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Abstract. We define the exceptional translation, a syntactic translation
of the Calculus of Inductive Constructions (CIC) into itself, that covers
full dependent elimination. The new resulting type theory features call-
by-name exceptions with decidable type-checking and canonicity, but
at the price of inconsistency. Then, noticing parametricity amounts to
Kreisel’s realizability in this setting, we provide an additional layer on top
of the exceptional translation in order to tame exceptions and ensure that
all exceptions used locally are caught, leading to the parametric excep-
tional translation which fully preserves consistency. This way, we can
consistently extend the logical expressivity of CIC with independence of
premises, Markov’s rule, and the negation of function extensionality while
retaining η-expansion. As a byproduct, we also show that Markov’s prin-
ciple is not provable in CIC. Both translations have been implemented
in a Coq plugin, which we use to formalize the examples.

1 Introduction

Monadic translations constitute a canonical way to add effects to pure func-
tional languages [1]. Until recently, this technique was not available for type
theories such as CIC because of complex interactions with dependency. In a
recent paper [2], we have presented a generic way to extend the monadic trans-
lation to dependent types, using the weaning translation, as soon as the monad
under consideration satisfies a crucial property: being self-algebraic. Indeed, in
the same way that the universe of types �i is itself a type (of a higher universe)
in type theory, the type of algebras of a monad T

ΣA : �i.T A → A

needs to be itself an algebra of the monad to allow a correct translation of the
universe. However, in general, the weaning translation does not interpret all of
CIC because dependent elimination needs to be restricted to linear predicates,
that is, those that are intuitively call-by-value [3]. In this paper, we study the
particular case of the error monad, and show that its weaning translation can
be simplified and tweaked so that full dependent elimination is valid.
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This exceptional translation gives rise to a novel extension of CIC with new
computational behaviours, namely call-by-name exceptions.1 That is, the type
theory induced by the exceptional translation features new operations to raise
and catch exceptions. This new logical expressivity comes at a cost, as the result-
ing theory is not consistent anymore, although still being computationally rel-
evant. This means that it is possible to prove a contradiction, but, thanks to a
weak form of canonicity, only because of an unhandled exception. Furthermore,
the translation allows us to reason directly in CIC on terms of the exceptional
theory, letting us prove, e.g., that assuming some properties on its input, an
exceptional function actually never raises an exception. We thus have a sound
logical framework to prove safety properties about impure dependently-typed
programs.

We then push this technique further by noticing that parametricity provides
a systematic way to describe that a term is not allowed to produce uncaught
exceptions, bridging the gap between Kreisel’s modified realizability [4] and para-
metricity inside type theory [5]. This parametric exceptional translation ensures
that no exception reaches toplevel, thus ensuring consistency of the resulting
theory. Pure terms are automatically handled, while it is necessary to show
parametricity manually for terms internally using exceptions. We exploit this
computational extension of CIC to show various logical results over CIC.

Contributions

– We describe the exceptional translation, the first monadic translation for the
error monad for CIC, including strong elimination of inductive types, result-
ing in a sound logical framework to reason about impure dependently-typed
programs.

– We use parametricity to extend the exceptional translation, getting a consis-
tent variant dubbed the parametric exceptional translation.

– We show that Markov’s rule is admissible in CIC.
– We show that definitional η-expansion together with the negation of function

extensionality is admissible in CIC.
– We show that there exists a syntactical model of CIC that validates the inde-

pendence of premises (which is known to be generally not valid in intuitionistic
logic [6]) and use it to recover the recent result of Coquand and Mannaa [7],
i.e., that Markov’s principle is not provable in CIC.

– We provide a Coq plugin2 that implements both translations and with which
we have formalized all the examples.

Plan of the Paper. In Sect. 2, we describe the exceptional translation and the
resulting new computational principles arising from it. In Sect. 3, we present
the parametric variant of the exceptional translation. Section 4 is devoted to the
1 The fact that the resulting exception are call-by-name is explained in detailed in [2]

using a call-by-push-value decomposition. Intuitively, it comes from the fact that
CIC is naturally call-by-name.

2 The plugin is available at https://github.com/CoqHott/exceptional-tt.

https://github.com/CoqHott/exceptional-tt
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A, B, M, N ::= �i | x | M N | λx : A. M | Πx : A. B

Γ, Δ ::= · | Γ, x : A

� Γ i < j

Γ � �i : �j

Γ � M : B Γ � A : �i

Γ, x : A � M : B

Γ � A : �i Γ, x : A � B : �j

Γ � Πx : A. B : �max(i,j)

Γ � M : B Γ � A : �i A ≡ B

Γ � M : A

Γ, x : A � M : B Γ � Πx : A. B : �i

Γ � λx : A. M : Πx : A. B

Γ � M : Πx : A. B Γ � N : A

Γ � M N : B{x := N}

� ·
Γ � A : �i

� Γ, x : A

Γ � A : �i

Γ, x : A � x : A

(λx : A. M) N ≡ M{x := N} (congruence rules ommitted)

Fig. 1. Typing rules of CCω

various logical results resulting from the parametric exceptional translations. In
Sect. 5, we discuss possible extensions of the translation with negative records
and an impredicative universe. Section 6 describes the Coq plugin and illustrates
its use on a concrete example. We discuss related work in Sect. 7 and conclude
in Sect. 8.

2 The Exceptional Translation

We define in this section the exceptional translation as a syntactic translation
between type theories. We call the target theory T , upon which we will make
various assumptions depending on the objects we want to translate.

2.1 Adding Exceptions to CCω

In this section, we describe the exceptional translation over a purely negative
theory, i.e., featuring only universes and dependent functions, called CCω, which
is presented in Fig. 1. This theory is a predicative version of the Calculus of Con-
structions [8], with an infinite hierarchy of universes �i instead of one impred-
icative sort. We assume from now on that T contains at least CCω itself.

The exceptional translation is a simplification of the weaning translation [2]
applied to the error monad. Owing to the fact that it is specifically tailored for
exceptions, this allows to give a more compact presentation of it.

Let E : �0 be a fixed type of exceptions in T . The weaning translation for
the error monad amounts to interpret types as algebras, i.e., as inhabitants of
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the dependent sum ΣA : �i. (A + E) → A. In this paper, we take advantage of
the fact that the algebra morphism restricted to A is always the identity. Thus
every type just comes with a way to interpret failure on this type, i.e. types
are intuitively interpreted as a pair of an A : �i with a default (raise) function
A∅ : E → A. In practice, it is slightly more complicated as the universe of types
itself is a type, so its interpretation must comes with a default function. We
overcome this issue by assuming a term typei, representing types that can raise
exceptions. This type comes with two constructors: TypeVali which allows to
construct a typei from a type and a default function on this type ; and another
constructor TypeErri that represents the default function at the level of typei.
Furthermore, typei is equipped with an eliminator type_elimi and thus can be
thought of as an inductive definition. For simplicity, we axiomatize it instead of
requiring inductive types in the target of the translation.

Definition 1. We assume that T features the data below, where i, j indices stand
for universe polymorphism.
– Ωi : E → �i

– ωi : Πe : E.Ωi e
– typei : �j, where i < j
– TypeVali : ΠA : �i. (E → A) → typei
– TypeErri : E → typei
– type_elimi,j : ΠP : typei → �j .

(Π(A : �i) (A∅ : E → A). P (TypeVali A A∅)) →
(Πe : E. P (TypeErri e)) → ΠT : typei. P T

subject to the following definitional equations:

type_elimi,j P pv p∅ (TypeVali A A∅) ≡ pv A A∅

type_elimi,j P pv p∅ (TypeErri e) ≡ p∅ e

The Ω term describes what it means for a type to fail, i.e. it ascribes a
meaning to sequents of the form Γ � M : fail e. In practice, it is irrelevant and
can be chosen to be degenerate, e.g. Ω := λ_ : E. unit.

In what follows, we often leave the universe indices implicit although they
can be retrieved at the cost of more explicit annotations.

Before defining the exceptional translation we need to derive a term El3 that
recovers the underlying type from an inhabitant of type and Err that lifts the
default function to this underlying type.

Definition 2. From the data of Definition 1, we derive the following terms.

Eli : typei → �i

:= λA : typei. type_elim (λT : typei.�i)
(λ(A0 : �i) (A∅ : E → A0). A0) Ω A

Erri : ΠA : typei. E → Eli A

:= λ(A : typei) (e : E). type_elim Eli

(λ(A0 : �i) (A∅ : E → A0). A∅ e) ω A

3 The notation El refers to universes à la Tarski in Martin-Löf type theory.
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[�i] := TypeVal typei TypeErri

[x] := x

[λx : A. M ] := λx : [[A]]. [M ]

[M N ] := [M ] [N ]

[Πx : A. B] := TypeVal (Πx : [[A]]. [[B]]) (λ(e : E) (x : [[A]]). [B]
∅

e)

[A]
∅

:= Err [A]

[[A]] := El [A]

[[·]] := ·
[[Γ, x : A]] := [[Γ]], x : [[A]]

Fig. 2. Exceptional translation

The exceptional translation is defined in Fig. 2. As usual for syntactic trans-
lations [9], the term translation is given by [·] and the type translation, written
[[·]], is derived from it using the function El. There is an additional macro [·]

∅
,

defined using Erri, which corresponds to the way to inhabit a given type from
an exception.

Note that we will often slightly abuse the translation and use the [·] and [[·]]
notation as macros acting on the target theory. This is merely for readability
purposes, and the corresponding uses are easily expanded to the actual term.

The following lemma makes explicit how [[·]] and [·]
∅

behave on universes and
on the dependent function space.

Lemma 3 (Unfoldings). The following definitional equations hold:

– [[�i]] ≡ typei

– [[Πx : A.B]] ≡ Πx : [[A]]. [[B]]
– [�i]∅ e ≡ TypeErri e
– [Πx : A.B]

∅
e ≡ λx : [[A]]. [B]

∅
e

Proof. By unfolding and straightforward reductions.

The soundness of the translation follows from the following properties, which
are fundamental but straightforward to prove.

Theorem 4 (Soundness). The following properties hold.

– [M{x := N}] ≡ [M ]{x := [N ]} (substitution lemma).
– If M ≡ N then [M ] ≡ [N ] (conversion lemma).
– If Γ � M : A then [[Γ]] � [M ] : [[A]] (typing soundness).
– If Γ � A : � then [[Γ]] � [A]

∅
: E → [[A]] (exception soundness).

Proof. The first property is by routine induction on M , the second is direct
by induction on the conversion derivation. The third is by induction on the
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typing derivation, the most important rule being �i : �j , which holds because
[�i] ≡ TypeVal typei TypeErri has type typej which is convertible to [[�j ]] by
Lemma 3. The last property is a direct application of typing soundness and
unfolding of Lemma 3 for universes.

We call TE the theory arising from this interpretation, which is formally
defined in a way similar to standard categorical constructions over dependent
type theory. Terms and contexts of TE are simply terms and contexts of T . A
context Γ is valid is TE whenever its translation [[Γ]] is valid in T . Two terms
M and N are convertible in TE whenever their translations [M ] and [N ] are
convertible in T . Finally, Γ �TE

M : A whenever [[Γ]] �T [M ] : [[A]].
That is, it is possible to extend TE with a new constant c of a given type A

by providing an inhabitant cE of the translated type [[A]]. Then the translation is
extended with [c] := cE. The potential computational rules satisfied by this new
constant are directly given by the computational rules satisfied by its translation.
In some sense, the new constant c is just syntactic sugar for cE. Using TE,
Theorem 4 can be rephrased in the following way.

Theorem 5. If T interprets CCω then so does TE, that is, the exceptional trans-
lation is a syntactic model of CCω.

2.2 Exceptional Inductive Types

The fact that the only effect we consider is raising exceptions does not really
affect the negative fragment when compared to our previous work [2], but
it sure shines when it comes to interpreting inductive datatypes. Indeed, as
explained in the introduction, the weaning translation only interprets a subset
of CIC, restricting dependent elimination to linear predicates. Furthermore, it
also requires a few syntactic properties of the underlying monad ensuring that
positivity criteria are preserved through the translation, which can be sometimes
hard to obtain.

The exceptional translation diverges from the weaning translation precisely
on inductives types. It allows a more compact translation of the latter, while at
the same time providing a complete interpretation of CIC, that is, including full
dependent elimination.

From now on, we assume that the target theory is a predicative restriction
of CIC, i.e. that we can construct in it new inductive datatypes as we do in
e.g. Coq [10], but without considering an impredicative universe. That is, all
the inductive types we consider in this section live in �. As a matter of fact,
we slightly abuse the usual nomenclature and simply call CIC this predicative
fragment in the remainder of the paper. We refrain from describing the generic
typing rules that extend CCω into CIC, as they are fairly standard and would
take up too much space. See for instance Werner’s thesis for a comprehensive
presentation [11].
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[I] := λ(p1 : [[P1]]) ... (pn : [[Pn]]) (i1 : [[I1]]) ... (im : [[Im]]).

TypeVal (I• p1 ... pn i1 ... im) (I∅ p1 ... pn i1 ... im)

[c1] := c•
1

. . .

[ck] := c•
k

Fig. 3. Inductive type translation

Type and Constructor Translation. As explained before, the intuitive inter-
pretation of a type through the exceptional translation is a pair of a type and a
default function from exceptions into that type. In particular, when translating
some inductive type I, we must come up with a type [[I]] together with a default
function E → [[I]]. As soon as E is inhabited, that means that we need [[I]] to be
inhabited, preferably in a canonical way. The solution is simple: just as for types
where we freely added the exceptional case by means of the TypeErr constructor,
we freely add exceptions to every inductive type.

In practice, there is an elegant and simple way to do this. It just consists
in translating constructors pointwise, while adding a new dedicated constructor
standing for the exceptional case. We now turn to the formal construction.

Definition 6. Let I be an inductive datatype with

– parameters p1 : P1, . . ., pn : Pn;
– indices i1 : I1, . . ., im : Im;
– constructors

c1 : Π(a1,1 : A1,1) . . . (a1,l1 : A1,l1). I p1 . . . pn V1,1 . . . V1,m

. . .
ck : Π(ak,1 : Ak,1) . . . (ak,lk : Ak,lk). I p1 . . . pn Vk,1 . . . Vk,m

We define the exceptional translation of I and its constructors in Fig. 3,
where I• is the inductive type defined by

– parameters p1 : [[P1]], . . ., pn : [[Pn]];
– indices i1 : [[I1]], . . ., im : [[Im]];
– constructors

c•
1 : Π(a1,1 : [[A1,1]]) . . . (a1,l1 : [[A1,l1 ]]). I• p1 . . . pn [V1,1] . . . [V1,m]

. . .
c•
k : Π(ak,1 : [[Ak,1]]) . . . (ak,lk : [[Ak,lk ]]). I• p1 . . . pn [Vk,1] . . . [Vk,m]

I∅ : Π(i1 : [[I1]]) . . . (im : [[Im]]). E → I• p1 . . . pn i1 . . . im

where in the recursive calls in the various A, we locally set

[[I M1 . . . Mn N1 . . . Nm]] := I• [M1] . . . [Mn] [N1] . . . [Nm].

Example 7. We give a few representative examples of the inductive translation in
Fig. 4 in a Coq-like syntax. They were chosen because they are simple instances
of inductive types featuring parameters, indices and recursion in an orthogonal
way. For convenience, we write Σ A (λx : A.B) as Σx : A.B.
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Ind bool : � :=
| true : bool
| false : bool

Ind bool• : � :=
| true• : bool•

| false• : bool•

| bool∅ : E → bool•

Ind list (A : �) : � :=
| nil : list A
| cons : A → list A → list A

Ind list• (A : [[�]]) : � :=
| nil• : list• A
| cons• : [[A]] → list• A → list• A
| list∅ : E → list• A

Ind Σ (A : �) (B : A → �) : � :=
| ex : Π(x : A) (y : B x). Σ A B

Ind Σ• (A : [[�]]) (B : [[A]] → �) : � :=
| ex• : Π(x : [[A]]) (y : [[B x]]). Σ• A B
| Σ∅ : E → Σ• A B

Ind eq (A : �) (x : A) : A → � :=
| refl : eq A x x

Ind eq• (A : [[�]]) (x : [[A]]) : [[A]] → � :=
| refl• : eq• A x x
| eq

∅
: Πy : [[A]]. E → eq• A x y

Fig. 4. Examples of translations of inductive types

Remark 8. The fact the we locally override the translation for recursive calls
on the [[·]] translation of the type being defined means that we cannot handle
cases where the translation of the type of a constructor actually contains an
instance of [I]. Because of the syntactic positivity criterion, the only possibility
for such a situation to occur in CIC is in the so-called nested inductive definitions.
However, nested inductive types are essentially a programming convenience, as
most nested types can be rewritten in an isomorphic way that is not nested.

Lemma 9. If I is given as in Definition 6, we have for any terms �M , �N

[[I M1 . . . Mn N1 . . . Nm]] ≡ I• [M1] . . . [Mn] [N1] . . . [Nm].

This justifies a posteriori the simplified local definition we used in the recur-
sive calls of the translation of the constructors.

Theorem 10. For any inductive type I not using nested inductive types, the
translation from Definition 6 is well-typed and satisfies the positivity criterion.

Proof. Preservation of typing is a consequence of Theorem 4. The restriction on
nested types, which is slightly stronger than the usual positivity criterion of CIC,
is due to the fact that I∅ is not available in the recursive calls and thus cannot
be used to build a term of type type via the TypeVal constructor.

Preservation of the positivity criterion is straightforward, as the shape of
every constructor ck is preserved, and furthermore by Lemma 3 the structure of
every argument type is preserved by [[·]] as well. The only additional constructor
I∅ does not mention the recursive type and is thus automatically positive.

Corollary 11. Type soundness holds for the translation of inductive types and
their constructors.
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Pattern-Matching Translation. We now turn to the translation of the elim-
ination of inductive terms, that is, pattern matching. Once again, its definition
originates from the fact that we are working with call-by-name exceptions. It is
well-known that in call-by-name, pattern matching implements a delimited form
of call-by-value, by forcing its scrutinee before proceeding, at least up to the head
constructor. Therefore, as soon as the matched term (re-)raises an exception, the
whole pattern-matching reraises the same exception. A little care has to be taken
in order to accomodate for the fact that the return type of the pattern-matching
depends on the scrutinee, in particular when it is the default constructor of the
inductive type.

In what follows, we use the i1 . . . in notation for clarity, but compact it to �i
for space reasons, when appropriate.

Definition 12. Assume an inductive I as given in Definition 6. Let Q be the
well-typed pattern-matching defined as

match M return λ(i1 : I1) . . . (im : Im) (x : I X1 . . . Xn i1 . . . im). R with

| c1 a1,1 . . . a1,l1 ⇒ N1

. . .
| ck ak,1 . . . ak,lk ⇒ Nk

end

where

Γ � �X : �P Γ � �Y : �I{�p := �X} Γ � M : I X1 . . . Xn Y1 . . . Ym

Γ,�i : �I{�p := �X}, x : I �X �i � R : � Γ � Q : R{�i := �Y , x := M}
Γ,�a1 : �A1 � N1 : R{�i := �V1{�p := �X}, x := c1

�X �a1}
. . .

Γ,�ak : �Ak � Nk : R{�i := �Vk{�p := �X}, x := ck
�X �ak}

then we pose [Q] to be the following pattern-matching.

match [M ] return λ(i1 : [[I1]]). . . (im : [[Im]]) (x : I• [X1] . . . [Xn] i1 . . . im). [[R]] with

| c•
1 a1,1 . . . a1,l1 ⇒ [N1]

. . .
| c•

k ak,1 . . . ak,lk ⇒ [Nk]

| I∅ i1 . . . im e ⇒ [R]
∅
{x := I∅ X1 . . . Xn i1 . . . im e} e

end

Lemma 13. With notations and typing assumptions from Definition 12, we
have

[[Γ]] � [Q] : [[R]]{�i := �[Y ], x := [M ]}.

Proof. Mostly a consequence of Theorem 4 applied to all of the premises of the
pattern-matching rule. The only thing we have to check specifically is that the
branch for the default constructor I∅ is well-typed as

[[Γ]],�i : �I{�p := �X}, e : E � [R]
∅

{x := I∅
�X �i e} e : [[R]]{x := I∅

�X �i e}

which is also due to Theorem 4 applied to R.
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Lemma 14. The translation preserves ι-rules.

Proof. Immediate, as the translation preserves the structure of the patterns.

The translation is also applicable to fixpoints, but for the sake of readability
we do not want to fully spell it out, although it is simply defined by congruence
(commutation with the syntax). As such, it trivially preserves typing and reduc-
tion rules. Note that the Coq plugin presented in Sect. 6 features a complete
translation of inductive types, pattern-matching and fixpoints. So the interested
reader may experiment with the plugin to see how fixpoints are translated.

Therefore, by summarizing all of the previous properties, we have the follow-
ing result.

Theorem 15. If T interprets CIC, then so does TE, and thus the exceptional
translation is a syntactic model of CIC.

2.3 Flirting with Inconsistency

It is now time to point at the elephant in the room. The exceptional translation
has a lot of nice properties, but it has one grave defect.

Theorem 16. If E is inhabited, then TE is logically inconsistent.

Proof. The empty type is translated as

Ind empty• : � := empty
∅

: E → empty•

which is inhabited as soon as E is.

Note that when E is empty, the situation is hardly better, as the translation
is essentially the identity. However, when T satisfies canonicity, the situation is
not totally desperate as TE enjoys the following weaker canonicity lemma.

Lemma 17 (Exceptional Canonicity). Let I be an inductive type with con-
structors c1, . . . , cn and assume that T satisfies canonicity. The translation
of any closed term �TE

M : I evaluates either to a constructor of the form
c•
i N1 . . . Nli or to the default constructor I∅ e for some e : E.

Proof. Direct application of Theorem 4 and canonicity of T .

A direct consequence of Lemma 17 is that any proof of the empty type is
an exception. As we will see in Sect. 4.1, for some types it is also possible to
dynamically check whether a term of this type is a correct proof, in the sense
that it does not raise an uncaught exception. This means that while TE is logically
unsound, it is computationally relevant and can still be used as a dependently-
typed programming language with exceptions, a shift into a realm where we would
have called the weaker canonicity Lemma 17 a progress lemma.

This is not the end of the story, though. Recall that TE only exists through
its embedding [·] into T . In particular, if T is consistent, this means that one
can reason about terms of TE directly in T . For instance, it is possible to prove
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in T that assuming some properties about its input, a function in TE never raises
an exception. Hence not only do we have an effectul programming language, but
we also have a sound logical framework allowing to transparently prove safety
properties about impure programs.

It is actually even better than that. We will show in Sect. 3 that safety prop-
erties can be derived automatically for pure programs, allowing to recover a
consistent type theory as long as T is consistent itself.

2.4 Living in an Exceptional World

We describe here what TE feels like in direct style. The exceptional theory feature
a new type E which reifies the underlying type E of exceptions in TE. It uses the
fact that for E, the default function (here of type E → E) can simply be defined
as the identity function. Its translation is given by

[E] : [[�]] := TypeVal E (λe : E. e).

Then, it is possible to define in TE a function raise : ΠA : �.E → A that
raises the provided exception at any type as

[raise] := λ(A : type) (e : E). Err A e.

As we have already mentioned, the reader should be aware that the exceptions
arising from this translation are call-by-name. This means that they do not
behave like their usual call-by-value counterpart. In particular, we have in TE

raise (Πx : A.B) e ≡ λx : A. raise B e

which means that exceptions cannot be caught on Π-types. We can catch
them on universes and inductive types though, because in those cases they are
freely added through an extra constructor which one can pattern-match on. For
instance, there exists in TE a term

catchbool : ΠP : bool → �. P true → P false →
(Πe : E. P (raise bool e)) → Πb : bool. P b

defined by

[catchbool] := λP pt pf pe b. match b return λb. El (P b) with

| true• ⇒ pt

| false• ⇒ pf

| bool∅ e ⇒ pe e

end

satisfying the expected reduction rules on all three cases.
In Sect. 6, we illustrate the use of the exceptional theory using the Coq

plugin to define a simple cast framework as in [12].
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[�i]ε := λA : [[�i]]. [[A]] → �i

[x]ε := xε

[λx : A. M ]ε := λ(x : [[A]]) (xε : [[A]]ε x). [M ]ε

[M N ]ε := [M ]ε [N ] [N ]ε

[Πx : A. B]ε := λ(f : Πx : [[A]]. [[B]]). Π(x : [[A]]) (xε : [[A]]ε x). [[B]]ε (f x)

[[A]]ε := [A]ε

[[·]]ε := ·
[[Γ, x : A]]ε := [[Γ]]ε, x : [[A]], xε : [[A]]ε x

Fig. 5. Parametricity over exceptional translation

3 Kreisel Meets Martin-Löf

It is well-known that Reynolds’ parametricity [13] and Kreisel’s modified realiz-
ability [4] are two instances of the broader logical relation techniques. Usually,
parametricity is used to derive theorems for free, while realizability constrains
programs. In a surprising turn of events, we use Bernardy’s variant of para-
metricity on CIC [5] as a realizability trick to evict undesirable behaviours of
TE. This leads to the parametric exceptional translation, which can be seen as
the embodiment of Kreisel’s realizability in type theory. In this section, we first
present this translation on the negative fragment, then extend it to CIC and
finally discuss its meta-theoretical properties.

3.1 Exceptional Parametricity in a Negative World

The exceptional parametricity translation for terms of CCω is defined in Fig. 5.
Intuitively, any type A in TE is turned into a validity predicate Aε : A → � which
encodes the fact that an inhabitant of A is not allowed to generate unhandled
exceptions. For instance, a function is valid if its application to a valid term
produces a valid answer. It does not say anything about the application to invalid
terms though, which amounts to a garbage in, garbage out policy. The translation
then states that every pure term is automatically valid.

This translation is exactly standard parametricity for type theory [5] but
parametrized by the exceptional translation. This means that any occurrence of
a term of the original theory used in the parametricity translation is replaced
by its exceptional translation, using [·] or [[·]] depending on whether it is used as
a term or as a type. For instance, the translation of an application [M N ]ε is
given by [M ]ε [N ] [N ]ε instead of just [M ]ε N [N ]ε.

Lemma 18 (Substitution lemma). The translation satisfies the following
conversion: [M{x := N}]ε ≡ [M ]ε{x := [N ], xε := [N ]ε}.

Theorem 19 (Soundness). The two following properties hold.



Failure is Not an Option 257

– If M ≡ N then [M ]ε ≡ [N ]ε.
– If Γ � M : A then [[Γ]]ε � [M ]ε : [[A]]ε [M ].

Proof. By induction on the derivation.

We can use this result to construct another syntactic model of CCω. Contrar-
ily to usual syntactic models where sequents are straightforwarldy translated to
sequents, this model is slightly more subtle as sequents are translated to pairs
of sequents instead. This is similar to the usual parametricity translation.

Definition 20. The theory T p
E

is defined by the following data.

– Terms of T p
E

are pairs of terms of T .
– Contexts of T p

E
are pairs of contexts of T .

– �T p
E

Γ whenever �T [[Γ]] and �T [[Γ]]ε.
– M ≡T p

E

N whenever [M ] ≡T [N ] and [M ]ε ≡T [N ]ε.
– Γ �T p

E

M : A whenever [[Γ]] �T [M ] : [[A]] and [[Γ]]ε �T [M ]ε : [[A]]ε [M ].

Once again, Theorem 19 can be rephrased in terms of preservation of theories
and syntactic models.

Theorem 21. If T interprets CCω then so does T p
E

. That is, the parametric
exceptional translation is a syntactic model of CCω.

This construction preserves definitional η-expansion, as functions are mapped
to (slightly more complicated) functions.

Lemma 22. If T satisfies definitional η-expansion, then so does T p
E

.

Proof. The first component of the translation preserves definitional η-expansion
because functions are mapped to functions. It remains to show that

[λx : A.M x]ε := λ(x : [[A]]) (xε : [[A]]ε x). [M ]ε x xε ≡ [M ]ε

which holds by applying η-expansion twice.

It is interesting to remark that Bernardy-style unary parametricity also leads
to a syntactic model T p that interprets CCω (as well as CIC), using the same
kind of glueing construction. Nonetheless, this model is somewhat degenerate
from the logical point of view. Namely it is a conservative extension of the target
theory. Indeed, if Γ �T p M : A for some Γ, M and A from T , then there we also
have Γ �T M : A, because the first component of the model is the identity, and
the original sequent can be retrieved by the first projection.

This is definitely not the case with the T p
E

theory, because the first projection
is not the identity. In particular, because of Theorem 16, every sequent in the first
projection is inhabited, although it is not the case in T itself if it is consistent.
This means that parametricity can actually bring additional expressivity when
it applies to a theory which is not pure, as it is the case here.
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Ind boolε : bool• → � :=
| trueε : boolε true•

| falseε : boolε false•

Ind listε (A : type) (Aε : [[A]] → �) : list• A → � :=
| nilε : listε A Aε (nil• A)
| consε : Π(x : [[A]]) (xε : Aε x) (l : list• A) (lε : listε A Aε l).

listε A Aε (cons• A x l)

Ind eqε (A : type) (Aε : [[A]] → �) (x : [[A]]) (xε : Aε x) :
Π(y : [[A]]) (yε : Aε y). eq• A x y → � :=

| reflε : reflε A Aε x xε x xε (refl• A x)

Fig. 6. Examples of parametric translation of inductive types

3.2 Exceptional Parametric Translation of CIC

We now describe the parametricity translation of the positive fragment. The
intuition is that as it stands for an exception, the default constructor is always
invalid, while all other constructors are valid, assuming their arguments are.

Type and Constructor Translation

Definition 23. Let I be an inductive type as given in Definition 6. We define
the exceptional parametricity translation Iε of I as the inductive type defined by:

– parameters [[p1 : P1, . . ., pn : Pn]]ε;
– indices [[i1 : I1, . . ., im : Im]]ε, x : I p1 . . . pn i1 . . . im;
– constructors

c1ε : Π[[�a1 : �A1]]ε.
Iε p1 p1ε . . . pn pnε [V1,1] [V1,1]ε . . . [V1,m] [V1,m]ε (c•

1 �p �a1)
. . .
ckε : Π[[�ak : �Ak]]ε.

Iε p1 p1ε . . . pn pnε [Vk,1] [Vk,1]ε . . . [Vk,m] [Vk,m]ε (c•
k �p �ak).

and we extend the translation as

[I]ε := Iε [c1]ε := c1ε . . . [ck]ε := ckε.

Example 24. We give the exceptional parametric inductive translation of our
running examples in Fig. 6.

Note that contrarily to the negative case, the exceptional parametricity trans-
lation on inductive types is not the same thing as the composition of Bernardy’s
parametricity together with the exceptional translation. Indeed, the latter would
also have produced a constructor for the default case from the exceptional induc-
tive translation, whereas our goal is precisely to rule this case out via the addi-
tional realizability-like interpretation.
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It is also very different from our previous parametric weaning translation [2],
which relies on internal parametricity to recover dependent elimination, enforcing
by construction that no effectful term exists. Here, effectful terms may be used
in the first component, but they are required after the fact to have no incon-
sistent behaviour. Intuitively, parametric weaning produces one pure sequent,
while exceptional parametricity produces two, with the first one being poten-
tially impure and the second one assuring the first one is harmless.

Pattern-Matching Translation

Definition 25. Let Q be the pattern-matching defined in Definition 12. We pose
[Q]ε to be the pattern-matching

match [M ]ε return λ[[�i : �I]]ε (x : I• [X1] . . . [Xn] i1 . . . im).
(xε : Iε [X1] [X1]ε . . . [Xn] [Xn]ε i1 i1ε . . . im imε x)

[[R]]ε [Qx]

with

| c1ε a1,1 a1,1ε . . . a1,l1 a1,l1ε ⇒ [N1]ε
. . .
| ckε ak,1 ak,1ε . . . ak,lk a1,lkε ⇒ [Nk]ε
end

where Qx is the following pattern-matching

match x return λ(i1 : I1) . . . (im : Im) (x : I X1 . . . Xn i1 . . . im). R with

| c1 a1,1 . . . a1,l1 ⇒ N1

. . .
| ck ak,1 . . . ak,lk ⇒ Nk

end

that is Q where the scrutinee has been turned into the index variable of the
parametricity predicate.

Lemma 26. With notations and typing assumptions from Definition 12, we
have

[[Γ]]ε � [Q]ε : [[R{�i := �Y , x := M}]]ε [Q].

The exceptional parametricity translation can be extended to handle fix-
points as well, with a few limitations. Translating generic fixpoints uniformly
is indeed an open problem in standard parametricity, and our variant faces the
same issue. In practice, standard recursors can be automatically translated, and
fancy fixpoints may require hand-writing the parametricity proof. We do not
describe the recursor translation here though, as it is essentially the same as
standard parametricity. Again, the interested reader may test the Coq plugin
exposed in Sect. 6 to see how recursors are translated.

Packing everything together allows to state the following result.

Theorem 27. If T interprets CIC, then so does T p
E

, and thus the exceptional
parametricity translation is a syntactic model of CIC.
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3.3 Meta-Theoretical Properties of T p
E

Being built as a syntactic model, T p
E

inherits a lot of meta-theoretical properties
of T . We list a few of interest below.

Theorem 28. If T is consistent, then so is T p
E

.

Proof. Assume �T p
E

M0 : empty for some M0. Then by definition, there exists
two terms M and Mε such that �T M : empty• and �T Mε : emptyε M . But
emptyε has no constructor, and T is inconsistent.

More generally, the same argument holds for any inductive type.

Theorem 29. If T enjoys canonicity, then so does T p
E

.

Proof. The exceptional parametricity translation for inductive types has the
same structure as the original type, so any normal form in T p

E
can be mapped

back to a normal form in T .

4 Effectively Extending CIC

The parametric exceptional translation allows to extend the logical expressivity
of CIC in the following ways, which we develop in the remainder of this section.

We show in Sect. 4.1 that Markov’s rule is admissible in CIC. We already
sketched this result in our previous paper [2], but we come back to it in more
details. More generally, we show a form of conservativity of double-negation
elimination over the type-theoretic version of Π0

2 formulae.
In Sect. 4.2, we exhibit a syntactic model of CIC which satisfies definitional

η-expansion for functions but which negates function extensionality. As far as
we know, this was not known.

Finally, in Sect. 4.3, we show that there exists a model of CIC which validates
the independence of premises. This is a new result, that shows that CIC can
feature traces of classical reasoning while staying computational. We use this
result in Sect. 4.4 to give an alternative proof of the recent result of Coquand
and Mannaa [7] that Markov’s principle is not provable in CIC.

4.1 Markov’s Rule

We show in this section that CIC is closed under a generalized Markov’s rule.
The technique used here is no more than a dependently-typed variant of Fried-
man’s trick [14]. Indeed, Friedman’s A-translation amounts to add exceptions to
intuitionistic logic, which is precisely what TE does for CIC.

Definition 30. An inductive type in CIC is said to be first-order if all the types
of the arguments of its constructors, in its parameters and in its indices are
recursively first-order.
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Example 31. The empty, unit and N types are first-order. If P and Q are first-
order then so is Σp : P.Q, P + Q and eq P p0 p1. Consequently, the CIC
equivalent of Σ0

1 formulae are in particular first-order.

First-order types enjoy uncommon properties, like the fact that they can be
injected into effectful terms and purified away. This is then used to prove the
generalized Markov’s Rule.

Lemma 32. For every first-order type �p : �P � Q : � where all �P are first-order,
there are retractions ι�P , ιQ and θ�P , θQ s.t.:

�p : �P � ιQ : Q → [[Q]]{�p := ι�P �p}
�p : �P � θQ : [[Q]]{�p := ι�P �p} → Q + E.

Proof. The ι terms exist because effectful inductive types are a semantical super-
set of their pure equivalent, and the θ terms are implemented by recursively
forcing the corresponding impure inductive term. One relies on decidability of
equality of first-order type to fix the indices.

Theorem 33 (Generalized Markov’s Rule). For any first-order type P and
first-order predicate Q over P , if �CIC Πp : P.¬¬ (Q p) then �CIC Πp : P.Q p.

Proof. Let � M : Πp : P.¬¬ (Q p). By taking E := Q p and apply the soundness
theorem, one gets a proof

p : P � [M ] : Πp̂ : [[P ]]. ([[Q p̂]] → empty•) → empty•.

But empty• ∼= E ≡ Q p, so we can derive from [M ] a term M � s.t.

p : P � M � : Πp̂ : [[P ]]. ([[Q p̂]] → Q p + Q p) → Q p.

The proofterm we were looking for is thus no more than λp : P.M � (ιP p) θQ.

4.2 Function Intensionality with η-expansion

In a previous paper [9], we already showed that there existed a syntactic model of
CIC that allowed to internally disprove function extensionality. Yet, this model
was clearly not preserving definitional η-expansion on functions, as it was adding
additional structure to abstraction and application (namely a boolean). Thanks
to our new model, we can now demonstrate that counterintuitively, it is possible
to have a consistent type theory that enjoys definitional η-expansion while negat-
ing internally function extensionality. In this section we suppose that E := unit,
although any inhabited type of exceptions would work.

By Lemma 22, we know that the parametric exceptional translation preserves
definitional η-expansion. It is thus sufficient to find two functions that are exten-
sionally equal but intensionally distinct in the model. Let us consider to this end
the unit → unit functions

id⊥ := λu : unit. u id� := λu : unit. tt.
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Theorem 34. The following sequents are derivable:

�T p
E

Πu : unit. id⊥ u = id� u �T p
E

id⊥ = id� → empty.

Proof. The main difference between the two functions is that id⊥ preserves
exceptions while id� does not, which we exploit.

The first sequent is provable in CIC by dependent elimination and thus is
derivable in T p

E
by applying the soundness theorem.

To prove the first component of the second sequent, we exhibit a prop-
erty that discriminates [id⊥] and [id�], which is, as explained, their evaluation
on the term unit∅ tt. Showing then that this proof is parametric is equiva-
lent to showing Π(p : [[id⊥ = id�]]) (pε : [[id⊥ = id�]]ε p). empty. But pε actu-
ally implies [id⊥] = [id�], which we just showed was absurd.

4.3 Independence of Premise

Independence of premise (IP) is a semi-classical principle from first-order logic
whose CIC equivalent can be stated as follows.

Π(A : �) (B : N → �). (¬A → Σn : N. B n) → Σn : N.¬A → B n (IP)

Although not derivable in intuitionistic logic, it is an admissible rule of HA. The
standard proof of this property is to go through Kreisel’s modified realizability
interpretation of HA [4]. In a nutshell, the interpretation goes as follows: by
induction over a formula A, define a simple type τ(A) of realizers of A together
with a realizability predicate · � A over τ(A). Then show that whenever �HA A,
there exists some simply-typed term t : τ(A) s.t. t � A. As the interpretation
also implies that there is no t s.t. t � ⊥, this gives a sound model of HA, which
contains more than the latter. Most notably, there is for instance a term ip s.t.

ip � (¬A → ∃n.B) → ∃n.¬A → B

for any A,B. Intriguingly, the computational content of ip did not seem to
receive a fair treatment in the literature. To the best of our knowledge, it has
never been explicitly stated that IP was realizable because of the following “bug”
of Kreisel’s modified realizability.

Lemma 35 (Kreisel’s bug). For every formula A, τ(A) is inhabited. In par-
ticular, τ(⊥) := unit.

We show that this is actually not a bug, but a hidden feature of Kreisel’s
modified realizability, which secretly allows to encode exceptions in the realizers.
To this end, we implement IP in T p

E
by relying internally on paraproofs, i.e.

terms raising exceptions, while ensuring these exceptions never escape outside
of the locally unsafe boundary. The resulting T p

E
term has essentially the same

computational content as its Kreisel’s realizability counterpart. In this section
we suppose that E := unit, although assuming E to be inhabited is sufficient.

To ease the understanding of the definition, we rely on effectful combinators
that can be defined in TE.
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Definition 36. We define in TE the following terms.

fail : ΠA : �. A

[fail] := λA : [[�]]. [A]
∅
tt

isΣ : ΠA B. (Σx : A. B) → bool

[isΣ] := λA B p. match p with

| ex• _ _ ⇒ true•

| Σ∅ _ ⇒ false•

end

isN : N → bool

[isN] := fix isN n := match n with

| O• ⇒ true•

| S• n ⇒ isN n

| N∅ _ ⇒ false•

end

It is worth insisting that these combinators are not necessarily parametric.
While it can be shown that isΣ and isN actually are, fail is luckily not. The
isΣ and isN functions are used in order to check that a value is actually pure
and does not contain exceptions.

Definition 37. We define ip in TE in direct style below, using the available
combinators from Definition 36 and a bit of syntactic sugar.

ip : IP

ip := λ(A : �) (B : N → �) (f : ¬A → Σn : N. B n).
let p := f (fail (¬A)) in

if isΣ N B p then match p with

| ex n b ⇒ if isN n then ex _ _ n (λ_ : ¬A. b)
else ex _ _ O (fail (¬A → B O))

end else ex _ _ O (fail (¬A → B O))

The intuition behind this term is the following. Given f : ¬A → Σn : N. B n,
we apply it to a dummy function which fails whenever it is used. Owing to the
semantics of negation, we know in the parametricity layer that the only way
for this application to return an exception is that f actually contained a proof
of A and applied fail to it. Therefore, given a true proof of ¬A, we are in an
inconsistent setting and thus we are able to do whatever pleases us. The issue
is that we do not have access to such a proof yet, and we do have to provide
a valid integer now. Therefore, we check whether f actually provided us with a
valid pair containing a valid integer. If so, this is our answer, otherwise we stuff
a dummy integer value and we postpone the contradiction.

This is essentially the same realizer as the one from Kreisel’s modified real-
izability, except that we have a fancy type system for realizers. In particular,
because we have dependent types, integers also exist in the logical layer, so that
they need to be checked for exceptions as well. The only thing that remains to
be proved is that ip also lives in T p

E
.

Theorem 38. There is a proof of �T [[IP]]ε [ip].

Proof. The proof is straightforward but tedious, so we do not give the full details.
The file IPc.v of the companion Coq plugin contains an explicit proof. The
essential properties that make it go through are the following.
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– �T Π(n : N
•) (p1 p2 : Nε n). p1 = p2

– �T Πn : N
•. [isN] n = true• ↔ Nε n

– �T Π(p q : [[¬A]]). [[¬A]]ε p → [[¬A]]ε q

Corollary 39. We have �T p
E

IP.

4.4 Non-provability of Markov’s Principle

From this result, one can get a very easy syntactic proof of the independence
result of Markov’s principle from CIC. Markov’s principle is usually stated as

ΠP : N → bool.¬¬ (Σn : N. P n = true) → Σn : N. P n = true (MP)

An independence result was recently proved by Coquand and Mannaa by a
semantic argument [7]. We leverage instead a property from realizability [15]
that has been applied to type theory the other way around by Herbelin [16].

Lemma 40. If S is a computable theory containing CIC and enjoying canonic-
ity, then one cannot have both �S IP and �S MP.

Proof. By applying IP to MP, one easily obtains that

�S ΠP : N → bool.Σn : N.Πm : N. P m = true → P n = true.

Thus, for every closed P : N → bool, by canonicity there exists a closed nP : N

s.t. �S Πm : N. P m = true → P nP = true. But then one can decide whether
P holds for some n by just computing P nP , so that we effectively obtained an
oracle deciding the halting problem (which is expressible in CIC).

Corollary 41. We have 	�CICp
E

MP and thus also 	�CIC MP.

5 Possible Extensions

5.1 Negative Records

Interestingly, the fact that the translation introduces effects has unintented con-
sequences on a few properties of type theory that are often taken for granted.
Namely, because type theory is pure, there is a widespread confusion amongst
type theorists between positive tuples and negative records.

– Positive tuples are defined as a one-constructor inductive type, introduced by
this constructor and eliminated by pattern-matching. They do not (and in
general cannot, for typing reasons) satisfy definitional η-laws, also known as
surjective pairing.

– Negative records are defined as a record type, introduced by primitive packing
and eliminated by projections. They naturally obey definitional η-laws.
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A, B, M, N ::= . . . | &x : A. B | 〈M, N〉 | M.π1 | M.π2

Γ � A : �i Γ, x : A � B : �j

Γ � &x : A. B : �max(i,j)

Γ � M : &x : A. B

Γ � M.π1 : A

Γ � M : &x : A. B

Γ � M.π2 : B{x := M.π1}

Γ � M : A Γ, x : A � B : � Γ � N : B{x := M}
Γ � 〈M, N〉 : &x : A. B

〈M.π1, M.π2〉 ≡ M 〈M, N〉.π1 ≡ M 〈M, N〉.π2 ≡ N

Fig. 7. Negative pairs

[&x : A. B] := TypeVal (&x : [[A]]. [[B]]) (λe : E. 〈[A]
∅

e, [B]
∅
{x := [A]

∅
e} e〉)

[〈M, N〉] := 〈[M ], [N ]〉
[M.πi] := [M ].πi

Fig. 8. Exceptional translation of negative pairs

In the remainder of this section, we will focus on the specific case of pairs, but the
same arguments are generalizable to arbitrary records. Positive pairs Σx : A.B
are defined by the inductive type from Fig. 4. Negative pairs &x : A.B are
defined as a primitive structure in Fig. 7. We use the ampersand notation as a
reference to linear logic.

In CIC, it is possible to show that negative and positive pairs are proposition-
ally isomorphic, because positive pairs enjoy dependent elimination. Nonethe-
less, it is a well-known fact in the programming folklore that in a call-by-name
language with effects, the two are sharply distinct. For instance, in presence of
exceptions, assuming � M : Σx : A.B, one does not have in general

M ≡ ex A B (fst A B M) (snd A B M)

where fst and snd are defined by pattern-matching. Indeed, if M is itself an
exception, the two sides can be discriminated by a pattern-matching. Match-
ing on the left-hand side results in immediate reraising of the exception, while
matching on the right-hand side succeeds as long as the arguments of the con-
structor are not forced. Forcefully equating those two terms would then result
in a trivial equational theory.

Such a phenomenon is at work in the exceptional translation. It is actually
possible to interpret negative pairs through the translation, but in a way that
significantly differs from the translation of positive pairs. In this section, we
assume that T contains negative pairs.

Definition 42. The translation of negative pairs is given in Fig. 8.
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It is straightforward to check that the definitions of Fig. 8 preserve the con-
version and typing rules from Fig. 7. The same translation can be extended to
any record. We thus have the following theorem.

Theorem 43. If T has negative records, then so has TE.

It is enlightening to look at the difference between negative and positive pairs
through the translation, because now we have effects that allow to separate them
clearly. Indeed, compare

[[&x : A.B]] ≡ &x : [[A]]. [[B]] with [[Σx : A.B]] ∼= E + Σx : [[A]]. [[B]].

Clearly, if E is inhabited, then the two types do not even have the same cardi-
nal, assuming A and B are finite. Furthermore, their default inhabitant is not
the same at all. It is defined pointwise for negative pairs, while it is a special
constructor for positive ones. Finally, there is obviously not any chance that
[[Σx : A.B]] satisfies definitional surjective pairing in vanilla CIC, as it has two
constructors. The trick is that the two types are externally distinguishable, but
are not internally so, because TE is a model of CIC+& and thus proves that they
are propositionally isomorphic.

It is possible to equip negative pairs with a parametricity relation defined
as a primitive record which is the pointwise parametricity relation of each field,
which naturally preserve typing and conversion rules.

Theorem 44. If T has negative records, then so has T p
E

.

5.2 Impredicative Universe

All the systems we have considered so far are predicative. It is nonetheless pos-
sible to implement an impredicative universe ∗ in TE if T features one.

Intuitively, it is sufficient to ask for an inductive type prop living in �i

for all i, which is defined just as type, except that its constructor PropVal
corresponding to TypeVal contains elements of ∗ rather than �. Then one can
similarly define El∗ and Err∗ acting on prop rather than type. One then slightly
tweaks the [[·]] macro from Fig. 2 by defining it instead as

[[A]] :=

{
El∗ [A] if A : ∗
El [A] otherwise

and similarly for type constructors. With this modified translation, one obtains
a soundness theorem for CCω.

Theorem 45. The exceptional translation is a syntactic model of CCω + ∗.

Likewise, the inductive translation is amenable to interpret an impredicative
universe, with one major restriction though.

Theorem 46. The exceptional translation is a syntactic model of CIC+∗ with-
out the singleton elimination rule.
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Indeed, the addition of the default constructor disrupts the singleton elimi-
nation criterion for all inductive types. Actually, this criterion is very fragile, and
even if TE satisfied it, Keller and Lasson showed that the parametricity trans-
lation could not interpret inductive types in ∗ for similar reasons [17], and T p

E

would face the same issue.

6 The Exceptional Translation in Practice

6.1 Implementation as a Coq Plugin

The (parametric) exceptional translation is a translation of CIC into itself, which
means that we can directly implement it as a Coq plugin. This way, we can
use the translation to extend safely Coq with new logical principles, so that
typechecking remains decidable.

Such a Coq plugin is simply a program that, given a Coq proof term M ,
produces the translations [M ] and [M ]ε as Coq terms. For instance, the trans-
lations of type list, given in Figs. 4 and 6, are obtained by typing the following
commands, which define each one new inductive type in Coq.

Effect Translate list.
Parametricity Translate list.

The first command produces only [list], while the second produces [list]ε. But
the main interest of the translation is that we can exhibit new constructors. For
instance, the raise operation described in Sect. 2.4 is defined as

Effect Definition Exception : Type := fun E ⇒ TypeVal E E id.
Effect Definition raise : ∀ A, Exception → A := fun E (A : type E) ⇒ Err A.

6.2 Usecase: A Cast Framework

We can use the ability to raise exception to define partial function in the excep-
tional layer. For instance, given a decidable property (described by the type
class below), it is then possible to define a cast function from A to Σ (a : A). P a
returning the converted value if the property is satisfied and raising an exception
otherwise (using an inhabitant cast_failed of Exception).

Class Decidable (A : Type) := dec : A + (not A).
Definition cast A (P : A → Type) (a:A) {Hdec : Decidable (P a)} : Σ (a : A). P a
:= match dec (P a) with

| inl p ⇒ (a ; p)
| inr _ ⇒ raise cast_failed
end.

Using this cast mechanism, it is easy to define a function list_to_pair from
lists to pairs by first converting the list into a list size two, using the impure func-
tion cast (list A) (fun l ⇒ List.length l = 2) and then recovering a pair from a
list of size two using a pure function.

In the exceptional layer, it is possible to prove the following property
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Definition list_to_pair_prop A (x y : A) : list_to_pair [x ; y] = (x,y).

in at least two way. One can perfectly prove it by simply raising an exception
at top level, or by reflexivity—using the fact that list_to_pair [x ; y] actually
reduces to (x,y).

However, there is a way to distinguish between those two proofs in the target
theory, here Coq, by stating the following lemma which can only proven for the
proof not raising an exception.

Definition list_to_pair_prop_soundness A x y :
list_to_pair_prop• A x y = eq_refl• _ _ _ := eq_refl _.

where underscores represent arguments inferred by Coq.

7 Related Work

Adding Dependency to an Effectful Language. There are numerous works on
adding dependent types in mainstream effectful programming languages. They
all mostly focused on how to appropriately restrict effectful terms from appearing
in types. Indeed, if types only depend on pure terms, the problem of having
two different evaluations of the effect of the term (at the level of types and
at the level of terms) disappear. This is the case for instance for Dependent
ML of Xi and Pfenning [18], or more recently for Casinghino et al. [19] on
how to combine proofs and programs when programs can be non-terminating.
The F � programming language of Swamy et al. [20] uses a notion of primitive
effects including state, exceptions, divergence and IO. Each effect is described
through a monadic predicate transformer semantics which allows to have a pure
core dependent language to reason on those effects. On a more foundational
side, there are two recent and overlapping lines of work on the description of
a dependent call-by-push-value (CBPV) by Ahman et al. [21] and Vákár [22].
Those works also use a purity restriction for dependency, but using the CBPV
language, deals with any effect described in monadic style. On another line of
work, Brady advocates for the use of algebraic effects as an elegant way to allow
combing effects more smoothly than with a monadic approach and gives an
implementation in Idris [23].

Adding Effects to a Dependently-Typed Language. Nanevski et al. [24] have devel-
oped Hoare type theory (HTT) to extend Coq with monadic style effects. To
this end, they provide an axiomatic extension of Coq with a monad in which
to encapsulate imperative code. Important tools have been developed on HTT,
most notably the Ynot project [25]. Apart from being axiomatic, their monadic
approach does not allow to mix effectful programs and dependency but is rather
made for proving inside Coq properties on simply typed imperative programs.

Internal Translation of Type Theory. A non-axiomatic way to extend type theory
with new features is to use internal translation, that is translation of type theory
into itself as advocated by Boulier et al. [9]. The presentation of parametricity
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for type theory given by Bernardy and Lasson [5] can be seen as one of the
first internal translation of type theory. However, this one does not add any new
power to type theory as it is a conservative extension. Barthe et al. [26] have
described a CPS translation for CCω featuring call-cc, but without dealing
with inductive types and relying on a form of type stratification. A variant of
this translation has been extended recently by Bowman et al. [27] to dependent
sums using answer-type polymorphism Πα : �. (A → α) → α. A generic class of
internal translations has been defined by Jaber et al. [28] using forcing, which can
be seen as a type theoretic version of the presheaf construction used in categorical
logic. This class of translation works on all CIC but for a restricted version of
dependent elimination, identical to the Baclofen type theory [2]. Therefore, to the
best of our knowledge, the exceptional translation is the first complete internal
translation of CIC adding a particular notion of effect.

8 Conclusion and Future Work

In this paper, we have defined the exceptional translation, the first syntactic
translation of the Calculus of Inductive Constructions into itself, adding effects
and that covers full dependent elimination. This results in a new type the-
ory, which features call-by-name exceptions with decidable type-checking and
a weaker form of canonicity. We have shown that although the resulting theory
is inconsistent, it is possible to reason on exceptional programs and show that
some of them actually never raise an exception by relying on the target theory.
This provides a sound logical framework allowing to transparently prove safety
properties about impure dependently-typed programs. Then, using parametric-
ity, we have given an additional layer at the top of the exceptional translation
in order to tame exceptions and preserve consistency. This way, we have consis-
tently extended the logical expressivity of CIC with independence of premises,
Markov’s rule, and the negation of function extensionality while retaining η-
expansion. Both translations have been implemented in a Coq plugin, which we
use to formalize the examples.

One of the main directions of future work is to investigate whether other kind
of effects can give rise to an internal translation of CIC. To that end, it seems
promising to look at algebraic presentation of effects. Indeed, the recent work on
the non-necessity of the value restriction policy for algebraic effects and handlers
of Kammar and Pretnar [29] suggests that we should be able to perform similar
translations on CIC with full dependent elimination for other algebraic effects
and handlers than exceptions.
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Abstract. Bi-directional type checking has proved to be an extremely
useful and versatile tool for type checking and type inference. The con-
ventional presentation of bi-directional type checking consists of two
modes: inference mode and checked mode. In traditional bi-directional
type-checking, type annotations are used to guide (via the checked
mode) the type inference/checking procedure to determine the type of
an expression, and type information flows from functions to arguments.

This paper presents a variant of bi-directional type checking where the
type information flows from arguments to functions. This variant retains
the inference mode, but adds a so-called application mode. Such design can
remove annotations that basic bi-directional type checking cannot, and is
useful when type information from arguments is required to type-check
the functions being applied. We present two applications and develop the
meta-theory (mostly verified in Coq) of the application mode.

1 Introduction

Bi-directional type checking has been known in the folklore of type systems for
a long time. It was popularized by Pierce and Turner’s work on local type infer-
ence [29]. Local type inference was introduced as an alternative to Hindley-Milner
(henceforth HM system) type systems [11,17], which could easily deal with poly-
morphic languages with subtyping. Bi-directional type checking is one component
of local type inference that, aided by some type annotations, enables type infer-
ence in an expressive languagewith polymorphismand subtyping. SincePierce and
Turner’s work, various other authors have proved the effectiveness of bi-directional
type checking in several other settings, including many different systems with sub-
typing [12,14,15], systems with dependent types [2,3,10,21,37], and various other
works [1,7,13,22,28]. Furthermore, bi-directional type checking has also been com-
bined with HM-style techniques for providing type inference in the presence of
higher-ranked types [14,27].

The key idea in bi-directional type checking is simple. In its basic form typing is
split into inference and checked modes. The most salient feature of a bi-directional
type-checker is when information deduced from inference mode is used to guide
checking of an expression in checkedmode.One of such interactions betweenmodes
happens in the typing rule for function applications:

Γ � e1 ⇒ A → B Γ � e2 ⇐ A

Γ � e1 e2 ⇒ B
APP

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 272–299, 2018.
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In the above rule, which is a standard bi-directional rule for checking applica-
tions, the two modes are used. First we synthesize (⇒) the type A → B from e1,
and then check (⇐) e2 against A, returning B as the type for the application.

This paper presents a variant of bi-directional type checking that employs a
so-called application mode. With the application mode the design of the appli-
cation rule (for a simply typed calculus) is as follows:

Γ � e2 ⇒ A Γ � Ψ,A � e1 ⇒ A → B

Γ � Ψ � e1 e2 ⇒ B
APP

In this rule, there are two kinds of judgments. The first judgment is just the
usual inference mode, which is used to infer the type of the argument e2. The
second judgment, the application mode, is similar to the inference mode, but it
has an additional context Ψ . The context Ψ is a stack that tracks the types of
the arguments of outer applications. In the rule for application, the type of the
argument e2 is inferred first, and then pushed into Ψ for inferring the type of e1.
Applications are themselves in the application mode, since they can be in the
context of an outer application. With the application mode it is possible to infer
the type for expressions such as (λx. x) 1 without additional annotations.

Bi-directional type checking with an application mode may still require type
annotations and it gives different trade-offs with respect to the checked mode
in terms of type annotations. However the different trade-offs open paths to
different designs of type checking/inference algorithms. To illustrate the utility
of the application mode, we present two different calculi as applications. The
first calculus is a higher ranked implicit polymorphic type system, which infers
higher-ranked types, generalizes the HM type system, and has polymorphic let
as syntactic sugar. As far as we are aware, no previous work enables an HM-style
let construct to be expressed as syntactic sugar. For this calculus many results
are proved using the Coq proof assistant [9], including type-safety. Moreover a
sound and complete algorithmic system, inspired by Peyton Jones et al. [27],
is also developed. A second calculus with explicit polymorphism illustrates how
the application mode is compatible with type applications, and how it adds
expressiveness by enabling an encoding of type declarations in a System-F-like
calculus. For this calculus, all proofs (including type soundness), are mechanized
in Coq.

We believe that, similarly to standard bi-directional type checking, bi-
directional type checking with an application mode can be applied to a wide
range of type systems. Our work shows two particular and non-trivial applica-
tions. Other potential areas of applications are other type systems with subtyp-
ing, static overloading, implicit parameters or dependent types.
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In summary the contributions of this paper are1:

– A variant of bi-directional type checking where the inference mode
is combined with a new, so-called, application mode. The application mode
naturally propagates type information from arguments to the functions.

– A new design for type inference of higher-ranked types which general-
izes the HM type system, supports a polymorphic let as syntactic sugar, and
infers higher rank types. We present a syntax-directed specification, an elab-
oration semantics to System F, some meta-theory in Coq, and an algorithmic
type system with completeness and soundness proofs.

– A System-F-like calculus as a theoretical response to the challenge noted
by Pierce and Turner [29]. It shows that the application mode is compatible
with type applications, which also enables encoding type declarations. We
present a type system and meta-theory, including proofs of type safety and
uniqueness of typing in Coq.

2 Overview

2.1 Background: Bi-directional Type Checking

Traditional type checking rules can be heavyweight on annotations, in the sense
that lambda-bound variables always need explicit annotations. Bi-directional type
checking [29] provides an alternative, which allows types to propagate downward
the syntax tree. For example, in the expression (λf:Int → Int. f) (λy. y), the type
of y is provided by the type annotation on f. This is supported by the bi-directional
typing rule for applications:

Γ � e1 ⇒ A → B Γ � e2 ⇐ A

Γ � e1 e2 ⇒ B
APP

Specifically, if we know that the type of e1 is a function from A → B, we can check
that e2 has type A. Notice that here the type information flows from functions
to arguments.

One guideline for designing bi-directional type checking rules [15] is to dis-
tinguish introduction rules from elimination rules. Constructs which correspond
to introduction forms are checked against a given type, while constructs cor-
responding to elimination forms infer (or synthesize) their types. For instance,
under this design principle, the introduction rule for pairs is supposed to be in
checked mode, as in the rule Pair-C.

Γ � e1 ⇐ A Γ � e2 ⇐ B

Γ � (e1, e2) ⇐ (A,B)
Pair-C

Γ � e1 ⇒ A Γ � e2 ⇒ B

Γ � (e1, e2) ⇒ (A,B)
Pair-I

1 All supplementary materials are available in https://bitbucket.org/ningningxie/let-
arguments-go-first.
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Unfortunately, this means that the trivial program (1, 2) cannot type-check,
which in this case has to be rewritten to (1, 2) : (Int , Int).

In this particular case, bi-directional type checking goes against its original
intention of removing burden from programmers, since a seemingly unnecessary
annotation is needed. Therefore, in practice, bi-directional type systems do not
strictly follow the guideline, and usually have additional inference rules for the
introduction form of constructs. For pairs, the corresponding rule is Pair-I.

Now we can type check (1, 2), but the price to pay is that two typing rules
for pairs are needed. Worse still, the same criticism applies to other constructs.
This shows one drawback of bi-directional type checking: often to minimize anno-
tations, many rules are duplicated for having both inference and checked mode,
which scales up with the typing rules in a type system.

2.2 Bi-directional Type Checking with the Application Mode

We propose a variant of bi-directional type checking with a new application mode.
The application mode preserves the advantage of bi-directional type checking,
namely many redundant annotations are removed, while certain programs can
type check with even fewer annotations. Also, with our proposal, the inference
mode is a special case of the application mode, so it does not produce dupli-
cations of rules in the type system. Additionally, the checked mode can still be
easily combined into the system (see Sect. 5.1 for details). The essential idea of
the application mode is to enable the type information flow in applications to
propagate from arguments to functions (instead of from functions to arguments
as in traditional bi-directional type checking).

To motivate the design of bi-directional type checking with an application
mode, consider the simple expression

(λx. x) 1

This expression cannot type check in traditional bi-directional type checking
because unannotated abstractions only have a checked mode, so annotations are
required. For example, ((λx. x) : Int → Int) 1.

In this example we can observe that if the type of the argument is accounted
for in inferring the type of λx. x, then it is actually possible to deduce that the
lambda expression has type Int → Int , from the argument 1.

The Application Mode. If types flow from the arguments to the function, an
alternative idea is to push the type of the arguments into the typing of the
function, as the rule that is briefly introduced in Sect. 1:

Γ � e2 ⇒ A Γ � Ψ,A � e1 ⇒ A → B

Γ � Ψ � e1 e2 ⇒ B
APP
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Here the argument e2 synthesizes its type A, which then is pushed into the
application context Ψ . Lambda expressions can now make use of the application
context, leading to the following rule:

Γ, x : A � Ψ � e ⇒ B

Γ � Ψ,A � λx. e ⇒ A → B
Lam

The type A that appears last in the application context serves as the type for x,
and type checking continues with a smaller application context and x:A in the
typing context. Therefore, using the rule App and Lam, the expression (λx. x) 1

can type-check without annotations, since the type Int of the argument 1 is used
as the type of the binding x.

Note that, since the examples so far are based on simple types, obviously
they can be solved by integrating type inference and relying on techniques like
unification or constraint solving. However, here the point is that the application
mode helps to reduce the number of annotations without requiring such sophis-
ticated techniques. Also, the application mode helps with situations where those
techniques cannot be easily applied, such as type systems with subtyping.

Interpretation of the Application Mode. As we have seen, the guideline for design-
ing bi-directional type checking [15], based on introduction and elimination rules,
is often not enough in practice. This leads to extra introduction rules in the
inference mode. The application mode does not distinguish between introduc-
tion rules and elimination rules. Instead, to decide whether a rule should be in
inference or application mode, we need to think whether the expression can be
applied or not. Variables, lambda expressions and applications are all examples
of expressions that can be applied, and they should have application mode rules.
However pairs or literals cannot be applied and should have inference rules. For
example, type checking pairs would simply lead to the rule Pair-I. Neverthe-
less elimination rules of pairs could have non-empty application contexts (see
Sect. 5.2 for details). In the application mode, arguments are always inferred
first in applications and propagated through application contexts. An empty
application context means that an expression is not being applied to anything,
which allows us to model the inference mode as a particular case2.

Partial Type Checking. The inference mode synthesizes the type of an expression,
and the checked mode checks an expression against some type. A natural question
is how do these modes compare to application mode. An answer is that, in some
sense: the application mode is stronger than inference mode, but weaker than
checked mode. Specifically, the inference mode means that we know nothing
about the type an expression before hand. The checked mode means that the
whole type of the expression is already known before hand. With the application
mode we know some partial type information about the type of an expression:
2 Although the application mode generalizes the inference mode, we refer to them as

two different modes. Thus the variant of bi-directional type checking in this paper
is interpreted as a type system with both inference and application modes.
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we know some of its argument types (since it must be a function type when the
application context is non-empty), but not the return type.

Instead of nothing or all, this partialness gives us a finer grain notion on
how much we know about the type of an expression. For example, assume
e : A → B → C. In the inference mode, we only have e. In the checked mode, we
have both e and A → B → C. In the application mode, we have e, and maybe
an empty context (which degenerates into inference mode), or an application
context A (we know the type of first argument), or an application context B,A
(we know the types of both arguments).

Trade-offs. Note that the application mode is not conservative over traditional
bidirectional type checking due to the different information flow. However, it
provides a new design choice for type inference/checking algorithms, especially
for those where the information about arguments is useful. Therefore we next
discuss some benefits of the application mode for two interesting cases where
functions are either variables; or lambda (or type) abstractions.

2.3 Benefits of Information Flowing from Arguments to Functions

Local Constraint Solver for Function Variables. Many type systems, including
type systems with implicit polymorphism and/or static overloading, need infor-
mation about the types of the arguments when type checking function variables.
For example, in conventional functional languages with implicit polymorphism,
function calls such as (id 3) where id: ∀a. (a → a), are pervasive. In such a
function call the type system must instantiate a to Int. Dealing with such implicit
instantiation gets trickier in systems with higher-ranked types. For example,
Peyton Jones et al. [27] require additional syntactic forms and relations, whereas
Dunfield and Krishnaswami [14] add a special purpose application judgment.

With the application mode, all the type information about the arguments
being applied is available in application contexts and can be used to solve instan-
tiation constraints. To exploit such information, the type system employs a spe-
cial subtyping judgment called application subtyping, with the form Ψ � A ≤ B.
Unlike conventional subtyping, computationally Ψ and A are interpreted as
inputs and B as output. In above example, we have that Int � ∀a.a → a ≤ B
and we can determine that a = Int and B = Int → Int. In this way, type sys-
tem is able to solve the constraints locally according to the application contexts
since we no longer need to propagate the instantiation constraints to the typing
process.

Declaration Desugaring for Lambda Abstractions. An interesting consequence of
the usage of an application mode is that it enables the following let sugar:

let x = e1 in e2 � (λx. e2) e1

Such syntactic sugar for let is, of course, standard. However, in the context of
implementations of typed languages it normally requires extra type annotations
or a more sophisticated type-directed translation. Type checking (λx. e2) e1
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would normally require annotations (for example an annotation for x), or other-
wise such annotation should be inferred first. Nevertheless, with the application
mode no extra annotations/inference is required, since from the type of the
argument e1 it is possible to deduce the type of x. Generally speaking, with the
application mode annotations are never needed for applied lambdas. Thus let

can be the usual sugar from the untyped lambda calculus, including HM-style
let expression and even type declarations.

2.4 Application 1: Type Inference of Higher-Ranked Types

As a first illustration of the utility of the application mode, we present a calculus
with implicit predicative higher-ranked polymorphism.

Higher-Ranked Types. Type systems with higher-ranked types generalize the tra-
ditional HM type system, and are useful in practice in languages like Haskell or
other ML-like languages. Essentially higher-ranked types enable much of the
expressive power of System F, with the advantage of implicit polymorphism.
Complete type inference for System F is known to be undecidable [36]. There-
fore, several partial type inference algorithms, exploiting additional type anno-
tations, have been proposed in the past instead [15,25,27,31].

Higher-Ranked Types and Bi-directional Type Checking. Bi-directional type
checking is also used to help with the inference of higher-ranked types [14,27].
Consider the following program:

(λf. (f 1, f ’c’)) (λx. x)

which is not typeable under those type systems because they fail to infer the type
of f, since it is supposed to be polymorphic. Using bi-directional type checking,
we can rewrite this program as

((λf. (f 1, f ’c’)) : (∀a. a → a) → (Int, Char)) (λx . x)

Here the type of f can be easily derived from the type signature using checked
mode in bi-directional type checking. However, although some redundant annota-
tions are removed by bi-directional type checking, the burden of inferring higher-
ranked types is still carried by programmers: they are forced to add polymor-
phic annotations to help with the type derivation of higher-ranked types. For
the above example, the type annotation is still provided by programmers, even
though the necessary type information can be derived intuitively without any
annotations: f is applied to λx. x, which is of type ∀a. a → a.

Generalization. Generalization is famous for its application in let polymorphism
in the HM system, where generalization is adopted at let bindings. Let polymor-
phism is a useful component to introduce top-level quantifiers (rank 1 types)
into a polymorphic type system. The previous example becomes typeable in the
HM system if we rewrite it to: let f = λx. x in (f 1, f ’c’).
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Type Inference for Higher-Ranked Types with the Application Mode. Using our
bi-directional type system with an application mode, the original expression can
type check without annotations or rewrites: (λf. (f 1, f ’c’)) (λx. x).

This result comes naturally if we allow type information flow from arguments
to functions. For inferring polymorphic types for arguments, we use generaliza-
tion. In the above example, we first infer the type ∀a. a → a for the argument,
then pass the type to the function. A nice consequence of such an approach
is that HM-style polymorphic let expressions are simply regarded as syntactic
sugar to a combination of lambda/application:

let x = e1 in e2 � (λx. e2) e1

With this approach, nested lets can lead to types which are more general
than HM. For example, let s = λx. x in let t = λy. s in e. The type of s is
∀a. a → a after generalization. Because t returns s as a result, we might expect
t: ∀b. b → (∀a. a → a), which is what our system will return. However, HM
will return type t: ∀b. ∀a. b → (a → a), as it can only return rank 1 types,
which is less general than the previous one according to Odersky and Läufer’s
subtyping relation for polymorphic types [24].

Conservativity over the Hindley-Milner Type System. Our type system is a con-
servative extension over the Hindley-Milner type system, in the sense that every
program that can type-check in HM is accepted in our type system, which is
explained in detail in Sect. 3.2. This result is not surprising: after desugaring let

into a lambda and an application, programs remain typeable.

Comparing Predicative Higher-Ranked Type Inference Systems. We will give a
full discussion and comparison of related work in Sect. 6. Among those works, we
believe the work by Dunfield and Krishnaswami [14], and the work by Peyton
Jones et al. [27] are the most closely related work to our system. Both their
systems and ours are based on a predicative type system: universal quantifiers
can only be instantiated by monotypes. So we would like to emphasize our sys-
tem’s properties in relation to those works. In particular, here we discuss two
interesting differences, and also briefly (and informally) discuss how the works
compare in terms of expressiveness.

(1) Inference of higher-ranked types. In both works, every polymorphic type
inferred by the system must correspond to one annotation provided by
the programmer. However, in our system, some higher-ranked types can be
inferred from the expression itself without any annotation. The motivating
expression above provides an example of this.
(2) Where are annotations needed? Since type annotations are useful for
inferring higher rank types, a clear answer to the question where annotations
are needed is necessary so that programmers know when they are required to
write annotations. To this question, previous systems give a concrete answer:
only on the binding of polymorphic types. Our answer is slightly different: only
on the bindings of polymorphic types in abstractions that are not applied to
arguments. Roughly speaking this means that our system ends up with fewer
or smaller annotations.
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(3) Expressiveness. Based on these two answers, it may seem that our
system should accept all expressions that are typeable in their system.
However, this is not true because the application mode is not conser-
vative over traditional bi-directional type checking. Consider the expres-
sion (λf : (∀a. a → a) → (Int, Char). f) (λg. (g 1, g ’a’)), which is
typeable in their system. In this case, even if g is a polymorphic binding with-
out a type annotation the expression can still type-check. This is because the
original application rule propagates the information from the outer binding
into the inner expressions. Note that the fact that such expression type-checks
does not contradict their guideline of providing type annotations for every
polymorphic binder. Programmers that strictly follow their guideline can still
add a polymorphic type annotation for g. However it does mean that it is a
little harder to understand where annotations for polymorphic binders can
be omitted in their system. This requires understanding how the applications
in checked mode operate.

In our system the above expression is not typeable, as a consequence of
the information flow in the application mode. However, following our guideline
for annotations leads to a program that can be type-checked with a smaller
annotation: (λf. f) (λg : (∀a. a → a). (g 1, g ’a’)). This means that
our work is not conservative over their work, which is due to the design choice
of the application typing rule. Nevertheless, we can always rewrite programs
using our guideline, which often leads to fewer/smaller annotations.

2.5 Application 2: More Expressive Type Applications

The design choice of propagating arguments to functions was subject to consid-
eration in the original work on local type inference [29], but was rejected due to
possible non-determinism introduced by explicit type applications:

“It is possible, of course, to come up with examples where it would be
beneficial to synthesize the argument types first and then use the resulting
information to avoid type annotations in the function part of an application
expression....Unfortunately this refinement does not help infer the type of
polymorphic functions. For example, we cannot uniquely determine the
type of x in the expression (fun[X](x) e) [Int] 3.” [29]

Therefore, as a response to this challenge, our second application is a variant
of System F. Our development of the calculus shows that the application mode
can actually work well with calculi with explicit type applications. To explain
the new design, consider the expression:

(Λa. λx : a. x + 1) Int

which is not typeable in the traditional type system for System F. In System F
the lambda abstractions do not account for the context of possible function appli-
cations. Therefore when type checking the inner body of the lambda abstrac-
tion, the expression x + 1 is ill-typed, because all that is known is that x has the
(abstract) type a.
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If we are allowed to propagate type information from arguments to func-
tions, then we can verify that a = Int and x + 1 is well-typed. The key insight
in the new type system is to use application contexts to track type equalities
induced by type applications. This enables us to type check expressions such
as the body of the lambda above (x + 1). Therefore, back to the problematic
expression (fun[X](x) e) [Int] 3, the type of x can be inferred as either X or Int
since they are actually equivalent.

Sugar for Type Synonyms. In the same way that we can regard let expressions as
syntactic sugar, in the new type system we further gain built-in type synonyms
for free. A type synonym is a new name for an existing type. Type synonyms
are common in languages such as Haskell. In our calculus a simple form of type
synonyms can be desugared as follows:

type a = A in e � (Λa. e) A

One practical benefit of such syntactic sugar is that it enables a direct encod-
ing of a System F-like language with declarations (including type-synonyms).
Although declarations are often viewed as a routine extension to a calculus,
and are not formally studied, they are highly relevant in practice. Therefore, a
more realistic formalization of a programming language should directly account
for declarations. By providing a way to encode declarations, our new calculus
enables a simple way to formalize declarations.

Type Abstraction. The type equalities introduced by type applications may seem
like we are breaking System F type abstraction. However, we argue that type
abstraction is still supported by our System F variant. For example:

let inc = Λa. λx : a. x + 1 in inc Int e

(after desugaring) does not type-check, as in a System-F like language. In
our type system lambda abstractions that are immediatelly applied to an
argument, and unapplied lambda abstractions behave differently. Unapplied
lambda abstractions are just like System F abstractions and retain type
abstraction. The example above illustrates this. In contrast the typeable
example (Λa. λx : a. x + 1) Int, which uses a lambda abstraction directly
applied to an argument, can be regarded as the desugared expression for
type a = Int in λx : a . x + 1.

3 A Polymorphic Language with Higher-Ranked Types

This section first presents a declarative, syntax-directed type system for a lambda
calculus with implicit higher-ranked polymorphism. The interesting aspects
about the new type system are: (1) the typing rules, which employ a combina-
tion of inference and application modes; (2) the novel subtyping relation under
an application context. Later, we prove our type system is type-safe by a type
directed translation to System F [16,27] in Sect. 3.4. Finally an algorithmic type
system is discussed in Sect. 3.5.
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3.1 Syntax

The syntax of the language is:

Expr e ::= x | n | λx : A. e | λx. e | e1 e2

Type A, B ::= a | A → B | ∀a.A | Int
Monotype τ ::= a | τ1 → τ2 | Int
Typing Context Γ ::= ∅ | Γ, x : A
Application Context Ψ ::= ∅ | Ψ, A

Expressions. Expressions e include variables (x), integers (n), annotated lambda
abstractions (λx : A. e), lambda abstractions (λx. e), and applications (e1 e2).
Letters x, y, z are used to denote term variables. Notably, the syntax does not
include a let expression (letx = e1 in e2). Let expressions can be regarded as
the standard syntax sugar (λx. e2) e1, as illustrated in more detail later.

Types. Types include type variables (a), functions (A → B), polymorphic types
(∀a.A) and integers (Int). We use capital letters (A,B) for types, and small let-
ters (a, b) for type variables. Monotypes are types without universal quantifiers.

Contexts. Typing contexts Γ are standard: they map a term variable x to its
type A. We implicitly assume that all the variables in Γ are distinct. The main
novelty lies in the application contexts Ψ , which are the main data structure
needed to allow types to flow from arguments to functions. Application contexts
are modeled as a stack. The stack collects the types of arguments in applications.
The context is a stack because if a type is pushed last then it will be popped first.
For example, inferring expression e under application context (a, Int), means e
is now being applied to two arguments e1, e2, with e1 : Int, e2 : a, so e should be
of type Int → a → A for some A.

3.2 Type System

The top part of Fig. 1 gives the typing rules for our language. The judgment
Γ � Ψ � e ⇒ B is read as: under typing context Γ , and application context Ψ ,
e has type B. The standard inference mode Γ � e ⇒ B can be regarded as a
special case when the application context is empty. Note that the variable names
are assumed to be fresh enough when new variables are added into the typing
context, or when generating new type variables.

Rule T-Var says that if x : A is in the typing context, and A is a subtype of
B under application context Ψ , then x has type B. It depends on the subtyping
rules that are explained in Sect. 3.3. Rule T-Int shows that integer literals are
only inferred to have type Int under an empty application context. This is obvious
since an integer cannot accept any arguments.

T-Lam shows the strength of application contexts. It states that, without
annotations, if the application context is non-empty, a type can be popped from
the application context to serve as the type for x. Inference of the body then
continues with the rest of the application context. This is possible, because the
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Γ � Ψ � e ⇒ B

x : A ∈ Γ Ψ � A <: B

Γ � Ψ � x ⇒ B
T-Var

Γ � n ⇒ Int
T-Int

Γ, x : A � Ψ � e ⇒ B

Γ � Ψ, A � λx. e ⇒ A → B
T-Lam

Γ, x : τ � e ⇒ B

Γ � λx. e ⇒ τ → B
T-Lam2

Γ, x : A � e ⇒ B

Γ � λx : A. e ⇒ A → B
T-LamAnn1

C <: A Γ, x : A � Ψ � e ⇒ B

Γ � Ψ, C � λx : A. e ⇒ C → B
T-LamAnn2

a = ftv(A) − ftv(Γ )
Γgen(A) = ∀a.A

T-Gen

Γ � e2 ⇒ A Γgen(A) = B Γ � Ψ, B � e1 ⇒ B → C

Γ � Ψ � e1 e2 ⇒ C
T-App

A <: B

Int <: Int
S-Int

a <: a
S-Var

A <: B

A <: ∀a.B
S-ForallR

A�a �→ τ� <: B

∀a.A <: B
S-ForallL

C <: A B <: D

A → B <: C → D
S-Fun

Ψ � A <: B

∅ � A <: A
S-Empty

Ψ, C � A�a �→ τ� <: B

Ψ, C � ∀a.A <: B
S-ForallL2

C <: A Ψ � B <: D

Ψ, C A B <: C D
S-Fun2

Fig. 1. Syntax-directed typing and subtyping.

expression λx. e is being applied to an argument of type A, which is the type at
the top of the application context stack. Rule T-Lam2 deals with the case when
the application context is empty. In this situation, a monotype τ is guessed for
the argument, just like the Hindley-Milner system.

Rule T-LamAnn1 works as expected with an empty application context: a
new variable x is put with its type A into the typing context, and inference
continues on the abstraction body. If the application context is non-empty, then
the rule T-LamAnn2 applies. It checks that C is a subtype of A before putting
x : A in the typing context. However, note that it is always possible to remove
annotations in an abstraction if it has been applied to some arguments.

Rule T-App pushes types into the application context. The application rule
first infers the type of the argument e2 with type A. Then the type A is gener-
alized in the same way that types in let expressions are generalized in the HM
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type system. The resulting generalized type is B. The generalization is shown
in rule T-Gen, where all free type variables are extracted to quantifiers. Thus
the type of e1 is now inferred under an application context extended with type
B. The generalization step is important to infer higher ranked types: since B
is a possibly polymorphic type, which is the argument type of e1, then e1 is of
possibly a higher rank type.

Let Expressions. The language does not have built-in let expressions, but instead
supports let as syntactic sugar. The typing rule for let expressions in the HM
system is (without the gray-shaded part):

Γ � e1 ⇒ A1 Γgen(A1) = A2 Γ, x : A2 � Ψ � e2 ⇒ B

Γ � Ψ � letx = e1 in e2 ⇒ B
T-Let

where we do generalization on the type of e1, which is then assigned as the
type of x while inferring e2. Adapting this rule to our system with application
contexts would result in the gray-shaded part, where the application context is
only used for e2, because e2 is the expression being applied. If we desugar the let
expression (letx = e1 in e2) to ((λx. e2) e1), we have the following derivation:

Γ � e1 ⇒ A1 Γgen(A1) = A2

Γ, x : A2 � Ψ � e2 ⇒ B

Γ � Ψ, A2 � λx. e2 ⇒ A2 → B
T-Lam

Γ � Ψ � (λx. e2) e1 ⇒ B
T-App

The type A2 is now pushed into application context in rule T-App, and then
assigned to x in T-Lam. Comparing this with the typing derivations with rule
T-Let, we now have same preconditions. Thus we can see that the rules in Fig. 1
are sufficient to express an HM-style polymorphic let construct.

Meta-Theory. The type system enjoys several interesting properties, especially
lemmas about application contexts. Before we present those lemmas, we need a
helper definition of what it means to use arrows on application contexts.

Definition 1 (Ψ → B). If Ψ = A1, A2, ..., An, then Ψ → B means the function
type An → ... → A2 → A1 → B.

Such definition is useful to reason about the typing result with application
contexts. One specific property is that the application context determines the
form of the typing result.

Lemma 1 (Ψ Coincides with Typing Results). If Γ � Ψ � e ⇒ A, then
for some A′, we have A = Ψ → A′.

Having this lemma, we can always use the judgment Γ � Ψ � e ⇒ Ψ → A′

instead of Γ � Ψ � e ⇒ A.
In traditional bi-directional type checking, we often have one subsumption

rule that transfers between inference and checked mode, which states that if an
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expression can be inferred to some type, then it can be checked with this type. In
our system, we regard the normal inference mode Γ � e ⇒ A as a special case,
when the application context is empty. We can also turn from normal inference
mode into application mode with an application context.

Lemma 2 (Subsumption). If Γ � e ⇒ Ψ → A, then Γ � Ψ � e ⇒ Ψ → A.

The relationship between our system and standard Hindley Milner type sys-
tem can be established through the desugaring of let expressions. Namely, if e is
typeable in Hindley Milner system, then the desugared expression |e| is typeable
in our system, with a more general typing result.

Lemma 3 (Conservative over HM). If Γ �HM e ⇒ A, then for some B,
we have Γ � |e| ⇒ B, and B <: A.

3.3 Subtyping

We present our subtyping rules at the bottom of Fig. 1. Interestingly, our sub-
typing has two different forms.

Subtyping. The first judgment follows Odersky and Läufer [24]. A <: B means
that A is more polymorphic than B and, equivalently, A is a subtype of B. Rules
S-Int and S-Var are trivial. Rule S-ForallR states A is subtype of ∀a.B only
if A is a subtype of B, with the assumption a is a fresh variable. Rule S-ForallL
says ∀a.A is a subtype of B if we can instantiate it with some τ and show the
result is a subtype of B. In rule S-Fun, we see that subtyping is contra-variant
on the argument type, and covariant on the return type.

Application Subtyping. The typing rule T-Var uses the second subtyping judg-
ment Ψ � A <: B. To motivate this new kind of judgment, consider the expres-
sion id 1 for example, whose derivation is stuck at T-Var (here we assume
id : ∀a.a → a ∈ Γ ):

Γ � 1 ⇒ Int Γgen(Int) = Int

id : ∀a.a → a ∈ Γ ???
Γ � Int � id ⇒ T-Var

Γ � id 1 ⇒ T-App

Here we know that id : ∀a.a → a and also, from the application context, that
id is applied to an argument of type Int. Thus we need a mechanism for solving
the instantiation a = Int and return a supertype Int → Int as the type of id.
This is precisely what the application subtyping achieves: resolve instantiation
constraints according to the application context. Notice that unlike existing
works [14,27], application subtyping provides a way to solve instantiation more
locally, since it does not mutually depend on typing.

Back to the rules in Fig. 1, one way to understand the judgment Ψ � A <: B
from a computational point-of-view is that the type B is a computed output,
rather than an input. In other words B is determined from Ψ and A. This is
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unlike the judgment A <: B, where both A and B would be computationally
interpreted as inputs. Therefore it is not possible to view A <: B as a special
case of Ψ � A <: B where Ψ is empty.

There are three rules dealing with application contexts. Rule S-Empty is
for case when the application context is empty. Because it is empty, we have no
constraints on the type, so we return it back unchanged. Note that this is where
HM systems (also Peyton Jones et al. [27]) would normally use a rule Inst to
remove top-level quantifiers:

∀a.A <: A�a 	→ τ�
Inst

Our system does not need Inst, because in applications, type information flows
from arguments to the function, instead of function to arguments. In the latter
case, Inst is needed because a function type is wanted instead of a polymorphic
type. In our approach, instantiation of type variables is avoided unless necessary.

The two remaining rules apply when the application context is non-empty,
for polymorphic and function types respectively. Note that we only need to
deal with these two cases because Int or type variables a cannot have a non-
empty application context. In rule S-Forall2, we instantiate the polymorphic
type with some τ , and continue. This instantiation is forced by the application
context. In rule S-Fun2, one function of type A → B is now being applied to an
argument of type C. So we check C <: A. Then we continue with B and the
rest application context, and return C → D as the result type of the function.

Meta-Theory. Application subtyping is novel in our system, and it enjoys some
interesting properties. For example, similarly to typing, the application context
decides the form of the supertype.

Lemma 4 (Ψ Coincides with Subtyping Results). If Ψ � A <: B, then
for some B′, B = Ψ → B′.

Therefore we can always use the judgment Ψ � A <: Ψ → B′, instead of Ψ �
A <: B. Application subtyping is also reflexive and transitive. Interestingly,
in those lemmas, if we remove all applications contexts, they are exactly the
reflexivity and transitivity of traditional subtyping.

Lemma 5 (Reflexivity). Ψ � Ψ → A <: Ψ → A.

Lemma 6 (Transitivity). If Ψ1 � A <: Ψ1 → B, and Ψ2 � B <: Ψ2 → C,
then Ψ2, Ψ1 � A <: Ψ1 → Ψ2 → C.

Finally, we can convert between subtyping and application subtyping. We
can remove the application context and still get a subtyping relation:

Lemma 7 (Ψ � <: to <:). If Ψ � A <: B, then A <: B.

Transferring from subtyping to application subtyping will result in a more
general type.
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Lemma 8 (<: to Ψ � <:). If A <: Ψ → B1, then for some B2, we have
Ψ � A <: Ψ → B2, and B2 <: B1.

This lemma may not seem intuitive at first glance. Consider a concrete exam-
ple Int → ∀a.a <: Int → Int, and Int � Int → ∀a.a <: Int → ∀a.a. The former
one, holds because we have ∀a.a <: Int in the return type. But in the latter one,
after Int is consumed from application context, we eventually reach S-Empty,
which always returns the original type back.

3.4 Translation to System F, Coherence and Type-Safety

We translate the source language into a variant of System F that is also used in
Peyton Jones et al. [27]. The translation is shown to be coherent and type safe.
Due to space limitations, we only summarize the key aspects of the translation.
Full details can be found in the supplementary materials of the paper.

The syntax of our target language is as follows:

Expressions s, f ::= x | n | λx : A. s | Λa.s | s1 s2 | s1 A

In the translation, we use f to refer to the coercion function produced by
the subtyping translation, and s to refer to the translated term in System F. We
write Γ �F s : A to mean the term s has type A in System F.

The type-directed translation follows the rules in Fig. 1, with a translation
output in the forms of judgments. We summarize all judgments as:

Judgment Translation Output Soundness
A <: B � f coercion function f ∅ �F f : A → B
Ψ � A <: B � f coercion function f ∅ �F f : A → B
Γ � Ψ � e ⇒ A � s target expression s Γ �F s : A

For example, A <: B � f means that if A <: B holds in the source language,
we can translate it into a System F term f , which is a coercion function and
has type A → B. We prove that our system is type safe by proving that the
translation produces well-typed terms.

Lemma 9 (Typing Soundness). If Γ � Ψ � e ⇒ A � s, then Γ �F s : A.

However, there could be multiple targets corresponding to one expression due
to the multiple choices for τ . To prove that the translation is coherent, we prove
that all the translations for one expression have the same operational semantics.
We write |e| for the expressions after type erasure since types are useless after
type checking. Because multiple targets could have different number of coer-
cion functions, we use η-id equality [5] instead of syntactic equality, where two
expressions are regarded as equivalent if they can turn into the same expression
through η-reduction or removal of redundant identity functions. We then prove
that our translation actually generates a unique target:

Lemma 10 (Coherence). If Γ1 � Ψ1 � e ⇒ A � s1, and Γ2 � Ψ2 �
e ⇒ B � s2, then |s1| �ηid |s2|.
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3.5 Algorithmic System

Even though our specification is syntax-directed, it does not directly lead to an
algorithm, because there are still many guesses in the system, such as in rule
T-Lam2. This subsection presents a brief introduction of the algorithm, which
essentially follows the approach by Peyton Jones et al. [27]. Full details can be
found in the supplementary materials.

Instead of guessing, the algorithm creates meta type variables α̂, ̂β which are
waiting to be solved. The judgment for the algorithmic type system is (S0, N0) �

Γ � Ψ � e ⇒ A ↪→ (S1, N1). Here we use N as name supply, from which we can
always extract new names. We use S as a notation for the substitution that maps
meta type variables to their solutions. For example, rule T-Lam2 becomes

(S0, N0) � Γ, x : ̂β � e ⇒ A ↪→ (S1, N1)

(S0, N0
̂β) � Γ � λx. e ⇒ ̂β → A ↪→ (S1, N1)

AT-Lam1

Comparing it to rule T-Lam2, τ is replaced by a new meta type variable ̂β
from name supply N0

̂β. But despite of the name supply and substitution, the
rule retains the structure of T-Lam2.

Having the name supply and substitutions, the algorithmic system is a direct
extension of the specification in Fig. 1, with a process to do unifications that solve
meta type variables. Such unification process is quite standard and similar to
the one used in the Hindley-Milner system. We proved our algorithm is sound
and complete with respect to the specification.

Theorem 1 (Soundness). If ([], N0) � Γ � e ⇒ A ↪→ (S1, N1), then for any
substitution V with dom(V ) = fmv (S1Γ, S1A), we have V S1Γ � e ⇒ V S1A.

Theorem 2 (Completeness). If Γ � e ⇒ A, then for a fresh N0, we
have ([], N0) � Γ � e ⇒ B ↪→ (S1, N1), and for some S2, we have
Γ (S2S1B) <: Γ (A).

4 More Expressive Type Applications

This section presents a System-F-like calculus, which shows that the application
mode not only does work well for calculi with explicit type applications, but it
also adds interesting expressive power, while at the same time retaining unique-
ness of types for explicitly polymorphic functions. One additional novelty in this
section is to present another possible variant of typing and subtyping rules for
the application mode, by exploiting the lemmas presented in Sects. 3.2 and 3.3.
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A = A Γ, x : B A = Γ A

Γ, a A = Γ A Γ, a = B A = Γ (A a B )

Fig. 2. Apply contexts as substitutions on types.

a ∈ Γ

Γ a
WF-TVar

Γ Int
WF-Int

Γ A Γ B

Γ A B
WF-Arrow

Γ, a A

Γ a.A
WF-All

Fig. 3. Well-formedness.

4.1 Syntax

We focus on a new variant of the standard System F. The syntax is as follows:

Expr e ::= x | n | λx : A. e | λx. e | e1 e2 | Λa.e | e [A]
Type A ::= a | Int | A → B | ∀a.A
Typing Context Γ ::= ∅ | Γ, x : A | Γ, a | Γ, a = A
Application Context Ψ ::= ∅ | Ψ, A | Ψ, [A]

The syntax is mostly standard. Expressions include variables x, integers n,
annotated abstractions λx : A. s, unannotated abstractions λx. e, applications
e1 e2, type abstractions Λa.s, and type applications e1 [A]. Types includes type
variable a, integers Int, function types A → B, and polymorphic types ∀a.A.

The main novelties are in the typing and application contexts. Typing con-
texts contain the usual term variable typing x : A, type variables a, and type
equations a = A, which track equalities and are not available in System F. Appli-
cation contexts use A for the argument type for term-level applications, and use
[A] for the type argument itself for type applications.
Applying Contexts. The typing contexts contain type equations, which can be
used as substitutions. For example, a = Int, x : Int, b = Bool can be applied to
a → b to get the function type Int → Bool . We write 〈Γ 〉A for Γ applied as a
substitution to type A. The formal definition is given in Fig. 2.
Well-Formedness. The type well-formedness under typing contexts is given in
Fig. 3, which is quite straightforward. Notice that there is no rule corresponding
to type variables in type equations. For example, a is not a well-formed type
under typing context a = Int, instead, 〈a = Int〉a is. In other words, we keep the
invariant: types are always fully substituted under the typing context.

The well-formedness of typing contexts Γ ctx , and the well-formedness of
application contexts Γ � Ψ can be defined naturally based on the well-formedness
of types. The specific definitions can be found in the supplementary materials.
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Γ � Ψ � e ⇒ B

Γ ctx Γ � Ψ x : A ∈ Γ Ψ � A <: B

Γ � Ψ � x ⇒ B
SF-Var

Γ ctx

Γ � n ⇒ Int
SF-Int

Γ, x : 〈Γ 〉A � e ⇒ B

Γ � λx : A. e ⇒ 〈Γ 〉A → B
SF-LamAnn1

Γ, x : 〈Γ 〉A � Ψ � e ⇒ B

Γ � Ψ, 〈Γ 〉A � λx : A. e ⇒ B
SF-LamAnn2

Γ, x : A � Ψ � e ⇒ B

Γ � Ψ, A � λx. e ⇒ B
SF-Lam

Γ � e2 ⇒ A Γ � Ψ, A � e1 ⇒ B

Γ � Ψ � e1 e2 ⇒ B
SF-App

Γ, a � e ⇒ B

Γ � Λa.e ⇒ ∀a.B
SF-TLam1

Γ, a = A � Ψ � e ⇒ B

Γ � Ψ, [A] � Λa.e ⇒ B
SF-TLam2

Γ � Ψ, [〈Γ 〉A] � e ⇒ B

Γ � Ψ � e [A] ⇒ B
SF-TApp

Ψ � A <: B

∅ � A <: A
SF-SEmpty

Ψ � B a �→ A <: C

Ψ, [A] a.B <: C
SF-STApp

Ψ � B <: C

Ψ, A A B <: C
SF-SApp

Fig. 4. Type system for the new System F variant.

4.2 Type System

Typing Judgments. From Lemmas 1 and 4, we know that the application context
always coincides with typing/subtyping results. This means that the types of the
arguments can be recovered from the application context. So instead of the whole
type, we can use only the return type as the output type. For example, we review
the rule T-Lam in Fig. 1:

Γ, x : A � Ψ � e ⇒ B

Γ � Ψ,A � λx. e ⇒ A → B
T-Lam

Γ, x : A � Ψ � e ⇒ C

Γ � Ψ,A � λx. e ⇒ C
T-Lam-Alt

We have B = Ψ → C for some C by Lemma 1. Instead of B, we can directly
return C as the output type, since we can derive from the application context
that e is of type Ψ → C, and λx. e is of type (Ψ,A) → C. Thus we obtain the
T-Lam-Alt rule.

Note that the choice of the style of the rules is only a matter of taste in the
language in Sect. 3. However, it turns out to be very useful for our variant of
System F, since it helps avoiding introducing types like ∀a = Int.a. Therefore,
we adopt the new form of judgment. Now the judgment Γ � Ψ � e ⇒ A is
interpreted as: under the typing context Γ , and the application context Ψ , the
return type of e applied to the arguments whose types are in Ψ is A.
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Typing Rules. Using the new interpretation of the typing judgment, we give the
typing rules in the top of Fig. 4. SF-Var depends on the subtyping rules. Rule
SF-Int always infers integer types. Rule SF-LamAnn1 first applies current con-
text on A, then puts x : 〈Γ 〉A into the typing context to infer e. The return type
is a function type because the application context is empty. Rule SF-LamAnn2
has a non-empty application context, so it requests that the type at the top of
the application context is equivalent to 〈Γ 〉A. The output type is B instead of
a function type. Notice how the invariant that types are fully substituted under
the typing context is preserved in these two rules.

Rule SF-Lam pops the type A from the application context, puts x : A into
the typing context, and returns only the return type B. In rule SF-App, the
argument type A is pushed into the application context for inferring e1, so the
output type B is the type of e1 under application context (Ψ,A), which is exactly
the return type of e1 e2 under Ψ .

Rule SF-TLam1 is for type abstractions. The type variable a is pushed
into the typing context, and the return type is a polymorphic type. In rule SF-
TLam2, the application context has the type argument A at its top, which means
the type abstraction is applied to A. We then put the type equation a = A into
the typing context to infer e. Like term-level applications, here we only return
the type B instead of a polymorphic type. In rule SF-TApp, we first apply the
typing context on the type argument A, then we put the applied type argument
〈Γ 〉A into the application context to infer e, and return B as the output type.

Subtyping. The definition of subtyping is given at the bottom of Fig. 4. As with
the typing rules, the part of argument types corresponding to the application
context is omitted in the output. We interpret the rule form Ψ � A <: B as,
under the application context Ψ , A is a subtype of the type whose type arguments
are Ψ and the return type is B.

Rule SF-SEmpty returns the input type under the empty application con-
text. Rule SF-STApp instantiates a with the type argument A, and returns C.
Note how application subtyping can be extended naturally to deal with type
applications. Rule SF-SApp requests that the argument type is the same as the
top type in the application context, and returns C.

4.3 Meta Theory

Applying the idea of the application mode to System F results in a well-behaved
type system. For example, subtyping transitivity becomes more concise:

Lemma 11 (Subtyping transitivity). If Ψ1 � A <: B, and Ψ2 � B <: C,
then Ψ2, Ψ1 � A <: C.

Also, we still have the interesting subsumption lemma that transfers from
the inference mode to the application mode:

Lemma 12 (Subsumption). If Γ � e ⇒ A, and Γ � Ψ , and Ψ � A <: B,
then Γ � Ψ � e ⇒ B.
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Furthermore, we prove the type safety by proving the progress lemma and
the preservation lemma. The detailed definitions of operational semantics and
values can be found in the supplementary materials.

Lemma 13 (Progress). If ∅ � e ⇒ T , then either e is a value, or there exists
e′, such that e −→ e′.

Lemma 14 (Preservation). If Γ � Ψ � e ⇒ A, and e −→ e′, then Γ � Ψ �
e′ ⇒ A.

Moreover, introducing type equality preserves unique types:

Lemma 15 (Uniqueness of typing). If Γ � Ψ � e ⇒ A, and Γ � Ψ �
e ⇒ B, then A = B.

5 Discussion

This section discusses possible design choices regarding bi-directional type check-
ing with the application mode, and talks about possible future work.

5.1 Combining Application and Checked Modes

Although the application mode provides us with alternative design choices in
a bi-directional type system, a checked mode can still be easily added. One
motivation for the checked mode would be annotated expressions e : A, where
the type of expressions is known and is therefore used to check expressions.

Consider adding e : A for introducing the third checked mode for the language
in Sect. 3. Notice that, since the checked mode is stronger than application mode,
when entering checked mode the application context is no longer useful. Instead
we use application subtyping to satisfy the application context requirements.
A possible typing rule for annotation expressions is:

Ψ � A <: B Γ � e ⇐ A

Γ � Ψ � (e : A) ⇒ B
T-Ann

Here, e is checked using its annotation A, and then we instantiate A to B using
subtyping with application context Ψ .

Now we can have a rule set of the checked mode for all expressions. For
example, one useful rule for abstractions in checked mode could be Abs-Chk,
where the parameter type A serves as the type of x, and typing checks the
body with B. Also, combined with the information flow, the checked rule for
application checks the function with the full type.

Γ , x : A � e ⇐ B

Γ � λx. e ⇐ A → B
Abs-Chk

Γ � e2 ⇒ A Γ � e1 ⇐ A → B

Γ � e1 e2 ⇐ B
App-Chk
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Note that adding expression annotations might bring convenience for pro-
grammers, since annotations can be more freely placed in a program. For exam-
ple, becomes valid. However this does not add
expressive power, since programs that are typeable under expression annotations,
would remain typeable after moving the annotations to bindings. For example
the previous program is equivalent to

This discussion is a sketch. We have not defined the corresponding declarative
system nor algorithm. However we believe that the addition of a checked mode
will not bring surprises to the meta-theory.

5.2 Additional Constructs

In this section, we show that the application mode is compatible with other
constructs, by discussing how to add support for pairs in the language given in
Sect. 3. A similar methodology would apply to other constructs like sum types,
data types, if-then-else expressions and so on.

The introduction rule for pairs must be in the inference mode with an empty
application context. Also, the subtyping rule for pairs is as expected.

Γ � e1 ⇒ A Γ � e2 ⇒ B

Γ � (e1, e2) ⇒ (A,B)
T-Pair

A1 <: B1 A2 <: B2

(A1, A2) <: (B1, B2)
S-Pair

The application mode can apply to the elimination constructs of pairs. If one
component of the pair is a function, for example, (fst (λx. x, 3) 4), then it is
possible to have a judgment with a non-empty application context. Therefore,
we can use the application subtyping to account for the application contexts:

Γ � e ⇒ (A, B) Ψ � A <: C

Γ � Ψ � fst e ⇒ C
T-Fst1

Γ � e ⇒ (A, B) Ψ � B <: C

Γ � Ψ � snd e ⇒ C
T-Snd1

However, in polymorphic type systems, we need to take the subsumption rule
into consideration. For example, in the expression (λx : (∀a.(a, b)). fst x), fst
is applied to a polymorphic type. Interestingly, instead of a non-deterministic
subsumption rule, having polymorphic types actually leads to a simpler solution.
According to the philosophy of the application mode, the types of the arguments
always flow into the functions. Therefore, instead of regarding (fst e) as an
expression form, where e is itself an argument, we could regard fst as a function
on its own, whose type is (∀ab.(a, b) → a). Then as in the variable case, we use
the subtyping rule to deal with application contexts. Thus the typing rules for
fst and snd can be modeled as:

Ψ � (∀ab.(a, b) → a) <: A

Γ � Ψ � fst ⇒ A
T-Fst2

Ψ � (∀ab.(a, b) → b) <: A

Γ � Ψ � snd ⇒ A
T-Snd2

Note that another way to model those two rules would be to simply have an
initial typing environment Γinitial ≡ fst : (∀ab.(a, b) → a), snd : (∀ab.(a, b) → b).
In this case the elimination of pairs be dealt directly by the rule for variables.
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An extended version of the calculus presented in Sect. 3, which includes the
rules for pairs (T-Pair, S-Pair, T-Fst2 and T-Snd2), has been formally stud-
ied. All the theorems presented in Sect. 3 hold with the extension of pairs.

5.3 Dependent Type Systems

One remark about the application mode is that the same idea is possibly appli-
cable to systems with advanced features, where type inference is sophisticated
or even undecidable. One promising application is, for instance, dependent type
systems [2,3,10,21,37]. Type systems with dependent types usually unify the
syntax for terms and types, with a single lambda abstraction generalizing both
type and lambda abstractions. Unfortunately, this means that the let desugar
is not valid in those systems. As a concrete example, consider desugaring the
expression let a = Int inλx : a. x + 1 into Int, which is ill-
typed because the type of x in the abstraction body is a and not Int.

Because let cannot be encoded, declarations cannot be encoded either. Mod-
eling declarations in dependently typed languages is a subtle matter, and nor-
mally requires some additional complexity [34].

We believe that the same technique presented in Sect. 4 can be adapted into
a dependently typed language to enable a let encoding. In a dependent type
system with unified syntax for terms and types, we can combine the two forms
in the typing context (x : A and a = A) into a unified form x = e : A. Then
we can combine two application rules SF-App and SF-TApp into De-App, and
also two abstraction rules SF-Lam and SF-TLam1 into De-Lam.

Γ � e2 ⇒ A Γ � Ψ, e2 : A � e1 ⇒ B

Γ � Ψ � e1 e2 ⇒ B
De-App

Γ, x = e1 : A � Ψ � e ⇒ B

Γ � Ψ, e1 : A � λx. e ⇒ B
De-Lam

With such rules it would be possible to handle declarations easily in depen-
dent type systems. Note this is still a rough idea and we have not fully worked
out the typing rules for this type system yet.

6 Related Work

6.1 Bi-directional Type Checking

Bi-directional type checking was popularized by the work of Pierce and Turner
[29]. It has since been applied to many type systems with advanced features. The
alternative application mode introduced by us enables a variant of bi-directional
type checking. There are many other efforts to refine bi-directional type checking.

Colored local type inference [25] refines local type inference for explicit
polymorphism by propagating partial type information. Their work is built on
distinguishing inherited types (known from the context) and synthesized types
(inferred from terms). A similar distinction is achieved in our algorithm by
manipulating type variables [14]. Also, their information flow is from functions
to arguments, which is fundamentally different from the application mode.
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The system of tridirectional type checking [15] is based on bi-directional type
checking and has a rich set of property types including intersections, unions and
quantified dependent types, but without parametric polymorphism. Tridirec-
tional type checking has a new direction for supporting type checking unions
and existential quantification. Their third mode is basically unrelated to our
application mode, which propagates information from outer applications.

Greedy bi-directional polymorphism [13] adopts a greedy idea from Cardelli
[4] on bi-directional type checking with higher ranked types, where the type
variables in instantiations are determined by the first constraint. In this way,
they support some uses of impredicative polymorphism. However, the greediness
also makes many obvious programs rejected.

6.2 Type Inference for Higher-Ranked Types

As a reference, Fig. 5 [14,20] gives a high-level comparison between related works
and our system.

Predicative Systems. Peyton Jones et al. [27] developed an approach for type
inference for higher rank types using traditional bi-directional type checking
based on Odersky and Läufer [24]. However in their system, in order to do
instantiation on higher rank types, they are forced to have an additional type
category (ρ types) as a special kind of higher rank type without top-level quan-
tifiers. This complicates their system since they need to have additional rule sets
for such types. They also combine a variant of the containment relation from
Mitchell [23] for deep skolemisation in subsumption rules, which we believe is
compatible with our subtyping definition.

Dunfield and Krishnaswami [14] build a simple and concise algorithm for
higher ranked polymorphism based on traditional bidirectional type checking.
They deal with the same language of Peyton Jones et al. [27], except they do
not have let expressions nor generalization (though it is discussed in design
variations). They have a special application judgment which delays instantiation
until the expression is applied to some argument. As with application mode, this
avoids the additional category of types. Unlike their work, our work supports
generalization and HM-style let expressions. Moreover the use of an application
mode in our work introduces several differences as to when and where annota-
tions are needed (see Sect. 2.4 for related discussion).

Impredicative Systems. MLF [18,19,32] generalizes ML with first-class polymor-
phism. MLF introduces a new type of bounded quantification (either rigid or flexi-
ble) for polymorphic types so that instantiation of polymorphic bindings is delayed
until a principal type is found. The HML system [20] is proposed as a simplifica-
tion and restriction ofMLF . HML only uses flexible types, which simplifies the type
inference algorithm, but retains many interesting properties and features.

The FPH system [35] introduces boxy monotypes into System F types. One
critique of boxy type inference is that the impredicativity is deeply hidden in the
algorithmic type inference rules, which makes it hard to understand the interac-
tion between its predicative constraints and impredicative instantiations [31].
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System Types Impred Let Annotations
MLF flexible and rigid yes yes on polymorphically used parameters
HML flexible F-types yes yes on polymorphic parameters
FPH boxy F-types yes yes on polymorphic parameters and some

let bindings with higher-ranked types
Peyton Jones
et al. (2007)

F-types no yes on polymorphic parameters

Dunfield et al.
(2013)

F-types no no on polymorphic parameters

this paper F-types no sugar on polymorphic parameters that are
not applied

Fig. 5. Comparison of higher-ranked type inference systems.

6.3 Tracking Type Equalities

Tracking type equalities is useful in various situations. Here we discuss specifi-
cally two related cases where tracking equalities plays an important role.

Type Equalities in Type Checking. Tracking type equalities is one essential
part for type checking algorithms involving Generalized Algebraic Data Types
(GADTs) [6,26,33]. For example, Peyton Jones et al. [26] propose a type infer-
ence algorithm based on unification for GADTs, where type equalities only apply
to user-specified types. However, reasoning about type equalities in GADTs is
essentially different from the approach in Sect. 4: type equalities are introduced
by pattern matches in GADTs, while they are introduced through type appli-
cations in our system. Also, type equalities in GADTs are local, in the sense
different branches in pattern matches have different type equalities for the same
type variable. In our system, a type equality is introduced globally and is never
changed. However, we believe that they can be made compatible by distinguish-
ing different kinds of equalities.

Equalities in Declarations. In systems supporting dependent types, type equal-
ities can be introduced by declarations. In the variant of pure type systems
proposed by Severi and Poll [34], expressions x = a : A in b generate an equality
x = a : A in the typing context, which can be fetched later through δ-reduction.
However, δ-reduction rules require careful design, and the conversion rule of
δ-reduction makes the type system non-deterministic. One potential usage of
the application mode is to help reduce the complexity for introducing declara-
tions in those type systems, as briefly discussed in Sect. 5.3.

7 Conclusion

We proposed a variant of bi-directional type checking with a new application
mode, where type information flows from arguments to functions in applications.
The application mode is essentially a generalization of the inference mode, can
therefore work naturally with inference mode, and avoid the rule duplication
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that is often needed in traditional bi-directional type checking. The application
mode can also be combined with the checked mode, but this often does not
add expressiveness. Compared to traditional bi-directional type checking, the
application mode opens a new path to the design of type inference/checking.

We have adopted the application mode in two type systems. Those two
systems enjoy many interesting properties and features. However as bi-
directional type checking can be applied to many type systems, we believe appli-
cation mode is applicable to various type systems. One obvious potential future
work is to investigate more systems where the application mode brings benefits.
This includes systems with subtyping, intersection types [8,30], static overload-
ing, or dependent types.
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31. Rémy, D.: Simple, partial type-inference for system F based on type-containment.
In: ICFP 2005 (2005)
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Abstract. The paper investigates behavioural equivalence between pro-
grams in a call-by-value functional language extended with a signature
of (algebraic) effect-triggering operations. Two programs are considered
as being behaviourally equivalent if they enjoy the same behavioural
properties. To formulate this, we define a logic whose formulas specify
behavioural properties. A crucial ingredient is a collection of modalities
expressing effect-specific aspects of behaviour. We give a general theory
of such modalities. If two conditions, openness and decomposability, are
satisfied by the modalities then the logically specified behavioural equiva-
lence coincides with a modality-defined notion of applicative bisimilarity,
which can be proven to be a congruence by a generalisation of Howe’s
method. We show that the openness and decomposability conditions hold
for several examples of algebraic effects: nondeterminism, probabilistic
choice, global store and input/output.

1 Introduction

The notion of behavioural equivalence between programs is a fundamental con-
cept in the theory of programming languages. A conceptually natural approach
to defining behavioural equivalence is to consider two programs as being equiv-
alent if they enjoy the same ‘behavioural properties’. This can be made precise
by specifying a behavioural logic whose formulas express behavioural properties.
Two programs M,N are then defined to be equivalent if, for all formulas Φ, it
holds that M |= Φ iff N |= Φ (where M |= Φ expresses the satisfaction
relation: program M enjoys property Φ).

This logical approach to defining behavioural equivalence has been particu-
larly prominent in concurrency theory, where the classic result is that the equiv-
alence defined by Hennessy-Milner logic [4] coincides with bisimilarity [14,17].
The aim of the present paper is to adapt the logical approach to the very different
computational paradigm of applicative programming with effects.
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More precisely, we consider a call-by-value functional programming language
with algebraic effects in the sense of Plotkin and Power [21]. Broadly speaking,
effects are those aspects of computation that involve a program interacting with
its ‘environment’; for example: nondeterminism, probabilistic choice (in both
cases, the choice is deferred to the environment); input/output; mutable store
(the machine state is modified); control operations such as exceptions, jumps and
handlers (which interact with the continuation in the evaluation process); etc.
Such general effects collectively enjoy common properties identified in the work
of Moggi on monads [15]. Among them, algebraic effects play a special role.
They can be included in a programming language by adding effect-triggering
operations, whose ‘algebraic’ nature means that effects act independently of
the continuation. From the aforementioned examples of effects, only jumps and
handlers are non-algebraic. Thus the notion of algebraic effect covers a broad
range of effectful computational behaviour. Call-by-value functional languages
provide a natural context for exploring effectful programming. From a theoretical
viewpoint, other programming paradigms are subsumed; for example, imperative
programs can be recast as effectful functional ones. From a practical viewpoint,
the combination of effects with call-by-value leads to the natural programming
style supported by impure functional languages such as OCaml.

In order to focus on the main contributions of the paper (the behavioural logic
and its induced behavioural equivalence), we instantiate “call-by-value functional
language with algebraic effects” using a very simple language. Our language is a
simply-typed λ-calculus with a base type of natural numbers, general recursion,
call-by-value function evaluation, and algebraic effects, similar to [21]; although,
for technical convenience, we adopt the (equivalent) formulation of fine-grained
call-by-value [13]. The language is defined precisely in Sect. 2. Following [8,21],
an operational semantics is given that evaluates programs to effect trees.

Section 3 introduces the behavioural logic. In our impure functional setting,
the evaluation of a program of type τ results in a computational process that
may or may not invoke effects, and which may or may not terminate with a
return value of type τ . The key ingredient in our logic is an effect-specific family
O of modalities, where each modality o ∈ O converts a property φ of values of
type τ to a property o φ of general programs (called computations) of type τ .
The idea is that such modalities capture all relevant effect-specific behavioural
properties of the effects under consideration.

A main contribution of the paper is to give a general framework for defin-
ing such effect modalities, applicable across a wide range of algebraic effects.
The general setting is that we have a signature Σ of effect operations, which
determines the programming language, and a collection O of modalities, which
determines the behavioural logic. In order to specify the semantics of the logic, we
require each modality to be assigned a set of unit-type effect trees, which deter-
mines the meaning of the modality. Several concrete examples and a detailed
general explanation are given in Sect. 3.

In Sect. 4, we consider the relation of behavioural equivalence between pro-
grams determined by the logic. A fundamental well-behavedness property is that
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any reasonable program equivalence should be a congruence with respect to the
syntactic constructs of the programming language. Our main theorem (The-
orem 1) is that, under two conditions on the collection O of modalities, which
hold for all the examples of effects we consider, the logically induced behavioural
equivalence is indeed a congruence.

In order to prove Theorem 1, we develop an alternative perspective on
behavioural equivalence, which is of interest in its own right. In Sect. 5 we
show how the modalities O determine a relation of applicative O-bisimilarity,
which is an effect-sensitive version of Abramsky’s notion of applicative bisim-
ilarity [1]. Theorem 2 shows that applicative O-bisimilarity coincides with the
logically defined relation of behavioural equivalence.

The proof of Theorem 1 is then concluded in Sect. 6, where we use Howe’s
method [5,6] to show that applicative O-bisimilarity is a congruence. Although
the proof is technically involved, we give only a brief outline, as the details closely
follow the recent paper [9], in which Howe’s method is applied to an untyped
language with general algebraic effects.

In Sect. 7, we present a variation on our behavioural logic, in which we make
the syntax of logical formulas independent of the syntax of the programming
language.

Finally, in Sect. 8 we discuss related and further work.

2 A Simple Programming Language

As motivated in the introduction, our chosen base language is a simply-typed
call-by-value functional language with general recursion and a ground type of
natural numbers, to which we add (algebraic) effect-triggering operations. This
means that our language is a call-by-value variant of PCF [20], extended with
algebraic effects, resulting in a language similar to the one considered in [21]. In
order to simplify the technical treatment of the language, we present it in the
style of fine-grained call-by-value [13]. This means that we make a syntactic dis-
tinction between values and computations, representing the static and dynamic
aspects of the language respectively. Furthermore, all sequencing of computa-
tions is performed using a single language construct, the let construct. The
resulting language is straightforwardly intertranslatable with the more tradi-
tional call-by-value formulation. But the encapsulation of all sequencing within
a single construct has the benefit of avoiding redundancy in proofs.

Our types are just the simple types obtained by iterating the function type
construction over two base types: N of natural numbers, and also a unit type 1.

Types: τ, ρ ::= 1 | N | ρ → τ
Contexts: Γ ::= ∅ | Γ, x : τ

As usual, term variables x are taken from a countably-infinite stock of such
variables, and the context Γ, x : τ can only be formed if the variable x does not
already appear in Γ .

As discussed above, program terms are separated into two mutually defined
but disjoint categories: values and computations.
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Values: V,W ::= ∗ | Z | S(V ) | λx.M | x
Computations: M,N ::= V W | return V | let M ⇒ x in N | fix (V ) |

case V in {Z ⇒ M,S(x) ⇒ N}
Here, ∗ is the unique value of the unit type. The values of the type of natural
numbers are the numerals represented using zero Z and successor S. The values
of function type are the λ-abstractions. And a variable x can be considered a
value, because, under the call-by-value evaluation strategy of the language, it
can only be instantiated with a value.

The computations are: function application V W ; the computation that does
nothing but return a value V ; a let construct for sequencing; a fix construct for
recursive definition; and a case construct that branches according to whether its
natural-number argument is zero or positive. The computation let M ⇒ x in N
implements sequencing in the following sense. First the computation M is eval-
uated. Only in the case that the evaluation of M terminates, with return value
V , does the thread of execution continue to N . In this case, the computation
N [V /x] is evaluated, and its return value (if any) is the one returned by the let
construct.

To the pure functional language described above, we add effect operations.
The collection of effect operations is specified by a set Σ (the signature) of such
operations, together with, for each σ ∈ Σ an associated arity which takes one of
the four forms below

αn → α N × αn → α αN → α N × αN → α.

The notation here is chosen to be suggestive of the way in which such arities are
used in the typing rules below, viewing α as a type variable. Each of the forms
of arity has an associated term constructor, for building additional computation
terms, with which we extend the above grammar for computation terms.

Effects: σ(M0,M1, . . . ,Mn−1) | σ(V ;M0,M1, . . . ,Mn−1) | σ(V ) | σ(W ;V )

Motivating examples of effect operations and their computation terms can be
found in Examples 0–5 below.

The typing rules for the language are given in Fig. 1 below. Note that the
choice of typing rule for an effect operation σ ∈ Σ depends on its declared arity.

The terms of type τ are the values and computations generated by the con-
structors above. Every term has a unique aspect as either a value or computation.
We write Val(τ) and Com(τ) respectively for closed values and computations.
So the closed terms of τ are Term(τ) = Val(τ) ∪ Com(τ). For n ∈ N a natural
number, we write n for the numeral Sn(Z), hence V al(N) := {n |n ∈ N}.

We now consider some standard signatures of computationally interesting
effect operations, which will be used as running examples throughout the paper.
(We use the same examples as in [8].)

Example 0 (Pure functional computation). This is the trivial case (from an effect
point of view) in which the signature Σ of effect operations is empty. The result-
ing language is a call-by-value variant of PCF [20].
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Fig. 1. Typing rules

Example 1 (Error). We take a set of error labels E. For each e ∈ E there is
an effect operator raisee : α0 → α which, when invoked by the computation
raisee(), aborts evaluation and outputs e as an error message.

Example 2 (Nondeterminism). There is a binary choice operator or : α2 → α
which gives two options for continuing the computation. The choice of continu-
ation is under the control of some external agent, which one may wish to model
as being cooperative (angelic), antagonistic (demonic), or neutral.

Example 3 (Probabilistic choice). Again there is a single binary choice operator
p-or : α2 → α which gives two options for continuing the computation. In this
case, the choice of continuation is probabilistic, with a 1

2 probability of either
option being chosen. Other weighted probabilistic choices can be programmed
in terms of this fair choice operation.

Example 4 (Global store). We take a set of locations L for storing natural num-
bers. For each l ∈ L we have lookupl : αN → α and updatel : N × α → α. The
computation lookupl(V ) looks up the number at location l and passes it as an
argument to the function V , and updatel(n;M) stores n at l and then continues
with the computation M .

Example 5 (Input/output). Here we have two operators, read : αN → α which
reads a number from an input channel and passes it as the argument to a func-
tion, and write : N × α → α which outputs a number (the first argument) and
then continues as the computation given as the second argument.

We next present an operational semantics for our language, under which a
computation term evaluates to an effect tree: essentially, a coinductively gener-
ated term using operations from Σ, and with values and ⊥ (nontermination) as
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the generators. This idea appears in [8,21], and our technical treatment follows
approach of the latter, adapted to call-by-value.

We define a single-step reduction relation � between configurations (S,M)
consisting of a stack S and a computation M . The computation M is the term
under current evaluation. The stack S represents a continuation computation
awaiting the termination of M . First, we define a stack-independent reduction
relation on computation terms that do not involve let at the top level.

(λx : τ.M)V � M [V/x]

case Z of {Z ⇒ M1; S(x) ⇒ M2} � M1

case S(V ) of {Z ⇒ M1; S(x) ⇒ M2} � M2[V/x]

fix(F ) � return λx : τ. let F (λy : τ.let fix F ⇒ z in zy) ⇒ w in wx

The behaviour of let is implemented using a system of stacks where:

Stacks S ::= id | S ◦ ( let (−) ⇒ x in M)

We write S{N} for the computation term obtained by ‘applying’ the stack S to
N , defined by:

id {N} = N

(S ◦ (let (−) ⇒ x in M)) {N} = S{ let N ⇒ x in M}

We write Stack(τ, ρ) for the set of stacks S such that for any N ∈ Com(τ), it
holds that S{N} is a well-typed expression of type ρ. We define a reduction
relation on pairs Stack(τ, ρ) × Com(τ) (denoted (S1,M1) � (S2,M2)) by:

(S, let N ⇒ x in M) � (S ◦ ( let (−) ⇒ x in M), N)
(S,R) � (S,R′) if R � R′

(S ◦ ( let (−) ⇒ x in M), return V ) � (S,M [V/x])

We define the notion of effect tree for an arbitrary set X, where X is thought
of as a set of abstract ‘values’.

Definition 1. An effect tree (henceforth tree), over a set X, determined by a
signature Σ of effect operations, is a labelled and possibly infinite tree whose
nodes have the possible forms.

1. A leaf node labelled with ⊥ (the symbol for nontermination).
2. A leaf node labelled with x where x ∈ X.
3. A node labelled σ with children t0, . . . , tn−1, when σ ∈ Σ has arity αn → α.
4. A node labelled σ with children t0, t1, . . . , when σ ∈ Σ has arity αN → α.
5. A node labelled σm where m ∈ N with children t0, . . . , tn−1, when σ ∈ Σ has

arity N × αn → α.
6. A node labelled σm where m ∈ N with children t0, t1, . . . , when σ ∈ Σ has

arity N × αN → α.
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We write TX for the set of trees over X. We define a partial ordering on
TX where t1 ≤ t2, if t1 can be obtained by replacing subtrees of t2 by ⊥.
This forms an ω-complete partial order, meaning that every ascending sequence
t1 ≤ t2 ≤ . . . has a least upper bound

⊔
n tn. Let Tree(τ) := TVal(τ), we will

define a reduction relation from computations to trees of values.
Given f : X → Y and a tree t ∈ TX, we write t[x �→ f(x)] ∈ TY for the tree

whose leaves x ∈ X are renamed to f(x). We have a function μ : TTX → TX,
which takes a tree r of trees and flattens it to a tree μr ∈ TX, by taking the
labelling tree at each non-⊥ leaf of r as the subtree at the corresponding node
in μr. The function μ is the multiplication associated with the monad structure
of the T operation. The unit of the monad is the map η : X → TX which takes
an element x ∈ X and returns a leaf labelled x.

The operational mapping from a computation M ∈ Com(τ) to an effect tree
is defined intuitively as follows. Start evaluating the M in the empty stack id,
until the evaluation process (which is deterministic) terminates (if this never
happens the tree is ⊥). If the evaluation process terminates at a configuration
of the form (id, return V ) then the tree is the leaf V . Otherwise the evaluation
process can only terminate at a configuration of the form (S, σ(. . . )) for some
effect operation σ ∈ Σ. In this case, create an internal node in the tree of the
appropriate kind (depending on σ) and continue generating each child tree of this
node by repeating the above process by evaluating an appropriate continuation
computation, starting from a configuration with the current stack S.

The following (somewhat technical) definition formalises the idea outlined
above in a mathematically concise way. We define a family of maps |−,−|(−) :
Stack(τ, ρ) × Com(τ) × N → Tree(ρ) indexed over τ, and ρ by:

|S, M |0 = ⊥

|S, M |n+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V if S = id ∧ M = return V

|S′, M ′|n if (S, M) � (S′, M ′)

σ(|S, M0|n, . . . , |S, Mm−1|n) σ :αm →α, M =σ(M0, . . . , Mm−1)

σ(|S, V 0|n, |S, V 1|n, . . . ) σ :αN →α, M =σ(V )

σk(|S, M0|n, . . . , |S, Mm−1|n) σ :N×αm →α, M =σ(k, M0, . . . , Mm−1)

σk(|S, V 0|n, |S, V 1|n, . . . ) σ :N×αN →α, M =σ(k, V )

⊥ otherwise

It follows that |S,M |n ≤ |S,M |n+1 in the given ordering on trees. We write
| − |(−) : Com(τ) × N → Tree(τ) for the function defined by |M |n = |id,M |n.
Using this we can give the operational interpretation of computation terms as
effect trees by defining | − | : Com(τ) → Tree(τ) by |M | :=

⊔
n |M |n.

Example 3 (Nondeterminism). Nondeterministically generate a natural number:

?N := let fix(λx : 1 → N. or(λy : 1. Z, λy : 1. let xy ⇒ z in S(z))) ⇒ w in w∗
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3 Behavioural Logic and Modalities

The goal of this section is to motivate and formulate a logic for expressing
behavioural properties of programs. In our language, program means (well-typed)
term, and we shall be interested both in properties of computations and in prop-
erties of values. Accordingly, we define a logic that contains both value formulas
and computation formulas. We shall use lower case Greek letters φ, ψ, . . . for the
former, and upper case Greek letters Φ, Ψ, . . . for the latter. Our logic will thus
have two satisfaction relations

V |= φ M |= Φ

which respectively assert that “value V enjoys the value property expressed by
φ” and “computation M enjoys the computation property expressed by Φ”.

In order to motivate the detailed formulation of the logic, it is useful to
identify criteria that will guide the design.

(C1) The logic should express only ‘behaviourally meaningful’ properties of
programs. This guides us to build the logic upon primitive notions that have
a direct behavioural interpretation according to a natural understanding of
program behaviour.

(C2) The logic should be as expressive as possible within the constraints
imposed by criterion (C1).

For every type τ , we define a collection VF(τ) of value formulas, and a
collection CF(τ) of computation formulas, as motivated above.

Since boolean logical connectives say nothing themselves about computa-
tional behaviour, it is a reasonable general principle that ‘behavioural proper-
ties’ should be closed under such connectives. Thus, in keeping with criterion
(C2), which asks for maximal expressivity, we close each set CF(τ) and VF(τ),
of computation and value formulas, under infinitary propositional logic.

In addition to closure under infinitary propositional logic, each set VF(τ)
contains a collection of basic value formulas, from which compound formulas
are constructed using (infinitary) propositional connectives.1 The choice of basic
formulas depends on the type τ .
1 We call such formulas basic rather than atomic because they include formulas such

as (V �→ Φ), discussed below, which are built from other formulas.

www.dbooks.org

https://www.dbooks.org/


308 A. Simpson and N. Voorneveld

In the case of the natural numbers type, we include a basic value formula
{n} ∈ VF(N), for every n ∈ N. The semantics of this formula are given by:

V |= {n} ⇔ V = n.

By the closure of VF(N) under infinitary disjunctions, every subset of N can be
represented by some value formula. Moreover, since a general value formula in
VF(N) is an infinitary boolean combination of basic formulas of the form {n},
the value formulas represent exactly the subsets on N.

For the unit type, we do not require any basic value formulas. The unit type
has only one value, ∗. The two subsets of this singleton set of values are defined
by the formulas ⊥ (‘falsum’, given as an empty disjunction), and  (the truth
constant, given as an empty conjunction).

For a function type τ → ρ, we want each basic formula to express a funda-
mental behavioural constraint on values (i.e., λ-abstractions) W of type τ → ρ.
In keeping with the applicative nature of functional programming, the only way
in which a λ-abstraction can be used to generate behaviour is to apply it to an
argument of type τ , which, because we are in a call-by-value setting, must be
a value V . The application of W to V results in a computation WV of type ρ,
whose properties can be probed using computation formulas in CF(ρ). Based on
this, for every value V ∈ Val(τ) and computation formula Φ ∈ CF(ρ), we include
a basic value formula (V �→ Φ) ∈ VF(τ → ρ) with the semantics:

W |= (V �→ Φ) ⇔ WV |= Φ.

Using this simple construct, based on application to a single argument V , other
natural mechanisms for expressing properties of λ-abstractions are definable,
using infinitary propositional logic. For example, given φ ∈ VF(τ) and Ψ ∈
CF(ρ), the definition

(φ �→ Ψ) :=
∧

{(V �→ Ψ) | V ∈ Val(τ), V |= φ} (1)

defines a formula whose derived semantics is

W |= (φ �→ Ψ) ⇔ ∀V ∈Val(τ). V |= φ implies WV |= Ψ. (2)

In Sect. 7, we shall consider the possibility of changing the basic value formulas
in VF(τ → ρ) to formulas (φ �→ Ψ).

It remains to explain how the basic computation formulas in CF(τ) are
formed. For this we require a given set O of modalities, which depends on the
algebraic effects contained in the language. The basic computation formulas in
CF(τ) then have the form o φ, where o ∈ O is one of the available modalities,
and φ is a value formula in VF(τ). Thus a modality ‘lifts’ properties of values of
type τ to properties of computations of type τ .

In order to give semantics to computation formulas o φ, we need a general
theory of the kind of modality under consideration. This is one of the main
contributions of the paper. Before presenting the general theory, we first consider
motivating examples, using our running examples of algebraic effects.
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Example 0 (Pure functional computation). Define O = {↓}. Here the single
modality ↓ is the termination modality : ↓φ asserts that a computation termi-
nates with a return value V satisfying φ. This is formalised using effect trees:

M |= ↓φ ⇔ |M | is a leaf V and V |= φ.

Note that, in the case of pure functional computation, all trees are leaves: either
value leaves V , or nontermination leaves ⊥.

Example 1 (Error). Define O = {↓} ∪ {Ee | e ∈ E}. The semantics of the
termination modality ↓ is defined as above. The error modality Ee flags error e:

M |= Eeφ ⇔ |M | is a node labelled with raisee.

(Because raisee is an operation of arity 0, a raisee node in a tree has 0 children.)
Note that the semantics of Eeφ makes no reference to φ. Indeed it would be
natural to consider Ee as a basic computation formula in its own right, which
could be done by introducing a notion of 0-argument modality, and considering
Ee as such. In this paper, however, we keep the treatment uniform by always
considering modalities as unary operations, with natural 0-argument modalities
subsumed as unary modalities with redundant argument.

Example 2 (Nondeterminism). Define O = {♦, �} with:

M |= ♦φ ⇔ |M | has some leaf V such that V |= φ

M |= �φ ⇔ |M | has finite height and every leaf is a value V s.t. V |= φ.

Including both modalities amounts to a neutral view of nondeterminism. In the
case of angelic nondeterminism, one would include just the ♦ modality; in that of
demonic nondeterminism, just the � modality. Because of the way the semantic
definitions interact with termination, the modalities � and ♦ are not De Morgan
duals. Indeed, each of the three possibilities {♦, �}, {♦}, {�} for O leads to a
logic with a different expressivity.

Example 3 (Probabilistic choice). Define O = {P>q | q ∈ Q, 0 ≤ q < 1} with:

M |= P>q φ ⇔ P(|M | terminates with a value in {V | V |= φ}) > q,

where the probability on the right is the probability that a run through the
tree |M |, starting at the root, and making an independent fair probabilistic
choice at each branching node, terminates at a value node with a value V in the
set {V | V |= φ}. We observe that the restriction to rational thresholds q is
immaterial, as, for any real r with 0 ≤ r < 1, we can define:

P>r φ :=
∨

{P>q φ | q ∈ Q, r < q < 1}.

Similarly, we can define non-strict threshold modalities, for 0 < r ≤ 1, by:

P≥r φ :=
∧

{P>q φ | q ∈ Q, 0 ≤ q < r}.
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Also, we can exploit negation to define modalities expressing strict and non-strict
upper bounds on probabilities. Notwithstanding the definability of non-strict and
upper-bound thresholds, we shall see later that it is important that we include
only strict lower-bound modalities in our set O of primitive modalities.

Example 4 (Global store). For a set of locations L, define the set of states by
State = N

L. The modalities are O = {(s � r) | s, r ∈ State}, where informally:

M |= (s � r)φ ⇔ the execution of M, starting in state s, terminates in
final state r with return value V such that V |= φ.

We make the above definition precise using the effect tree of M . Define

exec : TX × State → X × State,

for any set X, to be the least partial function satisfying:

exec(t, s) =

⎧
⎪⎨

⎪⎩

(x, s) if t is a leaf labelled with x ∈ X

exec(ts(l), s) if t = lookupl(t0, t1, · · · ) and exec(ts(l), s)is defined

exec(t′, s[l := n]) if t = updatel,n(t′) and exec(t′, s[l := n]) is defined,

where s[l := n] is the evident modification of state s. Intuitively, exec(t, s) defines
the result of “executing” the tree of commands in effect tree t starting in state
s, whenever this execution terminates. In terms of operational semantics, it can
be viewed as defining a ‘big-step’ semantics for effect trees (in the signature of
global store). We can now define the semantics of the (s � r) modality formally:

M |= (s � r)φ ⇔ exec(|M |, s) = (V, r) where V |= φ.

Example 5 (Input/output). Define an i/o-trace to be a word w over the alphabet

{?n | n ∈ N} ∪ {!n | n ∈ N}.

The idea is that such a word represents an input/output sequence, where ?n
means the number n is given in response to an input prompt, and !n means that
the program outputs n. Define the set of modalities

O = {〈w〉↓, 〈w〉... | w an i/o-trace}.

The intuitive semantics of these modalities is as follows.

M |= 〈w〉↓φ ⇔ w is a complete i/o-trace for the execution of M

resulting in termination with V s.t. V |= φ

M |= 〈w〉... φ ⇔ w is an initial i/o-trace for the execution of M.

In order to define the semantics of formulas precisely, we first define relations
t |= 〈w〉↓P and t |= 〈w〉..., between t ∈ TX and P ⊆ X, by induction on words
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Fig. 2. The logic V

(Note that we are overloading the |= symbol.) In the following, we write ε for
the empty word, and we use textual juxtaposition for concatenation of words.

t |= 〈ε〉↓ P ⇔ t is a leaf x and x ∈ P

t |= 〈(?n)w〉↓ P ⇔ t = read(t0, t1, . . . ) and tn |= 〈w〉↓ P

t |= 〈(!n)w〉↓ P ⇔ t = writen(t′) and t′ |= 〈w〉↓P

t |= 〈ε〉... ⇔ true
t |= 〈(?n)w〉... ⇔ t = read(t0, t1, . . . ) and tn |= 〈w〉...
t |= 〈(!n)w〉... ⇔ t = writen(t′) and t′ |= 〈w〉...

The formal semantics of modalities is now easily defined by:

M |= 〈w〉↓ φ ⇔ |M | |= 〈w〉↓ {V | V |= φ}
M |= 〈w〉... φ ⇔ |M | |= 〈w〉....

Note that, as in Example 1, the formula argument of the 〈w〉... modality is redun-
dant. Also, note that our modalities for input/output could naturally be formed
by combining the termination modality ↓, which lifts value formulas to computa-
tion formulas, with sequences of atomic modalities 〈?n〉 and 〈!n〉 acting directly
on computation formulas. In this paper, we do not include such modalities, act-
ing on computation formulas, in our general theory. But this is a natural avenue
for future consideration.

We now give a formal treatment of the logic and its semantics, in full gener-
ality. We assume given a signature Σ of effect operations, as in Sect. 2. And we
assume given a set O, whose elements we call modalities.

We call our main behavioural logic V, where the letter V is chosen as a
reference to the fact that the basic formula at function type specifies function
behaviour on individual value arguments V .

Definition 2 (The logic V). The classes VF(τ) and CF(τ) of value and com-
putation formulas, for each type τ , are mutually inductively defined by the rules
in Fig. 2. In this, I can be instantiated to any set, allowing for arbitrary conjunc-
tions and disjunctions. When I is ∅, we get the special formulas  =

∧
∅ and

⊥ =
∨

∅. The use of arbitrary index sets means that formulas, as defined, form
a proper class. However, we shall see below that countable index sets suffice.

www.dbooks.org

https://www.dbooks.org/


312 A. Simpson and N. Voorneveld

In order to specify the semantics of modal formulas, we require a connection
between modalities and effect trees, which is given by an interpretation function

�·� : O → P(T1).

That is, every modality o ∈ O is mapped to a subset �o� ⊆ T1 of unit-type effect
trees. Given a subset P ⊆ X (e.g. given by a formula) and a tree t ∈ TX we can
define a unit-type tree t[∈P ] ∈ T1 as the tree created by replacing the leaves of
t that belong to P by ∗ and the others by ⊥. In the case that P is the subset
{V | V |= φ} specified by a formula φ ∈ VF(τ), we also write t[ |= φ] for t[∈P ].

We can now formally define the two satisfaction relations |= ⊆ Val(τ)×VF(τ)
and |= ⊆ Com(τ) × CF(τ), mutually inductively, by:

m |= {n} ⇔ m = n

W |= (V �→ Φ) ⇔ WV |= Φ

M |= o φ ⇔ |M | [ |= φ] ∈ �o�

W |= ¬φ ⇔ ¬(W |= φ).

We omit the evident clauses for the other propositional connectives. We remark
that all conjunctions and disjunctions are semantically equivalent to countable
ones, because value and computation formulas are interpreted over sets of terms,
Val(τ) and Com(τ), which are countable.

We end this section by revisiting our running examples, and showing, in each
case, that the example modalities presented above are all specified by suitable
interpretation functions �·� : O → P(T1).

Example 0 (Pure functional computation). We have O = {↓}. Define:

�↓� = { ∗ } (where ∗ is the tree with single node ∗)

Example 1 (Error). We have O = {↓} ∪ {Ee | e ∈ E}. Define:

�Ee� = { raisee }.

Example 2 (Nondeterminism). We have O = {♦, �}. Define:

�♦� = {t | t has some * leaf}
��� = {t | t has finite height and every leaf is a *}.

Example 3 (Probabilistic choice). O = {P>q | q ∈ Q, 0 ≤ q < 1}. Define:

�P>q� = {t | P( t terminates with a * leaf ) > q}.

Example 4 (Global store). O = {(s � r) | s, r ∈ State}. Define:

�(s � r)� = {t | exec(t, s) = (∗, r)}.

Example 5 (Input/output). O = {〈w〉↓, 〈w〉... | w an i/o-trace}. Define:

�〈w〉↓ � = {t | t |= 〈w〉↓ {∗} }
�〈w〉... � = {t | t |= 〈w〉...}.
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4 Behavioural Equivalence

The goal of this section is to precisely formulate our main theorem: under suitable
conditions, the behavioural equivalence determined by the logic V of Sect. 3 is
a congruence. In order to achieve this, it will be useful to consider the positive
fragment V+ of V.

Definition 3 (The logic V+). The logic V+ is the fragment of V consisting of
those formulas in VF(τ) and CF(τ) that do not contain negation.

Whenever we have a logic L whose value and computation formulas are given
as subcollections VFL(τ) ⊆ VF(τ) and CFL(τ) ⊆ CF(τ), then L determines
a preorder (and hence also an equivalence relation) between terms of the same
type and aspect.

Definition 4 (Logical preorder and equivalence). Given a fragment L of
V, we define the logical preorder �L, between well-typed terms of the same type
and aspect, by:

V �L W ⇔ ∀φ ∈ VFL(τ), V |= φ ⇒ W |= φ

M �L N ⇔ ∀Φ ∈ CFL(τ), M |= Φ ⇒ N |= Φ

The logical equivalence ≡L on terms is the equivalence relation induced by the
preorder (the intersection of �L and its converse).

In the case that formulas in L are closed under negation, it is trivial that the
preorder �L is already an equivalence relation, and hence coincides with ≡L.
Thus we shall only refer specifically to the preorder �L, for fragments, such as
V+, that are not closed under negation.

The two main relations of interest to us in this paper are the primary rela-
tions determined by V and V+: full behavioural equivalence ≡V ; and the positive
behavioural preorder �V+ (which induces positive behavioural equivalence ≡V+).

We next formulate the appropriate notion of (pre)congruence to apply to the
relations ≡V and �V+ . These two preorders are examples of well-typed relations
on closed terms. Any such relation can be extended to a relation on open terms
in the following way. Given a well-typed relation R on closed terms, we define the
open extension R◦ where Γ � MR◦N : τ precisely when, for every well-typed
vector of closed values

−→
V : Γ , it holds that M [

−→
V ]RN [

−→
V ]. The correct notion

of precongruence for a well-typed preorder on closed terms, is to ask for its open
extension to be compatible in the sense of the definition below; see, e.g., [10,19]
for further explanation.

Definition 5 (Compatibility). A well-typed open relation R is said to be
compatible if it is closed under the rules in Fig. 3.

We now state our main congruence result, although we have not yet defined
the conditions it depends upon.
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Fig. 3. Rules for compatibility

Theorem 1. If O is a decomposable set of Scott-open modalities then the open
extensions of ≡V and �V+ are both compatible. (It is an immediate consequence
that the open extension of ≡V+ is also compatible.)

The Scott-openness condition refers to the Scott topology on T1.

Definition 6. We say that o ∈ O is upwards closed if �o� is an upper-closed
subset of T1; i.e., if t ∈ �o� implies t′ ∈ �o� whenever t ≤ t′.

Definition 7. We say that o ∈ O is Scott-open if �o� is an open subset in the
Scott topology on T1; i.e., �o� is upper closed and, whenever t1 ≤ t2 ≤ . . . is an
ascending chain in T1 with supremum �iti ∈ �o�, we have tn ∈ �o� for some n.

Before formulating the property of decomposability, we make some simple
observations about the positive preorder �V+ .

Lemma 8. For any V0, V1 ∈ Val(ρ → τ), we have V0 �V+ V1 if and only if:

∀W ∈ V al(ρ), ∀Ψ ∈ CFV+(τ), V0 |= (W �→ Ψ) implies V1 |= (W �→ Ψ).

Lemma 9. For any M0,M1 ∈ Com(τ), we have M0 �V+ M1 if and only if:

∀o ∈ O, ∀φ ∈ VFV+(τ), M0 |= o φ implies M1 |= o φ.

Similar characterisations, with appropriate adjustments, hold for behavioural
equivalence ≡V .

The decomposability property is formulated using an extension of the positive
preorder �V+ , at unit type, from a relation on computations to a relation on
arbitrary effect trees. Accordingly, we define a preorder � on T1 by:

t � t′ ⇔ ∀o ∈ O, (t ∈ �o� ⇒ t′ ∈ �o�) ∧ (t[∈ ∅] ∈ �o� ⇒ t′[∈ ∅] ∈ �o�).



Behavioural Equivalence via Modalities for Algebraic Effects 315

Proposition 10. For computations M,N ∈ Com(1), it holds that |M | � |N | if
and only if M �V+ N .

Proof. The defining condition for |M | � |N | unwinds to:

∀o ∈ O, (M |= o implies N |= o) ∧ (M |= o⊥ implies N |= o⊥).

This coincides with M �V+ N by Lemma 9. ��
We now formulate the required notion of decomposability. We first give the

general definition, and then follow it with a related notion of strong decompos-
ability, which can be more convenient to establish in examples. Both definitions
are unavoidably technical in nature.

For any relation R ⊆ X × Y and subset A ⊆ X, we write R↑A for the right
set {y ∈ Y | ∃x ∈ A, xRy}. This allows use to easily define our required notion.

Definition 11 (Decomposability). We say that O is decomposable if, for all
r, r′ ∈ TT1, we have:

(∀A ⊆ T1, r[∈ A] � r′[∈ �↑A]) ⇒ μr � μr′.

Corollary 22 in Sect. 5, may help to motivate the formulation of the above prop-
erty, which might otherwise appear purely technical. The following stronger ver-
sion of decomposability, which suffices for all examples considered in the paper,
is perhaps easier to understand in its own right.

Definition 12 (Strong decomposability). We say that O is strongly decom-
posable if, for every r ∈ TT1 and o ∈ O for which μr ∈ �o�, there exists a
collection {(oi, o

′
i)}i∈I of pairs of modalities such that:

1. ∀i ∈ I, r[∈ �o′
i�] ∈ �oi� ; and

2. for every r′ ∈ TT1, (∀i ∈ I, r′[∈ �o′
i�] ∈ �oi� ) implies μr′ ∈ �o�.

Proposition 13. If O is a strongly decomposable then it is decomposable.

Proof. Suppose that r[∈ A] � r′[∈ (�↑ A)] holds for every A ⊆ T1. Assume that
μr ∈ �o� ∈ O. Then strong decomposability gives a collection {(oi, o

′
i)}I . By the

definition of �, for each o′
i we have �↑ �o′

i� = �o′
i�. By the initial assumption,

r[∈ �o′
i�] ∈ �oi� implies r′[∈ (�↑ �o′

i�)] ∈ �oi�, and hence r′[∈ �o′
i�] ∈ �oi�. This

holds for every i, so by strong decomposability μr′ ∈ �o�. We have shown that
μr ∈ �o� implies μr′ ∈ �o�. One can prove similarly that μr[∈ ∅] ∈ �o� implies
that μr′[∈ ∅] ∈ �o� by observing that �↑ {x |x[∈ ∅] ∈ �o′

i�} = {x |x[∈ ∅] ∈ �o′
i�}.

Thus it holds that μr � μr′ and hence O is decomposable. ��
We end this section by again looking at our running examples, and showing,

in each case, that the identified collection O of modalities is Scott-closed (hence
upwards closed) and strongly decomposable (hence decomposable). For any of
the examples, upwards closure is easily established, so we will not show it here.
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Example 0 (Pure functional computation). We have O = {↓} and �↓� = { ∗ }.
Scott openness holds since if �iti = ∗ then for some i we must already have
ti = ∗. It is strongly decomposable since: μr ∈ �↓� ⇔ r[∈ �↓�] ∈ �↓�, which
means r returns a tree t which is a leaf ∗.

Example 1 (Error). We have O = {↓} ∪ {Ee | e ∈ E} and �Ee� = { raisee }.
Scott-openness holds for both modalities for the same reason as in the previous
example, and its strongly decomposable since:

μr ∈ �↓� ⇔ r[∈ �↓�] ∈ �↓�.

Which means r returns a tree t which returns ∗.

μr ∈ �Ee� ⇔ r[∈ �Ee�] ∈ �Ee� ∨ r[∈ �Ee�] ∈ �↓�.

Which means r raises an error, or returns a tree that raises an error.

Example 2 (Nondeterminism). We have O = {♦, �}. The Scott-openness of
�♦� = {t | t has some ∗ leaf} is because if �iti has a ∗ leaf, then that leaf
must already be contained in ti for some i. Similarly, if �iti ∈ ��� then, because
��� = {t |t has finite height and every leaf is a∗}, the tree �iti has finitely many
leaves and all must be contained in ti for some i. Hence ti ∈ ���. Strong decom-
posability holds because:

μr ∈ �♦� ⇔ r[∈ �♦�] ∈ �♦� and μr ∈ ��� ⇔ r[∈ ���] ∈ ���.

The right-hand-side of the former states that r has as a leaf a tree t, which itself
has a leaf ∗. That of the latter states that r is finite and all leaves are finite trees
t that have only ∗ leaves. The same arguments show that {♦} and {�} are also
decomposable sets of Scott open modalities.

Example 3 (Probabilistic choice). O = {P>q | q ∈ Q, 0 ≤ q < 1}. For the
Scott-openness of �P>q� = {t | P( t terminates with a * leaf ) > q}, note that
P(�iti terminates with a ∗ leaf ) is determined by some countable sum over the
leaves of ti. If this sum is greater than a rational q, then some finite approxima-
tion of the sum must already be above q. The finite sum is over finitely many
leaves from �iti, all of which will be present in ti for some i. Hence ti ∈ �P>q�.

We have strong decomposability, since P(μr terminates with a∗ leaf ) equals
the integral of the function fr(x) = sup{y ∈ [0, 1] | r[�P>x�] ∈ �P>y�} from [0, 1]
to [0, 1]. Indeed, fr(x) gives the probability that r return a tree t ∈ �P>x�. So we
know that if ∀x, y, r[�P>x�] ∈ �P>y� ⇒ r′[�P>x�] ∈ �P>y�, then fr′(x) ≥ fr(x)
for any x. Hence if μr ∈ �P>q� then

∫
fr > q, whence also

∫
fr′ > q, which

means μr′ ∈ �P>q�.

Example 4 (Global store). We have O = {(s � s′) | s, s′ ∈ State}. For the Scott-
openness of �(s � s′)� = {t | exec(t, s) = (∗, r)}, note that if exec(�iti, s) =
(∗, s′), there is a single finite branch of t that follows the path the recursive
function exec took. This branch must already be contained in ti for some i. We
also have strong decomposability since:

μr ∈ �s � s′� ⇔ ∃s′′ ∈ State, r[∈ �s′′ � s′�] ∈ �s � s′′�.

Which just means that exec(r, s) = (t, s′′) and exec(t, s′′) = (∗, s′) for some s′′.
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Example 5 (Input/output). We have O = {〈w〉↓, 〈w〉... | w an i/o-trace}. For the
Scott-openness of �〈w〉↓ � = {t | t |= 〈w〉↓ {∗} }, note that the i/o-trace 〈w〉↓
is given by some finite branch, which if in �iti must be in ti for some i. The
Scott-openness of �〈w〉... � = {t | t |= 〈w〉... } holds for similar reasons. We have
strong decomposability because of the implications:

μr ∈ �〈w〉↓� ⇔ ∃v, u i/o-traces, vu = w ∧ r[∈ �〈u〉↓�] ∈ �〈v〉↓�.
Which means r follows trace v returning t, and t follows trace u returning ∗.

μr ∈ �〈w〉. . .� ⇔ r[∈ �↓�] ∈ �〈w〉. . .� ∨ ∃v, u, vu = w ∧ r[∈ �〈u〉. . .�] ∈ �〈v〉↓�.
Which means either r follows trace w immediately, or it follows v returning a
tree that follows u.

5 Applicative O-(bi)similarity

In this section we look at an alternative description of our logical pre-order.
Central to such a definition lies the concept of a relator [12,25], which we use
to lift a relation on value terms to a relation on computation terms. With our
family of modalities O we can define a relator which takes a relation R ⊆ X ×Y
and returns the relation O(R) ⊆ TX × TY , defined by:

t O(R) t′ ⇔ ∀A ⊆ X,∀o ∈ O, t[∈ A] ∈ �o� ⇒ t′[∈ (R↑A)] ∈ �o�.

Note that O(id1) = (�). Following [9], we use this relation-lifting operation to
define notions of applicative similarity and bisimilarity.

Definition 14. An applicative O-simulation is given by a pair of relations Rv
τ

and Rc
τ for each type τ , where Rv

τ ⊆ Val(τ)2 and Rc
τ ⊆ Com(τ)2, such that:

1. V Rv
NW ⇒ (V = W )

2. MRc
τN ⇒ |M | O(Rv

τ ) |N |
3. V Rv

ρ→τW ⇒ ∀U ∈ Val(ρ), V U Rc
τ WU

Applicative O-similarity is the largest applicative O-simulation, which is equal
to the union of all applicative O-simulations.

Definition 15. An applicative O-bisimulation is a symmetric O-simulation.
The relation of O-bisimilarity is the largest applicative O-bisimulation.

Lemma 16. Applicative O-bisimilarity is identical to the relation of applicative
(O ∩ Oop)-similarity, where t(O ∩ Oop)(R)r ⇔ tO(R)r ∧ rO(Rop)t.

Proof. Let R be the O-bisimilarity, then by symmetry we have Rop = R. So if
MRN we have NRM , and by the simulation rules we derive |M |O(R)|N | and
|N |O(R)|M | which is what we needed.

Let R be the O ∩ Oop-similarity. If MRopN then |N |(O ∩ Oop)(R)|M | so
|N |O(R)|M | ∧ |M |O(Rop)|N | which results in |M |(O ∩ Oop)(Rop)|N |. Verifying
the other simulation conditions as well, we can conclude that the symmetric
closure R ∪ Rop is also a O ∩ Oop-simulation. So R must, as the largest such
simulation, be symmetric. Hence R is a symmetric O-simulation as well.
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For brevity, we will leave out the word “applicative” from here on, and write
o to mean its denotation �o�. We also introduce brackets, writing o[φ] for o φ.
The key result now is that the maximal relation, the O-similarity is in most
cases the same object as our logical preorder. We first give a short Lemma.

Lemma 17. For any fragment L of V closed under countable conjunction, it
holds that for each value V there is a formula χV ∈ L s.t. W |=L χV ⇔
V �L W .

Proof. For each U such that (V ��L U), choose a formula φU ∈ L such that
V |=L φU and (U �|= φU ). Then if we define χV :=

∧
{U |V 
�LU} φU it holds that

V ��L U ⇔ U �|= χV , which is what we want.

Theorem 2 (a). For any family of upwards closed modalities O, we have that
the logical preorder �V+ is identical to O-similarity.

Proof. We write � instead of �V+ to make room for other annotations. We first
prove that our logical preorder � is an O-simulation by induction on types.

1. Values of N. If n �v
N m, then since n |= {n} we have that m |= {n}, hence

m = n.
2. Computations of τ . Assume M �c

τ N , we prove that |M |O(�v
τ )|N |. Take

A ⊆ Val(τ) and o ∈ O such that |M |[∈ A] ∈ o. Taking the following formula
φ :=

∨
a∈A χa (where χa as in Lemma 17), then b |= φ ⇔ ∃a ∈ A, a �v

τ b and
a ∈ A ⇒ a |= φ. So |M |[|= φ] ≥ |M |[∈ A], hence since o is upwards closed,
|M |[|= φ] ∈ o. By M �c

τ N we have |N |[∈ {b ∈ Val(τ) | ∃a ∈ A, a �v
τ b}] =

|N |[|= φ] ∈ o. Hence we can conclude that |M |O(�v
τ )|N |.

3. Function values of ρ → τ , this follows from Lemma 8 and the Induction
Hypothesis.

We can conclude that � is an O-simulation. Now take an arbitrary O-simulation
R. We prove by induction on types that R ⊆ (�).

1. Values of N. If V Rv
NW then V = W , hence by reflexivity we get V �v

N W .
2. Computations of τ . Assume MRc

τN , we prove that M �c
τ N using the char-

acterisation from Lemma 9. Say for o ∈ O and φ ∈ VF(τ) we have M |= o[φ].
Let Aφ := {a ∈ Val(τ) | a |= φ} ⊆ Val(τ), then |M |[∈ Aφ] = |M |[|= φ] ∈ o
hence by MRc

τN we derive |N |[∈ {b ∈ Val(τ) | ∃a ∈ Aφ, aRv
τ b}] ∈ o. By

Induction Hypothesis on values of τ , we know that Rv
τ ⊆ (�v

τ ), hence
‘∃a ∈ Aφ, aRv

τ b’ implies b |= φ. We get that |N |[|= φ] ≥ |N |[∈ {b ∈
Val(τ) | ∃a ∈ Aφ, aRv

τ b}], so by upwards closure of o we have |N |[|= φ] ∈ o
meaning N |= o[φ]. We conclude that M �c

τ N .
3. Function values of ρ → τ , assume V Rv

ρ→τW . We prove V �v
ρ→τ W using the

characterisation from Lemma 8. Assume V |= (U �→ Φ) where U ∈ Val(ρ)
and Φ ∈ CF(τ), so V U |= Φ. By V Rv

ρ→τW we have V U Rc
τ WU and by

Induction Hypothesis we have Rc
τ ⊆ (�c

τ ), so V U �c
τ WU . Hence WU |= Φ

meaning W |= (U �→ Φ). We can conclude that V �v
ρ→τ W .
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4. Values of 1. If V Rv
1W then V = ∗ = W hence V �v

1 W .

In conclusion: any O-simulation R is a subset of the O-simulation �V+ . So �V+

is O-similarity. ��
Alternatively, we can look at the variation of our logic with negation. This

is related to applicative bisimulations.

Theorem 2 (b). For any family of upwards closed modalities O, we have that
the logical equivalence ≡V is identical to O-bisimilarity.

Proof. Note first that ≡V is symmetric.
Secondly, note that since ≡V=�V we know by Lemma 17, that for any V ,

there is a formula χV such that W |= χV ⇔ V ≡V W .
Using these special formulas χV , the rest of the proof is very similar to the

proof in Theorem2(a). Here follow the non-trivial parts of the proof, different
from the previous lemma. For proving ≡V is an O-simulation:

1. Computations of τ . Assume M ≡c
τ N and |M |[∈ A] ∈ o ∈ O. Then M |=

o[
∨

V ∈A χV ] hence N |= o[
∨

V ∈A χV ] meaning |N |[∈ {W | ∃V ∈ A, V ≡c
τ

W}]. So |M |O(≡v
τ )|N |.

2. Functions of ρ → τ , if V ≡v
ρ→τ W and U ∈ Val(ρ). If V U |= Φ, then

V |= U �→ Φ hence W |= U �→ Φ so WU |= Φ. Same vice versa, so
V U ≡c

τ WU .

So ≡V is an O-bisimulation. Now take any O-bisimulation R.

1. Computations of τ , if MRN and M |= o[φ] then |M |[|= φ] ∈ o hence
|N |[∈ {W | ∃V |= φ, V Rv

τW}] ∈ o. By Induction Hypothesis, (Rv
τ ) ⊆ (≡v

τ )
so {W | ∃V |= φ, V Rv

τW} ⊆ {W | ∃V |= φ, V ≡v
τ W}. So by upwards

closure of o we get that |N |[∈ {W | ∃V |= φ, V ≡v
τ W}] ∈ o and further that

N |= o[φ]. We can conclude M ≡V N .
2. Values of ρ → τ , if V RW and V |= U �→ Φ, then V U |= Φ and V U R WU

hence by Induction Hypothesis, V U ≡ WU meaning WU |= Φ so W |= U �→
Φ. If V |= ¬(U �→ Φ) then ¬(V U |= Φ) hence by V U ≡ WU we have
¬(WU |= Φ) so W |= ¬(U �→ Φ). For the

∨
and

∧
constructors, a

simple Induction Step would suffice, and for higher level negation note that
¬∨

φ ⇔ ∧ ¬φ and ¬∧
φ ⇔ ∨¬φ.

We can conclude that (R) ⊆ (≡V), so ≡V is indeed O-bisimilarity. ��
We end this section by stating the abstract properties of our relational lifting

O(R) required for the proof by Howe’s method in Sect. 6 to go through. The
necessary properties were identified in [9]. The contribution of this paper is that
all the required properties follow from our modality-based definition of O(R).
The first set of properties tell us that O(−) is a relator in the sense of [12]:

Lemma 18. If the modalities from O are upwards closed, then O(−) is a relator,
meaning that:
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1. If R ⊆ X × X is reflexive, then so is O(R).
2. ∀R,∀S, O(R)O(S) ⊆ O(RS), where RS is relation composition.
3. ∀R,∀S, R ⊆ S ⇒ O(R) ⊆ O(S).
4. ∀f : X → Z, g : Y → W,R ⊆ Z × W,O((f × g)−1R) = (Tf × Tg)−1O(R)

where (f × g)−1(R) = {(x, y) ∈ X × Y | f(x)Rg(y)}.
The next property together with the previous lemma establishes that O(−) is a
monotone relator in the sense of [25].

Lemma 19. If the modalities from O are upwards closed, then O(−) is mono-
tone, meaning for any f : X → Z, g : Y → W , R ⊆ X × Y and S ⊆ Z × W :

(∀x, y, xRy ⇒ f(x)S g(y)) ∧ tO(R)r ⇒ t[x �→ f(x)]O(S) r[y �→ g(y)]

The relator also interacts well with the monad structure on T .

Lemma 20. If O is a decomposable set of upwards closed modalities, then:

1. xRy ⇒ η(x)O(R)η(y);
2. tO(O(R))r ⇒ μtO(R)μr.

Finally, the following properties show that relator behaves well with respect to
the order on trees.

Lemma 21. If O only contains Scott open modalities, then:

1. If R is reflexive, then t ≤ r ⇒ tO(R)r.
2. For any two sequences u0 ≤ u1 ≤ u2 ≤ . . . and v0 ≤ v1 ≤ v2 ≤ . . . :

∀n, (unO(R)vn) ⇒ (�nun)O(R)(�nvn)

The lemmas above list the core properties of the relator, which are satisfied
when our family O is decomposable and contains only Scott open modalities.
The results below follow from those above.

Corollary 22. If O contains only upwards closed modalities, then:

O is decomposable ⇔ ∀R ⊆ X ×Y,∀t, r ∈ TT1, (tO(O(R))r ⇒ μtO(R)μr)

Corollary 23. If O is a decomposable family of upwards closed modalities, then
lifted relations are preserved by Kleisli lifting and effect operators:

1. Given f : X → Z, g : Y → W , R ⊆ X × Y and S ⊆ Z × W , if for all
x ∈ X and y ∈ Y we have xRy ⇒ f(x)O(S) g(y)) and if tO(R)r then
μ(t[x �→ f(x)])O(S)μ(r[y �→ g(y)])

2. (∀k, ukO(S)vk) ⇒ σ(u0, u1, . . . )O(S)σ(v0, v1, . . . )

Point 2 of Corollary 23 has been stated in such a way that it contains both the
infinite arity case αN → α and the finite arity case αn → α. So it states that
any lifted relation is preserved under any of the predefined algebraic effects.
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6 Howe’s Method

In this section, we apply Howe’s method, first developed in [5,6], to establish
the compatibility of applicative (bi)similarity, and hence of the behavioural pre-
orders. Given a relation R on terms, one defines its Howe closure R•, which is
compatible and contains the open extension R◦. Our proof makes fundamental
use of the relator properties from Sect. 5, closely following the approach of [9].

Proposition 24. If O is a decomposable set of Scott open modalities, then for
any O-simulation preorder �, the restriction of its Howe closure �• to closed
terms is an O-simulation.

In the proof of the proposition, the relator properties are mainly used to show
that �• satisfies condition (2) in Definition 14.

We can now establish the compatibility of applicative O-similarity.

Theorem 3 (a). If O is a decomposable set of Scott open modalities, then the
open extension of the relation of O-similarity is compatible.

Proof (sketch). We write �s for the relation of O-similarity. Since �s is an O-
simulation, we know by Proposition 24 that �•

s limited to closed terms is one
as well, and hence is contained in the largest O-simulation �s. Since �•

s is
compatible, it is contained in the open extension �◦

s. We can conclude that �◦
s

is equal to the Howe closure �•
s, which is compatible. ��

To prove that O-bisimilarity is compatible, we use the following result from
[10] (where we write S∗ for the transitive-reflexive closure of a relation S).

Lemma 25. If R◦ is symmetric and reflexive, then R•∗ is symmetric.

Theorem 3 (b). If O is a decomposable set of Scott open modalities, then the
open extension of the relation of O-bisimilarity is compatible.

Proof (sketch). We write O-bisimilarity as �b. From Proposition 24 we know that
�•

b on closed terms is an O-simulation, and so we know �•∗
b is an O-simulation

as well (using Lemma 18). Since �b is reflexive and symmetric, we know by the
previous lemma that �•∗

b is symmetric. Hence �•∗
b is an O-bisimulation, implying

(�•∗
b ) ⊆ (�◦

b) by compatibility of �•∗
b . Since (�◦

b) ⊆ (�•
b) ⊆ (�•∗

b ) we have that
(�•∗

b ) = (�◦
b), and we can conclude that �◦

b is compatible. ��
Theorem 1 is an immediate consequence of Theorems 2 and 3.

7 Pure Behavioural Logic

In this section, we briefly explore an alternative formulation of our logic. This has
both conceptual and practical motivations. Our very approach to behavioural
logic, fits into the category of endogenous logics in the sense of Pnueli [24]. For-
mulas (φ and Φ) express properties of individual programs, through satisfaction
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relations (V |= φ and M |= Φ). Programs are thus considered as ‘models’ of
the logic, with the satisfaction relation being defined via program behaviour.

It is conceptually appealing to push the separation between program and logic
to its natural conclusion, and ask for the syntax of the logic to be independent of
the syntax of the programming language. Indeed, it seems natural that it should
be possible to express properties of program behaviour without knowledge of the
syntax of the programming language. Under our formulation of the logic V, this
desideratum is violated by the value formula (V �→ Ψ) at function type, which
mentions the programming language value V .

This issue can be addressed, by replacing the basic value formula (V �→ Ψ)
with the alternative (φ �→ Ψ), already mentioned in Sect. 3. Such a change also
has a practical motivation. The formula (φ �→ Ψ) declares a precondition and
postcondition for function application, supporting a useful specification style.

Definition 26. The pure behavioural logic F is defined by replacing rule (2) in
Fig. 2 with the alternative:

φ ∈ VF(ρ) Ψ ∈ CF(τ)
(φ �→ Ψ) ∈ VF(ρ → τ)

(2∗)

The semantics is modified by defining V |= (φ �→ Ψ) using formula (2) of
Sect. 3.

Proposition 27. If the open extension of ≡V is compatible then the logics V
and F are equi-expressive. Similarly, if the open extension of �V+ is compatible
then the positive fragments V+ and F+ are equi-expressive.

Proof. The definition of (φ �→ Ψ) within V, given in (1) of Sect. 3, can be used
as the basis of an inductive translation from F to V (and from F+ to V+).

For the reverse translation, whose correctness proof is more interesting, we
give a little more detail. Every value/computation formula, φ/Φ, of V is induc-
tively translated to a corresponding formula φ̂/Φ̂ of F . The interesting case is:

̂(V �→ Φ) := (ψV �→ Φ̂),

where ψV is a formula such that: V |=F ψV ; and, for any ψ, if V |=F ψ then
ψV → ψ (meaning that V ′ |=F ψV implies V ′ |=F ψ, for all V ′). Such a formula
ψV is easily constructed as a countable conjunction (cf. Lemma 17). One then
proves, by induction on types, that the F-semantics of φ̂ (resp. Φ̂) coincides with
the V-semantics of φ (resp. Φ). In the case for ̂(V �→ Φ), the induction hypothesis
is used to establish that any V ′ satisfying V ′ |=F ψV enjoys the property that
V ′ ≡V V . It then follows from the compatibility of ≡V that WV ′ ≡V WV , for
any W of appropriate type, whence WV ′ ≡F WV . The rest of the proof can
easily be erected around these observations. ��
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Combining the above proposition with Theorem1 we obtain the following.

Corollary 28. Suppose O is a decomposable family of Scott-open modalities.
Then ≡F coincides with ≡V , and �F+ coincides with �V+ . Hence the open
extensions of ≡F and �F+ are compatible.

We do not know any proof of the compatibility of the ≡F and �F+ relations
that does not go via the logic V. In particular, the compatibility property of the
fix operator seems difficult to establish directly for ≡F and �F+ .

8 Discussion and Related Work

The behavioural logics considered in this paper are designed for the purpose
of clarifying the notion of ‘behavioural property’, and for defining behavioural
equivalence. As infinitary propositional logics, they are not directly suited to
practical applications such as specification and verification. Nevertheless, they
serve as low-level logics into which more practical finitary logics can be trans-
lated. For this, the closure of the logics under infinitary propositional logic is
important. For example, there are standard translations of quantifiers and least
and greatest fixed points into infinitary propositional logic. Also, in the case of
global store, Hoare triples translate into logical combinations of modal formulas.

Our approach, of basing logics for effects on behavioural modalities, may
potentially inform the design of practical logics for specifying and reasoning
about effects. For example, Pitts’ evaluation logic was an early logic for general
computational effects [18]. In the light of the general theory of modalities in the
present paper, it seems natural to replace the built-in � and ♦ modalities of
evaluation logic, with effect-specific modalities, as in Sect. 3.

The logic for algebraic effects, of Plotkin and Pretnar [23], axiomatises effect-
ful behaviour by means of an equational theory over the signature of effect oper-
ations, following the algebraic approach to effects advocated by Plotkin and
Power [22]. Such equational axiomatisations are typically sound with respect to
more than one notion of program equivalence. The logic of [23] can thus be used
to soundly reason about program equivalence, but does not in itself determine
a notion of program equivalence. Instead, our logic is specifically designed as
a vehicle for defining program equivalence. In doing so, our modalities can be
viewed as a chosen family of ‘observations’ that are compatible with the effects
present in the language. It is the choice of modalities that determines the equa-
tional properties that the effect operations satisfy.

The logic of [23] itself makes use of modalities, called operation modalities,
each associated with a single effect operations in Σ. It would be natural to
replace these modalities, which are syntactic in nature, with behavioural modal-
ities of the form we consider. Similarly, our behavioural modalities appear to
offer a promising basis for developing a modality-based refinement-type sys-
tem for algebraic effects. In general, an important advantage we see in the use
of behavioural modalities is that our notion of strong decomposability appears
related to the availability of compositional proof principles for modal properties.
This is a promising avenue for future exploration.
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A rather different approach to logics for effects has been proposed by Gon-
charov, Mossakowski and Schröder [3,16]. They assume a semantic setting in
which the programming language is rich enough to contain a pure fragment that
itself acts as a program logic. This approach is very powerful for certain effects.
For example, Hoare logic can be derived in the case of global store. However, it
appears not as widely adaptable across the range of effects as our approach.

Our logics exhibit certain similarities in form with the endogenous logic devel-
oped in Abramsky’s domain theory in logical form [2]. Our motivation and app-
roach are, however, quite different. Whereas Abramsky shows the usefulness of
an axiomatic approach to a finitary logic as a way of characterising denotational
equality, the present paper shows that there is a similar utility in considering an
infinitary logic from a semantic perspective (based on operational semantics) as
a method of defining behavioural equivalence.

The work in this paper has been carried out for fine-grained call-by-value [13],
which is equivalent to call-by-value. The definitions can, however, be adapted to
work for call-by-name, and even call-by-push-value [11]. Adding type construc-
tors such as sum and product is also straightforward. We have not checked the
generalisation to arbitrary recursive types, but we do not foresee any problem.

An omission from the present paper is that we have not said anything
about contextual equivalence, which is often taken to be the default equiva-
lence for applicative languages. In addition to determining the logically defined
preorders/equivalences, the choice of the set O of modalities gives rise to a
natural definition of contextual preorder, namely the largest compatible pre-
order that, on computations of unit type 1, is contained in the � relation from
Sect. 4. The compatibility of �V+ established in the present paper means that
we have the expected relation inclusions ≡V ⊆ �V+ ⊆ �ctxt. It is an interesting
question whether the logic can be restricted to characterise contextual equiva-
lence/preorder. A more comprehensive investigation of contextual equivalence is
being undertaken, in ongoing work, by Aliame Lopez and the first author.

The crucial notion of modality, in the present paper, was adapted from the
notion of observation in [8]. The change from a set of trees of type N (an observa-
tion) to a set of unit-type trees (a modality) allows value formulas to be lifted to
computation formulas, analogously to predicate lifting in coalgebra [7], which is a
key characteristic of our modalities. Properties of Scott-openness and decompos-
ability play a similar role the present paper to the role they play in [8]. However,
the notion of decomposability for modalities (Definition 11) is more subtle than
the corresponding notion for observations in [8].

There are certain limitations to the theory of modalities in the present paper.
For example, for the combination of probability and nondeterminism, one might
naturally consider modalities ♦Pr and �Pr asserting the possibility and neces-
sity of the termination probability exceeding r. However, the decomposability
property fails. It appears that this situation can be rescued by changing to a
quantitative logic, with a corresponding notion of quantitative modality. This is
a topic of ongoing research.
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Abstract. As popularity of algebraic effects and handlers increases, so
does a demand for their efficient execution. Eff, an ML-like language
with native support for handlers, has a subtyping-based effect system
on which an effect-aware optimizing compiler could be built. Unfortu-
nately, in our experience, implementing optimizations for Eff is overly
error-prone because its core language is implicitly-typed, making code
transformations very fragile.

To remedy this, we present an explicitly-typed polymorphic core cal-
culus for algebraic effect handlers with a subtyping-based type-and-effect
system. It reifies appeals to subtyping in explicit casts with coercions
that witness the subtyping proof, quickly exposing typing bugs in pro-
gram transformations.

Our typing-directed elaboration comes with a constraint-based infer-
ence algorithm that turns an implicitly-typed Eff-like language into our
calculus. Moreover, all coercions and effect information can be erased in
a straightforward way, demonstrating that coercions have no computa-
tional content.

1 Introduction

Algebraic effect handlers [17,18] are quickly maturing from a theoretical model
to a practical language feature for user-defined computational effects. Yet, in
practice they still incur a significant performance overhead compared to native
effects.

Our earlier efforts [22] to narrow this gap with an optimising compiler from
Eff [2] to OCaml showed promising results, in some cases reaching even the
performance of hand-tuned code, but were very fragile and have been postponed
until a more robust solution is found. We believe the main reason behind this
fragility is the complexity of subtyping in combination with the implicit typing of
Eff’s core language, further aggravated by the “garbage collection” of subtyping
constraints (see Sect. 7).1

1 For other issues stemming from the same combination see issues #11 and #16 at
https://github.com/matijapretnar/eff/issues/.
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For efficient compilation, one must avoid the poisoning problem [26], where
unification forces a pure computation to take the less precise impure type of the
context (e.g. a pure and an impure branch of a conditional both receive the same
impure type). Since this rules out existing (and likely simpler) effect systems
for handlers based on row-polymorphism [8,12,14], we propose a polymorphic
explicitly-typed calculus based on subtyping. More specifically, our contributions
are as follows:

– First, in Sect. 3 we present ImpEff, a polymorphic implicitly-typed calculus
for algebraic effects and handlers with a subtyping-based type-and-effect sys-
tem. ImpEff is essentially a (desugared) source language as it appears in the
compiler frontend of a language like Eff.

– Next, Sect. 4 presents ExEff, the core calculus, which combines explicit Sys-
tem F-style polymorphism with explicit coercions for subtyping in the style of
Breazu-Tannen et al. [3]. This calculus comes with a type-and-effect system,
a small-step operational semantics and a proof of type-safety.

– Section 5 specifies the typing-directed elaboration of ImpEff into ExEff and
presents a type inference algorithm for ImpEff that produces the elaborated
ExEff term as a by-product. It also establishes that the elaboration preserves
typing, and that the algorithm is sound with respect to the specification and
yields principal types.

– Finally, Sect. 6 defines SkelEff, which is a variant of ExEff without effect
information or coercions. SkelEff is also representative of Multicore Ocaml’s
support for algebraic effects and handlers [6], which is a possible compilation
target of Eff. By showing that the erasure from ExEff to SkelEff preserves
semantics, we establish that ExEff’s coercions are computationally irrelevant
and that, despite the existence of multiple proofs for the same subtyping,
there is no coherence problem. To enable erasure, ExEff annotates its types
with (type) skeletons, which capture the erased counterpart and are, to our
knowledge, a novel contribution.

– Our paper comes with two software artefacts: an ongoing implementation2

of a compiler from Eff to OCaml with ExEff at its core, and an Abella
mechanisation3 of Theorems 1, 2, 6, and 7. Remaining theorems all concern
the inference algorithm, and their proofs closely follow [20].

The full version of this paper includes an appendix with omitted figures and can
be found at http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW711.abs.
html.

2 Overview

This section presents an informal overview of the ExEff calculus, and the main
issues with elaborating to and erasing from it.

2 https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping.
3 https://github.com/matijapretnar/proofs/tree/master/explicit-effect-subtyping.

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW711.abs.html
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW711.abs.html
https://github.com/matijapretnar/eff/tree/explicit-effect-subtyping
https://github.com/matijapretnar/proofs/tree/master/explicit-effect-subtyping
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2.1 Algebraic Effect Handlers

The main premise of algebraic effects is that impure behaviour arises from a set of
operations such as Get and Set for mutable store, Read and Print for interactive
input and output, or Raise for exceptions [17]. This allows generalizing exception
handlers to other effects, to express backtracking, co-operative multithreading
and other examples in a natural way [2,18].

Assume operations Tick : Unit → Unit and Tock : Unit → Unit that
take a unit value as a parameter and yield a unit value as a result. Unlike
special built-in operations, these operations have no intrinsic effectful behaviour,
though we can give one through handlers. For example, the handler {Tickx k �→
(Print “tick”; k unit), Tockx k �→ Print “tock”} replaces all calls of Tick by
printing out “tick” and similarly for Tock. But there is one significant difference
between the two cases. Unlike exceptions, which always abort the evaluation,
operations have a continuation waiting for their result. It is this continuation
that the handler captures in the variable k and potentially uses in the handling
clause. In the clause for Tick, the continuation is resumed by passing it the
expected unit value, whereas in the clause for Tock, the operation is discarded.
Thus, if we handle a computation emitting the two operations, it will print out
“tick” until a first “tock” is printed, after which the evaluation stops.

2.2 Elaborating Subtyping

Consider the computation do x ← Tick unit; f x and assume that f has the
function type Unit → Unit ! {Tock}, taking unit values to unit values and
perhaps calling Tock operations in the process. The whole computation then
has the type Unit ! {Tick, Tock} as it returns the unit value and may call Tick
and Tock.

The above typing implicitly appeals to subtyping in several places. For
instance, Tick unit has type Unit ! {Tick} and f x type Unit ! {Tock}. Yet,
because they are sequenced with do, the type system expects they have the same
set of effects. The discrepancies are implicitly reconciled by the subtyping which
admits both {Tick} � {Tick, Tock} and {Tock} � {Tick, Tock}.

We elaborate the ImpEff term into the explicitly-typed core language
ExEff to make those appeals to subtyping explicit by means of casts with
coercions:

do x ← ((Tick unit) � γ1); (f x) � γ2

A coercion γ is a witness for a subtyping A ! Δ � A′ ! Δ′ and can be used
to cast a term c of type A ! Δ to a term c � γ of type A′ ! Δ′. In the above
term, γ1 and γ2 respectively witness Unit ! {Tick} � Unit ! {Tick, Tock} and
Unit ! {Tock} � Unit ! {Tick, Tock}.

2.3 Polymorphic Subtyping for Types and Effects

The above basic example only features monomorphic types and effects. Yet,
our calculus also supports polymorphism, which makes it considerably more
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expressive. For instance the type of f in let f = (fun g �→ g unit) in . . . is
generalised to:

∀α, α′.∀δ, δ′.α � α′ ⇒ δ � δ′ ⇒ (Unit → α ! δ) → α′ ! δ′

This polymorphic type scheme follows the qualified types convention [9] where
the type (Unit → α ! δ) → α′ ! δ′ is subjected to several qualifiers, in this
case α � α′ and δ � δ′. The universal quantifiers on the outside bind the type
variables α and α′, and the effect set variables δ and δ′.

The elaboration of f into ExEff introduces explicit binders for both the
quantifiers and the qualifiers, as well as the explicit casts where subtyping is
used.

Λα.Λα′.Λδ.Λδ′.Λ(ω :α � α′).Λ(ω′ :δ � δ′).fun (g :Unit → α ! δ) �→(g unit)�(ω ! ω′)

Here the binders for qualifiers introduce coercion variables ω between pure types
and ω′ between operation sets, which are then combined into a computation coer-
cion ω ! ω′ and used for casting the function application g unit to the expected
type.

Suppose that h has type Unit → Unit ! {Tick} and f h type
Unit ! {Tick, Tock}. In the ExEff calculus the corresponding instantiation of f
is made explicit through type and coercion applications

f Unit Unit {Tick} {Tick, Tock} γ1 γ2 h

where γ1 needs to be a witness for Unit � Unit and γ2 for {Tick} �
{Tick, Tock}.

2.4 Guaranteed Erasure with Skeletons

One of our main requirements for ExEff is that its effect information and
subtyping can be easily erased. The reason is twofold. Firstly, we want to show
that neither plays a role in the runtime behaviour of ExEff programs. Secondly
and more importantly, we want to use a conventionally typed (System F-like)
functional language as a backend for the Eff compiler.

At first, erasure of both effect information and subtyping seems easy: simply
drop that information from types and terms. But by dropping the effect variables
and subtyping constraints from the type of f , we get ∀α, α′.(Unit → α) → α′

instead of the expected type ∀α.(Unit → α) → α. In our naive erasure attempt
we have carelessly discarded the connection between α and α′. A more appro-
priate approach to erasure would be to unify the types in dropped subtyping
constraints. However, unifying types may reduce the number of type variables
when they become instantiated, so corresponding binders need to be dropped,
greatly complicating the erasure procedure and its meta-theory.

Fortunately, there is an easier way by tagging all bound type variables with
skeletons, which are barebone types without effect information. For example, the
skeleton of a function type A → B ! Δ is τ1 → τ2, where τ1 is the skeleton of
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A and τ2 the skeleton of B. In ExEff every well-formed type has an associated
skeleton, and any two types A1 � A2 share the same skeleton. In particular,
binders for type variables are explicitly annotated with skeleton variables ς. For
instance, the actual type of f is:

∀ς.∀(α : ς), (α′ : ς).∀δ, δ′.α � α′ ⇒ δ � δ′ ⇒ (Unit → α ! δ) → α′ ! δ′

The skeleton quantifications and annotations also appear at the term-level:

Λς.Λ(α : ς).Λ(α′ : ς).Λδ.Λδ′.Λ(ω : α � α′).Λ(ω′ : δ � δ′). . . .

Now erasure is really easy: we drop not only effect and subtyping-related term
formers, but also type binders and application. We do retain skeleton binders and
applications, which take over the role of (plain) types in the backend language.
In terms, we replace types by their skeletons. For instance, for f we get:

Λς.fun (g : Unit → ς) �→ g unit : ∀ς.(Unit → ς) → ς

Fig. 1. ImpEff Syntax

3 The ImpEff Language

This section presents ImpEff, a basic functional calculus with support for alge-
braic effect handlers, which forms the core language of our optimising compiler.
We describe the relevant concepts, but refer the reader to Pretnar’s tutorial [21],
which explains essentially the same calculus in more detail.
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3.1 Syntax

Figure 1 presents the syntax of the source language. There are two main kinds
of terms: (pure) values v and (dirty) computations c, which may call effectful
operations. Handlers h are a subsidiary sort of values. We assume a given set of
operations Op, such as Get and Put. We abbreviate Op1 x k �→ cOp1 , . . . , Opn x k �→
cOpn

as [Opx k �→ cOp]Op∈O, and write O to denote the set {Op1, . . . , Opn}.
Similarly, we distinguish between two basic sorts of types: the value types

A,B and the computation types C,D. There are four forms of value types: type
variables α, function types A → C, handler types C � D and the Unit type.
Skeletons τ capture the shape of types, so, by design, their forms are identical.
The computation type A ! Δ is assigned to a computation returning values of
type A and potentially calling operations from the dirt set Δ. A dirt set con-
tains zero or more operations Op and is terminated either by an empty set or a
dirt variable δ. Though we use cons-list syntax, the intended semantics of dirt
sets Δ is that the order of operations Op is irrelevant. Similarly to all HM-based
systems, we discriminate between value types (or monotypes) A, qualified types
K and polytypes (or type schemes) S . (Simple) subtyping constraints π denote
inequalities between either value types or dirts. We also present the more gen-
eral form of constraints ρ that includes inequalities between computation types
(as we illustrate in Sect. 3.2 below, this allows for a single, uniform constraint
entailment relation). Finally, polytypes consist of zero or more skeleton, type or
dirt abstractions followed by a qualified type.

3.2 Typing

Figure 2 presents the typing rules for values and computations, along with a
typing-directed elaboration into our target language ExEff. In order to simplify
the presentation, in this section we focus exclusively on typing. The parts of the
rules that concern elaboration are highlighted in gray and are discussed in Sect. 5.

Values. Typing for values takes the form Γ �v v : A � v′ , and, given a typing
environment Γ , checks a value v against a value type A.

Rule TmVar handles term variables. Given that x has type (∀ς.α : τ .∀δ.π ⇒
A), we appropriately instantiate the skeleton (ς), type (α), and dirt (δ) variables,
and ensure that the instantiated wanted constraints σ(π) are satisfied, via side
condition Γ �co γ : σ(π). Rule TmCastV allows casting the type of a value v from
A to B , if A is a subtype of B (upcasting). As illustrated by Rule TmTmAbs,
we omit freshness conditions by adopting the Barendregt convention [1]. Finally,
Rule TmHand gives typing for handlers. It requires that the right-hand sides
of the return clause and all operation clauses have the same computation type
(B !Δ), and that all operations mentioned are part of the top-level signature
Σ.4 The result type takes the form A ! Δ ∪ O � B ! Δ, capturing the intended
handler semantics: given a computation of type A ! Δ ∪ O, the handler (a) pro-
duces a result of type B , (b) handles operations O, and (c) propagates unhandled
operations Δ to the output.
4 We capture all defined operations along with their types in a global signature Σ.
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Fig. 2. ImpEff Typing & Elaboration
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Computations. Typing for computations takes the form Γ �c c : C � c′ , and,
given a typing environment Γ , checks a computation c against a type C.

Rule TmCastC behaves like Rule TmCastV, but for computation types.
Rule TmLet handles polymorphic, non-recursive let-bindings. Rule TmReturn
handles return v computations. Keyword return effectively lifts a value v of
type A into a computation of type A ! ∅. Rule TmOp checks operation calls.
First, we ensure that v has the appropriate type, as specified by the signature of
Op. Then, the continuation (y.c) is checked. The side condition Op ∈ Δ ensures
that the called operation Op is captured in the result type. Rule TmDo handles
sequencing. Given that c1 has type A !Δ, the pure part of the result of type A
is bound to term variable x, which is brought in scope for checking c2. As we
mentioned in Sect. 2, all computations in a do-construct should have the same
effect set, Δ. Rule TmHandle eliminates handler types, just as Rule TmTmApp
eliminates arrow types.

Constraint Entailment. The specification of constraint entailment takes the
form Γ �co γ : ρ and is presented in Fig. 3. Notice that we use ρ instead of π,
which allows us to capture subtyping between two value types, computation
types or dirts, within the same relation. Subtyping can be established in several
ways:

Rule CoVar handles given assumptions. Rules VCoRefl and DCoRefl
express that subtyping is reflexive, for both value types and dirts. Notice that
we do not have a rule for the reflexivity of computation types since, as we
illustrate below, it can be established using the reflexivity of their subparts.
Rules VCoTrans, CCoTrans and DCoTrans express the transitivity of sub-
typing for value types, computation types and dirts, respectively. Rule VCoArr
establishes inequality of arrow types. As usual, the arrow type constructor is
contravariant in the argument type. Rules VCoArrL and CCoArrR are the
inversions of Rule VCoArr, allowing us to establish the relation between the
subparts of the arrow types. Rules VCoHand, CCoHL, and CCoHR work
similarly, for handler types. Rule CCoComp captures the covariance of type
constructor (!), establishing subtyping between two computation types if sub-
typing is established for their respective subparts. Rules VCoPure and DCoIm-
pure are its inversions. Finally, Rules DCoNil and DCoOp establish subtyping
between dirts. Rule DCoNil captures that the empty dirty set ∅ is a subdirt
of any dirt Δ and Rule DCoOp expresses that dirt subtyping preserved under
extension with the same operation Op.

Well-Formedness of Types, Constraints, Dirts, and Skeletons. The rela-
tions Γ �vty A : τ � T and Γ �cty C : τ � C check the well-formedness of value
and computation types respectively. Similarly, relations Γ �ct ρ � ρ and Γ �Δ Δ
check the well-formedness of constraints and dirts, respectively.
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Fig. 3. ImpEff Constraint Entailment

4 The ExEff Language

4.1 Syntax

Figure 4 presents ExEff’s syntax. ExEff is an intensional type theory akin to
System F [7], where every term encodes its own typing derivation. In essence, all
abstractions and applications that are implicit in ImpEff, are made explicit in
ExEff via new syntactic forms. Additionally, ExEff is impredicative, which is
reflected in the lack of discrimination between value types, qualified types and
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Fig. 4. ExEff Syntax

type schemes; all non-computation types are denoted by T . While the impred-
icativity is not strictly required for the purpose at hand, it makes for a cleaner
system.

Coercions. Of particular interest is the use of explicit subtyping coercions,
denoted by γ. ExEff uses these to replace the implicit casts of ImpEff
(Rules TmCastV and TmCastC in Fig. 2) with explicit casts (v � γ) and
(c � γ).

Essentially, coercions γ are explicit witnesses of subtyping derivations: each
coercion form corresponds to a subtyping rule. Subtyping forms a partial order,
which is reflected in coercion forms γ1 � γ2, 〈T 〉, and 〈Δ〉. Coercion form
γ1 � γ2 captures transitivity, while forms 〈T 〉 and 〈Δ〉 capture reflexivity for
value types and dirts (reflexivity for computation types can be derived from
these).

Subtyping for skeleton abstraction, type abstraction, dirt abstraction, and
qualification is witnessed by forms ∀ς.γ, ∀α.γ, ∀δ.γ, and π ⇒ γ, respectively.
Similarly, forms γ[τ ], γ[T ], γ[Δ], and γ1@γ2 witness subtyping of skeleton
instantiation, type instantiation, dirt instantiation, and coercion application,
respectively.

Syntactic forms γ1 → γ2 and γ1 � γ2 capture injection for the arrow
and the handler type constructor, respectively. Similarly, inversion forms left(γ)
and right(γ) capture projection, following from the injectivity of both type
constructors.
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Coercion form γ1 ! γ2 witnesses subtyping for computation types, using proofs
for their components. Inversely, syntactic forms pure(γ) and impure(γ) witness
subtyping between the value- and dirt-components of a computation coercion.

Finally, coercion forms ∅Δ and {Op} ∪ γ are concerned with dirt subtyping.
Form ∅Δ witnesses that the empty dirt ∅ is a subdirt of any dirt Δ. Lastly,
coercion form {Op} ∪ γ witnesses that subtyping between dirts is preserved under
extension with a new operation. Note that we do not have an inversion form to
extract a witness for Δ1 � Δ2 from a coercion for {Op} ∪ Δ1 � {Op} ∪ Δ2. The
reason is that dirt sets are sets and not inductive structures. For instance, for
Δ1 = {Op} and Δ2 = ∅ the latter subtyping holds, but the former does not.

4.2 Typing

Value and Computation Typing. Typing for ExEff values and computa-
tions is presented in Figs. 5 and 6 and is given by two mutually recursive relations
of the form Γ �v v : T (values) and Γ �c c : C (computations). ExEff typing
environments Γ contain bindings for variables of all sorts:

Γ ::= ε | Γ, ς | Γ, α : τ | Γ, δ | Γ, x : T | Γ, ω : π

Typing is entirely syntax-directed. Apart from the typing rules for skeleton, type,
dirt, and coercion abstraction (and, subsequently, skeleton, type, dirt, and coer-
cion application), the main difference between typing for ImpEff and ExEff
lies in the explicit cast forms, (v � γ) and (c � γ). Given that a value v has type
T1 and that γ is a proof that T1 is a subtype of T2, we can upcast v with an
explicit cast operation (v � γ). Upcasting for computations works analogously.

Fig. 5. ExEff Value Typing
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Well-Formedness of Types, Constraints, Dirts and Skeletons. The defi-
nitions of the judgements that check the well-formedness of ExEff value types
(Γ �T T : τ), computation types (Γ �C C : τ), dirts (Γ �Δ Δ), and skeletons
(Γ �τ τ) are equally straightforward as those for ImpEff.

Coercion Typing. Coercion typing formalizes the intuitive interpretation of
coercions we gave in Sect. 4.1 and takes the form Γ �co γ : ρ. It is essentially an
extension of the constraint entailment relation of Fig. 3.

4.3 Operational Semantics

Figure 7 presents selected rules of ExEff’s small-step, call-by-value operational
semantics. For lack of space, we omit β-rules and other common rules and focus
only on cases of interest.

Firstly, one of the non-conventional features of our system lies in the strati-
fication of results in plain results and cast results:

Fig. 6. ExEff Computation Typing

terminal value vT ::= unit | h | fun x : T �→ c | Λα : τ.v | Λδ.v | λω : π.v
value result vR ::= vT | vT � γ

computation result cR ::= return vT | (return vT ) � γ | Op vR (y : T .c)

Terminal values vT represent conventional values, and value results vR can either
be plain terminal values vT or terminal values with a cast: vT � γ. The same
applies to computation results cR.5

Although unusual, this stratification can also be found in Crary’s coercion cal-
culus for inclusive subtyping [4], and, more recently, in System FC [25]. Stratifica-
tion is crucial for ensuring type preservation. Consider for example the expression
5 Observe that operation values do not feature an outermost cast operation, as the

coercion can always be pushed into its continuation.



Explicit Effect Subtyping 339

(return 5 � 〈int〉 ! ∅{Op}), of type int ! {Op}. We can not reduce the expression
further without losing effect information; removing the cast would result in com-
putation (return 5), of type int ! ∅. Even if we consider type preservation only
up to subtyping, the redex may still occur as a subterm in a context that expects
solely the larger type.

Secondly, we need to make sure that casts do not stand in the way of eval-
uation. This is captured in the so-called “push” rules, all of which appear in
Fig. 7.

In relation v �v v′, the first rule groups nested casts into a single cast, by
means of transitivity. The next three rules capture the essence of push rules:
whenever a redex is “blocked” due to a cast, we take the coercion apart and
redistribute it (in a type-preserving manner) over the subterms, so that evalua-
tion can progress.

The situation in relation c �c c′ is quite similar. The first rule uses tran-
sitivity to group nested casts into a single cast. The second rule is a push rule
for β-reduction. The third rule pushes a cast out of a return-computation. The
fourth rule pushes a coercion inside an operation-computation, illustrating why
the syntax for cR does not require casts on operation-computations. The fifth
rule is a push rule for sequencing computations and performs two tasks at once.
Since we know that the computation bound to x calls no operations, we (a)
safely “drop” the impure part of γ, and (b) substitute x with vT , cast with the
pure part of γ (so that types are preserved). The sixth rule handles operation
calls in sequencing computations. If an operation is called in a sequencing com-
putation, evaluation is suspended and the rest of the computation is captured
in the continuation.

The last four rules are concerned with effect handling. The first of them
pushes a coercion on the handler “outwards”, such that the handler can be
exposed and evaluation is not stuck (similarly to the push rule for term appli-
cation). The second rule behaves similarly to the push/beta rule for sequencing
computations. Finally, the last two rules are concerned with handling of opera-
tions. The first of the two captures cases where the called operation is handled
by the handler, in which case the respective clause of the handler is called. As
illustrated by the rule, like Pretnar [20], ExEff features deep handlers: the
continuation is also wrapped within a with-handle construct. The last rule cap-
tures cases where the operation is not covered by the handler and thus remains
unhandled.

We have shown that ExEff is type safe:

Theorem 1 (Type Safety)

– If Γ �v v : T then either v is a result value or v �v v′ and Γ �v v′ : T.
– If Γ �c c : C then either c is a result computation or c �c c′ and Γ �c c′ : C.
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Fig. 7. ExEff Operational Semantics (Selected Rules)

5 Type Inference and Elaboration

This section presents the typing-directed elaboration of ImpEff into ExEff.
This elaboration makes all the implicit type and effect information explicit, and
introduces explicit term-level coercions to witness the use of subtyping.

After covering the declarative specification of this elaboration, we present a
constraint-based algorithm to infer ImpEff types and at the same time elabo-
rate into ExEff. This algorithm alternates between two phases: (1) the syntax-
directed generation of constraints from the ImpEff term, and (2) solving these
constraints.

5.1 Elaboration of ImpEff into ExEff

The grayed parts of Fig. 2 augment the typing rules for ImpEff value and compu-
tation terms with typing-directed elaboration to corresponding ExEff terms.
The elaboration is mostly straightforward, mapping every ImpEff construct
onto its corresponding ExEff construct while adding explicit type annotations
to binders in Rules TmTmAbs, TmHandler and TmOp. Implicit appeals to
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subtyping are turned into explicit casts with coercions in Rules TmCastV and
TmCastC. Rule TmLet introduces explicit binders for skeleton, type, and dirt
variables, as well as for constraints. These last also introduce coercion variables
ω that can be used in casts. The binders are eliminated in rule TmVar by means
of explicit application with skeletons, types, dirts and coercions. The coercions
are produced by the auxiliary judgement Γ �co γ : π, defined in Fig. 3, which
provides a coercion witness for every subtyping proof.

As a sanity check, we have shown that elaboration preserves types.

Theorem 2 (Type Preservation)

– If Γ �v v : A � v′ then elabΓ (Γ ) �v v′ : elabS(A).
– If Γ �c c : C � c′ then elabΓ (Γ ) �c c′ : elabC (C ).

Here elabΓ (Γ ), elabS(A) and elabC (C ) convert ImpEff environments and types
into ExEff environments and types.

5.2 Constraint Generation and Elaboration

Constraint generation with elaboration into ExEff is presented in Figs. 8 (val-
ues) and 9 (computations). Before going into the details of each, we first intro-
duce the three auxiliary constructs they use.

constraint set P, Q ::= • | τ1 = τ2, P | α : τ, P | ω : π, P
typing environment Γ ::= ε | Γ, x : S

substitution σ ::= • | σ · [τ/ς] | σ · [A/α] | σ · [Δ/δ] | σ · [γ/ω]

At the heart of our algorithm are sets P, containing three different kinds of con-
straints: (a) skeleton equalities of the form τ1 = τ2, (b) skeleton constraints of the
form α : τ , and (c) wanted subtyping constraints of the form ω : π. The purpose
of the first two becomes clear when we discuss constraint solving, in Sect. 5.3.
Next, typing environments Γ only contain term variable bindings, while other
variables represent unknowns of their sort and may end up being instantiated
after constraint solving. Finally, during type inference we compute substitutions
σ, for refining as of yet unknown skeletons, types, dirts, and coercions. The last
one is essential, since our algorithm simultaneously performs type inference and
elaboration into ExEff.

A substitution σ is a solution of the set P, written as σ |= P, if we get
derivable judgements after applying σ to all constraints in P.

Values. Constraint generation for values takes the form Q;Γ �v v : A |
Q′;σ � v′ . It takes as inputs a set of wanted constraints Q, a typing envi-
ronment Γ , and a ImpEff value v, and produces a value type A, a new set of
wanted constraints Q′, a substitution σ, and a ExEff value v′.

Unlike standard HM, our inference algorithm does not keep constraint gen-
eration and solving separate. Instead, the two are interleaved, as indicated by
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Fig. 8. Constraint Generation with Elaboration (Values)

the additional arguments of our relation: (a) constraints Q are passed around
in a stateful manner (i.e., they are input and output), and (b) substitutions σ
generated from constraint solving constitute part of the relation output. We dis-
cuss the reason for this interleaved approach in Sect. 5.4; we now focus on the
algorithm.

The rules are syntax-directed on the input ImpEff value. The first rule
handles term variables x: as usual for constraint-based type inference the rule
instantiates the polymorphic type (∀ς̄ .α : τ .∀δ̄.π̄ ⇒ A) of x with fresh variables;
these are placeholders that are determined during constraint solving. More-
over, the rule extends the wanted constraints P with π̄, appropriately instanti-
ated. In ExEff, this corresponds to explicit skeleton, type, dirt, and coercion
applications.

More interesting is the third rule, for term abstractions. Like in standard
Hindley-Damas-Milner [5], it generates a fresh type variable α for the type of
the abstracted term variable x. In addition, it generates a fresh skeleton variable
ς, to capture the (yet unknown) shape of α.

As explained in detail in Sect. 5.3, the constraint solver instantiates type vari-
ables only through their skeletons annotations. Because we want to allow local
constraint solving for the body c of the term abstraction the opportunity to
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produce a substitution σ that instantiates α, we have to pass in the annota-
tion constraint α : ς.6 We apply the resulting substitution σ to the result type
σ(α) → C .7

Finally, the fourth rule is concerned with handlers. Since it is the most com-
plex of the rules, we discuss each of its premises separately:

Firstly, we infer a type Br !Δr for the right hand side of the return-clause.
Since αr is a fresh unification variable, just like for term abstraction we require
αr : ςr, for a fresh skeleton variable ςr.

Secondly, we check every operation clause in O in order. For each clause, we
generate fresh skeleton, type, and dirt variables (ςi, αi, and δi), to account for
the (yet unknown) result type αi ! δi of the continuation k, while inferring type
BOpi

!ΔOpi
for the right-hand-side cOpi

.
More interesting is the (final) set of wanted constraints Q′. First, we assign

to the handler the overall type

αin ! δin � αout ! δout

where ςin, αin, δin, ςout, αout, δout are fresh variables of the respective sorts. In
turn, we require that (a) the type of the return clause is a subtype of αout ! δout

(given by the combination of ω1 and ω2), (b) the right-hand-side type of each
operation clause is a subtype of the overall result type: σn(BOpi

!ΔOpi
) �

αout ! δout (witnessed by ω3i
!ω4i

), (c) the actual types of the continuations
Bi → αout ! δout in the operation clauses should be subtypes of their assumed
types Bi → σn(αi ! δi) (witnessed by ω5i

). (d) the overall argument type αin is
a subtype of the assumed type of x: σn(σr(αr)) (witnessed by ω6), and (e) the
input dirt set δin is a subtype of the resulting dirt set δout, extended with the
handled operations O (witnessed by ω7).

All the aforementioned implicit subtyping relations become explicit in the
elaborated term cres, via explicit casts.

Computations. The judgement Q;Γ �c c : C | Q′;σ � c′ generates constraints
for computations.

The first rule handles term applications of the form v1 v2. After inferring
a type for each subterm (A1 for v1 and A2 for v2), we generate the wanted
constraint σ2(A1) � A2 → α ! δ, with fresh type and dirt variables α and δ,
respectively. Associated coercion variable ω is then used in the elaborated term
to explicitly (up)cast v′

1 to the expected type A2 → α ! δ.
The third rule handles polymorphic let-bindings. First, we infer a type A

for v, as well as wanted constraints Qv. Then, we simplify wanted constraints
Qv by means of function solve (which we explain in detail in Sect. 5.3 below),
obtaining a substitution σ′

1 and a set of residual constraints Q′
v.

6 This hints at why we need to pass constraints in a stateful manner.
7 Though σ refers to ImpEff types, we abuse notation to save clutter and apply it

directly to ExEff entities too.
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Fig. 9. Constraint Generation with Elaboration (Computations)

Generalization of x’s type is performed by auxiliary function split , given by
the following clause:

ς̄ = {ς | (α : ς) ∈ Q, �α′.α′ /∈ ᾱ ∧ (α′ : ς) ∈ Q}
ᾱ = fvα(Q) ∪ fvα(A) \ fvα(Γ ) Q1 = {(ω : π) | (ω : π) ∈ Q, fv(π) �⊆ fv(Γ )}

δ̄ = fvδ(Q) ∪ fvδ(A) \ fvδ(Γ ) Q2 = Q − Q1

split(Γ,Q,A) = 〈ς̄ , α : τ , δ̄,Q1,Q2〉

In essence, split generates the type (scheme) of x in parts. Additionally, it com-
putes the subset Q2 of the input constraints Q that do not depend on locally-
bound variables. Such constraints can be floated “upwards”, and are passed as
input when inferring a type for c. The remainder of the rule is self-explanatory.

The fourth rule handles operation calls. Observe that in the elaborated term,
we upcast the inferred type to match the expected type in the signature.
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The fifth rule handles sequences. The requirement that all computations in
a do-construct have the same dirt set is expressed in the wanted constraints
σ2(Δ1) � δ and Δ2 � δ (where δ is a fresh dirt variable; the resulting dirt set),
witnessed by coercion variables ω1 and ω2. Both coercion variables are used in
the elaborated term to upcast c1 and c2, such that both draw effects from the
same dirt set δ.

Finally, the sixth rule is concerned with effect handling. After inferring type
A1 for the handler v, we require that it takes the form of a handler type, witnessed
by coercion variable ω1 : σ2(A1) � (α1 ! δ1 � α2 ! δ2), for fresh α1, α2, δ1, δ2.
To ensure that the type A2 !Δ2 of c matches the expected type, we require that
A2 !Δ2 � α1 ! δ1. Our syntax does not include coercion variables for computation
subtyping;we achieve the same effect by combiningω2 : A2 � α1 andω3 : Δ2 � δ1.

Theorem 3 (Soundness of Inference). If •;Γ �v v : A | Q;σ � v′ then for
any σ′ |= Q, we have (σ′ · σ)(Γ ) �v v : σ′(A) � σ′(v′) , and analogously for
computations.

Theorem 4 (Completeness of Inference). If Γ �v v : A � v′ then we have
•;Γ �v v : A′ | Q;σ � v′′ and there exists σ′ |= Q and γ, such that σ′(v′′) = v′

and σ(Γ ) �co γ : σ′(A′) � A. An analogous statement holds for computations.

5.3 Constraint Solving

The second phase of our inference-and-elaboration algorithm is the constraint
solver. It is defined by the solve function signature:

solve(σ; P; Q) = (σ′, P ′)

It takes three inputs: the substitution σ accumulated so far, a list of already
processed constraints P, and a queue of still to be processed constraints Q. There
are two outputs: the substitution σ′ that solves the constraints and the residual
constraints P ′. The substitutions σ and σ′ contain four kinds of mappings: ς �→ τ ,
α �→ A, δ �→ Δ and ω → γ which instantiate respectively skeleton variables, type
variables, dirt variables and coercion variables.

Theorem 5 (Correctness of Solving). For any set Q, the call solve(•; •;Q)
either results in a failure, in which case Q has no solutions, or returns (σ,P)
such that for any σ′ |= Q, there exists σ′′ |= P such that σ′ = σ′′ · σ.

The solver is invoked with solve(•; •; Q), to process the constraints Q gen-
erated in the first phase of the algorithm, i.e., with an empty substitution and
no processed constraints. The solve function is defined by case analysis on the
queue.

Empty Queue. When the queue is empty, all constraints have been processed.
What remains are the residual constraints and the solving substitution σ, which
are both returned as the result of the solver.
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solve(σ; P; •) = (σ, P)

Skeleton Equalities. The next set of cases we consider are those where the
queue is non-empty and its first element is an equality between skeletons τ1 = τ2.
We consider seven possible cases based on the structure of τ1 and τ2 that together
essentially implement conventional unification as used in Hindley-Milner type
inference [5].

solve(σ; P; τ1 = τ2, Q) =

match τ1 = τ2 with

| ς = ς �→ solve(σ; P; Q)

| ς = τ �→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •; σ′(Q, P)) else fail

| τ = ς �→ if ς /∈ fvς(τ) then let σ′ = [τ/ς] in solve(σ′ · σ; •; σ′(Q, P)) else fail

| Unit = Unit �→ solve(σ; P; Q)

|(τ1 → τ2) = (τ3 → τ4) �→ solve(σ; P; τ1 = τ3, τ2 = τ4, Q)

|(τ1 � τ2) = (τ3 � τ4) �→ solve(σ; P; τ1 = τ3, τ2 = τ4, Q)

| otherwise �→ fail

The first case applies when both skeletons are the same type variable ς.
Then the equality trivially holds. Hence we drop it and proceed with solving the
remaining constraints. The next two cases apply when either τ1 or τ2 is a skeleton
variable ς. If the occurs check fails, there is no finite solution and the algorithm
signals failure. Otherwise, the constraint is solved by instantiating the ς. This
additional substitution is accumulated and applied to all other constraints P,Q.
Because the substitution might have modified some of the already processed
constraints P, we have to revisit them. Hence, they are all pushed back onto the
queue, which is processed recursively.

The next three cases consider three different ways in which the two skeletons
can have the same instantiated top-level structure. In those cases the equality is
decomposed into equalities on the subterms, which are pushed onto the queue
and processed recursively.

The last catch-all case deals with all ways in which the two skeletons can be
instantiated to different structures. Then there is no solution.

Skeleton Annotations. The next four cases consider a skeleton annotation
α : τ at the head of the queue, and propagate the skeleton instantiation to
the type variable. The first case, where the skeleton is a variable ς, has noth-
ing to do, moves the annotation to the processed constraints and proceeds with
the remainder of the queue. In the other three cases, the skeleton is instanti-
ated and the solver instantiates the type variable with the corresponding struc-
ture, introducing fresh variables for any subterms. The instantiating substitution
is accumulated and applied to the remaining constraints, which are processed
recursively.
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solve(σ; P; α : τ, Q) =

match τ with

| ς �→ solve(σ; P, α : τ ; Q)

| Unit �→ let σ
′
= [Unit/α] in solve(σ

′ · σ; •; σ
′
(Q, P))

| τ1 → τ2 �→ let σ
′
= [(α

τ1
1 → α

τ2
2 ! δ)/α] in solve(σ

′ ·σ; •; α1 : τ1, α2 : τ2, σ
′
(Q, P))

| τ1 � τ2 �→ let σ
′
= [(α

τ1
1 ! δ1 � α

τ2
2 ! δ2)/α] in solve(σ

′ ·σ; •; α1 : τ1, α2 : τ2, σ
′
(Q, P))

Value Type Subtyping. Next are the cases where a subtyping constraint
between two value types A1 � A2, with as evidence the coercion variable ω,
is at the head of the queue. We consider six different situations.

solve(σ; P; ω : A1 � A2, Q) =

match A1 � A2 with

|A � A �→ let T = elabS(A) in solve([〈T 〉/ω] · σ; P; Q)

|ατ1 � A �→ let τ2 = skeleton(A) in solve(σ; P, ω : ατ1 � A; τ1 = τ2, Q)

|A � ατ1 �→ let τ2 = skeleton(A) in solve(σ; P, ω : A � ατ1 ; τ2 = τ1, Q)

|(A1 → B1 ! Δ1) � (A2 → B2 ! Δ2) �→ let σ′ = [(ω1 → ω2 ! ω3)/ω] in

solve(σ′ · σ; P; ω1 : A2 � A1, ω2 : B1 � B2, ω3 : Δ1 � Δ2, Q)

|(A1 ! Δ1 � A2 ! Δ2) � (A3 ! Δ3 � A4 ! Δ4) �→ let σ′ = [(ω1 ! ω2 � ω3 ! ω4)/ω] in

solve(σ′ · σ; P; ω1 : A3 � A1, ω2 : Δ3 � Δ1, ω3 : A2 � A4, ω4 : Δ2 � Δ4, Q)

| otherwise �→ fail

If the two types are equal, the subtyping holds trivially through reflexivity. The
solver thus drops the constraint and instantiates ω with the reflexivity coercion
〈T 〉. Note that each coercion variable only appears in one constraint. So we only
accumulate the substitution and do not have to apply it to the other constraints.
In the next two cases, one of the two types is a type variable α. Then we move
the constraint to the processed set. We also add an equality constraint between
the skeletons8 to the queue. This enforces the invariant that only types with the
same skeleton are compared. Through the skeleton equality the type structure
(if any) from the type is also transferred to the type variable. The next two
cases concern two types with the same top-level instantiation. The solver then
decomposes the constraint into constraints on the corresponding subterms and
appropriately relates the evidence of the old constraint to the new ones. The final
case catches all situations where the two types are instantiated with a different
structure and thus there is no solution.
Auxiliary function skeleton(A) computes the skeleton of A.

Dirt Subtyping. The final six cases deal with subtyping constraints between
dirts.
8 We implicitly annotate every type variable with its skeleton: ατ .
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solve(σ; P; ω : Δ � Δ′, Q) =

match Δ � Δ′ with
|O ∪ δ � O′ ∪ δ′ �→ if O �= ∅ then let σ′ = [((O\O′) ∪ δ′′)/δ′, O ∪ ω′/ω] in

solve(σ′ · σ; •; (ω′ : δ ≤ σ′(Δ′)), σ′(Q, P))
else solve(σ; P, (ω : Δ � Δ′); Q)

| ∅ � Δ′ �→ solve([∅Δ′/ω] · σ; P; Q)

| δ � ∅ �→ let σ′ = [∅/δ; ∅∅/ω] in solve(σ′ · σ; •; σ′(Q, P))

|O ∪ δ � O′ �→
if O ⊆ O′ then let σ′ = [O ∪ ω′/ω] in solve(σ′ · σ; P, (ω′ : δ � O′); Q) else fail

|O � O′ �→ if O ⊆ O′ then let σ′ = [O ∪ ∅O′\O/ω] in solve(σ′ · σ; P; Q) else fail

|O � O′ ∪ δ′ �→ let σ′ = [(O\O′) ∪ δ′′/δ′; O′ ∪ ∅(O′\O)∪δ′′/ω] in

solve(σ′ · σ; •; σ′(Q, P))

If the two dirts are of the general form O ∪ δ and O′ ∪ δ′, we distinguish
two subcases. Firstly, if O is empty, there is nothing to be done and we move
the constraint to the processed set. Secondly, if O is non-empty, we partially
instantiate δ′ with any of the operations that appear in O but not in O′. We
then drop O from the constraint, and, after substitution, proceed with processing
all constraints. For instance, for {Op1} ∪ δ � {Op2} ∪ δ′, we instantiate δ′ to
{Op1} ∪ δ′′—where δ′′ is a fresh dirt variable—and proceed with the simplified
constraint δ � {Op1, Op2} ∪ δ′′. Note that due to the set semantics of dirts, it
is not valid to simplify the above constraint to δ � {Op2} ∪ δ′′. After all the
substitution [δ �→ {Op1}, δ′′ �→ ∅] solves the former and the original constraint,
but not the latter.

The second case, ∅ � Δ′, always holds and is discharged by instantiating ω
to ∅Δ′ . The third case, δ � ∅, has only one solution: δ �→ ∅ with coercion ∅∅.
The fourth case, O ∪ δ � O′, has as many solutions as there are subsets of O′,
provided that O ⊆ O′. We then simplify the constraint to δ � O′, which we move
to the set of processed constraints. The fifth case, O � O′, holds iff O ⊆ O′.
The last case, O � O′ ∪ δ′, is like the first, but without a dirt variable in the
left-hand side. We can satisfy it in a similar fashion, by partially instantiating
δ′ with (O \ O′) ∪ δ′′—where δ′′ is a fresh dirt variable. Now the constraint is
satisfied and can be discarded.

Fig. 10. SkelEff Syntax
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5.4 Discussion

At first glance, the constraint generation algorithm of Sect. 5.2 might seem need-
lessly complex, due to eager constraint solving for let-generalization. Yet, we
want to generalize at local let-bound values over both type and skeleton vari-
ables,9 which means that we must solve all equations between skeletons before
generalizing. In turn, since skeleton constraints are generated when solving sub-
typing constraints (Sect. 5.3), all skeleton annotations should be available during
constraint solving. This can not be achieved unless the generated constraints are
propagated statefully.

6 Erasure of Effect Information from ExEff

6.1 The SkelEff Language

The target of the erasure is SkelEff, which is essentially a copy of ExEff
from which all effect information Δ, type information T and coercions γ have
been removed. Instead, skeletons τ play the role of plain types. Thus, SkelEff
is essentially System F extended with term-level (but not type-level) support for
algebraic effects. Figure 10 defines the syntax of SkelEff. The type system and
operational semantics of SkelEff follow from those of ExEff.

Discussion. The main point of SkelEff is to show that we can erase the effects
and subtyping from ExEff to obtain types that are compatible with a System
F-like language. At the term-level SkelEff also resembles a subset of Multicore
OCaml [6], which provides native support for algebraic effects and handlers but
features no explicit polymorphism. Moreover, SkelEff can also serve as a stag-
ing area for further elaboration into System F-like languages without support for
algebraic effects and handlers (e.g., Haskell or regular OCaml). In those cases,
computation terms can be compiled to one of the known encodings in the litera-
ture, such as a free monad representation [10,22], with delimited control [11], or
using continuation-passing style [13], while values can typically be carried over
as they are.

6.2 Erasure

Figure 11 defines erasure functions εσ
v (v), εσ

c (c), εσ
V(T ), εσ

C(C ) and εσ
E(Γ ) for

values, computations, value types, computation types, and type environments
respectively. All five functions take a substitution σ from the free type variables
α to their skeleton τ as an additional parameter.

Thanks to the skeleton-based design of ExEff, erasure is straightforward.
All types are erased to their skeletons, dropping quantifiers for type variables
and all occurrences of dirt sets. Moreover, coercions are dropped from values

9 As will become apparent in Sect. 6, if we only generalize at the top over skeleton
variables, the erasure does not yield local polymorphism.
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Fig. 11. Definition of type erasure.

and computations. Finally, all binders and elimination forms for type variables,
dirt set variables and coercions are dropped from values and type environments.

The expected theorems hold. Firstly, types are preserved by erasure.10

Theorem 6 (Type Preservation). If Γ �v v : T then ε∅
E(Γ ) �ev εΓ

v (v) : εΓ
V(T ).

If Γ �c c : C then ε∅
E(Γ ) �ec εΓ

c (c) : εΓ
C(C ).

Here we abuse of notation and use Γ as a substitution from type variables to
skeletons used by the erasure functions.

Finally, we have that erasure preserves the operational semantics.

Theorem 7 (Semantic Preservation). If v �v v′ then εσ
v (v) ≡�

v εσ
v (v′). If

c �c c′ then εσ
c (c) ≡�

c εσ
c (c′).

In both cases, ≡� denotes the congruence closure of the step relation in Skel-
Eff. The choice of substitution σ does not matter as types do not affect the
behaviour.

10 Typing for SkelEff values and computations take the form Γ �ev v : τ and Γ �ec c : τ .
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Discussion. Typically, when type information is erased from call-by-value lan-
guages, type binders are erased by replacing them with other (dummy) binders.
For instance, the expected definition of erasure would be:

εσ
v (Λ(α : τ).v) = λ(x : Unit).εσ

v (v)

This replacement is motivated by a desire to preserve the behaviour of the
typed terms. By dropping binders, values might be turned into computations
that trigger their side-effects immediately, rather than at the later point where
the original binder was eliminated. However, there is no call for this circum-
spect approach in our setting, as our grammatical partition of terms in values
(without side-effects) and computations (with side-effects) guarantees that this
problem cannot happen when we erase values to values and computations to
computations.

7 Related Work and Conclusion

Eff’s Implicit Type System. The most closely related work is that of Pretnar
[20] on inferring algebraic effects for Eff, which is the basis for our implicitly-
typed ImpEff calculus, its type system and the type inference algorithm. There
are three major differences with Pretnar’s inference algorithm.

Firstly, our work introduces an explicitly-typed calculus. For this reason we
have extended the constraint generation phase with the elaboration into ExEff
and the constraint solving phase with the construction of coercions.

Secondly, we add skeletons to guarantee erasure. Skeletons also allow us to
use standard occurs-check during unification. In contrast, unification in Pretnar’s
algorithm is inspired by Simonet [24] and performs the occurs-check up to the
equivalence closure of the subtyping relation. In order to maintain invariants,
all variables in an equivalence class (also called a skeleton) must be instantiated
simultaneously, whereas we can process one constraint at a time. As these classes
turn out to be surrogates for the underlying skeleton types, we have decided to
keep the name.

Finally, Pretnar incorporates garbage collection of constraints [19]. The aim
of this approach is to obtain unique and simple type schemes by eliminating
redundant constraints. Garbage collection is not suitable for our use as type vari-
ables and coercions witnessing subtyping constraints cannot simply be dropped,
but must be instantiated in a suitable manner, which cannot be done in general.

Consider for instance a situation with type variables α1, α2, α3, α4, and
α5 where α1 � α3, α2 � α3, α3 � α4, and α3 � α5. Suppose that α3 does
not appear in the type. Then garbage collection would eliminate it and replace
the constraints by α1 � α4, α2 � α4, α1 � α5, and α2 � α5. While garbage
collection guarantees that for any ground instantiation of the remaining type
variables, there exists a valid ground instantiation for α3, ExEff would need
to be extended with joins (or meets) to express a generically valid instantiation
like α1 � α2. Moreover, we would need additional coercion formers to establish
α1 � (α1 � α2) or (α1 � α2) � α4.
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As these additional constructs considerably complicate the calculus, we pro-
pose a simpler solution. We use ExEff as it is for internal purposes, but display
types to programmers in their garbage-collected form.

Calculi with Explicit Coercions. The notion of explicit coercions is not new;
Mitchell [15] introduced the idea of inserting coercions during type inference for
ML-based languages, as a means for explicit casting between different numeric
types.

Breazu-Tannen et al. [3] also present a translation of languages with inher-
itance polymorphism into System F, extended with coercions. Although their
coercion combinators are very similar to our coercion forms, they do not include
inversion forms, which are crucial for the proof of type safety for our system.
Moreover, Breazu-Tannen et al.’s coercions are terms, and thus can not be erased.

Much closer to ExEff is Crary’s coercion calculus for inclusive subtyping [4],
from which we borrowed the stratification of value results. Crary’s system sup-
ports neither coercion abstraction nor coercion inversion forms.

System FC [25] uses explicit type-equality coercions to encode complex lan-
guage features (e.g. GADTs [16] or type families [23]). Though ExEff’s coer-
cions are proofs of subtyping rather than type equality, our system has a lot in
common with it, including the inversion coercion forms and the “push” rules.

Future Work. Our plans focus on resuming the postponed work on efficient
compilation of handlers. First, we intend to adjust program transformations to
the explicit type information. We hope that this will not only make the optimizer
more robust, but also expose new optimization opportunities. Next, we plan to
write compilers to both Multicore OCaml and standard OCaml, though for the
latter, we must first adapt the notion of erasure to a target calculus without
algebraic effect handlers. Finally, once the compiler shows promising preliminary
results, we plan to extend it to other Eff features such as user-defined types or
recursion, allowing us to benchmark it on more realistic programs.
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Abstract. We present SLR, the first expressive program logic for rea-
soning about concurrent programs under a weak memory model address-
ing the out-of-thin-air problem. Our logic includes the standard features
from existing logics, such as RSL and GPS, that were previously known
to be sound only under stronger memory models: (1) separation, (2)
per-location invariants, and (3) ownership transfer via release-acquire
synchronisation—as well as novel features for reasoning about (4) the
absence of out-of-thin-air behaviours and (5) coherence. The logic is
proved sound over the recent “promising” memory model of Kang et al.,
using a substantially different argument to soundness proofs of logics for
simpler memory models.

1 Introduction

Recent years have seen the emergence of several program logics [2,6,8,16,23,24,
26–28] for reasoning about programs under weak memory models. These pro-
gram logics are valuable tools for structuring program correctness proofs, and
enabling programmers to reason about the correctness of their programs with-
out necessarily knowing the formal semantics of the programming language. So
far, however, they have only been applied to relatively strong memory models
(such as TSO [19] or release/acquire consistency [15] that can be expressed as a
constraint on individual candidate program executions) and provide little to no
reasoning principles to deal with C/C++ “relaxed” accesses.

The main reason for this gap is that the behaviour of relaxed accesses is noto-
riously hard to specify [3,5]. Up until recently, memory models have either been
too strong (e.g., [5,14,17]), forbidding some behaviours observed with modern
hardware and compilers, or they have been too weak (e.g., [4]), allowing so-called
out-of-thin-air (OOTA) behaviour even though it does not occur in practice and
is highly problematic.

One observable behaviour forbidden by the strong models is the load buffer-
ing behaviour illustrated by the example below, which, when started with both
locations x and y containing 0, can end with both r1 and r2 containing 1.

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 357–384, 2018.
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This behaviour is observable on certain ARMv7 processors after the compiler
optimises r2 + 1 − r2 to 1.

r1 := [x]rlx; // reads 1
[y]rlx := r1

r2 := [y]rlx; // reads 1
[x]rlx := r2 + 1 − r2

(LB+data+fakedep)

However, one OOTA behaviour they should not allow is the following example
by Boehm and Demsky [5]. When started with two completely disjoint lists a and
b, by updating them separately in parallel, it should not be allowed to end with
a and b pointing to each other, as that would violate physical separation (for
simplicity, in these lists, a location just holds the address of the next element):

r1 := [a]rlx; // reads b
[r1]rlx := a

r2 := [b]rlx; // reads a
[r2]rlx := b

(Disjoint-Lists)

Because of this specification gap, program logics either do not reason about
relaxed accesses, or they assume overly strengthened models that disallow some
behaviours that occur in practice (as discussed in Sect. 5).

Recently, there have been several proposals of programming language mem-
ory models that allow load buffering behaviour, but forbid obvious out-of-thin-air
behaviours [10,13,20]. This development has enabled us to develop a program
logic that provides expressive reasoning principles for relaxed accesses, without
relying on overly strong models.

In this paper, we present SLR, a separation logic based on RSL [27], extended
with strong reasoning principles for relaxed accesses, which we prove sound over
the recent “promising” semantics of Kang et al. [13]. SLR features per-location
invariants [27] and physical separation [22], as well as novel assertions that we use
to show the absence of OOTA behaviours and to reason about various coherence
examples. (Coherence is a property of memory models that requires the existence
of a per-location total order on writes that reads respect.)

There are two main contributions of this work.
First, SLR is the first logic which can prove absence of OOTA in all the

standard litmus tests. As such, it provides more evidence to the claim that the
promising semantics solves the out-of-thin-air problem in a satisfactory way.
The paper that introduced the promising semantics [13] comes with three DRF
theorems and a simplistic value logic. These reasoning principles are enough to
show absence of some simple out-of-thin-air behaviours, but it is still very easy
to end up beyond the reasoning power of these two techniques. For instance,
they cannot be used to prove that r1 = 0 in the following “random number
generator” litmus test1, where both the x and y locations initially hold 0.

r1 := [x]rlx;
[y]rlx := r1 + 1

r2 := [y]rlx;
[x]rlx := r2

(RNG)

The subtlety of this litmus test is the following: if the first thread reads a certain
value v from x, then it writes v + 1 to y, which the second thread can read, and
1 The litmus test is called this way because some early attempts to solve the OOTA

problem allowed this example to return arbitrary values for x and y.
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write to x; this, however, does not enable the first thread to read v + 1. SLR
features novel assertions that allow it to handle those and other examples, as
shown in the following section.

The second major contribution is the proof of soundness of SLR over the
promising semantics [13]2. The promising semantics is an operational model
that represents memory as a collection of timestamped write messages. Besides
the usual steps that execute the next command of a thread, the model has a non-
standard step that allows a thread to promise to perform a write in the future,
provided that it can guarantee to be able to fulfil its promise. After a write is
promised, other threads may read from that write as if it had already happened.
Promises allow the load-store reordering needed to exhibit the load buffering
behaviour above, and yet seem, from a series of litmus tests, constrained enough
so as to not introduce out-of-thin-air behaviour.

Since the promising model is rather different from all other (operational and
axiomatic) memory models for which a program logic has been developed, none
of the existing approaches for proving soundness of concurrent program logics
are applicable to our setting. Two key difficulties in the soundness proof come
from dealing with promise steps.

1. Promises are very non-modular, as they can occur at every execution point
and can affect locations that may only be accessed much later in the program.

2. Since promised writes can be immediately read by other threads, the sound-
ness proof has to impose the same invariants on promised writes as the ones
it imposes on ordinary writes (e.g., that only values satisfying the location’s
protocol are written). In a logic supporting ownership transfer,3 however,
establishing those invariants is challenging, because a thread may promise to
write to x even without having permission to write to x.

To deal with the first challenge, our proof decouples promising steps from ordi-
nary execution steps. We define two semantics of Hoare triples—one “promis-
ing”, with respect to the full promising semantics, and one “non-promising”,
with respect to the promising semantics without promising steps—and prove
that every Hoare triple that is correct with respect to its non-promising inter-
pretation is also correct with respect to its promising interpretation. This way, we
modularise reasoning about promise steps. Even in the non-promising semantics,
however, we do allow threads to have outstanding promises. The main difference
in the non-promising semantics is that threads are not allowed to issue new
promises.

To resolve the second challenge, we observe that in programs verified by SLR,
a thread may promise to write to x only if it is able to acquire the necessary
write permission before performing the actual write. This follows from promise

2 As the promising semantics comes with formal proofs of correctness of all the
expected local program transformations and of compilation schemes to the x86-TSO,
Power, and ARMv8-POP architectures [21], SLR is sound for these architectures too.

3 Supporting ownership transfer is necessary to provide useful rules for C11 release
and acquire accesses.
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e ∈ Expr ::= n integer
| r register
| e1 op e2 arithmetic

s ∈ Stm ::= skip | s1; s2 | if e then s1 else s2

| while e do s | r := e | r := [e]rlx
| r := [e]acq | [e1]rlx := e2 | [e1]rel := e2

Fig. 1. Syntax of the programming language.

certification: the promising semantics requires all promises to be certifiable; that
is, for every state of the promising machine, there must exist a non-promising
execution of the machine that fulfils all outstanding promises.

We present the SLR assertions and rules informally in Sect. 2. We then give
an overview of the promising semantics of Kang et al. [13] in Sect. 3, and use it
in Sect. 4 to explain the proof of soundness of SLR. We discuss related work in
Sect. 5. Details of the rules of SLR and its soundness proof can be found in our
technical appendix [1].

2 Our Logic

The novelty of our program logic is to allow non-trivial reasoning about relaxed
accesses. Unlike release/acquire accesses, relaxed accesses do not induce syn-
chronisation between threads, so the usual approach of program logics, which
relies on ownership transfer, does not apply. Therefore, in addition to reasoning
about ownership transfer like a standard separation logic, our logic supports rea-
soning about relaxed accesses by collecting information about what reads have
been observed, and in which order. When combined with information about
which writes have been performed, we can deduce that certain executions are
impossible.

For concreteness, we consider a minimal “WHILE” programming language
with expressions, e ∈ Expr, and statements, s ∈ Stm, whose syntax is given in
Fig. 1. Besides local register assignments, statements also include memory reads
with relaxed or acquire mode, and memory writes with relaxed or release mode.

2.1 The Assertions of the Logic

The SLR assertion language is generated by the following grammar, where N ,
l, v, t, π and X all range over a simply-typed term language which we assume
includes booleans, locations, values and expressions of the programming lan-
guage, fractional permissions, and timestamps, and is closed under pairing, finite
sets, and sequences. By convention, we assume that l, v, t, π and X range over
terms of type location, value, timestamp, permission and sets of pairs of values,
and timestamps, respectively.

P,Q ∈ Assn ::= ⊥ | � | P ∨ Q | P ∧ Q | P ⇒ Q | ∀x. P | ∃x. P | N1 = N2 | φ(N)
| P ∗ Q | Rel(l, φ) | Acq(l, φ) | O(l, v, t) | Wπ(l,X) | ∇P

φ ∈ Pred ::= λx. P
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The grammar contains the standard operators from first order logic and separa-
tion logic, the Rel and Acq assertions from RSL [27], and a few novel constructs.

Rel(l, φ) grants permission to perform a release write to location l and transfer
away the invariant φ(v), where v is the value written to that location. Conversely,
Acq(l, φ) grants permission to perform an acquire read from location l and gain
access to the invariant φ(v), where v is the value returned by the read.

The first novel assertion form, O(l, v, t), records the fact that location l was
observed to have value v at timestamp t. The timestamp is used to order it with
other reads from the same location. The information this assertion provides is
very weak: it merely says that the owner of the assertion has observed that value,
it does not imply that any other thread has ever observed it.

The other novel assertion form, Wπ(l,X), asserts ownership of location l
and records a set of writes X to that location. The fractional permission π ∈
Q indicates whether ownership is shared or exclusive. Full permission, π = 1,
confers exclusive ownership of location l and ensures that X is the set of all
writes to location l; any fraction, 0 < π < 1, confers shared ownership and
enforces that X is a lower-bound on the set of writes to location l. The order
of writes to l is tracked through timestamps; the set X is thus a set of pairs
consisting of the value and the timestamp of the write.

In examples where we only need to refer to the order of writes and not the
exact timestamps, we write Wπ(x, �), where � = [v1, ..., vn] is a list of values, as
shorthand for ∃t1, ..., tn. t1 > t2 > · · · > tn ∗ Wπ(x, {(v1, t1), ..., (vn, tn)}). The
Wπ(x, �) assertion thus expresses ownership of location x with permission π, and
that the writes to x are given by the list � in order, with the most recent write
at the front of the list.

RelationBetweenReads andWrites. Records of reads and writes can be confronted
by the thread owning the exclusive write assertion: all reads must have read values
that were written. This is captured formally by the following property:

W1(x,X) ∗ O(x, a, t) � W1(x,X) ∗ O(x, a, t) ∗ (a, t) ∈ X (Reads-from-Write)

Random Number Generator. These assertions allow us to reason about the “ran-
dom number generator” litmus test from the Introduction, and to show that it
cannot read arbitrarily large values. As discussed in the Introduction, capturing
the set of values that are written to x, as made possible by the “invariant-based
program logic” of Kang et al. [13, Sect. 5.5] and of Jeffrey and Riley [10, Sect.
6], is not enough, and we make use of our stronger reasoning principles. We use
O(x, a, t) to record what values reads read from each location, and W1(x, �) to
record what sequences of values were written to each location, and then confront
these records at the end of the execution. The proof sketch is then as follows:

{
W1(y, [0]) ∗ . . .

}

r1 := [x]rlx;{
W1(y, [0]) ∗ O(x, r1, ) ∗ . . .

}

[y]rlx := r1 + 1{
W1(y, [r1 + 1; 0]) ∗ O(x, r1, ) ∗ . . .

}

{
W1(x, [0]) ∗ . . .

}

r2 := [y]rlx;{
W1(x, [0]) ∗ O(y, r2, ) ∗ . . .

}

[x]rlx := r2{
W1(x, [r2; 0]) ∗ O(y, r2, ) ∗ . . .

}
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At the end of the execution, we are able to draw conclusions about the values
of the registers. From W1(x, [r2; 0]) and O(x, r1, ), we know that r1 ∈ {r2, 0} by
rule Reads-from-Write. Similarly, we know that r2 ∈ {r1 + 1, 0}, and so we can
conclude that r1 = 0. We discuss the distribution of resources at the beginning
of a program, and their collection at the end of a program, in Theorem 2. Note
that we are unable to establish what values the reads read before the end of the
litmus test. Indeed, before the end of the execution, nothing enforces that there
are no further writes that reads could read from.

2.2 The Rules of the Logic for Relaxed Accesses

We now introduce the rules of our logic by focusing on the rules for relaxed
accesses. In addition, we support the standard rules from separation logic and
Hoare logic, rules for release/acquire accesses (Sect. 2.4), and the following con-
sequence rule:

P � P ′ {
P ′} c

{
Q′} Q′ � Q

�
{
P

}
c
{
Q

} (conseq)

which allows one to use “view shifting” implications to strengthen the precon-
dition and weaken the postcondition.

The rules for relaxed accesses are adapted from the rules of RSL [27] for
release/acquire accesses, but use our novel resources to track the more subtle
behaviour of relaxed accesses. Since relaxed accesses do not introduce synchro-
nisation, they cannot be used to transfer ownership; they can, however, be used
to transfer information. For this reason, as in RSL [27], we associate a predicate
φ on values to a location x using paired Rel(x, φ) and Acq(x, φ) resources, for
writers and readers, respectively. To write v to x, a writer has to provide φ(v),
and in exchange, when reading v from x, a reader obtains φ(v). However, here,
relaxed writes can only send pure predicates (i.e., ones which do not assert own-
ership of any resources), and relaxed reads can only obtain the assertion from
the predicate guarded by a modality ∇4 that only pure assertions filter through:
if P is pure, then ∇P =⇒ P . All assertions expressible in first-order logic are
pure.

Relaxed Write Rule. To write value v (to which the value expression e2 evalu-
ates) to location x (to which the location expression e1 evaluates), the thread
needs to own a write permission Wπ(x,X). Moreover, it needs to provide φ(v),
the assertion associated to the written value, v, to location x by the Rel(x, φ)
assertion. Because the write is a relaxed write, and therefore does not induce
synchronisation, φ(v) has to be a pure predicate. The write rule updates the
record of writes with the value written, timestamped with a timestamp newer
than any timestamp for that location that the thread has observed so far; this is
expressed by relating it to a previous timestamp that the thread has to provide
through an O(x, , t) assertion in the precondition.

4 This ∇ modality is similar in spirit, but weaker than that of FSL [8].
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φ(v) is pure

�
{

e1 = x ∗ e2 = v ∗ Wπ(x, X)
∗ Rel(x, φ) ∗ φ(v) ∗ O(x, , t)

}
[e1]rlx := e2

{∃t′ > t.
Wπ(x, {(v, t′)} ∪ X)

} (w-rlx)

The Rel(x, φ) assertion is duplicable, so there is no need for the rule to keep it.
In practice, O(x, , t) is taken to be that of the last read from x if it was the

last operation on x, and O(x, fst(max(X)), snd(max(X))) if the last operation
on x was a write, including the initial write. The latter can be obtained by

Wπ(x,X) ∗ (v, t) ∈ X � Wπ(x,X) ∗ O(x, v, t) (Write-Observed)

Relaxed Read Rule. To read from location x (to which the location expression
e evaluates), the thread needs to own an Acq(x, φ) assertion, which gives it the
right to (almost) obtain assertion φ(v) upon reading value v from location x.
The thread then keeps its Acq(x, φ), and obtains an assertion O(x, r, t′) stating
that it has read the value now in register r from location x, timestamped with t′.
This timestamp is no older than any timestamp for that location that the thread
has observed so far, expressed again by relating it to an O(x, , t) assertion in
the precondition. Moreover, it obtains the pure portion ∇φ(r) of the assertion
φ(r) corresponding to the value read in register r

�
{
e = x ∗ Acq(x, φ) ∗ O(x, , t)

}

r := [e]rlx{
∃t′ ≥ t. Acq(x, φ) ∗ O(x, r, t′) ∗ ∇φ(r)

}
(r-rlx)

Again, we can obtain O(x, vx
0 , 0), where vx

0 is the initial value of x, from the
initial write permission for x, and distribute it to all the threads that will read
from x, expressing the fact that the initial value is available to all threads, and
use it as the required O(x, , t) in the precondition of the read rule.

Moreover, if a thread owns the exclusive write permission for a location x,
then it can take advantage of the fact that it is the only writer at that location
to obtain more precise information about its reads from that location: they will
read the last value it has written to that location.

�
{
e = x ∗ Acq(x, φ) ∗ W1(x,X)

}

r := [e]rlx{
∃t. (r, t) = max(X) ∗ Acq(x, φ) ∗ W1(x,X) ∗ O(x, r, t) ∗ ∇φ(r)

}
(r-rlx*)

Separation. With these assertions, we can straightforwardly specify and verify
the Disjoint-Lists example. Ownership of an element of a list is simply expressed
using a full write permission, W1(x,X). This allows including the Disjoint-Lists
as a snippet in a larger program where the lists can be shared before or after, and
still enforce the separation property we want to establish. While this reasoning
sounds underwhelming (and we elide the details), we remark that it is unsound
in models that allow OOTA behaviours.
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2.3 Reasoning About Coherence

An important feature of many memory models is coherence, that is, the existence
of a per-location total order on writes that reads respect. Coherence becomes
interesting where there are multiple simultaneous writers to the same location
(write/write races). In our logic, write assertions can be split and combined as
follows: if π1 + π2 ≤ 1, 0 < π1 and 0 < π2 then

Wπ1+π2(x,X1 ∪ X2) ⇔ Wπ1(x,X1) ∗ Wπ2(x,X2) (Combine-Writes)

To reason about coherence, the following rules capture the fact that the
timestamps of the writes at a given location are all distinct, and totally ordered:

Wπ(x,X) ∗ (v, t) ∈ X ∗ (v′, t′) ∈ X ∗ v �= v′ � Wπ(x,X) ∗ t �= t′

(Different-Writes)

Wπ(x,X) ∗ ( , t) ∈ X ∗ ( , t′) ∈ X � Wπ(x,X) ∗ (t < t′ ∨ t = t′ ∨ t′ < t)
(Writes-Ordered)

CoRR2. One of the basic tests of coherence is the CoRR2 litmus test, which
tests whether two threads can disagree on the order of two writes to the same
location. The following program, starting with location x holding 0, should not
be allowed to finish with r1 = 1 ∗ r2 = 2 ∗ r3 = 2 ∗ r4 = 1, as that would mean
that the third thread sees the write of 1 to x before the write of 2 to x, but that
the fourth thread sees the write of 2 before the write of 1:

[x]rlx := 1 [x]rlx := 2 r1 := [x]rlx;
r2 := [x]rlx

r3 := [x]rlx;
r4 := [x]rlx

(CoRR2)

Coherence enforces a total order on the writes to x that is respected by the reads,
so if the third thread reads 1 then 2, then the fourth cannot read 2 then 1.

We use the timestamps in the O(x, a, t) assertions to record the order in
which reads read values, and then link the timestamps of the reads with those
of the writes. Because we do not transfer anything, the predicate for x is λv.�
again, and we elide the associated clutter below.

The proof outline for the writers just records what values have been written:
{
W1/2(x, {(0, 0)}) ∗ . . .

}

[x]rlx := 1{
∃t1.W

1/2(x, {(1, t1), (0, 0)}) ∗ . . .
}

{
W1/2(x, {(0, 0)}) ∗ . . .

}

[x]rlx := 2{
∃t2.W

1/2(x, {(2, t2), (0, 0)}) ∗ . . .
}

The proof outline for the readers just records what values have been read,
and—crucially—in which order.

{
Acq(x, λv.�) ∗ O(x, 0, 0)

}

r1 := [x]rlx;{
∃ta.Acq(x, λv.�) ∗ O(x, r1, ta) ∗ 0 ≤ ta ∗ . . .

}

r2 := [x]rlx{
∃ta, tb.O(x, r1, ta) ∗ O(x, r2, tb) ∗ 0 ≤ ta ∗ ta ≤ tb

}

r3 := [x]rlx;
r4 := [x]rlx
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At the end of the program, by combining the two write permissions using rule
Combine-Writes, we obtain W1(x, {(1, t1), (2, t2), (0, 0)}). From this, we have
t1 < t2 or t2 < t1 by rules Different-Writes and Writes-Ordered. Now, assuming
r1 = 1 and r2 = 2, we have ta < tb, and so t1 < t2 by rule Reads-from-Write.
Similarly, assuming r3 = 2 and r4 = 1, we have t2 < t1. Therefore, we cannot
have r1 = 1 ∗ r2 = 2 ∗ r3 = 2 ∗ r4 = 1, so coherence is respected, as desired.

2.4 Handling Release and Acquire Accesses

Next, consider release and acquire accesses, which, in addition to coherence,
provide synchronisation and enable the message passing idiom.

[x]rlx := 1;
[y]rel := 1

r1 := [y]acq;
if r1 = 1 then r2 := [x]rlx

(MP)

The first thread writes data (here, 1) to a location x, and signals that the data is
ready by writing 1 to a “flag” location y with a release write. The second thread
reads the flag location y with an acquire read, and, if it sees that the first thread
has signalled that the data has been written, reads the data. The release/acquire
pair is sufficient to ensure that the data is then visible to the second thread.

Release/acquire can be understood abstractly in terms of views [15]: a release
write contains the view of the writing thread at the time of the writing, and an
acquire read updates the view of the reading thread with that of the release
write it is reading from. This allows one-way synchronisation of views between
threads.

To handle release/acquire accesses in SLR, we can adapt the rules for relaxed
accesses by enabling ownership transfer according to predicate associated with
the Rel and Acq permissions. The resulting rules are strictly more powerful than
the corresponding RSL [27] rules, as they also allow us to reason about coherence.

Release Write Rule. The release write rule is the same as for relaxed writes, but
does not require the predicate to be a pure predicate, thereby allowing sending
of actual resources, rather than just information:

�
{
e1 = x ∗ e2 = v ∗ Wπ(x,X) ∗ Rel(x, φ) ∗ φ(v) ∗ O(x, , t)

}

[e1]rel := e2{
∃t′ ≥ t. Wπ(x, {(v, t′)} ∪ X)

}
(w-rel)

Acquire Read Rule. Symmetrically, the acquire read rule is the same as for
relaxed reads, but allows the actual resource to be obtained, not just its pure
portion:

�
{
e = x ∗ Acq(x, φ) ∗ O(x, , t)

}

r := [e]acq{
∃t′ ≥ t. Acq(x, φ[r �→ �]) ∗ O(x, r, t′) ∗ φ(r)

}
(r-acq)
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We have to update φ to record the fact that we have obtained the resource
associated with reading that value, so that we do not erroneously obtain that
resource twice; φ[v′ �→ P ] stands for λv. if v = v′ then P else φ(v).

As for relaxed accesses, we can strengthen the read rule when the reader is
also the exclusive writer to that location:

�
{
Acq(x, φ) ∗ W1(x,X)

}

r := [x]acq{
∃t. (r, t) = max(X) ∗ Acq(x, φ[r �→ �])

∗ W1(x,X) ∗ O(x, r, t) ∗ φ(r)

} (r-acq*)

Additionally, we allow duplicating of release assertions and splitting of
acquire assertions, as expressed by the following two rules.

Rel(x, φ) ⇔ Rel(x, φ) ∗ Rel(x, φ) (Release-Duplicate)
Acq(x, λv. φ1(v) ∗ φ2(v)) � Acq(x, φ1) ∗ Acq(x, φ2) (Acquire-Split)

Message Passing. With these rules, we can easify verify the message passing
example. Here, we want to transfer a resource from the writer to the reader,
namely the state of the data, x. By transferring the write permission for the
data to the reader over the “flag” location, y, we allow the reader to use it to
read the data precisely. We do that by picking the predicate

φy = λv. v = 1 ∧ W1(x, [1; 0]) ∨ v �= 1

for y. Since we do not transfer any resource using x, the predicate for x is λv.�.
The writer transfers the write permissions for x away on y using φy:

{
W1(x, [0]) ∗ Rel(x, λv.�) ∗ W1(y, [0]) ∗ Rel(y, φy)

}

[x]rlx := 1;{
W1(x, [1; 0]) ∗ W1(y, [0]) ∗ Rel(y, φy)

}
{
W1(y, {(0, 0)}) ∗ Rel(y, φy) ∗ φy(1) ∗ O(x, 0, 0)

}

[y]rel := 1{
∃t1.W

1(y, {(1, t1)} ∪ {(0, 0)}) ∗ 0 < t1
}

{
W1(y, [1; 0]) ∗ Rel(y, φy)

}

The proof outline for the reader uses the acquire permission φy for y to obtain
W1(x, [1; 0]), which it then uses to know that it reads 1 from x.

{
Acq(y, φy)) ∗ O(y, 0, 0) ∗ Acq(x, λv.�)

}

r1 := [y]acq;{
∃ty1 ≥ 0.Acq(y, φy[r1 �→ �]) ∗ O(y, r1, t

y
1) ∗ φy(r1) ∗ Acq(x, λv.�)

}
{
φy(r1) ∗ Acq(x, λv.�)

}

if r1 = 1 then{
W1(x, [1; 0]) ∗ Acq(x, λv.�)

}

r2 := [x]rlx{
Acq(x, λv.�) ∗ W1(x, [1; 0]) ∗ (r2 = 1)

}
{
r1 = 1 =⇒ r2 = 1

}
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2.5 Plain Accesses

Our formal development (in the technical appendix) also features the usual “par-
tial ownership” x

π�→ v assertion for “plain” (non-atomic) locations, and the usual
corresponding rules.

3 The Promising Semantics

In this section, we provide an overview of the promising semantics [13], the model
for which we prove SLR sound. Formal details can be found in [1,13].

The promising semantics is an operational semantics that interleaves execu-
tion of the threads of a program. Relaxed behaviour is introduced in two ways:

– As in the “strong release/acquire” model [15], the memory is a pool of times-
tamped messages, and each thread maintains a “view” thereof. A thread may
read any value that is not older than the latest value observed by the thread
for the given location; in particular, this may well not be the latest value
written to that particular location. Timestamps and views model non-multi-
copy-atomicity: writes performed by one thread do not become simultaneously
visible by all other threads.

– The operational semantics contains a non-standard step: at any point a thread
can nondeterministically promise a write, provided that, at every point before
the write is actually performed, the thread can certify the promise, that is,
execute the write by running on its own from the current state. Promises are
used to enable load-store reordering.

The behaviour of promising steps can be illustrated on the LB+data+fakedep
litmus test from the Introduction. The second thread can, at the very start of
the execution, promise a write of 1 to x, because it can, by running on its own
from the current state, read from y (it will read 0), then write 1 to x (because
0 + 1 − 0 = 1), thereby fulfilling its promise. On the other hand, the first thread
cannot promise a write of 1 to y at the beginning of the execution, because, by
running on its own, it can only read 0 from x, and therefore only write 0 to y.

3.1 Storage Subsystem

Formally, the semantics keeps track of writes and promises in a global configura-
tion, gconf = 〈M,P 〉, where M is a memory and P ⊆ M is the promise memory.
We denote by gconf .M and gconf .P the components of gconf . Both memories are
finite sets of messages, where a message is a tuple 〈x :oi v,R@t]〉, where x ∈ Loc
is the location of the message, v ∈ Val its value, i ∈ Tid its originating thread,
t ∈ Time its timestamp, R its message view, and o ∈ {rlx, rel} its message
mode, where Time is an infinite set of timestamps, densely totally ordered by
≤, with a minimum element, 0. (We return to views later.) We denote m.loc,
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m.val, m.time, m.view and m.mod the components of a message m. We use the
following notation to restrict memories:

M(i) def= {m ∈ M | m.tid = i} M(rel) def= {m ∈ M | m.mod = rel}
M(x) def= {m ∈ M | m.loc = x} M(rlx) def= {m ∈ M | m.mod = rlx}

M(i, x) def= M(i) ∩ M(x)

A global configuration gconf evolves in two ways. First, a message can be
“promised” and be added both to gconf.M and gconf.P. Second, a message can
be written, in which case it is either added to gconf.M, or removed from gconf.P
(if it was promised before).

3.2 Thread Subsystem

A thread state is a pair TS = 〈σ, V 〉, where σ is the internal state of the thread
and V is a view. We denote by TS .σ and TS .V the components of TS .

Thread Internal State. The internal state σ consists of a thread store (denoted
σ.μ) that assigns values to local registers and a statement to execute (denoted
σ.s). The transitions of the thread internal state are labeled with memory actions
and are given by an ordinary sequential semantics. As these are routine, we leave
their description to the technical appendix.

Views. Thread views are used to enforce coherence, that is, the existence of
a per-location total order on writes that reads respect. A view is a function
V : Loc → Time, which records how far the thread has seen in the history of each
location. To ensure that a thread does not read stale messages, its view restricts
the messages the thread may read, and is increased whenever a thread observes
a new message. Messages themselves also carry a view (the thread’s view when
the message comes from a release write, and the bottom view otherwise) which
is incorporated in the thread view when the message is read by an acquire read.

Additional Notations. The order on timestamps, ≤, is extended pointwise to
views. ⊥ and � denote the natural bottom elements and join operations for
views. {x@t} denotes the view assigning t to x and 0 to other locations.

3.3 Interaction Between a Thread and the Storage Subsystem

The interaction between a thread and the storage subsystem is given in
terms of transitions of thread configurations. Thread configurations are tuples
〈TS , 〈M,P 〉〉, where TS is a thread state, and 〈M,P 〉 is a global configura-
tion. These transitions are labelled with β ∈ {NP,prom} in order to distinguish
whether they involve promises or not. A thread can:
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– Make an internal transition with no effect on the storage subsystem.
– Read the value v from location x, when there is a matching message in mem-

ory that is not outdated according to the thread’s view. It then updates its
view accordingly: it updates the timestamp for location x and, in addition,
incorporates the message view if the read is an acquire read.

– Write the value v to location x. Here, the thread picks a timestamp greater
than the one of its current view for the message it adds to memory (or removes
from the promise set). If the write is a release write, the message carries
the view of the writing thread. Moreover, a release write to x can only be
performed when the thread has already fulfilled all its promises to x.

– Non-deterministically promise a relaxed write by adding a message to both
M and P .

3.4 Constraining Promises

Now that we have described how threads and promises interact with mem-
ory, we can present the certification condition for promises, which is essen-
tial to avoid out-of-thin-air behaviours. Accordingly, we define another tran-
sition system, =⇒, on top of the previous one, which enforces that the memory
remains “consistent”, that is, all the promises that have been made can be cer-
tified. A thread configuration 〈TS , 〈M,P 〉〉 is called consistent w.r.t. i ∈ Tid
if thread i can fulfil its promises by executing on its own, or more formally if
〈TS , 〈M,P 〉〉 NP−→

∗
i 〈TS ′, 〈M ′, P ′〉〉 for some TS ′,M ′, P ′ such that P ′(i) = ∅.

Certification is local, that is, only thread i is executing during its certification;
this is crucial to avoid out-of-thin-air. Further, the certification itself cannot
make additional promises, as it is restricted to NP-steps. Here is a visual repre-
sentation of a promise machine run, together with certifications.

· · · i j i k · · ·
NP

i

NP
i

NP
i

NP

j
NP

i

NP
i

NP
k

NP
k

NP
k

The thread configuration =⇒-transitions allow a thread to (1) take any num-
ber of non-promising steps, provided its thread configuration at the end of the
sequence of step (intuitively speaking, when it gives control back to the sched-
uler) is consistent, or (2) take a promising step, again provided that its thread
configuration after the step is consistent.

3.5 Full Machine

Finally, the full machine transitions simply lift the thread configuration =⇒-
transitions to the machine level. A machine state is a tuple MS = 〈TS, 〈M,P 〉〉,
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where TS is a function assigning a thread state TS to every thread, and 〈M,P 〉
is a global configuration. The initial state MS0 (for a given program) consists
of the function TS0 mapping each thread i to its initial state 〈σ0

i ,⊥〉, where σ0
i

is the thread’s initial local state and ⊥ is the zero view (all timestamps in views
are 0); the initial memory M0 consisting of one message 〈x :rlx0 0,⊥@0]〉 for each
location x; and the empty set of promises.

4 Semantics and Soundness

In this section, we present the semantics of SLR, and give a short overview of
the soundness proof. Our focus is not on the technical details of the proof, but
on the two main challenges in defining the semantics and proving soundness:

1. Reasoning about promises. This difficulty arises because promise steps can be
nondeterministically performed by the promise machine at any time.

2. Reasoning about release-acquire ownership transfer in the presence of
promises. The problem is that writes may be promised before the thread
has acquired enough resources to allow it to actually perform the write.

4.1 The Intuition

SLR assertions are interpreted by (sets of) resources, which represent permis-
sions to write to a certain location and/or to obtain further resources by reading
a certain message from memory. As is common in semantics of separation log-
ics, the resources form a partial commutative monoid, and SLR’s separating
conjunction is interpreted as the composition operation of the monoid.

When defining the meaning of a Hoare triple {P} s {Q}, we think of the
promise machine as if it were manipulating resources: each thread owns some
resources and operates using them. The intuitive description of the Hoare triple
semantics is that every run of the program s starting from a state containing the
resources described by the precondition, P , will be “correct” and, if it terminates,
will finish in a state containing the resources described by the postcondition, Q.
The notion of a program running correctly can be described in terms of threads
“respecting” the resources they own; for example, if a thread is executing a write
or fulfilling a promise, it should own a resource representing the write permission.

4.2 A Closer Look at the Resources and the Assertion Semantics

We now take a closer look at the structure of resources and the semantics of
assertions, whose formal definitions can be found in Figs. 2 and 3.

The idea is to interpret assertions as predicates over triples consisting of mem-
ory, a view, and a resource. We use the resource component to model assertions
involving ownership (i.e., write assertions and acquire assertions), and model
other assertions using the memory and view components. Once a resource is
no longer needed, SLR allows us to drop these from assertions: P ∗ Q ⇒ P .
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To model this we interpret assertions as upwards-closed predicates, that may
own more than explicitly asserted. The ordering on memories and views is given
by the promising semantics, and the ordering on resources is induced by the
composition operation in the resource monoid. For now, we leave the resource
composition unspecified, and return to it later.

Fig. 2. Semantic domains used in this section.

In addition, however, we have to deal with assertions that are parametrised by
predicates (in our case, Rel(x, φ) and Acq(x, φ)). Doing so is not straightforward
because näıve attempts of giving semantics to such assertions result in circular
definitions. A common technique for avoiding this circularity is to treat predi-
cates stored in assertions syntactically, and to interpret assertions relative to a
world, which is used to interpret those syntactic predicates. In our case, worlds
consist of two components: the WrPerm component associates a syntactic SLR
predicate with every location (this component is used to interpret release per-
missions), while the AcqPerm component associates a syntactic predicate with a
finite number of currently allocated predicate identifiers (this component is used
to interpret acquire permissions). The reason for the more complex structure
for acquire permissions is that they can be split (see (Acquire-Split)). There-
fore, we allow multiple predicate identifiers associated with a single location.
When acquire permissions are divided and split between threads, new predicate
identifiers are allocated and associated with predicates in the world. The world
ordering, W1 ≤ W2, expresses that world W2 is an extension of W1 in which
new predicate identifiers may have been allocated, but all existing predicate
identifiers are associated with the same predicates.

Let us now focus our attention on the assertion semantics. The semantics of
assertions, �P �

η
μ, is relative to a thread store μ that assigns values to registers,

and an environment η that assigns values to logical variables.
The standard logical connectives and quantifiers are interpreted following

their usual intuitionistic semantics. The semantics of our novel assertions is given
in Fig. 3 and can be explained as follows:

– The observed assertion O(x, v, t) says that the memory contains a message
at location x with value v and timestamp t, and the current thread knows
about it (i.e., the thread view contains it).
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– The write assertion Wπ(x,X) asserts ownership of a (partial, with fraction π)
write resource at location x, and requires that the largest timestamp recorded
in X does not exceed the view of the current thread.

– The acquire assertion, Acq(x, φ), asserts that location x has some predicate
identifier ι associated with the φ predicate in the current world W.

– The release assertion, Rel(x, φ), asserts that location x is associated with some
predicate φ′ in the current world such that there exists a syntactic proof of
the entailment, � ∀v. φ(v) ⇒ φ′(v). The implication allows us to strengthen
the predicate in release assertions.

– Finally, ∇P states that P is satisfiable in the current world.

Note that Wπ(x,X), Acq(x, φ), and Rel(x, φ) only talk about owning certain
resources, and do not constrain the memory itself at all. In the next subsection,
we explain how we relate the abstract resources with the concrete machine state.

Fig. 3. Interpretation of SLR assertions, � �η
μ : Assn → Prop

4.3 Relating Concrete State and Resources

Before giving a formal description of the relationship between abstract resources
and concrete machine states, we return to the intuition of threads manipulating
resources presented in Sect. 4.1.

Consider what happens when a thread executes a release write to a loca-
tion x. At that point, the thread has to own a release resource represented by
Rel(x, φ), and to store the value v, it has to own the resources represented by
φ(v). As the write is executed, the thread gives up the ownership of the resources
corresponding to φ(v). Conversely, when a thread that owns the resource rep-
resented by Acq(x, φ) performs an acquire read of a value v from location x, it
will gain ownership of resources satisfying φ(v). However, this picture does not
account for what happens to the resources that are “in flight”, i.e., the resources
that have been released, but not yet acquired.

Our approach is to associate in-flight resources to messages in the memory.
When a thread does a release write, it attaches the resources it released to
the message it just added to the memory. That way, a thread performing an
acquire read from that message can easily take ownership of the resources that
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are associated to the message. Formally, as the execution progresses, we update
the assignment of resources to messages,

u : M(rel) → (PredId → Res).

For every release message in memory M , the message resource assignment u
gives us a mapping from predicate identifiers to resources. Here, we again use
predicate identifiers to be able to track which acquire predicate is being satisfied
by which resource. The intended reading of u(m)(ι) = r is that the resource r
attached to the message m satisfies the predicate with the identifier ι.

We also require that the resources attached to a message (i.e., the resources
released by the thread that wrote the message) suffice to satisfy all the acquire
predicates associated with that particular location. Together, these two prop-
erties of our message resource assignment, as formalised in Fig. 4, allow us to
describe the release/acquire ownership transfer.

Fig. 4. Message resource satisfaction.

The last condition in the message resource satisfaction relation has to do
with relaxed accesses. Since relaxed accesses do not provide synchronisation,
we disallow ownership transfer through them. Therefore, we require that the
release predicates connected with the relaxed messages are satisfiable with
the empty resource. This condition, together with the requirement that the
released resources satisfy acquire predicates, forbids ownership transfer via
relaxed accesses.

The resource missing from the discussion so far is the write resource (mod-
elling the Wπ(x,X) assertion). Intuitively, we would like to have the following
property: whenever a thread adds a message to the memory, it has to own the
corresponding write resource. Recall there are two ways a thread can produce a
new message:

1. A thread performs a write. This is the straightforward case: we simply require
the thread to own the write resource and to update the set of value-timestamp
pairs recorded in the resource accordingly.

2. A thread promises a write. Here the situation is more subtle, because the
thread might not own the write resource at the time it is issuing the promise,
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but will acquire the appropriate resource by the time it fulfils the promise. So,
in order to assert that the promise step respects the resources owned by the
thread, we also need to be able to talk about the resources that the thread
can acquire in the future.

When dealing with the promises, the saving grace comes from the fact that
all promises have to be certifiable, i.e., when issuing a promise a thread has to
be able to fulfil it without help from other threads.

Intuitively, the existence of a certification run tells us that even though at
the moment a thread issues a promise, it might not have the resources neces-
sary to actually perform the corresponding write, the thread should, by running
uninterrupted, still be able to obtain the needed resources before it fulfils the
promise. This, in turn, tells us that the needed resources have to be already
released by the other threads by the time the promise is made: only resources
attached to messages in the memory are available to be acquired, and only the
thread that made the promise is allowed to run during the certification; therefore
all the available resources have already been released.

The above reasoning shows what it means for the promise steps to “respect
resources”: when promises are issued, the resources currently owned by a thread,
together with all the resources it is able to acquire according to the resources it
owns and the current assignment of resources to messages, have to contain the
appropriate write resource for the write being promised. The notion of “resources
a thread is able to acquire” is expressed through the canAcq(r, u) predicate.
canAcq(r, u) performs a fixpoint calculation: the resources we have (r) allow us
to acquire some more resources from the messages in memory (assignment of
resources to messages is given by u), which allows us to acquire some more, and
so on. Its formal definition can be found in the technical appendix, and hinges
on the fact that u precisely tracks which resources satisfy which predicates.

Fig. 5. Resource composition.

An important element that was omitted from the discussion so far is the defi-
nition of the composition in the resource monoid Res. The resource composition,
defined in Fig. 5, follows the expected notion of per-component composition. The
most important feature is in the composition of write resources: a full permission
write resource is only composable with the empty write resource.

At this point, we are equipped with all the necessary ingredients to relate
abstract states represented by resources to concrete states 〈M,P 〉 (where M is
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Fig. 6. Erasure.

memory, and P is the set of promised messages). We define a function, called
erasure, that given an assignment of resources to threads, rF : ThreadId → Res,
an assignment of resources to messages, u, and a world, W, gives us a set of
concrete states satisfying the following conditions:

1. Memory M is consistent with respect to the total resource r and the message
resource assignment u at world W.

2. The set of fulfilled writes to each location x in 〈M,P 〉 must match the set of
writes of all write permissions owned by any thread or associated with any
messages, when combined.

3. For all unfulfilled promises to a location x by thread i, thread i must currently
own or be able to acquire from u at least a shared write permission for x.

Our formal notion of erasure, defined in Fig. 6, has an additional parameter,
a set of thread identifiers T . This set allows us to exclude promises of threads T
from the requirement of respecting the resources. As we will see in the following
subsection, this additional parameter plays a subtle, but key, role in the sound-
ness proof. (The notion of erasure described above corresponds to the case when
T = ∅.)

Note also that the arguments of erasure very precisely account for who owns
which part of the total resource. This diverges from the usual approach in sepa-
ration logic, where we just give the total resource as the argument to the erasure.
Our approach is motivated by Lemma 1, which states that a reader that owns the
full write resource for location x knows which value it is going to read from x.
This is the key lemma in the soundness proof of the (r-rlx*) and (r-acq*)
rules.

Lemma 1. If (M,V, rF (i)) ∈
�
W1(x,X)

�η

μ
(W), and 〈M,P 〉 ∈ �rF , u,W�{i}

then for all messages m ∈ M(x) \ P (i) such that V (x) ≤ m.time, we have
m.val = fst(max(X)).

Lemma 1 is looking from the perspective of thread i that owns the full write
resource for the location x. This is expressed by (M,V, rF (i)) ∈

�
W1(x,X)

�η

μ
(W)

(recall that rF (i) are the resources owned by the thread i). Furthermore, the
lemma assumes that the concrete state respects the abstract resources, expressed
by 〈M,P 〉 ∈ �rF , u,W�{i}. Under these assumptions, the lemma intuitively tells
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us that the current thread knows which value it will read from x. Formally, the
lemma says that all the messages thread i is allowed to read (i.e., messages in
the memory that are not outstanding promises of thread i and whose timestamp
is greater or equal to the view of thread i) have the value that appears as the
maximal element in the set X.

To see why this lemma holds, consider a message m ∈ M(x) \ P (i). If m
is an unfulfilled promise by a different thread j, then, by erasure, it follows
that j currently owns or can acquire at least a shared write permission for x.
However, this is a contradiction, since thread i currently owns the exclusive
write permission, and, by erasure, rF (i) is disjoint from the resources of all
other threads and all resources currently associated with messages by u. Hence,
m must be a fulfilled write. By erasure, it follows that the set of fulfilled writes
to x is given by the combination of all write permissions. Since rF (i) owns the
exclusive write permission, this is just rF (i).wr. Hence, the set of fulfilled writes
is X, and the value of the last fulfilled write is fst(max(X)).

Note that in the reasoning above, it is crucial to know which thread and which
message owns which resource. Without precisely tracking this information, we
would be unable to prove Lemma1.

4.4 Soundness

Now that we have our notion of erasure, we can proceed to formalise the meaning
of triples, and present the key points of the soundness proof.

Recall our intuitive view of Hoare triples saying that the program only makes
steps which respect the resources it owns. This notion is formalised using the
safety predicate: safety (somewhat simplified; we give its formal definition in
Fig. 7) states that it is always safe to perform zero steps, and performing n + 1
steps is safe if the following two conditions hold:

1. If no more steps can be taken, the current state and resources have to satisfy
the postcondition B.

2. If we can take a step which takes us from the state 〈M,P 〉 (which respects our
current resources r, the assignment of resources to messages u, and world W)
to the state 〈M ′, P ′〉, then

Fig. 7. Safety.
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(a) there exist resources r′, an assignment of resources to messages u′, and a
future world W ′, such that 〈M ′, P ′〉 respects r′, u′, and W ′, and

(b) we are safe for n more steps starting in the state 〈M ′, P ′〉 with resources
given by r′, u′ and W ′.

Note the following:

– Upon termination, we are not required to satisfy exactly the postcondition B,
but its view shift. A view shift is a standard notion in concurrent separation
logics, which allows updates of the abstract resources which do not affect the
concrete state. In our case, this means that resource r can be view-shifted
into r′ satisfying B as long as the erasure is unchanged. The formal definition
of view shifts is given in the appendix.

– Again as is standard in separation logics, safety requires framed resources to
be preserved. This is the role of rF in the safety definition. Frame preserva-
tion allows us to compose safety of threads that own compatible resources.
However, departing from the standard notion of frame preservation, we pre-
cisely track who owns which resource in the frame, because this is important
for erasure.

The semantics of Hoare triples is simply defined in terms of the safety predi-
cate. The triple {P} s {Q} holds if every logical state satisfying the precondition
is safe for any number of steps:

�� {P} s {Q}�
def= ∀n, μ, η,W. �P �

η
μ(W) ⊆ safen((μ, s), λμ′. �Q�

η
μ′)(W)

To establish soundness of the SLR proof rules, we have to prove that the
safety predicate holds for arbitrary number of steps, including promise steps. The
trouble with reasoning about promise steps is that they can nondeterministically
appear at any point of the execution. Therefore, we have to account for them in
the soundness proof of every rule of our logic. To make this task manageable,
we encapsulate reasoning about the promise steps in a theorem, thus enabling
the proofs of soundness for proof rules to consider only the non-promise steps.

To do so, once again certification runs for promises play a pivotal role. Recall
that whenever a thread makes a step, it has to be able to fulfil its promises
without help from other threads (Sect. 3.4). Since there will be no interference by
other threads, performing promise steps during certification is of no use (because
promises can only be used by other threads). Therefore, we can assume that the
certification runs are always promise-free.

Now that we have noted that certifications are promise-free, the key idea
behind encapsulating the reasoning about promises is as follows. If we know
that all executions of our program are safe for arbitrarily many non-promising
steps, we can use this to conclude that they are safe for promising steps too.
Here, we use the fact that certification runs are possible runs of the program,
and the fact that certifications are promise-free.

Let us now formalise our key idea. First, we need a way to state that execu-
tions are safe for non-promising steps. This is expressed by the non-promising
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safety predicate defined in Fig. 8. What we want to conclude is that non-
promising safety is enough to establish safety, as expressed by Theorem 1:

Theorem 1 (Non-promising safety implies safety)

∀n, σ,B,W. npsafe(n+1,0)(σ,B)(W) ⊆ safen(σ,B)(W)

We now discuss several important points in the definition of non-promising safety
which enable us to prove this theorem.

Non-promising Safety is Indexed by Pairs of Natural Numbers. When proving
Theorem 1, we use promise-free certification runs to establish the safety of the
promise steps. A problem we face here is that the length of certification runs is
unbounded. Somehow, we have to know that whenever the thread makes a step,
it is npsafe for arbitrarily many steps. Our solution is to have npsafe transfinitely
indexed over pairs of natural numbers ordered lexicographically. That way, if we
are npsafe at index (n + 1, 0) and we take a step, we know that we are npsafe
at index (n,m) for every m. We are then free to choose a sufficiently large m
depending on the length of the certification run we are considering.

Non-promising Safety Considers Configurations that May Contain Promises. It
is important to note that the definition of non-promising safety does not require
that there are no promises in the starting configuration. The only thing that is
required is that no more promises are going to be issued. This is very impor-
tant for Theorem 1, since safety considers all possible starting configurations
(including the ones with existing promises), and if we want the lemma to hold,
non-promising safety has to consider all possible starting configurations too.

Erasure Used in the Non-promising Safety does not Constrain Promises of the
Current Thread. Non-promising safety does not require promises by the thread
being reduced (i.e., thread i) to respect resources. Thus, when reasoning about
non-promising safety of thread i, we cannot assume that existing promises by
thread i respect resources, but crucially we also do not have to worry about
recertifying thread i’s promises. However, since the NP−→ reduction does not recer-
tify promises, we explicitly require that the promises are well formed (via wfprom

predicate) in order to ensure that we still only consider executions where threads
do not read from their own promises.

Additional Constraints by the Non-promising Safety. Non-promising safety also
imposes additional constraints on the reducing thread i. In particular, any write
permissions owned or acquirable by i after the reduction were already owned or
acquirable by i before the reduction step. Intuitively, this holds because thread i
can only transfer away resources and take ownership of resources it was already
allowed to acquire before reducing. Lastly, non-promising safety requires that if
the reduction of i performs any new writes or fulfils any old promises, it must own
the write permission for the location of the given message. Together, these two
conditions ensure that if a promise is fulfilled during a thread-local certification
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Fig. 8. Non-promising safety.

and the thread satisfies non-promising safety, then the thread already owned
or could acquire the write permission for the location of the promise. This is
expressed formally in Lemma 2.

Lemma 2. Assuming that (〈M,P 〉, V, r) ∈ npsafe(n+1,k)(σ,B)(W ) and

〈M,P 〉 ∈ �rF [i �→ r • f ], u,W �{i} and 〈〈σ, V 〉, 〈M,P 〉〉 NP−→
k

i 〈〈σ′, V ′〉, 〈M ′, P ′〉〉
and m ∈ (M ′ \ P ′) \ (M \ P ), we have (r • canAcq(r, u)).wr(m.loc).perm > 0.

The intuition for why Lemma 2 holds is that since only thread i executes,
we know by the definition of non-promising safety that any write permission
owned or acquirable by i when the promise is fulfilled, it already owns or can
acquire in the initial state. Furthermore, whenever a promise is fulfilled, the non-
promising safety definition explicitly requires ownership of the corresponding
write permission. It follows that the thread already owns or can acquire the
write permission for the location of the given promise in the initial state.

Lemma 2 gives us exactly the property that we need to reestablish erasure
after the operational semantics introduces a new promise. This makes Lemma 2
the key step in the proof of Theorem1, which allows us to disentangle reasoning
about promising steps and normal reduction steps. Theorem1 tells us that, in
order to prove a proof rule sound, it is enough to prove that the non-promising
safety holds for arbitrary indices. This liberates us of the cumbersome reasoning
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about promise steps and allows us to focus on non-promising reduction steps
when proving the proof rules sound.

We can now state our top-level correctness theorem, Theorem 2. Since our
language only has top-level parallel composition, we need a way to distribute
initial resources to the various threads, and to collect all the resources once all
the threads have finished. The correctness theorem gives us precisely that:

Theorem 2 (Correctness). If A is a finite set of locations and

1. � ∀x ∈ A.φx(0)
2. � �x∈ARel(x, φx) ∗ Acq(x, φx) ∗ W1(x, {(0, 0)}) � �i∈Tid Pi

3. � {Pi} si {Qi} for all i
4. 〈λi. 〈(μi, si),⊥〉, 〈M0, ∅〉〉 =⇒∗ 〈TS, gconf 〉 and TS(i).σ = skip for all i
5. � �i∈Tid Qi � Q
6. FRV (Qi) ∩ FRV (Qj) = ∅ for all distinct i, j ∈ Tid

then there exist μ, r, and W such that (gconf.M,�iTS(i).V, r) ∈ �Q�
[]
μ(W) and

∀i ∈ Tid.∀a ∈ FRV(Qi). μ(a) = TS(i).μ(a), where FRV(P ) denotes the set of
free register variables in P .

5 Related Work

There are a number of techniques for reasoning under relaxed memory models,
but besides the DRF theorems and some simple invariant logics [10,13], no other
techniques have been proved sound for a model allowing the weak behaviour of
LB+data+fakedep from the introduction. The “invariant-based program logics”
are by design unable to reason about programs like the random number gen-
erator, where having a bound on the set of values written to a location is not
enough, let alone reasoning about functional correctness of a program.

Relaxed Separation Logic (RSL). Among program logics for relaxed memory,
the most closely related is RSL [27]. There are two versions of RSL: a weak
one that is sound with respect to the C/C++11 memory model, which features
out-of-thin-air reads, and a stronger one that is sound with respect to a variant
of the C/C++11 memory that forbids load buffering.

The weak version of RSL forbids relaxed writes completely, and does not con-
strain the value returned by a relaxed read. The stronger version provides single-
location invariants for relaxed accesses, but its soundness proof relies strongly on
a strengthened version of C/C++11 without po ∪rf cycles (where po is program
order, and rf is the reads-from relation), which forbids load buffering.

When it comes to reasoning about coherence properties, even the strong ver-
sion of RSL is surprisingly weak: it cannot be used to verify any of the coherence
examples in this paper. In fact, RSL can be shown sound with respect to much
weaker coherence axioms than what C/C++11 relaxed accesses provide.

One notable feature of RSL which we do not support is read-modify-write
(RMW) instructions (such as compare-and-swap and fetch-and-add). However,
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the soundness proof of SLR makes no simplifying assumptions about the promis-
ing semantics which would affect the semantics of RMW instructions. Therefore,
we are confident that enhancing SLR with rules for RMW instructions would not
substantially affect the structure of the soundness proof, presented in Sect. 4.

Other Program Logics. FSL [8] extends (the strong version of) RSL with stronger
rules for relaxed accesses in the presence of release/acquire fences. In FSL, a
release fence can be used to package an assertion with a modality, which a relaxed
write can then transfer. Conversely, the ownership obtained by a relaxed read is
guarded by a symmetric modality than needs an acquire fence to be unpacked.
The soundness proof of FSL also relies on po∪rf acyclicity. Moreover, it is known
to be unsound in models where load buffering is allowed [9, Sect. 5.2].

A number of other logics—GPS [26], iGPS [12], OGRA [16], iCAP-TSO [24],
the rely-guarantee proof system for TSO of Ridge [23], and the program logic
for TSO of Wehrman and Berdine [28]—have been developed for even stronger
memory models (release/acquire or TSO), and also rely quite strongly on—and
try to expose—the stronger consistency guarantees provided by those models.

The framework of Alglave and Cousot [2] for reasoning about relaxed con-
current programs is parametric with respect to an axiomatic “per-execution”
memory model. By construction, as argued by Batty et al. [3], such models
cannot be used to define a language-level model allowing the weak behaviour
of LB+data+fakedep and similar litmus tests while forbidding out-of-thin-air
behaviours. Moreover, their framework does not provide the usual abstraction
facilities of program logics.

The lace logic of Bornat et al. [6] targets hardware memory models, in par-
ticular Power. It relies on annotating the program with “per-execution” con-
straints, and on syntactic features of the program. For example, it distinguishes
LB+data+fakedep from LB+data+po, its variant where the write of second
thread is [x]rlx := 1, and is thus unsuitable to address out-of-thin-air behaviours.

Other Approaches. Besides program logics, another way to reason about pro-
grams under weak memory models is to reduce the act of reasoning under a
memory model M to reasoning under a stronger model M ′—typically, but not
necessarily, sequential consistency [7,18]. One can often establish DRF theo-
rems stating that a program without any races when executed under M ′ has
the same behaviours when executed under M as when executed under M ′. For
the promising semantics, Kang et al. [13, Sect. 5.4] have established such the-
orems for M ′ being release-acquire consistency, sequential consistency, and the
promise-free promising semantics, for suitable notions of races. The last one,
the “Promise-Free DRF” theorem, is applicable to the Disjoint-Lists program
from the introduction, but none of these theorems can be applied to any of the
other examples of this paper, as they are racy. Moreover, these theorems are not
compositional, as they do not state anything about the Disjoint-Lists program
when put inside a larger, racy program—for example, just an extra read of a
from another thread.
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6 Conclusion

In this paper, we have presented the first expressive logic that is sound under the
promising semantics, and have demonstrated its expressiveness with a number of
examples. Our logic can be seen both as a general proof technique for reasoning
about concurrent programs, and also as tool for proving the absence of out-of-
thin-air behaviour for challenging examples, and reasoning about coherence. In
the future, we would like to extend the logic to cover more of relaxed memory,
more advanced reasoning principles, such as those available in GPS [26], and
mechanise its soundness proof.

Interesting aspects of relaxed memory we would like to also cover are
read-modify-writes and fences. These would allow us to consider concurrent
algorithms like circular buffers and the atomic reference counter verified in
FSL++ [9]. This could be done by adapting the corresponding rules of RSL
and GPS; moreover, we could adapt them with our new approach to reason
about coherence.

To mechanise the soundness proof, we intend to use the Iris framework [11],
which has already been used to prove the soundness of iGPS [12], a variant of
the GPS program logic. To do this, however, we have to overcome one technical
limitation of Iris. Namely, the current version of Iris is step-indexed over N, while
our semantics uses transfinite step-indexing over N × N to define non-promising
safety and allow us to reason about certifications of arbitrary length for each
reduction step. Progress has been made towards transfinitely step-indexed log-
ical relations that may be applicable to a transfinitely step-indexed version of
Iris [25].
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Abstract. Resource sharing is a fundamental phenomenon in concur-
rent programming where several threads have permissions to access a
common resource. Logics for verification need to capture the notion of
permission ownership and transfer. One typical practice is the use of
rational numbers in (0, 1] as permissions in which 1 is the full permission
and the rest are fractional permissions. Rational permissions are not a
good fit for separation logic because they remove the essential “disjoint-
ness” feature of the logic itself. We propose a general logic framework
that supports permission reasoning in separation logic while preserving
disjointness. Our framework is applicable to sophisticated verification
tasks such as doing induction over the finiteness of the heap within the
object logic or carrying out biabductive inference. We can also prove
precision of recursive predicates within the object logic. We developed
the ShareInfer tool to benchmark our techniques. We introduce “scaling
separation algebras,” a compositional extension of separation algebras,
to model our logic, and use them to construct a concrete model.

1 Introduction

The last 15 years have witnessed great strides in program verification [7,27,39,
43,44,46]. One major area of focus has been concurrent programs following Con-
current Separation Logic (CSL) [40]. The key rule of CSL is Parallel:

{P1} c1 {Q1} {P2} c2 {Q2}
{P1 � P2} c1||c2 {Q1 � Q2} Parallel

In this rule, we write c1||c2 to indicate the parallel execution of commands c1

and c2. The separating conjunction � indicates that the resources used by the
threads is disjoint in some useful way, i.e. that there are no dangerous races.
Many subsequent program logics [18,20,30,31,45] have introduced increasingly
sophisticated notions of “resource disjointness” for the Parallel rule.

Fractional permissions (also called “shares”) are a relatively simple enhance-
ment to separation logic’s original notion of disjointness [4]. Rather than own-
ing a resource (e.g. a memory cell) entirely, a thread is permitted to own a
part/fraction of that resource. The more of a resource a thread owns, the more
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 385–414, 2018.
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actions it is permitted to take, a mapping called a policy. In this paper we
will use the original policy of Bornat [4] to keep the examples straightforward:
non-zero ownership of a memory cell permits reading while full ownership also
permits writing. More modern logics allow for a variety of more flexible share
policies [13,28,42], but our techniques still apply. Fractional permissions are less
expressive than the “protocol-based” notions of disjointness used in program log-
ics such as FCSL [38,44], Iris [30], and TaDa [16], but are well-suited for common
concurrent programming patterns such as read sharing and so have been incor-
porated into many program logics and verification tools [19,26,28,31,36,41].

Since fractionals are simpler and more uniform than protocol-based logics,
they are amenable to automation [26,33]. However, previous techniques had diffi-
culty with the inductive predicates common in SL proofs. We introduce predicate
multiplication, a concise method for specifying the fractional sharing of complex
predicates, writing π · P to indicate that we own the π-share of the arbitrary
predicate P , e.g. 0.5 · tree(x) indicates a tree rooted at x and we own half of
each of the nodes in the tree. If set up properly, predicate multiplication handles
inductive predicates smoothly and is well-suited for automation because:

Section 3 it distributes with bientailments—e.g. π · (P ∧Q) �� (π ·P )∧ (π ·Q)—
enabling rewriting techniques and both forwards and backwards reasoning;

Section 4 it works smoothly with the inference process of biabduction [10]; and
Section 5 the side conditions required for bientailments and biabduction can be

verified directly in the object logic, leveraging existing entailment checkers.

There has been significant work in recent years on tool support for protocol-
based approaches [15,19,29,30,48], but they require significant user input and
provide essentially no inference. Fractional permissions and protocol-based
approaches are thus complementary: fractionals can handle large amounts of rel-
atively simple concurrent code with minimal user guidance, while protocol-based
approaches are useful for reasoning about the implementations of fine-grained
concurrent data structures whose correctness argument is more sophisticated.

In addition to Sects. 3, 4 and 5, the rest of this paper is organized as follows.

Section 2 We give the technical background necessary for our work.
Section 6 We document ShareInfer [1], a tool that uses the logical tools developed

in Sects. 3, 4 and 5 to infer frames and antiframes and check the necessary
side conditions. We benchmark ShareInfer with 27 selective examples.

Section 7 We introduce scaling separation algebra that allows us to construct
predicate multiplication on an abstract structure in a compositional way. We
show such model can be constructed from Dockins et al.’s tree shares [21].
The key technical proofs in Sects. 5 and 7 have been verified in Coq [1].

Section 8 We prove that there are no useful share models that simultaneously
satisfy disjointness and two distributivity axioms. Consequently, at least one
axioms has to be removed, which we choose to be the left distributivity. We
also prove that the failure of two-sided distributivity forces a side condition
on a key proof rule for predicate multiplication.

Section 9 We discuss related work before delivering our conclusion.
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root
0.3�→ (3, left, right) �

left
0.3�→ (1, null, grand) �

right
0.3�→ (4, grand, null) �

grand
0.6�→ (1, null, null)

root:3

left:1 right:4

grand:1

0.3 0.3

0.3 0.3

Fig. 1. This heap satisfies tree(root, 0.3) despite being a DAG

2 Technical Preliminaries

Share Models. An (additive) share model (S,⊕) is a partial commutative monoid
with a bottom/empty element E and top/full element F . On the rationals in
[0, 1], ⊕ is partial addition, E is 0, and F is 1. We also require the existence of
complements π satisfying π ⊕ π = F ; in Q, π

def= 1 − π.

Separation Logic. Our base separation logic has the following connectives:

P, Q, etc.
def
= 〈F 〉 | P ∧ Q | P ∨ Q | ¬P | P � Q | ∀x.P | ∃x.P | μX.P | e1

π�→ e2

Pure facts F are put in angle brackets, e.g. 〈even(12)〉. Pure facts force
the empty heap, i.e. the usual separation logic emp predicate is just a macro
for 〈�〉. Our propositional fragment has (classical) conjunction ∧, disjunction
∨, negation ¬, and the separating conjunction �. We have both universal ∀ and
existential ∃ quantifiers, which can be impredicative if desired. To construct
recursive predicates we have the usual Tarski least fixpoint μ. The fractional
points-to e1

π�→ e2 means we own the π-fraction of the memory cell pointed to by
e1, whose contents is e2, and nothing more. To distinguish points-to from emp
we require that π be non-E . For notational convenience we sometimes elide the
full share F over a fractional maps-to, writing just e1 �→ e2. The connection of
⊕ to the fractional maps-to predicate is given by the bi-entailment:

e
π1�→ e1 � e

π2�→ e2 �� e
π1⊕π2�−→ e1 ∧ e1 = e2

MapsTo
Split

Disjointness. Although intuitive, the rationals are not a good model for shares
in SL. Consider this definition for π-fractional trees rooted at x:

tree(x, π) def= 〈x = null〉 ∨ ∃d, l, r. x
π�→ (d, l, r) � tree(l, π) � tree(r, π) (1)

This tree predicate is obtained directly from the standard recursive predicate for
binary trees by asserting only π ownership of the root and recursively doing the
same for the left and right substructures, and so at first glance looks straight-
forward1. The problem is that when π ∈ (0, 0.5], then tree can describe some

1 We write x
π�→ (v1, . . . , vn) for x

π�→ v1 � (x + 1)
π�→ v2 � . . . � (x + n − 1)

π�→ vn.
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non-tree directed acyclic graphs as in Fig. 1. Fractional trees are a little too easy
to introduce and thus unexpectedly painful to eliminate.

To prevent the deformation of recursive structures shown in Fig. 1, we want
to recover the “disjointness” property of basic SL: e �→ e1 � e �→ e2 �� ⊥.
Disjointness can be specified either as an inference rule in separation logic [41]
or as an algebraic rule on the share model [21] as follows:

e
π�→ e1 � e

π�→ e2 �� ⊥
MapsTo
Disjoint ∀a, b. a ⊕ a = b ⇒ a = E (2)

In other words, a nonempty share π cannot join with itself. In Sect. 3 we
will see how disjointness enables the distribution of predicate multiplication over
� and in Sect. 4 we will see how disjointness enables antiframe inference during
biabduction.

Tree Shares. Dockins et al. [21] proposed “tree shares” as a share model satis-
fying disjointness. For this paper the details of the model are not critical so we
provide only a brief overview. A tree share τ ∈ T is a binary tree with Boolean
leaves, i.e. τ = • | ◦ | τ1 τ2

, where ◦ is the empty share E and • is the full

share F . There are two “half” shares: ◦ • and • ◦, and four “quarter” shares,
e.g. • ◦ ◦. Trees must be in canonical form, i.e., the most compact representation

under ∼=:

◦ ∼= ◦ • ∼= • ◦ ∼= ◦ ◦ • ∼= • •
τ1

∼= τ ′
1 τ2

∼= τ ′
2

τ1 τ2
∼= τ ′

1 τ ′
2

Union �, intersection �, and complement ·̄ are the basic operations on tree shares;
they operate leafwise after unfolding the operands under ∼= into the same shape:

• ◦ ◦ � ◦ • • ◦ ∼= • ◦ ◦ ◦ � ◦ • • ◦ = • • • ◦ ∼= • • ◦

The structure 〈T,�,�, ·̄, ◦, •〉 forms a countable atomless Boolean algebra and
thus enjoys decidable existential and first-order theories with precisely known
complexity bounds [34]. The join operator ⊕ on trees is defined as τ1⊕τ2 = τ3

def=
τ1 � τ2 = τ3 ∧ τ1 � τ2 = ◦. Due to their good metatheoretic and computational
properties, a variety of program logics [24,25] and verification tools [3,26,33,47]
have used tree shares (or other isomorphic structures [19]).

3 Predicate Multiplication

The additive structure of share models is relatively well-understood [21,33,34].
The focus for this paper is exploring the benefits and consequences of incorporat-
ing a multiplicative operator ⊗ into a share model. The simplest motivation for
multiplication is computationally dividing some share π of a resource “in half;”
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1 struct tree {int d; struct tree* l; struct tree* r;};

2 void processTree(struct tree* x) {

3 if (x == 0) { return; }

4 print(x -> d);

5 processTree(x -> l);

6 processTree(x -> r);

7 print(x -> d);

8 processTree(x -> l);

9 processTree(x -> r);

10 }

Fig. 2. The parallel processTree function, written in a C-like language

the two halves of the resource are then given to separate threads for parallel pro-
cessing. When shares themselves are rationals, ⊗ is just ordinary multiplication,
e.g. we can divide 0.6 = (0.5⊗0.6)⊕(0.5⊗0.6). Defining a notion of multiplication
on a share model that satisfies disjointness is somewhat trickier, but we can do
so with tree shares T as follows. Define τ1 ⊗ τ2 to be the operation that replaces
each • in τ2 with a copy of τ1, e.g.: ◦ • ⊗ • ◦ • ◦ =

◦ • ◦ ◦ • ◦
. The structure

(T,⊕,⊗) is a kind of “near-semiring.” The ⊗ operator is associative, has identity
F and null point E , and is right distributive, i.e. (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c). It
is not commutative, does not distribute on the left, or have inverses. It is hard to
do better: adding axioms like multiplicative inverses forces any model satisfying
disjointness (∀a, b. a ⊕ a = b ⇒ a = E) to have no more than two elements
(Sect. 8).

Now consider the toy program in Fig. 2. Starting from the tree rooted at x,
the program itself is dead simple. First (line 3) we check if the x is null, i.e. if
we have reached a leaf; if so, we return. If not, we split into parallel threads
(lines 4–6 and 7–9) that do some processing on the root data in both branches.
In the toy example, the processing just prints out the root data (lines 4 and 7);
the print command is unimportant: what is important that we somehow access
some of the data in the tree. After processing the root, both parallel branches
call the processTree function recursively on the left x->l (lines 5 and 8) and
right x->r (lines 6 and 9) branches, respectively. After both parallel processes
have terminated, the function returns (line 10). The program is simple, so we
would like its verification to be equally simple.

Predicate multiplication is the tool that leads to a simple proof. Specifically,
we would like to verify that processTree has the specification:

∀π, x.
( {π · tree(x)} processTree(x ) {π · tree(x)} )

Here tree(x) def= 〈x = null〉 ∨ ∃d, l, r. x �→ (d, l, r) � tree(l) � tree(r) is exactly the
usual definition of binary trees in separation logic. Predicate multiplication has
allowed us to isolate the fractional ownership from the definition; compare with
Eq. (1) above. Our precondition and postcondition both say that x is a pointer to
a heap-represented π-owned tree. Critically, we want to ensure that our π-share
at the end of the program is equal to the π-share at the beginning. This way if
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our initial caller had full F ownership before calling processTree, he will have
full ownership afterwards (allowing him to e.g. deallocate the tree).

The intuition behind the proof is simple. First in line 3, we check if x is null;
if so we are in the base case of the tree definition and can simply return. If not
we can eliminate the left disjunct and can proceed to split the �-separated bits
into disjoint subtrees l and r, and then dividing the ownership of those bits
into two “halves”. Let L def= • ◦ and R def= L = ◦ •. When we start the parallel
computation on lines 4 and 7 we want to pass the left branch of the computation
the L⊗π-share of the spatial resources, and the right branch of the computation
the R ⊗ π. In both branches we then need to show that we can read from the
data cell, which in the simple policy we use for this paper boils down to making
sure that the product of two non-E shares cannot be E . This is a basic property
for reasonable share models with multiplication. In the remainder of the parallel
code (lines 5–6 and 8–9) we need to make recursive calls, which is done by simply
instantiating π with L ⊗ π and R ⊗ π in the recursive specification (as well as l
and r for x). The later half proof after the parallel call is pleasantly symmetric
to the first half in which we fold back the original tree predicate by merging
the two halves L ⊗ π and R ⊗ π back into π. Consequently, we arrive at the
postcondition π · tree(x), which is identical to the precondition.

3.1 Proof Rules for Predicate Multiplication

In Fig. 4 we put the formal verification for processTree, which follows the infor-
mal argument very closely. However, before we go through it, let us consider the
reason for this alignment: because the key rules for reasoning about predicate
multiplication are bidirectional. These rules are given in Fig. 3. The non-spatial
rules are all straightforward and follow the basic pattern that predicate multi-
plication both pushes into and pulls out of the operators of our logic without
meaningful side conditions. The DotPure rule means that predicate multi-
plication ignores pure facts, too. Complicating the picture slightly, predicate
multiplication pushes into implication ⇒ but does not pull out of it. Combining
DotImpl with DotPure we get a one-way rule for negation: π · (¬P ) � ¬π·.
We will explain why we cannot get both directions in Sects. 5.1 and 8.

Most of the spatial rules are also simple. Recall that emp
def= 〈�〉, so Dot-

Pure yields π ·emp �� emp. The DotFull rule says that F is the scalar identity
on predicates, just as it is the multiplicative identity on the share model itself.
The DotDot rule allows us to “collapse” repeated predicate multiplication
using share multiplication; we will shortly see how we use it to verify the recur-
sive calls to processTree. Similarly, the DotMapsTo rule shows how predicate
multiplication combines with basic maps-to by multiplying the associated shares
together. All three rules are bidirectional and require no side conditions.

While the last two rules are both bidirectional, they both have side condi-
tions. The DotPlus rule shows how predicate multiplication distributes over ⊕.
The � direction does not require a side condition, but the � direction we require
that P be precise in the usual separation logic sense. Precision will be discussed
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P � Q

π · P � π · Q
Dot
Pos π · 〈P 〉 �� 〈P 〉

Dot
Pure

π · (P ⇒ Q) � (π · P ) ⇒ (π · Q)
Dot
Impl

π · (P ∧ Q) �� (π · P ) ∧ (π · Q)
Dot
Conj

π · (P ∨ Q) �� (π · P ) ∨ (π · Q)
Dot
Disj

π · (¬P ) � ¬π · P

Dot
Neg

τ �= ∅
π · ∀x : τ. P (x)

) �� ∀x : τ. π · P (x)
Dot
Univ

π · ∃x : τ. P (x)
) �� ∃x : τ. π · P (x)

Dot
Exis

F · P �� P
Dot
Full π1 · (π2 · P ) �� (π1 ⊗ π2) · P

Dot
Dot

π · x �→ y �� x
π�→ y

Dot
MapsTo

precise(P )
(π1 ⊕ π2) · P �� (π1 · P ) � (π2 · P )

Dot
Plus

P � uniform(π′) Q � uniform(π′)
π · (P � Q) �� (π · P ) � (π · Q)

Dot
Star

Fig. 3. Distributivity of the scaling operator over pure and spatial connectives

in Sect. 5.2; for now a simple counterexample shows why it is necessary:

L · (x �→ a ∨ (x + 1) �→ b) � R · (x �→ a ∨ (x + 1) �→ b) 
� F · (x �→ a ∨ (x + 1) �→ b)

The premise is also consistent with x
L�→ a � (x + 1) R�→ b.

The DotStar rule shows how predicate multiplication distributes into and
out of the separating conjunction �. It is also bidirectional. Crucially, the �
direction fails on non-disjoint share models like Q, which is the “deeper
reason” for the deformation of recursive structures illustrated in Fig. 1. On dis-
joint share models like T, we get equational reasoning �� subject to the side
condition of uniformity. Informally, P � uniform(π′) asserts that any heap that
satisfies P has the permission π′ uniformly at each of its defined addresses.
In Sect. 8 we explain why we cannot admit this rule without a side condition.

In the meantime, let us argue that most predicates used in practice in sep-
aration logic are uniform. First, every SL predicate defined in non-fractional
settings, such as tree(x), is F-uniform. Second, P is a π-uniform predicate if
and only if π′ · P is (π′ ⊗ π)-uniform. Third, the �-conjunction of two π-uniform
predicates is also π-uniform. Since a significant motivation for predicate multipli-
cation is to allow standard SL predicates to be used in fractional settings, these
already cover many common cases in practice. It is useful to consider examples
of non-uniform predicates for contrast. Here are three (we elide the base cases):

slist(x) �� ∃d, n.
(
(〈d = 17〉 � x

L�→ (d, n)) ∨ (〈d �= 17〉 � x
R�→ (d, n))

)
� slist(n)

dlist(x) �� ∃d, n.x �→ d, n � L · dlist(n)
dtree(x) �� ∃d, l, r.x �→ d, l, r � L · dtree(l) � R · dtree(r)

The slist(x) predicate owns different amounts of permissions at different memory
cells depending on the value of those cells. The dlist(x) predicate owns decreasing
amounts of the list, e.g. the first cell is owned more than the second, which is
owned more than the third. The dtree(x) predicate is even stranger, owning
different amounts of different branches of the tree, essentially depending on the
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1 void processTree(struct tree* x) { // { π · tree(x) }
2 //

{
π ·

(〈
x = null

〉 ∨ ∃d, l, r. x �→ (d, l, r) � tree(l) � tree(r)
))}

3 //
{〈

x = null
〉

∨
(
∃d, l, r. x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
))}

4 if (x == null) { // {〈x = null〉}
5 return ;} // { π · tree(x) }
6 //

{
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
)}

7 //
{

F ·
(
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
))}

8 //
{

(L ⊕ R) ·
(
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
))}

9 //

⎧⎨
⎩

(
L ·

(
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
)))

�(
R·

(
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
)))

⎫⎬
⎭

10 //
{

L ·
(
x

π�→ (d, l, r) � π · tree(l)
)

� π · tree(r)
))}

11 //
{

L · x π�→ (d, l, r) � L · π · tree(l) � L · π · tree(r)
}

12 //
{
x

L⊗π→−� (d, l, r) � (L ⊗ π) · tree(l)
)

� (L ⊗ π) · tree(r)
)}

13 print(x -> d);

14 processTree(x -> l); processTree(x -> r);

15 //
{
x

L⊗π→−� (d, l, r) � (L ⊗ π) · tree(l)
)

� (L ⊗ π) · tree(r)
)}

16 //
{L · π · x �→ (d, l, r) � L · π · tree(l) � L · π · tree(r)

}
17 //

{L · π · x �→ (d, l, r) � tree(l) � tree(r)
)}

. . .

18 //

⎧⎨
⎩

(
L ·π · x �→ (d, l, r) � tree(l) � tree(r)

))
�(

R·π · x �→ (d, l, r) � tree(l) � tree(r)
))

⎫⎬
⎭

19 //
{

(L ⊕ R) · π · x �→ (d, l, r) � tree(l) � tree(r)
))}

20 } // { π · tree(x) }

Fig. 4. Reasoning with the scaling operator π · P .

path to the root. None of these predicates mix well with DotStar, but perhaps
they are not useful to verify many programs in practice, either. In Sects. 5.1 and
5.2 we will discuss how to prove predicates are precise and uniform. In Sect. 5.4
will demonstrate our techniques to do so by applying them to two examples.

3.2 Verification of processTree using predicate multiplication

We now explain how the proof of processTree is carried out in Fig. 4 using
scaling rules in Fig. 3. In line 2, we unfold the definition of predicate tree(x) which
consists of one base case and one inductive case. We reach line 3 by pushing π
inward using various rules DotPure, DotDisj, DotExis, DotMapsto and
DotStar. To use DotStar we must prove that tree(x) is F-uniform, which we
show how to do in Sect. 5.4. We prove this lemma once and use it many times.
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The base base x = null is handled in lines 4–5 by applying rule DotPure,
i.e., 〈x = null〉 � π · 〈x = null〉 and then DotPos, π · 〈x = null〉 � π · tree(x).
For the inductive case, we first apply DotFull in line 7 and then replace F
with L ⊕ R (recall that R is L’s compliment). On line 9 we use DotPlus to
translate the split on shares with ⊕ into a split on heaps with �.

We show only one parallel process; the other is a mirror image. Line 10
gives the precondition from the Parallel rule, and then in lines 11 and 12 we
continue to “push in” the predicate multiplication. To verify the code in lines 13–
14 just requires Frame. Notice that we need the DotDot rule to “collapse” the
two uses of predicate multiplication into one so that we can apply the recursive
specification (with the new π′ in the recursive precondition equal to L ⊗ π).

Having taken the predicate completely apart, it is now necessary to put
Humpty Dumpty back together again. Here is why it is vital that all of our
proof rules are bidirectional, without which we would not be able to reach the
final postcondition π · tree(x). The final wrinkle is that for line 19 we must prove
the precision of the tree(x) predicate. We show how to do so with example in
Sect. 5.4, but typically in a verification this is proved once per predicate as a
lemma.

4 Bi-abductive Inference with Fractional Permissions

Biabduction is a separation logic inference process that helps to increase the
scalability of verification for sizable programs [22,49]; in recent years it has been
the focus of substantial research for (sequential) separation logic [8,10,11,32].
Biabduction aims to infer the missing information in an incomplete separation
logic entailment. More precisely, given an incomplete entailment A�[??] � B�[??],
we would like to find predicates for the two missing pieces [??] that complete
the entailment in a nontrivial manner. The first piece is called the antiframe
while the second is the inference frame. The standard approach consists of two
sequential subroutines, namely the abductive inference and frame inference to
construct the antiframe and frame respectively. Our task in this section is to
show how to upgrade these routines to handle fractional permissions so that
biabduction can extend to concurrent programs. As we will see, disjointness
plays a crucial role in antiframe inference.

4.1 Fractional Residue Computation

Consider the fractional point-to bi-abduction problem with rationals:

a
π1�−→ b � [??] � a

π2�−→ b � [??]

There are three cases to consider, namely π1 = π2, π1 < π2 or π1 > π2.
In the first case, both the (minimal) antiframe Fa and frame Ff are emp; for
the second case we have Fa = emp, Ff = a

π2−π1�−−−−→ b and the last case gives
us Fa = a

π1−π2�−−−−→ b, Ff = emp. Here we straightforwardly compute the residue
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permission using rational subtraction. In general, one can attempt to define
subtraction � from a share model 〈S,⊕〉 as a � b = c

def= b ⊕ c = a. However,
this definition is too coarse as we want subtraction to be a total function so that
the residue is always computable efficiently. A solution to this issue is to relax
the requirements for �, asking only that it satisfies the following two properties:

C1 : a ⊕ (b � a) = b ⊕ (a � b) C2 : a � b ⊕ c ⇒ a � b � c

where a � b
def= ∃c. a ⊕ c = b. The condition C1 provides a convenient way to

compute the fractional residue in both the frame and antiframe while C2 asserts
that a � b is effectively the minimal element that when joined with b becomes
greater than a. In the rationals Q, a � b

def= if (a > b) then a − b else 0. On
tree shares T, a � b

def= a � b. Recalling that the case when π1 = π2 is simple
(both the antiframe and frame are just emp), then if π1 �= π2 we can compute
the fractional antiframe and inference frames uniquely using �:

a
π1�−→ b � a

π2�π1�−−−−→ b � a
π2�−→ b � a

π1�π2�−−−−→ b
Msub

Generally, the following rule helps compute the residue of predicate P :

precise(P )
π1 · P � (π2 � π1) · P � π2 · P � (π1 � π2) · P

Psub

Using C1 and C2 it is easy to prove that the residue is minimal w.r.t. �, i.e.:

π1 ⊕ a = π2 ⊕ b ⇒ π2 � π1 � a ∧ π1 � π2 � b

4.2 Extension of Predicate Axioms

To support reasoning over recursive data structure such as lists or trees, the
assertion language is enriched with the corresponding inductive predicates. To
derive properties over inductive predicates, verification tools often contain a list
of predicate axioms/facts and use them to aid the verification process [9,32].
These facts are represented as entailment rules A � B that can be classified into
“folding” and “unfolding” rules to manipulate the representation of inductive
predicates. For example, some axioms for the tree predicate are:

F1 : x = 0 ∧ emp � tree(x) F2 : x �→ (v, x1, x2) � tree(x1) � tree(x2) � tree(x)
U : tree(x) ∧ x �= 0 � ∃v, x1, x2. x �→ (v, x1, x2) � tree(x1) � tree(x2)

We want to transform these axioms into fractional forms. The key ingredient
is the DotPos rule from Fig. 3, that lifts the fractional portion of an entailment,
i.e. (P � Q) ⇒ (π ·P � π ·Q). Using this and the other scaling rules from Fig. 3,
we can upgrade the folding/unfolding rules into corresponding fractional forms:

F ′
1 : x = 0 ∧ emp � π · tree(x) F ′

2 : x
π�−→ (v, x1, x2) � π · tree(x1) � π · tree(x2) � π · tree(x)

U : tree(x) ∧ x �= 0 � ∃v, x1, x2. x �→ (v, x1, x2) � tree(x1) � tree(x2)

www.dbooks.org

https://www.dbooks.org/


Logical Reasoning for Disjoint Permissions 395

As our scaling rules are bi-directional, they can be applied both in the
antecedent and consequent to produce a smooth transformation to fractional
axioms. Also, recall that our DotStar rule π · (P � Q) �� π · P � π · Q has a
side condition that both P and Q are π′-uniform. This condition is trivial in
the transformation as standard predicates (i.e. those without permissions) are
automatically F-uniform. Furthermore, the precision and uniformity properties
can be transferred directly to fractional forms by the following rules:

precise(π · P ) ⇔ precise(P) P � uniform(π) ⇔ π′ · P � uniform(π′ ⊗ π)

4.3 Abductive Inference and Frame Inference

To construct the antiframe, Calcagno et al. [10] presented a general framework
for antiframe inference which contains rules of the form:

Δ′ � [M ′] � H ′ Cond
Δ � [M ] � H

where Cond is the side condition, together with consequents (H,H ′), heap formu-
las (Δ,Δ′) and antiframes (M,M ′). In principle, the abduction algorithm grad-
ually matches fragments of consequent with antecedent, derives sound equalities
among variables while applying various folding and unfolding rules for recursive
predicates in both sides of the entailment. Ideally, the remaining unmatched frag-
ments of the antecedent are returned to form the antiframe. During the process,
certain conditions need to be maintained, e.g., satisfiability of the antecedent or
minimal choice for antiframe. After finding the antiframe, the inference process
is invoked to construct the inference frame. In principle, the old antecedent is
first combined with the antiframe to form a new antecedent whose fragments are
matched with the consequent. Eventually, the remaining unmatched fragments
of the antecedent are returned to construct the inference frame.

The discussion of fractional residue computation in Sect. 4.1 and extension of
recursive predicate rules in Sect. 4.2 ensure a smooth upgrade of the biabduction
algorithm to fractional form. We demonstrate this intuition using the example in
Fig. 5. The partial consequent is a fractional tree(x) predicate with permission π3

while the partial antecedent is star conjunction of a fractional maps-to predicate
of address x with permission π1, a fractional tree(x1) predicate with permission
π2 and a null pointer x2. Following the spirit of Calcagno et al. [10], the steps in
both sub-routines include applying the folding and unfolding rules for predicate
tree and then matching the corresponding pair of fragments from antecedent and
consequent. On the other hand, the upgraded part is reflected through the use of
the two new rules Msub and Psub to compute the fractional residues as well as
a more general system of folding and unfolding rules for predicate tree. We are
then able to compute the antiframe a = x1∧(π3�π2)·tree(x1)�x

π3�π2�−−−−→ (v, a, x2)
and the inference frame x

π1�π3�−−−−→ (v, x1, x2) � (π2 � π3) · tree(x1) respectively.
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x
π1→−� (v, a, x2) � π2 · tree(x1) � (x2 = 0 ∧ emp) � [??] � π3 · tree(x) � [??]

(x2 = 0 ∧ emp) � [emp] � emp
Base

(x2 = 0 ∧ emp) � [emp] � π3 · tree(x2)
F1

′

π2 · tree(x1) � (x2 = 0 ∧ emp) � [(π3 � π2) · tree(x1)] � π3 · tree(x1) � π3 · tree(x2)
Psub

x
π1→−� (v, a, x2) � π2 · tree(x1) � (x2 = 0 ∧ emp) � [(π3 � π2) · tree(x1)

�x
π3�π1→−−−−� (v, a, x2)] � x

π3→−� (v, a, x2) � π3 · tree(x1) � π3 · tree(x2)

Msub

x
π1→−� (v, a, x2) � π2 · tree(x1) � (x2 = 0 ∧ emp)

� [a = x1 ∧ (π3 � π2) · tree(x1) � x
π3�π1→−−−−� (v, a, x2)] � π3 · tree(x)

match
+F′

2

Abductive inference

emp � emp � [emp]
Base

x
π1⊕(π3�π1)�−−−−−−−−→ (v, x1, x2) � x

π3→−� (v, x1, x2) � [x
(π1�π3)→−−−−−� (v, x1, x2)]

Msub

x
π1⊕(π3�π1)→−−−−−−−−� (v, x1, x2) � (π2 ⊕ (π3 � π2)) · tree(x1) �

x
π3→−� (v, x1, x2) � π3 · tree(x1) � [x

(π1�π3)→−−−−−� (v, x1, x2) � (π2 � π3) · tree(x1)]

Psub

x
π1⊕(π3�π1)�−−−−−−−−→ (v, x1, x2) � (π2 ⊕ (π3 � π2)) · tree(x1) � (x2 = 0 ∧ emp) �

x
π3�−→ (v, x1, x2) � π3 · tree(x1) � π3 · tree(x2) � [x

(π1�π3)→−−−−−� (v, x1, x2) � (π2 � π3) · tree(x1)]

F′
1

Frame inference

Fig. 5. An example of biabduction with fractional permissions

Antiframe Inference and Disjointness. Consider the following abduction
problem:

x �→ (v, x1, x2) � tree(x1) � [??] � tree(x)

Using the folding rule F2, we can identify the antiframe as tree(x2). Now suppose
we have a rational permission π ∈ Q distributed everywhere, i.e.:

x
π�−→ (v, x1, x2) � π · tree(x1) � [??] � π · tree(x)

A näıve solution is to let the antiframe be π · tree(x2). However, in Q this choice
is unsound due to the deformation of recursive structures issue illustrated in
Fig. 1: if the antiframe is π · tree(x2), the left hand side can be a DAG, even
though the right hand side must be a tree. However, in disjoint share models
like T, choosing π · tree(x2) for the antiframe is correct and the entailment holds.
As is often the case, things are straightforward once the definitions are correct.

5 A Proof Theory for Fractional Permissions

Our main objective in this section is to show how to discharge the uniformity
and precision side conditions required by the DotStar and DotPlus rules.
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To handle recursive predicates like tree(x) we develop set of novel modal-logic
based proof rules to carry out induction in the heap. To allow tools to leverage
existing entailment checkers, all of these techniques are done in the object
logic itself, rather than in the metalogic. Thus, in Sect. 5, we do not assume a
concrete model for our object logic (in Sect. 7 we will develop a model).

First we discuss new proof rules for predicate multiplication and fractional
maps-to (Sect. 5.1), precision (Sect. 5.2), and induction over fractional heaps
(Sect. 5.3). We then conclude (Sect. 5.4) with two examples of proving real prop-
erties using our proof theory: that tree(x) is F-uniform and that list(x) is precise.
Some of the theorems have delicate proofs, so all of them have been verified in
Coq [1].

5.1 Proof Theory for Predicate Multiplication and Fractional
Maps-To

In Sect. 3 we presented the key rules that someone who wants to verify programs
using predicate multiplication is likely to find convenient. On page 13 we present
a series of additional rules, mostly used to establish the “uniform” and “precise”
side conditions necessary in our proofs.

Figure 6 is the simplest group, giving basic facts about the fractional points-
to predicate. Only �→ inversion is not immediate from the nonfractional case.
It says that it is impossible to have two fractional maps-tos of the same address
and with two different values. We need this fact to e.g. prove that predicates
with existentials such as tree are precise.

(x π�→y1��)∧(x π′�→y2��) � |y1 =y2|
�→

inversion

x
π�→ y � ¬emp

�→
emp

x
π�→ y � |x �= null|

�→
null

Fig. 6. Proof theory for fractional maps-to

emp � uniform(π)
uniform/emp

uniform(π) � uniform(π) �� uniform(π)
uniform�

P � uniform(π)

π′ · P � uniform(π′ ⊗ π)
uniformDot

precise(x π�→ y)
�→

precise

x
π�→y � uniform(π)

�→
uniform

precise(P )

precise(π · P )
Dot

precise

Fig. 7. Uniformity and precision for predicate multiplication
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G � precisely(P ) G � precisely(Q)
G � precisely(P � Q)

precisely�
� � precisely(P )

precise(P )
precisely
Precise

precisely(P )� (P �Q)∧(P �R)
)⇒ P �(Q∧R)

) precisely
Left

∃x.
(
G � precisely P (x)

))

G � precisely ∀x.P (x)
) precisely∀

∀Q, R.
(
G� (P �Q)∧(P �R)

)⇒ P �(Q∧R)
))

G�precisely(P )
precisely
Right

G � precisely(P )
G � precisely(P ∧ Q)

precisely∧

∀x.
(
G � precisely P (x)

))

∀x, y.
(
G ∧ P (x) � �) ∧ P (y) � �) � |x = y|

)

G � precisely ∃x.P (x)
) precisely∃

G � precisely(P )
G � precisely(Q)

G ∧ (P � �) ∧ (Q � �) � ⊥
G � precisely(P ∨ Q)

precisely∨

Fig. 8. Proof theory for precision

�P � P
T �P � �� P

��
�πP � �π�π P

�π�π

�πP � P

� � P
W �πP ���π�P

�π�
�πP �� ��πP

��π

(P � Q) ∧ �R � (P ∧ �R) � (Q ∧ �R)
��

P � U(π) ∧ ¬emp
(P � Q) ∧ �πR � (P ∧ �πR) � (Q ∧ R)

�π�

Fig. 9. Proof theory for substructural induction

Proving the side conditions for DotPlus and DotStar. Figure 7 contains some
rules for establishing that P is π-uniform (i.e. P � uniform(π)) and that P is
precise. Since uniformity is a simple property, the rules are easy to state:

To use predicate multiplication we will need to prove two kinds of side con-
ditions: uniform/emp tells us that emp is π-uniform for all π; the conclusion (all
defined heap locations are held with share π) is vacuously true. The uniformDot
rule tells us that if P is π-uniform then when we multiply P by a fraction π′ the
result is (π′⊗ π)-uniform. The �→ uniform rule tells us that points-to is uniform.
The uniform� rule possesses interesting characteristics. The � direction follows
from uniform/emp and the �emp rule (P � emp �� P ). The � direction is not
automatic but very useful. One consequence is that from P � uniform(π) and
Q � uniform(π) we can prove P � Q � uniform(π). The � direction follows from
disjointness but fails over non-disjoint models such as rationals Q.

The �→ precise rule tells us that points-tos are precise. The DotPrecise
rule is a partial solution to proving precision. It states that π ·P is precise if and
only if P is precise. We will next show how to prove that P itself is precise.
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5.2 Proof Theory for Proving that Predicates Are Precise

Proving that a predicate is π-uniform is relatively straightforward using the proof
rules presented so far. However, proving that a predicate is precise is not as
pleasant. Traditionally precision is defined (and checked for concrete predicates)
in the metalogic [40] using the following definition:

precise(P ) def= ∀h, h1, h2. h1 ⊆ h ⇒ h2 ⊆ h ⇒ (h1 |= P ) ⇒ (h2 |= P ) ⇒ h1 = h2 (3)

Here we write h1 ⊆ h2 to mean that h1 is a subheap of h2, i.e. ∃h′.h1 ⊕ h′ =
h2, where ⊕ is the joining operation on the underlying separation algebra [21].
Essentially precision is a kind of uniqueness property: if a predicate P is precise
then it can only be true on a single subheap.

Rather than checking precision in the metalogic, we wish to do so in the object
logic. We give a proof theory that lets us do so in Fig. 8. Among other advantages,
proving precision in the object logic lets tools build on existing separation logic
entailment checkers to prove the precision of recursive predicates. The core idea
is simple: we define a new object logic operator “precisely(P )” that captures the
notion of precision relativized to the current heap; essentially it is a partially
applied version of the definition of precise(P ) in Eq. (3):

h |= precisely(P ) def= ∀h1, h2.h1 ⊆ h ⇒ h2 ⊆ h ⇒ (h1 |= P ) ⇒ (h2 |= P ) ⇒ h1 = h2 (4)

Although we have given precisely’s model to aid intuition, we emphasize that in
Sect. 5 all of our proofs take place in the object logic; we never unfold precisely’s
definition. Note that precisely is also generally weaker than the typical notion of
precision. For example, the predicate x �→ 7 ∨ y �→ 7 is not precise; however the
entailment z �→ 8 � precisely(x �→ 7 ∨ y �→ 7) is provable from Fig. 8.

That said, two notions are closely connected as given in the preciselyPrecise
rule. We also give introduction preciselyRight and elimination rules
preciselyLeft that make a connection between precision and an “antidistribu-
tion” of � over ∧.

We also give a number of rules for showing how precisely combines with
the connectives of our logic. The rules for propositional ∧ and separating �
conjunction follow well-understood patterns, with the addition of an arbitrary
premise context G being the key feature. The rule for disjunction ∨ is a little
trickier, with an additional premise that forces the disjunction to be exclusive
rather than inclusive. An example of such an exclusive disjunction is in the
standard definition of the tree predicate, where the first disjunct 〈x = null〉
is fundamentally incompatible with the second disjunct ∃d, l, r.x �→ d, l, r � . . .
since �→ does not allow the address to be null (by rule �→ null from Fig. 6).
The rules for universal quantification ∀ existential quantification ∃ are essentially
generalizations of the rules for the traditional conjunction ∧ and disjunction ∨.

It is now straightforward to prove the precision of simple predicates such as
〈x = null〉 ∨ (∃y.x �→ y � y �→ 0). Finding and proving the key lemmas that
enable the proof of the precision of recursive predicates remains a little subtle.
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5.3 Proof Theory for Induction over the Finiteness of the Heap

Recursive predicates such as list(x) and tree(x) are common in SL. However,
proving properties of such predicates, such as proving that list(x) is precise,
is a little tricky since the μFoldUnfold rule provided by the Tarski fixed
point does not automatically provide an induction principle. Generally speaking
such properties follow by some kind of induction argument, either over auxiliary
parameters (e.g. if we augment trees to have the form tree(x, τ), where τ is an
inductively-defined type in the metalogic) or over the finiteness of the heap itself.
Both arguments usually occur in the metalogic rather than the object logic.

We have two contributions to make for proving inductive properties. First,
we show how to do induction over the heap in a fractional setting. Intuitively this
is more complicated than in the non-fractional case because there are infinite
sequences of strictly smaller subheaps. That is, for a given initial heap h0, there
are infinite sequences h1, h2, . . . such that h0 � h1 � h2 � . . .. The disjointness
property does not fundamentally change this issue, so we illustrate with an
example with the shares in Q. The heap h0 satisfying x

1�→ y is strictly larger

than the heap h1 satisfying x
1
2�→ y, which is strictly larger than the heap h2

satisfying x
1
4�→ y; in general hi satisfies x

1
2i�→ y. Since our sequence is infinite, we

cannot use it as the basis for an induction argument. The solution is that we
require that the heaps decrease by at least some constant size c. If each heap
subsequent heap must shrink by at least e.g. c = 0.25 of a memory cell then
the sequence must be finite just as in the non-fractional case, i.e. c = F . More
sophisticated approaches are conceivable (e.g. limits) but they are not easy to
automate and we did not find any practical examples that require such methods.

Our second contribution is the development of a proof theory in the object
logic that can carry out these kinds of induction proofs in a relatively straightfor-
ward way. The proof rules that let us do so are given in Fig. 9. Once good lemmas
are identified, we find doing induction proofs over the finite heap formally in the
object logic simpler than doing the same proofs in the metalogic.

The key to our induction rules is two new operators: “within” � and “shrink-
ing” �π. Essentially �πP is used as an induction guard, preventing us from
applying our induction hypothesis P until we are on a π-smaller subheap. When
π = F we sometimes write just �P . Semantically, if h satisfies �πP then P is
true on all strict subheaps of h that are smaller by at least a π-piece.
Accordingly, the key elimination rule �π� may seem natural: it verifies that the
induction guard is satisfied and unlocks the underlying hypothesis. To start an
induction proof to prove an arbitrary goal � |= P , we use the rule W to intro-
duce an induction hypothesis, resulting in the new entailment goal of �πP � P .

Some definitions, such as list(x), have only one “recursive call”; others, such
as tree(x) have more than one. Moreover, sometimes we wish to apply our induc-
tive hypothesis immediately after satisfying the guard, whereas other times it is
convenient to satisfy the guard somewhat before we need the inductive hypoth-
esis. To handle both of these issues we use the “within” operator � such that
h |= �P means P is true on all subheaps of h, which is the intuition behind the
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rule ��. To apply our induction hypothesis somewhat after meeting its guard
(or if we wish to apply it more than once) we use the �π� rule to add the �
modality before eliminating the guard. We will see an example of this shortly.

5.4 Using Our Proof Theory

We now turn to two examples of using our proof theory from page 13 to demon-
strate that the rule set is strong and flexible enough to prove real properties.

Proving that tree(x) is F-uniform. Our logical rules for induction and uniformity
are able to establish the uniformity of predicates in a fairly simple way. Here we
focus on the tree(x) predicate because it is a little harder due to the two recursive
“calls” in its unfolding. For convenience, we will write u(π) instead of uniform(π).

Our initial proof goal is tree(x) � u(F). Standard natural deduction argu-
ments then reach the goal � � ∀x.tree(x) ⇒ u(F), after which we apply the
W rule (π = F is convenient) to start the induction, adding the hypoth-
esis �∀x.tree(x) ⇒ u(F), which we strengthen with the �π� rule to reach
� � ∀x.tree(x) ⇒ u(F). Natural deduction from there reaches

(〈x = null〉 ∨ ∃d, l, r.x �→ (d, l, r) � tree(l) � tree(r)
) ∧ (

� �∀x.tree(x) ⇒ u(F)
) � u(F)

The proof breaks into two cases. The first reduces to 〈x = null〉∧(� · · · ) � u(F),
which follows from uniform/emp rule. The second case reduces to

(
x �→ (d, l, r) �

tree(l)� tree(r)
)∧(

� �∀x.tree(x) ⇒ u(F)
) � u(F). Then the uniform� rule gives

(
x �→ (d, l, r) � (tree(l) � tree(r))

) ∧ (
� �∀x.tree(x) ⇒ u(F)

) � u(F) � u(F)

We now can cut with the �π� rule to meet the inductive guard since x �→
(d, l, r) � uniform(F)∧¬emp due to the rules �→uniform and �→emp. Our remain-
ing goal is thus
(
x �→ (d, l, r) ∧ � · · · ) �

(
(tree(l) � tree(r)) ∧ �∀x.tree(x) ⇒ u(F)

) � u(F) � u(F)

We split over �. The first goal is x �→ (d, l, r) ∧ � · · · � u(F), which follows from
�→ u. The second goal is (tree(l) � tree(r)) ∧ �∀x.tree(x) ⇒ u(F)

) � u(F). We
apply �� to distribute the inductive hypothesis into the �, and uniform� to split
the right hand side, yielding

(
tree(l) ∧ �∀x.tree(x)⇒u(F)

)
�
(
tree(r) ∧ �∀x.tree(x)⇒u(F)

)�u(F) �u(F)

We again split over � to reach two essentially identical cases. We apply rule T
to remove the � and then reach e.g. ∀x.tree(x) ⇒ u(F) � tree(l) ⇒ u(F), which
is immediate. Further details on this proof can be found in the full paper [2].

Proving that list(x) is precise. Precision is more complex than π-uniformity, so it
is harder to prove. We will use the simpler list(x) as an example; the additional
trick we need to prove that tree(x) is precise are applications of the �π� and
�� rules in the same manner as the proof that tree(x) is F-uniform. We have
proved that both list(x) and tree(x) are precise using our proof rules in Coq [1].
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precisely(P ) �� (P � �) ⇒ precisely(P )
(A)

precise(P )
P � precisely(Q) � precisely(P � Q)

(D)

Q ∧ (R � �) � precisely(R)
Q ∧ (S � �) � precisely(S)

(R � �) ∧ (S � �) � ⊥
Q ∧ (R ∨ S) � �) � precisely R ∨ S

) (B)

∀x.
(
Q ∧ P (x) � �) � precisely P (x)

))

∀x, y.
(

P (x) � �) ∧ P (y) � �) � |x = y|
)

Q ∧
(

∃x.P (x)
)

� �
)

� precisely
(
∃x.P x

)) (C)

Fig. 10. Key lemmas we use to prove recursive predicates precise

In Fig. 10 we give four key lemmas used in our proof2. All four are derived
(with a little cleverness) from the proof rules given in Fig. 8. We sketch the
proof as follows. To prove precise(list(x)) we first use the preciselyPrecise rule
to transform the goal into � � precisely(list(x)). We cannot immediately apply
rule W, however, since without a concrete �-separated conjunct outside the
precisely, we cannot dismiss the inductive guard with the �π� rule. Accordingly,
we next use lemma (A) and standard natural deduction to reach the goal � �
∀x.(list(x) � �) ⇒ precisely(list(x)), after which we apply rule W with π = F .

Afterwards we do some standard natural deduction steps yielding the goal
(

� ∀x.
(
list(x) � �) ⇒ precisely

(
list(x)

)) ∧
((〈x = null〉 ∨ ∃d, n.x �→ (d, n) � list(n)

)
� �

)
�

precisely
(〈x = null〉 ∨ ∃d, n.x �→ (d, n) � list(n)

)

We are now in a position to apply lemma (B) to break up the conjunction. We
now have three goals. The first goal is that 〈x = null〉 is precise, which follows
from the fact that emp is precise, which in turn can be proved using the rule
preciselyRight. The third goal is that the two branches of the disjunction are
mutually incompatible, which follows from 〈x = null〉 being incompatible with
maps-to using rule �→ null. The second (and last remaining) goal needs to use
lemma (C) twice to break up the existentials. Two of the three new goals are
to show that the two existentials are uniquely determined, which follow from
�→ inversion, leaving the goal

(
� ∀x.

(
list(x)��)⇒precisely

(
list(x)

)) ∧
(
x �→(d, n)�

(
list(n)��)) � precisely

(
x �→(

d, n
)
�list

(
n
))

We now cut with lemma (D), using rule �→precise to prove its premise, yielding
(

� ∀x.
(
list(x)��)⇒precisely

(
list(x)

)) ∧
(
x �→(d, n)�

(
list(n)��)) � x �→(

d, n
)
�precisely

(
list

(
n
))

We now use �π� rule to defeat the inductive guard. The rest is straightforward.
Further details on this proof can be found in the full paper [2].

6 The ShareInfer fractional biabduction engine

Having described our logical machinery in Sects. 3, 4 and 5, we now demonstrate
that our techniques are well-suited to automation by documenting our ShareInfer

2 We abuse notation by reusing the inference rule format to present derived lemmas.
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Precision Uniformity Bi-abduction
File name Time (ms) File name Time (ms) File name Time (ms)

precise map1 0.1 uni map1 0.2 bi map1 1.3
precise map2 0.2 uni map2 0.8 bi map2 0.9
precise map3 1.2 uni map3 0.3 bi map3 0.5
precise list1 2.7 uni list1 1.2 bi list1 4.0
precise list2 1.3 uni list2 2.1 bi list2 3.2
precise list3 3.4 uni list3 0.7 bi list3 3.8
precise tree1 1.4 uni tree1 1.9 bi tree1 5.1
precise tree2 1.7 uni tree2 1.0 bi tree2 6.5
precise tree3 12.2 uni tree3 10.3 bi tree3 7.9

Fig. 11. Evaluation of our proof systems using ShareInfer

prototype [1]. Our tool is capable of checking whether a user-defined recursive
predicate such as list or tree is uniform and/or precise and then conducting biab-
ductive inference over a separation logic entailment containing said predicates.

To check uniformity, the tool first uses heuristics to guess a potential tree
share candidate π and then applies proof rules in Figs. 7 and 6 to derive the
goal uniform(π). To support more flexibility, our tool also allows users to specify
the candidate share π manually. To check precision, the tool maneuvers over the
proof rules in Figs. 6 and 8 to achieve the desired goal. In both cases, recursive
predicates are handled with the rules in Fig. 9. ShareInfer returns either Yes, No
or Unknown together with a human-readable proof of its claim.

For bi-abduction, ShareInfer automatically checks precision and uniformity
whenever it encounters a new recursive predicate. If the check returns Yes,
the tool will unlock the corresponding rule, i.e., DotPlus for precision and
DotStar for uniformity. ShareInfer then matches fragments between the con-
sequent and antecedent while applying folding and unfolding rules for recur-
sive predicates to construct the antiframe and inference frame respectively. For
instance, here is the biabduction problem contained in file bi tree2 (see Fig. 11):

a
F�−→ (b, c, d) � L · tree(c) � R · tree(d) � [??] � L · tree(a) � [??]

ShareInfer returns antiframe L·tree(d) and inference frame a
R�−→(b, c, d)�R·tree(d).

ShareInfer is around 2.5k LOC of Java. We benchmarked it with 27 selec-
tive examples from three categories: precision, uniformity and bi-abduction. The
benchmark was conducted with a 3.4 GHz processor and 16 GB of memory. Our
results are given in Fig. 11. Despite the complexity of our proof rules our perfor-
mance is reasonable: ShareInfer only took 75.9 ms to run the entire example set, or
around 2.8 ms per example. Our benchmark is small, but this performance indi-
cates that more sophisticated separation logic verifiers such as HIP/SLEEK [14]
or Infer [9] may be able to use our techniques at scale.
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7 Building a Model for Our Logic

Our task now is to provide a model for our proof theories. We present our mod-
els in several parts. In Sect. 7.1 we begin with a brief review of Cancellative
Separation Algebras (CSA). In Sect. 7.2 we explain what we need from our frac-
tional share models. In Sect. 7.3 we develop an extension to CSAs called “Scaling
Separation Algebras” (SSA). In Sect. 7.5 we develop the machinery necessary to
support our rules for object-level induction over the heap. We have verified in
Coq [1] that the models in Sect. 7.1 support the rules in Fig. 8, the models in
Sect. 7.3 support the rules Figs. 3 and 7, and the models in Sect. 7.5 support the
rules in Fig. 9.

7.1 Cancellative Separation Algebras

A Separation Algebra (SA) is a set H with an associative, commutative partial
operation ⊕. Separation algebras can have a single unit or multiple units; we
use identity(x) to indicate that x is a unit. A Cancellative SA 〈H,⊕〉 further
requires that a ⊕ b1 = c ⇒ a ⊕ b2 = c ⇒ b1 = b2. We can define a partial order
on H using ⊕ by h1 ⊆ h2

def= ∃h′.h1 ⊕ h′ = h2. Calcagno et al. [12] showed that
CSAs can model separation logic with the definitions

h |= P �Q
def= ∃h1, h2. h1⊕h2 =h ∧ (h1 |= P ) ∧ (h2 |= Q) and h |= emp

def= identity(h).

The standard definition of precise(P ) was given as Eq. (3) in Sect. 5.2, together
with the definition for our new precisely(P ) operator in Eq. (4). What is difficult
here is finding a set of axioms (Fig. 8) and derivable lemmas (e.g. Fig. 10) that are
strong enough to be useful in the object-level inductive proofs. Once the axioms
are found, proving them from the model given is straightforward. Cancellation
is not necessary to model basic separation logic [18], but we need it to prove
the introduction preciselyRight and elimination rules preciselyLeft for our new
operator.

7.2 Fractional Share Algebras

A fractional share algebra 〈S,⊕,⊗, E ,F〉 (FSA) is a set S with two operations:
partial addition ⊕ and total multiplication ⊗. The substructure 〈S,⊕〉 is a CSA
with the single unit E . For the reasons discussed in Sect. 2 we require that ⊕
satisfies the disjointness axiom a⊕a = b ⇒ a = E . Furthermore, we require that
the existence of a top element F , representing complete ownership, and assume
that each element s ∈ S has a complement s such that s ⊕ s = F .

Often (e.g. in the fractional �→ operator) we wish to restrict ourselves to
the “positive shares” S+ def= S \ {E}. To emphasize that a share is positive we
often use the metavariable π rather than s. ⊕ is still associative, commutative,
and cancellative; every element other than F still has a complement. To enjoy
a partial order on S+ and other SA- or CSA-like structures that lack identities
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(sometimes called “permission algebras”) we define π1 ⊆ π2
def= (∃π′.π1 ⊕ π′ =

π2) ∨ (π1 = π2).
For the multiplicative structure we require that 〈S,⊗,F〉 be a monoid, i.e.

that ⊗ is associative and has identity F . Since we restrict maps-tos and the per-
mission scaling operator to be positive, we want 〈S+,⊗,F〉 to be a submonoid.
Accordingly, when {π1, π2} ⊂ S+, we require that π1⊗π2 �= E . Finally, we require
that ⊗ distributes over ⊕ on the right, that is (s1⊕s2)⊗s3 = (s1⊗s3)⊕(s2⊗s3);
and that ⊗ is cancellative on the right given a positive left multiplicand, i.e.
π ⊗ s1 = π ⊗ s2 ⇒ s1 = s2.

The tree share model we present in Sect. 2 satisfies all of the above axioms, so
we have a nontrivial model. As we will see shortly, it would be very convenient if
we could assume that ⊗ also distributed on the left, or if we had multiplicative
inverses on the left rather than merely cancellation on the right. However, we
will see in Sect. 8.2 that both assumptions are untenable.

7.3 Scaling Separation Algebra

A scaling separation algebra (SSA) is 〈H,S,⊕H ,⊕S ,⊗S , E ,F ,mul , force〉, where
〈H,⊕H〉 is a CSA for heaps and 〈S,⊕S ,⊗S , E ,F〉 is a FSA for shares. Intuitively,
mul(π, h1) multiplies every share inside h1 by π and returns the result h2. The
multiplication is on the left, so for each original share π′ in h1, the resulting
share in h2 is π ⊗S π′. Recall that the informal meaning of π · P is that we have
a π-fraction of predicate P . Formally this notion relies on a little trick:

h |= π · P
def= ∃h′. mul(π, h′) = π ∧ h′ |= P (5)

A heap h contains a π-fraction of P if there is a bigger heap h′ satisfying P , and
multiplying that bigger heap h′ by the scalar π gets back to the smaller heap h.

The simpler force(π, h1) overwrites all shares in h1 with the constant share π
to reach the resulting heap h2. We use force to define the uniform predicate as
h |= uniform(π) def= force(π, h) = h. A heap h is π-uniform when setting all the
shares in h to π gets you back to h—i.e., they must have been π to begin with.

S1. force(π, force(π′, a)) = force(π, a) S2. force(π,mul(π′, a)) = force(π, a)
S3. mul(π, force(π′, a)) = force(π ⊗S π′, a) S4. mul(π,mul(π′, a)) = mul(π ⊗S π′, a)
S5. identity(a) ⇒ force(π, a) = a S6. a ⊆H force(F , a)
S7. π1 ⊆S π2 ⇒ force(π1, a) ⊆H force(π2, a) S8. force(π, a)⊕H force(π, b)=c ⇒ force(π, c)=c
S9. identity(a) ⇒ mul(π, a) = a S10. mul(F , a) = a
S11. mul(π, a1) = mul(π, a2) ⇒ a1 = a2 S12. mul(π, a) ⊆H a
S13. π1 ⊕S π2 = π3 ⇒ ∀b, c. mul(π1, b) ⊕H mul(π2, b) = c

) ⇔ c = mul(π3, b)
))

S14. force(π′, a) ⊕H force(π′, b) = force(π′, c) ⇔
mul π, force(π′, a)

) ⊕H mul π, force(π′, b)
)

= mul π, force(π′, c)
)

Fig. 12. The 14 additional axioms for scaling separation algebras beyond those inher-
ited from cancellative separation algebras
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We need to understand how all of the ingredients in an SSA relate to each
other to prove the core logical rules on page 13. We distill the various relation-
ships we need to model our logic in Fig. 12. Although there are a goodly number
of them, most are reasonably intuitive.

Axioms S1 through S4 describe how force and mul compose with each other.
Axioms S5, S9, and S10 give conditions when force and mul are identity func-
tions: when either is applied to empty heaps, and when mul is applied to the
multiplicative identity on shares F . Axioms S6 and S12 relate heap order with
forcing the full share F and multiplication by an arbitrary share π. Axiom S7

says that force is order-preserving. Axiom S8 is how the disjointness axiom on
shares is expressed on heaps: when two π-uniform heaps are joined, the result is
π-uniform. Axiom S11 says that mul is injective on heaps. Axiom S13 is delicate.
In the ⇒ direction, it states that mul preserves the share model’s join structure
on heaps. In the ⇐ direction, S13 is similar to axiom S8, saying that the share
model’s join structure must be preserved. Taking both directions together, S13

translates the right distribution property of ⊕S over ⊗S into heaps. The final
axiom S14 is a bit of a compromise. We wish we could satisfy

S′
14. a ⊕H b = c ⇔ mul(π, a) ⊕H mul(π, b) = mul(π, c)

S′
14 is a kind of dual for S13, i.e. it would correspond to a left distributivity

property of ⊕S over ⊗S in the share model into heaps. Unfortunately, as we
will see in Sect. 8.2, the disjointness of ⊕S is incompatible with simultaneously
supporting both left and right distributivity. Accordingly, S14 weakens S′

14 so
that it only holds when a and b are π′-uniform (which by S8 forces c to be
π′-uniform). We also wish we could satisfy S′

15: ∀π, a.∃b.mul(π, b) = a, which
corresponds to left multiplicative inverses, but again (Sect. 8.2) disjointness is
incompatible.

7.4 Compositionality of Scaling Separation Algebras

Despite their complex axiomatization, we gain two advantages from developing
SSAs rather than directly proving our logical axioms on a concrete model. First,
they give us a precise understanding of exactly which operations and proper-
ties (S1–S14) are used to prove the logical axioms. Second, following Dockins
et al. [21] we can build up large SSAs compositionally from smaller SSAs.

To do so cleanly it will be convenient to consider a slight variant of SSAs,
“Weak SSAs” that allow, but do not require, the existence of identity elements
in the underlying CSA model. A WSSA satisfies exactly the same axioms as an
SSA, except that we use the weaker ⊆H definition we defined for permission
algebras, i.e. a1 ⊆H a2

def= (∃a′.a1 ⊕H a′ = a2) ∨ (a1 = a2). Note that S5 and
S9 are vacuously true when the CSA does not have identity elements. We need
identity elements to prove the logical axioms from the model; we only use WSSAs
to gain compositionality as we construct a suitable final SSA. Keeping the share
components 〈S,⊕S ,⊗S , E ,F〉 constant, we give three SSA constructors to get a
flavor for what we can do with the remaining components 〈H,⊕H , force,mul〉.
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Example 1 (Shares). The share model 〈S,⊕S〉 is an SSA, and the positive (non-
E) shares 〈S+,⊕〉 are a WSSA, with forceS(π, π′) def= π and mulS(π, π′) def= π⊗π′.

Example 2 (Semiproduct). Let 〈A,⊕A, forceA,mulA〉 be an SSA/WSSA, and B

be a set. Define (a1, b1) ⊕A×B (a2, b2) = (a3, b3)
def= a1 ⊕A a2 = a3 ∧ b1 =

b2 = b3, forceA×B(π, (a, b)) def= (forceA(π, a), b), and mulA×B(π, (a, b)) def=
(mulA(π, a), b). Then 〈A × B,⊕A×B, forceA×B,mulA×B〉 is an SSA/WSSA.

Example 3 (Finite partial map). Let A be a set and 〈B,⊕B , forceB ,mulB〉 be
an SSA/WSSA. Define f ⊕

A
fin
⇀B

g = h pointwise [21]. Define force
A

fin
⇀B

(π, f) def=

λx.forceB(π, f(x)) and likewise define mul
A

fin
⇀B

(π, f) def= λx.mulB(π, f(x)). The

structure 〈A fin
⇀ B,⊕

A
fin
⇀B

, force
A

fin
⇀B

,mul
A

fin
⇀B

〉 is an SSA.

Using these constructors, A
fin
⇀ (S+, V ), i.e. finite partial maps from addresses

to pairs of positive shares and values, is an SSA and thus can support a model
for our logic. We also support other standard constructions e.g. sum types +.

7.5 Model for Inductive Logic

What remains is to give the model that yields the inductive logic in Fig. 9. The
key induction guard modal �π operator is defined as follows:

h1 Sπ h4
def
= ∃h2, h3. h1 ⊇H h2 ∧ h3 ⊕H h4 = h2 ∧ (h3 |= uniform(π) ∧ ¬emp)

h |= �πP
def
= ∀h′. (h Sπ h′) ⇒ (h′ |= P )

In other words, �π is a (boxy) modal operator over the relation Sπ, which relates
a heap h1 with all heaps that are strict subheaps that are smaller by at least
a π-piece. The model is a little subtle to enable the rules �π� and ��π that
let us handle multiple recursive calls and simplify the engineering. The within
operator � is much simpler to model:

h1 W h2
def= h1 ⊇H h2 h |= �P

def= ∀h′. (h W h′) ⇒ (h′ |= P )

All of the rules in Fig. 9 follow from these definitions except for rule W. To
prove this rule, we require that the heap model have an additional operator. The
“π-quantum”, written |h|π, gives the number of times a non-empty π-sized piece
can be taken out of h. For disjoint shares, the number of times is no more than
the number of defined memory locations in h. We require two facts for |h|π. First,
that h1 ⊆H h2 ⇒ |h1|π ≤ |h2|π, i.e. that subheaps do not have larger π-quanta
than their parent. Second, that h1 ⊕H h2 = h3 ⇒ (h2 |= uniform(π) ∧ ¬emp) ⇒
|h3|π > |h1|π, i.e. that taking out a π-piece strictly decreases the number of
π-quanta. Given this setup, rule W follows immediately by induction on |h|π.
The rules that require the longest proofs in the model are �π� and ��π.
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8 Lower Bounds on Predicate Multiplication

In Sect. 7 we gave a model for the logical axioms we presented in Fig. 3 and on
page 13. Our goal here is to show that it is difficult to do better, e.g. by having
a premise-free DotStar rules or a bidirectional DotImpl rule. In Sect. 8.1 we
show that these logical rules force properties on the share model. In Sect. 8.2
we show that disjointness puts restrictions on the class of share models. There
are no non-trivial models that have left inverses or satisfy both left and right
distributivity.

8.1 Predicate Multiplication’s Axioms Force Share Model
Properties

The SSA structures we gave in Sect. 7.3 are good for building models that enable
the rules for predicate multiplication from Fig. 3. However, since they impose
intermediate algebraic and logical signatures between the concrete model and
rules for predicate multiplication, they are not good for showing that we cannot
do better. Accordingly here we disintermediate and focus on the concrete model
A

fin
⇀ (S+, V ), that is finite partial maps from addresses to pairs of positive

shares and values. The join operations on heaps operates pointwise [21], with
(π1, v1) ⊕ (π2, v2) = (π3, v3)

def= π1 ⊕S π2 = π3 ∧ v1 = v2 = v3, from which we
derive the usual SA model for � and emp (Sect. 7.1). We define h |= x

π�→ y
def=

dom(h) = {x} ∧ h(x) = (π, y). We define scalar multiplication over heaps ⊗H

pointwise as well, with π1 ⊗ (π2, v) def= (π1 ⊗S π2, v), and then define predicate
multiplication by h |= π · P

def= ∃h′. h′ = π ⊗H h′ = h ∧ h′ |= P . All of the
above definitions are standard except for ⊗H , which strikes us as the only choice
(up to commutativity), and predicate multiplication itself.

By Sect. 7 we already know that this model satisfies the rules for predicate
multiplication, given the assumptions on the share model from Sect. 7.2. What
is interesting is that we can prove the other direction: if we assume that the
key logical rules from Fig. 3 hold, they force axioms on the share model. The
key correspondences are: DotFull forces that F is the left identity of ⊗S ;
DotMapsTo forces that F is the right identity of ⊗S ; DotMapsTo forces the
associativity of ⊗S ; the � direction of DotConj forces the right cancellativity
of ⊗S (as does DotImpl and the � direction of DotUniv); and DotPlus,
which forces right distributivity of ⊗S over ⊕S .

The following rules force left distributivity of ⊗S over ⊕S and left ⊗S

inverses:

π · (P � Q) �� (π · P ) � (π · Q)
Dot
Star′

π · (P ⇒ Q) � (π · P ) ⇒ (π · Q)
Dot
Impl′

The � direction of DotStar′ also forces that ⊕S satisfies disjointness; this is the
key reason that we cannot use rationals 〈(0, 1],+,×〉. Clearly the side-condition-
free DotStar′ rule is preferable to the DotStar in Fig. 3, and it would also be
preferable to have bidirectionality for predicate multiplication over implication
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and negation. Unfortunately, as we will see shortly, the disjointness of ⊕S places
strong multiplicative algebraic constraints on the share model. These constraints
are the reason we cannot support the DotImpl′ rule and why we require the
π′-uniformity side condition in our DotStar rule.

8.2 Disjointness in a Multiplicative Setting

Our goal now is to explore the algebraic consequences of the disjointness prop-
erty in a multiplicative setting. Suppose 〈S,⊕〉 is a CSA with a single unit E ,
top element F , and ⊕ complements s. Suppose further that shares satisfy the
disjointness property a⊕a = b ⇒ a = E . For the multiplicative structure, assume
〈S,⊗,F〉 is a monoid (i.e. the axioms forced by the DotDot, DotMapsTo, and
DotFull rules). It is undesirable for a share model if multiplying two positive
shares (e.g. the ability to read a memory cell) results in the empty permission,
so we assume that when π1 and π2 are non-E then their product π1 ⊗ π2 �= E .

Now add left or right distributivity. We choose right distributivity (s1 ⊕s2)⊗
s3 = (s1 ⊗s3)⊕(s2 ⊗s3); the situation is mirrored with left. Let us show that we
cannot have left inverses for π �= F . We prove by contradiction: suppose π �= F
and there exists π−1 such that π−1 ⊗ π = F . Then

π = F ⊗ π = (π−1 ⊕ π−1) ⊗ π = (π−1 ⊗ π) ⊕ (π−1 ⊗ π) = F ⊕ (π−1 ⊗ π)

Let e = π−1 ⊗ π. Now π = F ⊕ e = (e ⊕ e) ⊕ e, which by associativity and
disjointness forces e = E , which in turn forces π = F , a contradiction.

Now suppose that instead of adding multiplicative inverses we have both
left and right distributivity. First we prove (Lemma 1) that for arbitrary s ∈ S,
s ⊗ s = s ⊗ s. We calculate:

(s⊗s)⊕ (s⊗s) = s⊗ (s⊕s) = s⊗F = s = F ⊗s = (s⊕s)⊗s = (s⊗s)⊕ (s⊗s)

Lemma 1 follows by the cancellativity of ⊕ between the far left and the far right.
Now we show (Lemma 2) that s ⊗ s = E . We calculate:

F = F ⊗ F = (s ⊕ s) ⊗ (s ⊕ s) = (s ⊗ s) ⊕ (s ⊗ s) ⊕ (s ⊗ s) ⊕ (s ⊗ s)
= (s ⊗ s) ⊕ (s ⊗ s) ⊕ (s ⊗ s) ⊕ (s ⊗ s)

The final equality is by Lemma 1. The underlined portion implies s ⊗ s = E
by disjointness. The upshot of Lemma 2, together with our requirement that the
product of two positive shares be positive, is that we can have no more than
the two elements E and F in our share model. Since the entire motivation for
fractional share models is to allow ownership between E and F , we must choose
either left or right distributivity; we choose right since we are able to prove that
the π′-uniformity side condition enables the bidirectional DotStar.

9 Related Work

Fractional permissions are essentially used to reason about resource ownership in
concurrent programming. The well-known rational model 〈[0, 1],+〉 by Boyland
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et al. [5] is used to reason about join-fork programs. This structure has the
disjointness problem mentioned in Sect. 2, first noticed by Bornat et al. [4], as
well as other problems discussed in Sects. 3, 4, and [2]. Boyland [6] extended
the framework to scale permissions uniformly over arbitrary predicates with
multiplication, e.g., he defined π · P as “multiply each permission π′ in P with
π”. However, his framework cannot fit into SL and his scaling rules are not bi-
directional. Jacobs and Piessens [28] also used rationals for scaling permissions
π · P in SL but only obtained one direction for DotStar and DotPlus. A
different kind of scaling permission was used by Dinsdale-Young et al. [20] in
which they used rationals to define permission assertions [A]rπ to indicate a thread
with permission π can execute the action A over the shared region r.

There are other flavors of permission besides rationals. Bornat et al. [4] intro-
duced integer counting permissions 〈Z,+, 0〉 to reason about semaphores and
combined rationals and integers into a hybrid permission model. Heule et al. [23]
flexibly allowed permissions to be either concretely rational or abstractly read-
only to lower the nuisance of detailed accounting. A more general read-only
permissions was proposed by Charguéraud and Pottier [13] that transforms a
predicate P into read-only mode RO(P ) which can duplicated/merged with the
bi-entailment RO(P ) �� RO(P ) � RO(P ). Their permissions distribute pleas-
antly over disjunction and existential quantifier but only work one way for �,
i.e., RO(H1 � H2) � RO(H1) � RO(H2). Parkinson [41] proposed subsets of the
natural numbers for shares 〈P(N),�〉 to fix the disjointness problem. Compared
to tree shares, Parkinson’s model is less practical computationally and does not
have an obvious multiplicative structure.

Protocol-based logics like FCSL [38] and Iris [30] have been very successful
in reasoning about fine-grained concurrent programs, but their high expressiv-
ity results in a heavyweight logic. Automation (e.g. inference such as we do
in Sect. 4) has been hard to come by. We believe that fractional permissions
and protocol-based logics are in a meaningful sense complementary rather than
competitors.

Verification tools often implement rational permissions because of its sim-
plicity. For example, VeriFast [29] uses rationals to verify programs with locks
and semaphores. It also allows simple and restrictive forms of scaling permis-
sions which can be applied uniformly over standard predicates. On the other
hand, HIP/SLEEK [31] uses rationals to model “thread as resource” so that the
ownership of a thread and its resources can be transferred. Chalice [36] has ratio-
nal permissions to verify properties of multi-threaded, objected-based programs
such as data races and dead-locks. Viper [37] has an expressive intermediate lan-
guage that supports both rational and abstract permissions. However, a number
of verification tools have chosen tree shares due to their better metatheoretical
properties. VST [3] is equipped with tree share permissions and an extensive tree
share library. HIP/SLEEK uses tree shares to verify the barrier structure [26]
and has its own complete share solver [33,35] that reduces tree formulae to
Boolean formulae handled by Z3 [17]. Lastly, tree share permissions are featured
in Heap-Hop [47] to reason over asynchronous communications.
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10 Conclusion

We presented a separation logic proof framework to reason about resource shar-
ing using fractional permissions in concurrent verification. We support sophisti-
cated verification tasks such as inductive predicates, proving predicates precise,
and biabduction. We wrote ShareInfer to gauge how our theories could be auto-
mated. We developed scaling separation algebras as compositional models for our
logic. We investigated why our logic cannot support certain desirable properties.
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Abstract. Monitors constitute one of the common techniques to syn-
chronize threads in multithreaded programs, where calling a wait com-
mand on a condition variable suspends the caller thread and notifying a
condition variable causes the threads waiting for that condition variable
to resume their execution. One potential problem with these programs is
that a waiting thread might be suspended forever leading to deadlock, a
state where each thread of the program is waiting for a condition variable
or a lock. In this paper, a modular verification approach for deadlock-
freedom of such programs is presented, ensuring that in any state of the
execution of the program if there are some threads suspended then there
exists at least one thread running. The main idea behind this approach
is to make sure that for any condition variable v for which a thread is
waiting there exists a thread obliged to fulfil an obligation for v that
only waits for a waitable object whose wait level, an arbitrary number
associated with each waitable object, is less than the wait level of v. The
relaxed precedence relation introduced in this paper, aiming to avoid
cycles, can also benefit some other verification approaches, verifying
deadlock-freedom of other synchronization constructs such as channels
and semaphores, enabling them to accept a wider range of deadlock-free
programs. We encoded the proposed proof rules in the VeriFast program
verifier and by defining some appropriate invariants for the locks asso-
ciated with some condition variables succeeded in verifying some popu-
lar use cases of monitors including unbounded/bounded buffer, sleeping
barber, barrier, and readers-writers locks. A soundness proof for the pre-
sented approach is provided; some of the trickiest lemmas in this proof
have been machine-checked with Coq.

1 Introduction

One of the popular mechanisms for synchronizing threads in multithreaded pro-
grams is using monitors, a synchronization construct allowing threads to have
mutual exclusion and also the ability to wait for a certain condition to become
true. These constructs, consisting of a mutex/lock and some condition variables,
provide some basic functions for their clients, namely wait(v, l), causing the call-
ing thread to wait for the condition variable v and release lock l while doing
so, and notify(v)/notifyAll(v), causing one/all thread(s) waiting for v to resume
their execution. Each condition variable is associated with a lock; a thread must
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acquire the associated lock for waiting or notifying on a condition variable, and
when a thread is notified it must reacquire the associated lock.

However, one potential problem with these synchronizers is deadlock, where
all threads of the program are waiting for a condition variable or a lock. To clarify
the problem consider the program in Fig. 1, where a channel consists of a queue
q, a lock l and a condition variable v, protecting a thread from dequeuing q when
it is empty. In this program the receiver thread first acquires lock l and while
there is no item in q it releases l, suspends itself and waits for a notification
on v. If this thread is notified while q is not empty it dequeues an item and
finally releases l. The sender thread also acquires the same lock, enqueues an
item into q, notifies one of the threads waiting for v, if any, and lastly releases
l. After creating a channel ch, the main thread of the program first forks a
thread to receive a message from ch and then sends a message on ch. Although
this program is deadlock-free, it is easy to construct some variations of it that
lead to deadlock: if the main thread itself, before sending any messages, tries
to receive a message from ch, or if the number of receives is greater than the
number of sends, or if the receiver thread waits for v even if q is not empty.

routine main()
{q := newqueue;
l := newlock;
v := newcond;
ch := channel(q, l, v);
fork (receive(ch));
send(ch, 12)}

routine send(channel ch, int d)
{acquire(ch.l);
enqueue(ch.q, d);
notify(ch.v);
release(ch.l)}

routine receive(channel ch)
{acquire(ch.l);
while(sizeof(ch.q) = 0)

wait(ch.v, ch.l);
d := dequeue(ch.q);
release(ch.l);
d}

Fig. 1. A message passing program synchronized using a monitor

Several approaches to verify termination, deadlock-freedom, liveness, and
finite blocking of threads of programs have been presented. Some of these
approaches only work with non-blocking algorithms [1–3], where the suspension
of one thread cannot lead to the suspension of other threads. These approaches
are not applicable for condition variables because suspension of a sender thread
in Fig. 1, for example, might cause a receiver thread to be blocked forever. Some
other approaches are also presented to verify termination of programs using some
blocking constructs such as channels [4–6] and semaphores [7]. These approaches
are not general enough to cover condition variables because unlike the channels
and semaphores a notification of a condition variable is lost when there is no
thread waiting for that condition variable. There are also some studies [8–10] to
verify correctness of programs that support condition variables. However, these
approaches either only cover a very specific application of condition variables,
such as a buffer program with only one producer and one consumer, or are not
modular and suffer from a long verification time when the size of the state space,
such as the number of threads, is increased.
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In this paper we present a modular approach to verify deadlock-freedom
of programs in the presence of condition variables. More specifically, this app-
roach makes sure that for any condition variable v for which a thread is wait-
ing there exists a thread obliged to fulfil an obligation for v that only waits
for a waitable object whose wait level, an arbitrary number associated with
each waitable object, is less than the wait level of v. The presented approach
is modular, meaning that different modules (functions) of a program can be
verified individually. This approach is based on Leino et al. [4] approach for
verification of deadlock-freedom in the presence of channels and locks, which in
turn was based on Kobayashi’s [6] type system for verifying deadlock-freedom
of π-calculus processes, and extends the separation logic-based encoding [11] by
covering condition variables. We implemented the proposed proof rules in the
VeriFast verifier [12–14] and succeeded in verifying some common applications
of condition variables such as bounded/unbounded buffer, sleeping barber [15],
barrier, and readers-writers locks (see the full version of this paper [16] reporting
the verification time of these programs).

This paper is structured as follows. Section 2 provides some background
information on the existing approaches upon which we build our verification
algorithm. Section 3 introduces a preliminary approach for verifying deadlock-
freedom of some common applications of condition variables. In Sect. 4 the prece-
dence relation, aiming to avoid cycles, is relaxed, making it possible to verify
some trickier applications of condition variables. A soundness proof of the pre-
sented approach is lastly given in Sect. 5.

2 Background Information on the Underlying Approaches

In this section we provide some background information on the existing
approaches that verify absence of data races and deadlock in the presence of
locks and channels that we build on.

2.1 Verifying Absence of Data Races

Locks/mutexes are mostly used to avoid data races, an undesired situation where
a heap location is being written and accessed concurrently by two different
threads. One common approach to verify absence of these undesired conditions
is ownership: ownership of heap locations is assigned to threads and it is verified
that a thread accesses only the heap locations that it owns. Transferring owner-
ship of heap locations between threads is supported through locks by allowing
locks, too, to own heap locations. While a lock is not held by a thread, it owns
the heap locations described by its invariant. More specifically, when a lock is
created the resources specified by its invariant are transferred from the creating
thread to the lock, when that lock is acquired these resources are transferred
from the lock to the acquiring thread, and when that lock is released these
resources, that must be again in possession of the thread, are again transferred
from the thread to the lock [17]. Figure 2 illustrates how a program increasing a
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x:=newint(0);
{x�→0}
l := newlock;
{ulock(l) ∗ x�→0}
ct := counter(x:=x, l:=l);
{ulock(ct.l) ∗ ct.x �→0}
{ulock(ct.l) ∗ inv(ct)}
{lock(ct.l) ∧ I(l)=inv(ct)}
{lock(ct.l) ∗ lock(ct.l)}
fork (inc(ct));
{lock(ct.l)}
inc(ct)

routine inc(counter ct){
{lock(ct.l) ∧ I(l)=inv(ct)}
acquire(ct.l);
{locked(ct.l) ∗ ∃z. ct.x �→z}
ct.x:=ct.x+1;
{locked(ct.l) ∗ ∃z. ct.x �→z}
release(ct.l)
{lock(ct.l)}}

Fig. 2. Verification of data-race-freedom of a program, where inv = λct. ∃z. ct.x �→z

counter, which consists of an integer variable x and a lock l protecting this vari-
able, can be verified, where two threads try to write on the variable x. We use
separation logic [18] to reason about the ownership of permissions. As indicated
below each command, creating the integer variable x initialized by zero provides
a read/write access permission to x, denoted by x�→0. This ownership, that is
going to be protected by lock l, is transferred to the lock because it is asserted by
the lock invariant inv, which is associated with the lock, as denoted by function I,
at the point where the lock is initialized. The resulting lock permission, that can
be duplicated, is used in the routine inc, where x is increased under protection
of lock l. Acquiring this lock in this routine provides a full access permission to
x and transforms the lock permission to a locked permission, implying that the
related lock has been acquired. Releasing that lock again consumes this access
permission and transforms the locked permission to a lock one.

2.2 Verifying Absence of Deadlock

One potential problem with programs using locks and other synchronization
mechanisms is deadlock, an undesired situation where all threads of the program
are waiting for some waitable objects. For example, a program can deadlock if a
thread acquires a lock and forgets to release it, because any other thread waiting
for that lock never succeeds in acquiring that lock. As another example, if in a
message passing program the number of threads trying to receive a message
from a channel is greater than the number of messages sent on that channel
there will be some threads waiting for that channel forever. One approach to
verify deadlock-freedom of channels and locks is presented by Leino et al. [4] that
guarantees deadlock-freedom of programs by ensuring that (1) for any obligee
thread waiting for a waitable object, such as a channel or lock, there is an
obligation for that object that must be fulfilled by an obligor thread, where a
thread can fulfil an obligation for a channel/lock if it sends a message on that
channel/releases that lock, and (2) each thread waits for an object only if the
wait level of that object, an arbitrary number assigned to each waitable object,
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is lower than the wait levels of all obligations of that thread. The second rule is
established by making sure that when a thread with some obligations O executes
a command acquire(o)/receive(o) the precondition o≺O holds, i.e. the wait level
of o is lower than the wait levels of obligations in O. To meet the first rule where
the waitable object is a lock, as the example in the left side of Fig. 3 illustrates,
after acquiring a lock, that lock is loaded onto the bag1 (multiset) of obligations
of the thread, denoted by obs(O). This ensures that if a thread tries to acquire
a lock that has already been acquired then there is one thread obliged to fulfil
an obligation for that lock.

{obs(O) ∗ lock(l) ∧ l≺O}
acquire(l);
{obs(O�{[l]}) ∗ locked(l) ∗ I(l)}
...
{obs(O�{[l]}) ∗ locked(l) ∗ I(l)}
release(l)
{obs(O) ∗ lock(l)}

{obs(O)}
{obs(O�{[ch]}) ∗ credit(ch)}
fork (
{obs({[]}) ∗ credit(ch) ∧ ch≺{[]}}
receive(ch)
{obs({[]})}
);
{obs(O�{[ch]})}
send(ch, 12) {obs(O)}

Fig. 3. Verification of deadlock-freedom of locks (left side) and channels (right side)

To establish the first rule where the waitable object is a channel any thread
trying to receive a message from a channel ch must spend one credit for ch. This
credit is normally obtained from the thread that has forked the receiver thread,
where this credit is originally created by loading ch onto the bag of obligations
of the forking thread. The forking thread can discharge the loaded obligation
by either sending a message on the corresponding channel or delegating it to a
child thread that can discharge it. The example on the right side of Fig. 3 shows
the verification of deadlock-freedom a program in which the main routine, after
forking a obligee thread trying to receive a message from channel ch, sends a
message on this channel. Before forking the receiver thread, a credit and an
obligation for the channel ch are created in the main thread. The former is given
to the forked thread, where this credit is spent by the receive(ch) command,
and the latter is fulfilled by the main thread when it executes the command
send(ch, 12).

More formally, the mentioned verification approach satisfies the first rule by
ensuring that for each channel ch in the program the number of obligations for ch
is equal to/greater than the number of threads waiting for ch. This assurance is
obtained by preserving the invariant Wt(ch)+Ct(ch) � Ot(ch)+sizeof(ch), while
the programming language itself ensures that sizeof(ch) > 0 ⇒ Wt(ch) = 0,
where sizeof is a function mapping each channel to the size of its queue, Wt(ch)
1 We treat bags of waitable objects as functions from waitable objects to natural

numbers.
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is the total number of threads currently waiting for channel ch, Ot(ch) is the
total number of obligations for channel ch held by all threads, and Ct(ch) is the
total number of credits for channel ch currently in the system.

2.3 Proof Rules

The separation logic-based proof rules, introduced by Jacobs et al. [11], avoid-
ing data races and deadlock in the presence of locks and channels are shown in
Fig. 4, where R and I are functions mapping a waitable object/lock to its wait
level/invariant, respectively, and g initl, and g load are some ghost commands used
to initialize an uninitialized lock permission and load a channel onto the bag of
obligations and credits of a thread, respectively. When a lock is created, as shown
in NewLock, an uninitialized lock permission ulock(l) is provided for that thread.
Additionally, an arbitrary integer number z can be decided as the wait level of that
lock that is stored in R. Note that variable z in this rule is universally quantified
over the rule, and different applications of the NewLock rule can use different
values for this variable. The uninitialized lock permission, as shown in InitLock,
can be converted to a normal lock permission lock(l) provided that the resources
described by the invariant of that lock, stored in I, that must be in possession of the
thread, are transferred from the thread to the lock. By the rule Acquire, having
a lock permission, a thread can acquire that lock if the wait levels of obligations of
that thread are all greater than the wait level of that lock. After acquiring the lock,
the resources represented by the invariant of that lock are provided for the acquir-
ing thread and the permission lock is converted to a locked permission. When a

NewLock
{true} newlock {λl. ulock(l) ∧ R(l)=z}

InitLock
{ulock(l) ∗ i} g initl(l) {λ . lock(l) ∧ I(l)=i}

Acquire {lock(l) ∗ obs(O) ∧ l≺O} acquire(l) {λ . obs(O�{[l]}) ∗ locked(l) ∗ I(l)}

Release {obs(O) ∗ locked(l) ∗ I(l)} release(l) {λ . obs(O−{[l]}) ∗ lock(l)}

NewChannel
{true} newchannel {λch. R(ch)=z}

Send
{obs(O)} send(ch, v) {λ . obs(O−{[ch]})}

Receive
{obs(O) ∗ credit(ch) ∧ ch≺O} receive(ch) {λ . obs(O)}

Fork
{a ∗ obs(O)} c {λ . obs({[]})}

{a ∗ obs(O�O′)} fork(c) {λ . obs(O′)} DupLock lock(l) ⇔ lock(l) ∗ lock(l)

LoadOb {obs(O)} g load(ch) {λ . obs(O�{[ch]}) ∗ credit(ch)}

Fig. 4. Proof rules ensuring deadlock-freedom of channels and locks, where o≺O ⇔
∀o′ ∈ O. R(o) < R(o′)
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thread releases a lock, as shown in the rule Release, the resources indicated by
the invariant of that lock, that must be in possession of the releasing thread, are
transferred from the thread to the lock and the permission locked is again con-
verted to a lock permission. By the rule Receive a thread with obligations O can
try to receive a message from a channel ch only if the wait level of ch is lower than
the wait levels of all obligations in O. This thread must also spend one credit for
ch, ensuring that there is another thread obliged to fulfil an obligation for ch. As
shown in the rule Send, an obligation for this channel can be discharged by send-
ing a message on that channel. Alternatively, by the rule Fork, a thread can dis-
charge an obligation for a channel if it delegates that obligation to a child thread,
provided that the child thread discharges the delegated obligation. In this setting
the verification of a program starts with an empty bag of obligations and must
also end with such bag implying that there is no remaining obligation to fulfil.

However, this verification approach is not straightforwardly applicable to
condition variables. A command notify cannot be treated like a command send
because a notification on a condition variable is lost when there is no thread
waiting for that variable. Accordingly, it does not make sense to discharge an
obligation for a condition variable whenever it is notified. Similarly, a command
wait cannot be treated like a command receive. A command wait is normally
executed in a while loop, checking the waiting condition of the related condition
variable. Accordingly, it is impossible to build a loop invariant for such a loop if
we force the wait command to spend a credit for the related condition variable.

3 Deadlock-Free Monitors

3.1 High-Level Idea

In this section we introduce an approach to verify deadlock-freedom of pro-
grams in the presence of condition variables. This approach ensures that the
verified program never deadlocks, i.e. there is always a running thread, that is
not blocked, until the program terminates. The main idea behind this approach
is to make sure that for any condition variable v for which a thread is waiting
there exists a thread obliged to fulfil an obligation for v that only waits for a
waitable object whose wait level is less than the wait level of v. As a consequence,
if the program has some threads suspended, waiting for some obligations, there is
always a thread obliged to fulfil the obligation omin that is not suspended, where
omin has a minimal wait level among all waitable objects for which a thread is
waiting. Accordingly, the proposed proof rules make sure that (1) when a com-
mand wait(v, l) is executed Ot(v) > 0, where Ot maps each condition variable v
to the total number of obligations for v held by all threads (note that having a
thread with permission obs(O) implies O(v) � Ot(v)), (2) a thread discharges
an obligation for a condition variable only if after this discharge the invariant
one ob(v,Wt , Ot) defined as Wt(v) > 0 ⇒ Ot(v) > 0 still holds, where Wt(v)
denotes the number of threads waiting for condition variable v, and (3) a thread
with obligations O executes a command wait(v, l) only if v≺O.
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3.2 Tracking Numbers of Waiting Threads and Obligations

For all condition variables associated with a lock l the value of functions Wt and
Ot can only be changed by a thread that has locked l; Wt(v) is changed only
when one of the commands wait(v, l)/notify(v)/notifyAll(v) is executed, requiring
holding lock l, and we allow Ot(v) to be changed only when a permission locked
for l is available. Accordingly, when a thread acquires a lock these two bags
are stored in the related locked permission and are used to establish the rules
number 1 and 2, when a thread executes a wait command or discharges one
of its obligations. Note that the domain of these functions is the set of the
condition variables associated with the related lock. The thread executing the
critical section can change these two bags under some circumstances. If that
thread loads/discharges a condition variable onto/from the list of its obligations
this condition variable must also be loaded/discharged onto/from the bag Ot
stored in the related locked permission. Note that unlike the approach presented
by Leino et al. [4], an obligation for a condition variable can arbitrarily be
loaded or discharged by a thread, provided that the rule number 2 is respected.
At the start of the execution of a wait(v, l) command, Wt(v) is incremented and
after execution of commands notify(v)/notifyAll(v) one/all instance(s) of v is/are
removed from the bag Wt stored in the related locked permission, since these
commands change the number of threads waiting for v.

A program can be successfully verified according to the mentioned rules,
formally indicated in Fig. 5, if each lock associated with any condition vari-
able v has an appropriate invariant such that it implies the desired invariant
one ob(v,Wt , Ot). Accordingly, the proof rules allow locks to have invariants
parametrized over the bags Wt and Ot. When a thread acquires a lock the result
of applying the invariant of that lock to these two bags, stored in the related
locked permission, is provided for the thread and when that lock is released it is
expected that the result of applying the lock invariant to those bags, stored in
the related locked permission, again holds. However, before execution of a com-
mand wait(v, l), when lock l with bags Wt and Ot stored in its locked permission
is going to be released, it is expected that the invariant of l holds with bags
Wt�{[v]} and Ot because the running thread is going to wait for v and this con-
dition variable is going to be added to Wt . As this thread resumes its execution,
when it has some bags Wt ′ and Ot′ stored in the related locked permission, the
result of applying the invariant of l to these bags is provided for that thread. Note
that the total number of threads waiting for v, Wt(v), is already decreased when
a command notify(v) or notifyAll(v) is executed, causing the waiting thread(s)
to wake up and try to acquire the lock associated with v.

3.3 Resource Transfer on Notification

In general, as we will see when looking at examples, it is sometimes necessary
to transfer resources from a notifying thread to the threads being notified2.
2 This transfer is only sound in the absence of spurious wake-ups, where a thread

is awoken from its waiting state even though no thread has signaled the related
condition variable.

www.dbooks.org

https://www.dbooks.org/


Deadlock-Free Monitors 423

To this end, these resources, specified by a function M, are associated
with each condition variable v when v is created, such that the commands
notify(v)/notifyAll(v) consume one/Wt(v) instance(s) of these resources, respec-
tively, and the command wait(v, l) produces one instance of such resources (see
the rules Wait,Notify, and NotifyAll in Fig. 5).

NewLock {true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=z}

NewCv {true} newcond {λv. R(v)=z ∧ L(v)=l ∧ M(v)=m}

Acquire
{lock(l) ∗ obs(O) ∧ l≺O} acquire(l)

{λ . ∃Wt , Ot. locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})}

Release
{locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})} release(l) {λ . lock(l) ∗ obs(O)}

Wait
{locked(l,Wt , Ot) ∗ I(l)(Wt�{[v]}, Ot) ∗ obs(O�{[l]})

∧ l=L(v) ∧ v≺O ∧ l≺O ∧ safe obs(v,Wt�{[v]}, Ot)} wait(v, l)
{λ . obs(O�{[l]}) ∗ ∃Wt ′, Ot′. locked(l,Wt ′, Ot′) ∗ I(l)(Wt ′, Ot′) ∗ M(v)}

Notify
{locked(L(v),Wt , Ot) ∗ (Wt(v) = 0 ∨ M(v))} notify(v)

{λ . locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{locked(L(v),Wt , Ot) ∗ (
Wt(v)∗
i:=0

M(v))} notifyAll(v) {λ . locked(L(v),Wt [v:=0], Ot)}

InitLock
{ulock(l,Wt , Ot) ∗ inv(Wt , Ot) ∗ obs(O)} g initl(l) {λ . lock(l) ∗ obs(O) ∧ I(l)=inv}

ChargeOb
{obs(O) ∗ ulock/locked(L(v),Wt , Ot)} g chrg(v)

{λ . obs(O�{[v]}) ∗ ulock/locked(L(v),Wt , Ot�{[v]})}

DisOb
{obs(O) ∗ ulock/locked(L(v),Wt , Ot) ∧ safe obs(v,Wt(v), Ot−{[v]})}

g disch(v) {λ . obs(O−{[v]}) ∗ ulock/locked(L(v),Wt , Ot−{[v]})}

Fig. 5. Proof rules to verify deadlock-freedom of condition variables, where Wt(v)
and Ot(v) denote the total number of threads waiting for v and the total number
of obligations for v, respectively, and safe obs(v,Wt , Ot) ⇔ one ob(v,Wt , Ot) and
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)

3.4 Proof Rules

Figure 5 shows the proposed proof rules used to verify deadlock-freedom of
condition variables, where L and M are functions mapping each condition variable
to its associated lock and to the resources that are moved from the notifying
thread to the notified one when that condition variable is notified, respectively.
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Creating a lock, as shown in the rule NewLock, produces a permission ulock
storing the bags Wt and Ot, where these bags are initially empty. The bag
Ot in this permission, similar to a locked one, can be changed provided that the
obligations of the running thread are also updated by one of the ghost commands
g chrg(v) or g disch(v) (see rules ChargeOb and DisOb). The lock related to
this permission can be initialized by transferring the resources described by
the invariant of this lock, that is now parametrized over the bags Wt and Ot,
applied to the bags stored in this permission from the thread to the lock (see
rule InitLock). When this lock is acquired, as shown in the rule Acquire, the
resources indicated by its invariant are provided for the thread, and when it is
released, as shown in the rule Release, the resources described by its invariant
that must hold with appropriate bags, are again transferred from the thread
to the lock. The rules Wait and DisOb ensure that for any condition variable
v when the number of waiting threads is increased, by executing a command
wait(v, l), or the number of the obligations is decreased, by (logically) executing
a command g disch(v), the desired invariant one ob still holds. Additionally, the
rules Acquire and Wait make sure that a thread only waits for a waitable
object whose wait level is lower that the wait levels of obligations of that thread.
Note that in the rule Wait in the precondition of the command wait(v, l) it is
not necessary that the wait level of v is lower that the wait level of l, since lock
l is going to be released by this command. However, in this precondition the
wait level of l must be lower that the wait levels of the obligations of the thread
because when this thread is notified it tries to reacquire l, at which point l≺O
must hold. The commands notify(v)/notifyAll(v), as shown in the rules Notify
and NotifyAll, remove one/all instance(s) of v, if any, from the bag Wt stored
in the related locked permission. Additionally, notify(v) consumes the moving
resources, indicated by M(v), that appear in the postcondition of the notified
thread. Note that notifyAll(v) consumes Wt(v) instances of these resources, since
they are transferred to Wt(v) threads waiting for v.

3.5 Verifying Channels

Ghost Counters. We will now use our proof system to prove deadlock-freedom
of the program in Fig. 1. To do so, however, we will introduce a ghost resource
that plays the role of credits, in such a way that we can prove the invariant
Wt(ch) + Ct(ch) � Ot(ch) + sizeof(ch). In particular, we want this property
to follow from the lock invariant. This means we need to be able to talk, in
the lock invariant, about the total number of credits in the system. To achieve
this, we introduce a notion of ghost counters and corresponding ghost counter
tickets, both of which are a particular kind of ghost resources. Specifically, we
introduce three ghost commands: g newctr, g inc, and g dec. g newctr allocates
a new ghost counter whose value is zero and returns a ghost counter identifier
c for it. g inc(c) increments the value of the ghost counter with identifier c and
produces a ticket for the counter. g dec(c), finally, consumes a ticket for ghost
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NewCounter {true} g newctr {λc. ctr(c, 0)}

IncCounter {ctr(c, n)} g inc(c) {λ . ctr(c, n+1) ∗ tic(c)}

DecCounter {ctr(c, n) ∗ tic(c)} g dec(c) {λ . ctr(c, n−1) ∧ 0<n}

Fig. 6. Ghost counters

counter c and decrements the ghost counter’s value. Since these are the only
operations that manipulate ghost counters or ghost counter tickets, it follows
that the value of a ghost counter c is always equal to the number of tickets for
c in the system. Proof rules for these ghost commands are shown in Fig. 63.

The Channels Proof. Figure 7 illustrates how the program in Fig. 1 can be ver-
ified using our proof system. The invariant of lock ch.l in this program, denoted
by inv(ch), is parametrized over bags Wt , Ot and implies the desired invariant
one ob(ch.v,Wt , Ot). The permission ctr(ch.c, Ctv) in this invariant indicates
that the total number of credits (tickets) for ch.v is Ctv, where ch.c is a ghost field
added to the channel data structure, aiming to store a ghost counter identifier
for the ghost counter of ch.v. Generally, a lock invariant can imply the invariant
one ob(v,Wt , Ot) if it asserts Wt(v)+ Ct(v) � Ot(v)+ S(v) and Wt(v) � Ot(v),
where Ct(v) is the total number of credits for v and S(v) is an integer value such
that the command wait(v, l) is executed only if S(v) � 0. After initializing l in
the main routine, there exists a credit for ch.v (denoted by tic(ch.c)) that is
consumed by the thread executing the receive routine, and also an obligation for
ch.v that is fulfilled by this thread after executing the send routine. The credit
tic(ch.c) in the precondition of the routine receive ensures that before execution
of the command wait(ch.v, ch.l), Ot(ch.v) > 0. This inequality follows from the
invariant of lock l, which holds for Wt�{[ch.v]} and Ot when Ctv is decreased
by g dec(ch.c). This credit (or the one specified by M(ch.v) that is moved from
a notifier thread when the receiver thread wakes up) must be consumed after
execution of the command dequeue(ch.q) and before releasing ch.l to make sure
that the invariant still holds after decreasing the number of items in ch.q. The
obligation for ch.v in the precondition of the routine send is discharged by this
routine, which is safe, since after the execution of the commands enqueue and
notify the invariant one ob(ch.v,Wt , Ot − {[ch.v]}), which follows from the lock
invariant, holds.

3 Some logics for program verification, such as Iris [19], include general support for
defining ghost resources such as our ghost counters. In particular, our ghost counters
can be obtained in Iris as an instance of the authoritative monoid [19, p. 5].
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inv(channel ch) ::= λWt . λOt. ∃Ctv. ctr(ch.c, Ctv) ∗ ∃s. queue(ch.q, s) ∧
L(ch.v)=ch.l ∧ M(ch.v)=tic(ch.c) ∧
Wt(ch.v) + Ctv � Ot(ch.v) + s ∧
Wt(ch.v) � Ot(ch.v)

routine main(){{obs({[]})}
q:=newqueue; l:=newlock; v:=newcond; c:=g newctr; g inc(c);
{obs({[]}) ∗ ulock(l, {[]}, {[]}) ∗ queue(q, 0) ∗ ctr(c, 1) ∗ tic(c)
∧ L(v)=l ∧ M(v)=tic(c) ∧ R(l)=0 ∧ R(v)=1}
ch:=channel(q, l, v); ch.c:=c;
{obs({[]}) ∗ ulock(l, {[]}, {[]}) ∗ inv(ch)({[]}, {[v]}) ∗ tic(c)} g chrg(v);
{obs({[v]}) ∗ ulock(l, {[]}, {[v]}) ∗ inv(ch)({[]}, {[v]}) ∗ tic(c)} g initl(l);
{obs({[v]}) ∗ lock(l) ∗ tic(c) ∧ I(l)=inv(ch)}
fork (receive(ch));
{obs({[v]}) ∗ lock(l)}
send(ch, 12) {obs({[]})}}

routine receive(channel ch){
{obs(O) ∗ tic(ch.c) ∗ lock(ch.l) ∧ ch.l≺O ∧ ch.v≺O ∧ I(ch.l)=inv(ch)}
acquire(ch.l);
{obs(O�{[ch.l]}) ∗ tic(ch.c) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
while(sizeof(ch.q) = 0){ g dec(ch.c);

{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt�{[ch.v]}, Ot)}}
wait(ch.v, ch.l)
{obs(O�{[ch.l]}) ∗ M(ch.v) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}};

dequeue(ch.q); g dec(ch.c);
{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
release(ch.l) {obs(O) ∗ lock(ch.l)}}

routine send(channel ch, int d){
{obs(O�{[ch.v]}) ∗ lock(ch.l) ∧ ch.l≺O�{[ch.v]} ∧ I(ch.l)=inv(ch)}
acquire(ch.l);
{obs(O�{[ch.v, ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
enqueue(ch.q, d);
if (Wt(ch.v)>0) g inc(ch.c);
notify(ch.v);
{obs(O�{[ch.v, ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt, Ot−{[ch.v]})}
g disch(ch.v);
{obs(O�{[ch.l]}) ∗ ∃Wt , Ot. locked(ch.l,Wt , Ot) ∗ inv(ch)(Wt , Ot)}
release(ch.l) {obs(O) ∗ lock(ch.l)}}

Fig. 7. Verification of the program in Fig. 1

3.6 Other Examples

Using the proof system of this section we prove two other deadlock-free programs,
namely sleeping barber [16], and barrier. In the barrier program shown in Fig. 8, a
barrier b consists of an integer variable r indicating the number of the remaining
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routine main(){
r:=newint(3);
l:=newlock;
v:=newcond;
b:=barrier(r, l, v);
fork (task1(); wait for rest(b); task2());
fork (task1(); wait for rest(b); task2());
task1(); wait for rest(b); task2()}

routine wait for rest(barrier b){
acquire(b.l);
b.r:=b.r−1;
if(b.r=0)

notifyAll();
else

while(b.r>0)
wait(b.v, b.l);

release(b.l)}

inv(barrier b) ::= λWt . λOt. ∃r�0. b.r �→r ∧ L(b.v)=b.l ∧ M(b.v)=true ∧
(Wt(b.v) = 0 ∨ 0 < r) ∧ (r � Ot(b.v))

routine main(){{obs({[]})}
r:=newint(3); l:=newlock; v:=newcond;
{obs({[]}) ∗ r �→3 ∗ ulock(l, {[]}, {[]}) ∧ L(v)=l ∧ M(v)=true ∧ R(l)=0 ∧ R(v)=1}
b:=barrier(r, l, v);
{obs({[]}) ∗ inv(b)({[]}, {[3·v]}) ∗ ulock(l, {[]}, {[]})}
g chrg(v); g chrg(v); g chrg(v); g initl(l);
{obs({[3·v]}) ∗ lock(l) ∧ I(l)=inv(b)}
fork (wait for rest(b));
{obs({[2·v]}) ∗ lock(l)}
fork (wait for rest(b));
{obs({[v]}) ∗ lock(l)}
wait for rest(b) {obs({[]})}}

routine wait for rest(barrier b){
{obs(O�{[b.v]}) ∗ lock(b.l) ∧ b.l≺O�{[b.v]} ∧ b.v≺O ∧ I(b.l)=inv(b)}
acquire(b.l);
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}
b.r:=b.r−1;
if(b.r=0){

notifyAll(b.v);
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt [b.v:=0], Ot)
∗inv(b)(Wt [b.v:=0], Ot−{[b.v]})} g disch(b.v)
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}}

else{
{obs(O�{[b.v, b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot)
∗inv(b)(Wt , Ot−{[b.v]})} g disch(b.v);
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}
while(b.r>0)

{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt�{[b.v]}, Ot)}
wait(b.v, b.l)
{obs(O�{[b.l]}) ∗ ∃Wt , Ot. locked(b.l,Wt , Ot) ∗ inv(b)(Wt , Ot)}};

release(b.l) {obs(O) ∗ lock(b.l)}}

Fig. 8. Verification of a barrier synchronized using a monitor
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threads that must call the routine wait for rest, a lock l protecting r against data
races, and a condition variable v. Each thread executing the routine wait for rest
first decreases the variable r, and if the resulting value is still positive waits for
v, otherwise it notifies all threads waiting for v. In this program the barrier is
initialized to 3, implying that no thread must start task2 unless all the three
threads in this program finish task1. This program is deadlock-free because the
routine wait for rest is executed by three different threads. Figure 8 illustrates
how this program can be verified by the presented proof rules. Note that before
executing g disch in the else branch, safe obs holds because at this point we have
0 < b.r, which implies 1 < b.r before the execution of b.r := b.r − 1, and by the
invariant we have 1 < Ot(b.v), implying 0 < (Ot − {[b.v]})(b.v). The interesting
point about the verification of this program is that since all the threads waiting
for condition variable v in this program are notified by the command notifyAll,
the invariant of the related lock, implying one ob(b.v,Wt , Ot), is significantly
different from the ones defined in the channel and sleeping barber examples.
Generally, for a condition variable v on which only notifyAll is executed (and
not notify) a lock invariant can imply the invariant one ob(v,Wt , Ot) if it asserts
Wt(v) = 0 ∨ S(v) � Ct(v) and Ct(v) < Ot(v) + S(v), where Ct(v) is the total
number of credits for v and S(v) is an integer value such that the command
wait(v, l) is executed only if S(v) � 0. For this particular example S(b.v) = 1−b.r
and Ct(b.v) = 0, since this program can be verified without incorporating the
notion of credits.

4 Relaxing the Precedence Relation

The precedence relation, in this paper denoted by ≺, introduced in [4] makes
sure that all threads wait for the waitable objects in strict ascending order (with
respect to the wait level associated with each waitable object), or here in this
paper in descending order, ensuring that in any state of the execution there is no
cycle in the corresponding wait-for graph. However, this relation is too restrictive
and prevents verifying some programs that are actually deadlock-free, such as
the one shown in the left side of Fig. 9. In this program a value is increased by
two threads communicating through a channel. Each thread receives a value from
the channel, increases that value, and then sends it back on the channel. Since an
initial value is sent on the related channel this program is deadlock-free. The first
attempt to verify this program is illustrated in the middle part of Fig. 9, where
the required credit to verify the receive command in the routine inc is going to
be provided by the send command, executed immediately after this command,
and not by the precondition of this routine. In other words, the idea is to load
a credit and an obligation for ch in the routine inc itself, and then spend the
loaded credit to verify the receive(ch) command and fulfil the loaded obligation
by the send(ch) command. However, this idea fails because the receive command
in the routine inc cannot be verified since one of its preconditions, ch≺{[ch]}, never
holds. Kobayashi [6,20] has addressed this problem in his type system by using
the notion of usages and assigning levels to each obligation/capability, instead of
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routine main(){
ch:=channel;
send(ch, 12);
fork (inc(ch));
fork (inc(ch))}

routine inc(channel ch){
d:=receive(ch);
send(ch, d+1)}

routine main(){
{obs({[]})}
ch:=newchannel;
send(ch, 12);
fork (inc(ch));
fork (inc(ch)) {obs({[]})}}

routine inc(channel ch){
{obs({[]})}
{obs({[ch]}) ∗ credit(ch)
∧ ch {≺� [ch]}}
d:=receive(ch);
{obs({[ch]})}
send(ch, d+1) {obs({[]})}}

routine main(){
{obs({[]})}
ch:=newchannel;
{obs({[ch]}) ∧ P(ch)=true}
send(ch, 12);
{obs({[]})}
fork (inc(ch));
fork (inc(ch)) {obs({[]})}}

routine inc(channel ch){
{obs({[]}) ∧ ch�{[ch]}}
〈obs({[ch]}) ∗ credit(ch)
∧ ch�{[ch]}〉
d:=receive(ch);
{obs({[ch]})}
send(ch, d+1) {obs({[]})}}

Fig. 9. A deadlock-free program verified by exploiting the relaxed precedence relation

waitable objects. However, in the next section we provide a novel idea to address
this problem by just relaxing the precedence relation used in the presented proof
rules.

4.1 A Relaxed Precedence Relation

To tackle the problem mentioned in the previous section we relax the precedence
relation, enforced by ≺, by replacing ≺ by � satisfying the following property:
o�O holds if either o≺O or (1) o≺O − {[o]}, and (2) o satisfies the property that
in any execution state, if a thread waits for o then there exists a thread that can
discharge an obligation for o and is not waiting for any object whose wait level
is equal to/greater than the wait level of o. This property still guarantees that in
any state of the execution if the program has some threads suspended, waiting for
some obligations, there is always a thread obliged to fulfil the obligation omin

that is not blocked, where omin has a minimal wait level among all waitable
objects for which a thread is waiting.

The condition number 2 is met if it is an invariant that for a condition variable
o for which a thread is waiting the total number of obligations is greater than the
total number of waiting threads. Since each thread waiting for o has at most one
instance of o in the bag of its obligations, according to the pigeonhole principle,
if the number obligations for o is higher than the number of threads waiting for
o then there exists a thread that holds an obligation for o that is not waiting for
o, implying the rule number 2 because this thread only waits for objects whose
wait levels are lower than the wait level of o. Accordingly, we first introduce a
new function P in the proof rules mapping each waitable object to a boolean
value, and then make sure that for any object o for which a thread is waiting if
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P(o) = true then Wt(o) < Ot(o). With the help of this function we define the
relaxed precedence relation as shown in Definition 1.

Definition 1 (Relaxed precedence relation). The relaxed precedence rela-
tion indexed over functions R and P holds for a waitable object v and a bag of
obligations O, denoted by v � O, if and only if:

v≺O ∨ (v≺O − {[v]} ∧ P(v) = true) , where v≺O ⇔ ∀o ∈ O. R(v) < R(o)

Using this relaxed precedence relation the approach presented by Leino et al. [4]
can also support more complex programs, such as the one in the left side of Fig. 9.
This approach can exploit this relation by (1) replacing the original precedence
relation ≺ by the relaxed one �, and (2) replacing the rule associated with creating
a channel by the one shown below. According to this proof rule for each channel
ch the function P, in the definition of the relaxed precedence relation, is initialized
when ch is created such that if P(ch) is decided to be true then one obligation for
ch is loaded onto the bag of obligations of the creating thread. The approach is
still sound because for any channel ch for which P is true the invariant Wt(ch) +
Ct(ch) < Ot(ch)+ sizeof(ch) holds. Combined with the fact that in this language,
where channels are primitive constructs, Wt(ch) > 0 ⇒ sizeof(ch) = 0, we have
Wt(ch) > 0 ⇒ Wt(ch) < Ot(ch). Now consider a deadlocked state, where each
thread is waiting for a waitable object. Among all of these waitable objects take
the one having a minimal wait level, namely om. If om is a lock or a channel, where
P(om) = false, then at least one thread has an obligation for om and is waiting for
an object o whose wait level is lower that the wait level of om, which contradicts
minimality of thewait level of om. Otherwise, sinceWt(om) > 0we haveWt(om) <
Ot(om). Additionally, we know that each thread waiting for om has at most one
obligation for om. Accordingly, there must be a thread holding an obligation for om

that is not waiting for om. Consequently, this thread must be waiting for an object
o whose wait level is lower than the wait level of om, which contradicts minimality
of the wait level of om.

{obs(O)} newchannel {λch. obs(O′) ∧ R(ch) = z ∧ P(ch) = b
∧((b = false ∧ O′ = O) ∨ (b = true ∧ O′ = O�{[ch]}))}

To exploit the relaxed definition in the approach presented in this paper we
only need to make sure that for any condition variable v for which a thread is
waiting if P(v) is true then Ot(v) is greater than Wt(v). To achieve this goal
we include this invariant in the definition of the invariant safe obs, shown in
Definition 2, an invariant that must hold when a command wait or a ghost
command g disch is executed.

Definition 2 (Safe Obligations). The relation safe obs(v,Wt , Ot), indexed
over function P, holds if and only if:

one ob(v,Wt , Ot) ∧ (P(v) = true ⇒ spare ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)
spare ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Wt(v) < Ot(v))
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one ob(v,Wt , Ot) ∧ (P(v)=true ⇒ spare ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v)>0 ⇒ Ot(v)>0)
spare ob(v,Wt , Ot) ⇔ (Wt(v)>0 ⇒ Wt(v)<Ot(v))

routine main(){
aw:=newint(0);
ww:=newint(0);
ar:=newint(0);
l:=newlock;
vw:=newcond;
vr:=newcond;
b := rdwr(aw, ww
, ar, l, vw, vr);
fork(
while (true)
fork(reader(b))

);
while (true)
fork(writer(b))

}

routine reader(rdwr b){
acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar:=b.ar+1;
release(b.l);
// Perform reading ...
acquire(b.l);
if(b.ar<1)

abort;
b.ar:=b.ar−1;
notify(b.vw);
release(b.l)}

routine writer(rdwr b){
acquire(b.l);
while(b.aw+b.ar>0){

b.ww:=b.ww+1;
wait(b.vw, b.l);
if(b.ww<1)

abort();
b.ww:=b.ww−1

};
b.aw:=b.aw+1;
release(b.l);
// Perform writing ...
acquire(b.l);
if(b.aw �=1)

abort;
b.aw:=b.aw−1;
notify(b.vw);
if(b.ww=0)

notifyAll(b.vr);
release(b.l)}

Fig. 10. A readers-writers program with variables aw, holding the number of threads
writing, ww, holding the number of thread waiting to write, and ar, holding the number
of threads reading, that is synchronized using a monitor consisting of condition variables
vw, preventing writers from writing while other threads are reading or writing, and vr,
preventing readers from reading while there is another thread writing or waiting to
write.

Readers-Writes Locks. As another application of this relaxed definition con-
sider a readers-writers program, shown in Fig. 104, where the condition variable
vw prevents writers from writing on a shared memory when that memory is being
accessed by other threads. After reading the shared memory, a reader thread noti-
fies this condition variable if there is no other thread reading that memory. This
condition variable is also notified by a writer thread when it finishes its writing.
Consequently, a writer thread first might wait for vw and then fulfil an obliga-
tion for this condition variable. This program is verified if the writer thread itself
produces a credit and an obligation for vw and then uses the former for the com-
mand wait(vw, l) and fulfils the latter at the end of its execution. Accordingly, since
when the command wait(vw, l) is executed vw is in the bag of obligations of the

4 The abort commands in this program can be eliminated using the ghost counters from
Fig. 6. However, we leave them in for simplicity.
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inv(rdwr b) ::= λWt . λOt. ∃Ctw. ctr(b.cw, Ctw) ∗
∃aw�0, ww�0, ar�0. b.aw �→aw ∗ b.ww �→ww ∗ b.ar �→ar ∧
L(b.vw)=L(b.vr)=b.l ∧ M(b.vw)=tic(b.cw) ∧ M(b.vr)=true ∧ P(vw)=true ∧ P(vr)=false ∧
(Wt(b.vr) = 0 ∨ 0 < aw + ww) ∧
aw + ww � Ot(b.vr) ∧
Wt(b.vw) + Ctw + aw + ar � Ot(b.vw) ∧
(Wt(b.vw) = 0 ∨ Wt(b.vw) < Ot(b.vw))

routine main(){
aw:=newint(0); ww:=newint(0);
ar:=newint(0); l:=newlock;
vw:=newcond; vr:=newcond;
b := rdwr(aw, ww, ar, l, vw, vr);
b.cw:=g newctr;
{obs({[]}) ∗ inv(b)({[]}, {[]}) ∗ ulock(l, {[]}, {[]}) ∗
L(vw)=L(vr)=l ∧ M(vw)=tic(b.cw) ∧
M(vr)=true ∧ R(l)=0 ∧ R(vw)=1 ∧
R(vr)=2 ∧ L(vw)=l ∧ L(vr)=l
∧ P(vw)=true ∧ P(vr)=false} g initl(l);
{obs({[]}) ∗ lock(l) ∧ I(l)=inv(b)}
fork( {obs({[]}) ∗ lock(l)}
while (true) fork(reader(b)));
{obs({[]}) ∗ lock(l)}
while (true) fork(writer(b))
{obs({[]}) ∗ lock(l)}}

routine reader(rdwr b){
{obs(O) ∗ lock(b.l) ∧ b.l�O�{[b.vw]}
∧ b.vr�O ∧ I(b.l)=inv(b)}
acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar:=b.ar+1;
g chrg(b.vw);
release(b.l);
// Perform reading ...
acquire(b.l);
if(b.ar<1)

abort;
b.ar:=b.ar−1;
if (Wt(b.vw) > 0) g inc(b.cw);
notify(b.vw);
g disch(b.vw);
release(b.l) {obs({[]}) ∗ lock(b.l)}}

routine writer(rdwr b){
{obs(O) ∗ lock(b.l) ∧ b.l�O�{[b.vw, b.vr]}
∧ b.vw�O�{[b.vw, b.vr]} ∧ I(b.l)=inv(b)}
acquire(b.l);
g chrg(b.vw); g inc(b.cw);
g chrg(b.vr);
while(b.aw+b.ar>0){

g dec(b.cw);
b.ww:=b.ww+1;
wait(b.vw, b.l);
if(b.ww<1)

abort();
b.ww:=b.ww−1

};
b.aw:=b.aw+1;
g dec(b.cw);
release(b.l);
// Perform writing ...
acquire(b.l);
if(b.aw �=1)

abort;
b.aw:=b.aw−1;
if (Wt(b.vw) > 0) g inc(b.cw);
notify(b.vw);
if(b.ww=0)

notifyAll(b.vr);
g disch(b.vw); g disch(b.vr);
release(b.l) {obs({[]}) ∗ lock(b.l)}}

Fig. 11. Verification of the program in Fig. 10
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writer thread, this command can be verified if vw�{[vw]}, where P(vw) must be true.
The verification of this program is illustrated in Fig. 11. Generally, for a condi-
tion variable v for which P (v) = true a lock invariant can imply the invariant
one ob(v,Wt , Ot) if it asserts Wt(v) + Ct(v) < Ot(v) + S(v) and Wt(v) =
0 ∨ Wt(v) < Ot(v), where Ct(v) is the total number of credits for v and S(v) is
an integer value such that wait(v, l) is executed only if S(v) � 0.

4.2 A Further Relaxation

The relation � allows one to verify some deadlock-free programs where a thread
waits for a condition variable while that thread is also obliged to fulfil an obliga-
tion for that variable. However, it is still possible to have a more general, more
relaxed definition for this relation. Under this definition a thread with obliga-
tions O is allowed to wait for a condition variable v if either v≺O, or there exists
an obligation o such that (1) v≺O − {[o]}, and (2) o satisfies the property that in
any execution state, if a thread is waiting for o then there exists a thread that
is not waiting for any waitable object whose wait level is equal to/greater than
the wait levels of v and o. This new definition still guarantees that in any state
of the execution if the program has some threads suspended, waiting for some
obligations, there is always a thread obliged to fulfil the obligation omin that is
not suspended, where omin has a minimal wait level among all waitable objects
for which a thread is waiting. To satisfy the condition number 2 we introduce a
new definition for �, shown in Definition 3, that uses a new function X mapping
each lock to a set of wait levels. This definition will be sound only if the proof
rules ensure that for any condition variable v whose wait level is in X(L(v)) the
number of obligations is equal to or greater than the number of the waiting
threads.

This definition is still sound because of Lemma 1, that has been machine-
checked in Coq5, where G is a bag of waitable object-bag of obligations pairs
such that each element t of G is associated with a thread in a state of the
execution, where the first element of t is the object for which t is waiting and
the second element is the bag of obligations of t. This lemma implies that if
all the mentioned rules, denoted by H1 to H4, are respected in any state of
the execution then it is impossible that all threads in that state are waiting
for a waitable object. This lemma can be proved by induction on the number
of elements of G and considering the element waiting for an object whose wait
level is minimal (see [16] representing its proof in details).

Definition 3 (Relaxed precedence relation). The new precedence relation
indexed over functions R, L,P,X holds for a waitable object v and a bag of obli-
gations O, denoted by v � O, if and only if:

5 The machine-checked proof can be found at https://github.com/jafarhamin/
deadlock-free-monitors-soundness.

https://github.com/jafarhamin/deadlock-free-monitors-soundness
https://github.com/jafarhamin/deadlock-free-monitors-soundness


434 J. Hamin and B. Jacobs

(v≺O ∨ v�O) ∧ (¬exc(v) ∨ v⊥O), where
v≺O ⇔ ∀o ∈ O. R(v) < R(o)
v�O ⇔ P(v) = true ∧ exc(v) ∧

∃o. v≺O − {[o]} ∧ R(v) � R(o) + 1 ∧ L(v) = L(o) ∧ exc(o)
exc(v) = R(v) ∈ X(L(v))

v⊥O ⇔ let Ox = λv′.

{
O(v′) if R(v′) ∈ X(L(v))
0 otherwise

in

|Ox| � 1 ∧
∀v′. Ox(v′) > 0 ⇒ L(v′) = L(v)

Lemma 1 (A Valid Graph Is Not Deadlocked)
∀ G:Bags(WaitObjs × Bags(WaitObjs)), R:WaitObjs→WaitLevels,
L:WaitObjs→Locks, P :WaitObjs→Bools, X:Locks→Sets(WaitLevels).
H1 ∧ H2 ∧ H3 ∧ H4 ⇒ G = {[]}, where

H1 : ∀(o,O) ∈ G. 0 < Ot(o)
H2 : ∀(o,O) ∈ G. P (o) = true ⇒ Wt(o) < Ot(o)
H3 : ∀(o,O) ∈ G. R(o) ∈ X(L(o)) ⇒ Wt(o) � Ot(o)
H4 : ∀(o,O) ∈ G. o�R,L,P,XO

where Wt = �
(o,O)∈G

{[o]} and Ot = �
(o,O)∈G

O

NewLock {true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=z ∧ X(l)=X}

NewCv {true} newcond {λv. R(v)=z ∧ L(v)=l ∧ M(v)=m ∧ P(v)=b}

Fig. 12. New proof rules initializing functions X and P used in safe obs and �

To
extend the proof rules with the new precedence relation it suffices to include
a new invariant own ob in the definition of safe obs, as shown in Definition 4, an
invariant that must hold when a command wait or a ghost command g disch is
executed, to make sure that for any condition variable for which exc holds, the
number of obligations is equal to/greater than the number of the waiting threads.
Additionally, the functions X and P, as indicated in Fig. 12, are initialized when
a lock and a condition variable is created, respectively. The rest of the proof rules
are the same as those defined in Fig. 5 except that the old precedence relation
(≺) is replaced by the new one (�).

Definition 4 (Safe Obligations). The relation safe obs(v,Wt , Ot), indexed
over functions R, L,P,X, holds if and only if:

one ob(v,Wt , Ot) ∧ (P(v) = true ⇒ spare ob(v,Wt , Ot)) ∧
(exc(v) = true ⇒ own ob(v,Wt , Ot)), where
one ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Ot(v) > 0)
spare ob(v,Wt , Ot) ⇔ (Wt(v) > 0 ⇒ Wt(v) < Ot(v))
own ob(v,Wt , Ot) ⇔ (Wt(v) � Ot(v))
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Bounded Channels. One application of the new definition is a bounded chan-
nel program, shown in Fig. 13, where a sender thread waits for a receiver thread
if the channel is full, synchronized by vf , and a receiver thread waits for a sender
thread if the channel is empty, synchronized by ve. More precisely, the sender
thread with an obligation for ve might execute the command wait(vf , l), and the
receiver thread with an obligation for vf might execute a command wait(ve, l).

routine main(){
q := newqueue;
l := newlock;
vf := newcvar;
ve := newcvar;
ch:=channel(q, l, vf , ve);
fork (receive(ch));
send(ch, 12)}

routine send(channel ch, int d)
{
acquire(ch.l);
while(sizeof(ch.q) = max)

wait(ch.vf , ch.l);
enqueue(ch.q, d);
notify(ch.ve);
release(ch.l)}

routine receive(channel ch)
{
acquire(ch.l);
while(sizeof(ch.q) = 0)

wait(ch.ve, ch.l);
dequeue(ch.q);
notify(ch.vf );
release(ch.l)}

inv(channel ch) ::= λWt . λOt. ∃Cte, Ctf. ctr(ch.ce, Cte) ∗ ctr(ch.cf , Ctf) ∗
∃s. queue(ch.q, s) ∧ P(ve)=false ∧ M(ve)=tic(ch.ce) ∧ M(vf )=tic(ch.cf ) land
L(ch.ve)=L(ch.vf )=ch.l ∧
Wt(ch.ve) + Cte � Ot(ch.ve) + s ∧ Wt(ch.ve) � Ot(ch.ve) ∧
Wt(ch.vf ) + Ctf + s < Ot(ch.vf ) + max ∧ (Wt(vf ) = 0 ∨ Wt(ch.vf ) < Ot(ch.vf ))

routine main(){
q := newqueue;
l := newlock;
vf := newcvar;
ve := newcvar;
ch:=channel(q, l, vf , ve);
ch.ce:=g newctr;
ch.cf :=g newctr;
g inc(ch.ce);
g inc(ch.cf );
g chrg(ve); g chrg(vf );
g initl(l);
{obs({[ve, vf ]}) ∗ lock(l) ∗
tic(ch.ce) ∗ tic(ch.cf ) ∗
L(vf )=l ∧ L(ve)=l ∧
M(ve)=tic(ch.ce) ∧
M(vf )=tic(ch.cf ) ∧
P(vf )=true ∧
P(ve)=false ∧
R(l)=0 ∧
R(ve)=1 ∧ R(vf )=2 ∧
X(l)={1, 2} ∧ I(l)=inv}
fork (receive(ch));
send(ch, 12) {obs({[]})}}

routine send(channel ch, int d)
{{obs(O�{[ch.ve]}) ∗ tic(ch.cf ) ∗
lock(ch.l) ∧ ch.l�O�{[ch.ve]} ∧
ch.vf�O�{[ch.ve]}∧I(ch.l)=inv}
acquire(ch.l);
while(sizeof(ch.q) = max){

g dec(ch.cf );
wait(ch.vf , ch.l)};

enqueue(ch.q, d);
if (Wt(b.ve) > 0)

g inc(b.ce);
notify(ch.ve);
g disch(ch.ve);
g dec(ch.cf );
release(ch.l)
{obs(O) ∗ lock(ch.l)}}

routine receive(channel ch){
{obs(O�{[ch.vf ]}) ∗ tic(ch.ce) ∗
lock(ch.l) ∧ ch.l�O�{[ch.vf ]} ∧
ch.ve�O�{[ch.vf ]}∧I(ch.l)=inv}
acquire(ch.l);
while(sizeof(ch.q) = 0){

g dec(ch.ce);
wait(ch.ve, ch.l)};

dequeue(ch.q);
if (Wt(b.vf ) > 0)

g inc(b.cf );
notify(ch.vf );
g disch(ch.vf );
g dec(ch.ce);
release(ch.l)
{obs(O) ∗ lock(ch.l)}}

Fig. 13. Verification of a bounded channel synchronized using a monitor consisting of
condition variables vf , preventing sending on a full channel, and ve, preventing taking
messages from an empty channel
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Since ve and vf are not equal, it is impossible to verify this program by the old
definition of � because the waiting levels of ve and vf cannot be lower than
each other. Thanks to the new definition of �, this program can be verified, as
shown in Fig. 13, by initializing P(vf ) with true and X(l) with {1, 2}, where two
consecutive numbers 1 and 2 are the wait levels of ve and vf , respectively.

5 Soundness Proof

In this section we provide a soundness proof for the present approach6, i.e.
if a program is verified by the proposed proof rules, where the verification
starts from an empty bag of obligations and also ends with such bag, this
program is deadlock-free. To this end, we first define the syntax of programs
and a small-step semantics for programs (�) relating two configurations (see
[16] for formal definitions). A configuration is a thread table-heap pair (t, h),
where heaps and thread tables are some partial functions from locations and
thread identifiers to integers and command-context pairs (c; ξ), respectively,
where a context, denoted by ξ, is either done or let x:=[] in c; ξ. Then we
define validity of configurations, shown in Definition 5, and prove that (1) if
a program c is verified by the proposed proof rules, where it starts from the
precondition obs({[]}) and satisfies the post condition λ .obs({[]}), then the ini-
tial configuration, where the heap is empty, denoted by 0 = λ .∅, and there is
only one thread with command c and context done, is a valid configuration
(Theorem 4), (2) a valid configuration is not deadlocked (Theorem 5), and
(3) starting from a valid configuration, all the subsequent configurations of the
execution are also valid (Theorem 6).

In a valid configuration (t, h),h contains all the heap ownerships that are in pos-
session of all threads in t and also those that are in possession of the locks that are
not held, specified by a list A. Additionally, each thread must have all the required
permissions to be successfully verified with no remaining obligation, enforced by
wpcx. wpcx(c, ξ) in this definition is a function returning the weakest precondition
of the command c with the context ξ w.r.t. the postcondition λ .obs({[]}) (see [16]
for formal definitions). This function is defined with the help of a function wp(c, a)
returning the weakest precondition the command c w.r.t. the postcondition a.

Definition 5 (Validity of Configurations). A configuration is valid, denoted
by valid(t, h), if there exist a list of augmented threads T , consisting of an
identifier (id), a program (c), a context (ξ), a permission heap (p), a ghost
resource heap (C) and a bag of obligations (O) associated with each thread; a list
of assertions A, and some functions R, I, L,M,P,X such that:

– ∀id, c, ξ. t(id) = (c; ξ) ⇔ ∃p,O,C. (id, c, ξ, p,O,C) ∈ T
– h = pheap2heap( ∗

a∈A
a ∗ ∗

(id,c,ξ,p,O,C)∈T
p)

6 The machine-checked version of some lemmas and theorems in this proof, such as
Theorems 4 and 5, can be found at https://github.com/jafarhamin/deadlock-free-
monitors-soundness.
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– ∀(id, c, ξ, p,O,C) ∈ T.
• p,O,C |= wpcxR,I,L,M,P,X(c, ξ)
• ∀l,Wt , Ot. p(l) = Ulock/Locked(Wt , Ot) ⇒ Wt = Wtl ∧ Ot = Otl
• ∀l. p(l) = Lock ∧ h(l) = 1 ⇒ I(l)(Wtl,Otl) ∈ A
• ∀l. p(l) = Lock∨p(l) = Locked(Wtl,Otl) ⇒ ¬P (l)∧¬exc(l)∧ (h(l) = 0 ⇒

l ∈ Ot)
• ∀o. waiting for(c, h) = o ⇒ safe obsR,L,P,X(o,Wt,Ot)

where

• Ot = �
(id,c,ξ,p,O,C)∈T

O,Wt = �
(id,c,ξ,p,O,C)∈T∧waiting for(c,h)=o

{[o]}
• Ol is a bag that given an object o returns O(o) if L(o) = l and 0 if L(o) �= l
• waiting for(c, h) returns the object for which c is waiting, if any
• pheap2heap(p) returns the heap corresponding with permission heap p

We finally prove that for each proof rule {a} c {a′} we have a ⇒ wp(c, a′). To
this end, we first define correctness of commands, shown in Definition 6, and then
for each proof rule {a} c {a′} we prove correct(a, c, a′). In addition to the proof
rules presented in this paper, other useful rules such as the rules consequence,
frame and sequential, shown in Theorems 1, 2, and 3 can also be proved with
the help of some auxiliary lemmas in [16]. Note that the indexes R, I, L,M,P,X
are omitted when they are unimportant.

Definition 6 (Correctness of Commands)

correctR,I,L,M,P,X(a, c, a′) ⇔ (a ⇒ wpR,I,L,M,P,X(c, a′))

Theorem 1 (Rule Consequence)

correct(a1, c, a2) ∧ (a′
1 ⇒ a1) ∧ (∀z. a2(z) ⇒ a′

2(z)) ⇒ correct(a′
1, c, a

′
2)

Theorem 2 (Rule Frame)

correct(a, c, a′) ⇒ correct(a ∗ f, c, λz. a′(z) ∗ f)

Theorem 3 (Rule Sequential Composition)

correct(a, c1, a
′) ∧ (∀z. correct(a′(z), c2[z/x], a′′)) ⇒

correct(a, let x:=c1 in c2, a
′′)

Theorem 4 (The Initial Configuration is Valid)

correctR,I,L,M,P,X(obs({[]}), c, λ .obs({[]})) ⇒ valid(0[id:=c; done],0)

Proof. The goal is achieved because there are an augmented thread list T =
[(id, c, done,0, {[]},0)], a list of assertions A = [], and functions R, I, L,M,P,X
by which all the conditions in the definition of validity of configurations are
satisfied.
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Theorem 5 (A Valid Configuration is Not Deadlocked)

(∃id, c, ξ, o. t(id) = (c; ξ) ∧ waiting for(c, h) = o) ∧ valid(t, h)
⇒ ∃id′, c′, ξ′, t(id′) = (c′; ξ′) ∧ waiting for(c′, h) = ∅

Proof. We assume that all threads in t are waiting for an object. Since (t, h)
is a valid configuration there exists a valid augmented thread table T with
a corresponding valid graph G = g(T ), where g maps any element such as
(id, c, ξ, p,O,C) to a new one such as (waiting for(c), O). By Lemma 1, we have
G = {[]}, implying T = {[]}, implying t = 0 which contradicts the assumption of
the theorem.

Theorem 6 (Steps Preserve Validity of Configurations).7

valid(κ) ∧ κ � κ′ ⇒ valid(κ′)

Proof. By case analysis of the small step relation � (see [16] explaining the
proof of some non-trivial cases).

6 Related Work

Several approaches to verify termination [1,21], total correctness [3], and lock
freedom [2] of concurrent programs have been proposed. These approaches are
only applicable to non-blocking algorithms, where the suspension of one thread
cannot lead to the suspension of other threads. Consequently, they cannot be
used to verify deadlock-freedom of programs using condition variables, where
the suspension of a notifying thread might lead a waiting thread to be infinitely
blocked. In [22] a compositional approach to verify termination of multi-threaded
programs is introduced, where rely-guarantee reasoning is used to reason about
each thread individually while there are some assertions about other threads.
In this approach a program is considered to be terminating if it does not have
any infinite computations. As a consequence, it is not applicable to programs
using condition variables because a waiting thread that is never notified cannot
be considered as a terminating thread.

There are also some other approaches addressing some common synchroniza-
tion bugs of programs in the presence of condition variables. In [8], for example,
an approach to identify some potential problems of concurrent programs con-
sisting waits and notifies commands is presented. However, it does not take the
order of execution of theses commands into account. In other words, it might
accept an undesired execution trace where the waiting thread is scheduled before
the notifying thread, that might lead the waiting thread to be infinitely sus-
pended. [9] uses Petri nets to identify some common problems in multithreaded
programs such as data races, lost signals, and deadlocks. However the model
introduced for condition variables in this approach only covers the communi-
cation of two threads and it is not clear how it deals with programs having
7 The proof of this theorem has not been machine-checked with Coq yet.
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more than two threads communicating through condition variables. Recently,
[10] has introduced an approach ensuring that every thread synchronizing under
a set of condition variables eventually exits the synchronization block if that
thread eventually reaches that block. This approach succeeds in verifying one of
the applications of condition variables, namely the buffer. However, since this
approach is not modular and relies on a Petri net analysis tool to solve the termi-
nation problem, it suffers from a long verification time when the size of the state
space is increased, such that the verification of a buffer application having 20
producer and 18 consumer threads, for example, takes more than two minutes.

Kobayashi [6,20] proposed a type system for deadlock-free processes, ensur-
ing that a well-typed process that is annotated with a finite capability level is
deadlock free. He extended channel types with the notion of usages, describ-
ing how often and in which order a channel is used for input and output. For
example, usage of x in the process x?y|x!1|x!2, where ?, !, | represent an input
action, an output action, and parallel composition receptively, is expressed by
?|!|!, which means that x is used once for input and twice for output possibly in
parallel. Additionally, to avoid circular dependency each action α is associated
with the levels of obligation o and capabilities c, denoted by αo

c , such that (1) an
obligation of level n must be fulfilled by using only capabilities of level less than
n, and (2) for an action of capability level n, there must exist a co-action of obli-
gation level less than or equal to n. Leino et al. [4] also proposed an approach to
verify deadlock-freedom of channels and locks. In this approach each thread try-
ing to receive a message from a channel must spend one credit for that channel,
where a credit for a channel is obtained if a thread is obliged to fulfil an obli-
gation for that channel. A thread can fulfil an obligation for a channel if either
it sends a message on that channel or delegate that obligation to other thread.
The same idea is also used to verify deadlock-freedom of semaphores [7], where
acquiring (i.e. decreasing) a semaphore consumes one credit and releasing (i.e.
increasing) that semaphore produces one credit for that semaphore. However, as
it is acknowledged in [4], it is impossible to treat channels (and also semaphores)
like condition variables; a wait cannot be treated like a receive and a notify can-
not be treated like a send because a notification for a condition variable will be
lost if no thread is waiting for that variable. We borrow many ideas, including
the notion of obligations/credits(capabilities) and levels, from these works and
also the one introduced in [11], where a corresponding separation logic based
approach is presented to verify total correctness of programs in the presence of
channels.

7 Conclusion

It this article we introduced a modular approach to verify deadlock-freedom of
monitors. We also introduced a relax, more general precedence relation to avoid
cycles in the wait-for graph of programs, allowing a verification approach to verify
a wider range of deadlock-free programs in the presence of monitors, channels and
other synchronization mechanisms.
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Abstract. A major challenge in automated verification is to develop
techniques that are able to reason about fine-grained concurrent algo-
rithms that consist of an unbounded number of concurrent threads, which
operate on an unbounded domain of data values, and use unbounded
dynamically allocated memory. Existing automated techniques consider
the case where shared data is organized into singly-linked lists. We
present a novel shape analysis for automated verification of fine-grained
concurrent algorithms that can handle heap structures which are more
complex than just singly-linked lists, in particular skip lists and arrays of
singly linked lists, while at the same time handling an unbounded number
of concurrent threads, an unbounded domain of data values (including
timestamps), and an unbounded shared heap. Our technique is based on
a novel shape abstraction, which represents a set of heaps by a set of
fragments. A fragment is an abstraction of a pair of heap cells that are
connected by a pointer field. We have implemented our approach and
applied it to automatically verify correctness, in the sense of linearizabil-
ity, of most linearizable concurrent implementations of sets, stacks, and
queues, which employ singly-linked lists, skip lists, or arrays of singly-
linked lists with timestamps, which are known to us in the literature.

1 Introduction

Concurrent algorithms with an unbounded number of threads that concurrently
access a dynamically allocated shared state are of central importance in a large
number of software systems. They provide efficient concurrent realizations of
common interface abstractions, and are widely used in libraries, such as the
Intel Threading Building Blocks or the java.util.concurrent package. They
are notoriously difficult to get correct and verify, since they often employ fine-
grained synchronization and avoid locking when possible. A number of bugs
in published algorithms have been reported [13,30]. Consequently, significant
research efforts have been directed towards developing techniques to verify cor-
rectness of such algorithms. One widely-used correctness criterion is that of
linearizability, meaning that each method invocation can be considered to occur
atomically at some point between its call and return. Many of the developed ver-
ification techniques require significant manual effort for constructing correctness
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proofs (e.g., [25,41]), in some cases with the support of an interactive theo-
rem prover (e.g., [11,35,40]). Development of automated verification techniques
remains a difficult challenge.

A major challenge for the development of automated verification techniques is
that such techniques must be able to reason about fine-grained concurrent algo-
rithms that are infinite-state in many dimensions: they consist of an unbounded
number of concurrent threads, which operate on an unbounded domain of data
values, and use unbounded dynamically allocated memory. Perhaps the hardest
of these challenges is that of handling dynamically allocated memory. Conse-
quently, existing techniques that can automatically prove correctness of such
fine-grained concurrent algorithms restrict attention to the case where heap
structures represent shared data by singly-linked lists [1,3,18,36,42]. Further-
more, many of these techniques impose additional restrictions on the considered
verification problem, such as bounding the number of accessing threads [4,43,45].
However, in many concurrent data structure implementations the heap repre-
sents more sophisticated structures, such as skiplists [16,22,38] and arrays of
singly-linked lists [12]. There are no techniques that have been applied to auto-
matically verify concurrent algorithms that operate on such data structures.

Contributions. In this paper, we present a technique for automatic verification
of concurrent data structure implementations that operate on dynamically allo-
cated heap structures which are more complex than just singly-linked lists. Our
framework is the first that can automatically verify concurrent data structure
implementations that employ singly linked lists, skiplists [16,22,38], as well as
arrays of singly linked lists [12], at the same time as handling an unbounded
number of concurrent threads, an unbounded domain of data values (including
timestamps), and an unbounded shared heap.

Our technique is based on a novel shape abstraction, called fragment abstrac-
tion, which in a simple and uniform way is able to represent several different
classes of unbounded heap structures. Its main idea is to represent a set of
heap states by a set of fragments. A fragment represents two heap cells that are
connected by a pointer field. For each of its cells, the fragment represents the
contents of its non-pointer fields, together with information about how the cell
can be reached from the program’s global pointer variables. The latter informa-
tion consists of both: (i) local information, saying which pointer variables point
directly to them, and (ii) global information, saying how the cell can reach to and
be reached from (by following chains of pointers) heap cells that are globally sig-
nificant, typically since some global variable points to them. A set of fragments
represents the set of heap states in which any two pointer-connected nodes is
represented by some fragment in the set. Thus, a set of fragments describes the
set of heaps that can be formed by “piecing together” fragments in the set. The
combination of local and global information in fragments supports reasoning
about the sequence of cells that can be accessed by threads that traverse the
heap by following pointer fields in cells and pointer variables: the local infor-
mation captures properties of the cell fields that can be accessed as a thread
dereferences a pointer variable or a pointer field; the global information also
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captures whether certain significant accesses will at all be possible by follow-
ing a sequence of pointer fields. This support for reasoning about patterns of
cell accesses enables automated verification of reachability and other functional
properties.

Fragment abstraction can (and should) be combined, in a natural way,
with data abstractions for handling unbounded data domains and with thread
abstractions for handling an unbounded number of threads. For the latter we
adapt the successful thread-modular approach [5], which represents the local
state of a single, but arbitrary thread, together with the part of the global state
and heap that is accessible to that thread. Our combination of fragment abstrac-
tion, thread abstraction, and data abstraction results in a finite abstract domain,
thereby guaranteeing termination of our analysis.

We have implemented our approach and applied it to automatically verify
correctness, in the sense of linearizability, of a large number of concurrent data
structure algorithms, described in a C-like language. More specifically, we have
automatically verified linearizability of most linearizable concurrent implementa-
tions of sets, stacks, and queues, and priority queues, which employ singly-linked
lists, skiplists, or arrays of timestamped singly-linked lists, which are known to
us in the literature on concurrent data structures. For this verification, we spec-
ify linearizability using the simple and powerful technique of observers [1,7,9],
which reduces the criterion of linearizability to a simple reachability property.
To verify implementations of stacks and queues, the application of observers can
be done completely automatically without any manual steps, whereas for imple-
mentations of sets, the verification relies on light-weight user annotation of how
linearization points are placed in each method [3].

The fact that our fragment abstraction has been able to automatically verify
all supplied concurrent algorithms, also those that employ skiplists or arrays of
SLLs, indicates that the fragment abstraction is a simple mechanism for cap-
turing both the local and global information about heap cells that is neces-
sary for verifying correctness, in particular for concurrent algorithms where an
unbounded number of threads interact via a shared heap.

Outline. In the next section, we illustrate our fragment abstraction on the ver-
ification of a skiplist-based concurrent set implementation. In Sect. 3 we intro-
duce our model for programs, and of observers for specifying linearizability. In
Sect. 4 we describe in more detail our fragment abstraction for skiplists; note
that singly-linked lists can be handled as a simple special case of skiplists. In
Sect. 5 we describe how fragment abstraction applies to arrays of singly-linked
lists with timestamp fields. Our implementation and experiments are reported
in Sect. 6, followed by conclusions in Sect. 7.

Related Work. A large number of techniques have been developed for represent-
ing heap structures in automated analysis, including, e.g., separation logic and
various related graph formalisms [10,15,47], other logics [33], automata [23], or
graph grammars [19]. Most works apply these to sequential programs.
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Approaches for automated verification of concurrent algorithms are limited
to the case of singly-linked lists [1,3,18,36,42]. Furthermore, many of these tech-
niques impose additional restrictions on the considered verification problem, such
as bounding the number of accessing threads [4,43,45].

In [1], concurrent programs operating on SLLs are analyzed using an adapta-
tion of a transitive closure logic [6], combined with tracking of simple sortedness
properties between data elements; the approach does not allow to represent pat-
terns observed by threads when following sequences of pointers inside the heap,
and so has not been applied to concurrent set implementations. In our recent
work [3], we extended this approach to handle SLL implementations of con-
current sets by adapting a well-known abstraction of singly-linked lists [28] for
concurrent programs. The resulting technique is specifically tailored for singly-
links. Our fragment abstraction is significantly simpler conceptually, and can
therefore be adapted also for other classes of heap structures. The approach
of [3] is the only one with a shape representation strong enough to verify con-
current set implementations based on sorted and non-sorted singly-linked lists
having non-optimistic contains (or lookup) operations we consider, such as the
lock-free sets of HM [22], Harris [17], or Michael [29], or unordered set of [48].
As shown in Sect. 6, our fragment abstraction can handle them as well as also
algorithms employing skiplists and arrays of singly-linked lists.

There is no previous work on automated verification of skiplist-based concur-
rent algorithms. Verification of sequential algorithms have been addressed under
restrictions, such as limiting the number of levels to two or three [2,23]. The
work [34] generates verification conditions for statements in sequential skiplist
implementations. All these works assume that skiplists have the well-formedness
property that any higher-level lists is a sublist of any lower-level list, which is
true for sequential skiplist algorithms, but false for several concurrent ones, such
as [22,26].

Concurrent algorithms based on arrays of SLLs, and including timestamps,
e.g., for verifying the algorithms in [12] have shown to be rather challenging. Only
recently has the TS stack been verified by non-automated techniques [8] using
a non-trivial extension of forward simulation, and the TS queue been verified
manually by a new technique based on partial orders [24,37]. We have verified
both these algorithms automatically using fragment abstraction.

Our fragment abstraction is related in spirit to other formalisms that abstract
dynamic graph structures by defining some form of equivalence on its nodes
(e.g., [23,33,46]). These have been applied to verify functional correctness fine-
grained concurrent algorithms for a limited number of SLL-based algorithms.
Fragment abstraction’s representation of both local and global information
allows to extend the applicability of this class of techniques.

2 Overview

In this section, we illustrate our technique on the verification of correctness, in
the sense of linearizability, of a concurrent set data structure based on skiplists,
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namely the Lock-Free Concurrent Skiplist from [22, Sect. 14.4]. Skiplists provide
expected logarithmic time search while avoiding some of the complications of tree
structures. Informally, a skiplist consists of a collection of sorted linked lists, each
of which is located at a level, ranging from 1 up to a maximum value. Each skiplist
node has a key value and participates in the lists at levels 1 up to its height.

- +3 5 7

Head Tail

Fig. 1. An example of skiplist

The skiplist has sentinel head and tail
nodes with maximum heights and key val-
ues −∞ and +∞, respectively. The lowest-
level list (at level 1) constitutes an ordered
list of all nodes in the skiplist. Higher-level
lists are increasingly sparse sublists of the
lowest-level list, and serve as shortcuts into
lower-level lists. Figure 1 shows an example
of a skiplist of height 3. It has head and
tail nodes of height 3, two nodes of height
2, and one node of height 1.

The algorithm has three main methods, namely add, contains and remove.
The method add(x) adds x to the set and returns true iff x was not already in
the set; remove(x) removes x from the set and returns true iff x was in the set;
and contains(x) returns true iff x is in the set. All methods rely on a method
find to search for a given key. In this section, we shortly describe the find and
add methods. Figure 2 shows code for these two methods.

In the algorithm, each heap node has a key field, a height, an array of
next pointers indexed from 1 up to its height, and an array of marked fields
which are true if the node has been logically removed at the corresponding level.
Removal of a node (at a certain level k) occurs in two steps: first the node is
logically removed by setting its marked flag at level k to true, thereafter the
node is physically removed by unlinking it from the level-k list. The algorithm
must be able to update the next[k] pointer and marked[k] field together as one
atomic operation; this is standardly implemented by encoding them in a single
word. The head and tail nodes of the skiplist are pointed to by global pointer
variables H and T, respectively. The find method traverses the list at decreasing
levels using two local variables pred and curr, starting at the head and at the
maximum level (lines 5–6). At each level k it sets curr to pred.next[k] (line 7).
During the traversal, the pointer variable succ and boolean variable marked are
atomically assigned the values of curr.next[k] and curr.marked[k], respectively
(line 9, 14). After that, the method repeatedly removes marked nodes at the
current level (lines 10 to 14). This is done by using a CompareAndSwap (CAS)
command (line 11), which tests whether pred.next[k] and pred.marked[k] are
equal to curr and false respectively. If this test succeeds, it replaces them with
succ and false and returns true; otherwise, the CAS returns false. During the
traversal at level k, pred and curr are advanced until pred points to a node
with the largest key at level k which is smaller than x (lines 15–18). Thereafter,
the resulting values of pred and curr are recorded into preds[k] and succs[k]
(lines 19, 20), whereafter traversal continues one level below until it reaches the
bottom level. Finally, the method returns true if the key value of curr is equal
to x; otherwise, it returns false meaning that a node with key x is not found.
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Fig. 2. Code for the find and add methods of the skiplist algorithm. (Color figure
online)

The add method uses find to check whether a node with key x is already in
the list. If so it returns false; otherwise, a new node is created with randomly
chosen height h (line 7), and with next pointers at levels from 1 to h initialised
to corresponding elements of succ (line 8 to 9). Thereafter, the new node is
added into the list by linking it into the bottom-level list between the preds[1]
and succs[1] pointers returned by find. This is achieved by using a CAS to make
preds[1].next[1] point to the new node (line 13). If the CAS fails, the add method
will restart from the beginning (line 3) by calling find again, etc. Otherwise,
add proceeds with linking the new node into the list at increasingly higher levels
(lines 16 to 22). For each higher level k, it makes preds[k].next[k] point to the
new node if it is still valid (line 20); otherwise find is called again to recompute
preds[k] and succs[k] on the remaining unlinked levels (line 22). Once all levels
are linked, the method returns true.

To prepare for verification, we add a specification which expresses that the
skiplist algorithm of Fig. 2 is a linearizable implementation of a set data struc-
ture, using the technique of observers [1,3,7,9]. For our skiplist algorithm, the
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user first instruments statements in each method that correspond to lineariza-
tion points (LPs), so that their execution announces the corresponding atomic
set operation. In Fig. 2, the LP of a successful add operation is at line 15 of the
add method (denoted by a blue dot) when the CAS succeeds, whereas the LP of
an unsuccessful add operation is at line 13 of the find method (denoted by a
red dot). We must now verify that in any concurrent execution of a collection
of method calls, the sequence of announced operations satisfies the semantics of
the set data structure. This check is performed by an observer, which monitors
the sequence of announced operations. The observer for the set data structure
utilizes a register, which is initialized with a single, arbitrary key value. It checks
that operations on this particular value follow set semantics, i.e., that successful
add and remove operations on an element alternate and that contains are con-
sistent with them. We form the cross-product of the program and the observer,
synchronizing on operation announcements. This reduces the problem of check-
ing linearizability to the problem of checking that in this cross-product, regard-
less of the initial observer register value, the observer cannot reach a state where
the semantics of the set data structure has been violated.

To verify that the observer cannot reach a state where a violation is reported,
we compute a symbolic representation of an invariant that is satisfied by all
reachable configurations of the cross-product of a program and an observer. This
symbolic representation combines thread abstraction, data abstraction and our
novel fragment abstraction to represent the heap state. Our thread abstraction
adapts the thread-modular approach by representing only the view of single,
but arbitrary, thread th. Such a view consists of the local state of thread th,
including the value of the program counter, the state of the observer, and the
part of the heap that is accessible to thread th via pointer variables (local to th
or global). Our data abstraction represents variables and cell fields that range
over small finite domains by their concrete values, whereas variables and fields
that range over the same domain as key fields are abstracted to constraints over
their relative ordering (wrp. to <).

In our fragment abstraction, we represent the part of the heap that is acces-
sible to thread th by a set of fragments. A fragment represents a pair of
heap cells (accessible to th) that are connected by a pointer field, under the
applied data abstraction. A fragment is a triple of form 〈i, o, φ〉, where i and
o are tags that represent the two cells, and φ is a subset of {<,=, >} which
constrains the order between the key fields of the cells. Each tag is a tuple
tag = 〈dabs, pvars, reachfrom, reachto, private〉, where

– dabs represents the non-pointer fields of the cell under the applied data
abstraction,

– pvars is the set of (local to th or global) pointer variables that point to the
cell,

– reachfrom is the set of (i) global pointer variables from which the cell rep-
resented by the tag is reachable via a (possibly empty) sequence of next[1]
pointers, and (ii) observer registers xi such that the cell is reachable from
some cell whose data value equals that of xi,
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– reachto is the corresponding information, but now considering cells that are
reachable from the cell represented by the tag.

– private is true only if c is private to th.

Thus, the fragment contains both (i) local information about the cell’s fields and
variables that point to it, as well as (ii) global information, representing how
each cell in the pair can reach to and be reached from (by following a chain of
pointers) a small set of globally significant heap cells.

key

marked[1]

marked[h]

next[1]

next[h]

height = h

Fig. 3. A structure of a cell

A set of fragments represents the set of heap
structures in which each pair of pointer-connected
nodes is represented by some fragment in the set.
Put differently, a set of fragments describes the set of
heaps that can be formed by “piecing together” pairs
of pointer-connected nodes that are represented by
some fragment in the set. This “piecing together”
must be both locally consistent (appending only
fragments that agree on their common node), and
globally consistent (respecting the global reachabil-
ity information). When applying fragment abstraction to skiplists, we use two
types of fragments: level 1-fragments for nodes connected by a next[1]-pointer,
and higher level-fragments for nodes connected by a higher level pointer. In other
words, we abstract all levels higher than 2 by the abstract element higher.
Thus, a pointer or non-pointer variable of form v[k], indexed by a level k ≥ 2, is
abstracted to v[higher].

Fig. 4. A heap shape of a 3-level skiplist with two threads active

Let us illustrate how fragment abstraction applies to the skiplist algorithm.
Figure 4 shows an example heap state of the skiplist algorithm with three levels.
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Each heap cell is shown with the values of its fields as described in Fig. 3. In
addition, each cell is labeled by the pointer variables that point to it; we use
preds(i)[k] to denote the local variable preds[k] of thread thi, and the same
for other local variables. In the heap state of Fig. 4, thread th1 is trying to add
a new node of height 1 with key 9, and has reached line 8 of the add method.
Thread th2 is trying to add a new node with key 20 and it has done its first
iteration of the for loop in the find method. The variables preds(2)[3] and
currs(2)[3] have been assigned so that the new node (which has not yet been
created) will be inserted between node 5 and the tail node. The observer is not
shown, but the value of the observer register is 9; thus it currently tracks the
add operation of th1.

Figure 5 illustrates how pairs of heap nodes can be represented by fragments.
As a first example, in the view of thread th1, the two left-most cells in Fig. 4 are
represented by the level 1-fragment v1 in Fig. 5. Here, the variable preds(1)[3] is
represented by preds[higher]. The mapping π1 represents the data abstraction
of the key field, here saying that it is smaller than the value 9 of the observer
register. The two left-most cells are also represented by a higher-level fragment,
viz. v8. The pair consisting of the two sentinel cells (with keys −∞ and +∞) is
represented by the higher-level fragment v9. In each fragment, the abstraction
dabs of non-pointer fields are shown represented inside each tag of the fragment.
The φ is shown as a label on the arrow between two tags. Above each tag is pvars.
The first row under each tag is reachfrom, whereas the second row is reachto.

Figure 5 shows a set of fragments that is sufficient to represent the part of
the heap that is accessible to th1 in the configuration in Fig. 4. There are 11
fragments, named v1, . . . , v11. Two of these (v6, v7 and v11) consist of a tag

Fig. 5. Fragment abstraction of skiplist algorithm
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that points to ⊥. All other fragments consist of a pair of pointer-connected tags.
The fragments v1, . . . , v6 are level-1-fragments, whereas v7, . . . , v11 are higher
level-fragments. The private field of the input tag of v7 is true, whereas the
private field of tags of other fragments are false.

To verify linearizability of the algorithm in Fig. 2, we must represent several
key invariants of the heap. These include (among others):

1. the bottom-level list is strictly sorted in key order,
2. a higher-level pointer from a globally reachable node is a shortcut into the

level-1 list, i.e., it points to a node that is reachable by a sequence of next[1]
pointers,

3. all nodes which are unreachable from the head of the list are marked, and
4. the variable pred points to a cell whose key field is never larger than the

input parameter of its add method.

Let us illustrate how such invariants are captured by our fragment abstraction.
(1) All level-1 fragments are strictly sorted, implying that the bottom-level list
is strictly sorted. (2) For each higher-level fragment v, if H ∈ v.i.reachfrom
then also H ∈ v.o.reachfrom, implying (together with v.φ = {<}) that the cell
represented by v.o it is reachable from that represented by v.i by a sequence
of next[1]-pointers. (3) This is verified by inspecting each tag: v3 contains the
only unreachable tag, and it is also marked. (4) The fragments express this
property in the case where the value of key is the same as the value of the
observer register x. Since the invariant holds for any value of x, this property is
sufficiently represented for purposes of verification.

3 Concurrent Data Structure Implementations

In this section, we introduce our representation of concurrent data structure
implementations, we define the correctness criterion of linearizability, we intro-
duce observers and how to use them for specifying linearizability.

3.1 Concurrent Data Structure Implementations

We first introduce (sequential) data structures. A data structure DS is a pair
〈D,M〉, where D is a (possibly infinite) data domain and M is an alphabet of
method names. An operation op is of the form m(din , dout), where m ∈ M is a
method name, and din , dout are the input resp. output values, each of which is
either in D or in some small finite domain F, which includes the booleans. For
some method names, the input or output value is absent from the operation. A
trace of DS is a sequence of operations. The (sequential) semantics of a data struc-
ture DS is given by a set [[DS]] of allowed traces. For example, a Set data structure
has method names add, remove, and contains. An example of an allowed trace
is add(3, true) contains(4, false) contains(3, true) remove(3, true).

A concurrent data structure implementation operates on a shared state con-
sisting of shared global variables and a shared heap. It assigns, to each method
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name, a method which performs operations on the shared state. It also comes
with a method named init, which initializes its shared state.

A heap (state) H consists of a finite set C of cells, including the two special
cells null and ⊥ (dangling). Heap cells have a fixed set F of fields, namely
non-pointer fields that assume values in D or F, and possibly lock fields. We use
the term D-field for a non-pointer field that assumes values in D, and the terms
F-field and lock field with analogous meaning. Furthermore, each cell has one
or several named pointer fields. For instance, in data structure implementations
based on singly-linked lists, each heap cell has a pointer field named next; in
implementations based on skiplists there is an array of pointer fields named
next[k] where k ranges from 1 to a maximum level.

Each method declares local variables and a method body. The set of local
variables includes the input parameter of the method and the program counter
pc. A local state loc of a thread th defines the values of its local variables. The
global variables can be accessed by all threads, whereas local variables can be
accessed only by the thread which is invoking the corresponding method. Vari-
ables are either pointer variables (to heap cells), locks, or data variables assuming
values in D or F. We assume that all global variables are pointer variables. The
body is built in the standard way from atomic commands, using standard control
flow constructs (sequential composition, selection, and loop constructs). Atomic
commands include assignments between variables, or fields of cells pointed to
by a pointer variable. Method execution is terminated by executing a return
command, which may return a value. The command new Node() allocates a new
structure of type Node on the heap, and returns a reference to it. The compare-
and-swap command CAS(a, b, c) atomically compares the values of a and b. If
equal, it assigns the value of c to a and returns true, otherwise, it leaves a
unchanged and returns false. We assume a memory management mechanism,
which automatically collects garbage, and ensures that a new cell is fresh, i.e.,
has not been used before; this avoids the so-called ABA problem (e.g., [31]).

We define a program P (over a concurrent data structure) to consist of an
arbitrary number of concurrently executing threads, each of which executes a
method that performs an operation on the data structure. The shared state is
initialized by the init method prior to the start of program execution. A config-
uration of a program P is a tuple cP = 〈T, LOC,H〉 where T is a set of threads, H
is a heap, and LOC maps each thread th ∈ T to its local state LOC (th). We assume
concurrent execution according to sequentially consistent memory model. The
behavior of a thread th executing a method can be formalized as a transition
relation −→th on pairs 〈loc,H〉 consisting of a local state loc and a heap state
H. The behavior of a program P can be formalized by a transition relation −→P
on program configurations; each step corresponds to a move of a single thread.
I.e., there is a transition of form 〈T, LOC,H〉 −→P 〈T, LOC[th ← loc′],H′〉 whenever
some thread th ∈ T has a transition 〈loc,H〉 −→th 〈loc′,H′〉 with LOC(th) = loc.
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3.2 Linearizability

In a concurrent data structure implementation, we represent the calling of a
method by a call action callo m

(
din

)
, and the return of a method by a return

action reto m (dout), where o ∈ N is an action identifier, which links the call
and return of each method invocation. A history h is a sequence of actions such
that (i) different occurrences of return actions have different action identifiers,
and (ii) for each return action a2 in h there is a unique matching call action a1

with the same action identifier and method name, which occurs before a2 in h. A
call action which does not match any return action in h is said to be pending. A
history without pending call actions is said to be complete. A completed extension
of h is a complete history h′ obtained from h by appending (at the end) zero or
more return actions that are matched by pending call actions in h, and thereafter
removing the call actions that are still pending. For action identifiers o1, o2, we
write o1 
h o2 to denote that the return action with identifier o1 occurs before
the call action with identifier o2 in h. A complete history is sequential if it
is of the form a1a

′
1a2a

′
2 · · · ana′

n where a′
i is the matching action of ai for all

i : 1 ≤ i ≤ n, i.e., each call action is immediately followed by its matching return
action. We identify a sequential history of the above form with the corresponding
trace op1op2 · · · opn where opi = m(din

i , dout
i ), ai = calloi

m
(
din

i

)
, and ai =

retoi
m (dout

i ), i.e., we merge each call action together with the matching return
action into one operation. A complete history h′ is a linearization of h if (i) h′ is
a permutation of h, (ii) h′ is sequential, and (iii) o1 
h′ o2 if o1 
h o2 for each
pair of action identifiers o1 and o2. A sequential history h′ is valid wrt. DS if the
corresponding trace is in [[DS]]. We say that h is linearizable wrt. DS if there is
a completed extension of h, which has a linearization that is valid wrt. DS. We
say that a program P is linearizable wrt. DS if, in each possible execution, the
sequence of call and return actions is linearizable wrt. DS.

We specify linearizability using the technique of observers [1,3,7,9]. Depend-
ing on the data structure, we apply it in two different ways.

– For implementations of sets and priority queues, the user instruments each
method so that it announces a corresponding operation precisely when the
method executes its LP, either directly or with lightweight instrumentation
using the technique of linearization policies [3]. We represent such announce-
ments by labels on the program transition relation −→P , resulting in transi-

tions of form cP
m(din ,dout )−−−−−−→Pc′

P . Thereafter, an observer is constructed, which
monitors the sequence of operations that is announced by the instrumen-
tation; it reports (by moving to an accepting error location) whenever this
sequence violates the (sequential) semantics of the data structure.

– For stacks and queues, we use a recent result [7,9] that the set of linearizable
histories, i.e., sequences of call and return actions, can be exactly specified by
an observer. Thus, linearizability can be specified without any user-supplied
instrumentation, by using an observer which monitors the sequences of call
and return actions and reports violations of linearizability.
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s0 s1

s2

add(x, true)

rmv(x, true)
add(x, false)

rmv(x, true)

ctn(x, true)

add(x, true)

rmv(x, false)

ctn(x, false)

Fig. 6. Set observer.

Formally, an observer O is a tuple
〈
SO, sO

init, X
O,ΔO, sO

acc

〉
where SO is a

finite set of observer locations including the initial location sO
init and the accepting

location sO
acc, a finite set XO of registers, and ΔO is a finite set of transitions.

For observers that monitor sequences of operations, transitions are of the form〈
s1, m(xin , xout), s2

〉
, where m ∈ M is a method name and xin and xout are either

registers or constants, i.e., transitions are labeled by operations whose input
or output data may be parameterized on registers. The observer processes a
sequence of operations one operation at a time. If there is a transition, whose
label (after replacing registers by their values) matches the operation, such a
transition is performed. If there is no such transition, the observer remains in its
current location. The observer accepts a sequence if it can be processed in such a
way that an accepting location is reached. The observer is defined in such a way
that it accepts precisely those sequences that are not in [[DS]]. Figure 6 depicts
an observer for the set data structure.

To check that no execution of the program announces a sequence of labels
that can drive the observer to an accepting location, we form the cross-product
S = P ⊗ O of the program P and the observer O, synchronizing on common
transition labels. Thus, configurations of S are of the form 〈cP , 〈s, ρ〉〉, consist-
ing of a program configuration cP , an observer location s, and an assignment
ρ of values in D to the observer registers. Transitions of S are of the form
〈cP , 〈s, ρ〉〉 ,−→S , 〈cP′, 〈s′, ρ〉〉, obtained from a transition cP

λ−→PcP′ of the pro-
gram with some (possibly empty) label λ, where the observer makes a transition
s

λ−→s′ if it can perform such a matching transition, otherwise s′ = s. Note that the
observer registers are not changed. We also add straightforward instrumentation
to check that each method invocation announces exactly one operation, whose
input and output values agree with the method’s parameters and return value.
This reduces the problem of checking linearizability to the problem of checking
that in this cross-product, the observer cannot reach an accepting error location.

4 Verification Using Fragment Abstraction for Skiplists

In the previous section, we reduced the problem of verifying linearizability
to the problem of verifying that, in any execution of the cross-product of a
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program and an observer, the observer cannot reach an accepting location. We
perform this verification by computing a symbolic representation of an invariant
that is satisfied by all reachable configurations of the cross-product, using an
abstract interpretation-based fixpoint procedure, starting from a symbolic rep-
resentation of the set of initial configurations, thereafter repeatedly performing
symbolic postcondition computations that extend the symbolic representation
by the effect of any execution step of the program, until convergence.

In Sect. 4.1, we define in more detail our symbolic representation for skiplists,
focusing in particular on the use of fragment abstraction, and thereafter (in
Sect. 4.2) describe the symbolic postcondition computation. Since singly-linked
lists is a trivial special case of skiplists, we can use the relevant part of this
technique also for programs based on singly-linked lists.

4.1 Symbolic Representation

This subsection contains a more detailed description of our symbolic represen-
tation for programs that operate on skiplists, which was introduced in Sect. 2.
We first describe the data abstraction, thereafter the fragment abstraction, and
finally their combination into a symbolic representation.

Data Abstraction. Our data abstraction is defined by assigning a abstract
domain to each concrete domain of data values, as follows.

– For small concrete domains (including that of the program counter, and of
the observer location), the abstract domain is the same as the concrete one.

– For locks, the abstract domain is {me, other , free}, meaning that the lock is held
by the concerned thread, held by some other thread, or is free, respectively.

– For the concrete domain D of data values, the abstract domain is the set
of mappings from observer registers and local variables ranging over D to
subsets of {<,=, >}. An mapping in this abstract domain represents the set
of data values d such that it maps each local variable and observer register
with a value d′ ∈ D to a set which includes a relation ∼ such that d ∼ d′.

Fragment Abstraction. Let us now define our fragment abstraction for
skiplists. For presentation purposes, we assume that each heap cell has at most
one D-field, named data. For an observer register xi, let a xi-cell be a heap cell
whose data field has the same value as xi.

Since the number of levels is unbounded, we define an abstraction for levels.
Let k be a level. Define the abstraction of a pointer variable of form p[k], denoted
p̂[k], to be p[1] if k = 1, and to be p[higher] if k ≥ 2. That is, this abstraction
does not distinguish different higher levels.

A tag is a tuple tag = 〈dabs, pvars, reachfrom, reachto, private〉, where
(i) dabs is a mapping from non-pointer fields to their corresponding abstract
domains; if a non-pointer field is an array indexed by levels, then the abstract
domain is that for single elements: e.g., the abstract domain for the array marked
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in Fig. 2 is simply the set of booleans, (ii) pvars is a set of abstracted pointer
variables, (iii) reachfrom and reachto are sets of global pointer variables and
observer registers, and (iv) private is a boolean value.

For a heap cell c that is accessible to thread th in a configuration cS , and a
tag tag = 〈dabs, pvars, reachfrom, reachto, private〉, we let c�cS

th,ktag denote
that c satisfies the tag tag “at level k”. More precisely, this means that

– dabs is an abstraction of the concrete values of the non-pointer fields of c;
for array fields f we use the concrete value f[k],

– pvars is the set of abstractions of pointer variables (global or local to th)
that point to c,

– reachfrom is the set of (i) abstractions of global pointer variables from which
c is reachable via a (possibly empty) sequence of next[1] pointers, and (ii)
observer registers xi such that c is reachable from some xi-cell (via a sequence
of next[1] pointers),

– reachto is the set of (i) abstractions of global pointer variables pointing to
a cell that is reachable (via a sequence of next[1] pointers) from c, and (ii)
observer registers xi such that some xi-cell is reachable from c.

– private is true only if c is not accessible to any other thread than th.

Note that the global information represented by the fields reachfrom and
reachto concerns only reachability via level-1 pointers.

A skiplist fragment v (or just fragment) is a triple of form 〈i, o, φ〉, of form
〈i, null〉, or of form 〈i,⊥〉, where i and o are tags and φ is a subset of {<,=, >}.
Each skiplist fragment additionally has a type, which is either level-1 or higher-
level (note that a level-1 fragment can otherwise be identical to a higher-level
fragment). For a cell c which is accessible to thread th, and a fragment v of
form 〈i, o, φ〉, let c �cS

th,k v denote that the next[k] field of c points to a cell c′

such that c �cS
th,k i, and c′ �cS

th,k o, and c.data ∼ c′.data for some ∼∈ φ. The
definition of c�cS

th,k v is adapted to fragments of form 〈i, null〉 and 〈i,⊥〉 in the
obvious way. For a fragment v = 〈i, o, φ〉, we often use v.i for i and v.o for o,
etc.

Let V be a set of fragments. A global configuration cS satisfies V wrp. to th,
denoted cS |=heap

th V , if

– for any cell c that is accessible to th (different from null and ⊥), there is a
level-1 fragment v ∈ V such that c �cS

th,1 v, and
– for all levels k from 2 up to the height of c, there is a higher-level fragment
v ∈ V such that c �cS

th,k v.

Intuitively, a set of fragment represents the set of heap states, in which each pair
of cells connected by a next[1] pointer is represented by a level-1 fragment, and
each pair of cells connected by a next[k] pointer for k ≥ 2 is represented by a
higher-level fragment which represents array fields of cells at index k.
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Symbolic Representation. We can now define our abstract symbolic represen-
tation.

Define a local symbolic configuration σ to be a mapping from local non-
pointer variables (including the program counter) to their corresponding abstract
domains. We let cS |=loc

th σ denote that in the global configuration cS , the local
configuration of thread th satisfies the local symbolic configuration σ, defined
in the natural way. For a local symbolic configuration σ, an observer location s,
a pair V of fragments and a thread th, we write cS |=th 〈σ, s, V 〉 to denote that
(i) cS |=loc

th σ, (ii) the observer is in location s, and (iii) cS |=heap
th V .

Definition 1. A symbolic representation Ψ is a partial mapping from pairs of
local symbolic configurations and observer locations to sets of fragments. A sys-
tem configuration cS satisfies a symbolic representation Ψ , denoted cS sat Ψ ,
if for each thread th, the domain of Ψ contains a pair 〈σ, s〉 such that cS |=th

〈σ, s, Ψ(〈σ, s〉)〉.

4.2 Symbolic Postcondition Computation

The symbolic postcondition computation must ensure that the symbolic repre-
sentation of the reachable configurations of a program is closed under execu-
tion of a statement by some thread. That is, given a symbolic representation
Ψ , the symbolic postcondition operation must produce an extension Ψ ′ of Ψ ,
such that whenever cS sat Ψ and cS−→Sc′

S then cS′ sat Ψ ′. Let th be an arbi-
trary thread. Then cS sat Ψ means that Dom(Ψ) contains some pair 〈σ, s〉 with
cS |=th 〈σ, s, Ψ(〈σ, s〉)〉. The symbolic postcondition computation must ensure
that Dom(Ψ ′) contains a pair 〈σ′, s′〉 such that c′

S |=th 〈σ′, s′, Ψ ′(〈σ′, s′〉)〉. In
the thread-modular approach, there are two cases to consider, depending on
which thread causes the step from cS to cS′.

– Local Steps: The step is caused by th itself executing a statement which may
change its local state, the location of the observer, and the state of the heap.
In this case, we first compute a local symbolic configuration σ′, an observer
location s′, and a set V ′ of fragments such that c′

S |=th 〈σ′, s′, V ′〉, and then
(if necessary) extend Ψ so that 〈σ′, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ′, s′〉).

– Interference Steps: The step is caused by another thread th2, executing a
statement which may change the location of the observer (to s′) and the heap.
By cS sat Ψ there is a local symbolic configuration σ2 with 〈σ2, s〉 ∈ Dom(Ψ)
such that cS |=th2 〈σ2, s, Ψ(〈σ2, s〉)〉. For any such σ2 and statement of th2, we
must compute a set V ′ of fragments such that the resulting configuration cS′

satisfies c′
S |=heap

th V ′ and ensure that 〈σ, s′〉 ∈ Dom(Ψ) and V ′ ⊆ Ψ(〈σ, s′〉).
To do this, we first combine the local symbolic configurations σ and σ2 and
the sets of fragments Ψ(〈σ, s〉) and Ψ(〈σ2, s〉), using an operation called inter-
section, into a joint local symbolic configuration of th and th2 and a set V1,2

of fragments that represents the cells accessible to either th or th2. We there-
after symbolically compute the postcondition of the statement executed by
th2, in the same was as for local steps, and finally project the set of resulting
fragments back onto th to obtain V ′.
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In the following, we first describe the symbolic postcondition computation for
local steps, and thereafter the intersection operation.

Symbolic Postcondition Computation for Local Steps. Let th be an
arbitrary thread, assume that 〈σ, s〉 ∈ Dom(Ψ), and let V = Ψ(〈σ, s〉) For
each statement that th can execute in a configuration cS with cS |=th 〈σ, s, V 〉,
we must compute a local symbolic configuration σ′, a new observer location
s′ and a set V ′ of fragments such that the resulting configuration cS′ satisfies
c′
S |=th 〈σ′, s′, V ′〉. This computation is done differently for each statement. For

statements that do not affect the heap or pointer variables, this computation is
standard, and affects only the local symbolic configuration, the observer location,
and the dabs component of tags. We therefore here describe how to compute
the effect of statements that update pointer variables or pointer fields of heap
cells, since these are the most interesting cases. In this computation, the set V ′

is constructed in two steps: (1) First, the level-1 fragments of V ′ are computed,
based on the level-1 fragments in V . (2) Thereafter, the higher-level fragments of
V ′ are computed, based on the higher-level fragments in V and how fragments
in V are transformed when entered in to V ′. We first describe the construction
of level-1 fragments, and thereafter the construction of higher-level fragments.

Construction of Level-1 Fragments. Let us first intuitively introduce tech-
niques used for constructing the level-1 fragments of V ′. Consider a statement
of form g := p, which assigns the value of a local pointer variable p to a global
pointer variable g. The set V ′ of fragments is obtained by modifying fragments in
V to reflect the effect of the assignment. For any tag in a fragment, the dabs field
is not affected. The pvars field is updated to contain the variable g if and only
if it contained the variable p before the statement. The difficulty is to update
the reachability information represented by the fields reachfrom and reachto,
and in particular to determine whether g should be in such a set after the state-
ment (note that if p were a global variable, then the corresponding reachability
information for p would be in the fields reachfrom and reachto, and the update
would be simple, reflecting that g and p become aliases). In order to construct
V ′ with sufficient precision, we therefore investigate whether the set of fragments
V allows to form a heap in which a p-cell can reach or be reached from (by a
sequence of next[1] pointers) a particular tag of a fragment. We also investigate
whether a heap can be formed in which a p-cell can not reach or be reached from
a particular tag. For each such successful investigation, the set V ′ will contain
a level-1 fragment with corresponding contents of its reachto and reachfrom
fields.

The postcondition computation performs this investigation by computing a
set of transitive closure-like relations between level-1 fragments, which represent
reachability via sequences of next[1] pointers (since only these are relevant for
the reachfrom and reachto fields). First, say that two tags tag and tag′ are
consistent (wrp. to a set of fragments V ) if the concretizations of their dabs-
fields overlap, and if the other fields pvars, reachfrom, reachto, and private)
agree. Thus, tag and tag′ are consistent if there can exist a cell c accessible to
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th in some heap, with c�cS
th tag and c�cS

th tag
′. Next, for two level-1 fragments

v1 and v2 in a set V of fragments,

– let v1 ↪→V v2 denote that v1.o and v2.i are consistent, and
– let v1 ↔V v2 denote that v1.o = v2.o are consistent, and that either
v1.i.pvars ∩ v2.i.pvars = ∅ or the global variables in v1.i.reachfrom are
disjoint from those in v2.i.reachfrom.

Intuitively, v1 ↪→V v2 denotes that it is possible that c1.next[1] = c2 for some
cells with c1 �cS

th,1 v1 and c2 �cS
th,1 v2. Intuitively, v1 ↔V v2 denotes that it is

possible that c1.next[1] = c2.next[1] for different cells c1 and c2 with c1�cS
th,1v1

and c2 �cS
th,1 v2 (Note that these definitions also work for fragments containing

null or ⊥). We use these relations to define the following derived relations on
level-1 fragments:

–
+
↪→V denotes the transitive closure, and

∗
↪→V the reflexive transitive closure,

of ↪→V ,
– v1

∗∗↔V v2 denotes that ∃v′
1, v

′
2 ∈ V with v′

1 ↔V v′
2 where v1

∗
↪→V v′

1 and
v2

∗
↪→V v′

2,
– v1

∗+↔V v2 denotes that ∃v′
1, v

′
2 ∈ V with v′

1 ↔V v′
2 where v1

∗
↪→V v′

1 and

v2
+
↪→V v′

2,
– v1

∗◦↔V v2 denotes that ∃v′
1 ∈ V with v′

1 ↔V v2 where v1
∗

↪→V v′
1,

– v1
++↔V v2 denotes that ∃v′

1, v
′
2 ∈ V with v′

1 ↔V v′
2 where v1

+
↪→V v′

1 and

v2
+
↪→V v′

2,
– v1

+◦↔V v2 denotes that ∃v′
1 ∈ V with v′

1 ↔V v2 where v1
+
↪→V v′

1.

We sometimes use, e.g., v2
+∗↔V v1 for v1

∗+↔V v2. We say that v1 and v2 are
compatible if vx

∗
↪→ vy, or vy

∗
↪→ vx, or vx

∗∗↔ vy. Intuitively, if v1 and v2 are
satisfied by two cells in the same heap state, then they must be compatible.

Fig. 7. Illustration of some transitive closure-like relations between fragments
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Figure 7 illustrates the above relations for a heap state with 13 heap cells.
The figure depicts, in green, four pairs of heap cells connected by a next[1]
pointer, which satisfy the four fragments v1, v2, v3, and v4, respectively. At the
bottom are depicted the transitive-closure like relations that hold between these
fragments.

We can now describe the symbolic postcondition computation for statements
that affect pointer variables or fields. This is a case analysis, and for space reasons
we only include some representative cases.

First, consider a statement of form x := y, where x and y are local (to thread
th) or global pointer variables. We must compute a set V ′ of fragments which
are satisfied by the configuration after the statement. We first compute the level-
1-fragments in V ′ as follows (higher-level fragments will be computed later). We
observe that for any cell c which is accessible to th after the statement, there
must be some level-1 fragment v′ in V ′ with c�cS

th,1 v
′. By assumption, c satisfies

some fragment v in V before the statement, and is in the same heap state as the
cell pointed to by y. This implies that v must be compatible with some fragment
vy ∈ V such that ŷ ∈ vy.i.pvars (recall that ŷ is the abstraction of y, which in
the case that y is an array element maps higher level indices to that abstract
index higher). This means that we can make a case analysis on the possible
relationships between v and any such vy. Thus, for each fragment vy ∈ V such
that ŷ ∈ vy.i.pvars we let V ′ contain the fragments obtained by any of the
following transformations on any fragment in V .

1. First, for the fragment vy itself, we let V ′ contain v′
y, which is the same as

vy, except that
– v′

y.i.pvars = vy.i.pvars ∪ {x̂} and v′
y.o.pvars = v.o.pvars \ {x̂}

and furthermore, if x is a global variable, then
– v′

y.i.reachto = vy.i.reachto∪{x̂} and v′
y.i.reachfrom = vy.i.reachfrom∪{x̂},

– v′
y.o.reachfrom = vy.o.reachfrom∪{x̂} and v′

y.o.reachto = vy.o.reachto\{x̂}.

2. for each v with v ↪→V vy, let V ′ contain v′ which is the same as v except that
– v′.i.pvars = v.i.pvars \ {x̂},
– v′.o.pvars = v.o.pvars ∪ {x̂},
– v′.i.reachfrom = v.i.reachfrom \ {x̂} if x is a global variable,
– v′.i.reachto = v.i.reachto ∪ {x̂} if x is a global variable,
– v′.o.reachfrom = v.o.reachfrom ∪ {x̂} if x is a global variable,
– v′.o.reachto = v.o.reachto ∪ {x̂} if x is a global variable,

3. We perform analogous inclusions for fragments v with v
+
↪→V vy, vy

∗
↪→V

v, vy
∗+↔V v, and vy

∗◦↔V v. Here, we show only the case of vy
∗+↔V v, in

which case we let V ′ contain v′ which is the same as v except that x̂ is
removed from the sets v′.i.pvars, v′.o.pvars, v′.i.reachfrom, v′.i.reachto,
v′.o.reachfrom, and v′.o.reachto.

The statement x := y.next[1] is handled rather similarly to the case x := y. Let
us therefore describe the postcondition computation for statements of the form
x.next[1] := y. This is the most difficult statement, since it is a destructive
update of the heap. It affects reachability relations for both x and y. The post-
condition computation makes a case analysis on how a fragment in V is related
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to some pair of compatible fragments vx, vy in V such that x̂ ∈ vx.i.pvars,
ŷ ∈ vy.i.pvars. Thus, for each pair of compatible fragments vx, vy in V such
that x̂ ∈ vx.i.pvars and ŷ ∈ vy.i.pvars, it is first checked whether the statement
may form a cycle in the heap. This may happen if vy

∗
↪→V vx, in which case the

postcondition computation reports a potential cycle. Otherwise, V ′ consists of

1. the fragment vnew, representing the new pair of neighbours formed by the
statement, of form vnew = 〈i, o, φ〉, such that vnew.i.tag = vx.i.tag and
vnew.o.tag = vy.i.tag except that vnew.o.reachfrom = vy.i.reachfrom ∪
vx.i.reachfrom and vnew.i.reachto = vy.i.reachto ∪ vx.i.pvars; the con-
straint represent by vnew.φ is obtained from the constraints represented by the
data abstractions of vx.i and vy.i, as well as the possible transitive closure-
relations between vx and vy, some of which imply that the data fields of vx

and vy are ordered, and
2. all possible fragments that can result from a transformation of some fragment

v ∈ V . This is done by an exhaustive case analysis on the possible relation-
ships between v, vx and vy. Let us consider an interesting case, in which

vx
∗

↪→V v and either v
+
↪→V vy or vy

∗+↔ v. In this case,
– for each subset regset of the observer registers in v.i.reachfrom ∩
vx.i.reachfrom, and for each subset regset′ of the set of observer regis-
ters in v.o.reachfrom ∩ vx.i.reachfrom, we let V ′ contain a fragment v′

which is the same as v except that v′.i.reachfrom = (v.i.reachfrom
\vx.i.reachfrom) ∪ regset and v′.o.reachfrom = (v.o.reachfrom \
vx.i.reachfrom) ∪ regset′. An intuitive explanation for the rule for
v′.i.reachfrom is that the global variables that can reach vx.i should
clearly be removed from v′.i.reachfrom since vx

∗
↪→V v′ is false after the

statement. However, for an observer register xi, an xi-cell can still reach
v′.i, if there are two xi-cells, one which reaches vx.i and another which
reaches v′.i; we cannot precisely determine for which xi this may be the
case, except that any such xi must be in v.i.reachfrom∩vx.i.reachfrom.
The intuition for the rule for v′.o.reachfrom is analogous.

Construction of Higher-Level Fragments. Based on the above construction
of level-1 fragments, the set of higher-level fragments in V ′ is obtained as fol-
lows. For each higher level-fragment v ∈ V , let v1 and v2 be level 1-fragments
such that v1.i.tag = v.i.tag and v2.i.tag = v.o.tag. For any fragments v′

1

and v′
2 that are derived from v1 and v2, respectively, V ′ contains a higher-level

fragment v′ which is the same as v except that (i) v′.i.pvars = v′
1.i.pvars

and v′.o.pvars = v′
2.i.pvars, (ii) v′.i.reachfrom = v′

1.i.reachfrom and
v′.o.reachfrom = v′

2.i.reachfrom, and (iii) v′.i.reachto = v′
1.i.reachto and

v′.o.reachto = v′
2.i.reachto. In addition, a statement of form x.next[k] := y

for k ≥ 2 creates a new fragment. The formation of this fragment is simpler
than for the statement x.next[1] := y, since reachability via next[1]-pointers is
preserved.
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Symbolic Postcondition Computation for Interference Steps. Here, the
key step is the intersection operation, which takes two sets of fragments V1 and
V2, and produces a set of joint fragments V1,2, such that cS |=heap

th1,th2 V1,2 for any
configuration such that cS |=heap

thi
Vi for i = 1, 2 (here |=heap

th1,th2 is defined in the
natural way). This means that for each heap cell accessible to either th1 or th2,
the set V1,2 contains a fragment v with c�cS

{th1,th2},kv for each k which is at most
the height of c (generalizing the notation �cS

th,k to several threads). Note that a
joint fragment represents local pointer variables of both th1 and th2. In order to
distinguish between local variables of th1 and th2, we use x[i] to denote a local
variable x of thread thi. Here, we describe the intersection operation for level-1
fragments. The intersection operation is analogous for higher-level fragments.

For a fragment v, define v.i.greachfrom as the set of global vari-
ables in v.i.reachfrom. Define v.i.greachto, v.o.greachfrom, v.o.greachto,
v.i.gpvars, and v.o.gpvars analogously. Define v.i.gtag as the tuple
〈v.i.dabs, v.i.gpvars, v.i.greachfrom, v.i.greachto〉, and define v.o.gtag anal-
ogously. We must distinguish the following possibilities.

– If c is accessible to both th1 and th2, then there are fragments v1 ∈ V1

and v2 ∈ V2 such that c �cS
th1,1 v1 and c �cS

th2,1 v2. This can happen only
if v1.i.gtag = v2.i.gtag, and v1.o.gtag = v2.o.gtag, and v1.i.private =
v2.i.private = false. Thus, for any such pair of fragments v1 ∈ V1 and
v2 ∈ V2, we let V1,2 contain a fragment v12 which is identical to v1 except
that

• v12.i.pvars = v1.i.pvars ∪ v2.i.pvars,
• v12.o.pvars = v1.o.pvars ∪ v2.o.pvars,
• v12.i.reachfrom = v1.i.reachfrom ∪ v2.i.reachfrom, and
• v12.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.

– If c is accessible to th1, but not to th2, and c.next[1] is accessible also to
th2, then there are fragments v1 ∈ V1 and v2 ∈ V2 such that c �cS

th1,1 v1

and c.next[1] �cS
th2,1 v2.o. This can happen only if v1.i.greachfrom = ∅, and

v1.o.gtag = v2.o.gtag, and v1.o.private = v2.o.private = false. Thus,
for any such pair of fragments v1 ∈ V1 and v2 ∈ V2, we let V1,2 contain a
fragment v′

1 which is identical to v1 except that
• v′

1.o.pvars = v1.o.pvars ∪ v2.o.pvars, and
• v′

1.o.reachfrom = v1.o.reachfrom ∪ v2.o.reachfrom.
– If neither c nor c.next[1] is accessible th2, then there is a fragment v1 ∈ V1

such that c�cS
th1,1 v1. This can happen only if v1.o.greachfrom = ∅, in which

case we let V1,2 contain the fragment v1.
– For each of the two last cases, there is also a symmetric case with the roles

of th1 and th2 reversed.

5 Arrays of Singly-Linked Lists with Timestamps

In this section, we show how to apply fragment abstraction to concurrent pro-
grams that operate on a shared heap which represents an array of singly linked
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lists. We use this abstraction to provide the first automated verification of lin-
earizability for the Timedstamped stack and Timestamped queue algorithms
of [12] as reported in Sect. 6.

Fig. 8. Description of the Timestamped stack algorithm, with some simplifications.

Figure 8 shows a simplified version of the Timestamped Stack (TS stack)
of [12], where we have omitted the check for emptiness in the pop method, and
the optimization using push-pop elimination. These features are included in the
full version of the algorithm, that we have verified automatically.

The algorithm uses an array of singly-linked lists (SLLs), one for each thread,
accessed via the thread-indexed array pools[maxThreads] of pointers to the first
cell of each list. The init method initializes each of these pointers to null. Each
list cell contains a data value, a timestamp value, a next pointer, and a boolean
flag mark which indicates whether the node is logically removed from the stack.
Each thread pushes elements only to “its own” list, but can pop elements from
any list.

A push method for inserting a data element d works as follows: first, a new
cell with element d and minimal timestamp −1 is inserted at the beginning of
the list indexed by the calling thread (line 1–3). After that, a new timestamp
is created and assigned (via the variable t) to the ts field of the inserted cell
(line 4–5). Finally, the method unlinks (i.e., physically removes) all cells that
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are reachable (through a sequence of next pointers) from the inserted cell and
whose mark field is true; these cells are already logically removed. This is done
by redirecting the next pointer of the inserted cell to the first cell with a false
mark field, which is reachable from the inserted cell.

A pop method first traverses all lists, finding in each list the first cell whose
mark field is false (line 8), and letting the variable youngest point to the most
recent such cell (i.e., with the largest timestamp) (line 1–11). A compare-and-
swap (CAS) is used to set the mark field of this youngest cell to true, thereby
logically removing it. This procedure will restart if the CAS fails. After the
youngest cell has been removed, the method will unlink all cells, whose mark
field is true, that appear before (line 17–19) or after (line 20–23) the removed
cell. Finally, the method returns the data value of the removed cell.

Fragment Abstraction. In our verification, we establish that the TS stack
algorithm of Fig. 8 is correct in the sense that it is a linearizable implementation
of a stack data structure. For stacks and queues, we specify linearizability by
observers that synchronize on call and return actions of methods, as shown by [7];
this is done without any user-supplied annotation, hence the verification is fully
automated.

The verification is performed analogously as for skiplists, as described in
Sect. 4. Here we show how fragment abstraction is used for arrays of singly-linked
lists. Figure 9 shows an example heap state of TS stack. The heap consists of
a set of singly linked lists (SLLs), each of which is accessed from a pointer in
the array pools[maxThreads] in a configuration when it is accessed concurrently
by three threads th1, th2, and th3. The heap consists of three SLLs accessed
from the three pointers pools[1], pools[2], and pools[3] respectively. Each heap
cell is shown with the values of its fields, using the layout shown to the right in
Fig. 9. In addition, each cell is labeled by the pointer variables that point to it.
We use lvar(i) to denote the local variable lvar of thread thi.

In the heap state of Fig. 9, thread th1 is trying to push a new node with data
value 4, pointed by its local variable new, having reached line 3. Thread th3 has
just called the push method. Thread th2 has reached line 12 in the execution
of the pop method, and has just assigned youngest to the first node in the list
pointed to by pools[3] which is not logically removed (in this case it is the last
node of that list). The observer has two registers x1 and x2, which are assigned
the values 4 and 2, respectively.

We verify the algorithm using a symbolic representation that is analogous to
the one used for skiplists. There are two main differences.

– Since the array pools is global, all threads can reach all lists in the heap (the
only cells that cannot be reached by all threads are new cells that are not yet
inserted).

– We therefore represent the view of a thread by a thread-dependent abstraction
of thread indices, which index the array pools. In the view of a thread, the
index of the list where it is currently active is abstracted to me, and all other
indices are abstracted to ot. The currently active index is taken to be the
thread index for a thread performing a push, the value of i for a thread
executing in the for loop of pop, and the value of k after that loop.
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Fig. 9. A possible heap state of TS stack with three threads.

In the definition of tags, the only global variables that can occur in the fields
reachfrom and reachto are therefore pools[me] and pools[other]. The data
abstraction represents (i) for each cell, the set of observer registers, whose values
are equal to the datafield, (ii) for each timestamp and observer register xi, the
possible orderings between this timestamp and the timestamp of an xi-cell.

Fig. 10. Fragment abstraction

Figure 10 shows a set of fragments that is satisfied wrp. to th2 by the con-
figuration in Fig. 9. There are 7 fragments, named v1, . . . , v7. Consider the tag
which occurs in fragment v7. This tag is an abstraction of the bottom-rightmost
heap cell in Fig. 9, The different non-pointer fields are represented as follows.
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– The data field of the tag (to the left) abstracts the data value 2 to the set of
observer registers with that value: in this case x2.

– The ts field (at the top) abstracts the timer value 15 to the possible relations
with ts-fields of heap cells with the same data value as each observer registers.
Recall that observer registers x1 and x2 have values 4 and 2, respectively.
There are three heap cells with data field value 4, all with a ts value less
than 15. There is one heap cell with data field value 2, having ts value 15.
Consequently, the abstraction of the ts field maps x1 to {>} and x2 to {=}:
this is the mapping λ4 in Fig. 10.

– The mark field assumes values from a small finite domain and is represented
precisely as in concrete heap cells.

Symbolic Postcondition Computation. The symbolic postcondition com-
putation is similar to that for skiplists. Main differences are as follows.

– Whenever a thread performing pop moves from one iteration of the for loop
to the next, the abstraction must consider to swap between the abstractions
me and ot.

– In interference steps, we must consider that the abstraction me for the inter-
fering thread may have to be changed into ot. Furthermore, the abstractions
me for two push methods cannot coincide, since each thread pushes only to
its own list.

6 Experimental Results

Based on our framework, we have implemented a tool in OCaml, and used it for
verifying various kinds of concurrent data structures implementation of stacks,
priority queues, queues and sets. All of them are based on heap structures. There
are three types of heap structures we consider in our experiments.

Fig. 11. Times for verifying concurrent data structure implementations. Column a
shows the verification times for our tool based on fragment abstraction. Column b
shows the verification times for the tool for SLLs in our previous work [3]
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Singly-linked list benchmarks: These benchmarks include stacks, queues and sets
algorithms which are the well-known in the literature. The challenge is that in
some set implementation, the linearization points are not fixed, they depended on
the future of each execution. The sets with non fixed linearization points are the
lazy set [20], lock-free sets of HM [22], Harris [17], Michael [29], and unordered set
of [48]. By using observers and controllers in our previous work [3]. Our approach
is simple and strong enough to verify these singly-linked list benchmarks.

Skiplist benchmarks: We consider four skiplist algorithms including the lock-
based skiplist set [31], the lock-free skiplist set which is described in Sect. 2 [22],
and two skiplist-based priority queues [26,27]. One challenge for verifying these
algorithms is to deal with unbounded number of levels. In addition, in the lock-
free skiplist [22] and priority queue [26], the skiplist shape is not well formed,
meaning that each higher level list need not be a sub-list of lower level lists.
These algorithms have not been automatically verified in previous work. By
applying our fragment abstraction, to the best of our knowledge, we provide first
framework which can automatically verify these concurrent skiplists algorithms.

Arrays of singly-linked list benchmarks: We consider two challenging timestamp
algorithms in [12]. There are two challenges when verifying these algorithm.
The first challenge is how to deal with an unbounded number of SLLs, and
the second challenge is that the linearization points of the algorithms are not
fixed, but depend on the future of each execution. By combining our fragment
abstraction with the observers for stacks and queues in [7], we are able to ver-
ify these two algorithms automatically. The observers are crucial for achieving
automation, since they enforce the weakest possible ordering constraints that
are necessary for proving linearizability, thereby making it possible to use a less
precise abstraction.

Running Times. The experiments were performed on a desktop 2.8 GHz proces-
sor with 8 GB memory. The results are presented in Fig. 11, where running times
are given in seconds. Column a shows the verification times of our tool, whereas
column b shows the verification times for algorithms based on SLLs, using the
technique in our previous work [3]. In our experiments, we run the tool together
with an observer in [1,7] and controllers in [3] to verify linearizability of the
algorithms. All experiments start from the initial heap, and end either when the
analysis reaches a fixed point or when a violation of safety properties or lineariz-
ability is detected. As can be seen from the table, the verification times vary
in the different examples. This is due to the types of shapes that are produced
during the analysis. For instance, skiplist algorithms have much longer verifica-
tion times. This is due to the number of pointer variables and their complicated
shapes. In contrast, other algorithms produce simple shape patterns and hence
they have shorter verification times.

Error Detection. In addition to establishing correctness of the original versions
of the benchmark algorithms, we tested our tool with intentionally inserted bugs.
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For example, we omitted setting time statement in line 5 of the push method in
the TS stack algorithm, or we omitted the CAS statements in lock-free algorithms.
The tool, as expected, successfully detected and reported the bugs.

7 Conclusions

We have presented a novel shape abstraction, called fragment abstraction, for
automatic verification of concurrent data structure implementations that oper-
ate on different forms of dynamically allocated heap structures, including singly-
linked lists, skiplists, and arrays of singly-linked lists. Our approach is the first
framework that can automatically verify concurrent data structure implementa-
tions that employ skiplists and arrays of singly linked lists, at the same time as
handling an unbounded number of concurrent threads, an unbounded domain of
data values (including timestamps), and an unbounded shared heap. We showed
fragment abstraction allows to combine local and global reachability information
to allow verification of the functional behavior of a collection of threads.

As future work, we intend to investigate whether fragment abstraction can
be applied also to other heap structures, such as concurrent binary search trees.
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2. Abdulla, P.A., Hoĺık, L., Jonsson, B., Trinh, C.Q., et al.: Verification of heap
manipulating programs with ordered data by extended forest automata. Acta Inf.
53(4), 357–385 (2016)

3. Abdulla, P.A., Jonsson, B., Trinh, C.Q.: Automated verification of linearization
policies. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 61–83. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7 4

4. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstrac-
tion for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73368-3 49

5. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Thread quan-
tification for concurrent shape analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 399–413. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70545-1 37
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Abstract. Capability machines provide security guarantees at machine
level which makes them an interesting target for secure compilation
schemes that provably enforce properties such as control-flow correctness
and encapsulation of local state. We provide a formalization of a repre-
sentative capability machine with local capabilities and study a novel
calling convention. We provide a logical relation that semantically cap-
tures the guarantees provided by the hardware (a form of capability
safety) and use it to prove control-flow correctness and encapsulation of
local state. The logical relation is not specific to our calling convention
and can be used to reason about arbitrary programs.

1 Introduction

Compromising software security is often based on attacks that break program-
ming language properties relied upon by software authors, such as control-flow
correctness, local-state encapsulation, etc. Commodity processors offer little sup-
port for defending against such attacks: they offer security primitives with only
coarse-grained memory protection and limited compartmentalization scalability.
As a result, defenses against attacks on control-flow correctness and local-state
encapsulation are either limited to only certain common forms of attacks (lead-
ing to an attack-defense arms race) and/or rely on techniques like machine code
rewriting [1,2], machine code verification [3], virtual machines with a native
stack [4] or randomization [5]. The latter techniques essentially emulate pro-
tection techniques on existing hardware, at the cost of performance, system
complexity and/or security.

Capability machines are a type of processors that remediate these limitations
with a better security model at the hardware level. They are based on old ideas [6–
8], but have recently received renewed interest; in particular, the CHERI project
has proposed new ideas and ways of tackling practical challenges like backwards
compatibility and realistic OS support [9,10]. Capability machines tag every word
(in the register file and in memory) to enforce a strict separation between num-
bers and capabilities (a kind of pointers that carry authority). Memory capabilities
c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 475–501, 2018.
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carry the authority to read and/or write to a range of memory locations. There is
also a form of object capabilities, which represent the authority to invoke a piece of
codewithout exposing the code’s encapsulated private state (e.g., theM-Machine’s
enter capabilities or CHERI’s sealed code/data pairs).

Unlike commodity processors, capability machines lend themselves well to
enforcing local-state encapsulation. Potentially, they will enable compilation
schemes that enforce this property in an efficient but also 100% watertight way
(ideally evidenced by a mathematical proof, guaranteeing that we do not end up
in a new attack-defense arms race). However, a lot needs to happen before we get
there. For example, it is far from trivial to devise a compilation scheme adapted
to the details of a specific source language’s notion of encapsulation (e.g., private
member variables in OO languages often behave quite differently than private
state in ML-like languages). And even if such a scheme were defined, a formal
proof depends on a formalization of the encapsulation provided by the capability
machine at hand.

A similar problem is the enforcement of control-flow correctness on capability
machines. An interesting approach is taken in CheriBSD [9]: the standard con-
tiguous C stack is split into a central, trusted stack, managed by trusted call and
return instructions, and disjoint, private, per-compartment stacks. To prevent
illegal use of stack references, the approach relies on local capabilities, a type of
capabilities offered by CHERI to temporarily relinquish authority, namely for
the duration of a function invocation whereafter the capability can be revoked.
However, details are scarce (how does it work precisely? what features are sup-
ported?) and a lot remains to be investigated (e.g., combining disjoint stacks with
cross-domain function pointers seems like it will scale poorly to large numbers
of components?). Finally, there is no argument that the approach is watertight
and it is not even clear what security property is targeted exactly.

In this paper, we make two main contributions: (1) an alternative calling
convention that uses local capabilities to enforce stack frame encapsulation and
well-bracketed control flow, and (2) perhaps more importantly, we adapt and
apply the well-studied techniques of step-indexed Kripke logical relations for
reasoning about code on a representative capability machine with local capabili-
ties in general and correctness and security of the calling convention in particular.
More specifically, we make the following contributions:

– We formalize a simple but representative capability machine featuring local
capabilities and its operational semantics (Sect. 2).

– We define a novel calling convention enforcing control-flow correctness and
encapsulation of stack frames (Sect. 3). It relies solely on local capabilities and
does not require OS support (like a trusted stack or call/return instructions).
It supports higher-order cross-component calls (e.g., cross-component function
pointers) and can be efficient assuming only one additional piece of processor
support: an efficient instruction for clearing a range of memory.

– We present a novel step-indexed Kripke logical relation for reasoning about
programs on the capability machine. It is an untyped logical relation, inspired
by previous work on object capabilities [11]. We prove an analogue of the
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standard fundamental theorem of logical relations—to the best of our knowl-
edge, our theorem is the most general and powerful formulation of the formal
guarantees offered by a capability machine (a form of capability safety [11,12]),
including the specific guarantees offered for local capabilities. It is very general
and not tied to our calling convention or a specific way of using the system’s
capabilities. We are the first to apply these techniques for reasoning about
capability machines and we believe they will prove useful for many other pur-
poses than our calling convention.

– We introduce two novel technical ideas in the unary, step-indexed Kripke log-
ical relation used to formulate the above theorem: the use of a single orthogo-
nal closure (rather than the earlier used biorthogonal closure) and a variant of
Dreyer et al. [13]’s public and private future worlds [13] to express the special
nature of local capabilities. The logical relation and the fundamental theorem
expressing capability safety are presented in Sect. 4.

– We demonstrate our results by applying them to challenging examples, specif-
ically constructed to demonstrate local-state encapsulation and control-flow
correctness guarantees in the presence of cross-component function pointers
(Sect. 5). The examples demonstrate both the power of our formulation of
capability safety and our calling convention.

For reasons of space, some details and all proofs have been omitted; please
refer to the technical appendix [14] for those.

2 A Capability Machine with Local Capabilities

In this paper, we work with a formal capability machine with all the char-
acteristics of real capability machines, as well as local capabilities much like
CHERI’s. Otherwise, it is kept as simple as possible. It is inspired by both the
M-Machine [6] and CHERI [9]. To avoid uninteresting details, we assume an
infinite address space and unbounded integers.

rwlx

rwl rwx

rx

e

rw

ro

o

Fig. 3. Permission
hierarchy

We define the syntax of our capability machine in
Fig. 1. We assume an infinite set of addresses Addr and
define machine words as either integers or capabilities
of the form ((perm, g), base, end , a). Such a capability
represents the authority to execute permissions perm on
the memory range [base, end ], together with a current
address a and a locality tag g indicating whether the
capability is global or local. There is no notion of point-
ers other than capabilities, so we will use the terms inter-
changeably. The available permissions and their order-
ing are depicted in Fig. 3: the permissions include null
permission (o), readonly (ro), read/write (rw), read/execute (rx) and read-
/write/execute (rwx) permissions. Additionally, there are three special permis-
sions: read/write-local (rwl), read/write-local/execute (rwlx) and enter (e),
which we will explain below.
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Fig. 1. The syntax of our capability machine assembly language.

Fig. 2. An excerpt from the operational semantics.

We assume a finite set of register names RegName. We define register files
reg and memories ms as functions mapping register names resp. addresses to
words. The state of the entire machine is represented as a configuration that is
either a running state Φ ∈ ExecConf containing a memory and a register file, or
a failed or halted state, where the latter keeps hold of the final state of memory.
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The machine’s instruction set is rather basic. Instructions i include relatively
standard jump (jmp), conditional jump (jnz) and move (move, copies words
between registers) instructions. Also familiar are load and store instructions for
reading from and writing to memory (load and store) and arithmetic addition
operators (lt (less than), plus and minus, operating only on numbers). There are
three instructions for modifying capabilities: lea (modifies the current address),
restrict (modifies the permission and local/global tag) and subseg (modifies
the range of a capability). Importantly, these instructions take care that the
resulting capability always carries less authority than the original (e.g. restrict
will only weaken a permission). Finally, the instruction isptr tests whether a
word is a capability or a number and instructions getp, getl, getb, gete and
geta provide access to a capability’s permissions, local/global tag, base, end and
current address, respectively.

Figure 2 shows an excerpt of the operational semantics for a few representa-
tive instructions. Essentially, a configuration Φ either decodes and executes the
instruction at Φ.reg(pc) if it is executable and its address is in the valid range
or otherwise fails. The table in the figure shows for instructions i the result of
executing them in configuration Φ. fail and halt obviously fail and halt respec-
tively. move simply modifies the register file as requested and updates the pc to
the next instruction using the meta-function updPc.

The load instruction loads the contents of the requested memory location
into a register, but only if the capability has appropriate authority (i.e. read
permission and an appropriate range). restrict updates a capability’s permis-
sions and global/local tag in the register file, but only if the new permissions are
weaker than the original. It also never turns local capabilities into global ones.
geta queries the current address of a capability and stores it in a register.

The jmp instruction updates the program counter to a requested location,
but it is complicated by the presence of enter capabilities, modeled after the
M-Machine’s [6]. Enter capabilities cannot be used to read, write or execute and
their address and range cannot be modified. They can only be used to jump
to, but when that happens, their permission changes to rx. They can be used
to represent a kind of closures: an opaque package containing a piece of code
together with local encapsulated state. Such a package can be built as an enter
capability c = ((e, g), b, e, a) where the range [b, a − 1] contains local state
(data or capabilities) and [a, e] contains instructions. The package is opaque
to an adversary holding c but when c is jumped to, the instructions can start
executing and have access to the local data through the updated version of c
that is then in pc.

Finally, the store instruction updates the memory to the requested value
if the capability has write authority for the requested location. However, the
instruction is complicated by the presence of local capabilities, modeled after
the ones in the CHERI processor [9]. Basically, local capabilities are special in
that they can only be kept in registers, i.e. they cannot be stored to memory.
This means that local capabilities can be temporarily given to an adversary, for
the duration of an invocation: if we take care to clear the capability from the
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register file after control is passed back to us, they will not have been able to
store the capability. However, there is one exception to the rule above: local
capabilities can be stored to memory for which we have a capability with write-
local authority (i.e. permission rwl or rwlx). This is intended to accommodate
a stack, where register contents can be stored, including local capabilities. As
long as all capabilities with write-local authority are themselves local and the
stack is cleared after control is passed back by the adversary, we will see that
this does not break the intended behavior of local capabilities.

We point out that our local capabilities capture only a part of the semantics
of local capabilities in CHERI. Specifically, in addition to the above, CHERI’s
default implementation of the CCall exception handler forbids local capabilities
from being passed across module boundaries. Such a restriction fundamentally
breaks our calling convention, since we pass around local return pointers and
stack capabilities. However, CHERI’s CCall is not implemented in hardware,
but in software, precisely to allow experimenting with alternative models like
ours.

In order to have a reasonably realistic system, we use a simple model of
linking where a program has access to a linking table that contains capabilities
for other programs. We also assume malloc to be part of the trusted computing
base satisfying a certain specification. Malloc and linking tables are described
further in the next section, but we refer to the technical appendix [14] for full
details.

3 Stack and Return Pointer Management Using Local
Capabilities

One of the contributions in this paper is a demonstration that local capabilities
on a capability machine support a calling convention that enforces control-flow
correctness in a way that is provably watertight, potentially efficient, does not
rely on a trusted central stack manager and supports higher-order interfaces to an
adversary, where an adversary is just some unknown piece of code. In this section,
we explain this convention’s high-level approach, the security measures to be
taken in a number of situations (motivating each separately with a summary
table at the end). After that, we define a number of reusable macro-instructions
that can be used to conveniently apply the proposed convention in subsequent
examples.

The basic idea of our approach is simple: we stick to a single, rather stan-
dard, C stack and register-passed stack and return pointers, much like a standard
C calling convention. However, to prevent various ways of misusing this basic
scheme, we put local capabilities to work and take a number of not-always-
obvious safety measures. The safety measures are presented in terms of what we
need to do to protect ourselves against an adversary, but this is only for presen-
tation purposes as our code assumes no special status on the machine. In fact,
an adversary can apply the same safety measures to protect themselves against
us. In the next paragraphs, we will explain the issues to be considered in all the
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relevant situations: when (1) starting our program, (2) returning to the adver-
sary, (3) invoking the adversary, (4) returning from the adversary, (5) invoking
an adversary callback and (6) having a callback invoked by the adversary.

Program Start-Up. We assume that the language runtime initializes the mem-
ory as follows: a contiguous array of memory is reserved for the stack, for which
we receive a stack pointer in a special register rstk . We stress that the stack
is not built-in, but merely an abstraction we put on this piece of the memory.
The stack pointer is local and has rwlx permission. Note that this means that
we will be placing and executing instructions on the stack. Crucially, the stack
is the only part of memory for which the runtime (including malloc, loading,
linking) will ever provide rwlx or rwl capabilities. Additionally, our examples
typically also assume some memory to store instructions or static data. Another
part of memory (called the heap) is initially governed by malloc and at program
start-up, no other code has capabilities for this memory. Malloc hands out rwx
capabilities for allocated regions as requested (no rwlx or rwl permissions). For
simplicity, we assume that memory allocated through malloc cannot be freed.

Returning to the Adversary. Perhaps the simplest situation is returning to
the adversary after they invoked our code. In this case, we have received a return
pointer from them, and we just need to jump to it as usual. An obvious security
measure to take care of is properly clearing the non-return-value registers before
we jump (since they may contain data or capabilities that the adversary should
not get access to). Additionally, we may have used the stack for various purposes
(register spilling, storing local state when invoking other functions etc.), so we
also need to clear that data before returning to the adversary.

However, if we are returning from a function that has itself invoked adversary
code, then clearing the used part of the stack is not enough. The unused part
of the stack may also contain data and capabilities, left there by the adversary,
including local capabilities since the stack is write-local. As we will see later, we
rely on the fact that the adversary cannot keep hold of local capabilities when
they pass control to the trusted code and receive control back. In this case, the
adversary could use the unused part of the stack to store local pointers and load
them from there after they get control back. To prevent this, we need to clear
(i.e. overwrite with zeros) the entire part of the stack that the adversary has
had access to, not just the parts that we have used ourselves. Since we may be
talking about a large part of memory, this requirement is the most problematic
aspect of our calling convention for performance, but see Sect. 6 for how this
might be mitigated.

Invoking the Adversary. A slightly more complex case is invoking the adver-
sary. As above, we clear all the non-argument registers, as well as the part of
the stack that we are not using (because, as above, it may contain local capabil-
ities from previously executed code that the adversary could exploit in the same
way). We leave a copy of the stack pointer in rstk , but only after we have used
the subseg instruction to shrink its authority to the part that we are not using
ourselves.
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In one of the registers, we also provide a return pointer, which must be a
local capability. If it were global, the adversary would be able to store away the
return pointer in a global data structure (i.e. there exists a global capability for
it), and jump to it later, in circumstances where this should not be possible.
For example, they could store the return pointer, legally jump to it a first time,
wait to be invoked again and then jump to the old return pointer a second time,
instead of the new return pointer received for the second invocation. Similarly,
they could store the return pointer, invoke a function in our code, wait for us
to invoke them again and then jump to the old return pointer rather than the
new one, received for the second invocation. By making the return pointer local,
we prevent such attacks: the adversary can only store local capabilities through
write-local capabilities, which means (because of our assumptions above): on the
stack. Since the stack pointer itself is also local, it can also only be stored on
the stack. Because we clear the part of the stack that the adversary has had
access to before we pass control back, there is no way for them to recover either
of these local capabilities.

Note that storing stack pointers for use during future invocations would also
be dangerous in itself, i.e. not just because it can be used to store return pointers.
Imagine the adversary stores their stack pointer, invokes trusted code that uses
part of the stack to store private data and then invokes the adversary again
with a stack pointer restricted to exclude the part containing the private data.
If the adversary had a way of keeping hold of their old stack pointer, it could
access the private data stored there by the trusted code and break local-state
encapsulation.

Returning from the Adversary. So return pointers must be passed as local
capabilities. But what should their permissions be, what memory should they
point to and what should that memory (the activation record) contain? Let
us answer the last question first by considering what should happen when the
adversary jumps to a return pointer. In that case, the program counter should
be restored to the instruction after the jump to the adversary, so the activation
record should store this old program counter. Additionally, the stack pointer
should also be restored to its original value. Since the adversary has a more
restricted authority over the stack than the code making the call, we cannot
hope to reconstruct the original stack pointer from the stack pointer owned by
the adversary. Instead, it should be stored as part of the activation record.

Clearly, neither of these capabilities should be accessible by the adversary.
In other words, the return pointer provided to the adversary must be a capabil-
ity that they can jump to but not read from, i.e. an enter capability. To make
this work, we construct the activation record as depicted in Fig. 4. The e return
pointer has authority over the entire activation record (containing the previous
return and stack pointer), and its current address points to a number of restore
instructions in the record, so that upon invocation, these instructions are exe-
cuted and can load the old stack pointer and program counter back into the
register file. As the return pointer is an enter pointer, the adversary cannot get
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previous stack pointer
previous program counter

restore instructions
return pointer e

Fig. 4. Structure of an activation record

hold of the activation record’s contents, but after invocation, its permission is
updated to rx, so the contents become available to the restore instructions.

The final question that remains is: where should we store this activation
record? The attentive reader may already see that there is only one possibility:
since the activation record contains the old stack pointer, which is local, the
activation record can only be constructed in a part of memory where we have
write-local access, i.e. on the stack. Note that this means we will be placing and
executing instructions on the stack, i.e. it will not just contain code pointers
and data. This means that our calling convention should be combined with
protection against stack smashing attacks (i.e. buffer overflows on the stack
overwriting activation records’ contents). Luckily, the capability machine’s fine-
grained memory protection should make it reasonably easy for a compiler to
implement such protection, by making sure that only appropriately bounded
versions of the stack pointer are made available to source language code.

Invoking an Adversary Callback. If we have a higher-order interface to the
adversary, we may need to invoke an adversary callback. In this case, not so
much changes with respect to the situation where we invoke static adversary
code. The adversary can provide a callback as a capability for us to jump to,
either an e-capability if they want to protect themselves from us or just an rx
capability if they are not worried about that. However, there is one scenario that
we need to prevent: if they construct the callback capability to point into the
stack, it may contain local capabilities that they should not have access to upon
invocation of the callback. As before, this includes return and stack pointers
from previous stack frames that they may be trying to illegally use inside the
callback.

To prevent this, we only accept callbacks from the adversary in the form
of global capabilities, which we dynamically check before invoking them (and
we fail otherwise). This should not be an overly strict requirement: our own
callbacks do not contain local data themselves, so there should be no need for
the adversary to construct callbacks on the stack.1

Having a Callback Invoked by the Adversary. The above leaves us with
perhaps the hardest scenario: how to provide a callback to the adversary. The

1 Note that it does prevent a legitimate but non-essential scenario where the adversary
wants to give us temporary access to a callback not allocated on the stack.
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basic idea is that we allocate a block of memory using malloc that we fill with the
capabilities and data that the callback needs, as well as some prelude instructions
that load the data into registers and jumps to the right code. Note that this
implies that no local capabilities can be stored as part of a closure. We can
then provide the adversary with an enter-capability covering the allocated block
and pointing to the contained prelude instructions. However, the question that
remains in this setup is: from where do we get a stack pointer when the callback
is invoked?

Our answer is that the adversary should provide it to us, just as we provide
them with a stack pointer when we invoke their code. However, it is important
that we do not just accept any capability as a stack pointer but check that
it is safe to use. Specifically, we check that it is indeed an rwlx capability.
Without this check, an adversary could potentially get control over our local
stack frame during a subsequent callback by passing us a local rwx capability
to a global data structure instead of a proper stack pointer and a global callback
for our callback to invoke. If our local state contains no local capabilities, then,
otherwise following our calling convention, the callback would not fail and the
adversary could use a stored capability for the global data structure to access
our local state. To prevent this from happening, we need to make sure the stack
capability carries rwlx authority, since the system wide assumption then tells
us that the adversary cannot have global capabilities to our local stack.

Calling Convention. With the security measures introduced and motivated,
let us summarize our proposed calling convention: At program start-up A local
rwlx stack pointer resides in register rstk . No global write-local capabilities.
Before returning to the adversary Clear non-return-value registers. Clear the
part of the stack we had access to (not just the part we used). Before invoking
the adversary Push activation record to the stack. Create return pointer as local
e-capability to the instructions in the record. Restrict the stack capability to
the unused part and clear it. Clear non-argument registers. Before invoking an
adversary callback Make sure callback is global. When invoked by an adversary
Make sure received stack pointer has permission rwlx.

Reusable Macro Instructions. We define a number of reusable macros cap-
turing the calling convention and other conveniences. All macros that use the
stack assume a stack pointer in register rstk . The macro fetch r name fetches
the capability related to name from the linking table and stores it in register
r. The macros push r and pop r add and remove elements from the stack. The
macro prepstk r is used when a callback is invoked by the adversary and pre-
pares the received stack pointer by checking that it has permission rwlx. The
macro scall r(rargs,rpriv) jumps to the capability in register r in the manner
described above. That is, it pushes local state (the contents of registers rpriv )
and the activation record (return code, return pointer, stack pointer) to the
stack, creates an e return pointer, restricts the stack pointer, clears the unused
part of the stack, clears the necessary registers and jumps to r. Upon return, the
private state is restored. The macro mclear r clears all the memory the capa-
bility in register r has authority over. The macro rclear regSet clears all the
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registers in regSet . The macro reqglob r checks whether the word in register r
is a global capability. The macro crtcls (xi, ri) r allocates a closure where r
points to the closure’s code and a new environment is allocated (using malloc)
where the contents of ri is stored. In the code referred to by r, an implicit fetch
happens when an instruction refers to xi.

The technical appendix [14] contains detailed descriptions of all the macros.

4 Logical Relation

In this section, we formalize the guarantees provided by the capability machine,
including the specific guarantees for local capabilities, by means of a step-indexed
Kripke logical relation with recursively defined worlds. We use the logical rela-
tion in the following section to show local-state encapsulation and control-flow
integrity properties for challenging example programs.

4.1 Worlds

A world is a finite map from region names, modeled as natural numbers, to
regions that each correspond to an invariant of part of the memory. We have
three types of regions: permanent, temporary, and revoked. Each permanent and
temporary region contains a state transition system, with public and private
transitions, to describe how the invariants are allowed to change over time. In
other words, they are protocols for the region’s memory. These are similar to
what has been used in logical relations for high-level languages [11,13,15]. Pro-
tocols imposed by permanent regions stay in place indefinitely. Any capability,
local or global, can depend on these protocols. Protocols imposed by temporary
regions can be revoked in private future worlds. Doing this may break the safety
of local capabilities but not global ones. This means that local capabilities can
safely depend on the protocols imposed by temporary regions, but global capa-
bilities cannot, since a global capability may outlive a temporary region that is
revoked. This is illustrated in Fig. 5.

Fig. 5. The relation between local/global capabilities and temporary/permanent
regions. The colored fields are regions governing parts of memory. Global capabilities
cannot depend on temporary regions.
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For technical reasons, we do not actually remove a revoked temporary region
from the world, but we turn it into a special revoked region that exists for this
purpose. Such a revoked region contains no state transition system and puts no
requirements on the memory. It simply serves as a mask for a revoked temporary
region. Masking a region like this goes back to earlier work of Ahmed [16] and
was also used by Birkedal et al. [17].

Regions are used to define safe memory segments, but this set may itself be
world-dependent. In other words, our worlds are defined recursively. Recursive
worlds are common in Kripke models and the following lemma uses the method
of Birkedal and Bizjak [18]; Birkedal et al. [19] for constructing them. The for-
mulation of the lemma is technical, so we recommend that non-expert readers
ignore the technicalities and accept that there exists a set of worlds Wor and
two relations �priv and �pub satisfying the (recursive) equations in the theorem
(where the � operator can be safely ignored).

Theorem 1. There exists a c.o.f.e. (complete ordered family of equivalences)
Wor and preorders �priv and �pub such that (Wor,�priv ) and (Wor,�pub) are
preordered c.o.f.e.’s, and there exists an isomorphism ξ such that

ξ : Wor ∼= �(N fin−⇀ Region)
Region = {revoked}�

{temp} × State × Rels × (State → (Wor mon, ne−−−−→
�pub

UPred(MemSeg)))�

{perm} × State × Rels × (State → (Wor mon, ne−−−−→
�priv

UPred(MemSeg)))

and for W,W ′ ∈ Wor.
W ′ �priv W ⇔ ξ(W ′) �priv ξ(W )

W ′ �pub W ⇔ ξ(W ′) �pub ξ(W )

In the above theorem, State×Rels corresponds to the aforementioned state tran-
sition system where Rels contains pairs of relations corresponding to the public
and private transitions, and State is an unspecified set that we assume to contain
at least the states we use in this paper. The last part of the temporary and per-
manent regions is a state interpretation function that determines what memory
segments the region permits in each state of the state transition system. The
different monotonicity requirements in the two interpretation functions reflects
how permanent regions rely only on permanent protocols whereas temporary
regions can rely on both temporary and permanent protocols. UPred(MemSeg)
is the set of step-indexed, downwards closed predicates on memory segments:
UPred(MemSeg) = {A ⊆ N × MemSeg | ∀(n,ms) ∈ A.∀m ≤ n.(m,ms) ∈ A}.

With the recursive domain equation solved, we could take Wor as our notion
of worlds, but it is technically more convenient to work with the following defi-
nition instead:

World = N
fin−⇀ Region
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Future Worlds. The future world relations model how memory may evolve over
time. The public future world W ′ �pub W requires that dom(W ′) ⊇ dom(W ) and
∀r ∈ dom(W ).W ′(r) �pub W (r). That is, in a public future world, new regions
may have been allocated, and existing regions may have evolved according to the
public future region relation (defined below). The private future world relation
W ′ �priv W is defined similarly, using a private future region relation. The public
future region relation is the simplest. It satisfies the following properties:

(s, s′) ∈ φpub

(v, s′, φpub , φ,H) �pub (v, s, φpub , φ,H)

(temp, s, φpub , φ,H) ∈ Region

(temp, s, φpub , φ,H) �pub revoked

revoked �pub revoked

Both temporary and permanent regions are only allowed to transition according
to the public part of their transition system. Additionally, revoked regions must
either remain revoked or be replaced by a temporary region. This means that
the public future world relations allows us to reinstate a region that has been
revoked earlier. The private future region relation satisfies:

(s, s′) ∈ φ

(v, s′, φpub , φ,H) �priv (v, s, φpub , φ,H)
r ∈ Region

r �priv (temp, s, φpub , φ,H)

r ∈ Region
r �priv revoked

Here, revocation of temporary regions is allowed. In fact, temporary regions
can be replaced by an arbitrary other region, not just the special revoked. Con-
versely, revoked regions may also be replaced by any other region. On the other
hand, permanent regions cannot be masked away. They are only allowed to tran-
sition according to the private part of the transition system.

Notice that the public future region relation is a subset of the private future
region relation.

World Satisfaction. A memory satisfies a world, written ms :n W , if it can
be partitioned into disjoint parts such that each part is accepted by an active
(permanent or temporary) region. Revoked regions are not taken into account
as their memory protocols are no longer in effect.

ms :n W iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∃P : active(W ) → MemSeg.ms =
⊎

r∈active(W )

P (r) and

∀r ∈ active(W ).

∃H, s. W (r) = ( , s, , , H) and (n, P (r)) ∈ H(s)(ξ−1(W ))
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Fig. 6. The logical relation.

4.2 Logical Relation

The logical relation defines semantically when values, program counters, and
configurations are capability safe. The definition is found in Figs. 6 and 7 and
we provide some explanations in the following paragraphs. For space reasons,
we omit some definitions and explain them only verbally, but precise definitions
can be found in the technical appendix [14].

First, the observation relation O defines what configurations we consider
safe. A configuration is safe with respect to a world, when the execution of
said configuration does not break the memory protocols of the world. Roughly
speaking, this means that when the execution of a configuration halts, then there
is a private future world that the resulting memory satisfies. Notice that failing
is considered safe behavior. In fact, the machine often resorts to failing when
an unauthorized access is attempted, such as loading from a capability without
read permission. This is similar to Devriese et al. [11]’s logical relation for an
untyped language, but unlike typical logical relations for typed languages, which
require that programs do not fail.

The register-file relation R defines safe register-files as those that contain
safe words (i.e. words in V) in all registers but pc. The expression relation E
defines that a word is safe to use as a program counter if it can be plugged into
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Fig. 7. Permission-based conditions

a safe register file (i.e. a register file in R) and paired with a memory satisfying
the world to become a safe configuration. Note that integers and non-executable
capabilities (e.g. ro and e capabilities) are considered safe program counters
because when they are plugged into a register file and paired with a memory,
the execution will immediately fail, which is safe.

The value relation V defines when words are safe. We make the value relation
as liberal as possible by considering what is the most we can allow an adversary to
use a capability for without breaking the memory protocols. Non-capability data
is always safe because it provides no authority. Capabilities give the authority
to manipulate memory and potentially break memory protocols, so they need
to satisfy certain conditions to be safe. In Fig. 7, we define such a condition for
each kind of permission a capability can have.

For capabilities with read permission, the readCond ensures that it can only
be used to read safe words, i.e. words in the value relation. To guarantee this, we
require that the addressed memory is governed by a region W (r) that imposes
safety as a requirement on the values contained. This safety requirement is for-
mulated in terms of a standard region ιpwl

b,e . The definition of that standard region
is omitted for space reasons, but it simply requires all the words in the range
[b, e] to be safe, i.e. in the value relation. Requiring that W (r)

n⊂∼ ιpwl
b,e means that

W (r) must accept only safe values like ιpwl
b,e , but can be even more restrictive if

desired. The read condition also takes into account the locality of the capability
because, generally speaking, global capabilities should only depend on perma-
nent regions. Concretely, we use the function localityReg(g ,W ), which projects
out all active (non-revoked) regions when the locality g is local, but only the
permanent regions when g is global. The definition of the standard region ιpwl

b,e
can be found in [14]; it makes use of the isomorphism from Theorem 1.

For a capability with write permission, writeCond must be satisfied for the
capability’s range of authority. An adversary can use such a capability to write
any word they can get a hold of, and we can safely assume that they can only
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get a hold of safe words, so the region governing the relevant memory must allow
any safe word to be written there. In order to make the logical relation as liberal
as possible, we make this a lower bound of what the region may allow. For write
capabilities, we also have to take into account the two flavours of write per-
missions: write and write-local. In the case of write-local capabilities, the region
needs to allow (at least) any safe word to be written, but in the case of write capa-
bilities, the capability cannot be used to write local capabilities, so the region
only needs to allow safe non-local values. In the write condition, this is handled
by parameterizing it with a region. For the write-local capabilities the write
condition is applied with the standard region ιpwl

b,e that we described previously.
For the write capabilities we use a different standard region ιnwl

b,e which requires
that the words in [b, e] are non-local and safe. As before, we use localityReg to
pick an appropriate region based on the capability’s locality. Finally, there is a
technical requirement that the region must be address-stratified. Intuitively, this
means that if a region accepts two memory segments, then it must also accept
every memory segment “in between”, that is every memory segment where each
address contains a value from one of the two accepted memory segments. An
interesting property of the write condition is that they prohibit global write-
local capabilities which, as discussed in Sect. 3, is necessary for any safe use of
local capabilities.

The conditions enterCond and execCond are very similar. Both require that
the capability can be safely jumped to. However, executable capabilities can be
updated to point anywhere in their range, so they must be safe as a program
counter (in the E-relation) no matter the current address. In contrast, enter
capabilities are opaque and can only be used to jump to the address they point
to. They also change permission when jumped to, so we require them to be
safe as a program counter after the permission is changed to rx. Because the
capabilities are not necessarily invoked immediately, this must be true in any
future world, but it depends on the capability’s locality which future worlds we
consider. If it is global, then we require safety as a program counter in private
future worlds (where temporary regions may be revoked). For local capabilities,
it suffices to be safe in public future worlds, where temporary regions are still
present.

In the technical appendix, we prove that safety of all values is preserved in
public future worlds, and that safety of global values is also preserved in private
future worlds:

Lemma 1 (Double monotonicity of value relation)

– If W ′ �pub W and (n,w) ∈ V(W ), then (n,w) ∈ V(W ′).
– If W ′ �priv W and (n,w) ∈ V(W ) and w = ((perm, global), b, e, a) (i.e. w is

a global capability), then (n,w) ∈ V(W ′).

4.3 Safety of the Capability Machine

With the logical relation defined, we can now state the fundamental theorem
of our logical relation: a strong theorem that formalizes the guarantees offered
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by the capability machine. Essentially, it says a capability that only grants safe
authority is capability safe as a program counter.

Theorem 2 (Fundamental theorem). If one of the following holds:

• perm = rx and (n, (b, e)) ∈ readCond(g)(W )
• perm = rwx and (n, (b, e)) ∈ readCond(g)(W ) and

(n, (b, e)) ∈ writeCond(ιnwl , g)(W )

• perm = rwlx and (n, (b, e)) ∈ readCond(g)(W ) and

(n, (b, e)) ∈ writeCond(ιpwl , g)(W ),

then (n, ((perm, g), b, e, a)) ∈ E(W )

The permission based conditions of Theorem2 make sure that the capability only
provides safe authority in which case the capability must be in the E relation,
i.e. it can safely be used as a program counter in an otherwise safe register-file.

The Fundamental Theorem can be understood as a general expression of the
guarantees offered by the capability machine, an instance of a general property
called capability safety [11,12]. To understand this, consider that the theorem
says the capability ((perm, g), b, e, a) is safe as a program counter, without any
assumption about what instructions it actually points to (the only assumptions
we have are about the read or write authority that it carries). As such, the the-
orem expresses the capability safety of the machine, which guarantees that any
instruction is fine and will not be able to go beyond the authority of the values
it has access to. We demonstrate this in Sect. 5 where Theorem 2 is used to rea-
son about capabilities that point to arbitrary instructions. The relation between
Theorem 2 and local-state encapsulation and control-flow correctness, will also
be shown by example in Sect. 5 as the examples depend on these properties for
correctness. See the technical appendix [14] for a detailed proof (by induction
over the step-index n) of the theorem.

5 Examples

In this section, we demonstrate how our formalization of capability safety allows
us to prove local-state encapsulation and control-flow correctness properties for
challenging program examples. The security measures of Sect. 3 are deployed to
ensure these properties. Since we are dealing with assembly language, there are
many details to the formal treatment, and therefore we necessarily omit some
details in the lemma statements. The examples may look deceivingly short, but
it is because they use the macro instructions described in Sect. 3. The examples
would be unintelligible without the macros, as each macro expands to multiple
basic instructions. The interested reader can find all the technical details in the
technical appendix [14].
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Fig. 8. Two example programs that rely on local-state encapsulation. f1 uses our
stack-based calling convention. f2 does not rely on a stack.

5.1 Encapsulation of Local State

f1 and f2 in Fig. 8 demonstrate the capability machine’s encapsulation of local
state. They are very similar: both store some local state, call an untrusted piece
of code (adv), and then test whether the local state is unchanged. They differ
in the way they do this. Program f1 uses our stack-based calling convention
(captured by scall) to call the adversary, so it can use the available stack to
store its local state. On the other hand, f2 uses malloc to allocate memory for
its local state and uses an activation-record based calling convention (described
in the technical appendix) to run the adversarial code.

For both programs, we can prove that if they are linked with an adversary,
adv , that is allowed to allocate memory but has no other capabilities, then the
assertion will never fail during executing (see Lemmas 2 and 3 below). The two
examples also illustrate the versatility of the logical relation. The logical relation
is not specific to any calling convention, so we can use it to reason about both
programs, even though they use different calling conventions.

In order to formulate results about f1 and f2, we need a way to observe
whether the assertion fails. To this end, we assume they have access to a flag (an
address in memory). If the assertion fails, then the flag is set to 1 and execution
halts. The correctness lemma for f1 then states:

Lemma 2. Let

cadv
def= ((e, global), . . . ) cstk

def= ((rwlx, local), . . . )
cf1

def= ((rwx, global), . . . ) clink
def= ((ro, global), . . . )

cmalloc
def= ((e, global), . . . ) reg ∈ Reg

m
def= msf1 � msflag � ms link � msadv � msmalloc � msstk � ms frame

where each of the capabilities have an appropriate range of authority and
pointer2. Furthermore

– msf1 contains clink , cflag and the code of f1
– msflag(flag) = 0
– ms link contains cadv and cmalloc
– msadv contains clink and otherwise only instructions.

If (reg [pc → cf1][rstk → cstk ],m) →∗ (halted ,m′), then m′(flag) = 0

2 These assumptions are kept intentionally vague for brevity. Full statements are in
the technical appendix [14].
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To prove Lemma 2, it suffices to show that the start configuration is safe (in
the O relation) for a world with a permanent region that requires the assertion
flag to be 0. By an anti-reduction lemma, it suffices to show that the config-
uration is safe after some reduction steps. We then use a general lemma for
reasoning about scall, by which it suffices to show that (1) the configuration
that scall will jump to is safe and (2) that the configuration just after scall is
done cleaning up is safe. We use the Fundamental Theorem to reason about the
unknown adversarial code, but notice that the adversary capability is an enter
capability, which the Fundamental Theorem says nothing about. Luckily the
enter capability becomes rx after the jump and then the Fundamental Theorem
applies.

We have a similar lemma for f2:

Lemma 3. Making similar assumptions about capabilities and linking as in
Lemma 2 but assuming no stack pointer, if (reg [pc → cf2],m) →∗ (halted ,m′),
then m′(flag) = 0.

5.2 Well-Bracketed Control-Flow

Using the stack-based calling convention of scall, we get well-bracketed control-
flow. To illustrate this, we look at two example programs f3 and g1 in Fig. 9.

In f3 there are two calls to an adversary and in order for the assertion in the
middle to succeed, they need to be well-bracketed. If the adversary were able to
store the return pointer from the first call and invoke it in the second call, then
f3 would have 2 on top of its stack and the assertion would fail. However, the
security measures in Sect. 3 prevent this attack: specifically, the return pointer
is local, so it can only be stored on the stack, but the part of the stack that
is accessible to the adversary is cleared before the second invocation. In fact,
the following lemma shows that there are also no other attacks that can break
well-bracketedness of this example, i.e. the assertion never fails. It is similar to
the two previous lemmas:

Lemma 4. Making similar assumptions about capabilities and linking as in
Lemma 2 if (reg [pc → cf3][rstk → cstk ],m) →∗ (halted ,m′), then m′(flag) = 0.

The final example, g1 with f4, is a faithful translation of a tricky example
known from the literature (known as the awkward example) [13,20]. It consists
of two parts, g1 and f4. g1 is a closure generator that generates closures with
one variable x set to 0 in its environment and f4 as the program (note we can
omit some calling convention security measures because the stack is not used in
the closure generator). f4 expects one argument, a callback. It sets x to 0 and
calls the callback. When it returns, it sets x to 1 and calls the callback a second
time. When it returns again, it asserts x is 1 and returns. This example is more
complicated than the previous ones because it involves a closure invoked by the
adversary and an adversary callback invoked by us. As explained in Sect. 3, this
means that we need to check (1) that the stack pointer that the closure receives
from the adversary has write-local permission and (2) that the adversary callback
is global.
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Fig. 9. Two programs that rely on well-bracketedness of scalls to function correctly.
offset is the offset to f4.

To illustrate how subtle this program is, consider how an adversary could try
to make the assertion fail. In the second callback an adversary can get to the
first callback by invoking the closure one more time. If there were any way for
the adversary to transfer the return pointer from the point where it reinvokes
the closure to where the closure reinvokes the callback, then the assertion could
be made to fail. Similarly, if there were any way for the adversary to store a
stack pointer or trick the trusted code into preserving it across an invocation,
the assertion can likely be made to fail too. However, our calling convention
prevents any of this from happening, as we prove in the following lemma.

Lemma 5. Let

cadv
def= ((rwx, global), . . . ) cg1

def= ((e, global), . . . )

and otherwise make assumptions about capabilities and linking similar to
Lemma 2. Then if (reg0[pc → cadv ][rstk → cstk ][r1 → cg1],m) →∗ (halted ,m′),
then m′(flag) = 0.

As explained in Sect. 3, the macro-instruction reqglob r1 checks that the call-
back is global, essentially to make sure it is not allocated on the stack where
it might contain old stack pointers or return pointers. Otherwise, the encapsu-
lation of our local stack frame could be broken. In the proof of Lemma5, this
requirement shows up because we invoke the callback in a world that is only a
private future world of the one where we received the callback, precisely because
we have invalidated the adversary’s local state (particularly their old stack and
return capabilities). The callback is still valid in this private future world, but
only because we know that it is global.

In Lemma 5 the order of control has been inverted compared to the previous
lemmas. In this lemma, the adversary assumes control first with a capability
for the closure creator g1. Consequently, we need to check that all arguments
are safe to use and that we clean up before returning in the end. The inversion
of control poses an interesting challenge when it comes to reasoning about the
adversary’s local state during the execution of f4 and the callbacks where the

www.dbooks.org

https://www.dbooks.org/


Reasoning About a Machine with Local Capabilities 495

adversary should not rely on the local state from before the call of f4. This is
easily done by revoking all the temporary regions of the world given at the start
of f4. However, when f4 returns, the adversary is again allowed to rely on its
old local state so we need to guarantee that the local state is unchanged. This
is important because the return pointer that f4 receives may be local, and the
adversary is allowed to allocate the activation record on the stack (just like we
do) so they can store and recover their old stack pointer after f4 returns. By
utilizing the reinstation mechanism of the future world relation as well as our
knowledge of the future worlds used, we can construct a world in which the
adversary’s invariants are preserved. The details of this and the proofs of the
other lemmas are found in the technical appendix [14].

6 Discussion

Calling Convention

Formulating Control Flow Correctness. While we claim that our calling con-
vention enforces control-flow correctness, we do not prove a general theorem
that shows this, because it is not clear what such a theorem should look like.
Formulations in terms of a control-flow graph, like the one by Abadi et al. [2],
do not take into account temporal properties, like the well-bracketedness that
Example g1 relies on. In fact, our examples show that our logical relation imply
a stronger form of control-flow correctness than such formulations, although
this is not made very explicit. As future work, we consider looking at a more
explicit and useful way to formalize control-flow correctness. The idea would be
to define a variant of our capability machine with call and return instructions
and well-bracketed control flow built-in to the operational semantics, and then
prove that compiling such code to our machine using our calling convention is
fully abstract [21].

Performance and the Requirement for Stack Clearing. The additional security
measures of the calling convention described in Sect. 3 impose an overhead com-
pared to a calling convention without security guarantees. However, most of
our security measures require only a few atomic checks or register clearings on
boundary crossings between trusted code and adversary, which should produce
an acceptable performance overhead. The only exception are the requirements
for stack clearing that we have in two situations: when returning to the adver-
sary and when invoking an adversary callback. As we have explained, we need
to clear all of the stack that we are not using ourselves, not just the part that
we have actually used. In other words, on every boundary cross between trusted
code and adversary code, a potentially large region of memory must be cleared.
We believe this is actually a common requirement for typical usage scenarios of
local capabilities and capability machines like CHERI should consider to provide
special support for this requirement, in the form of a highly-optimized instruc-
tion for erasing a large block of memory. Nevertheless, from a discussion with the
designers of the CHERI capability machine, we gather that it is not immediately
clear whether and how such a primitive could be implemented efficiently in the
CHERI context.
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Modularity. It is important that our calling convention is modular, i.e. we do
not assume that our code is specially privileged w.r.t. the adversary, and they
can apply the same measures to protect themselves from us as we do to protect
ourselves from them. More concretely, the requirements we have on callbacks
and return pointers received from the adversary are also satisfied by callbacks
and return pointers that we pass to them. For example, our return pointers are
local capabilities because they must point to memory where we can store the old
stack pointer, but the adversary’s return pointers are also allowed to be local.
Adversary callbacks are required to be global but the callbacks we construct are
allocated on the heap and also global.

Arguments and Local Capabilities. Local capabilities are a central part of the
calling convention as they are used to construct stack and return pointers. The
use of local capabilities for the calling convention unfortunately limits the extent
to which local capabilities can be used for other things. Say we are using the
calling convention and receive a local capability other than the stack and return
pointer, then we need to be careful if we want to use it because it may be an
alias to the stack pointer. That is, if we first push something to the stack and
then write to the local capability, then we may be (tricked into) overwriting our
own local state. The logical relation helps by telling us what we need to ascertain
or check in such scenarios to guarantee safety and preserve our invariants, but
such checks may be costly and it is not clear to us whether there are practical
scenarios where this might be realistic.

We also need to be careful when we receive a capability from an adversary
that we want to pass on to a different (instance of the) adversary. It turns out that
the logical relation again tells us when this is safe. Namely, the logical relation
says that we can only pass on safe arguments. For instance, when we receive a
stack pointer from an adversary, then we may at some point want to pass on
part of this stack pointer to, say, a callback. In order to do so, we need to make
sure the stack pointer is safe which means that, if we have revoked temporary
invariants, the stack must not directly or indirectly allow access to local values
that we cannot guarantee safety of. When received from an adversary, we have
to consider the contents of the stack unsafe, so before we pass it on, we have to
clear it, or perform a dynamic safety analysis of the stack contents and anything
it points to. Clearing everything is not always desirable and a dynamic safety
analysis is hard to get right and potentially expensive.

In summary, the use of local capabilities for other things than stack and
return pointers is likely only possible in very specific scenarios when using our
calling convention. While this is unfortunate, it is not unheard of that processors
have built-in constructs that are exclusively used for handling control flow, such
as, for example, the call and return instructions that exist in some instruction
sets.

Single Stack. A single stack is a good choice for the simple capability machine
presented here, because it works well with higher-order functions. An alternative
to a single stack would be to have a separate stack per component. The trouble
with this approach is that, with multiple stacks and local stack pointers, it is

www.dbooks.org

https://www.dbooks.org/


Reasoning About a Machine with Local Capabilities 497

not clear how components would retrieve their stack pointer upon invocation
without compromising safety. A safe approach could be to have stack pointers
stored by a central, trusted stack management component, but it is not clear
how that could scale to large numbers of separate components. Handling large
numbers of components is a requirement if we want to use capability machines to
enforce encapsulation of, for example, every object in an object-oriented program
or every closure in a functional program.

Logical Relation

Single Orthogonal Closure. The definitions of E and V in Fig. 6 apply a single
orthogonal closure, a new variant of an existing pattern called biorthogonality.
Biorthogonality is a pattern for defining logical relations [20,22] in terms of an
observation relation of safe configurations (like we do). The idea is to define
safe evaluation contexts as the set of contexts that produce safe observations
when plugging safe values and define safe terms as the set of terms that can be
plugged into safe evaluation contexts to produce safe observations. This is an
alternative to more direct definitions where safe terms are defined as terms that
evaluate to safe values. An advantage of biorthogonality is that it scales better
to languages with control effects like call/cc. Our definitions can be seen as a
variant of biorthogonality, where we take only a single orthogonal closure: we do
not define safe evaluation contexts but immediately define safe terms as those
that produce safe observations when plugged with safe values. This is natural
because we model arbitrary assembly code that does not necessarily respect a
particular calling convention: return pointers are in principle values like all others
and there is no reason to treat them specially in the logical relation.

Interestingly, Hur and Dreyer [23] also use a step-indexed, Kripke logical
relation for an assembly language (for reasoning about correct compilation from
ML to assembly), but because they only model non-adversarial code that treats
return pointers according to a particular calling convention, they can use stan-
dard biorthogonality rather than a single orthogonal closure like us.

Public/Private Future Worlds. A novel aspect of our logical relation is how we
model the temporary, revokable nature of local capabilities using public/private
future worlds. The main insight is that this special nature generalizes that of
the syntactically-enforced unstorable status of evaluation contexts in lambda
calculi without control effects (of which well-bracketed control flow is a con-
sequence). To reason about code that relies on this (particularly, the original
awkward example), Dreyer et al. [13] (DNB) formally capture the special sta-
tus of evaluation contexts using Kripke worlds with public and private future
world relations. Essentially, they allow relatedness of evaluation contexts to be
monotone with respect to a weaker future world relation (public) than related-
ness of values, formalizing the idea that it is safe to make temporary internal
state modifications (private world transitions, which invalidate the continuation,
but not other values) while an expression is performing internal steps, as long
as the code returns to a stable state (i.e. transitions to a public future world
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of the original) before returning. We generalize this idea to reason about local
capabilities: validity of local capabilities is allowed to be monotone with respect
to a weaker future-world relation than other values, which we can exploit to
distinguish between state changes that are always safe (public future worlds)
and changes that are only valid if we clear all local capabilities (private future
worlds). Our future world relations are similar to DNB’s (for example, our proof
of the awkward example uses exactly the same state transition system), but they
turn up in an entirely different place in the logical relation: rather than using
public future worlds for the special syntactic category of evaluation contexts,
they are used in the value relation depending on the locality of the capability at
hand. Additionally, our worlds are a bit more complex because, to allow local
memory capabilities and write-local capabilities, they can contain (revokable)
temporary regions that are only monotonous w.r.t. public future worlds, while
DNB’s worlds are entirely permanent.

Local Capabilities in High-Level Languages. We point out that local capabilities
are quite similar to a feature proposed for the high-level language Scala: Osvald
et al. [24]’s second-class or local values. They are a kind of values that can be
provided to other code for immediate use without allowing them to be stored in
a closure or reference for later use. We believe reasoning about such values will
require techniques similar to what we provide for local capabilities.

7 Related Work

Finally, we summarize how our work relates to previous work. We do not repeat
the work we discussed in Sect. 6.

Capability machines originate with Dennis and Van Horn [7] and we refer to
Levy [25] and Watson et al. [9] for an overview of previous work. The capabil-
ity machine formalized in Sect. 2 is a simple but representative model, modeled
mainly after the M-Machine [6] (the enter pointers resemble the M-Machine’s)
and CHERI [9,10] (the memory and local capabilities resemble CHERI’s). The
latter is a recent and relatively mature capability machine, which combines
capabilities with a virtual memory approach, in the interest of backwards com-
patibility and gradual adoption. As discussed, our local capabilities can cross
module boundaries, contrary to what is enforced by CHERI’s default CCall
implementation.

Plenty of other papers enforce well-bracketed control flow at a low level, but
most are restricted to preventing particular types of attacks and enforce only
partial correctness of control flow. This includes particularly the line of work
on control-flow integrity [2]. Those use a quite different attacker model than us:
they assume an attacker that is not able to execute code, but can overwrite
arbitrary data at any time during execution (to model buffer overflows). By
checking the address of every indirect jump and using memory access control to
prevent overwriting code, this work enforces what they call control-flow integrity,
formalized as the property that every jump will follow a legal path in the control-
flow graph. As discussed in Sect. 6, such a property ignores temporal properties
and seems hard to use for reasoning.

www.dbooks.org

https://www.dbooks.org/


Reasoning About a Machine with Local Capabilities 499

More closely related to our work are papers that use a trusted stack manager
and some form of memory isolation to enforce control-flow correctness as part of
a secure compilation result [26,27]. Our work differs from theirs in that we use
a different form of low-level security primitive (a capability machine with local
capabilities rather than a machine with a primitive notion of compartments) and
we do not use a trusted stack manager, but a decentralized calling convention
based on local capabilities. Also, both prove a secure compilation result from a
high-level language, which clearly implies a general form of control-flow correct-
ness, while we define a logical relation that can be used to reason about specific
programs that rely on well-bracketed control flow.

Our logical relation is a unary, step-indexed Kripke logical relation with
recursive worlds [16,18,20,28], closely related to the one used by Devriese et
al. [11] to formulate capability safety in a high-level JavaScript-like lambda cal-
culus. Our Fundamental Theorem is similar to theirs and expresses capability
safety of the capability machine. Because we are not interested in externally
observable side-effects (like console output or memory access traces), we do not
require their notion of effect parametricity. Our logical relation uses several ideas
from previous work, like Kripke worlds with regions containing state transition
systems [15], public/private future worlds [13] (see Sect. 6 for a discussion), and
biorthogonality [20,23,29].

Swasey et al. [30] have recently developed a logic, OCPL, for verification of
object capability patterns. The logic is based on Iris [31–33], a state of the art
higher-order concurrent separation logic and is formalized in Coq, building on
the Iris Proof Mode for Coq [34]. OCPL gives a more abstract and modular way
of proving capability safety for a lambda-calculus (with concurrency) compared
to the earlier work by Devriese et al. [11].

El-Korashy also defined a formal model of a capability machine, namely
CHERI, and uses it to prove a compartmentalization result [35] (not implying
control-flow correctness). He also adapts control-flow integrity (see above) to the
machine and shows soundness, seemingly without relying on capabilities.
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