
27th European Symposium on Programming, ESOP 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018, Proceedings

Programming
Languages
and SystemsLN

CS
 1

08
01

AR
Co

SS
Amal Ahmed (Ed.)

www.dbooks.org

https://www.dbooks.org/

Lecture Notes in Computer Science 10801

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

www.dbooks.org

https://www.dbooks.org/

Amal Ahmed (Ed.)

Programming
Languages
and Systems
27th European Symposium on Programming, ESOP 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018
Proceedings

Editor
Amal Ahmed
Northeastern University
Boston, MA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89883-4 ISBN 978-3-319-89884-1 (eBook)
https://doi.org/10.1007/978-3-319-89884-1

Library of Congress Control Number: 2018940640

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

www.dbooks.org

http://orcid.org/0000-0001-7424-572X
https://www.dbooks.org/

ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), Ioannis Stamelos,

Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Küsters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Göteborg),
Don Sannella (Edinburgh), Andy Schürr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen

VI ETAPS Foreword

www.dbooks.org

https://www.dbooks.org/

Preface

This volume contains the papers presented at the 27th European Symposium on Pro-
gramming (ESOP 2018) held April 16–19, 2018, in Thessaloniki, Greece. ESOP is one
of the European Joint Conferences on Theory and Practice of Software (ETAPS). It is
devoted to fundamental issues in the specification, design, analysis, and implementa-
tion of programming languages and systems.

The 36 papers in this volume were selected from 114 submissions based on origi-
nality and quality. Each submission was reviewed by three to six Program Committee
(PC) members and external reviewers, with an average of 3.3 reviews per paper.
Authors were given a chance to respond to these reviews during the rebuttal period
from December 6 to 8, 2017. All submissions, reviews, and author responses were
considered during the online discussion, which identified 74 submissions to be dis-
cussed further at the physical PC meeting held at Inria Paris, December 13–14, 2017.
Each paper was assigned a guardian, who was responsible for making sure that external
reviews were solicited if there was not enough non-conflicted expertise among the PC,
and for presenting a summary of the reviews and author responses at the PC meeting.
All non-conflicted PC members participated in the discussion of a paper’s merits. PC
members wrote reactions to author responses, including summaries of online discus-
sions and discussions during the physical PC meeting, so as to help the authors
understand decisions. Papers co-authored by members of the PC were held to a higher
standard and discussed toward the end of the physical PC meeting. There were ten such
submissions and five were accepted. Papers for which the program chair had a conflict
of interest were kindly handled by Fritz Henglein.

My sincere thanks to all who contributed to the success of the conference. This
includes the authors who submitted papers for consideration; the external reviewers,
who provided timely expert reviews, sometimes on short notice; and the PC, who
worked hard to provide extensive reviews, engaged in high-quality discussions about
the submissions, and added detailed comments to help authors understand the PC
discussion and decisions. I am grateful to the past ESOP PC chairs, particularly Jan
Vitek and Hongseok Yang, and to the ESOP SC chairs, Giuseppe Castagna and Peter
Thiemann, who helped with numerous procedural matters. I would like to thank the
ETAPS SC chair, Joost-Pieter Katoen, for his amazing work and his responsiveness.
HotCRP was used to handle submissions and online discussion, and helped smoothly
run the physical PC meeting. Finally, I would like to thank Cătălin Hriţcu for spon-
soring the physical PC meeting through ERC grant SECOMP, Mathieu Mourey and the
Inria Paris staff for their help organizing the meeting, and William Bowman for
assisting with the PC meeting.

February 2018 Amal Ahmed

Organization

Program Committee

Amal Ahmed Northeastern University, USA and Inria, France
Nick Benton Facebook, UK
Josh Berdine Facebook, UK
Viviana Bono Università di Torino, Italy
Dominique Devriese KU Leuven, Belgium
Marco Gaboardi University at Buffalo, SUNY, USA
Roberto Giacobazzi Università di Verona, Italy and IMDEA Software Institute,

Spain
Philipp Haller KTH Royal Institute of Technology, Sweden
Matthew Hammer University of Colorado Boulder, USA
Fritz Henglein University of Copenhagen, Denmark
Jan Hoffmann Carnegie Mellon University, USA
Cătălin Hriţcu Inria Paris, France
Suresh Jagannathan Purdue University, USA
Limin Jia Carnegie Mellon University, USA
Naoki Kobayashi University of Tokyo, Japan
Xavier Leroy Inria Paris, France
Aleksandar Nanevski IMDEA Software Institute, Spain
Michael Norrish Data61 and CSIRO, Australia
Andreas Rossberg Google, Germany
Davide Sangiorgi Università di Bologna, Italy and Inria, France
Peter Sewell University of Cambridge, UK
Éric Tanter University of Chile, Chile
Niki Vazou University of Maryland, USA
Steve Zdancewic University of Pennsylvania, USA

Additional Reviewers

Danel Ahman
S. Akshay
Aws Albarghouthi
Jade Alglave
Vincenzo Arceri
Samik Basu
Gavin Bierman
Filippo Bonchi
Thierry Coquand

Mariangiola Dezani
Derek Dreyer
Ronald Garcia
Deepak Garg
Samir Genaim
Victor Gomes
Peter Habermehl
Matthew Hague
Justin Hsu

www.dbooks.org

https://www.dbooks.org/

Zhenjiang Hu
Peter Jipsen
Shin-ya Katsumata
Andrew Kennedy
Heidy Khlaaf
Neelakantan Krishnaswami
César Kunz
Ugo Dal Lago
Paul Levy
Kenji Maillard
Roman Manevich
Paulo Mateus
Antoine Miné
Stefan Monnier
Andrzej Murawski
Anders Møller
Vivek Notani

Andreas Nuyts
Paulo Oliva
Dominic Orchard
Luca Padovani
Brigitte Pientka
Benjamin C. Pierce
Andreas Podelski
Chris Poskitt
Francesco Ranzato
Andrey Rybalchenko
Sriram Sankaranarayanan
Tetsuya Sato
Sandro Stucki
Zachary Tatlock
Bernardo Toninho
Viktor Vafeiadis

X Organization

RustBelt: Logical Foundations for the Future
of Safe Systems Programming

Derek Dreyer

Max Planck Institute for Software Systems (MPI-SWS), Germany
dreyer@mpi-sws.org

Abstract. Rust is a new systems programming language, developed at Mozilla,
that promises to overcome the seemingly fundamental tradeoff in language
design between high-level safety guarantees and low-level control over resource
management. Unfortunately, none of Rust’s safety claims have been formally
proven, and there is good reason to question whether they actually hold.
Specifically, Rust employs a strong, ownership-based type system, but then
extends the expressive power of this core type system through libraries that
internally use unsafe features.

In this talk, I will present RustBelt (http://plv.mpi-sws.org/rustbelt), the first
formal (and machine-checked) safety proof for a language representing a real-
istic subset of Rust. Our proof is extensible in the sense that, for each new Rust
library that uses unsafe features, we can say what verification condition it must
satisfy in order for it to be deemed a safe extension to the language. We have
carried out this verification for some of the most important libraries that are used
throughout the Rust ecosystem.

After reviewing some essential features of the Rust language, I will describe
the high-level structure of the RustBelt verification and then delve into detail
about the secret weapon that makes RustBelt possible: the Iris framework for
higher-order concurrent separation logic in Coq (http://iris-project.org). I will
explain by example how Iris generalizes the expressive power of O’Hearn’s
original concurrent separation logic in ways that are essential for verifying the
safety of Rust libraries. I will not assume any prior familiarity with concurrent
separation logic or Rust.

This is joint work with Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and the rest of the Iris team.

www.dbooks.org

https://www.dbooks.org/

Contents

Language Design

Consistent Subtyping for All . 3
Ningning Xie, Xuan Bi, and Bruno C. d. S. Oliveira

HOBiT: Programming Lenses Without Using Lens Combinators 31
Kazutaka Matsuda and Meng Wang

Dualizing Generalized Algebraic Data Types by Matrix Transposition 60
Klaus Ostermann and Julian Jabs

Deterministic Concurrency: A Clock-Synchronised Shared
Memory Approach . 86

Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop,
and Reinhard von Hanxleden

Probabilistic Programming

An Assertion-Based Program Logic for Probabilistic Programs 117
Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire,
Justin Hsu, and Pierre-Yves Strub

Fine-Grained Semantics for Probabilistic Programs 145
Benjamin Bichsel, Timon Gehr, and Martin Vechev

How long, O Bayesian network, will I sample thee? A program
analysis perspective on expected sampling times . 186

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja

Relational Reasoning for Markov Chains in a Probabilistic Guarded
Lambda Calculus . 214

Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Aleš Bizjak,
Marco Gaboardi, and Deepak Garg

Types and Effects

Failure is Not an Option: An Exceptional Type Theory 245
Pierre-Marie Pédrot and Nicolas Tabareau

Let Arguments Go First . 272
Ningning Xie and Bruno C. d. S. Oliveira

Behavioural Equivalence via Modalities for Algebraic Effects. 300
Alex Simpson and Niels Voorneveld

Explicit Effect Subtyping . 327
Amr Hany Saleh, Georgios Karachalias, Matija Pretnar,
and Tom Schrijvers

Concurrency

A Separation Logic for a Promising Semantics . 357
Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav,
and Viktor Vafeiadis

Logical Reasoning for Disjoint Permissions . 385
Xuan-Bach Le and Aquinas Hobor

Deadlock-Free Monitors. 415
Jafar Hamin and Bart Jacobs

Fragment Abstraction for Concurrent Shape Analysis 442
Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh

Security

Reasoning About a Machine with Local Capabilities: Provably Safe
Stack and Return Pointer Management. 475

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal

Modular Product Programs . 502
Marco Eilers, Peter Müller, and Samuel Hitz

Program Verification

A Fistful of Dollars: Formalizing Asymptotic Complexity Claims
via Deductive Program Verification . 533

Armaël Guéneau, Arthur Charguéraud, and François Pottier

Verified Learning Without Regret: From Algorithmic Game Theory
to Distributed Systems with Mechanized Complexity Guarantees 561

Samuel Merten, Alexander Bagnall, and Gordon Stewart

Program Verification by Coinduction. 589
Brandon Moore, Lucas Peña, and Grigore Rosu

Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq 619
Vincent Rahli, Ivana Vukotic, Marcus Völp,
and Paulo Esteves-Verissimo

XIV Contents

www.dbooks.org

https://www.dbooks.org/

Program Analysis and Automated Verification

Evaluating Design Tradeoffs in Numeric Static Analysis for Java 653
Shiyi Wei, Piotr Mardziel, Andrew Ruef, Jeffrey S. Foster,
and Michael Hicks

An Abstract Interpretation Framework for Input Data Usage. 683
Caterina Urban and Peter Müller

Higher-Order Program Verification via HFL Model Checking. 711
Naoki Kobayashi, Takeshi Tsukada, and Keiichi Watanabe

Quantitative Analysis of Smart Contracts . 739
Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Yaron Velner

Session Types and Concurrency

Session-Typed Concurrent Contracts . 771
Hannah Gommerstadt, Limin Jia, and Frank Pfenning

A Typing Discipline for Statically Verified Crash Failure Handling
in Distributed Systems . 799

Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu,
and Lukasz Ziarek

On Polymorphic Sessions and Functions: A Tale of Two
(Fully Abstract) Encodings . 827

Bernardo Toninho and Nobuko Yoshida

Concurrent Kleene Algebra: Free Model and Completeness 856
Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi

Concurrency and Distribution

Correctness of a Concurrent Object Collector for Actor Languages 885
Juliana Franco, Sylvan Clebsch, Sophia Drossopoulou, Jan Vitek,
and Tobias Wrigstad

Paxos Consensus, Deconstructed and Abstracted . 912
Álvaro García-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey

On Parallel Snapshot Isolation and Release/Acquire Consistency. 940
Azalea Raad, Ori Lahav, and Viktor Vafeiadis

Eventual Consistency for CRDTs . 968
Radha Jagadeesan and James Riely

Contents XV

Compiler Verification

A Verified Compiler from Isabelle/HOL to CakeML 999
Lars Hupel and Tobias Nipkow

Compositional Verification of Compiler Optimisations
on Relaxed Memory . 1027

Mike Dodds, Mark Batty, and Alexey Gotsman

Author Index . 1057

XVI Contents

www.dbooks.org

https://www.dbooks.org/

Language Design

Consistent Subtyping for All

Ningning Xie(B), Xuan Bi, and Bruno C. d. S. Oliveira

The University of Hong Kong, Pokfulam, Hong Kong
{nnxie,xbi,bruno}@cs.hku.hk

Abstract. Consistent subtyping is employed in some gradual type sys-
tems to validate type conversions. The original definition by Siek and
Taha serves as a guideline for designing gradual type systems with
subtyping. Polymorphic types à la System F also induce a subtyping
relation that relates polymorphic types to their instantiations. However
Siek and Taha’s definition is not adequate for polymorphic subtyping.
The first goal of this paper is to propose a generalization of consistent
subtyping that is adequate for polymorphic subtyping, and subsumes
the original definition by Siek and Taha. The new definition of consis-
tent subtyping provides novel insights with respect to previous polymor-
phic gradual type systems, which did not employ consistent subtyping.
The second goal of this paper is to present a gradually typed calcu-
lus for implicit (higher-rank) polymorphism that uses our new notion
of consistent subtyping. We develop both declarative and (bidirectional)
algorithmic versions for the type system. We prove that the new calculus
satisfies all static aspects of the refined criteria for gradual typing, which
are mechanically formalized using the Coq proof assistant.

1 Introduction

Gradual typing [21] is an increasingly popular topic in both programming
language practice and theory. On the practical side there is a growing num-
ber of programming languages adopting gradual typing. Those languages include
Clojure [6], Python [27], TypeScript [5], Hack [26], and the addition of Dynamic to
C# [4], to cite a few. On the theoretical side, recent years have seen a large body of
research that defines the foundations of gradual typing [8,9,13], explores their use
for both functional and object-oriented programming [21,22], as well as its appli-
cations to many other areas [3,24].

A key concept in gradual type systems is consistency [21]. Consistency weak-
ens type equality to allow for the presence of unknown types. In some gradual
type systems with subtyping, consistency is combined with subtyping to give
rise to the notion of consistent subtyping [22]. Consistent subtyping is employed
by gradual type systems to validate type conversions arising from conventional
subtyping. One nice feature of consistent subtyping is that it is derivable from
the more primitive notions of consistency and subtyping. As Siek and Taha [22]
put it this shows that “gradual typing and subtyping are orthogonal and can be
combined in a principled fashion”. Thus consistent subtyping is often used as a
guideline for designing gradual type systems with subtyping.
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 3–30, 2018.
https://doi.org/10.1007/978-3-319-89884-1_1

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_1&domain=pdf
https://www.dbooks.org/

4 N. Xie et al.

Unfortunately, as noted by Garcia et al. [13], notions of consistency and/or
consistent subtyping “become more difficult to adapt as type systems get more
complex”. In particular, for the case of type systems with subtyping, certain
kinds of subtyping do not fit well with the original definition of consistent sub-
typing by Siek and Taha [22]. One important case where such mismatch happens
is in type systems supporting implicit (higher-rank) polymorphism [11,18]. It is
well-known that polymorphic types à la System F induce a subtyping relation
that relates polymorphic types to their instantiations [16,17]. However Siek and
Taha’s [22] definition is not adequate for this kind of subtyping. Moreover the
current framework for Abstracting Gradual Typing (AGT) [13] also does not
account for polymorphism, with the authors acknowledging that this is one of
the interesting avenues for future work.

Existing work on gradual type systems with polymorphism does not use
consistent subtyping. The Polymorphic Blame Calculus (λB) [1] is an explic-
itly polymorphic calculus with explicit casts, which is often used as a target
language for gradual type systems with polymorphism. In λB a notion of com-
patibility is employed to validate conversions allowed by casts. Interestingly λB
allows conversions from polymorphic types to their instantiations. For exam-
ple, it is possible to cast a value with type ∀a.a → a into Int → Int. Thus
an important remark here is that while λB is explicitly polymorphic, casting
and conversions are closer to implicit polymorphism. That is, in a conventional
explicitly polymorphic calculus (such as System F), the primary notion is type
equality, where instantiation is not taken into account. Thus the types ∀a.a → a
and Int → Int are deemed incompatible. However in implicitly polymorphic cal-
culi [11,18] ∀a.a → a and Int → Int are deemed compatible, since the latter type
is an instantiation of the former. Therefore λB is in a sense a hybrid between
implicit and explicit polymorphism, utilizing type equality (à la System F) for
validating applications, and compatibility for validating casts.

An alternative approach to polymorphism has recently been proposed by
Igarashi et al. [14]. Like λB their calculus is explicitly polymorphic. However,
in that work they employ type consistency to validate cast conversions, and
forbid conversions from ∀a.a → a to Int → Int. This makes their casts closer
to explicit polymorphism, in contrast to λB. Nonetheless, there is still same
flavour of implicit polymorphism in their calculus when it comes to interactions
between dynamically typed and polymorphically typed code. For example, in
their calculus type consistency allows types such as ∀a.a → Int to be related to
� → Int, where some sort of (implicit) polymorphic subtyping is involved.

The first goal of this paper is to study the gradually typed subtyping and con-
sistent subtyping relations for predicative implicit polymorphism. To accomplish
this, we first show how to reconcile consistent subtyping with polymorphism
by generalizing the original consistent subtyping definition by Siek and Taha
[22]. The new definition of consistent subtyping can deal with polymorphism,

Consistent Subtyping for All 5

and preserves the orthogonality between consistency and subtyping. To slightly
rephrase Siek and Taha [22], the motto of our paper is that:

Gradual typing and polymorphism are orthogonal and can be combined
in a principled fashion.1

With the insights gained from our work, we argue that, for implicit polymor-
phism, Ahmed et al.’s [1] notion of compatibility is too permissive (i.e. too many
programs are allowed to type-check), and that Igarashi et al.’s [14] notion of type
consistency is too conservative. As a step towards an algorithmic version of con-
sistent subtyping, we present a syntax-directed version of consistent subtyping
that is sound and complete with respect to our formal definition of consistent
subtyping. The syntax-directed version of consistent subtyping is remarkably
simple and well-behaved, without the ad-hoc restriction operator [22]. More-
over, to further illustrate the generality of our consistent subtyping definition,
we show that it can also account for top types, which cannot be dealt with by
Siek and Taha’s [22] definition either.

The second goal of this paper is to present a (source-level) gradually typed
calculus for (predicative) implicit higher-rank polymorphism that uses our new
notion of consistent subtyping. As far as we are aware, there is no work on
bridging the gap between implicit higher-rank polymorphism and gradual typing,
which is interesting for two reasons. On one hand, modern functional languages
(such as Haskell) employ sophisticated type-inference algorithms that, aided by
type annotations, can deal with implicit higher-rank polymorphism. So a natural
question is how gradual typing can be integrated in such languages. On the other
hand, there is several existing work on integrating explicit polymorphism into
gradual typing [1,14]. Yet no work investigates how to move such expressive
power into a source language with implicit polymorphism. Therefore as a step
towards gradualizing such type systems, this paper develops both declarative
and algorithmic versions for a gradual type system with implicit higher-rank
polymorphism. The new calculus brings the expressive power of full implicit
higher-rank polymorphic into a gradually typed source language. We prove that
our calculus satisfies all of the static aspects of the refined criteria for gradual
typing [25], while discussing some issues related with the dynamic guarantee.

In summary, the contributions of this paper are:

– We define a framework for consistent subtyping with:
• a new definition of consistent subtyping that subsumes and generalizes that

of Siek and Taha [22], and can deal with polymorphism and top types.
• a syntax-directed version of consistent subtyping that is sound and com-

plete with respect to our definition of consistent subtyping, but still
guesses polymorphic instantiations.

1 Note here that we borrow Siek and Taha’s [22] motto mostly to talk about the
static semantics. As Ahmed et al. [1] show there are several non-trivial interactions
between polymorphism and casts at the level of the dynamic semantics.

www.dbooks.org

https://www.dbooks.org/

6 N. Xie et al.

A <: B

Int <: Int Bool <: Bool Float <: Float Int <: Float

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2

[li : Ai∈1...n+m
i] <: [li : Ai∈1...n

i] � <: �

A ∼ B

A ∼ A A ∼ � � ∼ A
A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

Ai ∼ Bi

[li : Ai] ∼ [li : Bi]

Fig. 1. Subtyping and type consistency in FOb?
<:

– Based on consistent subtyping, we present a declarative gradual type system
with predicative implicit higher-rank polymorphism. We prove that our cal-
culus satisfies the static aspects of the refined criteria for gradual typing [25],
and is type-safe by a type-directed translation to λB, and thus hereditarily
preserves parametricity [2].

– We present a complete and sound bidirectional algorithm for implementing
the declarative system based on the design principle of Garcia and Cimini
[12] and the approach of Dunfield and Krishnaswami [11].

– All of the metatheory of this paper, except some manual proofs for the algo-
rithmic type system, has been mechanically formalized in Coq2.

2 Background and Motivation

In this section we review a simple gradually typed language with objects [22],
to introduce the concept of consistency subtyping. We also briefly talk about
the Odersky-Läufer type system for higher-rank types [17], which serves as the
original language on which our gradually typed calculus with implicit higher-
rank polymorphism is based.

2.1 Gradual Subtyping

Siek and Taha [22] developed a gradual typed system for object-oriented lan-
guages that they call FOb?

<:. Central to gradual typing is the concept of con-
sistency (written ∼) between gradual types, which are types that may involve
the unknown type �. The intuition is that consistency relaxes the structure of a
type system to tolerate unknown positions in a gradual type. They also defined
the subtyping relation in a way that static type safety is preserved. Their key

2 All supplementary materials are available at https://bitbucket.org/xieningning/
consistent-subtyping.

https://bitbucket.org/xieningning/consistent-subtyping
https://bitbucket.org/xieningning/consistent-subtyping

Consistent Subtyping for All 7

insight is that the unknown type � is neutral to subtyping, with only � <: �.
Both relations are found in Fig. 1.

A primary contribution of their work is to show that consistency and subtyp-
ing are orthogonal. To compose subtyping and consistency, Siek and Taha [22]
defined consistent subtyping (written �) in two equivalent ways:

Definition 1 (Consistent Subtyping à la Siek and Taha [22])

– A � B if and only if A ∼ C and C <: B for some C.
– A � B if and only if A <: C and C ∼ B for some C.

Both definitions are non-deterministic because of the intermediate type C. To
remove non-determinism, they proposed a so-called restriction operator, written
A|B that masks off the parts of a type A that are unknown in a type B.

A|B = case A, B of | (−, �) ⇒ �

| A1 → A2, B1 → B2 = A1|B1 → A2|B2

| [l1 : A1, ..., ln : An], [l1 : B1, ..., lm : Bm] if n ≤ m ⇒ [l1 : A1|B1 , ..., ln : An|Bn]

| [l1 : A1, ..., ln : An], [l1 : B1, ..., lm : Bm] if n > m ⇒
[l1 : A1|B1 , ..., lm : Am|Bm , ..., ln : An]

| otherwise ⇒ A

With the restriction operator, consistent subtyping is simply defined as A � B ≡
A|B <: B|A. Then they proved that this definition is equivalent to Definition 1.

2.2 The Odersky-Läufer Type System

The calculus we are combining gradual typing with is the well-established pred-
icative type system for higher-rank types proposed by Odersky and Läufer [17].
One difference is that, for simplicity, we do not account for a let expression,
as there is already existing work about gradual type systems with let expres-
sions and let generalization (for example, see Garcia and Cimini [12]). Similar
techniques can be applied to our calculus to enable let generalization.

The syntax of the type system, along with the typing and subtyping judg-
ments is given in Fig. 2. An implicit assumption throughout the paper is that
variables in contexts are distinct. We save the explanations for the static seman-
tics to Sect. 4, where we present our gradually typed version of the calculus.

2.3 Motivation: Gradually Typed Higher-Rank Polymorphism

Our work combines implicit (higher-rank) polymorphism with gradual typing.
As is well known, a gradually typed language supports both fully static and fully
dynamic checking of program properties, as well as the continuum between these
two extremes. It also offers programmers fine-grained control over the static-to-
dynamic spectrum, i.e., a program can be evolved by introducing more or less
precise types as needed [13].

www.dbooks.org

https://www.dbooks.org/

8 N. Xie et al.

Expressions e ::= x | n | λx : A. e | λx. e | e e
Types A, B ::= Int | a | A → B | ∀a.A
Monotypes τ, σ ::= Int | a | τ → σ
Contexts Ψ ::= ∅ | Ψ, x : A | Ψ, a

Ψ �OL e : A

x : A ∈ Ψ

Ψ �OL x : A
Var

Ψ �OL n : Int
Nat

Ψ, x : A �OL e : B

Ψ �OL λx : A. e : A → B
LamAnn

Ψ �OL e1 : A1 → A2 Ψ �OL e2 : A1

Ψ �OL e1 e2 : A2

App
Ψ �OL e : A1 Ψ � A1 <: A2

Ψ �OL e : A2

Sub

Ψ, x : τ �OL e : B

Ψ �OL λx. e : τ → B
Lam

Ψ, a �OL e : A

Ψ �OL e : ∀a.A
Gen

Ψ � A <: B

a ∈ Ψ

Ψ � a <: a
CS-TVar

Ψ � Int <: Int
CS-Int

Ψ � τ Ψ � A[a �→ τ] <: B

Ψ � ∀a.A <: B
ForallL

Ψ, a � A <: B

Ψ � A <: ∀a.B
ForallR

Ψ � B1 <: A1 Ψ � A2 <: B2

Ψ � A1 → A2 <: B1 → B2

CS-Fun

Fig. 2. Syntax and static semantics of the Odersky-Läufer type system.

Haskell is a language that supports implicit higher-rank polymorphism, but
no gradual typing. Therefore some programs that are safe at run-time may be
rejected due to the conservativity of the type system. For example, consider the
following Haskell program adapted from Jones et al. [18]:

foo :: ([Int], [Char])
foo = let f x = (x [1, 2] , x [′a′, ′b′]) in f reverse

This program is rejected by Haskell’s type checker because Haskell imple-
ments the Damas-Milner rule that a lambda-bound argument (such as x) can only
have a monotype, i.e., the type checker can only assign x the type [Int] → [Int],
or [Char] → [Char], but not ∀a.[a] → [a]. Finding such manual polymorphic
annotations can be non-trivial. Instead of rejecting the program outright, due to
missing type annotations, gradual typing provides a simple alternative by giving
x the unknown type (denoted �). With such typing the same program type-checks
and produces ([2, 1], [′b′,′ a′]). By running the program, programmers can gain
some additional insight about the run-time behaviour. Then, with such insight,
they can also give x a more precise type (∀a.[a] → [a]) a posteriori so that
the program continues to type-check via implicit polymorphism and also grants

Consistent Subtyping for All 9

Types A, B ::= Int | a | A → B | ∀a.A | �
Monotypes τ, σ ::= Int | a | τ → σ
Contexts Ψ ::= ∅ | Ψ, x : A | Ψ, a

A ∼ B

A ∼ A A ∼ � � ∼ A
A1 ∼ B1 A2 ∼ B2

A1 → A2 ∼ B1 → B2

A ∼ B

∀a.A ∼ ∀a.B

Ψ � A <: B

Ψ, a � A <: B

Ψ � A <: ∀a.B
S-ForallR

Ψ � τ Ψ � A[a �→ τ] <: B

Ψ � ∀a.A <: B
S-ForallL

a ∈ Ψ

Ψ � a <: a
S-TVar

Ψ � Int <: Int
S-Int

Ψ � B1 <: A1 Ψ � A2 <: B2

Ψ � A1 → A2 <: B1 → B2

S-Fun
Ψ � � <: �

S-Unknown

Fig. 3. Syntax of types, consistency, and subtyping in the declarative system.

more static safety. In this paper, we envision such a language that combines the
benefits of both implicit higher-rank polymorphism and gradual typing.

3 Revisiting Consistent Subtyping

In this section we explore the design space of consistent subtyping. We start
with the definitions of consistency and subtyping for polymorphic types, and
compare with some relevant work. We then discuss the design decisions involved
towards our new definition of consistent subtyping, and justify the new definition
by demonstrating its equivalence with that of Siek and Taha [22] and the AGT
approach [13] on simple types.

The syntax of types is given at the top of Fig. 3. We write A, B for types.
Types are either the integer type Int, type variables a, functions types A → B,
universal quantification ∀a.A, or the unknown type �. Though we only have one
base type Int, we also use Bool for the purpose of illustration. Note that mono-
types τ contain all types other than the universal quantifier and the unknown
type �. We will discuss this restriction when we present the subtyping rules.
Contexts Ψ are ordered lists of type variable declarations and term variables.

3.1 Consistency and Subtyping

We start by giving the definitions of consistency and subtyping for polymorphic
types, and comparing our definitions with the compatibility relation by Ahmed
et al. [1] and type consistency by Igarashi et al. [14].

www.dbooks.org

https://www.dbooks.org/

10 N. Xie et al.

Consistency. The key observation here is that consistency is mostly a structural
relation, except that the unknown type � can be regarded as any type. Following
this observation, we naturally extend the definition from Fig. 1 with polymorphic
types, as shown at the middle of Fig. 3. In particular a polymorphic type ∀a.A
is consistent with another polymorphic type ∀a.B if A is consistent with B.

Subtyping. We express the fact that one type is a polymorphic generalization
of another by means of the subtyping judgment Ψ � A <: B. Compared with
the subtyping rules of Odersky and Läufer [17] in Fig. 2, the only addition is
the neutral subtyping of �. Notice that, in the rule S-ForallL, the universal
quantifier is only allowed to be instantiated with a monotype. The judgment
Ψ � τ checks all the type variables in τ are bound in the context Ψ . For space
reasons, we omit the definition. According to the syntax in Fig. 3, monotypes
do not include the unknown type �. This is because if we were to allow the
unknown type to be used for instantiation, we could have ∀a.a → a <: � → �
by instantiating a with �. Since � → � is consistent with any functions A → B,
for instance, Int → Bool, this means that we could provide an expression of
type ∀a.a → a to a function where the input type is supposed to be Int →
Bool. However, as we might expect, ∀a.a → a is definitely not compatible with
Int → Bool. This does not hold in any polymorphic type systems without gradual
typing. So the gradual type system should not accept it either. (This is the so-
called conservative extension property that will be made precise in Sect. 4.3.)

Importantly there is a subtle but crucial distinction between a type variable
and the unknown type, although they all represent a kind of “arbitrary” type.
The unknown type stands for the absence of type information: it could be any
type at any instance. Therefore, the unknown type is consistent with any type,
and additional type-checks have to be performed at runtime. On the other hand,
a type variable indicates parametricity. In other words, a type variable can only
be instantiated to a single type. For example, in the type ∀a.a → a, the two
occurrences of a represent an arbitrary but single type (e.g., Int → Int, Bool →
Bool), while � → � could be an arbitrary function (e.g., Int → Bool) at runtime.

Comparison with Other Relations. In other polymorphic gradual calculi, consis-
tency and subtyping are often mixed up to some extent. In λB [1], the compat-
ibility relation for polymorphic types is defined as follows:

A ≺ B

A ≺ ∀X.B
Comp-AllR

A[X �→ �] ≺ B

∀X.A ≺ B
Comp-AllL

Notice that, in rule Comp-AllL, the universal quantifier is always instantiated
to �. However, this way, λB allows ∀a.a → a ≺ Int → Bool, which as we discussed
before might not be what we expect. Indeed λB relies on sophisticated runtime
checks to rule out such instances of the compatibility relation a posteriori.

Consistent Subtyping for All 11

⊥ (� → Int) → Int

(∀a.a → Int) → Int (∀a.� → Int) → Int

<: <:

∼

∼

(a)

Int → Int Int → �

∀a.a ⊥
<: <:

∼

∼

(b)

⊥ (((� → Int) → Int) → Bool) → (Int → �)

(((∀a.a → Int) → Int) → Bool) → (∀a.a) ⊥

<: <:

∼

∼

(c)

Fig. 4. Examples that break the original definition of consistent subtyping.

Igarashi et al. [14] introduced the so-called quasi-polymorphic types for types
that may be used where a ∀-type is expected, which is important for their pur-
pose of conservativity over System F. Their type consistency relation, involving
polymorphism, is defined as follows3:

A ∼ B

∀a.A ∼ ∀a.B

A ∼ B B 	= ∀a.B′ � ∈ Types(B)
∀a.A ∼ B

Compared with our consistency definition in Fig. 3, their first rule is the same
as ours. The second rule says that a non ∀-type can be consistent with a ∀-type
only if it contains �. In this way, their type system is able to reject ∀a.a → a ∼
Int → Bool. However, in order to keep conservativity, they also reject ∀a.a → a ∼
Int → Int, which is perfectly sensible in their setting (i.e., explicit polymorphism).
However with implicit polymorphism, we would expect ∀a.a → a to be related
with Int → Int, since a can be instantiated to Int.

Nonetheless, when it comes to interactions between dynamically typed and
polymorphically typed terms, both relations allow ∀a.a → Int to be related with
� → Int for example, which in our view, is some sort of (implicit) polymorphic
subtyping combined with type consistency, and that should be derivable by the
more primitive notions in the type system (instead of inventing new relations).
One of our design principles is that subtyping and consistency is orthogonal, and
can be naturally superimposed, echoing the same opinion of Siek and Taha [22].

3.2 Towards Consistent Subtyping

With the definitions of consistency and subtyping, the question now is how to
compose these two relations so that two types can be compared in a way that
takes these two relations into account.
3 This is a simplified version.

www.dbooks.org

https://www.dbooks.org/

12 N. Xie et al.

Unfortunately, the original definition of Siek and Taha [22] (Definition 1) does
not work well with our definitions of consistency and subtyping for polymorphic
types. Consider two types: (∀a.a → Int) → Int, and (� → Int) → Int. The first
type can only reach the second type in one way (first by applying consistency,
then subtyping), but not the other way, as shown in Fig. 4a. We use ⊥ to mean
that we cannot find such a type. Similarly, there are situations where the first
type can only reach the second type by the other way (first applying subtyping,
and then consistency), as shown in Fig. 4b.

What is worse, if those two examples are composed in a way that those types
all appear co-variantly, then the resulting types cannot reach each other in either
way. For example, Fig. 4c shows such two types by putting a Bool type in the
middle, and neither definition of consistent subtyping works.

Observations on Consistent Subtyping Based on Information Propagation. In
order to develop the correct definition of consistent subtyping for polymorphic
types, we need to understand how consistent subtyping works. We first review
two important properties of subtyping: (1) subtyping induces the subsumption
rule: if A <: B, then an expression of type A can be used where B is expected;
(2) subtyping is transitive: if A <: B, and B <: C, then A <: C. Though con-
sistent subtyping takes the unknown type into consideration, the subsumption
rule should also apply: if A � B, then an expression of type A can also be used
where B is expected, given that there might be some information lost by con-
sistency. A crucial difference from subtyping is that consistent subtyping is not
transitive because information can only be lost once (otherwise, any two types
are a consistent subtype of each other). Now consider a situation where we have
both A <: B, and B � C, this means that A can be used where B is expected,
and B can be used where C is expected, with possibly some loss of information.
In other words, we should expect that A can be used where C is expected, since
there is at most one-time loss of information.

Observation 1. If A <: B, and B � C, then A � C.

This is reflected in Fig. 5a. A symmetrical observation is given in Fig. 5b:

Observation 2. If C � B, and B <: A, then C � A.

From the above observations, we see what the problem is with the original
definition. In Fig. 5a, if B can reach C by T1, then by subtyping transitivity, A
can reach C by T1. However, if B can only reach C by T2, then A cannot reach
C through the original definition. A similar problem is shown in Fig. 5b.

However, it turns out that those two problems can be fixed using the same
strategy: instead of taking one-step subtyping and one-step consistency, our def-
inition of consistent subtyping allows types to take one-step subtyping, one-step
consistency, and one more step subtyping. Specifically, A <: B ∼ T2 <: C (in
Fig. 5a) and C <: T1 ∼ B <: A (in Fig. 5b) have the same relation chain:
subtyping, consistency, and subtyping.

Consistent Subtyping for All 13

T1 C

B T2

A

<:

<:<:

∼

∼
�

�

(a)

A

T1 B

C T2

<: <:

<:
∼

∼

�

�

(b)

Fig. 5. Observations of consistent subtyping

A2 A3

A1 A4

<: <:

�

∼
A1 = (((∀a.a → Int) → Int) → Bool) → (∀a.a)

A2 = ((∀a.a → Int) → Int) → Bool) → (Int → Int)

A3 = ((∀a.� → Int) → Int) → Bool) → (Int → �)

A4 = (((� → Int) → Int) → Bool) → (Int → �)

Fig. 6. Example that is fixed by the new definition of consistent subtyping.

Definition of Consistent Subtyping. From the above discussion, we are ready to
modify Definition 1, and adapt it to our notation:

Definition 2 (Consistent Subtyping)

Ψ � A <: C C ∼ D Ψ � D <: B

Ψ � A � B

With Definition 2, Fig. 6 illustrates the correct relation chain for the broken
example shown in Fig. 4c. At first sight, Definition 2 seems worse than the origi-
nal: we need to guess two types! It turns out that Definition 2 is a generalization
of Definition 1, and they are equivalent in the system of Siek and Taha [22].
However, more generally, Definition 2 is compatible with polymorphic types.

Proposition 1 (Generalization of Consistent Subtyping)

– Definition 2 subsumes Definition 1.
– Definition 1 is equivalent to Definition 2 in the system of Siek and Taha [22].

3.3 Abstracting Gradual Typing

Garcia et al. [13] presented a new foundation for gradual typing that they
call the Abstracting Gradual Typing (AGT) approach. In the AGT approach,
gradual types are interpreted as sets of static types, where static types refer
to types containing no unknown types. In this interpretation, predicates and

www.dbooks.org

https://www.dbooks.org/

14 N. Xie et al.

functions on static types can then be lifted to apply to gradual types. Central
to their approach is the so-called concretization function. For simple types, a
concretization γ from gradual types to a set of static types4 is defined as follows:

Definition 3 (Concretization)

γ(Int) = {Int} γ(A → B) = γ(A) → γ(B) γ(�) = {All static types}

Based on the concretization function, subtyping between static types can be
lifted to gradual types, resulting in the consistent subtyping relation:

Definition 4 (Consistent Subtyping in AGT). A ˜<: B if and only if A1 <:
B1 for some A1 ∈ γ(A), B1 ∈ γ(B).

Later they proved that this definition of consistent subtyping coincides with
that of Siek and Taha [22] (Definition 1). By Proposition 1, we can directly con-
clude that our definition coincides with AGT:

Proposition 2 (Equivalence to AGT on Simple Types). A � B iff
A ˜<: B.

However, AGT does not show how to deal with polymorphism (e.g. the inter-
pretation of type variables) yet. Still, as noted by Garcia et al. [13], it is a promis-
ing line of future work for AGT, and the question remains whether our definition
would coincide with it.

Another note related to AGT is that the definition is later adopted by
Castagna and Lanvin [7], where the static types A1, B1 in Definition 4 can be
algorithmically computed by also accounting for top and bottom types.

3.4 Directed Consistency

Directed consistency [15] is defined in terms of precision and static subtyping:

A′ � A A <: B B′ � B

A′ � B′

The judgment A � B is read “A is less precise than B”. In their setting, precision
is defined for type constructors and subtyping for static types. If we interpret
this definition from AGT’s point of view, finding a more precise static type5

has the same effect as concretization. Namely, A′ � A implies A ∈ γ(A′) and
B′ � B implies B ∈ γ(B′). Therefore we consider this definition as AGT-style.
From this perspective, this definition naturally coincides with Definition 2.

The value of their definition is that consistent subtyping is derived composi-
tionally from static subtyping and precision. These are two more atomic relations.
At first sight, their definition looks very similar to Definition 2 (replacing � by
<: and <: by ∼). Then a question arises as to which one is more fundamental. To
answer this, we need to discuss the relation between consistency and precision.
4 For simplification, we directly regard type constructor → as a set-level operator.
5 The definition of precision of types is given in appendix.

Consistent Subtyping for All 15

Relating Consistency and Precision. Precision is a partial order (anti-symmetric
and transitive), while consistency is symmetric but not transitive. Nonetheless,
precision and consistency are related by the following proposition:

Proposition 3 (Consistency and Precision)

– If A ∼ B, then there exists (static) C, such that A � C, and B � C.
– If for some (static) C, we have A � C, and B � C, then we have A ∼ B.

It may seem that precision is a more atomic relation, since consistency can be
derived from precision. However, recall that consistency is in fact an equivalence
relation lifted from static types to gradual types. Therefore defining consistency
independently is straightforward, and it is theoretically viable to validate the
definition of consistency directly. On the other hand, precision is usually con-
nected with the gradual criteria [25], and finding a correct partial order that
adheres to the criteria is not always an easy task. For example, Igarashi et al.
[14] argued that term precision for System FG is actually nontrivial, leaving
the gradual guarantee of the semantics as a conjecture. Thus precision can be
difficult to extend to more sophisticated type systems, e.g. dependent types.

Still, it is interesting that those two definitions illustrate the correspondence
of different foundations (on simple types): one is defined directly on gradual
types, and the other stems from AGT, which is based on static subtyping.

3.5 Consistent Subtyping Without Existentials

Definition 2 serves as a fine specification of how consistent subtyping should
behave in general. But it is inherently non-deterministic because of the two
intermediate types C and D. As with Definition 1, we need a combined relation to
directly compare two types. A natural attempt is to try to extend the restriction
operator for polymorphic types. Unfortunately, as we show below, this does not
work. However it is possible to devise an equivalent inductive definition instead.

Attempt to Extend the Restriction Operator. Suppose that we try to extend the
restriction operator to account for polymorphic types. The original restriction
operator is structural, meaning that it works for types of similar structures.
But for polymorphic types, two input types could have different structures due
to universal quantifiers, e.g., ∀a.a → Int and (Int → �) → Int. If we try to
mask the first type using the second, it seems hard to maintain the information
that a should be instantiated to a function while ensuring that the return type is
masked. There seems to be no satisfactory way to extend the restriction operator
in order to support this kind of non-structural masking.

Interpretation of the Restriction Operator and Consistent Subtyping. If the
restriction operator cannot be extended naturally, it is useful to take a step
back and revisit what the restriction operator actually does. For consistent sub-
typing, two input types could have unknown types in different positions, but we
only care about the known parts. What the restriction operator does is (1) erase

www.dbooks.org

https://www.dbooks.org/

16 N. Xie et al.

Ψ � A � B

Ψ, a � A � B

Ψ � A � ∀a.B
CS-ForallR

Ψ � τ Ψ � A[a �→ τ] � B

Ψ � ∀a.A � B
CS-ForallL

Ψ � B1 � A1 Ψ � A2 � B2

Ψ � A1 → A2 � B1 → B2

CS-Fun
a ∈ Ψ

Ψ � a � a
CS-TVar

Ψ � Int � Int
CS-Int

Ψ � � � A
CS-UnknownL

Ψ � A � �
CS-UnknownR

Fig. 7. Consistent Subtyping for implicit polymorphism.

the type information in one type if the corresponding position in the other type is
the unknown type; and (2) compare the resulting types using the normal subtyp-
ing relation. The example below shows the masking-off procedure for the types
Int → � → Bool and Int → Int → �. Since the known parts have the relation that
Int → � → � <: Int → � → �, we conclude that Int → � → Bool � Int → Int → �.

Int → � → Bool | Int → Int → � = Int → � → �

Int → Int → � | Int → � → Bool = Int → � → �
<:

Here differences of the types in boxes are erased because of the restriction oper-
ator. Now if we compare the types in boxes directly instead of through the lens
of the restriction operator, we can observe that the consistent subtyping relation
always holds between the unknown type and an arbitrary type. We can interpret
this observation directly from Definition 2: the unknown type is neutral to sub-
typing (� <: �), the unknown type is consistent with any type (� ∼ A), and
subtyping is reflexive (A <: A). Therefore, the unknown type is a consistent
subtype of any type (� � A), and vice versa (A � �). Note that this interpre-
tation provides a general recipe on how to lift a (static) subtyping relation to a
(gradual) consistent subtyping relation, as discussed below.

Defining Consistent Subtyping Directly. From the above discussion, we can define
the consistent subtyping relation directly, without resorting to subtyping or con-
sistency at all. The key idea is that we replace <: with � in Fig. 3, get rid
of rule S-Unknown and add two extra rules concerning �, resulting in the
rules of consistent subtyping in Fig. 7. Of particular interest are the rules CS-
UnknownL and CS-UnknownR, both of which correspond to what we just
said: the unknown type is a consistent subtype of any type, and vice versa.
From now on, we use the symbol � to refer to the consistent subtyping relation
in Fig. 7. What is more, we can prove that those two are equivalent6:

T heorem 1. Ψ � A � B ⇔ Ψ � A <: C, C ∼ D, Ψ � D <: B for some C,D.
6 Theorems with T are those proved in Coq. The same applies to Lemmas.

Consistent Subtyping for All 17

Ψ � e : A � s

x : A ∈ Ψ

Ψ � x : A � x
Var

Ψ � n : Int � n
Nat

Ψ, a � e : A � s

Ψ � e : ∀a.A � Λa.s
Gen

Ψ, x : A � e : B � s

Ψ � λx : A. e : A → B � λx : A. s
LamAnn

Ψ, x : τ � e : B � s

Ψ � λx. e : τ → B � λx : τ. s
Lam

Ψ � e1 : A � s1 Ψ � A � A1 → A2 Ψ � e2 : A3 � s2 Ψ � A3 � A1

Ψ � e1 e2 : A2 � (〈A ↪→ A1 → A2〉 s1) (〈A3 ↪→ A1〉 s2)
App

Ψ � A � A1 → A2

Ψ � τ Ψ � A[a �→ τ] � A1 → A2

Ψ � ∀a.A � A1 → A2

M-Forall

Ψ � (A1 → A2) � (A1 → A2)
M-Arr

Ψ � � � � → �
M-Unknown

Fig. 8. Declarative typing

4 Gradually Typed Implicit Polymorphism

In Sect. 3 we introduced the consistent subtyping relation that accommodates
polymorphic types. In this section we continue with the development by giving a
declarative type system for predicative implicit polymorphism that employs the
consistent subtyping relation. The declarative system itself is already quite inter-
esting as it is equipped with both higher-rank polymorphism and the unknown
type. The syntax of expressions in the declarative system is given below:

Expressions e ::= x | n | λx : A. e | λx. e | e e

4.1 Typing in Detail

Figure 8 gives the typing rules for our declarative system (the reader is advised to
ignore the gray-shaded parts for now). Rule Var extracts the type of the variable
from the typing context. Rule Nat always infers integer types. Rule LamAnn
puts x with type annotation A into the context, and continues type checking the
body e. Rule Lam assigns a monotype τ to x, and continues type checking the
body e. Gradual types and polymorphic types are introduced via annotations
explicitly. Rule Gen puts a fresh type variable a into the type context and
generalizes the typing result A to ∀a.A. Rule App first infers the type of e1,
then the matching judgment Ψ � A�A1 → A2 extracts the domain type A1 and
the codomain type A2 from type A. The type A3 of the argument e2 is then
compared with A1 using the consistent subtyping judgment.

www.dbooks.org

https://www.dbooks.org/

18 N. Xie et al.

Matching. The matching judgment of Siek et al. [25] can be extended to polymor-
phic types naturally, resulting in Ψ � A � A1 → A2. In M-Forall, a monotype
τ is guessed to instantiate the universal quantifier a. This rule is inspired by the
application judgment Φ � A • e ⇒ C [11], which says that if we apply a term of
type A to an argument e, we get something of type C. If A is a polymorphic type,
the judgment works by guessing instantiations until it reaches an arrow type.
Matching further simplifies the application judgment, since it is independent of
typing. Rule M-Arr and M-Unknown are the same as Siek et al. [25]. M-Arr
returns the domain type A1 and range type A2 as expected. If the input is �,
then M-Unknown returns � as both the type for the domain and the range.

Note that matching saves us from having a subsumption rule (Sub in Fig. 2).
the subsumption rule is incompatible with consistent subtyping, since the latter
is not transitive. A discussion of a subsumption rule based on normal subtyping
can be found in the appendix.

4.2 Type-Directed Translation

We give the dynamic semantics of our language by translating it to λB. Below
we show a subset of the terms in λB that are used in the translation:

Terms s ::= x | n | λx : A. s | Λa.s | s1 s2 | 〈A ↪→ B〉 s

A cast 〈A ↪→ B〉 s converts the value of term s from type A to type B. A cast
from A to B is permitted only if the types are compatible, written A ≺ B, as
briefly mentioned in Sect. 3.1. The syntax of types in λB is the same as ours.

The translation is given in the gray-shaded parts in Fig. 8. The only interest-
ing case here is to insert explicit casts in the application rule. Note that there
is no need to translate matching or consistent subtyping, instead we insert the
source and target types of a cast directly in the translated expressions, thanks
to the following two lemmas:

Lemma 1 (� to ≺). If Ψ � A � A1 → A2, then A ≺ A1 → A2.

Lemma 2 (� to ≺). If Ψ � A � B, then A ≺ B.

In order to show the correctness of the translation, we prove that our trans-
lation always produces well-typed expressions in λB. By Lammas 1 and 2, we
have the following theorem:

T heorem 2 (Type Safety). If Ψ � e : A � s, then Ψ �B s : A.

Parametricity. An important semantic property of polymorphic types is rela-
tional parametricity [19]. The parametricity property says that all instances of
a polymorphic function should behave uniformly. A classic example is a func-
tion with the type ∀a.a → a. The parametricity property guarantees that a
value of this type must be either the identity function (i.e., λx.x) or the unde-
fined function (one which never returns a value). However, with the addition of
the unknown type �, careful measures are to be taken to ensure parametricity.
This is exactly the circumstance that λB was designed to address. Ahmed et al.
[2] proved that λB satisfies relational parametricity. Based on their result, and
by T heorem 2, parametricity is preserved in our system.

Consistent Subtyping for All 19

Ambiguity from Casts. The translation does not always produce a unique target
expression. This is because when we guess a monotype τ in rule M-Forall and
CS-ForallL, we could have different choices, which inevitably leads to differ-
ent types. Unlike (non-gradual) polymorphic type systems [11,18], the choice
of monotypes could affect runtime behaviour of the translated programs, since
they could appear inside the explicit casts. For example, the following shows two
possible translations for the same source expression λx : �. f x, where the type
of f is instantiated to Int → Int and Bool → Bool, respectively:

f : ∀a.a → a � (λx : �. f x) : � → Int

� (λx : �. (〈∀a.a → a ↪→ Int → Int〉 f) (〈� ↪→ Int〉 x))

f : ∀a.a → a � (λx : �. f x) : � → Bool

� (λx : �. (〈∀a.a → a ↪→ Bool → Bool〉 f) (〈� ↪→ Bool〉 x))

If we apply λx : �. f x to 3, which is fine since the function can take any input,
the first translation runs smoothly in λB, while the second one will raise a cast
error (Int cannot be cast to Bool). Similarly, if we apply it to true, then the second
succeeds while the first fails. The culprit lies in the highlighted parts where any
instantiation of a would be put inside the explicit cast. More generally, any
choice introduces an explicit cast to that type in the translation, which causes
a runtime cast error if the function is applied to a value whose type does not
match the guessed type. Note that this does not compromise the type safety of
the translated expressions, since cast errors are part of the type safety guarantees.

Coherence. The ambiguity of translation seems to imply that the declarative
system is incoherent. A semantics is coherent if distinct typing derivations of
the same typing judgment possess the same meaning [20]. We argue that the
declarative system is “coherent up to cast errors” in the sense that a well-typed
program produces a unique value, or results in a cast error. In the above example,
whatever the translation might be, applying λx : �. f x to 3 either results in a
cast error, or produces 3, nothing else.

This discrepancy is due to the guessing nature of the declarative system. As
far as the declarative system is concerned, both Int → Int and Bool → Bool
are equally acceptable. But this is not the case at runtime. The acute reader
may have found that the only appropriate choice is to instantiate f to � → �.
However, as specified by rule M-Forall in Fig. 8, we can only instantiate type
variables to monotypes, but � is not a monotype! We will get back to this issue
in Sect. 6.2 after we present the corresponding algorithmic system in Sect. 5.

4.3 Correctness Criteria

Siek et al. [25] present a set of properties that a well-designed gradual typing
calculus must have, which they call the refined criteria. Among all the crite-
ria, those related to the static aspects of gradual typing are well summarized

www.dbooks.org

https://www.dbooks.org/

20 N. Xie et al.

by Cimini and Siek [8]. Here we review those criteria and adapt them to our
notation. We have proved in Coq that our type system satisfies all these criteria.

Lemma 3 (Correctness Criteria)

– Conservative extension: for all static Ψ , e, and A,
• if Ψ �OL e : A, then there exists B, such that Ψ � e : B, and Ψ � B <: A.
• if Ψ � e : A, then Ψ �OL e : A

– Monotonicity w.r.t. precision: for all Ψ, e, e′, A, if Ψ � e : A, and e′ � e,
then Ψ � e′ : B, and B � A for some B.

– Type Preservation of cast insertion: for all Ψ, e,A, if Ψ � e : A, then
Ψ � e : A � s, and Ψ �B s : A for some s.

– Monotonicity of cast insertion: for all Ψ, e1, e2, e
′
1, e

′
2, A, if Ψ � e1 : A �

e′
1, and Ψ � e2 : A � e′

2, and e1 � e2, then Ψ � Ψ � e′
1 �B e′

2.

The first criterion states that the gradual type system should be a conser-
vative extension of the original system. In other words, a static program that is
typeable in the Odersky-Läufer type system if and only if it is typeable in the
gradual type system. A static program is one that does not contain any type �7.
However since our gradual type system does not have the subsumption rule, it
produces more general types.

The second criterion states that if a typeable expression loses some type
information, it remains typeable. This criterion depends on the definition of the
precision relation, written A � B, which is given in the appendix. The relation
intuitively captures a notion of types containing more or less unknown types (�).
The precision relation over types lifts to programs, i.e., e1 � e2 means that e1

and e2 are the same program except that e2 has more unknown types.
The first two criteria are fundamental to gradual typing. They explain for

example why these two programs (λx : Int. x + 1) and (λx : �. x + 1) are
typeable, as the former is typeable in the Odersky-Läufer type system and the
latter is a less-precise version of it.

The last two criteria relate the compilation to the cast calculus. The third
criterion is essentially the same as T heorem 2, given that a target expression
should always exist, which can be easily seen from Fig. 8. The last criterion
ensures that the translation must be monotonic over the precision relation �.

As for the dynamic guarantee, things become a bit murky for two reasons: (1)
as we discussed before, our declarative system is incoherent in that the runtime
behaviour of the same source program can vary depending on the particular
translation; (2) it is still unknown whether dynamic guarantee holds in λB. We
will have more discussion on the dynamic guarantee in Sect. 6.3.

5 Algorithmic Type System

In this section we give a bidirectional account of the algorithmic type system that
implements the declarative specification. The algorithm is largely inspired by the
7 Note that the term static has appeared several times with different meanings.

Consistent Subtyping for All 21

Expressions e ::= x | n | λx : A. e | λx. e | e e | e : A
Types A, B ::= Int | a | â | A → B | ∀a.A | �
Monotypes τ, σ ::= Int | a | â | τ → σ
Contexts Γ, Δ, Θ ::= ∅ | Γ, x : A | Γ, a | Γ, a | Γ, a

a
= τ

Complete Contexts Ω ::= ∅ Ω, x : A Ω, a Ω, = τ

Fig. 9. Syntax of the algorithmic system

Γ � A � B � Δ

Γ [a] � a � a � Γ [a]
ACS-TVar

Γ [â] � â � â � Γ [â]
ACS-ExVar

Γ � Int � Int � Γ
ACS-Int

Γ � � � A � Γ
ACS-UnknownL

Γ � A � � � Γ
ACS-UnknownR

Γ � B1 � A1 � Θ Θ � [Θ]A2 � [Θ]B2 � Δ

Γ � A1 → A2 � B1 → B2 � Δ
ACS-Fun

Γ, a � A � B � Δ, a, Θ

Γ � A � ∀a.B � Δ
ACS-ForallR

Γ, â � A[a �→ â] � B � Δ

Γ � ∀a.A

a.

� B � Δ
ACS-ForallL

a /∈ fv(A) Γ [a] � a � A � Δ

Γ [a] A Δ
ACS-InstL

a /∈ fv(A) Γ [a] � A � a � Δ

Γ [a] A a Δ
ACS-InstR

Fig. 10. Algorithmic consistent subtyping

algorithmic bidirectional system of Dunfield and Krishnaswami [11] (henceforth
DK system). However our algorithmic system differs from theirs in three aspects:
(1) the addition of the unknown type �; (2) the use of the matching judgment;
and (3) the approach of gradual inference only producing static types [12]. We
then prove that our algorithm is both sound and complete with respect to the
declarative type system. Full proofs can be found in the appendix.

Algorithmic Contexts. The algorithmic context Γ is an ordered list containing
declarations of type variables a and term variables x : A. Unlike declarative con-
texts, algorithmic contexts also contain declarations of existential type variables
â, which can be either unsolved (written â) or solved to some monotype (writ-
ten â = τ). Complete contexts Ω are those that contain no unsolved existential
type variables. Figure 9 shows the syntax of the algorithmic system. Apart from
expressions in the declarative system, we have annotated expressions e : A.

5.1 Algorithmic Consistent Subtyping and Instantiation

Figure 10 shows the algorithmic consistent subtyping rules. The first five rules
do not manipulate contexts. Rule ACS-Fun is a natural extension of its declar-
ative counterpart. The output context of the first premise is used by the second

www.dbooks.org

https://www.dbooks.org/

22 N. Xie et al.

Γ � â � A � Δ

Γ � τ

Γ, â, Γ ′ � â � τ � Γ, â = τ, Γ ′ InstLSolve
Γ [â][̂b] � â � ̂b � Γ [â][̂b = â]

InstLReach

Γ [â] � â � � � Γ [â]
InstLSolveU

Γ [â], b � â � B � Δ, b, Δ′

Γ [â] � â � ∀b.B � Δ
InstLAllR

Γ [a2, a1, a = a1 → a2] � A1 � a1 � Θ Θ � a2 � [Θ]A2 � Δ

Γ [a] a A1 A2 Δ
InstLArr

Fig. 11. Algorithmic instantiation

premise, and the output context of the second premise is the output context
of the conclusion. Note that we do not simply check A2 � B2, but apply Θ to
both types (e.g., [Θ]A2). This is to maintain an important invariant that types
are fully applied under input context Γ (they contain no existential variables
already solved in Γ). The same invariant applies to every algorithmic judgment.
Rule ACS-ForallR looks similar to its declarative counterpart, except that
we need to drop the trailing context a,Θ from the concluding output context
since they become out of scope. Rule ACS-ForallL generates a fresh existen-
tial variable â, and replaces a with â in the body A. The new existential variable
â is then added to the premise’s input context. As a side note, when both types
are quantifiers, then either ACS-ForallR or ACS-ForallR could be tried.
In practice, one can apply ACS-ForallR eagerly. The last two rules together
check consistent subtyping with an unsolved existential variable on one side and
an arbitrary type on the other side by the help of the instantiation judgment.

The judgment Γ � â � A � Δ defined in Fig. 11 instantiates unsolved exis-
tential variables. Judgment â � A reads “instantiate â to a consistent subtype
of A”. For space reasons, we omit its symmetric judgement Γ � A � â � Δ.
Rule InstLSolve and rule InstLReach set â to τ and ̂b in the output context,
respectively. Rule InstLSolveU is similar to ACS-UnknownR in that we put
no constraint on â when it meets the unknown type �. This design decision
reflects the point that type inference only produces static types [12]. We will get
back to this point in Sect. 6.2. Rule InstLAllR is the instantiation version of
rule ACS-ForallR. The last rule InstLArr applies when â meets a function
type. It follows that the solution must also be a function type. That is why, in
the first premise, we generate two fresh existential variables â1 and â2, and insert
them just before â in the input context, so that the solution of â can mention
them. Note that A1 � â1 switches to the other instantiation judgment.

5.2 Algorithmic Typing

We now turn to the algorithmic typing rules in Fig. 12. The algorithmic sys-
tem uses bidirectional type checking to accommodate polymorphism. Most of

Consistent Subtyping for All 23

Γ � e ⇒ A � Δ

(x : A) ∈ Γ

Γ � x ⇒ A � Γ
AVar

Γ � n ⇒ Int � Γ
ANat

Γ, â,̂b, x : â � e ⇐ ̂b � Δ, x : â, Θ

Γ � λx. e ⇒ â → ̂b � Δ
ALamU

Γ, x : A � e ⇒ B � Δ, x : A, Θ

Γ � λx : A. e ⇒ A → B � Δ
ALamAnnA

Γ � A Γ � e ⇐ A � Δ

Γ � e : A ⇒ A � Δ
AAnno

Γ � e1 ⇒ A � Θ1 Θ1 � [Θ1]A � A1 → A2 � Θ2 Θ2 � e2 ⇐ [Θ2]A1 � Δ

Γ � e1 e2 ⇒ A2 � Δ
AApp

Γ � e ⇐ A � Δ

Γ, x : A � e ⇐ B � Δ, x : A, Θ

Γ � λx. e ⇐ A → B � Δ
ALam

Γ, a � e ⇐ A � Δ, a, Θ

Γ � e ⇐ ∀a.A � Δ
AGen

Γ � e ⇒ A � Θ Θ � [Θ]A � [Θ]B � Δ

Γ � e ⇐ B � Δ
ASub

Γ � A � A1 → A2 � Δ

Γ, â � A[a �→ â] � A1 → A2 � Δ

Γ � ∀a.A � A1 → A2 � Δ
AM-Forall

Γ � (A1 → A2) � (A1 → A2) � Γ
AM-Arr

Γ � � � � Γ
AM-Unknown

Γ [c] c � a b Γ [a, b, c = a b]
AM-Var

Fig. 12. Algorithmic typing

them are quite standard. Perhaps rule AApp (which differs significantly from
that in the DK system) deserves attention. It relies on the algorithmic match-
ing judgment Γ � A � A1 → A2 � Δ. Rule AM-ForallL replaces a with
a fresh existential variable â, thus eliminating guessing. Rule AM-Arr and
AM-Unknown correspond directly to the declarative rules. Rule AM-
Var, which has no corresponding declarative version, is similar to
InstRArr/InstLArr: we create â and ̂b and add ĉ = â → ̂b to the context.

5.3 Completeness and Soundness

We prove that the algorithmic rules are sound and complete with respect to the
declarative specifications. We need an auxiliary judgment Γ −→ Δ that captures
a notion of information increase from input contexts Γ to output contexts Δ [11].

www.dbooks.org

https://www.dbooks.org/

24 N. Xie et al.

Soundness. Roughly speaking, soundness of the algorithmic system says that
given an expression e that type checks in the algorithmic system, there exists a
corresponding expression e′ that type checks in the declarative system. However
there is one complication: e does not necessarily have more annotations than e′.
For example, by ALam we have λx. x ⇐ (∀a.a) → (∀a.a), but λx. x itself cannot
have type (∀a.a) → (∀a.a) in the declarative system. To circumvent that, we add
an annotation to the lambda abstraction, resulting in λx : (∀a.a). x, which is
typeable in the declarative system with the same type. To relate λx. x and
λx : (∀a.a). x, we erase all annotations on both expressions. The definition of
erasure �·� is standard and thus omitted.

Theorem 1 (Soundness of Algorithmic Typing). Given Δ −→ Ω,

1. If Γ � e ⇒ A � Δ then ∃e′ such that [Ω]Δ � e′ : [Ω]A and �e� = �e′�.
2. If Γ � e ⇐ A � Δ then ∃e′ such that [Ω]Δ � e′ : [Ω]A and �e� = �e′�.

Completeness. Completeness of the algorithmic system is the reverse of sound-
ness: given a declarative judgment of the form [Ω]Γ � [Ω] . . . , we want to get
an algorithmic derivation of Γ � · · · � Δ. It turns out that completeness is a bit
trickier to state in that the algorithmic rules generate existential variables on
the fly, so Δ could contain unsolved existential variables that are not found in
Γ , nor in Ω. Therefore the completeness proof must produce another complete
context Ω′ that extends both the output context Δ, and the given complete
context Ω. As with soundness, we need erasure to relate both expressions.

Theorem 2 (Completeness of Algorithmic Typing). Given Γ −→ Ω and
Γ � A, if [Ω]Γ � e : A then there exist Δ, Ω′, A′ and e′ such that Δ −→ Ω′ and
Ω −→ Ω′ and Γ � e′ ⇒ A′ � Δ and A = [Ω′]A′ and �e� = �e′�.

6 Discussion

6.1 Top Types

To demonstrate that our definition of consistent subtyping (Definition 2) is appli-
cable to other features, we show how to extend our approach to Top types with
all the desired properties preserved.

In order to preserve the orthogonality between subtyping and consistency,
we require � to be a common supertype of all static types, as shown in rule
S-Top. This rule might seem strange at first glance, since even if we remove the
requirement A static, the rule seems reasonable. However, an important point
is that because of the orthogonality between subtyping and consistency, subtyp-
ing itself should not contain a potential information loss! Therefore, subtyping
instances such as � <: � are not allowed. For consistency, we add the rule that
� is consistent with �, which is actually included in the original reflexive rule

Consistent Subtyping for All 25

A ∼ A. For consistent subtyping, every type is a consistent subtype of �, for
example, Int → � � �.

A static

Ψ � A <: �
S-Top � ∼ �

Ψ � A � �
CS-Top

It is easy to verify that Definition 2 is still equivalent to that in Fig. 7 extended
with rule CS-Top. That is, T heorem 1 holds:

Proposition 4 (Extension with �). Ψ � A � B ⇔ Ψ � A <: C, C ∼ D,
Ψ � D <: B, for some C,D.

We extend the definition of concretization (Definition 3) with � by adding
another equation γ(�) = {�}. Note that Castagna and Lanvin [7] also have this
equation in their calculus. It is easy to verify that Proposition 2 still holds:

Proposition 5 (Equivalent to AGT on �). A � B if only if A ˜<: B.

Siek and Taha’s [22] Definition of Consistent Subtyping Does Not Work for �. As
the analysis in Sect. 3.2, Int → � � � only holds when we first apply consistency,
then subtyping. However we cannot find a type A such that Int → � <: A and
A ∼ �. Also we have a similar problem in extending the restriction operator:
non-structural masking between Int → � and � cannot be easily achieved.

6.2 Interpretation of the Dynamic Semantics

In Sect. 4.2 we have seen an example where a source expression could produce two
different target expressions with different runtime behaviour. As we explained,
this is due to the guessing nature of the declarative system, and from the typing
point of view, no type is particularly better than others. However, in practice,
this is not desirable. Let us revisit the same example, now from the algorithmic
point of view (we omit the translation for space reasons):

f : ∀a.a → a � (λx : �. f x) ⇒ � → â � f : ∀a.a → a, â

Compared with declarative typing, which produces many types (� → Int, � →
Bool, and so on), the algorithm computes the type � → â with â unsolved in the
output context. What can we know from the output context? The only thing we
know is that â is not constrained at all! However, it is possible to make a more
refined distinction between different kinds of existential variables. The first kind
of existential variables are those that indeed have no constraints at all, as they
do not affect the dynamic semantics. The second kind of existential variables
(as in this example) are those where the only constraint is that the variable was
once compared with an unknown type [12].

To emphasize the difference and have better support for dynamic semantics,
we could have gradual variables in addition to existential variables, with the dif-
ference that only unsolved gradual variables are allowed to be unified with the
unknown type. An irreversible transition from existential variables to gradual

www.dbooks.org

https://www.dbooks.org/

26 N. Xie et al.

variables occurs when an existential variable is compared with �. After the algo-
rithm terminates, we can set all unsolved existential variables to be any (static)
type (or more precisely, as Garcia and Cimini [12], with static type parameters),
and all unsolved gradual variables to be � (or gradual type parameters). How-
ever, this approach requires a more sophisticated declarative/algorithmic type
system than the ones presented in this paper, where we only produce static
monotypes in type inference. We believe this is a typical trade-off in existing
gradual type systems with inference [12,23]. Here we suppress the complexity of
dynamic semantics in favour of the conciseness of static typing.

6.3 The Dynamic Guarantee

In Sect. 4.3 we mentioned that the dynamic guarantee is closely related to the
coherence issue. To aid discussion, we first give the definition of dynamic guar-
antee as follows:

Definition 5 (Dynamic guarantee). Suppose e′ � e, ∅ � e : A � s and
∅ � e′ : A′ � s′, if s ⇓ v, then s′ ⇓ v′ and v′ � v.

The dynamic guarantee says that if a gradually typed program evaluates to a
value, then removing type annotations always produces a program that evaluates
to an equivalent value (modulo type annotations). Now apparently the coherence
issue of the declarative system breaks the dynamic guarantee. For instance:

(λf : ∀a.a → a. λx : Int. f x) (λx. x) 3 (λf : ∀a.a → a. λx : �. f x) (λx. x) 3

The left one evaluates to 3, whereas its less precise version (right) will give a
cast error if a is instantiated to Bool for example.

As discussed in Sect. 6.2, we could design a more sophisticated declarative/al-
gorithmic type system where coherence is retained. However, even with a coher-
ent source language, the dynamic guarantee is still a question. Currently, the
dynamic guarantee for our target language λB is still an open question. Accord-
ing to Igarashi et al. [14], the difficulty lies in the definition of term precision
that preserves the semantics.

7 Related Work

Along the way we discussed some of the most relevant work to motivate, compare
and promote our gradual typing design. In what follows, we briefly discuss related
work on gradual typing and polymorphism.

Gradual Typing. The seminal paper by Siek and Taha [21] is the first to pro-
pose gradual typing. The original proposal extends the simply typed lambda
calculus by introducing the unknown type � and replacing type equality with
type consistency. Later Siek and Taha [22] incorporated gradual typing into a

Consistent Subtyping for All 27

simple object oriented language, and showed that subtyping and consistency are
orthogonal – an insight that partly inspired our work. We show that subtyping
and consistency are orthogonal in a much richer type system with higher-rank
polymorphism. Siek et al. [25] proposed a set of criteria that provides impor-
tant guidelines for designers of gradually typed languages. Cimini and Siek [8]
introduced the Gradualizer, a general methodology for generating gradual type
systems from static type systems. Later they also develop an algorithm to gen-
erate dynamic semantics [9]. Garcia et al. [13] introduced the AGT approach
based on abstract interpretation.

Gradual Type Systems with Explicit Polymorphism. Ahmed et al. [1] proposed
λB that extends the blame calculus [29] to incorporate polymorphism. The key
novelty of their work is to use dynamic sealing to enforce parametricity. Devriese
et al. [10] proved that embedding of System F terms into λB is not fully abstract.
Igarashi et al. [14] also studied integrating gradual typing with parametric poly-
morphism. They proposed System FG, a gradually typed extension of System F,
and System FC , a new polymorphic blame calculus. As has been discussed exten-
sively, their definition of type consistency does not apply to our setting (implicit
polymorphism). All of these approaches mix consistency with subtyping to some
extent, which we argue should be orthogonal.

Gradual Type Inference. Siek and Vachharajani [23] studied unification-based
type inference for gradual typing, where they show why three straightforward
approaches fail to meet their design goals. Their type system infers gradual types,
which results in a complicated type system and inference algorithm. Garcia
and Cimini [12] presented a new approach where gradual type inference only
produces static types, which is adopted in our type system. They also deal with
let-polymorphism (rank 1 types). However none of these works deals with higher-
ranked implicit polymorphism.

Higher-Rank Implicit Polymorphism. Odersky and Läufer [17] introduced a type
system for higher-rank types. Based on that, Peyton Jones et al. [18] developed
an approach for type checking higher-rank predicative polymorphism. Dunfield
and Krishnaswami [11] proposed a bidirectional account of higher-rank polymor-
phism, and an algorithm for implementing the declarative system, which serves
as a sole inspiration for our algorithmic system. The key difference, however, is
the integration of gradual typing. Vytiniotis et al. [28] defers static type errors to
runtime, which is fundamentally different from gradual typing, where program-
mers can control over static or runtime checks by precision of the annotations.

www.dbooks.org

https://www.dbooks.org/

28 N. Xie et al.

8 Conclusion

In this paper, we present a generalized definition of consistent subtyping, which
is proved to be applicable to both polymorphic and top types. Based on the
new definition of consistent subtyping, we have developed a gradually typed
calculus with predicative implicit higher-rank polymorphism, and an algorithm
to implement it. As future work, we are interested to investigate if our results
can scale to real world languages and other programming language features.

Acknowledgements. We thank Ronald Garcia and the anonymous reviewers for their
helpful comments. This work has been sponsored by the Hong Kong Research Grant
Council projects number 17210617 and 17258816.

References

1. Ahmed, A., Findler, R.B., Siek, J.G., Wadler, P.: Blame for all. In: Proceedings of
the 38th Symposium on Principles of Programming Languages (2011)

2. Ahmed, A., Jamner, D., Siek, J.G., Wadler, P.: Theorems for free for free: para-
metricity, with and without types. In: Proceedings of the 22nd International Con-
ference on Functional Programming (2017)

3. Schwerter, F.B., Garcia, R., Tanter, É.: A theory of gradual effect systems. In: Pro-
ceedings of the 19th International Conference on Functional Programming (2014)

4. Bierman, G., Meijer, E., Torgersen, M.: Adding dynamic types to C�. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 76–100. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2 5

5. Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9 11

6. Bonnaire-Sergeant, A., Davies, R., Tobin-Hochstadt, S.: Practical optional types
for clojure. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 68–94.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 4

7. Castagna, G., Lanvin, V.: Gradual typing with union and intersection types. Proc.
ACM Program. Lang. 1(ICFP), 41:1–41:28 (2017)

8. Cimini, M., Siek, J.G.: The gradualizer: a methodology and algorithm for gener-
ating gradual type systems. In: Proceedings of the 43rd Symposium on Principles
of Programming Languages (2016)

9. Cimini, M., Siek, J.G.: Automatically generating the dynamic semantics of grad-
ually typed languages. In: Proceedings of the 44th Symposium on Principles of
Programming Languages (2017)

10. Devriese, D., Patrignani, M., Piessens, F.: Parametricity versus the universal type.
Proc. ACM Program. Lang. 2(POPL), 38 (2017)

11. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. In: International Conference on Functional Pro-
gramming (2013)

12. Garcia, R., Cimini, M.: Principal type schemes for gradual programs. In: Proceed-
ings of the 42nd Symposium on Principles of Programming Languages (2015)

13. Garcia, R., Clark, A.M., Tanter, É.: Abstracting gradual typing. In: Proceedings
of the 43rd Symposium on Principles of Programming Languages (2016)

https://doi.org/10.1007/978-3-642-14107-2_5
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-49498-1_4

Consistent Subtyping for All 29

14. Igarashi, Y., Sekiyama, T., Igarashi, A.: On polymorphic gradual typing. In: Pro-
ceedings of the 22nd International Conference on Functional Programming (2017)

15. Jafery, K.A., Dunfield, J.: Sums of uncertainty: refinements go gradual. In: Pro-
ceedings of the 44th Symposium on Principles of Programming Languages (2017)

16. Mitchell, J.C.: Polymorphic type inference and containment. In: Logical Founda-
tions of Functional Programming (1990)

17. Odersky, M., Läufer, K.: Putting type annotations to work. In: Proceedings of the
23rd Symposium on Principles of Programming Languages (1996)

18. Jones, S.P., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for
arbitrary-rank types. J. Funct. Program. 17(1), 1–82 (2007)

19. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Proceedings
of the IFIP 9th World Computer Congress (1983)

20. Reynolds, J.C.: The coherence of languages with intersection types. In: Ito, T.,
Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 675–700. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54415-1 70

21. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Proceedings of
the 2006 Scheme and Functional Programming Workshop (2006)

22. Siek, J., Taha, W.: Gradual typing for objects. In: Ernst, E. (ed.) ECOOP 2007.
LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-73589-2 2

23. Siek, J.G., Vachharajani, M.: Gradual typing with unification-based inference. In:
Proceedings of the 2008 Symposium on Dynamic Languages (2008)

24. Siek, J.G., Wadler, P.: The key to blame: gradual typing meets cryptography (draft)
(2016)

25. Siek, J.G., Vitousek, M.M., Cimini, M., Boyland, J.T.: Refined criteria for gradual
typing. In: LIPIcs-Leibniz International Proceedings in Informatics (2015)

26. Verlaguet, J.: Facebook: analyzing PHP statically. In: Proceedings of Commercial
Users of Functional Programming (2013)

27. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for Python. In: Proceedings of the 10th Symposium on Dynamic Languages
(2014)

28. Vytiniotis, D., Jones, S.P., Magalhães, J.P.: Equality proofs and deferred type
errors: a compiler pearl. In: Proceedings of the 17th International Conference on
Functional Programming, ICFP 2012, New York (2012)

29. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: Castagna, G.
(ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00590-9 1

www.dbooks.org

https://doi.org/10.1007/3-540-54415-1_70
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://www.dbooks.org/

30 N. Xie et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

HOBiT: Programming Lenses Without
Using Lens Combinators

Kazutaka Matsuda1(B) and Meng Wang2

1 Tohoku University, Sendai 980-8579, Japan
kztk@ecei.tohoku.ac.jp

2 University of Bristol, Bristol BS8 1TH, UK

Abstract. We propose HOBiT, a higher-order bidirectional program-
ming language, in which users can write bidirectional programs in the
familiar style of conventional functional programming, while enjoying the
full expressiveness of lenses. A bidirectional transformation, or a lens, is
a pair of mappings between source and view data objects, one in each
direction. When the view is modified, the source is updated accordingly
with respect to some laws—a pattern that is found in databases, model-
driven development, compiler construction, and so on. The most common
way of programming lenses is with lens combinators, which are lens-to-
lens functions that compose simpler lenses to form more complex ones.
Lens combinators preserve the bidirectionality of lenses and are expres-
sive; but they compel programmers to a specialised point-free style—i.e.,
no naming of intermediate computation results—limiting the scalability
of bidirectional programming. To address this issue, we propose a new
bidirectional programming language HOBiT, in which lenses are repre-
sented as standard functions, and combinators are mapped to language
constructs with binders. This design transforms bidirectional program-
ming, enabling programmers to write bidirectional programs in a flexible
functional style and at the same time access the full expressiveness of
lenses. We formally define the syntax, type system, and the semantics
of the language, and then show that programs in HOBiT satisfy bidirec-
tionality. Additionally, we demonstrate HOBiT’s programmability with
examples.

1 Introduction

Transforming data from one format to another is a common task of program-
ming: compilers transform program texts into syntax trees, manipulate the trees
and then generate low-level code; database queries transform base relations into
views; model transformations generate lower-level implementations from higher-
level models; and so on. Very often, such transformations will benefit from being
bidirectional, allowing changes to the targets to be mapped back to the sources
too. For example, if one can run a compiler front-end (preprocessing, parsing,
desugaring, etc.) backwards, then all sorts of program analysis tools will be
able to focus on a much smaller core language, without sacrificing usability, as
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 31–59, 2018.
https://doi.org/10.1007/978-3-319-89884-1_2

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_2&domain=pdf
https://www.dbooks.org/

32 K. Matsuda and M. Wang

their outputs in term of the core language will be transformed backwards to the
source language. In the same way, such needs arise in databases (the view-update
problem [1,6,12]) and model-driven engineering (bidirectional model transforma-
tion) [28,33,35].

As a response to this challenge, programming language researchers have
started to design languages that execute deterministically in both directions, and
the lens framework is the most prominent among all. In the lens framework, a
bidirectional transformation (or a lens) � ∈ Lens S V , consists of get � ∈ S → V ,
and put � ∈ S → V → S [3,7,8]. (When clear from the context, or unimpor-
tant, we sometimes omit the lens name and write simply get/put .) Function get
extracts a view from a source, and put takes both an updated view and the orig-
inal source as inputs to produce an updated source. The additional parameter
of put makes it possible to recover some of the source data that is not present
in the view. In other words, get needs not to be injective to have a put . Not all
pairs of get/put are considered correct lenses. The following round-triping laws
of a lens � are generally required to establish bidirectionality:

put � s v = s if get � s = v (Acceptability)
get � s′ = v if put � s v = s′ (Consistency)

for all s, s ′ and v . (In this paper we write e = e ′ with the assumption that
neither e nor e ′ is undefined. Stronger variants of the laws enforcing totality
exist elsewhere, for example in [7].) Here consistency ensures that all updates on
a view are captured by the updated source, and acceptability prohibits changes
to the source if no update has been made on the view. Collectively, the two laws
defines well-behavedness [1,7,12].

The most common way of programming lenses is with lens combinators [3,7,8],
which are basically a selection of lens-to-lens functions that compose simpler lenses
to form more complex ones. This combinator-based approach follows the long his-
tory of lightweight language development in functional programming. The dis-
tinctive advantage of this approach is that by restricting the lens language to a
few selected combinators, well-behavedness can be more easily preserved in pro-
gramming, and therefore given well-behaved lenses as inputs, the combinators are
guaranteed to produce well-behaved lenses. This idea of lens combinators is very
influential academically, and various designs and implementations have been pro-
posed [2,3,7–9,16,17,27,32] over the years.

1.1 The Challenge of Programmability

The complexity of a piece of software can be classified as either intrinsic or
accidental. Intrinsic complexity reflects the inherent difficulty of the problem
at hand, whereas accidental complexity arises from the particular programming
language, design or tools used to implement the solution. This work aims at
reducing the accidental complexity of bidirectional programming by contribut-
ing to the design of bidirectional languages. In particularly, we identify a lan-
guage restriction—i.e., no naming of intermediate computation results—which
complicates lens programming, and propose a new design that removes it.

HOBiT: Programming Lenses Without Using Lens Combinators 33

As a teaser to demonstrate the problem, let us consider the list append
function. In standard unidirectional programming, it can be defined simply as
append x y = case x of {[] → y; a : x′ → a : append x′ y}. Astute readers may
have already noticed that append is defined by structural recursion on x, which
can be made explicit by using foldr as in append x y = foldr (:) y x.

But in a lens language based on combinators, things are more difficult. Specif-
ically, append now requires a more complicated recursion pattern, as below.

appendL ::Lens ([A], [A]) [A]

appendL =

cond idL (λ .True) (λ .λ .[]) (consL ◦̂ (idL × appendL)) (not ◦ null) (λ .λ .⊥)

◦̂ rearr ◦̂ (outListL × idL)

where outListL ::Lens [A] (Either () (A, [A]))

rearr ::Lens (Either () (a, b), c) (Either c (a, (b, c)))

(◦̂) ::Lens b c → Lens a b → Lens a c

cond ::Lens a c → . . . → Lens b c → . . . → Lens (Either a b) c

. . .

It is beyond the scope of this paper to explain how exactly the definition of
appendL works, as its obscurity is what this work aims to remove. Instead, we
informally describe its behaviour and the various components of the code. The
above code defines a lens: forwards, it behaves as the standard append , and
backwards, it splits the updated view list, and when the length of the list changes,
this definition implements (with the grayed part) the bias of keeping the length
of the first source list whenever possible (to disambiguate multiple candidate
source changes). Here, cond , (◦̂), etc. are lens combinators and outListL and rearr
are auxiliary lenses, as can be seen from their types. Unlike its unidirectional
counterpart, appendL can no longer be defined as a structural recursion on list;
instead it traverses a pair of lists with rather complex rearrangement rearr .

Intuitively, the additional grayed parts is intrinsic complexity, as they are
needed for directing backwards execution. However, the complicated recursion
scheme, which is a direct result of the underlying limitation of lens languages,
is certainly accidental. Recall that in the definition of append , we were able to
use the variable y , which is bound outside of the recursion pattern, inside the
body of foldr . But the same is not possible with lens combinators which are
strictly ‘pointfree’. Moreover, even if one could name such variables (points),
their usage with lens combinators will be very restricted in order to guarantee
well-behavedness [21,23]. This problem is specific to opaque non-function objects
such as lenses, and goes well beyond the traditional issues associated with the
pointfree programming style.

In this paper, we design a new bidirectional language HOBiT, which aims
to remove much of the accidental difficulty found in combinator-based lens pro-
gramming, and reduces the gap between bidirectional programming and stan-
dard functional programming. For example, the following definition in HOBiT
implements the same lens as appendL.

www.dbooks.org

https://www.dbooks.org/

34 K. Matsuda and M. Wang

appendB ::B[A] → B[A] → B[A]

appendB x y = case x of [] → y with λ .True by (λ .λ .[])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

As expected, the above code shares the grayed part with the definition of appendL
as the two implement the same backwards behaviour. The difference is that
appendB uses structural recursion in the same way as the standard unidirec-
tional append , greatly simplifying programming. This is made possible by the
HOBiT’s type system and semantics, allowing unrestricted use of free variables.
This difference in approach is also reflected in the types: appendB is a proper
function (instead of the abstract lens type of appendL), which readily lends itself
to conventional functional programming. At the same time, appendB is also a
proper lens, which when executed by the HOBiT interpreter behave exactly like
appendL. A major technical challenge in the design of HOBiT is to guarantee
this duality, so that functions like appendB are well-behaved by construction
despite the flexibility in their construction.

1.2 Contributions

As we can already see from the very simple example above, the use of HOBiT
simplifies bidirectional programming by removing much of the accidental com-
plexity. Specifically, HOBiT stands out from existing bidirectional languages in
two ways:

1. It supports the conventional programming style that is used in unidirectional
programming. As a result, a program in HOBiT can be defined in a way
similar to how one would define only its get component. For example, appendB
is defined in the same way as the unidirectional append .

2. It supports incremental improvement. Given the very often close resemblance
of a bidirectional-program definition and that of its get component, it becomes
possible to write an initial version of a bidirectional program almost identical
to its get component and then to adjust the backwards behaviour gradually,
without having to significantly restructure the existing definition.

Thanks to these distinctive advantages, HOBiT for the first time allows us to
construct realistically-sized bidirectional programs with relative ease. Of course,
this does not mean free lunch: the ability to control backwards behaviours will
not magically come without additional code (for example the grayed part above).
What HOBiT achieves is that programming effort may now focus on the pro-
ductive part of specifying backwards behaviours, instead of being consumed by
circumventing language restrictions.

In summary, we make the following contributions in this paper.

– We design a higher-order bidirectional programming language HOBiT,
which supports convenient bidirectional programming with control of back-
wards behaviours (Sect. 3). We also discuss several extensions to the
language (Sect. 5).

HOBiT: Programming Lenses Without Using Lens Combinators 35

– We present the semantics of HOBiT inspired by the idea of staging [5],
and prove the well-behavedness property using Kripke logical relations [18]
(Sect. 4).

– We demonstrate the programmability of HOBiT with examples such as desug-
aring/resugaring [26] (Sect. 6). Additional examples including a bidirectional
evaluator for λ-calculus [21,23], a parser/printer for S-expressions, and book-
mark extraction for Netscape [7] can be found at https://bitbucket.org/kztk/
hibx together with a prototype implementation of HOBiT.

2 Overview: Bidirectional Programming Without
Combinators

In this section, we informally introduce the essential constructs of HOBiT and
demonstrate their use by a few small examples. Recall that, as seen in the
appendB example, the strength of HOBiT lies in allowing programmers to access
λ-abstractions without restrictions on the use of λ-bound variables.

2.1 The case Construct

The most important language construct in HOBiT is case (pronounced as bidi-
rectional case), which provides pattern matching and easy access to bidirectional
branching, and also importantly, allows unrestricted use of λ-bound variables.

In general, a case expression has the following form.

case e of {p1 → e1 with φ1 by ρ1; . . . ; pn → en with φn by ρn}

(Like Haskell, we shall omit “{”, “}” and “;” if they are clear from the layout.)
In the type system of HOBiT, a case-expression has type BB, if e and ei have
types BA and BB, and φi and ρi have types B → Bool and A → B → A, where
A and B contains neither (→) nor B. The type BA can be understood intuitively
as “updatable A”. Typically, the source and view data are given such B-types,
and a function of type BA → BB is the HOBiT equivalent of Lens A B.

The pattern matching part of case performs two implicit operations: it first
unwraps the B-typed value, exposing its content for normal pattern matching,
and then it wraps the variables bound by the pattern matching, turning them
into ‘updatable’ B-typed values to be used in the bodies. For example, in the
second branch of appendB , a and x′ can be seen as having types A and [A] in the
pattern, but BA and B[A] types in the body; and the bidirectional constructor
(:) ::BA → B[A] → B[A] combines them to produce a B-typed list.

In addition to the standard conditional branches, case-expression has two
unique components φi and ρi called exit conditions and reconciliation functions
respectively, which are used in backwards executions. Exit condition φi is an
over-approximation of the forwards-execution results of the expressions ei. In
other words, if branch i is choosen, then φi ei must evaluate to True. This asser-
tion is checked dynamically in HOBiT, though could be checked statically with

www.dbooks.org

https://bitbucket.org/kztk/hibx
https://bitbucket.org/kztk/hibx
https://www.dbooks.org/

36 K. Matsuda and M. Wang

a sophisticated type system [7]. In the backwards direction the exit condition is
used for deciding branching: the branch with its exit condition satisfied by the
updated view (when more than one match, the original branch used in the for-
wards direction has higher priority) will be picked for execution. The idea is that
due to the update in the view, the branch taken in the backwards direction may
be different from the one taken in the original forwards execution, a feature that
is commonly supported by lens languages [7] which we call branch switching.

Branch switching is crucial to put ’s robustness, i.e., the ability to handle
a wide range of view updates (including those affect the branching decisions)
without failing. We explain its working in details in the following.

Branch Switching. Being able to choose a different branch in the backwards
direction only solves part of the problem. Let us consider the case where a
forward execution chooses the nth branch, and the backwards execution, based
on the updated view, chooses the mth (m �= n) branch. In this case, the original
value of the pattern-matched expression e, which is the reason for the nth branch
being chosen, is not compatible with the put of the mth branch.

As an example, let us consider a simple function that pattern-matches on an
Either structure and returns an list. Note that we have purposely omitted the
reconciliation functions.

f :: B(Either [A] (A, [A])) → B[A]

f x = case x of Left ys → ys with λ .True {- no by here -}
Right (y, ys) → y : ys with not ◦ null

We have said that functions of type BA → BB are also fully functioning lenses of
type Lens A B. In HOBiT, the above code runs as follows, where HOBiT> is the
prompt of HOBiT’s read-eval-print loop, and :get and :put are meta-language
operations to perform get and put respectively.

HOBiT> :get f (Left [1, 2, 3])

[1, 2, 3]

HOBiT> :get f (Right (1, [2, 3]))

[1, 2, 3]

HOBiT> :put f (Left [1, 2, 3]) [4, 5] -- The view [1, 2, 3] is updated to [4, 5].

Left [4, 5] -- Both exit conditions are true with [4, 5],

-- so the original branch (Left) is taken.

HOBiT> :put f (Right (1, [2, 3])) [4, 5]

Right (4, [5]) -- Similar, but the original branch is Right.
HOBiT> :put f (Right (1, [2, 3])) []

⊥ -- Branch switches, but computation fails.

As we have explained above, exit conditions are used to decide which branch
will be used in the backwards direction. For the first and second evaluations
of put , the exit conditions corresponding to the original branches were true for
the updated view. For the last evaluation of put , since the exit condition of

HOBiT: Programming Lenses Without Using Lens Combinators 37

Fig. 1. Reconciliation function: assuming exit conditions φm and φn where φm bn =
False but φn bn = True, and reconciliation functions ρm and ρn.

the original branch was false but that of the other branch was true, branch
switching is required here. However, a direct put-execution of f with the inputs
(Right (1, [2, 3])) and [] crashes (represented by ⊥ above), for a good reason, as
the two inputs are in an inconsistent state with respect to f .

This is where reconciliation functions come into the picture. For the Left
branch above, a sensible reconciliation function will be (λ .λ .Left []), which
when applied turns the conflicting source (Right (1, [2, 3])) into Left [], and
consequently the put-execution may succeed with the new inputs and returns
Left []. It is not difficult to verify that the “reconciled” put-execution still sat-
isfies well-behavedness. Note that despite the similarity in types, reconciliation
functions are not put ; they merely provide a default source value to allow stuck
put-executions to proceed. We visualise the effect of reconciliation functions in
Fig. 1. The left-hand side is bidirectional execution without successful branch-
switching, and since φm bn is false (indicating that bn is not in the range of the
mth branch) the execution of put must (rightfully) fail in order to guarantee
well-behavedness. On the right-hand side, reconciliation function ρn produces
a suitable source from am and bn (where φn (get (ρn am bn)) is True), and
put executes with bn and the new source ρn am bn . It is worth mentioning that
branch switching with reconciliation functions does not compromise correctness:
though the quality of the user-defined reconciliation functions affects robustness
as they may or may not be able to resolve conflicts, successful put-executions
always guarantee well-behavedness, regardless the involvement of reconciliation
functions.
Revisiting appendB . Recall appendB from Sect. 1.1 (reproduced below).

appendB :: B[A] → B[A] → B[A]

appendB x y = case x of [] → y with λ .True by (λ .λ .[])

a : x′ → a : appendB x′ y with not ◦ null by (λ .λ .⊥)

The exit condition for the nil case always returns true as there is no restriction
on the value of y , and for the cons case it requires the returned list to be non-
empty. In the backwards direction, when the updated view is non-empty, both
exit conditions will be true, and then the original branch will be taken. This
means that since appendB is defined as a recursion on x, the backwards execution
will try to unroll the original recursion step by step (i.e., the cons branch will be
taken for a number of times that is the same as the length of x) as long as the
view remains non-empty. If an updated view list is shorter than x , then not ◦null

www.dbooks.org

https://www.dbooks.org/

38 K. Matsuda and M. Wang

will become false before the unrolling finishes, and the nil branch will be taken
(branch-switching) and the reconciliation function will be called.

The definition of appendB is curried; straightforward uncurrying turns it into
the standard form BA → BB that can be interpreted by HOBiT as a lens. The
following HOBiT program is the bidirectional variant of uncurry .

uncurryB :: (BA → BB → BC) → B(A, B) → BC

uncurryB f z = let (x, y) = z in f x y

Here, let p = e in e′ is syntactic sugar for case e of {p → e′ with (λ .True) by
(λs.λ .s)}, in which the reconciliation function is never called as there is only
one branch. Let appendB ′ = uncurryB appendB , then we can run appendB ′ as:

HOBiT> :get appendB ′ ([1, 2], [3, 4, 5])

[1, 2, 3, 4, 5]

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7, 8, 9, 10]

([6, 7], [8, 9, 10]) -- No structural change, no branch switching.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6, 7]

([6, 7], []) -- No branch switching, still.

HOBiT> :put appendB ′ ([1, 2], [3, 4, 5]) [6]

([6], []) -- Branch-switching happens and the recursion terminates early.

Difference from Lens Combinators. As mentioned above, the idea of branch
switching can be traced back to lens languages. In particular, the design of case
is inspired by the combinator cond [7]. Despite the similarities, it is important to
recognise that case is not only a more convenient syntax for cond , but also cru-
cially supports the unrestricted use of λ-bound variables. This more fundamental
difference is the reason why we could define appendB in the conventional functional
style as the variables x and y are used freely in the body of case. In other words,
the novelty of HOBiT is its ability to combine the traditional (higher-order) func-
tional programming and the bidirectional constructs as found in lens combinators,
effectively establishing a new way of bidirectional programming.

2.2 A More Elaborate Example: linesB

In addition to supporting convenient programming and robustness in put exe-
cution, the case constructs can also be used to express intricate details of
backwards behaviours. Let us consider the lines function in Haskell as an
example, which splits a string into a list of strings by newlines, for example,
lines "AA\nBB\n" = ["AA", "BB"], except that the last newline character in its
input is optional. For example, lines returns ["AA", "BB"] for both "AA\nBB\n"
and "AA\nBB". Suppose that we want the backwards transformation of lines to
exhibit a behaviour that depends on the original source:

HOBiT: Programming Lenses Without Using Lens Combinators 39

Fig. 2. linesB and breakNLB

HOBiT> :put linesB "AA\nBB" ["a", "b"]

"a\nb"

HOBiT> :put linesB "AA\nBB" ["a", "b", "c"]

"a\nb\nc"

HOBiT> :put linesB "AA\nBB" ["a"]

"a"

HOBiT> :put linesB "AA\nBB\n" ["a", "b", "c"]

"a\nb\nc\n"

HOBiT> :put linesB "AA\nBB\n" ["a"]

"a\n"

This behaviour is achieved by the definition in Fig. 2, which makes good use of
reconciliation functions. Note that we do not consider the contrived corner case
where the string ends with duplicated newlines such as in "A\n\n". The function
breakNLB splits a string at the first newline; since breakNLB is injective, its exit
conditions and reconciliation functions are of little interest. The interesting part
is in the definition of linesB , particularly its use of reconciliation functions to
track the existence of a last newline character. We firstly explain the branching
structure of the program. On the top level, when the first line is removed from the
input, the remaining string b may contain more lines, or be the end (represented
by either the empty list or the singleton list [’\n’]). If the first branch is taken,
the returned result will be a list of more than one element. In the second branch
when it is the end of the text, b could contain a newline or simply be empty. We do
not explicitly give patterns for the two cases as they have the same body f : [], but
the reconciliation function distinguishes the two in order to preserve the original
source structure in the backwards execution. Note that we intentionally use
the same variable name b in the case analysis and the reconciliation function, to
signify that the two represent the same source data. The use of argument b in the
reconciliation functions serves the purpose of remembering the (non)existence of
the last newline in the original source, which is then preserved in the new source.

www.dbooks.org

https://www.dbooks.org/

40 K. Matsuda and M. Wang

Fig. 3. Syntax of HOBiT Core

It is worth noting that just like the other examples we have seen, this defini-
tion in HOBiT shares a similar structure with a definition of lines in Haskell.1

The notable difference is that a Haskell definition is likely to have a different
grouping of the three cases of lines into two branches, as there is no need to
keep track of the last newline for backwards execution. Recall that reconcilia-
tion functions are called after branches are chosen by exit conditions; in the case
of linesB , the reconciliation function is used to decide the reconciled value of b′

to be "\n" or "". This, however, means that we cannot separate the pattern b′

into two "\n" and "" with copying its branch body and exit condition, because
then we lose a chance to choose a reconciled value of b based on its original value.

3 Syntax and Type System of HOBiT Core

In this section, we describe the syntax and the type system of the core of HOBiT.

3.1 Syntax

The syntax of HOBiT Core is given in Fig. 3. For simplicity, we only consider
booleans and lists. The syntax is almost the same as the standard λ-calculus with
the fixed-point combinator (fix), lists and booleans. For data constructors and
case expressions, there are in addition bidirectional versions that are underlined.
We allow the body of fix to be non-λs to make our semantics simple (Sect. 4),
though such a definition like fix(λx.True : x) can diverge.

Although in examples we used case/case-expressions with an arbitrary num-
ber of branches having overlapping patterns under the first-match principle, we
assume for simplicity that in HOBiT Core case/case-expressions must have
exactly two branches whose patterns do not overlap; extensions to support these
features are straightforward. As in Haskell, we sometimes omit the braces and
semicolons if they are clear from the layout.

1 Haskell’s lines’s behaviour is a bit more complicated as it returns [] if and only if the
input is "". This behaviour can be achieved by calling linesB only when the input
list is nonempty.

HOBiT: Programming Lenses Without Using Lens Combinators 41

Fig. 4. Typing rules: Δ � p : σ is similar to Γ � p : A but asserts that the resulting
environment is actually a bidirectional environment.

3.2 Type System

The types in HOBiT Core are defined as follows.

A,B ::= Bσ | A → B | [A] | Bool

We use the metavariable σ, τ, . . . for types that do not contain → nor B, We call
σ-types pure datatypes, which are used for sources and views of lenses. Intuitively,
Bσ represents “updatable σ”—data subject to update in bidirectional transfor-
mation. We keep the type system of HOBiT Core simple, though it is possible
to include polymorphic types or intersection types to unify unidirectional and
bidirectional constructors.

The typing judgment Γ ;Δ � e : A, which reads that under environments
Γ and Δ, expression e has type A, is defined by the typing rules in Fig. 4. We
use two environments: Δ (the bidirectional type environment) is for variables
introduced by pattern-matching through case, and Γ for everything else. It is
interesting to observe that Δ only holds pure datatypes, as the pattern variables
of case have pure datatypes, while Γ holds any types. We assume that the
variables in Γ and those in Δ are disjoint, and appropriate α-renaming has been
done to ensure this. This separation of Δ from Γ does not affect typeability,
but is key to our semantics and correctness proof (Sect. 4). Most of the rules
are standard except case; recall that we only use unidirectional constructors in
patterns which have pure types, while the variables bound in the patterns are
used as B-typed values in branch bodies.

www.dbooks.org

https://www.dbooks.org/

42 K. Matsuda and M. Wang

4 Semantics of HOBiT Core

Recall that the unique strength of HOBiT is its ability to mix higher-order uni-
directional programming with bidirectional programming. A consequence of this
mixture is that we can no longer specify its semantics in the same way as other
first-order bidirectional languages such as [13], where two semantics—one for get
and the other for put—suffice. This is because the category of lenses is believed
to have no exponential objects [27] (and thus does not permit λs).

4.1 Basic Idea: Staging

Our solution to this problem is staging [5], which separates evaluation into
two stages: the unidirectional parts is evaluated first to make way for a bidi-
rectional semantics, which only has to deal with the residual first-order pro-
grams. As a simple example, consider the expression (λz.z) (x : ((λw.w) y) : []).
The first-stage evaluation, e ⇓U E, eliminates λs from the expression as in
(λz.z) (x : ((λw.w) y) : []) ⇓U x : y : []. Then, our bidirectional semantics will
be able to treat the residual expression as a lens between value environments
and values, following [13,20]. Specifically, we have the get evaluation relation
μ �G E ⇒ v, which computes the value v of E under environment μ as usual,
and the put evaluation relation μ �P v ⇐ E � μ′, which computes an updated
environment μ′ for E from the updated view v and the original environment μ.
In pseudo syntax, it can be understood as put E μ v = μ′, where μ represents
the original source and μ′ the new source.

It is worth mentioning that a complete separation of the stages is not possible
due to the combination of fix and case, as an attempt to fully evaluate them in
the first stage will result in divergence. Thus, we delay the unidirectional eval-
uation inside case to allow fix, and consequently the three evaluation relations
(uni-directional, get , and put) are mutually dependent.

4.2 Three Evaluation Relations: Unidirectional, get and put

First, we formally define the set of residual expressions:

E ::= True | False | [] | E1 : E2 | λx.e
| x | True | False | [] | E1 : E2 | case E0 of {pi → ei with Ei by E′

i}i=1,2

They are treated as values in the unidirectional evaluation, and as expressions in
the get and put evaluations. Notice that e or ei appear under λ or case, meaning
that their evaluations are delayed.

The set of (first-order) values is defined as below.

v ::= True | False | [] | v1 : v2

Accordingly, we define a (first-order) value environment μ as a finite mapping
from variables to first-order values.

HOBiT: Programming Lenses Without Using Lens Combinators 43

Fig. 5. Evaluation rules for unidirectional parts (excerpt)

Unidirectional Evaluation Relation. The rules for the unidirectional eval-
uation relation is rather standard, as excerpted in Fig. 5. The bidirectional con-
structs (i.e., bidirectional constructors and case) are frozen, i.e., behave just like
ordinary constructors in this evaluation. Notice that we can evaluate an expres-
sion containing free variables; then the resulting residual expression may contain
the free variables.
Bidirectional (get andput) Evaluation Relations. The get and put evalu-
ation relations, μ �G E ⇒ v and μ �P v ⇐ E � μ′, are defined so that they
together form a lens.

Weakening of Environment. Before we lay out the semantics, it is worth explain-
ing a subtlety in environment handling. In conventional evaluation semantics, a
larger than necessary environment does no harm, as long as there is no name
clashes. For example, whether the expression x is evaluated under the environ-
ment {x = 1} or {x = 1, y = 2} does not matter. However, the same is not true
for bidirectional evaluation. Let us consider a residual expression E = x : y : [],
and a value environment μ = {x = 1, y = 2} as the original source. We expect
to have μ �G E ⇒ 1 : 2 : [], which may be derived as:

μ �G x ⇒ 1

...
μ �G y : [] ⇒ 2 : []

μ �G x : y : [] ⇒ 1 : 2 : []

In the put direction, for an updated view say 3 : 4 : [], we expect to have
μ �P 3 : 4 : [] ⇐ E � {x = 3, y = 4} with the corresponding derivation:

μ �P 3 ⇐ x � ?1

...
μ �P 4 : [] ⇐ y : [] � ?2

μ �P 3 : 4 : [] ⇐ x : y : [] � {x = 3, y = 4}

What shall the environments ?1 and ?2 be? One way is to have μ �P 3 ⇐
x � {x = 3, y = 2}, and μ �P 4 : [] ⇐ y : [] � {x = 1, y = 4}, where the vari-
ables do not appear free in the residual expression takes their values from the
original source environment μ. However, the evaluation will get stuck here, as
there is no reasonable way to produce the expected result {x = 3, y = 4} from
?1 = {x = 3, y = 2} and ?2 = {x = 1, y = 4}. In other words, the redundancy in
environment is harmful as it may cause conflicts downstream.

www.dbooks.org

https://www.dbooks.org/

44 K. Matsuda and M. Wang

Our solution to this problem, which follows from [21–23,29], is to allow put
to return value environments containing only bindings that are relevant for the
residual expressions under evaluation. For example, we have μ �P 3 ⇐ x �
{x = 3}, and μ �P 4 : [] ⇐ y : [] � {y = 4}. Then, we can merge the two value
environments ?1 = {x = 3} and ?2 = {y = 4} to obtain the expected result
{x = 3, y = 4}. As a remark, this seemingly simple solution actually has a non-
trivial effect on the reasoning of well-behavedness. We defer a detailed discussion
on this to Sect. 4.3.

Now we are ready to define get and put evaluation rules for each bidirectional
constructs. For variables, we just lookup or update environments. Recall that μ
is a mapping (i.e., function) from variables to (first-order) values, while we use
a record-like notation such as {x = v}.

μ �G x ⇒ μ(x) μ �P v ⇐ x � {x = v}

For constants c where c = False,True, [], the evaluation rules are straightforward.

μ �G c ⇒ c μ �P c ⇐ c � ∅

The above-mentioned behaviour of the bidirectional cons expression E1 : E2 is
formally given as:

μ �G E1 ⇒ v1 μ �G E2 ⇒ v2

μ �G E1 : E2 ⇒ v1 : v2

μ �P v1 ⇐ E1 � μ′
1 μ �P v2 ⇐ E2 � μ′

2

μ �P v1 : v2 ⇐ E1 : E2 � μ′
1 � μ′

2

(Note that the variable rules guarantee that only free variables in the residual
expressions end up in the resulting environments.) Here, � is the merging oper-
ator defined as: μ � μ′ = μ ∪ μ′ if there is no x such that μ(x) �= μ′(x). For
example, {x = 3} � {y = 4} = {x = 3, y = 4}, and {x = 3, y = 4} � {y = 4} =
{x = 3, y = 4}, but {x = 3, y = 2} � {y = 4} is undefined.

The most interesting rules are for case. In the get direction, it is not different
from the ordinary case except that exit conditions are asserted, as shown in
Fig. 6. We use the following predicate for pattern matching.

match(pk, v0, μk) = (pkμk = v0) ∧ (dom(μk) = fv(pk))

Here, we abuse the notation to write pkμk for the value obtained from pk by
replacing the free variables x in pk with μk(x). One might notice that we have
the disjoint union μ�μi in Fig. 6 where μi holds the values of the variables in pi,
as we assume α-renaming of bound variables that is consistent in get and put .
Recall that p1 and p2 are assumed not to overlap, and hence the evaluation is
deterministic. Note that the reconciliation functions E′′

i are untouched by the
rule.

The put evaluation rule of case shown in Fig. 6 is more involved. In addition
to checking which branch should be chosen by using exit conditions, we need
two rules to handle the cases with and without branch switching. Basically,

HOBiT: Programming Lenses Without Using Lens Combinators 45

Fig. 6. get- and put-Evaluation of case: we write μ�X,Y μ′ to ensure that dom(μ) ⊆ X
and dom(μ′) ⊆ Y .

the branch to be taken in the backwards direction is decided first, by the get-
evaluation of the case condition E0 and the checking of the exit condition E′

i

against the updated view v. After that, the body of the chosen branch ei is firstly
uni-directionally evaluated, and then its residual expression Ei is put-evaluated.
The last step is put-evaluation of the case-condition E0. When branch switching
happens, there is the additional step of applying the reconciliation function E′′

j .
Note the use of operator � in computing the updated case condition v′

0.

(μ′ � μ)(x) =

{
μ′(x) if x ∈ dom(μ′)
μ(x) otherwise

Recall that in the beginning of this subsection, we discussed our approach of
avoiding conflicts by producing environments with only relevant variables. This
means the μ′

i above contains only variables that appear free in Ei, which may or
may not be all the variables in pi. Since this is the point where these variables
are introduced, we need to supplement μ′

i with μi from the original pattern
matching so that pi can be properly instantiated.

Construction of Lens. Let us write L0[[E]] for a lens between value environ-
ments and values, defined as:

get L0�E� μ = v if μ �G E ⇒ v
put L0�E� μ v = μ′ if μ �P v ⇐ E � μ′

Then, we can define the lens L�e� induced from e (a closed function expression),
where e x ⇓U E for some fresh variable x.

get L�e� s = get L0�E� {x = s}
put L�e� s v = (μ′ � {x = s})(x) where μ′ = put L0�E� {x = s} v

Actually, :get and :put in Sect. 2 are realised by get L�e� and put L�e�.

www.dbooks.org

https://www.dbooks.org/

46 K. Matsuda and M. Wang

4.3 Correctness

We establish the correctness of HOBiT Core: L�e� ∈ Lens �σ� �τ� is well-behaved
for closed e of type Bσ → Bτ . Recall that Lens S V is a set of lenses �, where
get � ∈ S → V and put � ∈ S → V → S. We only provide proof sketches in this
subsection due to space limitation.

�-well-behavedness. Recall that in the previous subsection, we allow environ-
ments to be weakened during put-evaluation. Since not all variables in a source
may appear in the view, during some intermediate evaluation steps (for example
within case-branches) the weakened environment may not be sufficient to fully
construct a new source. Recall that, in μ �P v ⇐ e � μ′, dom(μ′) can be smaller
than dom(μ), a gap that is fixed at a later stage of evaluation by merging (�)
and defaulting (�) with other environments. This technique reduces conflicts, but
at the same time complicates the compositional reasoning of correctness. Specif-
ically, due to the potentially missing information in the intermediate environ-
ments, well-behavedness may be temporally broken during evaluation. Instead,
we use a variant of well-behavedness that is weakening aware, which will then
be used to establish the standard well-behavedness for the final result.

Definition 1 (�-well-behavedness). Let (S,�) and (V,�) be partially-
ordered sets. A lens � ∈ Lens S V is called �-well-behaved if it satisfies

get � s = v =⇒ v is maximal ∧ (∀v′. v′ � v =⇒ put � s v′ � s)
(�-Acceptability)

put � s v = s′ =⇒ (∀s′′. s′ � s′′ =⇒ v � get � s′′) (�-Consistency)

for any s, s′ ∈ S and v ∈ V , where s is maximal. ��
We write Lens�wb S V for the set of lenses in Lens S V that are �-well-
behaved. In this section, we only consider the case where S and V are value
environments and first-order values, where value environments are ordered by
weakening (μ � μ′ if μ(x) = μ′(x) for all x ∈ dom(μ)), and (�) = (=) for
first-order values. In Sect. 5.2 we consider a slightly more general situation.

The �-well-behavedness is a generalisation of the ordinary well-behavedness,
as it coincides with the ordinary well-behavedness when (�) = (=).

Theorem 1. For S and V with (�) = (=), a lens � ∈ Lens S V is �-well-
behaved iff it is well-behaved. ��
Kripke Logical Relation. The key step to prove the correctness of HOBiT
Core is to prove that L0[[E]] is always �-well-behaved if E is an evaluation result
of a well-typed expression e. The basic idea is to prove this by logical relation
that expression e of type Bσ under the context Δ is evaluated to E, assuming
termination, such that L0[[E]] is a �-well-behaved lens between [[Δ]] and [[σ]].

Usually a logical relation is defined only by induction on the type. In our
case, as we need to consider Δ in the interpretation of Bσ, the relation should
be indexed by Δ too. However, naive indexing does not work due to substitutions.

HOBiT: Programming Lenses Without Using Lens Combinators 47

For example, we could define a (unary) relation EΔ(Bσ) as a set of expressions
that evaluate to “good” (i.e., �-well-behaved) lenses between (the semantics of)
Δ and σ, and EΔ(Bσ → Bτ) as a set of expressions that evaluate to “good”
functions that map good lenses between Δ and σ to those between Δ and τ .
This naive relation, however, does not respect substitution, which can substitute
a value obtained from an expression typed under Δ to a variable typed under
Δ′ such that Δ ⊆ Δ′, where Δ and Δ′ need not be the same. With the naive
definition, good functions at Δ need not be good functions at Δ′, as a good lens
between Δ′ and σ is not always a good lens between Δ and σ.

To remedy the situation, inspired by the denotation semantics in [24], we use
Kripke logical relations [18] where worlds are Δs.

Definition 2. We define the set EΔ�A� of expressions, the set RΔ�A� of residual
expressions, the set �σ� of values and the set �Δ� of value environments as below.

EΔ�A� = {e | ∀E. e ⇓U E implies E ∈ RΔ�A�}
RΔ�Bool� = {True,False}

RΔ�[A]� = List RΔ�A�

RΔ�Bσ� = {E | ∀Δ′. Δ ⊆ Δ′ implies L0�E� ∈ Lens�wb �Δ′� �σ�}
RΔ�A → B� = {F | ∀Δ′. Δ ⊆ Δ′ implies (∀E ∈ RΔ′�A�. F E ∈ EΔ′�B�)}

�Bool� = {True,False}
�[σ]� = List �σ�

�Δ� = {μ | dom(μ) ⊆ dom(Δ) and ∀x ∈ dom(μ).μ(x) ∈ �Δ(x)�}
Here, for a set S, List S is inductively defined as: [] ∈ List S, and s : t ∈ List S
for all s ∈ S and t ∈ List S. ��
The notable difference from ordinary logical relations is the definition of
RΔ�A → B� where we consider an arbitrary Δ′ such that Δ ⊆ Δ′. This is the
key to state RΔ�A� ⊆ RΔ′�A� if Δ ⊆ Δ′. Notice that �σ� = RΔ�σ� for any Δ.

We have the following lemmas.

Lemma 1. If Δ ⊆ Δ′, v ∈ RΔ�A� implies v ∈ RΔ′�A�. ��

Lemma 2. x ∈ RΔ�Bσ� for any Δ such that Δ(x) = σ. ��

Lemma 3. For any σ and Δ, True,False ∈ RΔ�BBool� and [] ∈ RΔ�B[σ]�. ��

Lemma 4. If E1 ∈ RΔ�Bσ� and E2 ∈ RΔ�B[σ]�, then E1 : E2 ∈ RΔ�B[σ]�. ��

Lemma 5. Let σ and τ be pure types and Δ a pure type environment. Suppose
that ei ∈ EΔ�Δi

�τ� for Δi � pi : σ (i = 1, 2), and that E0 ∈ RΔ�Bσ�, E′
1, E

′
2 ∈

RΔ�τ → Bool� and E′′
1 , E′′

2 ∈ RΔ�σ → τ → σ�. Then, case E0 of {pi →
ei with E′

i by E′′
i }i=1,2 ∈ RΔ�Bτ�.

www.dbooks.org

https://www.dbooks.org/

48 K. Matsuda and M. Wang

Proof (Sketch). The proof itself is straightforward by case analysis. The key prop-
erty is that get and put use the same branches in both proofs of �-Acceptability
and �-Consistency. Slight care is required for unidirectional evaluations of e1

and e2, and applications of E′
1, E

′
2, E

′′
1 and E′′

2 . However, the semantics is care-
fully designed so that in the proof of �-Acceptability, unidirectional evalua-
tions that happen in put have already happened in the evaluation of get , and a
similar discussion applies to �-Consistency. ��
As a remark, recall that we assumed α-renaming of pi so that the disjoint unions
(�) in Fig. 6 succeed. This renaming depends on the μs received in get and put
evaluations, and can be realised by using de Bruijn levels.

Lemma 6 (Fundamental Lemma). For Γ ;Δ � e : A, for any Δ′ with Δ ⊆ Δ′

and Ex ∈ RΔ′�Γ (x)�, we have e[Ex/x]x ∈ EΔ′�A�.

Proof (Sketch). We prove the lemma by induction on typing derivation. For
bidirectional constructs, we just apply the above lemmas appropriately. The
other parts are rather routine. ��
Now we are ready to state the correctness of our construction of lenses.

Corollary 1. If ε; ε � e : Bσ → Bτ , then e x ∈ E{x:σ}�Bτ�. ��

Lemma 7. If e ∈ E{x:σ}�Bτ�, L�e� (if defined) is in Lens�wb �σ� �τ� (and thus
well-behaved by Theorem 1). ��

Theorem 2. If ε; ε � e : Bσ → Bτ , then L�e� ∈ Lens �σ� �τ� (if defined) is well-
behaved. ��

5 Extensions

Before presenting a larger example, we discuss a few extensions of HOBiT Core
which facilitate programming.

5.1 In-Language Lens Definition

In HOBiT programming, it is still sometimes useful to allow manually defined
primitive lenses (i.e., lenses constructed from independently specified get/put
functions), for backwards compatibility and also for programs with relatively
simple computation logic but complicated backwards behaviours. This feature
is supported by the construct appLens e1 e2 e3 in HOBiT. For example, we
can write incB x = appLens (λs.s + 1) (λ .λv.v − 1) x to define a bidirectional
increment function incB ::BInt → BInt . Note that for simplicity we require the

HOBiT: Programming Lenses Without Using Lens Combinators 49

additional expression x (represented by e3 in the general case) to convert between
normal functions and lenses. The typing rule for appLens e1 e2 e3 is as below.

Γ ;Δ � e1 : σ → τ Γ ;Δ � e2 : σ → τ → σ Γ ;Δ � e3 : Bσ

Γ ;Δ � appLens e1 e2 e3 : Bτ

Accordingly, we add the following unidirectional evaluation rule.

ei ⇓U Ei (i = 1, 2, 3)
appLens e1 e2 e3 ⇓U appLens E1 E2 E3

Also, we add the following get/put evaluation rules for appLens.

μ �G E3 ⇒ v E1 v ⇓U u

μ �G appLens E1 E2 E3 ⇒ u

μ �G E3 ⇒ v E2 v u′ ⇓U v′ μ �P v′ ⇐ E3 � μ′

μ �P u′ ⇐ appLens E1 E2 E3 � μ′

Notice that appLens e1 e2 e3 is “good” if e3 is so, i.e., appLens e1 e2 e3 ∈
EΔ�Bτ� if e3 ∈ EΔ�Bσ�, provided that the get/put pair (e1, e2) is well-behaved.

5.2 Lens Combinators as Language Constructs

In this paper, we have focused on the case construct, which is inspired by the
cond combinator [7]. Although cond is certainly an important lens combina-
tor, it is not the only one worth considering. Actually, we can obtain language
constructs from a number of lens combinators including those that take care
of alignment [2]. For the sake of demonstration, we outline the derivation of a
simpler example comb ∈ Lens �σ� �τ� → Lens �σ′� �τ ′�. As the construction
depends solely on types, we purposely leave the combinator abstract.

A naive way of lifting combinators can already be found in [21,23]. For exam-
ple, for comb, we might prepare the construct combbad with the following typing
rule (where ε is the empty environment):

ε; ε � e : Bσ → Bτ Γ ;Δ � e′ : Bτ ′

Γ ;Δ � combbad e e′ : Bτ ′

Notice that in this version e is required to be closed so that we can turn the
function directly into a lens by L�−�, and the evaluation of combbad can then be
based on standard lens composition: L0�combbad E E′� = comb L�E� ◦̂ L0�E

′�
(we omit the straightforward concrete evaluation rules), where E and E′ is the
unidirectional evaluation results of e and e′ (notice that a residual expression is
also an expression), and ◦̂ is the lens composition combinator [7] defined by:

(◦̂) ∈ Lens B C → Lens A B → Lens A C
get (�2 ◦̂ �1) a = get �2 (get �1 a)
put (�2 ◦̂ �1) a c′ = put �1 a (put �2 (get �1 a) c′)

The combinator preserves �-well-behavedness, and thus combbad guarantees
correctness. However, as discussed extensively in the case of case, this “closed-
ness” requirements prevents flexible use of variables and creates a major obstacle
in programming.

www.dbooks.org

https://www.dbooks.org/

50 K. Matsuda and M. Wang

So instead of the plain comb, we shall assume a parameterised version
pcomb ∈ Lens (T × �σ�) �τ� → Lens (T × �σ′�) �τ ′� that allows each source
to have an extra component T , which is expected to be kept track of by the
combinator without modification. Here T is assumed to have a partial merging
operator (�) ∈ T → T → T and a minimum element, and pcomb may use these
facts in its definition. By using pcomb, we can give a corresponding language
construct comb with a binder, typed as follows.

Γ ;Δ,x : σ � e : Bτ Γ ;Δ � e′ : Bσ′

Γ ;Δ � comb (x.e) e′ : Bτ ′

We give its unidirectional evaluation rule as

e ⇓U E e′ ⇓U E′

comb (x.e) e′ ⇓U comb E E′

We omit the get/put evaluation rules, which are straightforwardly obtained from
the following equation.

L0�comb E E′� = pcomb (unEnvx L0�E�) ◦̂ 〈idL,L0�E
′�〉

where unEnvx ∈ Lens (�Δ � {x : σ}�) �τ� → Lens (�Δ� × �σ�) �τ� and 〈−,−〉 ∈
Lens �Δ� A → Lens �Δ� B → Lens �Δ� (A × B) are lens combinators defined
for any Δ as:

get (unEnvx �) (μ, v) = get � (μ � {x = v})
put (unEnvx �) (μ, v) u = (μ′, v′)

where μ′ � {x = v′} = (put � (μ � {x = v}) v) � {x = v}
get 〈�1, �2〉 μ = (get �1 μ, get �2 μ)
put 〈�1, �2〉 μ (a, b) = put �1 μ a � put �2 μ b

Both combinators preserve �-well-behavedness, where we assume the
component-wise ordering on pairs. No “closedness” requirement is imposed on
e in this version. From the construct, we can construct a higher-order function
λf.λz.comb (x.f x) z : (Bσ → Bτ) → Bσ′ → Bτ ′. That is, in HOBiT, lens
combinators are just higher-order functions, as long as they permit the above-
mentioned parameterisation. This observation means that we are able to system-
atically derive language constructs from lens combinators; as a matter of fact,
the semantics of case is derived from a variant of the cond combinator [7].

Even better, the parametrised pcomb can be systematically constructed from
the definition of comb. For comb, it is typical that get (comb �) only uses get �,
and put (comb �) uses put �; that is, comb essentially consists of two functions
of types (�σ� → �τ�) → (�σ′� → �τ ′�) and (�σ� → �τ� → �σ�) → (�σ′� → �τ ′� →
�σ′�). Then, we can obtain pcomb of the above type merely by “monad”ifying the
two functions: using the reader monad T → − for the former and the composition
of the reader and writer monads T → (−, T) backwards for the latter suffice to
construct pcomb.

HOBiT: Programming Lenses Without Using Lens Combinators 51

A remaining issue is to ensure that pcomb preserves �-well-behavedness,
which ensures comb (x.e) e′ ∈ EΔ�Bτ ′� under the assumptions e ∈
EΔ�{x:σ}�Bτ� and e′ ∈ EΔ�Bσ′�. Currently, such a proof has to be done manu-
ally, even though comb preserves well-behavedness and pcomb is systematically
constructed. Whether we can lift the correctness proof for comb to pcomb in a
systematic way will be an interesting future exploration.

5.3 Guards

Guards used for branching are merely syntactic sugar in ordinary unidirectional
languages such as Haskell. But interestingly, they actually increase the expressive
power of HOBiT, by enabling inspection of updatable values without making the
inspection functions bidirectional.

For example, Glück and Kawabe’s reversible equivalence check [10] can be
implemented in HOBiT as follows.

eqCheck :: Bσ → Bσ → B(Either (σ, σ) σ)
eqCheck x y = case (x, y) of

(x′, y′) | x′ == y′ → Right x′ with isRight by (λ .λ(Right x).(x, x))
(x′, y′) | otherwise → Left (x′, y′) with isLeft by (λ .λ(Left (x, y)).(x, y))

Here, (−,−) is the bidirectional version of the pair constructor. The exit con-
dition isRight checks whether a value is headed by the constructor Right, and
isLeft by Left. Notice that the backwards transformation of eqCheck fails when
the updated view is Left (v, v) for some v.

5.4 Syntax Sugar for Reconciliation Functions

In the general form, reconciliation functions take in two arguments for the com-
putation of the new source. But as we have seen, very often the arguments are
not used in the definition and therefore redundant. This observation motivates
the following syntax sugar.

p → e with e′ default {x1 = e′′
1 ; . . . ;xn = e′′

n}

Here, x1, . . . , xn are the free variables in p. This syntax sugar is translated as:

p → e with e′ by λ .λ .p[e′′
1/x1, . . . , e

′′
n/xn]

Furthermore, it is also possible to automatically derive some default values
from their types. This idea can be effectively implemented if we extend HOBiT
with type classes.

www.dbooks.org

https://www.dbooks.org/

52 K. Matsuda and M. Wang

5.5 Inference of Exit Conditions

It is possible to infer exit conditions from their surrounding contexts; an idea
that has been studied in the literature of invertible programming [11,20], and
may benefit from range analysis.

Our prototype implementation adopts a very simple inference that constructs
an exit condition λx.case x of {pe → True; → False} for each branch, where pe

is the skeleton of the branch body e, constructed by replacing bidirectional con-
structors with the unidirectional counterparts, and non-constructor expressions
with . For example, from a : appendB x′ y, we obtain the pattern : . This
embarrassingly simple inference has proven to be handy for developing larger
HOBiT programs as we will see in Sect. 6.

6 An Involved Example: Desugaring

In this section, we demonstrate the programmability of HOBiT using the exam-
ple of bidirectional desugaring [26]. Desugaring is a standard process for most
programming languages, and making it bidirectional allows information in desug-
ared form to be propagated back to the surface programs. It is argued convinc-
ingly in [26] that such bidirectional propagation (coined resugaring) is effective
in mapping reduction sequences of desugared programs into those of the surface
programs.

Let us consider a small programming language that consists of let, if ,
Boolean constants, and predefined operators.

data E = ELet E E | EVar Int | EIf E E E | ETrue | EFalse | EOp Name [E]
type Name = String

Variables are represented as de Bruijn indices.
Some operators in this language are syntactic sugar. For example, we may

want to desugar

EOp "not" [e] as EIf e EFalse ETrue.

Also, e1 || e2 can be transformed to let x = e1 in if x then x else e2, which in
our mini-language is the following.

EOp "or" [e1, e2] as ELet e1 (EIf (EVar 0) (EVar 0) (shift 0 e2)

Here, shift n is the standard shifting operator for de Brujin indexed-term that
increments the variables that have indices greater than n (these variables are
“free” in the given expression). We will program a bidirectional version of the
above desugaring process in Figs. 7 and 8, with the particular goal of keeping
the result of a backward execution as close as possible to the original sugared
form (so that it is not merely a “decompilation” in the sense that the original
source has to be consulted).

HOBiT: Programming Lenses Without Using Lens Combinators 53

Fig. 7. composB : a useful building block

Fig. 8. desugarB : bidirectional desugring

We start with an auxiliary function compos [4] in Fig. 7, which is a use-
ful building block for defining shifting and desugaring. We have omitted the
straightforward exit conditions; they will be inferred as explained in Sect. 5.5.
The function mapB is the bidirectional map. The reconciliation function recE
tries to preserves as much source structure as possible by reusing the origi-
nal source e. Here, arities :: [(Name, Int)] maps operator names to their ari-
ties (i.e. arities = [("or", 2), ("not", 1)]). The function shift is the standard
uni-directional shifting function. We omit its definition as it is similar to the
bidirectional version in Fig. 8. Note that default is syntactic sugar for reconcili-
ation function introduced in Sect. 5.4. Here, incB is the bidirectional increment
function defined in Sect. 5.1. Thanks to composB , we only need to define the
interesting parts in the definitions of shiftB and desugarB . The reconciliation

www.dbooks.org

https://www.dbooks.org/

54 K. Matsuda and M. Wang

functions recE and toOp try to keep as much source information as possible,
which enables the behaviour that the backwards execution produces “not” and
“or” in the sugared form only if the original expression has the sugar.

Consider a sugared expression EOp "or" [EOp "not" [ETrue],EOp "not"
[EFalse]] as a source source.

HOBiT> :get desugarB source

ELet (EIf ETrue EFalse ETrue) (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)
{- let x = (if True then False else True)

in if x then x else (if False then False else True) -}

The following updated views may be obtained by reductions from the view.

{- view1 ≡ let x = False in if x then x else (if False then False else True) -}
view1 = ELet EFalse (EIf (EVar 0) (EVar 0) (EIf EFalse EFalse ETrue)

{- view2 ≡ if False then False else (if False then False else True) -}
view2 = EIf EFalse EFalse (EIf EFalse EFalse ETrue)

{- view3 ≡ if False then False else True -}
view3 = EIf EFalse EFalse ETrue

The following are the corresponding backward transformation results.

HOBiT> :put desugarB source view1

EOp "or" [EFalse, EOp "not" [EFalse]]
HOBiT> :put desugarB source view2

EIf EFalse EFalse (EOp "not" [EFalse]
HOBiT> :put desugarB source view3

EOp "not" [False]

As the AST structure of the view is changed, all of the three cases require branch-
switching in the backwards executions; our program handles it with ease. For
view2, the top-level expression EIf EFalse EFalse ... does not have a corresponding
sugared form. Our program keeps the top level unchanged, and proceeds to the
subexpression with correct resugaring, a behaviour enabled by the appropriate
use of reconciliation function (the first line of recE for this particular case) in
composB .

If we were to present the above results as the evaluation steps in the surface
language, one may argue that the second result above does not correspond to
a valid evaluation step in the surface language. In [26], AST nodes introduced
in desugaring are marked with the information of the original sugared syntax,
and resugaring results containing the marked nodes will be skipped, as they do
not correspond to any reduction step in the surface language. The marking also
makes the backwards behaviour more predictable and stable for drastic changes
on the view, as the desugaring becomes injective with this change. This technique
is orthogonal to our exploration here, and may be combined with our approach.

HOBiT: Programming Lenses Without Using Lens Combinators 55

7 Related Work

Controlling Backwards Behaviour. In addition to put ∈ S → V → S, many lens
languages [3] supply a create ∈ V → S (which is in essence a right-inverse of
get) to be used when the original source data is unavailable. This happens when
new data is inserted in the view, which does not have any corresponding source
for put to execute, or when branch-switching happens but with no reconciliation
function available. Being a right-inverse, create does not fail (assuming it ter-
minates), but since it is not guided by the original source, the results are more
arbitrary. We do not include create in HOBiT, as it complicates the system
without offering obvious benefits. Our branch-switching facilities are perfectly
capable of handling missing source data via reconciliation functions.

Using exit conditions in branching constructs for backwards evaluation can
be found in a number of related fields: bidirectional transformation [7], reversible
computation [34] and program inversion [11,20]. Our design of case is inspired by
the cond combinator in the lens framework [7] and the if-statement in Janus [34].
A similar combinator is Case in BiGUL [16], where a branch has a function
performing a similar role as an exit condition, but taking the original source in
addition. This difference makes Case more expressive than cond; for example,
Case can implement matching lenses [2]. Our design of case follows cond for its
relative simplicity, but the same underlying technique can be applied to Case
as mentioned in Sect. 5.2. In the context of bidirectionalization [19,29,30] there
is the idea of “Plug-ins” [31] that are similar to reconciliation functions in the
sense that source values can be adapted to direct backwards execution.

Applicative Lenses. The applicative lens framework [21,23] provides a way to use
λ-abstraction and function application as in normal functional programming to
compose lenses. Note that this use of “applicative” refers to the classical applica-
tive (functional) programming style, and is not directly related to Applicative
functor in Haskell. In this sense, it shares a similar goal to us. But crucially, applica-
tive lens lacks HOBiT’s ability to allow λ-bound variables to be used freely, and as
a result suffers from the same limitation of lens languages. There are also a couple
of technical differences between applicative lens and our work: applicative lens is
based on Yoneda embedding while ours is based on separating Γ and Δ and hav-
ing three semantics (Sect. 4); and applicative lens is implemented as an embedded
DSL, while HOBiT is given as a standalone language. Embedded implementation
of HOBiT is possible, but a type-correct embedding would expose the handling of
environment Δ to programmers, which is undesirable.

Lenses and Their Extensions. As mentioned in Sect. 1, the most common way
to construct lenses is by using combinators [3,7,8], in which lenses are treated
as opaque objects and composed by using lens combinators. Our goal in this
paper is to enhance the programmability of lens programming, while keeping its
expressive power as possible. In HOBiT, primitive lenses can be represented as
functions on B-typed values (Sect. 5.1), and lens combinators satisfying certain
conditions can be represented as language construct with binders (Sect. 5.2),
which is at least enough to express the original lenses in [7].

www.dbooks.org

https://www.dbooks.org/

56 K. Matsuda and M. Wang

Among extensions of the lens language [2,3,7–9,16,17,27,32], there exists a
few that extend the classical lens model [7], namely quotient lenses [8], symmetric
lenses [14], and edit-based lenses [15]. A natural question to ask is whether our
development, which is based on the classical lenses, can be extended to them.
The answer depends on treatment of value environments μ in get and put . In
our semantics, we assume a non-linear system as we can use the same variable
in μ any number of times. This requires us to extend the classical lens to allow
merging (�) and defaulting (�) operations in put with �-well-behavedness, but
makes the syntax and type system of HOBiT simple, and HOBiT free from
the design issues of linear programming languages [25]. Such extension of lenses
would be applicable to some kinds of lens models, including quotient lenses and
symmetric lenses, but its applicability is not clear in general. Also, we want to
mention that allowing duplications in bidirectional transformation is still open,
as it essentially entails multiple views and the synchronization among them.

8 Conclusion

We have designed HOBiT, a higher-order bidirectional programming language in
which lenses are represented as functions and lens combinators are represented
as language constructs with binders. The main advantage of HOBiT is that users
can program in a style similar to conventional functional programming, while still
enjoying the benefits of lenses (i.e., the expressive power and well-behavedness
guarantee). This has allowed us to program realistic examples with relative ease.

HOBiT for the first time introduces a truly “functional” way of construct-
ing bidirectional programs, which opens up a new area of future explorations.
Particularly, we have just started to look at programming techniques in HOBiT.
Moreover, given the resemblance of HOBiT code to that in conventional lan-
guages, the application of existing programming tools becomes plausible.

Acknowledgements. We thank Shin-ya Katsumata, Makoto Hamana and Kazuyuki
Asada for their helpful comments on the category theory and denotational semantics,
from which our formal discussions originate. The work was partially supported by JSPS
KAKENHI Grant Numbers 24700020, 15K15966, and 15H02681.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981). https://doi.org/10.1145/319628.319634

2. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: Hudak, P., Weirich, S. (eds.) ICFP, pp.
193–204. ACM (2010). https://doi.org/10.1145/1863543.1863572

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Necula, G.C., Wadler, P. (eds.) POPL, pp.
407–419. ACM (2008). https://doi.org/10.1145/1328438.1328487

4. Bringert, B., Ranta, A.: A pattern for almost compositional functions. J. Funct.
Program. 18(5–6), 567–598 (2008). https://doi.org/10.1017/S0956796808006898

https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1017/S0956796808006898

HOBiT: Programming Lenses Without Using Lens Combinators 57

5. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). https://doi.org/10.1145/382780.382785

6. Fegaras, L.: Propagating updates through XML views using lineage tracing. In:
Li, F., Moro, M.M., Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey, M.J.,
Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal, U., Tsotras, V.J. (eds.)
ICDE, pp. 309–320. IEEE (2010). https://doi.org/10.1109/ICDE.2010.5447896

7. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3) (2007). https://doi.org/10.1145/
1232420.1232424

8. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: Hook, J., Thie-
mann, P. (eds.) ICFP, pp. 383–396. ACM (2008). https://doi.org/10.1145/1411204.
1411257

9. Foster, N., Matsuda, K., Voigtländer, J.: Three complementary approaches to bidi-
rectional programming. In: Gibbons, J. (ed.) Generic and Indexed Programming.
LNCS, vol. 7470, pp. 1–46. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32202-0 1

10. Glück, R., Kawabe, M.: A program inverter for a functional language with equality
and constructors. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 246–264.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40018-9 17

11. Glück, R., Kawabe, M.: Revisiting an automatic program inverter for lisp. SIG-
PLAN Not. 40(5), 8–17 (2005). https://doi.org/10.1145/1071221.1071222

12. Hegner, S.J.: Foundations of canonical update support for closed database views.
In: Abiteboul, S., Kanellakis, P.C. (eds.) ICDT 1990. LNCS, vol. 470, pp. 422–436.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-53507-1 93

13. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 205–216. ACM
(2010). https://doi.org/10.1145/1863543.1863573

14. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Ball, T., Sagiv, M.
(eds.) POPL, pp. 371–384. ACM (2011). https://doi.org/10.1145/1926385.1926428

15. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
POPL, pp. 495–508. ACM (2012). https://doi.org/10.1145/2103656.2103715

16. Hu, Z., Ko, H.S.: Principles and practice of bidirectional programming in BiGUL.
Oxford Summer School on Bidirectional Transformations (2017). https://bitbucket.
org/prl tokyo/bigul/raw/master/SSBX16/tutorial.pdf. Accessed 18 Oct 2017

17. Hu, Z., Mu, S.-C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. In: Heintze, N., Sestoft, P. (eds.)
PEPM, pp. 178–189. ACM (2004). https://doi.org/10.1145/1014007.1014025

18. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037110

19. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
Hinze, R., Ramsey, N. (eds.) ICFP, pp. 47–58. ACM (2007). https://doi.org/10.
1145/1291151.1291162

20. Matsuda, K., Mu, S.-C., Hu, Z., Takeichi, M.: A grammar-based approach to invert-
ible programs. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 448–467.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 24

21. Matsuda, K., Wang, M.: Applicative bidirectional programming: mixing lenses and
semantic bidirectionalization. J. Funct. Program. Accepted 14 Feb 2018

www.dbooks.org

https://doi.org/10.1145/382780.382785
https://doi.org/10.1109/ICDE.2010.5447896
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1145/1411204.1411257
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-540-40018-9_17
https://doi.org/10.1145/1071221.1071222
https://doi.org/10.1007/3-540-53507-1_93
https://doi.org/10.1145/1863543.1863573
https://doi.org/10.1145/1926385.1926428
https://doi.org/10.1145/2103656.2103715
https://bitbucket.org/prl_tokyo/bigul/raw/master/SSBX16/tutorial.pdf
https://bitbucket.org/prl_tokyo/bigul/raw/master/SSBX16/tutorial.pdf
https://doi.org/10.1145/1014007.1014025
https://doi.org/10.1007/BFb0037110
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1145/1291151.1291162
https://doi.org/10.1007/978-3-642-11957-6_24
https://www.dbooks.org/

58 K. Matsuda and M. Wang

22. Matsuda, K., Wang, M.: “Bidirectionalization for free” for monomorphic transfor-
mations. Sci. Comput. Program. 111(1), 79–109 (2014). https://doi.org/10.1016/
j.scico.2014.07.008

23. Matsuda, K., Wang, M.: Applicative bidirectional programming with lenses. In:
Fisher, K., Reppy, J.H. (eds.) ICFP, pp. 62–74. ACM (2015). https://doi.org/10.
1145/2784731.2784750

24. Moggi, E.: Functor categories and two-level languages. In: Nivat, M. (ed.) FoSSaCS
1998. LNCS, vol. 1378, pp. 211–225. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053552

25. Morris, J.G.: The best of both worlds: linear functional programming without
compromise. In: Garrigue, J., Keller, G., Sumii, E. (eds.) ICFP, pp. 448–461. ACM
(2016). https://doi.org/10.1145/2951913.2951925

26. Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences through
syntactic sugar. In: O’Boyle, M.F.P., Pingali, K. (eds.) PLDI, pp. 361–371. ACM
(2014). https://doi.org/10.1145/2594291.2594319

27. Rajkumar, R., Foster, N., Lindley, S., Cheney, J.: Lenses for web data. ECEASST
57 (2013). https://doi.org/10.14279/tuj.eceasst.57.879

28. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3 10

29. Voigtländer, J.: Bidirectionalization for free! (pearl). In: Shao, Z., Pierce, B.C.
(eds.) POPL, pp. 165–176. ACM (2009). https://doi.org/10.1145/1480881.1480904

30. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Combining syntactic and semantic
bidirectionalization. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 181–192. ACM
(2010). https://doi.org/10.1145/1863543.1863571

31. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Enhancing semantic bidirection-
alization via shape bidirectionalizer plug-ins. J. Funct. Program. 23(5), 515–551
(2013). https://doi.org/10.1017/S0956796813000130

32. Wang, M., Gibbons, J., Matsuda, K., Hu, Z.: Refactoring pattern matching. Sci.
Comput. Program. 78(11), 2216–2242 (2013). https://doi.org/10.1016/j.scico.2012.
07.014

33. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: Stirewalt, R.E.K., Egyed,
A., Fischer, B. (eds.) ASE, pp. 164–173. ACM (2007). https://doi.org/10.1145/
1321631.1321657

34. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Ramı́rez, A., Bilardi, G., Gschwind, M. (eds.) CF, pp. 43–54. ACM
(2008). https://doi.org/10.1145/1366230.1366239

35. Yu, Y., Lin, Y., Hu, Z., Hidaka, S., Kato, H., Montrieux, L.: Maintaining invariant
traceability through bidirectional transformations. In: Glinz, M., Murphy, G.C.,
Pezzè, M. (eds.) ICSE, pp. 540–550. IEEE (2012). https://doi.org/10.1109/ICSE.
2012.6227162

https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1016/j.scico.2014.07.008
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1145/2784731.2784750
https://doi.org/10.1007/BFb0053552
https://doi.org/10.1007/BFb0053552
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1145/2594291.2594319
https://doi.org/10.14279/tuj.eceasst.57.879
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1863543.1863571
https://doi.org/10.1017/S0956796813000130
https://doi.org/10.1016/j.scico.2012.07.014
https://doi.org/10.1016/j.scico.2012.07.014
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1366230.1366239
https://doi.org/10.1109/ICSE.2012.6227162
https://doi.org/10.1109/ICSE.2012.6227162

HOBiT: Programming Lenses Without Using Lens Combinators 59

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Dualizing Generalized Algebraic Data
Types by Matrix Transposition

Klaus Ostermann(B) and Julian Jabs

University of Tübingen, Tübingen, Germany
{klaus.ostermann,julian.jabs}@uni-tuebingen.de

Abstract. We characterize the relation between generalized algebraic
datatypes (GADTs) with pattern matching on their constructors one
hand, and generalized algebraic co-datatypes (GAcoDTs) with copattern
matching on their destructors on the other hand: GADTs can be con-
verted mechanically to GAcoDTs by refunctionalization, GAcoDTs can
be converted mechanically to GADTs by defunctionalization, and both
defunctionalization and refunctionalization correspond to a transposition
of the matrix in which the equations for each constructor/destructor pair
of the (co-)datatype are organized. We have defined a calculus, GADT T ,
which unifies GADTs and GAcoDTs in such a way that GADTs and
GAcoDTs are merely different ways to partition the program.

We have formalized the type system and operational semantics of
GADT T in the Coq proof assistant and have mechanically verified the
following results: (1) The type system of GADT T is sound, (2) defunc-
tionalization and refunctionalization can translate GADTs to GAcoDTs
and back, (3) both transformations are type- and semantics-preserving
and are inverses of each other, (4) (co-)datatypes can be represented by
matrices in such a way the aforementioned transformations correspond
to matrix transposition, (5) GADTs are extensible in an exactly dual way
to GAcoDTs; we thereby clarify folklore knowledge about the “expres-
sion problem”.

We believe that the identification of this relationship can guide future
language design of “dual features” for data and codata.

1 Introduction

The duality between data and codata, between construction and destruction,
between smallest and largest fixed points, is a long-standing topic in the PL
community. While some languages, such as Haskell, do not distinguish explicitly
between data and codata, there has been a “growing consensus” [1] that the two
should not be mixed up. Many ideas that are well-known from the data world
have counterparts in the codata world. One work that is particularly relevant
for this paper are copatterns, also proposed by Abel et al. [1]. Using copatterns,

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-89884-1 3) contains supplementary material, which is
available to authorized users.

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 60–85, 2018.
https://doi.org/10.1007/978-3-319-89884-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_3&domain=pdf
https://doi.org/10.1007/978-3-319-89884-1_3
https://doi.org/10.1007/978-3-319-89884-1_3

Dualizing Generalized Algebraic Data Types by Matrix Transposition 61

the language support for codata is very symmetrical to that for data: Data
types are defined in terms of constructors, functions consuming data are defined
using pattern matching on constructors; codata types are defined in terms of
destructors, functions producing codata are defined using copattern matching
on destructors.

Another example of designing dual features for codata is the recently pro-
posed codata version of inductive data types [36]. However, coming up with these
counterparts requires ingenuity. The overarching goal of this work is to replace
the required ingenuity by a mechanical derivation. A key idea towards this goal
has been proposed by Rendel et al. [31], namely to relate the data and codata
worlds by refunctionalization [16] and defunctionalization [17,32].

Defunctionalization is a global program transformation to transform higher-
order programs into first-order programs. By defunctionalizing a program,
higher-order function types are replaced by sum types with one variant per func-
tion that exists in the program. For instance, if a program contains two functions
of type Nat → Nat , then these functions are represented by a sum type with
two variants, one for each function, whereby the type components of each variant
store the content of the free variables that show up in the function definition.
Defunctionalized function calls become calls to a special first-order apply func-
tion which pattern-matches on the aforementioned sum type to dispatch the call
to the right function body.

Refunctionalization is the inverse transformation, but traditionally it only
works (easily) on programs that are in the image of defunctionalization [16]. In
particular, it is not clear how to refunctionalize programs when there is more
than one function (like apply) that pattern-matches on the same data type.
Rendel et al. [31] have shown that this problem goes away when functions are
generalized to arbitrary codata (with functions being the special codata type
with only one apply destructor), because then every pattern-matching function
in a program to be refunctionalized can be expressed as another destructor.

The main goal of this work is to extend the de- and refunctionalization corre-
spondence between data and codata to generalized algebraic datatypes (GADTs)
[8,40] and their codata counterpart, which we call Generalized Algebraic Codata
types (GAcoDTs). More concretely, this paper makes the following contributions.

– We present the syntax, operational semantics, and type system of a language,
GADTT , that can express both GADTs and GAcoDTs. In this language,
GADTs and GAcoDTs are unified in such a way that they are merely two
different representations of an abstract “matrix” interface.

– We show that the type system is sound by proving progress and preservation
[39].

– We formally define defunctionalization and refunctionalization, observe that
they correspond to matrix transposition, and prove that GADTs and
GAcoDTs are indistinguishable after hiding them behind the aforementioned
matrix interface. We conclude that defunctionalization and refunctionalization
preserve both operational semantics and typing.

www.dbooks.org

https://www.dbooks.org/

62 K. Ostermann and J. Jabs

– We prove that both GADTs and GAcoDTs can be extended in a modular way
(with separate type checking) by “adding rows” to the corresponding matrix.
Due to their matrix transposition relation, this means that the extensibil-
ity is exactly dual, which clarifies earlier informal results on the “expression
problem” [11,33,37].

– The language and all results have been formalized and mechanically verified
in the Coq proof assistant. The Coq sources are available in the supplemental
material that accompanies this submission.

– As a small side contribution, if one considers only the GADT part of the
language, this is to the best of our knowledge the first mechanically verified
formalization of GADTs. It is also simpler than previous formalizations of
GADTs because it is explicitly typed and hence avoids the complications of
type inference.

The remainder of this paper is structured as follows. In Sect. 2 we give
an informal overview of our main contributions by means of an example and
using conventional concrete syntax. In Sect. 3 we present the syntax, operational
semantics, and type system of GADTT . Section 4 presents the aforementioned
mechanically verified properties of GADTT . In Sect. 5, we discuss applications
and limitations of GADTT , talk about termination/productivity and directions
for future work, and describe how we formalized GADTT in Coq. Finally, Sect. 6
discusses related work and Sect. 7 concludes.

2 Informal Overview

Figure 1 illustrates the language design of GADTT in terms of an example.
The left-hand side shows an example using GADTs and functions that pattern-
match on GADT constructors. The right-hand side shows the same example
using GAcoDTs and functions that copattern-match on GAcoDT destructors.
The right-hand side is the refunctionalization of the left hand side; the left-hand
side is the defunctionalization of the right-hand side.

Simply-Typed (Co)Datatypes. Let us first look at the Nat (co)datatype. Every
data or codata type has an arity : The number of type arguments it receives. Since
GADTT does only feature types of kind *, we simply state the number of type
arguments in the (co)data type declaration. Nat receives zero type arguments,
hence Nat illustrates the simply-typed setting with no type parameters. Func-
tions in GADTT , like add on the left-hand side, are first-order only; higher-order
functions can be encoded as codata instead. Functions always (co)pattern-match
on their first argument. (Co)pattern matching on multiple argument as well as
nested and deep (co)pattern matching are not supported directly and must be
encoded via auxiliary functions. We see that the refunctionalized version of Nat
on the right-hand side turns constructors into functions, functions into destruc-
tors, and pattern matching into copattern matching. Abel et al. [1] use “dot
notation” for copattern matching and destructor application; for instance, they

Dualizing Generalized Algebraic Data Types by Matrix Transposition 63

data Nat[0] where

zero(): Nat

succ(Nat): Nat

function add(Nat,Nat): Nat where

add(zero(), x) = x

add(succ(y),x) = succ(add(y,x))

data List[1] where

nil[A](): List[A]

cons[A](A, List[A]): List[A]

function length[A](List[A]): Nat w..

length[_](nil[_]) = 0

length[B](cons[_](x,xs)) =

succ(length[B](xs))

function sum(List[Nat]): Nat

sum(nil[_]) = 0

sum(cons[_](x,xs)) = x + sum(xs)

data Tree[1] where

node(Nat): Tree[Nat]

branch[A](List[Tree[A]])

: Tree[List[A]]

function unwrap(Tree[Nat]): Nat w..

unwrap(node(n)) = n

unwrap(branch[_](xs)) = impossible

function width[A](Tree[A]): Nat w..

width[_](node(n)) = 0

width[_](branch[C](xs)) =

length[C](xs)

codata Nat[0] where

add(Nat,Nat) : Nat

function zero(): Nat where

add(zero(),x) = x

function succ(Nat): Nat where

add(succ(y),x) = succ(add(y,x))

codata List[1] where

length[A](List[A]): Nat

sum(List[Nat]): Nat

function nil[A](): List[A] where

length[_](nil[_]) = 0

sum(nil[_]) = 0

function cons[A](A, List[A]): List[A] w..

length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(cons[_](x,xs)) = x + sum(xs)

codata Tree[1] where

unwrap(Tree[Nat]) : Nat

width[A](Tree[A]): Nat

function node(Nat): Tree[Nat] where

unwrap(node(n)) = n

width[_](node(n)) = 0

function branch[A](List[Tree[A]])

: Tree [List[A]] where

unwrap(branch[_](xs)) = impossible

width[_](branch[C](xs)) =

length[C](xs)

Fig. 1. The same example in the data fragment (left) and codata fragment (right)

List[1] nil[A](): List[A] cons[A](A, List[A]): List[A]

length[A](List[A]): Nat length[_](nil[_]) = 0
length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(List[Nat]): Nat sum(nil[_]) = 0 sum(cons[_](x,xs)) = x + sum(xs)

Fig. 2. Matrix representation of List GADT from Fig. 1 (left)

List[1] length[A](List[A]): Nat sum(List[Nat]): Nat

nil[A](): List[A] length[_](nil[_]) = 0 sum(nil[_]) = 0

cons[A](A, List[A]): List[A]
length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(cons[_](x,xs)) =

x + sum(xs)

Fig. 3. Matrix representation of List GAcoDT from Fig. 1 (right). This matrix is the
transposition of Fig. 2.

www.dbooks.org

https://www.dbooks.org/

64 K. Ostermann and J. Jabs

would write succ(y).add(x) = succ(y.add(x)) instead of add(succ(y),x) =
succ(add(y,x)) on the right-hand side of Fig. 1. We use the same syntax for
constructor calls, function calls, and destructor calls because then the equations
are not affected by de- and refunctionalization.

Parametric (Co)Datatypes. The List datatype illustrates the classical special
case of GADTs with no indexing. Type arguments of constructors, functions, and
destructors are both declared and passed via rectangular brackets [...] (loosely
like in Scala). Like System F, GADTT has no type inference; all type annotations
and type applications must be given explicitly. GADTT has a redundant way of
binding type parameters. When defining an equation of a polymorphic function
with a polymorphic first argument, we use square brackets to bind both the
type parameters of the function and of the constructor/destructor on which we
(co)pattern-match. For instance, in the equation length[B](cons[](x,xs)) =
... on the left hand side, B is the type parameter of the length function,
whereas the underscore (which we use if the type argument is not relevant,
we could replace it by a proper type variable name) binds the type argument
of the constructor with which the list was created. In this example, we could
have also written the equation as length[](cons[B](x,xs)) = ... because
both type parameters must necessarily be the same, but in the general case we
need access to both sets of type variables (as the next example will illustrate).
It is important that we do not (co)pattern-match on type arguments, since this
would destroy parametricity; rather, the [...] notation on the left hand side of
an equation is only a binding construct for type variables.

Codatatypes also serve as a generalization of first-class functions. The code
below shows how a definition of a general function type together with a spe-
cific family of first-class function addn (that can be passed as an argument and
returned as a result), defined by a codata generator function with return type
Function[Nat,Nat].

codata Function[2] where

apply[A,B](Function[A,B], A): B

function addn(Nat): Function[Nat,Nat] where

apply(addn(n),m) = add(n,m)

Type Parameter Binding. Of those two sets of type parameter bindings, the one
for functions is in a way always redundant because we could use the type variable
declaration inside the function declaration instead. For instance, in the equation
length[B](cons[](x,xs)) = succ(length[B](xs)) on the left hand side we
could use the type parameter A of the enclosing function declaration instead.
However, in GADTT the scope of the type variables in the function declaration
does not extend to the equations and the type arguments must be bound anew
in every equation. The reason for that is that we want to design the equations
in such a way that they do not need to be touched when de/refunctionalizing
a (co)datatype. For instance, when refunctionalizing a datatype, a function

Dualizing Generalized Algebraic Data Types by Matrix Transposition 65

declaration is turned into a destructor declaration and what used to be a type
argument that was bound in the enclosing function declaration becomes a type
argument that is bound in a remote destructor declaration; to make type-
checking modular we hence need a local binding construct. Our main goal in
designing GADTT was not to make it convenient for programmers but to make
the relation between GADTs and GAcoDTs as simple as possible; furthermore,
a less verbose surface syntax could easily be added on top.

If we look at the corresponding List codatatype on the right-hand side,
we see that the sum function from the left-hand side, which accepts only a list
of numbers, turns into a destructor that is only applicable to those instances
of List whose type parameter is Nat. This is similar to methods in object-
oriented programming whose availability depends on type parameters [28], but
here we see that this feature arises “mechanically” by the de/refunctionalization
correspondence.

GA(co)DTs. The Tree (co)datatype illustrates a usage of GA(co)DTs that can-
not be expressed with traditional parametric data types. We can see that by
looking at the return type of the constructors of the Tree datatype; they are
Tree[Nat] and Tree[List[A]] instead of Tree[A]. The Tree codatatype is also
using the power of GAcoDTs in the unwrap destructor1 because its first argu-
ment is different from Tree[A]. The GADT constructor node(Nat): Tree[Nat]
turns into a function that returns a Tree[Nat] on the right hand side. The Tree
example illustrates two additional issues that did not show up in the earlier
examples.

First, it illustrates that type unification may make some pattern matches
impossible, as illustrated by the unwrap(branch[](xs)) = impossible equa-
tion on the left hand side. The equation is impossible, because the function
argument type Tree[Nat] cannot be unified with the constructor return type
Tree[List[A]].2 In GADTT , we require that pattern matching is always com-
plete, but impossible equations are not type-checked; the right-hand side can
hence be filled with any dummy term. Second, the equation width[](branch[C]
(xs)) = length[C](xs) illustrates the case where it is essential that we can
bind constructor type arguments; otherwise we would have no name for the type
argument we need to pass to length. Such type arguments are sometimes called
existential or phantom [8] because if we have a branch of type Tree[A], we only
know that there exists some type that was used in the invocation of the branch
constructor, but that type does not show up in the structure of Tree[A].

We see again how both impossible equations and the need to access construc-
tor type arguments translate naturally into corresponding features in the codata
world. For impossible equations, we need to check whether the first destructor
argument type can be unified with the function return type. Access to existential

1 The unwrap destructor is meant to be used to extract the number from a tree that
directly contains a number, i.e., a tree constructed with constructor node.

2 This fits with our intention that unwrap should only work on a node (which directly
contains a number).

www.dbooks.org

https://www.dbooks.org/

66 K. Ostermann and J. Jabs

constructor type arguments turns into access to local function types; conversely,
access to existential destructor type arguments in the codata world turns into
access to local function type arguments.

GADT = GAcoDTT . We can see that the relation between GADTs and
GAcoDTs is as promised when looking at Figs. 2 and 3. These two figures show
a slightly different representation of the List (co)datatype and associated func-
tions from Fig. 1. In this presentation, we have dropped all keywords from the
language, such as function, data and codata. The reason for dropping these
keywords is that now function signatures in the data fragment look the same
as destructor signatures in the codata fragment, and constructor signatures in
the data fragment look the same as function signatures in the codata fragment.
Figure 2 organizes the datatype in the form of a matrix: the first row lists the
datatype and its constructor signatures, the first column lists the signatures
of the functions that pattern-match on the datatype, the inner cells represent
the equations for each combination of constructor and function. Figure 3 does
the same for the List codatatype: The first row lists the codatatype and its
destructor signatures, the first column lists the signatures of functions that
copattern-match on the codatatype, the inner cells represent the equations for
each combination of function and destructor. We can now see that the relation
between GADTs and GAcoDTs is now indeed rather simple: It is just matrix
transposition.

An essential property of this transformation is that other (co)datatypes and
functions are completely unaffected by the transformation. For instance, the Tree
datatype (or codatatype, regardless of which version we use) looks the same,
regardless of whether we encode List in data or in codata style. Defunctional-
ization and refunctionalization are still global transformations in that we need
to find all functions that pattern-match on a datatype (for refunctionalization)
or find all functions that copattern-match on a codatatype (for defunctionaliza-
tion), but the rest of the program, including all clients of those (co)datatypes
and functions, remain the same.

Infinite Codata, Termination, Productivity. The semantics of codata is usually
defined via greatest fixed point constructions that include the possibility to rep-
resent “infinite” structures, such as streams. This is not the focus of this work,
but since our examples so far did not feature such “infinite” structures but we
do not want to give the impression that our codata types do somehow lack the
expressiveness to express streams and the like, hence we show here an example
of how to encode a stream of zeros, both in the codata representation (left) and,
defunctionalized, in the data representation (right).

Dualizing Generalized Algebraic Data Types by Matrix Transposition 67

codata Stream where

head(Stream) : Nat

tail(Stream) : Stream

function zeros() : Stream

head(zeros()) = zero()

tail(zeros()) = zeros()

data Stream where

zeros() : Stream

function head(Stream) : Nat

head(zeros()) = zero()

function tail(Stream) : Stream

tail(zeros()) = zeros()

Codata is also often associated with guarded corecursion to ensure productivity.
In the copattern formulation of codata, productivity and termination coincide
[2]. Due to our unified treatment of data and codata, a single check is sufficient
for both termination/productivity of programs. In Sect. 5.3, we discuss a sim-
ple syntactic check that corresponds to both structural recursion and guarded
corecursion.

Properties of GADTT . In the remainder of this paper, we formalize GADTT in
a style similar to the matrix representation of (co)datatypes we have just seen.
We define typing rules and a small-step operational semantics and prove formal
versions of the following informal theorems: (1) The type system of GADTT

is sound (progress and preservation), (2) Defunctionalization and refunctional-
ization (that is, matrix transposition) of (co)datatypes preserves well-typedness
and operational semantics, (3) Both types of matrices are modularly extensible
in one dimension, namely by adding more rows to the matrix. This means that
we can modularly add constructors or destructors and their respective equa-
tions without breaking type soundness as long as the new equations are sound
themselves.

3 Formal Semantics

We have formalized GADTT and all associated theorems and proofs in Coq3.
Here we present a traditional representation of the formal syntax using context-
free grammars, a small-step operational semantics, and a type system.

We have formalized the language in such a way that we abstract over the
physical representation of matrices as described in the previous section, hence
we do not need to distinguish between GADTs and GAcoDTs. In the following,
we say constructor to denote either a constructor of a datatype, or a function
that copattern-matches on a codatatype. We say destructor to denote either a
function that pattern-matches on a datatype, or a destructor of a codatatype.
The language is defined in terms of constructors and destructors; we will later
see that GADTs and GAcoDTs are merely different organizations of destructors
and constructors.

3.1 Language Design Rationale

Our main goal in the formalization is to clarify the relation between GADTs
and GAcoDTs, and not to design a calculus that is convenient to use as a
3 Full Coq sources are available in the supplemental material.

www.dbooks.org

https://www.dbooks.org/

68 K. Ostermann and J. Jabs

programming language. Hence we have left out many standard features of pro-
gramming calculi that would have made the description of that relation more
complicated. In particular:

– Like System F, GADTT requires explicit type annotations and explicit type
application. Type inference could be added on top of the calculus, but this is
not in the scope of this work.

– (Co)pattern matching is restricted in that every function must necessarily
(co)pattern-match on its first argument, hence (co)pattern-matching on mul-
tiple arguments or “deep” (co)pattern matching must be encoded by aux-
iliary functions. Pattern matching is only supported for top-level function
definitions; there is no “case” or “match” construct. Functions that are not
supposed to (co)pattern-match (like the polymorphic identity function) must
be encoded by a function that (co)pattern-matches on a dummy argument of
type Unit.

– First-class functions are supported in the form of codata, but anonymous
local first-class functions must be encoded via lambda lifting [3,25], that is,
they must be encoded as top-level functions where the bindings for the free
variables are passed as an extra parameter.

– Due to the abstraction over the physical representation of matrices we have
not fixed the physical modular structure (a linearization of the matrix as
text) of programs. Type checking of matrices simply iterates over all cells
in an unspecified order. However, later on we will characterize GADTs and
GAcoDTs as two physical renderings of matrices and formally prove the way
in which those program organizations are extensible.

3.2 Notational Conventions

As usual, we use the same letters for both non-terminal symbols and meta-
variables, e.g., t stands both for the non-terminal in the grammar for terms
but inside inference rules it is a meta-variable that stands for any term. We
use the notation t to denote a list t1, t2, . . . , t|t|, where |t| is the length of the
list. We also use list notation to denote iteration, e.g., P, Γ � t : T means
P, Γ � t1 : T1, . . . , P, Γ � t|t| : T|t|. To keep the notation readable, we write x : T

instead of x : T to denote x1 : T1, . . . , xn : Tn.
We use the notation t[x := t′] to denote the substitution of all free occurrences

of x in t by t′, and similarly T [X := T ′] and t[X := T ′] for the substitution of
type variables in types and terms, respectively.

3.3 Syntax

The syntax of GADTT is defined in Fig. 4. Types have the form m[T], where m is
the name of a GADT or GAcoDT (in the following referred to as matrix name),
and square brackets to denote type application. Types can contain type variables
X. In the syntax of terms t, x denotes parameters that are bound by (co)pattern
matching and y denotes other parameters. A constructor call c[T](t) takes zero or

Dualizing Generalized Algebraic Data Types by Matrix Transposition 69

Fig. 4. Syntax and operational semantics of GADT T

more arguments, whereas a destructor call d[T](t, t) takes at least one argument
(namely the one to be destructed). Both destructors and constructors can have
type parameters, which must be passed via square brackets.

A constructor signature c[X](T) : m[T] defines the number and types of
parameters and the type parameters to the constructed type. Its output type can-
not be a type variable but must be some concrete matrix type m[T]. A destructor
signature, on the other hand, must have a concrete matrix type as its first argu-
ment and can have an arbitrary return type. Equations d[Y](c[X](x), y) = t
define what happens when a constructor c meets a destructor d. The x bind the
components of the constructor, whereas the y bind the remaining parameters of
the destructor call. We also bind both the type arguments to the constructor X

www.dbooks.org

https://www.dbooks.org/

70 K. Ostermann and J. Jabs

and the destructor Y , such that they can be used inside t. In many cases, the X
will provide access to the same types as Y , but in the general case we need both
because both constructors and destructors may contain phantom types [8].

Matrices M are an abstract representation of both GADTs and GAcoDTs,
together with the functions that pattern-match (for GADTs) or copattern-match
(for GAcoDTs) on the GA(co)DTs. A matrix has an arity a (the number of type
parameters it receives), a list of constructors γ, and a list of destructors δ. It also
has a lookup function that returns an equation for every constructor/destructor
pair on which the matrix is defined (hence the type of matrices is a dependent
type). There must be an equation for each constructor/destructor pair, but in
the case of impossible combinations, the equations are not type-checked and
some dummy term can be inserted. A program P is just a finite mapping from
matrix names to matrices.

3.4 Operational Semantics

We define the operational semantics, also in Fig. 4, via an evaluation context
E, which, together with E-Ctx, defines a standard call-by-value left-to-right
evaluation order. Not surprisingly, the only interesting rule is E-Fire, which
defines the reduction behavior when a destructor meets a constructor. We look
up the corresponding matrix in the program and look up the equation for that
constructor/destructor pair. In the body of the equation, t, we perform two
substitutions: (1) We substitute the formal type arguments X and Y by the
current type arguments S and T , and (2) we substitute the pattern variables
x by the components v of the constructor and the variables y by the current
arguments u.

3.5 Typing

The typing and well-formedness rules are defined in Fig. 5. Let us first look at
the typing of terms. The rules for variable lookup are standard. The constructor
rule T-Const checks that the number of type- and term arguments matches
the declaration and checks the type of all arguments, whereby the type variables
are substituted by the type arguments of the actual constructor call. Construc-
tor names must be globally unique, hence the matrix to which the constructor
belongs is not relevant.

This is different for typing destructor calls (T-Dest). A destructor is resolved
by first determining the matrix m of the first destructor argument, and then the
destructor is looked up in that matrix. It is hence OK if the same destructor
name shows up in multiple matrices. When considering codata as “objects” like
in object-oriented programming [24], this corresponds to the familiar situation
that different classes can define methods with the same name. In the GADT
case, this corresponds to allowing multiple pattern-matching functions of the
same name that are disambiguated by the type of their first argument.

In Wf-Eq, we construct the appropriate typing context to type-check the
right hand side of equations. We allow implicit α-renaming of type variables

Dualizing Generalized Algebraic Data Types by Matrix Transposition 71

Fig. 5. Typing and well-formedness

www.dbooks.org

https://www.dbooks.org/

72 K. Ostermann and J. Jabs

to prevent accidental name clashes (checked by all-distinct). We compute the
most general unifier of the two matrix types in the constructor and destruc-
tor, respectively, to combine the type knowledge about the matrix type from
the constructor and destructor type. If no such unifier exists, the equation is
vacuously well-formed because the particular combination of constructor and
destructor can never occur during execution of well-typed terms (Wf-Infsble).
Otherwise, we use the unifier σ and apply it to the given type annotations to
type-check the term t. A unifier σ is a mapping from type variables to types,
but we also use the notation σ(t) and σ(T) to apply σ to all occurrences of type
variables inside a term t or a type T , respectively.

Constructor and destructor signatures are well-formed if they apply the cor-
rect number of type parameters to the matrix type and contain no free type vari-
ables (Wf-Constr and Wf-Destr). A matrix is type-checked by making sure
that all constructor and destructor signatures are well-formed, that all equations
are well-formed for every constructor/destructor combination, and that destruc-
tor names are unique in the matrix (Wf-Matr). To check uniqueness of names,
we use all-names-distinct, which checks for a given list of signatures that all of
their names are distinct. A program is well-formed if all of its matrices typecheck
and the constructor signatures of the program (retrieved by ctors) are globally
unique (Wf-Prog).

3.6 GADTs and GAcoDTs

In the formalization so far, we have deliberately kept matrices abstract as a kind
of abstract data type. Now we can bring in the harvest of our language design.
GADTs and GAcoDTs are two different physical representations of matrices,
see Fig. 6. They both contain nested vectors of equations and differ only in the
order of the indices. With GADTs, the column labels are constructors and the
row labels functions and a row corresponds to a function defined by pattern
matching, with one equation for each case of the GADT. With GAcoDTs, the
column labels are destructors, the row labels are functions, and a row corresponds
to a function defined by copattern matching, with one equation for each case of

MGADT = (a, γ ∈ C, δ ∈ D, {eD,C |D ∈ δ, C ∈ γ})
MGAcoDT = (a, γ ∈ C, δ ∈ D, {eC,D|C ∈ γ, D ∈ δ})

mkmatrix : MGADT + MGAcoDT → M
mkmatrix = — obvious; omitted

refunctionalize : MGADT → MGAcoDT

refunctionalize = transpose

defunctionalize : MGAcoDT → MGADT

defunctionalize = transpose

Fig. 6. GADTs and GAcoDTs

Dualizing Generalized Algebraic Data Types by Matrix Transposition 73

the GAcoDT. Hence both defunctionalize and refunctionalize, which swap the
respective organization of the matrix, are just matrix transposition.

4 Properties of GADT T

In this section, we prove type soundness for GADTT , the preservation of typing
and operational semantics under de- and refunctionalization, and that our physi-
cal matrix representations of GADTs and GAcoDTs are accurate with respect to
extension. All of these properties have been formalized and proven in Coq, based
upon our Coq formalization of the previous section’s formal syntax, semantics,
and type system.

4.1 Type Soundness

We start with the usual progress and preservation theorems.

Theorem 1 (Progress). If P is a well-formed program and t is a term with
no free type variables and P, ε � t : T , then t is either a value v, or there exists
a term t′ such that P � t → t′.

The proof of this theorem is a simple induction proof using a standard canonical
forms lemma [30].

Preservation is much harder to prove. Often, preservation is proved using a
substitution lemma which states that the substitution of a (term) variable by a
term of the same type does not change the type of terms containing that term
variable [30]. In GADTT , this lemma looks as follows:

Lemma 1 (Term Substitution). If t is a list of terms with P, ε � t : T and
t′ is a list of terms with P, ε � t′ : T ′ and t is a term with P, x : T , y : T ′ � t : T ,
then P, ε � t[x := t, y := t′] : T

However, in E-Fire we perform both a substitution of terms and of types,
hence the term substitution lemma is not enough to prove preservation; we also
need a type substitution lemma.

Lemma 2 (Type Substitution). If P, Γ � t : T , then P, Γ [X := T] � t[X :=
T] : T [X := T]

The proof of this lemma requires various auxiliary lemmas about properties (such
as associativity) of type substitution. Taken together, these two lemmas are the
two main intermediate results to prove the desired preservation theorem.

Theorem 2 (Preservation). If P is a well-formed program and t is a term
with no free type variables and P, ε � t : T and P � t → t′, then P, ε � t′ : T .

www.dbooks.org

https://www.dbooks.org/

74 K. Ostermann and J. Jabs

4.2 Defunctionalization and Refunctionalization

The preservation of typing and operational semantics by de/refunctionalization
is a trivial consequence of the lemma below, which holds due to the fact that
both de- and refunctionalization is merely matrix transposition, see Fig. 6, and
that the embedding mkmatrix of the physical matrices into the abstract repre-
sentation ignores the organization of the physical matrices.

Lemma 3 (Matrix Transposition)
∀m ∈ MGADT , mkmatrix (m) = mkmatrix (refunctionalize(m)).
∀m ∈ MGAcoDT , mkmatrix (m) = mkmatrix (defunctionalize(m)).

Corollary 1 (Preservation of typing and reduction). De/refunctionali-
zation of a matrix does not change the well-typedness of a program or the oper-
ational semantics of a term.

4.3 Extensibility

So far, we have seen that our chosen physical matrix representations are
amenable to easy proofs of the preservation of properties under de- and refunc-
tionalization. However, are they also indeed accurate representations of GADTs
and GAcoDTs? GADTs and GAcoDTs are utilized due to their extensibility
along the destructor or constructor dimension, respectively, so we want this to
be reflected by our representations.

We assume that matrices are represented as a traditional linear program by
reading them row-by-row. Adding a new row is a non-invasive operation (adding
to the program), whereas adding a column requires changes to the existing pro-
gram.

We want to be able to extend our matrix representations with a new row,
respectively representing the addition of a new destructor or constructor, without
breaking well-typedness as long as the newly added equations typecheck with
respect to the complete new program, and uniqueness of destructor/constructor
names is preserved (globally, in the constructor case)4.

In order to formally state that this is indeed the case, we first formally capture
extension of GADT and GAcoDT matrices with the following definitions. These
already include the preservation of local uniqueness as a condition, i.e., the name
of the newly added destructor or constructor must be fresh within the matrix.

Definition 1 (GADT extension). Consider an m ∈ MGADT with m =
(a, γ, δ, {eD,C |D ∈ δ, C ∈ γ}). For any D′ ∈ D,D′ �∈ δ, and equations eD′,C ,
for each C ∈ γ, we call (a, γ, δ ∪ {D′}, {eD,C |D ∈ δ ∪ {D′}, C ∈ γ}) a GADT
extension of m with D′ and {eD′,C |C ∈ γ}.
4 The counterpart to this property on the side of the operational semantics is that the

reduction relation of the new program restricted to terms befitting the old program
equals the reduction relation of the old program; this however we omitted as it holds
trivially when uniqueness is preserved.

Dualizing Generalized Algebraic Data Types by Matrix Transposition 75

Definition 2 (GAcoDT extension). Consider an m ∈ MGAcoDT with m =
(a, γ, δ, {eC,D|C ∈ γ,D ∈ δ}). For any C ′ ∈ C,C ′ �∈ γ, and equations eC′,D,
for each D ∈ δ, we call (a, γ ∪ {C ′}, δ, {eC,D|C ∈ γ ∪ {C ′},D ∈ δ}) a GAcoDT
extension of m with C ′ and {eC′,D|D ∈ δ}.

We now straightforwardly lift these definitions to programs: A program P ′ is
a GA(co)DT extension (with some signature and equations) of another program
P if their matrices are identical except for one matrix name, and the under-
lying physical matrix (packed with mkmatrix) assigned to this name under P ′

is GA(co)DT extension (with this signature and equations) of the underlying
physical matrix assigned under P .

Using this terminology we can now formally state and prove the extensibility
of GADTs and GAcoDTs:

Theorem 3 (Datatype Extensibility). If P is a well-formed program, and
P ′ is a GADT extension of P with D′ and equations {eD′,C |C ∈ γ}, for
the constructor signatures γ of the matrix to be extended, such that P ′,m �
eD′,C OK in C,D’ for each C ∈ γ, then P ′ is well-formed.

Theorem 4 (Codatatype Extensibility). If P is a well-formed program, and
P ′ is a GAcoDT extension of P with C ′, where the name of C ′ is different from
all constructor names in P , and equations {eC′,D|D ∈ δ}, for the destructor
signatures δ of the matrix to be extended, such that P ′,m � eC′,D OK in C’,D
for each D ∈ δ, then P ′ is well-formed.

In other words, in both cases we can type-check each row of a matrix in isolation,
and if we put those rows together the resulting matrix and program containing
that matrix will be well-formed. The results justify the familiar physical repre-
sentation of programs where the variants of a GADT are fixed but we can freely
add new functions that pattern-match on that GADT (and correspondingly for
GAcoDTs).

5 Discussion

In this section we discuss applications and limitations of our work, talk about
directions for future work, and describe the Coq formalization of the definitions
and proofs.

5.1 Applications

Language Design. The most obvious application of our approach is to guide
programming language design, namely by designing its features in such a way
that the correspondence by de/refunctionalization is preserved. We believe that
we can find “gaps” in existing languages by checking whether the correspond-
ing dual feature exists, or massaging the language feature in such a way that a
clear dual exists. For instance, on the datatype and pattern matching side, many

www.dbooks.org

https://www.dbooks.org/

76 K. Ostermann and J. Jabs

features exist that have no clear counterpart on the codata side yet, such as pat-
tern matching on multiple arguments, non-linear pattern matching, or pattern
guards [22]. Some vaguely dual features exist on the codata side understood as
“objects”, e.g. in the form of multi dispatch (such as [10]) or predicate dispatch
[21]. We believe that the relation between pattern matching on multiple argu-
ments and multi dispatch is a particularly interesting direction for future work,
since it would entail generalizing our two-dimensional matrices to matrices of
arbitrary dimension.

Arguably, codata is the essence of object-oriented programming [12]. In any
case, we believe that our design can also help to design object-oriented lan-
guage features. For instance, there has been previous works on “object-oriented”
GADTs [20,26] using extensions of generic types with certain classes of con-
straints. For instance, in Kennedy and Russo’s [26] work, a list interface could
be defined like this:

interface List<A> {
Integer size();
Integer sum() where A=Integer; // Kennedy & Russo’s syntax

}

If we compare this interface with the List codata type in Fig. 1 (right hand
side), then we can see that such constraints are readily supported by GAcoDTs;
not because this feature was explicitly added but because it arises mechanically
from dualizing GADTs.

As another potential influence on language design, we believe that “closed-
ness” under defunctionalization and refunctionalization can be a desirable lan-
guage design quality that prevents oddities that things can be expressed better
using codata than using data (or vice versa). For instance, Carette et al. [5]
propose a program representation (basically again a form of Church encoding,
hence a codata encoding) that works in a simple Haskell’98 language but whose
datatype representation would require GADTs. This suggests a language design
flaw in that the codata fragment of functions supports a more powerful type
system than the data fragment of (non-generalized) algebraic data types. That
is, the type arguments of a codata generator function’s result type may be arbi-
trarily specialized, e.g., the result type might be List[Nat], while the type of a
constructor must be fully generic, e.g., List[A]. Our approach gives a criterion
on when the type systems for both sides are “in sync”.

De/Refunctionalization as a Programmer Tool. Semantics-preserving program
transformations are not only interesting on the meta-level of programming lan-
guage design but also because they define an equivalence relation on programs.
For instance, consider the program on the left-hand side of Fig. 7, written in our
GAcoDT language. Nat is a representation of Church-encoded5 natural num-
bers as a GAcoDT with arity zero and a singular destructor fold with a type
5 This form of typed Church encoding is sometimes called Böhm-Berarducci encoding

[4].

Dualizing Generalized Algebraic Data Types by Matrix Transposition 77

codata Func[2] where

apply[A,B](Func[A,B], A) : B

codata Nat[0] where

fold[A](Nat,A,Func[A,A]) : A

fun zero(): Nat where

fold[A](zero(),z,s) = z

fun succ(Nat): Nat where

fold[A](succ(n),z,s) =

apply[A,A](s,fold[A](n,z,s))

data Nat[0] where

zero() : Nat

succ(Nat) : Nat

fun fold[A](Nat,A,Func[A,A]) : A where

fold[A](zero(),z,s) = z

fold[A](succ(n),z,s) =

apply[A,A](s, fold[A](n,z,s))

Fig. 7. Defunctionalizing Church-encoded numbers (left) yields Peano numbers with a
fold function (right)

parameter A. Defunctionalizing Nat yields the familiar Peano numbers with the
standard fold function (right-hand side).

Such equivalences have been identified as being useful to identify different
forms of programs that are “the same elephant”. For instance, Olivier Danvy and
associates [16,17] have used defunctionalization, refunctionalization, and some
other transformations such as CPS-transformation to inter-derive “semantic arti-
facts” such as big-step semantics, small-step semantics, and abstract machines
(“The inter-derivations illustrated here witness a striking unity of computation,
be this for reduction semantics, abstract machines, and normalization function:
they all truly define the same elephant.” – Danvy et al. [15]).

The applicability of these transformations is widened by our approach since
we support arbitrary codata and not just functions. Exploring these new possi-
bilities is an interesting area of future work.

Furthermore, programmers can employ our transformation as a tool for a
more practical purpose. Consider that at some point during the development of a
large software, it might have been determined that the extensibility dimension for
a particular aspect should be switched. That is, it is now thought that instead of
allowing to add new variants (constructors), the software would be better poised
by fixing the variants and allowing the addition of new operations (destructors),
or vice versa. In the case that at this point it is further possible to make a
closed-world assumption with regards to the particular type (represented as a
matrix), since clients of the code are known and can be dealt with, it might
seem reasonable to transpose the matrix representing that type. With GADTT ,
it is possible to do this independently of the other matrices in the program. (As
already discussed, GADTT in its present form doesn’t aim to be particularly
developer-friendly, but we expect further language layers to be placed on top of
GADTT to remedy this eventually.)

Compiler Optimizations. To be able to use our automatizable transformation as
a programmer tool, it was important to be able to make a closed-world assump-
tion, where we have the entire program, or more precisely, the part which involves

www.dbooks.org

https://www.dbooks.org/

78 K. Ostermann and J. Jabs

the matrix under consideration, at our disposal. A more automated process
where such a kind of assumption can often be readily made is compilation. There,
our matrix transposition transformation can be employed for a whole program
optimization (such as [6]), as follows. An opportunity for optimization presents
itself to the compiler when it is basically able to recognize an abstract machine
in the code; optimizing this abstract machine is then an intermediate step, more
generally applicable, that precedes hardware-specific optimizations [18]. As out-
lined above, defunctionalization can turn higher-order programs into first-order
programs where this machine might be apparent. With our pair of languages,
using our readily automatizable defunctionalization (matrix transposition), it is
possible to turn GAcoDT code into GADT code during the compilation phase.
Then the compiler can leverage the potentially recognizable abstract machine
form of the GADT code for its optimizations.

5.2 Limitations

As we said, our design rationale for GADTT was to clarify the relation between
GADTs and GAcoDTs, not to provide a convenient language for developers. Here
we discuss some ways to address the limitations resulting from that decision.

Local (Co)Pattern Matching, Including λ. A significant limitation of GADTT is
that (co)pattern matching is only allowed on the top-level; we don’t have “case”
(or “match”) constructs on the term level. Any local (co)pattern matching, how-
ever, can be converted to the top-level form by extracting it to a new top-level
function definition. Variables free within the (co)pattern matching term must be
passed to this function as arguments. In particular, anonymous local first-class
functions, i.e., λ expressions, are a form of local copattern matching which can
be encoded in this way; this particular conversion is traditionally called lambda
lifting.

(Co)Pattern Matching on Zero or More Arguments. (Co)pattern matching in
GADTT is only possible on a single, distinguished argument (in our presentation,
the first, but this is not important). Nested and multiple-argument matching can
be encoded by unnesting à la Setzer et al. [35], producing auxiliary functions.

In GADTT , it is further not possible to define a function without any (co)
pattern matching entirely. The workaround of (co)pattern matching on a dummy
argument of type Unit is simple, but it is not obvious how to reconcile this
encoding with the symmetry of de/refunctionalization.

Type Inference. We have deliberately avoided the question of type inference in
this work. In general, we expect that the ample existing works on type inference
for GADTs (such as Peyton Jones et al. [29], Schrijvers et al. [34], Chen and
Erwig [7]) can be adapted to our setting and will also work for GAcoDTs. We
see one complication, though: Due to the fact that destructors are only locally
unique in GADTT , the (co)datatype the destructor belongs to must first be
found via the type inferred for its distinguished, destructed argument. In other

Dualizing Generalized Algebraic Data Types by Matrix Transposition 79

words, we do not know which destructor signature to consider before we know
the destructed argument’s type. This means that a type inference system which
works inwards only, i.e., it discovers the types of the destructor arguments by
looking at the signature, possibly leaving unification variables, and then checks
that the recursively discovered types for the arguments conform, will not work.

5.3 Termination and Productivity

While termination and productivity are not in the focus of this paper, we want
to mention that our unified treatment of data and codata can also lead to a
unified treatment of termination and productivity.

Here we want to illustrate informally that a simple syntactic criterion is
sufficient to allow structural recursion and guarded corecursion. Syntactic ter-
mination checks are not expressive enough for many situations, hence we leave a
proper treatment of termination/productivity checking (such as with sized types
[2]) for future work; the purpose of this discussion is merely to illustrate that
termination checking could also benefit from unified data and codata and not to
propose a practically useful termination checker.

The basic idea is to restrict destructor calls in the right-hand sides of equa-
tions to have the form d[T](x, t) instead of d[T](t, t). That is to say, in destructor
calls, we only allow variables from within the constructor pattern of the left-hand
side. This criterion already guarantees termination (and hence also productiv-
ity [2]) in our system, i.e. the finiteness of all reduction sequences, which can
be shown with the usual argument of a property that strictly decreases under
reduction. A reduction step in GADTT with right-hand sides restricted like that
strictly decreases, under lexicographic order, the pair of

1. the maximum of all the first (destructed) arguments depths in destructor calls
of the term, and

2. the sequence which counts how often each destructed argument depth appears
in the term, starting with the maximum depth and going downward; those
sequences are themselves lexicographically ordered.

This strict decrease can be proved by induction on the derivation of the reduc-
tion step. Since there are no infinitely decreasing sequences of these pairs, any
reduction sequence must be finite. Note that our criterion in itself excludes far
too many programs to be anywhere near practical, but it is readily conceivable
how to relax it to only recursive calls together with a check that excludes mutual
recursion.6

Let’s look at Fig. 7 once more to illustrate that this criterion corresponds
to both structural recursion and guarded corecursion. In the right-hand side of
Fig. 7 we see that the first argument to the recursive call in the last line is n, which
is allowed by our restriction because it is a syntactic part of the original input,

6 For instance one might request the programmer to order the destructor names such
that in equations for a certain destructor only destructors of lower order may be
called.

www.dbooks.org

https://www.dbooks.org/

80 K. Ostermann and J. Jabs

succ(n) (structural recursion). The call to apply is not a problem because it is
not a recursive call.7 At the same time, if we look at the last line in the left-hand
side of Fig. 7, we see that the criterion also corresponds to guarded corecursion.
With copatterns, guarded corecursion means that we do not destruct the result
of a recursive call (the “guard” itself is implicit in the pattern on the left-hand
side of the equation). However, destructing that result would mean that we would
have to call a destructor with the recursive call as its first argument, which is
again forbidden by the syntactic criterion.

5.4 Going Beyond System F-like Polymorphism

A particularly interesting direction for future work is to extend GADTT and go
beyond the System F-like polymorphism. For instance, Fω contains a copy of
the simply-typed lambda calculus on the type level. Could one also generalize
type-level functions to arbitrary codata and maybe use a variant of GADTT

on the type level? Can dependent products like in the calculus of constructions
[13] be generalized in a similar way? Can inductive types like in the calculus
of inductive constructions be formulated such that there is a dual that is also
related by de/refunctionalization? Thibodeau et al. [36] have formulated such a
dual, but whether it can be massaged to fit into the setting described here is not
obvious.

5.5 Coq Formalization

Our Coq formalization is quite close to the traditional presentation chosen for
this paper, but there are some technical differences. Both term and type variables
are encoded via de Bruijn indices, which is rather standard for programming
language mechanization. More interestingly, the syntax of the language in the
Coq formalization expresses some of the constraints we express here via typing
rules instead via dependent types. Specifically, terms and types are indexed
by the type variables that can appear inside. To represent matrices, we have
developed a small library of dependently typed tables (where the cell types
can depend on the row and column labels), such that the matrix type already
guarantees that all type variables that show up in terms and types are bound.
An earlier version of the formalization and the soundness proof used explicit
well-formedness constraints to guarantee that all type variables are bound; the
type soundness proof for this version was about twice as long as the one using
dependent types. On the flip side, we had to “pay” for using the dependent types
in the form of many annoying “type casts” in definitions and theorems owing
to the fact that Coq’s equality is intensional and not extensional [9, Sect. 10.3].
Finally, instead of using an evaluation context to define evaluation order like
we did in Fig. 4, we have used traditional congruence rules. In the reduction
relation as formalized in Coq, a single step can actually correspond to multiple
steps in the formalization presented in the paper; however, this is just a minor
technicality to slightly simplify the proofs.
7 As long as we avoid mutual recursion, for instance by ensuring fold > apply.

Dualizing Generalized Algebraic Data Types by Matrix Transposition 81

6 Related Work

“Theoreticians appreciate duality because it reveals deep symmetries. Practi-
tioners appreciate duality because it offers two-for-the-price-of-one economy.”
This quote from Wadler [38] describes the spirit behind the design of GADTT ,
but of course this is not the first paper to talk about duality in programming
languages. We have already discussed the most closely related works in previous
sections; here, we compare GADTT with theoretical calculi with related dual-
ity properties and point out an aspect of practical programming for which the
duality of GADTT is relevant.

Codata. Hagino [23] pioneered the idea of dualizing data types: Whereas data
types are used to define a type by the ways to construct it, codatatypes are dual
to them in the sense that they are specified by their deconstructions. Abel et al.
[1] introduce copatterns which allow functions producing codata to be defined
by matching on the destructors of the result codatatype, dually to matching on
the constructors of the argument datatype. All these developments occur in a
world where function types are a given. The symmetric codata and data lan-
guage fragments proposed by Rendel et al. [31] deviate from this: By enhancing
destructor signatures with argument types, they provide a form of codata that
is a generalization of first-class functions. Both the works by Rendel et al. [31]
and Abel et al. [1] are simply-typed.

The (co)datatypes in the calculus of ownen and Ariola [19] also allow for
user-defined function types. Their focus is different from ours, though, as they
are mostly interested in evaluation strategies and their duality, and with regards
to their calculus itself they work in an untyped setting. What is interesting in
comparison with GADTT is how their (co)datatype declarations and signatures
are inherently more symmetric as they essentially describe a type system for the
parametric sequent calculus. As such, the position of additional arguments in
the destructor signatures has a mirror counterparts in constructor signatures (to
highlight this, Downen and Ariola [19] refer to destructors as “co-constructors”).

Duality of Computations and Values. Staying on with the idea of avoiding func-
tion types as primitives for a moment, Wadler [38] presents a “dual calculus” in
which the previously astonishing result that call-by-name is De Morgan-dual to
call-by-value [14] is clarified by defining implication (corresponding to function
types via the Curry-Howard isomorphism) in two different ways dependent on
the intended corresponding evaluation regime. A somewhat similar approach, but
perhaps more directly related to the data/codata duality, that also deals with
the “troubling” coexistence of call-by-value and call-by-name, was proposed by
Levy [27]. Levy [27] presents a calculus with a new evaluation regime, call-by-
push value (CBPV), which subsumes call-by-value and call-by-name by encoding
the local choice for either in the terms of the calculus. More specifically, there
are two kinds of terms in the CBPV calculus: computations and values, which
can be inter-converted by “thunking” and “forcing”. The terms for computations

www.dbooks.org

https://www.dbooks.org/

82 K. Ostermann and J. Jabs

and values are said to be of positive type and of negative type, respectively. Thi-
bodeau et al. [36] have built their calculus, which extends codatatypes to indexed
codatatypes, on top of CBPV, with datatypes being positive and codatatypes
being negative. We think that, when extending GADTT with local (co)pattern
matching on the term level, perhaps with pattern and copattern matching terms
mixed, it might be helpful to similarly recast the resulting language as a modi-
fication of the CBPV calculus of Levy [27].

7 Conclusions

We have presented a formal calculus, GADTT , which uniformly describes both
GADTs and their dual, GAcoDTs. GADTs and GAcoDTs can be converted
back and forth by defunctionalization and refunctionalization, both of which
correspond to a transposition of the matrix of the equations for each pair of con-
structor/destructor. We have formalized the calculus in Coq and mechanically
verified its type soundness, its extensibility properties, and the preservation of
typing and operational semantics by defunctionalization and refunctionalization.

We believe that our work can be of help for future language design since it
describes a methodology to get a kind of “sweet spot” where data and codata
constructs (including functions) are “in sync”. We think that it can also be useful
as a general program transformation tool, both on the program level as a kind
of refactoring tool, but also as part of compilers and runtime systems. Finally,
since codata is quite related to objects in object-oriented programming, we hope
that our approach can help to clarify their relation and design languages which
subsume both traditional functional and object-oriented languages.

Acknowledgments. We would like to thank Tillmann Rendel and Julia Trieflinger
for providing some early ideas for the design of what eventually became GADT T . This
work was supported by DFG project OS 293/3-1.

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: Proceedings of the Symposium on Principles of
Programming Languages, pp. 27–38. ACM (2013)

2. Abel, A.M., Pientka, B.: Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In: Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2013, pp. 185–196. ACM,
New York (2013)

3. Augustsson, L.: A compiler for lazy ML. In: Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming, LFP 1984, pp. 218–227. ACM,
New York (1984)

4. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theor. Comput. Sci. 39, 135–154 (1985)

5. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated:
tagless staged interpreters for simpler typed languages. J. Funct. Program. 19(5),
509–543 (2009)

Dualizing Generalized Algebraic Data Types by Matrix Transposition 83

6. Chambers, C., Dean, J., Grove, D.: Whole-program optimization of object-oriented
languages. University of Washington Seattle, Technical report 96-06 2 (1996)

7. Chen, S., Erwig, M.: Principal type inference for GADTs. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, pp. 416–428. ACM, New York (2016)

8. Cheney, J., Hinze, R.: First-class phantom types. Technical report. Cornell Uni-
versity (2003)

9. Chlipala, A.: Certified Programming with Dependent Types. MIT Press,
Cambridge (2017). http://adam.chlipala.net/cpdt/

10. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: modular open
classes and symmetric multiple dispatch for Java. In: Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications, pp. 130–
145. ACM (2000)

11. Cook, W.R.: Object-oriented programming versus abstract data types. In: de
Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) REX 1990. LNCS, vol. 489,
pp. 151–178. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0019443

12. Cook, W.R.: On understanding data abstraction, revisited. In: Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions, pp. 557–572. ACM (2009)

13. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2–3), 95–
120 (1988)

14. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming, ICFP
2000, pp. 233–243. ACM, New York (2000)

15. Danvy, O., Johannsen, J., Zerny, I.: A walk in the semantic park. In: Proceed-
ings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation, PEPM 2011, pp. 1–12. ACM, New York (2011)

16. Danvy, O., Millikin, K.: Refunctionalization at work. Sci. Comput. Program. 74(8),
534–549 (2009)

17. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: Proceedings of the Con-
ference on Principles and Practice of Declarative Programming, pp. 162–174 (2001)

18. Diehl, S., Hartel, P., Sestoft, P.: Abstract machines for programming language
implementation. Future Gener. Comput. Syst. 16(7), 739–751 (2000)

19. Downen, P., Ariola, Z.M.: The duality of construction. In: Shao, Z. (ed.) ESOP
2014. LNCS, vol. 8410, pp. 249–269. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54833-8 14

20. Emir, B., Kennedy, A., Russo, C., Yu, D.: Variance and generalized constraints for
C� generics. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 279–303.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 18

21. Ernst, M.D., Kaplan, C., Chambers, C.: Predicate dispatching: a unified theory of
dispatch. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 186–211. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054092

22. Erwig, M., Jones, S.P.: Pattern guards and transformational patterns. Electron.
Notes Theor. Comput. Sci. 41(1), 3 (2001)

23. Hagino, T.: Codatatypes in ML. J. Symb. Comput. 8(6), 629–650 (1989)
24. Jacobs, B.: Objects and classes, coalgebraically. In: Freitag, B., Jones, C.B.,

Lengauer, C., Schek, H.J. (eds.) Object Orientation with Parallelism and Per-
sistence, vol. 370, pp. 83–103. Springer, Boston (1995). https://doi.org/10.1007/
978-1-4613-1437-0 5

www.dbooks.org

http://adam.chlipala.net/cpdt/
https://doi.org/10.1007/BFb0019443
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/978-3-642-54833-8_14
https://doi.org/10.1007/11785477_18
https://doi.org/10.1007/BFb0054092
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1007/978-1-4613-1437-0_5
https://www.dbooks.org/

84 K. Ostermann and J. Jabs

25. Johnsson, T.: Lambda lifting: transforming programs to recursive equations. In:
Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 190–203. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-15975-4 37

26. Kennedy, A., Russo, C.V.: Generalized algebraic data types and object-oriented
programming. In: Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, pp. 21–40. ACM (2005)

27. Levy, P.B.: Call-by-push-value: a subsuming paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48959-2 17

28. Oliveira, B.C., Moors, A., Odersky, M.: Type classes as objects and implicits. In:
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2010, pp. 341–360. ACM,
New York (2010)

29. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: Proceedings of the Eleventh ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2006, pp. 50–
61. ACM, New York (2006)

30. Pierce, B.C.: Types and Programming Languages. Massachusetts Institute of Tech-
nology, Cambridge (2002)

31. Rendel, T., Trieflinger, J., Ostermann, K.: Automatic refunctionalization to a lan-
guage with copattern matching: with applications to the expression problem. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pp. 269–279. ACM, New York (2015)

32. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference, pp. 717–740. ACM (1972)

33. Reynolds, J.C.: User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In: Schuman, S. (ed.) New Directions in Algo-
rithmic Languages 1975, pp. 157–168. IFIP Working Group 2.1 on Algol, INRIA,
Rocquencourt, France (1975)

34. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and decid-
able type inference for GADTs. In: Proceedings of the 14th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2009, pp. 341–352. ACM,
New York (2009)

35. Setzer, A., Abel, A., Pientka, B., Thibodeau, D.: Unnesting of copatterns. In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 31–45. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08918-8 3

36. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata types. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pp. 351–363. ACM, New York (2016)

37. Wadler, P.: The expression problem. Note to Java Genericity mailing list, November
1998

38. Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming, ICFP
2003, pp. 189–201. ACM, New York (2003)

39. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994)

40. Xi, H.X., Chiyan, C., Chen, G.: Guarded recursive datatype constructors. In: Pro-
ceedings of the Symposium on Principles of Programming Languages, pp. 224–235.
ACM (2003)

https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/978-3-319-08918-8_3

Dualizing Generalized Algebraic Data Types by Matrix Transposition 85

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Deterministic Concurrency:
A Clock-Synchronised Shared Memory

Approach

Joaqúın Aguado1(B), Michael Mendler1, Marc Pouzet2, Partha Roop3,
and Reinhard von Hanxleden4

1 Otto-Friedrich-Universität Bamberg, Bamberg, Germany
joaquin.aguado@uni-bamberg.de

2 École Normale Supérieure, Paris, France
3 University of Auckland, Auckland, New Zealand

4 Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Abstract. Synchronous Programming (SP) is a universal computa-
tional principle that provides deterministic concurrency. The same input
sequence with the same timing always results in the same externally
observable output sequence, even if the internal behaviour generates
uncertainty in the scheduling of concurrent memory accesses. Conse-
quently, SP languages have always been strongly founded on mathe-
matical semantics that support formal program analysis. So far, how-
ever, communication has been constrained to a set of primitive clock-
synchronised shared memory (csm) data types, such as data-flow reg-
isters, streams and signals with restricted read and write accesses that
limit modularity and behavioural abstractions.

This paper proposes an extension to the SP theory which retains the
advantages of deterministic concurrency, but allows communication to
occur at higher levels of abstraction than currently supported by SP data
types. Our approach is as follows. To avoid data races, each csm type
publishes a policy interface for specifying the admissibility and prece-
dence of its access methods. Each instance of the csm type has to be
policy-coherent, meaning it must behave deterministically under its own
policy—a natural requirement if the goal is to build deterministic sys-
tems that use these types. In a policy-constructive system, all access
methods can be scheduled in a policy-conformant way for all the types
without deadlocking. In this paper, we show that a policy-constructive
program exhibits deterministic concurrency in the sense that all policy-
conformant interleavings produce the same input-output behaviour. Poli-
cies are conservative and support the csm types existing in current SP
languages. Technically, we introduce a kernel SP language that uses arbi-
trary policy-driven csm types. A big-step fixed-point semantics for this
language is developed for which we prove determinism and termination
of constructive programs.

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 86–113, 2018.
https://doi.org/10.1007/978-3-319-89884-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_4&domain=pdf

Deterministic Concurrency 87

Keywords: Synchronous programming · Data abstraction
Clock-synchronised shared memory · Determinacy · Concurrency
Constructive semantics

1 Introduction

Concurrent programming is challenging. Arbitrary interleavings of concurrent
threads lead to non-determinism with data races imposing significant integrity
and consistency issues [1]. Moreover, in many application domains such as safety-
critical systems, determinism is indeed a matter of life and death. In a medical-
device software, for instance, the same input sequence from the sensors (with the
same timing) must always result in the same output sequence for the actuators,
even if the run-time software architecture regime is unpredictable.

Synchronous programming (SP) delivers deterministic concurrency out of
the box1 which explains its success in the design, implementation and validation
of embedded, reactive and safety-critical systems for avionics, automotive, energy
and nuclear industries. Right now SP-generated code is flying on the Airbus 380
in systems like flight control, cockpit display, flight warning, and anti-icing just
to mention a few. The SP mathematical theory has been fundamental for imple-
menting correct-by-construction program-derivation algorithms and establishing
formal analysis, verification and testing techniques [2]. For SCADE2, the SP
industrial modelling language and software development toolkit, the formal SP
background has been a key aspect for its certification at the highest level A of
the aerospace standard DO-178B/C. This SP rigour has also been important for
obtaining certifications in railway and transportation (EN 50128), industry and
energy (IEC 61508), automotive (TÜV and ISO 26262) as well as for ensuring
full compliance with the safety standards of nuclear instrumentation and control
(IEC 60880) and medical systems (IEC 62304) [3].

Synchronous Programming in a Nutshell. At the top level, we can imagine an
SP system as a black-box with inputs and outputs for interacting with its envi-
ronment. There is a special input, called the clock, that determines when the
communication between system and environment can occur. The clock gets an
input stimulus from the environment at discrete times. At those moments we
say that the clock ticks. When there is no tick, there is no possible commu-
nication, as if system and environment were disconnected. At every tick, the
system reacts by reading the current inputs and executing a step function that
delivers outputs and changes the internal memory. For its part, the environment
must synchronise with this reaction and do not go ahead with more ticks. Thus,

1 Milner’s distinction between determinacy and determinism is that a computation
is determinate if the same input sequence produces the same output sequence, as
opposed to deterministic computations which in addition have identical internal
behaviour/scheduling. In this paper we use both terms synonymously to mean deter-
minacy in Milner’s sense, i.e., observable determinism.

2 SCADE is a product of ANSYS Inc. (http://www.esterel-technologies.com/).

www.dbooks.org

http://www.esterel-technologies.com/
https://www.dbooks.org/

88 J. Aguado et al.

in SP, we assume (Synchrony Hypothesis) that the time interval of a system
reaction, also called macro-step or (synchronous) instant, appears instantaneous
(has zero-delay) to the environment. Since each system reaction takes exactly
one clock tick, we describe the evolution of the system-environment interaction
as a synchronous (lock-step) sequence of macro-steps. The SP theory guarantees
that all externally observable interaction sequences derived from the macro-step
reactions define a functional input-output relation.

The fact that the sequences of macro-steps take place in time and space
(memory) has motivated two orthogonal developments of SP. The data-flow
view regards input-output sequences as synchronous streams of data changing
over time and studies the functional relationships between streams. Dually, the
control-flow approach projects the information of the input-output sequences
at each point in time and studies the changes of this global state as time pro-
gresses, i.e., from one tick to the next. The SP paradigm includes languages
such as Esterel [4], Quartz [5] and SC [6] in the imperative control-flow style
and languages like Signal [7], Lustre [8] and Lucid Synchrone [9] that support
the declarative data-flow view. There are even mixed control-data flow language
such as Esterel V7 [10] or SCADE [3]. Independently of the execution model, the
common strength to all of these SP languages is a precise formal semantics—an
indispensable feature when dealing with the complexities of concurrency.

At a more concrete level, we can visualise an SP system as a white-box where
inside we find (graphical or textual) code. In the SP domain, the program must
be divided into fragments corresponding to the macro-step reactions that will
be executed instantaneously at each tick. Declarative languages usually organise
these macro-steps by means of (internally generated) activation clocks that pre-
scribe the blocks (nodes) that are performed at each tick. Instead, imperative
textual languages provide a pause statement for explicitly delimiting code exe-
cution within a synchronous instant. In either case, the Synchrony Hypothesis
conveniently abstracts away all the, typically concurrent, low-level micro-steps
needed to produce a system reaction. The SP theory explains how the micro-step
accesses to shared memory must be controlled so as to ensure that all internal
(white-box) behaviour eventually stabilises, completing a deterministic macro-
step (black-box) response. For more details on SP, the reader is referred to [2].

State of the Art. Traditional imperative SP languages provide constructs to
model control-dominated systems. Typically, these include a concurrent compo-
sition of threads (sequential processes) that guarantees determinism and offers
signals as the main means for data communication between threads. Signals
behave like shared variables for which the concurrent accesses occurring within
a macro-step are scheduled according to the following principles: A pure signal
has a status that can be present (1) or absent (0). At the beginning of each
macro-step, pure signals have status 0 by default. In any instant, a signal s
can be explicitly emitted with the statement s. emit() which atomically sets
its status to 1. We can read the status of s with the statement s. pres(), so
the control-flow can branch depending on run-time signal statuses. Specifically,
inside programs, if-then-else constructions await for the appropriate combination

Deterministic Concurrency 89

of present and absent signal statuses to emit (or not) more signals. The main
issue is to avoid inconsistencies due to circular causality resulting from decisions
based on absent statuses. Thus, the order in which the access methods emit,
pres are scheduled matters for the final result. The usual SP rule for ensur-
ing determinism is that the pres test must wait until the final signal status is
decided. If all signal accesses can be scheduled in this decide-then-read way then
the program is constructive. All schedules that keep the decide-then-read order
will produce the same input-output result. This is how SP reconciles concur-
rency and observable determinism and generates much of its algebraic appeal.
Constructiveness of programs is what static techniques like the must-can analy-
sis [4,11–13] verify although in a more abstract manner. Pure signals are a simple
form of clock-synchronised shared memory (csm) data types with access meth-
ods (operations) specific to this csm type. Existing SP control-flow languages
also support other restricted csm types such valued signals and arrays [10] or
sequentially constructive variables [6].

Contribution. This paper proposes an extension to the SP model which retains
the advantages of deterministic concurrency while widening the notion of con-
structiveness to cover more general csm types. This allows shared-memory com-
munication to occur at higher levels of abstraction than currently supported. In
particular, our approach subsumes both the notions of Berry-constructiveness [4]
for Esterel and sequential constructiveness for SCL [14]. This is the first time
that these SP communication principles are combined side-by-side in a single
language. Moreover, our theory permits other predefined communication struc-
tures to coexist safely under the same uniform framework, such as data-flow
variables [8], registers [15], Kahn channels [16], priority queues, arrays as well as
other csm types currently unsupported in SP.

Synopsis and Overview. The core of our approach is presented in Sect. 2 where
policies are introduced as a (constructive) synchronisation mechanism for arbi-
trary abstract data types (ADT). For instance, the policy of a pure signal is
depicted in Fig. 1. It has two control states 0 and 1 corresponding to the two
possible signal statuses. Transitions are decorated with method names pres,
emit or with σ to indicate a clock tick.

Fig. 1. Pure signal policy.

The policy tells us whether a given
method or tick is admissible, i.e., if it can
be scheduled from a particular state3.
In addition, transitions include a block-
ing set of method names as part of
their action labels. This set determines
a precedence between methods from a
given state. A label m : L specifies that
all methods in L take precedence over m.
An empty blocking set ∅ indicates no precedences. To improve visualisation, we

3 The signal policy in Fig. 1 does not impose any admissibility restriction since meth-
ods pres and emit can be scheduled from every policy state.

www.dbooks.org

https://www.dbooks.org/

90 J. Aguado et al.

highlight precedences by dotted (red) arrows tagged prec4. The policy interface
in Fig. 1 specifies the decide-then-read protocol of pure signals as follows. At
any instant, if the signal status is 0 then the pres test can only be scheduled
if there are no more potential emit statements that can still update the status
to 1. This explains the precedence of the emit transition over the self loop with
action label pres : {emit} from state 0. Conversely, transitions pres and emit
from state 1 have no precedences, meaning that the pres and emit methods
are confluent so they can be freely scheduled (interleaved). The reason is that a
signal status 1 is already decided and can no longer be changed by either method
in the same instant. In general, any two admissible methods that do not block
each other must be confluent in the sense that the same policy state is reached
independently of their order of execution. Note that all the σ transition go to the
initial state 0 since at each tick the SP system enters a new macro-step where
all pure signals get initialised to the 0 status.

Section 2 describes in detail the idea of a scheduling policy on general csm
types. This leads to a type-level coherence property, which is a local form of
determinism. Specifically, a csm type is policy-coherent if it satisfies the (policy)
specification of admissibility and precedence of its access methods. The point is
that a policy-coherent csm type per se behaves deterministically under its own
policy—a very natural requirement if the goal is to build deterministic systems
that use this type. For instance, the fact that Esterel signals are determinis-
tic (policy-coherent) in the first place permits techniques such as the must-can
analysis to get constructive information about deterministic programs. We show
how policy-coherence implies a global determinacy property called commutation.
Now, in a policy-constructive program all access methods can be scheduled in a
policy-conforming way for all the csm types without deadlocking. We also show
that, for policy-coherent types, a policy-constructive program exhibits determin-
istic concurrency in the sense that all policy-conforming interleavings produce
the same input-output behaviour.

To implement a constructive scheduling mechanism parameterised in arbi-
trary csm type policies, we present the synchronous kernel language, called
Deterministic Concurrent Language (DCoL), in Sect. 2.1. DCoL is both a min-
imal language to study the new mathematical concepts but can also act as an
intermediate language for compiling existing SP Sect. 3 presents its policy-driven
operational semantics for which determinacy and termination is proven. Section 3
also explains how this model generalises existing notions of constructiveness. We
discuss related work in Sect. 4 and present our conclusions in Sect. 5.

A companion of this paper is the research report (https://www.uni-bamberg.
de/fileadmin/uni/fakultaeten/wiai professuren/grundlagen informatik/papers
MM/report-WIAI-102-Feb-2018.pdf) [17] which contains detailed proofs and
additional examples of csm types.

4 We tacitly assume that the tick transitions σ have the lowest priority since only
when the reaction is over, the clock may tick. We could be more explicit and write
σ : {pres, emit} as action labels for these transitions.

https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf

Deterministic Concurrency 91

2 Synchronous Policies

This section introduces a kernel synchronous Deterministic Concurrent Lan-
guage (DCoL) for policy-conformant constructive scheduling which integrates
policy-controlled csm types within a simple syntax. DCoL is used to discuss
the behavioural (clock) abstraction limitations of current SP. Then policies are
introduced as a mechanism for specifying the scheduling discipline for csm types
which, in this form, can encapsulate arbitrary ADTs.

2.1 Syntax

The syntax of DCoL is given by the following operators:

P ::= skip instantaneous termination
| pause wait for next instant (clock tick)
| P ||P parallel composition
| P ;P sequential composition
| letx = c.m(e) inP access method call, x value variable
| if e then P else P conditional branching, e value expression
| rec p. P recursive closure
| p process variable

The first two statements correspond to the two forms of immediate comple-
tion: skip terminates instantaneously and pause waits for the logical clock to
terminate. The operators P ||Q and P ;Q are parallel interleaving and imper-
ative sequential composition of threads with the standard operational interpre-
tation. Reading and destructive updating is performed through the execution of
method calls c.m(e) on a csm variable c ∈ O with a method m ∈ Mc. The sets
O and Mc define the granularity of the available memory accesses. The construct
letx = c.m(e) inP calls m on c with an input parameter determined by value
expression e. It binds the return value to variable x and then executes program
P , which may depend on x, sequentially afterwards. The execution of c.m(e) in
general has the side-effect of changing the internal memory of c. In contrast, the
evaluation of expression e is side-effect free. For convenience we write x = c.m(e);P
for letx = c.m(e) inP . When P does not depend on x then we write c.m(e);P and
c.m(e); for c.m(e); skip. The exact syntax of value expressions e is irrelevant for
thiswork and left open. It could be as simple as permitting only constant value liter-
als or a full-fledged functional language. The conditional if e then P else P has
the usual interpretation. For simplicity, we may write if c.m(e) then P else Q
to mean x = c.m(e); if x then P else Q. The recursive closure rec p. P binds the
behaviour P to the program label p so it can be called from within P . Using
this construct we can build iterative behaviours. For instance, loopP end =df
rec p. P; pause ;p indefinitely repeats P in each tick. We assume that in a closure
rec p. P the label p is (i) clock guarded, i.e., it occurs in the scope of at least one
pause (meaning no instantaneous loops) and (ii) all occurrences of p are in the same
thread. Thus, rec p. p is illegal because of (i) and rec p. (pause ; p || pause ; p) is not
permitted because of (ii).

www.dbooks.org

https://www.dbooks.org/

92 J. Aguado et al.

This syntax seems minimalistic compared to existing SP languages. For
instance, it does not provide primitives for pre-emption, suspension or traps as
in Quartz or Esterel. Recent work [18] has shown how these control primitives
can be translated into the constructs of the SCL language, exploiting destruc-
tive update of sequentially constructive (SC) variables. Since SC variables are
a special case of policy-controlled csm variables, DCoL is at least as expressive
as SCL.

2.2 Limited Abstraction in SP

The pertinent feature of standard SP languages is that they do not permit the
programmer to express sequential execution order inside a tick, for destructive
updates of signals. All such updates are considered concurrent and thus must
either be combined or concern distinct signals. For instance, in languages such
as Esterel V7 or Quartz, a parallel composition

(v = xs.read() ; ys. emit(v + 1)) || (xs. emit(1) ; xs. emit(5)) (1)

of signal emissions is only constructive if a commutative and associative function
is defined on the shared signal xs to combine the values assigned to it. But then,
by the properties of this combination function, we get the same behaviour if we
swap the assignments of values 1 and 5, or execute all in parallel as in

v = xs.read() || ys. emit(v + 1) || xs. emit(1) || xs. emit(5).

If what we intended with the second emission xs. emit(5) in (1) was to override
the first xs. emit(1) like in normal imperative programming so that the concur-
rent thread v = xs.read() ; ys. emit(v + 1) will read the updated value as v = 5?
Then we need to introduce a pause statement to separate the emissions by a
clock tick and delay the assignment to ys as in

(pause ; v = xs.read() ; ys. emit(v + 1)) || (xs. emit(1) ; pause ; xs. emit(5)).

This makes behavioural abstraction difficult. For instance, suppose nats is a syn-
chronous reaction module, possibly composite and with its own internal clock-
ing, which returns the stream of natural numbers. Every time its step func-
tion nats.step() is called it returns the next number and increments its inter-
nal state. If we want to pair up two successive numbers within one tick of an
outer clock and emit them in a single signal ys we would write something like
x1 = nats.step() ;x2 = nats.step() ; y. emit(x1, x2) where x1, x2 are thread-
local value variables. This over-clocking is impossible in traditional SP because
there is no imperative sequential composition by virtue of which we can call the
step function of the same module instance twice within a tick. Instead, the two
calls nats.step() are considered concurrent and thus create non-determinacy in
the value of y.5 To avoid a compiler error we must separate the calls by a clock as
5 In Esterel V7 it is possible to use a module twice in a “sequential” composition x1 =
nats.step(); x2 = nats.step(). However, the two occurrences of nats are distinct
instances with their own internal state. Both calls will thus return the same value.

Deterministic Concurrency 93

in x1 = nats.step() ; pause ;x2 = nats.step() ; y. emit(x1, x2) which breaks
the intended clock abstraction.

The data abstraction limitation of traditional SP is that it is not directly pos-
sible to encapsulate a composite behaviour on synchronised signals as a shared
synchronised object. For this, the simple decide-then-read signal protocol must
be generalised, in particular, to distinguish between concurrent and sequential
accesses to the shared data structure. A concurrent access x1 = nats.step() ||
x2 = nats.step() must give the same value for x1 and x2, while a sequential
access x1 = nats.step() ;x2 = nats.step() must yield successive values of the
stream. In a sequence x = xs.read() ; xs. emit(v) the x does not see the value
v but in a parallel x = xs.read() || xs. emit(v) we may want the read to wait for
the emission. The rest of this section covers our theory on policies in which this
is possible. The modularity issue is reconsidered in Sect. 2.6.

2.3 Concurrent Access Policies

In the white-box view of SP, an imperative program consists of a set of threads
(sequential processes) and some csm variables for communication. Due to con-
currency, a given thread under control (tuc) has the chance to access the shared
variables only from time to time. For a given csm variable, a concurrent access
policy (cap) is the locking mechanism used to control the accesses of the cur-
rent tuc and its environment. The locking is to ensure that determinacy of the
csm type is not broken by the concurrent accesses. A cap is like a policy which
has extra transitions to model potential environment accesses outside the tuc.
Concretely, a cap is given by a state machine where each transition label a : L
codifies an action a taking place on the shared variable with blocking set L,
where L is a set of methods that take precedence over a. The action is either
a method m : L, a silent action τ : L or a clock tick σ : L. A transition m : L
expresses that in the current cap control state, the method m can be called by
the tuc, provided that no method in L is called concurrently. There is a Deter-
minacy Requirement that guarantees that each method call by the tuc has a
blocking set and successor state. Additionally, the execution of methods by the
cap must be confluent in the sense that if two methods are admissible and do
not block each other, then the cap reaches the same policy state no matter the
order in which they are executed. This is to preserve determinism for concur-
rent variable accesses. A transition τ : L internalises method calls by the tuc’s
concurrent environment which are uncontrollable for the tuc. In the sequel, the
actions in Mc ∪ {σ} will be called observable. A transition σ : L models a clock
synchronisation step of the tuc. Like method calls, such clock ticks must be
determinate as stated by the Determinacy Requirement. Additionally, the clock
must always wait for any predicted concurrent τ -activity to complete. This is the
Maximal Progress Requirement. Note that we do not need confluence for clock
transitions since they are not concurrent.

Definition 1. A concurrent access policy (cap) �c of a csm variable c with
(access) methods Mc is a state machine consisting of a set of control states Pc,

www.dbooks.org

https://www.dbooks.org/

94 J. Aguado et al.

an initial state ε ∈ Pc and a labelled transition relation → ⊆ Pc × Ac × Pc with
action labels Ac = (Mc ∪ {τ, σ}) × 2Mc . Instead of (μ1, (a, L), μ2)∈ → we write
μ1 −a:L→ μ2. We then say action a is admissible in state μ1 and blocked by
all methods m ∈ L ⊆ Mc. When the blocking set L is irrelevant we drop it and
write μ1 −a→ μ2. A cap must satisfy the following conditions:

– Determinacy. If μ −a:L1→ μ1 and μ −a:L2→ μ2 then L1 = L2 and μ1 = μ2

provided a is observable, i.e., a �= τ .
– Confluence. If μ −m1:L1→ μ1 and μ −m2:L2→ μ2 do not block each other,

i.e., m1 ∈ Mc \ L2 and m2 ∈ Mc \ L1, then for some μ′ both μ1 −m2→ μ′

and μ2 −m1→ μ′.
– Maximal Progress. μ −a:L1→ μ1 and μ −σ:L2→ μ2 imply a is observable.

A policy is a cap without any (concurrent) τ activity, i.e., every μ −a→ μ′

implies that a is observable. �	
The use of a cap as a concurrent policy arises from the notion of enabling.

Informally, an observable action a ∈ Mc ∪ {σ} is enabled in a state μ of a cap
if it is admissible in μ and in all subsequent states reachable under arbitrary
silent steps. To formalise this we define weak transitions μ1 ⇒ μ2 inductively
to express that either μ1 = μ2 or μ1 ⇒ μ′ and μ′ −τ→ μ2. We exploit the
determinacy for observable actions a ∈ Mc ∪ {σ} and write μ � a for the unique
μ′ such that μ −a→ μ′, if it exists.

Fig. 2. Synchronous IVar.

Definition 2. Given a cap �c= (Pc, ε,−→), an observable action a ∈ Mc∪{σ}
is enabled in state μ ∈ Pc, written μ �c ↓ a, if μ′ � a exists for all μ′ such that
μ ⇒ μ′. A sequence a ∈ (Mc ∪ {σ})∗ of observable actions is enabled in μ ∈ Pc,
written μ �c ↓a, if (i) a = ε or (ii) a = a b, μ �c ↓ a and μ � a �c ↓ b. �	
Example 1. Consider the policy �s in Fig. 1 of an
Esterel pure signal s. An edge labelled a:L from state
μ1 to μ2 corresponds to a transition μ1 −a:L→ μ2

in �s. The start state is ε = 0 and the methods
Ms = {pres, emit} are always admissible, i.e., μ�m
is defined in each state μ for all methods m. The pres-
ence test does not change the state and any emission
sets it to 1, i.e., μ � pres = μ and μ � emit = 1 for
all μ ∈ Ps. Each signal status is reset to 0 with the clock tick, i.e., μ � σ = 0.
Clearly, �s satisfies Determinacy. A presence test on a signal that is not emitted
yet has to wait for all pending concurrent emissions, that is emit blocks pres
in state 0, i.e., 0 −pres :{emit}→ 0. Otherwise, no transition is blocked. Also,
all competing transitions μ −m1:L1→ μ1 and μ −m2:L2→ μ2 that do not block
each other, are of the form μ1 = μ2, from which Confluence follows. Note that
since there are no silent transitions, Maximal Progress is always fulfilled too.
Moreover, an action sequence is enabled in a state μ (Definition 2) iff it corre-
sponds to a path in the automaton starting from μ. Hence, for m ∈ M∗

s we have

Deterministic Concurrency 95

0 �s ↓m iff m is in the regular language6 pres∗ + pres∗ emit(pres+ emit)∗

and 1 �s ↓m for all m ∈ M∗
s .

Contrast �s with the policy �c of a synchronous immutable variable (IVar) c
shown in Fig. 2 with methods Mc = {get, put}. During each instant an IVar can
be written (put) at most once and cannot be read (get) until it has been written.
No value is stored between ticks, which means the memory is only temporary and
can be reused, e. g., IVars can be implemented by wires. Formally, μ �c ↓ put iff
μ = 0, where 0 is the initial empty state and μ �c ↓ get iff μ = 1, where 1 is the
filled state. The transition 0 −put:{put}→ 1 switches to filled state where get
is admissible but put is not, anymore. The blocking {put} means there cannot
be other concurrent threads writing c at the same time. �	

2.4 Enabling and Policy Conformance

A policy describes what a single thread can do to a csm variable c when it
operates alone. In a cap all potential activities of the environment are added as τ -
transitions to block the tuc’s accesses. To implement this τ -locking we define an
operation that generates a cap [μ, γ] out of a policy. In this construction, μ ∈ Pc

is a policy state recording the history of methods that have been performed on c
so far (must information). The second component γ ⊆ M∗

c is a prediction for the
sequences of methods that can still potentially be executed by the concurrent
environment (can information).

Definition 3. Let (Pc, ε,→) be a policy. We define a cap �c where states are
pairs [μ, γ] such that μ ∈ Pc is a policy state and γ ⊆ M∗

c is a prediction. The
initial state is [ε,M∗

c] and the transitions are as follows:

1. The observable transitions [μ1, γ1] −m:L→ [μ2, γ2] are such that γ1 = γ2 and
μ1 −m:L→ μ2 provided that for all sequences nn ∈ γ1 with μ1 −n→ μ′ we
have n �∈ L.

2. The silent transitions are [μ1, γ1] −τ :L→ [μ2, γ2] such that ∅ �= mγ2 ⊆ γ1

and μ1 −m:L→ μ2.
3. The clock transitions are [μ1, γ1] −σ:L→ [μ2, γ2] such that γ1 = ∅ and

μ1 −σ:L→ μ2. �	

Silent steps arise from the concurrent environment: A step [μ1, γ1] −τ :L→
[μ2, γ2] removes some prefix method m from the environment prediction γ1,
which contracts to an updated suffix prediction γ2 with mγ2 ⊆ γ1. This method
m is executed on the csm variable, changing the policy state to μ2 = μ1 � m. A
method m is enabled, [μ, γ] �c ↓ m, if for all [μ1, γ1] which are τ -reachable from
[μ, γ], method m is admissible, i.e., [μ1, γ1] −m→ [μ2, γ1] for some μ2.

Example 2. Consider concurrent threads P1 ||P2, where P2 = zs.put(5) ;u =
ys.get() and P1 = v = zs.get() ; ys.put(v + 1) with IVars zs, ys according to

6 We are more liberal than Esterel where emit cannot be called sequentially after pres.

www.dbooks.org

https://www.dbooks.org/

96 J. Aguado et al.

Example 1. Under the IVar policy the execution is deterministic, so that first
P2 writes on zs, then P1 reads from zs and writes to ys, whereupon finally P1

reads ys. Suppose the variables have reached policy states μzs and μys and the
threads are ready to execute the residual programs P ′

i waiting at some method
call ci.mi(vi), respectively. Since thread P ′

i is concurrent with the other P ′
3−i, it

can only proceed if mi is not blocked by P ′
3−i, i.e., if [μci

, canci
(P ′

3−i)] �ci
↓ mi,

where canc(P) ⊆ M∗
c is the set of method sequences predicted for P on c.

Initially we have μzs = 0 = μys. Since method get is not admissible in state
0, we get [0, canzs(P2)] �zs ↓ get by Definitions 3 and 2. So, P1 is blocked. The
zs.put of P2, however, can proceed. First, since no predicted method sequence
canzs(P1) = {get} of P1 starts with put, the transition 0 −put:{put}→ 1
implies that [0, canzs(P1)] −put:{put}→ [1, canzs(P1)] by Definition 3(1). More-
over, since get of P1 is not admissible in 0, there are no silent transitions out
of [0, canzs(P1)] according to Definition 3(2). Thus, [0, canzs(P1)] �zs ↓ put, as
claimed.

When the zs.put is executed by P2 it turns into P ′
2 = u = ys.get() and

the policy state for zs advances to μ′
zs = 1, while ys is still at μys = 0. Now

ys.get of P ′
2 blocks for the same reason as zs was blocked in P1 before. But

since P2 has advanced, its prediction on zs reduces to canzs(P ′
2) = ∅. There-

fore, the transition 1 −get:∅→ 1 implies [1, canzs(P ′
2)] −get:∅→ [1, canzs(P ′

2)]
by Definition 3(1). Also, there are no silent transitions out of [1, canzs(P ′

2)] by
Definition 3(2) and so [μ′

zs, canzs(P ′
2)] �zs ↓ get by Definition 2. This permits

P1 to execute zs.get() and proceed to P ′
1 = ys.put(5 + 1). The policy state of

zs is not changed by this, neither is the state of ys, whence P ′
2 is still blocked.

Yet, we have [μys, canzs(P ′
2)] �ys ↓ put which lets P ′

1 complete ys.put. It reaches
P ′′

1 with canys(P ′′
1) = ∅ and changes the policy state of ys to μ′

ys = 1. At this
point, [μ′

ys, canzs(P ′′
1)] �ys ↓ get which means P ′

2 unblocks to execute ys.get. �	
Definition 4. Let �c be a policy for c. A method sequence m1 blocks another
m2 in state μ, written μ �c m1 → m2, if μ �c ↓m2 but [μ, {m1}] �c ↓m2. Two
method sequences m1 and m2 are concurrently enabled, denoted μ �c m1 m2

if μ �c ↓m1, μ �c ↓m2 and both μ �c m1 → m2 and μ �c m2 → m1. �	
Our operational semantics will only let a tuc execute a sequence m provided

[μ, γ] �c ↓m , where μ is the current policy state of c and γ the predicted
activity in the tuc’s concurrent environment. Symmetrically, the environment
will execute any n ∈ γ only if it is enabled with respect to m , i.e., if [μ, {m}] �
↓n . This means μ �c m n . Policy coherence (Definition 5 below) then implies
that every interleaving of the sequences m and any n ∈ γ leads to the same
return values and final variable state (Proposition 1).

2.5 Coherence and Determinacy

A method call m(v) combines a method m ∈ Mc with a method parameter7

v ∈ D, where D is a universal domain for method arguments and return values,
7 This is without loss of generality since D may contain value tuples.

Deterministic Concurrency 97

including the special don’t care value ∈ D. We denote by Ac = {m(v) | m ∈
Mc, v ∈ D} the set of all method calls on object c. Sequences of method calls
α ∈ A∗

c can be abstracted back into sequences of methods α# ∈ M∗
c by dropping

the method parameters: ε# = ε and (m(v)α)# = mα#.
Coherence concerns the semantics of method calls as state transformations.

Let Sc be the domain of memory states of the object c with initial state initc ∈
Sc. Each method call m(v) ∈ Ac corresponds to a semantical action [[m(v)]]c ∈
Sc → (D × Sc). If s ∈ Sc is the current state of the object then executing a call
m(v) on c returns a pair (u, s′) = [[m(v)]]c(s) where the first projection u ∈ D

is the return value from the call and the second projection s′ ∈ Sc is the new
updated state of the variable. For convenience, we will denote u = π1[[m(v)]]c(s)
by u = s.m(v) and s′ = π2[[m(v)]]c(s) by s′ = s � m(v). The action notation
is extended to sequences of calls α ∈ A∗

c in the natural way: s � ε = s and
s � (m(v)α) = (s � m(v)) � α.

For policy-based scheduling we assume an abstraction function mapping a
memory state s ∈ Sc into a policy state s# ∈ Pc. Specifically, init#

c = ε. Further,
we assume the abstraction commutes with method execution in the sense that
if we execute a sequence of calls and then abstract the final state, we get the
same as if we executed the policy automaton on the abstracted state in the first
place. Formally, (s � α)# = s# � α# for all s ∈ Sc and α ∈ A∗

c .

Definition 5 (Coherence). A csm variable c is policy-coherent if for all
method calls a, b ∈ Ac whenever s# �c a# b# for a state s ∈ Sc, then
a and b are confluent in the sense that s.a = (s � b).a, s.b = (s � a).b and
s � a � b = s � b � a. �	
Example 3. Esterel pure signals do not carry any data value, so their memory
state coincides with the policy state, Ss = Ps = {0, 1} and s# = s. An emission
emit does not return any value but sets the state of s to 1, i.e., s. emit() =

∈ D and s�emit() = 1 ∈ Ss. A present test returns the state, s. pres() = s,
but does not modify it, s�pres() = s. From the policy Fig. 1 we find that the
concurrent enablings s# �s a# b# according to Definition 4 are (i) a = b ∈
{pres(), emit()} for arbitrary s, or (ii) s = 1, a = emit() and b = pres().
In each of these cases we verify s.a = (s � b).a, s.b = (s � a).b and s � a � b =
s � b � a without difficulty. Note that 1 �s emit pres since the order of
execution is irrelevant if s = 1. On the other hand, 0 �s emit pres because
in state 0 both methods are not confluent. Specifically, 0. pres() = 0 �= 1 =
(0 � emit()). pres(). �	

A special case are linear precedence policies where μ �c ↓ m for all m ∈ Mc

and μ �c m → n is a linear ordering on Mc, for all policy states μ. Then, for no
state we have μ �c m1 m2, so there is no concurrency and thus no confluence
requirement to satisfy at all. Coherence of c is trivially satisfied whatever the
semantics of method calls. For any two admissible methods one takes precedence
over the other and thus the enabling relation becomes deterministic. There is
however a risk of deadlock which can be excluded if we assume that threads
always call methods in order of decreasing precedence.

www.dbooks.org

https://www.dbooks.org/

98 J. Aguado et al.

The other extreme case is where the policy makes all methods concurrently
enabled, i.e., μ �c m1 m2 for all policy states μ and methods m1, m2. This
avoids deadlock completely and gives maximal concurrency but imposes the
strongest confluence condition, viz. independently of the scheduling order of
any two methods, the resulting variable state must be the same. This requires
complete isolation of the effects of any two methods. Such an extreme is used,
e. g., in the CR library [19]. The typical csm variable, however, will strike a trade-
off between these two extremes. It will impose a sensible set of precedences that
are strong enough to ensure coherent implementations and thus determinacy for
policy-conformant scheduling, while at the same time being sufficiently relaxed to
permit concurrent implementations and avoiding unnecessary deadlocks risking
that programs are rejected by the compiler as un-scheduleable.

Whatever the policies, if the variables are coherent, then all policy-
conformant interleavings are indistinguishable for each csm variable. To state
schedule invariance in its general form we lift method actions and independence
to multi-variable sequences of methods calls A = {c.m(v) | c ∈ O,m(v) ∈ Ac}.
For a given sequence α ∈ A∗ let πc(α) ∈ A∗

c be the projection of α on c, formally
πc(ε) = ε, πc(c.m(v)α) = m(v)πc(α) and πc(c′.m(v)α) = πc(α) for c′ �= c.
A global memory Σ ∈ S =

∏
c∈O Sc assigns a local memory Σ.c ∈ Sc to each

variable c. We write init for the initial memory that has init .c = initc and
(init .c)# = ε ∈ Pc.

Given a global memory Σ ∈ S and sequences α, β ∈ A∗ of method calls, we
extend the independence relation of Definition 4 variable-wise, defining Σ � α
β iff (Σ.c)# �c (πc(α))# (πc(β))#. The application of a method call a ∈ A to
a memory Σ ∈ S is written Σ.a ∈ S and defined (Σ.(c.m(v))).c = (Σ.c).m(v)
and (Σ.(c.m(v))).c′ = Σ.c′ for c′ �= c. Analogously, method actions are lifted
to global memories, i.e., (Σ � c.m(v)).c′ = Σ.c′ if c′ �= c and (Σ � c.m(v)).c =
Σ.c � m(v).

Proposition 1 (Commutation). Let all csm variables be policy-coherent and
Σ � a α for a memory Σ ∈ S, method call a ∈ V and sequences of method
calls α ∈ V∗. Then, Σ � a � α = Σ � α � a and Σ.a = (Σ � α).a.

2.6 Policies and Modularity

Consider the synchronous data-flow network cnt in Fig. 3b with three process
nodes, a multiplexer mux, a register reg and an incrementor inc. Their DCoL
code is given in Fig. 3a. The network implements a settable counter, which pro-
duces at its output ys a stream of consecutive integers, incremented with each
clock tick. The wires ys, zs and ws are IVars (see Example 2) carrying a single
integer value per tick. The input xs is a pure Esterel signal (see Example 1).
The counter state is stored by reg in a local variable xv with read and write
methods that can be called by a single thread only. The register is initialised
to value 0 and in each subsequent tick the value at ys is stored. The inc takes
the value at zs and increments it. When the signal xs is absent, mux passes the

Deterministic Concurrency 99

incremented value on ws to ys for the next tick. Otherwise, if xs is present then
mux resets ys.

The evaluation order is implemented by the policies of the IVars ys, zs and
ws. In each case the put method takes precedence over get which makes sure that
the latter is blocked until the former has been executed. The causality cycle of
the feedback loop is broken by the fact that the reg node first sends the current
counter value to zs before it waits for the new value at ys. The other nodes mux
and inc, in contrast, first read their inputs and then send to their output.

Fig. 3. Synchronous data-flow network cnt built from control-flow processes.

Now suppose, for modularity, the reg node is pre-compiled into a synchronous
IO automaton to be used by mux and inc as a black box component. Then, reg
must be split into three modes [20] reg.init, reg.get and reg.set that can
be called independently in each instant. The init mode initialises the register
memory with 0. The get mode extracts the buffered value and set stores a new
value into the register. Since there may be data races if get and set are called
concurrently on reg, a policy must be imposed. In the scheduling of Fig. 3b,
first reg.get is executed to place the output on zs. Then, reg waits for mux to
produce the next value of ys from xs or ws. Finally, reg.set is executed to store
the current value of ys for the next tick. Thus, the natural policy for the register

www.dbooks.org

https://www.dbooks.org/

100 J. Aguado et al.

is to require that in each tick set is called by at most one thread and if so no
concurrent call to get by another thread happens afterwards. In addition, the
policy requires init to take place at least once before any set or get. Hence,
the policy has two states Preg = {0, 1} with initial ε = 0 and admissibility such
that 0 �reg ↓ m iff m = init and 1 �reg ↓ m for all m. The transitions are
0 � init = 1 and 1 � m = 1 for all m ∈ Mreg. Further, for coherence, in state 1
no set may be concurrent and every get must take place before any concurrent
set. This means, we have 1 �reg m → set for all m ∈ {get, set}. Figure 3c
shows the partially compiled code in which reg is treated as a compiled object.
The policy on reg makes sure the accesses by mux and inc are scheduled in the
right way (see Example 4). Note that reg is not an IVar because it has memory.

The cnt example exhibits a general pattern found in the modular compilation
of SP: Modules (here reg) may be exercised several times in a synchronous tick
through modes which are executed in a specific prescribed order. Mode calls (here
reg.set, reg.get) in the same module are coupled via common shared memory
(here the local variable xs) while mode calls in distinct modules are isolated
from each other [15,20].

3 Constructive Semantics of DCoL

To formalise our semantics it is technically expedient to keep track of the com-
pletion status of each active thread inside the program expression. This results in
a syntax for processes distinguished from programs in that each parallel compo-
sition P1 k1||k2 P2 is labelled by completion codes ki ∈ {⊥, 0, 1} which indicate
whether each thread is waiting ki = ⊥, terminated 0 or pausing ki = 1. Since we
remove a process from the parallel as soon as it terminates then the code ki = 0
cannot occur. An expression P1 ||P2 is considered a special case of a process
with ki = ⊥. The formal semantics is given by a reduction relation on processes

Σ;Π � P
m=⇒ Σ′ �k′ P ′ (2)

specified by the inductive rules in Figs. 4 and 5. The relation (2) determines an
instantaneous sequential reduction step of process P , called an sstep, that follows
a sequence of enabled method calls m ∈ M∗ in sequential program order in P .
This does not include any context switches between concurrent threads inside
P . For thread communication, several ssteps must be chained up, as described
later. The sstep (2) results in an updated memory Σ′ and residual process P ′.
The subscript k′ is a completion code, described below. The reduction (2) is
performed in a context consisting of a global memory Σ ∈ S (must context)
containing the current state of all csm variables and an environment predic-
tion Π ⊆ M∗ (can context). The prediction records all potentially outstanding
methods sequences from threads running concurrently with P .

We write πc(m) ∈ M∗
c for the projection of a method sequence m ∈ M∗ to

variable c and write πc(Π) for its lifting to sets of sequences. Prefixing is lifted,
too, i.e., c.m � Π = {c.mm | m ∈ Π} for any c.m ∈ M.

Deterministic Concurrency 101

Performing a method call c.m(v) in Σ;Π advances the must context to
Σ �c.m(v) but leaves Π unchanged. The sequence of methods m ∈ M∗ in (2) is
enabled in Σ;Π, written [Σ,Π] � ↓m meaning that [(Σ.c)#, πc(Π)] �c ↓ πc(m)
for all c ∈ O. In this way, the context [Σ,Π] forms a joint policy state for all
variables for the tuc P , in the sense of Sect. 2 (Definition 3).

Fig. 4. SStep reductions for sequence, completion and recursion.

Most of the rules in Figs. 4 and 5 should be straightforward for the reader
familiar with structural operational semantics. Seq1 is the case of a sequen-
tial P ;Q where P pauses or waits (k′ �= 0) and Seq2 is where P terminates
and control passes into Q. The statements skip and pause are handled by rules
Cmp1 and Cmp2. The rule Rec explains recursion rec p.P by syntactic unfolding
of the recursion body P . All interaction with the memory takes place in the
method calls letx = c.m(e) inP . Rule Let1 is applicable when the method call
is enabled, i.e., [Σ,Π] � ↓ c.m. Since processes are closed, the argument expres-
sion e must evaluate, eval(e) = v, and we obtain the new memory Σ � c.m(v)
and return value Σ.c.m(v). The return value is substituted for the local (stack
allocated) identifier x, giving the continuation process P{Σ.c.m(v)/x} which is
run in the updated context Σ � c.m(v);Π. The prediction Π remains the same.
The second rule Let2 is used when the method call is blocked or the thread
wants to wait and yield to the scheduler. The rules for conditionals Cnd1, Cnd2

are canonical. More interesting are the rules Par1–Par4 for parallel composition,
which implement non-deterministic thread switching. It is here where we need
to generate predictions and pass them between the threads to exercise the policy
control.

The key operation is the computation of the can-prediction of a process P to
obtain an over-approximation of the set of possible method sequences potentially
executed by P . For compositionality we work with sequences cans(P) ⊆ M∗ ×
{0, 1} stoppered with a completion code 0 if the sequence ends in termination or

www.dbooks.org

https://www.dbooks.org/

102 J. Aguado et al.

Fig. 5. SStep reductions for method calls, conditional and parallel.

1 if it ends in pausing. The symbols ⊥0, ⊥1 and � are the terminated, paused
and fully unconstrained can contexts, respectively, with ⊥0 = {(ε, 0)}, ⊥1 =
{(ε, 1)} and � = M∗ × {0, 1}. The set cans(P), defined in Fig. 6, is extracted
from the structure of P using prefixing c.m � Π ′, choice Π ′

1 ⊕ Π ′
2 = Π ′

1 ∪ Π ′
2,

parallel Π ′
1 ⊗ Π ′

2 and sequential composition Π ′
1 · Π ′

2. Sequential composition is
obtained pairwise on stoppered sequences such that (m , 0)·(n , c) = (m n , c) and
(m , 1)·(n , c) = (m , 1). As a consequence, ⊥0 ·Π ′ = Π ′ and ⊥1 ·Π ′ = ⊥1. Parallel
composition is pairwise free interleaving with synchronisation on completion
codes. Specifically, a product (m , c) ⊗ (n , d) generates all interleavings of m
and n with a completion that models a parallel composition that terminates iff
both threads terminate and pauses if one pauses. Formally, (m , c) ⊗ (n , d) =
{(c,max(c, d)) | c ∈ m ⊗ n}. Thus, Π ′

P ⊗ Π ′
Q = ⊥0 iff Π ′

P = ⊥0 = Π ′
Q and

Π ′
P ⊗ Π ′

Q = ⊥1 if Π ′
P = ⊥1 = Π ′

Q, or Π ′
P = ⊥0 and Π ′

Q = ⊥1, or Π ′
P = ⊥1

and Π ′
Q = ⊥0. From cans(P) we obtain can(P) ⊆ M∗ by dropping all stopper

codes, i.e., can(P) = {m | ∃d. (m , d) ∈ cans(P)}.
The rule Par1 exercises a parallel P k||kQ

Q by performing an sstep in P . This
sstep is taken in the extended context Σ;Π ⊗ can(Q) in which the prediction
of the sibling Q is added to the method prediction Π for the outer environment

Deterministic Concurrency 103

Fig. 6. Computing the can prediction.

in which the parent P ||Q is running. In this way, Q can block method calls
of P . When P finally yields as P ′ with a non-terminating completion code,
0 �= k′ ∈ {⊥, 1}, the parallel completes as P ′

k′||kQ
Q with code k′ � kQ. This

operation is defined k1 �k2 = 1 if k1 = 1 = k2 and k1 �k2 = ⊥, otherwise. When
P terminates its sstep with code k′ = 0 then we need rule Par2 which removes
child P ′ from the parallel composition. The rules Par3,Par4 are symmetrical to
Par1,Par2. They run the right child Q of a parallel P kP

||k Q.

Completion and Stability. A process P ′ is 0-stable if P ′ = skip and 1-stable if
P ′ = pause or P ′ = P ′

1 ;P ′
2 and P ′

1 is 1-stable, or P ′ = P ′
1 1||1 P ′

2, and P ′
i are 1-

stable. A process is stable if it is 0-stable or 1-stable. A process expression is well-
formed if in each sub-expression P1 k1||k2 P2 of P the completion annotations are
matching with the processes, i.e., if ki �= ⊥ then Pi is ki-stable. Stable processes
are well-formed by definition. For stable processes we define a (syntactic) tick
function which steps a stable process to the next tick. It is defined such that
σ(skip) = skip, σ(pause) = skip, σ(P ′

1 ;P ′
2) = σ(P ′

1) ;P ′
2 and σ(P ′

1 k1||k2

P ′
2) = σ(P ′

1)||σ(P ′
2).

Example 4. The data-flow cnt-cmp from Fig. 3c can be represented as a DCoL
process in the form C = reg.init(0); (M ⊥||⊥ I) with

M =df rec p. v = xs. pres();P (v); pause; p
P (v) =df if v then reg.set(0); else Q

Q =df u = ws.get(); reg.set(u);
I =df rec q. v = reg.get(); ws.put(v + 1); pause; q.

Let us evaluate process C from an initialised memory Σ0 such that Σ0.xs = 0 =
Σ0.ws, and empty environment prediction {ε}.

The first sstep is executed from the context Σ0; {ε} with empty can predic-
tion. Note that reg.init(0); (M ⊥||⊥ I) abbreviates let = reg.init(0) in
(M ⊥||⊥ I). In context Σ0; {ε} the method call reg.init(0) is enabled, i.e.,
[Σ0, {ε}] � ↓ reg.init. Since eval(0) = 0, we can execute the first method call
of C using rule Let1. This advances the memory to Σ1 = Σ0 � reg.init(0).

www.dbooks.org

https://www.dbooks.org/

104 J. Aguado et al.

The continuation process M ⊥||⊥ I is now executed in context Σ1;⊥0. The left
child M starts with method call xs. pres() and the right child I with reg.get().
The latter is admissible, since (Σ1.reg)# = 1. Moreover, get does not need to
honour any precedences, whence it is enabled, [Σ1,Π] � ↓ reg.get for any Π.
On the other hand, xs. pres in M is enabled only if (Σ1.xs)# = 1 or if there
is no concurrent emit predicted for xs. Indeed, this is the case: The concur-
rent context of M is ΠI = {ε} ⊗ can(I) = can(I) = {reg.get · ws.put}. We
project πxs(ΠI) = {ε} and find [Σ1,ΠI] � ↓ xs. pres. Hence, we have a non-
deterministic choice to take an sstep in M or in I. Let us use rule Par1/Par2 to
run M in context Σ;ΠI . By loop unfolding Rec and rule Let1 we execute the
present test of M which returns the value Σ1.xs. pres() = false. This leads
to an updated memory Σ2 = Σ1 � xs. pres() = Σ1 and continuation process
P (false); pause;M . In this (right associated) sequential composition we first
execute P (false) where the conditional rule Cnd2 switches to the else branch
Q which is u = ws.get(); reg.set(u);, still in the context Σ2,ΠI . The reading of
the data-flow variable ws, however, is not enabled, [Σ2,ΠI] � ↓ ws.get, because
(Σ2.ws)# = 0 and thus get not admissible. The sstep blocks with rule Let2:

Let2
Σ2; ΠI � Q

ε
=⇒ Σ2 �⊥ Q

Cnd2
Σ2; ΠI � P (false)

ε
=⇒ Σ2 �⊥ Q

Seq1
Σ2; ΠI � P (false); pause; M

ε
=⇒ Σ2 �⊥ Q; pause; M

Let1(Σ1; ΠI � ↓ xs. pres)
Σ1; ΠI � v = xs. pres(); P (v); pause; M

ε
=⇒ Σ2 �⊥ Q; pause; M

Rec
Σ1; ΠI � M

m2==⇒ Σ2 �⊥ Q; pause; M
Par1

Σ1; {ε} � M ⊥||⊥ I
m2==⇒ Σ2 �⊥ (Q; pause; M) ⊥||⊥ I

Let1(Σ; ⊥0 � ↓ reg.init)
Σ; {ε} � C

m1m2====⇒ Σ2 �⊥ (Q; pause; M) ⊥||⊥ I

where m1 = reg.init and m2 = xs. pres. In the next sstep, from Σ2;ΠQ with
ΠQ = {ε} ⊗ can(Q; pause;M) = can(Q; pause;M) = {ws.get · reg.set} we let
the process I execute its reg.get() with rules Rec and Let1. The return value is
v = Σ2.reg.get() = 0. Then, from the updated memory Σ3 = Σ2 � reg.get()
we run the continuation process ws.put(0 + 1); pause; I. The ws.put is enabled
if the IVar is empty and there is no concurrent put on ws predicted from M .
Both conditions hold since (Σ3.ws)# = (Σ.ws)# = 0 and πws(ΠQ) = {get}.
Therefore, [Σ3,ΠQ] � ↓ ws.put. With the evaluation eval(0 + 1) = 1 the rule
Let1 permits us to update the memory as Σ4 = Σ3 � ws.put(1) and continue
with process pause; I which completes by pausing. Formally, this sstep is:

Cmp2
Σ4; ΠQ � pause

ε
=⇒ Σ4 �1 pause

Seq1
Σ4; ΠQ � pause; I

ε
=⇒ Σ4 �1 pause; I

Let2
Σ3; ΠQ � ws.put(0 + 1); pause; I

m4==⇒ Σ4 �1 pause; I
Let1

Σ2; ΠQ � v = reg.get(); ws.put(v + 1); pause; I
m3m4====⇒ Σ4 �1 pause; I

Rec
Σ2; ΠQ � I

m3m4====⇒ Σ4 �1 pause; I
Par3

Σ2; {ε} � (Q; pause; M) ⊥||⊥ I
m3m4====⇒ Σ4 �⊥ (Q; pause; M) ⊥||1 (pause; I)

Deterministic Concurrency 105

where m3 = reg.get and m4 = ws.put. In the next sstep the waiting method
u = ws.get in Q is now admissible and can proceed, (Σ4.ws)# = ((Σ3 �
ws.put(1)).ws)# = 1 and thus [Σ4,Π] � ↓ ws.get for all Π. The return value
is u = Σ4.ws.get() = 1, the updated memory Σ5 = Σ4 � ws.put(1) and the
continuation process reg.set(1); pause;M . The register set method is admissi-
ble since (Σ4.reg)# = 1 and also enabled because there is no get predicted in
the concurrent environment ⊥0. Thus, [Σ5,⊥0] � ↓ reg.set. The execution of
the method yields the memory Σ6 = Σ5 � reg.set(1) with continuation process
pause ;M which completes by pausing. This yields the derivation tree:

Cmp2
Σ6; {ε} � pause; M

ε
=⇒ Σ6 �1 pause; M

Let1
Σ5; {ε} � reg.set(1); pause; M

m6==⇒ Σ6 �1 pause; M
Let1

Σ4; {ε} � Q; pause; M
m5m6====⇒ Σ6 �1 pause; M

Par2
Σ4; {ε} � (Q; pause; M) ⊥||1 (pause; I)

m5m6====⇒ Σ6 �1 (pause; M) 1||1 (pause; I)

where m5 = ws.get and m6 = reg.set. To justify the rule Par2 consider that
{ε} ⊗ can(pause; I) = {ε} ⊗ {ε} = {ε}. At this point we have reached a 1-stable
process. With the tick function we advance to the next tick, σ((pause;M) 1||1

(pause; I)) = (skip;M) ⊥||⊥ (skip; I) which behaves like M ⊥||⊥ I. �	

3.1 Determinacy, Termination and Constructiveness

Determinacy of DCoL is a result of two components, monotonicity of policy-
conformant scheduling and csm coherence. Monotonicity ensures that whenever
a method is executable and policy-enabled, then it remains policy-enabled under
arbitrary ssteps of the environment. Symmetrically, the environment cannot be
blocked by a thread taking policy-enabled computation steps.

The second building block for determinacy is csm variable coherence. Con-
sider a context Σ;ΠQ in which we run an sstep of P with prediction ΠQ for
concurrent process Q, resulting in a final memory Σ′

P arising from executing
a sequence mP of method calls from P . Because of the policy constraint, the
sequence mP must be enabled under all predictions n ∈ ΠQ, i.e., [Σ,n] � ↓mP .
Suppose, on the other side, we sstep the process Q in the same memory Σ with
prediction ΠP for P , resulting in an action sequence mQ and final memory Σ′

Q.
Then, by the same reasoning, [Σ,n] � ↓mQ for all n ∈ ΠP . But since mP is an
actual execution of P it must be in the prediction for P , i.e., mP ∈ ΠP and sym-
metrically, mQ ∈ ΠQ. But then we have [Σ,mQ] � ↓mP and [Σ,mP] � ↓mP

which means Σ � mP mQ. Now if the semantics of method calls is policy-
coherent then the Monotonicity can be exploited to derive a confluence property
for processes which guarantees that mP can still be executed by P in state Σ′

Q

and mQ by Q in state Σ′
P , and both lead to the same final memory.

www.dbooks.org

https://www.dbooks.org/

106 J. Aguado et al.

Theorem 1 (Diamond Property). If all csm variables are policy-coherent
then the sstep semantics is confluent. Formally, given two derivations Σ;Π �
P

m1=⇒ Σ1 �k1 P1 and Σ;Π � P
m2=⇒ Σ2 �k2 P2, Then, there exist Σ′, k′ and P ′

such that Σ1;Π � P1
n1=⇒ Σ′ �k′ P ′ and Σ1;Π � P2

n2=⇒ Σ′ �k′ P ′.

Theorem 1 shows that no matter how we schedule the ssteps of local threads
to create an sstep of a parallel composition, the final result will not diverge.
This does not guarantee completion of a process. However, it implies that the
question of whether P blocks or makes progress does not depend on the order
in which concurrent threads are scheduled. Either a process completes or it does
not. All ssteps in a process can be scheduled with maximal parallelism without
interference.

A main program P is run at the top level in an “environmentally closed” form
of ssteps (2) where the prediction is empty Π = {ε} and thus acts neutrally. We
iterate such ssteps to construct a macro-step reaction. Let us write

Σ � P =⇒ Σ′ � P ′ (3)

if there exists k′, m such that Σ;⊥0 � P
m=⇒ Σ′ �k′ P ′. The relation =⇒ is well-

founded for clock-guarded processes in the sense that it has no infinite chains.

Theorem 2 (Termination). Let P0, P1, P2, . . . and Σ0, Σ1, Σ2, . . . be infinite
sequences of processes and memories, respectively, with Σi � Pi =⇒ Σi+1 � Pi+1.
If P0 is clock-guarded then there is n ≥ 0 with Σn = Σi, Pn = Pi for all i ≥ n.

The fixed point semantics will iterate (3) until it reaches a P ∗ such that
Σ∗ � P ∗ =⇒ Σ∗ � P ∗. By Termination Theorem 2 this must exist for clock-
guarded processes. If cans(P ∗) = ⊥0 then P ∗ is 0-stable and the program P has
terminated. If cans(P ∗) = ⊥1, the residual P ∗ is pausing.

Definition 6 (Macro Step). A run Σ � P ⇒⇒ Σ′ � P ′ is a sequence of ssteps
with processes P0, P1, P2, . . . , Pn and sequences of method calls m1, m2, . . .mn

such that for all 1 ≤ i ≤ n,

Σi−1;⊥0 � Pi−1 =⇒ Σi �ki
Pi,

where P0 = P , Σ0 = Σ, Σn = Σ′ and Pn = P ′. A run is called a macro-step
if it is maximal, i.e., if Σ′ � P ′ =⇒ Σ′′ � P ′′ implies Σ′ = Σ′′ and P ′ = P ′′.
The macro-step is called stabilising if the final P ′ is stable, i.e., kn �= ⊥ and the
clock is admissible, i.e., if (Σ′.c)# � σ is defined for all c ∈ O. The macro-step
is pausing if kn = 1 and terminating if kn = 0. �	

Given a pausing macro-step Σ � P ⇒⇒ Σ′ � P ′, then the next tick starts
with process σ(P ′) in memory Σ′′ such that (πc(Σ′))# −σ→ (πc(Σ′′))# for all
c ∈ O. This only constrains the abstract policy state of each variable in Σ′′ not
their memory content. In this way, csm variables can introduce an arbitrary new
memory Σ′′ with every clock tick.

Deterministic Concurrency 107

Theorem 3 (Macro-step Determinism). If all csm variables are policy-
coherent then for two macro steps Σ � P ⇒⇒ Σ1 � P1 and Σ � P ⇒⇒ Σ2 � P2

we have Σ1 = Σ2 and P1 = P2.

Definition 7 (Constructiveness). A program P is policy-constructive, for
a set of policy coherent csm variables, if for arbitrary initial memory Σ all
reachable macro-steps of P are stabilising. �	

A non-constructive program will, after some tick, end up in a fixed point
P ∗ with cans(P ∗) �∈ {⊥0,⊥1}. Then P ∗ is stuck involving a set of active child
threads waiting for each other in a policy-induced cycle.

Finally, we present two important results for DCoL showing that we are
conservatively extending existing SP semantics. A DCoL program using only
sequentially constructive variables [14] (see [17] Sec. 5.7]) is called a DCoL-
SC program. DCoL programs using only pure signals subject to the policy of
Example 1 (Fig. 1) are expressive complete for the pure instantaneous fragment
of Esterel [4]. Esterel signal emissions emit s are syntactic sugar for s. emit();.
A presence test pres s thenP elseQ abbreviates if s. pres() then P else Q.
Sequential composition P ;Q in Esterel behaves like a parallel composition in
which the schedule is forced to run P to termination before it can pass control
to Q. In DCoL this is (P;s′. emit();) || (s′. pres() thenQ else skip) with fresh
signal s′ not occurring in either P or Q. This suggests the following definition:
A program P is a (pure instantaneous) DCoL-Esterel program if (i) P only uses
pure signals and (ii) P does not use pause or rec and (iii) P does not contain
sequentially nested occurrences of signal accesses.

Theorem 4 (Esterel and Sequential Constructiveness)

1. If an DCoL-Esterel program P is policy-constructive according to Definition 7
iff it is Berry-constructive in the sense of [4].

2. If a DCoL-SC program P is policy-constructive according to Definition 7 then
it is sequentially constructive in the sense of [14].

It is interesting to note that the second statement in Theorem 4 is not
invertible (for a counter example see [17]). Hence, policy-constructiveness for
SC-variables induced by our semantics is more restrictive than that given in [14].

4 Related Work

Many languages have been proposed to offer determinism as a fundamental
design principle. We consider these attempts under several categories.

Fixed Protocol for Shared Data. These approaches introduce an unique pro-
tocol for data exchange between concurrent processes. SHIM [21] provides a
model for combined hardware software systems typically of embedded systems.
Here, the concurrent processes communicate using point-to-point (restricted)
Kahn channels with blocking reads and writes. SHIM programs are shown to be

www.dbooks.org

https://www.dbooks.org/

108 J. Aguado et al.

deterministic-by-construction as the states of each process are finite and deter-
ministic and the data produced-consumed over any channel is also deterministic.

Concurrent revisions [19] introduce a generic and deterministic programming
model for parallel programming. This model supports fork-join parallelism and
processes are allowed to make concurrent modifications to shared data by creat-
ing local copies that are eventually merged using suitable (programmer specified)
merge functions at join boundaries.

However, like the deterministic SP model [2], both SHIM and concurrent revi-
sions lack support for more expressive shared ADTs essential for programming
complex systems. Caromel et al. [22], on the other hand, offer determinism with
asynchronously communicating active objects (ADTs) equipped with a process
calculus semantics. Here, an active object is a sequential thread. Active objects
communicate using futures and synchronise via Kahn-MacQueen co-routines [23]
for deterministic data exchange. Our approach subsumes Kahn buffers of SHIM
and the local-copy-merge protocol of concurrent revisions by an appropriate
choice of method interface and policy. None of these approaches [19,21,22] uses
a clock as a central barrier mechanism like our approach does.

In the Java-derived language X10, clocks are a form of synchronisation barrier
for supporting deterministic and deadlock-free patterns of common parallel com-
putations [24]. This allows multiple-clocks in contrast to our approach. These,
however, are not abstracted in the objects in contrast to our clocks that are
encapsulated inside the csm types. Hence X10 clocks are invoked directly by the
activities (i.e., concurrent threads) of programs and this manual synchronisation
is as error-prone as other unsafe low-level primitives such as locks.

Coherent Memory Models for Shared Data. Whether clocked or not, our approach
depends on the availability of csm types that are provably coherent for their
policy. Besides the standard types of SP (data-flow, sequentially constructive
variables, Kahn channels, signals) such csm types can be obtained from exist-
ing research on coherent memory models [25,26]. Unlike the protocol-oriented
approaches above, some approaches have been developed based on coherency of
the underlying memory models [26] especially for shared objects.

Bocchino et al. [25] propose deterministic parallel Java (DPJ) which has a
type and effect system to ensure that parallel heap accesses remain safe. Data
structures such as arrays, trees, and sets can be accessed in parallel as long as
accesses can be shown to use non-overlapping regions.

Grace [27] promises a deterministic run-time through the adoption of fork-join
parallelism combined with memory protection and a sequential commit protocol.
However, there is no guarantee on the determinism of such custom synchronisation
protocols. These must be verified using expensive proof systems.

A powerful technique to generate coherent shared memory structure for func-
tional programs has recently been proposed by Kuper et al. [28]. They introduce
lattice-based data structures, called LVars, in which all write accesses produce
a monotonic value increase in the lattice and all read accesses are blocked until
the memory value has passed a read-specific threshold. Each variable’s domain
is organised as a lattice of states with ⊥ and � representing an empty new

Deterministic Concurrency 109

location and an error, respectively. Because of monotonicity all writes are con-
fluent with each other. Since reads are blocked each LVar data type can thus be
used in DCoL as a coherent csm type of variables with a threshold-determined
policy. Note that [25–28] do not consider csm types and [28] also do not treat
destructive sequential updates as we do.

Recently Haller et al. [29] have developed Reactive Async, a new event-based
asynchronous concurrent programming model that improves on LVars. This app-
roach extends futures and promises8 with lattice-based operations in order to
support destructive updates (refinement of results) in a deterministic concur-
rent setting. The basic abstractions are: cells which define interfaces for reading
a value that is asynchronously computed and (ii) cell completers that allow mul-
tiple monotonic updates of values taken from a lattice type class. The model
supports concurrent programming with cyclic data dependencies in contrast to
LVars. The mechanism for resolving cycles combines the lattices with quiescence
detection on a handler pool (execution context). The quiescence concept refers
to a state where the cell values are not going to be changed anymore. The thread
pool is able to detect this quiescent (synchronisation) phase and when this is the
case the resolution of cyclic dependencies and reading of cells can take place. This
is similar to our policies, where enabling of methods (e. g., read) is a state and
prediction-dependent notion. Our developments may offer a theoretical back-
ground for the cell interfaces of this model. In Reactive Async the concurrent
code is guaranteed to be deterministic provided that the API is used appropri-
ately but this is not checked statically. It would be interesting to investigate
whether our theory can contribute on this front. In the other direction, Reac-
tive Async manages inter-cell dependencies which might support global policies
between different csm variables in our setting.

Clock-Driven Encapsulation. Encapsulation is not entirely unknown in reactive
programming. The idea of reactive object model (ROM) [30] was first introduced
by Boussinot et al. and subsequently refined [31] and combined with standards
such as UML [32]. Here a program is a collection of reactive objects that operate
synchronously relative to a global clock, similar to SP. Each object encapsulates
a set of methods and data, where the methods share this data. ROM relied on a
simplified assumption, where each method invocation is separated into instants.

André et al. [33] generalised the ROM idea to that of synchronous objects,
which behave like synchronous modules (in Esterel or Lustre). The program is
divided into a collection of synchronous and standard objects. While the lat-
ter interact using messages, the former use signals like in SP. Communication
between standard and synchronous objects has to be managed using special
interface objects. The framework supports features such as aggregation, encapsu-
lation and inheritance yet communication is restricted to standard Esterel-style
signals. However, the issue of determinism for the composition of synchronous
objects with standard objects is not considered.

8 A future can asynchronously be completed with a value of the appropriate type or
it can fail with an exception. A promise allows completing a future at most once.

www.dbooks.org

https://www.dbooks.org/

110 J. Aguado et al.

A concrete implementation of synchronous objects in Java is proposed in [34].
Here, a run-time system is used to provide a cyclic schedule of the objects during
an instant. This approach assumes that outputs from the objects can be read
only in the next instant (similar to the SL programming language [35]) and so
does not support instantaneous communication like we do.

Synchronous objects arise naturally in modular compilation [15,36,37]. The
first time these have been exposed at the language level is in [20]. That work
has inspired our use of policies. While [20] offers a mechanism for deterministic
management of shared variables through ADT-like interfaces it has three seri-
ous limitations: (1) Modes express data-flow equations rather than imperative
method procedures and so are not directly suitable for control-flow programming;
(2) Policies do not distinguish between two modes being called sequentially by
the same thread, which can be permitted, and two methods being called by dif-
ferent threads in parallel, which may have to be prohibited. This makes policies
too restrictive in the light of the recent more liberal notion of sequential con-
structiveness [14] and, most importantly, (3) the notion of policy-soundness does
not use policies prescriptively as a contract to be fulfilled by the scheduler but
instead only descriptively as an invariant of the program code. Hence, policies
in [20] cannot be used to generalise the semantics of SP signals to shared ADTs.

The sequentially constructive model of synchronous computation [14] has
shown how the constructive semantics of Esterel can be reconstructed from a
scheduling view as standard destructive variables plus synchronisation protocol.
SCL acts as an intermediate language for the graphical language SCCharts [38]
and the textual language SCEst [18] which are proposed as sequentially con-
structive extensions of the well-known control-flow languages SyncCharts [39]
and Esterel [4]. By presenting our new analysis of sequential constructiveness
for SCL our results become applicable both for SCCharts and SCEst.

The term ‘constructive’ semantics has been coined by Berry [4]. In [40] it was
shown how it can be recoded as a fixed-point in an interval domain which we
generalise here to policy states [μ, γ]. Talpin et al. [13] recently gave a construc-
tive semantics of multi-clock synchronous programs. It is an open problem how
our approach could be generalised to multiple clocks.

5 Conclusion

This work extends the SP theoretical foundations to allow communication at
higher levels of abstraction. The paper explains deterministic concurrency of
SP as a derived property from csm types. Our results extend the SP-notion
of constructiveness to general shared csm types. We have made some simplify-
ing assumptions that render the theory somewhat less general than it could be.
A first limitation is our assumption that all method calls are atomic. We believe
the theory can be generalised for non-atomic methods albeit at the price of
a significant increase in the complexity of calculating can predictions. Second,
method parameters are passed “by value” rather than “by reference”. This is
necessary for having types as black boxes ready to use. Method parameters

Deterministic Concurrency 111

passing variables “by reference” would also introduce aliasing issues which we
do not address. Third, in our present setting the policy update μ � m does not
observe method parameters. This is an abstraction to facilitate static analyses.
In principle, to increase expressiveness, the method parameters could be
included, too, but again complicate over-approximation for can information.

Acknowledgement. We thank Philipp Haller, Adrien Guatto and the three anony-
mous reviewers for their insightful comments and suggestions helping us improving the
paper. This work has been supported by the German Research Council (DFG) under
grant number ME-1427/6-2.

References

1. Lee, E.: The problem with threads. Computer 39(5), 33–42 (2006)
2. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Guernic, P.L., de Simone,

R.: The synchronous languages twelve years later. Proc. IEEE 91(1), 64–83 (2003)
3. Colaço, J., Pagano, B., Pouzet, M.: SCADE 6: a formal language for embedded

critical software development. In: TASE 2017, Sophia Antipolis, France, September
2017

4. Berry, G.: The Constructive Semantics of Pure Esterel. Draft Book (1999)
5. Schneider, K.: The synchronous programming language quartz. Internal report

375, Department of Computer Science, University of Kaiserslautern, Germany,
December 2009

6. von Hanxleden, R.: SyncCharts in C – a proposal for light-weight, deterministic
concurrency. In: EMSOFT 2009, Grenoble, France, pp. 225–234, October 2009

7. Guernic, P.L., Goutier, T., Borgne, M.L., Maire, C.L.: Programming real time
applications with SIGNAL. Proc. IEEE 79, 1321–1336 (1991)

8. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

9. Pouzet, M.: Lucid Synchrone, un langage synchrone d’ordre supérieur. Mémoire
d’habilitation, Université Paris 6, November 2002

10. The Esterel v7 Reference Manual Version v7 30, November 2005
11. Aguado, J., Mendler, M.: Constructive semantics for instantaneous reactions.

Theor. Comput. Sci. 412, 931–961 (2011)
12. Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Grounding syn-

chronous deterministic concurrency in sequential programming. In: Shao, Z. (ed.)
ESOP 2014. LNCS, vol. 8410, pp. 229–248. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54833-8 13

13. Talpin, J., Brandt, J., Gemünde, M., Schneider, K., Shukla, S.: Constructive poly-
chronous systems. Sci. Comput. Prog. 96(3), 377–394 (2014)

14. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann,
I., Motika, C., Mercer, S., O’Brien, O., Roop, P.: Sequentially constructive
concurrency—a conservative extension of the synchronous model of computation.
ACM TECS 13(4s), 144:1–144:26 (2014)

15. Pouzet, M., Raymond, P.: Modular static scheduling of synchronous data-flow net-
works - an efficient symbolic representation. Des. Autom. Embed. Syst. 14(3),
165–192 (2010)

www.dbooks.org

https://doi.org/10.1007/978-3-642-54833-8_13
https://doi.org/10.1007/978-3-642-54833-8_13
https://www.dbooks.org/

112 J. Aguado et al.

16. Kahn, G.: The semantics of simple language for parallel programming. In: IFIP
Congress 1974, Stockholm, Sweden, pp. 471–475, August 1974

17. Aguado, J., Mendler, M., Pouzet, M., Roop, P., von Hanxleden, R.: Clock-
synchronised shared objects for deterministic concurrency. Research report 102,
University of Bamberg, Germany, July 2017. https://www.uni-bamberg.de/
fileadmin/uni/fakultaeten/wiai professuren/grundlagen informatik/papersMM/
report-WIAI-102-Feb-2018.pdf

18. Rathlev, K., Smyth, S., Motika, C., von Hanxleden, R., Mendler, M.: SCEst:
sequentially constructive esterel. ACM TECS 17(2), 33:1–33:26 (2018)

19. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually consistent trans-
actions. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 67–86. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2 4

20. Caspi, P., Colac̃o, J., Gérard, L., Pouzet, M., Raymond, P.: Synchronous objects
with scheduling policies: introducing safe shared memory in lustre. In: LCTES
2009, Dublin, Ireland, pp. 11–20, June 2009

21. Vasudevan, N.: Efficient, deterministic and deadlock-free concurrency. Ph.D. thesis,
Department of Computer Science, Columbia University, March 2011

22. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic objects. In:
POPL 2004, Venice, Italy, pp. 123–134, January 2004

23. Kahn, G., MacQueen, D.: Coroutines and networks of parallel processes. In: IFIP
Congress 1977, Toronto, Canada, pp. 993–998, August 1977

24. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005, San Diego, USA, pp. 519–538, October 2005

25. Bocchino, R., Adve, V., Dig, D., Adve, S., Heumann, S., Komuravelli, R., Overbey,
J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic
parallel Java. In: OOPSLA 2009, Orlando, USA, pp. 97–116, October 2009

26. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI 2003,
San Diego, USA, pp. 338–349, June 2003

27. Berger, E., Yang, T., Liu, T., Novark, G.: Grace: safe multithreaded programming
for C/C++. In: OOPSLA 2009, Orlando, USA, pp. 81–96, October 2009

28. Kuper, L., Turon, A., Krishnaswami, N., Newton, R.: Freeze after writing: quasi-
deterministic parallel programming with LVars. In: POPL 2014, San Diego, USA,
pp. 257–270, January 2014

29. Haller, P., Geries, S., Eichberg, M., Salvaneschi, G.: Reactive Async: expressive
deterministic concurrency. In: SCALA 2016, Amsterdam, Netherlands, pp. 11–20,
October 2016

30. Boussinot, F., Doumenc, G., Stefani, J.: Reactive objects. Annales des
télécommunications 51(9–10), 459–473 (1996)

31. Talpin, J., Benveniste, A., Caillaud, B., Jard, C., Bouziane, Z., Canon, H.: BDL,
a language of distributed reactive objects. In: IEEE ISORC 1998, Kyoto, Japan,
pp. 196–205, April 1998

32. André, C., Peraldi-Frati, M.-A., Rigault, J.-P.: Integrating the synchronous
paradigm into UML: application to control-dominated systems. In: Jézéquel, J.-M.,
Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 163–178. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 15

33. André, C., Boulanger, F., Péraldi, M., Rigault, J., Vidal-Naquet, G.: Objects and
synchronous programming. RAIRO-APII-JESA-J. Eur. Syst. Autom. 31(3), 417–
432 (1997)

https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://doi.org/10.1007/978-3-642-28869-2_4
https://doi.org/10.1007/3-540-45800-X_15

Deterministic Concurrency 113

34. Passerone, C., Sansoe, C., Lavagno, L., McGeer, R., Martin, J., Passerone, R.,
Sangiovanni-Vincentelli, A.: Modeling reactive systems in Java. ACM TODAES
3(4), 515–523 (1998)

35. Boussinot, F., Simone, R.D.: The SL synchronous language. IEEE TSE 22(4),
256–266 (1996)

36. Biernacki, D., Colaço, J., Hamon, G., Pouzet, M.: Clock-directed modular code
generation of synchronous data-flow languages. In: LCTES 2008, Tucson, USA,
pp. 121–130, June 2008

37. Hainque, O., Pautet, L., Le Biannic, Y., Nassor, É.: Cronos: a separate compilation
tool set for modular Esterel applications. In: Wing, J.M., Woodcock, J., Davies,
J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1836–1853. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48118-4 47

38. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., O’Brien, O.: SCCharts: sequentially constructive statecharts for
safety-critical applications. SIGPLAN Not. 49(6), 372–383 (2014)

39. André, C.: Semantics of SyncCharts. Technical report ISRN I3S/RR-2003-24-FR,
I3S Laboratory, Sophia-Antipolis, France, April 2003

40. Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Denotational fixed-
point semantics for constructive scheduling of synchronous concurrency. Acta Infor-
matica 52(4), 393–442 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1007/3-540-48118-4_47
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Probabilistic Programming

An Assertion-Based Program Logic
for Probabilistic Programs

Gilles Barthe1, Thomas Espitau2, Marco Gaboardi3, Benjamin Grégoire4,
Justin Hsu5(B), and Pierre-Yves Strub6

1 IMDEA Software Institute, Madrid, Spain
2 Université Paris 6, Paris, France

3 University at Buffalo, SUNY, Buffalo, USA
4 Inria Sophia Antipolis–Méditerranée, Nice, France

5 University College London, London, UK
6 École Polytechnique, Palaiseau, France

Abstract. We present Ellora, a sound and relatively complete
assertion-based program logic, and demonstrate its expressivity by veri-
fying several classical examples of randomized algorithms using an imple-
mentation in the EasyCrypt proof assistant. Ellora features new proof
rules for loops and adversarial code, and supports richer assertions than
existing program logics. We also show that Ellora allows convenient
reasoning about complex probabilistic concepts by developing a new pro-
gram logic for probabilistic independence and distribution law, and then
smoothly embedding it into Ellora.

1 Introduction

The most mature systems for deductive verification of randomized algorithms are
expectation-based techniques; seminal examples include PPDL [28] and pGCL
[34]. These approaches reason about expectations, functions E from states to real
numbers,1 propagating them backwards through a program until they are trans-
formed into a mathematical function of the input. Expectation-based systems
are both theoretically elegant [16,23,24,35] and practically useful; implementa-
tions have verified numerous randomized algorithms [19,21]. However, proper-
ties involving multiple probabilities or expected values can be cumbersome to
verify—each expectation must be analyzed separately.

An alternative approach envisioned by Ramshaw [37] is to work with predi-
cates over distributions. A direct comparison with expectation-based techniques

This is the conference version of the paper.
1 Treating a program as a function from input states s to output distributions μ(s),

the expected value of E on μ(s) is an expectation.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-89884-1 5) contains supplementary material, which is
available to authorized users.

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 117–144, 2018.
https://doi.org/10.1007/978-3-319-89884-1_5

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_5&domain=pdf
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://www.dbooks.org/

118 G. Barthe et al.

is difficult, as the approaches are quite different. In broad strokes, assertion-
based systems can verify richer properties in one shot and have specifications
that are arguably more intuitive, especially for reasoning about loops, while
expectation-based approaches can transform expectations mechanically and can
reason about non-determinism. However, the comparison is not very meaningful
for an even simpler reason: existing assertion-based systems such as [8,18,38]
are not as well developed as their expectation-based counterparts.

Restrictive Assertions. Existing probabilistic program logics do not support
reasoning about expected values, only probabilities. As a result, many prop-
erties about average-case behavior are not even expressible.

Inconvenient Reasoning for Loops. The Hoare logic rule for determin-
istic loops does not directly generalize to probabilistic programs. Existing
assertion-based systems either forbid loops, or impose complex semantic side
conditions to control which assertions can be used as loop invariants. Such
side conditions are restrictive and difficult to establish.

No Support for External or Adversarial Code. A strength of expectation-
based techniques is reasoning about programs combining probabilities and
non-determinism. In contrast, Morgan and McIver [30] argue that assertion-
based techniques cannot support compositional reasoning for such a combi-
nation. For many applications, including cryptography, we would still like to
reason about a commonly-encountered special case: programs using external
or adversarial code. Many security properties in cryptography boil down to
analyzing such programs, but existing program logics do not support adver-
sarial code.

Few Concrete Implementations. There are by now several independent
implementations of expectation-based techniques, capable of verifying inter-
esting probabilistic programs. In contrast, there are only scattered implemen-
tations of probabilistic program logics.

These limitations raise two points. Compared to expectation-based approaches:

1. Can assertion-based approaches achieve similar expressivity?
2. Are there situations where assertion-based approaches are more suitable?

In this paper, we give positive evidence for both of these points.2 Towards the
first point, we give a new assertion-based logic Ellora for probabilistic pro-
grams, overcoming limitations in existing probabilistic program logics. Ellora
supports a rich set of assertions that can express concepts like expected values
and probabilistic independence, and novel proof rules for verifying loops and
adversarial code. We prove that Ellora is sound and relatively complete.

Towards the second point, we evaluate Ellora in two ways. First, we
define a new logic for proving probabilistic independence and distribution law

2 Note that we do not give mathematically precise formulations of these points; as
we are interested in the practical verification of probabilistic programs, a purely
theoretical answer would not address our concerns.

An Assertion-Based Program Logic for Probabilistic Programs 119

properties—which are difficult to capture with expectation-based approaches—
and then embed it into Ellora. This sub-logic is more narrowly focused
than Ellora, but supports more concise reasoning for the target assertions.
Our embedding demonstrates that the assertion-based approach can be flexi-
bly integrated with intuitive, special-purpose reasoning principles. To further
support this claim, we also provide an embedding of the Union Bound logic,
a program logic for reasoning about accuracy bounds [4]. Then, we develop a
full-featured implementation of Ellora in the EasyCrypt theorem prover and
exercise the logic by mechanically verifying a series of complex randomized algo-
rithms. Our results suggest that the assertion-based approach can indeed be
practically viable.

Abstract Logic. To ease the presentation, we present Ellora in two stages.
First, we consider an abstract version of the logic where assertions are general
predicates over distributions, with no compact syntax. Our abstract logic makes
two contributions: reasoning for loops, and for adversarial code.

Reasoning About Loops. Proving a property of a probabilistic loop typically
requires establishing a loop invariant, but the class of loop invariants that can
be soundly used depends on the termination behavior—stronger termination
assumptions allows richer loop invariants. We identify three classes of assertions
that can be used for reasoning about probabilistic loops, and provide a proof
rule for each one:

– arbitrary assertions for certainly terminating loops, i.e. loops that terminate
in a finite amount of iterations;

– topologically closed assertions for almost surely terminating loops, i.e. loops
terminating with probability 1;

– downwards closed assertions for arbitrary loops.

The definition of topologically closed assertion is reminiscent of Ramshaw [37];
the stronger notion of downwards closed assertion appears to be new.

Besides broadening the class of loops that can be analyzed, our rules often
enable simpler proofs. For instance, if the loop is certainly terminating, then
there is no need to prove semantic side-conditions. Likewise, there is no need to
consider the termination behavior of the loop when the invariant is downwards
and topologically closed. For example, in many applications in cryptography,
the target property is that a “bad” event has low probability: Pr [E] ≤ k. In our
framework this assertion is downwards and topologically closed, so it can be a
loop invariant regardless of the termination behavior.

Reasoning About Adversaries. Existing assertion-based logics cannot reason
about probabilistic programs with adversarial code. Adversaries are special
probabilistic procedures consisting of an interface listing the concrete proce-
dures that an adversary can call (oracles), along with restrictions like how many
calls an adversary may make. Adversaries are useful in cryptography, where secu-
rity notions are described using experiments in which adversaries interact with a
challenger, and in game theory and mechanism design, where adversaries can rep-
resent strategic agents. Adversaries can also model inputs to online algorithms.

www.dbooks.org

https://www.dbooks.org/

120 G. Barthe et al.

We provide proof rules for reasoning about adversary calls. Our rules are
significantly more general than previously considered rules for reasoning about
adversaries. For instance, the rule for adversary used by [4] is restricted to adver-
saries that cannot make oracle calls.

Metatheory. We show soundness and relative completeness of the core abstract
logic, with mechanized proofs in the Coq proof assistant.

Concrete Logic. While the abstract logic is conceptually clean, it is inconve-
nient for practical formal verification—the assertions are too general and the
rules involve semantic side-conditions. To address these issues, we flesh out a
concrete version of Ellora. Assertions are described by a grammar model-
ing a two-level assertion language. The first level contains state predicates—
deterministic assertions about a single memory—while the second layer contains
probabilistic predicates constructed from probabilities and expected values over
discrete distributions. While the concrete assertions are theoretically less expres-
sive than their counterparts in the abstract logic, they can already encode com-
mon properties and notions from existing proofs, like probabilities, expected val-
ues, distribution laws and probabilistic independence. Our assertions can express
theorems from probability theory, enabling sophisticated reasoning about prob-
abilistic concepts.

Furthermore, we leverage the concrete syntax to simplify verification.

– We develop an automated procedure for generating pre-conditions of non-
looping commands, inspired by expectation-based systems.

– We give syntactic conditions for the closedness and termination properties
required for soundness of the loop rules.

Implementation and Case Studies. We implement Ellora on top of Easy-
Crypt, a general-purpose proof assistant for reasoning about probabilistic pro-
grams, and we mechanically verify a diverse collection of examples including
textbook algorithms and a randomized routing procedure. We develop an Easy-
Crypt formalization of probability theory from the ground up, including tools
like concentration bounds (e.g., the Chernoff bound), Markov’s inequality, and
theorems about probabilistic independence.

Embeddings. We propose a simple program logic for proving probabilistic inde-
pendence. This logic is designed to reason about independence in a lightweight
way, as is common in paper proofs. We prove that the logic can be embedded
into Ellora, and is therefore sound. Furthermore, we prove an embedding of
the Union Bound logic [4].

An Assertion-Based Program Logic for Probabilistic Programs 121

2 Mathematical Preliminaries

As is standard, we will model randomized computations using sub-distributions.

Definition 1. A sub-distribution over a set A is defined by a mass function
μ : A → [0, 1] that gives the probability of the unitary events a ∈ A. This
mass function must be s.t.

∑
a∈A μ(a) is well-defined and |μ| �=

∑
a∈A μ(a) ≤ 1.

In particular, the support supp(μ) �= {a ∈ A | μ(a) �= 0} is discrete.3 The name
“sub-distribution” emphasizes that the total probability may be strictly less than
1. When the weight |μ| is equal to 1, we call μ a distribution. We let SDist(A)
denote the set of sub-distributions over A. The probability of an event E(x) w.r.t.
a sub-distribution μ, written Prx∼μ[E(x)], is defined as

∑
x∈A|E(x) μ(x).

Simple examples of sub-distributions include the null sub-distribution 0,
which maps each element of the underlying space to 0; and the Dirac distribution
centered on x, written δx, which maps x to 1 and all other elements to 0. The
following standard construction gives a monadic structure to sub-distributions.

Definition 2. Let μ ∈ SDist(A) and f : A → SDist(B). Then Ea∼μ[f] ∈
SDist(B) is defined by

Ea∼μ[f](b) �=
∑

a∈A

μ(a) · f(a)(b).

We use notation reminiscent of expected values, as the definition is quite similar.

We will need two constructions to model branching statements.

Definition 3. Let μ1, μ2 ∈ SDist(A) such that |μ1|+ |μ2| ≤ 1. Then μ1 +μ2 is
the sub-distribution μ such that μ(a) = μ1(a) + μ2(a) for every a ∈ A.

Definition 4. Let E ⊆ A and μ ∈ SDist(A). Then the restriction μ|E of μ to
E is the sub-distribution such that μ|E(a) = μ(a) if a ∈ E and 0 otherwise.

Sub-distributions are partially ordered under the pointwise order.

Definition 5. Let μ1, μ2 ∈ SDist(A). We say μ1 ≤ μ2 if μ1(a) ≤ μ2(a) for
every a ∈ A, and we say μ1 = μ2 if μ1(a) = μ2(a) for every a ∈ A.

We use the following lemma when reasoning about the semantics of loops.

Lemma 1. If μ1 ≤ μ2 and |μ1| = 1, then μ1 = μ2 and |μ2| = 1.

Sub-distributions are stable under pointwise-limits.

3 We work with discrete distributions to keep measure-theoretic technicalities to a
minimum, though we do not see obstacles to generalizing to the continuous setting.

www.dbooks.org

https://www.dbooks.org/

122 G. Barthe et al.

Definition 6. A sequence (μn)n∈N ∈ SDist(A) sub-distributions converges if
for every a ∈ A, the sequence (μn(a))n∈N of real numbers converges. The limit
sub-distribution is defined as

μ∞(a) �= lim
n→∞ μn(a)

for every a ∈ A. We write limn→∞ μn for μ∞.

Lemma 2. Let (μn)n∈N be a convergent sequence of sub-distributions. Then for
any event E(x), we have:

∀n ∈ N. Pr
x∼μ∞

[E(x)] = lim
n→∞ Pr

x∼μn

[E(x)].

Any bounded increasing real sequence has a limit; the same is true of sub-
distributions.

Lemma 3. Let (μn)n∈N ∈ SDist(A) be an increasing sequence of sub-
distributions. Then, this sequence converges to μ∞ and μn ≤ μ∞ for every
n ∈ N. In particular, for any event E, we have Prx∼μn

[E] ≤ Prx∼μ∞ [E] for
every n ∈ N.

3 Programs and Assertions

Now, we introduce our core programming language and its denotational
semantics.

Programs. We base our development on pWhile, a strongly-typed imperative
language with deterministic assignments, probabilistic assignments, conditionals,
loops, and an abort statement which halts the computation with no result.
Probabilistic assignments x $← g assign a value sampled from a distribution g to
a program variable x. The syntax of statements is defined by the grammar:

s ::= skip | abort | x ← e | x $← g | s; s
| if e then s else s | while e do s | x ← I(e) | x ← A(e)

where x, e, and g range over typed variables in X , expressions in E and dis-
tribution expressions in D respectively. The set E of well-typed expressions is
defined inductively from X and a set F of function symbols, while the set D
of well-typed distribution expressions is defined by combining a set of distribu-
tion symbols S with expressions in E . Programs may call a set I of internal
procedures as well as a set A of external procedures. We assume that we have
code for internal procedures but not for external procedures—we only know
indirect information, like which internal procedures they may call. Borrowing a
convention from cryptography, we call internal procedures oracles and external
procedures adversaries.

Semantics. The denotational semantics of programs is adapted from the seminal
work of [27] and interprets programs as sub-distribution transformers. We view

An Assertion-Based Program Logic for Probabilistic Programs 123

Fig. 1. Denotational semantics of programs

states as type-preserving mappings from variables to values; we write State for
the set of states and SDist(State) for the set of probabilistic states. For each
procedure name f ∈ I ∪ A, we assume a set X L

f ⊆ X of local variables s.t. X L
f

are pairwise disjoint. The other variables X \ ⋃
f X L

f are global variables.
To define the interpretation of expressions and distribution expressions, we

let �e�m denote the interpretation of expression e with respect to state m, and
�e�μ denote the interpretation of expression e with respect to an initial sub-
distribution μ over states defined by the clause �e�μ

�= Em∼μ[�e�m]. Likewise,
we define the semantics of commands in two stages: first interpreted in a single
input memory, then interpreted in an input sub-distribution over memories.

Definition 7. The semantics of commands are given in Fig. 1.

– The semantics �s�m of a statement s in initial state m is a sub-distribution
over states.

– The (lifted) semantics �s�μ of a statement s in initial sub-distribution μ over
states is a sub-distribution over states.

We briefly comment on loops. The semantics of a loop while e do c is defined
as the limit of its lower approximations, where the n-th lower approximation
of �while e do c�μ is �(if e then s)n; if e then abort�μ, where if e then s is
shorthand for if e then s else skip and cn is the n-fold composition c; · · · ; c.
Since the sequence is increasing, the limit is well-defined by Lemma 3. In con-
trast, the n-th approximation of �while e do c�μ defined by �(if e then s)n�μ

may not converge, since they are not necessarily increasing. However, in the
special case where the output distribution has weight 1, the n-th lower approxi-
mations and the n-th approximations have the same limit.

www.dbooks.org

https://www.dbooks.org/

124 G. Barthe et al.

Lemma 4. If the sub-distribution �while e do c�μ has weight 1, then the limit
of �(if e then s)n�μ is defined and

lim
n→∞ �(if e then s)n; if e then abort�μ = lim

n→∞ �(if e then s)n�μ.

This follows by Lemma 1, since lower approximations are below approxima-
tions so the limit of their weights (and the weight of their limit) is 1. It will be
useful to identify programs that terminate with probability 1.

Definition 8 (Lossless). A statement s is lossless if for every sub-distribution
μ, |�s�μ| = |μ|, where |μ| is the total probability of μ. Programs that are not
lossless are called lossy.

Informally, a program is lossless if all probabilistic assignments sample from
full distributions rather than sub-distributions, there are no abort instructions,
and the program is almost surely terminating, i.e. infinite traces have probability
zero. Note that if we restrict the language to sample from full distributions, then
losslessness coincides with almost sure termination.

Another important class of loops are loops with a uniform upper bound on
the number of iterations. Formally, we say that a loop while e do s is certainly
terminating if there exists k such that for every sub-distribution μ, we have
|�while e do s�μ| = |�(if e then s)k�μ|. Note that certain termination of a loop
does not entail losslessness—the output distribution of the loop may not have
weight 1, for instance, if the loop samples from a sub-distribution or if the loop
aborts with positive probability.

Semantics of Procedure Calls and Adversaries. The semantics of internal pro-
cedure calls is straightforward. Associated to each procedure name f ∈ I, we
assume a designated input variable farg ∈ X L

f , a piece of code fbody that exe-
cutes the function call, and a result expression fres. A function call x ← I(e)
is then equivalent to farg ← e; fbody;x ← fres. Procedures are subject to well-
formedness criteria: procedures should only use local variables in their scope and
after initializing them, and should not perform recursive calls.

External procedure calls, also known as adversary calls, are a bit more
involved. Each name a ∈ A is parametrized by a set aocl ⊆ I of internal pro-
cedures which the adversary may call, a designated input variable aarg ∈ X L

a ,
a (unspecified) piece of code abody that executes the function call, and a result
expression ares. We assume that adversarial code can only access its local vari-
ables in X L

a and can only make calls to procedures in aocl. It is possible to impose
more restrictions on adversaries—say, that they are lossless—but for simplicity
we do not impose additional assumptions on adversaries here.

4 Proof System

In this section we introduce a program logic for proving properties of proba-
bilistic programs. The logic is abstract—assertions are arbitrary predicates on
sub-distributions—but the meta-theoretic properties are clearest in this setting.
In the following section, we will give a concrete version suitable for practical use.

An Assertion-Based Program Logic for Probabilistic Programs 125

Assertions and Closedness Conditions. We use predicates on state distribution.

Definition 9 (Assertions). The set Assn of assertions is defined as
P(SDist(State)). We write η(μ) for μ ∈ η.

Usual set operations are lifted to assertions using their logical counterparts,
e.g., η ∧ η′ �= η ∩ η′ and ¬η

�= η. Our program logic uses a few additional
constructions. Given a predicate φ over states, we define

�φ(μ) �= ∀m.m ∈ supp(μ) =⇒ φ(m)

where supp(μ) is the set of all states with non-zero probability under μ. Intu-
itively, φ holds deterministically on all states that we may sample from the
distribution. To reason about branching commands, given two assertions η1 and
η2, we let

(η1 ⊕ η2)(μ) �= ∃μ1, μ2 . μ = μ1 + μ2 ∧ η1(μ1) ∧ η2(μ2).

This assertion means that the sub-distribution is the sum of two sub-
distributions such that η1 holds on the first piece and η2 holds on the second
piece.

Given an assertion η and an event E ⊆ State, we let η|E(μ) �= η(μ|E). This
assertion holds exactly when η is true on the portion of the sub-distribution
satisfying E. Finally, given an assertion η and a function F from SDist(State)
to SDist(State), we define η[F] �= λμ. η(F (μ)). Intuitively, η[F] is true in a
sub-distribution μ exactly when η holds on F (μ).

Now, we can define the closedness properties of assertions. These properties
will be critical to our rules for while loops.

Definition 10 (Closedness properties). A family of assertions (ηn)n∈N∞ is:

– u-closed if for every increasing sequence of sub-distributions (μn)n∈N such
that ηn(μn) for all n ∈ N then η∞(limn→∞ μn);

– t-closed if for every converging sequence of sub-distributions (μn)n∈N such
that ηn(μn) for all n ∈ N then η∞(limn→∞ μn);

– d-closed if it is t-closed and downward closed, that is for every sub-
distributions μ ≤ μ′, η∞(μ′) implies η∞(μ).

When (ηn)n is constant and equal to η, we say that η is u-/t-/d-closed.

Note that t-closedness implies u-closedness, but the converse does not hold.
Moreover, u-closed, t-closed and d-closed assertions are closed under arbitrary
intersections and finite unions, or in logical terms under finite boolean combina-
tions, universal quantification over arbitrary sets and existential quantification
over finite sets.

Finally, we introduce the necessary machinery for the frame rule. The set
mod(s) of modified variables of a statement s consists of all the variables on the
left of a deterministic or probabilistic assignment. In this setting, we say that

www.dbooks.org

https://www.dbooks.org/

126 G. Barthe et al.

an assertion η is separated from a set of variables X, written separated(η,X), if
η(μ1) ⇐⇒ η(μ2) for any distributions μ1, μ2 s.t. |μ1| = |μ2| and μ1|X = μ2|X
where for a set of variables X, the restricted sub-distribution μ|X is

μ|X : m ∈ State|X �→ Pr
m′∼μ

[m = m′
|X]

where State|X and m|X restrict State and m to the variables in X.
Intuitively, an assertion is separated from a set of variables X if every two

sub-distributions that agree on the variables outside X either both satisfy the
assertion, or both refute the assertion.

Judgments and Proof Rules. Judgments are of the form {η} s {η′}, where the
assertions η and η′ are drawn from Assn.

Definition 11. A judgment {η} s {η′} is valid, written |= {η} s {η′}, if η′(�s�μ)
for every interpretation of adversarial procedures and every probabilistic state μ
such that η(μ).

Figure 2 describes the structural and basic rules of the proof system. Valid-
ity of judgments is preserved under standard structural rules, like the rule of
consequence [Conseq]. As usual, the rule of consequence allows to weaken the
post-condition and to strengthen the post-condition; in our system, this rule
serves as the interface between the program logic and mathematical theorems
from probability theory. The [Exists] rule is helpful to deal with existentially
quantified pre-conditions.

Fig. 2. Structural and basic rules

An Assertion-Based Program Logic for Probabilistic Programs 127

The rules for skip, assignments, random samplings and sequences are all
straightforward. The rule for abort requires �⊥ to hold after execution; this
assertion uniquely characterizes the resulting null sub-distribution. The rules for
assignments and random samplings are semantical.

The rule [Cond] for conditionals requires that the post-condition must be
of the form η1 ⊕ η2; this reflects the semantics of conditionals, which splits
the initial probabilistic state depending on the guard, runs both branches, and
recombines the resulting two probabilistic states.

The next two rules ([Split] and [Frame]) are useful for local reasoning. The
[Split] rule reflects the additivity of the semantics and combines the pre- and
post-conditions using the ⊕ operator. The [Frame] rule asserts that lossless
statements preserve assertions that are not influenced by modified variables.

The rule [Call] for internal procedures is as expected, replacing the proce-
dure call f with its definition.

Figure 3 presents the rules for loops. We consider four rules specialized to
the termination behavior. The [While] rule is the most general rule, as it deals
with arbitrary loops. For simplicity, we explain the rule in the special case where
the family of assertions is constant, i.e. we have ηn = η and η′

n = η′. Informally,
the η is the loop invariant and η′ is an auxiliary assertion used to prove the
invariant. We require that η is u-closed, since the semantics of a loop is defined
as the limit of its lower approximations. Moreover, the first premise ensures
that starting from η, one guarded iteration of the loop establishes η′; the second
premise ensures that restricting to ¬e a probabilistic state μ′ satisfying η′ yields a
probabilistic state μ satisfying η. It is possible to give an alternative formulation
where the second premise is substituted by the logical constraint η′

|¬e =⇒ η.
As usual, the post-condition of the loop is the conjunction of the invariant with
the negation of the guard (more precisely in our setting, that the guard has
probability 0).

The [While-AST] rule deals with lossless loops. For simplicity, we explain
the rule in the special case where the family of assertions is constant, i.e. we have
ηn = η. In this case, we know that lower approximations and approximations
have the same limit, so we can directly prove an invariant that holds after one
guarded iteration of the loop. On the other hand, we must now require that the
η satisfies the stronger property of t-closedness.

The [While-D] rule handles arbitrary loops with a d-closed invariant; intu-
itively, restricting a sub-distribution that satisfies a downwards closed assertion
η yields a sub-distribution which also satisfies η.

The [While-CT] rule deals with certainly terminating loops. In this case,
there is no requirement on the assertions.

We briefly compare the rules from a verification perspective. If the assertion
is d-closed, then the rule [While-D] is easier to use, since there is no need
to prove any termination requirement. Alternatively, if we can prove certain
termination of the loop, then the rule [While-CT] is the best to use since it
does not impose any condition on assertions. When the loop is lossless, there is
no need to introduce an auxiliary assertion η′, which simplifies the proof goal.

www.dbooks.org

https://www.dbooks.org/

128 G. Barthe et al.

Fig. 3. Rules for loops

Fig. 4. Rules for adversaries

Note however that it might still be beneficial to use the [While] rule, even for
lossless loops, because of the weaker requirement that the invariant is u-closed
rather than t-closed.

Finally, Fig. 4 gives the adversary rule for general adversaries. It is highly
similar to the general rule [While-D] for loops since the adversary may make
an arbitrary sequence of calls to the oracles in aocl and may not be lossless.
Intuitively, η plays the role of the invariant: it must be d-closed and it must be
preserved by every oracle call with arbitrary arguments. If this holds, then η
is also preserved by the adversary call. Some framing conditions are required,
similar to the ones of the [Frame] rule: the invariant must not be influenced by
the state writable by the external procedures.

It is possible to give other variants of the adversary rule with more gen-
eral invariants by restricting the adversary, e.g., requiring losslessness or bound-
ing the number of calls the external procedure can make to oracles, leading to
rules akin to the almost surely terminating and certainly terminating loop rules,
respectively.
Soundness and Relative Completeness. Our proof system is sound with respect
to the semantics.

An Assertion-Based Program Logic for Probabilistic Programs 129

Theorem 1 (Soundness). Every judgment {η} s {η′} provable using the rules
of our logic is valid.

Completeness of the logic follows from the next lemma, whose proof makes
an essential use of the [While] rule. In the sequel, we use 1μ to denote the
characteristic function of a probabilistic state μ, an assertion stating that the
current state is equal to μ.
Lemma 5. For every probabilistic state μ, the following judgment is provable
using the rule of the logic:

{1μ} s {1�s�μ
}.

Proof. By induction on the structure of s.
– s = abort, s = skip, x ← e and s = x $← g are trivial;
– s = s1; s2, we have to prove

{1μ} s1; s2 {1�s2��s1�μ
}.

We apply the [Seq] rule with η1 = 1�s1�μ
premises can be directly proved

using the induction hypothesis;
– s = if e then s1 else s2, we have to prove

{1μ} if e then s1 else s2 {(1�s1�μ|e
⊕ 1�s2�μ|¬e

)}.

We apply the [Conseq] rule to be able to apply the [Cond] rule with η1 =
1�s1�μ|e

and η2 = 1�s2�μ|¬e
Both premises can be proved by an application of

the [Conseq] rule followed by the application of the induction hypothesis.
– s = while e do s, we have to prove

{1μ}while e do s {1limn→∞ �(if e then s)n;if e then abort�μ
}.

We first apply the [While] rule with η′
n = 1�(if e then s)n�μ

and

ηn = 1�(if e then s)n;if e then abort�μ
.

For the first premise we apply the same process as for the conditional case: we
apply the [Conseq] and [Cond] rules and we conclude using the induction
hypothesis (and the [Skip] rule). For the second premise we follow the same
process but we conclude using the [Abort] rule instead of the induction
hypothesis. Finally we conclude since uclosed((ηn)n∈N∞). ��
The abstract logic is also relatively complete. This property will be less

important for our purposes, but it serves as a basic sanity check.
Theorem 2 (Relative completeness). Every valid judgment is derivable.

Proof. Consider a valid judgment {η}s{η′}. Let μ be a probabilistic state such
that η(μ). By the above proposition, {1μ}s{1�s�μ

}. Using the validity of the
judgment and [Conseq], we have {1μ ∧ η(μ)}s{η′}. Using the [Exists] and
[Conseq] rules, we conclude {η}s{η′} as required. ��

The side-conditions in the loop rules (e.g., uclosed/tclosed/dclosed and the
weight conditions) are difficult to prove, since they are semantic properties. Next,
we present a concrete version of the logic with give easy-to-check, syntactic
sufficient conditions.

www.dbooks.org

https://www.dbooks.org/

130 G. Barthe et al.

5 A Concrete Program Logic

To give a more practical version of the logic, we begin by setting a concrete
syntax for assertions

Assertions. We use a two-level assertion language, presented in Fig. 5. A prob-
abilistic assertion η is a formula built from comparison of probabilistic expres-
sions, using first-order quantifiers and connectives, and the special connective ⊕.
A probabilistic expression p can be a logical variable v, an operator applied to
probabilistic expressions o(p) (constants are 0-ary operators), or the expectation
E[ẽ] of a state expression ẽ. A state expression ẽ is either a program variable
x, the characteristic function 1φ of a state assertion φ, an operator applied to
state expressions o(ẽ), or the expectation Ev∼g[ẽ] of state expression ẽ in a given
distribution g. Finally, a state assertion φ is a first-order formula over program
variables. Note that the set of operators is left unspecified but we assume that
all the expressions in E and D can be encoded by operators.

Fig. 5. Assertion syntax

The interpretation of the con-
crete syntax is as expected. The
interpretation of probabilistic asser-
tions is relative to a valuation ρ
which maps logical variables to val-
ues, and is an element of Assn. The
definition of the interpretation is
straightforward; the only interesting
case is �E[ẽ]�ρ

μ which is defined by
Em∼μ[�ẽ�ρ

m], where �ẽ�ρ
m is the interpretation of the state expression ẽ in the

memory m and valuation ρ. The interpretation of state expressions is a map-
ping from memories to values, which can be lifted to a mapping from dis-
tributions over memories to distributions over values. The definition of the
interpretation is straightforward; the most interesting case is for expectation
�Ev∼g[ẽ]�ρ

m
�= Ew∼�g�ρ

m
[�ẽ�ρ[v:=w]

m]. We present the full interpretations in the
supplemental materials.

Many standard concepts from probability theory have a natural representa-
tion in our syntax. For example:

– the probability that φ holds in some probabilistic state is represented by the
probabilistic expression Pr[φ] �= E[1φ];

– probabilistic independence of state expressions ẽ1, . . . , ẽn is modeled by the
probabilistic assertion #{ẽ1, . . . , ẽn}, defined by the clause4

∀v1 . . . vn, Pr[�]n−1 Pr[
∧

i=1...n

ẽi = vi] =
∏

i=1...n

Pr[ẽi = vi];

– the fact that a distribution is proper is modeled by the probabilistic assertion
L �= Pr[�] = 1;

4 The term Pr[�]n−1 is necessary since we work with sub-distributions.

An Assertion-Based Program Logic for Probabilistic Programs 131

– a state expression ẽ distributed according to a law g is modeled by the prob-
abilistic assertion

ẽ ∼ g
�= ∀w, Pr[ẽ = w] = E[Ev∼g[1v=w]].

The inner expectation computes the probability that v drawn from g is equal
to a fixed w; the outer expectation weights the inner probability by the prob-
ability of each value of w.

We can easily define � operator from the previous section in our new syntax:
�φ

�= Pr[¬φ] = 0.

Syntactic Proof Rules. Now that we have a concrete syntax for assertions, we can
give syntactic versions of many of the existing proof rules. Such proof rules are
often easier to use since they avoid reasoning about the semantics of commands
and assertions. We tackle the non-looping rules first, beginning with the following
syntactic rules for assignment and sampling:

{η[x := e]}x ← e{η} [Assgn] {Pg
x(η)}x $← g{η} [Sample]

The rule for assignment is the usual rule from Hoare logic, replacing the program
variable x by its corresponding expression e in the pre-condition. The replace-
ment η[x := e] is done recursively on the probabilistic assertion η; for instance
for expectations, it is defined by E[ẽ][x := e] �= E[ẽ[x := e]], where ẽ[x := e] is
the syntactic substitution.

The rule for sampling uses probabilistic substitution operator Pg
x(η), which

replaces all occurrences of x in η by a new integration variable t and records
that t is drawn from g; the operator is defined in Fig. 6.

Fig. 6. Syntactic op. P (main cases)

Next, we turn to the loop rule.
The side-conditions from Fig. 3 are
purely semantic, while in practice it
is more convenient to use a sufficient
condition in the Hoare logic. We
give sufficient conditions for ensur-
ing certain and almost-sure termi-
nation in Fig. 7; ẽ is an integer-
valued expression. The first side-

condition CCTerm shows certain termination given a strictly decreasing vari-
ant ẽ that is bounded below, similar to how a decreasing variant shows ter-
mination for deterministic programs. The second side-condition CASTerm shows
almost-sure termination given a probabilistic variant ẽ, which must be bounded
both above and below. While ẽ may increase with some probability, it must
decrease with strictly positive probability. This condition was previously consid-
ered by [17] for probabilistic transition systems and also used in expectation-
based approaches [20,33]. Our framework can also support more refined condi-
tions (e.g., based on super-martingales [9,31]), but the condition CASTerm already
suffices for most randomized algorithms.

www.dbooks.org

https://www.dbooks.org/

132 G. Barthe et al.

Fig. 7. Side-conditions for loop rules

While t-closedness is a semantic condition (cf. Definition 10), there are sim-
ple syntactic conditions to guarantee it. For instance, assertions that carry a
non-strict comparison �� ∈{≤,≥,=} between two bounded probabilistic expres-
sions are t-closed; the assertion stating probabilistic independence of a set of
expressions is t-closed.

Precondition Calculus. With a concrete syntax for assertions, we are also able
to incorporate syntactic reasoning principles. One classic tool is Morgan and
McIver’s greatest pre-expectation, which we take as inspiration for a pre-condition
calculus for the loop-free fragment of Ellora. Given an assertion η and a loop-
free statement s, we mechanically construct an assertion η∗ that is the pre-
condition of s that implies η as a post-condition. The basic idea is to replace
each expectation expression p inside η by an expression p∗ that has the same
denotation before running s as p after running s. This process yields an assertion
η∗ that, interpreted before running s, is logically equivalent to η interpreted after
running s.

The computation rules for pre-conditions are defined in Fig. 8. For a prob-
ability assertion η, its pre-condition pc(s, η) corresponds to η where the expec-
tation expressions of the form E[ẽ] are replaced by their corresponding pre-
term, pe(s, E[ẽ]). Pre-terms correspond loosely to Morgan and McIver’s pre-
expectations—we will make this correspondence more precise in the next section.
The main interesting cases for computing pre-terms are for random sampling and
conditionals. For random sampling the result is Pg

x(E[ẽ]), which corresponds to
the [Sample] rule. For conditionals, the expectation expression is split into a
part where e is true and a part where e is not true. We restrict the expectation
to a part satisfying e with the operator E[ẽ]|e

�= E[ẽ · 1e]. This corresponds to
the expected value of ẽ on the portion of the distribution where e is true. Then,
we can build the pre-condition calculus into Ellora.

Theorem 1. Let s be a non-looping command. Then, the following rule is deriv-
able in the concrete version of Ellora:

{pc(s, η)} s {η} [PC]

6 Case Studies: Embedding Lightweight Logics

While Ellora is suitable for general-purpose reasoning about probabilis-
tic programs, in practice humans typically use more special-purpose proof

An Assertion-Based Program Logic for Probabilistic Programs 133

Fig. 8. Precondition calculus (selected)

techniques—often targeting just a single, specific kind of property, like prob-
abilistic independence—when proving probabilistic assertions. When these tech-
niques apply, they can be a convenient and powerful tool.

To capture this intuitive style of reasoning, researchers have considered
lightweight program logics where the assertions and proof rules are tailored
to a specific proof technique. We demonstrate how to integrate these tools in
an assertion-based logic by introducing and embedding a new logic for reason-
ing about independence and distribution laws, useful properties when analyzing
randomized algorithms. We crucially rely on the rich assertions in Ellora—
it is not clear how to extend expectation-based approaches to support similar,
lightweight reasoning. Then, we show to embed the union bound logic [4] for
proving accuracy bounds.

6.1 Law and Independence Logic

We begin by describing the law and independence logic IL, a proof system with
intuitive rules that are easy to apply and amenable to automation. For simplicity,
we only consider programs which sample from the binomial distribution, and
have deterministic control flow—for lack of space, we also omit procedure calls.

Definition 12 (Assertions). IL assertions have the grammar:

ξ := det(e) | #E | e ∼ B(e, p) | � | ⊥ | ξ ∧ ξ

where e ∈ E, E ⊆ E, and p ∈ [0, 1].

The assertion det(e) states that e is deterministic in the current distribution,
i.e., there is at most one element in the support of its interpretation. The asser-
tion #E states that the expressions in E are independent, as formalized in the
previous section. The assertion e ∼ B(m, p) states that e is distributed according
to a binomial distribution with parameter m (where m can be an expression)
and constant probability p, i.e. the probability that e = k is equal to the proba-
bility that exactly k independent coin flips return heads using a biased coin that
returns heads with probability p.

www.dbooks.org

https://www.dbooks.org/

134 G. Barthe et al.

Assertions can be seen as an instance of a logical abstract domain, where
the order between assertions is given by implication based on a small number of
axioms. Examples of such axioms include independence of singletons, irreflexivity
of independence, anti-monotonicity of independence, an axiom for the sum of
binomial distributions, and rules for deterministic expressions:

#{x} #{x, x} ⇐⇒ det(x) #(E ∪ E′) =⇒ #E

e ∼ B(m, p)∧ e′ ∼ B(m′, p) ∧# {e, e′} =⇒ e + e′ ∼ B(m + m′, p)

∧

1≤i≤n

det(ei) =⇒ det(f(e1, . . . , en))

Definition 13. Judgments of the logic are of the form {ξ} s {ξ′}, where ξ
and ξ′ are IL-assertions. A judgment is valid if it is derivable from the rules of
Fig. 9; structural rules and rule for sequential composition are similar to those
from Sect. 4 and omitted.

The rule [IL-Assgn] for deterministic assignments is as in Sect. 4. The rule
[IL-Sample] for random assignments yields as post-condition that the variable
x and a set of expressions E are independent assuming that E is independent
before the sampling, and moreover that x follows the law of the distribution that
it is sampled from. The rule [IL-Cond] for conditionals requires that the guard
is deterministic, and that each of the branches satisfies the specification; if the
guard is not deterministic, there are simple examples where the rule is not sound.
The rule [IL-While] for loops requires that the loop is certainly terminating
with a deterministic guard. Note that the requirement of certain termination
could be avoided by restricting the structural rules such that a statement s has
deterministic control flow whenever {ξ} s {ξ′} is derivable.

We now turn to the embedding. The embedding of IL assertions into general
assertions is immediate, except for det(e) which is translated as �e ∨ �¬e. We
let ξ denote the translation of ξ.

Theorem 2 (Embedding and soundness of IL logic). If {ξ} s {ξ′} is derivable
in the IL logic, then {ξ} s {ξ′} is derivable in (the syntactic variant of) Ellora.
As a consequence, every derivable judgment {ξ} s {ξ′} is valid.

Proof sketch. By induction on the derivation. The interesting cases are condi-
tionals and loops. For conditionals, the soundness follows from the soundness of
the rule:

{η} s1 {η′} {η} s2 {η′} �e ∨ �¬e

{η} if e then s1 else s2 {η′}
To prove the soundness of this rule, we proceed by case analysis on �e ∨ �¬e.
We treat the case �e; the other case is similar. In this case, η is equivalent to
η1 ∧ �e ⊕ η2 ∧ �¬e, where η1 = η and η2 = ⊥. Let η′

1 = η′ and η2 = �⊥; again,
η′
1 ⊕ η′

2 is logically equivalent to η′. The soundness of the rule thus follows from

An Assertion-Based Program Logic for Probabilistic Programs 135

Fig. 9. IL proof rules (selected)

the soundness of the [Cond] and [Conseq] rules. For loops, there exists a natural
number n such that while b do s is semantically equivalent to (if b then s)n.
By assumption {ξ} s {ξ} holds, and thus by induction hypothesis {ξ} s {ξ}. We
also have ξ =⇒ det(b), and hence {ξ} if b then s {ξ}. We conclude by [Seq]. ��

To illustrate our system IL, consider the statement s in Fig. 10 which flips
a fair coin N times and counts the number of heads. Using the logic, we prove
that c ∼ B(N · (N + 1)/2, 1/2) is a post-condition for s. We take the invariant:

c ∼ B (j(j + 1)/2, 1/2)

The invariant holds initially, as 0 ∼ B(0, 1/2). For the inductive case, we show:

{c ∼ B (0, 1/2)} s0 {c ∼ B ((j + 1)(j + 2)/2, 1/2)}

where s0 represents the loop body, i.e. x $← B (j, 1/2) ; c ← c+x. First, we apply
the rule for sequence taking as intermediate assertion

c ∼ B (j(j + 1)/2, 1/2) ∧ x ∼ B (j, 1/2) ∧ #{x, c}

Fig. 10. Sum of bin.

The first premise follows from the rule for random
assignment and structural rules. The second premise fol-
lows from the rule for deterministic assignment and the
rule of consequence, applying axioms about sums of bino-
mial distributions.

We briefly comment on several limitations of IL. First,
IL is restricted to programs with deterministic control
flow, but this restriction could be partially relaxed by

enriching IL with assertions for conditional independence. Such assertions are

www.dbooks.org

https://www.dbooks.org/

136 G. Barthe et al.

already expressible in the logic of Ellora; adding conditional independence
would significantly broaden the scope of the IL proof system and open the pos-
sibility to rely on axiomatizations of conditional independence (e.g., based on
graphoids [36]). Second, the logic only supports sampling from binomial distribu-
tions. It is possible to enrich the language of assertions with clauses c ∼ g where
g can model other distributions, like the uniform distribution or the Laplace
distribution. The main design challenge is finding a core set of useful facts about
these distributions. Enriching the logic and automating the analysis are inter-
esting avenues for further work.

6.2 Embedding the Union Bound Logic

The program logic aHL [4] was recently introduced for estimating accuracy of
randomized computations. One main application of aHL is proving accuracy of
randomized algorithms, both in the offline and online settings—i.e. with adver-
sary calls. aHL is based on the union bound, a basic tool from probability theory,
and has judgments of the form |=β {Φ} s {Ψ}, where s is a statement, Φ and
Ψ are first-order formulae over program variables, and β is a probability, i.e.
β ∈ [0, 1]. A judgment |=β {Φ} s {Ψ} is valid if for every memory m such that
Φ(m), the probability of ¬Ψ in �s�m is upper bounded by β, i.e. Pr�s�m

[¬Ψ] ≤ β.
Figure 11 presents some key rules of aHL, including a rule for sampling from

the Laplace distribution Lε centered around e. The predicate CCTerm(k) indicates
that the loop terminates in at most k steps on any memory that satisfies the
pre-condition. Moreover, β is a function of ε.

Fig. 11. aHL proof rules (selected)

aHL has a simple embedding into Ellora.

Theorem 3 (Embedding of aHL). If |=β {Φ} s {Ψ} is derivable in aHL, then
{�Φ} s {E[1¬Ψ] ≤ β} is derivable in Ellora.

7 Case Studies: Verifying Randomized Algorithms

In this section, we will demonstrate Ellora on a selection of examples; we
present further examples in the supplemental material. Together, they exhibit

An Assertion-Based Program Logic for Probabilistic Programs 137

a wide variety of different proof techniques and reasoning principles which are
available in the Ellora’s implementation.

Hypercube Routing. will begin with the hypercube routing algorithm [41,42]. Con-
sider a network topology (the hypercube) where each node is labeled by a bit-
string of length D and two nodes are connected by an edge if and only if the two
corresponding labels differ in exactly one bit position.

In the network, there is initially one packet at each node, and each packet
has a unique destination. The algorithm implements a routing strategy based
on bit fixing : if the current position has bitstring i, and the target node has
bitstring j, we compare the bits in i and j from left to right, moving along the
edge that corrects the first differing bit. Valiant’s algorithm uses randomization
to guarantee that the total number of steps grows logarithmically in the number
of packets. In the first phase, each packet i select an intermediate destination
ρ(i) uniformly at random, and use bit fixing to reach ρ(i). In the second phase,
each packet use bit fixing to go from ρ(i) to the destination j. We will focus on
the first phase since the reasoning for the second phase is nearly identical. We
can model the strategy with the code in Fig. 12, using some syntactic sugar for
the for loops.5

Fig. 12. Hypercube Routing

We assume that initially, the posi-
tion of the packet i is at node i (see
Map.init). Then, we initialize the ran-
dom intermediate destinations ρ. The
remaining loop encodes the evaluation
of the routing strategy iterated T time.
The variable usedBy is a map that
logs if an edge is already used by a
packet, it is empty at the beginning of
each iteration. For each packet, we try
to move it across one edge along the
path to its intermediate destination.
The function getEdge returns the next
edge to follow, following the bit-fixing
scheme. If the packet can progress (its

edge is not used), then its current position is updated and the edge is marked
as used.

We show that if the number of timesteps T is 4D + 1, then all packets reach
their intermediate destination in at most T steps, except with a small probability
2−2D of failure. That is, the number of timesteps grows linearly in D, logarithmic
in the number of packets. This is formalized in our system as:

{T = 4D + 1}route{Pr[∃i. pos[i] �= ρ[i]] ≤ 2−2D]}

5 Recall that the number of node in a hypercube of dimension D is 2D so each node
can be identified by a number in [1, 2D].

www.dbooks.org

https://www.dbooks.org/

138 G. Barthe et al.

Fig. 13. Coupon collector

Modeling Infinite Processes. Our second example is
the coupon collector process. The algorithm draws
a uniformly random coupon (we have N coupon) on
each day, terminating when it has drawn at least one
of each kind of coupon. The code of the algorithm
is displayed in Fig. 13; the array cp records of the
coupons seen so far, t holds the number of steps
taken before seeing a new coupon, and X tracks of
the total number of steps. Our goal is to bound the
average number of iterations. This is formalized in
our logic as:

{L} coupon

{
E[X] =

∑
i∈[1,N]

(
N

N−i+1

)}
.

Fig. 14. Pairwise Indepen-
dence

Limited Randomness. Pairwise independence says
that if we see the result of Xi, we do not gain infor-
mation about all other variables Xk. However, if we
see the result of two variables Xi,Xj , we may gain
information about Xk. There are many construc-
tions in the algorithms literature that grow a small
number of independent bits into more pairwise inde-
pendent bits. Figure 14 gives one procedure, where
⊕ is exclusive-or, and bits(j) is the set of positions
set to 1 in the binary expansion of j. The proof uses
the following fact, which we fully verify: for a uni-
formly distributed Boolean random variable Y , and a random variable Z of any
type,

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (1)

for any two Boolean functions f, g. Then, note that X[i] =
⊕

{j∈bits(i)} B[j] where
the big XOR operator ranges over the indices j where the bit representation of
i has bit j set. For any two i, k ∈ [1, . . . , 2N] distinct, there is a bit position in
[1, . . . , N] where i and k differ; call this position r and suppose it is set in i but
not in k. By rewriting,

X[i] = B[r] ⊕
⊕

{j∈bits(i)\r}
B[j] and X[k] =

⊕

{j∈bits(k)\r}
B[j].

Since B[j] are all independent, X[i] # X[k] follows from Eq. (1) taking Z to be
the distribution on tuples 〈B[1], . . . , B[N]〉 excluding B[r]. This verifies pairwise
independence:

{L} pwInd(N){L ∧ ∀i, k ∈ [2N]. i �= k ⇒ X[i] # X[k]}.

An Assertion-Based Program Logic for Probabilistic Programs 139

Adversarial Programs. Pseudorandom functions (PRF) and pseudorandom per-
mutations (PRP) are two idealized primitives that play a central role in the
design of symmetric-key systems. Although the most natural assumption to make
about a blockcipher is that it behaves as a pseudorandom permutation, most
commonly the security of such a system is analyzed by replacing the blockci-
pher with a perfectly random function. The PRP/PRF Switching Lemma [6,22]
fills the gap: given a bound for the security of a blockcipher as a pseudorandom
function, it gives a bound for its security as a pseudorandom permutation.

Lemma 4 (PRP/PRF switching lemma). Let A be an adversary with blackbox
access to an oracle O implementing either a random permutation on {0, 1}l or a
random function from {0, 1}l to {0, 1}l. Then the probability that the adversary
A distinguishes between the two oracles in at most q calls is bounded by

| Pr
PRP

[b ∧ |H| ≤ q] − Pr
PRF

[b ∧ |H| ≤ q]| ≤ q(q − 1)
2l+1

,

where H is a map storing each adversary call and |H| is its size.

Proving this lemma can be done using the Fundamental Lemma of Game-
Playing, and bounding the probability of bad in the program from Fig. 15. We
focus on the latter. Here we apply the [Adv] rule of Ellora with the invariant
∀k,Pr[bad∧|H| ≤ k] ≤ k(k−1)

2l+1 where |H| is the size of the map H, i.e. the number
of adversary call. Intuitively, the invariant says that at each call to the oracle
the probability that bad has been set before and that the number of adversary
call is less than k is bounded by a polynomial in k.

The invariant is d-closed and true before the adversary call, since at that
point Pr[bad] = 0. Then we need to prove that the oracle preserves the invariant,
which can be done easily using the precondition calculus ([PC] rule).

Fig. 15. PRP/PRF game

8 Implementation and Mechanization

We have built a prototype implementation of Ellora within EasyCrypt [2,5],
a theorem prover originally designed for verifying cryptographic protocols. Easy-
Crypt provides a convenient environment for constructing proofs in various
Hoare logics, supporting interactive, tactic-based proofs for manipulating asser-
tions and allowing users to invoke external tools, like SMT-solvers, to discharge

www.dbooks.org

https://www.dbooks.org/

140 G. Barthe et al.

proof obligations. EasyCrypt provides a mature set of libraries for both data
structures (sets, maps, lists, arrays, etc.) and mathematical theorems (algebra,
real analysis, etc.), which we extended with theorems from probability theory.

Table 1. Benchmarks

Example LC FPLC

hypercube 100 1140

coupon 27 184

vertex-cover 30 61

pairwise-indep 30 231

private-sums 22 80

poly-id-test 22 32

random-walk 16 42

dice-sampling 10 64

matrix-prod-test 20 75

We used the implementation for verifying
many examples from the literature, including
all the programs presented in Sect. 7 as well
as some additional examples in Table 1 (such
as polynomial identity test, private running
sums, properties about random walks, etc.).
The verified proofs bear a strong resemblance
to the existing, paper proofs. Independently
of this work, Ellora has been used to for-
malize the main theorem about a randomized
gossip-based protocol for distributed systems
[26, Theorem 2.1]. Some libraries developed in
the scope of Ellora have been incorporated
into the main branch of EasyCrypt, includ-

ing a general library on probabilistic independence.

A New Library for Probabilistic Independence. In order to support assertions of
the concrete program logic, we enhanced the standard libraries of EasyCrypt,
notably the ones dealing with big operators and sub-distributions. Like all Easy-
Crypt libraries, they are written in a foundational style, i.e. they are defined
instead of axiomatized. A large part of our libraries are proved formally from first
principles. However, some results, such as concentration bounds, are currently
declared as axioms.

Our formalization of probabilistic independence deserves special mention. We
formalized two different (but logically equivalent) notions of independence. The
first is in terms of products of probabilities, and is based on heterogenous lists.
Since Ellora (like EasyCrypt) has no support for heterogeneous lists, we
use a smart encoding based on second-order predicates. The second definition
is more abstract, in terms of product and marginal distributions. While the
first definition is easier to use when reasoning about randomized algorithms, the
second definition is more suited for proving mathematical facts. We prove the
two definitions equivalent, and formalize a collection of related theorems.

Mechanized Meta-Theory. The proofs of soundness and relative completeness
of the abstract logic, without adversary calls, and the syntactical termination
arguments have been mechanized in the Coq proof assistant. The development
is available in supplemental material.

9 Related Work

More on Assertion-Based Techniques. The earliest assertion-based system is due
to Ramshaw [37], who proposes a program logic where assertions can be formulas
involving frequencies, essentially probabilities on sub-distributions. Ramshaw’s

An Assertion-Based Program Logic for Probabilistic Programs 141

logic allows assertions to be combined with operators like ⊕, similar to our
approach. [18] presents a Hoare-style logic with general assertions on the distri-
bution, allowing expected values and probabilities. However, his while rule is
based on a semantic condition on the guarded loop body, which is less desirable
for verification because it requires reasoning about the semantics of programs.
[8] give decidability results for a probabilistic Hoare logic without while loops.
We are not aware of any existing system that supports assertions about general
expected values; existing works also restrict to Boolean distributions. [38] formal-
ize a Hoare logic for probabilistic programs but unlike our work, their assertions
are interpreted on distributions rather than sub-distributions. For conditionals,
their semantics rescales the distribution of states that enter each branch. How-
ever, their assertion language is limited and they impose strong restrictions on
loops.

Other Approaches. Researchers have proposed many other approaches to verify
probabilistic program. For instance, verification of Markov transition systems
goes back to at least [17,40]; our condition for ensuring almost-sure termination
in loops is directly inspired by their work. Automated methods include model
checking (see e.g., [1,25,29]) and abstract interpretation (see e.g., [12,32]). Tech-
niques for reasoning about higher-order (functional) probabilistic languages are
an active subject of research (see e.g., [7,13,14]). For analyzing probabilistic
loops, in particular, there are tools for reasoning about running time. There are
also automated systems for synthesizing invariants [3,11]. [9,10] use a martin-
gale method to compute the expected time of the coupon collector process for
N = 5—fixing N lets them focus on a program where the outer while loop
is fully unrolled. Martingales are also used by [15] for analyzing probabilistic
termination. Finally, there are approaches involving symbolic execution; [39] use
a mix of static and dynamic analysis to check probabilistic programs from the
approximate computing literature.

10 Conclusion and Perspectives

We introduced an expressive program logic for probabilistic programs, and
showed that assertion-based systems are suited for practical verification of prob-
abilistic programs. Owing to their richer assertions, program logics are a more
suitable foundation for specialized reasoning principles than expectation-based
systems. As evidence, our program logic can be smoothly extended with cus-
tom reasoning for probabilistic independence and union bounds. Future work
includes proving better accuracy bounds for differentially private algorithms,
and exploring further integration of Ellora into EasyCrypt.

Acknowledgments. We thank the reviewers for their helpful comments. This work
benefited from discussions with Dexter Kozen, Annabelle McIver, and Carroll Morgan.
This work was partially supported by ERC Grant #679127, and NSF grant 1718220.

www.dbooks.org

https://www.dbooks.org/

142 G. Barthe et al.

References

1. Baier, C.: Probabilistic model checking. In: Dependable Software Systems Engi-
neering, NATO Science for Peace and Security Series - D: Information and Com-
munication Security, vol. 45, pp. 1–23. IOS Press (2016), https://doi.org/10.3233/
978-1-61499-627-9-1

2. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: A tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1 6

3. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: International Conference on Computer
Aided Verification (CAV), Toronto, Ontario (2016). https://arxiv.org/abs/1605.
02765

4. Barthe, G., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: A program logic for
union bounds. In: International Colloquium on Automata, Languages and Pro-
gramming (ICALP), Rome, Italy (2016). http://arxiv.org/abs/1602.05681

5. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

6. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: IACR International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), Saint Petersburg,
Russia, pp. 409–426 (2006). https://doi.org/10.1007/11761679 25

7. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46678-0 18

8. Chadha, R., Cruz-Filipe, L., Mateus, P., Sernadas, A.: Reasoning about probabilis-
tic sequential programs. Theoretical Computer Science 379(1–2), 142–165 (2007)

9. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

10. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 85–100. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10936-7 6

11. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis
of qualitative and quantitative termination problems for affine probabilistic pro-
grams. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Saint Petersburg, Florida, pp. 327–342 (2016). https://doi.
org/10.1145/2837614.2837639

12. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2 9

13. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 12

https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.3233/978-1-61499-627-9-1
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://arxiv.org/abs/1605.02765
https://arxiv.org/abs/1605.02765
http://arxiv.org/abs/1602.05681
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1007/978-3-319-10936-7_6
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-54833-8_12

An Assertion-Based Program Logic for Probabilistic Programs 143

14. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), San Diego, California, pp. 297–
308 (2014). https://arxiv.org/abs/1311.1722

15. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), Mumbai, India, pp. 489–501 (2015)

16. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

17. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent programs.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

18. den Hartog, J.: Probabilistic extensions of semantical models. Ph.D. thesis, Vrije
Universiteit Amsterdam (2002)

19. Hurd, J.: Formal verification of probabilistic algorithms. Technical report, UCAM-
CL-TR-566, University of Cambridge, Computer Laboratory (2003)

20. Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. J.
Log. Algebr. Program. 56(1–2), 3–21 (2003). https://doi.org/10.1016/S1567-
8326(02)00065–6

21. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in
HOL. Theor. Comput. Sci. 346(1), 96–112 (2005)

22. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: ACM SIGACT Symposium on Theory of Computing (STOC), Seat-
tle, Washington, pp. 44–61 (1989). https://doi.org/10.1145/73007.73012

23. Kaminski, B.L., Katoen, J.-P., Matheja, C.: Inferring covariances for probabilistic
programs. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 14

24. Kaminski, B., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected run-times of probabilistic programs. In: European Symposium
on Programming (ESOP), Eindhoven, The Netherlands, January 2016

25. Katoen, J.P.: The probabilistic model-checking landscape. In: IEEE Symposium
on Logic in Computer Science (LICS), New York (2016)

26. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate informa-
tion. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 482–491 (2003). https://doi.org/10.1109/SFCS.2003.1238221

27. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350
(1981). https://www.sciencedirect.com/science/article/pii/0022000081900362

28. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
29. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

30. McIver, A., Morgan, C.: Abstraction, refinement, and proof for probabilistic sys-
tems. Monographs in Computer Science. Springer, New York (2005)

31. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A new rule for almost-
certain termination. In: Proceedings of the ACM on Programming Languages
1(POPL) (2018). https://arxiv.org/abs/1612.01091, appeared at ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), Los
Angeles, California

www.dbooks.org

https://arxiv.org/abs/1311.1722
https://doi.org/10.1016/S1567-8326(02)00065--6
https://doi.org/10.1016/S1567-8326(02)00065--6
https://doi.org/10.1145/73007.73012
https://doi.org/10.1007/978-3-319-43425-4_14
https://doi.org/10.1109/SFCS.2003.1238221
https://www.sciencedirect.com/science/article/pii/0022000081900362
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://arxiv.org/abs/1612.01091
https://www.dbooks.org/

144 G. Barthe et al.

32. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: Palsberg,
J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 322–339. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-540-45099-3 17

33. Morgan, C.: Proof rules for probabilistic loops. In: BCS-FACS Conference on
Refinement, Bath, England (1996)

34. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

35. Olmedo, F., Kaminski, B.L., Katoen, J.P., Matheja, C.: Reasoning about recur-
sive probabilistic programs. In: IEEE Symposium on Logic in Computer Science
(LICS), New York, pp. 672–681 (2016)

36. Pearl, J., Paz, A.: Graphoids: graph-based logic for reasoning about relevance rela-
tions. In: ECAI, pp. 357–363 (1986)

37. Ramshaw, L.H.: Formalizing the Analysis of Algorithms. Ph.D. thesis, Computer
Science (1979)

38. Rand, R., Zdancewic, S.: VPHL: a verified partial-correctness logic for probabilis-
tic programs. In: Conference on the Mathematical Foundations of Programming
Semantics (MFPS), Nijmegen, The Netherlands (2015)

39. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), Edinburgh,
Scotland, p. 14 (2014)

40. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM J.
Comput. 13(2), 292–314 (1984)

41. Valiant, L.G.: A scheme for fast parallel communication. SIAM J. Comput. 11(2),
350–361 (1982)

42. Valiant, L.G., Brebner, G.J.: Universal schemes for parallel communication. In:
ACM SIGACT Symposium on Theory of Computing (STOC), Milwaukee, Wis-
consin, pp. 263–277 (1981). https://doi.org/10.1145/800076.802479

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1145/800076.802479
http://creativecommons.org/licenses/by/4.0/

Fine-Grained Semantics
for Probabilistic Programs

Benjamin Bichsel(B), Timon Gehr, and Martin Vechev

ETH Zürich, Zürich, Switzerland
{benjamin.bichsel,timon.gehr,martin.vechev}@inf.ethz.ch

Abstract. Probabilistic programming is an emerging technique for
modeling processes involving uncertainty. Thus, it is important to ensure
these programs are assigned precise formal semantics that also cleanly
handle typical exceptions such as non-termination or division by zero.
However, existing semantics of probabilistic programs do not fully accom-
modate different exceptions and their interaction, often ignoring some or
conflating multiple ones into a single exception state, making it impos-
sible to distinguish exceptions or to study their interaction.

In this paper, we provide an expressive probabilistic programming
language together with a fine-grained measure-theoretic denotational
semantics that handles and distinguishes non-termination, observation
failures and error states. We then investigate the properties of this seman-
tics, focusing on the interaction of different kinds of exceptions. Our work
helps to better understand the intricacies of probabilistic programs and
ensures their behavior matches the intended semantics.

1 Introduction

A probabilistic programming language allows probabilistic models to be speci-
fied independently of the particular inference algorithms that make predictions
using the model. Probabilistic programs are formed using standard language
primitives as well as constructs for drawing random values and conditioning.
The overall approach is general and applicable to many different settings (e.g.,
building cognitive models). In recent years, the interest in probabilistic pro-
gramming systems has grown rapidly with various languages and probabilistic
inference algorithms (ranging from approximate to exact). Examples include
[10,11,13,14,25–27,29,36]; for a recent survey, please see [15]. An important
branch of recent probabilistic programming research is concerned with provid-
ing a suitable semantics for these programs enabling one to formally reason about
the program’s behaviors [2–4,33–35].

Often, probabilistic programs require access to primitives that may result
in unwanted behavior. For example, the standard deviation σ of a Gaussian
distribution must be positive (sampling from a Gaussian distribution with neg-
ative standard deviation should result in an error). If a program samples from
a Gaussian distribution with a non-constant standard deviation, it is in general

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 145–185, 2018.
https://doi.org/10.1007/978-3-319-89884-1_6

www.dbooks.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_6&domain=pdf
https://www.dbooks.org/

146 B. Bichsel et al.

undecidable if that standard deviation is guaranteed to be positive. A similar sit-
uation occurs for while loops: except in some trivial cases, it is hard to decide if
a program terminates with probability one (even harder than checking termina-
tion of deterministic programs [20]). However, general while loops are important
for many probabilistic programs. As an example, a Markov Chain Monte Carlo
sampler is essentially a special probabilistic program, which in practice requires
a non-trivial stopping criterion (see e.g. [6] for such a stopping criterion). In
addition to offering primitives that may result in such unwanted behavior, many
probabilistic programming languages also provide an observe primitive that intu-
itively allows to filter out executions violating some constraint.

Motivation. Measure-theoretic denotational semantics for probabilistic programs
is desirable as it enables reasoning about probabilistic programs within the rig-
orous and general framework of measure theory. While existing research has
made substantial progress towards a rigorous semantic foundation of proba-
bilistic programming, existing denotational semantics based on measure theory
usually conflate failing observe statements (i.e., conditioning), error states and
non-termination, often modeling at least some of these as missing weight in a
sub-probability measure (we show why this is practically problematic in later
examples). This means that even semantically, it is impossible to distinguish
these types of exceptions1. However, distinguishing exceptions is essential for a
solid understanding of probabilistic programs: it is insufficient if the semantics
of a probabilistic programming language can only express that something went
wrong during the execution of the program, lacking the capability to distin-
guish for example non-termination and errors. Concretely, programmers often
want to avoid non-termination and assertion failure, while observation failure
is acceptable (or even desirable). When a program runs into an exception, the
programmer should be able determine the type of exception, from the semantics.

This Work. This paper presents a clean denotational semantics for a Turing
complete first-order probabilistic programming language that supports mixing
continuous and discrete distributions, arrays, observations, partial functions and
loops. This semantics distinguishes observation failures, error states and non-
termination by tracking them as explicit program states. Our semantics allows
for fine-grained reasoning, such as determining the termination probability of a
probabilistic program making observations from a sequence of concrete values.

In addition, we explain the consequences of our treatment of exceptions by
providing interesting examples and properties of our semantics, such as commu-
tativity in the absence of exceptions, or associativity regardless of the presence of
exceptions. We also investigate the interaction between exceptions and the score

primitive, concluding in particular that the probability of non-termination can-
not be defined in this case. score intuitively allows to increase or decrease the
probability of specific runs of a program (for more details, see Sect. 5.3).
1 In this paper, we refer to errors, non-termination and observation failures collectively

as exceptions. For example, a division by zero is an error (and hence and exception),
while non-termination is an exception but not an error.

Fine-Grained Semantics for Probabilistic Programs 147

2 Overview

In this section we demonstrate several important features of our probabilistic
programming language (PPL) using examples, followed by a discussion involving
different kinds of exception interactions.

2.1 Features of Probabilistic Programs

In the following, we informally discuss the most important features of our PPL.

y:=0;

if flip(1
2
) {

y=gauss(0,1);

}else{

y=gauss(2,1);

}

return y;

Listing 1. Simple
Gaussian mixture

Discrete and Continuous Primitive Distributions. List-
ing 1 illustrates a simple Gaussian mixture model (the
figure only shows the function body). Depending on the
outcome of a fair coin flip x (resulting in 0 or 1), y is
sampled from a Gaussian distribution with mean 0 or
mean 2 (and standard deviation 1). Note that in our
PPL, we represent gauss(·, ·) by the more general construct
sampleFromf (·, ·), with f : R × [0,∞) → R → R being the
probability density function of the Gaussian distribution

f(μ, σ)(x) = 1√
2πσ2 e− (x−μ)2

2σ2 .

x:=uniform(0,1);

y:=uniform(0,1);

observe(x+y>1);

return x;

Listing 2. Condition-
ing on a continuous dis-
tribution

Conditioning. Listing 2 samples two independent values
from the uniform distribution on the interval [0, 1] and
conditions the possible values of x and y on the obser-
vation x + y > 1 before returning x. Intuitively, the first
two lines express a-priori knowledge about the uncertain
values of x and y. Then, a measurement determines that
x+y is greater than 1. We combine this new information
with the existing knowledge. Because x+y > 1 is more likely for larger values of
x, the return value has larger weight on larger values. Formally, our semantics
handles observe by introducing an extra program state for observation failure
�. Hence, the probability distribution after the third line of Listing 2 will put
weight 1

2 on � and weight 1
2 on those x and y satisfying x + y > 1.

In practice, one will usually condition the output distribution on there being
no observation failure (�). For discrete distributions, this amounts to computing:

Pr[X = x | X �= �] =
Pr[X = x ∧ X �= �]

Pr[X �= �]
=

Pr[X = x]
1 − Pr[X = �]

where x is the outcome of the program (a value, non-termination or an error)
and Pr[X = x] is the probability that the program results in x. Of course, this
conditioning only works when the probability of � is not 1. Note that tracking
the probability of � has the practical benefit of rendering the (often expensive)
marginalization Pr[X �= �] =

∑
x�=� Pr[X = x] unnecessary.

Other semantics often use sub-probability measures to express failed obser-
vations [4,34,35]. These semantics would say that Listing 2 results in a return

www.dbooks.org

https://www.dbooks.org/

148 B. Bichsel et al.

value between 0 and 1 with probability 1
2 (and infer that the missing weight

of 1
2 is due to failed observations). We believe one should improve upon this

approach as the semantics only implicitly states that the program sometimes
fails an observation. Further, this strategy only allows tracking a single kind of
exception (in this case, failed observations). This has led some works to conflate
observation failure and non-termination [18,34]. We believe there is an impor-
tant distinction between the two: observation failure means that the program
behavior is inconsistent with observed facts, non-termination means that the
program did not return a result.

if flip(1
2
) {

x:=0;

observe(flip(1
2
));

}else{

x:=1;

observe(flip(1
4
));

}

Listing 3. The need for
tracking �

Listing 3 illustrates that it is not possible to con-
dition parts of the program on there being no obser-
vation failure. In Listing 3, conditioning the first
branch x := 0; observe(flip(1

2)) on there being no
observation failure yields Pr[x = 0] = 1, rendering
the observation irrelevant. The same situation arises
for the second branch. Hence, conditioning the two
branches in isolation yields Pr[x = 0] = 1

2 instead of
Pr[x = 0] = 2

3 .

n:=0;

while !flip(1
2
) {

n=n+1;

}

return n;

Listing 4. Geometric
distribution

Loops. Listing 4 shows a probabilistic program with a
while loop. It samples from the geometric(1

2) distribu-
tion, which counts the number of failures (flip returns
0) until the first success occurs (flip returns 1). This
program terminates with probability 1, but it is of course
possible that a probabilistic program fails to terminate
with positive probability. Listing 5 demonstrates this pos-
sibility.

x := 5;

while x>0 {

if x<10 {

x+=2*flip(
1
2
)-1;

}

}

return x;

Listing 5. Program that
may not terminate

Listing 5 modifies x until either x = 0 or x = 10.
In each iteration, x is either increased or decreased,
each with probability 1

2 . If x reaches 0, the loop ter-
minates. If x reaches 10, the loop never terminates.
By symmetry, both termination and non-termination
are equally likely. Hence, the program either returns
0 or does not terminate, each with probability 1

2 .
Other semantics often use sub-probability mea-

sures to express non-termination [4,23]. Thus, these
semantics would say that Listing 5 results in 0 with probability 1

2 (and nothing
else). We propose to track the probability of non-termination explicitly by an
additional state �, just as we track the probability of observation failure (�).

x:=uniform(-1,1);

x=
√

x;
return x;

Listing 6. Using par-
tial functions

Partial Functions. Many functions that are practically
useful are only partial (meaning they are not defined for
some inputs). Examples include uniform(a, b) (undefined
for b < a) and

√
x (undefined for x < 0). Listing 6 shows

an example program using
√

x. Usually, semantics do not
explicitly address partial functions [23,24,28,33] or use

Fine-Grained Semantics for Probabilistic Programs 149

Fig. 1. Visual comparison of the exception handling capabilities of different semantics.
For example, � is filled in [34] because its semantics can handle non-termination.
However, the intersection between � and � is not filled because [34] cannot distinguish
non-termination from observation failure.

partial functions without dealing with failure (e.g. [19] use Bernoulli(p) without
stating what happens if p /∈ [0, 1]). Most of these languages could use a sub-
probability distribution that misses weight in the presence of errors (in these
languages, this results in conflating errors with non-termination and observation
failures).

We introduce a third exception state ⊥ that can be produced when partial
functions are evaluated outside of their domain. Thus, Listing 6 results in ⊥
with probability 1

2 and returns a value from [0, 1] with probability 1
2 (larger val-

ues are more likely). Some previous work uses an error state to capture failing
computations, but does not propagate this failure implicitly [34,35]. In partic-
ular, if an early expression in a long program may fail evaluating

√−4, every
expression in the program that depends on this failing computation has to check
whether an exception has occurred. While it may seem possible to skip the
rest of the function in case of a failing computation (by applying the pattern
if (x = ⊥) {return ⊥} else {rest of function}), this is non-modular and does
not address the result of the function being used in other parts of a program.

Although our semantics treat ⊥ and � similarly, there is an important distinc-
tion between the two: ⊥ means the program terminated due to an error, while
� means that according to observed evidence, the program did not actually run.

2.2 Interaction of Exception States

Next, we illustrate the interaction of different exception states. We explain how
our semantics handles these interactions when compared to existing semantics.
Fig. 1 gives an overview of which existing semantics can handle which (interac-
tions of) exceptions. We note that our semantics could easily distinguish more
kinds of exceptions, such as division by zero or out of bounds accesses to arrays.

x:=0;

while x=0 {

x=flip(1
2
);

observe(x=0);

}

Listing 7. Mixing
loops and observations

Non-termination and Observation Failure. Listing 7
shows a program that has been investigated in [22]. Based
on the observations, it only admits a single behavior,
namely always sampling x = 0 in the third line. This
behavior results in non-termination, but it occurs with
probability 0. Hence, the program fails an observation
(ending up in state �) with probability 1. If we try to

www.dbooks.org

https://www.dbooks.org/

150 B. Bichsel et al.

condition on not failing any observation (by rescaling appropriately), this results
in a division by 0, because the probability of not failing any observation is 0.

The semantics of Listing 7 thus only has weight on �, and does not allow
conditioning on not failing any observation. This is also the solution that [22]
proposes, but in our case, we can formally back up this claim with our semantics.

Other languages handle both non-termination and observation failure by sub-
probability distributions, which makes it impossible to conclude that the missing
weight is due to observation failure (and not due to non-termination) [4,24,34].
The semantics in [28] cannot directly express that the missing weight is due
to observation failure (rather, the semantics are undefined due to a division by
zero). However, the semantics enables a careful reader to determine that the
missing weight is due to observation failure (by investigating the conditional
weakest precondition and the conditional weakest liberal precondition). Some
other languages can express neither while loops nor observations [23,33,35].

assert(x≥0);

assert(x=�x�);
fac:=1;

while x�=0 {

fac=fac*x;

x=x-1;

}

return fac;

Listing 8. Explicitly
checking assumptions

Assertions and Non-termination. For some programs, it
is useful to check assumptions explicitly. For example,
the implementation of the factorial function in Listing 8
explicitly checks whether x is a valid argument to the
factorial function. If x /∈ N, the program should run into
an error (i.e. only have weight on ⊥). If x ∈ N, the pro-
gram should return x! (i.e. only have weight on x!). This
example illustrates that earlier exceptions (like failing
an assertion) should bypass later exceptions (like non-
termination, which occurs for x /∈ N if the programmer
forgets the first two assertions). This is not surprising, given that this is also the
semantics of exceptions in most deterministic languages. Most existing semantics
either cannot express Listing 8 ([23,34] have no assertions, [35] has no iteration)
or cannot distinguish failing an assertion from non-termination [24,28,33]. The
consequence of the latter is that removing the first two assertions from List-
ing 8 does not affect the semantics. Handling assertion failure by sum types (as
e.g. in [34]) could be a solution, but would force the programmer to deal with
assertion failure explicitly. Only the semantics in [4] has the expressiveness to
implicitly handle assertion errors in Listing 8 without conflating those errors
with non-termination.

x:=0;

while 1 {

x=x/x;

}

Listing 9. Guaran-
teed failure

Listing 9 shows a different interaction between non-
termination and failing assertions. Here, even though the
loop condition is always true, the first iteration of the loop
will run into an exception. Thus, Listing 9 results in ⊥
with probability 1. Again, this behavior should not be sur-
prising given the behavior of deterministic languages. For
Listing 9, conflating errors with non-termination means the program semantics
cannot express that the missing weight is due to an error and not due to non-
termination.

Fine-Grained Semantics for Probabilistic Programs 151

observe(flip(1
2
));

assert(flip(1
2
));

Listing 10. Observa-
tion or assertion failure

Observation Failure and Assertion Failure. In our PPL,
earlier exceptions bypass later exceptions, as illustrated
in Listing 8. However, because we are operating in a
probabilistic language, exceptions can occur probabilis-
tically. Listing 10 shows a program that may run into
an observation failure, or into an assertion failure, or neither. If it runs into an
observation failure (with probability 1

2), it bypasses the rest of the program,
resulting in � with probability 1

2 and in ⊥ with probability 1
4 . Conditioning on

the absence of observation failures, the probability of ⊥ is 1
2 .

An important observation is that reordering the two statements of Listing 10
will result in a different behavior. This is the case, even though there is no obvious
data-flow between the two statements. This is in sharp contrast to the semantics
in [34], which guarantee (in the absence of exceptions) that only data flow is
relevant and that expressions can be reordered. Our semantics illustrate that
even if there is no explicit data-dependency, some seemingly obvious properties
(like commutativity) may not hold in the presence of exceptions. Some languages
either cannot express Listing 10 ([23,33] lack observations), cannot distinguish
observation failure from assertion failure [24] or cannot handle exceptions implic-
itly [34,35].

Summary. In this section, we showed examples of probabilistic programs that
exhibit non-termination, observation failures and errors. Then, we provided
examples that show how these exceptions can interact, and explained how exist-
ing semantics handle these interactions.

3 Preliminaries

In this section, we provide the necessary theory. Most of the material is stan-
dard, however, our treatment of exception states is interesting and important
for providing semantics to probabilistic programs in the presence of exceptions.
All key lemmas (together with additional definitions and examples) are proven
in Appendix A.
Natural Numbers, [n], Iverson Brackets, Restriction of Functions. We include 0
in the natural numbers, so that N := {0, 1, . . . }. For n ∈ N, [n] := {1, . . . , n}.
The Iverson brackets [·] are defined by [b] = 1 if b is true and [b] = 0 if b is false.
A particular application of the Iverson brackets is to characterize the indicator
function of a specific set S by [x ∈ S]. For a function f : X → Y and a subset of
the domain S ⊆ X, f restricted to S is denoted by f|S : S → Y .

Set of Variables, Generating Tuples, Preservation of Properties, Singleton Set.
Let Vars be a set of admissible variable names. We refer to the elements of Vars by
x, y, z and xi, yi, zi, vi, wi, for i ∈ N. For v ∈ A and n ∈ N, v!n := (v, . . . , v) ∈ An

denotes the tuple containing n copies of v. A function f : An → A preserves a
property if whenever a1, . . . , an ∈ A have that property, f(a1, . . . , an) ∈ A has

www.dbooks.org

https://www.dbooks.org/

152 B. Bichsel et al.

that property. Let 1 denote the set which only contains the empty tuple (), i.e.
1 := {()}. For sets of tuples S ⊆ ∏n

i=1 Ai, there is an isomorphism S × 1

1× S
 S. This isomorphism is intuitive and we sometimes silently apply it.

Exception States, Lifting Functions to Exception States. We allow the extension
of sets with some symbols that stand for the occurrence of special events in
a program. This is important because it allows us to capture the event that a
given program runs into specific exceptions. Let X := {⊥,�,�} be a (countable)
set of exception states. We denote by A := A ∪ X the set A extended with X
(we require that A ∩ X = ∅). Intuitively, ⊥ corresponds to assertion failures,
� corresponds to observation failures and � corresponds to non-termination.
For a function f : A → B, f lifted to exception states, denoted by f : A → B
is defined by f(a) = a if a ∈ X and f(a) = f(a) if a /∈ X . For a function
f :

∏n
i=1 Ai → B, f lifted to exception states, denoted by f :

∏n
i=1 Ai → B,

propagates the first exception in its arguments, or evaluates f if none of its
arguments are exceptions. Formally, it is defined by f(a1, . . . , an) = a1 if a1 ∈ X ,
f(a1, . . . , an) = a2 if a1 /∈ X and a2 ∈ X , and so on. Only if a1, . . . , an /∈ X ,
we have f(a1, . . . , an) = f(a1, . . . , an). Thus, f(�, a,⊥) =�. In particular, we
write (a, b) for lifting the tupling function, resulting in for example (�,�) = �. To
remove notation clutter, we do not distinguish the two different liftings f : A → B
and f :

∏n
i=1 Ai → B notationally. Whenever we write f , it will be clear from

the context which lifting we mean. We write S×T for {(s, t) | s ∈ S, t ∈ T}.

Records. A record is a special type of tuple indexed by variable names. For sets
(Si)i∈[n], a record r ∈ ∏n

i=1(xi : Si) has the form r = {x1 �→ v1, . . . , xn �→ vn},
where vi ∈ Si, with the convenient shorthand r = {xi �→ vi}i∈[n]. We can access
the elements of a record by their name: r[xi] = vi.

In what follows, we provide the measure theoretic background necessary to
express our semantics.

σ-algebra, Measurable Set, σ-algebra Generated by a Set, Measurable Space, Mea-
surable Functions. Let A be some set. A set ΣA ⊆ P (A) is called a σ-algebra
on A if it satisfies three conditions: A ∈ ΣA, ΣA is closed under complements
(S ∈ ΣA implies A\S ∈ ΣA) and ΣA is closed under countable unions (for any
collection {Si}i∈N with Si ∈ ΣA, we have

⋃
i∈N Si ∈ ΣA). The elements of ΣA

are called measurable sets. For any set A, a trivial σ-algebra on A is its power set
P (A). Unfortunately, the power set often contains sets that do not behave well.
To come up with a σ-algebra on A whose sets do behave well, we often start with
a set S ⊆ P (A) that is not a σ-algebra and extend it until we get a σ-algebra.
For this purpose, let A be some set and S ⊆ P (A) a collection of subsets of
A. The σ-algebra generated by S denoted by σ(S) is the smallest σ-algebra that
contains S. Formally, σ(S) is the intersection of all σ-algebras on A containing
S. For a set A and a σ-algebra ΣA on A, (A,ΣA) is called a measurable space.
We often leave ΣA implicit; whenever it is not mentioned explicitly, it is clear
from the context. Table 1 provides the implicit σ-algebras for some common sets.
As an example, some elements of ΣR include [0, 1] ∪ {⊥} and {1, 3, π}. For mea-
surable spaces (A,ΣA) and (B,ΣB), a function f : A → B is called measurable,

Fine-Grained Semantics for Probabilistic Programs 153

Table 1. Implicit σ-algebras on common sets, for measurable spaces (A, ΣA), (Ai, ΣAi)

Set σ-algebra on this set
R ΣR = B := σ({[a, b] ⊆ R | a ≤ b, a ∈ R, b ∈ R}), the Borel

σ-algebra on R generated by all intervals
S for S ∈ B ΣS = {T ∈ B | T ⊆ S}
∏n

i=1 Ai Σ∏n
i=1 Ai

= σ ({∏n
i=1 Si | Si ∈ ΣAi

})
∏n

i=1(xi : Ai) Σ∏n
i=1(xi:Ai) = σ ({∏n

i=1(xi : Si) | Si ∈ ΣAi
})

A ΣA = {S ∪ S′ | S ∈ ΣA, S′ ∈ P (X)}

if ∀S ∈ ΣB : f−1(S) ∈ ΣA. Here, f−1(S) := {a ∈ A : f(a) ∈ S}. If one is familiar
with the notion of Lebesgue measurable functions, note that our definition does
not include all Lebesgue measurable functions. As a motivation to why we need
measurable functions, consider the following scenario. We know the distribution
of some variable x, and want to know the distribution of y = f(x). To figure out
how likely it is that y ∈ S for a measurable set S, we can determine how likely
it is that x ∈ f−1(S), because f−1(S) is guaranteed to be a measurable set.

Measures, Examples of Measures. For a measurable space (A,ΣA), a function
μ : ΣA → [0,∞] is called a measure on A if it satisfies two properties: null empty
set (μ(∅) = 0) and countable additivity (for any countable collection {Si}i∈I of
pairwise disjoint sets Si ∈ ΣA, we have μ

(⋃
i∈I Si

)
=

∑
i∈I μ(Si)). Measures

allow us to quantify the probability that a certain result lies in a measurable set.
For example, μ([1, 2]) can be interpreted as the probability that the outcome of
a process is between 1 and 2.

The Lebesgue measure λ : B → [0,∞] is the (unique) measure that satisfies
λ([a, b]) = b − a for all a, b ∈ R with a ≤ b. The zero measure 0 : ΣA → [0,∞] is
defined by 0(S) = 0 for all S ∈ ΣA. For a measurable space (A,ΣA) and some
a ∈ A, the Dirac measure δa : ΣA → [0,∞] is defined by δa(S) = [a ∈ S].

Unfortunately, there are measures that do not satisfy some important proper-
ties (for example, they may not satisfy Fubini’s theorem, which we discuss later
on). The usual way to deal with this is to restrict our attention to σ-finite mea-
sures, which are well-known and were studied in great detail. However, σ-finite
measures are too restrictive for our purposes. In particular, the s-finite kernels
that we introduce later on can induce measures that are not σ-finite. This is why
in the following, we work with s-finite measures. Table 2 gives an overview of the
different kinds of measures that are important for understanding our work. The
expression 1/2 · δ1 stands for the pointwise multiplication of the measure δ1 by
1/2: 1/2 · δ1 = λS. 1/2 · δ1(S). Here, the λ refers to λ-abstraction and not to
the Lebesgue measure. To distinguish the two λs, we always write “λx.” (with a
dot) when we refer to λ-abstraction. For more details on the definitions and for
proofs about the provided examples, see Appendix A.1.

www.dbooks.org

https://www.dbooks.org/

154 B. Bichsel et al.

Table 2. Definition and comparison of different measures μ : ΣA → [0, ∞] on mea-
surable spaces (A, ΣA). Reading the table top-down, we get from the most restrictive
definition to the most permissive definition. For example, any sub-probability measure
is also a σ-finite measure. We also provide an example for each type of measure that
is not an example of the more restrictive type of measure. For example, the Lebesgue
measure λ is σ-finite but not s-finite.

Type of measure Characterization Examples

Probability measure μ is a measure and μ(A) = 1 μ = δ1

Sub-probability measure μ is a measure and μ(A) ≤ 1 μ = 0 or μ = 1/2 · δ1

σ-finite measure μ is a measure and A =
⋃

i∈N Ai for
Ai ∈ ΣA with μ(Ai) < ∞

μ = λ

s-finite measure μ =
∑

i∈N μi for sub-probability
measures μi

μ(S) =

{
0 λ(S) = 0

∞ λ(S) > 0

Measure μ(∅) = 0, countable additivity μ(S) =

{
|S| S finite
∞ otherwise

Product of Measures, Product of Measures in the Presence of Exception States.
For s-finite measures μ : ΣA → [0,∞] and μ′ : ΣB → [0,∞], we denote the
product of measures by μ × μ′ : ΣA×B → [0,∞], and define it by

(μ × μ′)(S) =
∫

a∈A

∫

b∈B

[(a, b) ∈ S]μ′(db)μ(da)

For s-finite measures μ : ΣA → [0,∞] and μ′ : ΣB → [0,∞], we denote the
lifted product of measures by μ×μ′ : ΣA×B → [0,∞] and define it using the
lifted tupling function: (μ×μ′)(S) =

∫
a∈A

∫
b∈B

[(a, b) ∈ S]μ′(db)μ(da). While the
product of measures μ × μ′ is well known for combining two measures to a joint
measure, the concept of a lifted product of measures μ×μ′ is required to do
the same for combining measures that have weight on exception states. Because
the formal semantics of our probabilistic programming language makes use of
exception states, we always use × to combine measures, appropriately handling
exception states implicitly.

Lemma 1. For measures μ : ΣA → [0,∞], μ′ : ΣB → [0,∞], let S ∈ ΣA and
T ∈ ΣB. Then, (μ × μ′)(S × T) = μ(S) · μ′(T).

For μ : ΣA → [0,∞], μ′ : ΣB → [0,∞] and S ∈ ΣA, T ∈ ΣB , in general we
have (μ×μ′)(S × T) �= μ(S) · μ′(T), due to interactions of exception states.

Lemma 2. × and × for s-finite measures are associative, left- and right-dis-
tributive and preserve (sub-)probability and s-finite measures.

Lebesgue Integrals, Fubini’s Theorem for s-finite Measures. Our definition of the
Lebesgue integral is based on [31]. It allows integrating functions that sometimes
evaluate to ∞, and Lebesgue integrals evaluating to ∞.

Fine-Grained Semantics for Probabilistic Programs 155

Here, (A,ΣA) and (B,ΣB) are measurable spaces and μ : ΣA → [0,∞] and
μ′ : ΣB → [0,∞] are measures on A and B, respectively. Also, E ∈ ΣA and
F ∈ ΣB . Let s : A → [0,∞) be a measurable function. s is a simple function if
s(x) =

∑n
i=1 αi[x ∈ Ai] for Ai ∈ ΣA and αi ∈ R. For any simple function s,

the Lebesgue integral of s over E with respect to μ, denoted by
∫

a∈E
s(a)μ(da),

is defined by
∑n

i=1 αi · μ(Ai ∩ E), making use of the convention 0 · ∞ = 0. Let
f : A → [0,∞] be measurable but not necessarily simple. Then, the Lebesgue
integral of f over E with respect to μ is defined by

∫

a∈E

f(a)μ(da) := sup

{∫

a∈E

s(a)μ(da)

∣
∣
∣
∣
∣
s : A → [0,∞) is simple, 0 ≤ s ≤ f

}

Here, the inequalities on functions are pointwise. Appendix A.2 lists some
useful properties of the Lebesgue integral. Here, we only mention Fubini’s theo-
rem, which is important because it entails a commutativity-like property of the
product of measures: (μ × μ′)(S) = (μ′ × μ)(swap(S)), where swap switches the
dimensions of S: swap(S) = {(b, a) | (a, b) ∈ S}. The proof of this property
is straightforward, by expanding the definition of the product of measures and
applying Fubini’s theorem. As we show in Sect. 5, this property is crucial for the
commutativity of expressions. In the presence of exceptions, it does not hold:
(μ×μ′)(S) �= (μ′×μ)(swap(S)) in general.

Theorem 1 (Fubini’s theorem). For s-finite measures μ : ΣA → [0,∞] and
μ′ : ΣB → [0,∞] and any measurable function f : A × B → [0,∞],

∫

a∈A

∫

b∈B

f(a, b)μ′(db)μ(da) =
∫

b∈B

∫

a∈A

f(a, b)μ(da)μ′(db)

For s-finite measures μ : ΣA → [0,∞] and μ′ : ΣB → [0,∞] and any measurable
function f : A × B → [0,∞],

∫

a∈A

∫

b∈B

f(a, b)μ′(db)μ(da) =
∫

b∈B

∫

a∈A

f(a, b)μ(da)μ′(db)

(Sub-)probability Kernels, s-finite Kernels, Dirac Delta, Lebesgue Kernel, Moti-
vation for s-finite Kernels. In the following, let (A,ΣA) and (B,ΣB) be mea-
surable spaces. A (sub-)probability kernel with source A and target B is a func-
tion κ : A × ΣB → [0,∞) such that for all a ∈ A : κ(a, ·) : ΣB → [0,∞) is
a (sub-)probability measure, and ∀S ∈ ΣB : κ(·, S) : A → [0,∞) is measur-
able. κ : A × ΣB → [0,∞] is an s-finite kernel with source A and target B if
κ is a pointwise sum of sub-probability kernels κi : A × ΣB → [0,∞), meaning
κ =

∑
i∈N κi. We denote the set of s-finite kernels with source A and target B

by A �→ B ⊆ A × ΣB → [0,∞]. Because we only ever deal with s-finite kernels,
we often refer to them simply as kernels.

We can understand the Dirac measure as a probability kernel. For a measur-
able space (A,ΣA), the Dirac delta δ : A �→ A is defined by δ(a, S) = [a ∈ S].
Note that for any a, δ(a, ·) : ΣA → [0,∞] is the Dirac measure. We often write

www.dbooks.org

https://www.dbooks.org/

156 B. Bichsel et al.

δ(a)(S) or δa(S) for δ(a, S). Note that we can also interpret δ : A �→ A as an
s-finite kernel from A �→ B for A ⊆ B. The Lebesgue kernel λ∗ : A �→ R is defined
by λ∗(a)(S) = λ(S), where λ is the Lebesgue measure. The definition of s-finite
kernels is a lifting of the notion of s-finite measures. Note that for an s-finite ker-
nel κ, κ(a, ·) is an s-finite measure for all a ∈ A. In the context of probabilistic
programming, s-finite kernels have been used before [34].

Working in the space of sub-probability kernels is inconvenient, because, for
example, λ∗ : R �→ R is not a sub-probability kernel. Even though λ∗(x) is σ-
finite measure for all x ∈ R, not all s-finite kernels induce σ-finite measures in
this sense. As an example, (λ∗;λ∗)(x) is not a σ-finite measure for any x ∈ R
(see Lemma 15 in Appendix A.1). We introduce (;) shortly in Definition 1.

Working in the space of s-finite kernels is convenient because s-finite kernels
have many nice properties. In particular, the set of s-finite kernels A �→ B is the
smallest set that contains all sub-probability kernels with source A and target
B and is closed under countable sums.

Lifting Kernels to Exception States, Removing Weight from Exception States.
For kernels κ : A �→ B or kernels κ : A �→ B, κ lifted to exception states κ : A �→ B
is defined by κ(a) = κ(a) if a ∈ A and κ(a) = δ(a) if a /∈ A. When transforming
κ into κ, we preserve (sub-)probability and s-finite kernels.

Composing kernels, composing kernels in the presence of exception states.

Definition 1. Let (;) : (A �→ B) → (B �→ C) → (A �→ C) be defined by
(f ;g)(a)(S) =

∫
b∈B

g(b)(S) f(a)(db).

Note that f ;g intuitively corresponds to first applying f and then g. Throughout
this paper, we mostly use >=> instead of (;), but we introduce (;) because it is
well-known and it is instructive to show how our definition of >=> relates to (;).

Lemma 3. (;) is associative, left- and right-distributive, has neutral element2 δ
and preserves (sub-)probability and s-finite kernels.

Definition 2. Let (>=>) : (A �→ B) → (B �→ C) → (A �→ C) be defined by
(f >=> g)(a)(S) =

∫
b∈B

g(b)(S) f(a)(db).

We sometimes write f(a) �= g for (f >=> g)(a).

Lemma 4. For f : A �→ B and g : B �→ C, a ∈ A and S ∈ ΣC ,

(f >=> g)(a)(S) = (f ;g)(a)(S) +
∑

x∈X
δ(x)(S)f(a)({x})

Lemma 4 shows how >=> relates to (;), by splitting f >=> g into non-
exceptional behavior of f (handled by (;)) and exceptional behavior of f (handled
by a sum). Intuitively, if f produces an exception state 	 ∈ X , then g is not even
evaluated. Instead, this exception is directly passed on, as indicated by δ(x)(S).
2 δ is a neutral element of (;) if (δ;κ) = (κ;δ) = κ for all kernels κ.

Fine-Grained Semantics for Probabilistic Programs 157

If f(a)(X) = 0 for all a ∈ A, or if S ∩ X = ∅, then the definitions are equivalent
in the sense that (f ;g)(a)(S) = (f >=> g)(a)(S). The difference between >=>
and (;) is the treatment of exception states produced by f . Note that technically,
the target B of f : A �→ B does not match the source B of g : B �→ C. Therefore,
to formally interpret f ;g, we silently restrict the domain of f to A × ΣB .

Lemma 5. >=> is associative, left-distributive (but not right-distributive), has
neutral element δ and preserves (sub-)probability and s-finite kernels.

Product of Kernels, Product of Kernels in the Presence of Exception States. For
s-finite kernels κ : A �→ B, κ′ : A �→ C, we define the product of kernels, denoted
by κ×κ′ : A �→ B ×C, as (κ×κ′)(a)(S) = (κ(a)×κ′(a))(S). For s-finite kernels
κ : A �→ B and κ′ : A �→ C, we define the lifted product of kernels, denoted by
κ×κ′ : A �→ B × C, as (κ×κ′)(a)(S) = (κ(a)×κ′(a))(S). × and × allow us to
combine kernels to a joint kernel. Essentially, this definition reduces the product
of kernels to the product of measures.

Lemma 6. × and × for kernels preserve (sub-)probability and s-finite kernels,
are associative, left- and right-distributive.

Binding Conventions. To avoid too many parentheses, we make use of some
binding conventions, ordering (in decreasing binding strength) ×,×, ;, >=>,+.

Summary. The most important concepts introduced in this section are exception
states, records, Lebesgue integration, Fubini’s theorem and (s-finite) kernels.

4 A Probabilistic Language and Its Semantics

We now describe our probabilistic programming language, the typing rules and
the denotational semantics of our language.

4.1 Syntax

Let V := Q ∪ {π, e} ⊆ R be a (countable) set of constants expressible in our
programs. Let i, n ∈ N, r ∈ V, x ∈ Vars, � a generic unary operator (e.g., −
inverts the sign of a value, ! is logical negation mapping 0 to 1 and all other
numbers to 0, �·� and �·� round down and up respectively), ⊕ a generic binary
operator (e.g., +, −, ∗, /, ∧ for addition, subtraction, multiplication, division and
exponentiation, &&, || for logical conjunction and disjunction, =, �=, <,≤, >,≥
to compare values). Let f : A → R → [0,∞) be a measurable function that
maps a ∈ A to a probability density function. We check if f is measurable by
uncurrying f to f : A × R→ [0,∞). Fig. 2 shows the syntax of our language.

Our expressions capture () (the only element of 1), r (real numbers), x (vari-
ables), (e1, . . . , en) (tuples), e[i] (accessing elements of tuples for i ∈ N), �e
(unary operators), e1 ⊕ e2 (binary operators), e1[e2] (accessing array elements),
e1[e2 �→ e3] (updating array elements), array(e1, e2) (creating array of length e1

www.dbooks.org

https://www.dbooks.org/

158 B. Bichsel et al.

Fig. 2. The syntax of our probabilistic language.

containing e2 at every index) and F (e) (evaluating function F on argument e). To
handle functions F (e1, . . . , en) with multiple arguments, we interpret (e1, . . . , en)
as a tuple and apply F to that tuple.

Our functions express λx.{P ; return e; } (function taking argument x run-
ning P on x and returning e), flip(e) (random choice from {0, 1}, 1 with prob-
ability e), uniform(e1, e2) (continuous uniform distribution between e1 and e2)
and sampleFromf (e) (sample value distributed according to probability density
function f(e)). An example for f is the density of the exponential distribu-
tion, indexed with rate λ. Formally, f : (0,∞) → R → [0,∞) is defined by
f(λ)(x) = λe−λx if x ≥ 0 and f(λ)(x) = 0 otherwise. Often, f is partial (e.g.,
λ ≤ 0 is not allowed). Intuitively, arguments outside the allowed range of f
produce the error state ⊥.

Our statements express skip (no operation), x := e (assigning to a fresh
variable), x = e (assigning to an existing variable), P1;P2 (sequential com-
position of programs), if e {P1} else {P2} (if-then-else), {P} (static scop-
ing), assert(e) (asserting that an expression evaluates to true, assertion fail-
ure results in ⊥), observe(e) (observing that an expression evaluates to true,
observation failure results in �) and while e {P} (while loops, non-termination
results in �). We additionally introduce syntactic sugar e1[e2] = e3 for
e1 = e1[e2 �→ e3], if (e) {P} for if e {P} else {skip} and func(e2) for
λx.{P ; return e1; }(e2) (using the name func for the function with argument
x and body {P ; return e1}).

4.2 Typing Judgments

Let n ∈ N. We define types by the following grammar in BNF, where τ [] denotes
arrays over type τ . We sometimes write

∏n
i=1 τi for the product type τ1×· · ·×τn.

τ :: = 1 | R | τ [] | τ1 × · · · × τn

Note that we also use the type τ1 �→ τ2 of kernels with source τ1 and target τ2,
but we do not list it here to avoid higher-order functions (discussed in Sect. 4.5).

Formally, a context Γ is a set {xi : τi}i∈[n] that assigns a type τi to each
variable xi ∈ Vars. In slight abuse of notation, we sometimes write x ∈ Γ if
there is a type τ with x : τ ∈ Γ . We also write Γ, x : τ for Γ ∪ {x : τ} (where
x /∈ Γ) and Γ, Γ ′ for Γ ∪ Γ ′ (where Γ and Γ ′ have no common variables).

Fine-Grained Semantics for Probabilistic Programs 159

Fig. 3. The typing rules for expressions and functions in our language

Fig. 4. The typing rules for statements

The rules in Figs. 3 and 4 allow deriving the type of expressions, functions
and statements. To state that an expression e is of type τ under a context Γ ,
we write Γ � e : τ . Likewise, � F : τ �→ τ ′ indicates that F is a kernel from τ to
τ ′. Finally, Γ

P
Γ ′ states that a context Γ is transformed to Γ ′ by a statement

P . For sampleFromf , we intuitively want f to map values from τ to probability
density functions. To allow f to be partial, i.e., to be undefined for some values
from τ , we use A ∈ Στ (and hence A ⊆ [[τ]]) as the domain of f (see Sect. 4.3).

4.3 Semantics

Semantic Domains. We assign to each type τ a set [[τ]] together with an implicit
σ-algebra Στ on that set. Additionally, we assign a set [[Γ]] to each context
Γ = {xi : τi}i∈[n]. Concretely, we have [[1]] = 1 := {()} with Σ1 = {∅, ()},
[[R]] = R and ΣR = B. The remaining semantic domains are outlined in Fig. 5.

www.dbooks.org

https://www.dbooks.org/

160 B. Bichsel et al.

Fig. 5. Semantic domains for types

Fig. 6. The semantics of expressions. v!n stands for the n-tuple (v, . . . , v). t[i] stands
for the i-th element (0-indexed) of the tuple t and t[i 	→ v] is the tuple t, where the
i-th element is replaced by v. |t| is the length of a tuple t. σ stands for a program state
over all variables in some Γ , with σ ∈ [[Γ]].

Expressions. Fig. 6 assigns to each expression e typed by Γ � e : τ a probability
kernel [[e]]τ : [[Γ]] �→ [[τ]]. When τ is irrelevant or clear from the context, we may
drop it and write [[e]]. The formal interpretation of [[Γ]] �→ [[τ]] is explained in
Sect. 3.3 Note that Fig. 6 is incomplete, but extending it is straightforward. When
we need to evaluate multiple terms (as in (e1, . . . , en)), we combine the results
using ×. This makes sure that in the presence of exceptions, the first exception
that occurs will have priority over later exceptions. In addition, deterministic
functions (like x+ y) are lifted to probabilistic functions by the Dirac delta (e.g.
δ(x+y)) and incomplete functions (like x/y) are lifted to complete functions via
the explicit error state ⊥.

3 As a quick and intuitive reminder, κ : A 	→ B means that for every a ∈ A, κ(a) will
be a distribution over B, where B is B enriched with exception states. Hence, κ(a)
may have weight on elements of B, on exception states, or on both.

Fine-Grained Semantics for Probabilistic Programs 161

Fig. 7 assigns to each function F typed by � F : τ1 �→ τ2 a probability kernel
[[F]]τ1 	→τ2 : [[τ1]] �→ [[τ2]]. In the semantics of flip, δ(1) : ΣR → [0,∞] is a measure
on R, and p · δ(1) rescales this measure pointwise. Similarly, the sum p · δ(1) +
(1− p) · δ(0) is also meant pointwise, resulting in a measure on R. Finally, λp. p ·
δ(1)+(1−p) ·δ(0) is a kernel with source [0, 1] and target R. For sampleFromf (e),
remember that f(p)(·) is a probability density function.

Fig. 7. The semantics of functions.

Fig. 8. The semantics of programs in our probabilistic language. Here, σ[x 	→ v] results
in σ with the value stored under x updated to v. σ′(Γ) selects only those variables from
σ′ that occur in Γ , meaning {xi 	→ vi}i∈I({xi : τi}i∈I′) = {xi 	→ vi}i∈I∩I′ .

Statements. Fig. 8 assigns to each statement P with Γ
P

Γ ′ a probability kernel
[[P]] : [[Γ]] �→ [[Γ ′]]. Note the use of × in δ×[[e]], which allows evaluating e while
keeping the state σ in which e is being evaluated. Intuitively, if evaluating e
results in an exception from X , the previous state σ is irrelevant, and the result
of δ×[[e]] will be that exception from X .

www.dbooks.org

https://www.dbooks.org/

162 B. Bichsel et al.

While Loop. To define the semantics of the while loop while e {P}, we introduce
a kernel transformer [[while e {P}]]trans : ([[Γ]] �→ [[Γ]]) → ([[Γ]] �→ [[Γ]]) that
transforms the semantics for n runs of the loop to the semantics for n + 1 runs
of the loop. Concretely,

[[while e {P}]]trans(κ) = δ×[[e]] >=> λ(σ, b).
{

[[P]](σ) �= κ b �= 0
δ(σ) b = 0

This semantics first evaluates e, while keeping the program state around using δ.
If e evaluates to 0, the while loop terminates and we return the current program
state σ. If e does not evaluate to 0, we run the loop body P and feed the result
to the next iteration of the loop, using κ.

We can then define the semantics of while e {P} using a special fixed point
operator fix : ((A �→ A) → (A �→ A)) → (A �→ A), defined by the pointwise
limit fix(Δ) = limn→∞ Δn(���), where ���:= λσ. δ(�) and Δn denotes the n-fold
composition of Δ. Δn(���) puts all runs of the while loop that do not terminate
within n steps into the state �. In the limit, � only has weight on those runs of
the loop that never terminate. fix(Δ) is only defined if its pointwise limit exists.
Making use of fix, we can define the semantics of the while loop as follows:

[[while e {P}]] = fix
(
[[while e {P}]]trans

)

Lemma 7. For Δ as in the semantics of the while loop, and for each σ and
each S, the limit limn→∞ Δn(���)(σ)(S) exists.

Lemma 7 holds because increasing n may only shift probability mass from
� to other states (we provide a formal proof in Appendix B). Kozen shows a
different way of defining the semantics of the while loop [23], using least fixed
points. Lemma 8 describes the relation of the semantics of our while loop to the
semantics of the while loop of [23]. For more details on the formal interpretation
of Lemma 8 and for its proof, see Appendix B.

Lemma 8. In the absence of exception states, and using sub-probability kernels
instead of distribution transformers, the definition of the semantics of the while
loop from [23] is equivalent to ours.

Theorem 2. The semantics of each expression [[e]] and statement [[P]] is indeed
a probability kernel.

Proof. The proof proceeds by induction. Some lemmas that are crucial for the
proof are listed in Appendix C. Conveniently, most functions that come up in
our definition are continuous (like a+b) or continuous except on some countable
subset (like a

b) and thus measurable.

4.4 Recursion

To extend our language with recursion, we apply the same ideas as for the while
loop. Given the source code of a function F that uses recursion, we define its

Fine-Grained Semantics for Probabilistic Programs 163

Fig. 9. Kernel transformer [[geom]]trans(κ) for geom given in Listing 11.

semantics in terms of a kernel transformer [[F]]trans. This kernel transformer takes
semantics for F up to a recursion depth of n and returns semantics for F up to
recursion depth n+1. Formally, [[F]]trans(κ) follows the usual semantics, but uses
κ as the semantics for recursive calls to F (we will provide an example shortly).
Finally, we define the semantics of F by [[F]] := fix

(
[[F]]trans

)
. Just as for the

while loop, fix
(
[[F]]trans

)
is well-defined because stepping from recursion depth n

to n+1 can only shift probability mass from � to other states. We note that we
could generalize our approach to mutual recursion.

geom(){

if !flip(1
2
){

return geom()+1;

}else{

return 0;

}

}

Listing 11. Geometric distribu-
tion

To demonstrate how we define the kernel
transformer, consider the recursive implemen-
tation of the geometric distribution in List-
ing 11 (to simplify presentation, Listing 11 uses
early return). Given semantics κ for geom : 1 �→
R up to recursion depth n, we can define the
semantics of geom up to recursion depth n + 1,
as illustrated in Fig. 9.

4.5 Higher-Order Functions

Our language cannot express higher-order functions. When trying to give seman-
tics to higher-order probabilistic programs, an important step is to define a σ-
algebra on the set of functions from real numbers to real numbers. Unfortunately,
no matter which σ-algebra is picked, function evaluation (i.e. the function that
takes f and x as arguments and returns f(x)) is not measurable [1]. This is
a known limitation that previous work has looked into (e.g. [35] address it by
restricting the set of functions to those expressible by their source code).

A promising recent approach is replacing measurable spaces by quasi-Borel
spaces [16]. This allows expressing higher-order functions, at the price of replac-
ing the well-known and well-understood measurable spaces by a new concept.

4.6 Non-determinism

To extend our language with non-determinism, we may define the semantics of
expressions, functions and statements in terms of sets of kernels. For an expres-
sion e typed by Γ � e : τ , this means that [[e]]τ ∈ P ([[Γ]] �→ [[τ]]), where P (S)
denotes the power set of S. Lifting our semantics to non-determinism is mostly
straightforward, except for loops. There, [[while e {P}]] contains all kernels of
the form limn→∞(Δ1 ◦ · · · ◦ Δn)(���), where Δi ∈ [[while e {P}]]trans. Previous
work has studied non-determinism in more detail, see e.g. [21,22].

www.dbooks.org

https://www.dbooks.org/

164 B. Bichsel et al.

5 Properties of Semantics

We now investigate two properties of our semantics: commutativity and associa-
tivity. These are useful in practice, e.g. because they enable rewriting programs
to a form that allows for more efficient inference [5].

In this section, we write e1
 e2 when expressions e1 and e2 are equivalent
(i.e. when [[e1]] = [[e2]]). Analogously, we write P1
 P2 for [[P1]] = [[P2]].

5.1 Commutativity

In the presence of exception states, our language cannot guarantee commutativ-
ity of expressions such as e1 + e2. This is not surprising, as in our semantics the
first exception bypasses all later exceptions.

Lemma 9. For function F (){while 1 {skip}; return 0},
1
0

+ F () �
 F () +
1
0

Formally, this is because if we evaluate 1
0 first, we only have weight on ⊥.

If instead, we evaluate F () first, we only have weight on �, by an analogous
calculation. A more detailed proof is included in Appendix D.

However, the only reason for non-commutativity is the presence of exceptions.
Assuming that e1 and e2 cannot produce exceptions, we obtain commutativity:

Lemma 10. If [[e1]](σ)(X) = [[e2]](σ)(X) = 0 for all σ, then e1 ⊕ e2
 e2 ⊕ e1,
for any commutative operator ⊕.

The proof of Lemma 10 (provided in Appendix D) relies on the absence of
exceptions and Fubini’s Theorem. This commutativity result is in line with the
results from [34], which proves commutativity in the absence of exceptions.

In the analogous situation for statements, we cannot assume commutativ-
ity P1;P2
 P2;P1, even if there is no dataflow from P1 to P2. We already
illustrated this in Listing 10, where swapping two lines changes the program
semantics. However, in the absence of exceptions and dataflow from P1 to P2,
we can guarantee P1;P2
 P2;P1.

5.2 Associativity

A careful reader might suspect that since commutativity does not always hold
in the presence of exceptions, a similar situation might arise for associativity of
some expressions. As an example, can we guarantee e1+(e2+e3)
 (e1+e2)+e3,
even in the presence of exceptions? The answer is yes, intuitively because excep-
tions can only change the behavior of a program if the order of their occurrence is
changed. This is not the case for associativity. Formally, we derive the following:

Lemma 11. e1 ⊕ (e2 ⊕ e3)
 (e1 ⊕ e2) ⊕ e3, for any associative operator ⊕.

We include notes on the proof of Lemma 11 in Appendix D, mainly relying on
the associativity of × (Lemma 6). Likewise, sequential composition is associative:
(P1;P2);P3
 P1; (P2;P3). This is due to the associativity of >=> (Lemma 5).

Fine-Grained Semantics for Probabilistic Programs 165

5.3 Adding the score Primitive

Some languages include the primitive score, which allows to increase or decrease
the probability of a certain event (or trace) [34,35].

x:=flip(1
2
);

if x=1 {

score(2);

}

return x;

Listing 12. Using
score

Listing 12 shows an example program using score.
Without normalization, it returns 0 with probability 1

2
and 1 with “probability” 1

2 · 2 = 1. After normalization,
it returns 0 with probability 1

3 and 1 with probability 2
3 .

Because score allows decreasing the probability of a spe-
cific event, it renders observe unnecessary. In general, we
can replace observe(e) by score(e �= 0). However, perform-
ing this replacement means losing the explicit knowledge of the weight on �.

x:=gauss(0,1);

score(
√

2πex2/2);

return x;

Listing 13. Reshap-
ing a distribution.

score can be useful to modify the shape of a given dis-
tribution. For example, Listing 13 turns the distribution
of x, which is a Gaussian distribution, into the Lebesgue
measure λ, by multiplying the density of x by its inverse.
Hence, the density of x at any location is 1. Note that the
distribution over x cannot be described by a probability
measure, because e.g. the “probability” that x lies in the interval [0, 2] is 2.

i:=0;

while 1 {

if i=0 {

score(2);

}else{

score(1
2
);

}

i=1-i;

}

Listing 14. score vs
non-termination

Unfortunately, termination in the presence of score

is not well-defined, as illustrated in Listing 14. In this
program, the only non-terminating trace keeps changing
its weight, switching between 1 and 2. In the limit, it is
impossible to determine the weight of non-termination.

Hence, allowing the use of the score primitive
only makes sense after abolishing the tracking of non-
termination (�), which can be achieved by only mea-
suring sets that do not contain non-termination. For-
mally, this means restricting the semantics of expres-
sions e typed by Γ � e : τ to [[e]]τ : Γ �→

(
[[τ]] − {�}

)
.

Intuitively, abolishing non-termination means that we ignore non-terminating
runs (these result in weight on non-termination). After doing this, we can give
well-defined semantics to the score primitive.

The typing rule and semantics of score are:

Γ � e : R

Γ
score(e)

Γ
and [[score(e)]] = δ×[[e]]R >=> λ(σ, c).c ∗ δ(σ)

After including score into our language, the semantics of the language can
no longer be expressed in terms of probability kernels as stated in Theorem 2,
because the probability of any event can be inflated beyond 1. Instead, the
semantics must be expressed in terms of s-finite kernels.

Theorem 3. After adding the score primitive and abolishing non-termination,
the semantics of each expression [[e]] and statement [[P]] is an s-finite kernel.

www.dbooks.org

https://www.dbooks.org/

166 B. Bichsel et al.

Table 3. Comparison of existing semantics to ours. When adding score to our language
(Sect. 5.3), our semantics use s-finite kernels (not probability kernels).

Work Language Semantics Typed Higher-order Loops Constraints

We Imperative Probability kernels Typed First-order Loops (FP) Yes

[4] Functional Sub-probability kernels Untyped Higher-order Recursion (FP) Yes

[23] Imperative Distribution transformers Limited First-order Loops (LFP) No

[24] Imperative Sub-probability kernels Limited First-order Loops (LFP) Yes

[28] Imperative Weakest precondition Untyped First-order Loops (LFP) Yes

[33] Declarative Probability kernels Limited First-order Loops (LFP) No

[34] Functional s-finite kernels Typed First-order Counting measure score(x)

[35] Functional Measurable functions Typed Higher-order No score(x)

Proof. As for Theorem 2, the proof proceeds by induction. Most parts of the
proof are analogous (e.g. >=> preserves s-finite kernels instead of probability
kernels). For while loops, the limit still exists (Lemma 7 still holds), but it is not
bounded from above anymore. The limit indeed corresponds to an s-finite kernel
because the limit of strictly increasing s-finite kernels is an s-finite kernel.

score(2);

assert(false);

Listing 15. Inter-
action of score and
assert

In the presence of score, we can still talk about the
interaction of different exceptions, assuming that we do
track different types of exceptions (e.g. division by zero
and out of bounds access of arrays). Then, we keep the
commutativity and associativity properties studied in the
previous sections, because these still hold for s-finite kernels.

while 1 {

score(2);

assert(flip(1
2
));

}

Listing 16. Interaction of
score, assert and loops

Listing 15 shows an interaction of score with
assert. As one would expect, our semantics will
assign weight 2 to ⊥ in this case. If the two
statements are switched, our semantics will ignore
score(2) and assign weight 1 to ⊥. Hence again,
commutativity does not hold.

Listing 16 shows a program that keeps increasing
the probability of an error. In every loop iteration, there is a “probability” of 1
of running into an error. Overall, Listing 16 results in weight ∞ on state ⊥.

6 Related Work

Kozen provides classic semantics to probabilistic programs [23]. We follow his
main ideas, but deviate in some aspects in order to introduce additional features
or to make our presentation cleaner. The semantics by Hur et al. [19] is heavily
based on [23], so we do not go into more detail here. Table 3 summarizes the
comparison of our approach to that of others.

Kernels. Like our work, most modern approaches use kernels (i.e., functions from
values to distributions) to provide semantics to probabilistic programs [4,24,33,
34]. Borgström et al. [4] use sub-probability kernels on (symbolic) expressions.

Fine-Grained Semantics for Probabilistic Programs 167

Staton [34] uses s-finite kernels to capture the semantics of the score primitive
(when we discuss score in Sect. 5.3, we do the same).

In the classic semantics of [23], Kozen uses distribution transformers (i.e.,
functions from distributions to distributions). For later work [24], Kozen also
switches to sub-probability kernels, which has the advantage of avoiding redun-
dancies. A different approach uses weakest precondition to define the semantics,
as in [28]. Staton et al. [35] use a different concept of measurable functions
A → P (R≥0 ×B) (where P (S) denotes the set of all probability measures on S).

Typing. Some probabilistic languages are untyped [4,28], while others are limited
to just a single type: Rn [23,24] or

⋃∞
i=1 N

i ∪ N∞ [33]. Some languages provide
more interesting types including sum types, distribution types and tuples [34,35].
We allow tuples and array types, and we could easily account for sum types.

Loops. Because the semantics of while loops is not always straightforward, some
languages avoid while loops and recursion altogether [35]. Borgström et al. handle
recursion instead of while loops, defining the semantics in terms of a fixed point
[4]. Many languages handle while loops by least fixed points [23,24,28,33]. Staton
defines while loops in terms of the counting measure [34], which is similar to
defining them by a fixed point. We define the semantics of while loops in terms
of a fixed point, which avoids the need to prove the least fixed point exists (still,
the classic while loop semantics of [23] and our formulation are equivalent).

Most languages do not explicitly track non-termination, but lose probabil-
ity weight by non-termination [4,23,24,34]. This missing weight can be used
to identify the probability of non-termination, but only if other exceptions
(such as fail in [24] or observation failure in [4]) do not also result in miss-
ing weight. The semantics of [33] are tailored to applications in networks and
lose non-terminating packet histories instead of weight (due to a particular least
fixed point construction of Scott-continuous maps on algebraic and continuous
directed complete partial orders). Some works define non-termination as missing
weight in the weakest precondition [28]. Specifically, the semantics in [28] can
also explicitly express probability of non-termination or ending up in some state
(using the separate construct of a weakest liberal precondition). We model non-
termination by an explicit state �, which has the advantage that in the context
of lost weight, we know what part of that lost weight is due to non-termination.

Kaminski et al. [21] investigate the run-time of probabilistic program with
loops and fail (interpreted as early termination), but without observations. In
[21], non-termination corresponds to an infinite run-time.

Error States. Many languages do not consider partial functions (like fractions
a
b) and thus never run into an exception state [23,24,33]. Olmedo et al. [28] do
not consider partial functions, but support the related concept of an explicit
abort. The semantics of abort relies on missing weight in the final distribution.
Some languages handle expressions whose evaluation may fail using sum types
[34,35], forcing the programmer to deal with errors explicitly (we discuss the
disadvantages of this approach at Listing 6). Formally, a sum type A + B is a

www.dbooks.org

https://www.dbooks.org/

168 B. Bichsel et al.

disjoint union of the two sets A and B. Defining the semantics of an expression in
terms of the sum type A+{⊥} allows that expression to evaluate to either a value
a ∈ A or to ⊥. Borgström et al. [4] have a single state fail expressing exceptions
such as dynamically detected type errors (without forcing the programmer to
deal with exceptions explicitly). Our semantics also uses sum types to handle
exceptions, but the handling is implicit, by defining semantics in terms of (>=>)
(which defines how exceptions propagate in a program) instead of (;).

Constraints. To enforce hard constraints, we use the observe(e) statement, which
puts the program into a special failure state � if it does not satisfy e. We can
encode soft constraints by observe(e), where e is probabilistic (this is a general
technique). Borgström et al. [4] allow both soft constraints that reduce the prob-
ability of some program traces and hard constraints whose failure leads to the
error state fail. Some languages can handle generalized soft constraints: they
can not only decrease the probability of certain traces using soft constraints, but
also increase them, using score(x) [34,35]. We investigate the consequences of
adding score to our language in Sect. 5.3. Kozen [24] handles hard (and hence
soft) constraints using fail (which results in a sub-probability distribution).
Some languages can handle neither hard nor soft constraints [23,33]. Note though
that the semantics of ProbNetKAT in [33] can drop certain packages, which is a
similar behavior. Olmedo et al. [28] handle hard (and hence soft) constraints by
a conditional weakest precondition that tracks both the probability of not failing
any observation and the probability of ending in specific states. Unfortunately,
this work is restricted to discrete distributions and is specifically designed to
handle observation failures and non-termination. Thus, it is not obvious how to
adapt the semantics if a different kind of exception is to be added.

Interaction of Different Exceptions. Most existing work handles at least some
exceptions by sub-probability distributions [4,23,24,33,34]. Then, any missing
weight in the final distribution must be due to exceptions. However, this leads
to a conflation of all exceptions handled by sub-probability distributions (for the
consequences of this, see, e.g., our discussion of Listing 8). Note that semantics
based on sub-probability kernels can add more exceptions, but they will simply
be conflated with all other exceptions.

Some previous work does not (exclusively) rely on sub-probability distribu-
tions. Borgström et al. [4] handle errors implicitly, but still use sub-probability
kernels to handle non-termination and score. Olmedo et al. can distinguish non-
termination (which is conflated with exception failure) from failing observations
by introducing two separate semantic primitives (conditional weakest precondi-
tion and conditional liberal weakest precondition) [28]. Because their solution
specifically addresses non-termination, it is non-trivial to generalize this treat-
ment to more than two exception states. By using sum types, some semantics
avoid interactions of errors with non-termination or constraint failures, but still
cannot distinguish the latter [34,35]. Note that semantics based on sum types can
easily add more exceptions (although it is impossible to add non-termination).

Fine-Grained Semantics for Probabilistic Programs 169

However, the interaction of different exceptions cannot be observed, because the
programmer has to handle exceptions explicitly.

To the best of our knowledge, we are the first to give formal semantics to
programs that may produce exceptions in this generality. One work investigates
assertions in probabilistic programs, but explicitly disallows non-terminating
loops [32]. Moreover, the semantics in [32] are operational, leaving the distri-
bution (in terms of measure theory) of program outputs unclear. Cho et al. [8]
investigate the interaction of partial programs and observe, but are restricted to
discrete distributions and to only two exception states. In addition, this inves-
tigation treats these two exception states differently, making it non-trivial to
extend the results to three or more exception states. Katoen et al. [22] investi-
gate the intuitive problems when combining non-termination and observations,
but restrict their discussions to discrete distributions and do not provide for-
mal semantics. Huang [17] treats partial functions, but not different kinds of
exceptions. In general, we know of no probabilistic programming language that
distinguishes more than two different kinds of exceptions. Distinguishing two
kinds of exceptions is simpler than three, because it is possible to handle one
exception as an explicit exception state and the other one by missing weight (as
e.g. in [4]).

Cousot and Monerau [9] provide a trace semantics that captures probabilistic
behavior by an explicit randomness source given to the program as an argument.
This allows handling non-termination by non-terminating traces. While the work
does not discuss errors or observation failure, it is possible to add both. However,
using an explicit randomness source has other disadvantages, already discussed
by Kozen [23]. Most notably, this approach requires a distribution over the ran-
domness source and a translation from the randomness source to random choices
in the program, even though we only care about the distribution of the latter.

7 Conclusion

In this work we presented an expressive probabilistic programming language
that supports important features such as mixing continuous and discrete dis-
tributions, arrays, observations, partial functions and while-loops. Unlike prior
work, our semantics distinguishes non-termination, observation failures and error
states. This allows us to investigate the subtle interaction of different exceptions,
which is not possible for semantics that conflate different kinds of exceptions. Our
investigation confirms the intuitive understanding of the interaction of exceptions
presented in Sect. 2. However, it also shows that some desirable properties, like
commutativity, only hold in the absence of exceptions. This situation is unavoid-
able, and largely analogous to the situation in deterministic languages.

Even though our semantics only distinguish three exception states, it can be
trivially extended to handle any countable set of exception states. This allows
for an even finer-grained distinction of e.g. division by zero, out of bounds array
accesses or casting failures (in a language that allows type casting). Our seman-
tics also allows enriching exceptions with the line number that the exception

www.dbooks.org

https://www.dbooks.org/

170 B. Bichsel et al.

originated from (of course, this is not possible for non-termination). For an
uncountable set of exception states, an extension is possible but not trivial.

A Proofs for Preliminaries

In this section, we provide lemmas, proofs and some definitions that were left
out or cut short in Sect. 3. For a more detailed introduction into measure theory,
we recommend the book A crash course on the Lebesgue integral and measure
theory [7].

A.1 Measures

Definition 3. Let (A,ΣA) be a measurable space and μ : ΣA → [0,∞] a measure
on A.

– We call μ s-finite if μ can be written as a countable sum
∑

i∈N μi of sub-
probability measures μi.

– We call μ σ-finite if A =
⋃

i∈NAi for Ai ∈ ΣA, with μ(Ai) < ∞.
– We call μ finite if μ(A) < ∞.
– We call μ a sub-probability measure if μ(A) ≤ 1.
– We call μ a probability measure if μ(A) = 1.

Note that for a σ-finite measure μ, μ(A) = ∞ is possible, even though μ(Ai) < ∞
for all i. As an example, the Lebesgue measure is σ-finite because R =

⋃
i∈N[−i, i]

with λ([−i, i]) = 2 ∗ i, but λ(R) = ∞.

Lemma 12. The following definition of s-finite measures is equivalent to our
definition of s-finite measures (the difference is that the μis are only required to
be finite):

We call μ : ΣA → [0,∞] an s-finite measure if it can be written as μ =∑
i∈N μi for finite measures μi : ΣA → [0,∞].

Proof. Since any sub-probability measure is finite, one direction is trivial. For
the other direction, let μ =

∑
i∈N μ′

i for finite measures μ′
i. Obviously, μ ≥ 0,

μ(∅) = 0 and μ(
⋃

i∈NAi) =
∑

i∈NAi for mutually disjoint Ai ∈ ΣA, so μ is a
measure. To show that μ can be written as a sum of sub-probability measures,
let ni := �μ′

i(A)�. Then, μ =
∑

i∈N μ′
i =

∑
i∈N

ni

ni
μ′

i =
∑

i∈N
∑

j∈[ni]
1
ni

μ′
i. We

let μi := 1
ni

μ′
i ≤ 1.

Lemma 13. Any σ-finite measure μ : ΣA → [0,∞] is s-finite.

Proof. Since μ is σ-finite, A =
⋃

i∈NAi with Ai ∈ ΣA and μ(Ai) < ∞. Without
loss of generality, assume that the Ai form a partition of A. Then, μ(S) =∑

i∈N μ(S ∩ Ai), with μ(· ∩ Ai) < ∞. Thus, μ is a countable sum of finite
measures.

Fine-Grained Semantics for Probabilistic Programs 171

Definition 4. The counting measure c : B → [0,∞] is defined by

c(S) =

{
|S| S finite
∞ otherwise

Definition 5. The infinity measure μ : B → [0,∞] is defined by

μ(S) =

{
0 S = ∅
∞ otherwise

Lemma 14. Neither the counting measure nor the infinity measure are s-finite.

Proof. For the counting measure c, assume (toward a contradiction) c =
∑

i∈N ci.
We have R = {r ∈ R | c({r}) > 0} =

⋃
i∈N{r ∈ R | ci({r}) > 0} =⋃

i∈N
⋃

n∈N{r ∈ R | ci({r}) > 1
n}. Because R is uncountable, there must be

i, n ∈ N for which S := {r ∈ R | ci({r}) > 1
n} is uncountable. Thus for any

measurable, countably infinite S′ ⊆ S, ci(S′) = ∞, which means that ci is not
finite. Proceed analogously for the infinity measure.

Lemma 15. The measure μ : B → [0,∞] with μ(S) =
{

0 λ(S) = 0
∞ λ(S) > 0

}

is s-

finite but not σ-finite.

Proof. μ =
∑

i∈N λ, and λ is s-finite, so μ is s-finite. Assume (toward a contra-
diction) that μ is σ-finite. Then R =

⋃
i∈NAi with Ai ∈ B and μ(Ai) < ∞. Thus,

μ(Ai) = 0 and hence μ(R) = μ(
⋃

i∈NAi) ≤ ∑
i∈N μ(Ai) = 0, a contradiction.

Lemma 16

∀S ∈ ΣA×B : (μ × μ′)(S) =
∫

a∈A

μ′({b ∈ B | (a, b) ∈ S})μ(da)

=
∫

b∈B

μ({a ∈ A | (a, b) ∈ S})μ′(db)

∀S ∈ ΣA×B : (μ×μ′)(S) =
∫

a∈A

μ′({b ∈ B | (a, b) ∈ S})μ(da)

=
∫

b∈B

μ({a ∈ A | (a, b) ∈ S})μ′(db)

Proof

(μ × μ′)(S) =
∫

a∈A

∫

b∈B

[(a, b) ∈ S]μ′(db)μ(da)

=
∫

a∈A

∫

b∈B

[b ∈ {b′ ∈ B | (a, b′) ∈ S}]μ′(db)μ(da)

=
∫

a∈A

μ′({b′ ∈ B | (a, b′) ∈ S})μ(da)

www.dbooks.org

https://www.dbooks.org/

172 B. Bichsel et al.

(μ × μ′)(S) =
∫

a∈A

∫

b∈B

[(a, b) ∈ S]μ′(db)μ(da)

=
∫

b∈B

∫

a∈A

[(a, b) ∈ S]μ(da)μ′(db) Fubini

= . . .

=
∫

b∈B

μ({a′ ∈ A | (a′, b) ∈ S})μ′(db)

In the second line, we have used that (a, b) ∈ S ⇐⇒ b ∈ {b′ ∈ B | (a, b′) ∈ S}.
The proof works analogously for ×.

Lemma 17. Let δ : A �→ A, κ : A �→ B. Then,

(δ×κ)(a)(S) = κ(a)({b ∈ B | (a, b) ∈ S})

Proof

(δ×κ)(a)(S) =
∫

b∈B

δ(a)({a′ ∈ A | (a′, b) ∈ S})κ(a)(db) Lemma 16

=
∫

b∈B

[(a, b) ∈ S]κ(a)(db)

= κ(a)({b ∈ B | (a, b) ∈ S})

Lemma 1. For measures μ : ΣA → [0,∞], μ′ : ΣB → [0,∞], let S ∈ ΣA and
T ∈ ΣB. Then, (μ × μ′)(S × T) = μ(S) · μ′(T).

Proof

(μ × μ′)(S × T) =
∫

a∈A

μ′({b ∈ B | (a, b) ∈ S × T})μ(da) Lemma 16

=
∫

a∈A

μ′
({

T a ∈ S
∅ otherwise

})

μ(da)

=
∫

a∈S

μ′(T)μ(da)

= μ(S) ∗ μ′(T)

Lemma 2. × and × for s-finite measures are associative, left- and right-dis-
tributive and preserve (sub-)probability and s-finite measures.

Proof. Remember that (μ × μ′)(S) =
∫

a∈A

∫
b∈B

[(a, b) ∈ S]μ′(db)μ(da) and that
(μ×μ′)(S) =

∫
a∈A

∫
b∈B

[(a, b) ∈ S]μ′(db)μ(da). Preservation of (sub-)probability
measures is trivial. Distributivity and preservation of s-finite measures are easily
established by properties of the Lebesgue integral in Lemma 19.

For associativity, let μ : ΣA → [0,∞], μ : ΣB → [0,∞] and μ : ΣC → [0,∞].

Fine-Grained Semantics for Probabilistic Programs 173

((μ × μ′) × μ′′)(S)

=
∫

c∈C

(μ × μ′)({t ∈ A × B | (t, c) ∈ S})μ′′(dc) Lemma 16

=
∫

c∈C

∫

a∈A

∫

b∈B

[(a, b) ∈ {t ∈ A × B | (t, c) ∈ S}]μ′(db)μ(da)μ′′(dc)

=
∫

c∈C

∫

a∈A

∫

b∈B

[(a, b, c) ∈ S]μ′(db)μ(da)μ′′(dc)

=
∫

a∈A

∫

b∈B

∫

c∈C

[(a, b, c) ∈ S]μ′′(dc)μ′(db)μ(da) Fubini

=
∫

a∈A

∫

b∈B

∫

c∈C

[(b, c) ∈ {t ∈ B × C | (a, t) ∈ S}]μ′′(dc)μ′(db)μ(da)

=
∫

a∈A

(μ′ × μ′′)({t ∈ B × C | (a, t) ∈ S})μ(da)

=(μ × (μ′ × μ′′))(S)μ(da) Lemma 16

The proof proceeds analogously for ×.

Lemma 18. Let (A,ΣA) and (B,ΣB) be measurable spaces. Consider measures
μ, μ1, μ2 : ΣA → [0,∞] and ν, ν1, ν2 : ΣB → [0,∞]. We assume that ν1 ≤ ν2 and
μ1 ≤ μ2 hold pointwise. Then,

μ×ν1 ≤ μ×ν2

μ1×ν ≤ μ2×ν

Proof. Let S ∈ ΣA×B and ν1 ≤ ν2. Then, we have

ν1 ≤ ν2

=⇒
∫

b∈B

[(a, b) ∈ S]ν1(db)
︸ ︷︷ ︸

=:f(a)

≤
∫

b∈B

[(a, b) ∈ S]ν2(db)
︸ ︷︷ ︸

=:g(a)

Lemma 19

=⇒
∫

a∈A

f(a)μ(da) ≤
∫

a∈A

g(a)μ(da) Lemma 19

=⇒ (μ×ν1)(S) ≤ (μ×ν2)(S)

The proof for μ1×ν ≤ μ2×ν is similar.

A.2 Lebesgue Integral

Lemma 19. Let (A,ΣA) and (B,ΣB) be measurable spaces, E ∈ ΣA and E′ ∈
ΣB measurable sets, f, fi, g : A → R and h : A × B → R measurable functions,

www.dbooks.org

https://www.dbooks.org/

174 B. Bichsel et al.

μ, μi, ν : ΣA → [0,∞] and μ′ : ΣB → [0,∞] measures.
∫

a∈E

f(a)μ(da) ∈ [0,∞]

0 ≤ f ≤ g ≤ ∞ =⇒
∫

a∈E

f(a)μ(da) ≤
∫

a∈E

g(a)μ(da)

μ ≤ ν =⇒
∫

a∈E

f(a)μ(da) ≤
∫

a∈E

f(a)ν(da)

∞∑

n=1

∫

a∈E

fn(a)μ(da) =
∫

a∈E

∞∑

n=1

fn(a)μ(da)

∫

a∈E

∫

b∈E′

f(a, b)μ′(db)μ(da) =
∫

b∈E′

∫

a∈E

f(a, b)μ′(da)μ(db) μ, μ′σ-finite

∫

a∈E

f(a)

(∞∑

n=1

μi

)

(da) =
∞∑

n=1

∫

a∈E

f(a)μi(da)

∫

a∈E

f(a)δ(x)(da) =f(x) x ∈ E

Finally, if f1 ≤ f2 ≤ · · · ≤ ∞, we have

lim
n→∞

∫

a∈E

fn(a)μ(da) =
∫

a∈E

lim
n→∞ fn(a)μ(da)

Proof. The following properties can be proven for simple functions and limits of
simple functions (this suffices):

∫

a∈E

f(a)

(∞∑

n=1

μi

)

(da) =
∞∑

n=1

∫

a∈E

f(a)μi(da)

μ ≤ ν =⇒
∫

a∈E

f(a)μ(da) ≤
∫

a∈E

f(a)ν(da)
∫

a∈E
f(a)δ(x)(da) = f(x) is straightforward. For the other properties, see [31].

Theorem 1 (Fubini’s theorem). For s-finite measures μ : ΣA → [0,∞] and
μ′ : ΣB → [0,∞] and any measurable function f : A × B → [0,∞],

∫

a∈A

∫

b∈B

f(a, b)μ′(db)μ(da) =
∫

b∈B

∫

a∈A

f(a, b)μ(da)μ′(db)

For s-finite measures μ : ΣA → [0,∞] and μ′ : ΣB → [0,∞] and any measurable
function f : A × B → [0,∞],

∫

a∈A

∫

b∈B

f(a, b)μ′(db)μ(da) =
∫

b∈B

∫

a∈A

f(a, b)μ(da)μ′(db)

Fine-Grained Semantics for Probabilistic Programs 175

Proof. Let μ =
∑

i∈N μi and μ′ =
∑

i∈N μ′
i for bounded measures μi and μ′

i.
∫

a∈A

∫

b∈B

f(a, b)μ′(db)μ(da)

=
∑

i,j∈N

∫

a∈A

∫

b∈B

f(a, b)μ′
j(db)μi(da) Lemma 19

=
∑

i,j∈N

∫

b∈B

∫

a∈A

f(a, b)μi(da)μ′
j(db) Fubini forσ-finite measures μi, μ

′
j

=
∫

b∈B

∫

a∈A

f(a, b)μ(da)μ′(db)

The proof in the presence of exception state is analogous.

Lemma 20. Fubini does not hold for the counting measure c : B → [0,∞] and
the Lebesgue measure λ : B → [0,∞] (because c is not s-finite).

Proof
∫

x∈[0,1]

∫

y∈[0,1]

[x = y]c(dy)λ(dx) =
∫

x∈[0,1]

1λ(dx) = 1
∫

y∈[0,1]

∫

x∈[0,1]

[x = y]λ(dx)c(dy) =
∫

y∈[0,1]

0c(dy) = 0

A.3 Kernels

Lemma 21. Let κ1, κ
′
1 : A �→ B and κ2, κ

′
2 : B �→ C be s-finite kernels.

If κ1 ≤ κ′
1 holds pointwise, then

κ1 >=> κ2 ≤ κ′
1 >=> κ2

If κ2 ≤ κ′
2 holds pointwise, then

κ1 >=> κ2 ≤ κ1 >=> κ′
2

Proof. Assume κ2 ≤ κ′
2. Thus, κ2 ≤ κ′

2. Now, let a ∈ A, S ∈ ΣC .

(κ1 >=> κ2)(a)(S) =
∫

b∈B

κ2(b)(S)κ1(a)(db)

≤
∫

b∈B

κ′
2(b)(S)κ1(a)(db) κ2 ≤ κ′

2,Lemma 19

= (κ1 >=> κ′
2)(a)(S)

The proof for κ1 >=> κ2 ≤ κ′
1 >=> κ2 works analogously.

Lemma 3. (;) is associative, left- and right-distributive, has neutral element4 δ
and preserves (sub-)probability and s-finite kernels.
4 δ is a neutral element of (;) if (δ;κ) = (κ;δ) = κ for all kernels κ.

www.dbooks.org

https://www.dbooks.org/

176 B. Bichsel et al.

Proof. Remember that (f ;g)(a)(S) =
∫

b∈B
g(b)(S) f(a)(db). Left- and right-dis-

tributivity and the neutral element δ follow from properties of the Lebesgue
integral in Lemma 19.

Associativity and preservation of (sub-)probability kernels is well known (see
for example [12]). For s-finite kernels f =

∑
i∈N fi and g =

∑
i∈N gi and h =∑

i∈N hi, we have (for sub-probability kernels fi, gi, hi)

(f ;g);h =

⎛

⎝

(
∑

i∈N
fi

)

;

⎛

⎝
∑

j∈N
gj

⎞

⎠

⎞

⎠ ;
∑

k∈N
hk =

∑

i,j,k∈N
(fi;gj);hk

=
∑

i,j,k∈N
fi;(gj ;hk) = f ;(g;h)

(;) preserves s-finite kernels because for s-finite kernels f and g, we have (for
sub-probability kernels fi, gi) f ;g =

∑
i,j∈N fi;gi, a sum of kernels.

Lemma 4. For f : A �→ B and g : B �→ C, a ∈ A and S ∈ ΣC ,

(f >=> g)(a)(S) = (f ;g)(a)(S) +
∑

x∈X
δ(x)(S)f(a)({x})

Proof

(f >=> g)(a)(S) =
∫

b∈B

g(b)(S) f(a)(db)

=
∫

b∈B

g(b)(S) f(a)(db) +
∫

b∈X
g(b)(S) f(a)(db)

=
∫

b∈B

g(b)(S) f(a)(db) +
∑

b∈X
g(b)(S) f(a)({x})

= (f ;g)(a)(S) +
∑

x∈X
δ(x)(S)f(a)({x})

Lemma 5. >=> is associative, left-distributive (but not right-distributive), has
neutral element δ and preserves (sub-)probability and s-finite kernels.

Proof. Remember that (f >=> g)(a)(S) =
∫

b∈B
g(b)(S) f(a)(db). Left-distribu-

tivity follows from the properties of the Lebesgue integral in Lemma 19. Right-
distributivity does not necessarily hold because g1 + g2(⊥) �= g1(⊥) + g2(⊥).
Associativity for f : A �→ B, g : B �→ C and h : C �→ D can be derived by

Fine-Grained Semantics for Probabilistic Programs 177

((f >=> g) >=> h)(a)(S)

=
((

f >=> g
)
;h

)
(a)(S) +

∑

x∈X
δ(x)(S)(f >=> g)(a)({x})

=
((

f ;g + λa′.λS′.
∑

x∈X
δ(x)(S′)f(a′)({x})

)
;h

)
(a)(S)

+
∑

x∈X
δ(x)(S)(f >=> g)(a)({x})

= (f ;g;h)(a)(S) +
((

λa′.λS′.
∑

x∈X
δ(x)(S′)f(a′)({x})

)
;h

)
(a)(S)

︸ ︷︷ ︸
=0((;)integrates over non-exception states)

+
∑

x∈X
δ(x)(S)(f >=> g)(a)({x})

= (f ;g;h)(a)(S) +
∑

x∈X
δ(x)(S)

(
(f ;g)(a)({x}) +

∑

x′∈X
δ(x′)({x})f(a)({x′})

)

= (f ;g;h)(a)(S) +
∑

x∈X
δ(x)(S)

(
(f ;g)(a)({x}) + f(a)({x})

)

= (f ;g;h)(a)(S) +
∑

x∈X
δ(x)(S)(f ;λa′.λS′.g(a′)(S′))(a)({x})

+
∑

x∈X
δ(x)(S)f(a)({x})

= (f ;g;h)(a)(S) +
(
f ;

(
λa′.λS′.

∑

x∈X
δ(x)(S′)g(a′)({x})

))
(a)(S)

+
∑

x∈X
δ(x)(S)f(a)({x})

=
(
f ;

(
g;h + λa′.λS′.

∑

x∈X
δ(x)(S′)g(a′)({x})

))
(a)(S) +

∑

x∈X
δ(x)(S)f(a)({x})

=
(
f ;

(
g >=> h

))
(a)(S) +

∑

x∈X
δ(x)(S)f(a)({x})

= (f >=> (g >=> h))(a)(S)

Here, we have used Lemma 4, left- and right-distributivity of (;).
To show that f >=> g preserves s-finite kernels, let f : A �→ B and g : B �→ C

be s-finite kernels. Then, for sub-probability kernels fi,

(f >=> g)(a)(S) = (f ;g)(a)(S) +
∑

x∈X
δ(x)(S)f(a)({x})

= (f ;g)(a)(S) +
∑

x∈X

∑

i∈N
δ(x)(S)fi(a)({x})

Note that for each x ∈ X and i ∈ N, λa.λS.δ(x)(S)fi(a)({x}) is a sub-probability
kernel. Thus, f >=> g is a sum of s-finite kernels and hence s-finite.

www.dbooks.org

https://www.dbooks.org/

178 B. Bichsel et al.

Proving that for sub-probability kernels f and g, f >=> g is also a (sub-)
probability kernel is trivial, since we only need to show that (f >=> g)(a)(C) = 1
(or ≤ 1).

Lemma 22. Let (A,ΣA) and (B,ΣB) be measurable spaces. Let f : A × B →
[0,∞] be measurable and κ : A �→ B be a sub-probability kernel. Then, f ′ : A →
[0,∞] defined by

f ′(a) :=
∫

b∈B

f(a, b)κ(a)(db)

is measurable.

Proof. See Theorem 20 of [30].

Lemma 23. × and × preserve (sub-)probability kernels.

Proof. Let κ : A �→ B and κ′ : A �→ C be (sub-)probability kernels. The fact
that (κ × κ′)(a)(·) for all a ∈ A is a (sub-)probability measure is inherited from
Lemma 2. It remains to show that (κ×κ′)(·)(S) is measurable for all S ∈ ΣB×C ,
with

(κ × κ′)(a)(S) =
∫

b∈B

∫

c∈C

[(b, c) ∈ S]κ′(a)(dc)κ(a)(db)

By Lemma 22, f ′ : A×B → [0,∞] defined by f ′(a, b) =
∫

c∈C
[(b, c) ∈ S]κ′(a)(dc)

is measurable, using the measurable function f : (A × B) × C → [0,∞]
defined by f((a, b), c) = [(b, c) ∈ S]. Again by Lemma 22,

∫
b∈B

∫
c∈C

[(b, c) ∈
S]κ′(a)(dc)κ(a)(db) is measurable.

Proving that for (sub-)probability kernels κ : A �→ B and κ′ : A �→ C, κ×κ′

is a (sub-)probability kernel proceeds analogously.

Lemma 6. × and × for kernels preserve (sub-)probability and s-finite kernels,
are associative, left- and right-distributive.

Proof. Associativity, left- and right-distributivity are inherited from respective
properties of the product of measures established by Lemma 2. Sub-probability
kernels are preserved by Lemma 23.

S-finite kernels are preserved because κ × κ′ = (
∑

i∈N κi) × (
∑

i∈N κ′
i) =∑

i,j∈N κi × κ′
j (analogously for ×).

B Proofs for Semantics

Lemma 7. For Δ as in the semantics of the while loop, and for each σ and
each S, the limit limn→∞ Δn(���)(σ)(S) exists.

Proof. In general, 0 ≤ Δn(���)(σ)(S) ≤ 1. First, we restrict the allowed argu-
ments for limn→∞ Δn(���)(σ)(S) to only those S with �∈ S. We prove by induc-
tion that Δn+1(���) ≤ Δn(���), meaning ∀σ : ∀S : �∈ S =⇒ Δn+1(���)(σ)(S) ≤
Δn(���)(σ)(S). Hence, Δn(���) is monotone decreasing in n and lower bounded by
0, which means that the limit must exist.

Fine-Grained Semantics for Probabilistic Programs 179

As a base case, we have Δ1(���)(σ)(S) ≤ 1 = δ�(S) = Δ0(���)(σ)(S), because
�∈ S. We proceed by induction with

Δn+1(���)(σ)(S) =
(

δ×[[e]] >=> λ(σ, b).
{

[[P]](σ) �= Δn(���) b �= 0
δ(σ) b = 0

})

(σ)(S)

≤
(

δ×[[e]] >=> λ(σ, b).
{

[[P]](σ) �= Δn−1(���) b �= 0
δ(σ) b = 0

})

(σ)(S)

= Δn(���)(σ)(S)

In the second line, we have used the induction hypothesis. This application is
valid because κ2 ≤ κ′

2 implies κ1 >=> κ2 ≤ κ1 >=> κ′
2 (Lemma 21).

We proceed analogously when we restrict the allowed arguments for the kernel
limn→∞ Δn(���)(σ)(S) to only those S with �/∈ S, proving Δn+1(���) ≥ Δn(���)
for that case.

Lemma 8. In the absence of exception states, and using sub-probability kernels
instead of distribution transformers, the definition of the semantics of the while
loop from [23] is equivalent to ours.

Definition 6. In [23], Kozen shows a different way of defining the semantics
of the while loop. In our notation, and in terms of probability kernels instead of
distribution transformers, that definition becomes

[[while e {P}]] = sup
n∈N

n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k

>=> [[filter(¬e)]]

Here, exponentiation is in terms of Kleisli composition, i.e. κ0 = δ and κn+1 =
κ >=> κn. The sum and limit are meant pointwise. Furthermore, we define filter
by the following expression (note that [[filter(e)]] and [[filter(¬e)]] are only
sub-probability kernels, not probability kernels).

[[filter(e)]] = δ×[[e]] >=> λ(σ, b).
{

δ(σ) b �= 0
0 b = 0

}

[[filter(¬e)]] = δ×[[e]] >=> λ(σ, b).
{

δ(σ) b = 0
0 b �= 0

}

To justify Lemma 8, we prove the more formal Lemma 24. Note that in the
presence of exceptions (e.g. P is just assert(0)), Definition 6 does not make
sense, because if

Lemma 24. For all S with S ∩ X = ∅
(

n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k

>=> [[filter(¬e)]]

)

(σ)(S) = Δn+1(���)(σ)(S)

www.dbooks.org

https://www.dbooks.org/

180 B. Bichsel et al.

Proof. For n = 0, we have
(

0∑

k=0

(
[[filter(e)]] >=> [[P]]

)k

>=> [[filter(¬e)]]

)

(σ)(S)

=
((

[[filter(e)]] >=> [[P]]
)0

>=> [[filter(¬e)]]
)

(σ)(S)

=
(
δ >=> [[filter(¬e)]]

)
(σ)(S)

= [[filter(¬e)]](σ)(S)

=
(

δ×[[e]] >=> λ(σ′, b).
{

δ(σ′) b = 0
0 b �= 0

})

(σ)(S)

=
(

δ×[[e]] >=> λ(σ′, b).
{

δ(σ′) b = 0
��� (σ′) b �= 0

})

(σ)(S) �/∈ S

=
(

δ×[[e]] >=> λ(σ′, b).
{

δ(σ′) b = 0
([[P]] >=>���)(σ′) b �= 0

})

(σ)(S) S ∩ X = ∅

= Δ1(���)

For n ≥ 0, we have

(
n+1∑

k=0

(
[[filter(e)]] >=> [[P]]

)k
>=> [[filter(¬e)]]

)

(σ)(S)

=

((
n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k+1
+ ([[filter(e)]] >=> P)

0

)

>=> [[filter(¬e)]]

)

(σ)(S)

=

((
n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k+1
+ δ

)

>=> [[filter(¬e)]]

)

(σ)(S)

=

((
n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k+1
)

>=> [[filter(¬e)]]

)

(σ)(S) since S ∩ X = ∅

+ (δ >=> [[filter(¬e)]]) (σ)(S)

=

((
n∑

k=0

(
[[filter(e)]] >=> [[P]]

)k+1
)

>=> [[filter(¬e)]]

)

(σ)(S) + [[filter(¬e)]](σ)(S)

=

((

[[filter(e)]] >=> [[P]] >=>

n∑

k=0

([[filter(e)]] >=> [[P]])
k

)

>=> [[filter(¬e)]]

)

(σ)(S)

+ [[filter(¬e)]](σ)(S)

=

(

[[filter(e)]] >=> [[P]] >=>

(
n∑

k=0

([[filter(e)]] >=> [[P]])
k

>=> [[filter(¬e)]]

))

(σ)(S)

+ [[filter(¬e)]](σ)(S)

=
(
[[filter(e)]] >=> [[P]] >=> Δ

n+1
(���)

)
(σ)(S) + [[filter(¬e)]](σ)(S)

=

(

δ×[[e]] >=> λ(σ
′
, b).

{
[[P]](σ′) �= Δn+1(���) b �= 0
δ(σ′) b = 0

})

(σ)(S)

= Δ
n+2

(���)(σ)(S)

In particular, have have used that left-distributivity does hold in this case since
S ∩ X = ∅.

Fine-Grained Semantics for Probabilistic Programs 181

C Probability Kernel

In the following, we list lemmas that are crucial to prove Theorem 2 (restated
for convenience).

Theorem 2. The semantics of each expression [[e]] and statement [[P]] is indeed
a probability kernel.

Lemma 25. Any measurable function f : A → [0,∞] can be viewed as an s-
finite kernel f : A �→ 1, defined by f(x)(∅) = 0 and f(x)(1) = f(x).

Proof. We prove that f is an s-finite kernel. Let A∞ := {x ∈ A | f(x) = ∞}.
Since f is measurable, the set A∞ must be measurable. f(x)(S) =

∑
i∈N[x ∈

A∞][() ∈ S] +
∑

i∈N f(x)[i ≤ f(x) < i + 1][() ∈ S], which is a sum of finite
kernels because the sets A∞ and {x | i ≤ f(x) < i + 1} = f−1([i, i + 1)) are
measurable. Note that any sum of finite kernels can be rewritten as a sum of
sub-probability kernels.

Lemma 26. Let κ′ : X �→ Y and κ′′ : X �→ Y be kernels, and f : X → R mea-
surable. Then,

κ(x)(S) =

{
κ′(x)(S) if f(x) = 0
κ′′(x)(S) otherwise

is a kernel.

Proof. Let f=0(x) := [f(x) = 0], f�=0(x) := [f(x) �= 0]. Then, κ = f=0 × κ′ +
f�=0 × κ′′. Viewing f=0 and f�=0 as kernels X �→ 1 immediately gives the desired
result.

Lemma 27. Let (A,ΣA) and (B,ΣB) be measurable spaces. Let {Ai}i∈I be a
partition of A into measurable sets, for a countable set of indices I. Consider
a function f : A → B. If f|Ai

: Ai → B is measurable for each i ∈ I, then f is
measurable.

Lemma 28. Let f : A → B be measurable. Then κ : A �→ B with κ(a) = δ(f(a))
is a kernel.

The following lemma is important to show that the semantics of the while
loop is a probability kernel.

Lemma 29. Suppose {κn}n∈N is a sequence of (sub-)probability kernels A �→ B.
Then, if the limit κ = limn→∞ κn exists, it is also a (sub-)probability ker-
nel. Here, the limit is pointwise in the sense ∀a ∈ A : ∀S ∈ ΣB : κ(a, S) =
limn→∞ κn(a)(S).

Proof. For every a ∈ A, κ(a, ·) is a measure, because the pointwise limit of finite
measures is a measure. For every S ∈ ΣB , κ(·, S) is measurable, because the
pointwise limit of measurable functions fn : A → R (with B as the σ-algebra on
R) is measurable.

www.dbooks.org

https://www.dbooks.org/

182 B. Bichsel et al.

D Proofs for Consequences

In this section, we provide some proofs of consequences of our semantics,
explained in Sect. 5.

Lemma 9. For function F (){while 1 {skip}; return 0},
1
0

+ F () �
 F () +
1
0

Proof. If we evaluate 1
0 first, we will only have weight on ⊥.

[

[
1
0

+ F ()
]

]

=
[

[
1
0

]

]×[[F ()]] >=> λ(x, y).δ(x + y)

= δ(⊥)×[[F ()]] >=> λ(x, y).δ(x + y)
= δ(⊥) >=> λ(x, y).δ(x + y)
= δ(⊥)

If instead, we first evaluate F (), we only have weight on �, by an analogous
calculation.

Lemma 10. If [[e1]](σ)(X) = [[e2]](σ)(X) = 0 for all σ, then e1 ⊕ e2
 e2 ⊕ e1,
for any commutative operator ⊕.

Proof

[[e1 ⊕ e2]](σ)(S) = [[e1]]×[[e2]] >=> λ(x, y).δ(x ⊕ y)

=
∫

z∈R×R
λ(x, y).δ(x ⊕ y)(z)(S)([[e1]]×[[e2]])(σ)(dz)

=
∫

(x,y)∈R×R
δ(x ⊕ y)(S)([[e1]] × [[e2]])(σ)(d(x, y))

=
∫

(y,x)∈R×R
δ(y ⊕ x)(S)([[e2]] × [[e1]])(σ)(d(y, x))

= [[e2 ⊕ e1]](σ)(S)

Here, we crucially rely on the absence of exceptions (for the third equality) and
Fubini’s Theorem (for the fourth equality).

Lemma 11. e1 ⊕ (e2 ⊕ e3)
 (e1 ⊕ e2) ⊕ e3, for any associative operator ⊕.

Fine-Grained Semantics for Probabilistic Programs 183

Proof. The important steps of the proof are the following.

[[e1 ⊕ (e2 ⊕ e3)]] = [[e1]]×[[e2 ⊕ e3]] >=> λ(x, s).δ(x ⊕ s)

= [[e1]]×
(
[[e2]]×[[e3]] >=> λ(y, z).δ(y ⊕ z)

)
>=> λ(x, s).δ(x ⊕ s)

= [[e1]]×
(
[[e2]]×[[e3]]

)
>=> λ(x, (y, z)).δ(x ⊕ y ⊕ z)

=
(
[[e1]]×[[e2]]

)
×[[e3]] >=> λ((x, y), z).δ(x ⊕ y ⊕ z)

= [[(e1 ⊕ e2) ⊕ e3]]

Here, we make crucial use of associativity for the lifted product of measures in
Lemma 6.

References

1. Aumann, R.J.: Borel structures for function spaces. Ill. J. Math. 5(4), 614–630
(1961)

2. Barthe, G., Grégoire, B., Hsu, J., Strub, P.-Y.: Coupling proofs are probabilistic
product programs. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pp. 161–174. ACM, New York
(2017)

3. Barthe, G., Köpf, B., Olmedo, F., Zanella Béguelin, S.: Probabilistic relational rea-
soning for differential privacy. In: Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2012, pp.
97–110. ACM, New York (2012)

4. Borgström, J., Dal Lago, U., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, pp.
33–46. ACM, New York (2016)

5. Chaganty, A., Nori, A., Rajamani, S.: Efficiently sampling probabilistic programs
via program analysis. In: Artificial Intelligence and Statistics, pp. 153–160 (2013)

6. Chauveau, D., Diebolt, J.: An automated stopping rule for mcmc convergence
assessment. Comput. Stat. 3(14), 419–442 (1999)

7. Cheng, S.: A crash course on the lebesgue integral and measure theory (2008)
8. Cho, K., Jacobs, B.: Kleisli semantics for conditioning in probabilistic programming

(2017)
9. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)

ESOP 2012. LNCS, vol. 7211, pp. 169–193. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2_9

10. Gehr, T., Misailovic, S., Vechev, M.: PSI: exact symbolic inference for probabilistic
programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
62–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_4

11. Gelman, A., Lee, D., Guo, J.: Stan a probabilistic programming language for
bayesian inference and optimization. J. Educ. Behav. Stat. 40, 530–543 (2015)

12. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

www.dbooks.org

https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-642-28869-2_9
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/BFb0092872
https://www.dbooks.org/

184 B. Bichsel et al.

13. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: UAI, pp. 220–229 (2008)

14. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages (2014). http://dippl.org. Accessed 15 May 2017

15. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of the on Future of Software Engineering (2014)

16. Heunen, C., Kammar, O., Staton, S., Yang, H.: A convenient category for higher-
order probability theory. CoRR, abs/1701.02547 (2017)

17. Huang, D.E.: On programming languages for probabilistic modeling (2017).
https://danehuang.github.io/papers/dissertation.pdf. Accessed 28 June 2017

18. Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2014, pp. 133–144. ACM, New York (2014)

19. Hur, C.-K., Nori, A.V., Rajamani, S.K., Samuel, S.: A provably correct sampler
for probabilistic programs. In: LIPIcs-Leibniz International Proceedings in Infor-
matics, vol. 45. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

20. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9234, pp. 307–318. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48057-1_24

21. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1_15

22. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23506-6_4

23. Kozen, D.: Semantics of probabilistic programs. In: Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, SFCS 1979, pp. 101–114. IEEE
Computer Society, Washington, DC (1979)

24. Kozen, D.: A probabilistic pdl. In: Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, STOC 1983, pp. 291–297. ACM, New York
(1983)

25. Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilistic pro-
gramming platform with programmable inference. ArXiv e-prints, March 2014

26. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler,
A., Bronskill, J.: Infer.NET 2.5. Microsoft Research Cambridge (2013). http://
research.microsoft.com/infernet

27. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3_5

28. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.-P., McIver, A.:
Conditioning in probabilistic programming. ACM Trans. Program. Lang. Syst.
(2018, to appear)

29. Paige, B., Wood, F.: A compilation target for probabilistic programming languages.
In: International Conference on Machine Learning, pp. 1935–1943 (2014)

30. Pollard, D.: A User’s Guide to Measure Theoretic Probability, vol. 8. Cambridge
University Press, Cambridge (2002)

http://dippl.org
https://danehuang.github.io/papers/dissertation.pdf
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/978-3-319-23506-6_4
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
https://doi.org/10.1007/978-3-319-29604-3_5

Fine-Grained Semantics for Probabilistic Programs 185

31. Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill Education, London
(1987)

32. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. ACM SIGPLAN Not. 49(6),
112–122 (2014)

33. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets scott: Seman-
tic foundations for probabilistic networks. In: Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, pp.
557–571. ACM, New York (2017)

34. Staton, S.: Commutative semantics for probabilistic programming. In: Yang, H.
(ed.) ESOP 2017. LNCS, vol. 10201, pp. 855–879. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1_32

35. Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2016, pp. 525–534. ACM, New York (2016)

36. Wood, F., van de Meent, J., Mansinghka, V.: A new approach to probabilistic
programming inference. CoRR, abs/1507.00996 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

https://doi.org/10.1007/978-3-662-54434-1_32
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

How long, O Bayesian network,
will I sample thee?

A program analysis perspective
on expected sampling times

Kevin Batz(B), Benjamin Lucien Kaminski(B), Joost-Pieter Katoen(B),
and Christoph Matheja(B)

RWTH Aachen University, Aachen, Germany
kevin.batz@rwth-aachen.de,

{benjamin.kaminski,katoen,matheja}@cs.rwth-aachen.de

Abstract. Bayesian networks (BNs) are probabilistic graphical models
for describing complex joint probability distributions. The main prob-
lem for BNs is inference: Determine the probability of an event given
observed evidence. Since exact inference is often infeasible for large BNs,
popular approximate inference methods rely on sampling.

We study the problem of determining the expected time to obtain a
single valid sample from a BN. To this end, we translate the BN together
with observations into a probabilistic program. We provide proof rules
that yield the exact expected runtime of this program in a fully auto-
mated fashion. We implemented our approach and successfully analyzed
various real–world BNs taken from the Bayesian network repository.

Keywords: Probabilistic programs · Expected runtimes
Weakest preconditions · Program verification

1 Introduction

Bayesian networks (BNs) are probabilistic graphical models representing joint
probability distributions of sets of random variables with conditional depen-
dencies. Graphical models are a popular and appealing modeling formalism, as
they allow to succinctly represent complex distributions in a human–readable
way. BNs have been intensively studied at least since 1985 [43] and have a wide
range of applications including machine learning [24], speech recognition [50],
sports betting [11], gene regulatory networks [18], diagnosis of diseases [27], and
finance [39].

Probabilistic programs are programs with the key ability to draw values at ran-
dom. Seminal papers by Kozen from the 1980s consider formal semantics [32]
as well as initial work on verification [33,47]. McIver and Morgan [35] build
on this work to further weakest–precondition style verification for imperative
probabilistic programs.
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 186–213, 2018.
https://doi.org/10.1007/978-3-319-89884-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_7&domain=pdf

How long, O Bayesian network, will I sample thee? 187

The interest in probabilistic programs has been rapidly growing in recent
years [20,23]. Part of the reason for this déjà vu is their use for representing
probabilistic graphical models [31] such as BNs. The full potential of modern
probabilistic programming languages like Anglican [48], Church [21], Figaro [44],
R2 [40], or Tabular [22] is that they enable rapid prototyping and obviate the
need to manually provide inference methods tailored to an individual model.

Probabilistic inference is the problem of determining the probability of an event
given observed evidence. It is a major problem for both BNs and probabilistic
programs, and has been subject to intense investigations by both theoreticians
and practitioners for more than three decades; see [31] for a survey. In particular,
it has been shown that for probabilistic programs exact inference is highly unde-
cidable [28], while for BNs both exact inference as well as approximate inference
to an arbitrary precision are NP–hard [12,13]. In light of these complexity–
theoretical hurdles, a popular way to analyze probabilistic graphical models as
well as probabilistic programs is to gather a large number of independent and
identically distributed (i.i.d. for short) samples and then do statistical reasoning
on these samples. In fact, all of the aforementioned probabilistic programming
languages support sampling based inference methods.

Rejection sampling is a fundamental approach to obtain valid samples from BNs
with observed evidence. In a nutshell, this method first samples from the joint
(unconditional) distribution of the BN. If the sample complies with all evidence,
it is valid and accepted; otherwise it is rejected and one has to resample.

Apart from rejection sampling, there are more sophisticated sampling tech-
niques, which mainly fall in two categories: Markov Chain Monte Carlo (MCMC)
and importance sampling. But while MCMC requires heavy hand–tuning and suf-
fers from slow convergence rates on real–world instances [31, Chapter 12.3], virtu-
ally all variants of importance sampling rely again on rejection sampling [31,49].

A major problem with rejection sampling is that for poorly conditioned data,
this approach might have to reject and resample very often in order to obtain
just a single accepting sample. Even worse, being poorly conditioned need not be
immediately evident for a given BN, let alone a probabilistic program. In fact,
Gordon et al. [23, p. 177] point out that

“the main challenge in this setting [i.e. sampling based approaches] is that
many samples that are generated during execution are ultimately rejected
for not satisfying the observations.”

If too many samples are rejected, the expected sampling time grows so large that
sampling becomes infeasible. The expected sampling time of a BN is therefore a
key figure for deciding whether sampling based inference is the method of choice.

How Long, O Bayesian Network, will I Sample Thee? More precisely, we use
techniques from program verification to give an answer to the following question:

Given a Bayesian network with observed evidence, how long does it take
in expectation to obtain a single sample that satisfies the observations?

www.dbooks.org

https://www.dbooks.org/

188 K. Batz et al.

S R

G

R = 0 R = 1

a 1 − a

S = 0 S = 1

R = 0 a 1 − a

R = 1 0.2 0.8

G = 0 G = 1

S = 0, R = 0 0.01 0.99

S = 0, R = 1 0.25 0.75

S = 1, R = 0 0.9 0.1

S = 1, R = 1 0.2 0.8

Fig. 1. A simple Bayesian network.

As an example, consider the BN in Fig. 1 which consists of just three nodes
(random variables) that can each assume values 0 or 1. Each node X comes with
a conditional probability table determining the probability of X assuming some
value given the values of all nodes Y that X depends on (i.e. X has an incoming
edge from Y), see [3, Appendix A.1] for detailed calculations. For instance, the
probability that G assumes value 0, given that S and R are both assume 1, is
0.2. Note that this BN is paramterized by a ∈ [0, 1].

Now, assume that our observed evidence is the event G = 0 and we apply
rejection sampling to obtain one accepting sample from this BN. Then our app-
roach will yield that a rejection sampling algorithm will, on average, require

200a2 − 40a − 460
89a2 − 69a − 21

guard evaluations, random assignments, etc. until it obtains a single sample that
complies with the observation G = 0 (the underlying runtime model is discussed
in detail in Sect. 3.3). By examination of this function, we see that for large
ranges of values of a the BN is rather well–behaved: For a ∈ [0.08, 0.78] the
expected sampling time stays below 18. Above a = 0.95 the expected sampling
time starts to grow rapidly up to 300.

While 300 is still moderate, we will see later that expected sampling times of
real–world BNs can be much larger. For some BNs, the expected sampling time
even exceeded 1018, rendering sampling based methods infeasible. In this case,
exact inference (despite NP–hardness) was a viable alternative (see Sect. 6).

Our Approach. We apply weakest precondition style reasoning a lá McIver and
Morgan [35] and Kaminski et al. [30] to analyze both expected outcomes and
expected runtimes (ERT) of a syntactic fragment of pGCL, which we call the
Bayesian Network Language (BNL). Note that since BNL is a syntactic fragment
of pGCL, every BNL program is a pGCL program but not vice versa. The main
restriction of BNL is that (in contrast to pGCL) loops are of a special form
that prohibits undesired data flow across multiple loop iterations. While this

How long, O Bayesian network, will I sample thee? 189

restriction renders BNL incapable of, for instance, counting the number of loop
iterations1, BNL is expressive enough to encode Bayesian networks with observed
evidence.

For BNL, we develop dedicated proof rules to determine exact expected values
and the exact ERT of any BNL program, including loops, without any user–
supplied data, such as invariants [30,35], ranking or metering functions [19],
(super)martingales [8–10], etc.

As a central notion behind these rules, we introduce f–i.i.d.–ness of proba-
bilistic loops, a concept closely related to stochastic independence, that allows us
to rule out undesired parts of the data flow across loop iterations. Furthermore,
we show how every BN with observations is translated into a BNLprogram, such
that

(a) executing the BNL program corresponds to sampling from the conditional
joint distribution given by the BN and observed data, and

(b) the ERT of the BNL program corresponds to the expected time until a
sample that satisfies the observations is obtained from the BN.

As a consequence, exact expected sampling times of BNs can be inferred by
means of weakest precondition reasoning in a fully automated fashion. This can
be seen as a first step towards formally evaluating the quality of a plethora of
different sampling methods (cf. [31,49]) on source code level.

Contributions. To summarize, our main contributions are as follows:

– We develop easy–to–apply proof rules to reason about expected outcomes and
expected runtimes of probabilistic programs with f–i.i.d. loops.

– We study a syntactic fragment of probabilistic programs, the Bayesian net-
work language (BNL), and show that our proof rules are applicable to every
BNL program; expected runtimes of BNL programs can thus be inferred.

– We give a formal translation from Bayesian networks with observations to
BNL programs; expected sampling times of BNs can thus be inferred.

– We implemented a prototype tool that automatically analyzes the expected
sampling time of BNs with observations. An experimental evaluation on real–
world BNs demonstrates that very large expected sampling times (in the
magnitude of millions of years) can be inferred within less than a second; This
provides practitioners the means to decide whether sampling based methods
are appropriate for their models.

Outline. We discuss related work in Sect. 2. Syntax and semantics of the prob-
abilistic programming language pGCL are presented in Sect. 3. Our proof rules
are introduced in Sect. 4 and applied to BNs in Sect. 5. Section 6 reports on
experimental results and Sect. 7 concludes.

1 An example of a program that is not expressible in BNL is given in Example 1.

www.dbooks.org

https://www.dbooks.org/

190 K. Batz et al.

2 Related Work

While various techniques for formal reasoning about runtimes and expected out-
comes of probabilistic programs have been developed, e.g. [6,7,17,25,38], none
of them explicitly apply formal methods to reason about Bayesian networks on
source code level. In the following, we focus on approaches close to our work.

Weakest Preexpectation Calculus. Our approach builds upon the expected run-
time calculus [30], which is itself based on work by Kozen [32,33] and McIver and
Morgan [35]. In contrast to [30], we develop specialized proof rules for a clearly
specified program fragment without requiring user–supplied invariants. Since
finding invariants often requires heavy calculations, our proof rules contribute
towards simplifying and automating verification of probabilistic programs.

Ranking Supermartingales. Reasoning about almost–sure termination is often
based on ranking (super)martingales (cf. [8,10]). In particular, Chatterjee et al. [9]
consider the class of affine probabilistic programs for which linear ranking super-
martingales exist (Lrapp); thus proving (positive2) almost–sure termination for
all programs within this class. They also present a doubly–exponential algorithm
to approximate ERTs of Lrapp programs. While all BNL programs lie within
Lrapp, our proof rules yield exact ERTs as expectations (thus allowing for com-
positional proofs), in contrast to a single number for a fixed initial state.

Bayesian Networks and Probabilistic Programs. Bayesian networks are a—if not
the most—popular probabilistic graphical model (cf. [4,31] for details) for reason-
ing about conditional probabilities. They are closely tied to (a fragment of) proba-
bilistic programs. For example, Infer.NET [36] performs inference by compiling
a probabilistic program into a Bayesian network. While correspondences between
probabilistic graphical models, such as BNs, have been considered in the litera-
ture [21,23,37], we are not aware of a formal soudness proof for a translation from
classical BNs into probabilistic programs including conditioning.

Conversely, some probabilistic programming languages such as Church [21],
Stan [26], and R2 [40] directly perform inference on the program level using
sampling techniques similar to those developed for Bayesian networks. Our app-
roach is a step towards understanding sampling based approaches formally: We
obtain the exact expected runtime required to generate a sample that satisfies all
observations. This may ultimately be used to evaluate the quality of a plethora
of proposed sampling methods for Bayesian inference (cf. [31,49]).

3 Probabilistic Programs

We briefly present the probabilistic programming language that is used through-
out this paper. Since our approach is embedded into weakest-precondition style
approaches, we also recap calculi for reasoning about both expected outcomes
and expected runtimes of probabilistic programs.
2 Positive almost–sure termination means termination in finite expected time [5].

How long, O Bayesian network, will I sample thee? 191

3.1 The Probabilistic Guarded Command Language

We enhance Dijkstra’s Guarded Command Language [14,15] by a probabilis-
tic construct, namely a random assignment. We thereby obtain a probabilistic
Guarded Command Language (for a closely related language, see [35]).

Let Vars be a finite set of program variables. Moreover, let Q be the set of
rational numbers, and let D (Q) be the set of discrete probability distributions
over Q. The set of program states is given by Σ = { σ | σ : Vars → Q }.

A distribution expression μ is a function of type μ : Σ → D (Q) that takes a
program state and maps it to a probability distribution on values from Q. We
denote by μσ the distribution obtained from applying σ to μ.

The probabilistic guarded command language (pGCL) is given by the grammar

C −→ skip (effectless program)
| diverge (endless loop)
| x :≈ μ (random assignment)
| C; C (sequential composition)
| if (ϕ) {C} else {C} (conditional choice)
| while (ϕ) {C} (while loop)
| repeat {C} until (ϕ) , (repeat–until loop)

where x ∈ Vars is a program variable, μ is a distribution expression, and ϕ is a
Boolean expression guarding a choice or a loop. A pGCL program that contains
neither diverge, nor while, nor repeat − until loops is called loop–free.

For σ ∈ Σ and an arithmetical expression E over Vars, we denote by σ(E)
the evaluation of E in σ, i.e. the value that is obtained by evaluating E after
replacing any occurrence of any program variable x in E by the value σ(x).
Analogously, we denote by σ(ϕ) the evaluation of a guard ϕ in state σ to either
true or false. Furthermore, for a value v ∈ Q we write σ [x �→ v] to indicate that
we set program variable x to value v in program state σ, i.e.3

σ [x �→ v] = λ y.
{

v, if y = x

σ(y), if y �= x .

We use the Iverson bracket notation to associate with each guard its according
indicator function. Formally, the Iverson bracket [ϕ] of ϕ is thus defined as the
function [ϕ] = λσ. σ(ϕ).

Let us briefly go over the pGCL constructs and their effects: skip does not
alter the current program state. The program diverge is an infinite busy loop,
thus takes infinite time to execute. It returns no final state whatsoever.

The random assignment x :≈ μ is (a) the only construct that can actually
alter the program state and (b) the only construct that may introduce random
3 We use λ–expressions to construct functions: Function λX. ε applied to an argument

α evaluates to ε in which every occurrence of X is replaced by α.

www.dbooks.org

https://www.dbooks.org/

192 K. Batz et al.

behavior into the computation. It takes the current program state σ, then sam-
ples a value v from probability distribution μσ, and then assigns v to program
variable x. An example of a random assignment is

x :≈ 1/2 · 〈5〉 + 1/6 · 〈y + 1〉 + 1/3 · 〈y − 1〉 .

If the current program state is σ, then the program state is altered to either
σ [x �→ 5] with probability 1/2, or to σ [x �→ σ(y) + 1] with probability 1/6, or to
σ [x �→ σ(y) − 1] with probability 1/3. The remainder of the pGCL constructs are
standard programming language constructs.

In general, a pGCL program C is executed on an input state and yields a
probability distribution over final states due to possibly occurring random assign-
ments inside of C. We denote that resulting distribution by �C�σ. Strictly speak-
ing, programs can yield subdistributions, i.e. probability distributions whose total
mass may be below 1. The “missing”probability mass represents the probability
of nontermination. Let us conclude our presentation of pGCLwith an example:

Example 1 (Geometric Loop). Consider the program Cgeo given by

x :≈ 0; c :≈ 1/2 · 〈0〉 + 1/2 · 〈1〉;
while (c = 1) {x :≈ x + 1; c :≈ 1/2 · 〈0〉 + 1/2 · 〈1〉}

This program basically keeps flipping coins until it flips, say, heads (c = 0).
In x it counts the number of unsuccessful trials.4 In effect, it almost surely sets
c to 0 and moreover it establishes a geometric distribution on x. The resulting
distribution is given by

�Cgeo�σ (τ) =
ω∑

n=0

[τ = σ [c, x �→ 0, n]] · 1
2n+1

. 	

3.2 The Weakest Preexpectation Transformer

We now present the weakest preexpectation transformer wp for reasoning about
expected outcomes of executing probabilistic programs in the style of McIver
and Morgan [35]. Given a random variable f mapping program states to reals, it
allows us to reason about the expected value of f after executing a probabilistic
program on a given state.

Expectations. The random variables the wp transformer acts upon are taken
from a set of so-called expectations, a term coined by McIver and Morgan [35]:

4 This counting is also the reason that Cgeo is an example of a program that is not
expressible in our BNL language that we present later.

How long, O Bayesian network, will I sample thee? 193

Definition 1 (Expectations). The set of expectations E is defined as

E =
{
f
∣∣ f : Σ → R∞

≥0

}
.

We will use the notation f [x/E] to indicate the replacement of every occur-
rence of x in f by E. Since x, however, does not actually occur in f , we more
formally define f [x/E] = λσ. f(σ [x �→ σ(E)]).

A complete partial order ≤ on E is obtained by point–wise lifting the canonical
total order on R∞

≥0, i.e.

f1 � f2 iff ∀σ ∈ Σ : f1(σ) ≤ f2(σ) .

Its least element is given by λσ. 0 which we (by slight abuse of notation) also
denote by 0. Suprema are constructed pointwise, i.e. for S ⊆ E the supremum
supS is given by supS = λσ. supf∈S f(σ).

We allow expectations to map only to positive reals, so that we have a complete
partial order readily available, which would not be the case for expectations of
type Σ → R ∪ {−∞, +∞}. A wp calculus that can handle expectations of such
type needs more technical machinery and cannot make use of this underlying
natural partial order [29]. Since we want to reason about ERTs which are by
nature non–negative, we will not need such complicated calculi.

Notice that we use a slightly different definition of expectations than McIver
and Morgan [35], as we allow for unbounded expectations, whereas [35] requires
that expectations are bounded. This however would prevent us from capturing
ERTs, which are potentially unbounded.

Expectation Transformers. For reasoning about the expected value of f ∈ E

after execution of C, we employ a backward–moving weakest preexpectation
transformer wp�C� : E → E, that maps a postexpectation f ∈ E to a preexpec-
tation wp �C� (f) ∈ E, such that wp �C� (f) (σ) is the expected value of f after
executing C on initial state σ. Formally, if C executed on input σ yields final
distribution �C�σ, then the weakest preexpectation wp �C� (f) of C with respect
to postexpectation f is given by

wp �C� (f) (σ) =
∫

Σ

f d�C�σ , (1)

where we denote by
∫

A
h dν the expected value of a random variable h : A → R∞

≥0

with respect to a probability distribution ν : A → [0, 1]. Weakest preexpectations
can be defined in a very systematic way:

Definition 2 (The wp Transformer [35]). The weakest preexpectation trans-
former wp : pGCL → E → E is defined by induction on all pGCL programs accord-
ing to the rules in Table 1. We call Ff (X) = [¬ϕ] · f + [ϕ] · wp �C� (X) the wp–
characteristic functional of the loop while (ϕ) {C} with respect to postexpectation
f . For a given wp–characteristic function Ff , we call the sequence {Fn

f (0)}n∈N

the orbit of Ff .

www.dbooks.org

https://www.dbooks.org/

194 K. Batz et al.

Table 1. Rules for the wp–transformer.

C wp �C� (f)

skip f

diverge 0

x :≈ μ λσ. ∫
Q

(
λv. f [x/v]

)
dμσ

if (ϕ) {C1} else {C2} [ϕ] · wp �C1� (f) + [¬ϕ] · wp �C2� (f)

C1; C2 wp �C1� (wp �C2� (f))

while (ϕ) {C′} lfp X. [¬ϕ] · f + [ϕ] · wp �C′� (X)

repeat {C′} until (ϕ) wp �C′; while (¬ϕ) {C′}� (f)

Let us briefly go over the definitions in Table 1: For skip the program state is
not altered and thus the expected value of f is just f . The program diverge
will never yield any final state. The distribution over the final states yielded by
diverge is thus the null distribution ν0(τ) = 0, that assigns probability 0 to
every state. Consequently, the expected value of f after execution of diverge is
given by

∫
Σ

f dν0 =
∑

τ∈Σ 0 · f(τ) = 0.
The rule for the random assignment x :≈ μ is a bit more technical: Let the

current program state be σ. Then for every value v ∈ Q, the random assignment
assigns v to x with probability μσ(v), where σ is the current program state. The
value of f after assigning v to x is f(σ [x �→ v]) = f [x/v](σ) and therefore the
expected value of f after executing the random assignment is given by

∑
v∈Q

μσ(v) · f [x/v](σ) =
∫

Q

(
λv. f [x/v](σ)

)
dμσ .

Expressed as a function of σ, the latter yields precisely the definition in Table 1.
The definition for the conditional choice if (ϕ) {C1} else {C2} is not surpris-

ing: if the current state satisfies ϕ, we have to opt for the weakest preexpectation
of C1, whereas if it does not satisfy ϕ, we have to choose the weakest preexpec-
tation of C2. This yields precisely the definition in Table 1.

The definition for the sequential composition C1; C2 is also straightforward:
We first determine wp �C2� (f) to obtain the expected value of f after executing
C2. Then we mentally prepend the program C2 by C1 and therefore determine
the expected value of wp �C2� (f) after executing C1. This gives the weakest
preexpectation of C1; C2 with respect to postexpectation f .

The definition for the while loop makes use of a least fixed point, which is
a standard construction in program semantics. Intuitively, the fixed point iter-
ation of the wp–characteristic functional, given by 0, Ff (0), F 2

f (0), F 3
f (0), . . .,

corresponds to the portion the expected value of f after termination of the
loop, that can be collected within at most 0, 1, 2, 3, . . . loop guard evaluations.

How long, O Bayesian network, will I sample thee? 195

The Kleene Fixed Point Theorem [34] ensures that this iteration converges to
the least fixed point, i.e.

sup
n∈N

Fn
f (0) = lfp Ff = wp �while (ϕ) {C}� (f) .

By inspection of the above equality, we see that the least fixed point is exactly the
construct that we want for while loops, since supn∈N Fn

f (0) in principle allows the
loop to run for any number of iterations, which captures precisely the semantics
of a while loop, where the number of loop iterations is—in contrast to e.g. for
loops—not determined upfront.

Finally, since repeat {C} until (ϕ) is syntactic sugar for C; while (ϕ) {C},
we simply define the weakest preexpectation of the former as the weakest pre-
expectation of the latter. Let us conclude our study of the effects of the wp
transformer by means of an example:

Example 2. Consider the following program C:

c :≈ 1/3 · 〈0〉 + 2/3 · 〈1〉;
if (c = 0) {x :≈ 1/2 · 〈5〉 + 1/6 · 〈y + 1〉 + 1/3 · 〈y − 1〉} else {skip}

Say we wish to reason about the expected value of x + c after execution of
the above program. We can do so by calculating wp �C� (x + c) using the rules
in Table 1. This calculation in the end yields wp �C� (x + c) = 3y+26/18 The
expected valuation of the expression x + c after executing C is thus 3y+26/18.
Note that x + c can be thought of as an expression that is evaluated in the final
states after execution, whereas 3y+26/18 must be evaluated in the initial state
before execution of C. 	

Healthiness Conditions of wp. The wp transformer enjoys some useful prop-
erties, sometimes called healthiness conditions [35]. Two of these healthiness
conditions that we will heavily make use of are given below:

Theorem 1 (Healthiness Conditions for the wp Transformer [35]). For
all C ∈ pGCL, f1, f2 ∈ E, and a ∈ R≥0, the following holds:

1. wp �C� (a · f1 + f2) = a · wp �C� (f1) + wp �C� (f2) (linearity)

2. wp �C� (0) = 0 (strictness).

3.3 The Expected Runtime Transformer

While for deterministic programs we can speak of the runtime of a program on
a given input, the situation is different for probabilistic programs: For those we
instead have to speak of the expected runtime (ERT). Notice that the ERT can
be finite (even constant) while the program may still admit infinite executions.
An example of this is the geometric loop in Example 1.

A wp–like transformer designed specifically for reasoning about ERTs is the
ert transformer [30]. Like wp, it is of type ert�C� : E → E and it can be shown that

www.dbooks.org

https://www.dbooks.org/

196 K. Batz et al.

Table 2. Rules for the ert–transformer.

C ert �C� (f)

skip 1 + f

diverge ∞
x :≈ μ 1 + λσ. ∫

Q

(
λv. f [x/v]

)
dμσ

if (ϕ) {C1} else {C2} 1 + [ϕ] · ert �C1� (f) + [¬ϕ] · ert �C2� (f)

C1; C2 ert �C1�
((

ert �C2� (f)
))

while (ϕ) {C′} lfp X. 1 + [¬ϕ] · f + [ϕ] · ert �C′� (X)

repeat {C′} until (ϕ) ert �C′; while (¬ϕ) {C′}� (f)

ert �C� (0) (σ) is precisely the expected runtime of executing C on input σ. More
generally, if f : Σ → R∞

≥0 measures the time that is needed after executing C
(thus f is evaluated in the final states after termination of C), then ert �C� (f) (σ)
is the expected time that is needed to run C on input σ and then let time f
pass. For a more in–depth treatment of the ert transformer, see [30, Sect. 3]. The
transformer is defined as follows:

Definition 3 (The ert Transformer [30]). The expected runtime transformer
ert : pGCL → E → E is defined by induction on all pGCL programs according to
the rules given in Table 2. We call Ff (X) = 1+[¬ϕ] ·f +[ϕ] ·wp �C� (X) the ert–
characteristic functional of the loop while (ϕ) {C} with respect to postexpectation
f . As with wp, for a given ert–characteristic function Ff , we call the sequence
{Fn

f (0)}n∈N the orbit of Ff . Notice that

ert �while (ϕ) {C}� (f) = lfp Ff = sup {Fn
f (0)}n∈N.

The rules for ert are very similar to the rules for wp. The runtime model we
assume is that skip statements, random assignments, and guard evaluations
for both conditional choice and while loops cost one unit of time. This runtime
model can easily be adopted to count only the number of loop iterations or only
the number of random assignments, etc. We conclude with a strong connection
between the wp and the ert transformer, that is crucial in our proofs:

Theorem 2 (Decomposition of ert [41]). For any C ∈ pGCL and f ∈ E,

ert �C� (f) = ert �C� (0) + wp �C� (f) .

4 Expected Runtimes of i.i.d Loops

We derive a proof rule that allows to determine exact ERTs of independent
and identically distributed loops (or i.i.d. loops for short). Intuitively, a loop

How long, O Bayesian network, will I sample thee? 197

while (x − 5)2 + (y − 5)2 ≥ 25
) {

x :≈ Unif[0 . . . 10];

y :≈ Unif[0 . . . 10]

}
5 10

5

10

×
×

×

×
×

×
×

×

××
×

×××

×

×

×
×

Fig. 2. An i.i.d. loop sampling a point within a circle uniformly at random using
rejection sampling. The picture on the right–hand side visualizes the procedure: In
each iteration a point (×) is sampled. If we obtain a point within the white area inside
the square, we terminate. Otherwise, i.e. if we obtain a point within the gray area
outside the circle, we resample.

is i.i.d. if the distributions of states that are reached at the end of different
loop iterations are equal. This is the case whenever there is no data flow across
different iterations. In the non–probabilistic case, such loops either terminate
after exactly one iteration or never. This is different for probabilistic programs.

As a running example, consider the program Ccircle in Fig. 2. Ccircle samples
a point within a circle with center (5, 5) and radius r = 5 uniformly at random
using rejection sampling. In each iteration, it samples a point (x, y) ∈ [0, . . . , 10]2

within the square (with some fixed precision). The loop ensures that we resample
if a sample is not located within the circle. Our proof rule will allow us to
systematically determine the ERT of this loop, i.e. the average amount of time
required until a single point within the circle is sampled.

Towards obtaining such a proof rule, we first present a syntactical notion
of the i.i.d. property. It relies on expectations that are not affected by a pGCL
program:

Definition 4. Let C ∈ pGCL and f ∈ E. Moreover, let Mod (C) denote the set
of all variables that occur on the left–hand side of an assignment in C, and let
Vars (f) be the set of all variables that “occur in f”, i.e. formally

x ∈ Vars (f) iff ∃σ ∃ v, v′ : f(σ [x �→ v]) �= f(σ [x �→ v′]).

Then f is unaffected by C, denoted f �� C, iff Vars (f) ∩ Mod (C) = ∅.
We are interested in expectations that are unaffected by pGCL programs because
of a simple, yet useful observation: If g �� C, then g can be treated like a constant
w.r.t. the transformer wp (i.e. like the a in Theorem 1 (1)). For our running exam-
ple Ccircle (see Fig. 2), the expectation f = wp �Cbody� ([x + y ≤ 10]) is unaf-
fected by the loop body Cbody of Ccircle . Consequently, we have wp �Cbody� (f) =
f · wp �Cbody� (1) = f . In general, we obtain the following property:

Lemma 1 (Scaling by Unaffected Expectations). Let C ∈ pGCL and
f, g ∈ E. Then g �� C implies wp �C� (g · f) = g · wp �C� (f).

Proof. By induction on the structure of C. See [3, Appendix A.2]. ��

www.dbooks.org

https://www.dbooks.org/

198 K. Batz et al.

We develop a proof rule that only requires that both the probability of the guard
evaluating to true after one iteration of the loop body (i.e. wp �C� ([ϕ])) as well
as the expected value of [¬ϕ] · f after one iteration (i.e. wp �C� ([¬ϕ] · f)) are
unaffected by the loop body. We thus define the following:

Definition 5 (f–Independent and Identically Distributed Loops). Let
C ∈ pGCL, ϕ be a guard, and f ∈ E. Then we call the loop while (ϕ) {C}
f–independent and identically distributed (or f–i.i.d. for short), if both

wp �C� ([ϕ]) �� C and wp �C� ([¬ϕ] · f) �� C.

Example 3. Our example program Ccircle (see Fig. 2) is f–i.i.d. for all f ∈ E.
This is due to the fact that

wp �Cbody�
([

(x − 5)2 + (y − 5)2 ≥ 25
])

=
48
121

�� Cbody (by Table 1)

and (again for some fixed precision p ∈ N \ {0})

wp �Cbody�
([

(x − 5)2 + (y − 5)2 > 25
] · f

)
=

1
121

·
10p∑
i=0

10p∑
j=0

[
(i/p − 5)2 + (j/p − 5)2 > 25

] · f [x/(i/p), y/(j/p)] �� Cbody . 	

Our main technical Lemma is that we can express the orbit of the wp–
characteristic function as a partial geometric series:

Lemma 2 (Orbits of f–i.i.d. Loops). Let C ∈ pGCL, ϕ be a guard, f ∈ E

such that the loop while (ϕ) {C} is f–i.i.d, and let Ff be the corresponding wp–
characteristic function. Then for all n ∈ N \ {0}, it holds that

Fn
f (0) = [ϕ] · wp �C� ([¬ϕ] · f) ·

n−2∑
i=0

(
wp �C� ([ϕ])i

)
+ [¬ϕ] · f.

Proof. By use of Lemma 1, see [3, Appendix A.3].

Using this precise description of the wp orbits, we now establish proof rules for
f–i.i.d. loops, first for wp and later for ert.

Theorem 3 (Weakest Preexpectations of f–i.i.d. Loops). Let C ∈ pGCL,
ϕ be a guard, and f ∈ E. If the loop while (ϕ) {C} is f–i.i.d., then

wp �while (ϕ) {C}� (f) = [ϕ] · wp �C� ([¬ϕ] · f)
1 − wp �C� ([ϕ])

+ [¬ϕ] · f ,

where we define 0
0

:= 0.

How long, O Bayesian network, will I sample thee? 199

Proof. We have

wp �while (ϕ) {C}� (f)
= sup

n∈N

Fn
f (0) (by Definition 2)

= sup
n∈N

[ϕ] · wp �C� ([¬ϕ] · f) ·
n−2∑
i=0

(
wp �C� ([ϕ])i

)
+ [¬ϕ] · f (by Lemma 2)

= [ϕ] · wp �C� ([¬ϕ] · f) ·
ω∑

i=0

(
wp �C� ([ϕ])i

)
+ [¬ϕ] · f. (†)

The preexpectation (†) is to be evaluated in some state σ for which we have
two cases: The first case is when wp �C� ([ϕ]) (σ) < 1. Using the closed form of
the geometric series, i.e.

∑ω
i=0 q = 1

1−q if |q| < 1, we get

[ϕ] (σ) · wp �C� ([¬ϕ] · f) (σ) ·
ω∑

i=0

(
wp �C� ([ϕ]) (σ)i

)
+ [¬ϕ] (σ) · f(σ)

(† instantiated in σ)

= [ϕ] (σ) · wp �C� ([¬ϕ] · f) (σ)
1 − wp �C� ([ϕ]) (σ)

+ [¬ϕ] (σ) · f(σ).

(closed form of geometric series)

The second case is when wp �C� ([ϕ]) (σ) = 1. This case is technically slightly
more involved. The full proof can be found in [3, Appendix A.4]. ��
We now derive a similar proof rule for the ERT of an f–i.i.d. loop while (ϕ) {C}.

Theorem 4 (Proof Rule for ERTs of f–i.i.d. Loops). Let C ∈ pGCL, ϕ
be a guard, and f ∈ E such that all of the following conditions hold:

1. while (ϕ) {C} is f–i.i.d.
2. wp �C� (1) = 1 (loop body terminates almost–surely).
3. ert �C� (0) �� C (every iteration runs in the same expected time).

Then for the ERT of the loop while (ϕ) {C} w.r.t. postruntime f it holds that

ert �while (ϕ) {C}� (f) = 1 +
[ϕ] · (1 + ert �C� ([¬ϕ] · f))

1 − wp �C� ([ϕ])
+ [¬ϕ] · f ,

where we define 0
0

:= 0 and a
0

:= ∞, for a �= 0.

Proof. We first prove

ert �while (ϕ) {C}� (0) = 1 + [ϕ] · 1 + ert �C� (0)
1 − wp �C� ([ϕ])

. (‡)

www.dbooks.org

https://www.dbooks.org/

200 K. Batz et al.

To this end, we propose the following expression as the orbit of the ert–charac-
teristic function of the loop w.r.t. 0:

Fn
0 (0) = 1 + [ϕ] ·

(
ert �C� (0) ·

n∑
i=0

wp �C� ([ϕ])i +
n−1∑
i=0

wp �C� ([ϕ])i

)

For a verification that the above expression is indeed the correct orbit, we refer to
the rigorous proof of this theorem in [3, Appendix A.5]. Now, analogously to the
reasoning in the proof of Theorem3 (i.e. using the closed form of the geometric
series and case distinction on whether wp �C� ([ϕ]) < 1 or wp �C� ([ϕ]) = 1),
we get that the supremum of this orbit is indeed the right–hand side of (‡). To
complete the proof, consider the following:

ert �while (ϕ) {C}� (f)
= ert �while (ϕ) {C}� (0) + wp �while (ϕ) {C}� (f) (by Theorem 2)

= 1 + [ϕ] · 1 + ert �C� (0)
1 − wp �C� ([ϕ])

+ [ϕ] · wp �C� ([¬ϕ] · f)
1 − wp �C� ([ϕ])

+ [¬ϕ] · f

(by (‡) and Theorem 3)

= 1 + [ϕ] · 1 + ert �C� ([¬ϕ] · f)
1 − wp �C� ([ϕ])

+ [¬ϕ] · f (by Theorem 2)

��

5 A Programming Language for Bayesian Networks

So far we have derived proof rules for formal reasoning about expected out-
comes and expected run-times of i.i.d. loops (Theorems 3 and 4). In this
section, we apply these results to develop a syntactic pGCL fragment that
allows exact computations of closed forms of ERTs. In particular, no invariants,
(super)martingales or fixed point computations are required.

After that, we show how BNs with observations can be translated into pGCL
programs within this fragment. Consequently, we call our pGCL fragment the
Bayesian Network Language. As a result of the above translation, we obtain a
systematic and automatable approach to compute the expected sampling time
of a BN in the presence of observations. That is, the expected time it takes to
obtain a single sample that satisfies all observations.

5.1 The Bayesian Network Language

Programs in the Bayesian Network Language are organized as sequences of
blocks. Every block is associated with a single variable, say x, and satisfies
two constraints: First, no variable other than x is modified inside the block, i.e.
occurs on the left–hand side of a random assignment. Second, every variable
accessed inside of a guard has been initialized before. These restrictions ensure
that there is no data flow across multiple executions of the same block. Thus,
intuitively, all loops whose body is composed from blocks (as described above)
are f–i.i.d. loops.

How long, O Bayesian network, will I sample thee? 201

Definition 6 (The Bayesian Network Language). Let Vars = {x1, x2, . . .}
be a finite set of program variables as in Sect. 3. The set of programs in Bayesian
Network Language, denoted BNL, is given by the grammar

C −→ Seq | repeat {Seq} until (ψ) | C; C

Seq −→ Seq; Seq | Bx1 | Bx2 | . . .

Bxi
−→ xi :≈ μ | if (ϕ) {xi :≈ μ} else {Bxi

}
(rule exists for all xi ∈ Vars)

where xi ∈ Vars is a program variable, all variables in ϕ have been initialized
before, and Bxi

is a non–terminal parameterized with program variable xi ∈ Vars.
That is, for all xi ∈ Vars there is a non–terminal Bxi

. Moreover, ψ is an arbitrary
guard and μ is a distribution expression of the form μ =

∑n
j=1 pj · 〈aj〉 with

aj ∈ Q for 1 ≤ j ≤ n.

Example 4. Consider the BNL program Cdice:

x1 :≈ Unif[1 . . . 6]; repeat {x2 :≈ Unif[1 . . . 6]} until (x2 ≥ x1)

This program first throws a fair die. After that it keeps throwing a second die
until its result is at least as large as the first die. 	
For any C ∈ BNL, our goal is to compute the exact ERT of C, i.e. ert �C� (0).
In case of loop–free programs, this amounts to a straightforward application of
the ert calculus presented in Sect. 3. To deal with loops, however, we have to
perform fixed point computations or require user–supplied artifacts, e.g. invari-
ants, supermartingales, etc. For BNL programs, on the other hand, it suffices
to apply the proof rules developed in Sect. 4. As a result, we directly obtain an
exact closed form solution for the ERT of a loop. This is a consequence of the
fact that all loops in BNL are f–i.i.d., which we establish in the following.

By definition, every loop in BNL is of the form repeat {Bxi
} until (ψ), which

is equivalent to Bxi
; while (¬ψ) {Bxi

}. Hence, we want to apply Theorem 4 to
that while loop. Our first step is to discharge the theorem’s premises:

Lemma 3. Let Seq be a sequence of BNL–blocks, g ∈ E, and ψ be a guard.
Then:

1. The expected value of g after executing Seq is unaffected by Seq. That is,
wp �Seq� (g) �� Seq.

2. The ERT of Seq is unaffected by Seq, i.e. ert �Seq� (0) �� Seq.
3. For every f ∈ E, the loop while (¬ψ) {Seq} is f–i.i.d.

Proof. 1. is proven by induction on the length of the sequence of blocks Seq and
2. is a consequence of 1., see [3, Appendix A.6]. 3. follows immediately from 1. by
instantiating g with [¬ψ] and [ψ] · f , respectively. ��
We are now in a position to derive a closed form for the ERT of loops in BNL.

www.dbooks.org

https://www.dbooks.org/

202 K. Batz et al.

Theorem 5. For every loop repeat {Seq} until (ψ) ∈ BNL and every f ∈ E,

ert �repeat {Seq} until (ψ)� (f) =
1 + ert �Seq� ([ψ] · f)

wp �Seq� ([ψ])
.

Proof. Let f ∈ E. Moreover, recall that repeat {Seq} until (ψ) is equivalent
to the program Seq; while (¬ψ) {Seq} ∈ BNL. Applying the semantics of ert
(Table 2), we proceed as follows:

ert �repeat {Seq} until (ψ)� (f) = ert �Seq� (ert �while (¬ψ) {Seq}� (f))

Since the loop body Seq is loop–free, it terminates certainly, i.e. wp �Seq� (1) =
1 (Premise 2. of Theorem 4). Together with Lemma 3.1. and 3., all
premises of Theorem 4 are satisfied. Hence, we obtain a closed form for
ert �while (¬ψ) {Seq}� (f):

= ert�Seq�
(

1 +
[¬ψ] · (1 + ert �Seq� ([ψ] · f))

1 − wp �Seq� ([¬ψ])
+ [ψ] · f︸ ︷︷ ︸

=:g

)

By Theorem 2, we know ert �Seq� (g) = ert �Seq� (0)+wp �C� (g) for any g. Thus:

= ert �Seq� (0) + wp�Seq�
(

1 +
[¬ψ] · (1 + ert �Seq� ([ψ] · f))

1 − wp �Seq� ([¬ψ])
+ [ψ] · f︸ ︷︷ ︸

g

)

Since wp is linear (Theorem 1 (2)), we obtain:

= ert �Seq� (0) + wp �Seq� (1)︸ ︷︷ ︸
= 1

+ wp �Seq� ([ψ] · f)

+ wp �Seq�
(

[¬ψ] · (1 + ert �Seq� ([ψ] · f))
1 − wp �Seq� ([¬ψ])

)

By a few simple algebraic transformations, this coincides with:

= 1 + ert �Seq� (0) + wp �Seq� ([ψ] · f) + wp �Seq�
(

[¬ψ] · 1 + ert �Seq� ([ψ] · f)
1 − wp �Seq� ([¬ψ])

)

Let R denote the fraction above. Then Lemma 3.1. and 2. implies R �� Seq.
We may thus apply Lemma 1 to derive wp �Seq� ([¬ψ] · R) = wp �Seq� ([¬ψ]) · R.
Hence:

= 1 + ert �Seq� (0) + wp �Seq� ([ψ] · f) + wp �Seq� ([¬ψ]) · 1 + ert �Seq� ([ψ] · f)
1 − wp �Seq� ([¬ψ])

Again, by Theorem2, we know that ert �Seq� (g) = ert �Seq� (0)+wp �Seq� (g) for
any g. Thus, for g = [ψ] · f , this yields:

= 1 + ert �Seq� ([ψ] · f) + wp �Seq� ([¬ψ]) · 1 + ert �Seq� ([ψ] · f)
1 − wp �Seq� ([¬ψ])

How long, O Bayesian network, will I sample thee? 203

Then a few algebraic transformations lead us to the claimed ERT:

=
1 + ert �Seq� ([ψ] · f)

wp �Seq� ([ψ])
. ��

Note that Theorem 5 holds for arbitrary postexpectations f ∈ E. This enables
compositional reasoning about ERTs of BNL programs. Since all other rules of the
ert–calculus for loop–free programs amount to simple syntactical transformations
(see Table 2), we conclude that

Corollary 1. For any C ∈ BNL, a closed form for ert �C� (0) can be computed
compositionally.

Example 5. Theorem 5 allows us to comfortably compute the ERT of the BNL
program Cdice introduced in Example 4:

x1 :≈ Unif[1 . . . 6]; repeat {x2 :≈ Unif[1 . . . 6]} until (x2 ≥ x1)

For the ERT, we have

ert �Cdice� (0)
= ert �x1 :≈ Unif[1 . . . 6]� (ert �repeat {. . .} until ([x2 ≥ x1])� (0)) (Table 2)

= ert �x1 :≈ Unif[1. . .6]�
(

1 + ert �x2 :≈ Unif[1. . .6]� ([x2 ≥ x1])
wp �x1 :≈ Unif[1. . .6]� ([x2 ≥ x1])

)
(Thm. 5)

=
∑

1≤i≤6

1/6 · 1 +
∑

1≤j≤6
1/6 · [j ≥ i]∑

1≤j≤6
1/6 · [j ≥ i]

(Table 2)

= 3.45. 	

5.2 Bayesian Networks

To reason about expected sampling times of BNs, it remains to develop a sound
translation from BNs with observations into equivalent BNL programs. A BN is
a probabilistic graphical model that is given by a directed acyclic graph. Every
node is a random variable and a directed edge between two nodes expresses a
probabilistic dependency between these nodes.

As a running example, consider the BN depicted in Fig. 3 (inspired by [31])
that models the mood of students after taking an exam. The network contains
four random variables. They represent the difficulty of the exam (D), the level
of preparation of a student (P), the achieved grade (G), and the resulting mood
(M). For simplicity, let us assume that each random variable assumes either 0
or 1. The edges express that the student’s mood depends on the achieved grade
which, in turn, depends on the difficulty of the exam and the preparation of
the student. Every node is accompanied by a table that provides the conditional
probabilities of a node given the values of all the nodes it depends upon. We
can then use the BN to answer queries such as “What is the probability that a

www.dbooks.org

https://www.dbooks.org/

204 K. Batz et al.

Difficulty Preparation

Grade

Mood

D = 0 D = 1

0.6 0.4

P = 0 P = 1

0.7 0.3

G = 0 G = 1

D = 0, P = 0 0.95 0.05

D = 1, P = 1 0.05 0.95

D = 0, P = 1 0.5 0.5

D = 1, P = 0 0.6 0.4

M = 0 M = 1

G = 0 0.9 0.1

G = 1 0.3 0.7

Fig. 3. A Bayesian network

student is well–prepared for an exam (P = 1), but ends up with a bad mood
(M = 0)?”

In order to translate BNs into equivalent BNL programs, we need a formal
representation first. Technically, we consider extended BNs in which nodes may
additionally depend on inputs that are not represented by nodes in the net-
work. This allows us to define a compositional translation without modifying
conditional probability tables.

Towards a formal definition of extended BNs, we use the following notation.
A tuple (s1, . . . , sk) ∈ Sk of length k over some set S is denoted by s. The
empty tuple is ε. Moreover, for 1 ≤ i ≤ k, the i-th element of tuple s is given by
s(i). To simplify the presentation, we assume that all nodes and all inputs are
represented by natural numbers.

Definition 7. An extended Bayesian network, EBN for short, is a tuple B =
(V, I, E,Vals, dep, cpt), where

– V ⊆ N and I ⊆ N are finite disjoint sets of nodes and inputs.
– E ⊆ V × V is a set of edges such that (V,E) is a directed acyclic graph.
– Vals is a finite set of possible values that can be assigned to each node.
– dep : V → (V ∪I)∗ is a function assigning each node v to an ordered sequence

of dependencies. That is, dep(v) = (u1, . . . , um) such that ui < ui+1 (1 ≤
i < m). Moreover, every dependency uj (1 ≤ j ≤ m) is either an input, i.e.
uj ∈ I, or a node with an edge to v, i.e. uj ∈ V and (uj , v) ∈ E.

– cpt is a function mapping each node v to its conditional probability table
cpt[v]. That is, for k = |dep(v)|, cpt[v] is given by a function of the form

cpt[v] : Valsk → Vals → [0, 1] such that
∑

z∈Valsk,a∈Vals

cpt[v](z)(a) = 1.

Here, the i-th entry in a tuple z ∈ Valsk corresponds to the value assigned to
the i-th entry in the sequence of dependencies dep(v).

How long, O Bayesian network, will I sample thee? 205

A Bayesian network (BN) is an extended BN without inputs, i.e. I = ∅. In
particular, the dependency function is of the form dep : V → V ∗.

Example 6. The formalization of our example BN (Fig. 3) is straightforward.
For instance, the dependencies of variable G are given by dep(G) = (D,P)
(assuming D is encoded by an integer less than P). Furthermore, every entry
in the conditional probability table of node G corresponds to an evaluation
of the function cpt[G]. For example, if D = 1, P = 0, and G = 1, we have
cpt[G](1, 0)(1) = 0.4. 	
In general, the conditional probability table cpt determines the conditional prob-
ability distribution of each node v ∈ V given the nodes and inputs it depends
on. Formally, we interpret an entry in a conditional probability table as follows:

Pr (v = a | dep(v) = z) = cpt[v](z)(a),

where v ∈ V is a node, a ∈ Vals is a value, and z is a tuple of values of length
|dep(v)|. Then, by the chain rule, the joint probability of a BN is given by the
product of its conditional probability tables (cf. [4]).

Definition 8. Let B = (V, I, E,Vals, dep, cpt) be an extended Bayesian network.
Moreover, let W ⊆ V be a downward closed5 set of nodes. With each w ∈ W ∪ I,
we associate a fixed value w ∈ Vals. This notation is lifted pointwise to tuples of
nodes and inputs. Then the joint probability in which nodes in W assume values
W is given by

Pr (W = W) =
∏

v∈W

Pr
(
v = v | dep(v) = dep(v)

)
=

∏
v∈W

cpt[v](dep(v))(v).

The conditional joint probability distribution of a set of nodes W , given obser-
vations on a set of nodes O, is then given by the quotient Pr(W=W)/Pr(O=O).

For example, the probability of a student having a bad mood, i.e. M = 0, after
getting a bad grade (G = 0) for an easy exam (D = 0) given that she was
well–prepared, i.e. P = 1, is

Pr (D = 0, G = 0,M = 0 | P = 1) =
Pr (D = 0, G = 0,M = 0, P = 1)

Pr (P = 1)

=
0.9 · 0.5 · 0.6 · 0.3

0.3
= 0.27.

5.3 From Bayesian Networks to BNL

We now develop a compositional translation from EBNs into BNL programs.
Throughout this section, let B = (V, I, E,Vals, dep, cpt) be a fixed EBN. More-
over, with every node or input v ∈ V ∪ I we associate a program variable xv.

We proceed in three steps: First, every node together with its dependencies
is translated into a block of a BNL program. These blocks are then composed
into a single BNL program that captures the whole BN. Finally, we implement
conditioning by means of rejection sampling.
5 W is downward closed if v ∈ W and (u, v) ∈ E implies u ∈ E.

www.dbooks.org

https://www.dbooks.org/

206 K. Batz et al.

Step 1: We first present the atomic building blocks of our translation. Let v ∈ V
be a node. Moreover, let z ∈ Vals|dep(v)| be an evaluation of the dependencies of
v. That is, z is a tuple that associates a value with every node and input that
v depends on (in the same order as dep(v)). For every node v and evaluation of
its dependencies z, we define a corresponding guard and a random assignment:

guardB(v, z) =
∧

1≤i≤|dep(v)|
xdep(v)(i) = z(i)

assignB(v, z) = xv :≈
∑

a∈Vals

cpt[v](z)(a) · 〈a〉

Note that dep(v)(i) is the i-th element from the sequence of nodes dep(v).
Example 7. Continuing our previous example (see Fig. 1), assume we fixed the
node v = G. Moreover, let z = (1, 0) be an evaluation of dep(v) = (S,R). Then
the guard and assignment corresponding to v and z are given by:

guardB(G, (1, 0)) = xD = 1 ∧ xP = 0, and
assignB(G, (1, 0)) = xG :≈ 0.6 · 〈0〉 + 0.4 · 〈1〉. 	

We then translate every node v ∈ V into a program block that uses guards
to determine the rows in the conditional probability table under consideration.
After that, the program samples from the resulting probability distribution using
the previously constructed assignments. In case a node does neither depend on
other nodes nor input variables we omit the guards. Formally,

blockB(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

assignB(v, ε) if |dep(v)| = 0
if (guardB(v, z1)) {

assignB(v, z1)}
else {if (guardB(v, z2)) {

assignB(v, z2)}
. . .} else {

assignB(v, zm)} . . .}

if |dep(v)| = k > 0
and Valsk = {z1, . . . , zm}.

Remark 1. The guards under consideration are conjunctions of equalities
between variables and literals. We could thus use a more efficient translation
of conditional probability tables by adding a switch-case statement to our
probabilistic programming language. Such a statement is of the form

switch(x) { case a1 : C1 case a2 : C2 . . . default : Cm},

where x is a tuple of variables, and a1, . . . am−1 are tuples of rational numbers of
the same length as x. With respect to the wp semantics, a switch-case state-
ment is syntactic sugar for nested if-then-else blocks as used in the above
translation. However, the runtime model of a switch-case statement requires
just a single guard evaluation (ϕ) instead of potentially multiple guard evalu-
ations when evaluating nested if-then-else blocks. Since the above adaption
is straightforward, we opted to use nested if-then-else blocks to keep our
programming language simple and allow, in principle, more general guards. 	

How long, O Bayesian network, will I sample thee? 207

Step 2: The next step is to translate a complete EBN into a BNL program. To
this end, we compose the blocks obtained from each node starting at the roots
of the network. That is, all nodes that contain no incoming edges. Formally,

roots(B) = {v ∈ VB | ¬∃u ∈ VB : (u, v) ∈ EB}.

After translating every node in the network, we remove them from the graph,
i.e. every root becomes an input, and proceed with the translation until all nodes
have been removed. More precisely, given a set of nodes S ⊆ V , the extended
BN B \ S obtained by removing S from B is defined as

B \ S = (V \ S, I ∪ S, E \ (V × S ∪ S × V), dep, cpt) .

With these auxiliary definitions readily available, an extended BN B is translated
into a BNL program as follows:

BNL(B) =

⎧⎪⎨
⎪⎩

blockB(r1); . . . ; blockB(rm) if roots(B) = {r1, . . . , rm} = V

blockB(r1); . . . ; blockB(rm); if roots(B) = {r1, . . . , rm} � V

BNL(B \ roots(B))

Step 3: To complete the translation, it remains to account for observations. Let
cond : V → Vals ∪ {⊥} be a function mapping every node either to an observed
value in Vals or to ⊥. The former case is interpreted as an observation that node
v has value cond(v). Otherwise, i.e. if cond(v) = ⊥, the value of node v is not
observed. We collect all observed nodes in the set O = {v ∈ V | cond(v) �= ⊥}.
It is then natural to incorporate conditioning into our translation by applying
rejection sampling: We repeatedly execute a BNL program until every observed
node has the desired value cond(v). In the presence of observations, we translate
the extended BN B into a BNL program as follows:

BNL(B, cond) = repeat {BNL(B)} until
(∧

v∈O

xv = cond(v)

)

Example 8. Consider, again, the BN B depicted in Fig. 3. Moreover, assume we
observe P = 1. Hence, the conditioning function cond is given by cond(P) = 1
and cond(v) = ⊥ for v ∈ {D,G,M}. Then the translation of B and cond, i.e.
BNL(B, cond), is the BNL program Cmood depicted in Fig. 4. 	
Since our translation yields a BNL program for any given BN, we can composi-
tionally compute a closed form for the expected simulation time of a BN. This
is an immediate consequence of Corollary 1.

We still have to prove, however, that our translation is sound, i.e. the con-
ditional joint probabilities inferred from a BN coincide with the (conditional)
joint probabilities from the corresponding BNL program. Formally, we obtain
the following soundness result.

www.dbooks.org

https://www.dbooks.org/

208 K. Batz et al.

1 repeat {
2 xD :≈ 0.6 · 〈0〉 + 0.4 · 〈1〉;
3 xP :≈ 0.7 · 〈0〉 + 0.3 · 〈1〉
4 if (xD = 0 ∧ xP = 0) {
5 xG :≈ 0.95 · 〈0〉 + 0.05 · 〈1〉
6 } else if (xD = 1 ∧ xP = 1) {
7 xG :≈ 0.05 · 〈0〉 + 0.95 · 〈1〉
8 } else if (xD = 0 ∧ xP = 1) {
9 xG :≈ 0.5 · 〈0〉 + 0.5 · 〈1〉

10 } else {
11 xG :≈ 0.6 · 〈0〉 + 0.4 · 〈1〉
12 };

13 if (xG = 0) {
14 xM :≈ 0.9 · 〈0〉 + 0.1 · 〈1〉
15 } else {
16 xM :≈ 0.3 · 〈0〉 + 0.7 · 〈1〉
17 }
18 } until (xP = 1)

Fig. 4. The BNL program Cmood obtained from the BN in Fig. 3.

Theorem 6 (Soundness of Translation). Let B = (V, I, E,Vals, dep, cpt) be
a BN and cond : V → Vals ∪ {⊥} be a function determining the observed nodes.
For each node and input v, let v ∈ Vals be a fixed value associated with v. In
particular, we set v = cond(v) for each observed node v ∈ O. Then

wp �BNL(B, cond)�

⎛
⎝
⎡
⎣ ∧

v∈V \O

xv = v

⎤
⎦
⎞
⎠ =

Pr
(∧

v∈V v = v
)

Pr
(∧

o∈O o = o
) .

Proof. Without conditioning, i.e. O = ∅, the proof proceeds by induction on the
number of nodes of B. With conditioning, we additionally apply Theorems 3 and 5
to deal with loops introduced by observed nodes. See [3, Appendix A.7]. ��
Example 9 (Expected Sampling Time of a BN). Consider, again, the BN B in
Fig. 3. Moreover, recall the corresponding program Cmood derived from B in
Fig. 4, where we observed P = 1. By Theorem 6 we can also determine the
probability that a student who got a bad grade in an easy exam was well–
prepared by means of weakest precondition reasoning. This yields

wp �Cmood� ([xD = 0 ∧ xG = 0 ∧ xM = 0])

=
Pr (D = 0, G = 0,M = 0, P = 1)

Pr (P = 1)
= 0.27.

Furthermore, by Corollary 1, it is straightforward to determine the expected time
to obtain a single sample of B that satisfies the observation P = 1:

ert �Cmood� (0) =
1 + ert �Cloop-body� (0)

wp �Cloop-body� ([P = 1])
= 23.4 + 1/15 = 23.46̄. 	

6 Implementation

We implemented a prototype in Java to analyze expected sampling times of
Bayesian networks. More concretely, our tool takes as input a BN together with

How long, O Bayesian network, will I sample thee? 209

observations in the popular Bayesian Network Interchange Format.6 The BN is
then translated into a BNL program as shown in Sect. 5. Our tool applies the
ert–calculus together with our proof rules developed in Sect. 4 to compute the
exact expected runtime of the BNL program.

The size of the resulting BNL program is linear in the total number of rows
of all conditional probability tables in the BN. The program size is thus not the
bottleneck of our analysis. As we are dealing with an NP–hard problem [12,13], it
is not surprising that our algorithm has a worst–case exponential time complexity.
However, also the space complexity of our algorithm is exponential in the worst
case: As an expectation is propagated backwards through an if–clause of the BNL
program, the size of the expectation is potentiallymultiplied.This is also the reason
that our analysis runs out of memory on some benchmarks.

We evaluated our implementation on the largest BNs in the Bayesian Net-
work Repository [46] that consists—to a large extent—of real–world BNs includ-
ing expert systems for, e.g., electromyography (munin) [2], hematopathology
diagnosis (hepar2) [42], weather forecasting (hailfinder) [1], and printer trou-
bleshooting in Windows 95 (win95pts) [45, Sect. 5.6.2]. For a evaluation of all
BNs in the repository, we refer to the extended version of this paper [3, Sect. 6].

All experiments were performed on an HP BL685C G7. Although up to 48
cores with 2.0 GHz were available, only one core was used apart from Java’s
garbage collection. The Java virtual machine was limited to 8 GB of RAM.

Our experimental results are shown in Table 3. The number of nodes of the
considered BNs ranges from 56 to 1041. For each Bayesian network, we com-
puted the expected sampling time (EST) for different collections of observed
nodes (#obs). Furthermore, Table 3 provides the average Markov Blanket size,
i.e. the average number of parents, children and children’s parents of nodes in
the BN [43], as an indicator measuring how independent nodes in the BN are.

Observations were picked at random. Note that the time required by our
prototype varies depending on both the number of observed nodes and the actual
observations. Thus, there are cases in which we run out of memory although the
total number of observations is small.

In order to obtain an understanding of what the EST corresponds to in
actual execution times on a real machine, we also performed simulations for
the win95pts network. More precisely, we generated Java programs from this
network analogously to the translation in Sect. 5. This allowed us to approximate
that our Java setup can execute 9.714 · 106 steps (in terms of EST) per second.

For the win95pts with 17 observations, an EST of 1.11·1015 then corresponds
to an expected time of approximately 3.6 years in order to obtain a single valid
sample. We were additionally able to find a case with 13 observed nodes where
our tool discovered within 0.32 s an EST that corresponds to approximately 4.3
million years. In contrast, exact inference using variable elimination was almost
instantaneous. This demonstrates that knowing expected sampling times upfront
can indeed be beneficial when selecting an inference method.

6 http://www.cs.cmu.edu/∼fgcozman/Research/InterchangeFormat/.

www.dbooks.org

http://www.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/
https://www.dbooks.org/

210 K. Batz et al.

Table 3. Experimental results. Time is in seconds. MO denotes out of memory.

BN #obs Time EST #obs Time EST #obs Time EST

hailfinder #nodes: 56, #edges: 66, avg. Markov Blanket: 3.54

0 0.23 9.500 · 101 5 0.63 5.016 · 105 9 0.46 9.048 · 106

hepar2 #nodes: 70, #edges: 123, avg. Markov Blanket: 4.51

0 0.22 1.310 · 102 1 1.84 1.579 · 102 2 MO –

win95pts #nodes: 76, #edges: 112, avg. Markov Blanket: 5.92

0 0.20 1.180 · 102 1 0.36 2.284 · 103 3 0.36 4.296 · 105

7 0.91 1.876 · 106 12 0.42 3.973 · 107 17 61.73 1.110 · 1015

pathfinder #nodes: 135, #edges: 200, avg. Markov Blanket: 3.04

0 0.37 217 1 0.53 1.050 · 104 3 31.31 2.872 · 104

5 MO – 7 5.44 ∞ 7 480.83 ∞
andes #nodes: 223, #edges: 338, avg. Markov Blanket: 5.61

0 0.46 3.570 · 102 1 MO – 3 1.66 5.251 · 103

5 1.41 9.862 · 103 7 0.99 8.904 · 104 9 0.90 6.637 · 105

pigs #nodes: 441, #edges: 592, avg. Markov Blanket: 3.66

0 0.57 7.370 · 102 1 0.74 2.952 · 103 3 0.88 2.362 · 103

5 0.85 1.260 · 105 7 1.02 1.511 · 106 8 MO –

munin #nodes: 1041, #edges: 1397, avg. Markov Blanket: 3.54

0 1.29 1.823 · 103 1 1.47 3.648 · 104 3 1.37 1.824 · 107

5 1.43 ∞ 9 1.79 1.824 · 1016 10 65.64 1.153 · 1018

7 Conclusion

We presented a syntactic notion of independent and identically distributed prob-
abilistic loops and derived dedicated proof rules to determine exact expected out-
comes and runtimes of such loops. These rules do not require any user–supplied
information, such as invariants, (super)martingales, etc.

Moreover, we isolated a syntactic fragment of probabilistic programs that
allows to compute expected runtimes in a highly automatable fashion. This frag-
ment is non–trivial: We show that all Bayesian networks can be translated into
programs within this fragment. Hence, we obtain an automated formal method
for computing expected simulation times of Bayesian networks. We implemented
this method and successfully applied it to various real–world BNs that stem
from, amongst others, medical applications. Remarkably, our tool was capable
of proving extremely large expected sampling times within seconds.

There are several directions for future work: For example, there exist sub-
classes of BNs for which exact inference is in P, e.g. polytrees. Are there analogies
for probabilistic programs? Moreover, it would be interesting to consider more
complex graphical models, such as recursive BNs [16].

How long, O Bayesian network, will I sample thee? 211

References

1. Abramson, B., Brown, J., Edwards, W., Murphy, A., Winkler, R.L.: Hailfinder:
a Bayesian system for forecasting severe weather. Int. J. Forecast. 12(1), 57–71
(1996)

2. Andreassen, S., Jensen, F.V., Andersen, S.K., Falck, B., Kjærulff, U., Woldbye, M.,
Sørensen, A., Rosenfalck, A., Jensen, F.: MUNIN: an expert EMG Assistant. In:
Computer-Aided Electromyography and Expert Systems, pp. 255–277. Pergamon
Press (1989)

3. Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: How long, O Bayesian network,
will I sample thee? arXiv extended version (2018)

4. Bishop, C.: Pattern Recognition and Machine Learning. Springer, New York (2006)
5. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl,

J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 24

6. Brázdil, T., Kiefer, S., Kucera, A., Vareková, I.H.: Runtime analysis of probabilistic
programs with unbounded recursion. J. Comput. Syst. Sci. 81(1), 288–310 (2015)

7. Celiku, O., McIver, A.: Compositional specification and analysis of cost-based prop-
erties in probabilistic programs. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.)
FM 2005. LNCS, vol. 3582, pp. 107–122. Springer, Heidelberg (2005). https://doi.
org/10.1007/11526841 9

8. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 34

9. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
In: POPL, pp. 327–342. ACM (2016)

10. Chatterjee, K., Novotný, P., Zikelic, D.: Stochastic invariants for probabilistic ter-
mination. In: POPL, pp. 145–160. ACM (2017)

11. Constantinou, A.C., Fenton, N.E., Neil, M.: pi-football: a Bayesian network model
for forecasting association football match outcomes. Knowl. Based Syst. 36, 322–
339 (2012)

12. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2–3), 393–405 (1990)

13. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)

14. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

15. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

16. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. JACM 56(1), 1:1–1:66 (2009)

17. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness,
and compositionality. In: POPL, pp. 489–501. ACM (2015)

18. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to ana-
lyze expression data. In: RECOMB, pp. 127–135. ACM (2000)

19. Frohn, F., Naaf, M., Hensel, J., Brockschmidt, M., Giesl, J.: Lower runtime bounds
for integer programs. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 550–567. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 37

www.dbooks.org

https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/978-3-319-40229-1_37
https://www.dbooks.org/

212 K. Batz et al.

20. Goodman, N.D.: The principles and practice of probabilistic programming. In:
POPL, pp. 399–402. ACM (2013)

21. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.:
Church: A language for generative models. In: UAI, pp. 220–229. AUAI Press
(2008)

22. Gordon, A.D., Graepel, T., Rolland, N., Russo, C.V., Borgström, J., Guiver, J.:
Tabular: a schema-driven probabilistic programming language. In: POPL, pp. 321–
334. ACM (2014)

23. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering, pp. 167–181. ACM (2014)

24. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Holmes, D.E.,
Jain, L.C. (eds.) Innovations in Bayesian Networks. Studies in Computational Intel-
ligence, vol. 156, pp. 33–82. Springer, Heidelberg (2008)

25. Hehner, E.C.R.: A probability perspective. Formal Aspects Comput. 23(4), 391–
419 (2011)

26. Hoffman, M.D., Gelman, A.: The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15(1), 1593–1623 (2014)

27. Jiang, X., Cooper, G.F.: A Bayesian spatio-temporal method for disease outbreak
detection. JAMIA 17(4), 462–471 (2010)

28. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost–sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol.
9234, pp. 307–318. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48057-1 24

29. Kaminski, B.L., Katoen, J.: A weakest pre-expectation semantics for mixed-sign
expectations. In: LICS (2017)

30. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49498-1 15

31. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press, Cambridge (2009)

32. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

33. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
34. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a

folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)
35. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-

tems. Springer, New York (2004). http://doi.org/10.1007/b138392
36. Minka, T., Winn, J.: Infer.NET (2017). http://infernet.azurewebsites.net/.

Accessed Oct 17
37. Minka, T., Winn, J.M.: Gates. In: NIPS, pp. 1073–1080. Curran Associates (2008)
38. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.

In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47764-0 7

39. Neapolitan, R.E., Jiang, X.: Probabilistic Methods for Financial and Marketing
Informatics. Morgan Kaufmann, Burlington (2010)

40. Nori, A.V., Hur, C., Rajamani, S.K., Samuel, S.: R2: an efficient MCMC sampler
for probabilistic programs. In: AAAI, pp. 2476–2482. AAAI Press (2014)

41. Olmedo, F., Kaminski, B.L., Katoen, J., Matheja, C.: Reasoning about recursive
probabilistic programs. In: LICS, pp. 672–681. ACM (2016)

https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
http://doi.org/10.1007/b138392
http://infernet.azurewebsites.net/
https://doi.org/10.1007/3-540-47764-0_7

How long, O Bayesian network, will I sample thee? 213

42. Onisko, A., Druzdzel, M.J., Wasyluk, H.: A probabilistic causal model for diagno-
sis of liver disorders. In: Proceedings of the Seventh International Symposium on
Intelligent Information Systems (IIS-98), pp. 379–387 (1998)

43. Pearl, J.: Bayesian networks: a model of self-activated memory for evidential rea-
soning. In: Proceedings of CogSci, pp. 329–334 (1985)

44. Pfeffer, A.: Figaro: an object-oriented probabilistic programming language. Charles
River Analytics Technical Report 137, 96 (2009)

45. Ramanna, S., Jain, L.C., Howlett, R.J.: Emerging Paradigms in Machine Learning.
Springer, Heidelberg (2013)

46. Scutari, M.: Bayesian Network Repository (2017). http://www.bnlearn.com
47. Sharir, M., Pnueli, A., Hart, S.: Verification of probabilistic programs. SIAM J.

Comput. 13(2), 292–314 (1984)
48. Wood, F., van de Meent, J., Mansinghka, V.: A new approach to probabilistic pro-

gramming inference. In: JMLR Workshop and Conference Proceedings, AISTATS,
vol. 33, pp. 1024–1032 (2014). JMLR.org

49. Yuan, C., Druzdzel, M.J.: Importance sampling algorithms for Bayesian networks:
principles and performance. Math. Comput. Model. 43(9–10), 1189–1207 (2006)

50. Zweig, G., Russell, S.J.: Speech recognition with dynamic Bayesian networks. In:
AAAI/IAAI, pp. 173–180. AAAI Press/The MIT Press (1998)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

http://www.bnlearn.com
http://www.jmlr.org/
http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

Relational Reasoning for Markov
Chains in a Probabilistic Guarded

Lambda Calculus

Alejandro Aguirre1(B), Gilles Barthe1, Lars Birkedal2, Aleš Bizjak2,
Marco Gaboardi3, and Deepak Garg4

1 IMDEA Software Institute, Madrid, Spain
alejandro.aguirre@imdea.org

2 Aarhus University, Aarhus, Denmark
3 University at Buffalo, SUNY, Buffalo, USA

4 MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Abstract. We extend the simply-typed guarded λ-calculus with discrete
probabilities and endow it with a program logic for reasoning about rela-
tional properties of guarded probabilistic computations. This provides
a framework for programming and reasoning about infinite stochastic
processes like Markov chains. We demonstrate the logic sound by inter-
preting its judgements in the topos of trees and by using probabilistic
couplings for the semantics of relational assertions over distributions on
discrete types.

The program logic is designed to support syntax-directed proofs in
the style of relational refinement types, but retains the expressiveness of
higher-order logic extended with discrete distributions, and the ability
to reason relationally about expressions that have different types or syn-
tactic structure. In addition, our proof system leverages a well-known
theorem from the coupling literature to justify better proof rules for
relational reasoning about probabilistic expressions. We illustrate these
benefits with a broad range of examples that were beyond the scope of
previous systems, including shift couplings and lump couplings between
random walks.

1 Introduction

Stochastic processes are often used in mathematics, physics, biology or finance
to model evolution of systems with uncertainty. In particular, Markov chains
are “memoryless” stochastic processes, in the sense that the evolution of the
system depends only on the current state and not on its history. Perhaps the
most emblematic example of a (discrete time) Markov chain is the simple random
walk over the integers, that starts at 0, and that on each step moves one position
either left or right with uniform probability. Let pi be the position at time i.
Then, this Markov chain can be described as:

p0 = 0 pi+1 =

{
pi + 1 with probability 1/2
pi − 1 with probability 1/2

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 214–241, 2018.
https://doi.org/10.1007/978-3-319-89884-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_8&domain=pdf

Relational Reasoning for Markov Chains 215

The goal of this paper is to develop a programming and reasoning frame-
work for probabilistic computations over infinite objects, such as Markov chains.
Although programming and reasoning frameworks for infinite objects and proba-
bilistic computations are well-understood in isolation, their combination is chal-
lenging. In particular, one must develop a proof system that is powerful enough for
proving interesting properties of probabilistic computations over infinite objects,
and practical enough to support effective verification of these properties.

Modelling Probabilistic Infinite Objects. A first challenge is to model probabilistic
infinite objects. We focus on the case of Markov chains, due to its importance. A
(discrete-time) Markov chain is a sequence of random variables {Xi} over some
fixed type T satisfying some independence property. Thus, the straightforward
way of modelling a Markov chain is as a stream of distributions over T . Going
back to the simple example outlined above, it is natural to think about this
kind of discrete-time Markov chain as characterized by the sequence of positions
{pi}i∈N, which in turn can be described as an infinite set indexed by the natural
numbers. This suggests that a natural way to model such a Markov chain is to
use streams in which each element is produced probabilistically from the previous
one. However, there are some downsides to this representation. First of all, it
requires explicit reasoning about probabilistic dependency, since Xi+1 depends
on Xi. Also, we might be interested in global properties of the executions of
the Markov chain, such as “The probability of passing through the initial state
infinitely many times is 1”. These properties are naturally expressed as properties
of the whole stream. For these reasons, we want to represent Markov chains as
distributions over streams. Seemingly, one downside of this representation is that
the set of streams is not countable, which suggests the need for introducing heavy
measure-theoretic machinery in the semantics of the programming language,
even when the underlying type is discrete or finite.

Fortunately, measure-theoretic machinery can be avoided (for discrete dis-
tributions) by developing a probabilistic extension of the simply-typed guarded
λ-calculus and giving a semantic interpretation in the topos of trees [1]. Infor-
mally, the simply-typed guarded λ-calculus [1] extends the simply-typed lambda
calculus with a later modality, denoted by �. The type �A ascribes expressions
that are available one unit of logical time in the future. The � modality allows
one to model infinite types by using “finite” approximations. For example, a
stream of natural numbers is represented by the sequence of its (increasing) pre-
fixes in the topos of trees. The prefix containing the first i elements has the type
Si � N × �N × . . .× �(i−1)

N, representing that the first element is available now,
the second element a unit time in the future, and so on. This is the key to repre-
senting probability distributions over infinite objects without measure-theoretic
semantics: We model probability distributions over non-discrete sets as discrete
distributions over their (the sets’) approximations. For example, a distribution
over streams of natural numbers (which a priori would be non-discrete since the
set of streams is uncountable) would be modelled by a sequence of distributions
over the finite approximations S1, S2, . . . of streams. Importantly, since each Si

is countable, each of these distributions can be discrete.

www.dbooks.org

https://www.dbooks.org/

216 A. Aguirre et al.

Reasoning About Probabilistic Computations. Probabilistic computations exhibit
a rich set of properties. One natural class of properties is related to probabilities
of events, saying, for instance, that the probability of some event E (or of an
indexed family of events) increases at every iteration. However, several inter-
esting properties of probabilistic computation, such as stochastic dominance or
convergence (defined below) are relational, in the sense that they refer to two
runs of two processes. In principle, both classes of properties can be proved
using a higher-order logic for probabilistic expressions, e.g. the internal logic of
the topos of trees, suitably extended with an axiomatization of finite distribu-
tions. However, we contend that an alternative approach inspired from refine-
ment types is desirable and provides better support for effective verification.
More specifically, reasoning in a higher-order logic, e.g. in the internal logic of
the topos of trees, does not exploit the structure of programs for non-relational
reasoning, nor the structural similarities between programs for relational rea-
soning. As a consequence, reasoning is more involved. To address this issue, we
define a relational proof system that exploits the structure of the expressions
and supports syntax-directed proofs, with necessary provisions for escaping the
syntax-directed discipline when the expressions do not have the same structure.
The proof system manipulates judgements of the form:

Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ

where Δ and Γ are two typing contexts, Σ and Ψ respectively denote sets of
assertions over variables in these two contexts, t1 and t2 are well-typed expres-
sions of type A1 and A2, and φ is an assertion that may contain the special
variables r1 and r2 that respectively correspond to the values of t1 and t2. The
context Δ and Γ , the terms t1 and t2 and the types A1 and A2 provide a specifi-
cation, while Σ, Ψ , and φ are useful for reasoning about relational properties over
t1, t2, their inputs and their outputs. This form of judgement is similar to that
of Relational Higher-Order Logic [2], from which our system draws inspiration.

In more detail, our relational logic comes with typing rules that allow one to
reason about relational properties by exploiting as much as possible the syntactic
similarities between t1 and t2, and to fall back on pure logical reasoning when
these are not available. In order to apply relational reasoning to guarded compu-
tations the logic provides relational rules for the later modality � and for a related
modality �, called “constant”. These rules allow the relational verification of
general relational properties that go beyond the traditional notion of program
equivalence and, moreover, they allow the verification of properties of guarded
computations over different types. The ability to reason about computations
of different types provides significant benefits over alternative formalisms for
relational reasoning. For example, it enables reasoning about relations between
programs working on different data structures, e.g. a relation between a program
working on a stream of natural numbers, and a program working on a stream of
pairs of natural numbers, or having different structures, e.g. a relation between
an application and a case expression.

Importantly, our approach for reasoning formally about probabilistic com-
putations is based on probabilistic couplings, a standard tool from the analysis

Relational Reasoning for Markov Chains 217

of Markov chains [3,4]. From a verification perspective, probabilistic couplings
go beyond equivalence properties of probabilistic programs, which have been
studied extensively in the verification literature, and yet support compositional
reasoning [5,6]. The main attractive feature of coupling-based reasoning is that it
limits the need of explicitly reasoning about the probabilities—this avoids com-
plex verification conditions. We provide sound proof rules for reasoning about
probabilistic couplings. Our rules make several improvements over prior rela-
tional verification logics based on couplings. First, we support reasoning over
probabilistic processes of different types. Second, we use Strassen’s theorem [7]
a remarkable result about probabilistic couplings, to achieve greater expressivity.
Previous systems required to prove a bijection between the sampling spaces to
show the existence of a coupling [5,6], Strassen’s theorem gives a way to show
their existence which is applicable in settings where the bijection-based approach
cannot be applied. And third, we support reasoning with what are called shift
couplings, coupling which permits to relate the states of two Markov chains at
possibly different times (more explanations below).

Case Studies. We show the flexibility of our formalism by verifying several exam-
ples of relational properties of probabilistic computations, and Markov chains in
particular. These examples cannot be verified with existing approaches.

First, we verify a classic example of probabilistic non-interference which
requires the reasoning about computations at different types. Second, in the con-
text of Markov chains, we verify an example about stochastic dominance which
exercises our more general rule for proving the existence of couplings modelled by
expressions of different types. Finally, we verify an example involving shift rela-
tions in an infinite computation. This style of reasoning is motivated by “shift”
couplings in Markov chains. In contrast to a standard coupling, which relates the
states of two Markov chains at the same time t, a shift coupling relates the states
of two Markov chains at possibly different times. Our specific example relates a
standard random walk (described earlier) to a variant called a lazy random walk;
the verification requires relating the state of standard random walk at time t to
the state of the lazy random walk at time 2t. We note that this kind of reasoning
is impossible with conventional relational proof rules even in a non-probabilistic
setting. Therefore, we provide a novel family of proof rules for reasoning about
shift relations. At a high level, the rules combine a careful treatment of the later
and constant modalities with a refined treatment of fixpoint operators, allowing
us to relate different iterates of function bodies.

Summary of Contributions

With the aim of providing a general framework for programming and reasoning
about Markov chains, the three main contributions of this work are:

1. A probabilistic extension of the guarded λ-calculus, that enables the definition
of Markov chains as discrete probability distributions over streams.

2. A relational logic based on coupling to reason in a syntax-directed manner
about (relational) properties of Markov chains. This logic supports reasoning

www.dbooks.org

https://www.dbooks.org/

218 A. Aguirre et al.

about programs that have different types and structures. Additionally, this
logic uses results from the coupling literature to achieve greater expressivity
than previous systems.

3. An extension of the relational logic that allows to relate the states of two
streams at possibly different times. This extension supports reasoning prin-
ciples, such as shift couplings, that escape conventional relational logics.

Omitted technical details can be found in the full version of the paper with
appendix at https://arxiv.org/abs/1802.09787.

2 Mathematical Preliminaries

This section reviews the definition of discrete probability sub-distributions and
introduces mathematical couplings.

Definition 1 (Discrete probability distribution). Let C be a discrete (i.e.,
finite or countable) set. A (total) distribution over C is a function μ : C → [0, 1]
such that

∑
x∈C μ(x) = 1. The support of a distribution μ is the set of points

with non-zero probability, supp μ � {x ∈ C | μ(x) > 0}. We denote the set of
distributions over C as D(C). Given a subset E ⊆ C, the probability of sampling
from μ a point in E is denoted Prx←μ[x ∈ E], and is equal to

∑
x∈E μ(x).

Definition 2 (Marginals). Let μ be a distribution over a product space C1 ×
C2. The first (second) marginal of μ is another distribution D(π1)(μ) (D(π2)(μ))
over C1 (C2) defined as:

D(π1)(μ)(x) =
∑

y∈C2

μ(x, y)

(
D(π2)(μ)(y) =

∑
x∈C1

μ(x, y)

)

Probabilistic Couplings. Probabilistic couplings are a fundamental tool in the
analysis of Markov chains. When analyzing a relation between two probability
distributions it is sometimes useful to consider instead a distribution over the
product space that somehow “couples” the randomness in a convenient manner.

Consider for instance the case of the following Markov chain, which counts
the total amount of tails observed when tossing repeatedly a biased coin with
probability of tails p:

n0 = 0 ni+1 =
{

ni + 1 with probability p
ni with probability (1 − p)

If we have two biased coins with probabilities of tails p and q with p ≤ q and
we respectively observe {ni} and {mi} we would expect that, in some sense,
ni ≤ mi should hold for all i (this property is known as stochastic dominance).
A formal proof of this fact using elementary tools from probability theory would
require to compute the cumulative distribution functions for ni and mi and then
to compare them. The coupling method reduces this proof to showing a way to
pair the coin flips so that if the first coin shows tails, so does the second coin.

We now review the definition of couplings and state relevant properties.

https://arxiv.org/abs/1802.09787

Relational Reasoning for Markov Chains 219

Definition 3 (Couplings). Let μ1 ∈ D(C1) and μ2 ∈ D(C2), and R ⊆ C1×C2.

– A distribution μ ∈ D(C1 × C2) is a coupling for μ1 and μ2 iff its first and
second marginals coincide with μ1 and μ2 respectively, i.e. D(π1)(μ) = μ1 and
D(π2)(μ) = μ2.

– A distribution μ ∈ D(C1×C2) is a R-coupling for μ1 and μ2 if it is a coupling
for μ1 and μ2 and, moreover, Pr(x1,x2)←μ[R x1 x2] = 1, i.e., if the support of
the distribution μ is included in R.

Moreover, we write �μ1,μ2 .R iff there exists a R-coupling for μ1 and μ2.

Couplings always exist. For instance, the product distribution of two distribu-
tions is always a coupling. Going back to the example about the two coins, it
can be proven by computation that the following is a coupling that lifts the
less-or-equal relation (0 indicating heads and 1 indicating tails):{

(0, 0) w/ prob (1 − q) (0, 1) w/ prob (q − p)
(1, 0) w/ prob 0 (1, 1) w/ prob p

The following theorem in [7] gives a necessary and sufficient condition for the
existence of R-couplings between two distributions. The theorem is remarkable in
the sense that it proves an equivalence between an existential property (namely
the existence of a particular coupling) and a universal property (checking, for
each event, an inequality between probabilities).

Theorem 1 (Strassen’s theorem). Consider μ1 ∈ D(C1) and μ2 ∈ D(C2),
and R ⊆ C1 × C2. Then �μ1,μ2 .R iff for every X ⊆ C1, Prx1←μ1 [x1 ∈ X] ≤
Prx2←μ2 [x2 ∈ R(X)], where R(X) is the image of X under R, i.e. R(X) = {y ∈
C2 | ∃x ∈ X. R x y}.

An important property of couplings is closure under sequential composition.

Lemma 1 (Sequential composition couplings). Let μ1 ∈ D(C1), μ2 ∈
D(C2), M1 : C1 → D(D1) and M2 : C2 → D(D2). Moreover, let R ⊆ C1 × C2

and S ⊆ D1 ×D2. Assume: (1) �μ1,μ2 .R; and (2) for every x1 ∈ C1 and x2 ∈ C2

such that R x1 x2, we have �M1(x1),M2(x2).S. Then �(bind μ1 M1),(bind μ2 M2).S,
where bind μ M is defined as

(bind μ M)(y) =
∑

x

μ(x) · M(x)(y)

We conclude this section with the following lemma, which follows from Strassen’s
theorem:

Lemma 2 (Fundamental lemma of couplings). Let R ⊆ C1×C2, E1 ⊆ C1

and E2 ⊆ C2 such that for every x1 ∈ E1 and x2 ∈ C2, R x1 x2 implies x2 ∈ E2,
i.e. R(E1) ⊆ E2. Moreover, let μ1 ∈ D(C1) and μ2 ∈ D(C2) such that �μ1,μ2 .R.
Then

Pr
x1←μ1

[x1 ∈ E1] ≤ Pr
x2←μ2

[x2 ∈ E2]

www.dbooks.org

https://www.dbooks.org/

220 A. Aguirre et al.

This lemma can be used to prove probabilistic inequalities from the existence of
suitable couplings:

Corollary 1. Let μ1, μ2 ∈ D(C):

1. If �μ1,μ2 .(=), then for all x ∈ C, μ1(x) = μ2(x).
2. If C = N and �μ1,μ2 .(≥), then for all n ∈ N, Prx←μ1 [x ≥ n] ≥ Prx←μ2 [x ≥ n]

In the example at the beginning of the section, the property we want to prove
is precisely that, for every k and i, the following holds:

Pr
x1←ni

[x1 ≥ k] ≤ Pr
x2←mi

[x2 ≥ k]

Since we have a ≤-coupling, this proof is immediate. This example is formalized
in Subsect. 3.3.

3 Overview of the System

In this section we give a high-level overview of our system, with the details on
Sects. 4, 5 and 6. We start by presenting the base logic, and then we show how
to extend it with probabilities and how to build a relational reasoning system
on top of it.

3.1 Base Logic: Guarded Higher-Order Logic

Our starting point is the Guarded Higher-Order Logic [1] (Guarded HOL)
inspired by the topos of trees. In addition to the usual constructs of HOL to
reason about lambda terms, this logic features the � and � modalities to reason
about infinite terms, in particular streams. The � modality is used to reason
about objects that will be available in the future, such as tails of streams. For
instance, suppose we want to define an All(s, φ) predicate, expressing that all
elements of a stream s ≡ n::xs satisfy a property φ. This can be axiomatized as
follows:

∀(xs : �StrN)(n : N).φ n ⇒ � [s ← xs] .All(s, x.φ) ⇒ All(n::xs, x.φ)

We use x.φ to denote that the formula φ depends on a free variable x, which will
get replaced by the first argument of All. We have two antecedents. The first
one states that the head n satisfies φ. The second one, � [s ← xs] .All(s, x.φ),
states that all elements of xs satisfy φ. Formally, xs is the tail of the stream and
will be available in the future, so it has type �StrN. The delayed substitution
�[s ← xs] replaces s of type StrN with xs of type �StrN inside All and shifts the
whole formula one step into the future. In other words, � [s ← xs] .All(s, x.φ)
states that All(−, x.φ) will be satisfied by xs in the future, once it is available.

Relational Reasoning for Markov Chains 221

3.2 A System for Relational Reasoning

When proving relational properties it is often convenient to build proofs guided
by the syntactic structure of the two expressions to be related. This style of
reasoning is particularly appealing when the two expressions have the same
structure and control-flow, and is appealingly close to the traditional style of
reasoning supported by refinement types. At the same time, a strict adherence to
the syntax-directed discipline is detrimental to the expressiveness of the system;
for instance, it makes it difficult or even impossible to reason about structurally
dissimilar terms. To achieve the best of both worlds, we present a relational proof
system built on top of Guarded HOL, which we call Guarded RHOL. Judgements
have the shape:

Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ

where φ is a logical formula that may contain two distinguished variables r1

and r2 that respectively represent the expressions t1 and t2. This judgement
subsumes two typing judgements on t1 and t2 and a relation φ on these two
expressions. However, this form of judgement does not tie the logical property
to the type of the expressions, and is key to achieving flexibility while supporting
syntax-directed proofs whenever needed. The proof system combines rules of two
different flavours: two-sided rules, which relate expressions with the same top-
level constructs, and one-sided rules, which operate on a single expression.

We then extend Guarded HOL with a modality � that lifts assertions over
discrete types C1 and C2 to assertions over D(C1) and D(C2). Concretely, we
define for every assertion φ, variables x1 and x2 of type C1 and C2 respectively,
and expressions t1 and t2 of type D(C1) and D(C2) respectively, the modal
assertion �[x1←t1,x2←t2]φ which holds iff the interpretations of t1 and t2 are
related by the probabilistic lifting of the interpretation of φ. We call this new
logic Probabilistic Guarded HOL.

We accordingly extend the relational proof system to support reasoning about
probabilistic expressions by adding judgements of the form:

Δ | Σ | Γ | Ψ � t1 : D(C1) ∼ t2 : D(C2) | �[x1←r1,x2←r2]φ

expressing that t1 and t2 are distributions related by a φ-coupling. We call
this proof system Probabilistic Guarded RHOL. These judgements can be built
by using the following rule, that lifts relational judgements over discrete types
C1 and C2 to judgements over distribution types D(C1) and D(C2) when the
premises of Strassen’s theorem are satisfied.

Δ | Σ | Γ | Ψ � ∀X1 ⊆ C1.Pry1←t1 [y1 ∈ X1] ≤ Pry2←t2 [∃y1 ∈ X1.φ]
Δ | Σ | Γ | Ψ � t1 : D(C1) ∼ t2 : D(C2) | �[y1←r1,y2←r2]φ

COUPLING

Recall that (discrete time) Markov chains are “memoryless” probabilistic
processes, whose specification is given by a (discrete) set C of states, an initial
state s0 and a probabilistic transition function step : C → D(C), where D(S)
represents the set of discrete distributions over C. As explained in the intro-
duction, a convenient modelling of Markov chains is by means of probabilistic

www.dbooks.org

https://www.dbooks.org/

222 A. Aguirre et al.

streams, i.e. to model a Markov chain as an element of D(StrS), where S is its
underlying state space. To model Markov chains, we introduce a markov oper-
ator with type C → (C → D(C)) → D(StrC) that, given an initial state and a
transition function, returns a Markov chain. We can reason about Markov chains
by the [Markov] rule (the context, omitted, does not change):

� t1 : C1 ∼ t2 : C2 | φ
� h1 : C1 → D(C1) ∼ h2 : C2 → D(C2) | ψ3

� ψ4

� markov(t1, h1) : D(StrD1) ∼ markov(t2, h2) : D(StrD2) | �[y1←r1
y2←r2]

φ′ Markov

where

⎧⎪⎨
⎪⎩

ψ3 ≡ ∀x1x2.φ[x1/r1][x2/r2] ⇒ �[y1←r1 x1,y2←r2 x2]φ[y1/r1][y2/r2]
ψ4 ≡ ∀x1 x2 xs1 xs2.φ[x1/r1][x2/r2] ⇒ � [y1 ← xs1, y2 ← xs2] .φ′ ⇒

φ′[x1::xs1/y1][x2::xs2/y2]

Informally, the rule stipulates the existence of an invariant φ over states. The
first premise insists that the invariant hold on the initial states, the condition
ψ3 states that the transition functions preserve the invariant, and ψ4 states that
the invariant φ over pairs of states can be lifted to a stream property φ′.

Other rules of the logic are given in Fig. 1. The language construct munit
creates a point distribution whose entire mass is at its argument. Accordingly,
the [UNIT] rule creates a straightforward coupling. The [MLET] rule internalizes
sequential composition of couplings (Lemma1) into the proof system. The con-
struct let x = t in t′ composes a distribution t with a probabilistic computation
t′ with one free variable x by sampling x from t and running t′. The [MLET-L]
rule supports one-sided reasoning about let x = t in t′ and relies on the fact
that couplings are closed under convex combinations. Note that one premise of
the rule uses a unary judgement, with a non-relational modality �[x←r]φ whose
informal meaning is that φ holds with probability 1 in the distribution r.

The following table summarizes the different base logics we consider, the
relational systems we build on top of them, including the ones presented in [2],
and the equivalences between both sides:

Relational logic Base logic

RHOL [2]
Γ | Ψ � t1 ∼ t2 | φ

[2]⇐⇒ HOL [2]
Γ | Ψ � φ[t1/r1][t2/r2]

Guarded RHOL §6
Δ | Σ | Γ | Ψ � t1 ∼ t2 | φ

Thm 3⇐⇒ Guarded HOL [1]
Δ | Σ | Γ | Ψ � φ[t1/r1][t2/r2]

Probabilistic Guarded RHOL §6
Δ | Σ | Γ | Ψ � t1 ∼ t2 | �[y1←r1,y2←r2].φ

Thm 3⇐⇒ Probabilistic Guarded HOL §5
Δ | Σ | Γ | Ψ � �[y1←t1,y2←t2].φ

3.3 Examples

We formalize elementary examples from the literature on security and Markov
chains. None of these examples can be verified in prior systems. Uniformity of

Relational Reasoning for Markov Chains 223

Fig. 1. Proof rules for probabilistic constructs

one-time pad and lumping of random walks cannot even be stated in prior sys-
tems because the two related expressions in these examples have different types.
The random walk vs lazy random walk (shift coupling) cannot be proved in prior
systems because it requires either asynchronous reasoning or code rewriting.
Finally, the biased coin example (stochastic dominance) cannot be proved in
prior work because it requires Strassen’s formulation of the existence of coupling
(rather than a bijection-based formulation) or code rewriting. We give additional
details below.

One-Time Pad/Probabilistic Non-interference. Non-interference [8] is a
baseline information flow policy that is often used to model confidentiality of
computations. In its simplest form, non-interference distinguishes between public
(or low) and private (or high) variables and expressions, and requires that the
result of a public expression not depend on the value of its private parameters.
This definition naturally extends to probabilistic expressions, except that in this
case the evaluation of an expression yields a distribution rather than a value.
There are deep connections between probabilistic non-interference and several
notions of (information-theoretic) security from cryptography. In this paragraph,
we illustrate different flavours of security properties for one-time pad encryption.
Similar reasoning can be carried out for proving (passive) security of secure
multiparty computation algorithms in the 3-party or multi-party setting [9,10].

One-time pad is a perfectly secure symmetric encryption scheme. Its space
of plaintexts, ciphertexts and keys is the set {0, 1}�—fixed-length bitstrings of
size �. The encryption algorithm is parametrized by a key k—sampled uniformly
over the set of bitstrings {0, 1}�—and maps every plaintext m to the ciphertext
c = k ⊕ m, where the operator ⊕ denotes bitwise exclusive-or on bitstrings. We
let otp denote the expression λm.let k = U{0,1}� in munit(k ⊕ m), where UX is
the uniform distribution over a finite set X.

One-time pad achieves perfect security, i.e. the distributions of ciphertexts is
independent of the plaintext. Perfect security can be captured as a probabilistic
non-interference property:

� otp : {0, 1}� → D({0, 1}�) ∼ otp : {0, 1}� → D({0, 1}�) | ∀m1m2.r1 m1
�= r2 m2

www.dbooks.org

https://www.dbooks.org/

224 A. Aguirre et al.

where e1
�= e2 is used as a shorthand for �[y1←e1,y2←e2]y1 = y2. The crux of the

proof is to establish

m1,m2 : {0, 1}� � U{0,1}� : D({0, 1}�) ∼ U{0,1}� : D({0, 1}�) | r1 ⊕ m2
�= r2 ⊕ m1

using the [COUPLING] rule. It suffices to observe that the assertion induces a
bijection, so the image of an arbitrary set X under the relation has the same
cardinality as X, and hence their probabilities w.r.t. the uniform distributions
are equal. One can then conclude the proof by applying the rules for monadic
sequenciation ([MLET]) and abstraction (rule [ABS] in appendix), using algebraic
properties of ⊕.

Interestingly, one can prove a stronger property: rather than proving that the
ciphertext is independent of the plaintext, one can prove that the distribution
of ciphertexts is uniform. This is captured by the following judgement:

c1, c2 : {0, 1}� � otp : {0, 1}� → D({0, 1}�) ∼ otp : {0, 1}� → D({0, 1}�) | ψ

where ψ � ∀m1 m2.m1 = m2 ⇒ �[y1←r1 m1,y2←r2 m2]y1 = c1 ⇔ y2 = c2. This
style of modelling uniformity as a relational property is inspired from [11]. The
proof is similar to the previous one and omitted. However, it is arguably more
natural to model uniformity of the distribution of ciphertexts by the judgement:

� otp : {0, 1}� → D({0, 1}�) ∼ U{0,1}� : D({0, 1}�) | ∀m. r1 m
�= r2

This judgement is closer to the simulation-based notion of security that is used
pervasively in cryptography, and notably in Universal Composability [12]. Specif-
ically, the statement captures the fact that the one-time pad algorithm can
be simulated without access to the message. It is interesting to note that the
judgement above (and more generally simulation-based security) could not be
expressed in prior works, since the two expressions of the judgement have differ-
ent types—note that in this specific case, the right expression is a distribution
but in the general case the right expression will also be a function, and its domain
will be a projection of the domain of the left expression.

The proof proceeds as follows. First, we prove

� U{0,1}� ∼ U{0,1}� | ∀m. �[y1←r1,y2←r2] y1 ⊕ m = y2

using the [COUPLING] rule. Then, we apply the [MLET] rule to obtain

� let k = U{0,1}� in
munit(k ⊕ m) ∼ let k = U{0,1}� in

munit(k) | �[y1←r1,y2←r2]y1 = y2

We have let k = U{0,1}� in munit(k) ≡ U{0,1}� ; hence by equivalence (rule [Equiv]
in appendix), this entails

� let k = U{0,1}� in munit(k ⊕ m) ∼ U{0,1}� | �[y1←r1,y2←r2]y1 = y2

We conclude by applying the one-sided rule for abstraction.

Relational Reasoning for Markov Chains 225

Stochastic Dominance. Stochastic dominance defines a partial order between
random variables whose underlying set is itself a partial order; it has many dif-
ferent applications in statistical biology (e.g. in the analysis of the birth-and-
death processes), statistical physics (e.g. in percolation theory), and economics.
First-order stochastic dominance, which we define below, is also an important
application of probabilistic couplings. We demonstrate how to use our proof sys-
tem for proving (first-order) stochastic dominance for a simple Markov process
which samples biased coins. While the example is elementary, the proof method
extends to more complex examples of stochastic dominance, and illustrates the
benefits of Strassen’s formulation of the coupling rule over alternative formula-
tions stipulating the existence of bijections (explained later).

We start by recalling the definition of (first-order) stochastic dominance for
the N-valued case. The definition extends to arbitrary partial orders.

Definition 4 (Stochastic dominance). Let μ1, μ2 ∈ D(N). We say that μ2

stochastically dominates μ1, written μ1 ≤SD μ2, iff for every n ∈ N,

Pr
x←μ1

[x ≥ n] ≤ Pr
x←μ2

[x ≥ n]

The following result, equivalent to Corollary 1, characterizes stochastic domi-
nance using probabilistic couplings.

Proposition 1. Let μ1, μ2 ∈ D(N). Then μ1 ≤SD μ2 iff �μ1,μ2 .(≤).

We now turn to the definition of the Markov chain. For p ∈ [0, 1], we consider
the parametric N-valued Markov chain coins � markov(0, h), with initial state 0
and (parametric) step function:

h � λx.let b = B(p) in munit(x + b)

where, for p ∈ [0, 1], B(p) is the Bernoulli distribution on {0, 1} with probability
p for 1 and 1 − p for 0. Our goal is to establish that coins is monotonic, i.e. for
every p1, p2 ∈ [0, 1], p1 ≤ p2 implies coins p1 ≤SD coins p2. We formalize this
statement as

� coins : [0, 1] → D(StrN) ∼ coins : [0, 1] → D(StrN) | ψ

where ψ � ∀p1, p2.p1 ≤ p2 ⇒ �[y1←r1,y2←r2] All(y1, y2, z1.z2.z1 ≤ z2). The crux
of the proof is to establish stochastic dominance for the Bernoulli distribution:

p1 : [0, 1], p2 : [0, 1] | p1 ≤ p2 � B(p1) : D(N) ∼ B(p2) : D(N) | r1

�≤ r2

where we use e1

�≤ e2 as shorthand for �[y1←e1,y2←e2]y1 ≤ y2. This is proved
directly by the [COUPLING] rule and checking by simple calculations that the
premise of the rule is valid.

We briefly explain how to conclude the proof. Let h1 and h2 be the step
functions for p1 and p2 respectively. It is clear from the above that (context
omitted):

x1 ≤ x2 � h1 x1 : D(B) ∼ h2 x2 : D(B) | �[y1←r1,y2←r2].y1 ≤ y2

www.dbooks.org

https://www.dbooks.org/

226 A. Aguirre et al.

and by the definition of All:

x1 ≤ x2 ⇒ All(xs1, xs2, z1.z2.z1 ≤ z2) ⇒ All(x1:: � xs1, x2:: � xs2, z1.z2.z1 ≤ z2)

So, we can conclude by applying the [Markov] rule.
It is instructive to compare our proof with prior formalizations, and in par-

ticular with the proof in [5]. Their proof is carried out in the pRHL logic, whose
[COUPLING] rule is based on the existence of a bijection that satisfies some prop-
erty, rather than on our formalization based on Strassen’s Theorem. Their rule
is motivated by applications in cryptography, and works well for many examples,
but is inconvenient for our example at hand, which involves non-uniform proba-
bilities. Indeed, their proof is based on code rewriting, and is done in two steps.
First, they prove equivalence between sampling and returning x1 from B(p1);
and sampling z1 from B(p2), z2 from B(p1/p2) and returning z = z1 ∧ z2. Then,
they find a coupling between z and B(p2).

Shift Coupling: Random Walk vs Lazy Random Walk. The previous
example is an instance of a lockstep coupling, in that it relates the k-th element
of the first chain with the k-th element of the second chain. Many examples from
the literature follow this lockstep pattern; however, it is not always possible to
establish lockstep couplings. Shift couplings are a relaxation of lockstep couplings
where we relate elements of the first and second chains without the requirement
that their positions coincide.

We consider a simple example that motivates the use of shift couplings. Con-
sider the random walk and lazy random walk (which, at each time step, either
chooses to move or stay put), both defined as Markov chains over Z. For sim-
plicity, assume that both walks start at position 0. It is not immediate to find a
coupling between the two walks, since the two walks necessarily get desynchro-
nized whenever the lazy walk stays put. Instead, the trick is to consider a lazy
random walk that moves two steps instead of one. The random walk and the
lazy random walk of step 2 are defined by the step functions:

step � λx.let z = U{−1,1} in munit(z + x)
lstep2 � λx.let z = U{−1,1} in let b = U{0,1} in munit(x + 2 ∗ z ∗ b)

After 2 iterations of step, the position has either changed two steps to the left or
to the right, or has returned to the initial position, which is the same behaviour
lstep2 has on every iteration. Therefore, the coupling we want to find should
equate the elements at position 2i in step with the elements at position i in
lstep2. The details on how to prove the existence of this coupling are in Sect. 6.

Lumped Coupling: Random Walks on 3 and 4 Dimensions. A Markov
chain is recurrent if it has probability 1 of returning to its initial state, and
transient otherwise. It is relatively easy to show that the random walk over
Z is recurrent. One can also show that the random walk over Z

2 is recurrent.
However, the random walk over Z

3 is transient.

Relational Reasoning for Markov Chains 227

For higher dimensions, we can use a coupling argument to prove transience.
Specifically, we can define a coupling between a lazy random walk in n dimensions
and a random walk in n+m dimensions, and derive transience of the latter from
transience of the former. We define the (lazy) random walks below, and sketch
the coupling arguments.

Specifically, we show here the particular case of the transience of the 4-
dimensional random walk from the transience of the 3-dimensional lazy random
walk. We start by defining the stepping functions:

step4 : Z
4 → D(Z4) � λz1.let x1 = UU4 in munit(z1 +4 x1)

lstep3 : Z
3 → D(Z3) � λz2.let x2 = UU3 in let b2 = B(3/4) in munit(z2 +3 b2 ∗ x2)

where Ui = {(±1, 0, . . . 0), . . . , (0, . . . , 0,±1)} are the vectors of the basis of Z
i

and their opposites. Then, the random walk of dimension 4 is modelled by
rwalk4 � markov(0, step4), and the lazy walk of dimension 3 is modelled by
lwalk3 � markov(0, step3). We want to prove:

� rwalk4 : D(StrZ4) ∼ lwalk3 : D(StrZ3) | �[y1←r1
y2←r2]

All(y1, y2, z1.z2.pr43(z1) = z2)

where prn2
n1

denotes the standard projection from Z
n2 to Z

n1 .
We apply the [Markov] rule. The only interesting premise requires proving

that the transition function preserves the coupling:

p2 = pr43(p1) � step4 ∼ lstep3 | ∀x1x2.x2 = pr43(x1) ⇒ �[y1←r1 x1
y2←r2 x2]

pr43(y1) = y2

To prove this, we need to find the appropriate coupling, i.e., one that pre-
serves the equality. The idea is that the step in Z

3 must be the projection of the
step in Z

4. This corresponds to the following judgement:

λz1. let x1 = UU4 in
munit(z1 +4 x1)

∼
λz2. let x2 = UU3 in

let b2 = B(3/4) in
munit(z2 +3 b2 ∗ x2)

∣∣∣∣∣∣
∀z1z2.pr43(z1) = z2 ⇒
pr43(r1 z1)

�= r2 z2

which by simple equational reasoning is the same as

λz1. let x1 = UU4 in
munit(z1 +4 x1)

∼ λz2. let p2 = UU3 × B(3/4) in
munit(z2 +3 π1(p2) ∗ π2(p2))

∣
∣
∣
∣

∀z1z2. pr43(z1) = z2 ⇒
pr43(r1 z1)

�
= r2 z2

We want to build a coupling such that if we sample (0, 0, 0, 1) or (0, 0, 0,−1)
from UU3 , then we sample 0 from B(3/4), and otherwise if we sample (x1, x2, x3, 0)
from UU4 , we sample (x1, x2, x3) from U3. Formally, we prove this with the
[Coupling] rule. Given X : U4 → B, by simple computation we show that:

Pr
z1∼UU4

[z1 ∈ X] ≤ Pr
z2∼UU3×B(3/4)

[z2 ∈ {y | ∃x ∈ X.pr43(x) = π1(y) ∗ π2(y)}]

This concludes the proof. From the previous example, it follows that the
lazy walk in 3 dimensions is transient, since the random walk in 3 dimensions
is transient. By simple reasoning, we now conclude that the random walk in 4
dimensions is also transient.

www.dbooks.org

https://www.dbooks.org/

228 A. Aguirre et al.

4 Probabilistic Guarded Lambda Calculus

To ensure that a function on infinite datatypes is well-defined, one must check
that it is productive. This means that any finite prefix of the output can be
computed in finite time. For instance, consider the following function on streams:

letrec bad (x : xs) = x : tail(bad xs)

This function is not productive since only the first element can be computed.
We can argue this as follows: Suppose that the tail of a stream is available one
unit of time after its head, and that x:xs is available at time 0. How much time
does it take for bad to start outputting its tail? Assume it takes k units of time.
This means that tail(bad xs) will be available at time k + 1, since xs is only
available at time 1. But tail(bad xs) is exactly the tail of bad(x:xs), and
this is a contradiction, since x:xs is available at time 0 and therefore the tail of
bad(x:xs) should be available at time k. Therefore, the tail of bad will never
be available.

The guarded lambda calculus solves the productivity problem by distinguish-
ing at type level between data that is available now and data that will be avail-
able in the future, and restricting when fixpoints can be defined. Specifically,
the guarded lambda calculus extends the usual simply typed lambda calculus
with two modalities: � (pronounced later) and � (constant). The later modality
represents data that will be available one step in the future, and is introduced
and removed by the term formers � and prev respectively. This modality is used
to guard recursive occurrences, so for the calculus to remain productive, we must
restrict when it can be eliminated. This is achieved via the constant modality,
which expresses that all the data is available at all times. In the remainder of
this section we present a probabilistic extension of this calculus.

Syntax. Types of the calculus are defined by the grammar

A,B ::= b | N | A × B | A + B | A → B | StrA | � A | �A | D(C)

where b ranges over a collection of base types. StrA is the type of guarded streams
of elements of type A. Formally, the type StrA is isomorphic to A × �StrA. This
isomorphism gives a way to introduce streams with the function (::) : A →
�StrA → StrA and to eliminate them with the functions hd : StrA → A and
tl : StrA → �StrA. D(C) is the type of distributions over discrete types C.
Discrete types are defined by the following grammar, where b0 are discrete base
types, e.g., Z.

C,D ::= b0 | N | C × D | C + D | StrC | � C.

Note that, in particular, arrow types are not discrete but streams are. This is due
to the semantics of streams as sets of finite approximations, which we describe
in the next subsection. Also note that �StrA is not discrete since it makes the
full infinite streams available.

Relational Reasoning for Markov Chains 229

We also need to distinguish between arbitrary types A,B and constant types
S, T , which are defined by the following grammar

S, T ::= bC | N | S × T | S + T | S → T | � A

where bC is a collection of constant base types. Note in particular that for any
type A the type � A is constant.

The terms of the language t are defined by the following grammar

t ::= x | c | 0 | St | case t of 0 �→ t;S �→ t | μ | munit(t) | let x = t in t

| 〈t, t〉 | π1t | π2t | inj1t | inj2t | case t of inj1x.t; inj2y.t | λx.t | t t | fix x. t

| t::ts | hd t | tl t | box t | letb x ← t in t | letc x ← t in t | �ξ.t | prev t

where ξ is a delayed substitution, a sequence of bindings [x1 ← t1, . . . , xn ← tn].
The terms c are constants corresponding to the base types used and munit(t)
and let x = t in t are the introduction and sequencing construct for probability
distributions. The meta-variable μ stands for base distributions like UC and B(p).

Delayed substitutions were introduced in [13] in a dependent type theory to
be able to work with types dependent on terms of type �A. In the setting of a
simple type theory, such as the one considered in this paper, delayed substitu-
tions are equivalent to having the applicative structure [14] � for the � modality.
However, delayed substitutions extend uniformly to the level of propositions, and
thus we choose to use them in this paper in place of the applicative structure.

Denotational Semantics. The meaning of terms is given by a denotational model
in the category S of presheaves over ω, the first infinite ordinal. This category
S is also known as the topos of trees [15]. In previous work [1], it was shown
how to model most of the constructions of the guarded lambda calculus and its
internal logic, with the notable exception of the probabilistic features. Below we
give an elementary presentation of the semantics.

Informally, the idea behind the topos of trees is to represent (infinite) objects
from their finite approximations, which we observe incrementally as time passes.
Given an object x, we can consider a sequence {xi} of its finite approximations
observable at time i. These are trivial for finite objects, such as a natural number,
since for any number n, ni = n at every i. But for infinite objects such as streams,
the ith approximation is the prefix of length i + 1.

Concretely, the category S consists of:

– Objects X: families of sets {Xi}i∈N together with restriction functions rX
n :

Xn+1 → Xn. We will write simply rn if X is clear from the context.
– Morphisms X → Y : families of functions αn : Xn → Yn commuting with

restriction functions in the sense of rY
n ◦ αn+1 = αn ◦ rX

n .

The full interpretation of types of the calculus can be found in Fig. 8 in the
appendix. The main points we want to highlight are:

– Streams over a type A are interpreted as sequences of finite prefixes of elements
of A with the restriction functions of A:

�StrA� � �A�0 × {∗} r0×!←−−− �A�1 × �StrA�0
r1×r0×!←−−−−− �A�2 × �StrA�1 ← · · ·

www.dbooks.org

https://www.dbooks.org/

230 A. Aguirre et al.

– Distributions over a discrete object C are defined as a sequence of distributions
over each �C�i:

�D(C)� � D(�C�0)
D(r0)←− D(�C�1)

D(r1)←− D(�C�2)
D(r2)←− . . . ,

where D(�C�i) is the set of (probability density) functions μ : �C�i → [0, 1]
such that

∑
x∈X μx = 1, and D(ri) adds the probability density of all the

points in �C�i+1 that are sent by ri to the same point in the �C�i. In other
words, D(ri)(μ)(x) = Pry←μ[ri(y) = x]

An important property of the interpretation is that discrete types are inter-
preted as objects X such that Xi is finite or countably infinite for every i. This
allows us to define distributions on these objects without the need for measure
theory. In particular, the type of guarded streams StrA is discrete provided A is,
which is clear from the interpretation of the type StrA. Conceptually this holds
because �StrA�i is an approximation of real streams, consisting of only the first
i + 1 elements.

An object X of S is constant if all its restriction functions are bijections.
Constant types are interpreted as constant objects of S and for a constant type
A the objects ��A� and �A� are isomorphic in S.

Typing Rules. Terms are typed under a dual context Δ | Γ , where Γ is a usual
context that binds variables to a type, and Δ is a constant context containing
variables bound to types that are constant. The term letc x ← u in t allows us
to shift variables between constant and non-constant contexts. The typing rules
can be found in Fig. 2.

The semantics of such a dual context Δ | Γ is given as the product of types
in Δ and Γ , except that we implicitly add � in front of every type in Δ. In the
particular case when both contexts are empty, the semantics of the dual context
correspond to the terminal object 1, which is the singleton set {∗} at each time.

The interpretation of the well-typed term Δ | Γ � t : A is defined by induc-
tion on the typing derivation, and can be found in Fig. 9 in the appendix.

Applicative Structure of the Later Modality. As in previous work we can define
the operator � satisfying the typing rule

Δ | Γ � t : �(A → B) Δ | Γ � u : �A

Δ | Γ � t � u : �B

and the equation (�t) � (�u) ≡ �(t u) as the term t � u � � [f ← t, x ← u] .f x.

Example: Modelling Markov Chains. As an application of � and an example
of how to use guardedness and probabilities together, we now give the precise
definition of the markov construct that we used to model Markov chains earlier:

markov : C → (C → D(C)) → D(StrC)
markov � fix f. λx.λh.

let z = h x in let t = swapStrC
�D (f � �z � �h) in munit(x::t)

Relational Reasoning for Markov Chains 231

Fig. 2. A selection of the typing rules of the guarded lambda calculus. The rules for
products, sums, and natural numbers are standard.

The guardedness condition gives f the type �(C → (C → D(C)) → D(StrC))
in the body of the fixpoint. Therefore, it needs to be applied functorially (via
�) to �z and �h, which gives us a term of type �D(StrC). To complete the
definition we need to build a term of type D(�StrC) and then sequence it with ::
to build a term of type D(StrC). To achieve this, we use the primitive operator
swapC

�D : �D(C) → D(�C), which witnesses the isomorphism between �D(C) and
D(�C). For this isomorphism to exist, it is crucial that distributions be total
(i.e., we cannot use subdistributions). Indeed, the denotation for �D(C) is the
sequence {∗} ← D(C1) ← D(C2) ← . . . , while the denotation for D(�C) is the
sequence D({∗}) ← D(C1) ← D(C2) ← . . . , and {∗} is isomorphic to D({∗}) in
Set only if D considers only total distributions.

5 Guarded Higher-Order Logic

We now introduce Guarded HOL (GHOL), which is a higher-order logic to reason
about terms of the guarded lambda calculus. The logic is essentially that of [1],
but presented with the dual context formulation analogous to the dual-context
typing judgement of the guarded lambda calculus. Compared to standard intu-
itionistic higher-order logic, the logic GHOL has two additional constructs, corre-
sponding to additional constructs in the guarded lambda calculus. These are the
later modality (�) on propositions, with delayed substitutions, which expresses
that a proposition holds one time unit into the future, and the “always” modality
�, which expresses that a proposition holds at all times. Formulas are defined
by the grammar:

φ, ψ ::=� | φ ∧ ψ | φ ∨ ψ | ¬ψ | ∀x.φ | ∃x.φ | � [x1 ← t1 . . . xn ← tn] .φ | �φ

www.dbooks.org

https://www.dbooks.org/

232 A. Aguirre et al.

The basic judgement of the logic is Δ | Σ | Γ | Ψ � φ where Σ is a logical context
for Δ (that is, a list of formulas well-formed in Δ) and Ψ is another logical
context for the dual context Δ | Γ . The formulas in context Σ must be constant
propositions. We say that a proposition φ is constant if it is well-typed in context
Δ | · and moreover if every occurrence of the later modality in φ is under the �
modality. Selected rules are displayed in Fig. 3. We highlight [Loeb] induction,
which is the key to reasoning about fixpoints: to prove that φ holds now, one can
assume that it holds in the future. The interpretation of the formula Δ | Γ � φ
is a subobject of the interpretation �Δ | Γ �. Concretely the interpretation A of
Δ | Γ � φ is a family {Ai}∞

i=0 of sets such that Ai ⊆ �Δ | Γ �i. This family must
satisfy the property that if x ∈ Ai+1 then ri(x) ∈ Ai where ri are the restriction
functions of �Δ | Γ �. The interpretation of formulas is defined by induction on
the typing derivation. In the interpretation of the context Δ | Σ | Γ | Ψ the
formulas in Σ are interpreted with the added � modality. Moreover all formulas
φ in Σ are typeable in the context Δ | · � φ and thus their interpretations are
subsets of ��Δ�. We treat these subsets of �Δ | Γ � in the obvious way.

The cases for the semantics of the judgement Δ | Γ � φ can be found in the
appendix. It can be shown that this logic is sound with respect to its model in
the topos of trees.

Theorem 2 (Soundness of the semantics). The semantics of guarded
higher-order logic is sound: if Δ | Σ | Γ | Ψ � φ is derivable then for all
n ∈ N, ��Σ�n ∩ �Ψ�n ⊆ �φ�.

In addition, Guarded HOL is expressive enough to axiomatize standard prob-
abilities over discrete sets. This axiomatization can be used to define the � modal-
ity directly in Guarded HOL (as opposed to our relational proof system, were
we use it as a primitive). Furthermore, we can derive from this axiomatization
additional rules to reason about couplings, which can be seen in Fig. 4. These
rules will be the key to proving the soundness of the probabilistic fragment of
the relational proof system, and can be shown to be sound themselves.

Proposition 2 (Soundness of derived rules). The additional rules are
sound.

6 Relational Proof System

We complete the formal description of the system by describing the proof rules
for the non-probabilistic fragment of the relational proof system (the rules of the
probabilistic fragment were described in Sect. 3.2).

6.1 Proof Rules

The rules for core λ-calculus constructs are identical to those of [2]; for conve-
nience, we present a selection of the main rules in Fig. 7 in the appendix.

Relational Reasoning for Markov Chains 233

Fig. 3. Selected Guarded Higher-Order Logic rules

Fig. 4. Derived rules for probabilistic constructs

We briefly comment on the two-sided rules for the new constructs (Fig. 5).
The notation Ω abbreviates a context Δ | Σ | Γ | Ψ . The rule [Next] relates two
terms that have a � term constructor at the top level. We require that both have
one term in the delayed substitutions and that they are related pairwise. Then
this relation is used to prove another relation between the main terms. This rule
can be generalized to terms with more than one term in the delayed substitution.
The rule [Prev] proves a relation between terms from the same delayed relation
by applying prev to both terms. The rule [Box] proves a relation between two
boxed terms if the same relation can be proven in a constant context. Dually,
[LetBox] uses a relation between two boxed terms to prove a relation between
their unboxings. [LetConst] is similar to [LetBox], but it requires instead a relation
between two constant terms, rather than explicitly �-ed terms. The rule [Fix]
relates two fixpoints following the [Loeb] rule from Guarded HOL. Notice that in

www.dbooks.org

https://www.dbooks.org/

234 A. Aguirre et al.

the premise, the fixpoints need to appear in the delayed substitution so that the
inductive hypothesis is well-formed. The rule [Cons] proves relations on streams
from relations between their heads and tails, while [Head] and [Tail] behave as
converses of [Cons].

Figure 6 contains the one-sided versions of the rules. We only present the
left-sided versions as the right-sided versions are completely symmetric. The
rule [Next-L] relates at φ a term that has a � with a term that does not have a �.
First, a unary property φ′ is proven on the term u in the delayed substitution,
and it is then used as a premise to prove φ on the terms with delays removed.
Rules for proving unary judgements can be found in the appendix. Similarly,
[LetBox-L] proves a unary property on the term that gets unboxed and then
uses it as a precondition. The rule [Fix-L] builds a fixpoint just on the left, and
relates it with an arbitrary term t2 at a property φ. Since φ may contain the
variable r2 which is not in the context, it has to be replaced when adding �φ to
the logical context in the premise of the rule. The remaining rules are similar to
their two-sided counterparts.

6.2 Metatheory

We review some of the most interesting metatheoretical properties of our rela-
tional proof system, highlighting the equivalence with Guarded HOL.

Theorem 3 (Equivalence with Guarded HOL). For all contexts Δ,Γ ;
types σ1, σ2; terms t1, t2; sets of assertions Σ,Ψ ; and assertions φ:

Δ | Σ | Γ | Ψ � t1 : σ1 ∼ t2 : σ2 | φ ⇐⇒ Δ | Σ | Γ | Ψ � φ[t1/r1][t2/r2]

The forward implication follows by induction on the given derivation. The reverse
implication is immediate from the rule which allows to fall back on Guarded
HOL in relational proofs. (Rule [SUB] in the appendix). The full proof is in the
appendix. The consequence of this theorem is that the syntax-directed, relational
proof system we have built on top of Guarded HOL does not lose expressiveness.

The intended semantics of a judgement Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ
is that, for every valuation δ |= Δ, γ |= Γ , if �Σ�(δ) and �Ψ�(δ, γ), then

�φ�(δ, γ[r1 ← �t1�(δ, γ), r2 ← �t2�(δ, γ)])

Since Guarded HOL is sound with respect to its semantics in the topos of trees,
and our relational proof system is equivalent to Guarded HOL, we obtain that
our relational proof system is also sound in the topos of trees.

Corollary 2 (Soundness and consistency). If Δ | Σ | Γ | Ψ � t1 : σ2 ∼ t2 :
σ2 | φ, then for every valuation δ |= Δ, γ |= Γ :

�Δ � �Σ�(δ) ∧ �Δ | Γ � Ψ�(δ, γ) ⇒
�Δ | Γ, r1 : σ1, r1 : σ2 � φ�(δ, γ[r1 ← �Δ | Γ � t1�(δ, γ)][r2 ← �Δ | Γ � t2�(δ, γ)])

In particular, there is no proof of Δ | ∅ | Γ | ∅ � t1 : σ1 ∼ t2 : σ2 | ⊥.

Relational Reasoning for Markov Chains 235

Fig. 5. Two-sided rules for Guarded RHOL

6.3 Shift Couplings Revisited

We give further details on how to prove the example with shift couplings
from Sect. 3.3. (Additional examples of relational reasoning on non-probabilistic
streams can be found in the appendix) Recall the step functions:

step � λx.let z = U{−1,1} in munit(z + x)
lstep2 � λx.let z = U{−1,1} in let b = U{0,1} in munit(x + 2 ∗ z ∗ b)

We axiomatize the predicate All2,1, which relates the element at position 2i in
one stream to the element at position i in another stream, as follows.

∀x1x2xs1xs2y1.φ[z1/x1][z2/x2] ⇒
� [ys1 ← xs1] . � [zs1 ← ys1, ys2 ← xs2] .All2,1(zs1, ys2, z1.z2.φ) ⇒

All2,1(x1::y1::xs1, x2::xs2, z1.z2.φ)

In fact, we can assume that, in general, we have a family of Allm1,m2 predi-
cates relating two streams at positions m1 · i and m2 · i for every i.

www.dbooks.org

https://www.dbooks.org/

236 A. Aguirre et al.

Fig. 6. One-sided rules for Guarded RHOL

We can now express the existence of a shift coupling by the statement:

p1 = p2 � markov(p1, step) ∼ markov(p2, lstep2) | �[y1←r1
y2←r2]

All2,1(y1, y2, z1.z2.z1 = z2)

For the proof, we need to introduce an asynchronous rule for Markov chains:

Ω � t1 : C1 ∼ t2 : C2 | φ
Ω � (λx1.let x′

1 = h1 x1 in h1 x′
1) : C1 → D(C1) ∼ h2 : C2 → D(C2) |

∀x1x2.φ[x1/z1][x2/z2] ⇒ �[z1←r1 x1,z2←r2 x2]φ

Ω � markov(t1, h1) : D(StrC1) ∼ markov(t2, h2) : D(StrC2) |
�[y1←r1,y2←r2] All2,1(y1, y2, z1.z2.φ)

Markov-2-1

This asynchronous rule for Markov chains shares the motivations of the rule for
loops proposed in [6]. Note that one can define a rule [Markov-m-n] for arbitrary
m and n to prove a judgement of the form Allm,n on two Markov chains.

Relational Reasoning for Markov Chains 237

We show the proof of the shift coupling. By equational reasoning, we get:

λx1.let x′
1 = h1 x1 in h1 x′

1 ≡ λx1.let z1 = U{−1,1} in h1 (z1 + x1)
≡ λx1.let z1 = U{−1,1} in let z′

1 = U{−1,1} in munit(z′
1 + z1 + x′

1)

and the only interesting premise of [Markov-2-1] is:

λx1. let z1 = U{−1,1} in
let z′

1 = U{−1,1} in
munit(z′

1 + z1 + x′
1)

∼
λx2. let z2 = U{−1,1} in

let b2 = U{1,0} in
munit(x2 + 2 ∗ b2 ∗ z2)

∣∣∣∣∣∣
∀x1x2.x1 = x2 ⇒

r1 x1
�= r2 x2

Couplings between z1 and z2 and between z′
1 and b2 can be found by simple

computations. This completes the proof.

7 Related Work

Our probabilistic guarded λ-calculus and the associated logic Guarded HOL
build on top of the guarded λ-calculus and its internal logic [1]. The guarded
λ-calculus has been extended to guarded dependent type theory [13], which can
be understood as a theory of guarded refinement types and as a foundation for
proof assistants based on guarded type theory. These systems do not reason
about probabilities, and do not support syntax-directed (relational) reasoning,
both of which we support.

Relational models for higher-order programming languages are often defined
using logical relations. [16] showed how to use second-order logic to define and
reason about logical relations for the second-order lambda calculus. Recent work
has extended this approach to logical relations for higher-order programming
languages with computational effects such as nontermination, general references,
and concurrency [17–20]. The logics used in loc. cit. are related to our work in
two ways: (1) the logics in loc. cit. make use of the later modality for reasoning
about recursion, and (2) the models of the logics in loc. cit. can in fact be defined
using guarded type theory. Our work is more closely related to Relational Higher
Order Logic [2], which applies the idea of logic-enriched type theories [21,22]
to a relational setting. There exist alternative approaches for reasoning about
relational properties of higher-order programs; for instance, [23] have recently
proposed to use monadic reification for reducing relational verification of F ∗ to
proof obligations in higher-order logic.

A series of work develops reasoning methods for probabilistic higher-order
programs for different variations of the lambda calculus. One line of work has
focused on operationally-based techniques for reasoning about contextual equiv-
alence of programs. The methods are based on probabilistic bisimulations [24,25]
or on logical relations [26]. Most of these approaches have been developed for
languages with discrete distributions, but recently there has also been work
on languages with continuous distributions [27,28]. Another line of work has
focused on denotational models, starting with the seminal work in [29]. Recent
work includes support for relational reasoning about equivalence of programs

www.dbooks.org

https://www.dbooks.org/

238 A. Aguirre et al.

with continuous distributions for a total programming language [30]. Our app-
roach is most closely related to prior work based on relational refinement types
for higher-order probabilistic programs. These were initially considered by [31]
for a stateful fragment of F ∗, and later by [32,33] for a pure language. Both
systems are specialized to building probabilistic couplings; however, the latter
support approximate probabilistic couplings, which yield a natural interpreta-
tion of differential privacy [34], both in its vanilla and approximate forms (i.e. ε-
and (ε, δ)-privacy). Technically, approximate couplings are modelled as a graded
monad, where the index of the monad tracks the privacy budget (ε or (ε, δ)).
Both systems are strictly syntax-directed, and cannot reason about computa-
tions that have different types or syntactic structures, while our system can.

8 Conclusion

We have developed a probabilistic extension of the (simply typed) guarded λ-
calculus, and proposed a syntax-directed proof system for relational verification.
Moreover, we have verified a series of examples that are beyond the reach of prior
work. Finally, we have proved the soundness of the proof system with respect to
the topos of trees.

There are several natural directions for future work. One first direction is
to enhance the expressiveness of the underlying simply typed language. For
instance, it would be interesting to introduce clock variables and some type
dependency as in [13], and extend the proof system accordingly. This would
allow us, for example, to type the function taking the n-th element of a guarded
stream, which cannot be done in the current system. Another exciting direction
is to consider approximate couplings, as in [32,33], and to develop differential
privacy for infinite streams—preliminary work in this direction, such as [35],
considers very large lists, but not arbitrary streams. A final direction would be
to extend our approach to continuous distributions to support other application
domains.

Acknowledgments. We would like to thank the anonymous reviewers for their time
and their helpful input. This research was supported in part by the ModuRes Sapere
Aude Advanced Grant from The Danish Council for Independent Research for the
Natural Sciences (FNU), by a research grant (12386, Guarded Homotopy Type Theory)
from the VILLUM foundation, and by NSF under grant 1718220.

References

1. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: The guarded lambda-
calculus: programming and reasoning with guarded recursion for coinductive types.
Log. Methods Comput. Sci. 12(3) (2016)

2. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for
higher-order programs. PACMPL 1(ICFP), 21:1–21:29 (2017)

3. Lindvall, T.: Lectures on the Coupling Method. Courier Corporation (2002)

Relational Reasoning for Markov Chains 239

4. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York
(2000)

5. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Stefanesco, L., Strub, P.-Y.: Rela-
tional reasoning via probabilistic coupling. In: Davis, M., Fehnker, A., McIver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 387–401. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 27

6. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL 2017, Paris, France, 18–20 January 2017 (2017)

7. Strassen, V.: The existence of probability measures with given marginals. Ann.
Math. Stat. 36, 423–439 (1965)

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

9. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

10. Cramer, R., Damgard, I.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing, 1st edn. Cambridge University Press, New York (2015)

11. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving uniformity and
independence by self-composition and coupling. CoRR abs/1701.06477 (2017)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of Foundations of Computer Science. IEEE (2001)

13. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2

14. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

15. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4) (2012)

16. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037118

17. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. Log.
Methods Comput. Sci. 7(2) (2011)

18. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: Morrisett, G., Uustalu, T. (eds.) ICFP
2013, Boston, MA, USA, 25–27 September 2013. ACM (2013)

19. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, Paris,
France, 18–20 January 2017. ACM (2017)

20. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of types-and-
effects in higher-order concurrent separation logic. In: POPL 2017, Paris, France,
18–20 January 2017, pp. 218–231 (2017)

21. Aczel, P., Gambino, N.: Collection principles in dependent type theory. In:
Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000.
LNCS, vol. 2277, pp. 1–23. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45842-5 1

22. Aczel, P., Gambino, N.: The generalised type-theoretic interpretation of construc-
tive set theory. J. Symb. Log. 71(1), 67–103 (2006)

www.dbooks.org

https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1007/3-540-45842-5_1
https://doi.org/10.1007/3-540-45842-5_1
https://www.dbooks.org/

240 A. Aguirre et al.

23. Grimm, N., Maillard, K., Fournet, C., Hritcu, C., Maffei, M., Protzenko, J.,
Rastogi, A., Swamy, N., Béguelin, S.Z.: A monadic framework for relational veri-
fication (functional pearl). CoRR abs/1703.00055 (2017)

24. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 12

25. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Bod́ık, R., Majumdar, R. (eds.) POPL 2016, St. Petersburg,
FL, USA, 20–22 January 2016. ACM (2016)

26. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46678-0 18

27. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Garrigue, J., Keller, G., Sumii,
E. (eds.) ICFP 2016, Nara, Japan, 18–22 September 2016. ACM (2016)

28. Culpepper, R., Cobb, A.: Contextual equivalence for probabilistic programs with
continuous random variables and scoring. In: Yang, H. (ed.) ESOP 2017. LNCS,
vol. 10201, pp. 368–392. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54434-1 14

29. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS
1989, Pacific Grove, California, USA, 5–8 June 1989. IEEE Computer Society
(1989)

30. Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: LICS 2016, New York, NY, USA, 5–8 July 2016. ACM (2016)

31. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.: Proba-
bilistic relational verification for cryptographic implementations. In: Jagannathan,
S., Sewell, P. (eds.) POPL 2014 (2014)

32. Barthe, G., Gaboardi, M., Gallego Arias, E.J., Hsu, J., Roth, A., Strub, P.Y.:
Higher-order approximate relational refinement types for mechanism design and
differential privacy. In: POPL 2015, Mumbai, India, 15–17 January 2015 (2015)

33. Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub,
P.: Differentially private Bayesian programming. In: CCS 2016, Vienna, Austria,
24–28 October 2016. ACM (2016)

34. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

35. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. PVLDB 7(12), 1155–1166 (2014)

https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-662-54434-1_14

Relational Reasoning for Markov Chains 241

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

www.dbooks.org

http://creativecommons.org/licenses/by/4.0/
https://www.dbooks.org/

	ETAPS Foreword
	Preface
	Organization
	RustBelt: Logical Foundations for the Future of Safe Systems Programming
	Contents
	Language Design
	Consistent Subtyping for All
	1 Introduction
	2 Background and Motivation
	2.1 Gradual Subtyping
	2.2 The Odersky-Läufer Type System
	2.3 Motivation: Gradually Typed Higher-Rank Polymorphism

	3 Revisiting Consistent Subtyping
	3.1 Consistency and Subtyping
	3.2 Towards Consistent Subtyping
	3.3 Abstracting Gradual Typing
	3.4 Directed Consistency
	3.5 Consistent Subtyping Without Existentials

	4 Gradually Typed Implicit Polymorphism
	4.1 Typing in Detail
	4.2 Type-Directed Translation
	4.3 Correctness Criteria

	5 Algorithmic Type System
	5.1 Algorithmic Consistent Subtyping and Instantiation
	5.2 Algorithmic Typing
	5.3 Completeness and Soundness

	6 Discussion
	6.1 Top Types
	6.2 Interpretation of the Dynamic Semantics
	6.3 The Dynamic Guarantee

	7 Related Work
	8 Conclusion
	References

	HOBiT: Programming Lenses Without Using Lens Combinators
	1 Introduction
	1.1 The Challenge of Programmability
	1.2 Contributions

	2 Overview: Bidirectional Programming Without Combinators
	2.1 The case Construct
	2.2 A More Elaborate Example: linesB

	3 Syntax and Type System of HOBiT Core
	3.1 Syntax
	3.2 Type System

	4 Semantics of HOBiT Core
	4.1 Basic Idea: Staging
	4.2 Three Evaluation Relations: Unidirectional, get and put
	4.3 Correctness

	5 Extensions
	5.1 In-Language Lens Definition
	5.2 Lens Combinators as Language Constructs
	5.3 Guards
	5.4 Syntax Sugar for Reconciliation Functions
	5.5 Inference of Exit Conditions

	6 An Involved Example: Desugaring
	7 Related Work
	8 Conclusion
	References

	Dualizing Generalized Algebraic Data Types by Matrix Transposition
	1 Introduction
	2 Informal Overview
	3 Formal Semantics
	3.1 Language Design Rationale
	3.2 Notational Conventions
	3.3 Syntax
	3.4 Operational Semantics
	3.5 Typing
	3.6 GADTs and GAcoDTs

	4 Properties of GADTT
	4.1 Type Soundness
	4.2 Defunctionalization and Refunctionalization
	4.3 Extensibility

	5 Discussion
	5.1 Applications
	5.2 Limitations
	5.3 Termination and Productivity
	5.4 Going Beyond System F-like Polymorphism
	5.5 Coq Formalization

	6 Related Work
	7 Conclusions
	References

	Deterministic Concurrency: A Clock-Synchronised Shared Memory Approach
	1 Introduction
	2 Synchronous Policies
	2.1 Syntax
	2.2 Limited Abstraction in SP
	2.3 Concurrent Access Policies
	2.4 Enabling and Policy Conformance
	2.5 Coherence and Determinacy
	2.6 Policies and Modularity

	3 Constructive Semantics of DCoL
	3.1 Determinacy, Termination and Constructiveness

	4 Related Work
	5 Conclusion
	References

	Probabilistic Programming
	An Assertion-Based Program Logic for Probabilistic Programs
	1 Introduction
	2 Mathematical Preliminaries
	3 Programs and Assertions
	4 Proof System
	5 A Concrete Program Logic
	6 Case Studies: Embedding Lightweight Logics
	6.1 Law and Independence Logic
	6.2 Embedding the Union Bound Logic

	7 Case Studies: Verifying Randomized Algorithms
	8 Implementation and Mechanization
	9 Related Work
	10 Conclusion and Perspectives
	References

	Fine-Grained Semantics for Probabilistic Programs
	1 Introduction
	2 Overview
	2.1 Features of Probabilistic Programs
	2.2 Interaction of Exception States

	3 Preliminaries
	4 A Probabilistic Language and Its Semantics
	4.1 Syntax
	4.2 Typing Judgments
	4.3 Semantics
	4.4 Recursion
	4.5 Higher-Order Functions
	4.6 Non-determinism

	5 Properties of Semantics
	5.1 Commutativity
	5.2 Associativity
	5.3 Adding the score Primitive

	6 Related Work
	7 Conclusion
	A Proofs for Preliminaries
	A.1 Measures
	A.2 Lebesgue Integral
	A.3 Kernels

	B Proofs for Semantics
	C Probability Kernel
	D Proofs for Consequences
	References

	How long, O Bayesian network, will I sample thee?
	1 Introduction
	2 Related Work
	3 Probabilistic Programs
	3.1 The Probabilistic Guarded Command Language
	3.2 The Weakest Preexpectation Transformer
	3.3 The Expected Runtime Transformer

	4 Expected Runtimes of i.i.d Loops
	5 A Programming Language for Bayesian Networks
	5.1 The Bayesian Network Language
	5.2 Bayesian Networks
	5.3 From Bayesian Networks to BNL

	6 Implementation
	7 Conclusion
	References

	Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
	1 Introduction
	2 Mathematical Preliminaries
	3 Overview of the System
	3.1 Base Logic: Guarded Higher-Order Logic
	3.2 A System for Relational Reasoning
	3.3 Examples

	4 Probabilistic Guarded Lambda Calculus
	5 Guarded Higher-Order Logic
	6 Relational Proof System
	6.1 Proof Rules
	6.2 Metatheory
	6.3 Shift Couplings Revisited

	7 Related Work
	8 Conclusion
	References

	Types and Effects
	Failure is Not an Option
	1 Introduction
	2 The Exceptional Translation
	2.1 Adding Exceptions to CC
	2.2 Exceptional Inductive Types
	2.3 Flirting with Inconsistency
	2.4 Living in an Exceptional World

	3 Kreisel Meets Martin-Löf
	3.1 Exceptional Parametricity in a Negative World
	3.2 Exceptional Parametric Translation of CIC
	3.3 Meta-Theoretical Properties of TEp

	4 Effectively Extending CIC
	4.1 Markov's Rule
	4.2 Function Intensionality with -expansion
	4.3 Independence of Premise
	4.4 Non-provability of Markov's Principle

	5 Possible Extensions
	5.1 Negative Records
	5.2 Impredicative Universe

	6 The Exceptional Translation in Practice
	6.1 Implementation as a Coq Plugin
	6.2 Usecase: A Cast Framework

	7 Related Work
	8 Conclusion and Future Work
	References

	Let Arguments Go First
	1 Introduction
	2 Overview
	2.1 Background: Bi-directional Type Checking
	2.2 Bi-directional Type Checking with the Application Mode
	2.3 Benefits of Information Flowing from Arguments to Functions
	2.4 Application 1: Type Inference of Higher-Ranked Types
	2.5 Application 2: More Expressive Type Applications

	3 A Polymorphic Language with Higher-Ranked Types
	3.1 Syntax
	3.2 Type System
	3.3 Subtyping
	3.4 Translation to System F, Coherence and Type-Safety
	3.5 Algorithmic System

	4 More Expressive Type Applications
	4.1 Syntax
	4.2 Type System
	4.3 Meta Theory

	5 Discussion
	5.1 Combining Application and Checked Modes
	5.2 Additional Constructs
	5.3 Dependent Type Systems

	6 Related Work
	6.1 Bi-directional Type Checking
	6.2 Type Inference for Higher-Ranked Types
	6.3 Tracking Type Equalities

	7 Conclusion
	References

	Behavioural Equivalence via Modalities for Algebraic Effects
	1 Introduction
	2 A Simple Programming Language
	3 Behavioural Logic and Modalities
	4 Behavioural Equivalence
	5 Applicative O-(bi)similarity
	6 Howe's Method
	7 Pure Behavioural Logic
	8 Discussion and Related Work
	References

	Explicit Effect Subtyping
	1 Introduction
	2 Overview
	2.1 Algebraic Effect Handlers
	2.2 Elaborating Subtyping
	2.3 Polymorphic Subtyping for Types and Effects
	2.4 Guaranteed Erasure with Skeletons

	3 The ImpEff Language
	3.1 Syntax
	3.2 Typing

	4 The ExEff Language
	4.1 Syntax
	4.2 Typing
	4.3 Operational Semantics

	5 Type Inference and Elaboration
	5.1 Elaboration of ImpEff into ExEff
	5.2 Constraint Generation and Elaboration
	5.3 Constraint Solving
	5.4 Discussion

	6 Erasure of Effect Information from ExEff
	6.1 The SkelEff Language
	6.2 Erasure

	7 Related Work and Conclusion
	References

	Concurrency
	A Separation Logic for a Promising Semantics
	1 Introduction
	2 Our Logic
	2.1 The Assertions of the Logic
	2.2 The Rules of the Logic for Relaxed Accesses
	2.3 Reasoning About Coherence
	2.4 Handling Release and Acquire Accesses
	2.5 Plain Accesses

	3 The Promising Semantics
	3.1 Storage Subsystem
	3.2 Thread Subsystem
	3.3 Interaction Between a Thread and the Storage Subsystem
	3.4 Constraining Promises
	3.5 Full Machine

	4 Semantics and Soundness
	4.1 The Intuition
	4.2 A Closer Look at the Resources and the Assertion Semantics
	4.3 Relating Concrete State and Resources
	4.4 Soundness

	5 Related Work
	6 Conclusion
	References

	Logical Reasoning for Disjoint Permissions
	1 Introduction
	2 Technical Preliminaries
	3 Predicate Multiplication
	3.1 Proof Rules for Predicate Multiplication
	3.2 Verification of processTree using predicate multiplication

	4 Bi-abductive Inference with Fractional Permissions
	4.1 Fractional Residue Computation
	4.2 Extension of Predicate Axioms
	4.3 Abductive Inference and Frame Inference

	5 A Proof Theory for Fractional Permissions
	5.1 Proof Theory for Predicate Multiplication and Fractional Maps-To
	5.2 Proof Theory for Proving that Predicates Are Precise
	5.3 Proof Theory for Induction over the Finiteness of the Heap
	5.4 Using Our Proof Theory

	6 The ShareInfer fractional biabduction engine
	7 Building a Model for Our Logic
	7.1 Cancellative Separation Algebras
	7.2 Fractional Share Algebras
	7.3 Scaling Separation Algebra
	7.4 Compositionality of Scaling Separation Algebras
	7.5 Model for Inductive Logic

	8 Lower Bounds on Predicate Multiplication
	8.1 Predicate Multiplication's Axioms Force Share Model Properties
	8.2 Disjointness in a Multiplicative Setting

	9 Related Work
	10 Conclusion
	References

	Deadlock-Free Monitors
	1 Introduction
	2 Background Information on the Underlying Approaches
	2.1 Verifying Absence of Data Races
	2.2 Verifying Absence of Deadlock
	2.3 Proof Rules

	3 Deadlock-Free Monitors
	3.1 High-Level Idea
	3.2 Tracking Numbers of Waiting Threads and Obligations
	3.3 Resource Transfer on Notification
	3.4 Proof Rules
	3.5 Verifying Channels
	3.6 Other Examples

	4 Relaxing the Precedence Relation
	4.1 A Relaxed Precedence Relation
	4.2 A Further Relaxation

	5 Soundness Proof
	6 Related Work
	7 Conclusion
	References

	Fragment Abstraction for Concurrent Shape Analysis
	1 Introduction
	2 Overview
	3 Concurrent Data Structure Implementations
	3.1 Concurrent Data Structure Implementations
	3.2 Linearizability

	4 Verification Using Fragment Abstraction for Skiplists
	4.1 Symbolic Representation
	4.2 Symbolic Postcondition Computation

	5 Arrays of Singly-Linked Lists with Timestamps
	6 Experimental Results
	7 Conclusions
	References

	Security
	Reasoning About a Machine with Local Capabilities
	1 Introduction
	2 A Capability Machine with Local Capabilities
	3 Stack and Return Pointer Management Using Local Capabilities
	4 Logical Relation
	4.1 Worlds
	4.2 Logical Relation
	4.3 Safety of the Capability Machine

	5 Examples
	5.1 Encapsulation of Local State
	5.2 Well-Bracketed Control-Flow

	6 Discussion
	7 Related Work
	References

	Modular Product Programs
	1 Introduction
	2 Overview
	2.1 Relational Specifications
	2.2 Modular Product Programs
	2.3 Interpretation of Relational Specifications
	2.4 Product Program Verification

	3 Preliminaries
	4 Modular k-Product Programs
	4.1 Product Construction
	4.2 Transformation of Assertions
	4.3 Heap-Manipulating Programs

	5 Soundness and Completeness
	5.1 Soundness with Unary Specifications
	5.2 Soundness for Relational Specifications
	5.3 Completeness

	6 Modular Verification of Secure Information Flow
	6.1 Non-interference
	6.2 Information Flow Specifications
	6.3 Secure Information Flow with Arbitrary Security Lattices
	6.4 Declassification
	6.5 Preventing Termination Channels
	6.6 Preventing Timing Channels

	7 Implementation and Evaluation
	7.1 Implementation in Viper
	7.2 Qualitative Evaluation
	7.3 Performance

	8 Related Work
	9 Conclusion and Future Work
	References

	Program Verification
	A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via Deductive Program Verification
	1 Introduction
	2 Challenges in Reasoning with the O Notation
	3 Formalizing the O Notation
	3.1 Domination
	3.2 Filters
	3.3 Examples of Filters
	3.4 Properties of Domination
	3.5 Tactics

	4 Specifications with Asymptotic Complexity Claims
	4.1 CFML with Time Credits for Cost Analysis
	4.2 A Modularity Challenge
	4.3 A Record for Specifications
	4.4 Why Cost Functions Must Be Nonnegative
	4.5 Why Cost Functions Must Be Monotonic

	5 Interactive Proofs of Asymptotic Complexity Claims
	5.1 Synthesizing Cost Expressions for Straight-Line Code
	5.2 Synthesizing and Solving Recurrence Equations

	6 Examples
	7 Related Work
	References

	Verified Learning Without Regret
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Background
	2.1 Games
	2.2 Algorithmic Game Theory

	3 Cage by Example
	3.1 Overview
	3.2 Smooth Games DSL
	3.3 Example: Distributed Routing
	3.4 Example: Load Balancing

	4 Smooth Games
	4.1 Combinators

	5 Multiplicative Weights (MW)
	5.1 The Algorithm
	5.2 MW Is No Regret
	5.3 MW Architecture
	5.4 MW DSL
	5.5 Interpreter
	5.6 Proof

	6 Coordinated MW
	6.1 Machine Semantics
	6.2 Convergence and Optimality

	7 Related Work
	8 Conclusion
	References

	Program Verification by Coinduction
	1 Introduction
	2 Overview and Basic Notions
	2.1 Intuitive Hoare Logic Proof
	2.2 Intuitive Coinduction Proof
	2.3 Defining Execution Step Relations

	3 Coinduction as Partial Correctness
	3.1 Definitions and Main Theorem
	3.2 Example Proof: Sum
	3.3 Example Proof: Reverse

	4 Experiments
	4.1 Languages
	4.2 Specifying Data Structures
	4.3 Specifying Reachability Claims
	4.4 Proofs and Automation
	4.5 Other Data Structures
	4.6 Schorr-Waite
	4.7 Divergence
	4.8 Summary of Experiments

	5 Subsuming Reachability Logic
	5.1 Advantages of Coinduction
	5.2 Reachability Logic Proof System
	5.3 Reachability Logic is Coinduction

	6 Other Related Work
	6.1 Current Verification Tools
	6.2 Operational Semantics Based Approaches
	6.3 Other Coinduction Schemata

	7 Conclusion and Future Work
	References

	Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq
	1 Introduction
	2 PBFT Recap
	2.1 Overview of the Protocol
	2.2 Properties
	2.3 Differences with Castro's Implementation

	3 Velisarios Model
	3.1 The Logic of Events
	3.2 Messages
	3.3 Authentication
	3.4 Event Orderings
	3.5 Computational Model
	3.6 Assumptions

	4 Methodology
	4.1 Automated Inductive Reasoning
	4.2 Quorums
	4.3 Certificates
	4.4 Knowledge Theory

	5 Verification of PBFT
	6 Extraction and Evaluation
	7 Related Work
	7.1 Logics and Models
	7.2 Tools

	8 Conclusions and Future Work
	References

	Program Analysis and Automated Verification
	Evaluating Design Tradeoffs in Numeric Static Analysis for Java
	1 Introduction
	2 Numeric Static Analysis
	3 The Heap
	3.1 Summary Objects (SO)
	3.2 Access Paths (AP)
	3.3 Abstract Object Representation (OR)

	4 Method Calls
	4.1 Interprocedural Analysis Order (AO)
	4.2 Context Sensitivity (CS)

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Performance
	6.3 RQ2: Precision
	6.4 RQ3: Tradeoffs

	7 Related Work
	8 Conclusion and Future Work
	References

	An Abstract Interpretation Framework for Input Data Usage
	1 Introduction
	2 Trace Semantics
	3 Input Data Usage
	4 Sound Input Data Usage Validation
	5 Outcome Semantics
	6 Dependency Semantics
	7 Input Data Usage Abstractions
	8 Secure Information Flow Abstractions
	9 Strongly Live Variable Abstraction
	10 Syntactic Dependency Abstractions
	11 Piecewise Abstractions
	12 Related Work
	13 Conclusion and Future Work
	References

	Higher-Order Program Verification via HFL Model Checking
	1 Introduction
	2 (Extended) HFL
	2.1 Syntax
	2.2 Semantics and HFLZ Model Checking
	2.3 HES

	3 Warming Up
	4 Target Language
	4.1 Syntax and Typing
	4.2 Operational Semantics

	5 May/Must-Reachability Verification
	5.1 May-Reachability
	5.2 Must-Reachability

	6 Trace Properties
	7 Linear-Time Temporal Properties
	7.1 Call-Sequence Analysis
	7.2 From Temporal Verification to Call-Sequence Analysis

	8 Related Work
	9 Conclusion
	References

	Quantitative Analysis of Smart Contracts
	1 Introduction
	2 Background on Ethereum Smart Contracts
	2.1 Programmable Smart Contracts
	2.2 Tokens and User Utility

	3 Programming Language for Smart Contracts
	3.1 Syntax
	3.2 Semantics
	3.3 Objective Function and Values of Contracts
	3.4 Examples

	4 Bounded Analysis and Games
	4.1 Bounded Analysis
	4.2 Concurrent Games
	4.3 Translating Contracts to Games

	5 Abstraction for Quantitative Concurrent Games
	5.1 Abstraction for Quantitative Concurrent Games
	5.2 Abstraction: Soundness, Refinement, and Completeness in Limit
	5.3 Interval Abstraction

	6 Experimental Results
	7 Comparison with Related Work
	8 Conclusion
	References

	Session Types and Concurrency
	Session-Typed Concurrent Contracts
	1 Introduction
	2 Session Types
	3 Contract Examples
	4 Monitors as Partial Identity Processes
	4.1 Buffering Values
	4.2 Rule Summary
	4.3 Spawning New Processes
	4.4 Transparency

	5 Refinements as Contracts
	5.1 Syntax and Typing Rules
	5.2 Translation to Monitors
	5.3 Metatheory

	6 Related Work
	7 Conclusion
	References

	A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems
	1 Introduction
	2 System and Failure Model
	3 Global Types for Explicit Handling of Partial Failures
	4 A Process Calculus for Coordinator-Based Failure Handling
	5 Local Types
	6 Type System
	7 Properties
	8 Related Work
	9 Final Remarks
	References

	On Polymorphic Sessions and Functions
	1 Introduction
	2 Polymorphic Session -Calculus
	2.1 Processes and Typing

	3 To Linear-F and Back
	3.1 Encoding Linear-F into Session -Calculus
	3.2 Encoding Session -calculus to Linear-F
	3.3 Inversion and Full Abstraction

	4 Applications of the Encodings
	4.1 Inductive and Coinductive Session Types
	4.2 Communicating Values – Sess
	4.3 Higher-Order Session Processes – Sess+

	5 Related Work and Concluding Remarks
	References

	Concurrent Kleene Algebra: Free Model and Completeness
	1 Introduction
	2 Overview of the Completeness Proof
	3 Preliminaries
	3.1 Pomsets
	3.2 Concurrent Kleene Algebra
	3.3 Linear Systems

	4 Completeness of CKA
	4.1 Preclosure
	4.2 Closure

	5 Discussion and Further Work
	A Worked Example: A Non-trivial Closure
	References

	Concurrency and Distribution
	Correctness of a Concurrent Object Collector for Actor Languages
	1 Introduction
	2 Host Language Requirements
	2.1 Actors and Objects
	2.2 Mutation, Transfer and Accessibility
	2.3 Capabilities and Accessibility
	2.4 Causality

	3 Overview of ORCA
	3.1 Mutation and Collection
	3.2 Local Collection
	3.3 Messages and Collection
	3.4 Example

	4 The ORCA Protocol
	4.1 Capabilities and Accessibility
	4.2 Well-Formed Configurations
	4.3 Actor States
	4.4 Garbage Collection
	4.5 Receiving and Sending Messages
	4.6 Actor Behaviour

	5 Soundness and Completeness
	5.1 I1 and I2 Support Safe Local GC
	5.2 Completeness
	5.3 Dealing with Fine-Grained Concurrency
	5.4 Soundness

	6 Related Work
	7 Conclusions
	References

	Paxos Consensus, Deconstructed and Abstracted
	1 Introduction
	2 The Single-Decree Paxos Algorithm
	3 The Faithful Deconstruction of SD-Paxos
	4 Modularly Verifying SD-Paxos
	5 Multi-Paxos via Network Transformations
	5.1 Abstract Distributed Protocols
	5.2 Out-of-Thin-Air Semantics
	5.3 Slot-Replicating Network Semantics
	5.4 Widening Network Semantics
	5.5 Optimised Widening Semantics
	5.6 Bunching Semantics
	5.7 The Big Picture

	6 Putting It All Together
	7 Related Work
	8 Conclusion and Future Work
	References

	On Parallel Snapshot Isolation and Release/Acquire Consistency
	1 Introduction
	2 Background and Main Ideas
	2.1 Implementing Software Transactional Memory
	2.2 Parallel Snapshot Isolation (PSI)
	2.3 Towards a Lock-Based Reference Implementation for PSI

	3 The Release-Acquire Memory Model for STM
	3.1 Software Transactional Memory in RA: Specification

	4 Parallel Snapshot Isolation (PSI)
	4.1 A Declarative Specification of PSI STMs in RA
	4.2 A Lock-Based PSI Implementation in RA
	4.3 Implementation Soundness
	4.4 Implementation Completeness

	5 Robust Parallel Snapshot Isolation (RPSI)
	5.1 A Declarative Specification of RPSI STMs in RA
	5.2 A Lock-Based RPSI Implementation in RA
	5.3 Implementation Soundness
	5.4 Implementation Completeness

	6 Conclusions and Future Work
	References

	Eventual Consistency for CRDTs
	1 Introduction
	2 Understanding Replicated Sets
	2.1 Mutators and Non-mutators
	2.2 Dependency
	2.3 Puns
	2.4 Frontiers
	2.5 Stuttering

	3 Eventual Consistency for CRDTs
	3.1 Executions
	3.2 Specifications and Stuttering Equivalence
	3.3 Eventual Consistency
	3.4 Properties of Eventual Consistency
	3.5 Correctness of the Add-Wins Set

	4 A Collaborative Text Editing Protocol
	5 Compositional Reasoning
	6 A Replicated Graph Algorithm
	7 Conclusions
	References

	Compiler Verification
	A Verified Compiler from Isabelle/HOL to CakeML
	1 Introduction
	2 Related Work
	3 Deep Embedding
	4 Terms, Matching and Substitution
	4.1 De Bruijn terms (term)
	4.2 Named Bound Variables (nterm)
	4.3 Explicit Pattern Matching (pterm)
	4.4 Sequential Clauses (sterm)
	4.5 Irreducible Terms (value)

	5 Intermediate Semantics and Compiler Phases
	5.1 Side Conditions
	5.2 Naming Bound Variables: From term to nterm
	5.3 Explicit Pattern Matching: From nterm to pterm
	5.4 Sequentialization: From pterm to sterm
	5.5 Big-Step Semantics for sterm
	5.6 Evaluation Semantics: Refining sterm to value
	5.7 Evaluation with Recursive Closures
	5.8 CakeML

	6 Composition
	7 Dictionary Construction
	8 Evaluation
	9 Conclusion
	References

	Compositional Verification of Compiler Optimisations on Relaxed Memory
	1 Introduction
	2 Observation and Transformation
	3 Target Language and Core Memory Model
	3.1 Relaxed Memory Primer
	3.2 Language Syntax
	3.3 Memory Model Structure
	3.4 Thread-Local Semantics
	3.5 Execution Structure and Validity Axioms
	3.6 Relaxed Observations
	3.7 Differences from C11

	4 Denotations of Code-Blocks
	4.1 Block-Local Executions
	4.2 Histories
	4.3 Comparing Denotations
	4.4 Example Transformation

	5 A Finite Denotation
	5.1 Cutting Predicate
	5.2 Extended History (histE)
	5.3 Finiteness

	6 Prototype Verification Tool
	7 Transformations with Non-atomics
	7.1 Memory Model with Non-atomics
	7.2 Denotation with Non-atomics

	8 Full Abstraction
	9 Related Work
	10 Conclusions
	References

	Author Index

