region is performed heuristically.

2.6 Input Interfaces (AcasParser class, maraboupy Folder)

Marabou supports verification queries provided through the following interfaces:

– Native Marabou format: a user prepares a query using the Marabou C++
interface, compiles the query into the tool, and runs it. This format is useful
for integrating Marabou into a larger framework.

– Marabou executable: a user runs a Marabou executable, and passes to it
command-line parameters indicating the network and property files to be
checked. Currently, network files are encoded using the NNet format [11],
and the properties are given in a simple textual format.

– Python/TensorFlow interface: the query is passed to Marabou through
Python constructs. The python interface can also handle DNNs stored as
TensorFlow protobuf files.

3 Evaluation

For our evaluation we used the ACAS Xu [12], CollisionDetection [4] and
TwinStream [1] families of benchmarks. Tool-wise, we considered the Reluplex
tool which is the most closely related to Marabou, and also ReluVal [23] and
Planet [4]. The version of Marabou used for the evaluation is available online [14].

The top left plot in Fig. 3 compares the execution times of Marabou and Relu-
plex on 180 ACAS Xu benchmarks with a 1 hour timeout. We used Marabou in
D&C mode with 4 cores and with T = 5, k = 4, and m = 1.5. The remaining
three plots depict an execution time comparison between Marabou D&C (con-
figuration as above), ReluVal and Planet, using 4 cores and a 1 hour timeout.
Marabou and Reluval are evaluated over 180 ACAS Xu benchmarks (top right
plot), and Marabou and Planet are evaluated on those 180 benchmarks (bottom
left plot) and also on 500 CollisionDetection and 81 TwinStream benchmarks
(bottom right plot). Due to technical difficulties, ReluVal was not run on the
CollisionDetection and TwinStream benchmarks. The results show that in a
4 cores setting Marabou generally outperforms Planet, but generally does not
outperform ReluVal (though it does better on some benchmarks). These results
highlight the need for additional DNN-level reasoning in Marabou, which is a
key ingredient in ReluVal’s verification procedure.
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Fig. 2. A scalability comparison of
Marabou and ReluVal on ACAS
Xu.

Figure 2 shows the average runtime of
Marabou and ReluVal on the ACAS Xu prop-
erties, as a function of the number of avail-
able cores. We see that as the number of cores
increases, Marabou (solid) is able to close
the gap, and sometimes outperform, ReluVal
(dotted). With 64 cores, Marabou outper-
forms ReluVal on average, and both solvers
were able to solve all ACAS Xu benchmarks
within 2 hours (except for a few segfaults by
ReluVal).

Fig. 3. A comparison of Marabou with Reluplex, ReluVal and Planet.

4 Conclusion

DNN analysis is an emerging field, and Marabou is a step towards a more mature,
stable verification platform. Moving forward, we plan to improve Marabou in sev-
eral dimensions. Part of our motivation in implementing a custom simplex solver
was to obtain the needed flexibility for fusing together the solving process for lin-
ear and non-linear constraints. Currently, this flexibility has not been leveraged
much, as these pieces are solved relatively separately. We expect that by tackling
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both kinds of constraints simultaneously, we will be able to improve performance
significantly. Other enhancements we wish to add include: additional network-
level reasoning techniques based on abstract interpretation; better heuristics for
both the linear and non-linear constraint solving engines; and additional engi-
neering improvements, specifically within the simplex engine.
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Abstract. Probabilistic bisimulation is a fundamental notion of process equiva-
lence for probabilistic systems. It has important applications, including the for-
malisation of the anonymity property of several communication protocols. While
there is a large body of work on verifying probabilistic bisimulation for finite
systems, the problem is in general undecidable for parameterized systems, i.e.,
for infinite families of finite systems with an arbitrary number n of processes.
In this paper we provide a general framework for reasoning about probabilistic
bisimulation for parameterized systems. Our approach is in the spirit of software
verification, wherein we encode proof rules for probabilistic bisimulation and use
a decidable first-order theory to specify systems and candidate bisimulation rela-
tions, which can then be checked automatically against the proof rules.

We work in the framework of regular model checking, and specify an infinite-
state system as a regular relation described by a first-order formula over a uni-
versal automatic structure, i.e., a logical theory over the string domain. For prob-
abilistic systems, we show how probability values (as well as the required oper-
ations) can be encoded naturally in the logic. Our main result is that one can
specify the verification condition of whether a given regular binary relation is
a probabilistic bisimulation as a regular relation. Since the first-order theory of
the universal automatic structure is decidable, we obtain an effective method
for verifying probabilistic bisimulation for infinite-state systems, given a regu-
lar relation as a candidate proof. As a case study, we show that our framework
is sufficiently expressive for proving the anonymity property of the parameter-
ized dining cryptographers protocol and the parameterized grades protocol. Both
of these protocols hitherto could not be verified by existing automatic methods.
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Moreover, with the help of standard automata learning algorithms, we show that
the candidate relations can be synthesized fully automatically, making the verifi-
cation fully automated.

1 Introduction

Equivalence checking using bisimulation relations plays a fundamental role in formal
verification. Bisimulation is the basis for substitutability of systems: if two systems are
bisimilar, their behaviors are the same and they satisfy the same formulas in expressive
temporal logics. The notion of bisimulation is defined both for deterministic [39] and
for probabilistic transition systems [34]. In both contexts, checking bisimulation has
many applications, such as proving correctness of anonymous communication proto-
cols [15], reasoning about knowledge [22], program optimization [32], and optimiza-
tions for computational problems (e.g. language equivalence and minimization) of finite
automata [12].

The problem of checking bisimilarity of two given systems has been widely stud-
ied. It is decidable in polynomial-time for both probabilistic and non-probabilistic finite-
state systems [6,17,20,52]. These algorithms form the basis of practical tools for check-
ing bisimulation. For infinite-state systems, such as parameterized versions of commu-
nication protocols (i.e. infinite families of finite-state systems with an arbitrary num-
ber n of processes), the problem is undecidable in general. Most research hitherto has
focused on identifying decidable subcases (e.g. strong bisimulations for pushdown sys-
tems for probabilistic and non-probabilistic cases [25,47,48]), rather than on providing
tool support for practical problems.

In this paper, we propose a first-order verification approach—inspired by software
verification techniques—for reasoning about bisimilarity for infinite-state systems. In
our approach, we provide first-order logic proof rules to determine if a given binary
relation is a bisimulation. To this end, we must find an encoding of systems and rela-
tions and a decidable first-order theory that can formalize the system, the property,
and the proof rules. We propose to use the decidable first-order theory of the univer-
sal automatic structure [8,10]. Informally, the domain of the theory is a set of words
over a finite alphabet Σ, and it captures the first-order theory of the infinite |Σ|-ary tree
with a relation that relates strings of the same level. The theory can express precisely
the class of all regular relations [8] (a.k.a. automatic relations [10]), which are rela-
tions ϕ(x1, . . . , xk) over strings Σ∗ that can be recognized by synchronous multi-tape
automata. It is also sufficiently powerful to capture many classes of non-probabilistic
infinite-state systems and regular model checking [3,13,49–51].

We demonstrate the effectiveness of the approach by encoding and automatically
verifying some challenging examples from the literature of parameterized systems in
our logic: the anonymity property of the parameterized dining cryptographers protocol
[16] and the grades protocol [29]. These examples were only automatically verified
for some fixed parameters using finite-state model checkers or equivalence checkers
(e.g. see [28,29]). Just as invariant verification for software separates out the proof
rules (verification conditions in a decidable logic) from the synthesis of invariants, we
separate out proof rules for bisimulation from the synthesis of bisimulation relations.
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We demonstrate how recent developments in generating and refining candidate proofs
as automata (e.g. [18,26,27,37,38,40,41,53]) can be used to automate the search of
proofs, making our verification fully “push button.”

Contributions. Our contributions are as follows. First, we show how probabilistic
infinite-state systems can be faithfully encoded in the first-order theory of universal
automatic structure. In the past, the theory has been used to reason about qualitative
liveness of weakly-finite MDPs (e.g. see [36,37]), which allows the authors to disre-
gard the actual non-zero probability values. To the best of our knowledge, no encoding
of probabilistic transition systems in the theory was available. In order to be able to
effectively encode probabilistic systems, our theory should typically be two-sorted: one
sort for encoding the configurations, and the other for encoding the probability values.
We show how both sorts (and the operations required for the sorts) can be encoded
in the universal automatic structure, which requires only the domain of strings. In the
sequel, such transition systems will be called regular transition systems.

Second, using the minimal probability assumption on the transition systems [34]
(i.e. there exists an ε > 0 such that any non-zero transition probability is at least ε)—
which is often satisfied in practice—we show how the verification condition of whether
a given regular binary relation is a probabilistic bisimulation can be encoded in the
theory. The decidability of the first-order theory over the universal automatic structure
gives us an effective means of checking probabilistic bisimulation for regular transition
systems. In fact, the theory can be easily reduced to the weak monadic theory WS1S of
one successor (therefore, allowing highly optimized tools like Mona [31] and Gaston
[23]) by interpreting finite words as finite sets (e.g. see [19,46]).

Our framework requires the encoding of the systems and the proofs in the first-order
theory of the universal automatic structure. Which interesting examples can it capture?
Our third contribution is to provide two examples from the literature of parameterized
verification: the anonymity property of the parameterized dining cryptographers proto-
col [16] and of the parameterized grades protocol [29]. We study two versions of dining
cryptographers protocol in this paper: the classical version where the secrets are single
bits, and a generalized version where the secrets are bit-vectors of arbitrary length.

Thus far, our framework requires a candidate proof to be supplied by the user. Our
final contribution is to demonstrate how standard techniques from the synthesis litera-
ture (e.g. automata learning [18,26,27,37,38,40,41,53]) can be used to fully automate
the proof search. Using automata learning, we successfully pinpoint regular proofs for
the anonymity property of the three protocols: the two dining cryptographers protocols
are verified in 6 and 28 s, respectively, and the grades protocol in 35 s.

Other Related Work. The verification framework we use in this paper can be construed
as a regular model checking [3] framework using regular relations. The framework uses
first-order logic as the language, which makes it convenient to express many verification
conditions (as is well-known from first-order theorem proving [14]). The use of the
universal automatic structure allows us to express two different sorts (configurations
and probability values) in one sort (i.e. strings). Most work in regular model checking
focuses on safety and liveness properties (e.g. [2,3,11,13,27,36,37,40,42,49,51,53]).

Some automated techniques can prove the anonymity property of the dining cryp-
tographers protocol and the grades protocol in the finite case, e.g., the PRISM model
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checker [28,45] and language equivalence by the tool APEX [29]. To the best of our
knowledge, our method is the first automated technique proving the anonymity property
of the protocols in the parameterized case.

Our work is in spirit of deductive software verification (e.g., [4,14,24,35,43,44]),
where one provides inductive invariants manually, and a tool automatically checks cor-
rectness of the candidate invariants. In theory, our result yields a fully-automatic proce-
dure by enumerating all candidate regular proofs, and at the same time enumerating all
candidate counterexamples (note that we avoid undecidability by restricting attention to
proofs encodable as regular relations). In our implementation, we use recent advances
in automata-learning based synthesis to efficiently encode the search [18,37].

2 Preliminaries

General Notation. We use N to denote non-negative integers. Given a, b ∈ R, we use
a standard notation [a, b] := {c ∈ R : a ≤ c ≤ b} to denote real intervals. Given
a set S, we use S∗ to denote the set of all finite sequences of elements from S. The
set S∗ always includes the empty sequence which we denote by ε. We call a function
f : S → [0, 1] a probability distribution over S if

∑
s∈S f(s) = 1. We shall use

Is to denote the probability distribution f with f(s) = 1, and DS to denote the set
of probability distributions over S. Given a function f : X1 × · · · × Xn → Y , the
graph of f is the relation {(x1, ..., xn, f(x1, ..., xn)) : ∀i ∈ {1, . . . , n}. xi ∈ Xi}.
Whenever a relation R is an equivalence relation over set S, we use S/R to denote the
set of equivalence classes created by R. Depending on the context, we may use pR q or
R(p, q) to denote (p, q) ∈ R.

Words and Automata. We assume basic familiarity with word automata. Fix a finite
alphabet Σ. For each finite word w := w1 . . . wn ∈ Σ∗, we write w[i, j], where 1 ≤ i ≤
j ≤ n, to denote the segment wi . . . wj . Given an automaton A := (Σ,Q, δ, q0, F ), a
run of A on w is a function ρ : {0, . . . , n} → Q with ρ(0) = q0 that obeys the transition
relation δ. We may also denote the run ρ by the word ρ(0) · · · ρ(n) over the alphabet Q.
The run ρ is said to be accepting if ρ(n) ∈ F , in which case we say that the word w is
accepted by A. The language L(A) of A is the set of words in Σ∗ accepted by A.

Transition Systems. We fix a set ACT of action symbols. A transition system over ACT
is a tuple S := 〈S; {→a}a∈ACT〉, where S is a set of configurations and →a ⊆ S × S
is a binary relation over S. We use → to denote the relation

⋃
a∈ACT →a. We say that

a sequence s1 → · · · → sn+1 is a path in S if s1, ..., sn+1 ∈ S and si → si+1

for i ∈ {1, . . . , n}. A transition system is called bounded branching if the number of
configurations reachable from a configuration in one step is bounded. Formally, this
means that there exists an a priori integer N such that for all s ∈ S, |{s′ ∈ S : s →
s′}| ≤ N .

Probabilistic Transition Systems. A probabilistic transition system (PTS) [34] is a
structure S := 〈S; {δa}a∈ACT〉 where S is a set of configurations and δa : S → DS ∪
{0} maps each configuration to either a probability distribution or a zero function 0.
Here δa(s) = 0 simply means that s is a “dead end” for action a. We shall use δa(s, s′)
to denote δa(s)(s′). In this paper, we always assume that δa(s, s′) is a rational number
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and |{s′ : δa(s, s′) 
= 0}| < ∞. The underlying transition graph of a PTS is a transition
system 〈S; {→a}a∈ACT〉 such that s →a s′ iff δa(s, s′) 
= 0.

It is standard (e.g. see [34]) to impose the minimal probability assumption on the
PTS that we shall be dealing with, i.e., there is ε > 0 such that any transition with a
non-zero probability p satisfies p > ε. This assumption is practically sensible since it
is satisfied by most PTSs that we deal with in practice (e.g. finite PTS, probabilistic
pushdown automata [21], and most examples from probabilistic parameterized systems
[36,37] including our examples from Sect. 5). The minimal probability assumption,
among others, implies that the PTS is bounded-branching (i.e. that its underlying tran-
sition graph is bounded-branching). In the sequel, we shall adopt this assumption.

Probabilistic Bisimulations. Let S := 〈S; {δa}a∈ACT〉 be a PTS. We write s
ρ−→a S′

if
∑

s′∈S′ δa(s, s′) = ρ. A probabilistic bisimulation for S is an equivalence relation
R over S, such that (p, q) ∈ R implies

∀a ∈ ACT. ∀S′ ∈ S/R. (p
ρ−→a S′ ⇔ q

ρ−→a S′). (1)

We say that p and q are probabilistic bisimilar (written as p ∼ q) if there is a proba-
bilistic bisimulation R such that (p, q) ∈ R. We can compute probabilistic bisimulation
between two PTSs S := 〈S; {δa}a∈ACT〉 and S′ := 〈S′; {δ′

a}a∈ACT〉 by computing
a probabilistic bisimulation R for the disjoint union of S and S′, which is defined as
S � S′ := 〈S � S′; {δ′′

a}a∈ACT〉 where δ′′
a(s) := δa(s) for s ∈ S, and δ′′

a(s) := δ′
a(s)

for s ∈ S′. In such case, we say R is a probabilistic bisimulation between S and S′.

3 Framework of Regular Relations

In this section we describe the framework of regular relations for specifying proba-
bilistic infinite-state systems, properties to verify, and proofs, all in a uniform symbolic
way. The framework is amenable to automata-theoretic algorithms in the spirit of regu-
lar model checking [3,13].

The framework of regular relations [8] (a.k.a. automatic relations [9]) uses the first-
order theory of universal1 automatic structure

U := 〈Σ∗;�, eqL, {la}a∈Σ〉, (2)

where Σ is some finite alphabet, � is the (non-strict) prefix-of relation, eqL is the
binary equal length predicate, and la is a unary predicate asserting that the last letter
of the word is a. The domain of the structure is the set of finite words over Σ, and for
words w,w′ ∈ Σ∗, we have w � w′ iff there is some w′′ ∈ Σ∗ such that w · w′′ = w′,
eqL(w,w′) iff |w| = |w′|, and la(w) iff there is some w′′ ∈ Σ∗ such that w = w′′ · a.

Next, we discuss the expressive power of first-order formulas over the universal
automatic structures, and decision procedures for satisfiability of such formulas. In
Sect. 4, we shall describe: (1) how to specify a PTS as a first-order formula in U , and (2)
how to specify the verification condition for probabilistic bisimulation property in this
theory. In Sect. 5, we shall show that the theory is sufficiently powerful for capturing
probabilistic bisimulations for interesting examples.

1 Here, “universal” simply means that all automatic structures are first-order interpretable in this
structure.
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Expressiveness and Decidability. The name “regular” associated with this framework
is because the set of formulas ϕ(x1, . . . , xk) first-order definable in U coincides with
regular relations, i.e., relations definable by synchronous automata. More precisely, we
define [[ϕ]] as the relation which contains all tuples (w1, . . . , wk) ∈ (Σ∗

⊥)k such that
U |= ϕ(w1, . . . , wk). In addition, we define the convolution w1 ⊗ · · · ⊗ wk of words
w1, . . . , wk ∈ Σ∗ as a word w over Σk

⊥ (where ⊥ /∈ Σ) such that w[i] = (a1, . . . , ak)
with

aj =
{

wj [i] if |wj | ≥ i, or
⊥ otherwise.

In other words, w is obtained by juxtaposing w1, . . . , wk and padding the shorter words
with ⊥. For example, 010 ⊗ 00 = (0, 0)(1, 0)(0,⊥). A k-ary relation R over Σ∗ is
regular if the set {w1 ⊗ · · · ⊗ wk : (w1, . . . , wk) ∈ R} is a regular language over the
alphabet Σk

⊥. The relationship between U and regular relations can be formally stated
as follows.

Proposition 1 ([8–10]).

1. Given a formula ϕ(x̄) over U , the relation [[ϕ]] is effectively regular. Conversely,
given a regular relation R, we can compute a formula ϕ(x̄) over U such that [[ϕ]] =
R.

2. The first-order theory of U is decidable.

The decidability of the first-order theory of U follows using a standard automata-
theoretic algorithm (e.g. see [9,49]).

In the sequel, we shall also use the term regular relations to denote relations defin-
able in U . In addition, to avoid notational clutter, we shall freely use other regular
relations (e.g. successor relation ≺succ of the prefix �, and membership in a regular
language) as syntactic sugar.

We note that the first-order theory of U can also be reduced to weak monadic theory
WS1S of one successor (therefore, allowing highly optimized tools like MONA [31]
and Gaston [23]) by translating finite words to finite sets. The relationship between
the universal automatic structure and WS1S can be made precise using the notion of
finite-set interpretations [19,46].

4 Probabilistic Bisimilarity Within Regular Relations

In this section, we show how the framework of regular relations can be used to encode
a PTS, and the corresponding proof rules for probabilistic bisimulation.

4.1 Specifying a Probabilistic Transition System

Since we assume that all probability values specified in our systems are rational num-
bers, the fact that our PTS is bounded-branching implies that we can specify the prob-
ability values by natural weights (by multiplying the probability values by the least
common multiple of the denominators). For example, if a configuration c has an action
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toss that takes it to c1 and c2, each with probability 1/2, then the new system simply
changes both values of 1/2 to 1. This is a known trick in the literature of probabilistic
verification (e.g. see [1]). Therefore, we can now assume that the transition probability
functions have range N. The challenge now is that our encoding of a PTS in the univer-
sal automatic structure must encode two different sorts as words over a finite alphabet
Σ: configurations and natural weights.

Now we are ready to show how to specify a PTS S in our framework. Fix a finite
alphabet Σ containing at least two letters 0 and 1. We encode the domain of S as words
over Σ. In addition, a natural weight n ∈ N can be encoded in the usual way as a binary
string. This motivates the following definition.

Definition 1. Let S be a PTS 〈S; {δa}a∈ACT〉. We say that S is regular if the domain
S is a regular subset of Σ∗ (i.e. definable by a first-order formula ϕ(x) with one free
variable over U ), and if the graph of each function δa is a ternary regular relation (i.e.
definable by a first-order formula ϕ(x, y, z) over U , where x and y encode configura-
tions, and z encodes a natural weight).

Definition 1 is quite general since it allows for an infinite number of different
natural weights in the PTS. Note that we can make do without the second sort (of
numeric weights) if we have only finitely many numeric weights n1, . . . , nm. This can
be achieved by specifying a regular relation Ra,i for each action label a ∈ ACT and
numeric weight ni with i ∈ {1, . . . , m}.

Example 1. We show a regular encoding of a very simple PTS: a random walk on the
set of natural numbers. At each position x, the system can non-deterministically choose
to loop or to move. If the system chooses to loop, it will stay at the same position with
probability 1. If the system chooses to move, it will move to x + 1 with probability 1/4,
or move to max(0, x − 1) with probability 3/4. Normalising the probability values by
multiplying by 4, we obtain the numeric weights of 4, 1, and 3 for the aforementioned
transitions, respectively.

To represent the system by regular relations, we encode the positions in unary and
the numeric weights in binary. The set of configurations is the regular language 1∗. The
graph of the transition probability function can be described by a first-order formula
ϕ(x, y, z) := ϕloop(x, y, z) ∨ ϕmove(x, y, z) over U , where

ϕloop(x, y, z) := x ∈ 1∗ ∧ y ∈ 1∗ ∧ ((x = y ∧ z = 100) ∨ (x 
= y ∧ z = 0)) ;
ϕmove(x, y, z) := x ∈ 1∗ ∧ y ∈ 1∗ ∧ ((x ≺succ y ∧ z = 1) ∨

(y ≺succ x ∧ z = 11) ∨ (x = ε ∧ y = ε ∧ z = 11) ∨
(¬(x ≺succ y) ∧ ¬(y ≺succ x) ∧ ¬(x = ε ∧ y = ε) ∧ z = 0)).

��
Example 2. As a second example, consider a PTS (from [25], Example 1) described by
a probabilistic pushdown automaton with states Q = {p, q, r} and stack symbols Γ =
{X,X ′, Y, Z}. There is a unique action a, and the transition rules δa are as follows:

pX
0.5−−→ qXX pX

0.5−−→ p qX
1−→ pXX rY

1−→ rXX

rX
0.3−−→ rY X rX

0.2−−→ rY X ′ rX
0.5−−→ r

rX ′ 0.4−−→ rY X rX ′ 0.1−−→ rY X ′ rX ′ 0.5−−→ r
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A configuration of the PTS is a word in QΓ ∗, consisting of a state in Q and a word over
the stack symbols. A transition can be applied if the prefix of the configuration matches
the left hand side of the transition rules above. We encode the PTS as follows: the set
of configurations is QΓ ∗, the weights are represented in binary after normalization, and
the transition relation ϕ(x, y, z) encodes the transition rules in disjunction. For example,

the disjunct corresponding to the rule pX
0.5−−→ qXX is

x ∈ QΓ ∗ ∧ y ∈ QΓ ∗ ∧ (∃u. x = pXu ∧ y = qXXu) ∧ z = 101.

Note that the PTS is bounded branching with a bound 3. ��

4.2 Proof Rules for Probabilistic Bisimulation

Fix the set ACT of action symbols and the branching bound N ≥ 1, owing
to the minimal probability assumption. Consider a two-sorted vocabulary σ =
〈{Pa}a∈ACT, R,+〉, where Pa is a ternary relation (with the first two arguments over
the first sort, and the third argument over the second sort of natural numbers), R is a
binary relation over the first sort, and + is the addition function over the second sort of
natural numbers. The main result we shall show next is summarized in the following
theorem:

Theorem 1. There is a fixed first-order formula Φ over σ such that a binary relation
R is a probabilistic bisimulation over a bounded-branching PTS S = 〈S; {δa}a∈ACT〉
iff (S, R) |= Φ. Furthermore, when S is a regular PTS and R is a regular relation,
we can compute in polynomial time a first-order formula Φ′ over U such that R is a
probabilistic bisimulation over S iff U |= Φ′.

This theorem implies the following result:

Theorem 2. Given a regular relation E ⊆ Σ∗ ×Σ∗ and a bounded-branching regular
PTS S = 〈S; {δa}a∈ACT〉, there exists an algorithm that either finds (u, v) ∈ E which
are not probabilistically bisimilar or finds a regular probabilistic bisimulation relation
R over S such that E ⊆ R if one exists. The algorithm does not terminate iff E is con-
tained in some probabilistic bisimulation relation but every probabilistic bisimulation
R containing E is not regular.

Note that when verifying parameterized systems we are typically interested in
checking bisimilarity over a set of pairs (instead of just one pair) of configurations,
and hence E in the above statement.

Proof of Theorem 2. To prove this, we provide two semi-algorithms, one for checking
the existence of R and the other for showing that a pair (v, w) ∈ E is a witness for
non-bisimilarity.

By Theorem 1, we can enumerate all possible candidate regular relation R and
effectively check that R is a probabilistic bisimulation over S. The condition that E ⊆
R is a first-order property, and so can be checked effectively.

To show non-bisimilarity is recursively enumerable, observe that if we fix (v, w) ∈
E and a number d, then the restrictions Sv and Sw to configurations that are of distance
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at most d away from v and w (respectively) are finite PTS. Therefore, we can devise
a semi-algorithm which enumerates all (v, w) ∈ E, and all probabilistic modal logic
(PML) formulas [34] F over ACT containing only rational numbers (i.e. a formula of
the form 〈a〉μF ′, where μ ∈ [0, 1] is a rational number, which is sufficient because
we assume only rational numbers in the PTS). We need to check that Sv, v |= F , but
Sw, w � F . Model checking PML formulas over finite systems is decidable (in fact,
the logic is subsumed by Probabilistic CTL [7]), which makes our check effective. ��

4.3 Proof of Theorem 1

In the rest of the section, we shall give a proof of Theorem 1. Given a binary relation
R ⊆ S × S, we can write a first-order formula Feq(R) for checking that R is an
equivalence relation:

∀s, t, u ∈ S.R(s, s) ∧ (R(s, t) ⇒ R(t, s)) ∧ ((R(s, t) ∧ R(t, u) ⇒ R(s, u)).

We shall next define a formula ϕa(p, q) for each a ∈ ACT, such that R is a probabilistic
bisimulation for S = 〈S; {δa}a∈ACT〉 iff (S, R) |= Φ(R), where

Φ(R) := Feq(R) ∧ ∀p, q ∈ S. R(p, q) ⇒
∧

a∈ACT
(ψa(p) ∧ ψa(q)) ∨ ϕa(p, q). (3)

The formula ψa(s) := ∀s′ ∈ S. δa(s, s′) = 0 states that configuration s cannot move
to any configuration through action a.

Before we describe ϕa(p, q), we provide some intuition and define some interme-
diate macros. Fix configurations p and q. Informally, ϕa(p, q) will first guess a set of
configurations u1, . . . , uN containing the successors of p on action a, and a set of con-
figurations v1, . . . , vN containing the successors of q on action a. Second, it will guess
labellings α1, . . . , αN and β1, . . . , βN which correspond to partitionings of the config-
urations u1, . . . , uN and v1, . . . , vN , respectively. The intuition is that the α’s and β’s
“name” the partitions: if αi = αj (resp. βi = βj), then ui and uj (resp. vi and vj) are
guessed to be in the same partition. The formula then checks that the guessed partition-
ing is compatible with the equivalence relation R (i.e. if the labelling claims ui and uj

are in the same partition, then indeed R(ui, uj) holds), and that the probability masses
of the partitions assigned by configurations p and q satisfy the constraint given in (1).

For the first part, we define a formula

succa(w;u1, . . . , uN ) :=
(∧

1≤i<j≤N
ui 
= uj

)
∧

(
∀u ∈ S. δa(w, u) 
= 0 ⇒

∨

1≤i≤N
u = ui

)
,

stating that the successors of configuration w on action a are among the N distinct con-
figurations u1, . . . , uN . Note that a configuration may have fewer than N successors.
In this case, we can set the rest of the variables to arbitrary distinct configurations.

For the second part, we shall check that R is compatible with the guessed partitions,
and that configurations p and q assign the same probability mass to the same partition.
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Let k1, . . . , kn be a labelling for configurations s1, . . . , sn. To check that the partition-
ing induced by the labelling is compatible with R, we need to express the condition that
ki = kj if and only if R(si, sj) holds. To this end, we define a formula

compatR(s1, . . . , sn; k1, . . . , kn) :=
∧

1≤i<j≤n
(R(si, sj) ⇔ ki = kj) .

Now, we are ready to define ϕa(p, q):

ϕa(p, q) := ∃u1, . . . , uN , v1, . . . , vN ∈ S. ∃α1, . . . , αN , β1, . . . , βN ∈ N.

succa(p;u1, . . . , uN ) ∧ succa(q; v1, . . . , vN ) ∧ (4)

compatR(u1, . . . , uN , v1, . . . , vN ;α1, . . . , αN , β1, . . . , βN ) ∧
∀k ∈ N.

(∑

i: αi=k
δa(p, ui) =

∑

i: βi=k
δa(q, vi)

)
.

With this definition, ϕa(p, q) holds if and only if p
ρ−→a S′ ⇔ q

ρ−→a S′ holds for any
ρ ≥ 0 and equivalence class S′ ∈ S/R.

Example 3. Consider the PTS from Example 2. The configurations pXZ and rX are
probabilistic bisimilar. This can be seen using a probabilistic bisimulation relation with
equivalence classes {pXkZ} ∪ {rw : w ∈ {X,X ′}k} for all k ≥ 0 and {qXk+1Z} ∪
{rY w : w ∈ {X,X ′}k} for all k ≥ 1. The probabilistic bisimulation relation is
definable as the symmetric closure of a regular relation R, where (w1, w2) ∈ R iff

(w1 = w2) ∨
(w1 ∈ pX∗Z ∧ w2 ∈ r(X + X ′)∗⊥ ∧ |w1| = |w2|) ∨
(w1 ∈ r(X + X ′)∗ ∧ w2 ∈ r(X + X ′)∗ ∧ |w1| = |w2|) ∨
(w1 ∈ qX∗Z ∧ w2 ∈ rY (X + X ′)∗⊥ ∧ |w1| = |w2|) ∨
(w1 ∈ rY (X + X ′)∗ ∧ w2 ∈ rY (X + X ′)∗ ∧ |w1| = |w2|).

For this example, the formula (3) simplifies to Feq(R) ∧ ∀s, t ∈ S. ϕa(p, q) for the
unique action a. This formula defines a condition that checks the bisimulation relation
for all states symbolically. To see the formula in action, fix configurations pXZ and
rX which are probabilistic bisimilar. In the PTS, pXZ has two successors, qXXZ
and pZ, each with probability 0.5, and rX has three successors, rY X with probability
0.3, rY X ′ with probability 0.2, and r with probability 0.5. In the formula for ϕa(p, q),
we can set the successors ui of pXZ and the successors vj of rX as above (the third
“successor” u3 is set to an arbitrary configuration not reachable from pXZ), and set
α1 = 1, α2 = 2, β1 = β2 = 1, and β3 = 2, corresponding to the equivalence classes
of the bisimulation relation. One can check that the probability masses to these classes
are the same.

We remark that the first-order theory of U is sufficient to encode any probabilistic
pushdown automaton, not just this example. ��

We proceed to show that if R and δa are first-order definable over U then so are ψa

and ϕa. Suppose that δa is encoded using the ternary relation δa(x, y, z), as stated in
the previous section. (We shall re-use the symbol δ here to avoid a clash of names).
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We define ψa(s) := ∀s′ ∈ S. ∀z ∈ N. δa(s, s′, z) ⇔ z = 0. To define ϕa, the key
point is to express the sum of transition probabilities in the logic. We use the fact that
addition of integers in binary encoding is regular (see e.g. [9]), and write a formula that
performs iterated addition. Formally, for each a ∈ ACT we define a formula χa such
that

χa(u;u1, . . . , uN ;α1, . . . , αN ; k; z) :=

∃z1, . . . , zN+1 ∈ N. z1 = 0 ∧ zN+1 = z ∧
∧

1≤i≤N
χ′

a(u, ui, αi, k, zi, zi+1),

where

χ′
a(u, u′, κ, k, x, y) := (κ = k ∧ ∃z. δa(u, u′, z) ∧ y = x + z) ∨ (κ 
= k ∧ y = x)

performs a single addition—we use the fact that addition “y = x + z” in binary is
encodable as a regular relation—and z1, . . . , zN+1 store the intermediate sums. Hence,
given k ∈ N, u1, . . . , uN , v1, . . . , vN ∈ S, and α1, . . . , αN , β1, . . . , βN ∈ N,

∑

i: αi=k
δa(p, ui) =

∑

i: βi=k
δa(q, vi)

if and only if

∃z ∈ N. χa(p;u1, . . . , uN ;α1, . . . , αN ; k; z) ∧ χa(q; v1, . . . , vN ;β1, . . . , βN ; k; z).

It follows that ϕa(p, q) defined in (4) can be encoded in the first-order theory of U .

Remark. Note that checking the validity of a given presentation of a regular PTS is
algorithmic. To see this, suppose we are given a set of formulae {δa(x, y, z)}a∈ACT that
is claimed to encode the probabilistic transition functions of a PTS with a branching
bound N . Fix a formula δa. First, we need to check that for all x ∈ S, there are at most
N distinct y’s such that δa(x, y, z) satisfies z 
= 0. Second, we need to check that [[δa]] is
a function, i.e., ∀x, y. ∃!z. δa(x, y, z), where ∃!z. ϕ(x̄, z) is a shorthand for the formula
asserting there exists precisely one z such that ϕ(x̄, z) is true. Third, we need to check
that [[δa]] encodes a mapping S → {0} ∪ DS . The first two requirements are easily seen
to be expressible as a first-order formula and hence is algorithmic over U . The third
requirement amounts to checking the assertion that there exists wa ∈ N satisfying

∀x ∈ S. (∀y ∈ S. ∀z ∈ N. δa(x, y, z) ⇔ z = 0) ∨
(∃y1, . . . , yN ∈ S. ∃z1, . . . , zN ∈ N.

succa(x; y1, . . . , yN ) ∧
∧

1≤i≤N
δa(x, yi, zi) ∧

∑

1≤i≤N
zi = wa),

which is a first-order formula and is algorithmic over U by the fact that summation of
a fixed number of weights is regular (as shown earlier in this section). Finally, since all
of the wa’s are expected to be the same common multiple of the denominators of the
transition probabilities, we need to check that there is w ∈ N such that wa = w for all
a ∈ ACT. This is again algorithmic as we can pinpoint the exact value of each wa by
enumeration.

www.dbooks.org

https://www.dbooks.org/


466 C.-D. Hong et al.

5 Application to Anonymity Verification

In this section, we show how to verify the anonymity property of cryptographic pro-
tocols via computation of probabilistic bisimulations. We shall first formalize the con-
nection between the concepts of anonymity and probabilistic bisimulation. We then
introduce a verification framework and apply it to verify the anonymity property of the
dining cryptographers protocol [16] and the grades protocol [29].

A (discrete time) Markov chain (a.k.a. DTMC) is a structure M := 〈S; δ;L〉 where
S is a set of configurations, δ : S → DS is a family of probability distributions, and
L : S → ACT is a labelling of the states. We shall use δ(s, s′) to denote δ(s)(s′),
the transition probability from s to s′. A sequence s0 . . . sn ∈ S∗ is called a path of
M if δ(si, si+1) > 0 for i ∈ {0, . . . , n − 1}. The probability distribution induced by
the paths in a DTMC can be defined using a standard cylinder construction (see e.g.
[33]) as follows. Given a finite path π := s0 · · · sn ∈ S∗, we set Runπ to be a basic
cylinder, which is the set of all finite/infinite paths with π as a prefix. We associate this
cylinder with probability Prs0(Runπ) =

∏n−1
i=0 δ(si, si+1). This gives rise to a unique

probability measure for the σ-algebra over the set of all paths from s0.
Given a PTS S := 〈S; {δa}a∈ACT〉, an adversary f : S∗ → ACT resolves the

non-determinacy of S and induces a DTMC Sf := 〈S′; δ′;L′〉. Here S′ := S∗ ∪ {$}
contains all finite paths of S plus a “sink state” $ such that δ′(π) := I$

2 if and only
if either π = $, or δf(π) is the zero function. We define δ′(π) := δf(π) otherwise. The
labelling of Sf is defined as L′($) := ⊥ and L′(π) := f(π) for π ∈ S∗.

Given a DTMC 〈S; δ;L〉, the trace of a path π := s0 · · · sn ∈ S∗ is defined as
τ(π) := L(s0) · · · L(sn). A trace event T is a set of finite traces; the probability of T
with respect to a configuration s is specified with Prs(T ) := Prs(

⋃
{Runπ : τ(π) ∈

T , π starts from s}).
Now we are ready to define the concept of anonymity. Fix S := 〈S; {δa}a∈ACT〉

and a set I ⊆ S of initial configurations. We say S is anonymous to an adversary f if
for all s ∈ I and trace event T , the value of Prs(T ) in Sf is solely determined by T .
Intuitively, this means that the adversary cannot obtain any information about a specific
initial configuration by experimenting on the system and observing the traces.

We shall only consider external adversaries in this paper. An adversary f : S∗ →
ACT is external if f(s0 · · · sn) = f(s′

0 · · · s′
n) when L(si) = L(s′

i) for i ∈ {0, . . . , n}.
That is, an external adversary takes action solely based on the trace she has observed so
far. We call a PTS anonymous if it is anonymous to any external adversary. The follow-
ing result establishes a connection between the anonymity property and probabilistic
bisimulations.

Proposition 2. Let S := 〈S; {δa}a∈ACT〉 be a PTS and f be an external adversary for
S. Then for all u, v ∈ S such that u ∼ v, Pru(T ) = Prv(T ) holds for any trace event
T in Sf . That is, configurations u and v induce the same trace distribution in Sf .

Based on Proposition 2, we propose a framework to verify the anonymity property
of S as follows. We first specify a “reference system” S′ := 〈S; {δ′

a}a∈ACT〉 that has

2 Recall that Is denotes the point distribution at s, namely Is(s) = 1.
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the same initial configurations and actions as those of S, except that the trace distribu-
tion of S′

f is independent of specific initial configurations for any adversary f . We then
try to find a bisimulation relation R between S and the reference system S′ satisfying
R ⊇ {(s, s′) ∈ I × I ′ : s = s′}. When such a relation R is found, we can conclude
that the trace distribution of Sf is also independent of the initial configurations for any
adversary f , and hence prove the anonymity property of S.

The Dining Cryptographers Protocol. Dining cryptographers protocol [16] is a
multi-party computation algorithm aiming to securely compute the XOR of the secret
bits held by the participants. More precisely, consider a ring of n ≥ 3 partici-
pants p0, . . . , pn−1 such that each participant pi holds a secret bit xi. To compute
x0 ⊕ · · · ⊕ xn−1 without revealing information about the values of x0, . . . , xn−1, the
participants carry out a two-stage computation as follows: (i) Each two adjacent partici-
pants pi, pi+1 compute a random bit bi that is accessible only to them; (ii) Each partici-
pant pi announces the value ai := xi ⊕bi ⊕bi−1

3 to the other participants. Hence, every
participant pi can observe the values of xi, bi, bi−1 and a0, . . . , an−1. It turns out that
a0 ⊕ · · ·⊕ an−1 = x0 ⊕ · · ·⊕xn−1, so all participants are able to compute the XOR of
the secret bits after executing the protocol. Furthermore, the anonymity property of the
protocol assures that any individual participant pi cannot infer the values of the other
secret bits from the information she has observed during the execution of the protocol.

We model the protocol as a length-preserving regular PTS. The configurations of
a ring of n participants are encoded as words of size n. The initial configurations are
words w ∈ {0, 1}∗ such that w[i] represents xi for i ∈ {0, . . . , |w| − 1}. The transi-
tion relation consists of six transitions: observer non-deterministically tossing head (via
action head), observer non-deterministically tossing tail (via action tail), non-observer
tossing head with probability 0.5 (via action toss), non-observer tossing tail with proba-
bility 0.5 (via action toss), participant announcing zero (via action zero), and participant
announcing one (via action one). The outcomes of the tosses by the observer are visible
(i.e. as actions head and tail), while the outcomes of the tosses by the other partici-
pants are hidden (i.e. as action toss). Each maximal trace from an initial configuration
of size n consists of n successive tossing actions, followed by n successive announcing
actions. Starting from an initial configuration w and for i ∈ {0, . . . , n − 1}, the i-th
toss action updates the value of w[j] to w[j] ⊕ bi for j ∈ {i, i + 1}, where bi = 1 if a
head is tossed and bi = 0 otherwise. Any configuration v reached after n tosses would
satisfy v[i] = xi ⊕ bi ⊕ bi−1 for i ∈ {0, . . . , n − 1}. The PTS then “prints out” the
configuration by going through n announcement transitions via actions a0, . . . , an−1,
such that ai is one if v[i] = 1 and ai is zero if v[i] = 0.

We consider the case where the first participant of the protocol is the observer. The
maximal traces of the PTS in this case are in form of t · t′, where |t| = |t′|, t ∈
{head, tail} toss∗{head, tail}, and t′ ∈ {zero, one}∗. For example, head toss tail one
zero zero is a maximal trace starting from initial configuration 010. To prove anonymity,
we define a reference system such that the initial configurations and the actions are
the same as those of the original PTS, except that the announcements a0, . . . , an−1

3 All arithmetical operations on the subscripts are performed modulo n to take the ring structure
into account.
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encoded in the maximal traces from an initial configuration w are uniformly distributed
over {(a0, . . . , an−1) : a0 ⊕ · · · ⊕ an−1 = w[0] ⊕ · · · ⊕ w[n − 1], a0 = w[0] ⊕
b0 ⊕ bn−1}.4 In this way, the distribution of the announcements is independent of the
initial configuration once the values of x0 ⊕ · · · ⊕ xn−1, x0, b0, and bn−1 (i.e. the
information revealed to the first participant) are fixed. We then compute a probabilistic
bisimulation between the original system and the reference system, establishing the
anonymity property that the first participant cannot infer the secret bits of the other
participants from the information she observes.

A generalized Dining Cryptographers Protocol. We have also considered a generalized
dining cryptographers protocol where the secret messages x0, . . . , xn−1 of the n par-
ticipants are bit-vectors of the same size. Note that the set of the initial configurations
is not regular when the size of the secret messages is parameterized. To construct a reg-
ular model, we allow a configuration to encode secret messages of different sizes, and
devise the transition system such that an initial configuration w can finish the protocol
(i.e. can have a trace containing all of the announcements a0, . . . , an−1) if and only
if the messages encoded in w have same size. The resulting PTS is a regular system;
it over-approximates the PTS of the generalized dining cryptographers protocol in the
sense that the anonymity property of the former implies that of the latter.

The Grades Protocol. The grades protocol [29] is a multi-party computation algorithm
aiming to securely compute the sum of the secrets held by the participants. The setting
of the protocol is pretty similar to that of the dining cryptographers: given n ≥ 3 and
g ≥ 2, we have a ring of n participants p0, . . . , pn−1 where each participant pi holds a
secret xi ∈ {0, . . . , g − 1}. Note that both g and n are parameterized in this protocol.
The goal of the participants is to compute the sum x0 + · · · + xn−1 without revealing
information about the individual secrets. Define M := (g − 1) · n + 1. The protocol
consists of two steps: (i) Each two adjacent participants pi, pi+1 compute a random
number yi ∈ {0, . . . , M − 1}; (ii) Each participant pi announces ai := (xi + yi −
yi−1) mod M to the other participants. After executing the protocol, the participants
compute a := a0 + · · · + an−1 mod M . Because of the ring structure, the yi’s will be
cancelled out in the sum. Thus the value of a will equal to the sum of all secrets. The
anonymity property of the protocol asserts that no participant can infer the secrets held
by the other participants from the information she has observed.

We consider a variant of the grades protocol where M can be any power of two
greater than (g − 1) · n. Observe that the same anonymity and correctness property of
the original protocol also holds for this variant. To verify the anonymity property, we
model an over-approximation of the protocol where the secrets are allowed to range
over {0, . . . , M − 1}. This model is similar to the one we have constructed for the gen-
eralized dining cryptographers protocol except that, e.g., the XOR operations are now
replaced with bitwise additions and negations. A reference system is specified such that
the announcements a1, . . . , an−1 observed by the first participant p0 are uniformly dis-
tributed over the values satisfying a0 + · · ·+an−1 mod M = x0 + · · ·+xn−1 mod M .

4 Such a distribution can be obtained by (i) choose a1, . . . , an−2 ∈ {0, 1} uniformly at random;
(ii) set a0 = w[0] ⊕ b0 ⊕ bn−1; (iii) set an−1 = a0 ⊕ · · · ⊕ an−2 ⊕ w[0] ⊕ · · · ⊕ w[n − 1].
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Algorithm 1. Equivalence check for L∗

Input: Candidate automaton H over Σ × Σ, PTS S, and relation E ⊆ (Σ × Σ)∗.
Result: NoSolution(v, w) if there is no bisimulation R with E ⊆ R.

PositiveCEX (v, w) if H should accept (v, w), but does not;
NegativeCEX (v, w) if H accepts (v, w), but should not;
Correct if H is a correct bisimulation for PTS S and E ⊆ L(H);

1 Check whether E ⊆ L(H), and whether S |= Φ(L(H)) using the Φ from (3);
2 if there is a counterexample of minimal length n then
3 Compute the greatest bisimulation R̄n restricted to configurations of length n;
4 if there is (v ⊗ w) ∈ E \ R̄n with |v| = |w| = n then
5 Output NoSolution(v, w) and abort;
6 else if there is (v ⊗ w) ∈ L(H) \ R̄n with |v| = |w| = n then
7 return NegativeCEX (v, w);
8 else if there is (v ⊗ w) ∈ R̄n \ L(H) then
9 return PositiveCEX (v, w);

10 else
11 return Correct ;

By computing a probabilistic bisimulation between the original system and the refer-
ence system, we establish the anonymity property that the grades protocol is anonymous
whenever M is chosen as a power of two with M ≥ (g − 1) · n + 1.

6 Learning Probabilistic Bisimulations

We propose an automata learning method to automatically compute regular probabilis-
tic bisimulations R, focusing on the case of length-preserving PTSs, which covers all
examples given in the previous section. The approach uses active automata learning,
for instance Angluin’s L∗ method [5] or refinements of it, to compute R. This app-
roach is inspired by previous work on using active automata learning for invariant
inference [18,54]. Our procedure assumes (i) as input a bounded-branching PTS S =
〈S; {δa}a∈ACT〉, as well as a length-preserving regular relation E ⊆ (Σ × Σ)∗ sup-
posed to be covered by R; (ii) an effective way to check the correctness of R, i.e., a
decision procedure in the sense of Theorem 1; and (iii) a procedure to compute the
greatest probabilistic bisimulation R̄n ⊆ (Σ × Σ)n for S restricted to configurations
of any length n ∈ N. The last assumption can easily be satisfied for length-preserving
PTSs. Indeed, such systems, restricted to configurations of length n, are finite-state, so
that efficient existing methods [6,17,20,52] apply. A solution R is presented as a deter-
ministic letter-to-letter transducer, i.e., as a deterministic finite-state automaton over the
alphabet Σ × Σ.

Since L∗-style learning requires the taught language to be uniquely defined, our
approach attempts to learn a representation of the greatest length-preserving proba-
bilistic bisimulation relation R̄ ⊆ (Σ × Σ)∗, which is the unique bisimulation rela-
tion formed by the union of all length-preserving probabilistic bisimulations of S, i.e.,
R̄ =

⋃
n≥1 R̄n. Because R̄ is not in general computable, the learning process might
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diverge and fail to produce any probabilistic bisimulation. It can also happen that learn-
ing terminates, but yields a probabilistic bisimulation relation strictly smaller than R̄.

The L∗ method requires a teacher that is able to answer two kinds of queries:

– membership queries, i.e., whether a pair (v, w) of words should be accepted by
the automaton to be learned. Since our learner tries to learn the greatest bisimula-
tion, the teacher can answer this query by checking whether the configurations v, w
are bisimilar; this is done by computing the greatest bisimulation R̄|v| restricted to
configurations of any length |v| = |w|, and checking whether or not (v, w) ∈ R̄|v|.

– equivalence queries, i.e., whether a candidate automaton H is the correct language
to be learned. Such queries can essentially be answered by checking whether the
language L(H) satisfies the formula Φ(R) from (3). The complete algorithm for
answering equivalence queries is given in Algorithm 1. The algorithm first attempts
to find a shortest counterexample to the proof rule. If a counterexample of length n is
found, then the difference set L(H)ΔR̄n must contain at least one pair of length n.
Any of such pairs is a valid counterexample for automata learning since the learner
tries to learn the greatest bisimulation. The teacher thus reports one such pair to be
a positive or negative counterexample according to its membership in R̄n.

Properties of the Learning Algorithm. The learning procedure terminates when the
teacher outputs NoSolution or returns Correct for an equivalence query. In the for-
mer case, the teacher explicitly provides a pair of non-bisimilar configurations in E.
In the latter case, the procedure computes an automaton H such that E ⊆ L(H) and
L(H) is a correct probabilistic bisimulation (as it satisfies the proof rule based on The-
orem 1), though not necessarily the greatest one. Since all counterexamples reported by
the teacher are contained in L(H)ΔR̄, the learning procedure is guaranteed to termi-
nate for PTSs where the greatest probabilistic bisimulation R̄ is regular.

Optimization with Inductive Invariants. There is a natural way to optimize the learning
procedure by only considering a regular inductive invariant Inv such that Inv contains
the set of reachable configurations and E ⊆ Inv × Inv . The optimization is done by
simply replacing the greatest finite-length bisimulations R̄i in Algorithm 1, and when
answering membership queries, with the greatest bisimulation R̄I

i = R̄i ∩ Inv on the
inductive invariant. Since R̄I

i can be a lot smaller than R̄i, this can lead to significant
speed-ups. Note that a bisimulation R′ on Inv can be extended to a bisimulation R on
all configurations by setting R = R′ ∪ {(v, v) : v 
∈ Inv}. The inductive invariant Inv
may be manually specified, or automatically generated using techniques like in [18,54].

Experimental Results and Conclusion. We have implemented a prototype in Scala to
test our learning method. Given a PTS specified over U , our tool first translates it to
WS1S formulas and obtains finite automata for these formulas using the Mona tool
[30]. Our prototype then applies the L∗ learning procedure as described in this section,
including the optimization to consider only the configurations of valid format. When
answering an equivalence query, our tool invokes Mona to verify candidate automata
and obtain counterexamples (line 1–2 of Algorithm 1). We use the prototype tool to
prove the anonymity property of the three protocols described in Sect. 5. The proofs
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Table 1. Experimental results. For each case study, we list the size of the final proof produced by
our tool, the time taken by Mona to verify the candidate automata, the time taken by our tool to
compute the fixed-length bisimulations, and the total computation time of the learning procedure.
Experiments are run on a Windows laptop with 2.4 GHz Intel i5 processor and 2 GB memory
limit.

Case study #states #trans Mona Bisim Total

Dining cryptographers, single-bit 13 832 2 s 2 s 6 s

Dining cryptographers, multi-bit 16 1024 3 s 24 s 28 s

The grades protocol 25 1600 5 s 28 s 35 s

generated by our tool are finite-state automata encoding the desired probabilistic bisim-
ulation relations. The experimental results are summarized in Table 1.
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Abstract. Analysis of large continuous-time stochastic systems is a
computationally intensive task. In this work we focus on population mod-
els arising from chemical reaction networks (CRNs), which play a funda-
mental role in analysis and design of biochemical systems. Many relevant
CRNs are particularly challenging for existing techniques due to complex
dynamics including stochasticity, stiffness or multimodal population dis-
tributions. We propose a novel approach allowing not only to predict,
but also to explain both the transient and steady-state behaviour. It
focuses on qualitative description of the behaviour and aims at quanti-
tative precision only in orders of magnitude. First we build a compact
understandable model, which we then crudely analyse. As demonstrated
on complex CRNs from literature, our approach reproduces the known
results, but in contrast to the state-of-the-art methods, it runs with vir-
tually no computational cost and thus offers unprecedented scalability.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems [12] as well as for high-level pro-
gramming of molecular devices [8,40]. They provide a compact formalism equiv-
alent to Petri nets [37], Vector Addition Systems (VAS) [29] and distributed
population protocols [3]. Motivated by numerous potential applications ranging
from system biology to synthetic biology, various techniques allowing simulation
and formal analysis of CRNs have been proposed [2,9,21,24,39], and embodied
in the design process of biochemical systems [20,25,32]. The time-evolution of
CRNs is governed by the Chemical Master Equation (CME), which describes the
probability of the molecular counts of each chemical species. Many important
biochemical systems lead to complex dynamics that includes state space explo-
sion, stochasticity, stiffness, and multimodality of the population distributions
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[23,44], and that fundamentally limits the class of systems the existing techniques
can effectively handle. More importantly, biologist and engineers often seek for
plausible explanations why the system under study has or has not the required
behaviour. In many cases, a set of system simulations/trajectories or population
distributions is not sufficient and the ability to provide an accurate explanation
for the temporal or steady-state behaviour is another major challenge for the
existing techniques.

In order to cope with the computational complexity of the analysis and in
order to obtain explanations of the behaviour, we shift the focus from quanti-
tatively precise results to a more qualitative analysis, closer to how a human
would behold the system. Yet we insist on providing at least rough timing infor-
mation on the behaviour as well as rough classification of probability of differ-
ent behaviours at the extent of “very likely”, “few percent”, “barely possible”,
so that we can conclude on issues such as time to extinction or bimodality of
behaviour. This gives rise to our semi-quantitative approach. We stipulate that
analyses in this framework reflect quantities in orders of magnitude, both for
time duration and probabilities, but not more than that. This paradigm shift is
reflected on two levels: (1) We abstract systems into semi-quantitative models.
(2) We analyse systems in a semi-quantitative way. While each of the two can
be combined with a traditional abstraction/analysis, when combined together
they provide powerful means to understand systems’ behaviour with virtually
no computational cost.

Semi-quantitative Models. The states of the models contain information on
the current amount of objects of each species as an interval spanning often sev-
eral orders of magnitude, unless instructed otherwise. For instance, if an amount
of a certain species is to be closely monitored (as a part of the input speci-
fication/property of the system) then this abstraction can be finer. Similarly,
whenever the analysis of a previous version of the abstraction points to the lack
of precision in certain states, preventing us to conclude which of the possible
behaviours is prevalent, the corresponding refinement can take place. Further,
the rates of the transitions are also captured only with such imprecision. The
crucial point allowing for existence of such models that are small, yet faithful,
is our concept of acceleration. It captures certain sequences of transitions. It
eliminates most of the non-determinism that paralyses other types of abstrac-
tions, which are too over-approximative, unable to conclude anything, but safety
properties.

Semi-quantitative Analysis. Instead of performing exact transient or steady-
state analysis, we can consider most probable transitions and then carefully lift
this to most probable temporal behaviours. Technically, this is done by alter-
nating between transient and steady-state analysis where only some rates and
transitions are taken into account at different stages. In order to further facili-
tate the resulting insight of the human on the result of the analysis, we provide an
algorithm to perform this analysis with virtually no computation effort and thus
possibly manually. The trivial computations immediately pinpoint why certain
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behaviours occur. Moreover, less likely behaviours can also be identified easily,
to any desired degree of improbability (dozens of percent, promilles etc.).

To summarise, the first step yields tiny models, allowing for a synoptic obser-
vation of the model; due to their size these models can be either analysed easily
using standard means, or can be subject to the second step. The second step
provides an efficient approximative analysis, which is also very illustrative due
to the limited use of quantities. It can be applied to any system; however, it is
particularly interesting in connection with the models coming from the first step
since (i) no extra effort (size, computation) is wasted on overly precise treatment
that is ignored by the other step, and (ii) together they yield an understandable
explanation of the behaviour. An entertaining feature of this paradigm is that
the stiffer (with rates at hugely different time scales) the system is the easier it
is to analyse.

To demonstrate the capabilities of our approach, we consider three chal-
lenging and biologically relevant case studies that have been used in literature
to evaluate state-of-the-art methods for the CRN analysis. It has been shown
that many approaches fail, either due to time-outs or incapability to capture
differences in behaviours, and some tailored ones require considerable compu-
tational effort, e.g. an hour of computation. Our experiments clearly show that
the proposed approach can deliver results that yield qualitatively same informa-
tion, more understanding and can be computed in minutes by hand (or within
a fraction of a second by computer).

Our contribution can be summarized as follows:

– We propose a novel semi-quantitative framework for analysis of CRN and
similar population models, focusing on explainability of the results and low
complexity, with quantitative precision limited to orders of magnitude.

– An algorithm for abstracting CRNs into semi-quantitative models based on
interval abstraction of the species population and on transition acceleration.

– An algorithm for semi-quantitative analysis that replaces exact numerical
computation by exploring the most probable transitions and alternating tran-
sient and steady-state analysis.

– We consider three challenging CRNs thoroughly studied in literature and
demonstrate that the semi-quantitative abstraction and analysis gives us a
unique tool that is able to accurately predict and explain both transient and
steady-state behaviour of complex CRNs in a fraction of a second.

Related Work

To the best of our knowledge, there does not exist any abstraction of CRNs
similar to the proposed approach. Indeed, there exist various abstraction and
approximation schemes for CRNs that improve the performance and scalability
of both the simulation-based and the numerical-based techniques. In the fol-
lowing paragraphs, we discuss the most relevant directions and the links to our
approach.
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Approximate Semantics for CRNs. For CRNs including large populations
of species, fluid (mean-field) approximation techniques can be applied [5] and
extended to approximate higher-order moments [15]: these deterministic approx-
imations lead to a set of ordinary differential equations (ODEs). An alternative
is to approximate the CME as a continuous-state stochastic process. The Linear
Noise Approximation (LNA) is a Gaussian process which has been derived as an
approximation of the CME [16,44] and describes the time evolution of expec-
tation and variance of the species in terms of ODEs. Recently, an aggregation
scheme over ODEs that aims at understanding the dynamics of large CRNs has
been proposed in [10]. In contrast to our approach, the deterministic approx-
imations cannot adequately capture the stochasticity of CRNs caused by low
population species.

To mitigate this drawback, various hybrid models have been proposed. The
common idea of these models is as follows: the dynamics of low population species
is described by the discrete stochastic process and the dynamics of large pop-
ulation species is approximated by a continuous process. The particular hybrid
models differ in the approximation of the large population species. In [27], a pure
deterministic semantics for large population species is used. The moment-based
description for medium/high-copy number species was used in [24]. The LNA
approximation and an adaptive partitioning of the species according to leap con-
ditions (that is more general than partitioning based on population thresholds)
was proposed in [9]. All hybrid models have to deal with interactions between
low and large population species. In particular, the dynamics of the stochastic
process describing the low-population species is conditioned by the continuous-
state describing the concentration of the large-population species. The numeri-
cal analysis of such conditioned stochastic process is typically a computationally
demanding task that limits the scalability.

In contrast, our approach does not explicitly partition the species, but rather
abstracts the concrete species population using an interval abstraction and tries
to effectively capture both the stochastic and the deterministic behaviour with
the help of the accelerated transitions. As we already emphasised, the proposed
abstraction and analysis avoids any numerical computation of precise quantities.

Reduction Techniques for Stochastic Models. A widely studied reduc-
tion method for Markov models is state aggregation based on lumping [6] or
(bi-)simulation equivalence [4], with the latter notion in its exact [33] or approx-
imate [13] form. Approximate notions of equivalence have led to new abstrac-
tion/refinement techniques for the numerical verification of Markov models over
finite [14] as well as uncountably-infinite state spaces [1,41,42]. Several approx-
imate aggregation schemes leveraging the structural properties of CRNs were
proposed [17,34,45]. Abate et al. proposed an adaptive aggregation that gives
formal guarantees on the approximation error, but typically provide lower state
space reductions [2]. Our approach shares the idea of abstracting the state space
by aggregating some states together. Similarly to [17,34,45], we partition the
state space based on the species population, i.e. we also introduce the popula-
tion levels. In contrast to the aforementioned aggregation schemes, we propose a
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novel abstraction of the transition relation based on the acceleration. It allows us
to avoid the numerical solution of the approximate CME and thus achieve a bet-
ter reduction while providing an accurate predication of the system behaviour.

Alternative methods to deal with large/infinite state spaces are based on a
state truncation trying to eliminate insignificant states, i.e., states reached only
with a negligible probability. These methods, including finite state projections
[36], sliding window abstractions [26], or fast adaptive uniformisation [35], are
able to quantify the total probability mass that is lost due to the truncation,
but typically cannot effectively handle systems involving a stiff behaviour and
multimodality [9].

Simulation-Based Analysis. Transient analysis of CRNs can be performed
using the Stochastic Simulation Algorithm (SSA) [21]. Note that the SSA
produces a single realisation of the stochastic process, whereas the stochastic
solution of CME gives the probability distribution of each species over time.
Although simulation-based analysis is generally faster than direct solution of the
stochastic process underlying the given CRN, obtaining good accuracy necessi-
tates potentially large numbers of simulations and can be very time consuming.

Various partitioning schemes for species and reactions have been proposed
for the purpose of speeding up the SSA in multi-scale systems [23,38,39]. For
instance, Yao et al. introduced the slow-scale SSA [7], where they distinguish
between fast and slow species. Fast species are then treated assuming they reach
equilibrium much faster than the slow ones. Adaptive partitioning of the species
has been considered in [19,28]. In contrast to the simulation-based analysis, our
approach (i) provides a compact explanation of the system behaviour in the form
of tiny models allowing for a synoptic observation and (ii) can easily reveal less
probable behaviours.

2 Chemical Reaction Networks

In this paper, we assume familiarity with standard verification of (continuous-
time) probabilistic systems, e.g. [4]. For more detail, see [11, Appendix].

CRN Syntax. A chemical reaction network (CRN) N = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N

|Λ| is the reactant complex, pτ ∈ N
|Λ| is the

product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given
a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2

k1−→ 2λ3.

CRN Semantics. Under the usual assumption of mass action kinetics, the
stochastic semantics of a CRN N is generally given in terms of a discrete-state,
continuous-time stochastic process X(t) = (X1(t),X2(t), . . . , X|Λ|(t), t ≥ 0) [16].
The state change associated to the reaction τ is defined by υτ = pτ − rτ , i.e. the
state X is changed to X′ = X + υτ , which we denote as X τ−→ X′. For example,
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for τ1 as above, we have υτ1 = [−1,−1, 2]. For a reaction to happen in a state X,
all reactants have to be in sufficient numbers. The reachable state space of X(t),
denoted as S, is the set of all states reachable by a sequence of reactions from
a given initial state X0. The set of reactions changing the state Xi to the state
Xj is denoted as reac(Xi,Xj) = {τ | Xi

τ−→ Xj}.
The behaviour of the stochastic system X(t) can be described by the (possi-

bly infinite) continuous-time Markov chain (CTMC) γ(N ) = (S,X0,R) where
the transition matrix R(i, j) gives the probability of a transition from Xi to Xj .
Formally,

R(i, j) =
∑

τ∈reac(Xi,Xj)

kτ · Cτ,i where Cτ,i =
N∏

�=1

(
Xi,�

r�

)
(R)

corresponds to the population dependent term of the propensity function where
Xi,� is �th component of the state Xi and r� is the stoichiometric coefficient of the
�-th reactant in the reaction τ . The CTMC γ(N ) is the accurate representation
of CRN N , but—even when finite—not scalable in practice because of the state
space explosion problem [25,31].

3 Semi-quantitative Abstraction

In this section, we describe our abstraction. We derive the desired CTMC con-
ceptually in several steps, which we describe explicitly, although we implement
the construction of the final system directly from the initial CRN.

3.1 Over-Approximation by Interval Abstraction and Acceleration

Given a CRN N = (Λ,R), we first consider an interval continuous-time Markov
decision process (interval CTMDP1), which is a finite abstraction of the infi-
nite γ(N ). Intuitively, abstract states are given by intervals on sizes of popu-
lations with an additional specific that the abstraction captures enabledness of
reactions. The transition structure follows the ideas of the standard may abstrac-
tion and of the three-valued abstraction of continuous-time systems [30]. A tech-
nical difference in the latter point is that we abstract rates into intervals instead
of uniformising the chain and then only abstracting transition probabilities into
intervals; this is necessary in later stages of the process. The main difference is
that we also treat certain sequences of actions, which we call acceleration.

Abstract Domains. The first step is to define the abstract domain for the
population sizes. For every species λ ∈ Λ, we define a finite partitioning Aλ of
N into intervals, reflecting the rough size of the population. Moreover, we want
the abstraction to reflect whether a reaction is enabled. Hence we require that
1 Interval CTMDP is a CTMDP with lower/upper bounds on rates. Since it serves only

as an intermediate formalism to ease the presentation, we refrain from formalising
it here.
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{0} ∈ Aλ for the case when the coefficients of this species as a reactant is always
0 or 1; in general, for every i < maxτ∈R rτ (λ) we require {i} ∈ Aλ.

The abstraction αλ(n) of a number n of a species λ is then the I ∈ Aλ for
which n ∈ I. The state space of α(N ) is the product

∏
λ∈Λ Aλ of the abstract

domains with the point-wise defined abstraction α(n)λ = αλ(nλ).
The abstract domain for the rates according to (R) is the set of all real

intervals.
Transitions from an abstract state are defined as the may abstraction as

follows. Since our abstraction reflect enabledness, the same set of action is
enabled in all concrete states of a given abstract state. The targets of the action
in the abstract setting are abstractions of all possible concrete successors, i.e.
succ(s, a) := {α(n) | m ∈ s,m

a−→ n}, in other words, the transitions enabled in
at least one of the respective concrete states. The abstract rate is the smallest
interval including all the concrete rates of the respective concrete transitions.
This can be easily computed by the corner-points abstraction (evaluating only
the extremum values for each species) since the stoichiometry of the rates is
monotone in the population sizes.

High-Level of Non-determinism. The (more or less) standard style of the
abstraction above has several drawbacks—mostly related to the high degree of
non-determinism for rates—which we will subsequently discuss.

Firstly, in connection with the abstract population sizes, transitions to dif-
ferent sizes only happen non-deterministically, leaving us unable to determine
which behaviour is probable. For example, consider the simple system given by
λ

d−→ ∅ with kd = 10−4 so the degradation happens on average each 104 seconds.
Assume population discretisation into [0], [1..5], [6..20], [21..∞) with abstraction
depicted in Fig. 1. While the original system obviously moves from [6..20] to
[1..5] very probably in less than 15 ·104 seconds, the abstraction cannot even say
that it happens, not to speak of estimating the time.

[0] [1..5] [6..20] [21, ∞)
d, 104 d, 6 · 104 d, 21 · 104

d, [2 · 104, 5 · 104] d, [7 · 104, 20 · 104] d, [22 · 104, ∞)

[0] [1..5] [6..20] [21, ∞)
d, .44 · 104 d, [.76 · 104, 6 · 104] d, (0, 21 · 104

Fig. 1. Above: Interval CTMDP abstraction with intervals on rates and non-
determinism. Below: Interval CTMC abstraction arising from acceleration.

Acceleration. To address this issue, we drop the non-deterministic self-loops
and transitions to higher/lower populations in the abstract system.2 Instead,
2 One can also preserve the non-determinism for the special case when one of the

transitions leads to a state where some action ceases to be enabled. While this adds
more precision, the non-determinism in the abstraction makes it less convenient to
handle.
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we “accelerate” their effect: We consider sequences of these actions that in the
concrete system have the effect of changing the population level. In our example
above, we need to take the transition 1 to 13 times from [6..20] with various
rates depending on the current concrete population, in order to get to [1..5].
This makes the precise timing more complicated to compute. Nevertheless, the
expected time can be approximated easily: here it ranges from 1

6 ·104 = 0.17 ·104

(for population 6) to roughly ( 1
20 + 1

19 +· · ·+ 1
6 )·104 = 1.3·104 (for population 20).

This results in an interval CTMC.3

Concurrency in Acceleration. The accelerated transitions can due to higher
number of occurrences be considered continuous or deterministic, as opposed to
discrete stochastic changes as distinguished in the hybrid approach. The usual
differential equation approach would also take into account other reactions that
are modelled deterministically and would combine their effect into one equation.
In order to simplify the exposition and computation and—as we see later—
without much loss of precision, we can consider only the fastest change (or
non-deterministically more of them if their rates are similar).4

3.2 Operational Semantics: Concretisation to a Representative

The next disadvantage of classical abstraction philosophy, manifested in the
interval CTMC above is that the precise-valued intervals on rates imply high
computational effort during the analysis. Although the system is smaller, stan-
dard transient analysis is still quite expensive.

Concretisation. In order to deal with this issue, the interval can be approxi-
mated roughly by the expected time it would take for an average population in
the considered range, in our example the “average” representative is 13. Then
the first transition occurs with rate 13 · 10−4 = 10−3 and needs to happen 7
times, yielding expected time 7/13 · 104 = 0.5 · 104 (ignoring even the precise
slow downs in the rates as the population decreases). Already this very rough
computation yields relative precision with factor 3 for all the populations in this
interval, thus yielding the correct order of magnitude with virtually no effort.
We lift the concretisation naturally to states and denote the concretisation of
abstract state s by γ(s). The complete procedure is depicted in Algorithm 1.

The concretisation is one of the main points where we deliberately drop a
lot of quantitative information, while still preserving some to conclude on big
quantitative differences. Of course, the precision improves with more precise
abstract domains and also with higher differences on the original rates.

3 The waiting times are not distributed according to the rates in the intervals. It is only
the expected waiting time (reciprocal of the rate) that is preserved. Nevertheless, for
ease of exposition, instead of labelling the transitions with expected waiting times
we stick to the CTMC style with the reciprocals and formally treat it as if the label
was a real rate.

4 Typically the classical concurrency diamond appears and the effect of the other
accelerated reactions happen just after the first one.
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Algorithm 1. Semi-quantitative abstraction CTMC α(N )
1: A ← ∏

λ∈Λ Aλ � States

2: for a ∈ A do � Transitions
3: c ← γ(a) � Concrete representative

4: for each τ enabled in c do

5: r ←rate of τ in c � According to (R)

6: a′ ← α(c + υτ ) � Successor

7: set a
τ−→ a′ with rate r

8: for self-loop a
τ−→ a do � Accelerate self-loops

9: nτ ← min{n | α(c + n · υτ ) �= a} � the number of τ to change the abstract state
10: a′ ← α(c + nτ · υτ ) � Acceleration successor

11: instead of the self-loop with rate r, set a
τ−→ a′ with rate nτ · r

It remains to determine the representative for the unbounded interval. In
order to avoid infinity, we require an additional input for the analysis, which are
deemed upper bounds on possible population of each species. In cases when any
upper bound is hard to assume, we can analyse the system with a random one
and see if the last interval is reachable with significant probability. If yes, then
we need to use this upper bound as a new point in the interval partitioning and
try a higher upper bound next time. In general, such conditions can be checked
in the abstraction and their violation implies a recommendation to refine the
abstract domains accordingly.

Orders-of-Magnitude Abstraction. Such an approximation is thus sufficient
to determine most of the time whether the acceleration (sequence of actions)
happens sooner or later than e.g. another reaction with rate 10−6 or 10−2. Note
that this decision gets more precise not only as we refine the population levels,
but also as the system gets stiffer (the concrete values of the rates differ more),
which are normally harder to analyse. For the ease of presentation in our case
studies, we shall depict only the magnitude of the rates, i.e. the decadic logarithm
rounded to an integer.

Non-determinism and Refinement. If two rates are close to each other, say
of the same magnitude (or difference 1), such a rough computation (and rough
population discretisation) is not precise enough to determine which of the reac-
tions happens with high probability sooner. Both may be happening roughly at
the same pace, or with more information we could conclude one of them is con-
siderably faster. This introduces an uncertainty, showing different behaviours are
possible depending on the exact quantities. This indicates points where refine-
ment might be needed if more precise results are required. For instance, with
rates of magnitudes 2 and 3, the latter should be happing most of the time, the
former only with a few percent chance. If we want to know whether it is rather
tens of percent or tenths of percent, we should refine the abstraction.
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4 Semi-quantitative Analysis

In this section, we present an approximative analysis technique that describes
the most probable transient and steady-state behaviour of the system (also with
rough timing) and on demand also the (one or more orders of magnitude) less
probable behaviours. As such it is robust in the sense that it is well suited to work
with imprecise rates and populations. It is computationally easy (can be done
in hand in time required for a computer by other methods), while still yielding
significant quantitative results (“in orders of magnitude”). It does not provide
exact error guarantees since computing them would be almost as expensive as
the classical analysis. It only features trivial limit-style bounds: if the population
abstraction gets more and more refined, the probabilities converge to those of the
original system; further, the higher the separation between the rate magnitudes,
the more precise the approximation is since the other factors (and thus the
incurred imprecisions) play less significant role.

Intuitively, the main idea—similar to some multi-rate simulation techniques
for stiff systems—is to “simulate” “fast” reactions until the steady state and
then examine which slower reactions take place. However, “fast” does not mean
faster than some constant, but faster than other transitions in a given state.
In other words, we are not distinguishing fast and slow reactions, but tailor
this to each state separately. Further, “simulation” is not really a stochastic
simulation, but a deterministic choice of the fastest available transition. If a
transition is significantly faster than others then this yields what a simulation
would yield. When there are transitions with similar rates, e.g. with at most one
order of magnitude difference, then both are taken into account as described in
the following definition.

Pruned System. Consider the underlying graph of the given CTMC. If we keep
only the outgoing transitions with the maximum rate in each state, we call the
result pruned. If there is always (at most) one transition then the graph consists
of several paths leading to cycles. In general when more transitions are kept, it
has bottom strongly connected components (bottom SCCs, BSCCs) and some
transient parts.

We generalise this concept to n-pruning that preserves all transitions with
a rate that is not more than n orders of magnitude smaller than the maximum
rate in the state. Then the pruning above is 0-pruning, 1-pruning preserves also
transitions happening up to 10 times slower, which can thus still happen with
dozens of percent, 2-pruning is relevant for analysis where behaviour occurring
with units of percent is also tracked etc.

Algorithm Idea. Here we explain the idea of Algorithm 2. The transient parts
of the pruned system describe the most probable behaviour from each state until
the point where visited states start to repeat a lot (steady state of the pruned
system). In the original system, the usual behaviour is then to stay in this SCC
C until one of the pruned (slower) reactions occurs, say from state s to state t.
This may bring us to a different component of the pruned graph and the analysis
process repeats. However, t may also bring us back into C, in which case we stay
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in the steady-state, which is basically the same as without the transition from
s to t. Further, t might be in the transient part leading to C, in which case
these states are added to C and the steady state changes a bit, spreading the
distribution slightly also to the previously transient states. Finally, t might be
leading us into a component D where this run was previous to visiting C. In
that case, the steady-state distribution spreads over all the components visited
between D and C, putting a probability mass to each with a different order of
magnitude depending on all the (magnitudes of) sojourn times in the transient
and steady-state phases on the way.

Using the macros defined in the algorithm, the correctness of the compu-
tations can be shown as follows. For the time spent in the transient phase
(line 16), we consider the slowest sojourn time on the way times the number
of such transitions; this is accurate since the other times are by order(s) of mag-
nitude shorter, hence negligible. The steady-state distribution on a BSCC of the

Algorithm 2. Semi-quantitative analysis
1: W ← ∅ � worklist of SCCs to process

2: add {initial state} to W and assign iteration 0 to it � artificial SCC to start the process

3: while W �= ∅ do

4: C ←pop W

� Compute and output steady state or its approximation

5: steady-state of C is approximately minStayingRate/(m · stayingRate(·))
6: if C has no exits then continue � definitely bottom SCC, final steady state

� Compute and output exiting transitions and the time spent in C

7: exitStates ← arg minC(stayingRate(·)/exitingRate(·)) � Probable exit points

8: minStayingRate ←minimum rate in C, m ←#occurrences there

9: timeToExit ← stayingRate(s) · m/(|exitStates| · minStayingRate · exitingRate(s))

for (arbitrary) s ∈ exitStates

10: for all s ∈ exitsStates do � Transient analysis

11: t ←target of the exiting transition

12: T ←SCCs reachable in the pruned graph from t

13: thereby newly reached transitions get assigned iteration of C + 1

14: for D ∈ T do

� Compute and output time to get from t to D

15: minRate ←minimum rate on the way from t to D, m ←#occurrences there

16: transTime ← m/minRate

� Determine the new SCC

17: if D = C then � back to the current SCC

18: add to W the union of C and the new transient path τ from t to C

19: in later steady-state computation, the states of τ will have probability

smaller by a factor of stayingRate(s)/exitingRate(s)
20: else if D was previously visited then � alternating between different SCCs

21: add to W the merge of all SCCs visited between D and C (inclusively)

22: in later steady-state computation, reflect all timeToExit and transTime

between D and C

23: else � new SCC

24: add D to W

MACROS:

stayingRate(s) is the rate of transitions from s in the pruned graph

exitingRate(s) is the maximum rate of transitions from s not in the pruned graph
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pruned graph can be approximated by the minStayingRate/(m · stayingRate(·))
on line 5. Indeed, it corresponds to the steady-state distribution if the BSCC is a
cycle and the minStayingRate significantly larger than other rates in the BSCC
since then the return time for the states is approximately m/minStayingRate
and the sojourn time 1/stayingRate(·). The component is exited from s with
the proportion given by its steady-state distribution times the probability to
take the exit during that time. The former is approximated above; the latter
can be approximated by the density in 0, i.e. by exitingRate(s), since the stay-
ing rate is significantly faster. Hence the candidates for exiting are maximising
exitingRate(·)/stayingRate(·) as on line 7. There are |exitStates| candidates for
exit and the time to exit the component by a particular candidate s is the
expected number of visits before exit, i.e. stayingRate(s) · exitingRate(s) times
the return time m · minStayingRate, hence the expression on line 9.

s0 s1 s2 s3t u
11 10 10

1001 1

100

1 10

Fig. 2. Alternating transient and steady-state analysis.

For example, consider the system in Fig. 2. Iteration 1 reveals the part
with solid lines with two (temporary) BSCCs {t} and {s1, s2, s3}. The for-
mer turns out definitely bottom. The latter has a steady state proportional to
(10−1, 10−1, 100−1). Its most probable exits are the dashed ones, identified in the
subsequent iteration 2, probable proportionally to (1/10,10/100); the expected
time to take them is 10 · 2/(2 · 10 · 1) = 1 = 100 · 2/(2 · 10 · 10). The latter leads
back to the current SCC and does not change the set of BSCCs (hence in our
examples below we often either skip or merge such iterations for the sake of read-
ability). In contrast, the former leads to a previous SCC; thereafter {s1, s2, s3} is
no more a bottom SCC and consequently the third exit to u is not even analysed.
Nevertheless, it could still happen with minor probability, which can be seen if
we consider 1-pruning instead.

5 Experimental Evaluation and Discussion

In order to demonstrate the applicability and accuracy of our approach, we
selected the following three biologically relevant case studies. (1) stochastic
model of gene expression [22,24], (2) Goutsias’s model [23] describing transcrip-
tion regulation of a repressor protein in bacteriophage λ and (3) viral infection
model [43].

Although the underlying CRNs are quite small (up to 5 species and 10 reac-
tion), their analysis is very challenging: (i) the stochasticity has a strong impact
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on the dynamics of these systems and thus purely deterministic approximations
via ODEs are not accurate, (ii) the systems include species with low, medium,
and high populations and thus the resulting state space of the stochastic process
is prohibitively large to perform precise numerical analysis and existing reduc-
tion/approximation techniques are not sufficient (they are either too imprecise
or do not provide sufficient reduction factors), and (iii) the system dynamics
leads to bi-modal distributions and/or is affected by stiff reactions.

These models thus represent perfect candidates for evaluating advanced
approximation methods including various hybrid approaches [9,24,27]. Although
these approaches can handle the models, they typically require tens of minutes
or hours of computation time. Similarly simulation-based methods are very time
consuming especially in case of very stiff CRN, represented by the viral infection
model. We demonstrate that our approach provides accurate predications of the
system behaviour and is feasible even when performed manually by a human.

Recall that the algorithm that builds the abstract model of the given CRN
takes as input two vectors representing the population discretisation and pop-
ulation bounds. We generally assume that these inputs are provided by users
who have a priori knowledge about the system (e.g. in which orders the species
population occurs) and that the inputs also reflect the level of details the users
are interested in. In the following case studies, we, however, set the inputs only
based on the rate orders of the reactions affecting the particular species (unless
mentioned otherwise).

5.1 Gene Expression Model

The CRN underlying the gene expression model is described in Table 1. As dis-
cussed in [24] and experimentally observed in [18], the system oscillates between
two phases characterised by the Don state and the Doff state, respectively. Biol-
ogists are interested in how the distribution of the Don and Doff states is aligned
with the distribution of RNA and proteins P, and how the correlation among
the distributions depends on the DNA switching rates.

The state vector of the underlying CTMC is given as [P, RNA, Doff, Don]. We
use very relaxed bounds on the maximal populations, namely the bound 1000
for P and 100 for RNA. Note the DNA invariant Don + Doff = 1. As in [24], the
initial state is given as [10,4,1,0].

We first consider the slow switching rates that lead to a more compli-
cated dynamics including bimodal distributions. In order to demonstrate the
refinement step and its effect on the accuracy of the model, we start with a
very coarse abstraction. It distinguishes only the zero population and the non-
zero populations and thus it is not able to adequately capture the relationship
between the DNA state and RNA/P population. The pruned abstract model
obtained using Algorithm 1 and 2 is depicted in Fig. 3 (left). The full one before
pruning is shown in Fig. 6 [11, Appendix].

The proposed analysis of the model identifies the key trends in the system
dynamic. The red transitions, representing iterations 1–3, capture the most prob-
able paths in the system. The green component includes states with DNA on
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Table 1. Gene expression. For slow DNA switching, r1 = r2 = 0.05. For fast DNA
switching, r1 = r2 = 1. The rates are in h−1.

Fig. 3. Pruned abstraction for the gene expression model using the coarse population
discretisation (left) and after the refinement (right). The state vector is [P, RNA, Doff,
Don].

(i.e. Don = 1) where the system oscillates. The component is reached via the
blue state with Doff and no RNAs/P. The blue state is promptly reached from
the initial state and then the system waits (roughly 100 h according our rate
abstraction) for the next DNA activation. The oscillation is left via a deactiva-
tion in the iteration 4 (the blue dotted transition)5. The estimation of the exit
time computed using Algorithm 2 is also 100 h. The deactivation is then followed
by fast red transitions leading to the blue state, where the system waits for the
next activation. Therefore, we obtain an oscillation between the blue state and
the green component, representing the expected oscillation between the Don and
Doff states.

As expected, this abstraction does not clearly predict the bimodal distri-
bution on the RNA/P populations as the trivial population levels do not bear
any information beside reaction enabledness. In order to obtain a more accurate
analysis of the system, we refine the population discretisation using a single level
threshold for P and DNA, that is equal to 100 and 10, respectively (the rates in
the CRN indicate that the population of P reaches higher values).

Figure 3 (right) depicts the pruned abstract model with the new discretisa-
tion (the full model is depicted in Fig. 7 [11, Appendix]. We again obtain the
oscillation between the green component representing DNAon states and the
blue DNAoff state. The states in the green component more accurately predicts

5 In Fig. 3, the dotted transitions denote exit transitions representing the deactiva-
tions.
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that in the DNAon states the populations of RNA and P are high and drop
to zero only for short time periods. The figure also shows orange transitions
within the iteration 2 that extend the green component by two states. Note that
the system promptly returns from these states back to the green component.
After the deactivation in the iteration 4, the system takes (within the same
iteration) the fast transitions (solid blue) leading to the blue component where
system waits for another activation and where the mRNA/protein populations
decrease. The expected time spent in states on blue solid transitions is small and
thus we can reliably predict the bimodal distribution of the mRNA/P popula-
tions and its correlation with the DNA state. The refined abstraction also reveals
that the switching time from the DNAon mode to the DNAoff mode is lower.
These predications are in accordance with the results obtained in [24]. See Fig. 8
[11, Appendix] that is adopted from [24] and illustrates these results.

To further test the accuracy of our approach, we consider the fast switching
between the DNA states. We follow the study in [24] and increase the rates by
two orders of magnitude. We use the refined population discretisation and obtain
a very similar abstraction as in Fig. 3 (right). We again obtain the oscillation
between the green component (DNAon states and nonzero RNA/protein popu-
lations) and the blue state (DNAoff and zero RNA/protein populations). The
only difference is in fact the transition rates corresponding to the activation and
deactivation causing that the switching rate between the components is much
faster. As a consequence, the system spends a longer period in the blue transient
states with Doff and nonzero RNA/protein populations. The time spent in these
states decreases the correlation between the DNA state and the RNA/protein
populations as well as the bimodality in the population distribution. This is
again in the accordance with [24].

To conclude this case study, we observe a very aligned agreement between the
results obtained using our approach and results in [24] obtained via advanced
and time consuming numerical methods. We would like to emphasise that our
abstraction and its solution is obtained within a fraction of a second while the
numerical methods have to approximate solutions of equations describing high-
order conditional moments of the population distributions. As [24] does not
report the runtime of the analysis and the implementation of their methods is
not publicly available, we cannot directly compare the time complexity.

5.2 Goutsias’s Model

Goutsias’s model illustrated in Table 2 is widely used for evaluation of various
numerical and simulation based techniques. As showed e.g. in [23], the system
has with a high probability the following transient behaviour. In the first phase,
the system switches with a high rate between the non-active DNA (denoted
DNA) and the active DNA (DNA.D). During this phase the population of RNA,
monomers (M) and dimers (D) gradually increase (with only negligible oscilla-
tions). After around 15 min, the DNA is blocked (DNA.2D) and the population
of RNA decreases while the population of M and D is relatively stable. After
all RNA degrades (around another 15 min) the system switches to the third
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Table 2. Goutsias’ Model. The rates are in s−1

Fig. 4. Pruned abstraction for the Goutsias’ model. The state vector is [M + D, RNA,
DNA, DNA.D, DNA.2D]

phase where the population of M and D slowly decreases. Further, there is a
non-negligible probability that the DNA is blocked at the beginning while the
population of RNA is still small and the system promptly dies out.

Although the system is quite suitable for the hybrid approaches (there is
no strong bimodality and only a limited stiffness), the analysis still takes 10
to 50 min depending on the required precision [27]. We demonstrate that our
approach is able to accurately predict the main transient behaviour as well as
the non-negligible probability that the system promptly dies out.

The state vector is given as [M, D, RNA, DNA, DNA.D, DNA.2D] and the
initial state is set to [2, 6, 0, 1, 0, 0] as in [27]. We start our analysis with a
coarse population discretisation with a single threshold 100 for M and D and a
single threshold 10 for RNA. We relax the bounds, in particular, 1000 for M and
D, and 100 for RNA. Note that these numbers were selected solely based on the
rate orders of the relevant reactions. Note the DNA invariant DNA + DNA.D
+ DNA.2D = 1.

Figure 4 illustrates the pruned abstract model we obtained (the full model
is depicted in Fig. 9 [11, Appendix]. For a better visualisation, we merged the
state components corresponding to M and D into one component with M + D.
As there is the fast reversible dimerisation, the actual distributions between the
population of M and D does not affect the transient behaviour we are inter-
ested in.

The analysis of the model shows the following transient behaviour. The pur-
ple dotted loop in the iteration i1 represents (de-)activation of the DNA. The
expected exit time of this loop is 100 s. According to our abstraction, there are
two options (with the same probability) to exit the loop: (1) the path a rep-
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resents the DNA blocking followed by the quick extinction and (2) the path b
corresponds to the production of RNA and its followed by the red loop in the
i2 that again represents (de-)activation of the DNA. Note that according our
abstraction, this loop contains states with the populations of M/D as well as
RNA up to 100 and 10, respectively.

The expected exit time of this loop is again 100 s and there are two options
how to leave the loop: (1) the path within the iteration i3 (taken with roughly
90%) represents again the DNA blocking and it is followed by the extension of
RNA and consequently by the extension of M/D in about 1000 s and (2) the
path within the iteration 5 (shown in the full graph in Fig. 9 [11, Appendix])
taken with roughly 10% represents the series of protein productions and leads
to the states with a high number of proteins (above 100 in our population dis-
cretisation). Afterwards, there is again a series of DNA (de-)activations followed
by the DNA blocking and the extinction of RNA. As before, this leads to the
extinction of M/D in about 1000 s.

Although this abstraction already shows the transient behaviour leading
to the extinction in about 30 min, it introduces the following inaccuracy with
respect to the known behaviour: (1) the probability of the fast extinction is
higher and (2) we do not observe the clear bell-shape pattern on the RNA (i.e.
the level 2 for the RNA is not reached in the abstraction). As in the previous
case study, the problem is that the population discretisation is too coarse. It
causes that the total rate of the DNA blocking (affected by the M/D population
via the mass action kinetics) is too high in the states with the M/D population
level 1. This can be directly seen in the interval CTMC representation where
the rate spans many orders of magnitude, incurring too much imprecision. The
refinement of the M/D population discretisation eliminates the first inaccuracy.
To obtain the clear bell-shape patter on RNA, one has to refine also the RNA
population discretisation.

5.3 Viral Infection

The viral infection model described in Table 3 represents the most challenging
system we consider. It is highly stochastic, extremely stiff, with all species pre-
senting high variance and some also very high molecular populations. Moreover,
there is a bimodal distribution on the RNA population. As a consequence, the
solution of the full CME, even using advanced reduction and aggregation tech-
niques, is prohibitive due to state-space explosion and stochastic simulation are
very time consuming. State-of-the-art hybrid approaches integrating the LNA
and an adaptive population partitioning [9] can handle this system but also
need a very long execution time. For example, a transient analysis up to time
t = 50 requires around 20 min and up to t = 200 more than an hour.

To evaluate the accuracy of our approach on this challenging model, we also
focus on the same transient analysis, namely, we are interested in the distribution
of RNA at time t = 200. The analysis in [9] predicts a bimodal distribution where,
the probability that RNA is zero in around 20% and the remaining probability
has Gaussian distribution with mean around 17 and the probability that there
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Table 3. Viral Infection. The rates are day−1

Fig. 5. Pruned abstraction for the viral infection model. The state vector is [P, RNA,
DNA].

is more than 30 RNAs is close to zero. This is confirmed by simulation-based
analysis in [23] showing also the gradual growth of the RNA population. The
simulation-based analysis in [43], however, estimates a lower probability (around
3%) that RNA is 0 and higher mean of the remaining Gaussian distribution
(around 23). Recall that obtaining accurate results using simulations is extremely
time consuming due to very stiff reactions (a single simulation for t = 200 takes
around 20 s).

In the final experiments, we analyse the distribution of RNA at time t = 200
using our approach. The state vector is given as [P, RNA, DNA] and we start
with the concrete state [0, 1, 0]. To sufficiently reason about the RNA population
and to handle the very high population of the proteins, we use the following
population discretisation: thresholds {10, 1000} for P, {10, 30} for RNA, and
{10, 100} for DNA. As before, we use very relaxed bounds 10000, 100, and 1000
for P, RNA, and D, respectively. Note that we ignore the population of the virus
V as it does not affect the dynamics of the other species. This simplification
makes the visualisation of our approach more readable and has no effect on the
complexity of the analysis.

Figure 5 illustrates the obtained abstract model enabling the following tran-
sient analysis (the full model is depicted in Fig. 10 [11, Appendix]. In a few days
the system reaches from the initial state the loop (depicted by the purple dashed
ellipse) within the iteration i1. The loop includes states where RNA has level 1,
DNA has level 2 and P oscillates between the levels 2 and 3. Before entering
the loop, there is a non-negligible probability (orders of percent) that the RNA
drops to 0 via the full black branch that returns to transient part of the loop
in i1. In this branch the system can also die out (not shown in this figure, see
the full model) with probability in the order of tenths of percent.



Semi-quantitative Abstraction and Analysis of Chemical Reaction Networks 493

The average exit time of the loop in i1 is in the order of 10 days and the
system goes to the yellow loop within the iteration i2, where the DNA level is
increased to 3 (RNA level is unchanged and P again oscillates between the levels
2 and 3). The average exit time of the loop in i2 is again in the order of 10
days and systems goes to the dotted red loop within iteration i3. The transition
represents the sequence of RNA synthesis that leads to RNA level 2. P oscillates
as before. Finally, the system leaves the loop in i3 (this takes another dozen
days) and reaches RNA level 3 in iterations i4 and i5 where the DNA level
remains at the level 3 and P oscillates. The iteration i4 and i5 thus roughly
correspond to the examined transient time t = 200.

The analysis clearly demonstrates that our approach leads to the behaviour
that is well aligned with the previous experiments. We observed growth of the
RNA population with a non-negligible probability of its extinction. The concrete
quantities (i.e. the probability of the extinction and the mean RNA population)
are closer to the analysis in [43]. The quantities are indeed affected by the popu-
lation discretisation and can be further refined. We would like to emphasise that
in contrast to the methods presented in [9,23,43] requiring hours of intensive
numerical computation, our approach can be done even manually on the paper.
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Abstract. Statistical model checking (SMC) is a technique for analysis
of probabilistic systems that may be (partially) unknown. We present an
SMC algorithm for (unbounded) reachability yielding probably approx-
imately correct (PAC) guarantees on the results. We consider both the
setting (i) with no knowledge of the transition function (with the only
quantity required a bound on the minimum transition probability) and
(ii) with knowledge of the topology of the underlying graph. On the
one hand, it is the first algorithm for stochastic games. On the other
hand, it is the first practical algorithm even for Markov decision pro-
cesses. Compared to previous approaches where PAC guarantees require
running times longer than the age of universe even for systems with a
handful of states, our algorithm often yields reasonably precise results
within minutes, not requiring the knowledge of mixing time.

1 Introduction

Statistical model checking (SMC) [YS02a] is an analysis technique for prob-
abilistic systems based on

1. simulating finitely many finitely long runs of the system,
2. statistical analysis of the obtained results,
3. yielding a confidence interval/probably approximately correct (PAC) result

on the probability of satisfying a given property, i.e., there is a non-zero prob-
ability that the bounds are incorrect, but they are correct with probability
that can be set arbitrarily close to 1.

One of the advantages is that it can avoid the state-space explosion problem,
albeit at the cost of weaker guarantees. Even more importantly, this technique
is applicable even when the model is not known (black-box setting) or only
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qualitatively known (grey-box setting), where the exact transition probabilities
are unknown such as in many cyber-physical systems.

In the basic setting of Markov chains [Nor98] with (time- or step-)bounded
properties, the technique is very efficient and has been applied to numerous
domains, e.g. biological [JCL+09,PGL+13], hybrid [ZPC10,DDL+12,EGF12,
Lar12] or cyber-physical [BBB+10,CZ11,DDL+13] systems and a substantial
tool support is available [JLS12,BDL+12,BCLS13,BHH12]. In contrast, when-
ever either (i) infinite time-horizon properties, e.g. reachability, are considered or
(ii) non-determinism is present in the system, providing any guarantees becomes
significantly harder.

Firstly, for infinite time-horizon properties we need a stopping criterion such
that the infinite-horizon property can be reliably evaluated based on a finite
prefix of the run yielded by simulation. This can rely on the the complete knowl-
edge of the system (white-box setting) [YCZ10,LP08], the topology of the system
(grey box) [YCZ10,HJB+10], or a lower bound pmin on the minimum transition
probability in the system (black box) [DHKP16,BCC+14].

Secondly, for Markov decision processes (MDP) [Put14] with (non-trivial)
non-determinism, [HMZ+12] and [LP12] employ reinforcement learning [SB98]
in the setting of bounded properties or discounted (and for the purposes of
approximation thus also bounded) properties, respectively. The latter also yields
PAC guarantees.

Finally, for MDP with unbounded properties, [BFHH11] deals with MDP
with spurious non-determinism, where the way it is resolved does not affect
the desired property. The general non-deterministic case is treated in [FT14,
BCC+14], yielding PAC guarantees. However, the former requires the knowledge
of mixing time, which is at least as hard to compute; the algorithm in the latter
is purely theoretical since before a single value is updated in the learning process,
one has to simulate longer than the age of universe even for a system as simple
as a Markov chain with 12 states having at least 4 successors for some state.

Our contribution is an SMC algorithm with PAC guarantees for (i) MDP and
unbounded properties, which runs for realistic benchmarks [HKP+19] and con-
fidence intervals in orders of minutes, and (ii) is the first algorithm for stochastic
games (SG). It relies on different techniques from literature.

1. The increased practical performance rests on two pillars:
– extending early detection of bottom strongly connected components in

Markov chains by [DHKP16] to end components for MDP and simple
end components for SG;

– improving the underlying PAC Q-learning technique of [SLW+06]:
(a) learning is now model-based with better information reuse instead of

model-free, but in realistic settings with the same memory require-
ments,

(b) better guidance of learning due to interleaving with precise computa-
tion, which yields more precise value estimates.

(c) splitting confidence over all relevant transitions, allowing for variable
width of confidence intervals on the learnt transition probabilities.
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2. The transition from algorithms for MDP to SG is possible via extend-
ing the over-approximating value iteration from MDP [BCC+14] to SG by
[KKKW18].

To summarize, we give an anytime PAC SMC algorithm for (unbounded) reach-
ability. It is the first such algorithm for SG and the first practical one for MDP.

Related Work

Most of the previous efforts in SMC have focused on the analysis of properties
with bounded horizon [YS02a,SVA04,YKNP06,JCL+09,JLS12,BDL+12].

SMC of unbounded properties was first considered in [HLMP04] and the
first approach was proposed in [SVA05], but observed incorrect in [HJB+10].
Notably, in [YCZ10] two approaches are described. The first approach proposes
to terminate sampled paths at every step with some probability pterm and re-
weight the result accordingly. In order to guarantee the asymptotic convergence
of this method, the second eigenvalue λ of the chain and its mixing time must
be computed, which is as hard as the verification problem itself and requires the
complete knowledge of the system (white box setting). The correctness of [LP08]
relies on the knowledge of the second eigenvalue λ, too. The second approach
of [YCZ10] requires the knowledge of the chain’s topology (grey box), which is
used to transform the chain so that all potentially infinite paths are eliminated.
In [HJB+10], a similar transformation is performed, again requiring knowledge
of the topology. In [DHKP16], only (a lower bound on) the minimum transition
probability pmin is assumed and PAC guarantees are derived. While unbounded
properties cannot be analyzed without any information on the system, knowledge
of pmin is a relatively light assumption in many realistic scenarios [DHKP16]. For
instance, bounds on the rates for reaction kinetics in chemical reaction systems
are typically known; for models in the PRISM language [KNP11], the bounds
can be easily inferred without constructing the respective state space. In this
paper, we thus adopt this assumption.

In the case with general non-determinism, one approach is to give the non-
determinism a probabilistic semantics, e.g., using a uniform distribution instead,
as for timed automata in [DLL+11a,DLL+11b,Lar13]. Others [LP12,HMZ+12,
BCC+14] aim to quantify over all strategies and produce an ε-optimal strategy.
In [HMZ+12], candidates for optimal strategies are generated and gradually
improved, but “at any given point we cannot quantify how close to optimal
the candidate scheduler is” (cited from [HMZ+12]) and the algorithm “does
not in general converge to the true optimum” (cited from [LST14]). Further,
[LST14,DLST15,DHS18] randomly sample compact representation of strategies,
resulting in useful lower bounds if ε-schedulers are frequent. [HPS+19] gives
a convergent model-free algorithm (with no bounds on the current error) and
identifies that the previous [SKC+14] “has two faults, the second of which also
affects approaches [...] [HAK18,HAK19]”.

Several approaches provide SMC for MDPs and unbounded properties with
PAC guarantees. Firstly, similarly to [LP08,YCZ10], [FT14] requires (1) the
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mixing time T of the MDP. The algorithm then yields PAC bounds in time
polynomial in T (which in turn can of course be exponential in the size of the
MDP). Moreover, the algorithm requires (2) the ability to restart simulations
also in non-initial states, (3) it only returns the strategy once all states have
been visited (sufficiently many times), and thus (4) requires the size of the state
space |S|. Secondly, [BCC+14], based on delayed Q-learning (DQL) [SLW+06],
lifts the assumptions (2) and (3) and instead of (1) mixing time requires only (a
bound on) the minimum transition probability pmin. Our approach additionally
lifts the assumption (4) and allows for running times faster than those given by
T , even without the knowledge of T .

Reinforcement learning (without PAC bounds) for stochastic games has been
considered already in [LN81,Lit94,BT99]. [WT16] combines the special case of
almost-sure satisfaction of a specification with optimizing quantitative objec-
tives. We use techniques of [KKKW18], which however assumes access to the
transition probabilities.

2 Preliminaries

2.1 Stochastic Games

A probability distribution on a finite set X is a mapping δ : X → [0, 1], such
that

∑
x∈X δ(x) = 1. The set of all probability distributions on X is denoted

by D(X). Now we define turn-based two-player stochastic games. As opposed to
the notation of e.g. [Con92], we do not have special stochastic nodes, but rather
a probabilistic transition function.

Definition 1 (SG). A stochastic game (SG) is a tuple
G = (S,S�,S©, s0,A,Av, T), where S is a finite set of states partitioned1 into the
sets S� and S© of states of the player Maximizer and Minimizer2, respectively
s0 ∈ S is the initial state, A is a finite set of actions, Av : S → 2A assigns to every
state a set of available actions, and T : S × A → D(S) is a transition function
that given a state s and an action a ∈ Av(s) yields a probability distribution
over successor states. Note that for ease of notation we write T(s, a, t) instead
of T(s, a)(t).

A Markov decision process (MDP) is a special case of SG where S© = ∅. A
Markov chain (MC) can be seen as a special case of an MDP, where for all
s ∈ S : |Av(s)| = 1. We assume that SG are non-blocking, so for all states s we
have Av(s) �= ∅.

For a state s and an available action a ∈ Av(s), we denote the set of successors
by Post(s, a) := {t | T(s, a, t) > 0}. We say a state-action pair (s, a) is an exit
of a set of states T , written (s, a) exits T , if ∃t ∈ Post(s, a) : t /∈ T , i.e., if with
some probability a successor outside of T could be chosen.

We consider algorithms that have a limited information about the SG.
1 I.e., S� ⊆ S, S© ⊆ S, S� ∪ S© = S, and S� ∩ S© = ∅.
2 The names are chosen, because Maximizer maximizes the probability of reaching a

given target state, and Minimizer minimizes it.
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Definition 2 (Black box and grey box). An algorithm inputs an SG as
black box if it cannot access the whole tuple, but

– it knows the initial state,
– for a given state, an oracle returns its player and available action,
– given a state s and action a, it can sample a successor t according to T(s, a),3

– it knows pmin ≤ mins∈S,a∈Av(s)
t∈Post(s,a)

T(s, a, t), an under-approximation of the min-

imum transition probability.

When input as grey box it additionally knows the number |Post(s, a)| of succes-
sors for each state s and action a.4

The semantics of SG is given in the usual way by means of strategies and the
induced Markov chain [BK08] and its respective probability space, as follows.
An infinite path ρ is an infinite sequence ρ = s0a0s1a1 · · · ∈ (S × A)ω, such that
for every i ∈ N, ai ∈ Av(si) and si+1 ∈ Post(si, ai).

A strategy of Maximizer or Minimizer is a function σ : S� → D(A) or S© →
D(A), respectively, such that σ(s) ∈ D(Av(s)) for all s. Note that we restrict to
memoryless/positional strategies, as they suffice for reachability in SGs [CH12].

A pair (σ, τ) of strategies of Maximizer and Minimizer induces a Markov
chain Gσ,τ with states S, s0 being initial, and the transition function T(s)(t) =∑

a∈Av(s) σ(s)(a) · T(s, a, t) for states of Maximizer and analogously for states of
Minimizer, with σ replaced by τ . The Markov chain induces a unique probability
distribution P

σ,τ over measurable sets of infinite paths [BK08, Ch. 10].

2.2 Reachability Objective

For a goal set Goal ⊆ S, we write ♦Goal := {s0a0s1a1 · · · | ∃i ∈ N : si ∈ Goal}
to denote the (measurable) set of all infinite paths which eventually reach Goal.
For each s ∈ S, we define the value in s as

V(s) := sup
σ

inf
τ

P
σ,τ
s (♦Goal) = inf

τ
sup

σ
P

σ,τ
s (♦Goal),

where the equality follows from [Mar75]. We are interested in V(s0), its
ε-approximation and the corresponding (ε-)optimal strategies for both players.

3 Up to this point, this definition conforms to black box systems in the sense of [SVA04]
with sampling from the initial state, being slightly stricter than [YS02a] or [RP09],
where simulations can be run from any desired state. Further, we assume that we
can choose actions for the adversarial player or that she plays fairly. Otherwise the
adversary could avoid playing her best strategy during the SMC, not giving SMC
enough information about her possible behaviours.

4 This requirement is slightly weaker than the knowledge of the whole topology, i.e.
Post(s, a) for each s and a.
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Let Zero be the set of states, from which there is no finite path to any state
in Goal. The value function V satisfies the following system of equations, which
is referred to as the Bellman equations:

V(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

maxa∈Av(s) V(s, a) if s ∈ S�
mina∈Av(s) V(s, a) if s ∈ S©
1 if s ∈ Goal

0 if s ∈ Zero

with the abbreviation V(s, a) :=
∑

s′∈S T(s, a, s′) ·V(s′). Moreover, V is the least
solution to the Bellman equations, see e.g. [CH08].

2.3 Bounded and Asynchronous Value Iteration

The well known technique of value iteration, e.g. [Put14,RF91], works by starting
from an under-approximation of value function and then applying the Bellman
equations. This converges towards the least fixpoint of the Bellman equations,
i.e. the value function. Since it is difficult to give a convergence criterion, the
approach of bounded value iteration (BVI, also called interval iteration) was
developed for MDP [BCC+14,HM17] and SG [KKKW18]. Beside the under-
approximation, it also updates an over-approximation according to the Bellman
equations. The most conservative over-approximation is to use an upper bound
of 1 for every state. For the under-approximation, we can set the lower bound
of target states to 1; all other states have a lower bound of 0. We use the func-
tion INITIALIZE BOUNDS in our algorithms to denote that the lower and upper
bounds are set as just described; see [AKW19, Algorithm 8] for the pseudocode.
Additionally, BVI ensures that the over-approximation converges to the least
fixpoint by taking special care of end components, which are the reason for not
converging to the true value from above.

Definition 3 (End component (EC)). A non-empty set T ⊆ S of states is
an end component (EC) if there is a non-empty set B ⊆ ⋃

s∈T Av(s) of actions
such that (i) for each s ∈ T, a ∈ B ∩ Av(s) we do not have (s, a) exits T and (ii)
for each s, s′ ∈ T there is a finite path w = sa0 . . . ans′ ∈ (T × B)∗ × T , i.e. the
path stays inside T and only uses actions in B.

Intuitively, ECs correspond to bottom strongly connected components of the
Markov chains induced by possible strategies, so for some pair of strategies all
possible paths starting in the EC remain there. An end component T is a maximal
end component (MEC) if there is no other end component T ′ such that T ⊆ T ′.
Given an SG G, the set of its MECs is denoted by MEC(G).

Note that, to stay in an EC in an SG, the two players would have to cooperate,
since it depends on the pair of strategies. To take into account the adversarial
behaviour of the players, it is also relevant to look at a subclass of ECs, the so
called simple end components, introduced in [KKKW18].



PAC Statistical Model Checking 503

Definition 4 (Simple end component (SEC) [KKKW18]). An EC T is
called simple, if for all s ∈ T it holds that V(s) = bestExit(T, V), where

bestExit(T, f) :=

⎧
⎨

⎩

1 if T ∩ Goal �= ∅
max s∈T∩S�

(s,a) exits T

f(s, a) else

is called the best exit (of Maximizer) from T according to the function f : S → R.
To handle the case that there is no exit of Maximizer in T we set max∅ = 0.

Intuitively, SECs are ECs where Minimizer does not want to use any of
her exits, as all of them have a greater value than the best exit of Maximizer.
Assigning any value between those of the best exits of Maximizer and Minimizer
to all states in the EC is a solution to the Bellman equations, because both
players prefer remaining and getting that value to using their exits [KKKW18,
Lemma 1]. However, this is suboptimal for Maximizer, as the goal is not reached
if the game remains in the EC forever. Hence we “deflate” the upper bounds
of SECs, i.e. reduce them to depend on the best exit of Maximizer. T is called
maximal simple end component (MSEC), if there is no SEC T ′ such that T � T ′.
Note that in MDPs, treating all MSECs amounts to treating all MECs.

Algorithm 1. Bounded value iteration algorithm for SG (and MDP)
1: procedure BVI(SG G, target set Goal, precision ε > 0)
2: INITIALIZE BOUNDS
3: repeat
4: X ← SIMULATE until LOOPING or state in Goal is hit
5: UPDATE(X) � Bellman updates or their modification
6: for T ∈ FIND MSECs(X) do
7: DEFLATE(T ) � Decrease the upper bound of MSECs

8: until U(s0) − L(s0) < ε

Algorithm 1 rephrases that of [KKKW18] and describes the general structure
of all bounded value iteration algorithms that are relevant for this paper. We
discuss it here since all our improvements refer to functions (in capitalized font)
in it. In the next section, we design new functions, pinpointing the difference
to the other papers. The pseudocode of the functions adapted from the other
papers can be found, for the reader’s convenience, in [AKW19, Appendix A].
Note that to improve readability, we omit the parameters G,Goal, L and U of
the functions in the algorithm.

Bounded Value Iteration: For the standard bounded value iteration algo-
rithm, Line 4 does not run a simulation, but just assigns the whole state
space S to X5. Then it updates all values according to the Bellman equations.
5 Since we mainly talk about simulation based algorithms, we included this line to

make their structure clearer.

www.dbooks.org

https://www.dbooks.org/


504 P. Ashok et al.

After that it finds all the problematic components, the MSECs, and “deflates”
them as described in [KKKW18], i.e. it reduces their values to ensure the con-
vergence to the least fixpoint. This suffices for the bounds to converge and the
algorithm to terminate [KKKW18, Theorem 2].

Asynchronous Bounded Value Iteration: To tackle the state space explo-
sion problem, asynchronous simulation/learning-based algorithms have been
developed [MLG05,BCC+14,KKKW18]. The idea is not to update and deflate
all states at once, since there might be too many, or since we only have limited
information. Instead of considering the whole state space, a path through the
SG is sampled by picking in every state one of the actions that look optimal
according to the current over-/under-approximation and then sampling a suc-
cessor of that action. This is repeated until either a target is found, or until the
simulation is looping in an EC; the latter case occurs if the heuristic that picks
the actions generates a pair of strategies under which both players only pick
staying actions in an EC. After the simulation, only the bounds of the states on
the path are updated and deflated. Since we pick actions which look optimal in
the simulation, we almost surely find an ε-optimal strategy and the algorithm
terminates [BCC+14, Theorem 3].

3 Algorithm

3.1 Model-Based

Given only limited information, updating cannot be done using T, since the true
probabilities are not known. The approach of [BCC+14] is to sample for a high
number of steps and accumulate the observed lower and upper bounds on the
true value function for each state-action pair. When the number of samples is
large enough, the average of the accumulator is used as the new estimate for
the state-action pair, and thus the approximations can be improved and the
results back-propagated, while giving statistical guarantees that each update
was correct. However, this approach has several drawbacks, the biggest of which
is that the number of steps before an update can occur is infeasibly large, often
larger than the age of the universe, see Table 1 in Sect. 4.

Our improvements to make the algorithm practically usable are linked to
constructing a partial model of the given system. That way, we have more infor-
mation available on which we can base our estimates, and we can be less conser-
vative when giving bounds on the possible errors. The shift from model-free to
model-based learning asymptotically increases the memory requirements from
O(|S| · |A|) (as in [SLW+06,BCC+14]) to O(|S|2 · |A|). However, for systems
where each action has a small constant bound on the number of successors,
which is typical for many practical systems, e.g. classical PRISM benchmarks,
it is still O(|S| · |A|) with a negligible constant difference.

We thus track the number of times some successor t has been observed when
playing action a from state s in a variable #(s, a, t). This implicitly induces
the number of times each state-action pair (s, a) has been played #(s, a) =
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∑
t∈S #(s, a, t). Given these numbers we can then calculate probability estimates

for every transition as described in the next subsection. They also induce the
set of all states visited so far, allowing us to construct a partial model of the
game. See [AKW19, Appendix A.2] for the pseudo-code of how to count the
occurrences during the simulations.

3.2 Safe Updates with Confidence Intervals Using Distributed
Error Probability

We use the counters to compute a lower estimate of the transition probability
for some error tolerance δT as follows: We view sampling t from state-action pair
(s, a) as a Bernoulli sequence, with success probability T(s, a, t), the number of
trials #(s, a) and the number of successes #(s, a, t). The tightest lower estimate
we can give using the Hoeffding bound (see [AKW19, Appendix D.1]) is

T̂(s, a, t) := max(0,
#(s, a, t)
#(s, a)

− c), (1)

where the confidence width c :=
√

ln(δT )
−2#(s,a) . Since c could be greater than 1,

we limit the lower estimate to be at least 0. Now we can give modified update
equations:

L̂(s, a) :=
∑

t:#(s,a,t)>0

T̂(s, a, t) · L(t)

Û(s, a) :=

⎛

⎝
∑

t:#(s,a,t)>0

T̂(s, a, t) · U(t)

⎞

⎠ +

⎛

⎝1 −
∑

t:#(s,a,t)>0

T̂(s, a, t)

⎞

⎠

The idea is the same for both upper and lower bound: In contrast to the usual
Bellman equation (see Sect. 2.2) we use T̂ instead of T. But since the sum of all
the lower estimates does not add up to one, there is some remaining probability
for which we need to under-/over-approximate the value it can achieve. We use

s0 s1

s2

a1

b1

b2

p1

p2

p3

a2 c

Fig. 1. A running example of an SG. The dashed part is only relevant for the later
examples. For actions with only one successor, we do not depict the transition proba-
bility 1 (e.g. T(s0, a1, s1)). For state-action pair (s1, b2), the transition probabilities are
parameterized and instantiated in the examples where they are used.
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the safe approximations 0 and 1 for the lower and upper bound respectively; this
is why in L̂ there is no second term and in Û the whole remaining probability
is added. Algorithm 2 shows the modified update that uses the lower estimates;
the proof of its correctness is in [AKW19, Appendix D.2].

Lemma 1 (UPDATE is correct). Given correct under- and over-approxi-
mations L,U of the value function V, and correct lower probability estimates
T̂, the under- and over-approximations after an application of UPDATE are also
correct.

Algorithm 2. New update procedure using the probability estimates
1: procedure UPDATE(State set X)
2: for f ∈ {L, U} do � For both functions
3: for s ∈ X \ Goal do � For all non-target states in the given set

4: f(s) =

⎧
⎨

⎩

maxa∈Av(s) f̂ (s, a) if s ∈ S�

mina∈Av(s) f̂ (s, a) if s ∈ S©

Example 1. We illustrate how the calculation works and its huge advantage over
the approach from [BCC+14] on the SG from Fig. 1. For this example, ignore
the dashed part and let p1 = p2 = 0.5, i.e. we have no self loop, and an even
chance to go to the target 1 or a sink 0. Observe that hence V(s0) = V(s1) = 0.5.

Given an error tolerance of δ = 0.1, the algorithm of [BCC+14] would have
to sample for more than 109 steps before it could attempt a single update. In
contrast, assume we have seen 5 samples of action b2, where 1 of them went to 1
and 4 of them to 0. Note that, in a sense, we were unlucky here, as the observed
averages are very different from the actual distribution. The confidence width for
δT = 0.1 and 5 samples is

√
ln(0.1)/ − 2 · 5 ≈ 0.48. So given that data, we get

T̂(s1, b2, 1) = max(0, 0.2−0.48) = 0 and T̂(s1, b2, 0) = max(0, 0.8−0.48) = 0.32.
Note that both probabilities are in fact lower estimates for their true counterpart.

Assume we already found out that 0 is a sink with value 0; how we gain this
knowledge is explained in the following subsections. Then, after getting only
these 5 samples, UPDATE already decreases the upper bound of (s1, b2) to 0.68,
as we know that at least 0.32 of T(s1, b2) goes to the sink.

Given 500 samples of action b2, the confidence width of the probability esti-
mates already has decreased below 0.05. Then, since we have this confidence
width for both the upper and the lower bound, we can decrease the total preci-
sion for (s1, b2) to 0.1, i.e. return an interval in the order of [0.45; 0.55]. 	

Summing up: with the model-based approach we can already start updating after
very few steps and get a reasonable level of confidence with a realistic number
of samples. In contrast, the state-of-the-art approach of [BCC+14] needs a very
large number of samples even for this toy example.

Since for UPDATE we need an error tolerance for every transition, we need
to distribute the given total error tolerance δ over all transitions in the current
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partial model. For all states in the explored partial model Ŝ we know the number
of available actions and can over-approximate the number of successors as 1

pmin
.

Thus the error tolerance for each transition can be set to δT := δ·pmin

|{a|s∈̂S∧a∈Av(s)}| .
This is illustrated in Example 4 in [AKW19, Appendix B].

Note that the fact that the error tolerance δT for every transition is the same
does not imply that the confidence width for every transition is the same, as the
latter becomes smaller with increasing number of samples #(s, a).

3.3 Improved EC Detection

As mentioned in the description of Algorithm1, we must detect when the simu-
lation is stuck in a bottom EC and looping forever. However, we may also stop
simulations that are looping in some EC but still have a possibility to leave it;
for a discussion of different heuristics from [BCC+14,KKKW18], see [AKW19,
Appendix A.3].

We choose to define LOOPING as follows: Given a candidate for a bottom EC,
we continue sampling until we are δT-sure (i.e. the error probability is smaller
than δT) that we cannot leave it. Then we can safely deflate the EC, i.e. decrease
all upper bounds to zero.

To detect that something is a δT-sure EC, we do not sample for the astronom-
ical number of steps as in [BCC+14], but rather extend the approach to detect
bottom strongly connected components from [DHKP16]. If in the EC-candidate
T there was some state-action pair (s, a) that actually has a probability to exit
the T , that probability is at least pmin. So after sampling (s, a) for n times, the
probability to overlook such a leaving transition is (1 − pmin)n and it should be
smaller than δT . Solving the inequation for the required number of samples n

yields n ≥ ln(δT )
ln(1−pmin) .

Algorithm 3 checks that we have seen all staying state-action pairs n times,
and hence that we are δT-sure that T is an EC. Note that we restrict to staying
state-action pairs, since the requirement for an EC is only that there exist staying
actions, not that all actions stay. We further speed up the EC-detection, because
we do not wait for n samples in every simulation, but we use the aggregated
counters that are kept over all simulations.

Algorithm 3. Check whether we are δT-sure that T is an EC

1: procedure δT -sure EC (State set T )

2: requiredSamples = ln(δT )
ln(1−pmin)

3: B ← {(s, a) | s ∈ T ∧ ¬(s, a) exits T} � Set of staying state-action pairs
4: return

∧
(s,a)∈B #(s, a) > requiredSamples

We stop a simulation, if LOOPING returns true, i.e. under the following three
conditions: (i) We have seen the current state before in this simulation (s ∈ X),
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i.e. there is a cycle. (ii) This cycle is explainable by an EC T in our current
partial model. (iii) We are δT-sure that T is an EC.

Algorithm 4. Check if we are probably looping and should stop the simulation
1: procedure LOOPING(State set X, state s)
2: if s /∈ X then
3: return false � Easy improvement to avoid overhead

4: return ∃T ⊆ X.T is EC in partial model ∧ s ∈ T ∧ δT -sure EC(T )

Example 2. For this example, we again use the SG from Fig. 1 without the
dashed part, but this time with p1 = p2 = p3 = 1

3 . Assume the path we simulated
is (s0, a1, s1, b2, s1), i.e. we sampled the self-loop of action b2. Then {s1} is a can-
didate for an EC, because given our current observation it seems possible that
we will continue looping there forever. However, we do not stop the simulation
here, because we are not yet δT-sure about this. Given δT = 0.1, the required
samples for that are 6, since ln(0.1)

ln(1− 1
3 )

= 5.6. With high probability (greater than
(1 − δT) = 0.9), within these 6 steps we will sample one of the other successors
of (s1, b2) and thus realise that we should not stop the simulation in s1. If, on
the other hand, we are in state 0 or if in state s1 the guiding heuristic only picks
b1, then we are in fact looping for more than 6 steps, and hence we stop the
simulation. 	

3.4 Adapting to Games: Deflating MSECs

To extend the algorithm of [BCC+14] to SGs, instead of collapsing problematic
ECs we deflate them as in [KKKW18], i.e. given an MSEC, we reduce the upper
bound of all states in it to the upper bound of the bestExit of Maximizer. In
contrast to [KKKW18], we cannot use the upper bound of the bestExit based on
the true probability, but only based on our estimates. Algorithm5 shows how to
deflate an MSEC and highlights the difference, namely that we use Û instead
of U.

Algorithm 5. Black box algorithm to deflate a set of states
1: procedure DEFLATE(State set X)
2: for s ∈ X do

3: U(s) = min(U(s), bestExit(X, Û )

The remaining question is how to find MSECs. The approach of [KKKW18]
is to find MSECs by removing the suboptimal actions of Minimizer according
to the current lower bound. Since it converges to the true value function, all
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MSECs are eventually found [KKKW18, Lemma 2]. Since Algorithm 6 can only
access the SG as a black box, there are two differences: We can only compare our
estimates of the lower bound L̂(s, a) to find out which actions are suboptimal.
Additionally there is the problem that we might overlook an exit from an EC,
and hence deflate to some value that is too small; thus we need to check that any
state set FIND MSECs returns is a δT-sure EC. This is illustrated in Example 3.
For a bigger example of how all our functions work together, see Example 5 in
[AKW19, Appendix B].

Algorithm 6. Finding MSECs in the game restricted to X for black box setting
1: procedure FIND MSECs(State set X)

2: suboptAct© ← {(s, {a ∈ Av(s) | L̂ (s, a) > L(s)} | s ∈ S© ∩ X}
3: Av′ ← Av without suboptAct©
4: G′ ← G restricted to states X and available actions Av′

5: return {T ∈ MEC(G′) | δT -sure EC(T ) }

Example 3. For this example, we use the full SG from Fig. 1, including the
dashed part, with p1, p2 > 0. Let (s0, a1, s1, b2, s2, b1, s1, a2, s2, c, 1) be the path
generated by our simulation. Then in our partial view of the model, it seems
as if T = {s0, s1} is an MSEC, since using a2 is suboptimal for the minimizing
state s0

6 and according to our current knowledge a1, b1 and b2 all stay inside T .
If we deflated T now, all states would get an upper bound of 0, which would be
incorrect.

Thus in Algorithm6 we need to require that T is an EC δT-surely. This was
not satisfied in the example, as the state-action pairs have not been observed the
required number of times. Thus we do not deflate T , and our upper bounds stay
correct. Having seen (s1, b2) the required number of times, we probably know
that it is exiting T and hence will not make the mistake. 	

3.5 Guidance and Statistical Guarantee

It is difficult to give statistical guarantees for the algorithm we have developed
so far (i.e. Algorithm 1 calling the new functions from Sects. 3.2, 3.3 and 3.4).
Although we can bound the error of each function, applying them repeatedly can
add up the error. Algorithm7 shows our approach to get statistical guarantees:
It interleaves a guided simulation phase (Lines 7–10) with a guaranteed standard
bounded value iteration (called BVI phase) that uses our new functions (Lines
11–16).

The simulation phase builds the partial model by exploring states and remem-
bering the counters. In the first iteration of the main loop, it chooses actions
randomly. In all further iterations, it is guided by the bounds that the last BVI
6 For δT = 0.2, sampling the path to target once suffices to realize that L(s0, a2) > 0.
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phase computed. After Nk simulations (see below for a discussion of how to
choose Nk), all the gathered information is used to compute one version of the
partial model with probability estimates T̂ for a certain error tolerance δk. We
can continue with the assumption, that these probability estimates are correct,
since it is only violated with a probability smaller than our error tolerance (see
below for an explanation of the choice of δk). So in our correct partial model,
we re-initialize the lower and upper bound (Line 12), and execute a guaran-
teed standard BVI. If the simulation phase already gathered enough data, i.e.
explored the relevant states and sampled the relevant transitions often enough,
this BVI achieves a precision smaller than ε in the initial state, and the algo-
rithm terminates. Otherwise we start another simulation phase that is guided
by the improved bounds.

Algorithm 7. Full algorithm for black box setting
1: procedure BlackVI(SG G, target set Goal, precision ε > 0, error tolerance δ > 0)
2: INITIALIZE BOUNDS
3: k = 1 � guaranteed BVI counter
4: Ŝ ← ∅ � current partial model

5: repeat
6: k ← 2 · k
7: δk ← δ

k

// Guided simulation phase
8: for Nk times do
9: X ← SIMULATE

10: Ŝ ← Ŝ ∪ X

// Guaranteed BVI phase
11: δT ← δk·pmin

|{a|s∈̂S∧a∈Av(s)}| � Set δT as described in Section 3.2

12: INITIALIZE BOUNDS
13: for k ·

∣
∣
∣Ŝ

∣
∣
∣ times do

14: UPDATE(Ŝ)

15: for T ∈ FIND MSECs(Ŝ) do
16: DEFLATE(T )

17: until U(s0) − L(s0) < ε

Choice of δk: For each of the full BVI phases, we construct a partial model
that is correct with probability (1 − δk). To ensure that the sum of these errors
is not larger than the specified error tolerance δ, we use the variable k, which is
initialised to 1 and doubled in every iteration of the main loop. Hence for the

i-th BVI, k = 2i. By setting δk = δ
k , we get that

∞∑

i=1

δk =
∞∑

i=1

δ

2i
= δ, and hence

the error of all BVI phases does not exceed the specified error tolerance.
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When to Stop Each BVI-Phase: The BVI phase might not converge if the
probability estimates are not good enough. We increase the number of iterations
for each BVI depending on k, because that way we ensure that it eventually
is allowed to run long enough to converge. On the other hand, since we always
run for finitely many iterations, we also ensure that, if we do not have enough
information yet, BVI is eventually stopped. Other stopping criteria could return
arbitrarily imprecise results [HM17]. We also multiply with

∣
∣
∣Ŝ

∣
∣
∣ to improve the

chances of the early BVIs to converge, as that number of iterations ensures that
every value has been propagated through the whole model at least once.

Discussion of the Choice of Nk: The number of simulations between the
guaranteed BVI phases can be chosen freely; it can be a constant number every
time, or any sequence of natural numbers, possibly parameterised by e.g. k,

∣
∣
∣Ŝ

∣
∣
∣,

ε or any of the parameters of G. The design of particularly efficient choices or
learning mechanisms that adjust them on the fly is an interesting task left for
future work. We conjecture the answer depends on the given SG and “task” that
the user has for the algorithm: E.g. if one just needs a quick general estimate of
the behaviour of the model, a smaller choice of Nk is sensible; if on the other
hand a definite precision ε certainly needs to be achieved, a larger choice of Nk

is required.

Theorem 1. For any choice of sequence for Nk, Algorithm7 is an anytime
algorithm with the following property: When it is stopped, it returns an interval
for V(s0) that is PAC7 for the given error tolerance δ and some ε′, with 0 ≤
ε′ ≤ 1.

Theorem 1 is the foundation of the practical usability of our algorithm. Given
some time frame and some Nk, it calculates an approximation for V(s0) that is
probably correct. Note that the precision ε′ is independent of the input parameter
ε, and could in the worst case be always 1. However, practically it often is
good (i.e. close to 0) as seen in the results in Sect. 4. Moreover, in our modified
algorithm, we can also give a convergence guarantee as in [BCC+14]. Although
mostly out of theoretical interest, in [AKW19, Appendix D.4] we design such a
sequence Nk, too. Since this a-priori sequence has to work in the worst case, it
depends on an infeasibly large number of simulations.

Theorem 2. There exists a choice of Nk, such that Algorithm7 is PAC for any
input parameters ε, δ, i.e. it terminates almost surely and returns an interval for
V(s0) of width smaller than ε that is correct with probability at least 1 − δ.

7 Probably Approximately Correct, i.e. with probability greater than 1 − δ, the value
lies in the returned interval of width ε′.
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3.6 Utilizing the Additional Information of Grey Box Input

In this section, we consider the grey box setting, i.e. for every state-action pair
(s, a) we additionally know the exact number of successors |Post(s, a)|. Then
we can sample every state-action pair until we have seen all successors, and
hence this information amounts to having qualitative information about the
transitions, i.e. knowing where the transitions go, but not with which probability.

In that setting, we can improve the EC-detection and the estimated bounds in
UPDATE. For EC-detection, note that the whole point of δT-sure EC is to check
whether there are further transitions available; in grey box, we know this and
need not depend on statistics. For the bounds, note that the equations for L̂ and
Û both have two parts: The usual Bellman part and the remaining probability
multiplied with the most conservative guess of the bound, i.e. 0 and 1. If we
know all successors of a state-action pair, we do not have to be as conservative;
then we can use mint∈Post(s,a) L(t) respectively maxt∈Post(s,a) U(t). Both these
improvements have huge impact, as demonstrated in Sect. 4. However, of course,
they also assume more knowledge about the model.

4 Experimental Evaluation

We implemented the approach as an extension of PRISM-Games [CFK+13a]. 11
MDPs with reachability properties were selected from the Quantitative Verifi-
cation Benchmark Set [HKP+19]. Further, 4 stochastic games benchmarks from
[CKJ12,SS12,CFK+13b,CKPS11] were also selected. We ran the experiments
on a 40 core Intel Xeon server running at 2.20 GHz per core and having 252 GB
of RAM. The tool however utilised only a single core and 1 GB of memory for
the model checking. Each benchmark was ran 10 times with a timeout of 30 min.
We ran two versions of Algorithm 7, one with the SG as a black box, the other
as a grey box (see Definition 2). We chose Nk = 10, 000 for all iterations. The
tool stopped either when a precision of 10−8 was obtained or after 30 min. In
total, 16 different model-property combinations were tried out. The results of
the experiment are reported in Table 1.

In the black box setting, we obtained ε < 0.1 on 6 of the benchmarks. 5
benchmarks were ‘hard’ and the algorithm did not improve the precision below
1. For 4 of them, it did not even finish the first simulation phase. If we decrease
Nk, the BVI phase is entered, but still no progress is made.

In the grey box setting, on 14 of 16 benchmarks, it took only 6 min to achieve
ε < 0.1. For 8 these, the exact value was found within that time. Less than
50% of the state space was explored in the case of pacman, pneuli-zuck-3,
rabin-3, zeroconf and cloud 5. A precision of ε < 0.01 was achieved on 15/16
benchmarks over a period of 30 min.
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Table 1. Achieved precision ε′ given by our algorithm in both grey and black box
settings after running for a period of 30 min (See the paragraph below Theorem 1 for
why we use ε′ and not ε). The first set of the models are MDPs and the second set are
SGs. ‘-’ indicates that the algorithm did not finish the first simulation phase and hence
partial BVI was not called. m is the number of steps required by the DQL algorithm
of [BCC+14] before the first update. As this number is very large, we report only
log10(m). For comparison, note that the age of the universe is approximately 1026 ns;
logarithm of number of steps doable in this time is thus in the order of 26.

Model States Explored % Precision log10(m)

Grey/Black Grey Black

consensus 272 100/100 0.00945 0.171 338

csma-2-2 1,038 93/93 0.00127 0.2851 1,888

firewire 83,153 55/- 0.0057 1 129,430

ij-3 7 100/100 0 0.0017 2,675

ij-10 1,023 100/100 0 0.5407 17

pacman 498 18/47 0.00058 0.0086 1,801

philosophers-3 956 56/21 0 1 2,068

pnueli-zuck-3 2,701 25/71 0 0.0285 5,844

rabin-3 27,766 7/4 0 0.026 110,097

wlan-0 2,954 100/100 0 0.8667 9,947

zeroconf 670 29/27 0.00007 0.0586 5,998

cdmsn 1,240 100/98 0 0.8588 3,807

cloud-5 8,842 49/20 0.00031 0.0487 71,484

mdsm-1 62,245 69/- 0.09625 1 182,517

mdsm-2 62,245 72/- 0.00055 1 182,517

team-form-3 12,476 64/- 0 1 54,095

Figure 2 shows the evolution of the lower and upper bounds in both the grey-
and the black box settings for 4 different models. Graphs for the other models
as well as more details on the results are in [AKW19, Appendix C].
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Fig. 2. Performance of our algorithm on various MDP and SG benchmarks in grey and
black box settings. Solid lines denote the bounds in the grey box setting while dashed
lines denote the bounds in the black box setting. The plotted bounds are obtained after
each partial BVI phase, because of which they do not start at [0, 1] and not at time 0.
Graphs of the remaining benchmarks may be found in [AKW19, Appendix C].

5 Conclusion

We presented a PAC SMC algorithm for SG (and MDP) with the reachability
objective. It is the first one for SG and the first practically applicable one.
Nevertheless, there are several possible directions for further improvements.
For instance, one can consider different sequences for lengths of the simula-
tion phases, possibly also dependent on the behaviour observed so far. Further,
the error tolerance could be distributed in a non-uniform way, allowing for fewer
visits in rarely visited parts of end components. Since many systems are strongly
connected, but at the same time feature some infrequent behaviour, this is the
next bottleneck to be attacked. [KM19]
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Abstract. Monitoring consists in deciding whether a log meets a given
specification. In this work, we propose an automata-based formalism to
monitor logs in the form of actions associated with time stamps and
arbitrarily data values over infinite domains. Our formalism uses both
timing parameters and data parameters, and is able to output answers
symbolic in these parameters and in the log segments where the prop-
erty is satisfied or violated. We implemented our approach in an ad-hoc
prototype SyMon, and experiments show that its high expressive power
still allows for efficient online monitoring.

1 Introduction

Monitoring consists in checking whether a sequence of data (a log or a signal)
satisfies or violates a specification expressed using some formalism. Offline mon-
itoring consists in performing this analysis after the system execution, as the
technique has access to the entire log in order to decide whether the specifi-
cation is violated. In contrast, online monitoring can make a decision earlier,
ideally as soon as a witness of the violation of the specification is encountered.

Using existing formalisms (e.g., the metric first order temporal logic [14]),
one can check whether a given bank customer withdraws more than 1,000 e
every week. With formalisms extended with data, one may even identify such
customers. Or, using an extension of the signal temporal logic (STL) [18], one can
ask: “is that true that the value of variable x is always copied to y exactly 4 time
units later?” However, questions relating time and data using parameters become
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much harder (or even impossible) to express using existing formalisms: “what
are the users and time frames during which a user withdraws more than half of
the total bank withdrawals within seven days?” And even, can we synthesize the
durations (not necessarily 7 days) for which this specification holds? Or “what
is the set of variables for which there exists a duration within which their value
is always copied to another variable?” In addition, detecting periodic behaviors
without knowing the period can be hard to achieve using existing formalisms.

In this work, we address the challenging problem to monitor logs enriched
with both timing information and (infinite domain) data. In addition, we sig-
nificantly push the existing limits of expressiveness so as to allow for a further
level of abstraction using parameters: our specification can be both parametric
in the time and in the data. The answer to this symbolic monitoring is richer
than a pure Boolean answer, as it synthesizes the values of both time and data
parameters for which the specification holds. This allows us notably to detect
periodic behaviors without knowing the period while being symbolic in terms of
data. For example, we can synthesize variable names (data) and delays for which
variables will have their value copied to another data within the aforementioned
delay. In addition, we show that we can detect the log segments (start and end
date) for which a specification holds.

Example 1. Consider a system updating three variables a, b and c (i. e., strings)
to values (rationals). An example of log is given in Fig. 1a. Although our work
is event-based, we can give a graphical representation similar to that of signals
in Fig. 1b. Consider the following property: “for any variable px, whenever an
update of that variable occurs, then within strictly less than tp time units, the
value of variable b must be equal to that update”. The variable parameter px is
compared with string values and the timing parameter tp is used in the timing
constraints. We are interested in checking for which values of px and tp this
property is violated. This can be seen as a synthesis problem in both the variable
and timing parameters. For example, px = c and tp = 1.5 is a violation of
the specification, as the update of c to 2 at time 4 is not propagated to b
within 1.5 time unit. Our algorithm outputs such violation by a constraint e.g.,
px = c ∧ tp ≤ 2. In contrast, the value of any signal at any time is always such
that either b is equal to that signal, or the value of b will be equal to that value
within at most 2 time units. Thus, the specification holds for any valuation of
the variable parameter px, provided tp > 2.

We propose an automata-based approach to perform monitoring parametric
in both time and data. We implement our work in a prototype SyMon and
perform experiments showing that, while our formalism allows for high expres-
siveness, it is also tractable even for online monitoring.

We believe our framework balances expressiveness and monitoring perfor-
mance well: (i) Regarding expressiveness, comparison with the existing work is
summarized in Table 1 (see Sect. 2 for further details). (ii) Our monitoring is
complete, in the sense that it returns a symbolic constraint characterizing all
the parameter valuations that match a given specification. (iii) We also achieve
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Table 1. Comparison of monitoring expressiveness

Work [7] [18] [14] [13] [30] [26] [4] [9] This work
Timing parameters

√ × ? ? ? × √ × √
Data

√ √ √ √ √ √ × √ √
Parametric data

√ × √ √ √ √ × √ √
Memory × √ √ √ √ √ × × √
Aggregation × × × √ √ × × × √
Complete parameter identification

√
N/A

√
/

√
/ N/A N/A

√ √ √

1 @0 update ( a , 0 ) @4 update ( c , 2 )
2 @1 update ( c , 1 ) @5 update ( a , 2 )
3 @2 update ( a , 0 ) @6 update (b , 2 )
4 @3 update (b , 1 ) @7 update ( c , 3 )
5 @4 update (b , 0 ) @9 update (b , 3 )

(a) Log

t0 1 2 3 4 5 6 7 8 9

a

c

b

(b) Graphical representation

0 =

=

update(x, v)
x = b

update(b, v)
valb := v

update(x, v)
x = px

valb = v

update(x, v)
x = px

valb = v
c := 0, valx := v

update(b, v)
v = valx
c < tp ε

c ≥ tp

update(b, v)
c < tp

v = valx

update(x, v)
c < tp
x = b

(c) Monitoring PTDA

Fig. 1. Monitoring copy to b within tp time units

reasonable monitoring speed, especially given the degree of parametrization in
our formalism. Note that it is not easy to formally claim superiority in expres-
siveness: proofs would require arguments such as the pumping lemma; and such
formal comparison does not seem to be a concern of the existing work. More-
over, such formal comparison bears little importance for industrial practitioners:
expressivity via an elaborate encoding is hardly of practical use. We also note
that, in the existing work, we often observe gaps between the formalism in a
theory and the formalism that the resulting tool actually accepts. This is not
the case with the current framework.

Outline. After discussing related works in Sect. 2, we introduce the necessary
preliminaries in Sect. 3, and our parametric timed data automata in Sect. 4. We
present our symbolic monitoring approach in Sect. 5 and conduct experiments
in Sect. 6. We conclude in Sect. 7.
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2 Related Works

Robustness and Monitoring. Robust (or quantitative) monitoring extends the
binary question whether a log satisfies a specification by asking “by how much”
the specification is satisfied. The quantification of the distance between a sig-
nal and a signal temporal logic (STL) specification has been addressed in, e.g.,
[20–23,25,27] (or in a slightly different setting in [5]). The distance can be under-
stood in terms of space (“signals”) or time. In [6], the distance also copes for
reordering of events. In [10], the robust pattern matching problem is considered
over signal regular expressions, by quantifying the distance between the signal
regular expression specification and the segments of the signal. For piecewise-
constant and piecewise-linear signals, the problem can be effectively solved using
a finite union of convex polyhedra. While our framework does not fit in robust
monitoring, we can simulate both the robustness w.r.t. time (using timing param-
eters) and w.r.t. data, e.g., signal values (using data parameters).

Monitoring with Data. The tool MarQ [30] performs monitoring using Quanti-
fied Event Automata (QEA) [12]. This approach and ours share the automata-
based framework, the ability to express some first-order properties using “events
containing data” (which we encode using local variables associated with actions),
and data may be quantified. However, [30] does not seem to natively support
specification parametric in time; in addition, [30] does not perform complete
(“symbolic”) parameters synthesis, but outputs the violating entries of the log.

The metric first order temporal logic (MFOTL) allows for a high expressive-
ness by allowing universal and existential quantification over data—which can
be seen as a way to express parameters. A monitoring algorithm is presented for
a safety fragment of MFOTL in [14]. Aggregation operators are added in [13],
allowing to compute sums or maximums over data. A fragment of this logics is
implemented in MonPoly [15]. While these works are highly expressive, they
do not natively consider timing parameters; in addition, MonPoly does not
output symbolic answers, i. e., symbolic conditions on the parameters to ensure
validity of the formula.

In [26], binary decision diagrams (BDDs) are used to symbolically repre-
sent the observed data in QTL. This can be seen as monitoring data against
a parametric specification, with a symbolic internal encoding. However, their
implementation DejaVu only outputs concrete answers. In contrast, we are
able to provide symbolic answers (both in timing and data parameters), e.g., in
the form of union of polyhedra for rationals, and unions of string constraints
using equalities (=) and inequalities (�=).

Freeze Operator. In [18], STL is extended with a freeze operator that can
“remember” the value of a signal, to compare it to a later value of the same
signal. This logic STL∗ can express properties such as “In the initial 10 s, x
copies the values of y within a delay of 4 s”: G[0,10] ∗ (G[0,4]y

∗ = x). While the
setting is somehow different (STL∗ operates over signals while we operate over
timed data words), the requirements such as the one above can easily be encoded
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in our framework. In addition, we are able to synthesize the delay within which
the values are always copied, as in Example 1. In contrast, it is not possible to
determine using STL∗ which variables and which delays violate the specification.

Monitoring with Parameters. In [7], a log in the form of a dense-time real-valued
signal is tested against a parameterized extension of STL, where parameters can
be used to model uncertainty both in signal values and in timing values. The
output comes in the form of a subset of the parameters space for which the
formula holds on the log. In [9], the focus is only on signal parameters, with an
improved efficiency by reusing techniques from the robust monitoring. Whereas
[7,9] fit in the framework of signals and temporal logics while we fit in words and
automata, our work shares similarities with [7,9] in the sense that we can express
data parameters; in addition, [9] is able as in our work to exhibit the segment
of the log associated with the parameters valuations for which the specification
holds. A main difference however is that we can use memory and aggregation,
thanks to arithmetic on variables.

In [24], the problem of inferring temporal logic formulae with constraints
that hold in a given numerical data time series is addressed.

Timed Pattern Matching. A recent line of work is that of timed pattern match-
ing, that takes as input a log and a specification, and decides where in the log
the specification is satisfied or violated. On the one hand, a line of works con-
siders signals, with specifications either in the form of timed regular expressions
[11,31–33], or a temporal logic [34]. On the other hand, a line of works considers
timed words, with specifications in the form of timed automata [4,36]. We will
see that our work can also encode parametric timed pattern matching. There-
fore, our work can be seen as a two-dimensional extension of both lines of works:
first, we add timing parameters ([4] also considers similar timing parameters)
and, second, we add data—themselves extended with parameters. That is, com-
ing back to Example 1, [31–33,36] could only infer the segments of the log for
which the property is violated for a given (fixed) variable and a given (fixed)
timing parameter; while [4] could infer both the segments of the log and the
timing parameter valuations, but not which variable violates the specification.

Summary. We compare related works in Table 1. “Timing parameters” denote
the ability to synthesize unknown constants used in timing constraints (e.g.,
modalities intervals, or clock constraints). “?” denotes works not natively sup-
porting this, although it might be encoded. The term “Data” refers to the ability
to manage logs over infinite domains (apart from timestamps). For example, the
log in Fig. 1a features, beyond timestamps, both string (variable name) and
rationals (value). Also, works based on real-valued signals are naturally able to
manage (at least one type of) data. “Parametric data” refer to the ability to
express formulas where data (including signal values) are compared to (quan-
tified or unquantified) variables or unknown parameters; for example, in the
log in Fig. 1a, an example of property parametric in data is to synthesize the
parameters for which the difference of values between two consecutive updates of
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variable px is always below pv, where px is a string parameter and pv a rational-
valued parameter. “Memory” is the ability to remember past data; this can be
achieved using e.g., the freeze operator of STL∗, or variables (e.g., in [14,26,30]).
“Aggregation” is the ability to aggregate data using operators such as sum or
maximum; this allows to express properties such as “A user must not withdraw
more than $10,000 within a 31 day period” [13]. This can be supported using
dedicated aggregation operators [13] or using variables ([30], and our work).
“Complete parameter identification” denotes the synthesis of the set of param-
eters that satisfy or violate the property. Here, “N/A” denotes the absence of
parameter [18], or when parameters are used in a way (existentially or univer-
sally quantified) such as the identification is not explicit (instead, the position
of the log where the property is violated is returned [26]). In contrast, we return
in a symbolic manner (as in [4,7]) the exact set of (data and timing) parameters
for which a property is satisfied. “

√
/×” denotes “yes” in the theory paper, but

not in the tool.

3 Preliminaries

Clocks, Timing Parameters and Timed Guards. We assume a set C =
{c1, . . . , cH} of clocks, i. e., real-valued variables that evolve at the same rate. A
clock valuation is ν : C → R≥0. We write 0 for the clock valuation assigning 0
to all clocks. Given d ∈ R≥0, ν + d is s.t. (ν + d)(c) = ν(c) + d, for all c ∈ C.
Given R ⊆ C, we define the reset of a valuation ν, denoted by [ν]R, as follows:
[ν]R(c) = 0 if c ∈ R, and [ν]R(c) = ν(c) otherwise.

We assume a set TP = {tp1, . . . , tpJ} of timing parameters. A timing parame-
ter valuation is γ : TP → Q+. We assume �� ∈ {<,≤,=,≥, >}. A timed guard tg
is a constraint over C ∪ TP defined by a conjunction of inequalities of the form
c �� d, or c �� tp with d ∈ N and tp ∈ TP. Given tg, we write ν |= γ(tg) if the
expression obtained by replacing each c with ν(c) and each tp with γ(tp) in tg
evaluates to true.

Variables, Data Parameters and Data Guards. For sake of simplicity, we
assume a single infinite domain D for data. The formalism defined in Sect. 4
can be extended in a straightforward manner to different domains for different
variables (and our implementation does allow for different types). The case of
finite data domain is immediate too. We define this formalism in an abstract
manner, so as to allow a sort of parameterized domain.

We assume a set V = {v1, . . . , vM} of variables valued over D. These variables
are internal variables, that allow an high expressive power in our framework,
as they can be compared or updated to other variables or parameters. We also
assume a set LV = {lv1, . . . , lvO} of local variables valued over D. These variables
will only be used locally along a transition in the “argument” of the action (e.g.,
x and v in upate(x, v)), and in the associated guard and (right-hand part of)
updates. We assume a set VP = {vp1, . . . , vpN} of data parameters, i. e., unknown
variable constants.
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A data type (D,DE ,DU) is made of (i) an infinite domain D, (ii) a set of
admissible Boolean expressions DE (that may rely on V, LV and VP), which will
define the type of guards over variables in our subsequent automata, and (iii) a
domain for updates DU (that may rely on V, LV and VP), which will define the
type of updates of variables in our subsequent automata.

Example 2. As a first example, let us define the data type for rationals. We have
D = Q. Let us define Boolean expressions. A rational comparison is a constraint
over V ∪ LV ∪ VP defined by a conjunction of inequalities of the form v �� d,
v �� v′, or v �� vp with v, v′ ∈ V ∪ LV, d ∈ Q and vp ∈ VP. DE is the set of all
rational comparisons over V∪LV∪VP. Let us then define updates. First, a linear
arithmetic expression over V ∪ LV ∪ VP is

∑
i αivi + β, where vi ∈ V ∪ LV ∪ VP

and αi, β ∈ Q. Let LA(V ∪ LV ∪ VP) denote the set of arithmetic expressions
over V, LV and VP. We then have DU = LA(V ∪ LV ∪ VP).

As a second example, let us define the data type for strings. We have D = S,
where S denotes the set of all strings. A string comparison is a constraint over
V ∪ LV ∪ VP defined by a conjunction of comparisons of the form v ≈ s, v ≈ v′,
or v ≈ vp with v, v′ ∈ V ∪ LV, s ∈ S, vp ∈ VP and ≈ ∈ {=, �=}. DE is the set of
all string comparisons over V∪LV∪VP. DU = V∪LV∪S, i. e., a string variable
can be assigned another string variable, or a concrete string.

A variable valuation is μ : V → D. A local variable valuation is a partial
function η : LV � D. A data parameter valuation is ζ : VP → D. Given a data
guard dg ∈ DE , a variable valuation μ, a local variable valuation η defined for
the local variables in dg, and a data parameter valuation ζ, we write (μ, η) |=
ζ(dg) if the expression obtained by replacing within dg all occurrences of each
data parameter vpi by ζ(vpi) and all occurrences of each variable vj (resp. local
variable lvk) with its concrete valuation μ(vj) (resp. η(lvk))) evaluates to true.

A parametric data update is a partial function PDU : V � DU . That is, we
can assign to a variable an expression over data parameters and other variables,
according to the data type. Given a parametric data update PDU, a variable
valuation μ, a local variable valuation η (defined for all local variables appearing
in PDU), and a data parameter valuation ζ, we define [μ]η(ζ(PDU)) : V → D as:

[μ]η(ζ(PDU))(v) =

{
μ(v) if PDU(v) is undefined
η(μ(ζ(PDU(v)))) otherwise

where η(μ(ζ(PDU(v)))) denotes the replacement within the update expression
PDU(v) of all occurrences of each data parameter vpi by ζ(vpi), and all occur-

Table 2. Variables, parameters and valuations used in guards

Timed guards Data guards

Clock Timing parameter (Data) variable Local variable Data parameter

Variable c tp v lv vp

Valuation ν γ μ η ζ
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rences of each variable vj (resp. local variable lvk) with its concrete valuation
μ(vj) (resp. η(lvk)). Observe that this replacement gives a value in D, therefore
the result of [μ]η(ζ(PDU)) is indeed a data parameter valuation V → D. That
is, [μ]η(ζ(PDU)) computes the new (non-parametric) variable valuation obtained
after applying to μ the partial function PDU valuated with ζ.

Example 3. Consider the data type for rationals, the variables set {v1, v2}, the
local variables set {lv1, lv2} and the parameters set {vp1}. Let μ be the variable
valuation such that μ(v1) = 1 and μ(v2) = 2, and η be the local variable valuation
such that η(lv1) = 2 and η(lv2) is not defined. Let ζ be the data parameter valu-
ation such that ζ(vp1) = 1. Consider the parametric data update function PDU
such that PDU(v1) = 2×v1 +v2 − lv1 +vp1, and PDU(v2) is undefined. Then the
result of [μ]η(ζ(PDU)) is μ′ such that μ′(v1) = 2×μ(v1)+μ(v2)−η(lv1)+ζ(vp1) = 3
and μ′(v2) = 2.

4 Parametric Timed Data Automata

We introduce here Parametric timed data automata (PTDAs). They can be
seen as an extension of parametric timed automata [2] (that extend timed
automata [1] with parameters in place of integer constants) with unbounded
data variables and parametric variables. PTDAs can also be seen as an exten-
sion of some extensions of timed automata with data (see e.g., [16,19,29]), that
we again extend with both data parameters and timing parameters. Or as an
extension of quantified event automata [12] with explicit time representation
using clocks, and further augmented with timing parameters. PTDAs feature
both timed guards and data guards; we summarize the various variables and
parameters types together with their notations in Table 2.

We will associate local variables with actions (which can be see as predicates).
Let Dom : Σ → 2LV denote the set of local variables associated with each
action. Let Var(dg) (resp. Var(PDU)) denote the set of variables occurring in dg
(resp. PDU).

Definition 1 (PTDA). Given a data type (D,DE ,DU), a parametric timed
data automaton (PTDA) A over this data type is a tuple A = (Σ,L, �0, F, C,
TP, V, LV, μ0, VP, E), where:

1. Σ is a finite set of actions,
2. L is a finite set of locations, �0 ∈ L is the initial location,
3. F ⊆ L is the set of accepting locations,
4. C is a finite set of clocks,
5. TP is a finite set of timing parameters,
6. V (resp. LV) is a finite set of variables (resp. local variables) over D,
7. μ0 is the initial variable valuation,
8. VP is a finite set of data parameters,
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9. E is a finite set of edges e = (�, tg, dg, a,R,PDU, �′) where (i) �, �′ ∈ L are
the source and target locations, (ii) tg is a timed guard, (iii) dg ∈ DE is a
data guard such as Var(dg) ∩ LV ⊆ Dom(a), (iv) a ∈ Σ, (v) R ⊆ C is a set
of clocks to be reset, and (vi) PDU : V � DU is the parametric data update
function such that Var(PDU) ∩ LV ⊆ Dom(a).

The domain conditions on dg and PDU ensure that the local variables used
in the guard (resp. update) are only those in the action signature Dom(a).

1 @2046 open( Hakuchi . txt , rw)
2 @2136 open( Unagi .mp4 , rw)
3 @2166 close ( Hakuchi . txt )

(a) Example of log

0 1 2

open(f, m)
f = vp

close(f)
f = vp

open(f, m)
f = vp
c := 0 open(f, m)

f = vp

close(f)
f = vp

close(f)
f = vp
c > tp

open(f, m)
f = vp

close(f)
f = vp
c ≤ tp

close(f)
f = vp

(b) PTDA monitor

Fig. 2. Monitoring proper file opening and closing

Example 4. Consider the PTDA in Fig. 2b over the data type for strings. We
have C = {c}, TP = {tp}, V = ∅ and LV = {f,m}. Dom(open) = {f,m} while
Dom(close) = {f}. �2 is the only accepting location, modeling the violation of
the specification.

This PTDA (freely inspired by a formula from [26] further extended with
timing parameters) monitors the improper file opening and closing, i. e., a file
already open should not be open again, and a file that is open should not be
closed too late. The data parameter vp is used to symbolically monitor a given
file name, i. e., we are interested in opening and closings of this file only, while
other files are disregarded (specified using the self-loops in �0 and �1 with data
guard f �= vp). Whenever f is opened (transition from �0 to �1), a clock c is
reset. Then, in �1, if f is closed within tp time units (timed guard “c ≤ tp”),
then the system goes back to �0. However, if instead f is opened again, this is an
incorrect behavior and the system enters �2 via the upper transition. The same
occurs if f is closed more than tp time units after opening.

Given a data parameter valuation ζ and a timing parameter valuation γ,
we denote by γ|ζ(A) the resulting timed data automaton (TDA), i. e., the non-
parametric structure where all occurrences of a parameter vpi (resp. tpj) have
been replaced by ζ(vpi) (resp. γ(tpj)). Note that, if V = LV = ∅, then A is a
parametric timed automaton [2] and γ|ζ(A) is a timed automaton [1].

We now equip our TDAs with a concrete semantics.
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Definition 2 (Semantics of a TDA). Given a PTDA A = (Σ,L, �0, F,
C, TP, V, LV, μ0, VP, E) over a data type (D,DE ,DU), a data parameter valu-
ation ζ and a timing parameter valuation γ, the semantics of γ|ζ(A) is given by
the timed transition system (TTS) (S, s0,→), with

– S = L × D
M × R

H
≥0, s0 = (�0, μ0,0),

– → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (�, μ, ν)
e,η�→ (�′, μ′, ν′), there exist e = (�, tg, dg, a,

R,PDU, �′) ∈ E and a local variable valuation η defined exactly for Dom(a),
such that ν |= γ(tg), (μ, η) |= ζ(dg), ν′ = [ν]R, and μ′ = [μ]η(ζ(PDU)).

2. delay transitions: (�, μ, ν) d�→ (�, μ, ν + d), with d ∈ R≥0.

Moreover we write ((�, μ, ν), (e, η, d), (�′, μ′, ν′)) ∈ → for a combination of a
delay and discrete transition if ∃ν′′ : (�, μ, ν) d�→ (�, μ, ν′′)

e,η�→ (�′, μ′, ν′).
Given a TDA γ|ζ(A) with concrete semantics (S, s0,→), we refer to

the states of S as the concrete states of γ|ζ(A). A run of γ|ζ(A) is
an alternating sequence of concrete states of γ|ζ(A) and triples of edges,
local variable valuations and delays, starting from the initial state s0 of
the form (�0, μ0, ν0), (e0, η, d0), (�1, μ1, ν1), · · · with i = 0, 1, . . . , ei ∈ E,
di ∈ R≥0 and ((�i, μi, νi), (ei, ηi, di), (�i+1, μi+1, νi+1)) ∈ →. Given such
a run, the associated timed data word is (a1, τ1, η1), (a2, τ2, η2), · · · , where
ai is the action of edge ei−1, ηi is the local variable valuation associ-
ated with that transition, and τi =

∑
0≤j≤i−1 dj , for i = 1, 2 · · · . For

a timed data word w and a concrete state (�, μ, ν) of γ|ζ(A), we write
(�0, μ0,0) w−→ (�, μ, ν) in γ|ζ(A) if w is associated with a run of γ|ζ(A) of
the form (�0, μ0,0), . . . , (�n, μn, νn) with (�n, μn, νn) = (�, μ, ν). For a timed
data word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn), we denote |w| = n
and for any i ∈ {1, 2, . . . , n}, we denote w(1, i) = (a1, τ1, η1), (a2, τ2, η2), . . . ,
(ai, τi, ηi).

A finite run is accepting if its last state (�, μ, ν) is such that � ∈ F . The
language L(γ|ζ(A)) is defined to be the set of timed data words associated with
all accepting runs of γ|ζ(A).

Example 5. Consider the PTDA in Fig. 2b over the data type for strings. Let
γ(tp) = 100 and ζ(vp) = Hakuchi.txt. An accepting run of the TDA γ|ζ(A)
is: (�0, ∅, ν0), (e0, η0, 2046), (�1, ∅, ν1), (e1, η1, 90), (�1, ∅, ν2)(e2, η2, 30), (�2, ∅, ν3),
where ∅ denotes a variable valuation over an empty domain (recall that V = ∅
in Fig. 2b), ν0(c) = 0, ν1(c) = 0, ν2(c) = 90, ν3(c) = 120, e0 is the upper edge
from �0 to �1, e1 is the self-loop above �1, e2 is the lower edge from �1 to �2,
η0(f) = η2(f) = Hakuchi.txt, η1(f) = Unagi.mp4, η0(m) = η1(m) = rw, and
η2(m) is undefined (because Dom(close) = {f}).

The associated timed data word is (open, 2046, η0), (open, 2136, η1),
(close, 2166, η2).

Since each action is associated with a set of local variables, given an ordering
on this set, it is possible to see a given action and a variable valuation as a pred-
icate: for example, assuming an ordering of LV such as f precedes m, then open
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with η0 can be represented as open(Hakuchi.txt, rw). Using this convention, the
log in Fig. 2a corresponds exactly to this timed data word.

5 Symbolic Monitoring Against PTDA Specifications

In symbolic monitoring, in addition to the (observable) actions in Σ, we employ
unobservable actions denoted by ε and satisfying Dom(ε) = ∅. We write Σε

for Σ � {ε}. We let ηε be the local variable valuation such that ηε(lv) is unde-
fined for any lv ∈ LV. For a timed data word w = (a1, τ1, η1), (a2, τ2, η2), . . . ,
(an, τn, ηn) over Σε, the projection w↓Σ is the timed data word over Σ
obtained from w by removing any triple (ai, τi, ηi) where ai = ε. An edge
e = (�, tg, dg, a,R,PDU, �′) ∈ E is unobservable if a = ε, and observable oth-
erwise. The use of unobservable actions allows us to encode parametric timed
pattern matching (see Sect. 5.3).

We make the following assumption on the PTDAs in symbolic monitoring.

Assumption 1. The PTDA A does not contain any loop of unobservable edges.

5.1 Problem Definition

Roughly speaking, given a PTDA A and a timed data word w, the symbolic
monitoring problem asks for the set of pairs (γ, ζ) ∈ (Q+)TP × D

VP satisfying
w(1, i) ∈ γ|ζ(A), where w(1, i) is a prefix of w. Since A also contains unobserv-
able edges, we consider w′ which is w augmented by unobservable actions.

Symbolic monitoring problem:
Input: a PTDA A over a data type (D,DE ,DU) and actions Σε, and a
timed data word w over Σ
Problem: compute all the pairs (γ, ζ) of timing and data parameter valua-
tions such that there is a timed data word w′ over Σε and i ∈ {1, 2, . . . , |w′|}
satisfying w′↓Σ = w and w′(1, i) ∈ L(γ|ζ(A)). That is, it requires the
validity domain D(w,A) = {(γ, ζ) | ∃w′ : i ∈ {1, 2, . . . , |w′|}, w′↓Σ =
w and w′(1, i) ∈ L(γ|ζ(A))}.

Example 6. Consider the PTDA A and the timed data word w shown in Fig. 1.
The validity domain D(w,A) is D(w,A) = D1 ∪ D2, where

D1 =
{
(γ, ζ) | 0 ≤ γ(tp) ≤ 2, ζ(xp) = c

}
and D2 =

{
(γ, ζ) | 0 ≤ γ(tp) ≤ 1, ζ(xp) = a

}
.

For w′ = w(1, 3) · (ε, ηε, 2.9), we have w′ ∈ L(γ|ζ(A)) and w′↓Σ = w(1, 3),
where γ and ζ are such that γ(tp) = 1.8 and ζ(xp) = c, and w(1, 3) · (ε, ηε, 2.9)
denotes the juxtaposition.

For the data types in Example 2, the validity domain D(w,A) can be rep-
resented by a constraint of finite size because the length |w| of the timed data
word is finite.
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5.2 Online Algorithm

Our algorithm is online in the sense that it outputs (γ, ζ) ∈ D(w,A) as soon as
its membership is witnessed, even before reading the whole timed data word w.

Let w = (a1, τ1, η1), (a2, τ2, η2), . . . (an, τn, ηn) and A be the timed data word
and PTDA given in symbolic monitoring, respectively. Intuitively, after reading
(ai, τi, ηi), our algorithm symbolically computes for all parameter valuations

(γ, ζ) ∈ (Q+)TP × D
VP the concrete states (�, ν, μ) satisfying (�0, μ0,0)

w(1,i)−−−−→
(�, μ, ν) in γ|ζ(A). Since A has unobservable edges as well as observable edges,
we have to add unobservable actions before or after observable actions in w. By
Conf o

i , we denote the configurations after reading (ai, τi, ηi) and no unobservable
actions are appended after (ai, τi, ηi). By Conf u

i , we denote the configurations
after reading (ai, τi, ηi) and at least one unobservable action is appended after
(ai, τi, ηi).

Definition 3 (Conf o
i ,Conf u

i ). For a PTDA A over actions Σε, a timed data
word w over Σ, and i ∈ {0, 1, . . . , |w|} (resp. i ∈ {−1, 0, . . . , |w|}), Conf o

i

(resp. Conf u
i ) is the set of 5-tuples (�, ν, γ, μ, ζ) such that there is a timed data

word w′ over Σε satisfying the following: (i) (�0, μ0,0) w′
−→ (�, μ, ν) in γ|ζ(A),

(ii) w′↓Σ = w(1, i), (iii) The last action a′
|w′| of w′ is observable (resp. unob-

servable and its timestamp is less than τi+1).

Algorithm 1. Outline of our algorithm for symbolic monitoring
Input: A PTDA A = (Σε, L, �0, F, C, TP, V, LV, μ0, VP, E) over a data

type (D, DE , DU) and actions Σε, and a timed data
word w = (a1, τ1, η1), (a2, τ2, η2), . . . , (an, τn, ηn) over Σ

Output:
⋃

i∈{1,2,...,n+1} Result i is the validity domain D(w, A)

1 Conf u
−1 ← ∅; Conf o

0 ← {(�0,0, γ, μ0, ζ) | γ ∈ (Q+)TP, ζ ∈ D
VP}

2 for i ← 1 to n do
3 compute (Conf u

i−1,Conf o
i ) from (Conf u

i−2,Conf o
i−1)

4 Result i ← {(γ, ζ) | ∃(�, ν, γ, μ, ζ) ∈ Conf u
i−1 ∪ Conf o

i . � ∈ F}
5 compute Conf u

n from (Conf u
n−1,Conf o

n)
6 Resultn+1 ← {(γ, ζ) | ∃(�, ν, γ, μ, ζ) ∈ Conf u

n. � ∈ F}

Algorithm 1 shows an outline of our algorithm for symbolic monitoring
(see [35] for the full version). Our algorithm incrementally computes Conf u

i−1 and
Conf o

i (line 3). After reading (ai, τi, ηi), our algorithm stores the partial results
(γ, ζ) ∈ D(w,A) witnessed from the accepting configurations in Conf u

i−1 and
Conf o

i (line 4). (We also need to try to take potential unobservable transitions
and store the results from the accepting configurations after the last element of
the timed data word (lines 5 and 6).)

Since (Q+)TP×D
VP is an infinite set, we cannot try each (γ, ζ) ∈ (Q+)TP×D

VP

and we use a symbolic representation for parameter valuations. Similarly to the
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reachability synthesis of parametric timed automata [28], a set of clock and tim-
ing parameter valuations can be represented by a convex polyhedron. For variable
valuations and data parameter valuations, we need an appropriate representa-
tion depending on the data type (D,DE ,DU). Moreover, for the termination of
Algorithm 1, some operations on the symbolic representation are required.

Theorem 1 (termination). For any PTDA A over a data type (D,DE ,DU)
and actions Σε, and for any timed data word w over Σ, Algorithm 1 terminates
if the following operations on the symbolic representation Vd of a set of variable
and data parameter valuations terminate.

1. restriction and update {([μ]η(ζ(PDU)), ζ) | ∃(μ, ζ) ∈ Vd. (μ, η) |= ζ(dg)}, where
η is a local variable valuation, PDU is a parametric data update function, and
dg is a data guard;

2. emptiness checking of Vd;
3. projection Vd↓VP of Vd to the data parameters VP. ��
Example 7. For the data type for rationals in Example 2, variable and data
parameter valuations Vd can be represented by convex polyhedra and the above
operations terminate. For the data type for strings S in Example 2, variable and
data parameter valuations Vd can be represented by S

|V| × (S ∪ Pfin(S))|VP| and
the above operations terminate, where Pfin(S) is the set of finite sets of S.

Fig. 3. PTDAs in Dominant (left) and Periodic (right)

5.3 Encoding Parametric Timed Pattern Matching

The symbolic monitoring problem is a generalization of the parametric timed
pattern matching problem of [4]. Recall that parametric timed pattern matching
aims at synthesizing timing parameter valuations and start and end times in the
log for which a log segment satisfies or violates a specification. In our approach,
by adding a clock measuring the absolute time, and two timing parameters
encoding respectively the start and end date of the segment, one can easily infer
the log segments for which the property is satisfied.

Consider the Dominant PTDA (left of Fig. 3). It is inspired by a mon-
itoring of withdrawals from bank accounts of various users [15]. This PTDA
monitors situations when a user withdraws more than half of the total with-
drawals within a time window of (50, 100). The actions are Σ = {withdraw}
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and Dom(withdraw) = {n, a}, where n has a string value and a has an inte-
ger value. The string n represents a user name and the integer a represents the
amount of the withdrawal by the user n. Observe that clock c is never reset,
and therefore measures absolute time. The automaton can non-deterministically
remain in �0, or start to measure a log by taking the ε-transition to �1 checking
c = tp1, and therefore “remembering” the start time using timing parameter tp1.
Then, whenever a user vp has withdrawn more than half of the accumulated
withdrawals (data guard 2v1 > v2) in a (50, 100) time window (timed guard
c − tp1 ∈ (50, 100)), the automaton takes a ε-transition to the accepting loca-
tion, checking c = tp2, and therefore remembering the end time using timing
parameter tp2.

6 Experiments

We implemented our symbolic monitoring algorithm in a tool SyMon in C++,
where the domain for data is the strings and the integers. Our tool SyMon
is distributed at https://github.com/MasWag/symon. We use PPL [8] for the
symbolic representation of the valuations. We note that we employ an optimiza-
tion to merge adjacent polyhedra in the configurations if possible. We evaluated
our monitor algorithm against three original benchmarks: Copy in Fig. 1c; and
Dominant and Periodic in Fig. 3. We conducted experiments on an Amazon
EC2 c4.large instance (2.9 GHz Intel Xeon E5-2666 v3, 2 vCPUs, and 3.75 GiB
RAM) that runs Ubuntu 18.04 LTS (64 bit).

6.1 Benchmark 1: Copy

Our first benchmark Copy is a monitoring of variable updates much like the
scenario in [18]. The actions are Σ = {update} and Dom(update) = {n, v},
where n has a string value representing the name of the updated variables and
v has an integer value representing the updated value. Our set consists of 10
timed data words of length 4,000 to 40,000.

The PTDA in Copy is shown in Fig. 1c, where we give an additional con-
straint 3 < tp < 10 on tp. The property encoded in Fig. 1c is “for any variable px,
whenever an update of that variable occurs, then within tp time units, the value
of b must be equal to that update”.

The experiment result is in Fig. 4. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.2 Benchmark 2: Dominant

Our second benchmark is Dominant (Fig. 3 left). Our set consists of 10 timed
data words of length 2,000 to 20,000. The experiment result is in Fig. 5. We
observe that the execution time is linear to the number of the events and the
memory usage is more or less constant with respect to the number of events.
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Fig. 4. Execution time (left) and memory usage (right) of Copy

Fig. 5. Execution time (left) and memory usage (right) of Dominant and Periodic

6.3 Benchmark 3: Periodic

Our third benchmark Periodic is inspired by a parameter identification of peri-
odic withdrawals from one bank account. The actions are Σ = {withdraw} and
Dom(withdraw) = {a}, where a has an integer value representing the amount of
the withdrawal. We randomly generated a set consisting of 10 timed data words
of length 2,000 to 20,000. Each timed data word consists of the following three
kinds of periodic withdrawals:

shortperiod One withdrawal occurs every 5 ± 1 time units. The amount of
the withdrawal is 50 ± 3.
middleperiod One withdrawal occurs every 50 ± 3 time units. The amount
of the withdrawal is 1000 ± 40.
longperiod One withdrawal occurs every 100± 5 time units. The amount of
the withdrawal is 5000 ± 20.
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The PTDA in Periodic is shown in the
right of Fig. 3. The PTDA matches situations
where, for any two successive withdrawals of
amount more than vp, the duration between
them is within [tp1, tp2]. By the symbolic
monitoring, one can identify the period of the
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periodic withdrawals of amount greater than
vp is in [tp1, tp2]. An example of the validity
domain is shown in the right figure.

The experiment result is in Fig. 5. We observe that the execution time is linear
to the number of the events and the memory usage is more or less constant with
respect to the number of events.

6.4 Discussion

First, a positive result is that our algorithm effectively performs symbolic mon-
itoring on more than 10,000 actions in one or two minutes even though the
PTDAs feature both timing and data parameters. The execution time in Copy
is 50–100 times smaller than that in Dominant and Periodic. This is because
the constraint 3 < tp < 10 in Copy is strict and the size of the configurations
(i. e., Conf o

i and Conf u
i in Algorithm 1) is small. Another positive result is that

in all of the benchmarks, the execution time is linear and the memory usage is
more or less constant in the size of the input word. This is because the size of
configurations (i. e., Conf o

i and Conf u
i in Algorithm 1) is bounded due to the

following reason. In Dominant, the loop in �1 of the PTDA is deterministic, and
because of the guard c− tp1 ∈ (50, 100) in the edge from �1 to �2, the number of
the loop edges at �1 in an accepting run is bounded (if the duration between two
continuing actions are bounded as in the current setting). Therefore, |Conf o

i |
and |Conf u

i | in Algorithm 1 are bounded. The reason is similar in Copy, too.
In Periodic, since the PTDA is deterministic and the valuations of the amount
of the withdrawals are in finite number, |Conf o

i | and |Conf u
i | in Algorithm 1 are

bounded.
It is clear that we can design ad-hoc automata for which the execution time

of symbolic monitoring can grow much faster (e.g., exponential in the size of
input word). However, experiments showed that our algorithm monitors various
interesting properties in a reasonable time.

Copy and Dominant use data and timing parameters as well as memory
and aggregation; from Table 1, no other monitoring tool can compute the valua-
tions satisfying the specification. We however used the parametric timed model
checker IMITATOR [3] to try to perform such a synthesis, by encoding the input
log as a separate automaton; but IMITATOR ran out of memory (on a 3.75 GiB
RAM computer) for Dominant with |w| = 2000, while SyMon terminates in
14 s with only 6.9 MiB for the same benchmark. Concerning Periodic, the only
existing work that can possibly accommodate this specification is [7]. While the
precise performance comparison is interesting future work (their implementation
is not publicly available), we do not expect our implementation be vastly out-
performed: in [7], their tool times out (after 10 min) for a simple specification
(“E[0,s2]G[0,s1](x < p)”) and a signal discretized by only 128 points.

For those problem instances which MonPoly and DejaVu can accommo-
date (which are simpler and less parametrized than our benchmarks), they tend
to run much faster than ours. For example, in [26], it is reported that they can
process a trace of length 1,100,004 in 30.3 s. The trade-off here is expressivity: for
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example, DejaVu does not seem to accommodate Dominant, because DejaVu
does not allow for aggregation. We also note that, while SyMon can be slower
than MonPoly and DejaVu, it is fast enough for many scenarios of real-world
online monitoring.

7 Conclusion and Perspectives

We proposed a symbolic framework for monitoring using parameters both in data
and time. Logs can use timestamps and infinite domain data, while our monitor
automata can use timing and variable parameters (in addition to clocks and
local variables). In addition, our online algorithm can answer symbolically, by
outputting all valuations (and possibly log segments) for which the specification
is satisfied or violated. We implemented our approach into a prototype SyMon
and experiments showed that our tool can effectively monitor logs of dozens of
thousands of events in a short time.

Perspectives. Combining the BDDs used in [26] with some of our data types
(typically strings) could improve our approach by making it even more symbolic.
Also, taking advantage of the polarity of some parameters (typically the timing
parameters, in the line of [17]) could improve further the efficiency.

We considered infinite domains, but the case of finite domains raises inter-
esting questions concerning result representation: if the answer to a property is
“neither a nor b”, knowing the domain is {a, b, c}, then the answer should be c.
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Abstract. Stochastic model checking is a technique for analyzing systems that
possess probabilistic characteristics. However, its scalability is limited as proba-
bilistic models of real-world applications typically have very large or infinite state
space. This paper presents a new infinite state CTMC model checker, STAMINA,
with improved scalability. It uses a novel state space approximation method to
reduce large and possibly infinite state CTMC models to finite state representa-
tions that are amenable to existing stochastic model checkers. It is integrated with
a new property-guided state expansion approach that improves the analysis accu-
racy. Demonstration of the tool on several benchmark examples shows promising
results in terms of analysis efficiency and accuracy compared with a state-of-the-
art CTMC model checker that deploys a similar approximation method.

Keywords: Stochastic model checking · Infinite-state · Markov chains

1 Introduction

Stochastic model checking is a formal method that designers and engineers can use to
determine the likelihood of safety and liveness properties. Checking properties using
numerical model checking techniques requires enumerating the state space of the sys-
tem to determine the probability that the system is in any given state at a desired
time [17]. Real-world applications often have very large or even infinite state spaces.

Numerous state representation, reduction, and approximation methods have been
proposed. Symbolic model checking based on multi-terminal binary decision diagrams
(MTBDDs) [23] has achieved success in representing large Markov Decision Process
(MDP) models with a few distinct probabilistic choices at each state, e.g., the shared
coin protocol [3]. MTBDDs, however, are often inefficient for models with many differ-
ent and distinct probability/rate values due to the inefficient representation of solution
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vectors. Continuous-time Markov chain (CTMC) models, whose state transition rate is a
function of state variables, generally contain many distinct rate values. As a result, sym-
bolic model checkers can run out of memory while verifying a typical CTMC model
with as few as 73,000 states [23]. State reduction techniques, such as bisimulation min-
imization [7,8,14], abstraction [6,12,14,20], symmetry reduction [5,16], and partial
order reduction [9] have been mainly extended to discrete-time, finite-state probabilis-
tic systems. The three-valued abstraction [14] can reduce large, finite-state CTMCs. It
may, however, provide inconclusive verification results due to abstraction.

To the best of our knowledge, only a few tools can analyze infinite-state probabilistic
models, namely, STAR [19] and INFAMY [10]. The STAR tool primarily analyzes bio-
chemical reaction networks. It approximates solutions to the chemical master equation
(CME) using the method of conditional moments (MCM) [11] that combines moment-
based and state-based representations of probability distributions. This hybrid approach
represents species with low concentrations using a discrete stochastic description and
numerically integrates a small master equation using the fourth order Runge-Kutta
method over a small time interval [2]; and solves a system of conditional moment equa-
tions for higher concentration species, conditioned on the low concentration species.
This method has been optimized to drop unlikely states and add likely states on-the-fly.
STAR relies on a well-structured underlying Markov process with small sensitivity on
the transient distribution. Also, it mainly reports state reachability probabilities, instead
of checking a given probabilistic property. INFAMY is a truncation-based approach that
explores the model’s state space up to a certain finite depth k. The truncated state space
still grows exponentially with respect to exploration depth. Starting from the initial
state, breadth-first state search is performed up to a certain finite depth. The error prob-
ability computed during the model checking depends on the depth of state exploration.
Therefore, higher exploration depth generally incurs lower error probability.

This paper presents a new infinite-state stochastic model checker, STochastic
Approximate Model-checker for INfinite-state Analysis (STAMINA). Our tool also takes
a truncation-based approach. In particular, it maintains a probability estimate of each
path being explored in the state space, and when the currently explored path probabil-
ity drops below a specified threshold, it halts exploration of this path. All transitions
exiting this state are redirected to an absorbing state. After all paths have been explored
or truncated, transient Markov chain analysis is applied to determine the probability of
a transient property of interest specified using Continuous Stochastic Logic (CSL) [4].
The calculated probability forms a lower bound on the probability, while the upper
bound also includes the probability of the absorbing state. The actual probability of the
CSL property is guaranteed to be within this range. An initial version of our tool and
preliminary results are reported in [22]. Since that paper, our tool has been tightly inte-
grated within the PRISM model checker [18] to improve performance, and we have also
developed a new property-guided state expansion technique to expand the state space
to tighten the reported probability range incrementally. This paper reports our results,
which show significant improvement on both efficiency and verification accuracy over
several non-trivial case studies from various application domains.
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2 STAMINA

Figure 1 presents the architecture of STAMINA. Based on a user-specified probability
threshold κ (kappa), it first constructs a finite-state CTMC model C�κ from the original
infinite-state CTMC model C using the state space approximation method presented in
Sect. 2.1. C�κ is then checked using the PRISM explicit-state model checker against a
given CSL property P∼p(φ), where ∼∈ {<, >, �, �} and p ∈ [0, 1] (for cases where
it is desired that a predicate be true within a certain probability bound) or P=?(φ) (for
cases where it is desired that the exact probability of the predicate being true be calcu-
lated). Lower- and upper-bound probabilities that φ holds, namely, Pmin and Pmax, are
then obtained, and their difference, i.e., (Pmax −Pmin), is the probability accumulated
in the absorbing state xabs which abstracts all the states not included in the current state
space. If p ∈ [Pmin, Pmax], it is not known whether P∼p(φ) holds. If exact probability
is of interest and the probability range is larger than the user-defined precision ε, i.e.,
(Pmax − Pmin) > ε, then the method does not give a meaningful result.

Fig. 1. Architecture of STAMINA.

For an inconclusive verification result from the previous step, STAMINA applies
a property-guided approach, described in Sect. 2.2, to further expand C�κ , provided
P∼p(φ) is a non-nested “until” formula; otherwise, it uses the previous method to
expand the state space. Note that κ also drops by the reduction factor κr to enable
states that were previously ignored due to a low probability estimate to be included in
the current state expansion. The expanded CTMC model C�κ is then checked to obtain a
new probability bound [Pmin, Pmax]. This iterative process repeats until one of the fol-
lowing conditions holds: (1) the target probability p falls outside the probability bound
[Pmin, Pmax], (2) the probability bound is sufficiently small, i.e, (Pmax − Pmin) < ε,
or (3) a maximal number of iterations N has been reached (r � N ).

2.1 State Space Approximation

The state space approximation method [22] truncates the state space based on a user-
specified reachability threshold κ. During state exploration, the reachability-value func-
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tion, κ̂ : X → R
+, estimates the probability of reaching a state on-the-fly, and is com-

pared against κ to determine whether the state search should terminate. Only states with
a higher reachability-value than the reachability threshold are explored further.

Figure 2 illustrates the standard breadth first search (BFS) state exploration for
reachability threshold κ = 0.25. It starts from the initial state whose reachability-value
i.e., κ̂(x0), is initialized to 1.0 as shown in Fig. 2a. In the first step, two new states
x1 and x4 are generated and their reachability-values are 0.8 and 0.2, respectively,
as shown in Fig. 2b. The reachability-value in x0 is distributed to its successor states,
based on the probability of outgoing transitions from x0 to its successor state. For the
next step, only state x1 is scheduled for exploration because κ̂(x1) ≥ κ. Note that the
transition from x4 to x0 is executed because x0 is already in the explored set. Expand-
ing x1 leads to two new states, namely x2 and x5 as shown in Fig. 2c, from which only
x5 is scheduled for further exploration. This leads to the generation of x6 and x9 shown
in Fig. 2d. State exploration terminates after Fig. 2e since both newly generated states
have reachability-values less than 0.25. States x2, x4, x6 and x9 are marked as termi-
nal states. During state exploration, the reachability-value update is performed every
time a new incoming path is added to a state because a new incoming path can add
its contribution to the state, potentially bringing the reachability-value above κ, which
in turn changes a terminal state to be non-terminal. When the truncated CTMC model
C�κ is analyzed, it introduces some error in the probability value of the property under
verification, because of leakage the probability (i.e., cumulative path probabilities of
reaching states not included in the explored state space) during the CTMC analysis. To

Fig. 2. State space approximation.
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account for probability loss, an abstract absorbing state xabs is created as the sole suc-
cessor state for all terminal states on each truncated path. Figure 2e shows the addition
of the absorbing state.

2.2 Property Based State Space Exploration

This paper introduces a property-guided state expansion method, in order to efficiently
obtain a tightened probability bound. Since all non-nested CSL path formulas φ (except
those containing the “next” operator) derive from the “until” formula, Φ UI Ψ , con-
struction of the set of terminal states for further expansion boils down to eliminating
states that are known to satisfy or dissatisfy Φ U Ψ . Given a state graph, a path starting
from the initial state can never satisfy Φ U Ψ , if it includes a state satisfying ¬Φ ∧ ¬Ψ .
Also, if a path includes a state satisfying Ψ , satisfiability of Φ U Ψ can be determined
without further expanding this path beyond the first Ψ -state. Our property-guided state
space expansion method identifies the path prefixes, from which satisfiability of Φ U Ψ
can be determined, and shortens them by making the last state of each prefix absorbing
based on the satisfiability of (¬Φ∨Ψ). Only the non-absorbing states whose path prob-
ability is greater than the state probability estimate threshold κ are expanded further.
For detailed algorithms of STAMINA, readers are encouraged to read [21].

3 Results

This section presents results on the following case studies to illustrate the accuracy and
efficiency of STAMINA: a genetic toggle switch [20,22]; the following examples from
the PRISM benchmark suite [15]: grid world robot, cyclic server polling system, and
tandem queuing network; and the Jackson queuing network from INFAMY case stud-
ies [1]. All case studies are evaluated on STAMINA and INFAMY, except the genetic
toggle switch 1. Experiments are performed on a 3.2 GHz AMD Debian Linux PC with
six cores and 64 GB of RAM. For all experiments, the maximal number of iterations N
is set to 10, and the reduction factor κr is set to 1000. All experiments terminate due
to (Pmax − Pmin) < ε, where ε = 10−3, before they reach N . STAMINA is freely
available at: https://github.com/formal-verification-research/stamina.

We compare the runtime, state size, and verification results between STAMINA
and INFAMY using the same precision ε = 10−3. For all tables in this section, col-
umn κ reports the probability estimate threshold used to terminate state generation in
STAMINA. The state space size is listed in column |G |(K), where K indicates one
thousand states. Column T (C/A) reports the state space construction (C) and analy-
sis (A) time in seconds. For STAMINA, the total construction and analysis time is the
cumulation of runtime for all κ values for a model configuration. Columns Pmin and
Pmax list the lower and upper probability bounds for the property under verification,
and column P lists the single probability value (within the precision ε) reported by
INFAMY. We select the best runtime reported by three configurations of INFAMY. The
improvement in state size (column |G |(X)) and runtime (column T (%)) are represented

1 INFAMY generates arithmetic errors on the genetic toggle switch model.

https://github.com/formal-verification-research/stamina
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by the ratio of state count generated by INFAMY to that of STAMINA (higher is better)
and percentage improvement in runtime (higher is better), respectively.

Genetic Toggle Switch. The genetic toggle switch circuit model has two inputs, aTc
and IPTG. It can be set to the OFF state by supplying it with aTc and can be set to
the ON state by supplying it with IPTG [20]. Two important properties for a toggle
switch circuit are the response time and the failure rate. The first experiments set IPTG
to 100 to measure the toggle switch’s response time. It should be noted that the input
value of 100 molecules of IPTG is chosen to ensure that the circuit switches to the
ON state. The later experiments initialize IPTG to 0 to compute the failure rate, i.e.,
the probability that the circuit changes state erroneously within a cell cycle of 2, 100 s
(an approximation of the cell cycle in E. coli [24]). Initially, LacI is set to 60 and
TetR is set to 0 for both experiments. The CSL property used for both experiments,
P=? [true U�2100 (TetR > 40 ∧ LacI < 20)], describes the probability of the
circuit switching to the ON state within a cell cycle of 2, 100 s. The ON state is defined
as LacI below 20 and TetR above 40 molecules.

Table 1. Verification results for genetic toggle switch.

IPTG STAMINA

κ |G | T (C/A) Pmin Pmax Remark

100 10−3 1, 127 0.15/0.67 0.000000 0.999671 Property guided

10−6 4, 461 0.43/2.84 0.966947 0.992908

10−9 7, 163 0.43/5.25 0.991738 0.991797

100 10−6 5, 171 0.17/1.90 0.977942 0.992850 Property agnostic

10−9 8, 908 0.18/3.74 0.991739 0.991797

0 10−3 182 0.05/0.07 0.000000 0.697500 Property guided

10−6 2, 438 0.16/1.08 0.008814 0.060424

10−9 4, 284 0.09/2.12 0.013097 0.013609

0 10−6 2, 446 0.16/1.05 0.009169 0.060420 Property agnostic

10−9 4, 820 0.13/2.13 0.013097 0.013609

The property-agnostic state space is generated with the probability estimate thresh-
old κ = 10−3. Table 1 shows large probability bounds: [0, 0.999671] for IPTG = 100
and [0, 0.6975] for IPTG = 0. It is obvious that they are significantly inaccurate w.r.t.
the precision ε of 10−3. The κ is then reduced to 10−6 and state generation switches
to the property-guided state expansion mode, where the CSL property is used to guide
state exploration, based on the previous state graph. Each state expansion step reduces
the κ value by a factor of κr = 1000. To measure the effectiveness of the property-
guided state expansion approach, we compare state graphs generated with and without
the property-guided state expansion, as indicated by the “property agnostic” and “prop-
erty guided” rows in the table. Property-guided state expansion reduces the size of the
state space without losing the analysis precision for the same value of κ. Specifically,
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the state expansion approach reduces the state space by almost 20% for the response
rate experiment.

Robot World. This case study considers a robot moving in an n-by-n grid and a janitor
moving in a larger grid Kn-by-Kn, where the constant K is used to significantly scale
up the state space. The robot starts from the bottom left corner to reach the top right
corner. The janitor moves around randomly. Either the robot or janitor can occupy one
grid location at any given time. The robot also randomly communicates with the base
station. The property of interest is the probability that the robot reaches the top right
corner within 100 time units while periodically communicating with the base station,
encoded as P=? [ (P�0.5 [ true U�7 communicate ]) U�100 goal ].

Table 2 provides a comparison of results for K = 1024, 64 and n = 64, 32. For
smaller grid size i.e, 32-by-32, the robot can reach the goal with a high probability of
97.56%. Where as for a larger value of n = 64 and K = 64, the robot is not able to
reach the goal with considerable probability. STAMINA generates precise results that
are similar to INFAMY, while exploring less than half of states with shorter runtime.

Table 2. Comparison between STAMINA and INFAMY.

Model Params STAMINA INFAMY Improvement

|G | (K) T (C/A) Pmin Pmax |G | (K) T (C/A) P |G | (X)T (%)

Robot (n/K) 32/64 696 41/279 0.975 0.975 1, 591 492/18 0.975 2.3 37.3

32/1024 696 41/258 0.975 0.975 1, 591 501/18 0.975 2.3 42.4

64/64 2, 273 135/669 1.46e−4 1.68e−4 5, 088 1, 625/53 1.5e−4 2.2 52.1

64/1024 2, 273 132/621 1.46e−4 1.68e−4 5, 088 1, 625/53 1.5e−4 2.2 55.2

Jackson (N/λ) 4/5 201 22/51 0.865 0.865 635 109/5 0.865 3.2 36.1

5/5 2, 539 990/996 0.819 0.819 7, 029 1668/108 0.819 2.8 −11.8

Polling (N) 12 19 3/21 1.0 1.0 74 1/2 1.0 3.9 −732.2

16 57 18/70 1.0 1.0 1, 573 5/54 1.0 27.6 −48.2

20 113 30/77 1.0 1.0 31, 457 151/1347 1.0 278.4 92.9

Tandem (c) 2047 33 1/41 0.498 0.498 2, 392 3/38 0.498 72.5 −1.4

4095 66 1/141 0.499 0.499 9, 216 11/265 0.499 139.6 48.7

Jackson Queuing Network. A Jackson queuing network consists of N interconnected
nodes (queues) with infinite queue capacity. Initially, all queues are considered empty.
Each station is connected to a single server which distributes the arrived jobs to differ-
ent stations. Customers arrive as a Poisson stream with intensity λ for N queues. The
model is taken from [10,13]. We compute the probability that, within 10 time units, the
first queue has more that 3 jobs and the second queue has more than 5 jobs, given by
P=? [ true U�10 (jobs 1 � 4 ∧ jobs 2 � 6)].

Table 2 summarizes the results for this model. STAMINA uses roughly equal time
to construct and analyze the model for N = 5, whereas INFAMY takes significantly
longer to construct the state space, making it slower in overall runtime. For N = 4,
STAMINA is faster in generating verification results In both configurations, STAMINA
only explores approximately one third of the states explored by INFAMY.
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Cyclic Server Polling System. This case study is based on a cyclic server attending
N stations. We consider the probability that station one is polled within 10 time units,
P=? [ true U�10 station1 polled ]. Table 2 summarizes the verification results for
N = 12, 16, 20. The probability of station one being polled within 10 s is 1.0 for
all configurations. Similar to previous case studies, STAMINA explores significantly
smaller state space. The advantage of STAMINA in terms of runtime starts to manifest
as the size of model (and hence the state space size) grows.

Tandem Queuing Network. A tandem queuing network is the simplest interconnected
queuing network of two finite capacity (c) queues with one server each [18]. Customers
join the first queue and enter the second queue immediately after completing the service.
This paper considers the probability that the first queue becomes full in 0.25 time units,
depicted by the CSL property P=? [ true U�0.25 queue1 full ].

As seen in Table 2, there is almost fifty percent probability that the first queue is full
in 0.25 s irrespective of the queue capacity. As in the polling server, STAMINA explores
significantly smaller state space. The runtime is similar for model with smaller queue
capacity (c = 2047). But the runtime improves as the queue capacity is increased.

4 Conclusions

This paper presents an infinite-state stochastic model checker, STAMINA, that uses
path probability estimates to generate states with high probability and truncate unlikely
states based on a specified threshold. Initial state construction is property agnostic, and
the state space is used for stochastic model checking of a given CSL property. The
calculated probability forms a lower and upper bound on the probability for the CSL
property, which is guaranteed to include the actual probability. Next, if finer precision of
the probability bound is required, it uses a property-guided state expansion technique to
explore states to tighten the reported probability range incrementally. Implementation
of STAMINA is built on top of the PRISM model checker with tight integration to
its API. Performance and accuracy evaluation is performed on case studies taken from
various application domains, and shows significant improvement over the state-of-art
infinite-state stochastic model checker INFAMY. For future work, we plan to investigate
methods to determine the reduction factor on-the-fly based on the probability bound.
Another direction is to investigate heuristics to further improve the property-guided
state expansion, as well as, techniques to dynamically remove unlikely states.
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Abstract. We develop a compositional, algebraic theory of skipping
refinement, as well as local proof methods to effectively analyze the cor-
rectness of optimized reactive systems. A verification methodology based
on refinement involves showing that any infinite behavior of an optimized
low-level implementation is a behavior of the high-level abstract speci-
fication. Skipping refinement is a recently introduced notion to reason
about the correctness of optimized implementations that run faster than
their specifications, i.e., a step in the implementation can skip multiple
steps of the specification. For the class of systems that exhibit bounded
skipping, existing proof methods have been shown to be amenable to
mechanized verification using theorem provers and model-checkers. How-
ever, reasoning about the correctness of reactive systems that exhibit
unbounded skipping using these proof methods requires reachability
analysis, significantly increasing the verification effort. In this paper, we
develop two new sound and complete proof methods for skipping refine-
ment. Even in presence of unbounded skipping, these proof methods
require only local reasoning and, therefore, are amenable to mechanized
verification. We also show that skipping refinement is compositional, so it
can be used in a stepwise refinement methodology. Finally, we illustrate
the utility of the theory of skipping refinement by proving the correctness
of an optimized event processing system.

1 Introduction

Reasoning about the correctness of a reactive system using refinement involves
showing that any (infinite) observable behavior of a low-level, optimized imple-
mentation is a behavior allowed by the simple, high-level abstract specification.
Several notions of refinement like trace containment, (bi)simulation refinement,
stuttering (bi)simulation refinement, and skipping refinement [4,10,14,20,22]
have been proposed in the literature to directly account for the difference in the
abstraction levels between a specification and an implementation. Two attributes
of crucial importance that enable us to effectively verify complex reactive sys-
tems using refinement are: (1) Compositionality: this allows us to decompose a
monolithic proof establishing that a low-level concrete implementation refines
c© The Author(s) 2019
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a high-level abstract specification into a sequence of simpler refinement proofs,
where each of the intermediate refinement proof can be performed independently
using verification tools best suited for it; (2) Effective proof methods: analyzing
the correctness of a reactive system requires global reasoning about its infinite
behaviors, a task that is often difficult for verification tools. Hence it is crucial
that the refinement-based methodology also admits effective proof methods that
are amenable for mechanized reasoning.

It is known that the (bi)simulation refinement and stuttering (bi)simulation
refinement are compositional and support the stepwise refinement methodol-
ogy [20,24]. Moreover, the proof methods associated with them are local, i.e.,
they only require reasoning about states and their successors. Hence, they are
amenable to mechanized reasoning. However, to the best of our knowledge, it
is not known if skipping refinement is compositional. Skipping refinement is a
recently introduced notion of refinement for verifying the correctness of opti-
mized implementations that can “execute faster” than their simple high-level
specifications, i.e., a step in the implementation can skip multiple steps in the
specification. Examples of such systems include superscalar processors, concur-
rent and parallel systems and optimizing compilers. Two proof methods, reduced
well-founded skipping simulation and well-founded skipping simulation have been
introduced to reason about skipping refinement for the class of systems that
exhibit bounded skipping [10]. These proof methods were used to verify the cor-
rectness of several systems that otherwise were difficult to automatically verify
using current model-checkers and automated theorem provers. However, when
skipping is unbounded, the proof methods in [10] require reachability analy-
sis, and therefore are not amenable to automated reasoning. To motivate the
need for alternative proof methods for effective reasoning, we consider the event
processing system (EPS), discussed in [10].

1.1 Motivating Example

An abstract high-level specification, AEPS, of an event processing system is
defined as follows. Let E be a set of events and V be a set of state variables.
A state of AEPS is a triple 〈t,Sch, St〉, where t is a natural number denoting
the current time; Sch is a set of pairs 〈e, te〉, where e ∈ E is an event scheduled
to be executed at time te ≥ t; St is an assignment to state variables in V . The
transition relation for the AEPS system is defined as follows. If at time t there is
no 〈e, t〉 ∈ Sch, i.e., there is no event scheduled to be executed at time t, then t
is incremented by 1. Otherwise, we (nondeterministically) choose and execute an
event of the form 〈e, t〉 ∈ Sch. The execution of an event may result in modifying
St and also removing and adding a finite number of new pairs 〈e′, t′〉 to Sch.
We require that t′ > t. Finally, execution involves removing the executed event
〈e, t〉 from Sch. Now consider, tEPS, an optimized implementation of AEPS. As
before, a state is a triple 〈t,Sch, St〉. However, unlike the abstract system which
just increments time by 1 when there are no events scheduled at the current
time, the optimized system finds the earliest time in future an event is scheduled
to execute. The transition relation of tEPS is defined as follows. An event (e, te)
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with the minimum time is selected, t is updated to te and the event e is executed,
as in the AEPS. Consider an execution of AEPS and tEPS in Fig. 1. (We only
show the prefix of executions). Suppose at t = 0, Sch be {(e1, 0)}. The execution
of event e1 add a new pair (e2, k) to Sch, where k is a positive integer. AEPS
at t = 0, executes the event e1, adds a new pair (e2, k) to Sch, and updates t
to 1. Since no events are scheduled to execute before t = k, the AEPS system
repeatedly increments t by 1 until t = k. At t = k, it executes the event e2. At
time t = 0, tEPS executes e1. The next event is scheduled to execute at time
t = k; hence it updates in one step t to k. Next, in one step it executes the event
e2. Note that tEPS runs faster than AEPS by skipping over abstract states when
no event is scheduled for execution at the current time. If k > 1, the step from s2

to s3 in tEPS neither corresponds to stuttering nor to a single step of the AEPS.
Therefore notions of refinement based on stuttering simulation and bisimulation
cannot be used to show that tEPS refines AEPS.

Fig. 1. Event simulation system

It was argued in [10] that skipping refinement is an appropriate notion of
correctness that directly accounts for the skipping behavior exhibited by tEPS.
Though, tEPS was used to motivate the need for a new notion of refinement,
the proof methods proposed in [10] are not effective to prove the correctness
of tEPS. This is because, execution of an event in tEPS may add new events
that are scheduled to execute at an arbitrary time in future, i.e., in general k
in the above example execution is unbounded. Hence, the proof methods in [10]
would require unbounded reachability analysis which often is problematic for
automated verification tools. Even in the particular case when one can a priori
determine an upper bound on k and unroll the transition relation, the proof
methods in [10] are viable for mechanical reasoning only if the upper bound k is
relatively small.

In this paper, we develop local proof methods to effectively analyze the cor-
rectness of optimized reactive systems using skipping refinement. These proof
methods reduce global reasoning about infinite computations to local reasoning
about states and their successor and are applicable even if the optimized imple-
mentation exhibits unbounded skipping. Moreover, we show that the proposed

www.dbooks.org

https://www.dbooks.org/


556 M. Jain and P. Manolios

proof methods are complete, i.e., if a system M1 is a skipping refinement of
M2 under a suitable refinement map, then we can always locally reason about
them. We also develop an algebraic theory of skipping refinement. In particular,
we show that skipping simulation is closed under relational composition. Thus,
skipping refinement aligns with the stepwise refinement methodology. Finally,
we illustrate the benefits of the theory of skipping refinement and the associ-
ated proof methods by verifying the correctness of optimized event processing
systems in ACL2s [3].

2 Preliminaries

A transition system model of a reactive system captures the concept of a state,
atomic transitions that modify state during the course of a computation, and
what is observable in a state. Any system with a well defined operational seman-
tics can be mapped to a labeled transition system.

Definition 1 Labeled Transition System. A labeled transition system (TS)
is a structure 〈S,→, L〉, where S is a non-empty (possibly infinite) set of states,
→⊆ S × S, is a left-total transition relation (every state has a successor), and
L is a labeling function whose domain is S.

Notation: We first describe the notational conventions used in the paper. Func-
tion application is sometimes denoted by an infix dot “.” and is left-associative.
The composition of relation R with itself i times (for 0 < i ≤ ω) is denoted Ri

(ω = N and is the first infinite ordinal). Given a relation R and 1 < k ≤ ω, R<k

denotes
⋃

1≤i<k Ri and R≥k denotes
⋃

ω>i≥k Ri. Instead of R<ω we often write
the more common R+. 	 denotes the disjoint union operator. Quantified expres-
sions are written as 〈Qx : r : t〉, where Q is the quantifier (e.g., ∃,∀,min,

⋃
), x is

a bound variable, r is an expression that denotes the range of variable x (true,
if omitted), and t is a term.

Let M = 〈S,−→, L〉 be a transition system. An M-path is a sequence of states
such that for adjacent states, s and u, s → u. The jth state in an M-path σ is
denoted by σ.j. An M-path σ starting at state s is a fullpath, denoted by fp.σ.s,
if it is infinite. An M-segment, 〈v1, . . . , vk〉, where k ≥ 1 is a finite M-path and
is also denoted by #»v . The length of an M-segment #»v is denoted by | #»v |. Let
INC be the set of strictly increasing sequences of natural numbers starting at
0. The ith partition of a fullpath σ with respect to π ∈ INC, denoted by πσi, is
given by an M-segment 〈σ(π.i), . . . , σ(π(i + 1) − 1)〉.

3 Theory of Skipping Refinement

In this section we first briefly recall the notion of skipping simulation as described
in [10]. We then study the algebraic properties of skipping simulation and show
that a theory of refinement based on it is compositional and therefore can be
used in a stepwise refinement based verification methodology.
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The definition of skipping simulation is based on the notion of matching.
Informally, a fullpath σ matches a fullpath δ under the relation B iff the fullpaths
can be partitioned in to non-empty, finite segments such that all elements in a
segment of σ are related to the first element in the corresponding segment of δ.

Definition 2 smatch [10]. Let M = 〈S,−→, L〉 be a transition system, σ, δ be
fullpaths in M. For π, ξ ∈ INC and binary relation B ⊆ S × S, we define

scorr(B , σ, π, δ, ξ) ≡ 〈∀i ∈ ω :: 〈∀s ∈ πσi :: sBδ(ξ.i)〉〉 and
smatch(B , σ, δ) ≡ 〈∃π, ξ ∈ INC :: scorr(B , σ, π, δ, ξ)〉.

Figure 1 illustrates the notion of matching using our running example: σ is
the fullpath of the concrete system and δ is a fullpath of the absract system.
(The figure only shows the prefix of the fullpaths). The other parameter for
matching is the relation B, which is just the identity function. In order to show
that smatch(B , σ, δ) holds, we have to find π, ξ ∈ INC satisfying the definition.
In Fig. 1, we separate the partitions induced by our choice for π, ξ using −− and
connect elements related by B with . Since all elements of a σ partition are
related to the first element of the corresponding δ partition, scorr(B , σ, π, δ, ξ)
holds, therefore, smatch(B , σ, δ) holds.

Using the notion of matching, skipping simulation is defined as follows. Notice
that skipping simulation is defined using a single transition system; it is easy
to lift the notion defined on a single transition system to one that relates two
transition systems by taking the disjoint union of the transition systems.

Definition 3 Skipping Simulation (SKS). B ⊆ S × S is a skipping simula-
tion on a TS M = 〈S,−→, L〉 iff for all s, w such that sBw, both of the following
hold.

(SKS1) L.s = L.w
(SKS2) 〈∀σ : fp.σ.s : 〈∃δ : fp.δ.w : smatch(B , σ, δ)〉〉
Theorem 1. Let M be a TS. If B is a stuttering simulation (STS) on M then
B is an SKS on M.

Proof: Follows directly from the definitions of SKS and STS [18]. 
�

3.1 Algebraic Properties

We now study the algebraic properties of SKS. We show that it is closed under
arbitrary union. We also show that SKS is closed under relational composition.
The later property is particularly useful since it enables us to use stepwise refine-
ment and to modularly analyze the correctness of complex systems.

Lemma 1. Let M be a TS and C be a set of SKS’s on M. Then G = 〈∪B :
B ∈ C : B〉 is an SKS on M.

Corollary 1. For any TS M, there is a greatest SKS on M.
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Lemma 2. SKS are not closed under negation and intersection.

The following lemma shows that skipping simulation is closed under relational
composition.

Lemma 3. Let M be a TS. If P and Q are SKS’s on M, then R = P ;Q is an
SKS on M.

Proof: To show that R is an SKS on M = 〈S,−→, L〉, we show that for any
s, w ∈ S such that sRw, SKS1 and SKS2 hold. Let s, w ∈ S and sRw. From the
definition of R, there exists x ∈ S such that sPx and xQw. Since P and Q are
SKS’s on M, L.s = L.x = L.w, hence, SKS1 holds for R.

To prove that SKS2 holds for R, consider a fullpath σ starting at s. Since
P and Q are SKSs on M, there is a fullpath τ in M starting at x, a fullpath
δ in M starting at w and α, β, θ, γ ∈ INC such that scorr(P , σ, α, τ, β) and
scorr(Q , τ, θ, δ, γ) hold. We use the fullpath δ as a witness and define π, ξ ∈ INC
such that scorr(R, σ, π, δ, ξ) holds.

We define a function, r, that given i, corresponding to the index of a partition
of τ under β, returns the index of the partition of τ under θ in which the first
element of τ ’s ith partition under β resides. r.i = j iff θ.j ≤ β.i < θ(j + 1). Note
that r is indeed a function, as every element of τ resides in exactly one partition
of θ. Also, since there is a correspondence between the partitions of α and β,
(by scorr(P , σ, α, τ, β)), we can apply r to indices of partitions of σ under α to
find where the first element of the corresponding β partition resides. Note that
r is non-decreasing: a < b ⇒ r.a ≤ r.b.

We define πα ∈ INC, a strictly increasing sequence that will allow us to merge
adjacent partitions in α as needed to define the strictly increasing sequence π on
σ used to prove SKS2. Partitions in π will consist of one or more α partitions.
Given i, corresponding to the index of a partition of σ under π, the function πα
returns the index of the corresponding partition of σ under α.

πα(0) = 0

πα(i) = min j ∈ ω s.t. |{k : 0 < k ≤ j ∧ r.k �= r(k − 1)}| = i

Note that πα is an increasing function, i.e., a < b ⇒ πα(a) < πα(b). We now
define π as follows.

π.i = α(πα.i)

There is an important relationship between r and πα

r(πα.i) = · · · = r(πα(i + 1) − 1)

That is, for all α partitions that are in the same π partition, the initial states of
the corresponding β partitions are in the same θ partition.

We define ξ as follows: ξ.i = γ(r(πα.i)).
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We are now ready to prove SKS2. Let s ∈ πσi. We show that sRδ(ξ.i). By
the definition of π, we have

s ∈ ασπα.i ∨ · · · ∨ s ∈ ασπα(i+1)−1

Hence,

sPτ(β(πα.i)) ∨ · · · ∨ sPτ(β(πα(i + 1) − 1))

Note that by the definition of r (apply r to πα.i):

θ(r(πα.i)) ≤ β(πα.i) < θ(r(πα.i) + 1)

Hence,

τ(β(πα.i))Qδ(γ(r(πα.i))) ∨ · · · ∨ τ(β(πα(i + 1) − 1))Qδ(γ(r(πα(i + 1) − 1)))

By the definition of ξ and the relationship between r and πα described above,
we simplify the above formula as follows.

τ(β(πα.i))Qδ(ξ.i) ∨ · · · ∨ τ(β(πα(i + 1) − 1))Qδ(ξ.i)

Therefore, by the definition of R, we have that sRδ(ξ.i) holds. 
�
Theorem 2. The reflexive transitive closure of an SKS is an SKS.

Theorem 3. Given a TS M, the greatest SKS on M is a preorder.

Proof. Let G be the greatest SKS on M. From Theorem 2, G∗ is an SKS. Hence
G∗ ⊆ G. Furthermore, since G ⊆ G∗, we have that G = G∗, i.e., G is reflexive
and transitive. 
�

3.2 Skipping Refinement

We now recall the notion of skipping refinement [10]. We use skipping simula-
tion, a notion defined in terms of a single transition system, to define skipping
refinement, a notion that relates two transition systems: an abstract transition
system and a concrete transition system. Informally, if a concrete system is a
skipping refinement of an abstract system, then its observable behaviors are also
behaviors of the abstract system, modulo skipping (which includes stuttering).
The notion is parameterized by a refinement map, a function that maps con-
crete states to their corresponding abstract states. A refinement map along with
a labeling function determines what is observable at a concrete state.

Definition 4 Skipping Refinement. Let MA = 〈SA,
A−→, LA〉 and MC =

〈SC ,
C−→, LC〉 be transition systems and let r : SC → SA be a refinement map.

We say MC is a skipping refinement of MA with respect to r, written
MC �r MA, if there exists a binary relation B such that all of the follow-
ing hold.
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1. 〈∀s ∈ SC :: sBr.s〉 and
2. B is an SKS on 〈SC 	 SA,

C−→ 	 A−→,L〉 where L.s = LA(s) for s ∈ SA, and
L.s = LA(r.s) for s ∈ SC .

Next, we use the property that skipping simulation is closed under rela-
tional composition to show that skipping refinement supports modular reasoning
using a stepwise refinement approach. In order to verify that a low-level complex
implementation MC refines a simple high-level abstract specification MA one
proceeds as follows: starting with MA define a sequence of intermediate systems
leading to the final complex implementation MC . Any two successive systems in
the sequence differ only in relatively few aspects of their behavior. We then show
that, at each step in the sequence, the system at the current step is a refinement
of the previous one. Since at each step, the verification effort is focused only on
the few differences in behavior between two systems under consideration, proof
obligations are simpler than the monolithic proof. Note that this methodology
is orthogonal to (horizontal) modular reasoning that infers the correctness of a
system from the correctness of its sub-components.

Theorem 4. Let M1 = 〈S1,
1−→, L1〉, M2 = 〈S2,

2−→, L2〉, and M3 = 〈S3,
3−→, L3〉

be TSs, p : S1 → S2 and r : S2 → S3. If M1 �p M2 and M2 �r M3, then
M1 �p;r M3.

Proof: Since M1 �p M2, we have an SKS, say A, such that 〈∀s ∈ S1 :: sA(p.s)〉.
Furthermore, without loss of generality we can assume that A ⊆ S1 × S2. Simi-
larly, since M2 �r M3, we have an SKS, say B, such that 〈∀s ∈ S2 :: sB(r.s)〉
and B ⊆ S2 × S3. Define C = A;B. Then we have that C ⊆ S1 × S3 and
〈∀s ∈ S1 :: sCr(p.s)〉. Also, from Theorem 2, C is an SKS on 〈S1	S3,

1−→ 	 3−→,L〉,
where L.s = L3(s) if s ∈ S3 else L.s = L3(r(p.s)).

Formally, to establish that a complex low-level implementation MC refines
a simple high-level abstract specification MA, one defines intermediate systems
M1, . . . Mn, where n ≥ 1 and establishes the following: MC = M0 �r0 M1 �r1

. . . �rn−1 Mn = MA. Then from Theorem 4, we have that MC �r MA,
where r = r0; r1; . . . ; rn−1. We illustrate the utility of this approach in Sect. 5 by
proving the correctness of an optimized event processing systems.

Theorem 5. Let M = 〈S,−→, L〉 be a TS. Let M′ = 〈S′,−→′
, L′〉 where S′ ⊆ S,

−→′ ⊆ S′ × S′, −→′
is a left-total subset of −→+, and L′ = L|S′ . Then M′ �I M,

where I is the identity function on S′.

Corollary 2. Let MC = 〈SC ,
C−→, LC〉 and MA = 〈SA,

A−→, LA〉 be TSs, r :
SC → SA be a refinement map. Let M′

C = 〈S′
C ,

C−→′
, L′

C〉 where S′
C ⊆ SC , C−→′

is
a left-total subset of C−→+, and L′

C = LC |S′
C
. If MC �r MA then M′

C �r′ MA,
where r′ is r|S′

C
.

We now illustrate the usefulness of the theory of skipping refinement using
our running example of event processing systems. Consider MPEPS, that uses
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a priority queue to find a non-empty set of events (say Et) scheduled to execute
at the current time and executes them. We allow the priority queue in MPEPS
to be deterministic or nondeterministic. For example, the priority queue may
deterministically select a single event in Et to execute, or based on considerations
such as resource utilization it may execute some subset of events in Et in a single
step. When reasoning about the correctness of MPEPS, one thing to notice is
that there is a difference in the data structures used in the two systems: MPEPS
uses a priority queue to effectively find the next set of events to execute in the
scheduler, while AEPS uses a simple abstract set representation for the scheduler.
Another thing to notice is that MPEPS can “execute faster” than AEPS in
two ways: it can increment time by more than 1 and it can execute more than
one event in a single step. The theory of skipping refinement developed in this
paper enables us to separate out these concerns and apply a stepwise refinement
approach to effectively analyse MPEPS.

First, we account for the difference in the data structures between MPEPS
and AEPS. Towards this we define an intermediate system MEPS that is identi-
cal to MPEPS except that the scheduler in MEPS is now represented as a set of
event-time pairs. Under a refinement map, say p, that extracts the set of event-
time pairs in the priority queue of MPEPS, a step in MPEPS can be matched by
a step in MEPS. Hence, MPEPS �p MEPS. Next we account for the difference
between MEPS and AEPS in the number of events the two systems may execute
in a single step. Towards this, observe that the state space of MEPS and tEPS
are equal and the transition relation of MEPS is a left-total subset of the transi-
tive closure of the transition relation of tEPS. Hence, from Theorem 5, we infer
that MPEPS is a skipping refinement of tEPS using the identity function, say I1,
as the refinement map, i.e., MEPS �I1 tEPS. Next observe that the state spaces
of tEPS and AEPS are equal and the transition relation of tEPS is a left-total
subset of the transitive closure of the transition relation of AEPS. Hence, from
Theorem 5, tEPS is a skipping refinement of AEPS using the identity function,
say I2, as the refinement map, i.e., tEPS �I2 AEPS. Finally, from the transitiv-
ity of skipping refinement (Theorem 4), we conclude that MPEPS �p′ AEPS,
where p′ = p; I1; I2.

4 Mechanised Reasoning

To prove that a transition system MC is a skipping refinement of a transition
system MA using Definition 3, requires us to show that for any fullpath from MC

we can find a matching fullpath from MA. However, reasoning about existence
of infinite sequences can be problematic using automated tools. In this section,
we develop sound and complete local proof methods that are applicable even if a
system exhibits unbounded skipping. We first briefly present the proof methods,
reduced well-founded skipping and well-founded skipping simulation, developed
in [10].

Definition 5 Reduced Well-founded Skipping [10]. B ⊆ S ×S is a reduced
well-founded skipping relation on TS M = 〈S,−→, L〉 iff:
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(RWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RWFSK2) There exists a function, rankt : S × S → W , such that 〈W,≺〉 is

well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :
(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w →+ v : uBv〉〉

Definition 6 Well-founded Skipping [10]. B ⊆ S ×S is a well-founded skip-
ping relation on TS M = 〈S,−→, L〉 iff:

(WFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(WFSK2) There exist functions, rankt : S × S → W , rankl : S × S × S → ω,

such that 〈W,≺〉 is well-founded and

〈∀s,u, w ∈ S : s −→ u ∧ sBw :
(a) 〈∃v : w −→ v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w −→ v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉 ∨
(d) 〈∃v : w →≥2 v : uBv〉〉

Theorem 6 [10]. Let M = 〈S,−→, L〉 be a TS and B ⊆ S × S. The following
statements are equivalent

(i) B is a SKS on M;
(ii) B is a WFSK on M;
(iii) B is a RWFSK on M.

Recall the event processing systems AEPS and tEPS described in Sect. 1.1.
When no events are scheduled to execute at a given time, say t, tEPS increments
time t to the earliest time in future, say k > t, at which an event is scheduled
for execution. Execution of an event can add an event that is scheduled to be
executed at an arbitrary time in future. Therefore, we cannot apriori determine
an upper-bound on k. Using any of the above two proof-methods to reason about
skipping refinement would require unbounded reachability analysis (conditions
RWFSK2b and WFSK2d), often difficult for automated verification tools. To
redress the situation, we develop two new proof methods of SKS; both require
only local reasoning about steps and their successors.

Definition 7 Reduced Local Well-founded Skipping. B ⊆ S ×S is a local
well-founded skipping relation on TS M = 〈S,−→, L〉 iff:

(RLWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(RLWFSK2) There exist functions, rankt : S × S −→ W , rankls : S × S −→ ω

such that 〈W,≺〉 is well founded, and, a binary relation O ⊆ S ×S
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such that

〈∀s, u, w ∈ S : sBw ∧ s → u :
(a) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(b) 〈∃v : w → v : uOv〉〉

and
〈∀x, y ∈ S : xOy :

(c) xBy ∨
(d) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Observe that to prove that a relation is an RLWFSK on a transition system, it
is sufficient to reason about single steps of the transition system. Also, note that
RLWFSK does not differentiate between skipping and stuttering on the right.
This is based on an earlier observation that skipping subsumes stuttering. We
used this observation to simplify the definition. However, it can often be useful to
differentiate between skipping and stuttering. Next we define local well-founded
skipping simulation (LWFSK), a characterization of skipping simulation that
separates reasoning about skipping and stuttering on the right (Fig. 2).

Fig. 2. Local well-founded skipping simulation (orange line indicates the states are
related by B and blue line indicate the states are related by O) (Color figure online)

Definition 8 Local Well-founded Skipping. B ⊆ S × S is a local well-
founded skipping relation on TS M = 〈S,−→, L〉 iff:

(LWFSK1) 〈∀s, w ∈ S : sBw : L.s = L.w〉
(LWFSK2) There exist functions, rankt : S ×S −→ W , rankl : S ×S ×S −→ ω,

and rankls : S × S −→ ω such that 〈W,≺〉 is well founded, and, a
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binary relation O ⊆ S × S such that

〈∀s, u, w ∈ S : sBw ∧ s → u :
(a) 〈∃v : w → v : uBv〉 ∨
(b) (uBw ∧ rankt(u,w) ≺ rankt(s, w)) ∨
(c) 〈∃v : w → v : sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉∨
(d) 〈∃v : w → v : uOv〉〉

and
〈∀x, y ∈ S : xOy :

(e) xBy ∨
(f) 〈∃z : y → z : xOz ∧ rankls(z, x) < rankls(y, x)〉〉

Like RLWFSK, to prove that a relation is a LWFSK, reasoning about single
steps of the transition system suffices. However, LWFSK2b accounts for stutter-
ing on the right, and LWFSK2d along with LWFSK2e and LWFSK2f accounts
for skipping on the right. Also observe that states related by O are not required
to be labeled identically and may have no observable relationship to the states
related by B.

Soundness and Completeness. We next show that RLWFSK and LWFSK
in fact completely characterize skipping simulation, i.e., RLWFSK and LWFSK
are sound and complete proof rules. Thus if a concrete system MC is a skipping
refinement of MA, one can always effectively reason about it using RLWFSK
and LWFSK.

Theorem 7. Let M = 〈S,−→, L〉 be a transition system and B ⊆ S × S. The
following statements are equivalent:

(i) B is an SKS on M;
(ii) B is a WFSK on M;
(iii) B is an RWFSK on M;
(iv) B is an RLWFSK on M;
(v) B is a LWFSK on M;

Proof: The equivalence of (i), (ii) and (iii) follows from Theorem 6. That (iv)
implies (v) follows from the simple observation that RLWFSK2 implies LWFSK2.
To complete the proof, we prove the following two implications. We prove below
that (v) implies (ii) in Lemma 4 and that (iii) implies (iv) in Lemma 5. 
�
Lemma 4. If B is a LWFSK on M, then B is a WFSK on M.

Proof. Let B be a LWFSK on M. WFSK1 follows directly from LWFSK1. Let
rankt , rankl , and rankls be functions, and O be a binary relation such that
LWFSK2 holds. To show that WFSK2 holds, we use the same rankt and rankl
functions and let s, u, w ∈ S and s → u and sBw. LWFSK2a, LWFSK2b and
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LWFSK2c are equivalent to WFSK2a, WFSK2b and WFSK2c, respectively, so
we show that if only LWFSK2d holds, then WFSK2d holds. Since LWFSK2d
holds, there is a successor v of w such that uOv. Since uOv holds, either
LWFSK2e or LWFSK2f must hold between u and v. However, since LWFSK2a
does not hold, LWFSK2e cannot hold and LWFSK2f must hold, i.e., there exists
a successor v′ of v such that uOv′ ∧ rankls(v′, u) < rankls(v, u). So, we need
a path of at least 2 steps from w to satisfy the universally quantified con-
straint on O. Let us consider an arbitrary path, δ, such that δ.0 = w, δ.1 = v,
δ.2 = v′, uOδ.i, LWFSK2e does not hold between u and δ.i for i ≥ 1, and
rankls(δ.(i + 1), u) < rankls(δ.i, u). Notice that any such path must be finite
because rankls is well founded. Hence, δ is a finite path and there exists a k ≥ 2
such that LWFSK2e holds between u and δ.k. Therefore, WFSK2d holds, i.e.,
there is a state in δ reachable from w in two or more steps which is related to u
by B. 
�
Lemma 5. If B is RWFSK on M, then B is an RLWFSK on M.

Proof. Let B be an RWFSK on M. RLWFSK1 follows directly from RWFSK1.
To show that RLWFSK2 holds, we use any rankt function that can be used to
show that RWFSK2 holds. We define O as follows.

O = {(u, v) : 〈∃z : v →+ z : uBz〉}

We define rankls(u, v) to be the minimal length of a M-segment that starts at
v and ends at a state, say z, such that uBz, if such a segment exists and 0
otherwise. Let s, u, w ∈ S, sBw and s → u. If RWFSK2a holds between s, u,
and w, then RLWFSK2a also holds. Next, suppose that RWFSK2a does not hold
but RWFSK2b holds, i.e., there is an M-segment 〈w, a, . . . , v〉 such that uBv;
therefore, uOa and RLWFSK2b holds.

To finish the proof, we show that O and rankls satisfy the constraints imposed
by the second conjunct in RLWFSK2. Let x, y ∈ S, xOy and x �B y. From the
definition of O, we have that there is an M-segment from y to a state related to x
by B; let #»y be such a segment of minimal length. From definition of rankls, we have
rankls(y, x) = | #»y |. Observe that y cannot be the last state of #»y and | #»y | ≥ 2. This
is because the last state in #»y must be related to x by B, but from the assumption
we know that x �B y. Let y′ be a successor of y in #»y . Clearly, xOy′; therefore,
rankls(y′, x) < | #»y |−1, since the length of a minimal M-segment from y′ to a state
related to x by B, must be less or equal to | #»y | − 1. 
�

5 Case Study (Event Processing System)

In this section, we analyze the correctness of an optimized event processing
system (PEPS) that uses a priority queue to find an event scheduled to execute
at any given time. We show that PEPS refines AEPS, a simple event processing
system described in Sect. 1. Our goal is to illustrate the benefits of the theory
of skipping refinement and the associated local proof methods developed in the
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paper. We use ACL2s [3], an interactive theorem prover, to define the operational
semantics of the systems and mechanize a proof of its correctness.

Operational Semantics of PEPS: A state of PEPS system is a triple
〈tm, otevs, mem〉, where tm is a natural number denoting current time, otevs is a
set of timed-event pairs denoting the scheduler that is ordered with respect to a
total order te-< on timed-event pairs, and mem is a collection of variable-integer
pairs denoting the shared memory. The transition function of PEPS is defined
as follows: if there are no events in otevs, then PEPS just increments the cur-
rent time by 1. Otherwise, it picks the first timed-event pair, say 〈e, t〉 in otevs,
executes it and updates the time to t. The execution of an event may result in
adding new timed-events to the scheduler, removing existing timed-events from
the scheduler and updating the memory. Finally, the executed timed-event is
removed from the scheduler. This is a simple, generic model of an event pro-
cessing system. Notice that the ability to remove events can be used to specify
systems with preemption [23]: an event scheduled to execute at some future time
may be canceled (and possibly rescheduled to be executed at a different time in
future) as a result of the execution of an event that preempts it. Notice that, for
a given total order, PEPS is a deterministic system.

The execution of an event is modeled using three constrained functions that
take as input an event, ev, a time, t, and a memory, mem: step-events-add
returns the set of new timed-event pairs to add to the scheduler; step-events-rm
returns the set of timed-event pairs to remove from the scheduler; and
step-memory returns a memory updated as specified by the event. We place
minimal constraints on these functions. For example, we only require that
step-events-add returns a set of event-time pairs of the form 〈e, te〉 where
te is greater than the current time t. The constrained functions are defined using
the encapsulate construct in ACL2 and can be instantiated with any executable
definitions that satisfy these constraints without affecting the proof of correct-
ness of PEPS. Moreover, note that the particular choice of the total order on
timed-event pairs is irrelevant to the proof of correctness of PEPS.

Stepwise Refinement: We show that PEPS refines AEPS using a stepwise
refinement approach: first we define an intermediate system HPEPS obtained by
augmenting PEPS with history information and show that PEPS is a simulation
refinement of HPEPS. Second, we show that HPEPS is a skipping refinement of
AEPS. Finally, we appeal to Theorems 1 and 4 to infer that PEPS refines AEPS.
Note that the compositionality of skipping refinement enables us to decompose
the proof into a sequence of refinement proofs, each of which is simpler. Moreover,
the history information in HPEPS is helpful in defining the witnessing binary
relation and the rank function required to prove skipping refinement.

An HPEPS state is a four-tuple 〈tm, otevs,mem, h〉, where tm, otevs, mem are
respectively the current time, an ordered set of timed events and a collection of
variable-integer pairs, and h is the history information. The history information h
consists of a Boolean variable valid, time tm, and an ordered set of timed-event
pairs otevs and the memory mem. Intuitively, h records the state preceding the
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current state. The transition function HPEPS is same as the transition function
of PEPS except that HPEPS also records the history in h.

PEPS Refines HPEPS: Observe that, modulo the history information, a step
of PEPS directly corresponds to a step of HPEPS, i.e., PEPS is a bisimula-
tion refinement of HPEPS under a refinement map that projects a PEPS state
〈tm, otevs,mem〉 to the HPEPS state 〈tm, otevs,mem, h〉 where the valid com-
ponent of h is set to false. But we only prove that it is a simulation refinement,
because, from Theorem 1, it suffices to establish that PEPS is a skipping refine-
ment of HPEPS. The proofs primarily require showing that two sets of ordered
timed-events that are set equivalent are in fact equal and that adding and remov-
ing equivalent sets of timed-event from equal schedulers results in equal sched-
ulers.

HPEPS Refines AEPS: Next we show that HPEPS is a skipping refine-
ment of AEPS under the refinement map R, a function that simply projects an
HPEPS state to an AEPS state. To show that HPEPS is a skipping refinement
of AEPS under the refinement map R, from Definition 4, we must show as wit-
ness a binary relation B that satisfies the two conditions. Let B = {(s,R.s) :
s is an HPEPS state}. To establish that B is an SKS on the disjoint union of
HPEPS and AEPS, we have a choice of four proof-methods (Sect. 4). Recall that
execution of an event can add a new event scheduled to be executed at an arbi-
trary time in the future. As a result, if we were to use WFSK or RWFSK, the proof
obligations from conditions WFSK2d (Definition 5) and RWFSK2b (Definition 6)
would require unbounded reachability analysis, something that typically places a
big burden on verification tools and their users. In contrast, the proof obligations
to establish RLWFSK are local and only require reasoning about states and their
successors, which significantly reduces the proof complexity.

RLWFSK1 holds trivially. To prove that RLWFSK2 holds we define a binary
relation O and a rank function rankls and show that they satisfy the two univer-
sally quantified formulas in RLWFSK2. Moreover, since HPEPS does not stutter
we ignore RLWFSK2a, and that is why we do not define rankt . Finally, our proof
obligation is: for all HPEPS s, u and AEPS state w such that s → u and sBw
holds, there exists a AEPS state v such that w → v and uOv holds.

Verification Effort: We used the defdata framework in ACL2s, to specify
the data definitions for the three systems and the definec construct to intro-
duce function definitions along with their input-contracts (pre-conditions) and
output-contracts (post-conditions). In addition to admitting a data definition,
defdata proves several theorems about the functions that are extremely help-
ful in automatically discharging type-like proof obligations. We also developed a
library to concisely describe functions using higher-order constructs like map and
reduce, which made some of the definitions clearer. ACL2s supports first-order
quantifiers via the defun-sk construct, which essentially amounts to the use
of Hilbert’s choice operator. We use defun-sk to model the transition relation
for AEPS (a non-deterministic system) and to specify the proof obligations for
proving that HPEPS refines AEPS. However, support for automated reasoning
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about quantifiers is limited in ACL2. Therefore, we use the domain knowledge,
when possible (e.g., a system is deterministic), to eliminate quantifiers in the
proof obligations and provide explicit witnesses for existential quantifiers.

The proof makes essential use of several libraries available in ACL2 for reason-
ing about lists and sets. In addition, we prove a collection of additional lemmas
that can be roughly categorized into four categories. First, we have a collection
of lemmas to prove the input-output contracts of the functions. Second, we have
a collection of lemmas to show that operations on the schedulers in the three
systems preserve various invariants, e.g., that any timed-event in the scheduler
is scheduled to execute at a time greater or equal to the current time. Third, we
have a collection of lemmas to show that inserting and removing two equivalent
sets of timed-events from a scheduler results in an equivalent scheduler. And
fourth, we have a collection of lemmas to show that two schedulers are equiva-
lent iff they are set equal. The above lemmas are used to establish a relationship
between priority queues, a data structure used by the implementation system,
and sets, the corresponding data structure used in the specification system. The
behavioral difference between the two systems is accounted for by the notion
of skipping refinement. This separation significantly eases understanding as well
as mechanical reasoning about the correctness of reactive systems. We have 8
top-level proof obligations and a few dozen supporting lemmas. The entire proof
takes about 120 s on a machine with 2.2 GHz Intel Core i7 with 16 GB main
memory.

6 Related Work

Several notions of correctness have been proposed in the literature and their
properties been widely studied [2,5,11,16,17]. In this paper, we develop a the-
ory of skipping refinement to effectively prove the correctness of optimized reac-
tive systems using automated verification tools. These results establish skipping
refinement on par with notions of refinement based on (bi)simulation [22] and
stuttering (bi)simulation [20,24], in the sense that skipping refinement is (1)
compositional and (2) admits local proofs methods. Together the two proper-
ties have been instrumental in significantly reducing the proof complexity in
verification of large and complex systems. We developed the theory of skipping
refinement using a generic model of transition systems and place no restrictions
on the state space size or the branching factor of the transition system. Any
system with a well-defined operational semantics can be mapped to a labeled
transition system. Moreover, the local proof methods are sound and complete,
i.e., if an implementation is a skipping refinement of the specification, we can
always use the local proof methods to effectively reason about it.

Refinement-based methodologies have been successfully used to verify the
correctness of several realistic hardware and software systems. In [13], several
complex concurrent programs were verified using a stepwise refinement method-
ology. In addition, Kragl and Qadeer [13] also develop a compact representation
to facilitate the description of programs at different levels of abstraction and asso-
ciated refinement proofs. Several back-end compiler transformations are proved
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correct in Compcert [15] using simulation refinement. In [25], several compiler
transformations were verified using stuttering refinement and associated local
proof methods. Recently, refinement-based methodology has also been applied
to verify the correctness of practical distributed systems [8] and a general-
purpose operating system microkernel [12]. The full verification of CertiKOS
[6,7], an OS kernel, is based on the notion of simulation refinement. Refine-
ment based approaches have also been extensively used to verify microprocessor
designs [1,9,19,21,26]. Skipping refinement was used to verify the correctness of
optimized memory controllers and a JVM-inspired stack machine [10].

7 Conclusion and Future Work

In this paper, we developed the theory of skipping refinement. Skipping refine-
ment is designed to reason about the correctness of optimized reactive systems, a
class of systems where a single transition in a concrete low-level implementation
may correspond to a sequence of observable steps in the corresponding abstract
high-level specification. Examples of such systems include optimizing compilers,
concurrent and parallel systems and superscalar processors. We developed sound
and complete proof methods that reduce global reasoning about infinite compu-
tations of such systems to local reasoning about states and their successors. We
also showed that the skipping simulation is closed under composition and there-
fore is amenable to modular reasoning using a stepwise refinement approach. We
experimentally validated our results by analyzing the correctness of an optimized
event-processing system in ACL2s. For future work, we plan to precisely classify
temporal logic properties that are preserved by skipping refinement. This would
enable us to transfer temporal properties from specifications to implementations,
after establishing refinement.
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Abstract. We solve in a purely symbolic way the robust controller syn-
thesis problem in timed automata with Büchi acceptance conditions. The
goal of the controller is to play according to an accepting lasso of the
automaton, while resisting to timing perturbations chosen by a com-
peting environment. The problem was previously shown to be PSPACE-
complete using regions-based techniques, but we provide a first tool solv-
ing the problem using zones only, thus more resilient to state-space explo-
sion problem. The key ingredient is the introduction of branching con-
straint graphs allowing to decide in polynomial time whether a given
lasso is robust, and even compute the largest admissible perturbation if
it is. We also make an original use of constraint graphs in this context
in order to test the inclusion of timed reachability relations, crucial for
the termination criterion of our algorithm. Our techniques are illustrated
using a case study on the regulation of a train network.

1 Introduction

Timed automata [1] extend finite-state automata with timing constraints, pro-
viding an automata-theoretic framework to design, model, verify and synthesise
real-time systems. However, the semantics of timed automata is a mathemati-
cal idealisation: it assumes that clocks have infinite precision and instantaneous
actions. Proving that a timed automaton satisfies a property does not ensure
that a real implementation of it also does. This robustness issue is a challeng-
ing problem for embedded systems [12], and alternative semantics have been
proposed, so as to ensure that the verified (or synthesised) behaviour remains
correct in presence of small timing perturbations.

We are interested in a fundamental controller synthesis problem in
timed automata equipped with a Büchi acceptance condition: it con-
sists in determining whether there exists an accepting infinite execution.
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Thus, the role of the controller is to choose transitions and delays. This prob-
lem has been studied numerously in the exact setting [13–15,17,19,27,28].
In the context of robustness, this strategy should be tolerant to small pertur-
bations of the delays. This discards strategies suffering from weaknesses such
as Zeno behaviours, or even non-Zeno behaviours requiring infinite precision, as
exhibited in [6].

More formally, the semantics we consider is defined as a game that depends
on some parameter δ representing an upper bound on the amplitude of the
perturbation [7]. In this game, the controller plays against an antagonistic envi-
ronment that can perturb each delay using a value chosen in the interval [−δ, δ].
The case of a fixed value of δ has been shown to be decidable in [7], and also for
a related model in [18]. However, these algorithms are based on regions, and as
the value of δ may be very different from the constants appearing in the guards
of the automaton, do not yield practical algorithms. Moreover, the maximal per-
turbation is not necessarily known in advance, and could be considered as part
of the design process.

The problem we are interested in is qualitative: we want to determine whether
there exists a positive value of δ such that the controller wins the game. It has
been proven in [25] that this problem is in PSPACE (and even PSPACE-complete),
thus no harder than in the exact setting with no perturbation allowed [1]. How-
ever, the algorithm heavily relies on regions, and more precisely on an abstraction
that refines the one of regions, namely folded orbit graphs. Hence, it is not at
all amenable to implementation.

Our objective is to provide an efficient symbolic algorithm for solving this
problem. To this end, we target the use of zones instead of regions, as they
allow an on-demand partitioning of the state space. Moreover, the algorithm we
develop explores the reachable state-space in a forward manner. This is known
to lead to better performances, as witnessed by the successful tool UPPAAL
TIGA based on forward algorithms for solving controller synthesis problems [5].

Our algorithm can be understood as an adaptation to the robustness set-
ting of the standard algorithm for Büchi acceptance in timed automata [17].
This algorithm looks for an accepting lasso using a double depth-first search. A
major difficulty consists in checking whether a lasso can be robustly iterated,
i.e. whether there exists δ > 0 such that the controller can follow the cycle for
an infinite amount of steps while being tolerant to perturbations of amplitude at
most δ. The key argument of [25] was the notion of aperiodic folded orbit graph
of a path in the region automaton, thus tightly connected to regions. Lifting this
notion to zones seems impossible as it makes an important use of the fact that
valuations in regions are time-abstract bisimilar, which is not the case for zones.

Our contributions are threefold. First, we provide a polynomial time proce-
dure to decide, given a lasso, whether it can be robustly iterated. This sym-
bolic algorithm relies on a computation of the greatest fixpoint of the operator
describing the set of controllable predecessors of a path. In order to provide
an argument of termination for this computation, we resort to a new notion of
branching constraint graphs, extending the approach used in [16,26] and based
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Fig. 1. A timed automaton

on constraint graphs (introduced in [8]) to check iterability of a cycle, with-
out robustness requirements. Second, we show that when considering a lasso,
not only can we decide robust iterability, but we can even compute the largest
perturbation under which it is controllable. This problem was not known to
be decidable before. Finally, we provide a termination criterion for the analy-
sis of lassos. Focusing on zones is not complete: it can be the case that two
cycles lead to the same zones, but one is robustly iterable while the other one is
not. Robust iterability crucially depends on the real-time dynamics of the cycle
and we prove that it actually only depends on the reachability relation of the
path. We provide a polynomial-time algorithm for checking inclusion between
reachability relations of paths in timed automata based on constraint graphs. It
is worth noticing that all our procedures can be implemented using difference
bound matrices, a very efficient data structure used for timed systems. These
developments have been integrated in a tool, and we present a case study of a
train regulation network illustrating its performances.

Integrating the robustness question in the verification of real-time systems
has attracted attention in the community, and the recent works include, for
instance, robust model checking for timed automata under clock drifts [23], Lip-
schitz robustness notions for timed systems [11], quantitative robust synthesis
for timed automata [2]. Stability analysis and synthesis of stabilizing controllers
in hybrid systems are a closely related topic, see e.g. [20,21].

2 Timed Automata: Reachability and Robustness

Let X = {x1, . . . , xn} be a finite set of clock variables. It is extended with a
virtual clock x0, constantly equal to 0, and we denote by X0 the set X ∪ {x0}.
An atomic clock constraint on X is a formula x − y � k, or x − y < k with
x �= y ∈ X0 and k ∈ Q. A constraint is non-diagonal if one of the two clocks
is x0. We denote by Guards(X) (respectively, Guardsnd(X)) the set of (clock)
constraints (respectively, non-diagonal clock constraints) built as conjunctions
of atomic clock constraints (respectively, non-diagonal atomic clock constraints).

A clock valuation ν is an element of R
X
�0. It is extended to R

X0
�0 by letting

ν(x0) = 0. For all d ∈ R>0, we let ν + d be the valuation defined by (ν +
d)(x) = ν(x) + d for all clocks x ∈ X . If Y ⊆ X , we also let ν[Y ← 0] be the
valuation resetting clocks in Y to 0, without modifying values of other clocks. A
valuation ν satisfies an atomic clock constraint x − y �� k (with �� ∈ {�, <}) if
ν(x) − ν(y) �� k. The satisfaction relation is then extended to clock constraints
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naturally: the satisfaction of constraint g by a valuation ν is denoted by ν |= g.
The set of valuations satisfying a constraint g is denoted by �g�.

A timed automaton is a tuple A = (L, �0, E, Lt) with L a finite set of loca-
tions, �0 ∈ L an initial location, E ⊆ L × Guardsnd(X ) × 2X × L is a finite set of
edges, and Lt is a set of accepting locations.

An example of timed automaton is depicted in Fig. 1, where the reset of a
clock x is denoted by x := 0. The semantics of the timed automaton A is defined
as an infinite transition system �A� = (S, s0,→). The set S of states of �A� is

L × R
X
�0, s0 = (�0,0). A transition of �A� is of the form (�, ν)

e,d−−→ (�′, ν′) with
e = (�, g,Y, �′) ∈ E and d ∈ R>0 such that ν + d |= g and ν′ = (ν + d)[Y ← 0].
We call path a possible finite sequence of edges in the timed automaton. The
reachability relation of a path ρ, denoted by Reach(ρ) is the set of pairs (ν, ν′)
such that there is a sequence of transitions of �A� starting from (�, ν), ending
in (�′, ν′) and that follows ρ in order as the edges of the timed automaton. A
run of A is an infinite sequence of transitions of �A� starting from s0. We are
interested in Büchi objectives. Therefore, a run is accepting if there exists a final
location �t ∈ Lt that the run visits infinitely often.

As done classically, we assume that every clock is bounded in A by a con-
stant M , that is we only consider the previous infinite transition system over
the subset L × [0,M ]X of states.

We study the robustness problem introduced in [25], that is stated in terms
of games where a controller fights against an environment. After a prefix of a
run, the controller will have the capability to choose delays and transitions to
fire, whereas the environment perturbs the delays chosen by the controller with
a small parameter δ > 0. The aim of the controller will be to find a strategy so
that, no matter how the environment plays, he is ensured to generate an infinite
run satisfying the Büchi condition. Formally, given a timed automaton A =
(L, �0, E, Lt) and δ > 0, the perturbation game is a two-player turn-based game
Gδ(A) between a controller and an environment. Its state space is partitioned
into SC �SE where SC = L×R

X
�0 belongs to the controller, and SE = L×R

X
�0×

R>0 × E to the environment. The initial state is (�0,0) ∈ SC . From each state
(�, ν) ∈ SC , there is a transition to (�, ν, d, e) ∈ SE with e = (�, g,Y, �′) ∈ E
whenever d > δ, and ν + d + ε |= g for all ε ∈ [−δ, δ]. Then, from each state
(�, ν, d, (�, g,Y, �′)) ∈ SE , there is a transition to (�′, (ν + d + ε)[r ← 0]) ∈ SC

for all ε ∈ [−δ, δ]. A play of Gδ(A) is a finite or infinite path q0
t1−→ q1

t2−→ q2 · · ·
where q0 = (�0, 0) and ti is a transition from state qi−1 to qi, for all i > 0. It is
said to be maximal if it is infinite or can not be extended with any transition.

A strategy for the controller is a function σCon mapping each non-maximal
play ending in some (�, ν) ∈ SC to a pair (d, e) where d > 0 and e ∈ E such that
there is a transition from (�, ν) to (�, ν, d, e). A strategy for the environment is
a function σEnv mapping each finite play ending in (�, ν, d, e) to a state (�′, ν′)
related by a transition. A play gives rise to a unique run of �A� by only keep-
ing states in VC . For a pair of strategies (σCon, σEnv), we let playδ

A(σCon, σEnv)
denote the run associated with the unique maximal play of Gδ(A) that follows
the strategies. Controller’s strategy σCon is winning (with respect to the Büchi
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objective Lt) if for all strategies σEnv of the environment, playδ
A(σCon, σEnv) is

infinite and visits infinitely often some location of Lt. The parametrised robust
controller synthesis problem asks, given a timed automaton A, whether there
exists δ > 0 such that the controller has a winning strategy in Gδ(A).

Example 1. The controller has a winning strategy in Gδ(A), with A the automa-
ton of Fig. 1, for all possible values of δ < 1/2. Indeed, he can follow the cycle
�0 → �3 → �0 by always picking time delay 1/2 so that, when arriving in �3
(resp. �0) after the perturbation of the environment, clock x2 (resp. x1) has a
valuation in [1/2−δ, 1/2+δ]. Therefore, he can play forever following this mem-
oryless strategy. For δ ≥ 1/2, the environment can enforce reaching �3 with a
value for x2 at least equal to 1. The guard x2 < 2 of the next transition to �0
cannot be guaranteed, and therefore the controller cannot win Gδ(A). In [25],
it is shown that the cycle around �2 does not provide a winning strategy for
the controller for any value of δ > 0 since perturbations accumulate so that the
controller can only play it a finite number of times in the worst case.

By [25], the parametrised robust controller synthesis problem is known to be
PSPACE-complete. Their solution is based on the region automaton of A. We are
seeking for a more practical solution using zones. A zone Z over X is a convex
subset of R

X
�0 defined as the set of valuations satisfying a clock constraint g,

i.e. Z = �g�. Zones can be encoded into difference-bound matrices (DBM), that
are |X0| × |X0|-matrices over (R × {<,�}) ∪ {(∞, <)}. We adopt the following
notation: for a DBM M , we write M = (M,≺M ), where M is the matrix made of
the first components, with elements in R ∪ {∞}, while ≺M is the matrix of the
second components, with elements in {<,�}. A DBM M naturally represents
a zone (which we abusively write M as well), defined as the set of valuations ν
such that, for all x, y ∈ X0, ν(x)−ν(y) ≺M

x,y Mx,y (where ν(x0) = 0). Coefficients
of a DBM are thus pairs (≺, c). As usual, these can be compared: (≺, c) is less
than (≺′, c′) (denoted by (≺, c) < (≺′, c′)) whenever c < c′ or (c = c′, ≺ = <
and ≺′ = �). Moreover, these coefficients can be added: (≺, c) + (≺′, c′) is the
pair (≺′′, c + c′) with ≺′′ = � if ≺ = ≺′ = � and ≺′′ = < otherwise.

DBMs were introduced in [4,10] for analyzing timed automata; we refer
to [3] for details. Standard operations used to explore the state space of
timed automata have been defined on DBMs: intersection is written M ∩ N ,
Pretime>t(M) is the set of valuations such that a time delay of more than t
time units leads to the zone M , UnresetR(M) is the set of valuations that end
in M when the clocks in R are reset. From a robustness perspective, we also
consider the operator shrink[−δ,δ](M) defined as the set of valuations ν such that
ν + [−δ, δ] ⊆ M introduced in [24]. Given a DBM M and a rational number δ,
all these operations can be effectively computed in time cubic in |X |.

3 Reachability Relation of a Path

Before treating the robustness issues, we start by designing a symbolic (i.e. zone-
based) approach to describe and compare the reachability relations of paths
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in timed automata. This will be crucial subsequently to design a termination
criterion in the state space exploration of our robustness-checking algorithm.
Solving the inclusion of reachability relations in a symbolic manner has inde-
pendent interest and can have other applications.

The reachability relation Reach(ρ) of a path ρ, is a subset of R
X∪X ′
�0 where X ′

are primed versions of the clocks, such that each (ν, ν′) ∈ Reach(ρ) iff there is
a run from valuation ν to valuation ν′ following ρ. Unfortunately, reachability
relations Reach(ρ) are not zones in general, that is, they cannot be represented
using only difference constraints. In fact, we shall see shortly that constraints of
the form x − y + z − u � c also appear, as already observed in [22]. We thus
cannot rely directly on the traditional difference bound matrices (DBMs) used to
represent zones. We instead rely on the constraint graphs that were introduced
in [8], and explored in [16] for the parametric case (the latter work considers
enlarged constraints, and not shrunk ones as we study here). Our contribution
is to use these graphs to obtain a syntactic check of inclusion of the according
reachability relations.

Constraint Graphs. Rather than considering the values of the clocks in X ,
this data structure considers the date Xi of the latest reset of the clock xi,
and uses a new variable τ denoting the global timestamp. Note that the clock
values can be recovered easily since Xi = τ − xi. For the extra clock x0, we
introduce variable X0 equal to the global timestamp τ (since x0 must remain
equal to 0). A constraint graph defining a zone is a weighted graph whose nodes
are X = {X0,X1, . . . , Xn}. Constraints on clocks are represented by weights on
edges in the graph: a constraint X − Y ≺ c is represented by an edge from X
to Y weighted by (≺, c), with ≺ ∈ {�, <} and c ∈ Q. Weights in the graph
are thus pairs of the form (≺, c). Therefore, we can compute shortest weights
between two vertices of a weighted graph. A cycle is said to be negative if it has
weight at most (<, 0), i.e. (<, 0) or (≺, c) with c < 0.

Encoding Paths. Constraint graphs can also encode tuples of valuations seen
along a path. To encode a k-step computation, we make k + 1 copies of the
nodes, that is, Xi = {Xi

0,X
i
1, . . . , X

i
n} for i ∈ {1, . . . , k + 1}. These copies are

also called layers. Let us first consider an example on the path ρ consisting of the
edge from �1 to �2, and the edge from �2 to �1, in the timed automaton of Fig. 1.
The constraint graph Gρ is depicted in Fig. 3: in our diagrams of constraint
graphs, the absence of labels on an edge means (�, 0), and we depict with an
edge with arrows on both ends the presence of an edge in both directions. The
graph has five columns, each containing copies of the variables for that step:
they represent the valuations before the first edge, after the first time elapse,
after the first reset, after the second time elapse and after the second reset. In
general now, each elementary operation can be described by a constraint graph
with two layers (Xi) (before) and (X ′

i) (after).

– The operation Pretime>t is described by the constraint graph G>t
time with edges

Xi → X0, Xi ↔ X ′
i for i > 0, and X0

(<,−t)−−−−→ X ′
0. Figure 3 contains two

occurrences of G>0
time: we always represent with dashed arrows edges that are
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labelled by (<, c), and plain arrows edges that are labelled with (�, c); the
absence of an edge means that it is labelled with (<,∞).

– The operation g ∩ UnresetY(·), to test a guard g and reset the clocks in Y,
is described by the constraint graph Gg,Y

edge with edges X0 ↔ X ′
0 (meaning

that the time does not elapse), Xi ↔ X ′
i for i such that clock xi /∈ Y, and

X ′
i ↔ X ′

0 for i such that clock xi ∈ Y, and for all clock constraint xi −xj ≺ c
appearing in g, an edge from Xj to Xi labelled by (≺, c) (since it encodes
the fact that (τ − Xi) − (τ − Xj) = Xj − Xi ≺ c). In Fig. 3, we have first
G

x1�2,{x1}
edge , and then G

x2�2,{x2}
edge .

Constraint graphs can be stacked one after the other to obtain the constraint
graph of an edge e, and then of a path ρ, that we denote by Gρ. In the resulting
graph, there is one leftmost layer of vertices (X�

i )i and one rightmost one (Xr
i )i

representing the situation before and after the firing of the path ρ. Once this
graph is constructed, the intermediary levels can be eliminated after replacing
each edge between the nodes of X� ∪Xr by the shortest path in the graph. This
phase is hereafter called normalisation of the constraint graph. The normalised
version of the constraint graph of Fig. 3 is depicted on its right.

From Constraint Graphs to Reachability Relations. From a logical point
of view, the elimination of intermediary layers reflects an elimination of quanti-
fiers in a formula of the first-order theory of real numbers. At the end, we obtain
a set of constraints of the form Xk

i − Xk′
j ≺ c with k, k′ ∈ {�, r}. These con-

straints do not reflect uniquely the reachability relation Reach(ρ), in the sense
that it is possible that Reach(ρ1) = Reach(ρ2) but the normalised versions of
Gρ1 and Gρ2 are different. For example, if we consider the path ρ2 obtained by
repeating the cycle ρ between �1 and �2, the reachability relation does not change
(Reach(ρ2) = Reach(ρ)), but the normalised constraint graph does (Gρ2 �= Gρ1):
all labels (�, 2) of the red dotted edges from the rightmost layer to the leftmost
layer become (�, 4), and the labels (�,−2) of the dashed blue edges become
(�,−4).

We solve this issue by jumping back from variables Xk
i to the clock valuations.

Indeed, in terms of clock valuations ν� and νr before and after the path, the
constraint Xk

i − Xk′
j ≺ c (for k, k′ ∈ {l, r}) rewrites as (τk − νk(xi)) − (τk′ −

νk′
(xj)) ≺ c, where τ � is the global timestamp before firing ρ and τ r the one after.

When k = k′, variables τ � and τ r disappear, leaving a constraint of the form
νk(xj) − νk(xi) ≺ c. When k �= k′, we can rewrite the constraint as τk − τk′ ≺
νk(xi) − νk′

(xj) + c. We therefore obtain upper and lower bounds on the value
of τ r − τ �, allowing us to eliminate τ r − τ � considered as a single variable. We
therefore obtain in fine a formula mixing constraints of the form

• νk(xa) − νk(xb) ≺ p, with k ∈ {�, r}, a �= b, and we define γk
a,b = (≺, p);

• ν�(xa) − ν�(xb) + νr(xc) − νr(xd) ≺ p, with a �= b and c �= d, and we define
γa,b,c,d = (≺, p). This constraint can appear in two ways: either from νr(xc)−
ν�(xb) + p1 ≺1 τ r − τ l ≺2 νl(xa) − νr(xd) + p2 by eliminating τ r − τ l,
or by adding the two constraints of the form νl(xa) − νl(xb) ≺1 p1 and
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νr(xc) − νr(xd) ≺2 p2. Thus, γa,b,c,d is obtained as the minimum of the two
constraints obtained in this manner. In other terms, in the constraint graph,
this constraint is the minimal weight between the sum of the weights of the
edges (Xr

d ,X l
a) and (X l

b,X
r
c ), and the sum of the weights of the edges (X l

b,X
l
a)

and (Xr
d ,Xr

c ). For example, in the path in Fig. 3, we have γ0,1,0,2 = (�, 0)
since the two constraints are (�, 0) and (<,∞), whereas γ1,2,2,1 = (�, 0)
because the two constraints are (<, 2) and (�, 0).

Let ϕ(G) be the conjunction of such constraints obtained from a constraint
graph G once normalised: this is a quantifier-free formula of the additive theory
of reals. We obtain the following property whose proof mimics the one for proving
the normalisation of DBMs (and can be derived from the developments of [8]).

Lemma 1. Let ρ be a path in a timed automaton. If Gρ contains a negative
cycle, then Reach(ρ) = ∅. Otherwise, Reach(ρ) is the set of pairs of valuations
(ν�, νr) that satisfy the formula ϕ(Gρ).

Checking Inclusion. For a path ρ, we regroup the pairs (γl
a,b), (γr

a,b) and
(γa,b,c,d) above in a single vector Γρ. We extend the comparison relation < to
these vectors by applying it componentwise. These vectors can be used to check
equality or inclusion of reachability relations in time O(|X|4):
Theorem 1. Let ρ and ρ′ be paths in a timed automaton such that Reach(ρ) and
Reach(ρ′) are non empty. Then Reach(ρ) ⊆ Reach(ρ′) if and only if Γρ � Γρ′

.

Notice that we do not need to check equivalence or implication of formulas
ϕ(Gρ) and ϕ(Gρ′), but simply check syntactically constants appearing in these
formulas. Moreover, these constants can be stored in usual DBMs on 2 × |X0|
clocks, allowing for reusability of classical DBM libraries. For the constraint
graph in Fig. 3, we have seen that Gρ2 �= Gρ1 , even if Reach(ρ2) = Reach(ρ).
However, we can check that ϕ(Gρ2) = ϕ(Gρ) as expected.

Computation of Pre and Post. By Lemma 1 and the construction of con-
straint graphs, one can easily compute Preρ(Z) = {ν | ∃ν′ ∈ Z ((�, ν), (�′, ν′)) ∈
Reach(ρ)} for a given path ρ and zone Z (see [8,16]). In fact, consider the
normalised constraint graph Gρ on nodes X� ∪ Xr. To compute Preρ(Z), one
just needs to add the constraints of Z on Xr. This is done by replacing each

edge Xr
i

w−→ Xr
j by Xr

i

min(Zj,i,w)−−−−−−−→ Xr
j where Zj,i = (≺, p) defines the constraint

of Z on xj − xi. Then, the normalisation of the graph describes the reachability
relation along path ρ ending in zone Z. Furthermore, projecting the constraints
to X� yields Preρ(Z): this can be obtained by gathering all constraints on pairs
of nodes of X�. A reachability relation can thus be seen as a function assigning
to each zone Z its image by ρ. One can symmetrically compute the succes-
sor Postρ(Z) = {ν′ | ∃ν ∈ Z ((�, ν), (�′, ν′)) ∈ Reach(ρ)} by constraining the
nodes X� and projecting to Xr.
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4 Robust Iterability of a Lasso

In this section, we study the perturbation game Gδ(A) between the two players
(controller and environment), as defined in Sect. 2, when the timed automaton A
is restricted to a fixed lasso ρ1ρ2, i.e. ρ1 is a path from �0 to some accepting
location �t, and ρ2 a cyclic path around �t. This implies that the controller does
not have the choice of the transitions, but only of the delays. We will consider
different settings, in which δ is fixed or not.

Controllable Predecessors and their Greatest Fixpoints. Consider an
edge e = (�, g, R, �′). For any set Z ⊆ R

X
�0, we define the controllable predecessors

of Z as follows: CPreδ
e(Z) = Pretime>δ(shrink[−δ,δ](g ∩ UnresetR(Z))). Intuitively,

CPreδ
e(Z) is the set of valuations from which the controller can ensure reaching Z

in one step, following the edge e, no matter of the perturbations of amplitude at
most δ of the environment. In fact, it can delay in shrink[−δ,δ](g ∩ UnresetR(Z))
with a delay of at least δ, where under any perturbation in [−δ, δ], the valuation
satisfies the guard, and it ends, after reset, in Z. Results of [24] show that this
operator can be computed in cubic time with respect to the number of clocks.
We extend this operator to a path ρ by composition, denoted it by CPreδ

ρ. Note
that CPre0

ρ = Preρ is the usual predecessor operator without perturbation.
This operator is monotone, hence its greatest fixpoint νX CPreδ

ρ(X) is well-
defined, equal to

⋂
i�0 CPreδ

ρi(�): it corresponds to the valuations from which
the controller can guarantee to loop forever along the path ρ. By definition of
the game Gδ(A) where A is restricted to the lasso ρ1ρ2, the controller wins the
game if and only if 0 ∈ CPreδ

ρ1
(νX CPreδ

ρ2
(X)). As a consequence, our problem

reduces to the computation of this greatest fixpoint.

Branching Constraint Graphs. We consider first a fixed (rational) value of
the parameter δ, and are interested in the computation of the greatest fixpoint
νX CPreδ

ρ2
(X). In [16], constraints graphs were used to provide a termination

criterion allowing to compute the greatest fixpoint of the classical predecessor
operator CPre0

ρ. We generalize this approach to deal with the operator CPreδ
ρ

and to this end, we need to generalize constraint graphs so as to encode it.
Unfortunately, the operator shrink[−δ,δ] cannot be encoded in a constraint graph.
Intuitively, this comes from the fact that a constraint graph represents a relation
between valuations, while there is no such relation associated with the CPreδ

ρ

operator. Instead, we introduce branching constraint graphs, that will faithfully
represent the CPreδ

ρ operator: unlike constraint graphs introduced so far that
have a left layer and a right layer of variables, a branching constraint graph has
still a single left layer but several right layers.

We first define a branching constraint graph Gδ
shrink associated with the oper-

ator shrink[−δ,δ] as follows. Its set of vertices is composed of three copies of the
{X0,X1, . . . , Xn}, denoted by primed, unprimed and doubly primed versions.
Edges are defined so as to encode the following constraints : X ′

i = Xi and
X ′′

i = Xi for every i �= 0, and X ′
0 = X0 + δ and X ′′

0 = X0 − δ. An instance of
this graph can be found in several occurrences in Fig. 2.
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Proposition 1. Let Z be a zone and Gδ
shrink(Z) be the graph obtained from

Gδ
shrink by adding on primed and doubly primed vertices the constraints defining Z

(as for Preρ(Z) in the end of Sect. 3). Then the constraint on unprimed vertices
obtained from the shortest paths in Gδ

shrink(Z) is equivalent to shrink[−δ,δ](Z).

Proof. Given a zone Z and a real number d, we define Z + d = {ν + d | ν ∈ Z}.
One easily observes that shrink[−δ,δ](Z) = (Z + δ) ∩ (Z − δ). The result follows
from the observation that taking two distinct copies of vertices, and considering
shortest paths allows one to encode the intersection. ��

Then, for all edges e = (�, g, R, �′), we define the branching constraint graph
Gδ

e as the graph obtained by stacking (in this order) the branching constraint
graph G>δ

time, Gδ
shrink and Gg,Y

edge. Note that two copies of the graph Gg,Y
edge are needed,

to be connected to the two sets of vertices that are on the right of the graph
Gδ

shrink. This definition is extended in the expected way to a finite path ρ, yielding
the graph Gδ

ρ. In this graph, there is a single set of vertices on the left, and 2|ρ|

sets of vertices on the right. As a direct consequence of the previous results on
the constraint graphs for time elapse, shrinking and guard/reset, one obtains:

Proposition 2. Let Z be a zone and ρ be a path. We let Gδ
ρ(Z) be the graph

obtained from Gδ
ρ by adding on every set of right vertices the constraints defin-

ing Z. Then the constraint on the left layer of vertices obtained from the shortest
paths in Gδ

ρ(Z) is equivalent to CPreδ
ρ(Z).

An example of the graph Gδ
ρ(Z) for ρ = e1e2, edges considered in Fig. 3, is

depicted in Fig. 2 (on the left).

Fig. 2. On the left, the branching constraint graph Gδ
e1e2 encoding the operator

CPreδ
e1e2 , where e1 and e2 refer to edges considered in Fig. 3. Dashed edges have weight

(<, .), plain edges have weight (�, .). Black edges (resp. orange edges, pink edges, red
edges, blue edges) are labelled by (., 0) (resp. (., −δ), (., δ), (., 2),(., −2)). On the right,
a decomposition of a path in a branching constraint graph Gδ

ρ. (Color figure online)

We are now ready to prove the following result, generalisation of [16,
Lemma 2], that will allow us to compute the greatest fixpoint of the operator
CPreδ

ρ:

www.dbooks.org

https://www.dbooks.org/


582 D. Busatto-Gaston et al.

Fig. 3. On the left, the constraint graph of the path �1
x1�2,x1:=0−−−−−−−→ �2

x2�2,x2:=0−−−−−−−→ �1.
On the right, its normalised version: dashed edges have weight (<, .), plain edges have
weight (�, .), black edges have weight (., 0), red edges have weight (., 2) and blue edges
have weight (., −2).

Proposition 3. Let ρ be a path and δ be a non-negative rational number. We
let N = |X0|2. If CPreδ

ρ2N+1(�) � CPreδ
ρ2N (�), then νX CPreδ

ρ(X) = ∅.

Proof. Assume CPreδ
ρ2N+1(�) � CPreδ

ρ2N (�) and consider the zones CPreδ
ρN+1(�)

(represented by the DBM M1) and CPreδ
ρN (�) (represented by the DBM M2).

We have M1 � M2, as otherwise the fixpoint would have already been reached
after N steps. By Proposition 2, the zone corresponding to M1 is associated with
shortest paths between vertices on the left in the graph Gδ

ρN+1 . In the sequel,
given a path r in this graph, w(r) denotes its weight. We distinguish two cases:

Case 1: M1 � M2 because of the rational coefficients. Then, there exists an
entry (x, y) ∈ X 2

0 such that M1[x, y] < M2[x, y]. The value M1[x, y] is thus
associated with a shortest path between vertices X and Y in Gδ

ρN+1 . We fix a
shortest path of minimal length, and denote it by r. As the entry is strictly
smaller than in M2, this shortest path should reach the last copy of the graph
Gδ

ρ. This path can be interpreted as a traversal of the binary tree of depth
|X0|2 + 1, reaching at least one leaf. We can prove that this entails that there
exists a pair of clocks (u, v) ∈ X 2

0 appearing at two levels i < j of this tree, and
a decomposition r = r1r2r3r4r5 of the path, such that w(r2) + w(r4) = (≺, d)
with d < 0 (Property (†)). In addition, in this decomposition, r3 is included
in subgraphs of levels k ≥ j, and the pair of paths (r2, r4) is called a return
path, following the terminology of [16]. This decomposition is depicted in Fig. 2
(on the right). Intuitively, the property (†) follows from the fact that as r3 is
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included in subgraphs of levels k ≥ j, and because the final zone (on the right)
is the zone � which adds no edges, the concatenation r′ = r1r3r5 is also a valid
path from X to Y in Gδ

ρN+1 , and is shorter than r. We conclude using the fact
that r has been chosen as a shortest path of minimal weight.

Property (†) allows us to prove that the greatest fixpoint is empty. Indeed,
by considering iterations of ρ, one can repeat the return path associated with
(r2, r4) and obtain paths from X to Y whose weights diverge towards −∞.

Case 2: M1 � M2 because of the ordering coefficients. We claim that this case
cannot occur. Indeed, one can show that the constants will not evolve anymore
after the Nth iteration of the fixpoint: the coefficients can only decrease by
changing from a non-strict inequality (≤, c) to a strict one (<, c). This propaga-
tion of strict inequalities is performed in at most |X0|2 additional steps, thus we
have CPreδ

ρ2N+1(�) = CPreδ
ρ2N (�), yielding a contradiction. ��

Compared to the result of [16], the number of iterations needed before con-
vergence grows from |X0|2 to 2|X0|2: this is due to the presence of strict and
non-strict inequalities, not considered in [16]. With the help of branching con-
straint graphs, we have thus shown that the greatest fixpoint can be computed
in finite time: this can then be done directly with computations on zones (and
not on branching constraint graphs).

Proposition 4. Given a path ρ and a rational number δ, the greatest fixpoint
νX CPreδ

ρ(X) can be computed in time polynomial in |X | and |ρ|. As a conse-
quence, one can decide whether the controller has a strategy along a lasso ρ1ρ2

in Gδ(A) in time polynomial in |X | and |ρ1ρ2|.

Solving the Robust Controller Synthesis Problem for a Lasso. We have
shown how to decide whether the controller has a winning strategy for a fixed
rational value of δ. We now aim at deciding whether there exists a positive value
of δ for which the controller wins the game Gδ(A) (where A is restricted to a
lasso ρ1ρ2). To this end, we will use a parametrised extension of DBMs, namely
shrunk DBMs, that were introduced in [24] in order to study the parametrised
state space of timed automata. Intuitively, our goal is to express shrinkings of
guards, e.g. sets of states satisfying constraints of the form g = 1 + δ < x <
2 − δ ∧ 2δ < y, where δ is a parameter to be chosen. Formally, a shrunk DBM
is a pair (M,P ), where M is a DBM, and P is a nonnegative integer matrix
called a shrinking matrix. This pair represents the set of valuations defined by
the DBM M − δP , for any given δ > 0. Considering the example g, M is the
guard g obtained by setting δ = 0, and P is made of the integer multipliers
of δ. We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
M − δP for all δ ∈ (0, δ0]. For instance, (M,P ) = Pretime>δ((N,Q)) means
that M − δP = Pretime>δ(N − δQ) for all small enough δ > 0. Shrunk DBMs
are closed under standard operations on zones, and as a consequence, the CPre
operator can be computed on shrunk DBMs:
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Lemma 2. ([25]) Let e = (�, g, R, �′) be an edge and (M,P ) be a shrunk DBM.
Then, there exists a shrunk DBM (N,Q), that we can compute in polynomial
time, such that (N,Q) = CPreδ

e((M,P )).

Proposition 5. Given a path ρ, one can compute a shrunk DBM (M,P ) equal
to the greatest fixpoint of the operator CPreδ

ρ. As a consequence, one can solve
the parametrised robust controller synthesis problem for a given lasso in time
complexity polynomial in the number of clocks and in the length of the lasso.

Proof. The bound 2|X0|2 identified previously does not depend on the value of δ.
Hence the algorithm for computing a shrunk DBM representing the greatest fix-
point proceeds as follows. It computes symbolically, using shrunk DBMs, the
2|X0|2-th and 2|X0|2 + 1-th iterations of the operator CPreδ

ρ, from the zone �.
By monotonicity, the 2|X0|2 + 1-th iteration is included in the 2|X0|2-th. If the
two shrunk DBMs are equal, then they are also equal to the greatest fixpoint.
Otherwise, the greatest fixpoint is empty. To decide the robust controller syn-
thesis problem for a given lasso, one first computes a shrunk DBM representing
the greatest fixpoint associated with ρ2 and, if not empty, one computes a new
shrunk DBM by applying to it the operator CPreδ

ρ1
. Then, one checks whether

the valuation 0 belongs to the resulting shrunk DBM. ��

Computing the Largest Admissible Perturbation. We say that a pertur-
bation δ is admissible if the controller wins the game Gδ(A). The parametrised
robust controller synthesis problem, solved before just for a lasso, aims at decid-
ing whether there exists a positive admissible perturbation. A more ambitious
problem consists in determining the largest admissible perturbation.

The previous algorithm performs a bounded (2|X0|2) number of computations
of the CPreδ

ρ operator. Instead of focusing on arbitrarily small values using shrunk
DBMs as we did previously, we must perform a computation for all values of δ. To
do so, we consider an extension of the (shrunk) DBMs in which each entry of the
matrix (which thus represents a clock constraint) is a piecewise affine function
of δ. One can observe that all the operations involved in the computation of
the CPreδ

ρ operator can be performed symbolically w.r.t. δ using piecewise affine
functions. As a consequence, we obtain the following new result:

Proposition 6. We can compute the largest admissible perturbation of a lasso.

Proof. Let ρ1ρ2 be a lasso. One first computes a symbolic representation, valid
for all values of δ, of the greatest fixpoint of CPreδ

ρ2
. To do so, one computes the

2|X0|2-th and 2|X0|2+1-th iterations of this operator, from the zone �. We denote
them by M1 and M2 respectively. By monotonicity, the inclusion M1(δ) ⊆ M2(δ)
holds for every δ ≥ 0. In addition, both M1 and M2 are decreasing w.r.t. δ,
thus one can identify the value δ0 = inf{δ ≥ 0 | M1(δ) � M2(δ)}. Then, the
greatest fixpoint is equal to M1 for δ < δ0, and to the emptyset for δ at least
δ0. As a second step, one applies the operator CPreρ1 to the greatest fixpoint.
We denote the result by M . To conclude, one can then compute and return the
value sup{δ ∈ [0, δ0[ | 0 ∈ M(δ)} of maximal perturbation. ��
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5 Synthesis of Robust Controllers

We are now ready to solve the parametrised robust controller synthesis problem,
that is to find, if it exists, a lasso ρ1ρ2 and a perturbation δ such that the
controller wins the game Gδ(A) when following the lasso ρ1ρ2 as a strategy. As
for the symbolic checking of emptiness of a Büchi timed language [17], we will
use a double forward analysis to exhaust all possible lassos, each being tested for
robustness by the techniques studied in previous section: a first forward analysis
will search for ρ1, a path from the initial location to an accepting location, and
a second forward analysis from each accepting location � to find the cycle ρ2

around �. Forward analysis means that we compute the successor zone Postρ(Z)
when following path ρ from zone Z.

Abstractions of Lassos. Before studying in more details the two independent
forward analyses, we first study what information we must keep about ρ1 and ρ2

in order to still being able to test the robustness of the lasso ρ1ρ2. A classical
problem for robustness is the firing of a punctual transition, i.e. a transition where
controller has a single choice of time delay: clearly such a firing will be robust
for no possible choice of parameter δ. Therefore, we must at least forbid such
punctual transitions in our forward analyses. We thus introduce a non-punctual
successor operator Postnp

ρ . It consists of the standard successor operator Postρ
in the timed automaton Anp obtained from A by making strict every constraint
appearing in the guards (1 ≤ x ≤ 2 becomes 1 < x < 2). The crucial point is that
if a positive delay d can be taken by the controller while satisfying a set of strict
constraints, then other delays are also possible, close enough to d. By analogy,
a region is said to be non-punctual if it contains two valuations separated by
a positive time delay. In particular, if such a region satisfies a constraint in A
it also satisfies the corresponding strict constraint in Anp. Therefore, controller
wins Gδ(A) for some δ > 0 if and only if he wins Gδ(Anp) for some δ > 0.

The link between non-punctuality and robustness is as follows:

Theorem 2. Let ρ1ρ2 be a lasso of the timed automaton. We have

∃δ > 0 0 ∈ CPreδ
ρ1

(νX CPreδ
ρ2

(X)) ⇐⇒ Postnp
ρ1

(0) ∩ (
⋃

δ>0νX CPreδ
ρ2

(X)) �= ∅

Proof. The proof of this theorem relies on three main ingredients:

1. the timed automaton Anp allows one to compute
⋃

δ>0 CPreδ
e(Z

′) by classical
predecessor operator: Prenp

e (Z ′) =
⋃

δ>0 CPreδ
e(Z

′);

2. for all edges e, and zones Z and Z ′, Z∩Prenp
e (Z ′) �= ∅ if and only if Postnp

e (Z)∩
Z ′ �= ∅: this duality property on predecessor and successor relations always
holds, in particular in Anp. These two ingredients already imply that the
theorem holds for a path reduced to a single edge e;

3. we then prove the theorem by induction on length of the path using that
⋃

δ>0 CPreδ
ρ1ρ2

(Z) =
⋃

δ>0 CPreδ
ρ1

( ⋃
δ′>0 CPreδ′

ρ2
(Z)

)
, due to the monotonic-

ity of the CPreδ
ρ1

operator. ��
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Therefore, in order to test the robustness of the lasso ρ1ρ2, it is enough to
only keep in memory the sets Postnp

ρ1
(0) and

⋃
δ>0 νX CPreδ

ρ2
(X).

Non-punctual Forward Analysis. As a consequence of the previous theorem,
we can use a classical forward analysis of the timed automaton Anp to look for
the prefix ρ1 of the lasso ρ1ρ2. A classical inclusion check on zones allows to stop
the exploration, this criterion being complete thanks to Theorem 2. It is worth
reminding that we consider only bounded clocks, hence the number of reachable
zones is finite, ensuring termination.

Robust Cycle Search. We now perform a second forward analysis, from each
possible final location, to find a robust cycle around it. To this end, for each
cycle ρ2, we must compute the zone

⋃
δ>0 νX CPreδ

ρ2
(X). This computation is

obtained by arguments developed in Sect. 4 (Proposition 4). To enumerate cycles
ρ2, we can again use a classical forward exploration, starting from the universal
zone �. Using zone inclusion to stop the exploration is not complete: considering
a path ρ′

2 reaching a zone Z ′
2 included in the zone Z2 reachable using some ρ2, ρ′

2

could be robustly iterable while ρ2 is not. In order to ensure termination of our
analysis, we instead use reachability relations inclusion checks. These tests are
performed using the technique developed in Sect. 3, based on constraint graphs
(Theorem 1). The correction of this inclusion check is stated in the following
lemma, where Reachnp

ρ denotes the reachability relation associated with ρ in the
automaton Anp. This result is derived from the analysis based on regions in [25].
Indeed, we can prove that the non-punctual reachability relation we consider
captures the existence of non-punctual aperiodic paths in the region automaton,
as considered in [25].

Lemma 3. Let ρ1 a path from �0 to some target location �t. Let ρ2, ρ
′
2 be two

paths from �t to some location �, such that Reachnp
ρ2

⊆ Reachnp
ρ′
2
. For all paths

ρ3 from � to �t, Postnp
ρ1

(0) ∩ (
⋃

δ>0 νX CPreδ
ρ2ρ3

(X)) �= ∅ implies Postnp
ρ1

(0) ∩
(
⋃

δ>0 νX CPreδ
ρ′
2ρ3

(X)) �= ∅.

6 Case Study

We implemented our algorithm in C++. To illustrate our approach, we present
a case study on the regulation of train networks. Urban train networks in big
cities are often particularly busy during rush hours: trains run in high frequency
so even small delays due to incidents or passenger misbehavior can perturb the
traffic and end up causing large delays. Train companies thus apply regulation
techniques: they slow down or accelerate trains, and modify waiting times in
order to make sure that the traffic is fluid along the network. Computing robust
schedules with provable guarantees is a difficult problem (see e.g. [9]).

We study here a simplified model of a train network and aim at automati-
cally synthesizing a controller that regulates the network despite perturbations,
in order to ensure performance measures on total travel time for each train.
Consider a circular train network with m stations s0, . . . , sm−1 and n trains. We
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require that all trains are at distinct stations at all times. There is an interval
of delays [�i, ui] attached to each station which bounds the travel time from si

to si+1 mod m. Here the lower bound comes from physical limits (maximal allowed
speed, and travel distance) while the upper bound comes from operator speci-
fication (e.g. it is not desirable for a train to remain at station for more than
3 min). The objective of each train i is to cycle on the network while completing
each tour within a given time interval [ti1, t

i
2].

All timing requirements are naturally encoded with clocks. Given a model, we
solve the robust controller synthesis problem in order to find a controller choosing
travel times for all trains ensuring a Büchi condition (visiting s1 infinitely often).
Given the fact that trains cannot be at the same station at any given time, it
suffices to state the Büchi condition only for one train, since its satisfaction of
the condition necessarily implies that of all other trains.

Fig. 4. Summary of experiments with
different sizes. In each scenario, we
assign a different objective to a subset
of trains. The answer is yes if a robust
controller was found, no if none exists.
TO stands for a time-out of 30 min.

Let us present two representative
instances and then comment the per-
formance of the algorithm on a set of
instances. Consider a network with two
trains and m stations, with [�i, ui] =
[200, 400] for each station i, and the objec-
tive of both trains is the interval [250 ·
m, 350 ·m], that is, an average travel time
between stations that lies in [250, 350].
The algorithm finds an accepting lasso:
intuitively, by choosing δ small enough so
that mδ < 50, perturbations do not accu-
mulate too much and the controller can
always choose delays for both trains and
satisfy the constraints. This case corre-
sponds to scenario A in Fig. 4. Consider
now the same network but with two differ-
ent objectives: [0, 300·m] and [300·m,∞).
Thus, one train needs to complete each
cycle in at most 300 · m time units, while the other one in at least 300 · m time
units. A classical Büchi emptiness check reveals the existence of an accepting
lasso: it suffices to move each train in exactly 300 time units between each sta-
tion. This controller can even recover from perturbations for a bounded number
of cycles: for instance, if a train arrives late at a station, the next travel time can
be chosen smaller than 300. However, such corrections will cause the distance
between the two trains to decrease and if such perturbations happen regularly,
the system will eventually enter a deadlock. Our algorithm detects that there is
no robust controller for the Büchi objective. This corresponds to the scenario B
in Fig. 4.

Figure 4 summarizes the outcome of our prototype implementation on other
scenarios. The tool was run on a 3.2 Ghz Intel i7 processor running Linux, with
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a 30 min time out and 2 GB of memory. The performance is sensitive to the
number of clocks: on scenarios with 8 clocks the algorithm ran out of time.

7 Conclusion

Our case study illustrates the application of robust controller synthesis in small
or moderate size problems. Our prototype relies on the DBM libraries that we use
with twice as many clocks to store the constraints of the normalised constraint
graphs. In order to scale to larger models, we plan to study extrapolation oper-
ators and their integration in the computation of reachability relations, which
seems to be a challenging task. Different strategies can also be adopted for the
double forward analysis, switching between the two modes using heuristics, a
parallel implementation, etc.
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Abstract. Successfully synthesizing controllers for complex dynamical
systems and specifications often requires leveraging domain knowledge
as well as making difficult computational or mathematical tradeoffs.
This paper presents a flexible and extensible framework for construct-
ing robust control synthesis algorithms and applies this to the tradi-
tional abstraction-based control synthesis pipeline. It is grounded in the
theory of relational interfaces and provides a principled methodology to
seamlessly combine different techniques (such as dynamic precision grids,
refining abstractions while synthesizing, or decomposed control prede-
cessors) or create custom procedures to exploit an application’s intrinsic
structural properties. A Dubins vehicle is used as a motivating example
to showcase memory and runtime improvements.

Keywords: Control synthesis · Finite abstraction ·
Relational interface

1 Introduction

A control synthesizer’s high level goal is to automatically construct control soft-
ware that enables a closed loop system to satisfy a desired specification. A vast
and rich literature contains results that mathematically characterize solutions
to different classes of problems and specifications, such as the Hamilton-Jacobi-
Isaacs PDE for differential games [3], Lyapunov theory for stabilization [8], and
fixed-points for temporal logic specifications [11,17]. While many control synthe-
sis problems have elegant mathematical solutions, there is often a gap between
a solution’s theoretical characterization and the algorithms used to compute it.
What data structures are used to represent the dynamics and constraints? What
operations should those data structures support? How should the control synthe-
sis algorithm be structured? Implementing solutions to the questions above can
require substantial time. This problem is especially critical for computationally
challenging problems, where it is often necessary to let the user rapidly identify
and exploit structure through analysis or experimentation.
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Fig. 1. By expressing many different techniques within a common framework, users
are able to rapidly develop methods to exploit system structure in controller synthesis.

1.1 Bottlenecks in Abstraction-Based Control Synthesis

This paper’s goal is to enable a framework to develop extensible tools for robust
controller synthesis. It was inspired in part by computational bottlenecks encoun-
tered in control synthesizers that construct finite abstractions of continuous sys-
tems, which we use as a target use case. A traditional abstraction-based control
synthesis pipeline consists of three distinct stages:

1. Abstracting the continuous state system into a finite automaton whose under-
lying transitions faithfully mimic the original dynamics [21,23].

2. Synthesizing a discrete controller by leveraging data structures and symbolic
reasoning algorithms to mitigate combinatorial state explosion.

3. Refining the discrete controller into a continuous one. Feasibility of this step
is ensured through the abstraction step.

This pipeline appears in tools PESSOA [12] and SCOTS [19], which can exhibit
acute computational bottlenecks for high dimensional and nonlinear system
dynamics. A common method to mitigate these bottlenecks is to exploit a spe-
cific dynamical system’s topological and algebraic properties. In MASCOT [7]
and CoSyMA [14], multi-scale grids and hierarchical models capture notions of
state-space locality. One could incrementally construct an abstraction of the
system dynamics while performing the control synthesis step [10,15] as imple-
mented in tools ROCS [9] and ARCS [4]. The abstraction overhead can also
be reduced by representing systems as a collection of components composed in
parallel [6,13]. These have been developed in isolation and were not previously
interoperable.

1.2 Methodology

Figure 1 depicts this paper’s methodology and organization. The existing control
synthesis formalism does not readily lend itself to algorithmic modifications that
reflect and exploit structural properties in the system and specification. We use
the theory of relational interfaces [22] as a foundation and augment it to express
control synthesis pipelines. Interfaces are used to represent both system models
and constraints. A small collection of atomic operators manipulates interfaces
and is powerful enough to reconstruct many existing control synthesis pipelines.

One may also add new composite operators to encode desirable heuristics
that exploit structural properties in the system and specifications. The last
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three sections encode the techniques for abstraction-based control synthesis from
Sect. 1.1 within the relational interfaces framework. By deliberately deconstruct-
ing those techniques, then reconstructing them within a compositional frame-
work it was possible to identify implicit or unnecessary assumptions then gener-
alize or remove them. It also makes the aforementioned techniques interoperable
amongst themselves as well as future techniques.

Interfaces come equipped with a refinement partial order that formalizes
when one interface abstracts another. This paper focuses on preserving the
refinement relation and sufficient conditions to refine discrete controllers back to
concrete ones. Additional guarantees regarding completeness, termination, pre-
cision, or decomposability can be encoded, but impose additional requirements
on the control synthesis algorithm and are beyond the scope of this paper.

1.3 Contributions

To our knowledge, the application of relational interfaces to robust abstraction-
based control synthesis is new. The framework’s building blocks consist of a col-
lection of small, well understood operators that are nonetheless powerful enough
to express many prior techniques. Encoding these techniques as relational inter-
face operations forced us to simplify, formalize, or remove implicit assumptions
in existing tools. The framework also exhibits numerous desirable features.

1. It enables compositional tools for control synthesis by leveraging a theoretical
foundation with compositionality built into it. This paper showcases a prin-
cipled methodology to seamlessly combine the methods in Sect. 1.1, as well
as construct new techniques.

2. It enables a declarative approach to control synthesis by enforcing a strict
separation between the high level algorithm from its low level implementation.
We rely on the availability of an underlying data structure to encode and
manipulate predicates. Low level predicate operations, while powerful, make
it easy to inadvertently violate the refinement property. Conforming to the
relational interface operations minimizes this danger.

This paper’s first half is domain agnostic and applicable to general robust control
synthesis problems. The second half applies those insights to the finite abstrac-
tion approach to control synthesis. A smaller Dubins vehicle example is used
to showcase and evaluate different techniques and their computational gains,
compared to the unoptimized problem. In an extended version of this paper
available at [1], a 6D lunar lander example leverages all techniques in this paper
and introduces a few new ones.

1.4 Notation

Let = be an assertion that two objects are mathematically equivalent; as a
special case ‘≡’ is used when those two objects are sets. In contrast, the operator
‘==’ checks whether two objects are equivalent, returning true if they are and
false otherwise. A special instance of ‘==’ is logical equivalence ‘⇔’.
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Variables are denoted by lower case letters. Each variable v is associated with
a domain of values D(v) that is analogous to the variable’s type. A composite
variable is a set of variables and is analogous to a bundle of wrapped wires. From
a collection of variables v1, . . . , vM a composite variable v can be constructed
by taking the union v ≡ v1 ∪ . . . ∪ vM and the domain D(v) ≡ ∏M

i=1 D(vi).
Note that the variables v1, . . . , vM above may themselves be composite. As an
example if v is associated with a M -dimensional Euclidean space R

M , then it is a
composite variable that can be broken apart into a collection of atomic variables
v1, . . . , vM where D(vi) ≡ R for all i ∈ {1, . . . , M}. The technical results herein
do not distinguish between composite and atomic variables.

Predicates are functions that map variable assignments to a Boolean value.
Predicates that stand in for expressions/formulas are denoted with capital let-
ters. Predicates P and Q are logically equivalent (denoted by P ⇔ Q) if and
only if P ⇒ Q and Q ⇒ P are true for all variable assignments. The universal
and existential quantifiers ∀ and ∃ eliminate variables and yield new predicates.
Predicates ∃wP and ∀wP do not depend on w. If w is a composite variable
w ≡ w1 ∪ . . . ∪ wN then ∃wP is simply a shorthand for ∃w1 . . . ∃wNP .

2 Control Synthesis for a Motivating Example

As a simple, instructive example consider a planar Dubins vehicle that is tasked
with reaching a desired location. Let x = {px, py, θ} be the collection of state
variables, u = {v, ω} be a collection input variables to be controlled, x+ =
{p+

x , p+
y , θ+} represent state variables at a subsequent time step, and L = 1.4 be

a constant representing the vehicle length. The constraints

p+
x == px + v cos(θ) (Fx)

p+
y == py + v sin(θ) (Fy)

θ+ == θ +
v

L
sin(ω) (Fθ)

characterize the discrete time dynamics. The continuous state domain is D(x) ≡
[−2, 2] × [−2, 2] × [−π, π), where the last component is periodic so −π and π
are identical values. The input domains are D(v) ≡ {0.25, 0.5} and D(ω) ≡
{−1.5, 0, 1.5}

Let predicate F = Fx ∧ Fy ∧ Fθ represent the monolithic system dynam-
ics. Predicate T depends only on x and represents the target set [−0.4, 0.4] ×
[−0.4, 0.4] × [−π, π), encoding that the vehicle’s position must reach a square
with any orientation. Let Z be a predicate that depends on variable x+ that
encodes a collection of states at a future time step. Equation (1) characterizes
the robust controlled predecessor, which takes Z and computes the set of states
from which there exists a non-blocking assignment to u that guarantees x+ will
satisfy Z, despite any non-determinism contained in F . The term ∃x+F prevents
state-control pairs from blocking, while ∀x+(F ⇒ Z) encodes the state-control
pairs that guarantee satisfaction of Z.

cpre(F,Z) = ∃u(∃x+F ∧ ∀x+(F ⇒ Z)). (1)
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The controlled predecessor is used to solve safety and reach games. We can
solve for a region for which the target T (respectively, safe set S) can be reached
(made invariant) via an iteration of an appropriate reach (safe) operator. Both
iterations are given by:

Reach Iter: Z0 = ⊥ Zi+1 = reach(F,Zi, T ) = cpre(F,Zi) ∨ T. (2)
Safety Iter: Z0 = S Zi+1 = safe(F,Zi, S) = cpre(F,Zi) ∧ S. (3)

Fig. 2. Approximate solution to the
Dubins vehicle reach game visualized as
a subset of the state space.

The above iterations are not guaran-
teed to reach a fixed point in a finite
number of iterations, except under certain
technical conditions [21]. Figure 2 depicts
an approximate region where the con-
troller can force the Dubins vehicle to
enter T . We showcase different improve-
ments relative to a base line script used to
generate Fig. 2. A toolbox that adopts this
paper’s framework is being actively devel-
oped and is open sourced at [2]. It is writ-
ten in python 3.6 and uses the dd pack-
age as an interface to CUDD [20], a library
in C/C++ for constructing and manipulat-
ing binary decision diagrams (BDD). All experiments were run on a single core
of a 2013 Macbook Pro with 2.4 GHz Intel Core i7 and 8 GB of RAM.

The following section uses relational interfaces to represent the controlled
predecessor cpre(·) and iterations (2) and (3) as a computational pipeline. Sub-
sequent sections show how modifying this pipeline leads to favorable theoretical
properties and computational gains.

3 Relational Interfaces

Relational interfaces are predicates augmented with annotations about each vari-
able’s role as an input or output1. They abstract away a component’s internal
implementation and only encode an input-output relation.

Definition 1 (Relational Interface [22]). An interface M(i, o) consists of a
predicate M over a set of input variables i and output variables o.

For an interface M(i, o), we call (i, o) its input-output signature. An interface is a
sink if it contains no outputs and has signature like (i, ∅), and a source if it con-
tains no inputs like (∅, o). Sinks and source interfaces can be interpreted as sets
whereas input-output interfaces are relations. Interfaces encode relations through
their predicates and can capture features such as non-deterministic outputs or

1 Relational interfaces closely resemble assume-guarantee contracts [16]; we opt to use
relational interfaces because inputs and outputs play a more prominent role.
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blocking (i.e., disallowed, error) inputs. A system blocks for an input assign-
ment if there does not exist a corresponding output assignment that satisfies the
interface relation. Blocking is a critical property used to declare requirements;
sink interfaces impose constraints by modeling constrain violations as blocking
inputs. Outputs on the other hand exhibit non-determinism, which is treated as
an adversary. When one interface’s outputs are connected to another’s inputs,
the outputs seek to cause blocking whenever possible.

3.1 Atomic and Composite Operators

Operators are used to manipulate interfaces by taking interfaces and variables
as inputs and yielding another interface. We will show how the controlled pre-
decessor cpre(·) in (1) can be constructed by composing operators appearing in
[22] and one additional one. The first, output hiding, removes interface outputs.

Definition 2 (Output Hiding [22]). Output hiding operator ohide(w,F )
over interface F (i, o) and outputs w yields an interface with signature (i, o \ w).

ohide(w,F ) = ∃wF (4)

Existentially quantifying out w ensures that the input-output behavior over the
unhidden variables is still consistent with potential assignments to w. The oper-
ator nb(·) is a special variant of ohide(·) that hides all outputs, yielding a sink
encoding all non-blocking inputs to the original interface.

Definition 3 (Nonblocking Inputs Sink). Given an interface F (i, o), the
nonblocking operation nb(F) yields a sink interface with signature (i, ∅) and
predicate nb(F ) = ∃oF . If F (i, ∅) is a sink interface, then nb(F ) = F yields
itself. If F (∅, o) is a source interface, then nb(F ) = ⊥ if and only if F ⇔ ⊥;
otherwise nb(F ) = �.

The interface composition operator takes multiple interfaces and “collapses”
them into a single input-output interface. It can be viewed as a generalization
of function composition in the special case where each interface encodes a total
function (i.e., deterministic output and inputs never block).

Definition 4 (Interface Composition [22]). Let F1(i1, o1) and F2(i2, o2) be
interfaces with disjoint output variables o1 ∩ o2 ≡ ∅ and i1 ∩ o2 ≡ ∅ which
signifies that F2’s outputs may not be fed back into F1’s inputs. Define new
composite variables

io12 ≡ o1 ∩ i2 (5)
i12 ≡ (i1 ∪ i2) \ io12 (6)
o12 ≡ o1 ∪ o2. (7)

Composition comp(F1, F2) is an interface with signature (i12, o12) and predicate

F1 ∧ F2 ∧ ∀o12(F1 ⇒ nb(F2)). (8)

Interface subscripts may be swapped if instead F2’s outputs are fed into F1.
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Interfaces F1 and F2 are composed in parallel if io21 ≡ ∅ holds in addition to
io12 ≡ ∅. Equation (8) under parallel composition reduces to F1 ∧ F2 (Lemma
6.4 in [22]) and comp(·) is commutative and associative. If io12 �≡ ∅, then they
are composed in series and the composition operator is only associative. Any
acyclic interconnection can be composed into a single interface by systematically
applying Definition 4’s binary composition operator. Non-deterministic outputs
are interpreted to be adversarial. Series composition of interfaces has a built-in
notion of robustness to account for F1’s non-deterministic outputs and blocking
inputs to F2 over the shared variables io12. The term ∀o12(F1 ⇒ nb(F2)) in
Eq. (8) is a predicate over the composition’s input set i12. It ensures that if a
potential output of F1 may cause F2 to block, then comp(F1, F2) must preemp-
tively block.

The final atomic operator is input hiding, which may only be applied to sinks.
If the sink is viewed as a constraint, an input variable is “hidden” by an angelic
environment that chooses an input assignment to satisfy the constraint. This
operator is analogous to projecting a set into a lower dimensional space.

Definition 5 (Hiding Sink Inputs). Input hiding operator ihide(w,F ) over
sink interface F (i, ∅) and inputs w yields an interface with signature (i \ w, ∅).

ihide(w,F ) = ∃wF (9)

Unlike the composition and output hiding operators, this operator is not included
in the standard theory of relational interfaces [22] and was added to encode a
controller predecessor introduced subsequently in Eq. (10).

3.2 Constructing Control Synthesis Pipelines

The robust controlled predecessor (1) can be expressed through operator com-
position.

Proposition 1. The controlled predecessor operator (10) yields a sink interface
with signature (x, ∅) and predicate equivalent to the predicate in (1).

cpre(F,Z) = ihide(u, ohide(x+, comp(F,Z))). (10)

The simple proof is provided in the extended version at [1]. Proposition 1 sig-
nifies that controlled predecessors can be interpreted as an instance of robust
composition of interfaces, followed by variable hiding. It can be shown that
safe(F,Z, S) = comp(cpre(F,Z), S) because S(x, ∅) and cpre(F,Z) would be
composed in parallel.2 Figure. 3 shows a visualization of the safety game’s fixed
point iteration from the point of view of relational interfaces. Starting from
the right-most sink interface S (equivalent to Z0) the iteration (3) constructs a
sequence of sink interfaces Z1, Z2, ... encoding relevant subsets of the state space.
The numerous S(x, ∅) interfaces impose constraints and can be interpreted as
monitors that raise errors if the safety constraint is violated.
2 Disjunctions over sinks are required to encode reach(·). This will be enabled by the

shared refinement operator defined in Definition 10.
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Fig. 3. Safety control synthesis iteration (3) depicted as a sequence of sink interfaces.

3.3 Modifying the Control Synthesis Pipeline

Equation (10)’s definition of cpre(·) is oblivious to the domains of variables
x, u, and x+. This generality is useful for describing a problem and serving as a
blank template. Whenever problem structure exists, pipeline modifications refine
the general algorithm into a form that reflects the specific problem instance.
They also allow a user to inject implicit preferences into a problem and reduce
computational bottlenecks or to refine a solution. The subsequent sections apply
this philosophy to the abstraction-based control techniques from Sect. 1.1:

– Sect. 4: Coarsening interfaces reduces the computational complexity of a prob-
lem by throwing away fine grain information. The synthesis result is conser-
vative but the degree of conservatism can be modified.

– Sect. 5: Refining interfaces decreases result conservatism. Refinement in com-
bination with coarsening allows one to dynamically modulate the complexity
of the problem as a function of multiple criteria such as the result granularity
or minimizing computational resources.

– Sect. 6: If the dynamics or specifications are decomposable then the control
predecessor operator can be broken apart to refect that decomposition.

These sections do more than simply reconstruct existing techniques in the lan-
guage of relational interfaces. They uncover some implicit assumptions in existing
tools and either remove them or make them explicit. Minimizing the number of
assumptions ensures applicability to a diverse collection of systems and specifi-
cations and compatibility with future algorithmic modifications.

4 Interface Abstraction via Quantization

A key motivator behind abstraction-based control synthesis is that computing
the game iterations from Eqs. (2) and (3) exactly is often intractable for high-
dimensional nonlinear dynamics. Termination is also not guaranteed. Quantizing
(or “abstracting”) continuous interfaces into a finite counterpart ensures that
each predicate operation of the game terminates in finite time but at the cost of
the solution’s precision. Finer quantization incurs a smaller loss of precision but
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can cause the memory and computational requirements to store and manipulate
the symbolic representation to exceed machine resources.

This section first introduces the notion of interface abstraction as a refine-
ment relation. We define the notion of a quantizer and show how it is a simple
generalization of many existing quantizers in the abstraction-based control lit-
erature. Finally, we show how one can inject these quantizers anywhere in the
control synthesis pipeline to reduce computational bottlenecks.

4.1 Theory of Abstract Interfaces

While a controller synthesis algorithm can analyze a simpler model of the dynam-
ics, the results have no meaning unless they can be extrapolated back to the orig-
inal system dynamics. The following interface refinement condition formalizes a
condition when this extrapolation can occur.

Definition 6 (Interface Refinement [22]). Let F (i, o) and F̂ (̂i, ô) be inter-
faces. F̂ is an abstraction of F if and only if i ≡ î, o ≡ ô, and

nb(F̂ ) ⇒ nb(F ) (11)
(
nb(F̂ ) ∧ F

)
⇒ F̂ (12)

are valid formulas. This relationship is denoted by F̂ � F .

Definition 6 imposes two main requirements between a concrete and abstract
interface. Equation (11) encodes the condition where if F̂ accepts an input,
then F must also accept it; that is, the abstract component is more aggres-
sive with rejecting invalid inputs. Second, if both systems accept the input
then the abstract output set is a superset of the concrete function’s output set.
The abstract interface is a conservative representation of the concrete interface
because the abstraction accepts fewer inputs and exhibits more non-deterministic
outputs. If both the interfaces are sink interfaces, then F̂ � F reduces down to
F̂ ⊆ F when F, F̂ are interpreted as sets. If both are source interfaces then the
set containment direction is flipped and F̂ � F reduces down to F ⊆ F̂ .

The refinement relation satisfies the required reflexivity, transitivity, and
antisymmetry properties to be a partial order [22] and is depicted in Fig. 4.
This order has a bottom element ⊥ which is a universal abstraction. Conve-
niently, the bottom element ⊥ signifies both boolean false and the bottom of
the partial order. This interface blocks for every potential input. In contrast,
Boolean � plays no special role in the partial order. While � exhibits totally
non-deterministic outputs, it also accepts inputs. A blocking input is considered
“worse” than non-deterministic outputs in the refinement order. The refinement
relation � encodes a direction of conservatism such that any reasoning done over
the abstract models is sound and can be generalized to the concrete model.

Theorem 1 (Informal Substitutability Result [22]). For any input that
is allowed for the abstract model, the output behaviors exhibited by an abstract
model contains the output behaviors exhibited by the concrete model.
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Fig. 4. Example depiction of the refinement partial order. Each small plot on the
depicts input-output pairs that satisfy an interface’s predicate. Inputs (outputs) vary
along the horizontal (vertical) axis. Because B blocks on some inputs but A accepts all
inputs B � A. Interface C exhibits more output non-determinism than A so C � A.
Similarly D � B, D � C, � � C, etc. Note that B and C are incomparable because
C exhibits more output non-determinism and B blocks for more inputs. The false
interface ⊥ is a universal abstraction, while � is incomparable with B and D.

If a property on outputs has been established for an abstract interface, then
it still holds if the abstract interface is replaced with the concrete one. Infor-
mally, the abstract interface is more conservative so if a property holds with the
abstraction then it must also hold for the true system. All aforementioned inter-
face operators preserve the properties of the refinement relation of Definition 6,
in the sense that they are monotone with respect to the refinement partial order.

Theorem 2 (Composition Preserves Refinement [22]). Let Â � A and
B̂ � B. If the composition is well defined, then comp(Â, B̂) � comp(A,B).

Theorem 3 (Output Hiding Preserves Refinement [22]). If A � B, then
ohide(w,A) � ohide(w,B) for any variable w.

Theorem 4 (Input Hiding Preserves Refinement). If A,B are both sink
interfaces and A � B, then ihide(w,A) � ihide(w,B) for any variable w.

Proofs for Theorems 2 and 3 are provided in [22]. Theorem 4’s proof is simple
and is omitted. One can think of using interface composition and variable hiding
to horizontally (with respect to the refinement order) navigate the space of all
interfaces. The synthesis pipeline encodes one navigated path and monotonic-
ity of these operators yields guarantees about the path’s end point. Composite
operators such as cpre(·) chain together multiple incremental steps. Furthermore
since the composition of monotone operators is itself a monotone operator, any
composite constructed from these parts is also monotone. In contrast, the coars-
ening and refinement operators introduced later in Definitions 8 and 10 respec-
tively are used to move vertically and construct abstractions. The “direction”
of new composite operators can easily be established through simple reasoning
about the cumulative directions of their constituent operators.
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Fig. 5. Coarsening of the Fx interface to 23, 24 and 25 bins along each dimension for
a fixed v assignment. Interfaces are coarsened within milliseconds for BDDs but the
runtime depends on the finite abstraction’s data structure representation.

4.2 Dynamically Coarsening Interfaces

In practice, the sequence of interfaces Zi generated during synthesis grows in
complexity. This occurs even if the dynamics F and the target/safe sets have
compact representations (i.e., fewer nodes if using BDDs). Coarsening F and
Zi combats this growth in complexity by effectively reducing the amount of
information sent between iterations of the fixed point procedure.

Spatial discretization or coarsening is achieved by use of a quantizer interface
that implicitly aggregates points in a space into a partition or cover.

Definition 7. A quantizer Q(i, o) is any interface that abstracts the identity
interface (i == o) associated with the signature (i, o).

Quantizers decrease the complexity of the system representation and make
synthesis more computationally tractable. A coarsening operator abstracts an
interface by connecting it in series with a quantizer. Coarsening reduces the
number of non-blocking inputs and increases the output non-determinism.

Definition 8 (Input/Output Coarsening). Given an interface F (i, o) and
input quantizer Q(̂i, i), input coarsening yields an interface with signature (̂i, o).

icoarsen(F,Q(̂i, i)) = ohide(i, comp(Q(̂i, i), F )) (13)

Similarly, given an output quantizer Q(o, ô), output coarsening yields an inter-
face with signature (i, ô).

ocoarsen(F,Q(o, ô)) = ohide(o, comp(F,Q(o, ô))) (14)

Figure 5 depicts how coarsening reduces the information required to encode a
finite interface. It leverages a variable precision quantizer, whose implementation
is described in the extended version at [1].

The corollary below shows that quantizers can be seamlessly integrated into
the synthesis pipeline while preserving the refinement order. It readily follows
from Theorems 2, 3, and the quantizer definition.

Corollary 1. Input and output coarsening operations (13) and (14) are mono-
tone operations with respect to the interface refinement order �.
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Fig. 6. Number of BDD nodes (red) and number of states in reach basin (blue) with
respect to the reach game iteration with a greedy quantization. The solid lines result
from the unmodified game with no coarsening heuristic. The dashed lines result from
greedy coarsening whenever the winning region exceeds 3000 BDD nodes. (Color figure
online)

It is difficult to know a priori where a specific problem instance lies along
the spectrum between mathematical precision and computational efficiency. It is
then desirable to coarsen dynamically in response to runtime conditions rather
than statically beforehand. Coarsening heuristics for reach games include:

– Downsampling with progress [7]: Initially use coarser system dynamics to
rapidly identify a coarse reach basin. Finer dynamics are used to construct
a more granular set whenever the coarse iteration “stalls”. In [7] only the Zi

are coarsened during synthesis. We enable the dynamics F to be as well.
– Greedy quantization: Selectively coarsening along certain dimensions by

checking at runtime which dimension, when coarsened, would cause Zi to
shrink the least. This reward function can be leveraged in practice because
coarsening is computationally cheaper than composition. For BDDs, the win-
ning region can be coarsened until the number of nodes reduces below a
desired threshold. Figure 6 shows this heuristic being applied to reduce mem-
ory usage at the expense of answer fidelity. A fixed point is not guaranteed
as long as quantizers can be dynamically inserted into the synthesis pipeline,
but is once quantizers are always inserted at a fixed precision.

The most common quantizer in the literature never blocks and only increases
non-determinism (such quantizers are called “strict” in [18,19]). If a quantizer is
interpreted as a partition or cover, this requirement means that the union must
be equal to an entire space. Definition 7 relaxes that requirement so the union
can be a subset instead. It also hints at other variants such as interfaces that
don’t increase output non-determinism but instead block for more inputs.
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5 Refining System Dynamics

Shared refinement [22] is an operation that takes two interfaces and merges them
into a single interface. In contrast to coarsening, it makes interfaces more pre-
cise. Many tools construct system abstractions by starting from the universal
abstraction ⊥, then iteratively refining it with a collection of smaller interfaces
that represent input-output samples. This approach is especially useful if the
canonical concrete system is a black box function, Simulink model, or source
code file. These representations do not readily lend themselves to the predicate
operations or be coarsened directly. We will describe later how other tools imple-
ment a restrictive form of refinement that introduces unnecessary dependencies.

Interfaces can be successfully merged whenever they do not contain contra-
dictory information. The shared refinability condition below formalizes when
such a contradiction does not exist.

Definition 9 (Shared Refinability [22]). Interfaces F1(i, o) and F2(i, o) with
identical signatures are shared refinable if

(nb(F1) ∧ nb(F2)) ⇒ ∃o(F1 ∧ F2) (15)

For any inputs that do not block for all interfaces, the corresponding output sets
must have a non-empty intersection. If multiple shared refinable interfaces, then
they can be combined into a single one that encapsulates all of their information.

Definition 10 (Shared Refinement Operation [22]). The shared refine-
ment operation combines two shared refinable interfaces F1 and F2, yielding a
new identical signature interface corresponding to the predicate

refine(F1, F2) = (nb(F1) ∨ nb(F2)) ∧ (nb(F1) ⇒ F1) ∧ (nb(F2) ⇒ F2). (16)

The left term expands the set of accepted inputs. The right term signifies that
if an input was accepted by multiple interfaces, the output must be consistent
with each of them. The shared refinement operation reduces to disjunction for
sink interfaces and to conjunction for source interfaces.

Shared refinement’s effect is to move up the refinement order by combining
interfaces. Given a collection of shared refinable interfaces, the shared refinement
operation yields the least upper bound with respect to the refinement partial
order in Definition 6. Violation of (15) can be detected if the interfaces fed into
refine(·) are not abstractions of the resulting interface.

5.1 Constructing Finite Interfaces Through Shared Refinement

A common method to construct finite abstractions is through simulation and
overapproximation of forward reachable sets. This technique appears in tools
such as PESSOA [12], SCOTS [19], MASCOT [7], ROCS [9] and ARCS [4].
By covering a sufficiently large portion of the interface input space, one can
construct larger composite interfaces from smaller ones via shared refinement.
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Fig. 7. (Left) Result of sample and coarsen operations for control system interface
F (x∪u, x+). The I and Î interfaces encode the same predicate, but play different roles
as sink and source. (Right) Visualization of finite abstraction as traversing the refine-
ment partial order. Nodes represent interfaces and edges signify data dependencies for
interface manipulation operators. Multiple refine edges point to a single node because
refinement combines multiple interfaces. Input-output (IO) sample and coarsening are
unary operations so the resulting nodes only have one incoming edge. The concrete
interface F refines all others, and the final result is an abstraction F̂ .

Smaller interfaces are constructed by sampling regions of the input space and
constructing an input-output pair. In Fig. 7’s left half, a sink interface I(x∪u, ∅)
acts as a filter. The source interface Î(∅, x ∪ u) composed with F (x ∪ u, x+)
prunes any information that is outside the relevant input region. The original
interface refines any sampled interface. To make samples finite, interface inputs
and outputs are coarsened. An individual sampled abstraction is not useful for
synthesis because it is restricted to a local portion of the interface input space.
After sampling many finite interfaces are merged through shared refinement. The
assumption Îi ⇒ nb(F ) encodes that the dynamics won’t raise an error when
simulated and is often made implicitly. Figure 7’s right half depicts the sample,
coarsen, and refine operations as methods to vertically traverse the interface
refinement order.

Critically, refine(·) can be called within the synthesis pipeline and does not
assume that the sampled interfaces are disjoint. Figure 8 shows the results from
refining the dynamics with a collection of state-control hyper-rectangles that
are randomly generated via uniformly sampling their widths and offsets along
each dimension. These hyper-rectangles may overlap. If the same collection of
hyper-rectangles were used in MASCOT, SCOTS, ARCS, or ROCS then this
would yield a much more conservative abstraction of the dynamics because their
implementations are not robust to overlapping or misaligned samples. PESSOA
and SCOTS circumvent this issue altogether by enforcing disjointness with an
exhaustive traversal of the state-control space, at the cost of unnecessarily cou-
pling the refinement and sampling procedures. The lunar lander in the extended
version [1] embraces overlapping and uses two mis-aligned grids to construct a
grid partition with pN elements with only pN ( 1

2 )N−1 samples (where p is the
number of bins along each dimension and N is the interface input dimension).
This technique introduces a small degree of conservatism but its computational
savings typically outweigh this cost.
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Fig. 8. The number of states in the computed reach basin grows with the number of
random samples. The vertical axis is lower bounded by the number of states in the
target 131k and upper bounded by 631k, the number of states using an exhaustive
traversal. Naive implementations of the exhaustive traversal would require 12 million
samples. The right shows basins for 3000 (top) and 6000 samples (bottom).

6 Decomposed Control Predecessor

A decomposed control predecessor is available whenever the system state space
consists of a Cartesian product and the dynamics are decomposed component-
wise such as Fx, Fy, and Fθ for the Dubins vehicle. This property is common for
continuous control systems over Euclidean spaces. While one may construct F
directly via the abstraction sampling approach, it is often intractable for larger
dimensional systems. A more sophisticated approach abstracts the lower dimen-
sional components Fx, Fy, and Fθ individually, computes F = comp(Fx, Fy, Fθ),
then feeds it to the monolithic cpre(·) from Proposition 1. This section’s app-
roach is to avoid computing F at all and decompose the monolithic cpre(·).
It operates by breaking apart the term ohide(x+, comp(F,Z)) in such a way
that it respects the decomposition structure. For the Dubins vehicle example
ohide(x+, comp(F,Z)) is replaced with

ohide(p+
x , comp(Fx, ohide(p+

y , comp(Fy, ohide(θ+, comp(Fθ, Z))))))

yielding a sink interface with inputs px, py, v, θ, and ω. This representation and
the original ohide(x+, comp(F,Z)) are equivalent because comp(·) is associative
and interfaces do not share outputs x+ ≡ {p+

x , p+
y , θ+}. Figure 9 shows multiple

variants of cpre(·) and improved runtimes when one avoids preemptively con-
structing the monolithic interface. The decomposed cpre(·) resembles techniques
to exploit partitioned transition relations in symbolic model checking [5].

No tools from Sect. 1.1 natively support decomposed control predecessors.
We’ve shown a decomposed abstraction for components composed in parallel
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Decomposition Parallel Compose Reach Game
Runtime (s) Runtime (s)

F (Monolithic) 0.56 103.09
Fyθ, Fx (Partially Decomp.) 0.02 28.31
Fxθ, Fy (Partially Decomp.) 0.01 28.71
Fxy, Fθ (Partially Decomp.) 0.06 10.61
Fx, Fy, Fθ (Fully Decomp.) n/a 4.42

Fig. 9. A monolithic cpre(·) incurs unnecessary pre-processing and synthesis runtime
costs for the Dubins vehicle reach game. Each variant of cpre(·) above composes
the interfaces Fx, Fy and Fθ in different permutations. For example, Fxy represents
comp(Fx, Fy) and F represents comp(Fx, Fy, Fθ).

but this can also be generalized to series composition to capture, for example, a
system where multiple components have different temporal sampling periods.

7 Conclusion

Tackling difficult control synthesis problems will require exploiting all available
structure in a system with tools that can flexibly adapt to an individual prob-
lem’s idiosyncrasies. This paper lays a foundation for developing an extensible
suite of interoperable techniques and demonstrates the potential computational
gains in an application to controller synthesis with finite abstractions. Adhering
to a simple yet powerful set of well-understood primitives also constitutes a dis-
ciplined methodology for algorithm development, which is especially necessary
if one wants to develop concurrent or distributed algorithms for synthesis.
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Abstract. Reactive systems that operate in environments with complex
data, such as mobile apps or embedded controllers with many sensors,
are difficult to synthesize. Synthesis tools usually fail for such systems
because the state space resulting from the discretization of the data is
too large. We introduce TSL, a new temporal logic that separates con-
trol and data. We provide a CEGAR-based synthesis approach for the
construction of implementations that are guaranteed to satisfy a TSL
specification for all possible instantiations of the data processing func-
tions. TSL provides an attractive trade-off for synthesis. On the one
hand, synthesis from TSL, unlike synthesis from standard temporal log-
ics, is undecidable in general. On the other hand, however, synthesis
from TSL is scalable, because it is independent of the complexity of the
handled data. Among other benchmarks, we have successfully synthe-
sized a music player Android app and a controller for an autonomous
vehicle in the Open Race Car Simulator (TORCS).

1 Introduction

In reactive synthesis, we automatically translate a formal specification, typically
given in a temporal logic, into a controller that is guaranteed to satisfy the
specification. Over the past two decades there has been much progress on reac-
tive synthesis, both in terms of algorithms, notably with techniques like GR(1)-
synthesis [7] and bounded synthesis [20], and in terms of tools, as showcased, for
example, in the annual syntcomp competition [25].

In practice however, reactive synthesis has seen limited success. One of the
largest published success stories [6] is the synthesis of the AMBA bus proto-
col. To push synthesis even further, automatically synthesizing a controller for
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an autonomous system has been recognized to be of critical importance [52].
Despite many years of experience with synthesis tools, our own attempts to syn-
thesize such controllers with existing tools have been unsuccessful. The reason is
that the tools are unable to handle the data complexity of the controllers. The
controller only needs to switch between a small number of behaviors, like steer-
ing during a bend, or shifting gears on high rpm. The number of control states
in a typical controller (cf. [18]) is thus not much different from the arbiter in the
AMBA case study. However, in order to correctly initiate transitions between
control states, the driving controller must continuously process data from more
than 20 sensors.

If this data is included (even as a rough discretization) in the state space of
the controller, then the synthesis problem is much too large to be handled by
any available tools. It seems clear then, that a scalable synthesis approach must
separate control and data. If we assume that the data processing is handled by
some other approach (such as deductive synthesis [38] or manual programming),
is it then possible to solve the remaining reactive synthesis problem?

In this paper, we show scalable reactive synthesis is indeed possible. Sepa-
rating data and control has allowed us to synthesize reactive systems, including
an autonomous driving controller and a music player app, that had been impos-
sible to synthesize with previously available tools. However, the separation of
data and control implies some fundamental changes to reactive synthesis, which
we describe in the rest of the paper. The changes also imply that the reactive
synthesis problem is no longer, in general, decidable. We thus trade theoretical
decidability for practical scalability, which is, at least with regard to the goal of
synthesizing realistic systems, an attractive trade-off.

We introduce Temporal Stream Logic (TSL), a new temporal logic that
includes updates, such as �y � f x�, and predicates over arbitrary function
terms. The update �y � f x� indicates that the result of applying function f
to variable x is assigned to y. The implementation of predicates and functions is
not part of the synthesis problem. Instead, we look for a system that satisfies the
TSL specification for all possible interpretations of the functions and predicates.

This implicit quantification over all possible interpretations provides a useful
abstraction: it allows us to independently implement the data processing part.
On the other hand, this quantification is also the reason for the undecidability of
the synthesis problem. If a predicate is applied to the same term twice, it must
(independently of the interpretation) return the same truth value. The synthesis
must then implicitly maintain a (potentially infinite) set of terms to which the
predicate has previously been applied. As we show later, this set of terms can
be used to encode PCP [45] for a proof of undecidability.

We present a practical synthesis approach for TSL specifications, which is
based on bounded synthesis [20] and counterexample-guided abstraction refine-
ment (CEGAR) [9]. We use bounded synthesis to search for an implementation
up to a (iteratively growing) bound on the number of states. This approach
underapproximates the actual TSL synthesis problem by leaving the interpre-
tation of the predicates to the environment. The underapproximation allows
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Fig. 1. The TSL synthesis procedure uses a modular design. Each step takes input
from the previous step as well as interchangeable modules (dashed boxes).

for inconsistent behaviors: the environment might assign different truth values
to the same predicate when evaluated at different points in time, even if the
predicate is applied to the same term. However, if we find an implementation
in this underapproximation, then the CEGAR loop terminates and we have a
correct implementation for the original TSL specification. If we do not find an
implementation in the underapproximation, we compute a counter strategy for
the environment. Because bounded synthesis reduces the synthesis problem to
a safety game, the counter strategy is a reachability strategy that can be rep-
resented as a finite tree. We check whether the counter strategy is spurious by
searching for a pair of positions in the strategy where some predicate results in
different truth values when applied to the same term. If the counter strategy
is not spurious, then no implementation exists for the considered bound, and
we increase the bound. If the counter strategy is spurious, then we introduce a
constraint into the specification that eliminates the incorrect interpretation of
the predicate, and continue with the refined specification.

A general overview of this procedure is shown in Fig. 1. The top half of the
figure depicts the bounded search for an implementation that realizes a TSL
specification using the CEGAR loop to refine the specification. If the specifica-
tion is realizable, we proceed in the bottom half of the process, where a synthe-
sized implementation is converted to a control flow model (CFM) determining
the control of the system. We then specialize the CFM to Functional Reactive
Programming (FRP), which is a popular and expressive programming paradigm
for building reactive programs using functional programming languages [14].
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Fig. 2. Sample code and specification for the music player app.

Our framework supports any FRP library using the Arrow or Applicative design
patterns, which covers most of the existing FRP libraries (e.g. [2,3,10,41]).
Finally, the synthesized control flow is embedded into a project context, where
it is equipped with function and predicate implementations and then compiled
to an executable program.

Our experience with synthesizing systems based on TSL specifications has
been extremely positive. The synthesis works for a broad range of benchmarks,
ranging from classic reactive synthesis problems (like escalator control), through
programming exercises from functional reactive programming, to novel case stud-
ies like our music player app and the autonomous driving controller for a vehicle
in the Open Race Car Simulator (TORCS).

2 Motivating Example

To demonstrate the utility of our method, we synthesized a music player Android
app1 from a TSL specification. A major challenge in developing Android apps is
the temporal behavior of an app through the Android lifecycle [46]. The Android
lifecycle describes how an app should handle being paused, when moved to the
background, coming back into focus, or being terminated. In particular, resume
and restart errors are commonplace and difficult to detect and correct [46]. Our
music player app demonstrates a situation in which a resume and restart error
could be unwittingly introduced when programming by hand, but is avoided by
providing a specification. We only highlight the key parts of the example here
to give an intuition of TSL. The complete specification is presented in [19].

Our music player app utilizes the Android music player library (MP), as well
as its control interface (Ctrl). It pauses any playing music when moved to the
background (for instance if a call is received), and continues playing the currently
selected track (Tr) at the last track position when the app is resumed. In the
Android system (Sys), the leaveApp method is called whenever the app moves to
the background, while the resumeApp method is called when the app is brought
back to the foreground. To avoid confusion between pausing music and pausing
the app, we use leaveApp and resumeApp in place of the Android methods

1 https://play.google.com/store/apps/details?id=com.mark.myapplication.

https://play.google.com/store/apps/details?id=com.mark.myapplication
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Fig. 3. The effect of a minor change in functionality on code versus a specification.

onPause and onResume. A programmer might manually write code for this as
shown on the left in Fig. 2.

The behavior of this can be directly described in TSL as shown on the right
in Fig. 2. Even eliding a formal introduction of the notation for now, the specifi-
cation closely matches the textual specification. First, when the user leaves the
app and the music is playing, the music pauses. Likewise for the second part,
when the user resumes the app, the music starts playing again.

However, assume we want to change the behavior so that the music only
plays on resume when the music had been playing before leaving the app
in the first place. In the manually written program, this new functionality
requires an additional variable wasPlaying to keep track of the music state.
Managing the state requires multiple changes in the code as shown on the left
in Fig. 3. The required code changes include: a conditional in the resumeApp
method, setting wasPlaying appropriately in two places in leaveApp, and pro-
viding an initial value. Although a small example, it demonstrates how a minor
change in functionality may require wide-reaching code changes. In addition,
this change introduces a globally scoped variable, which then might accidentally
be set or read elsewhere. In contrast, it is a simple matter to change the TSL
specification to reflect this new functionality. Here, we only update one part of
the specification to say that if the user leaves the app and the music is playing,
the music has to play again as soon as the app resumes.

Synthesis allows us to specify a temporal behavior without worrying about
the implementation details. In this example, writing the specification in TSL has
eliminated the need of an additional state variable, similarly to a higher order
map eliminating the need for an iteration variable. However, in more complex
examples the benefits compound, as TSL provides a modular interface to spec-
ify behaviors, offloading the management of multiple interconnected temporal
behaviors from the user to the synthesis engine.
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3 Preliminaries

We assume time to be discrete and denote it by the set N of positive integers.
A value is an arbitrary object of arbitrary type. V denotes the set of all values.
The Boolean values are denoted by B ⊆ V. A stream s : N → V is a function
fixing values at each point in time. An n-ary function f : Vn → V determines
new values from n given values, where the set of all functions (of arbitrary arity)
is given by F . Constants are functions of arity 0. Every constant is a value, i.e.,
is an element of F ∩ V. An n-ary predicate p : Vn → B checks a property over n
values. The set of all predicates (of arbitrary arity) is given by P, where P ⊆ F .
We use B[A] to denote the set of all total functions with domain A and image B.

In the classical synthesis setting, inputs and outputs are vectors of Booleans,
where the standard abstraction treats inputs and outputs as atomic propositions
I ∪ O, while their Boolean combinations form an alphabet Σ = 2I∪O. Behavior
then is described through infinite sequences α = α(0)α(1)α(2) . . . ∈ Σω. A
specification describes a relation between input sequences α ∈ (2I)ω and output
sequences β ∈ (2O)ω. Usually, this relation is not given by explicit sequences, but
by a fomula in a temporal logic. The most popular such logic is Linear Temporal
Logic (LTL) [43], which uses Boolean connectives to specify behavior at specific
points in time, and temporal connectives, to relate sub-specifications over time.
The realizability and synthesis problems for LTL are 2ExpTime-complete [44].

An implementation describes a realizing strategy, formalized via infinite trees.
A Φ-labeled and Υ -branching tree is a function σ : Υ ∗ → Φ, where Υ denotes the
set of branching directions along a tree. Every node of the tree is given by a finite
prefix v ∈ Υ ∗, which fixes the path to reach a node from the root. Every node is
labeled by an element of Φ. For infinite paths ν ∈ Υω, the branch σ�ν denotes the
sequence of labels that appear on ν, i.e., ∀t ∈ N. (σ� ν)(t) = σ(ν(0) . . . ν(t − 1)).

4 Temporal Stream Logic

We present a new logic: Temporal Stream Logic (TSL), which is especially
designed for synthesis and allows for the manipulation of infinite streams of
arbitrary (even non-enumerative, or higher order) type. It provides a straight-
forward notation to specify how outputs are computed from inputs, while using
an intuitive interface to access time. The main focus of TSL is to describe tem-
poral control flow, while abstracting away concrete implementation details. This
not only keeps the logic intuitive and simple, but also allows a user to identify
problems in the control flow even without a concrete implementation at hand.
In this way, the use of TSL scales up to any required abstraction, such as API
calls or complex algorithmic transformations.

Architecture. A TSL formula ϕ specifies a reactive system that in every time step
processes a finite number of inputs I and produces a finite number of outputs O.
Furthermore, it uses cells C to store a value computed at time t, which can then
be reused in the next time step t + 1. An overview of the architecture of such a
system is given in Fig. 4a. In terms of behavior, the environment produces infinite
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Fig. 4. General architecture of reactive systems that are specified in TSL on the left,
and the structure of function, predicate and updates on the right.

streams of input data, while the system uses pure (side-effect free) functions
to transform the values of these input streams in every time step. After their
transformation, the data values are either passed to an output stream or are
passed to a cell, which pipes the output value from one time step back to the
corresponding input value of the next. The behaviour of the system is captured
by its infinite execution over time.

Function Terms, Predicate Terms, and Updates. In TSL we differentiate
between two elements: we use purely functional transformations, reflected by
functions f ∈ F and their compositions, and predicates p ∈ P, used to control
how data flows inside the system. To argue about both elements we use a term
based notation, where we distinguish between function terms τF and predicate
terms τP , respectively. Function terms are either constructed from inputs or cells
(si ∈ I ∪ C), or from functions, recursively applied to a set of function terms.
Predicate terms are constructed similarly, by applying a predicate to a set of
function terms. Finally, an update takes the result of a function computation
and passes it either to an output or a cell (so ∈ O ∪ C). An overview of the syn-
tax of the different term notations is given in Fig. 4b. Note that we use curried
argument notation similar to functional programming languages.

We denote sets of function and predicate terms, and updates by TF , TP and
TU, respectively, where TP ⊆ TF . We use F to denote the set of function literals
and P ⊆ F to denote the set of predicate literals, where the literals si, so, f
and p are symbolic representations of inputs and cells, outputs and cells, func-
tions, and predicates, respectively. Literals are used to construct terms as shown
in Fig. 4b. Since we use a symbolic representation, functions and predicates are
not tied to a specific implementation. However, we still classify them according
to their arity, i.e., the number of function terms they are applied to, as well as by
their type: input, output, cell, function or predicate. Furthermore, terms can be
compared syntactically using the equivalence relation ≡. To assign a semantic
interpretation to functions, we use an assignment function 〈·〉 : F → F .
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Inputs, Outputs, and Computations. We consider momentary inputs i ∈ V [I],
which are assignments of inputs i ∈ I to values v ∈ V. For the sake of readability
let I = V [I]. Input streams are infinite sequences ι ∈ Iω consisting of infinitely
many momentary inputs.

Similarly, a momentary output o ∈ V [O] is an assignment of outputs o ∈ O

to values v ∈ V, where we also use O = V [O]. Output streams are infinite
sequences � ∈ Oω. To capture the behavior of a cell, we introduce the notion
of a computation ς. A computation fixes the function terms that are used to
compute outputs and cell updates, without fixing semantics of function literals.
Intuitively, a computation only determines which function terms are used to
compute an output, but abstracts from actually computing it.

The basic element of a computation is a computation step c ∈ T [O∪C]
F , which

is an assignment of outputs and cells so ∈ O ∪ C to function terms τF ∈ TF . For
the sake of readability let C = T [O∪C]

F . A computation step fixes the control flow
behaviour at a single point in time. A computation ς ∈ Cω is an infinite sequence
of computation steps.

As soon as input streams, and function and predicate implementations are
known, computations can be turned into output streams. To this end, let
〈·〉 : F → F be some function assignment. Furthermore, assume that there are
predefined constants initc ∈ F ∩ V for every cell c ∈ C, which provide an initial
value for each stream at the initial point in time. To receive an output stream
from a computation ς ∈ Cω under the input stream ι, we use an evaluation
function η〈·〉: Cω × Iω × N × TF → V:

η〈·〉(ς, ι, t, si) =

⎧
⎪⎨

⎪⎩

ι(t)(si) if si ∈ I

initsi if si ∈ C ∧ t = 0
η〈·〉(ς, ι, t − 1, ς(t − 1)(si)) if si ∈ C ∧ t > 0

η〈·〉(ς, ι, t, f τ0 · · · τm−1) = 〈f〉 η〈·〉(ς, ι, t, τ0) · · · η〈·〉(ς, ι, t, τm−1)

Then �〈·〉,ς,ι ∈ Oω is defined via �〈·〉,ς,ι(t)(o) = η〈·〉(ς, ι, t, o) for all t ∈ N, o ∈ O.

Syntax. Every TSL formula ϕ is built according to the following grammar:

ϕ := τ ∈ TP ∪ TU | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ

An atomic proposition τ consists either of a predicate term, serving as a Boolean
interface to the inputs, or of an update, enforcing a respective flow at the current
point in time. Next, we have the Boolean operations via negation and conjunc-
tion, that allow us to express arbitrary Boolean combinations of predicate evalu-
ations and updates. Finally, we have the temporal operator next: ψ, to specify
the behavior at the next point in time and the temporal operator until: ϑ U ψ,
which enforces a property ϑ to hold until the property ψ holds, where ψ must
hold at some point in the future eventually.
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Semantics. Formally, this leads to the following semantics. Let 〈·〉 : F → F ,
ι ∈ Iω, and ς ∈ Cω be given, then the validity of a TSL formula ϕ with respect
to ς and ι is defined inductively over t ∈ N via:

ς, ι, t �〈·〉 p τ0 · · · τm−1 :⇔ η〈·〉(ς, ι, t, p τ0 · · · τm−1)
ς, ι, t �〈·〉 �s � τ � :⇔ ς(t)(s) ≡ τ
ς, ι, t �〈·〉 ¬ψ :⇔ ς, ι, t �〈·〉 ψ
ς, ι, t �〈·〉 ϑ ∧ ψ :⇔ ς, ι, t �〈·〉 ϑ ∧ ς, ι, t �〈·〉 ψ
ς, ι, t �〈·〉 ψ :⇔ ς, ι, t + 1 �〈·〉 ψ
ς, ι, t �〈·〉 ϑ U ψ :⇔ ∃t′′ ≥ t. ∀t ≤ t′ < t′′. ς, ι, t′ �〈·〉 ϑ ∧ ς, ι, t′′ �〈·〉 ψ

Consider that the satisfaction of a predicate depends on the current computation
step and the steps of the past, while for updates it only depends on the current
computation step. Furthermore, updates are only checked syntactically, while
the satisfaction of predicates depends on the given assignment 〈·〉 and the input
stream ι. We say that ς and ι satisfy ϕ, denoted by ς, ι �〈·〉 ϕ, if ς, ι, 0 �〈·〉 ϕ.

Beside the basic operators, we have the standard derived Boolean opera-
tors, as well as the derived temporal operators: release ϕ R ψ ≡ ¬((¬ψ)U(¬ϕ)),
finally ϕ ≡ trueU ϕ, always ϕ ≡ falseR ϕ, the weak version of until
ϕ W ψ ≡ (ϕ U ψ) ∨ ( ϕ), and as soon as ϕ A ψ ≡ ¬ψ W(ψ ∧ ϕ).

Realizability. We are interested in the following realizability problem: given a
TSL formula ϕ, is there a strategy σ ∈ C[I+] such that for every input ι ∈ Iω

and function implementation 〈·〉 : F → F , the branch σ � ι satisfies ϕ, i.e.,

∃σ ∈ C[I+]. ∀ι ∈ Iω. ∀〈·〉 : F → F . σ � ι, ι �〈·〉 ϕ

If such a strategy σ exists, we say σ realizes ϕ. If we additionally ask for a
concrete instantiation of σ, we consider the synthesis problem of TSL.

5 TSL Properties

In order to synthesize programs from TSL specifications, we give an overview of
the first part of our synthesis process, as shown in Fig. 1. First we show how to
approximate the semantics of TSL through a reduction to LTL. However, due
to the approximation, finding a realizable strategy immediately may fail. Our
solution is a CEGAR loop that improves the approximation. This CEGAR loop
is necessary, because the realizability problem of TSL is undecidable in general.

Approximating TSL with LTL. We approximate TSL formulas with weaker LTL
formulas. The approximation reinterprets the syntactic elements, TP and TU, as
atomic propositions for LTL. This strips away the semantic meaning of the func-
tion application and assignment in TSL, which we reconstruct by later adding
assumptions lazily to the LTL formula.

Formally, let TP and TU be the finite sets of predicate terms and updates,
which appear in ϕTSL, respectively. For every assigned signal, we partition TU

into
⊎

so∈O∪C
T so

U . For every c ∈ C let T c
U/id = T c

U ∪ {�c � c�}, for o ∈ O let
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Fig. 5. A TSL specification (a) with input x and cell y that is realizable. A winning
strategy is to save x to y as soon as p(x) is satisfied. However, the initial approxima-
tion (b), that is passed to an LTL synthesis solver, is unrealizable, as proven through
the counter-strategy (c) returned by the LTL solver.

T o
U/id = T o

U , and let TU/id =
⋃

so∈O∪C
T so

U/id. We construct the LTL formula ϕLTL

over the input propositions TP and output propositions TU/id as follows:

ϕLTL =
( ∧

so∈O∪C

∨

τ∈T so
U/id

(
τ ∧

∧

τ ′∈T so
U/id

\{τ}

¬ τ ′)) ∧ SyntacticConversion
(
ϕTSL

)

Intuitively, the first part of the equation partially reconstructs the semantic
meaning of updates by ensuring that a signal is not updated with multiple values
at a time. The second part extracts the reactive constraints of the TSL formula
without the semantic meaning of functions and updates.

Theorem 1 ([19]). If ϕLTL is realizable, then ϕTSL is realizable.

Note that unrealizability of ϕLTL does not imply that ϕTSL is unrealizable. It
may be that we have not added sufficiently many environment assumptions to
the approximation in order for the system to produce a realizing strategy.

Example. As an example, we present a simple TSL specification in Fig. 5a. The
specification asserts that the environment provides an input x for which the
predicate p x will be satisfied eventually. The system must guarantee that even-
tually p y holds. According to the semantics of TSL the formula is realizable.
The system can take the value of x when p x is true and save it to y, thus guar-
anteeing that p y is satisfied eventually. This is in contrast to LTL, which has no
semantics for pure functions - taking the evaluation of p y as an environmentally
controlled value that does not need to obey the consistency of a pure function.

Refining the LTL Approximation. It is possible that the LTL solver returns a
counter-strategy for the environment although the original TSL specification is
realizable. We call such a counter-strategy spurious as it exploits the additional
freedom of LTL to violate the purity of predicates as made possible by the
underapproximation. Formally, a counter-strategy is an infinite tree π : C∗ → 2TP ,
which provides predicate evaluations in response to possible update assignments
of function terms τF ∈ TF to outputs o ∈ O. W.l.o.g. we can assume that O, TF

and TP are finite, as they can always be restricted to the outputs and terms that
appear in the formula. A counter-strategy is spurious, iff there is a branch π � ς
for some computation ς ∈ Cω, for which the strategy chooses an inconsistent
evaluation of two equal predicate terms at different points in time, i.e.,
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Algorithm 1. Check-Spuriousness
Input: bound b, counter-strategy π : C∗→2TP (finitely represented using m states)

1: for all v ∈ Cm·b, τP ∈ TP , t, t′ ∈ {0, 1, . . . , m · b − 1} do
2: if η〈·〉id(v, ιid, t, τP ) ≡ η〈·〉id(v, ιid, t

′, τP ) ∧
τP ∈ π(v0 . . . vt−1) ∧ τP /∈ π(v0 . . . vt′−1) then

3: w ← reduce (v, τP , t, t′)

4: return
(∧t−1

i=0
iwi ∧

∧t′−1
i=0

iwi → ( tτP ↔ t′
τP )

)

5: return ‘‘non-spurious’’

∃ς ∈ Cω. ∃t, t′ ∈ N. ∃τP ∈ TP .
τP ∈ π(ς(0)ς(1) . . . ς(t − 1)) ∧ τP /∈ π(ς(0)ς(1) . . . ς(t′ − 1))∧
∀〈·〉 : F → F . η〈·〉(ς, π � ς, t, τP ) = η〈·〉(ς, π � ς, t′, τP ).

Note that a non-spurious strategy can be inconsistent along multiple branches.
Due to the definition of realizability the environment can choose function and
predicate assignments differently against every system strategy accordingly.

By purity of predicates in TSL the environment is forced to always return
the same value for predicate evaluations on equal values. However, this semantic
property cannot be enforced implicitly in LTL. To resolve this issue we use the
returned counter-strategy to identify spurious behavior in order to strengthen
the LTL underapproximation with additional environment assumptions. After
adding the derived assumptions, we re-execute the LTL synthesizer to check
whether the added assumptions are sufficient in order to obtain a winning strat-
egy for the system. If the solver still returns a spurious strategy, we continue
the loop in a CEGAR fashion until the set of added assumptions is sufficiently
complete. However, if a non-spurious strategy is returned, we have found a proof
that the given TSL specification is indeed unrealizable and terminate.

Algorithm 1 shows how a returned counter-strategy π is checked for being
spurious. To this end, it is sufficient to check π against system strategies
bounded by the given bound b, as we use bounded synthesis [20]. Further-
more, we can assume w.l.o.g. that π is given by a finite state representation,
which is always possible due to the finite model guarantees of LTL. Also note
that π, as it is returned by the LTL synthesizer, responds to sequences of sets
of updates (2TU/id)∗. However, in our case (2TU/id)∗ is an alternative representa-
tion of C∗, due to the additional “single update” constraints added during the
construction of ϕLTL.

The algorithm iterates over all possible responses v ∈ Cm·b of the system
up to depth m · b. This is sufficient, since any deeper exploration would result
in a state repetition of the cross-product of the finite state representation of π
and any system strategy bounded by b. Hence, the same behaviour could also
be generated by a sequence smaller than m · b. At the same time, the algorithm
iterates over predicates τP ∈ TP appearing in ϕTSL and times t and t′ smaller
than m · b. For each of these elements, spuriousness is checked by comparing the
output of π for the evaluation of τP at times t and t′, which should only differ
if the inputs to the predicates are different as well. This can only happen, if the
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passed input terms have been constructed differently over the past. We check
it by using the evaluation function η equipped with the identity assignment
〈·〉id : F → F, with 〈f〉id = f for all f ∈ F, and the input sequence ιid, with
ιid(t)(i) = (t, i) for all t ∈ N and i ∈ I, that always generates a fresh input.
Syntactic inequality of η〈·〉id(v, ιid, t, τP ) and η〈·〉id(v, ιid, t

′, τP ) then is a sufficient
condition for the existence of an assignment 〈·〉 : F → F , for which τP evaluates
differently at times t and t′.

If spurious behaviour of π could be found, then the revealing response v ∈ C∗

is first simplified using reduce, which reduces v again to a sequence of sets
of updates w ∈ (2TU/id)∗ and removes updates that do not affect the behavior
of τP at the times t and t′ to accelerate the termination of the CEGAR loop.
Afterwards, the sequence w is turned into a new assumption that prohibits the
spurious behavior, generalized to prevent it even at arbitrary points in time.

As an example of this process, reconsider the spurious counter-strategy of
Fig. 5c. Already after the first system response �y � x�, the environment pro-
duces an inconsistency by evaluating p x and p y differently. This is inconsistent,
as the cell y holds the same value at time t = 1 as the input x at time t = 0. Using
Algorithm 1 we generate the new assumption (�y � x� → (p x ↔ p y)).
After adding this strengthening the LTL synthesizer returns a realizability result.

Undecidability. Although we can approximate the semantics of TSL with LTL,
there are TSL formulas that cannot be expressed as LTL formulas of finite size.

Theorem 2 ([19]). The realizability problem of TSL is undecidable.

6 TSL Synthesis

Our synthesis framework provides a modular refinement process to synthesize
executables from TSL specifications, as depicted in Fig. 1. The user initially
provides a TSL specification over predicate and function terms. At the end of
the procedure, the user receives an executable to control a reactive system.

The first step of our method answers the synthesis question of TSL: if the
specification is realizable, then a control flow model is returned. To this end, an
intermediate translation to LTL is used, utilizing an LTL synthesis solver that
produces circuits in the AIGER format. If the specification is realizable, the
resulting control flow model is turned into Haskell code, which is implemented
as an independent Haskell module. The user has the choice between two differ-
ent targets: a module built on Arrows, which is compatible with any Arrowized
FRP library, or a module built on Applicative, which supports Applicative FRP
libraries. Our procedure generates a single Haskell module per TSL specification.
This makes naturally decomposing a project according to individual tasks possi-
ble. Each module provides a single component, which is parameterized by their
initial state and the pure function and predicate transformations. As soon as
these are provided as part of the surrounding project context, a final executable
can be generated by compiling the Haskell code.

An important feature of our synthesis approach is that implementations for
the terms used in the specification are only required after synthesis. This allows
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Fig. 6. Example CFM of the music player generated from a TSL specification.

the user to explore several possible specifications before deciding on any term
implementations.

Control Flow Model. The first step of our approach is the synthesis of a Control
Flow Model M (CFM) from the given TSL specification ϕ, which provides us
with a uniform representation of the control flow structure of our final program.

Formally, a CFM M is a tuple M = (I, O, C, V, �, δ), where I is a finite set
of inputs, O is a finite set of outputs, C is a finite set of cells, V is a finite set of
vertices, � : V → F assigns a vertex a function f ∈ F or a predicate p ∈ P, and

δ : (O ∪ C ∪ V ) × N → (I ∪ C ∪ V ∪ {⊥})

is a dependency relation that relates every output, cell, and vertex of the CFM
with n ∈ N arguments, which are either inputs, cells, or vertices. Outputs and
cells s ∈ O∪C always have only a single argument, i.e., δ(s, 0) �≡ ⊥ and ∀m > 0.
δ(s,m) ≡ ⊥, while for vertices x ∈ V the number of arguments n ∈ N align with
the arity of the assigned function or predicate �(x), i.e., ∀m ∈ N. δ(x,m) ≡ ⊥
↔ m > n. A CFM is valid if it does not contain circular dependencies, i.e., on
every cycle induced by δ there must lie at least a single cell. We only consider
valid CFMs.

An example CFM for our music player of Sect. 2 is depicted in Fig. 6. Inputs I

come from the left and outputs O leave on the right. The example contains a
single cell c ∈ C, which holds the stateful memory Cell, introduced during syn-
thesis for the module. The green, arrow shaped boxes depict vertices V , which
are labeled with functions and predicates names, according to �. For the Boolean
decisions that define δ, we use circuit symbols for conjunction, disjunction, and
negation. Boolean decisions are piped to a multiplexer gate that selects the
respective update streams. This allows each update stream to be passed to an
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output stream if and only if the respective Boolean trigger evaluates positively,
while our construction ensures mutual exclusion on the Boolean triggers. For
code generation, the logic gates are implemented using the corresponding dedi-
cated Boolean functions. After building a control structure, we assign semantics
to functions and predicates by providing implementations. To this end, we use
Functional Reactive Programming (FRP). Prior work has established Causal
Commutative Arrows (CCA) as an FRP language pattern equivalent to a CFM
[33,34,53]. CCAs are an abstraction subsumed by other functional reactive pro-
gramming abstractions, such as Monads, Applicative and Arrows [32,33]. There
are many FRP libraries using Monads [11,14,42], Applicative [2,3,23,48], or
Arrows [10,39,41,51], and since every Monad is also an Applicative and Applica-
tive/Arrows both are universal design patterns, we can give uniform translations
to all of these libraries using translations to just Applicative and Arrows. Both
translations are possible due to the flexible notion of a CFM.

In the last step, the synthesized FRP program is compiled into an executable,
using the provided function and predicate implementations. This step is not fixed
to a single compiler implementation, but in fact can use any FRP compiler (or
library) that supports a language abstraction at least as expressive as CCA. For
example, instead of creating an Android music player app, we could target an
FRP web interface [48] to create an online music player, or an embedded FRP
library [23] to instantiate the player on a computationally more restricted device.
By using the strong core of CCA, we even can directly implement the player in
hardware, which is for example possible with the CλaSH compiler [3]. Note that
we still need separate implementations for functions and predicates for each
target. However, the specification and synthesized CFM always stay the same.

7 Experimental Results

To evaluate our synthesis procedure we implemented a tool that follows the
structure of Fig. 1. It first encodes the given TSL specification in LTL and then
refines it until an LTL solver either produces a realizability result or returns a
non-spurious counter-strategy. For LTL synthesis we use the bounded synthesis
tool BoSy [15]. As soon as we get a realizing strategy it is translated to a cor-
responding CFM. Then, we generate the FRP program structure. Finally, after
providing function implementations the result is compiled into an executable.

To demonstrate the effectiveness of synthesizing TSL, we applied our tool to
a collection of benchmarks from different application domains, listed in Table 1.
Every benchmark class consists of multiple specifications, addressing different
features of TSL. We created all specifications from scratch, where we took care
that they either relate to existing textual specifications, or real world scenarios.
A short description of each benchmark class is given in [19].

For every benchmark, we report the synthesis time and the size of the syn-
thesized CFM, split into the number of cells (|CM|) and vertices (|VM|) used.
The synthesized CFM may use more cells than the original TSL specification
if synthesis requires more memory in order to realize a correct control flow.
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Table 1. Number of cells |CM| and vertices |VM| of the resulting CFM M and syn-
thesis times for a collection of TSL specifications ϕ. A * indicates that the benchmark
additionally has an initial condition as part of the specification.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Synthesis
Time (s)

Button
default 7 1 2 1 3 3 8 0.364

Music App
simple 91 3 1 4 7 2 25 0.77
system feedback 103 3 1 5 8 2 31 0.572
motivating example 87 3 1 5 8 2 70 1.783

FRPZoo
scenario0 54 1 3 2 8 4 36 1.876
scenario5 50 1 3 2 7 4 32 1.196
scenario10 48 1 3 2 7 4 32 1.161

Escalator
non-reactive 8 0 1 0 1 2 4 0.370
non-counting 15 2 1 2 4 2 19 0.304
counting 34 2 2 3 7 3 23 0.527
counting* 43 2 2 3 8 4 43 0.621
bidirectional 111 2 2 5 10 3 214 4.555
bidirectional* 124 2 2 5 11 4 287 16.213
smart 45 2 1 2 4 4 159 24.016

Slider
default 50 1 1 2 4 2 15 0.664
scored 67 1 3 4 8 4 62 3.965
delayed 71 1 3 4 8 5 159 7.194

Haskell-TORCS
simple 40 5 3 2 16 4 37 0.680
advanced

gearing 23 4 1 1 3 2 7 0.403
accelerating 15 2 2 2 6 3 11 0.391
steering

simple 45 2 1 4 6 2 31 0.459
improved 100 2 2 4 10 3 26 1.347
smart 76 3 2 4 8 5 227 3.375

Table 2. Set of programs that use purity to keep one or two counters in range. Synthesis
needs multiple refinements of the specification to proof realizability.

Benchmark (ϕ) |ϕ| |I| |O| |P| |F| |CM| |VM| Refinements Synthesis
Time (s)

inrange-single 23 2 1 2 4 2 21 3 0.690
inrange-two 51 3 3 4 7 4 440 6 173.132
graphical-single 55 2 3 2 6 4 343 9 1767.948
graphical-two 113 3 5 4 9 - - - ¿ 10000
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The synthesis was executed on a quad-core Intel Xeon processor (E3-1271 v3,
3.6GHz, 32 GB RAM, PC1600, ECC), running Ubuntu 64bit LTS 16.04.

The experiments of Table 1 show that TSL successfully lifts the applicability
of synthesis from the Boolean domain to arbitrary data domains, allowing for new
applications that utilize every level of required abstraction. For all benchmarks
we always found a realizable system within a reasonable amount of time, where
the results often required synthesized cells to realize the control flow behavior.

We also considered a preliminary set of benchmarks that require multiple
refinement steps to be synthesizable. An overview of the results is given in
Table 2. The benchmarks are inspired by examples of the Reactive Banana FRP
library [2]. Here, purity of function and predicate applications must be utilized
by the system to ensure that the value of one or two counters never goes out of
range. Thereby, the system not only needs purity to verify this condition, but also
to take the correct decisions in the resulting implementation to be synthesized.

8 Related Work

Our approach builds on the rich body of work on reactive synthesis, see [17] for a
survey. The classic reactive synthesis problem is the construction of a finite-state
machine that satisfies a specification in a temporal logic like LTL. Our approach
differs from the classic problem in its connection to an actual programming
paradigm, namely FRP, and its separation of control and data.

The synthesis of reactive programs, rather than finite-state machines, has
previously been studied for standard temporal logic [21,35]. Because there is no
separation of control and data, these approaches do not directly scale to realistic
applications. With regard to FRP, a Curry-Howard correspondence between LTL
and FRP in a dependently typed language was discovered [28,29] and used to
prove properties of FRP programs [8,30]. However, our paper is the first, to the
best of our knowledge, to study the synthesis of FRP programs from temporal
specifications.

The idea to separate control and data has appeared, on a smaller scale, in the
synthesis with identifiers, where identifiers, such as the number of a client in a
mutual exclusion protocol, are treated symbolically [13]. Uninterpreted functions
have been used to abstract data-related computational details in the synthesis
of synchronization primitives for complex programs [5]. Another connection to
other synthesis approaches is our CEGAR loop. Similar refinement loops also
appear in other synthesis appraches, however with a different purpose, such as
the refinement of environment assumptions [1].

So far, there is no immediate connection between our approach and the sub-
stantial work on deductive and inductive synthesis, which is specifically con-
cerned with the data-transformation aspects of programs [16,31,40,47,49,50].
Typically, these approaches are focussed on non-reactive sequential programs.
An integration of deductive and inductive techniques into our approach for reac-
tive systems is a very promising direction for future work. Abstraction-based
synthesis [4,12,24,37] may potentially provide a link between the approaches.
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9 Conclusions

We have introduced Temporal Stream Logic, which allows the user to specify
the control flow of a reactive program. The logic cleanly separates control from
complex data, forming the foundation for our procedure to synthesize FRP pro-
grams. By utilizing the purity of function transformations our logic scales inde-
pendently of the complexity of the data to be handled. While we have shown
that scalability comes at the cost of undecidability, we addressed this issue by
using a CEGAR loop, which lazily refines the underapproximation until either
a realizing system implementation or an unrealizability proof is found.

Our experiments indicate that TSL synthesis works well in practice and on
a wide range of programming applications. TSL also provides the foundations
for further extensions. For example, a user may want to fix the semantics for a
subset of the functions and predicates. Such refinements can be implemented as
part of a much richer TSL Modulo Theory framework.
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Abstract. A controller is a device that interacts with a plant. At each time point,
it reads the plant’s state and issues commands with the goal that the plant oper-
ates optimally. Constructing optimal controllers is a fundamental and challenging
problem. Machine learning techniques have recently been successfully applied to
train controllers, yet they have limitations. Learned controllers are monolithic and
hard to reason about. In particular, it is difficult to add features without retraining,
to guarantee any level of performance, and to achieve acceptable performance
when encountering untrained scenarios. These limitations can be addressed by
deploying quantitative run-time shields that serve as a proxy for the controller.
At each time point, the shield reads the command issued by the controller and
may choose to alter it before passing it on to the plant. We show how optimal
shields that interfere as little as possible while guaranteeing a desired level of
controller performance, can be generated systematically and automatically using
reactive synthesis. First, we abstract the plant by building a stochastic model.
Second, we consider the learned controller to be a black box. Third, we mea-
sure controller performance and shield interference by two quantitative run-time
measures that are formally defined using weighted automata. Then, the problem
of constructing a shield that guarantees maximal performance with minimal inter-
ference is the problem of finding an optimal strategy in a stochastic 2-player game
“controller versus shield” played on the abstract state space of the plant with a
quantitative objective obtained from combining the performance and interference
measures. We illustrate the effectiveness of our approach by automatically con-
structing lightweight shields for learned traffic-light controllers in various road
networks. The shields we generate avoid liveness bugs, improve controller per-
formance in untrained and changing traffic situations, and add features to learned
controllers, such as giving priority to emergency vehicles.

1 Introduction

The controller synthesis problem is a fundamental problem that is widely studied by
different communities [42,44]. A controller is a device that interacts with a plant. In
each point in time it reads the plant’s state, e.g., given by sensor reading, and issues
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a command based on the state. The controller should guarantee that the plant operates
correctly or optimally with respect to some given specification. As a running example,
we consider a traffic light controller for a road intersection (see Fig. 1). The state of the
plant refers to the state of the roads leading to the junction; namely, the positions of the
cars, their speeds, their sizes, etc. A controller command consists of a light configuration
for the junction in the next time frame. Specifications can either be qualitative, e.g.,
“it should never be the case that a road with an empty queue gets a green light”, or
quantitative, e.g., “the cost of a controller is the average waiting times of the cars in the
junction”.

Fig. 1. On the left, a concrete state depicted in the traffic simulator SUMO. On the right, we depict
the corresponding abstract state with queues cut off at k = 5, and some outgoing transitions.
Upon issuing action North-South, a car is evicted from each of the North-South queues. Then,
we choose uniformly at random, out of the 16 possible options, the incoming cars to the queues,
update the state, and cutoff the queues at k (e.g., when a car enters from East, the queue stays 5).

A challenge in controller synthesis is that, since the number of possible plant read-
ings is huge, it is computationally demanding to find an optimal command, given a
plant state. Machine learning is a prominent approach to make decisions based on large
amounts of collected data [28,37]. It is widely successful in practice and takes an inte-
gral part in the design process of various systems. Machine learning has been suc-
cessfully applied to train controllers [15,33,34] and specifically controllers for traffic
control [20,35,39].

A shortcoming of machine-learning techniques is that the controllers that are pro-
duced are black-box devices that are hard to reason about and modify without a com-
plete re-training. It is thus challenging, for example, to obtain worst-case guarantees
about the controller, which is particularly important in safety-critical settings. Attempts
to address this problem come from both the formal methods community [46], where
verification of learned systems is extensively studied [24,29], and the machine-learning
community, where guarantees are added during the training process using reward engi-
neering [13,18] or by modifying the exploration process [11,19,38]. Both approaches
require expertise in the respective field and suffer from limitations such as scalability for
the first, and intricacy and robustness issues, for the second. Moreover, both techniques
were mostly studied for safety properties.

Another shortcoming of machine-learning techniques is that they require expertise
and a fine-tuning of parameters. It is difficult, for example, to train controllers that are

www.dbooks.org

https://www.dbooks.org/


632 G. Avni et al.

robust to plant behaviors, e.g., a controller that has been trained on uniform traffic con-
gestion meeting rush-hour traffic, which can be significantly different and can cause
poor performance. Also, it is challenging to add features to a controller without retrain-
ing, which is both costly and time consuming. These can include permanent features,
e.g., priority to public transport, or temporary changes, e.g., changes due to an accident
or construction. Again, since the training process is intricate, adding features during
training can have unexpected effects.

In this work, we use quantitative shields to deal with the limitations of learned or
any other black-box controllers. A shield serves as a proxy between the controller and
the plant. In each point in time, as before, the controller reads the state of the plant
and issues a command. Rather than directly feeding the command to the plant, the
shield first reads it along with an abstract plant state. The shield can then choose to
keep the controller’s command or alter it, before issuing the command to the plant. The
concept of shields was first introduced in [30], where shields for safety properties were
considered and with a qualitative notion of interference: a shield is only allowed to
interfere when a controller error occurs, which is only well-defined when considering
safety properties. We elaborate on other shield-like approaches in the Sect. 1.1.

Our goal is to automatically synthesize shields that optimize quantitative measures
for black-box controllers. We are interested in synthesizing lightweight shields. We
assume that the controller performs well on average, but has no worst-case guarantees.
When combining the shield and the controller, intuitively, the controller should be active
for the majority of the time and the shield intervenes only when it is required. We
formalize the plant behavior as well as the interference cost using quantitative measures.
Unlike safety objectives, where it is clear when a shield must interfere, with quantitative
objectives, a non-interference typically does not have a devastating effect. It is thus
challenging to decide, at each time point, whether the shield should interfere or not; the
shield needs to balance the cost of interfering with the decrease in performance of not
interfering. Automatic synthesis of shields is thus natural in this setting.

We elaborate on the two quantitative measures we define. The interaction between
the plant, controller, and shield gives rise to an infinite sequence over C ×Γ ×Γ , where
C is a set of plant states and Γ is a set of allowed actions. A triple 〈c, γ1, γ2〉 means
that the plant is in state c, the controller issues command γ1, and the shield (possibly)
alters it to γ2. We use weighted automata to assign costs to infinite traces, which have
proven to be a convenient, flexible, and robust quantitative specification language [14].
Our behavioral score measures the performance of the plant and it is formally given by
a weighted automaton that assigns scores to traces over C ×Γ . Boolean properties are a
special case, which include safety properties, e.g., “an emergency vehicle should always
get a green light”, and liveness, e.g., “a car waiting in a queue eventually gets the green
light”. An example of a quantitative score is the long-run average of the waiting times
of the vehicles in the city. A second score measures the interference of a shield with
a controller. It is given by a weighted automaton over the alphabet Γ × Γ . A simple
example of an interference score charges the shield 1 for every change of action and
charges 0 when no change is made. Then, the score of an infinite trace can be phrased as
the ratio of the time that the shield interferes. Using weighted automata we can specify
more involved scores such as different charges for different types of alterations or even
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charges that depend on the past, e.g., altering the controller’s command twice in a row
is not allowed.

Given a probabilistic plant model and a formal specification of behavioral and inter-
ference scores, the problem of synthesizing an optimal shield is well-defined and can be
solved by game theory. While the game-based techniques we use are those of discrete-
event controller synthesis [3] in a stochastic setting with quantitative objectives, our
set-up is quite different. In traditional controller synthesis, there are two entities; the
controller and the adversarial plant. The goal is to synthesize a controller offline. In
our setting, there are three entities: the plant, whose behavior we model probabilisti-
cally, the controller, which we treat as a black-box and model as an adversary, and the
shield, which we synthesize. Note that the shield’s synthesis procedure is done offline
but it makes online decisions when it operates together with the controller and plant.
Our plant model is formally given by a Markov decision process which is a standard
model with which one models lack of knowledge about the plant using probability (see
Fig. 1 and details in Example 1). The game is played on the MDP by two players; a
shield and a controller, where the quantitative objective is given by the two scores. An
optimal shield is then extracted from an optimal strategy for the shield player. The game
we construct admits memoryless optimal strategies, thus the size of the shield is pro-
portional to the size of the abstraction of the plant. In addition, it is implemented as a
look-up table for actions in every state. Thus, the runtime overhead is a table look-up
and hence negligible.

We experiment with our framework by constructing shields for traffic lights in a
network of roads. Our experimental results illustrate the usefulness of the framework.
We construct shields that consistently improve the performance of controllers, espe-
cially when exhibiting behavior that they are not trained on, but, more surprising, also
while exhibiting trained behavior. We show that the use of a shield reduces variability
in performance among various controllers, thus when using a shield, the choice of the
parameters used in the training phase becomes less acute. We show how a shield can be
used to add the functionality of prioritizing public transport as well as local fairness to a
controller, both without re-training the controller. In addition, we illustrate how shields
can add worst-case guarantees on liveness without a costly verification of the controller.

1.1 Related Work

A shield-like approach to adding safety to systems is called runtime assurance [47], and
has applications, for example, in control of robotics [41] and drones [12]. In this frame-
work, a switching mechanism alternates between running a high-performance system
and a provably safe one. These works differ from ours since they consider safety specifi-
cations. As mentioned earlier, a challenge with quantitative specifications is that, unlike
safety specifications, a non-interference typically does not have a devastating effect,
thus it is not trivial to decide when and to what extent to interfere.

Another line of work is runtime enforcement, where an enforcer monitors a program
that outputs events and can either terminate the program once it detects an error [45], or
alter the event in order to guarantee, for example, safety [21], richer qualitative objec-
tives [16], or privacy [26,49]. The similarities between an enforcer and a shield is in
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their ability to alter events. The settings are quite different, however, since the enforced
program is not reactive whereas we consider a plant that receives commands.

Recently, formal approaches were proposed in order to restrict the exploration of the
learning agent such that a set of logically constraints are always satisfied. This method
can support other properties beyond safety, e.g., probabilistic computation tree logic
(PCTL) [25,36], linear temporal logic (LTL) [1], or differential dynamic logic [17].
To the best of our knowledge, quantitative specifications have not yet been considered.
Unlike these approaches, we consider the learned controller as a black box, thus our
approach is particularly suitable for machine learning non-experts.

While MDPs and partially-observable MDPs have been widely studied in the liter-
ature w.r.t. to quantitative objectives [27,43], our framework requires the interaction of
two players (the shield and the black-box controller) and we use game-theoretic frame-
work with quantitative objectives for our solution.

2 Definitions and Problem Statement

2.1 Plants, Controllers, and Shields

The interaction with a plant over a concrete set of states C is carried out
using two functionalities: PLANT.GETSTATE returns the plant’s current state and
PLANT.ISSUECOMMAND issues an action from a set Γ . Once an action is issued, the
plant updates its state according to some unknown transition function. At each point
in time, the controller reads the state of the plant and issues a command. Thus, it is a
function from a history in (C × Γ )∗ · C to Γ .

Informally, a shield serves as a proxy between the controller and the plant. In each
time point, it reads the controller’s issued action and can choose an alternative action to
issue to the plant. We are interested in light-weight shields that add little or no overhead
to the controller, thus the shield must be defined w.r.t. an abstraction of the plant, which
we define formally below.

Abstraction. An abstraction is a Markov decision process (MDP, for short) is A =
〈Γ,A, a0, δ〉, where Γ is a set of actions, A is a set of abstract plant states, a0 ∈ A is an
initial state, and δ : A×Γ → [0, 1]A is a probabilistic transition function, i.e., for every
a ∈ A and γ ∈ Γ , we have

∑
a′∈A δ(a, γ)(a′) = 1. The probabilities in the abstraction

model our lack of knowledge of the plant, and we assume that they reflect the behavior
exhibited by the plant. A policy f is a function from a finite history of states in A∗ to
the next action in Γ , thus it gives rise to a probabilistic distribution D(f) over infinite
sequences over A.

Example 1. Consider a plant that represents a junction with four incoming directions
(see Fig. 1). We describe an abstraction A for the junction that specifies how many cars
are waiting in each queue, where we cut off the count at a parameter k ∈ N. Formally,
an abstract state is a vector in {0, . . . , k}4, where the indices respectively represent the
North, East, South, and West queues. The larger k is, the closer the abstraction is to
the concrete plant. The set of possible actions represent the possible light directions
in the junction {NS, EW}. The abstract transitions estimate the plant behavior, and
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we describe them in two steps. Consider an abstract state a = (a1, a2, a3, a4) and
suppose the issued action is NS, where the case of EW is similar. We allow a car to cross
the junction from each of the North and South queues and decrease the two queues.
Let a′ = (max{0, a1 − 1}, a2,max{0, a3 − 1}, a4). Next, we probabilistically model
incoming cars to the queues as follows. Consider a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 that
represents incoming cars to the queues. Let a′′ be such that, for 1 ≤ j ≤ 4, we add ij to
the j-th queue and trim at k, thus a′′

j = min{a′
j + ij , k}. Then, in A, when performing

action NS in a, we move to a′′ with the uniform probability 1/16. ��
We define shields formally. Let Γ be a set of commands, M a set of memory states,

C and A be a set of concrete and abstract states, respectively, and let α : C → A be
a mapping between the two. A shield is a function SHIELD : A × M × Γ → Γ × M
together with an initial memory state m0 ∈ M . We use PLANT to refer to the plant,
which, recall, has two functionalities: reading the current state and issuing a command
from Γ . Let CONT be a controller, which has a single functionality: given a history of
plant states, the controller issues the command to issue to the plant. The interaction of
the components is captured in the following pseudo code:

m ← m0 ∈ M and π ← empty sequence.
while true do

c ← PLANT.GETSTATE() ∈ C
γ ← CONT.GETCOMMAND(π · c)
a = α(c) ∈ A // generate abstract state for shield
γ′,m′ ← SHIELD(a, γ,m)
PLANT.ISSUECOMMAND(γ′)
m ← m′ // update shield memory state
π ← π · 〈c, γ′〉 // update plant history

end while

2.2 Quantitative Objectives for Shields

We are interested in two types of performance measures for shields. The behavioral
measure quantifies the quality of the plant’s behavior when operated with a controller
and shield. The interference measure quantifies the degree to which a shield interferes
with the controller. Formally, we need to specify values for infinite sequences, and we
use weighted automata, which are a convenient model to express such values.

Weighted Automata. A weighted automaton is a function from infinite strings to val-
ues. Technically, a weighted automaton is similar to a standard automaton only that the
transitions are labeled, in addition to letters, with numbers (weights). Unlike standard
automata in which a run is either accepting or rejecting, a run in a weighted automaton
has a value. We focus on limit-average automata in which the value is the limit aver-
age of the running sum of weights that it traverses. Formally, a weighted automaton
is W = 〈Σ,Q, q0,Δ, cost〉, where Σ is a finite alphabet, Q is a finite set of states,
Δ ⊆ (Q × Σ × Q) is a deterministic transition relation, i.e., for every q ∈ Q and
σ ∈ Σ, there is at most one q′ ∈ Q with Δ(q, σ, q′), and cost : Δ → Q specifies costs
for transitions. A run of W on an infinite word σ = σ1, σ2, . . . is r = r0, r1, . . . ∈ Qω
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such that r0 = q0 and, for i ≥ 1, we have Δ(ri−1, σi, ri). Note that W is deter-
ministic so there is at most one run on every word. The value that W assigns to σ is
lim infn→∞ 1

n

∑n
i=1 cost(ri−1, σi, ri).

Behavioral Score. A behavioral score measures the quality of the behavior that the
plant exhibits. It is given by a weighed automaton over the alphabet A × Γ , thus it
assigns real values to infinite sequences over A × Γ . In our experiments, we use a
concrete behavioral score, which assigns values to infinite sequences over C × Γ . We
compare the performance of the plant with various controllers and shields w.r.t. the
concrete score rather than the abstract score. With a weighted automaton we can express
costs that change over time: for example, we can penalize traffic lights that change
frequently.

Interference Score. The second score we consider measures the interference of the
shield with the controller. An interference score is given by a weighted automaton over
the alphabet Γ × Γ . With a weighted automaton we can express costs that change over
time: for example, interfering once costs 1 and any successive interference costs 2, thus
we reward the shield for short interferences.

From Shields and Controllers to Policies. Consider an abstraction MDP A. To ensure
worst-case guarantees, we treat the controller as an adversary for the shield. Let SHIELD

be a shield with memory set M and initial memory state m0. Intuitively, we find a policy
in A that represents the interaction of SHIELD with a controller that maximizes the cost
incurred. Formally, an abstract controller is a function χ : A∗ → Γ . The interaction
between SHIELD and χ gives rise to a policy pol(SHIELD, χ) in A, which, recall, is a
function from A∗ to Γ . We define pol(SHIELD, χ) inductively as follows. Consider a
history π ∈ A∗ that ends in a ∈ A, and suppose the current memory state of SHIELD is
m ∈ M . Let γ = χ(π) and let 〈γ′,m′〉 = SHIELD(γ, a,m). Then, the action that the
policy pol(SHIELD, χ) assigns is γ′, and we update the memory state to be m′.

Problem Definition; Quantitative Shield Synthesis Consider an abstraction MDP A,
a behavioral score BEH, an interference score INT, both given as weighted automata,
and a factor λ ∈ [0, 1] with which we weigh the two scores. Our goal is to find
an optimal shield w.r.t. these inputs as we define below. Consider a shield SHIELD

with memory set M . Let X be the set of abstract controllers. For SHIELD and
χ ∈ X , let D(SHIELD, χ) be the probability distribution over A × Γ × Γ that the
policy pol(SHIELD, χ) gives rise to. The value of SHIELD, denoted val(SHIELD), is
supχ∈X Er∼D(SHIELD,χ)[λ · INT(r) + (1 − λ) · BEH(r)]. An optimal shield is a shield
whose value is infSHIELD val(SHIELD).

Remark 1 (Robustness and flexibility). The problem definition we consider allows
quantitative optimization of shields w.r.t. two dimensions of quantitative measures. Ear-
lier works have considered shields but mainly with respect to Boolean measures in both
dimensions. For example, in [30], shields for safety behavioral measures were con-
structed with a Boolean notion of interference, as well as a Boolean notion of shield cor-
rectness. In contrast we allow quantitative objectives in both dimensions which presents
a much more general and robust framework. For example, the first measure of correct-
ness can be quantitative and minimize the error rate, and the second measure can allow
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shields to correct but minimize the long-run average interference. Both of the above
allows the shield to be flexible. Moreover, tuning the parameter λ allows flexible trade-
off between the two.

We allow a robust class of quantitative specifications using weighted automata,
which have been already established as a robust specification framework. Any automata
model can be used in the framework, not necessarily the ones we use here. For example,
weighted automata that discount the future or process only finite-words are suitable for
planning purposes [32]. Thus our framework is a very robust and flexible framework
for quantitative shield synthesis. ��

2.3 Examples

In Remark 1 we already discussed the flexibility of the framework. We now present
concrete examples of instantiations of the optimization problem above on our running
example, which illustrate how quantitative shields can be used to cope with limitations
of learned controllers.

Dealing with Unexpected Plant Behavior; Rush-Hour Traffic. Consider the abstrac-
tion described in Example 1, where each abstract state is a 4-dimensional vector that
represents the number of waiting cars in each direction. The behavioral score we
use is called the max queue. It charges an abstract state a ∈ {0, . . . , k}4 with the
size of the maximal queue, no matter what the issued action is, thus costBEH(a) =
maxi∈{1,2,3,4} ai. A shield that minimizes the max-queue cost will prioritize the direc-
tion with the largest queue. For the interference score, we use a score that we call the
basic interference score; we charge the shield 1 whenever it changes the controller’s
action and otherwise we charge it 0, and take the long-run average of the costs. Recall
that in the construction in Example 1, we chose uniformly at random the vector of
incoming cars. Here, in order to model rush-hour traffic, we use a different distribution,
where we let pj be the probability that a car enters the j-th queue. Then, the probability
of a vector 〈i1, i2, i3, i4〉 ∈ {0, 1}4 is

∏
1≤j≤4(pj · ij + (1 − pj) · (1 − ij)). To model

a higher load traveling on the North-South route, we increase p1 and p3 beyond 0.5.

Weighing Different Goals; Local Fairness. Suppose the controller is trained to max-
imize the number of cars passing a city. Thus, it aims to maximize the speed of the
cars in the city and prioritizes highways over farm roads. A secondary objective for a
controller is to minimize local queues. Rather than adding this objective in the training
phase, which can have an un-expected outcome, we can add a local shield for each junc-
tion. To synthesize the shield, we use the same abstraction and basic interference score
as in the above. The behavioral score we use charges an abstract state a ∈ {0, . . . , k}4

with difference |(a1 + a3) − (a2 + a4)|, thus the greater the inequality between the two
waiting directions, the higher the cost.

Adding Features to the Controller; Prioritizing Public Transport. Suppose a con-
troller is trained to increase throughput in a junction. After the controller is trained, a
designer wants to add a functionality to the controller that prioritizes buses over per-
sonal vehicles. That is, if a bus is waiting in the North direction, and no bus is waiting
in either the East or West directions, then the light should be North-South, and the other
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cases are similar. The abstraction we use is simpler than the ones above since we only
differentiate between a case in which a bus is present or not, thus the abstract states are
{0, 1}4, where the indices represent the directions clockwise starting from North. Let
γ = NS. The behavioral cost of a state a is 1 when a2 = a4 = 0 and a1 = 1 or a3 = 1.
The interference score we use is the basic one. A shield guarantees that in the long run,
the specification is essentially never violated.

3 A Game-Theoretic Approach to Quantitative Shield Synthesis

In order to synthesize optimal shields we construct a two-player stochastic game [10],
where we associate Player 2 with the shield and Player 1 with the controller. The game
is defined on top of an abstraction and the players’ objectives are given by the two
performance measures. We first formally define stochastic games, then we construct
the shield synthesis game, and finally show how to extract a shield from a strategy for
Player 2.

Stochastic Graph Games. The game is played on a graph by placing a token on a
vertex and letting the players move it throughout the graph. For ease of presentation,
we fix the order in which the players move: first, Player 1, then Player 2, and then
“Nature”, i.e., the next vertex is chosen randomly. Edges have costs, which, again for
convenience, appear only on edges following Player 2 moves. Formally, a two-player
stochastic graph-game is 〈V1, V2, VN , E,Pr, cost〉, where V = V1 ∪ V2 ∪ VN is a finite
set of vertices that is partitioned into three sets, for i ∈ {1, 2}, Player i controls the
vertices in Vi and “Nature” controls the vertices in VN , E ⊆ (V1 × V2) ∪ (V2 × VN )
is a set of deterministic edges, Pr : VN × V1 → [0, 1] is a probabilistic transition
function, and cost : (V2 × VN ) → Q. Suppose the token reaches v ∈ V . If v ∈ Vi,
for i ∈ {1, 2}, then Player i chooses the next position of the token u ∈ V , such that
E(v, u). If v ∈ VN , then the next position is chosen randomly; namely, the token moves
to u ∈ V with probability Pr[v, u].

The game is a zero-sum game; Player 1 tries to maximize the expected long-run
average of the accumulated costs, and Player 2 tries to minimize it. A strategy for
Player i, for i ∈ {1, 2}, is a function that takes a history in V ∗ · Vi and returns the
next vertex to move the token to. The games we consider admit memoryless optimal
strategies, thus it suffices to define a Player i strategy as a function from Vi to V .
We associate a payoff with two strategies f1 and f2, which we define next. Given
f1 and f2, it is not hard to construct a Markov chain M with states VN and with
weights on the edges: for v, u ∈ VN , the probability of moving from v to u in M
is PrM[v, u] =

∑
w∈V1:f2(f1(w))=u Pr[v, w] and the cost of the edge is costM(v, u) =

∑
w∈V1:f2(f1(w))=u Pr[v, w] · cost(f1(w), u). The stationary distribution sv of a vertex

v ∈ VN in M is a well known concept [43] and it intuitively measures the long-run
average time that is spend in v. The payoff w.r.t. f1 and f2, denoted payoff(f1, f2) is∑

v,u∈VN
sv · PrM[v, u] · costM(v, u). The payoff of a strategy is the payoff it guar-

antees against any strategy of the other player, thus payoff(f1) = inff2 payoff(f1, f2).
A strategy is optimal for Player 1 if it achieves the optimal payoff, thus f is optimal if
payoff(f) = supf1

payoff(f1). The definitions for Player 2 are dual.



Run-Time Optimization for Learned Controllers Through Quantitative Games 639

Constructing the Synthesis Game. Consider an abstraction MDP A = 〈Γ,A, a0, δ〉,
weighted automata for the behavioral score BEH = 〈A×Γ,QBEH, qBEH

0 ,ΔBEH, costBEH〉
and interference score INT = 〈Γ ×Γ,QINT, q

INT
0 ,ΔINT, costINT〉, and a factor λ ∈ [0, 1].

We associate Player 1 with the controller and Player 2 with the shield. In each step, the
controller first chooses an action, then the shield chooses whether to alter it, and the
next state is selected at random. Let S = A × QINT × QBEH. We define GA,BEH,INT,λ =
〈V1, V2, VN , E,Pr, cost〉, where

– V1 = S,
– V2 = S × Γ ,
– VN = S×Γ ×{N}, where the purpose of N is to differentiate between the vertices,
– E(s, 〈s, γ〉)

for s ∈ S and γ ∈ Γ , and E(〈s, γ〉, 〈s′, γ′, N〉) for s = 〈a, q1, q2〉 ∈ S, γ, γ′ ∈
Γ, and s′ = 〈a, q′

1, q
′
2〉 ∈ S s.t. ΔINT(q1, 〈γ, γ′〉, q′

1) and ΔBEH(q2, 〈a, γ′〉, q′
2),

– Pr[〈〈a, q1, q2〉, γ,N〉, 〈a′, q1, q2〉] = δ(a, γ)(a′), and
– for s = 〈a, q1, q2〉 and s′ = 〈a, q′

1, q
′
2〉 as in the above, we have cost(〈s, γ〉,

〈s′, γ′, N〉) = λ · costINT(q1, 〈γ, γ′〉, q′
1) + (1 − λ) · costBEH(q2, 〈γ′, a〉, q′

2).

From Strategies to Shields. Recall that the game GA,BEH,INT,λ admits memoryless
optimal strategies. Consider an optimal memoryless strategy f for Player 2. Thus,
given a Player 2 vertex in V2, the function f returns a vertex in VN to move to. The
shield SHIELDf that is associated with f has the memory set M = QINT × QBEH

and the initial memory state is 〈qINT
0 , qBEH

0 〉. Given an abstract state a ∈ A, a mem-
ory state 〈qINT, qBEH〉 ∈ M , and a controller action γ ∈ Γ , let 〈a, q′

INT, q
′
BEH, γ′〉 =

f(a, qINT, qBEH, γ). The shield SHIELDf returns the action γ′ and the updated memory
state 〈q′

INT, q
′
BEH〉.

Theorem 1. Given an abstraction A, weighted automata BEH and INT, and a factor
λ, the game GA,BEH,INT,λ admits optimal memoryless strategies. Let f be an optimal
memoryless strategy for Player 2. The shield SHIELDf is an optimal shield w.r.t. A,
BEH, INT, and λ.

Remark 2 (Shield size). Recall that a shield is a function SHIELD : A × Γ × M →
Γ × M , which we store as a table. The size of the shield is the size of the domain,
namely the number of entries in the table. Given an abstraction with n1 states, a set of
possible commands Γ , and weighted automata with n2 and n3 states, the size of the
shield we construct is n1 · n2 · n3 · |Γ |. ��
Remark 3. Our construction of the game can be seen as a two-step procedure: we con-
struct a stochastic game with two mean-payoff objectives, a.k.a. a two-dimensional
game, where the shield player’s goal is to minimize both the behavioral and inter-
ference scores separately. We then reduce the game to a “one-dimension” game by
weighing the scores with the parameter λ. We perform this reduction for several rea-
sons. First, while multi-dimensional quantitative objectives have been studied in several
cases, such as MDPs [4,6,7] and special problems of stochastic games (e.g., almost-
sure winning) [2,5,8], there is no general algorithmic solution known for stochastic
games with two-dimensional objectives. Second, even for non-stochastic games with
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two-dimensional quantitative objectives, infinite-memory is required in general [48].
Finally, in our setting, the parameter λ provides a meaningful tradeoff: it can be asso-
ciated with how well we value the quality of the controller. If the controller is of poor
quality, then we charge the shield less for interference and set λ to be low. On the other
hand, for a high-quality controller, we charge the shield more for interferences and set
a high value for λ. ��

4 Case Study

We experiment with our framework in designing quantitative shields for traffic-light
controllers that are trained using reinforcement-learning (RL). We illustrate the use-
fulness of shields in dealing with limitations of RL as well as providing an intuitive
framework to complement RL techniques.

Traffic Simulation. All experiments were conducted using traffic simulator “Simula-
tion of Urban MObility” (SUMO, for short) [31] v0.22 using the SUMO Python API.
Incoming traffic in the cities is chosen randomly. The simulations were executed on a
desktop computer with a 4 x 2.70 GHz Intel Core i7-7500U CPU, 7.7 GB of RAM
running Ubuntu 16.04.

The Traffic Light Controller. We use RL to train a city-wide traffic-signal controller.
Intuitively, the controller is aware of the waiting cars in each junction and its actions
constitute a light assignment to all the junctions. We train a controller using a deep
convolutional Q-network [37]. In most of the networks we test with, there are two
controlled junctions. The input vector to the neural network is a 16-dimensional vec-
tor, where 8 dimensions represent a junction. For each junction, the first four compo-
nents state the number of cars approaching the junction and the last four components
state the accumulated waiting time of the cars in each one of the lanes. For exam-
ple, in Fig. 1, the first four components are (3, 6, 3, 1), thus the controller’s state is
not trimmed at 5. The controller is trained to minimize both the number of cars wait-
ing in the queues and the total waiting time. For each junction i, the controller can
choose to set the light to be either NSi or EWi, thus the set of possible actions is
Γ = {NS1NS2, EW1NS2, NS1EW2, EW1EW2}.

We use a network consisting of 4 layers: The input layer is a convolutional layer
with 16 nodes, the first hidden and the second hidden layers consisting out of 604 nodes
and 1166 nodes, respectively. The output layer consists of 4 neurons with linear activa-
tion functions, each representing one of the above mentioned actions listed in Γ . The
Q-learning uses the learning rate α = 0.001 and the discount factor 0.95 for the Q-
update and an ε-greedy exploration policy. The artificial neural network is built on an
open source implementation1 using Keras [9] and additional optimized functionality
was provided by the NumPy [40] library. We train for 100 training epochs, where each
epoch is 1500 seconds of simulated traffic, plus 2000 additional seconds in which no
new cars are introduced. The total training time of the agent is roughly 1.5 hours. While
the RL procedure that we use is simple procedure, it is inspired by standard approaches

1 https://github.com/Wert1996/Traffic-Optimisation.

https://github.com/Wert1996/Traffic-Optimisation
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to learning traffic controllers and produces controllers that perform relatively well also
with no shield.

The Shield. We synthesize a “local” shield for a junction and copy the shield for each
junction in the city. Recall that the first step in constructing the synthesis game is to con-
struct an abstraction of the plant, which intuitively represents the information according
to which the shield makes its decisions. The abstraction we use is described in Exam-
ple 1; each state is a 4-dimensional integer in {0, . . . , k}, which represents an abstrac-
tion of the number of waiting cars in each direction, cut-off by k ∈ N. As elaborated in
the example, when a shield assigns a green light to a direction, we evict a car from the
two respectable queues, and select the incoming cars uniformly at random. Regarding
objectives, in most of our experiments, the behavioral score we use charges an abstract
state a ∈ {0, . . . , k}4 with |(a1 + a3) − (a2 + a4)|, thus the shield aims to balance the
total number of waiting cars per direction. The interference score we use charges the
shield 1 for altering the controller’s action.

Since we use simple automata for objectives, the size of the shields we use is |A×Γ |,
where |Γ | = 2. In our experiments, we cut-off the queues at k = 6, which results in a
shield of size 2592. The synthesis procedure’s running time is in the order of minutes.
We have already pointed out that we are interested in small light-weight shields, and
this is indeed what we construct. In terms of absolute size, the shield takes ∼60 KB
versus the controller who takes ∼3 MB; a difference of 2 orders of magnitude.

Our synthesis procedure includes a solution to a stochastic mean-payoff game.
The complexity of solving such games is an interesting combinatorial problem in NP
and coNP (thus unlikely to be NP-hard) for which the existence of a polynomial-time
algorithm is major long-standing open problem. The current best-known algorithms
are exponential, and even for special cases like turn-based deterministic mean-payoff
games or turn-based stochastic games with reachability objectives, no polynomial-time
algorithms are known. The algorithm we implemented is called the strategy iteration
algorithm [22,23] in which one starts with a strategy and iteratively improves it, where
each iteration requires polynomial time. While the algorithm’s worst-case complexity
is exponential, in practice, the algorithm has been widely observed to terminate in a few
number of iterations.

Evaluating Performance. Throughout all our experiments, we use a unified and con-
crete measure of performance: the total waiting time of the cars in the city. Our assump-
tion is that minimizing this measure is the main objective of the designer of the traffic
light system for the city. While performance is part of the objective function when train-
ing the controller, the other components of the objective are used in order to improve
training. Similarly, the behavioral measure we use when synthesizing shields is chosen
heuristically in order to construct shields that improve concrete performance.

The Effect of Changing λ. Recall that we use λ ∈ [0, 1] in order to weigh between
the behavioral and interference measures of a shield, where the larger λ is, the more the
shield is charged for interference. In our first set of experiments, we fix all parameters
apart from λ and synthesize shields for a city that has two controllable junctions. In the
first experiment, we use a random traffic flow that is similar to the one used in training.
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Fig. 2. Results for shields constructed with various λ values, together with a fixed plant and
controller, where the simulation traffic distribution matches the one the controller is trained for.

We depict the results of the simulation in Fig. 2. We make several observations on the
results below.
Interference. We observe that the ratio of the time that the shield intervenes is low: for
most values of λ the ratio is well below 10%. For large values of λ, interference is too
costly, and the shields become trivial, namely it never alters the actions of the controller.
The performance we observe is thus the performance of the controller with no shield. In
this set of experiments, we observe that the threshold after which shields become trivial
is λ = 0.5, and for different setups, the threshold changes.

Performance. We observe that performance as function of λ, is a curve-like function.
When λ is small, altering commands is cheap, the shield intervenes more frequently,
and performance drops. This performance drop is expected: the shield is a simple device
and the quality of its routing decisions cannot compete with the trained controller. This
drop is also encouraging since it illustrates that our experimental setting is interesting.
Surprisingly, we observe that the curve is in fact a paraboloid: for some values, e.g.,
λ = 0.4, the shield improves the performance of the controller. We find it unexpected
that the shield improves performance even when observing trained behavior, and this
performance increase is observed more significantly in the next experiments.

Rush-Hour Traffic. In Fig. 3, we use a shield to add robustness to a controller for
behavior it was not trained for. We see a more significant performance gain in this exper-

Fig. 3. Similar to Fig. 2 only that the sim-
ulation traffic distribution models rush-hour
traffic.

Fig. 4. Comparing the variability in performance
of the different controllers, with shield (blue) and
without a shield (red). (Color figure online)
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iment. We use the controller from the previous experiment, which is trained for uniform
car arrival. We simulate it in a network with “rush-hour” traffic, which we model by sig-
nificantly increasing the traffic load in the North-South direction. We synthesize shields
that prefer to evict traffic from the North-South queue over the East-West queue. We
achieve this by altering the objective in the stochastic game; we charge the shield a
greater penalty for cars waiting in these queues over the other queues. For most values
of λ below 0.7, we see a performance gain. Note that the performance of the controller
with no shield is depicted on the far right, where the shield is trivial. An alternative
approach to synthesize a shield would be to alter the probabilities in the abstraction, but
we found that altering the weights results in a better performance gain.

Reducing Variability. Machine learning techniques are intricate, require expertise, and
a fine tuning of parameters. This set of experiments show how the use of shields reduces
variability of the controllers, and as a result, it reduces the importance of choosing
the optimal parameters in the training phase. We fix one of the shields from the first
experiment with λ = 0.4. We observe performance in a city with various controllers,
which are trained with varying training parameters, when the controllers are run with
and without the shield and on various traffic conditions that sometimes differ from the
ones they are trained on.

The city we experiment with consists of a main two-lane road that crosses the city
from East to West. The main road has two junctions in which smaller “farm roads”
meet the main road. We refer to the bulk traffic as the traffic that only “crosses the
city”; namely, it flows only on the main road either from East to West or in the opposite
direction. For r ∈ [0, 1], Controller-r is trained where the ratio of the bulk traffic out of
the total traffic is r. That is, the higher r is, the less traffic travels on the farm roads. We
run simulations in which Controller-r observes bulk traffic k ∈ [0, 1], which it was not
necessarily trained for.

Fig. 5. Results for Controllers-0.65 and 0.9 exhibiting traffic that they are not trained for, with
and without a shield. Performance is the total waiting time of the cars in the city.

In Fig. 5, we depict the performance of two controllers for various traffic settings.
We observe, in these two controllers as well as the others, that operating with a shield
consistently improves performance. The plots illustrate the unexpected behavior of
machine-learning techniques: e.g., when run without a shield, Controller-0.9 outper-
forms Controller-0.65 in all settings, even in the setting 0.65 on which Controller-0.65
was trained on. Thus, a designer who expects a traffic flow of 0.65, would be better
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off training with a traffic of 0.9. A shield improves performance and thus reduces the
importance of which training data to use.

Measuring Variability. In Fig. 4, we depict the variability in performance between
the controllers. The higher the variability is, the more significant it is to
choose the right parameters when training the controller. Formally, let R =
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9}. For r, k ∈ R, we let Perf(r, k) denote the performance
(total waiting times) when Controller-r observes bulk traffic k. For each k ∈ R, we
depict maxr∈R Perf(r, k) − minr′∈R Perf(r′, k), when operating with and without a
shield.

Clearly, the variability with a shield is significantly lower than without one. This
data shows that when operating with a shield, it does not make much difference if a
designer trains a controller with setting r or r′. When operating without a shield, the
difference is significant.

Overcoming Liveness Bugs. Finding bugs in learned controllers is a challenging task.
Shields bypass the need to find bugs since they treat the controller as a black-box and
correct its behavior. We illustrate their usefulness in dealing with liveness bugs. In the
same network as in the previous setting, we experiment with a controller whose train-
ing process lacked variability. In Fig. 6, we depict the light configuration throughout
the experiment on the main road; the horizontal axis represents time, red means a red
light for the main road and dually green. Initially, the controller performs well, but
roughly half-way through the simulation it hits a bad state after which the light stays
red. The shield, with only a few interferences, which are represented with dots, manages
to recover the controller from its stuck state. In Fig. 7, we depict the number of waiting
cars in the city, which clearly skyrockets once the controller gets stuck. It is evident that
initially, the controller performs well. This point highlights that it is difficult to recog-

Fig. 6. The light in the East-West direction (the main road) of a junction. On bottom, with no
shield the controller is stuck. On top, the shield’s interferences are marked with dots.

Fig. 7. The total number of waiting cars (log-scale) with and without a shield. Initially, the con-
troller performs well on its own, until it gets stuck and traffic in the city freezes.
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nize when a controller has a bug – in order to catch such a bug, a designer would need
to find the right simulation and run it half way through before the bug appears.

One way to regain liveness would be to synthesize a shield for the qualitative prop-
erty “each direction eventually gets a green light”. Instead, we use a shield that is syn-
thesized for the quantitative specification as in the previous experiment. The shield,
with a total of only 20 alterations is able to recover the controller from the bad state it
is stuck in, and traffic flows correctly.

Adding Functionality; Prioritizing Public Transport. Learned controllers are mono-
lithic. Adding functionality to a controller requires a complete re-training, which is
time consuming, computationally costly, and requires care; changes in the objective
can cause unexpected side effects to the performance. We illustrate how, using a shield,
we can add to an existing controller, the functionality of prioritizing public transport.

The abstraction over which the shield is constructed slightly differs from the one
used in the other experiments. The abstract state space is the same, namely four-
dimensional vectors, though we interpret the entries as the positions of a bus in the
respective queue. For example, the state (0, 3, 0, 1) represents no bus in the North queue
and a bus which is waiting, third in line, in the East queue. Outgoing edges from an
abstract state also differ as they take into account, using probability, that vehicles might
enter the queues between buses. For the behavioral score, we charge an abstract state
with the sum of its entries, thus the shield is charged whenever buses are waiting and it
aims to evict them from the queues as soon as possible.

In Fig. 8, we depict the performance of all vehicles and only buses as a function of
the weighing factor λ. The result of this experiment is positive; the predicted behavior
is observed. Indeed, when λ is small, interferences are cheap, which increase bus per-
formance at the expense of the general performance. The experiment illustrates that the
parameter λ is a convenient method to control the degree of prioritization of buses.

Local Fairness. In this experiment, we add local fairness to a controller that was trained
for a global objective. We experiment with a network with four junctions and a city-wide
controller, which aims to minimize total waiting times. Figure 9 shows that when the
controller is deployed on its own, queues form in the city whereas a shield, which was
synthesized as in the first experiments, prevents such local queues from forming.

Fig. 8. The waiting time of buses/all vehicles
with shields parameterized by λ.

Fig. 9. Comparing the amount of waiting
cars with and without a shield.
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5 Discussion and Future Work

We suggest a framework for automatically synthesizing quantitative runtime shields
to cope with limitations of machine-learning techniques. We show how shields can
increase robustness to untrained behavior, deal with liveness bugs without verification,
add features without retraining, and decrease variability of performance due to changes
in the training parameters, which is especially helpful for machine learning non-experts.
We use weighted automata to evaluate controller and shield behavior and construct a
game whose solution is an optimal shield w.r.t. a weighted specification and a plant
abstraction. The framework is robust and can be applied in any setting where learned or
other black-box controllers are used.

We list several directions for further research. In this work, we make no assump-
tions on the controller and treat it adversarially. Since the controller might have bugs,
modelling it as adversarial is reasonable. Though, it is also a crude abstraction since typ-
ically, the objectives of the controller and shield are similar. For future work, we plan
to study ways to model the spectrum between cooperative and adversarial controllers
together with solution concepts for the games that they give rise to.

In this work we make no assumptions on the relationship between the plant and the
abstraction. While the constructed shields are optimal w.r.t. the given abstraction, the
scores they guarantee w.r.t. the abstraction do not imply performance guarantees on the
plant. To be able to produce performance guarantees on the concrete plant, we need
guarantees on the relationship between the plant its abstraction. For future work, we
plan to study the addition of such guarantees and how they affect the quality measures.
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Abstract. Delayed coupling between state variables occurs regularly in tech-
nical dynamical systems, especially embedded control. As it consequently is
omnipresent in safety-critical domains, there is an increasing interest in the safety
verification of systems modelled by Delay Differential Equations (DDEs). In
this paper, we leverage qualitative guarantees for the existence of an exponen-
tially decreasing estimation on the solutions to DDEs as established in classical
stability theory, and present a quantitative method for constructing such delay-
dependent estimations, thereby facilitating a reduction of the verification prob-
lem over an unbounded temporal horizon to a bounded one. Our technique builds
on the linearization technique of nonlinear dynamics and spectral analysis of the
linearized counterparts. We show experimentally on a set of representative bench-
marks from the literature that our technique indeed extends the scope of bounded
verification techniques to unbounded verification tasks. Moreover, our technique
is easy to implement and can be combined with any automatic tool dedicated to
bounded verification of DDEs.

Keywords: Unbounded verification ·
Delay Differential Equations (DDEs) · Safety and stability · Linearization ·
Spectral analysis

1 Introduction

The theory of dynamical systems featuring delayed coupling between state variables
dates back to the 1920s, when Volterra [41,42], in his research on predator-prey mod-
els and viscoelasticity, formulated some rather general differential equations incor-
porating the past states of the system. This formulation, now known as delay differ-
ential equations (DDEs), was developed further by, e.g., Mishkis [30] and Bellman
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and Cooke [2], and has witnessed numerous applications in many domains. Prominent
examples include population dynamics [25], where birth rate follows changes in popu-
lation size with a delay related to reproductive age; spreading of infectious diseases [5],
where delay is induced by the incubation period; or networked control systems [21] with
their associated transport delays when forwarding data through the communication net-
work. These applications range further to models in optics [23], economics [38], and
ecology [13], to name just a few. Albeit resulting in more accurate models, the presence
of time delays in feedback dynamics often induces considerable extra complexity when
one attempts to design or even verify such dynamical systems. This stems from the fact
that the presence of feedback delays reduces controllability due to the impossibility of
immediate reaction and enhances the likelihood of transient overshoot or even oscilla-
tion in the feedback system, thus violating safety or stability certificates obtained on
idealized, delay-free models of systems prone to delayed coupling.

Though established automated methods addressing ordinary differential equations
(ODEs) and their derived models, like hybrid automata, have been extensively studied in
the verification literature, techniques pertaining to ODEs do not generalize straightfor-
wardly to delayed dynamical systems described by DDEs. The reason is that the future
evolution of a DDE is no longer governed by the current state instant only, but depends
on a chunk of its historical trajectory, such that introducing even a single constant delay
immediately renders a system with finite-dimensional states into an infinite-dimensional
dynamical system. There are approximation methods, say the Padé approximation [39],
that approximate DDEs with finite-dimensional models, which however may hide fun-
damental behaviors, e.g. (in-)stability, of the original delayed dynamics, as remarked
in Sect. 5.2.2.8.1 of [26]. Consequently, despite well-developed numerical methods for
solving DDEs as well as methods for stability analysis in the realm of control theory,
hitherto in automatic verification, only a few approaches address the effects of delays
due to the immediate impact of delays on the structure of the state spaces to be traversed
by state-exploratory methods.

In this paper, we present a constructive approach dedicated to verifying safety prop-
erties of delayed dynamical systems encoded by DDEs, where the safety properties
pertain to an infinite time domain. This problem is of particular interests when one
pursues correctness guarantees concerning dynamics of safety-critical systems over a
long run. Our approach builds on the linearization technique of potentially nonlinear
dynamics and spectral analysis of the linearized counterparts. We leverage qualitative
guarantees for the existence of an exponentially decreasing estimation on the solutions
to DDEs as established in classical stability theory (see, e.g., [2,19,24]), and present
a quantitative method to construct such estimations, thereby reducing the temporally
unbounded verification problems to their bounded counterparts.

The class of systems we consider features delayed differential dynamics governed
by DDEs of the form ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) with initial states
specified by a continuous function φ (t) on [−rmax, 0] where rmax = max{r1, . . . , rk}.
It thus involves a combination of ODE and DDE with multiple constant delays ri > 0,
and has been successfully used to model various real-world systems in the aforemen-
tioned fields. In general, formal verification of unbounded safety or, dually, reachability
properties of such systems inherits undecidability from similar properties for ODEs
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(cf. e.g., [14]). We therefore tackle this unbounded verification problem by leveraging
a stability criterion of the system under investigation.

Contributions. In this paper, we present a quantitative method for constructing a delay-
dependent, exponentially decreasing upper bound, if existent, that encloses trajecto-
ries of a DDE originating from a certain set of initial functions. This method conse-
quently yields a temporal bound T ∗ such that for any T > T ∗, the system is safe over
[−rmax, T ] iff it is safe over [−rmax,∞). For linear dynamics, such an equivalence of
safety applies to any initial set of functions drawn from a compact subspace in R

n;
while for nonlinear dynamics, our approach produces (a subset of) the basin of attrac-
tion around a steady state, and therefore a certificate (by bounded verification in finitely
many steps) that guarantees the reachable set being contained in this basin suffices to
claim safety/unsafety of the system over an infinite time horizon. Our technique is easy
to implement and can be combined with any automatic tool for bounded verification of
DDEs. We show experimentally on a set of representative benchmarks from the litera-
ture that our technique effectively extends the scope of bounded verification techniques
to unbounded verification tasks.

Related Work. As surveyed in [14], the research community has over the past three
decades vividly addressed automatic verification of hybrid discrete-continuous systems
in a safety-critical context. The almost universal undecidability of the unbounded reach-
ability problem, however, confines the sound key-press routines to either semi-decision
procedures or even approximation schemes, most of which address bounded verification
by computing the finite-time image of a set of initial states. It should be obvious that
the functional rather than state-based nature of the initial condition of DDEs prevents a
straightforward generalization of this approach.

Prompted by actual engineering problems, the interest in safety verification of con-
tinuous or hybrid systems featuring delayed coupling is increasing recently. We classify
these contributions into two tracks. The first track pursues propagation-based bounded
verification: Huang et al. presented in [21] a technique for simulation-based time-
bounded invariant verification of nonlinear networked dynamical systems with delayed
interconnections, by computing bounds on the sensitivity of trajectories to changes in
initial states and inputs of the system. A method adopting the paradigm of verification-
by-simulation (see, e.g., [9,16,31]) was proposed in [4], which integrates rigorous error
analysis of the numeric solving and the sensitivity-related state bloating algorithms
(cf. [7]) to obtain safe enclosures of time-bounded reachable sets for systems mod-
elled by DDEs. In [46], the authors identified a class of DDEs featuring a local homeo-
morphism property which facilitates construction of over- and under-approximations of
reachable sets by performing reachability analysis on the boundaries of the initial sets.
Goubault et al. presented in [17] a scheme to compute inner- and outer-approximating
flowpipes for DDEs with uncertain initial states and parameters using Taylor models
combined with space abstraction in the shape of zonotopes. The other track of the lit-
erature tackles unbounded reachability problem of DDEs by taking into account the
asymptotic behavior of the dynamics under investigation, captured by, e.g., Lyapunov
functions in [32,47] and barrier certificates in [35]. These approaches however share a
common limitation that a polynomial template has to be specified either for the interval
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Taylor models exploited in [47] (and its extension [29] to cater for properties specified
as bounded metric interval temporal logic (MITL) formulae), for Lyapunov functionals
in [32], or for barrier certificates in [35]. Our approach drops this limitation by resorting
to the linearization technique followed by spectral analysis of the linearized counter-
parts, and furthermore extends over [47] by allowing immediate feedback (i.e. x(t)) as
well as multiple delays in the dynamics), to which their technique does not generalize
immediately. In contrast to the absolute stability exploited in [32], namely a criterion
that ensures stability for arbitrarily large delays, we give the construction of a delay-
dependent stability certificate thereby substantially increasing the scope of dynamics
amenable to stability criteria, for instance, the famous Wright’s equation (cf. [44]).
Finally, we refer the readers to [34] and [33] for related contributions in showing the
existence of abstract symbolic models for nonlinear control systems with time-varying
and unknown time-delay signals via approximate bisimulations.

2 Problem Formulation

Notations. Let N, R and C be the set of natural, real and complex numbers, respec-
tively. Vectors will be denoted by boldface letters. For z = a + ib ∈ C with a, b ∈ R,
the real and imaginary parts of z are denoted respectively by R(z) = a and I(z) = b;
|z| =

√
a2 + b2 is the modulus of z. For a vector x ∈ R

n, xi refers to its i-th com-
ponent, and its maximum norm is denoted by ‖x‖ = max1≤i≤n |xi|. We define for
δ > 0, B(x, δ) = {x′ ∈ R

n | ‖x′ − x‖ ≤ δ} as the δ-closed ball around x. The
notation ‖·‖ extends to a set X ⊆ R

n as ‖X‖ = supx∈X ‖x‖, and to an m × n
complex-valued matrix A as ‖A‖ = max1≤i≤m

∑n
j=1 |aij |. X is the closure of X

and ∂X denotes the boundary of X . For a ≤ b, let C0([a, b], Rn) denote the space
of continuous functions from [a, b] to R

n, which is associated with the maximum
norm ‖f‖ = maxt∈[a,b] ‖f(t)‖. We abbreviate C0([−r, 0], Rn) as Cr for a fixed pos-
itive constant r, and let C1 consist of all continuously differentiable functions. Given
f : [0,∞) �→ R a measurable function such that ‖f(t)‖ ≤ aebt for some constants a
and b, then the Laplace transform L{f} defined by L{f}(z) =

∫ ∞
0

e−ztf(t) dt exists
and is an analytic function of z for R(z) > b.

Delayed Differential Dynamics. We consider a class of dynamical systems featuring
delayed differential dynamics governed by DDEs of autonomous type:

{
ẋ (t) = f (x (t) ,x (t − r1) , . . . ,x (t − rk)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−rk, 0] (1)

where x is the time-dependent state vector in R
n, ẋ denotes its temporal derivative

dx/dt, and t is a real variable modelling time. The discrete delays are assumed to be
ordered as rk > . . . > r1 > 0, and the initial states are specified by a vector-valued
function φ ∈ Crk

.
Suppose f is a Lipschitz-continuous vector-valued function in C1

(
R

(k+1)n, Rn
)
,

which implies that the system has a unique maximal solution (or trajectory) from a
given initial condition φ ∈ Crk

, denoted as ξφ : [−rk,∞) �→ R
n. We denote in the
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sequel by fx =̂
[

∂f
∂x1

· · · ∂f
∂xn

]
the Jacobian matrix (i.e., matrix consisting of all first-

order partial derivatives) of f w.r.t. the component x (t). Similar notations apply to
components x (t − ri), for i = 1, . . . , k.

Example 1 (Gene regulation [12,36]). The control of gene expression in cells is often
modelled with time delays in equations of the form

{
ẋ1(t) = g (xn(t − rn)) − β1x1(t)
ẋj(t) = xj−1(t − rj−1) − βjxj(t), 1 < j ≤ n

(2)

where the gene is transcribed producing mRNA (x1), which is translated into enzyme
x2 that in turn produces another enzyme x3 and so on. The end product xn acts to
repress the transcription of the gene by ġ < 0. Time delays are introduced to account
for time involved in transcription, translation, and transport. The positive βj’s represent
decay rates of the species. The dynamic described in Eq. (2) falls exactly into the scope
of systems considered in this paper, and in fact, it instantiates a more general family
of systems known as monotone cyclic feedback systems (MCFS) [28], which includes
neural networks, testosterone control, and many other effects in systems biology.

Lyapunov Stability. Given a system of DDEs in Eq. (1), suppose f has a steady state
(a.k.a., equilibrium) at xe such that f(xe, . . . ,xe) = 0 then

– xe is said to be Lyapunov stable, if for every ε > 0, there exists δ > 0 such that, if
‖φ − xe‖ < δ, then for every t ≥ 0 we have ‖ξφ(t) − xe‖ < ε.

– xe is said to be asymptotically stable, if it is Lyapunov stable and there exists δ > 0
such that, if ‖φ − xe‖ < δ, then limt→∞ ‖ξφ(t) − xe‖ = 0.

– xe is said to be exponentially stable, if it is asymptotically stable and there exist
α, β, δ > 0 such that, if ‖φ − xe‖ < δ, then ‖ξφ(t) − xe‖ ≤ α ‖φ − xe‖ e−βt, for
all t ≥ 0. The constant β is called the rate of convergence.

Here xe can be generalized to a constant function in Crk
when employing the supre-

mum norm ‖φ − xe‖ over functions. This norm further yields the locality of the above
definitions, i.e., they describe the behavior of a system near an equilibrium, rather than
of all initial conditions φ ∈ Crk

, in which case it is termed the global stability. W.l.o.g.,
we assume f(0, . . . ,0) = 0 in the sequel and investigate the stability of the zero equi-
librium thereof. Any nonzero equilibrium can be straightforwardly shifted to a zero one
by coordinate transformation while preserving the stability properties, see e.g., [19].

Safety Verification Problem. Given X ⊆ R
n a compact set of initial states and

U ⊆ R
n a set of unsafe or otherwise bad states, a delayed dynamical system of the

form (1) is said to be T -safe iff all trajectories originating from any φ(t) satisfying
φ(t) ∈ X ,∀t ∈ [−rk, 0] do not intersect with U at any t ∈ [−rk, T ], and T -unsafe oth-
erwise. In particular, we distinguish unbounded verification with T = ∞ from bounded
verification with T < ∞.

In subsequent sections, we first present our approach to tackling the safety verifica-
tion problem of delayed differential dynamics coupled with one single constant delay
(i.e., k = 1 in Eq. (1)) in an unbounded time domain, by leveraging a quantitative
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stability criterion, if existent, for the linearized counterpart of the potentially nonlinear
dynamics in question. A natural extension of this approach to cater for dynamics with
multiple delay terms will be remarked thereafter. In what follows, we start the elabo-
ration of the method from DDEs of linear dynamics that admit spectral analysis, and
move to nonlinear cases afterwards and show how the linearization technique can be
exploited therein.

3 Linear Dynamics

Consider the linear sub-class of dynamics given in Eq. (1):
{

ẋ (t) = Ax (t) + Bx (t − r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (3)

where A,B ∈ R
n×n, φ ∈ Cr, and the system is associated with the characteristic

equation
det

(
zI − A − Be−rz

)
= 0, (4)

where I is the n×n identity matrix. Denote by h(z) =̂ zI−A−Be−rz the characteristic
matrix in the sequel. Notice that the characteristic equation can be obtained by seeking
nontrivial solutions to Eq. (3) of the form ξφ(t) = cezt, where c is an n-dimensional
nonzero constant vector.

The roots λ ∈ C of Eq. (4) are called characteristic roots or eigenvalues and the set
of all eigenvalues is referred to as the spectrum, denoted by σ = {λ | det (h(λ)) = 0}.
Due to the exponentiation in the characteristic equation, the DDE has, in line with
its infinite-dimensional nature, infinitely many eigenvalues possibly, making a spectral
analysis more involved. The spectrum does however enjoy some elementary properties
that can be exploited in the analysis. For instance, the spectrum has no finite accumu-
lation point in C and therefore for each positive γ ∈ R, the number of roots satisfying
|λ| ≤ γ is finite. It follows that the spectrum is a countable (albeit possibly infinite) set:

Lemma 1 (Accumulation freedom [6,19]). Given γ ∈ R, there are at most finitely
many characteristic roots satisfying R(λ) > γ. If there is a sequence {λn} of roots of
Eq. (4) such that |λn| → ∞ as n → ∞, then R(λn) → −∞ as n → ∞.

Lemma 1 suggests that there are only a finite number of solutions in any vertical
strip in the complex plane, and there thus exists an upper bound α ∈ R such that every
characteristic root λ in the spectrum satisfies R(λ) < α. This upper bound captures
essentially the asymptotic behavior of the linear dynamics:

Theorem 1 (Globally exponential stability [6,36]). Suppose R(λ) < α for every
characteristic root λ. Then there exists K > 0 such that

‖ξφ(t)‖ ≤ K ‖φ‖ eαt, ∀t ≥ 0, ∀φ ∈ Cr, (5)

where ξφ(t) is the solution to Eq. (3). In particular, x = 0 is a globally exponentially
stable equilibrium of Eq. (3) if R(λ) < 0 for every characteristic root; it is unstable if
there is a root satisfying R(λ) > 0.
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Theorem 1 establishes an existential guarantee that the solution to the linear delayed
dynamics approaches the zero equilibrium exponentially for any initial conditions in
Cr. To achieve automatic safety verification, however, we ought to find a constructive
means of estimating the (signed) rate of convergence α and the coefficient K in Eq. (5).
This motivates the introduction of the so-called fundamental solution ξφ′(t) to Eq. (3),
whose Laplace transform will later be shown to be h−1(z), the inverse characteristic
matrix, which always exists for z satisfying R(z) > maxλ∈σ R(λ).

Lemma 2 (Variation-of-constants [19,36]). Let ξφ(t) be the solution to Eq. (3).
Denote by ξφ′(t) the solution that satisfies Eq. (3) for t ≥ 0 and satisfies a varia-
tion of the initial condition as φ′(0) = I and φ′(t) = O for all t ∈ [−r, 0), where O is
the n × n zero matrix, then for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0) +
∫ t

0

ξφ′(t − τ)Bφ(τ − r) dτ . (6)

Note that in Eq. (6), φ(t) is extended to [−r,∞) by making it zero for t > 0. In
spite of the discontinuity of φ′ at zero, the existence of the solution ξφ′(t) can be proven
by the well-known method of steps [8].

Lemma 3 (Fundamental solution [19]). The solution ξφ′(t) to Eq. (3) with initial
data φ′ is the fundamental solution; that is for z s.t. R(z) > maxλ∈σ R(λ),

L{ξφ′}(z) = h−1(z).

The fundamental solution ξφ′(t) can be proven to share the same exponential bound
as that in Theorem 1, while the following theorem, as a consequence of Lemma 2, gives
an exponential estimation of ξφ(t) in connection with ξφ′(t):

Theorem 2 (Exponential estimation [36]). Denote by μ =̂ maxλ∈σ R(λ) the maxi-
mum real part of eigenvalues in the spectrum. Then for any α > μ, there exists K > 0
such that

‖ξφ′(t)‖ ≤ Keαt, ∀t ≥ 0, (7)

and hence by Eq. (6), ‖ξφ(t)‖ ≤ K
(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖φ‖ eαt for any t ≥ 0 and
φ ∈ Cr. In particular, x = 0 is globally exponentially stable for Eq. (3) if μ < 0.

Following Theorem 2, an exponentially decreasing bound on the solution ξφ(t) to
linear DDEs of the form (3) can be assembled by computing α satisfying μ < α < 0
and the coefficient K > 0.

3.1 Identifying the Rightmost Roots

Due to the significance of characteristic roots in the context of stability and bifurca-
tion analysis, numerical methods on identifying—particularly the rightmost—roots of
linear (or linearized) DDEs have been extensively studied in the past few decades, see
e.g., [3,11,43,45]. There are indeed complete methods on isolating real roots of poly-
nomial exponential functions, for instances [37] and [15] based on cylindrical algebraic
decomposition (CAD). Nevertheless, as soon as non-trivial exponential functions arise
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in the characteristic equation, there appear to be few, if any, symbolic approaches to
detecting complex roots of the equation.

In this paper, we find α that bounds the spectrum from the right of the complex
plane, by resorting to the numerical approach developed in [11]. The computation
therein employs discretization of the solution operator using linear multistep (LMS)
methods to approximate eigenvalues of linear DDEs with multiple constant delays,
under an absolute error of O (τp) for sufficiently small stepsize τ , where O (·) is the big
Omicron notation and p depends on the order of the LMS-methods. A well-developed
MATLAB package called DDE-BIFTOOL [10] is furthermore available to mechanize
the computation, which will be demonstrated in our forthcoming examples.

3.2 Constructing K

By the inverse Laplace transform (cf. Theorem 5.2 in [19] for a detailed proof), we have
ξφ′(t) = limV →∞ 1

2πi

∫ α+iV

α−iV
ezth−1(z) dz for z satisfying R(z) > μ, where α is the

exponent associated with the bound on ξφ′(t) in Eq. (7), and hence by substituting
z = α + iν, we have

e−αtξφ′(t) = lim
V →∞

1
2π

∫ V

−V

eiνth−1(α + iν) dν.

Since h−1(z) = I
z +

(
h−1(z) − I

z

)
= I

z + O (
1/z2

)
, together with the fact that an

integral over a quadratic integrand is convergent, it follows that

e−αtξφ′(t) = lim
V →∞

1
2π

∫ V

−V

eiνt I

α + iν
dν +

1
2π

∫ ∞

−∞
eiνtO

(
1

(α + iν)2

)

dν.

By taking the norm while observing that
∣
∣eiνt

∣
∣ = 1, we get

e−αt ‖ξφ′(t)‖ ≤
∥
∥
∥
∥ lim

V →∞
1
2π

∫ V

−V

eiνt I

α + iν
dν

︸ ︷︷ ︸
(8-a)

∥
∥
∥
∥ +

1
2π

∫ ∞

−∞

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν

︸ ︷︷ ︸
(8-b)

.

(8)
For the integral (8-a), the fact1 that

∫ ∞

−∞

eiax

b + ix
dx =

∫ ∞

−∞

eix

ab + ix
dx =

{
2πe−ab if a, b > 0
0 if a > 0, b < 0,

(9)

implies
∥
∥
∥
∥ lim

V →∞
1
2π

∫ V

−V

eiνt I

α + iν
dν

∥
∥
∥
∥ ≤

{
1, ∀t > 0, ∀α > 0
0, ∀t > 0, ∀α < 0.

(10)

Notice that the second integral (8-b) is computable, since it is convergent and indepen-
dent of t. The underlying computation of the improper integral, however, can be rather
time-consuming. We therefore detour by computing an upper bound of (8-b) in the
form of a definite integral, due to Lemma 4, which suffices to constitute an exponential
estimation of ξφ′(t) while reducing computational efforts pertinent to the integration.

1 The integral in (9) is divergent for a = 0 or b = 0 in the sense of a Riemann integral.
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Lemma 4. There exists M > 0 such that inequation (11) below holds for any α > μ.

∫ ∞

−∞

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν ≤

∫ M

−M

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν+

8n

M

(‖A‖ + ‖B‖ e−rα
)

(11)
where μ =̂ maxλ∈σ R(λ), z = α + iν, and n is the order of A and B.

Proof. The proof depends essentially on constructing a threshold M > 0 such that
the integral over |ν| > M can be bounded, thus transforming the improper integral in
question to a definite one. To find such an M , observe that

∥
∥
∥
∥
O

(
1

z2

)∥
∥
∥
∥

=

∥
∥
∥
∥
h−1(z) − I

z

∥
∥
∥
∥

=
∥
∥h−1(z)

∥
∥

∥
∥
∥
∥
I − h(z)

z

∥
∥
∥
∥

≤
∥
∥h−1(z)

∥
∥

|z| (‖A‖ + ‖B‖ e−rα).

Without loss of generality, suppose the entry of h−1(z) at (i, j) takes the form

(

h−1)

ij
= (

n−1∑

k=0

pij
k (e−rz)zk)/ det(h(z)) = (

n−1∑

k=0

pij
k (e−rz)zk)/(zn +

n−1∑

k=0

qk(e−rz)zk)

=
1

z
(

n−1∑

k=0

pij
k (e−rz)zk−n+1)/(1 +

n−1∑

k=0

qk(e−rz)zk−n),

where pij
k (·) and qk(·) are polynomials in e−rz as coefficients of zk. Since e−rz is

bounded by e−rα along the vertical line z = α + iν, we can conclude that there exist

P ij
k and Qk such that

∣
∣
∣p

ij
k (e−rz)

∣
∣
∣ ≤ P ij

k and |qk(e−rz)| ≤ Qk, with P ij
n−1 = 1 if i = j,

and 0 otherwise. Furthermore, in the vertical line z = α + iν, if |ν| ≥ 1, then

∣
∣
∣
∣
∣

n−1∑

k=0

pij
k (e−rz)zk−n+1

∣
∣
∣
∣
∣
≤

∣
∣
∣p

ij
n−1(e−rz)

∣
∣
∣ +

n−2∑

k=0

∣
∣
∣p

ij
k (e−rz)z−1

∣
∣
∣ ≤ P ij

n−1 +

n−2∑

k=0

P ij
k

∣
∣z−1

∣
∣ ,

∣
∣
∣
∣
∣
1 +

n−1∑

k=0

qk(e−rz)zk−n

∣
∣
∣
∣
∣
≥ 1 −

n−1∑

k=0

∣
∣qk(e−rz)

∣
∣

∣
∣
∣zk−n

∣
∣
∣ ≥ 1 −

n−1∑

k=0

Qk

∣
∣z−1

∣
∣ .

We can thus choose |ν| > M =̂ max
1≤i,j≤n

{

1, 2
n−1∑

k=0

Qk,
n−2∑

k=0

P ij
k

}

, which implies

∣
∣
∣
∣
∣
(

n−1∑

k=0

pij
k (e−rz)zk)/ det(h(z))

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

1

z
(

n−1∑

k=0

pij
k (e−rz)zk−n+1)/(1 +

n−1∑

k=0

qk(e−rz)zk−n)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

1

z

∣
∣
∣
∣
(P ij

n−1 +

n−2∑

k=0

P ij
k

∣
∣z−1

∣
∣)/(1 −

n−1∑

k=0

Qk

∣
∣z−1

∣
∣) ≤ 2

|z| (1 + P ij
n−1) ≤ 4

|z| ,

where the third inequality holds since |ν| > M . It then follows, if |ν| > M , that

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ ≤

∥
∥h−1(z)

∥
∥

|z| (‖A‖ + ‖B‖ e−rα) ≤ 4n

ν2
(‖A‖ + ‖B‖ e−rα),
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and thereby

∫ ∞

−∞

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥

≤
∫ M

−M

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥

dν + 2

∫ ∞

M

4n

ν2
(‖A‖ + ‖B‖ e−rα) dν

≤
∫ M

−M

∥
∥
∥
∥
O

(
1

(α + iν)2

)∥
∥
∥
∥

dν +
8n

M

(‖A‖ + ‖B‖ e−rα)
.

This completes the proof. �

Equations (8), (10) and (11) yield that e−αt ‖ξφ′(t)‖ is upper-bounded by

K =
1
2π

(∫ M

−M

∥
∥
∥
∥O

(
1

(α + iν)2

)∥
∥
∥
∥ dν +

8n

M

(‖A‖ + ‖B‖ e−rα
)
)

+ 10(α), (12)

for all t > 0. Here M is the constant given in Lemma 4, while 10 : (μ,∞) \ {0} �→
{0, 1} is an indicator function2 of {α | α > 0}, i.e., 10(α) = 1 for α > 0 and 10(α) = 0
for μ < α < 0.

In contrast to the existential estimation guarantee established in Theorem 2, exploit-
ing the construction of α and K gives a constructive quantitative criterion permitting to
reduce an unbounded safety verification problem to its bounded counterpart:

Theorem 3 (Equivalence of bounded and unbounded safety). Given X ⊆ R
n a set

of initial states and U ⊆ R
n a set of bad states satisfying 0 /∈ U , suppose we have α

satisfying μ < α < 0 and K from Eq. (12). Let K̂ =̂ K
(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖X‖,
then there exists T ∗ < ∞, defined as

T ∗ =̂ max{0, inf{T | ∀t > T : [−K̂eαt, K̂eαt]n ∩ U = ∅}}, (13)

such that for any T > T ∗, the system (3) is ∞-safe iff it is T -safe.

Proof. The “only if” part is for free, as ∞-safety subsumes by definition T -safety.
For the “if” direction, the constructed K in Eq. (12) suffices as an upper bound of
e−αt ‖ξφ′(t)‖, and hence by Theorem 2, ‖ξφ(t)‖ ≤ K̂eαt for any t ≥ 0 and φ
constrained by X . As a consequence, it suffices to show that T ∗ given by Eq. (13)
is finite, which then by definition implies that system (3) is safe over t > T ∗.
Note that the assumption 0 /∈ U implies that there exists a ball B(0, δ) such that
B(0, δ) ∩ U = ∅. Moreover, K̂eαt is strictly monotonically decreasing w.r.t. t, and thus
T = max{0, ln(δ/K̂)/α} is an upper bound3 of T ∗, which further implies T ∗ < ∞. �

Example 2 (PD-controller [17]). Consider a PD-controller with linear dynamics
defined, for t ≥ 0, as

ẏ(t) = v(t); v̇(t) = −κp (y(t − r) − y∗) − κdv(t − r), (14)

which controls the position y and velocity v of an autonomous vehicle by adjusting its
acceleration according to the current distance to a reference position y∗. A constant time

2 We rule out the case of α = 0, which renders the integral in Eq. (12) divergent.
3 Note that the larger δ is, the tighter bound T will be.
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delay r is introduced to model the time lag due to sensing, computation, transmission,
and/or actuation. We instantiate the parameters following [17] as κp = 2, κd = 3,
y∗ = 1, and r = 0.35. The system described by Eq. (14) then has one equilibrium
at (1; 0), which shares equivalent stability with the zero equilibrium of the following
system, with ŷ = y − 1 and v̂ = v:

˙̂y(t) = v̂(t); ˙̂v(t) = −2ŷ(t − r) − 3v̂(t − r). (15)

Suppose we are interested in exploiting the safety property of the system (15) in an
unbounded time domain, relative to the set of initial states X = [−0.1, 0.1] × [0, 0.1]
and the set of unsafe states U = {(ŷ; v̂) | |ŷ| > 0.2}. Following our construction
process, we obtain automatically some key arguments (depicted in Fig. 1) as α = −0.5,
M = 11.9125, K = 7.59162 and K̂ = 2.21103, which consequently yield T ∗ =
4.80579 s. By Theorem 3, the unbounded safety verification problem thus is reduced to
a T -bounded one for any T > T ∗, inasmuch as ∞-safety is equivalent to T -safety for
the underlying dynamics.

[−K̂eαt, K̂eαt]n in Eq. (13) can be viewed as an overapproximation of all trajec-
tories originating from X . As shown in the right part of Fig. 1, this overapproxima-
tion, however, is obviously too conservative to be utilized in proving or disproving
almost any safety specifications of practical interest. The contribution of our approach
lies in the reduction of unbounded verification problems to their bounded counterparts,
thereby yielding a quantitative time bound T ∗ that substantially “trims off” the verifica-
tion efforts pertaining to t > T ∗. The derived T -safety verification task can be tackled
effectively by methods dedicated to bounded verification of DDEs of the form (3), or
more generally, (1), e.g., approaches in [17] and [4].

Fig. 1. Left: the identified rightmost roots of h(z) in DDE-BIFTOOL and an upper bound
α = −0.5 such that maxλ∈σ R(λ) < α < 0; Center: M = 11.9125 that suffices to split and
hence upper-bound the improper integral

∫ ∞
−∞

∥
∥O (

1/z2
)∥
∥ dν in Eq. (11); Right: the obtained

time instant T ∗ = 4.80579 s guaranteeing the equivalence of ∞-safety and T -safety of the
PD-controller, for any T > T ∗.
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4 Nonlinear Dynamics

In this section, we address a more general form of dynamics featuring substantial non-
linearity, by resorting to linearization techniques and thereby establishing a quantitative
stability criterion, analogous to the linear case, for nonlinear delayed dynamics.

Consider a singly delayed version of Eq. (1):
{

ẋ (t) = f (x (t) ,x (t − r)) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (16)

with f being a nonlinear vector field involving possibly non-polynomial functions. Let

f (x,y) = Ax + By + g(x,y), with A = fx (0,0) , B = fy (0,0) ,

where fx and fy are the Jacobian matrices of f in terms of x and y, respectively; g is
a vector-valued, high-order term whose Jacobian matrix at (0,0) is O.

By dropping the high-order term g in f , we get the linearized counterpart of
Eq. (16): {

ẋ (t) = Ax (t) + Bx (t − r) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (17)

which falls in the scope of linear dynamics specified in Eq. (3), and therefore is asso-
ciated with a characteristic equation of the same form as that in Eq. (4). Equation (17)
will be in the sequel referred to as the linearization of Eq. (16) at the steady state 0,
and σ is used to denote the spectrum of the characteristic equation corresponding to
Eq. (17).

In light of the well-known Hartman-Grobman theorem [18,20] in the realm of
dynamical systems, the local behavior of a nonlinear dynamical system near a (hyper-
bolic) equilibrium is qualitatively the same as that of its linearization near this equilib-
rium. The following statement uncovers the connection between the locally asymptotic
behavior of a nonlinear system and the spectrum of its linearization:

Theorem 4 (Locally exponential stability [6,36]). Suppose maxλ∈σ R(λ) < α < 0.
Then x = 0 is a locally exponentially stable equilibrium of the nonlinear systems (16).
In fact, there exists δ > 0 and K > 0 such that

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ K ‖φ‖ eαt/2, ∀t ≥ 0,

where ξφ(t) is the solution to Eq. (16). If R(λ) > 0 for some λ in σ, then x = 0 is
unstable.

Akin to the linear case, Theorem 4 establishes an existential guarantee that the
solution to the nonlinear delayed dynamics approaches the zero equilibrium exponen-
tially for initial conditions within a δ-neighborhood of this equilibrium. The need of
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constructing α, K and δ quantitatively in Theorem 4, as essential to our automatic
verification approach, invokes again the fundamental solution ξφ′(t) to the linearized
dynamics in Eq. (17):

Lemma 5 (Variation-of-constants [19,36]). Consider nonhomogeneous systems of
the form {

ẋ (t) = Ax (t) + Bx (t − r) + η (t) , t ∈ [0,∞)
x (t) = φ (t) , t ∈ [−r, 0] (18)

Let ξφ(t) be the solution to Eq. (18). Denote by ξφ′(t) the solution that satisfies Eq. (17)
for t ≥ 0 and satisfies a variation of the initial condition as φ′(0) = I and φ′(t) = O
for all t ∈ [−r, 0). Then for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0) +
∫ t

0

ξφ′(t − τ)Bφ(τ − r) dτ +
∫ t

0

ξφ′(t − τ)η(τ) dτ , (19)

where φ is extended to [−r,∞) with φ(t) = 0 for t > 0.

In what follows, we give a constructive quantitative estimation of the solutions to
nonlinear dynamics, which admits a reduction of the problem of constructing an expo-
nential upper bound of a nonlinear system to that of its linearization, as being immedi-
ately evident from the constructive proof.

Theorem 5 (Exponential estimation). Suppose that maxλ∈σ R(λ) < α < 0. Then
there exist K > 0 and δ > 0 such that ‖ξφ′(t)‖ ≤ Keαt for any t ≥ 0, and

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eαt/2, ∀t ≥ 0,

where ξφ(t) is the solution to nonlinear systems (16) and ξφ′(t) is the fundamental
solution to the linearized counterpart (17).

Proof. The existence of K follows directly from Eq. (7) in Theorem 2. By the variation-
of-constants formula (19), we have, for t ≥ 0,

ξφ(t) = ξφ′(t)φ(0)+
∫ t

0

ξφ′(t−τ)Bφ(τ−r) dτ+
∫ t

0

ξφ′(t−τ)g(x(τ),x(τ−r)) dτ ,

(20)
where φ is extended to [−r,∞) with φ(t) = 0 for t > 0. Define xφ

t (·) ∈ Cr as
xφ

t (θ) = ξφ(t + θ) for θ ∈ [−r, 0]. Then g(·, ·) being a higher-order term yields that
for any ε > 0, there exists δε > 0 such that

∥
∥xφ

t

∥
∥ ≤ δε implies g (x(t),x(t − r)) ≤

ε
∥
∥xφ

t

∥
∥. Due to the fact that ‖ξφ′(t)‖ ≤ Keαt and the monotonicity of ‖ξφ′(t)‖ with

α < 0, we have
∥
∥xφ′

t

∥
∥ ≤ Keα(t−r). This, together with Eq. (20), leads to

∥
∥xφ

t

∥
∥ ≤ K ‖φ‖ eα(t−r) +

∫ r

0
K ‖B‖ ‖φ‖ eα(t−r)e−ατ dτ +

∫ t

0
Keα(t−r)e−ατ ε

∥
∥xφ

τ

∥
∥ dτ

= K

(

1 + ‖B‖
∫ r

0
e−ατ dτ

)

‖φ‖ eα(t−r) + εKeα(t−r)

∫ t

0
e−ατ

∥
∥xφ

τ

∥
∥ dτ .
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Hence,

e−αt
∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ + εKe−rα

∫ t

0

e−ατ
∥
∥xφ

τ

∥
∥ dτ .

By the Grönwall-Bellman inequality [1] we obtain

e−αt
∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eεKe−rαt

and thus

∥
∥xφ

t

∥
∥ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eεKe−rαt+αt.

Set ε ≤ −α/(2Ke−rα) and δ = min
{
δε, δε/

(
Ke−rα

(
1 + ‖B‖ ∫ r

0
e−ατ dτ

))}
. This

yields, for any t ≥ 0,

‖φ‖ ≤ δ =⇒ ‖ξφ(t)‖ ≤ Ke−rα

(

1 + ‖B‖
∫ r

0

e−ατ dτ

)

‖φ‖ eαt/2,

completing the proof. �

The above constructive quantitative estimation of the solutions to nonlinear dynam-

ics gives rise to the reduction, analogous to the linear case, of unbounded verification
problems to bounded ones, in the presence of a local stability criterion.

Theorem 6 (Equivalence of safety properties). Given initial state set X ⊆ R
n and

bad states U ⊆ R
n satisfying 0 /∈ U . Let σ denote the spectrum of the characteristic

equation corresponding to Eq. (17). Suppose that maxλ∈σ R(λ) < α < 0, and the
fundamental solution to Eq. (17) satisfies ‖ξφ′(t)‖ ≤ Keαt for any t ≥ 0. Let K̃ =
Ke−rα

(
1 + ‖B‖ ∫ r

0
e−ατ dτ

) ‖X‖. Then there exists δ > 0 and T ∗ < ∞, defined as

T ∗ =̂ max{0, inf{T | ∀t > T : [−K̃eαt/2, K̃eαt/2]n ∩ U = ∅}},
such that if ‖X‖ ≤ δ, then for any T > T ∗, the system (16) is ∞-safe iff it is T -safe.

Proof. The proof is analogous to that of Theorem 3, particularly following from the
local stability property stated in Theorem 5. �


Note that for nonlinear dynamics, the equivalence of safety claimed by Theorem 6
holds on the condition that ‖X‖ ≤ δ, due to the locality stemming from linearization.
In fact, such a set B ⊆ R

n satisfying ‖B‖ ≤ δ describes (a subset of) the basin of
attraction around the local attractor 0, in a sense that any initial condition in B will
lead the trajectory eventually into the attractor. Consequently, for verification problems
where X ⊇ B, if the reachable set originating from X is guaranteed to be subsumed
within B in the time interval [T ′ − r, T ′], then T ′ + T ∗ suffices as a bound to avoid
unbounded verification, namely for any T > T ′ + T ∗, the system is ∞-safe iff it is
T -safe. This is furthermore demonstrated by the following example.
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Example 3 (Population dynamics [4,25]). Consider a slightly modified version of the
delayed logistic equation introduced by G. Hutchinson in 1948 (cf. [22])

Ṅ(t) = N(t)[1 − N(t − r)], t ≥ 0, (21)

which is used to model a single population whose percapita rate of growth Ṅ(t)/N(t)
depends on the population size r time units in the past. This would be a reasonable
model for a population that features a significant minimum reproductive age or depends
on a resource, like food, needing time to grow and thus to recover its availability.

If we change variables, putting u = N − 1, then Eq. (21) becomes the famous
Wright’s equation (see [44]):

u̇(t) = −u(t − r)[1 + u(t)], t ≥ 0. (22)

The steady state N = 1 is now u = 0. We instantiate the verification problem of
Eq. (22) over [−r,∞) as X = [−0.2, 0.2], U = {u | |u| > 0.6}, under a constant
delay r = 1. Note that delay-independent Lyapunov techniques, e.g. [32], cannot solve
this problem, since Wright’s conjecture [44], which has been recently proven in [40],
together with corollaries thereof implies that there does not exist a Lyapunov functional
guaranteeing absolute stability of Eq. (22) with arbitrary constant delays. To achieve
an exponential estimation, we first linearize the dynamics by dropping the nonlinearity
u(t)u(t − r) thereof:

v̇(t) = −v(t − 1), t ≥ 0. (23)

Following our constructive approach, we obtain automatically for Eq. (23) α =
−0.3 (see the left of Fig. 2), M = 2.69972, K = 3.28727, and thereby for Eq. (22) δ =
0.00351678, K̃ = 0.0338039 and T ∗ = 0 s. It is worth highlighting that by the bounded
verification method in [17], with Taylor models of the order 5, an overapproximation
Ω of the reachable set w.r.t. system (22) over the time interval [14.5, 15.5] was verified
to be enclosed in the δ-neighborhood of 0, i.e., ‖Ω‖ ≤ δ, yet escaped from this region
around t = 55.3 s, and tended to diverge soon, as depicted in the right part of Fig. 2, and
thus cannot prove unbounded safety properties. However, with our result of T ∗ = 0s
and the fact that Ω over [−1, 15.5] is disjoint with U , we are able to claim safety of the
underlying system over an infinite time domain.

DDEs with Multiple Different Delays. Delay differential equations with multiple
fixed discrete delays are extensively used in the literature to model practical systems
where components coupled with different time lags coexist and interact with each
other. We remark that previous theorems on exponential estimation and equivalence
of safety w.r.t. cases of single delay extend immediately to systems of the form (1) with
almost no change, except for replacing ‖B‖ e−rα with

∑k
i=1 ‖Ai‖ e−riα and ‖B‖ with

∑k
i=1 ‖Ai‖, where Ai denotes the matrix attached to x(t − ri) in the linearization. For

a slightly modified form of the variation-of-constants formula under multiple delays,
we refer the readers to Theorem 1.2 in [19].
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Fig. 2. Left: the identified rightmost eigenvalues of h(z) and an upper bound α = −0.5 such
that maxλ∈σ R(λ) < α < 0; Right: overapproximation of the reachable set of the system (22)
produced by the method in [17] using Taylor models for bounded verification. Together with this
overapproximation we prove the equivalence of ∞-safety and T -safety of the system, for any
T > (T ′ + T ∗) = 15.5 s.

5 Implementation and Experimental Results

To further investigate the scalability and efficiency of our constructive approach, we
have carried out a prototypical implementation4 in Wolfram MATHEMATICA, which
was selected due to its built-in primitives for integration and matrix operations. By
interfacing with DDE-BIFTOOL5 (in MATLAB or GNU OCTAVE) for identifying the
rightmost characteristic roots of linear (or linearized) DDEs, our implementation com-
putes an appropriate T ∗ that admits a reduction of unbounded verification problems
to bounded ones. A set of benchmark examples from the literature has been evaluated
on a 3.6 GHz Intel Core-i7 processor with 8 GB RAM running 64-bit Ubuntu 16.04.
All computations of T ∗ were safely rounded and finished within 6 s for any of the
examples, including Examples 2 and 3. In what follows, we demonstrate in particular
the applicability of our technique to DDEs featuring non-polynomial dynamics, high
dimensionality and multiple delays.

Example 4 (Disease pathology [25,27,32]). Consider the following non-polynomial
DDE for t ≥ 0:

ṗ(t) =
βθnp(t − r)

θn + pn(t − r)
− γp(t), (24)

where p(t) is positive and indicates the number of mature blood cells in circulation,
while r models the delay between cell production and cell maturation. We consider the
case θ = 1 as in [32]. Constants are instantiated as n = 1, β = 0.5, γ = 0.6 and
r = 0.5. The unbounded verification problem of Eq. (24) over [−r,∞) is configured as
X = [0, 0.2] and U = {p | |p| > 0.3}. Then the linearization of Eq. (24) reads

ṗ(t) = −0.6p(t) + 0.5p(t − 0.5). (25)

4 http://lcs.ios.ac.cn/∼chenms/tools/UDDER.tar.bz2.
5 http://ddebiftool.sourceforge.net/.
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With α = −0.07 obtained from DDE-BIFTOOL, our implementation produces
for Eq. (25) the values M = 2.23562, K = 1.75081, and thereby for Eq. (24)
δ = 0.0163426, K̃ = 0.0371712 and T ∗ = 0 s. Thereafter by the bounded verifi-
cation method in [17], with Taylor models of the order 5, an overapproximation of the
reachable set w.r.t. system (24) over the time interval [25.45, 25.95] was verified to be
enclosed in the δ-neighborhood of 0. This fact, together with T ∗ = 0 s and the over-
approximation on [−0.5, 25.95] being disjoint with U , yields safety of the system (24)
over [−0.5,∞).

Example 5 (Gene regulation [12,36]). To examine the scalability of our technique to
higher dimensions, we recall an instantiation of Eq. (2) by setting n = 5, namely with
5 state components x = (x1; . . . ;x5) and 5 delay terms r = (0.1; 0.2; 0.4; 0.8; 1.6)
involved, g(x) = −x, βj = 1 for j = 1, . . . , 5, X = B ((1; 1; 1; 1; 1) , 0.2) and U =
{x | |x1| > 1.5}. With α = −0.04 derived from DDE-BIFTOOL, our implementation
returns M = 64.264, K = 4.42207, K̂ = 49.1463 and T ∗ = 87.2334 s, thereby
yielding the equivalence of ∞-safety to T -safety for any T > T ∗. Furthermore, the
safety guarantee issued by the bounded verification method in [4] based on rigorous
simulations under T = 88 s suffices to prove safety of the system over an infinite time
horizon.

6 Conclusion

We have presented a constructive method, based on linearization and spectral analysis,
for computing a delay-dependent, exponentially decreasing upper bound, if existent,
that encloses trajectories of a DDE originating from a certain set of initial functions. We
showed that such an enclosure facilitates a reduction of the verification problem over
an unbounded temporal horizon to a bounded one. Preliminary experimental results on
a set of representative benchmarks from the literature demonstrate that our technique
effectively extends the scope of existing bounded verification techniques to unbounded
verification tasks.

Peeking into future directions, we plan to exploit a tight integration of our tech-
nique into several automatic tools dedicated to bounded verification of DDEs, as well
as more permissive forms of stabilities, e.g. asymptotical stability, that may admit a sim-
ilar reduction-based idea. An extension of our method to deal with more general forms
of DDEs, e.g., with time-varying, or distributed (i.e., a weighted average of) delays, will
also be of interest. Additionally, we expect to refine our enclosure of system trajectories
by resorting to a topologically finite partition of the initial set of functions.
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37. Strzeboński, A.: Cylindrical decomposition for systems transcendental in the first variable.
J. Symb. Comput. 46(11), 1284–1290 (2011)

38. Szydłowski, M., Krawiec, A., Toboła, J.: Nonlinear oscillations in business cycle model with
time lags. Chaos Solitons Fractals 12(3), 505–517 (2001)
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41. Volterra, V.: Une théorie mathématique de la lutte pour la vie (1927)
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